
ptg8106388

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

800 East 96th Street

 Indianapolis, Indiana 46240 USA

FileMaker® 12

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

FILEMAKER® 12 IN DEPTH
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the publisher.

No patent liability is assumed with respect to the use of the information con-

tained herein. Although every precaution has been taken in the preparation of

this book, the publisher and author assume no responsibility for errors or omis-

sions. Nor is any liability assumed for damages resulting from the use of the

information contained herein.

ISBN-13: 978-0-7897-4846-1
ISBN-10: 0-7897-4846-0
Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: June 2012

 Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Que Publishing cannot attest to the

accuracy of this information. Use of a term in this book should not be regarded

as affecting the validity of any trademark or service mark.

FileMaker is a registered trademark of FileMaker, Inc.

 Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on

an “as is” basis. The author and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages aris-

ing from the information contained in this.

 Bulk Sales
Que Publishing offers excellent discounts on this book when ordered in quantity

for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales

international@pearsoned.com

 Editor-in-Chief
Greg Wiegand

 Executive Editor
Loretta Yates

 Development Editor
Sondra Scott

 Managing Editor
Sandra Schroeder

 Senior Project Editor
Tonya Simpson

 Copy Editor
Bart Reed

 Indexer
Cheryl Lenser

 Proofreader
Leslie Joseph

 Technical Editor
Beverly Voth

 Publishing Coordinator
Cindy Teeters

 Book Designer
Anne Jones

 Compositor
Bronkella Publishing

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

CONTENTS AT A GLANCE

 Introduction 1

 I Getting Started with FileMaker 12

 1 FileMaker Overview 9
 2 Using FileMaker Pro 23
 3 Defining and Working with Fields and Tables 75
 4 Working with Layouts 111

 II Developing Solutions with FileMaker

 5 Relational Database Design 153
 6 Working with Multiple Tables 169
 7 Working with Relationships 193
 8 Getting Started with Calculations 215
 9 Getting Started with Scripting 251
 10 Getting Started with Reporting and Charting 283

 III Developer Techniques

 11 Developing for Multiuser Deployment 323
 12 Implementing Security 337
 13 Using the Web Viewer 367
 14 Advanced Interface Techniques 377
 15 Advanced Calculation Techniques 407
 16 Advanced Scripting Techniques 443
 17 Working with FileMaker Triggers 461
 18 Advanced FileMaker Solution Architecture 471
 19 Debugging and Troubleshooting 485
 20 Converting Systems from Previous Versions of FileMaker Pro 511

 IV Data Integration and Publishing

 21 Connecting to External SQL Data Sources 519
 22 Importing Data into FileMaker Pro 545
 23 Exporting Data from FileMaker 565
 24 Instant Web Publishing 575
 25 Custom Web Publishing with PHP and XML 599

 V Deploying a FileMaker Solution

 26 Deploying and Extending FileMaker 625
 27 FileMaker Server and Server Advanced 639

 Index 675

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

CONTENTS

 Introduction
Welcome to FileMaker 12 1

I Getting Started with FileMaker 12

 1 FileMaker Overview 9

FileMaker and Its Marketplace 9

Mobility 10

Rapid Application Development 10

Low Total Cost of Ownership 11

FileMaker Is a Seasoned Platform 11

You’re Not Alone 11

Introduction to Database Software 12

Database Software 12

What Database Software Does 14

Overview of the FileMaker Product Line 17

FileMaker Deployment Options 19

Single User 19

Peer-to-Peer Hosting 19

FileMaker Server Hosting 20

FileMaker Server Advanced Hosting 20

Kiosk Mode 20

FileMaker Single-User Runtime 20

Extending the Functionality of FileMaker

Pro 21

Technical Specifications 21

2 Using FileMaker Pro 23

Getting Started 23

Registration 24

Software Updates 24

Using the Quick Start Screen 24

Getting Help 26

Understanding FileMaker Pro Features 27

Understanding FileMaker Databases 28

Understanding Tables 29

Understanding Records and Fields 29

The FileMaker Pro User Interface 30

Using the Status Toolbar 35

Customizing the Status Toolbar

(OS X) 36

Customizing the Status Toolbar

(Windows) 38

Working in FileMaker Pro 39

Opening a Database 39

Working with Records 44

Working with Fields 44

Data in Formatted Fields 46

Modifying Value Lists 47

Field Types 48

Data Validation 52

Working with Related Data 53

Understanding the Mechanics of a

Portal 55

Finding Data with FileMaker 56

Using Quick Find 58

Using Find Mode to Perform a Find

Request 58

Omitting and Showing All Records 63

Saving Find Requests 63

Sorting 66

Printing 68

Presenting Data with Summary and

Subsummary Reports 68

Importing and Exporting Data 70

Saving PDF and Excel Documents 70

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Using the Web Viewer 70

Troubleshooting 71

FileMaker Extra: Becoming a FileMaker Pro
Power User 72

Technique 1: Using Your Keyboard for

More Speed 72

Technique 2: Working with Table

View 72

Technique 3: Replacing Data 72

Technique 4: Inserting Specific

Information 73

Technique 5: Getting to Know Your

Entire Database 74

Technique 6: Using Multitiered Sorts 74

Technique 7: Using Multiple

Windows 74

Technique 8: Applying Text Styling and

Tabs 74

3 Defining and Working with Fields and
Tables 75

Working Under the Hood 75

Creating New Databases 75

Using the Manage Database Dialog 80

Working with Tables 81

Table Naming Conventions 81

Creating New Tables 83

Working with Fields 84

Field Naming Conventions 84

Adding Field Comments 86

Creating New Fields 87

Working with Field Types 87

Text 88

Number 88

Date 88

Time 89

Timestamp 89

Container 89

Calculation 93

Summary Fields 95

Working with Field Options 97

Auto-Entry Field Options 97

Field Validation 102

Storage and Indexing 104

Furigana 108

Troubleshooting 109

FileMaker Extra: Indexing in FileMaker 110

4 Working with Layouts 111

What’s a Layout? 111

Using Multiple Layouts Automatically 116

Creating and Managing Layouts 119

Creating a New Layout 119

Layout Context 121

Layout Setup 124

Hiding and Reordering Layouts 127

Layout Naming Conventions 129

Working with Parts 130

Adding and Ordering Parts 131

Formatting a Part 132

Part Definition 133

Working with the Layout Status
Toolbar 134

Using the Layout Bar 134

Using the Customizable Status Toolbar

Tool Groups 135

Using the Status Toolbar Items 137

Using the Inspector 137

Inspecting Data Settings 138

Inspecting Appearance Settings 140

Inspecting Position Settings 140

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

vi FileMaker® 12 In Depth

Normalizing Data: What Goes Where 165

First Normal Form: Eliminate Repeating

Groups 166

Second Normal Form: Eliminate

Redundant Data 166

Third Normal Form: Eliminate Fields Not

Dependent on the Key 166

FileMaker Extra: Complex Many-to-Many
Relationships 167

6 Working with Multiple Tables 169

Multitable Systems in FileMaker Pro 169

Creating a One-to-Many Relationship in
FileMaker 170

Creating the First Table in a Multitable

System 170

Adding a Table to a Multitable

System 174

Adding a Relationship 175

Working with Keys and Match

Fields 176

The Database So Far 177

Working with Related Data 178

Using a Portal to View Related Child

Data 178

Using a Portal to Add Related

Records 182

Working with Related Parent Data in a

Child File 186

Creating a Many-to-Many Relationship 187

Building the Structure 187

Creating Value Lists 188

Designing the Interface 190

Rapid Multitable Development 192

Troubleshooting 192

Working with Objects on a Layout 144

Adding Objects to a Layout 144

Positioning Objects on a Layout 145

Working with the Tab Control Object 147

Adding a Tab Control Object to a

Layout 148

Working with Fields 149

Adding Fields to Layouts 149

Setting the Tab Order 150

Merge Fields 151

Troubleshooting 152

II Developing Solutions with FileMaker

5 Relational Database Design 153

Understanding Database Design 153

Database Analysis 154

Working with Entities and Attributes 154

Entities Versus Attributes: A Case

Study 156

Design as an Iterative Process 158

Understanding Relationships 158

Representing Relationships in a

Diagram 159

Relationship Types 159

Understanding the Role of Keys in Database
Design 161

Keys That Determine Uniqueness 162

Keys That Refer to Other Tables 163

Many-to-Many Relationships 163

Using Join Tables 164

Using Checkboxes and Multiple

Values 165

Attributes in a Join Entity 165

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Contents vii

Essential Functions 229

Parts of a Function 229

Text Operations 231

Nested Functions 235

Number Functions 236

Character Functions 238

Working with Dates and Times 238

Using Conditional Functions 240

Aggregate Functions 241

Learning About the Environment:
Introspective Functions 242

Get Function 242

Design Functions 244

Device Identification Functions 245

Mobile Functions 246

Troubleshooting 247

FileMaker Extra: Tips for Becoming a
Calculation Master 248

9 Getting Started with Scripting 251

Scripts in FileMaker Pro 251

Creating Scripts 252

The Scripting Interface 256

Script Editing 258

Full Access Privileges 259

Commenting Scripts 259

Exiting a Script 260

Using a Script Template 261

Using Subscripts 261

Importing Scripts 263

Managing the Scripts Menu 263

Common Scripting Topics 264

Error Management 264

Setting and Controlling Data 266

Providing User Navigation 268

Saved Script Options 269

7 Working with Relationships 193

Relationships Graphs and ERDs 193

Relationships as Queries 194

Nonequijoins 194

Adding a Table Occurrence to the

Relationships Graph 195

Defining a Relationship with Multiple

Match Criteria 197

Creating Self-Relationships 201

Creating a Relationship with a Global
Value 202

Creating Cross-Product Relationships 204

Working with Multiple Files 205

Creating an External Data Source 206

Adding an External Table to the

Relationships Graph 209

Troubleshooting 210

FileMaker Extra: Managing the
Relationships Graph 211

Using Formatting Tools to Manage the

Relationships Graph 212

Using Table Occurrences to Manage the

Relationships Graph 212

8 Getting Started with
Calculations 215

Understanding How and Where
Calculations Are Used 215

Writing Calculation Formulas 216

Uses for Calculation Formulas 218

Exploring the Specify Calculation
Dialog 219

Writing the Formula 219

Options 223

Specifying Context 226

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

viii FileMaker® 12 In Depth

Delivering Reports 309

Save/Send as PDF 310

Save/Send as Excel 311

Send Mail 312

Scripting Send Mail 313

Introducing Charting 315

Troubleshooting 319

FileMaker Extra: Incorporating Reports into
the Workflow 320

 III Developer Techniques

11 Developing for Multiuser
Deployment 323

Developing for Multiple Users 323

Sessions in FileMaker Pro 324

Session-Specific Elements 325

Global Behavior 325

User Accounts and Session Data 326

Concurrency 327

The ACID Test 327

Script Log 328

Commit Versus Create and Serial

IDs 329

Record Locking 329

Launch Files 332

Troubleshooting 332

FileMaker Extra: Development with a
Team 334

 12 Implementing Security 337

Approaching Security 337

Identifying Risks 338

Planning Security 339

Maintaining Security 342

Using Conditional Logic 272

Using Loops 274

Working with Custom Dialogs 275

Starting and Triggering Scripts 276

Starting Scripts 277

Triggering Scripts 277

Working with Buttons on Layouts 278

Naming Scripts 278

Troubleshooting 279

FileMaker Extra: Creating a Script
Library 280

10 Getting Started with Reporting and
Charting 283

Reporting in FileMaker Pro 283

Deriving Meaning from Data 284

Begin with the End in Mind 285

Determine Report Requirements 285

Generic Versus Specific Report

Structures 285

Working with Reports, Layouts, View As
Options, and Modes 286

Working with Lists of Data 289

Using the New Layout/Report
Assistant 289

Using Summarized Reports 295

Creating a Summary Field 295

Working with Subsummary Parts 298

Calculations Involving Summary

Fields 301

Modifying Table Views 303

Customizing Layouts and Reports 304

Alternating Row Color 304

Sorting Data in a Table 305

Sliding Objects 308

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Contents ix

Using Styles and States 384

Using Styles 385

Using States 387

Copying Styles 388

Using FileMaker Formatting Tools 389

Conditional Formatting 389

Setting the Layout Width 391

Using Grids 391

Using Guides 392

Using Dynamic Guides 393

Using Screen Stencils 393

Using GetLayoutObjectAttribute 395

Working with Custom Menus 396

Specifying Custom Menu Elements 398

Using the Menu Sets Interface 398

Providing Accessibility 402

Set Up Accessibility Attributes in Layout

Mode 402

Turn On Accessibility Features 403

Use Accessibility Features 404

FileMaker Extra: User Interface
Heuristics 405

 15 Advanced Calculation
Techniques 407

Logical Functions 407

The Let Function 407

The Choose Function 410

The GetField Function 412

The Evaluate Function 413

Lookup Functions 415

Text Formatting Functions 419

Text Color, Font, and Size 419

Text Style 420

Removing Text Formatting 420

Array Functions 421

Working with Return-Delimited Data

Arrays 422

Stepping Through an Array 423

User-Level Internal Security 343

User Accounts 343

Privilege Sets 346

Extended Privileges 354

File Access 357

File-Level Access Security 359

Server Administration Security 359

Security over the Network 360

User Authentication 362

External Authentication 362

File List Filtering 364

Troubleshooting 364

FileMaker Extra: Working with Multiple
Files 365

13 Using the Web Viewer 367

Introducing the Web Viewer 367

Exploring the Web Viewer in

Contacts 368

Creating and Editing a Web Viewer 369

Creating a Web Viewer 369

Setting a Web Viewer to a Constant

URL 371

Constructing a URL Dynamically Based

on a Search 371

Setting Up a Web Viewer with the

Templates 371

Setting Web Viewer Options 373

Controlling the Web Viewer with the Set
Web Viewer Script Step 373

FileMaker Extra: Using the Web Viewer for
Files 375

14 Advanced Interface Techniques 377

What’s New in the Interface World 377

Working with Themes 378

Changing a Theme 380

Exploring Themes 382

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

x FileMaker® 12 In Depth

The “Filter”-ing Functions 424

The Filter Function 424

The FilterValues Function 426

Custom Functions 427

Uses of Custom Functions 428

Creating Custom Functions 430

Examples of Custom Functions 432

GetNthRecord 438

Troubleshooting 440

FileMaker Extra: Creating a Custom
Function Library 441

Matching Multiple Values 441

16 Advanced Scripting Techniques 443

What Is Advanced Scripting? 443

Script Parameters 443

Script Parameters 444

Specifying Script Parameters 445

Retrieving a Script Parameter 445

Passing Multivalued Parameters 446

Strategies for Using Script

Parameters 450

Script Results 451

Final Thoughts on Script Input/

Output 453

Script Variables 453

About Local Variables 454

About Global Variables 456

Other Ways to Work with Variables 456

About Dynamic File Paths 457

Viewing Your Variables 457

FileMaker Extra: Recursive Scripts 458

17 Working with FileMaker
Triggers 461

Introducing FileMaker Triggers 461

FileMaker Triggers Before FileMaker Pro

10 461

Triggers in FileMaker Pro Today 462

Trigger Targets 462

Trigger Events 463

Triggers and Underlying Data 464

Triggers and Web Publishing 464

Attaching Triggers 464

Layout Triggers 464

Object Triggers 465

Window Triggers 467

Using a Timer 468

Trigger Functions 468

The Self Function 468

Char and Code Functions 469

The GetFieldName Function 469

The Get (TriggerKeystroke)

and Get (TriggerModifierKeys)

Functions 469

FileMaker Extra: Using Triggers for an
Interactive Interface 470

18 Advanced FileMaker Solution
Architecture 471

Window Management Techniques 471

Multiwindow Interfaces 473

Using Window Styles 473

Working with Document Windows 474

Creating a Modal Dialog with a Window

Style 474

ptg8106388

Contents xi

Creating a Modal Dialog Using a Script
Pause State 475

Adding a Pause State 476

Go to Related Record 478

GTRR Basics 478

Predicting the Found Set 479

Jumping to Disconnected Table

Occurrences 480

Dedicated Find Layouts 480

Dedicated Find Mode Layouts 481

Script-Driven Finds 481

Troubleshooting 482

19 Debugging and Troubleshooting 485

What Is Troubleshooting? 485

Staying Out of Trouble 485

Understand Software Requirements 485

Avoid Unclear Code 486

Planning for Trouble 490

Troubleshooting Scripts and
Calculations 490

Handling Errors in Scripts 490

Tracking Down Errors 492

Troubleshooting in Specific Areas:
Performance, Context, Connectivity, and
Globals 493

Performance 493

Connectivity and Related Issues 496

Context Dependencies 497

Globals 500

File Maintenance and Recovery 501

Using the Database Design Report 504

Creating a DDR 505

Using the Script Debugger 507

About the Script Debugger 507

Placing Breakpoints 509

Using the Data Viewer 510

20 Converting Systems from Previous
Versions of FileMaker Pro 511

Updating and Upgrading FileMaker
Software 511

Migrating to New FileMaker File
Formats 512

Planning the Conversion 513

Preconversion Tasks 514

Document Your Solution 515

Do Some Housekeeping 515

Converting Files 516

Post-Conversion Tasks 516

IV Data Integration and Publishing

21 Connecting to External SQL Data
Sources 519

ODBC Basics 519

SQL 519

FileMaker Architecture 520

ODBC Architecture 520

Setting Up FileMaker Databases for
ODBC 521

Setting Up and Administering ODBC 522

Installing Drivers 522

Administering ODBC 524

Example: Setting Up a DSN on OS X to

Connect to MySQL 527

Example: Setting Up a DSN on Windows

to Connect to FileMaker 532

Importing ODBC Data into FileMaker 535

Using External ODBC Data Sources with the
Relationships Graph 537

Specifying the Data Source 537

Adding the External Data Source to the

ptg8106388

xii FileMaker® 12 In Depth

Relationships Graph 538

Using Supplemental Fields 541

Troubleshooting 544

22 Importing Data into FileMaker
Pro 545

Working with External Data 545

Flat-File Data Sources 546

Choosing the Target Table 546

Initiating the Import 546

The Import Field Mapping Dialog 547

Updating Records with Imported

Data 550

Updating Records Without Using Match

Fields 550

Importing from Another FileMaker Pro

File 551

Using an Import to Create a New

Table 552

Importing from a Microsoft Excel File 553

Setting Import Options and Reviewing
Status 553

Importing Multiple Files from a Folder 554

Importing Text Files 555

Importing Image Files 557

Scripting Imports with FileMaker 558

Creating Automatic Recurring

Imports 559

Using a Script to Import Data 560

Using Bento Data Sources 562

Troubleshooting 563

FileMaker Extra: Exploiting the FileMaker-
to-FileMaker Import 564

Duplicating a Found Set 564

Duplicating Between Tables 564

23 Exporting Data from FileMaker 565

Getting Out What You Put In 565

The Basic Mechanics of Exporting 566

Choosing a Source Table 566

Choosing an Output File Format 566

Selecting Fields to Export 567

Exporting Issues to Consider 568

Export File Formats 568

Character Transformations 568

Formatting Exported Data 570

Exporting Related Fields 570

Exporting Grouped Data 571

Exporting to Fixed-Width Formats 571

Working with Large Fields and Container
Fields 572

Scripted Exports 573

24 Instant Web Publishing 575

Overview of Instant Web Publishing 575

Getting Started with IWP 578

Enabling and Configuring IWP 579

Configuring FileMaker Pro for IWP 579

Configuring FileMaker Server Advanced

for IWP 582

Sharing and Securing Files via IWP 584

Designing for IWP Deployment 587

Constraints of IWP 588

Scripting for IWP 589

Layout Design 591

Container Fields 593

Application Flow 593

Troubleshooting 597

ptg8106388

Contents xiii

25 Custom Web Publishing with PHP and
XML 599

About Custom Web Publishing 599

Understanding the Three Parts of

FileMaker Web Publishing 600

Custom Web Publishing Versus Instant
Web Publishing 600

Preparing for Custom Web Publishing 601

Getting Your Databases Ready for

CWP 601

Getting FileMaker Server Ready for

Custom Web Publishing 602

Choosing a Custom Web Publishing
Technology 603

Using Custom Web Publishing with
PHP 604

Getting Your Databases Ready for

Custom Web Publishing

with PHP 604

Getting FileMaker Server Ready for

Custom Web Publishing

with PHP 604

Placing Files on the Web Server 605

Writing the PHP code for the FileMaker

PHP API 607

Using Custom Web Publishing with
XML 610

Preparing for XML Publishing 610

Introduction to XML Publishing 610

Understanding Query Strings 613

Performing Specific Searches with CWP

URLs 614

Applications of Custom Web Publishing

with XML 619

Other Query Parameters 619

About Sessions 621

Managing Sessions 621

Troubleshooting 622

V Deploying a FileMaker Solution

26 Deploying and Extending
FileMaker 625

FileMaker Deployment Options 625

Renaming Files 626

Runtime Solutions 627

Solution Options 628

Removing Admin Access 631

Polishing Your Custom Solution 632

Error Log 632

Developing Kiosk Solutions 633

Preparing a Kiosk Interface 633

Maintaining a Kiosk Solution 634

Plug-Ins 634

Understanding Plug-ins 635

Installing Plug-Ins 635

Configuring and Enabling Plug-Ins 636

Troubleshooting 636

27 FileMaker Server and Server
Advanced 639

About FileMaker Server 639

The FileMaker Server Product Line 640

FileMaker Server Versus Peer-to-Peer

Database Hosting 641

FileMaker Server Capabilities 642

FileMaker Server Requirements 643

Installing and Deploying FileMaker
Server 645

The Installation Process 646

The Deployment Process 649

Running FileMaker Server 656

Starting and Stopping FileMaker

Server 656

Hosting Databases 657

ptg8106388

xiv FileMaker® 12 In Depth

Using Admin Console 657

FileMaker Server Overview 658

Administration 659

Configuration 665

FileMaker Extra: Best Practices
Checklist 671

Determine Network Infrastructure 671

Purchase Hardware 672

Install Software 672

Configure FileMaker Server 672

Deploy Databases and Schedule

Backups 673

Monitor Usage Statistics 673

Recheck Performance 673

Stay on Top of Java 673

Monitor Log Viewer 674

Keep Current with Software

Updates 674

 Index 675

ptg8106388

ABOUT THE AUTHOR
Jesse Feiler has worked with FileMaker since its beginnings. He has written a number of

books about FileMaker as well as OS X, iOS, iWork, Core Data, Objective-C, and other new

technologies. His books have been translated into Japanese, Chinese, Polish, German, Spanish,

French, Arabic, Hungarian, and other languages. As software director of North Country

Consulting, he has designed and implemented a variety of FileMaker solutions for small busi-

nesses and nonprofits in fields such as production, marketing, the arts, printing and pub-

lishing, food service, and construction. His meeting management software for iOS devices,

MinutesMachine, is published by Champlain Arts Corp (champlainarts.com).

His website is www.northcountryconsulting.com . You can find updates and file downloads

there.

 ACKNOWLEDGMENTS
This book could not exist were it not for the hard work and support of many colleagues and

friends. In addition, heartfelt thanks are due to North Country Consulting clients who have

brought a wide range of issues to the table and who, with humor and imagination, have been

great partners in our common development of interesting FileMaker solutions.

At FileMaker, Kevin Mallon and Delfina Daves have once again provided continuing support

and help. Through the FileMaker Business Alliance and TechNet, many resources are available

to FileMaker users and developers, and we thank FileMaker for so aggressively providing the

information to help us all use this exciting product successfully.

At Que, Loretta Yates has been a pleasure to work with. Project editor Tonya Simpson, devel-

opment editor Sondra Scott, and copy editor Bart Reed all worked quickly and accurately to

help guide the book through the production process. Beverly Voth has provided insightful and

helpful comments from the technical side. Her help is greatly appreciated. And, as always,

Carole Jelen at Waterside Productions has helped shepherd this project through to completion.

No acknowledgment would be complete without mentioning all the work our friends at

FileMaker, Inc., do to make everything in our careers possible. FileMaker is a fantastic suite

of products, and we’re terrifically excited by the continued promise the FileMaker platform

shows.

www.northcountryconsulting.com

ptg8106388

WE WANT TO HEAR FROM YOU!
As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we’re doing right, what we could do better, what areas you’d

like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an editor-in-chief for Que Publishing, I welcome your comments. You can email or write me

directly to let me know what you did or didn’t like about this book—as well as what we can do

to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book.

We do have a User Services group, however, where I will forward specific technical questions

related to the book.

When you write, please be sure to include this book’s title and author as well as your name,

email address, and phone number. I will carefully review your comments and share them with

the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Greg Wiegand

Editor-in-Chief

Que Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

 READER SERVICES
Visit our website and register this book at quepublishing.com/register for convenient access to

any updates, downloads, or errata that might be available for this book.

ptg8106388

 INTRODUCTION

WELCOME TO FILEMAKER 12

 Best of Three Worlds
Welcome to the world of FileMaker. From the start, one of the most impor-

tant things to understand is that FileMaker is far more than just a data-

base application.

FileMaker is nearly unique in the world of software. It is a powerful data-

base system that can manage and store a wide range of information, it’s

an application for end users (like Microsoft Excel or Intuit’s Quicken), and

it’s also a robust rapid application software development platform.

When you hear people speak about FileMaker, keep in mind they might be

viewing it from any one of these different perspectives. An IT professional

likely sees FileMaker as a database engine that fits into a larger security

and network infrastructure. An end user is probably thinking about a

specific solution built with FileMaker Pro and how it helps make her work

more efficient. A software developer might see FileMaker as one of many

tools he employs in building a wide range of applications.

This book was written with an eye toward the FileMaker developer com-

munity. If you’re mostly interested in learning how to use the essential

features of the FileMaker application, though, this book might not be for

you. Although some introductory chapters are included to be as compre-

hensive as possible, the focus is on an audience that is largely familiar

with the essential operations of FileMaker already and is interested mostly

in topics for the beginning to advanced developer.

A key component of the FileMaker world today is FileMaker Go for iPad

and iPhone (separate apps). It enables users to access databases built

with FileMaker Pro and hosted by FileMaker Pro (for up to 10 users) or by

FileMaker Server (for larger configurations). With FileMaker 12, the prices

of these apps changed: they are both free. This means that with your

ptg8106388

Welcome to FileMaker 122

purchase of FileMaker Pro, an idea for a mobile solutions (and, we hope, this book), you’re ready to

deploy a world-class mobile solution.

In today’s world, FileMaker developers are creating solutions for a range of technologies. The data-

bases you create with FileMaker Pro can be accessed through FileMaker Pro and FileMaker Pro

Advanced. They can be deployed with FileMaker Server and FileMaker Server Advanced. In addi-

tion, they can be accessed from iPhone, iPad, and iPod touch using FileMaker Go. And, in case that

isn’t enough for you, you can use Instant Web Publishing and Custom Web Publishing to deploy

your FileMaker solution on any browser.

 � For more on FileMaker Go, see Data-Driven iOS Apps for iPad and iPhone with FileMaker Pro,

Bento by FileMaker, and FileMaker Go , by Jesse Feiler.

How This Book Is Organized
FileMaker 12 In Depth is divided into five parts, organized into something like a tree. Part I ,

“Getting Started with FileMaker,” and Part II , “Developing Solutions with FileMaker,” constitute the

“trunk” of the tree; they cover fundamental material that we recommend everyone read.

Subsequent parts branch out from this base. Part III , “Developer Techniques,” focuses on using

FileMaker’s features to develop complete, robust database applications. Part IV , “Data Integration

and Publishing,” covers getting data into and out of FileMaker. And Part V , “Deploying a FileMaker

Solution,” covers options for making a FileMaker solution accessible to others.

The following sections describe the five parts of FileMaker Pro In Depth and the topics they cover.

Part I: Getting Started with FileMaker 12
The chapters in Part I introduce you to FileMaker and its uses and features, and they get you started

with the basics of defining databases.

 • Chapter 1 , “FileMaker Overview,” situates FileMaker Pro within the wider world of database and

productivity software. This chapter is appropriate both for those who are new to FileMaker Pro

and for those who have used previous versions and want a quick tour of the major innovations.

 • Chapter 2 , “Using FileMaker Pro,” is intended as an introduction to the software from the per-

spective of a database user rather than a database developer. You’ll see the major components

and functions of the FileMaker interface, such as the Status toolbar, layouts, FileMaker’s modes,

and the basics of record creation, editing, and deletion.

 • Chapter 3 , “Defining and Working with Fields and Tables,” provides a thorough overview of

all of FileMaker’s field types and field options, including lookups, validation, storage types, and

indexing. This chapter is intended to help lay the groundwork for talking about database devel-

opment and to serve as a thorough reference on FileMaker field types and options.

 • Chapter 4 , “Working with Layouts,” covers all of FileMaker’s layout-building options in detail.

We cover all aspects of layout building and offer guidelines for quicker and more efficient layout

work.

ptg8106388

3How This Book Is Organized

Part II: Developing Solutions with FileMaker
Part II is intended to introduce you to the fundamental techniques of database application develop-

ment using FileMaker Pro and FileMaker Pro Advanced. Chapters 5 through 7 cover the theory and

practice of designing and building database systems with multiple data tables. Chapters 8 through

10 introduce you to foundational concepts in application and reporting logic.

 • Chapter 5 , “Relational Database Design,” introduces you to relational database design concepts.

We proceed by working on paper, without specific reference to FileMaker, and introduce you

to the fundamental vocabulary and techniques of relational database design (keys and relation-

ships).

 • Chapter 6 , “Working with Multiple Tables,” begins the task of translating the generic database

design concepts of Chapter 5 into specific FileMaker techniques. We show how to translate a

paper diagram into an actual FileMaker table structure. We show how to model different relation-

ship types in FileMaker using multiple data tables and how to create fields that function effec-

tively as relational keys.

 • Chapter 7 , “Working with Relationships,” builds on the concepts of Chapter 6 . Rather than focus-

ing on FileMaker’s relationships from the standpoint of database design, we focus on their practi-

cal implementation in FileMaker programming. We look in detail at the relational capabilities of

FileMaker and discuss nonequality join conditions, file references, and some strategies for orga-

nizing a multitable system.

 • Chapter 8 , “Getting Started with Calculations,” introduces FileMaker’s calculation engine. The

chapter delves into the major types of FileMaker calculations. We cover a number of the most

important functions and discuss general strategies and techniques for writing calculations.

 • Chapter 9 , “Getting Started with Scripting,” introduces FileMaker’s scripting engine. Like the

preceding chapter, this one covers the fundamentals of an important skill for FileMaker develop-

ers. We cover some common scripting techniques and show how to use event-driven scripts to

add interactivity to a user interface.

 • Chapter 10 , “Getting Started with Reporting and Charting,” illustrates the fundamental tech-

niques of FileMaker Pro reporting (such as list views and subsummary reports), some more

advanced subsummary techniques, and some design techniques for improving the look and

usability of your reporting layouts. This chapter also explores the charting features of

FileMaker Pro.

Part III: Developer Techniques
The chapters in Part III delve deeper into individual topics in advanced FileMaker application devel-

opment. We build on earlier chapters by exploring more complex uses of portals, calculations, and

scripts. We also offer chapters that help you ready your FileMaker solutions for multiuser deploy-

ment, and we examine the still-important issue of conversion from previous versions.

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Welcome to FileMaker 124

 • Chapter 11 , “Developing for Multiuser Deployment,” explores the issues and challenges of

designing FileMaker systems that will be used by several people at once. We discuss how

FileMaker handles concurrent access to data and discuss the concept of user sessions.

 • Chapter 12 , “Implementing Security,” is a thorough overview of the FileMaker Pro security

model. We cover the role-based accounts feature, extended privileges, and many of the com-

plexities of server-based external authentication against Windows or OS X user directories, for

example.

 • Chapter 13 , “Using the Web Viewer,” explores one of the interesting recent features of FileMaker

Pro. You can incorporate live web pages into your FileMaker layouts, and you can use data from

the FileMaker database to construct the URLs that are displayed.

 • Chapter 14 , “Advanced Interface Techniques,” provides detailed explanations of a number of

more complex, applied techniques for working with layouts and data presentation in a FileMaker

application. You will see how to use FileMaker themes to make your solutions look great and

work elegantly on the various devices that may be used to access them. This chapter also

focuses on techniques for implementing FileMaker Go interfaces for iOS mobile devices.

 • Chapter 15 , “Advanced Calculation Techniques,” looks closely at some of the more advanced or

specialized types of FileMaker calculations, as well as the functions for text formatting and list

manipulation.

 • Chapter 16 , “Advanced Scripting Techniques,” like the preceding chapter, is full of information

specific to features of FileMaker scripting. Here, we cover programming with script parameters,

the significant feature of script variables, programming in a multiwindow system, and the com-

plexities of scripted navigation among multiple tables and recordsets.

 • Chapter 17 , “Working with FileMaker Triggers,” examines one of the most important features of

FileMaker. Triggers let you set up automatic behaviors that occur whenever certain events hap-

pen. They let you exercise more control over the user interface with less programming in many

cases. They can also improve the user experience by automatically performing scripts based on

user actions so that you can eliminate buttons that require additional user actions and that use

up precious space on layouts.

 • Chapter 18 , “Advanced FileMaker Solution Architecture,” is the last of the chapters in the

Advanced series. It presents a variety of features and solutions that integrate and expand some

of the techniques in the previous chapters. You will find information on window management,

multiwindow interfaces, and selection portals, among other topics.

 • Chapter 19 , “Debugging and Troubleshooting,” is a broad look at how to find, diagnose, and cure

trouble in FileMaker systems—but also how to prevent it. We look at some software engineering

principles that can help make systems more robust, and can reduce the incidence and severity of

errors. The chapter also includes detailed discussions of how to troubleshoot difficulties in vari-

ous areas—from multiuser record lock issues to performance difficulties over large networks.

 • Chapter 20 , “Converting Systems from Previous Versions of FileMaker Pro,” explores the complex

issues involved in moving to FileMaker 12 from previous. We then discuss the mechanics of con-

version in detail, and discuss some of the more significant pitfalls to be aware of.

ptg8106388

5How This Book Is Organized

Part IV: Data Integration and Publishing
Part IV covers technologies and capabilities that allow FileMaker to share data, either by exchang-

ing data with other applications or by exporting and publishing data, for example, via ODBC, JDBC,

and the Web.

 • Chapter 21 , “Connecting to External SQL Data Sources,” explores FileMaker’s ODBC/JDBC inter-

face as well as the exciting features that let you add SQL tables to your Relationships Graph.

This means that you can now use SQL tables very much as if they were native FileMaker tables.

You can use them in layouts along with FileMaker tables, you can use them in reports, and you

can even expand them by adding your own variables to the FileMaker database that are merged

with the external SQL data as you use it.

 • Chapter 22 , “Importing Data into FileMaker Pro,” looks at almost all the means by which you can

import data into FileMaker. It covers how to import data from flat files, how to batch imports of

images and text, and how to import images from a digital camera. (XML importing is covered in

Chapter 24 .) It also shows you how to import data from Bento on OS X.

 • Chapter 23 , “Exporting Data from FileMaker,” is in some respects the inverse of Chapter 22 . It

covers almost all the ways by which you can extract or publish data from FileMaker.

 • Chapter 24 , “Instant Web Publishing,” looks at the features of the FileMaker Instant Web

Publishing model. Anyone interested in making FileMaker data available over the Web should

begin with this chapter.

 • Chapter 25 , “Custom Web Publishing with PHP and XML,” shows you how to use FileMaker’s

newest web publishing tools to build a PHP-based site. In addition, you will see how to export

data using XML.

Part V: Deploying a FileMaker Solution
Part V delves into the choices you have for how to deploy a FileMaker database, including deploy-

ment via FileMaker Server and via kiosk or runtime mode using FileMaker Developer.

 • Chapter 26 , “Deploying and Extending FileMaker,” provides an overview of the ways you can

deploy a FileMaker database to one or more users, reviews plug-ins, and explores the means of

distributing standalone databases. Read this chapter for a quick orientation toward your different

deployment choices.

 • Chapter 27 , “FileMaker Server and Server Advanced,” explores in depth setting up and working

with FileMaker Server and FileMaker Server Advanced. The chapter covers setting up, configur-

ing, and tuning FileMaker Server, as well as managing server-side plug-ins and authentication.

The new Server Admin Console is described in detail here.

ptg8106388

Welcome to FileMaker 126

 Special Features
This book includes the following special features:

 • Troubleshooting —Many chapters in the book have a section dedicated to troubleshooting spe-

cific problems related to the chapter’s topic. Cross-references to the solutions to these problems

are placed in the context of the relevant text in the chapter as “Troubleshooting Notes” to make

them easy to locate.

 • FileMaker Extra —Many chapters end with a section containing extra information that will help

you make the most of FileMaker Pro. In some cases, we offer expanded, fully worked examples

of tricky database design problems. In others, we offer shortcuts and maintenance techniques

gleaned from our collective experience with developing production FileMaker systems (creating

custom function libraries or getting the most out of the team development). And in still others,

we delve all the way to the bottom of tricky but vital FileMaker features such as the process of

importing records.

 • Notes —Notes provide additional commentary or explanation that doesn’t fit neatly into the sur-

rounding text. You will find detailed explanations of how something works, alternative ways of

performing a task, and other tidbits to get you on your way.

 • Tips —This feature identifies some tips and tricks we’ve learned over the years.

 • Cautions —Here, we let you know when there are potential pitfalls to avoid.

 • Cross-references —Many topics are connected to other topics in various ways. Cross-references

help you link related information together, no matter where that information appears in the book.

When another section is related to the one you are reading, a cross-reference directs you to a

specific page in the book where you can find the related information.

 • FileMaker scripts —Numerous examples of scripting are provided in the book. Because you can

create long lines of code, they are sometimes split in order to be printed on the page. The ➥

character indicates the continuation of the previous line of code.

 Downloadable Files
Most of the examples in this book are based on the FileMaker Starter Solutions that are installed

automatically for you when you install FileMaker. Thus, you already have most of the files. In some

cases, additional files or additional code has been added to the Starter Solutions as described in this

book. These files can be downloaded from the author’s website at northcountryconsulting.com . You

can also download them from the publisher’s website at www.informit.com/title/9780789748461 .

 FileMaker References
Other files and further information are available at filemaker.com. You can join TechNet at

www.filemaker.com/technet/ . It provides downloads, tech briefs, and members-only webinars on

FileMaker topics. TechNet itself is free; you can add a FileMaker Developer subscription for

www.informit.com/title/9780789748461
www.filemaker.com/technet/

ptg8106388

7Who Should Use This Book

$99/year. Although the features may change over time, at this writing that subscription includes

a FileMaker Server Advanced development license, a download of the official FileMaker Training

Series, and, as circumstances permit, early views of unreleased FileMaker software.

 � If you are converting from a previous version of FileMaker, you can find conversion references at

 www.filemaker.com/r/conver .

Who Should Use This Book
Like FileMaker itself, this book has several audiences. If you work with structured data a lot (Excel

spreadsheets, for example) but are new to databases, this book will provide you with a solid founda-

tion in the world of databases, in the basics of database theory, and in the practical skills you need

to become a productive database user or developer. The book’s more introductory chapters tell you

what you need to know to get started building basic databases for your own use. Later chapters

introduce you to the world of multiuser database design and to some of FileMaker’s more advanced

application design features.

If you’ve worked with other database systems—either server-side relational database engines

based on SQL or desktop development environments such as Access—this book will help you see

how FileMaker Pro fits into the universe of database software. Refer to the “How This Book Is

Organized” section earlier in this Introduction to get a sense of which chapters will get you started

quickly with FileMaker.

And in case you’re an old hand with FileMaker, we’ve provided a good bit of in-depth discussion of

advanced techniques.

www.filemaker.com/r/conver

ptg8106388

This page intentionally left blank

ptg8106388

 1

 FILEMAKER OVERVIEW

 FileMaker and Its Marketplace

However you approach FileMaker, some core strengths of the platform are

important for all types of users:

 • Flexibility— Working with FileMaker is inherently open ended. Users

can easily create ad hoc data queries, quickly manage data entry, add

functionality to a live system, or deploy to the Web in minutes.

 • Ease of use— The folks at FileMaker, Inc., have labored hard to make

FileMaker as approachable as humanly possible. Day-to-day users

can easily learn how to add fields to a database, create reports, add

form layouts, and more. With FileMaker Pro, organizations can be less

dependent on specialized software engineers.

 • Mobility— With the companion apps, FileMaker Go for iPad and

FileMaker Go for iPhone, you can access FileMaker databases wher-

ever you are. FileMaker Pro is the tool you use to build and manage

your databases, but with FileMaker Go you can access your databases

directly from your iOS device or over a network. The layout tools in

FileMaker Pro 12 provide an easy way to customize interfaces for mul-

tiple devices.

 ➥ For more information, see Jesse Feiler’s companion book, Data-

Driven iOS Apps Using FileMaker Pro, FileMaker Go, and Bento by

FileMaker , as well as the rest of this book.

 • Interoperability— FileMaker Pro supports many common, open stan-

dards for data exchange, including Structured Query Language (SQL),

Open Database Connectivity (ODBC), Java Database Connectivity

(JDBC), and Extensible Markup Language (XML), and allows users

ptg8106388

FileMaker Overview10

I

PA
RT

to connect their database solutions to the greater world of standards-based applications—both

within their organizations and online on the Web using Hypertext Transfer Protocol (HTTP).

 • Modern data architecture— FileMaker, despite being “just” a productivity application that lives

on your computer along with Pages, Microsoft Word, and Solitaire, allows users to create fully

relational data structures and to properly build architectures that correctly manage real-world

data.

 • Modern developer tools— With its recent versions, FileMaker has added modern programming

and scripting features, including parameters and results for scripts, parameterized calculations,

and script triggers that allow event-based scripting.

Ultimately, FileMaker exists between the world of desktop applications and high-end, enterprise-

level server systems. It is a third option: a flexible, robust workgroup application that can quickly

come together, evolve over time, and be dramatically cost effective.

 Mobility
Today, mobility is not just about mobile devices—it is about

the mobility of data and solutions across a variety of platforms.

FileMaker has been evolving into a structure that supports struc-

tured solutions with the data and related features in one set of

files and interfaces in another set of files. It is relatively easy to

implement or change the interface for a single device or platform

without affecting others.

 ➥ On Filemaker.com, you will find a number of case studies showing how people have used

FileMaker to power solutions that are accessed with mobile devices such as the iPad and

iPhone.

FileMaker’s web publishing features, which have been present in this architecture for a long time,

allow other mobile devices to access shared solutions on mobile and desktop devices by using the

Web.

The features of iOS mobile devices are integrated into FileMaker Go, allowing mobile users to take

photos, capture signatures, and automatically retrieve their location. All of these mobile features

can be accessed through FileMaker Go, and the data they capture (photos, signatures, and location)

can be automatically stored in FileMaker databases on the device, on a shared FileMaker network

server, or over the Web.

 Rapid Application Development
In the world of software development, flexibility and speed are critical. We live in the world of

Internet time, and usually businesses embark on a development project only when they need some-

thing yesterday.

 tip
The evolving structure men-
tioned in this paragraph is sup-
ported and easy to implement,
but it is not required.

ptg8106388

11FileMaker and Its Marketplace

1

C
H
APTER

The practices and experiences of the past three decades have proven software development to be a

risky, unpredictable business. New job functions have developed in software quality assurance and

project management. Certification programs exist to sift the wheat from the chaff.

FileMaker Pro exists in many respects to help organizations take on less risk and navigate the

waters of software development without having to embark on massive engineering efforts when

they aren’t warranted. Because this is a rapid application development platform, it is possible to

build a system in FileMaker Pro in a fraction of the time it takes to build the same system in more

classic, compiled software languages or by using enterprise-level systems.

Low Total Cost of Ownership
FileMaker Pro is focused around offering a low total cost of ownership for organizations. In

September 2008, The Industry Standard published “The 25 Best Business Software Tools and

Services.” It included FileMaker Pro on the list, saying “This database application is more intuitive

than Access, while offering high-end features like live SQL data source support and easy Web-

publishing capabilities, so your whole team can access the database via a browser.”

FileMaker Is a Seasoned Platform
FileMaker Pro is now 25 years old. It was first developed in the mid-1980s by Nashoba Systems,

which was purchased by Claris Corp., an Apple subsidiary. Originally for the Mac only, by FileMaker

Pro 3.0 (1995) it was ported to Windows as well.

Version 4.0 introduced web publishing to the platform, and version 6.0 offered significant support

for XML-based data interchange.

In 2004, FileMaker Pro 7.0 was released. This major release featured a reengineered architecture

from the ground up, a new model for working with relationships, modern security capabilities, and

the capability to hold multiple data tables within a single file. Since then, five major releases have

continued the evolution of the product.

The addition of FileMaker Go for iOS devices (iPad, iPhone, and iPod touch) has built on the common

architecture. FileMaker 12 and FileMaker Go, released in 2012, have expanded the multiplatform

and multidevice implementation of the basic architecture.

 You’re Not Alone
FileMaker, Inc., has sold more than 18 million units worldwide as of this writing. Users range from a

single magician booking gigs in Denver, Colorado, to Fortune 500 companies such as Bristol-Meyers

Squibb and Coca-Cola. Just like any tool, FileMaker is noteworthy only when it has been employed

to build something—and its builders come in all shapes and sizes. The only true common element

among these builders seems to be that they own computers and have information to store.

There are some trends: FileMaker Pro is widely used in the worlds of K–12 and higher education.

The top 100 undergraduate/doctoral universities in the United States and many more around the

world, along with the top 250 school districts in the United States, use FileMaker Pro. The nonprofit

industry is also a key focal point for FileMaker, as is the creative-professionals industry.

ptg8106388

FileMaker Overview12

I

PA
RT

The most recent trend, based on anecdotal reports, is that FileMaker may be the most effective

way to deploy mobile solutions that scale from one-person, on-the-go businesses to enterprises that

deploy many devices in the field.

Introduction to Database Software

At its heart, FileMaker Pro is database software; databases are useful for keeping track of contacts

and their addresses and phone numbers, the students in a school, the sales and inventory in a store,

and the results of experimental trials. Although this sort of information can be kept in spreadsheets

and word processor documents, a database makes it much easier to take on the following tasks:

 • Organizing your data into reports— Databases can organize information into reports sorted by

city, last name, price, or any other criteria necessary.

 • Finding one or several items in your collections— Visually scrolling through a document with

flat data displayed soon becomes unwieldy—even if you use a search command to do the scroll-

ing for you. Databases make it relatively simple to search for one record (or row) of data within

potentially millions of others.

 • Creating related associations among data— Rather than duplicating the name of a company for

multiple people, for example, or perhaps having to reenter an address in a dozen places, users

can utilize databases to create associations between data elements (using a form of addressing)

and preserve the integrity of their information.

 • Sharing data with other systems— Databases are often built to exchange information with other

systems; many become one component in a multitiered technology solution for companies—even

small businesses often exchange data between QuickBooks, for example, and FileMaker Pro.

 • Describing the data— Databases contain metadata, which is data about the data values. Whereas

a spreadsheet allows you to format data in various date formats, a database allows you to specify

that a certain field actually is a date and that no other types of data are allowed in that field.

There are other advantages to using database software, not the least of which is the capability in

FileMaker Pro to construct a user interface that can map to an organization’s workflow. The mem-

bers of an organization often outgrow the documents of desktop applications when they need to

support multiple authors; track data in structured, interrelated ways; or manipulate data sets based

on differing criteria. Often the first herald of the need for a database occurs when users are frus-

trated with not being able to find a given piece of information.

The rest of this book gets into the details of how to do everything just mentioned and much more as

well. You get a more detailed look at what a database is and how it works, how to build databases,

and so on. But before we dive into the mechanics of databases, it’s important to understand how

they—and FileMaker—fit into the overall software computing world.

 Database Software
A huge variety of software is on the market today. FileMaker generally falls into the category of

business productivity software; however, it really is a hybrid application that marries application

ptg8106388

13Introduction to Database Software

1

C
H
APTER

productivity to a server-based architecture and database. It is as accessible as programs such as

Microsoft Excel, Intuit’s QuickBooks, and Apple’s Numbers. It also enables developers to create

complex workgroup databases that deploy in the same manner as other IT server–based applica-

tions.

The idea of managing a collection of structured data is what database software is all about.

Some database products on the market manage specialized collections, such as business con-

tacts. Products such as Act and Goldmine are good examples of those. Quicken, QuickBooks, and

Microsoft Money all manage collections of financial transactions. On the Web, Salesforce, Microsoft

CRM, SAP, and NetSuite provide services in the same general category, but with a very different

type of implementation, interface, and customization environment.

FileMaker and other nonspecialized database products such as Microsoft Access are used to cre-

ate database systems just as word processing software is used to create specific documents and

Microsoft Excel is used to create spreadsheets. In fact, Microsoft Excel is often used as a database

because it has several strong list-management features. It works well for managing simple data-

bases, but it doesn’t work well in managing multiple lists that are related to each other.

Often, simple grids of columns and rows of information (such as spreadsheets) are called flat file or

list databases. Simple databases like these are generally self-contained; they usually don’t relate to

each other, so keeping information up to date across many such databases can become unwieldy or

impossible. In such cases, a relational database is called for. FileMaker is a fully relational database

system and allows developers to associate a row (or record) in one area of the database (a customer

list, for example) with records in another area of the database (a list of purchase orders, for exam-

ple). To take another example, users of a relational database system can tie a single company entry

to multiple contact people or even associate a single person with multiple company entries. Rather

than this information needing to be entered in a dozen different places, relational databases, using

a form of internal addressing, simply associate one item with another (customers with their orders,

companies with their contacts). In this way, FileMaker graduates from a single-user productivity tool

to a fully realized database development platform.

 Off-the-Shelf Software
There are many relational database products on the market: Specialized products such as Act and

Quicken are also relational database products, but the difference is that those products are finished

systems, offering a specific set of functionality, whereas products such as FileMaker are tools used

to create custom systems tailored to the individual needs of an organization or a person.

It is certainly possible to re-create the functionality of Act or Quicken by using FileMaker, and some

organizations choose to do so when faced with the fact that such specialized products are relatively

inflexible. If an organization has nonstandard ways of doing things, its members might find it dif-

ficult to work with specialized products. Although FileMaker Pro comes with several database tem-

plates that might be perfectly suitable for an organization to use right away, most users instead turn

to FileMaker to create custom database systems that exactly match how their organizations operate.

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

FileMaker Overview14

I

PA
RT

 Custom Development Software

With a database development tool such as FileMaker Pro, a person can build a system to be exactly

what is needed. It’s the difference between buying a house that is a pretty good match and building

a custom home that has exactly the features one wants (or at least can afford).

Home construction is actually a great analogy for building a data-

base because both follow similar trajectories. A home has to be

designed by an architect before it can be built. An owner has to

wait for the home to be built before he can move in, and ques-

tions or issues often arise during the construction process. After

the home is built, the owner’s needs might change and he might

have an addition built onto the house to accommodate changed

circumstances.

Building a custom home often follows a similar path: The foun-

dation needs to be laid, and the walls and plumbing need to be

stubbed in before the final coat of paint can be applied to the

walls. Software development often is a complex layering of inter-

dependent parts.

Finally, imagine that a home’s construction is well under way,

and the owner decides to move the living room wall six feet.

Although that is always possible, the impact of that change will

vary a great deal depending on the stage at which the crew is

working.

This last point is an important one, and it is also where we

diverge from the home construction analogy because real-world

environments always change. This is especially true for today’s

email-driven, connected-network world. One of the key advan-

tages to developing database systems in FileMaker Pro is that

these systems can be rapidly redesigned, even while the system

is in use by other users. Almost any aspect of a FileMaker sys-

tem can be changed while it’s live, if need be, although doing so

might not always be advisable. FileMaker’s greatest strength is

its inherent flexibility.

What Database Software Does
FileMaker is database software. The thing that makes it unique

in the market is the ease and means by which it allows developers to present information. However,

it’s important to grasp the fundamentals of how all database software—including FileMaker—works.

The simplest kind of database is a list. It could be a list of employees or products or soccer teams.

Consider an employee list example. The information a Human Resources department might want to

keep track of could look like the information shown in Table 1.1 .

 note
People frequently wonder when
to turn to custom development,
when to use built-in FileMaker
Starter Solutions, and when to
start their own development from
scratch. The author provides
his own simple rule of thumb:
The closer any operation is to
the core of an organization, the
more it is a candidate for custom
development. If your organiza-
tion prides itself on customer
relations, a customized contact
management system might be
for you, whereas inventory con-
trol can chug along quite happily
with an off-the-shelf product or a
FileMaker Starter Solution (per-
haps with a few tweaks).

On the other hand, if your
organization really shines at
managing its complex inventory
process, that might be where
your customized software should
be focused, and your contact
management software may be a
Starter Solution, an off-the-shelf
product, or even a web-based
FileMaker solution accessed
from your smartphone.

ptg8106388

15Introduction to Database Software

1

C
H
APTER

 Table 1.1 Employee Table

 First Name Last Name Department Extension

Jane Smith Marketing 327

Calvin Russell Accounting 231

Renee Frantz Shipping 843

In database parlance, a list like this is called a table . Simply put, a table is a collection of like

things—in this case, people. After a table for people is established, one might extend it to include

other attributes (or columns) for, say, phone numbers. Table 1.2 shows the result.

 ➥ For a thorough understanding of data modeling and the definition of tables, see Chapter 5 ,

“Relational Database Design.”

 Table 1.2 The Growing Phone Directory

 First Last Department Ext. Work Cell Fax

Jane Smith Marketing 327 555-1234 555-4453 555-3321

Calvin Russell Accounting 231 555-8760

Renee Frantz Shipping 843 555-1122 555-1123

As mentioned earlier, this type of database is called a flat file database because everything is in one

table. Although having everything in one place is nice, this kind of structure has shortcomings. In

this case, every time someone thinks up a new type of phone number to track, another column has

to be added to the table. This is likely fine for phone numbers—in the real world people usually have

only a handful—but imagine what would happen if the example were tracking people’s previous

job titles? The spreadsheet or list would have a potentially unlimited number of columns, and there

would be no logical correspondence between one person’s “Job #1” column and another’s.

Furthermore, if someone doesn’t have a particular type of phone number, that cell is left blank,

resulting in a “Swiss cheese” look to the table, as shown in Table 1.2 . Unused cells take up space in

the database and can slow things down for larger data sets.

In a relational structure, only the first three columns would be in the employee table itself. The last

four columns, which all represent phone numbers of some kind, would be moved to their own table.

A label field could be added to identify each type of phone number, with the resulting two tables

looking something like Tables 1.3 and 1.4 .

 Table 1.3 The Revised Employee Table

 Emp ID First Last Department

1 Jane Smith Marketing

2 Calvin Russell Accounting

3 Renee Frantz Shipping

ptg8106388

FileMaker Overview16

I

PA
RT

 Table 1.4 The New Phone Table

 Emp ID Label Number

1 Extension 327

1 Work 555-1234

1 Cell 555-4453

1 Fax 555-3321

2 Extension 231

2 Work 555-8760

3 Extension 843

3 Cell 555-1122

3 Fax 555-1123

Note that a field has been added: Emp ID. Think of this field as an internal address within a table.

It is used to match employees with their phone numbers. In relational database terminology, this

column is called a key field . The FileMaker Pro help system refers to it as a match field , but they are

one and the same. Key fields are used to identify specific records.

Both Figure 1.1 and Figure 1.2 show Starter Solutions that ship with FileMaker Pro. In Figure 1.1 ,

you see the Contact Management solution; it uses a flat file approach with separate fields for the

various phone numbers, just as you saw in Table 1.2 .

 Figure 1.1
FileMaker can be used to
construct simple flat-file
databases.

ptg8106388

17Overview of the FileMaker Product Line

1

C
H
APTER

In Figure 1.2 , the People Management solution lets you track multiple goals for a person. The data

for a goal is more complex than a simple phone number; in addition, the number of possible goals

for a person can be quite large. A flat-file approach would not work. In the People Management

solution, a single table contains the employee information, and a separate, related, table contains

the goal information. Still a third table contains issue information for that person. Logically, there is

no difference between relating phone numbers and relating goals to a person.

 ➥ For a thorough introduction to database application development with FileMaker Pro, see

 Chapter 3 , “Defining and Working with Fields and Tables,” and Chapter 4 , “Working with

Layouts.”

Overview of the FileMaker Product Line

FileMaker Pro is just one product in a broader product line. It’s worth noting the differences among

the products and how they work together:

 • FileMaker Pro— This is the regular desktop client version of FileMaker. It can be used to author

new database systems, host systems for a limited number of guests (currently nine), or serve as

a guest of a hosted system. It can also publish as many as ten database files to up to five users

with Instant Web Publishing (IWP).

 Figure 1.2
FileMaker Pro can
easily add related
data.

ptg8106388

FileMaker Overview18

I

PA
RT

 • FileMaker Pro Advanced— This version has all the capabilities of the regular version of

FileMaker Pro; it also has additional functionality aimed at application developers. With

FileMaker Pro Advanced, developers can create custom functions, add custom menu sets to a

database, and create external function plug-ins (all these enhancements to the files can be used

by both FileMaker Pro and FileMaker Advanced users). A Debug Scripts feature and Data Viewer

allow developers to walk through scripts one step at a time and test calculations, watching the

effect of each script step or process. The Database Design Report (DDR) enables developers to

document and troubleshoot development issues from a systemwide perspective. The Advanced

version also enables developers to create runtime versions of single-user solutions and enable

kiosk mode.

 The author strongly recommends developing with FileMaker Pro Advanced. The additional func-

tionality in custom functions alone makes it well worthwhile, not to mention the added capability

to control all menu selections in a solution. The debugging tools are invaluable, and the DDR is a

great source for documentation and troubleshooting alike.

 • FileMaker Server— This software hosts FileMaker files on a hardware server and offers support

routines, evaluates server-based calculations, and provides for a larger user load: FileMaker

Server can host a maximum of 125 database files and 250 FileMaker Pro or FileMaker Pro

Advanced client connections. In addition, it can manage database backup schedules, log usage

statistics, disconnect idle users, and manage FileMaker plug-in updates. It supports Custom

Web Publishing XML or PHP (PHP: Hypertext Preprocessor) to up to 250 web sessions for users

accessing the database with browsers. With FileMaker Server, scheduled scripts can import and

export data; FileMaker Server itself can also send email at the request of clients.

 ➥ For a complete discussion of Custom Web Publishing, including session handling and server

capacity, see Chapter 25 , “Custom Web Publishing with PHP and XML.”

 • FileMaker Server Advanced— FileMaker Server Advanced has all the features of FileMaker

Server and can also host ODBC/JDBC and provide Instant Web Publishing for up to 100 web ses-

sions. In addition, the limit of 250 clients is removed: The limit is based solely on the capabilities

of the hardware on which it is deployed.

 ➥ For a complete discussion on ODBC, see Chapter 21 , “Connecting to External SQL Data Sources”;

for Instant Web Publishing, see Chapter 24 , “Instant Web Publishing.”

 • FileMaker Go— These apps for the iPhone and iPod touch, as well as the iPad, enable you to

access FileMaker databases that are stored on the device or are available over a network. The

layout and design features of FileMaker Pro are not available on FileMaker Go, but you can use

the layouts and databases that you design with FileMaker Pro on your mobile devices.

ptg8106388

19FileMaker Deployment Options

1

C
H
APTER

Consult the FileMaker website for more information on the prod-

ucts and special offers that might be available. Also, use the web-

site to locate consultants who might have additional information on

pricing and bundles.

 FileMaker Deployment Options

After a database application has been developed in FileMaker Pro

or FileMaker Pro Advanced, it can be deployed in various ways and

on various operating systems. FileMaker Pro 12 runs on Mac OS X

and Microsoft Windows. The following sections describe different

ways to deploy a FileMaker database system.

 ➥ For detailed technical specs, hardware and software require-

ments, and other issues, see the FileMaker website at http://

www.filemaker.com .

 Single User
Many people get their start in FileMaker development by build-

ing a small application for their personal use. Although FileMaker

Pro is inherently a networkable application, there’s nothing wrong

with a single user working with a system on his computer. These

solutions often grow over time—sometimes by being networked to

other computers, and other times by additional functionality being

provided (oftentimes, both happen).

 Peer-to-Peer Hosting
The next stage in the evolution of a typical system is that other

members of an organization notice the system that a single per-

son made and want to use it also. It’s a simple matter to enable

FileMaker Network Sharing on a file; after that’s done, other

FileMaker users can become guests of one user’s shared file. This

kind of FileMaker hosting is called peer-to-peer because the data-

base host and the database clients all use the same application:

desktop versions of FileMaker Pro or FileMaker Advanced.
Only one user can open a FileMaker database file at a time. When

you are using peer-to-peer hosting (or FileMaker Server hosting, as

described next), one user or FileMaker Server opens the database.

The other users connect over the network to the copy of FileMaker

that opened the database; networking transactions between that

application and the “client” users provide access to the database

through the first copy of FileMaker or through FileMaker Server.

 note
FileMaker, Inc., also provides a
personal database app called
Bento. Like FileMaker Pro, Bento
comes with a number of built-in
templates that you can use with
or without modifications for
your own purposes. Bento can
be synchronized with up to five
of your mobile iOS devices and
your Mac. It can be an excellent
tool for managing your life or
small business; it can also be a
wonderful tool for prototyping
what will eventually become a
FileMaker solution.

 tip

Considerations to keep in mind
with single-user hosting include
the following:

 • Only ten files at a time can be
hosted on a single machine
this way.

 • Up to nine users can be guests
of a file hosted in this fashion.
If you’re the host of a file, you
can’t close the file while other
users are working with it.

 • Performance might suffer
for other users as the host-
ing user puts her computer
through its daily paces.

 tip
FileMaker Go can be used to
access peer-to-peer shared data-
bases.

http://www.filemaker.com
http://www.filemaker.com

ptg8106388

FileMaker Overview20

I

PA
RT

 FileMaker Server Hosting
FileMaker Server is optimized for sharing FileMaker databases, and it can host (share) more files

(125) for more users (250) than FileMaker Pro peer-to-peer can. Administrators can perform the fol-

lowing tasks:

 • Remotely administer the server

 • Set up groups of administrators with their own privileges and passwords

 • Create schedules for automated database backups

 • Set the server to encrypt the network traffic between the

server and the clients

 • Log server actions

FileMaker Server also provides Custom Web Publishing with

XML and PHP.

 ➥ For more information about hosting database files with FileMaker Server, see Chapter 27 ,

“FileMaker Server and Server Advanced.”

FileMaker Server Advanced Hosting
FileMaker Server Advanced can host files for FileMaker users just as FileMaker Server can, but it

can also allow ODBC/JDBC clients to access hosted files and provide service as a web host, allowing

up to an additional 100 user connections for Instant Web Publishing clients.

 Kiosk Mode
Using FileMaker Pro Advanced, you can configure FileMaker databases to run without the menu

bar or operating system controls, effectively making a solution take over the entire computer screen.

Developers will need to build whatever user interface controls users might need, given that menus

are no longer available.

 FileMaker Single-User Runtime
FileMaker Advanced also allows developers to bind files into a runtime application that allows a

single user to work with a FileMaker solution without needing a copy of FileMaker. No author-

ing capabilities exist (a user cannot access layout mode or make schema changes via the runtime

engine), nor can the application serve as a host (peer-to-peer or server based). In addition, the PDF

output and External SQL Data Sources are not provided in runtime versions. However, this is a great

option for creating a commercial application without requiring that customers purchase copies of

FileMaker Pro.

 ➥ To learn more about kiosk mode or the runtime engine, see Chapter 26 , “Deploying and

Extending FileMaker.”

 tip
FileMaker Go can access data-
bases hosted on FileMaker
Server.

ptg8106388

21Technical Specifications

1

C
H
APTER

Extending the Functionality of FileMaker Pro
FileMaker solutions can be enhanced by incorporating plug-ins that extend the functionality of

FileMaker Pro. The functionality that plug-ins offer varies widely and is determined by the third-

party developers who write and market plug-ins. Some plug-ins provide advanced math capabilities,

some generate charts from FileMaker data, some manipulate image files, and others provide security

or user-interface enhancements. Literally dozens (if not hundreds) of plug-ins are actively supported

by the FileMaker industry at large.

 ➥ To get more information about plug-ins, see Chapter 26 , “Deploying and Extending FileMaker.”

 Technical Specifications
FileMaker 7 represented a complete re-architecting of FileMaker’s file format and dramatically

extended the platform’s capabilities. The transition from the file format supported by FileMaker 3.0

through FileMaker 6.0 is still going on for some users; for others, it is more or less complete as they

move to the latest versions of FileMaker Pro.

Table 1.5 summarizes the capabilities of FileMaker Pro 12.

 Table 1.5 FileMaker Pro 12 Capabilities

 Feature FileMaker 12

Number of tables per file 1,000,000

Maximum file size 8TB

Maximum amount of data in a text field 2GB of data, or 1GB of Unicode characters

Number of significant digits in a number field FileMaker Pro indexes the first 400 significant
digits (numbers, decimal points, or signs) of
the field, ignoring letters and other symbols

Number of characters in a number field 800

Maximum number of files allowed open on the
client

Limited only by memory

Maximum records per file (theoretical limit) 64 quadrillion over the lifetime of the file

Maximum amount of data allowed in a con-
tainer field

4GB

Maximum number of fields in a table 256 million over the lifetime of the file

Number of script steps supported by Instant
Web Publishing

79

Number of FileMaker clients hosted by
FileMaker Server

999

Number of web clients hosted by FileMaker
Server Advanced

100

ptg8106388

This page intentionally left blank

ptg8106388

 2

USING FILEMAKER PRO

 Getting Started
It’s time to roll up your sleeves and actually put FileMaker Pro to use.

Most of this book deals with being a FileMaker developer—someone

focused on the programming side of creating and managing FileMaker

solutions. However, development makes up only a small percentage of

the overall time a given database is used. Much of the time a FileMaker

solution will simply be in use and its users will care nothing for scripting,

calculations, or the vagaries of user interface design. They will simply be

involved in working with a developer’s creation and will not need to know

anything of the programming side of FileMaker.

This chapter introduces you to how to make the most of FileMaker data-

bases that have already been built. All FileMaker databases—often called

solutions , systems , or applications —have certain common elements, and

becoming adept at using FileMaker Pro solutions will not only help you

manipulate and analyze data better, but will assist you in extending what

you can accomplish with that data.

When it comes to getting started with FileMaker, you need to know a few

basics. Installing FileMaker Pro is automated, as is the case with most

software today. Whether you have a CD with FileMaker on it or have

downloaded the software from filemaker.com, you’ll find an installer on

the disk or disk image. If there is a Read Me file, do just that before you

continue.

Even after you have installed FileMaker, you might find a minor barrier

before you can use it. Automated software updates might present you

with a window after you launch FileMaker and before you can get to

work. Software updates occur whenever updates are available.

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Using FileMaker Pro24

I

PA
RT

The Quick Start screen is what you normally see when FileMaker starts. From there, you can open or

create databases and get help. After you look at these aspects of FileMaker, it will be time to move

on to actually working with databases and their components.

 Registration
You can choose to register your copy of FileMaker; this also

provides FileMaker with personal information, including your

address, which can be used to notify you of new products,

updates, and the like. During the registration process, you can

indicate to FileMaker what sorts of communications—if any—you

would like to receive about FileMaker products. FileMaker can

also use the information from the registration process to find out

more about the people who use FileMaker and the purposes to

which they intend to put the product.

Registration is required for the use of free trial software. You

might also be prompted to register your software during the

installation process.

If you choose not to register at this time, you can always decide

to register later by choosing Register Now from the Help menu.

Registration is optional, meaning you never have to register.

 Software Updates
You might be prompted to download updates to FileMaker

software. This accounts for a screen that you might see when

you first launch FileMaker Pro. The choice of downloading the

update is up to you—as is the choice of whether to perform this

automatic check, as shown in Figure 2.1 . Choices in this dialog

are part of your preferences, which you can get to in OS X from

the Preferences command in the FileMaker application menu. In

Windows, the Preferences command is at the bottom of the Edit

menu. This is one of the few interface differences between the

two operating systems in FileMaker Pro.

Using the Quick Start Screen
When you launch FileMaker Pro, you see the Quick Start screen—

generally the first screen after registration and software updates

(if any) are disposed of. The Quick Start screen provides a simple

interface to a variety of FileMaker Pro tools, as shown in Figure

2.2 .

 tip
Most software is sold as a down-
load, which means that fewer
and fewer cartons, manuals, and
CDs need to be produced and
stored. This provides savings
to users and vendors, and uses
fewer raw materials and provides
less trash when products are
discarded in favor of new ones.
In this environment, registra-
tion is increasingly important
to prove your ownership of a
product. If you have a credit card
receipt, you might be able to
track through the process of the
purchase to prove that you did,
indeed, purchase a product, but
if you have registered the prod-
uct, the process is immensely
easier. Some people are hesitant
to register because they are
afraid of receiving too much
unsolicited commercial email,
but FileMaker, like all respon-
sible companies, respects your
wishes in this regard. Just make
certain to check the communica-
tion options you prefer in the
registration process.

 tip
Many people automatically
check for software updates right
after the installation of a new
application. For any product,
some minor revisions are often
released shortly after the main
release of the product, and it
makes sense to start your adven-
tures with a new version of the
software with the latest code.

ptg8106388

25Getting Started

2

C
H
APTER

 Figure 2.1
 You can control checking for software updates.

 Figure 2.2
The Quick Start
screen is your
gateway to
FileMaker Pro.

ptg8106388

Using FileMaker Pro26

I

PA
RT

At the left, three icons let you choose from tools to create a data-

base, open a database, or get assistance. The Quick Start screen

opens to whichever view you last selected.
You can create a database from scratch or from one of the Starter

Solutions; you can also choose to create a database directly from

an existing document in a non-FileMaker format, as shown in

Figure 2.2 . The Starter Solutions are a set of FileMaker Pro data-

bases that you can use as is or with modifications for your own

customized solutions. FileMaker categorizes the Starter Solutions

into a variety of areas (some are in more than one area). In addi-

tion to the Quick Start Screen, you can choose File, New From

Starter Solution to create a database from a Starter Solution.
In the center of Quick Start, you can open files and servers that

you have recently used. You can use a Browse button to open

your standard Open File dialog.

 � For more information about opening remote files, see

“Working in FileMaker Pro,” p. 39 .

 Getting Help
For FileMaker users, help consists of a variety of tools ranging

from online help to the FileMaker website and books such as this

one. For most people, help begins with the Help menu, shown in

Figure 2.3 .
The Resource Center command takes you to the FileMaker web-

site where additional information is provided.

In addition to the Help menu, you will find Learn More links on

many of the FileMaker dialogs. They are discussed at the appro-

priate points of this book.

 note
As you can see from the check
box at the bottom left of the
Quick Start screen, you can
choose not to have this screen
shown at startup. If you choose
that option, you can always
reopen this screen by choosing
Quick Start Screen from the Help
menu.

 tip
Until FileMaker Pro 12, the
Starter Solutions used a com-
mon user interface. Those Starter
Solutions served as the basis of
many solutions that have been
developed over the years. With
FileMaker Pro 12, a wider variety
of interfaces has been created to
show you the various possibili-
ties from which you can choose.

 tip
As you look at recent files, you
can select one to add to your
Favorite Files (either local or
remote). Just select it and click
the Manage Favorites link. This
technique can save you a lot of
time, particularly if a file is on
a remote server and it would
take several mouse clicks to
select the server, the appropriate
folder, and then the file.

ptg8106388

27Understanding FileMaker Pro Features

2

C
H
APTER

Understanding FileMaker Pro Features
FileMaker is a vibrant ecosystem of software products, developers (at FileMaker and at third par-

ties), designers of FileMaker databases, and the users thereof. The heart of this ecosystem is

FileMaker databases, which can include user interfaces, scripts, and other elements that work with

the FileMaker software to help people manipulate the databases. On the software side, there are

two major products, each of which has two versions:

 • FileMaker Pro and FileMaker Pro Advanced let you build and use databases (in database-speak,

the schemas of your databases); you also can build interfaces, scripts, and other elements with

these products. These are the only tools that let you create FileMaker databases.

 In addition to building databases, you can share them with other people over a network with

these products. Sharing is limited to nine other people (but read on for details of FileMaker

Server).

 Figure 2.3
 FileMaker
Pro’s Help
menu is just
the beginning
of built-in
assistance. It
provides you
with a variety
of assistance,
ranging from
simple key-
board com-
mands all the
way to devel-
oping your
own solutions.

ptg8106388

Using FileMaker Pro28

I

PA
RT

 • FileMaker Go lets you access your databases from iOS devices. You can use iTunes or email to

install your FileMaker databases on an iOS device, and then you can use the database anywhere.

You also can use FileMaker databases that are published on the Web using FileMaker Pro or

FileMaker Server from FileMaker Go. This scenario means that changes you make to the data-

base are reflected immediately across the Web or network, and those changes show up on other

FileMaker Go clients as well as in the view of the database that people see in FileMaker Pro.

 • FileMaker Server and FileMaker Server Advanced let you share databases over a network with

up to 250 people running FileMaker Pro. You also can publish FileMaker databases so that people

can access them over the Web with web browsers (in other words, they don’t need to have their

own copies of FileMaker Pro). FileMaker Server Advanced has no fixed limit on users: The actual

number is restricted only by your hardware, but 250 has been tested.

 FileMaker Server allows web publishing with ODBC/JDBC and PHP. This lets people access your

solutions with a web browser. This means that if someone wants to access a FileMaker data-

base that you publish, they can do so with FileMaker Go on an iOS device, but on other mobile

devices, the built-in browser can do the trick.

 FileMaker Server Advanced implements an additional technology called Instant Web Publishing,

which lets people use their browsers to access screens that look very much like the actual

FileMaker Pro interface (very, very much like the FileMaker Pro interface).

There is an additional component of FileMaker that you can create using FileMaker Pro Advanced.

After you have created your FileMaker database and its interface, you can generate a runtime

solution with FileMaker Pro Advanced. That solution can run on OS X or Windows (you must cre-

ate separate copies for each operating system), and users can get almost the entire FileMaker Pro

experience without installing a copy of FileMaker Pro. No restrictions on the distribution of this

software exist, but there are some restrictions on the features that are supported. Perhaps the most

significant feature that is not available in a runtime solution is networking: Runtime solutions are

single-user solutions.

 Understanding FileMaker Databases
FileMaker databases have evolved over the years. Today they consist of several components, not all

of which might be present in every database you use:

 • A database contains one or more tables that actually contain the data. The next section describes

tables in more detail.

 • A database can contain references to tables in other FileMaker database files or in other data-

bases accessed via ODBC.

 • A database can contain layouts that provide the user interface with which to access tables either

in this database file or in other locations.

 • There might be scripts that contain commands created to automate various processes. Scripts are

often connected to layout elements, such as buttons, but they can be invoked automatically when

a database is opened or closed, as well as when certain other events occur (or are triggered).

ptg8106388

29Understanding FileMaker Pro Features

2

C
H
APTER

 • The database includes security features in the form of user identifiers and passwords as well as

descriptions of what privileges each set of users has to access the database and its components.

 • A variety of other, smaller components that support these major features are also part of the

database.

With the exception of tables in other files or databases referenced from a database, all the database

elements are stored in a single file that can be moved from place to place.

 � If you have references to other files, you might break these links if you move the database file.

For more information, see Chapter 7 , “Working with Relationships.”

 Understanding Tables

Before FileMaker 7, no serious distinction was made between database files and tables; this was

one way in which FileMaker differed from other relational databases. Beginning with Version 7,

FileMaker could handle multiple tables within a single database file. The number of tables that a

single database file can contain is essentially limitless.

A table is a collection of data—the records and fields described in the following section. Data in a

given table is all in a single logical format. The simplest case of a Starter Solution is Contacts: It con-

tains a single table called Contacts.

A large part of the power of a relational database such as FileMaker Pro is its capability to relate

data in one table to another. The Projects Starter Solution, for example, contains three tables:

Projects, Tasks, and Personnel. As you might expect, tasks are part of projects, and personnel are

assigned to tasks. This is all governed by the design of the database: FileMaker keeps the relation-

ships organized.

Tables need not be in the same database file to be related to one another, but it makes sense to

combine tables that are closely related in a single database file. For example, if you have a complex

Contact Management database, you might have tables for names, for addresses, and for phone num-

bers, with all those tables being related to one another to combine the data for a single contact. In

FileMaker Pro, every layout is based on a single table, although it can use data from other tables as

well.

 � To dig deeper into working with multiple tables and understanding relational data models, see

 Chapter 6 , “Working with Multiple Tables,” and Chapter 5 , “Relational Database Design.”

Understanding Records and Fields
A table stores information about many items with similar data characteristics: many to-do items,

many contact items, and so forth. Each of these items is called a record (sometimes data record), or,

in relational database parlance, a row . Each record or row has data elements that are called fields ,

or, in relational database parlance, columns . Fields for a contact record can include a name, an

address, and the like; for a to-do item, fields might contain a due date and the name of the task to

be done.

ptg8106388

Using FileMaker Pro30

I

PA
RT

Particularly if you use the row/column terminology, it is easy to think that you are talking about a

spreadsheet, but a database is much more powerful than a spreadsheet. Much of that power comes

from two major aspects of a database:

 • You can describe the database so that the data it contains must adhere to strict rules. Numbers

must be numbers, if you choose to enforce such a rule, and values must be within a specific

range of values if you choose another type of rule.

 • Furthermore, you can set up rules to relate data within the database so that, for example, the

person charged with carrying out a to-do item must be someone who is already entered into the

contacts database. You’ll see how to create such relationships shortly.

The combination of these two aspects of databases—along with many more—make them more pow-

erful than spreadsheets.

The FileMaker Pro User Interface
The FileMaker Pro interface consists of basic elements:

 • Layouts display data and let you edit it.

 • Modes change the behavior and appearance of the interface to let you browse data, find specific

data, display reports for printing or interactive use on the screen, and create or modify layouts.

 • Views are available in both Browse and Find modes. They let you see one record at a time, a list

of records, or a spreadsheet-like table view of records.

Each of these interface elements is described in this section. In a later section, the Status toolbar

and associated menu commands are described. They let you control the user interface itself, switch-

ing among layouts, modes, and views as well as navigating through your database.

Figure 2.4 shows the FileMaker Pro user interface with the Status toolbar at the top of the window

(you can show and hide it). The main part of the window is a layout displaying data from the Assets

Starter Solution.
There are two parts to the status toolbar, one above the other. The main part of the Status toolbar

shown in Figure 2.4 has navigation tools, buttons to create and delete records, as well as buttons to

find and sort data. Below it, the narrower Layout bar lets you select layouts and control how to view

the data (as a form, list, or table). Buttons let you enter Preview mode, show or hide the Formatting

bar , or edit the layout. These features are described in more detail in “Using the Status Toolbar,”

later in this chapter.

 Layouts
Most FileMaker Pro databases open to a data-entry layout, such as that shown in Figure 2.5 .

Generally, you have access to fields, commonly designated by a field border of some kind, includ-

ing rounded corners, where you can set the corner radius (beginning in FileMaker Pro 12). Fields

are usually labeled. FileMaker Pro provides some specialized data-entry tools, such as the calendar

shown in Figure 2.5 .

ptg8106388

31Understanding FileMaker Pro Features

2

C
H
APTER

 Figure 2.4
 The FileMaker
Pro user interface
provides a Status
toolbar at the top
of the window.

 Figure 2.5
FileMaker Pro has spe-
cialized data-entry tools.

ptg8106388

Using FileMaker Pro32

I

PA
RT

Figure 2.6 , based on the Meetings Starter Solution, shows a tab control at the right of the layout.

There are two tabs: Topics and Action Items. Each tab displays its own set of data when it is

clicked. This makes for a very efficient use of the screen.

 Figure 2.6
Use a tab control to
save space.

Developers often provide tooltips that appear when you hover the mouse pointer over a specific lay-

out element.

 � For information on creating Layouts, see Chapter 4 , “Working with Layouts.”

 FileMaker Pro Modes
At any given time, you interact with your FileMaker Pro databases via one of four modes. At times,

developers choose to tailor a layout for use with a specific mode, but more often than not, you can

use layouts effectively with all four modes. To switch between modes, use the View menu or the

Status toolbar, described later in this chapter. To familiarize you with the four modes, here’s a sim-

ple description of each:

 • Browse mode— Browse mode is FileMaker Pro’s primary mode, where all data entry occurs, and

generally is the principal mode you’ll use in a given solution.

 • Find mode— Here, you create and then perform find requests to search for specific sets of records.

 • Preview mode— When preparing to print from FileMaker Pro, you can opt to switch to Preview

mode to see what a given layout will look like after it is printed.

ptg8106388

33Understanding FileMaker Pro Features

2

C
H
APTER

 Certain aspects of reports such as subsummaries were only available in Preview mode until

FileMaker Pro 10. Now, you can interactively modify data in reports in Browse mode and see the

subsummaries dynamically respond to the changes.

 � The primary information on reports, including interactivity in FileMaker Pro 10, is provided in

 Chapter 10 , “Getting Started with Reporting and Charting.”

 • Layout mode— It is in Layout mode that a great deal of development occurs. Here, developers

can manipulate all the elements of a given layout, including controlling all the things that appear

on that layout.

 Views
In addition to the modes of FileMaker Pro, there are three views as well. A view is a particular way

of displaying record data on the screen. To change among them, use the View menu. As you will

see later, layouts can have headers and footers; the view refers to the layout shown between the

header and footer. These are the three views:

 • Form view— This view enables you to see and manipulate only one record at a time, as shown

previously in Figure 2.5 .

 • List view— Here, you can display multiple records. At any given moment, you are working with

only one specific record while still being able to scroll through the rest (see Figure 2.7). A black

bar at the left of the Layout area shows you which record is active.

 Figure 2.7
List view lets you work
with more than one
record at a time.

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Using FileMaker Pro34

I

PA
RT

 • Table view— Table view simply displays the raw data for a given record (depending on what

fields have been placed on a layout). It looks quite similar to a spreadsheet application (see

Figure 2.8). You can move, resize, and sort the columns by clicking the column headers.

 Figure 2.8
In Table view, you
can resize, move,
and sort with col-
umn headers.

 Buttons
Notice that we’ve largely been talking about fields on layouts.

Most FileMaker Pro solutions also include buttons. Figure 2.5 , ear-

lier in this chapter, shows a few examples.

Buttons can come in all shapes and sizes in FileMaker Pro. Text

can be a button, a field can be a button, and even just a mysteri-

ous blank area in the middle of a layout can be a button (although

that is a very poor interface).

In Figure 2.6 , the top of the layout contains buttons named Meeting

List and Send by Email. Buttons such as these can invoke standard

FileMaker Pro commands or scripts that you write yourself.

Today, FileMaker solutions are often designed for use not only on

desktop and laptop computers but also on mobile devices, such as

iPhone and iPad. As you start to design your own layouts, remem-

ber that on mobile devices there are no menu commands; in these

cases, your buttons make your solution easier to use.

 tip
In general, it is a good idea to
avoid decoration in layouts—
interface elements that do not
immediately suggest that they
are useful. For example, a small
envelope and arrow icon next to
an email field can be configured
as a button to send email to the
associated address. This is not
decoration, and, because the
layout contains no irrelevant
decoration, the user can reason-
ably assume that the envelope
and icon mean something.

ptg8106388

35Using the Status Toolbar

2

C
H
APTER

Buttons trigger actions, often by launching scripts that developers write; these actions are usually

specific to a given FileMaker database. Buttons can perform dozens of actions, such as creating a

new record, deleting a record, navigating to another layout, performing a calculation, performing a

find request, controlling windows, and even spell-checking and emitting a simple beep. The possi-

bilities are endless.

You’ll have to become familiar with the specifics of a given FileMaker Pro solution to come to under-

stand what its buttons do. A good interface suggests what items are hot; furthermore, information

the developer can provide, such as tooltips for each button, should assist you. If all this fails, the

person who built the system should have those details or should have provided some form of train-

ing or documentation.

Using the Status Toolbar
The Status toolbar replaces the old Status Area and provides much more powerful control and feed-

back. The Status toolbar at the top of FileMaker Pro windows combines controls and information

displays in a compact structure. Most of the objects in the Status toolbar accomplish tasks that can

also be accomplished with menu commands and their keyboard equivalents.

The View menu, shown in Figure 2.9 , lets you control how the current window is displayed.

 Figure 2.9
The View menu
controls the user
interface.

ptg8106388

Using FileMaker Pro36

I

PA
RT

The Status toolbar itself can be shown or hidden for any window. Simply select the window and

choose Status Toolbar from the View menu.

As you can see in Figure 2.9 , you can control the visibility of the Status toolbar separately from the

visibility of the Formatting bar. In Figure 2.10 , you can see the Formatting bar at the top of the win-

dow; the Status toolbar is hidden.

 Figure 2.10
 The format-
ting bar lets
you format
selected text.

The formatting bar is available only when text is selected. This

means that its controls are dimmed if you select a field contain-

ing a graphic. In Browse mode, which you use to enter data, only

a single text field can be selected at a time. Whatever text you

have selected in that field is affected by the controls in the for-

matting bar.

Customizing the Status Toolbar (OS X)
Toolbars are an important part of the OS X interface; they are

supported deep within the operating system.

When an application provides a toolbar, it generally enables

you to customize the toolbar. You do this by choosing View,

Customize Status Toolbar (the command is available only when the Status toolbar is shown). You

will see a sheet with the customization options, as shown in Figure 2.11 .

 tip
If you select a text field and do
not select any text within it,
you will set the formatting for
the insertion point and any text
that you subsequently type. To
change the formatting of all the
text in a text field, double-click
in the field to select the field and
all its text.

ptg8106388

37Using the Status Toolbar

2

C
H
APTER

You can rearrange the items in the toolbar by dragging them back and forth. Remove items by drag-

ging them out of the toolbar, and add new ones by dragging them up into the toolbar. If you want

to revert to the original toolbar, the default set at the bottom of the customized display moves as a

single unit when you drag it to the toolbar.

Just above the default set are two important special items: a space and a flexible space. You can

insert them as many times as you want into the toolbar to organize it.

Finally, at the bottom of the customization display, you can choose small or large icons, icons alone,

icons and text, or text only.

Each icon can appear only once in the toolbar. You do not have to worry about putting too many

icons into the toolbar. If the window is narrower than the toolbar is wide, a double arrow appears at

the right of the toolbar, and the icons that do not fit are shown off to the right of the window as text

only, as Figure 2.12 demonstrates with the New Record and Delete Record commands. In addition,

commands (icons or text) are dimmed if they are irrelevant.
Your settings for the Status toolbar apply to the database; all windows for that database reflect your

settings for its toolbar. Toolbars for windows based on other databases are not changed.

 Figure 2.11
 Customize the
Status toolbar in
OS X.

ptg8106388

Using FileMaker Pro38

I

PA
RT

Customizing the Status Toolbar (Windows)
Toolbars are one of the few areas in which the Windows and OS X interfaces differ. As you can see

from the figures in this chapter, the Status toolbar itself looks much the same on both operating sys-

tems, but the way in which you customize it differs.

On Windows, you begin by choosing View, Customize Status Toolbar, just as on OS X. This opens

the dialog shown in Figure 2.13 .

 Figure 2.12
 Toolbar com-
mands can
extend beyond
the window.

 Figure 2.13
Customize the Status toolbar on Windows with Customizable
commands.

ptg8106388

39Working in FileMaker Pro

2

C
H
APTER

The first tab, Toolbars, lets you select the toolbar to customize. There is currently only one choice:

Status. The second tab, Commands, shown in Figure 2.14 , lets you choose either the customizable

commands or the standard commands; the standard commands are shown in Figure 2.14

In either case, drag the command up into the toolbar.

 Figure 2.14
 Customize the
Status toolbar
on Windows
with Standard
commands.

Working in FileMaker Pro

The following sections walk you through working in some typical

FileMaker Pro situations and address many of the common tasks

you must be able to perform.

 � For more information on using other tools to access the

data, see the chapters in Part IV, “Data Integration and

Publishing,” which begins on p. 519 .

 Opening a Database
The first step in working with FileMaker Pro, obviously, is open-

ing a database. FileMaker Pro databases can live in various places.

They can sit on your own computer, just as any other document

might; they can be hosted by another computer; or they can be

 note
Over the past few revisions of
FileMaker Pro, functionality has
been added that lets you cre-
ate databases in FileMaker but
access them through other appli-
cations. With web publishing,
you can use a browser to access
FileMaker data. You can use
ODBC import and export to share
data with SQL-compliant applica-
tions, and you can even import
and export Excel spreadsheets.
This section focuses on work-
ing with FileMaker data using
FileMaker Pro itself.

ptg8106388

Using FileMaker Pro40

I

PA
RT

served by FileMaker Server. On any of those computers, they can be housed on shared volumes or

external devices (although there are constraints for the FileMaker Server database locations).

 Local Files
Opening a local file is a simple matter of double-clicking its icon in either your Windows environ-

ment or the OS X Finder. You can also use FileMaker Pro’s File, Open command or the Quick Start

screen, as described previously.

You can use the Open command to navigate to any database file to which you have access—

whether it is on your own computer, somewhere else on your network, or on the Internet—if you

can get to it from the Open File dialogs shown in Figure 2.15 .

 Figure 2.15
Use the Open
command
to open a
FileMaker Pro
database.

Note that in addition to the Open button, there is also a Remote button; it is discussed in the next

section.

 Remote Files
Working with remote files requires connecting to a server. That server could be a database hosted

on FileMaker Server (the software that allows you to host a FileMaker database for use across a

LAN or WAN by up to 250 users) or a FileMaker database file that is set to multiuser and running in

FileMaker Pro on another person’s workstation. After you connect to a remote database, everything

works just as it would with a local connection (although over a busy network, there might be a

slight lag in response). The only distinction that you will note is that the title of the window shows

not only the name of the database but also—in parentheses—the name of the server on which it is

hosted. Compare the title of the window shown in Figure 2.16 remotely with the same database

shown in Figure 2.7 .

ptg8106388

41Working in FileMaker Pro

2

C
H
APTER

 Figure 2.16
 A FileMaker
Pro data-
base opened
remotely
shows the
name of the
host in its
title.

Exploring Remote Connections

A remote connection is one that lets you connect to a copy of FileMaker Pro from your own copy
of FileMaker Pro. If you use the standard Open dialog as described in the previous section, you
open a database with your own copy of FileMaker Pro, whether the database is on your com-
puter or on the network. When you use the Open Remote dialog by clicking the Remote button
in the lower right of the Open File dialog shown in Figure 2.17 or a remote favorite from the
Quick Start screen, the database to which you connect has already been opened by a copy of
FileMaker Pro or FileMaker Server. Actually, it is to that copy of FileMaker Pro that you are con-
necting, and through that copy of FileMaker Pro or FileMaker Server to the database.

Only one copy of FileMaker Pro or FileMaker Server can attach to the actual database file at a
given time; all other users (if any) attach to that copy of FileMaker. The same applies to users
of FileMaker databases connecting through ODBC or the Web: They are connecting to the copy
of FileMaker Pro or FileMaker Server that has the database open. (Sharing databases with
FileMaker Pro is possible on a small scale, but performance significantly improves with dedi-
cated hardware resources and FileMaker Server.)

Although the most common scenario involves sharing databases across a network or the
Internet, other configurations are possible. You can use Open Remote to open a database on
your own computer as long as another copy of FileMaker Pro on your own computer (perhaps
FileMaker Pro Advanced) has opened it. In that case, both the server and the client are the

ptg8106388

Using FileMaker Pro42

I

PA
RT

 � For more information on FileMaker Server, see Chapter 27 , “FileMaker Server and Server

Advanced.”

To open a remote database, click the Remote button in the Open File dialog, or choose Open Remote

from the File menu. As you can see in Figure 2.17 , you can choose from those hosts available to

you locally (those on your network, within your domain in corporate environments, or accessible on

the Internet), or you can navigate to a particular server via a Lightweight Directory Access Protocol

(LDAP) server. You can also view servers and databases that you have previously marked as favor-

ites. Finally, you can type in the address of a file in the box at the bottom. Make certain in this case

to use the prefix fmnet .

same computer, but there is no question which is the server (the version of FileMaker Pro that
opened the database with the Open command) and which is the client (the version of FileMaker
Pro that opened the database with the Open Remote command).

While discussing these matters, it is worthwhile to point out that server is sometimes used to
designate one or more computers on a network that provide shared resources such as common
disks. The term server might also refer to one or more computers that provide shared services
such as email, web hosting, and the like on a network. In the FileMaker context, server refers
to a computer running either FileMaker Server or a version of FileMaker Pro or FileMaker Pro
Advanced and configured to share databases. It can be located on a server (hardware) that runs
server software (network administration, email, and the Web), but it might be any computer
on the network. In fact, there are often significant advantages in a high-volume environment to
using a dedicated computer to serve FileMaker databases so that no other demands are made
on that computer’s disk and processing resources.

 Figure 2.17
Use the Open Remote File dialog to
open a database on a LAN, in a cor-
porate domain, or (with a proper IP
address) across the Internet.

ptg8106388

43Working in FileMaker Pro

2

C
H
APTER

When you choose Local Hosts, you will first see a list of all the FileMaker servers running on your

local network. It might take some time for FileMaker Pro to locate all these servers, so be patient.

After you click a hostname (either a local host, an LDAP host, or a Favorites host), FileMaker Pro

interrogates that host for the list of databases to display in the list at the right of the dialog. This,

too, might take some time. As you navigate through hosts and to an individual database, the fmnet

address at the bottom of the dialog fills in automatically.

If you add a database or a FileMaker host to the favorites, it shows up not only in the Favorites of

this dialog, but also in the Favorites for the Quick Start screen (shown previously in Figure 2.4).

When you select a host or database, you can click Add to Favorites to open the dialog shown in

Figure 2.18 . It is a good idea to rely on favorites—particularly for remote databases where the net-

work file path might be a lengthy string of numbers and/or words that are easier to select from a

Favorites list than to retype.

 Figure 2.18
Use Favorites to organize your databases and
hosts.

 note
If you are browsing files on a remote FileMaker server, you will see all the opened FileMaker databases that the devel-
oper has specified should show up in the Open Remote dialog. You will not see closed databases or those marked not
to be listed in this dialog.

 tip
If you want to open a database not shown in the list, you can quickly create the appropriate fmnet address. Select, with
a single click, a database shown in the list and simply erase the name of that database from the end of the address;
then type in the name of the database that you want to open.

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Using FileMaker Pro44

I

PA
RT

 Working with Records

The steps involved in creating and deleting records in FileMaker

Pro are simple. Under the Records menu, choose New Record,

Delete Record, or Duplicate Record. Notice also that there’s a

Delete All Records option. For now, let’s explore how to take

care of simple data entry. Many solutions (including the Starter

Solutions) provide buttons—usually at the top of the layout—to

create and delete records; some might also provide a duplicate

record button.

If you are in the midst of entering data in a record and want to

undo the entry, use the Revert Record command under the Records

menu. A record is saved—or committed —automatically when you

click outside a field for the first time (or in another field), change

modes, change layouts, or press the Enter key. FileMaker Pro uses

the term commit to indicate when a record is posted, or saved, to

your database. Using the Revert Record command before commit-

ting a record allows you to roll back all the changes you’ve made,

returning that record to its last committed state.

 � If Revert Record doesn’t seem to do anything, see

“Reverting Records” in the “Troubleshooting” section at

the end of this chapter.

 � If you have trouble with data you believe to be lost, see

“Data Loss” in the “Troubleshooting” section at the end of

this chapter.

 Working with Fields
If you are used to other productivity applications or have ever

filled out a form on the Web, you should find data entry quite

familiar in FileMaker Pro. Fields generally look like embossed or

bordered areas with labels off to one side or the other, under-

neath, or above the field. Keep in mind that developers control

the look and feel of their systems, so it’s entirely possible that

someone could build a database with no labels, fields that are the

same color as their background, and white text on a white back-

ground. When a field is being actively edited, its border is high-

lighted (generally darker), and the other fields on a given layout

are shown with less prominent highlights, indicating that you’re

in the midst of editing a record (see Figure 2.19). Editing fields is

as easy as clicking into them, typing some text, and clicking out

again. (As with many aspects of FileMaker, these behaviors are

customizable in Layout mode.)

 tip
The flow of processing in
FileMaker Pro differs from that of
a web interface. In a web-based
application, including FileMaker’s
Instant Web Publishing and
Custom Web Publishing, all data
is shown on the screen and is
sent when you click a Submit
button—that is the moment
when data is committed. When
working directly with FileMaker,
you might be committing (or
submitting) data many times as
you work on the record. In prac-
tice, this is usually not a serious
issue, just a reflection of the dif-
ferences in how two technologies
handle the issue of data updates.

 caution
Keep in mind that even though
there’s an Undo command in the
Edit menu, it doesn’t work at the
record level. After a record is com-
mitted (saved to the database), it
and its changes are a part of your
database. However, until you click
out of the field, you can undo and
redo changes to your heart’s con-
tent. Also remember that after you
delete a record, it’s gone forever.

 note
You never need to save a
FileMaker Pro database. As users
commit records, those records
are automatically stored in the
database file. If you want to save
a copy of your database or create
a duplicate for backup purposes,
the Save As option under the File
menu will serve.

ptg8106388

45Working with Fields

2

C
H
APTER

FileMaker includes spell-checking for text fields, although you can turn it off if you want. When

a field is active—when the cursor is in the field itself—FileMaker underlines in red any words it

concludes are misspelled. If you right-click (or Control-click on a Mac with a one-button mouse) the

word, you can choose from among possible other spellings or save a word to your local dictionary

file.

Moving from field to field can be managed on your keyboard if you simply press the Tab key. Some

solutions also support the Return and Enter keys. You can, depending on how the developer of a

database has set things, tab from button to button or tab panel to tab panel. To execute an action

associated with an active button or tab, press the Enter key or spacebar on your keyboard.

 � For a discussion of how to control object behavior from a development perspective, see

“Working with Fields,” p. 44 .

You’ll work with a few different formats of fields in FileMaker Pro:

 • Edit box— This allows standard keyboard entry and sometimes includes a vertical scroll bar.

 • Drop-down list— When first clicking into a field, you are

presented with a list of options from which you can select.

Alternatively, you can type directly into the field.

 • Pop-up menu— A pop-up menu is similar to a drop-down list,

except that a pop-up menu does not allow typing directly into

the field.

 • Check box set— Check boxes allow multiple values per field.

 • Radio button set— These are similar to check boxes, with the

difference that they are mutually exclusive. A user can select

only one value at a time.

 • Pop-up calendar— Some date fields might open to show a calen-

dar that you can page through from month to month. To input a

date into your date field, click a specific day.

 Figure 2.19
 A downward-
pointing arrow
might indicate
a drop-down
field.

 caution
Shift-clicking allows a user to
select multiple values in certain
input types, such as pop-up
menus and radio buttons.
Selecting multiple values in a
pop-up menu or in radio button
sets is generally a bad idea. You
will end up with unpredictable
results because you’re making
an exception to a formatting
choice meant to allow for only
one value in a given field.

ptg8106388

Using FileMaker Pro46

I

PA
RT

As the FileMaker Pro interface has evolved, new interface elements have been introduced. Many of

the traditional interface elements immediately reveal their functionality: Radio buttons, for example,

are instantly recognizable. Some newer features now allow developers to provide hints of function-

ality that the interface provides. Often this is done by using a light gray for some of the interface

elements. Drop-down menus are good examples of this. Even when the drop-down menu is not

selected, the small downward-pointing arrow at the right of the field is visible. For the purpose of

this book, the arrow is shown darker than it would be in most interfaces; it is usually quite subtle.

And do remember that this is the developer’s option: There might be no indication of the field’s

capabilities until you click in it and activate the drop-down menu.
A date field can contain a pop-up calendar, as shown in Figure 2.20 . As is the case with the drop-

down menu shown later in Figure 2.21 , the little calendar icon at the right of the date field might be

shown in light gray even when the field is not active.

 Figure 2.20
 Pop-up calen-
dars can ease
entry of dates.

Data in Formatted Fields
You might find it helpful to understand how multiple-value data is stored in fields: Remember that

check boxes, radio buttons, drop-down lists, and pop-up menus are all nothing more than data-entry

assistants. The actual data stored is a collection of values delimited by line returns. This means that

you can accomplish the same result, from a data perspective, by simply entering a Return-delimited

list of values into your fields. This is an important point for you to remember when performing find

requests, which we cover later in this chapter.

ptg8106388

47Working with Fields

2

C
H
APTER

 � To understand more about how multiple values in a field can lead to relational data structure

problems, see Chapter 5 , “Relational Database Design.”

 Modifying Value Lists
Often, you might need to add new values to a value list—the list that is used to create drop-down

lists and pop-up menus, check boxes, and radio button items. Developers have the option of includ-

ing an Edit option at the bottom of a drop-down list or pop-up menu. Selecting Edit brings up a dia-

log that you can use to change or add to a list as needed (see Figure 2.21). You can add a separator

line to the list by using a single hyphen, as shown in the figure.

 Figure 2.21
Editing value lists is
a simple way to fine-
tune a database to
your specific needs
without having to
dig into program-
ming.

To edit the items in a value list, simply type text into the Edit Value List dialog, followed by a car-

riage return.

 note
Keep in mind that just because you replaced an old menu item with a new category—for example, “autos” became
“cars”—doesn’t mean that you changed the actual values stored in your database’s records. Remember that field for-
matting is nothing more than a data-entry assistant. By changing the assistant menu, you have not changed any data
stored in your database.

ptg8106388

Using FileMaker Pro48

I

PA
RT

Using the “Other” Value in Value Lists
Radio button sets and check boxes work a bit differently than drop-down lists and pop-up menus.

Developers do not have the choice to add an edit function to these formats; rather, they can include

an Other option. This allows users to enter virtually any custom text they want, from a single value

to hundreds of lines of text. Regardless of the value, the check box or radio button option visibly dis-

played is Other; however, the data stored and included in the field’s index includes whatever your

other data is. In contrast to adding values to a value list and changing the options available on all

records, the Other function simply enables you to enter custom text into a specific record’s field.

As you can guess, developers often disable this feature. Data can get buried behind another entry

and can be difficult to account for. Just remember that all you’re doing is using field formatting to

help in entering consistent data. These fields are no different from standard fields that accept text

data.

 Field Types
In addition to enabling you to control how data is entered into a

field, FileMaker Pro databases use specific field types for differ-

ent types of information. Field types are independent from the

field formatting discussed in the preceding section. For example,

it’s entirely possible to format a calculation field as a check box.

Calculation fields are different from standard fields; they do not

accept data entry and instead present the results of a formula.

Although you, as a user, might expect to be able to click on a

check box, if you do so, FileMaker Pro prompts you and explains

that calculation fields are not modifiable.

It’s incumbent on the developer to sensibly identify, for a given

system’s users, which fields expect what sort of data. Often field

labels make this clear. For example, you can often expect a Price

field to be a number, and an Invoice Date field will no doubt be

a date type. You can also use cues (such as the icon for a pop-up

calendar) to distinguish fields.
The following list describes the field types available in FileMaker:

 • Text— The most common data type, text fields allow a user

to enter approximately 2GB of information, including carriage returns. Sorting by a text field is

alphabetical.

 • Number— Number fields store up to 800 digits, 400 on either side of the decimal, and sort as typi-

cal numbers.

 • Date— Dates are managed in FileMaker by the Gregorian calendar, 1/1/0001 through 12/31/4000.

It’s a good practice, but not required, to use four-digit years when doing data entry. Sorting is by

year, month, and day, with the sequence of elements determined by the system settings in effect

on your computer at the time the database file was created. This matters only if you commonly

 tip
FileMaker Pro is adept at con-
verting data from one type of
field to another. If you have a
calculation that requires a num-
ber, FileMaker Pro happily takes
the contents of a text field and
converts it to a number. Often
this is exactly what you want,
although the default conversion
of “ten” to a number will not give
you the result you might expect.

Despite the built-in conversions,
you will get the best perfor-
mance out of FileMaker Pro if
you use the strictest representa-
tion of data. If data is a number,
use a number field. Dates should
be date fields, not free-format
text fields.

ptg8106388

49Working with Fields

2

C
H
APTER

deal with date sequences that vary (year/month/day, day/month/year, and so forth). If that is the

case, consider using separate fields for month, day, and year to avoid ambiguity.

 • Time— Time in FileMaker is stored in hours, minutes, and seconds, like so: HH:MM:SS. Sorting is

based on a typical 24-hour clock.

 • Timestamp— A timestamp is a tool generally used by database developers to identify exactly

when a record was created or modified. It combines a date with a time and looks like “6/28/2008

2:00 AM.” For the user, you might occasionally want to use a timestamp when performing a find.

 • Container— Container fields hold just about any binary information, be it an image, a movie, a

PDF document, a Word document, or a file archive. You cannot use these fields for sorting pur-

poses. Container fields are capable of holding files of up to 4GB in size, making it possible to use

FileMaker Pro for managing all sorts of digital assets.

 Data entry for container fields is slightly different from other types: You need to either paste a

file or image into the field or use the Insert menu.

 • Calculation— A calculation field stores the result of a formula, which might be based on other

fields or related information in your system. The resultant data is assigned a type so that one can

return a date, time, and so on. It’s even possible for a calcula-

tion field to return container (binary) data.

 Calculations can also format data: From FileMaker Pro’s stand-

point, there is no difference between a calculation that adds

two fields and one that rounds a number to two decimal places

and then turns the result red. You will find out more about this

in the chapters about layouts and about sharing FileMaker Pro

databases.
 • Summary— Summary fields are similar to calculations, but they return information from your

found set, or current group, of records. A summary field performing a Total operation, for exam-

ple, totals a field across your current set of records. Other functions include averaging, totals,

maximum, and minimum.

 note
The data in calculation fields is
not modifiable by an end user;
you can, however, access calcu-
lation fields for performing finds,
sorts, and so on.

 tip
Layouts have front-to-back ordering of elements. Mouse clicks are handled by the frontmost object underneath the
mouse. If you place a field that is not editable on top of a field that is editable, you can often provide very intuitive and
sophisticated interfaces without troubling the user.

For example, if you place an editable phone number field on a layout, you can create a calculation field of exactly the
same size and shape on top of it and specify that the calculation field is not editable. Clicking the calculation field does
nothing; the mouse click passes through to the next object that accepts mouse clicks at that spot—the editable phone
number field. The user can enter an unformatted phone number; then, when another field is selected, the calculation is
performed, adding punctuation to the phone number, and it appears that the phone number field itself has been format-
ted. Actually, the raw phone number field is simply obscured by the formatted phone number created by the calculation.

ptg8106388

Using FileMaker Pro50

I

PA
RT

Saving and Retrieving Information in Container Fields

Container fields work differently than other fields. You cannot type data into them; rather, you have

to insert whatever file or media you want to store or display in them.

Note that a container field can do more than just store documents. For many image types, it can dis-

play the image within FileMaker; for many sound types, it can play the sound within FileMaker; and

for QuickTime movies, it can allow users to play the files. Whether you store something as a docu-

ment or as a media type that FileMaker can play depends on how you save the information to the

container field. There are three general ways to store a file or media in a container field:

 • Paste— You can place an image or a document on your Clipboard and simply paste it into a con-

tainer field. FileMaker makes its best guess as to what kind of information is on your Clipboard

and either stores a document or displays an image, a sound, or a QuickTime movie.

 • Insert— Using the Insert menu, you can choose from among Picture, QuickTime (movie), Sound,

and File. If you choose from the first three, FileMaker displays the media in question. If you

choose File, FileMaker loads a document.

 • Import— Under the File menu is the Import Records menu item from which you can further

choose to import a file or a folder. If you choose to import from a folder, you can point FileMaker

to a directory of images or files and load them into a container field. You can also import con-

tainer data directly from other FileMaker files.

In both the case of inserting a single media file and the case of importing many, you have the choice

of inserting only a reference to the file or of inserting the document itself. In the case that you insert

a document itself, that document is physically stored in FileMaker and is accessible by all users.

They can select the container field in question and choose Export Field Contents from either the

Edit menu or the contextual menu available from the field itself. In addition, as you see in Figure

2.22 , you have the option to compress a file that you are inserting.
If you choose instead to store only a reference to the file, the file is stored physically elsewhere—for

example, on a shared hard disk. To have access to the file, users must have access to the same

shared directory on which the actual file sits. In this case, you are performing the same sort of task

as saving a shortcut or an alias to the file: It remains on whatever storage device you found it.

The benefit of leaving documents on an external storage device and storing only references within

FileMaker is that these documents require far less space within FileMaker for storage. Storing

images and other files outside of the database itself is a common strategy used by efficient database

management systems including FileMaker.

 � See “Container,” p. 89 , to see how you can manage external storage and other settings for files

stored in container fields. (This feature was implemented in FileMaker Pro 12.)

ptg8106388

51Working with Fields

2

C
H
APTER

 Global Storage

Field data in your database generally pertains to a specific, individual record. The baseball team

field for your San Francisco record holds the data “The Giants,” whereas for Chicago, it’s “The

Cubs.” In some cases, however, a developer opts to define a field as globally stored. Developers

often use a shorthand, globals , to describe these sorts of fields. The value in that field is constant

throughout the database, regardless of which record is currently under inspection. Some common

examples might be fiscal year start and end dates, your company name, report headers, or a fixed

commission rate. As a user, you might not always be able to tell which fields in your database are

defined to store global values and which are record specific.

An important point to keep in mind about global fields is that their behavior varies depending on

how you’re hosting a database. If you’re using a database on your own local machine, with shar-

ing set to single user, all global data is preserved from session

to session. In other words, the next time you open the database,

your global details remain from the last time you worked with the

system.

If you’re working with a database hosted on a server, all global

information is session specific. It might contain default values, but

if you change some data in a global field, other users of the system

do not see that change, nor is it preserved for the next time you

use the database. If a developer has added global storage to a field

in your system, it is quite likely that there are routines to manage

what information it holds when necessary.

 Figure 2.22
Insert files and (optionally) com-
press them.

 note
Before the introduction of script
parameters and script variables,
it was impossible to create cer-
tain types of scripts without the
use of global fields. As a result,
older FileMaker Pro databases
use global fields more often than
modern ones.

ptg8106388

Using FileMaker Pro52

I

PA
RT

 Data Validation
Data integrity is one of the primary concerns of any database developer or of the team using a given

system. If duplicate records appear where they should not, misspellings and typos plague your data-

base, or worse yet the wrong data is entered into the wrong fields, your system will soon become

unreliable. For example, if you run a monthly income report, but in a few of your transaction records

someone has entered a date value where in fact a transaction amount belongs, your monthly totals

will be incorrect.

FileMaker Pro—or any application, for that matter—cannot read users’ minds and fully safeguard

against bad data, but developers do have a wide range of tools for validating information as it is

entered. If your organization can come up with a business rule for validation, a developer can apply

that rule to a given field or fields. Consider the following examples:

 • Transaction amounts can be only positive numbers, can have only two decimal places, and can-

not exceed 100,000.

 • Employee hire dates may be only equal to or later than 1/1/2001.

 • Data in a given field must match established values in a status value list containing the values

open , closed , and on hold . The field will not accept any other status descriptions.

 • Company names in the database must be unique.

Understanding that these rules are in place will help you understand the underpinnings of your

database application. When a validation check occurs, the system might prompt you with an appro-

priate message (see Figure 2.23).

 Figure 2.23
This is an example of a default validation message.
If you choose Revert Record, whatever data you’ve
entered into the field reverts to the state it had
before you started editing.

In addition to the default dialog shown in Figure 2.23 , developers can create their own custom text,

as shown in Figure 2.24 .

 Figure 2.24
This is an example of a customized validation message.

ptg8106388

53Working with Related Data

2

C
H
APTER

If you choose Yes rather than Revert Record, your data is accepted as is and overrides the validation

requirement. In some cases, you might not have the option of posting an override, and the Revert

Record button will not be shown.

 � To explore additional thoughts on addressing data problems, see “Data Integrity” in the

“Troubleshooting” section at the end of this chapter.

 caution
Never, ever, under any circumstances, no matter what happens, use data to describe data conditions . Values of 0, 99,
and –1 are values , not shortcuts for data conditions. You can use validation rules to prevent the storage of invalid data,
and having done so, you can rely on the fact that the data is data. If you need to store imperfect data, consider using
pairs of fields: as-entered data (which may be invalid) and validated data (which is always valid if it exists). FileMaker
Pro correctly handles missing data (empty fields); anything other than valid data or missing data belongs elsewhere in
the database.

Millions of dollars were spent at the end of the twentieth century tracking down what came to be known as the Y2K
problem, much of which arose from the fact that programmers decades earlier assumed that it was safe to use 00 to
indicate missing data for a year. The fact that 00 in the peculiar arithmetic of two-digit years was the result of 99 + 1 did
not occur to many people until it was necessary to review every line of code in critical applications to see whether this
had happened.

Working with Related Data
One of FileMaker’s core strengths is how it allows you to view and

work with related information from a different but connected con-

textual set of records from other tables.

The Tasks Starter Solution has related tables for assignees and

attachments. A project can consist of one or more tasks; a task can

be assigned to one or more assignees. And because these relation-

ships have been set up in the database, it is easy for the FileMaker

Pro layouts to display them and allow them to be edited.

Figure 2.25 shows the tasks table in the database. At the right of

the layout is a portal that shows the people assigned to that task.

A portal lets developers display related information to users.
You can have multiple relationships, and they can be displayed

in multiple portals. Figure 2.26 , for example, shows the Resource

Scheduling Starter Solution. Tabs at the bottom display portals

with relationships from each project to people, equipment, materi-

als, locations, and other items.

 note
Relationships are bidirectional.
This means that, just as you can
display the people for a project,
you can turn it around and dis-
play the project for a person if
the database is so configured. As
you will see in Chapter 3 , for the
case in which the same people
are assigned to several projects,
there is a slightly more complex
database structure (it is referred
to as a many-to-many relation-
ship.)

www.allitebooks.com

http://www.allitebooks.org

ptg8106388

Using FileMaker Pro54

I

PA
RT

 Figure 2.25
 The Form
View – Tasks
layout con-
tains a portal
of related
contacts.

 Figure 2.26
Tabs can dis-
play multiple
relationships
in multiple
portals.

ptg8106388

55Working with Related Data

2

C
H
APTER

Understanding the Mechanics of a Portal
A portal is simply a view into another table and includes rows of specific related records. Developers

determine the rules by which records appear in portals, and at times the records displayed can dynami-

cally change or a portal might display other records in the same table you’re currently viewing.

Most portals have a scroll bar on the right. They feel a bit like List views and act much the same way.

To browse through your related records, simply scroll up and down through the list. Data entry works

the same way it does in other areas of FileMaker: Simply click into a field and enter whatever data is

appropriate.

At times, developers include buttons in portals. When they place a

button within a portal, the button in question appears on each por-

tal row, and each row’s button will act on that row’s data or record.

Common buttons are a delete button (often a red X, a trash can, or

a red circle with a slash through it at the right of the portal row) to

delete that portal row and a disclosure button (often a triangle at the

left of the row) or a checkbox at the left of a portal row. Figure 2.26

shows both of these interface elements.

Creating and Deleting Portal Rows
To create a new portal row—which then creates a new child record—

scroll to the first empty row of a portal. If there are blank fields, click any

of the blank fields there. Child records is a term often used to describe

related, hierarchically dependent records—for example, Company and

Employee. Employee records are considered children of Company.
If a developer allows for it, you can delete a portal row by following

these steps:

 1. Click outside the fields of a given portal on the row background.

(You might have to mouse around a bit.) You should see the row

become highlighted.

 2. Press the Backspace or Delete button on your keyboard. You can also

use Records, Delete Record or the Delete Record command on the

Status toolbar. You are prompted as to whether you want to delete

that one related record. Click Delete or Cancel to close the dialog

box.

 Portal Sorting
Sorting records is covered later in the chapter. For now, simply note

that a developer determines by what means a portal sorts and that

there is no way for you, as a user, to change a portal’s sort order unless

the developer creates a specific mechanism allowing for that option. A

developer can build a dynamically sortable, command-driven portal in

various ways, but this is not the default behavior in FileMaker Pro.

 note
Your developer might have turned
off the ability to add or delete
portal rows, in which case there
should be an alternative means
of adding related records, such as
a + and perhaps explanatory text
so that you know what you’ll be
adding. Likewise, your developer
might have disabled the ability
to create new records using the
first available row. In addition, as
you will see in the discussion of
related records in Chapter 7 , not
all relationships are simple. In
the case of complex relationships
(nonequijoins, to be specific),
FileMaker Pro cannot allow this
method of adding rows to portals
because the relationship would be
ambiguous. For several of these
reasons, portals increasingly allow
the creation of new portal rows
with a button outside the portal.

 note
It’s important to remember that the
developer of a given file must have
turned on this portal behavior. It is
increasingly considered good prac-
tice to explicitly provide a delete
row icon in a portal row, rather than
asking users to understand the
mechanics of deleting portal rows.

ptg8106388

Using FileMaker Pro56

I

PA
RT

Finding Data with FileMaker
Up to this point, we’ve discussed working with a single record and the fields on a given form layout,

but at all times FileMaker holds a found set of records—anywhere from none to all the records in the

table that is the basis of the current layout.

This is an important point to remember: Even though you might be able to see the contents of only

one record’s fields (more than likely in Form view), you can still work with either all the records in

your table or a subset of such. Think of it as working with a deck of cards. There are 52 total cards

in your deck, some of which are in your hand, and one of which is frontmost (visible). Your cur-

rent record would be akin to that front card and your found set like those cards in your hand. In

FileMaker, many functions apply to a found set. A good example is sorting: You are ordering only

those records in your found set.

Many FileMaker Pro databases offer layouts tailored to be viewed either in Form view, where one

record encompasses the information on the screen, or in List view, where layouts display multiple

records at once. The figures in this chapter have shown both styles. Today, with the knowledge that

FileMaker databases may be used on a wide variety of devices, many people are adhering rather

strictly to this list/form structure. It is a familiar interface paradigm on the Web, and it is easily

adaptable to desktop and mobile devices.

Figure 2.27 shows the Assets Starter Solution in Form view on an iPad running FileMaker Go;

Figure 2.28 shows the corresponding List view.

 Figure 2.27
 Assets Starter
Solution in
Form view on
an iPad running
FileMaker Go.

ptg8106388

57Finding Data with FileMaker

2

C
H
APTER

Working with groups of records is important mainly for comprehen-

sion and processing of your information. Data entry occurs on one

individual record at a time, unless you’re importing or performing

some other function that applies across multiple records. It’s in the

reporting and analyzing stage that working with multiple records

becomes necessary.

One of the first ways to work with a group of records is simply to

scan the list visually. Summary fields might lie at the bottom of a

List view and can total numeric data based on a current found set, or

perform other summary operations such as counting or averaging.

For a quick example of how this might work, imagine a sales data-

base. If you were to find or search for all records in January, your

summary fields could total January’s sales. If you were to find

again for the year 2013, your totals would be annual. The value of

the summary field varies depending on your found set. If you per-

form different find requests, the information on your screen can deliver different results, specific to a

given group of records.
One last important note about found sets: They can be composed of records from only one table. You

cannot, for example, display records from an automobile table and a manufacturer table in the same

List view or Table view, although they can be shown as related fields to the main table’s records.

 Figure 2.28
 Assets Starter
Solution in
List view on an
iPad running
FileMaker Go.

 note
Summary fields are quite power-
ful, but they require processor
time. If you have a large found
set of thousands of records, wait-
ing for a summary field to evalu-
ate can take some time. You can
press the Esc key (or Command in
OS X) to cancel the summary, or
simply avoid scrolling or viewing
that portion of a layout. Summary
fields evaluate only when they
are visible on the screen.

ptg8106388

Using FileMaker Pro58

I

PA
RT

 Using Quick Find
At the right of the Status toolbar in Browse mode, a search field lets you perform a Quick Find. Type

the word or phrase you’re searching for, and FileMaker searches for it in the current layout’s table.

FileMaker doesn’t care what field the data is in: it will find “York” equally well in a field for city

name, a field for last name, and a field for plays in Cricket. You type it, FileMaker Finds it.

Using Find Mode to Perform a Find Request
You can also use Find mode to search for data in specific fields. This lets you work with found sets

of records.

To create or change your found set in FileMaker, you must perform a find request or search. This

entails getting into Find mode and entering some set of search criteria into the field (or fields) by

which you want to search. FileMaker takes you back into Browse mode after your search is com-

plete.

To perform find requests in FileMaker, you have to use one of three options to change to Find mode:

the Find icon at the right of the Status toolbar, the menu on the bottom left of your application win-

dow, or the View menu. Developers might also opt to put various Find buttons into their systems.

When you have entered Find mode in any of these ways, the Status toolbar changes, as shown in

Figure 2.29 .

 Figure 2.29
The Status toolbar
changes when you
click the Find icon.

ptg8106388

59Finding Data with FileMaker

2

C
H
APTER

At the left of the Status toolbar, the Records section that is visible in Browse mode changes to a

Find Requests section. Instead of paging through records, you can now page through find requests.

Similarly, instead of seeing the number of records, you now see the number of find requests.

To the right, icons let you create new find requests and delete old ones; others let you perform a

find or cancel it to return to Browse mode. At the bottom right of the Status toolbar, buttons let

you indicate that a find request should return records that match the request or that it should omit

records that match the request. Logical operators for the find requests are also available. All of these

are described in this section.

After you’re in Find mode, you create a find request that describes the criteria by which you want

to search. You enter data into fields just as you would in Browse mode, but instead of creating or

modifying records, these requests serve as instructions for finding your data. You can add a new

request, create multiple requests, and delete requests from the Status toolbar or from the Requests

menu that replaces the Records menu in Find mode.

FileMaker Pro shows a small magnifying glass in data-entry fields when in Find mode, as you see in

Figure 2.29 . As soon as you click in the field, the magnifying glass disappears and you can type your

find criterion. This prevents users from accidentally entering data in Browse mode when they think

they are in Find mode. For example, you can type iMac into the Item field. Figure 2.30 shows the

results of the find. Notice that you can tell from the Status toolbar that you’re automatically back in

Browse mode. At the left of the Status toolbar, you can see that one out of seven records has been

found (that is the found set).

 Figure 2.30
 FileMaker matches
the find criterion
“iMac” in the Item
field against the
data in the data-
base after you click
Find to find all
assets with “iMac”
in the field item.

ptg8106388

Using FileMaker Pro60

I

PA
RT

If you perform another find, the records matching your new

request replace your found set.

You can perform a complex find by entering data into more

than one field. FileMaker Pro finds all the records with both of

those find criteria. In database parlance, this is called an and

query. Figure 2.31 shows a request with two criteria: MacBook

is entered in the Item Name field, and oscar is entered in the

Assigned To field in the portal. Both of these conditions must be

fulfilled for a record to be found.

 tip
Note that by default, FileMaker
doesn’t require strict matches
(MacBook, for example, matches
MacBook Pro). Also, by default,
capitalization doesn’t matter.
You control this behavior with
search operators, as described in
the following section.

 Figure 2.31
A find request with
multiple fields
specified retrieves
data in which all
the criteria are
met—an and
query.

 Search Operators
In addition to text that you type in, you can use operators to

construct queries. Figure 2.32 shows the Operators menu in Find

mode.
The less than, less than or equal, greater than, greater than or

equal, and exact match symbols should be obvious. An entry of

>3 finds all records with a value 4 and above. An entry of <=100

finds all records with a value of 100 or lower (including zero and

negative numbers).

 note
You need not use the Operators
menu at all: < and = typed from
your keyboard work just as well
as inserting the composite sym-
bol from the pop-up menu in the
Status toolbar.

ptg8106388

61Finding Data with FileMaker

2

C
H
APTER

The ellipsis (...) for ranges is a commonly used search symbol. The search criterion

1/1/2003...12/31/2006 returns all records for the span of four years. (Two or three periods from

your keyboard work just as well.)

Use * and # for wildcards. The # symbol is for one digit exactly. An entry of 5# finds all whole num-

bers from 50 to 59. The # alone finds just numbers 1–9. A 1#1 criterion finds 101, 121, 131, and so

on, but not 211 or 1211.

The ~ for relaxed search looks intriguing, doesn’t it? Some fuzzy logic, perhaps? No such luck. It’s

used to search for common base characters in two-byte Asian phonetic alphabets. It doesn’t do any-

thing for any other languages.

Shortcuts for Fast Finding
The right-click (Control-click for Macs using a one-button mouse) contextual menu for a field in

FileMaker will show three “fast match” commands: Find Matching Records, Constrain Found Set,

and Extend Found Set. Here, FileMaker performs a find request on the data in the field in question.

If, say, you right-click a field containing the term porch and choose Find Matching Records, your

found set changes to show all porch records. Likewise, you can constrain and extend your found set

based on the value in the field. We’ll cover these concepts in the next section.

 Figure 2.32
 Special symbols
enable you to
search for a wide
range of match cri-
teria.

ptg8106388

Using FileMaker Pro62

I

PA
RT

FileMaker also has some date-searching capabilities that save time. You can type 2005 in a date

field and FileMaker correctly interprets that to be a */*/2005 search that results in all the records

for a given year. Likewise, you can enter 1 through 12 in a date field and FileMaker assumes that

you’re searching for records within that month for a given year.

Finally, you can search for the names of the days in a date or timestamp to pull up records specific

to the days of the week.

 Multiple Find Requests
FileMaker Pro also enables you to perform complex searches involving multiple find requests. To

find both the MacBook and the Oscar records, a user would simply enter Find mode, type MacBook

into the item field, and then create a new record/request. Just as you can create new records in

Browse mode, you can create and delete requests in Find mode. This process is identical to creating

a new record in Browse mode. In the second record, a user would enter Oscar in the assigned to

field.

A user can flip between requests, using the book icon in the Status toolbar, and can delete requests

as necessary. As soon as the user is satisfied with a series of requests, clicking Find on the left per-

forms the find and returns the user to Browse mode with a new found set.

Multiple find requests can also include requests meant to be omitted. Use the Include and Omit

buttons in the Matching Records section of the Status toolbar to do this. Thus, you could find all

painting tasks for the house—or by omitting house from painting tasks, you could find those that

refer to the garage, garden shed, and other non-house areas. Whereas typing find criteria into mul-

tiple fields in a single request produces an and query (all the criteria must be true), using multiple

requests creates an or query—all the criteria in the first request must be true or the criteria in the

second request must be true, and so forth.

Figure 2.31 shows a typical and find request: It searches for

records that contain an item named “MacBook” and an assigned-

to named “Oscar.” If you create two separate requests, one of

which searches for the item and the other of which searches for

the Assigned To name, you will have an or request. Because they

are separate requests, they find all records where the item name

contains MacBook or the Assigned To name contains Jack . In

general, or queries return as much or more data than and queries

because they are less restrictive.

Constrain and Extend Requests
Performing find requests is all well and good, and as you can

imagine, they can become quite complex. Instead of developing

complex find requests, you can work through the complexity in

stages. Rather than clicking the Find button in the Status toolbar,

choose Requests, Constrain Found Set. FileMaker Pro performs

this new find request on only the existing found set rather than

on the entire database.

 tip
If you are analyzing data in a
database with FileMaker Pro, it is
important to be able to catego-
rize the data properly. For exam-
ple, imagine that, in a school
enrollment database, you find 15
students enrolled in Nineteenth
Century History and 25 students
enrolled in Physics—two facts
you could determine with simple
find requests. It might be more
useful to know that of 15 stu-
dents enrolled in Nineteenth
Century History, 12 are also
enrolled in Physics—something
you could determine by con-
straining the Nineteenth Century
History found set.

ptg8106388

63Finding Data with FileMaker

2

C
H
APTER

Using Requests, Extend Found Set works in a similar fashion by retaining the existing records and

simply adding more to them. This way of working helps you simplify complex queries. It also is a

powerful way for you to explore and analyze the data in your database.

 Modify Last Find
Modify Last Find is a great feature for find requests. In Browse mode, choose Records, Modify Last

Find. You are placed in Find mode with the last set of find requests you performed. This capability

is handy if you want to continue to play with a particularly complex set of find requests or are sim-

ply performing a series of similar requests.

Finding on Multiple Layouts

FileMaker’s find functionality is flexible. While you are in Find mode, it is entirely possible to change

layouts. As long as all the layouts on which you enter your requests are associated with the same

source table, your find performs just as though you had a layout with all the fields on it you needed.

Finding is not layout specific.

Finding is, however, always table specific. Some more advanced FileMaker Pro solutions comprise

multiple tables. Although it is possible to search across related information in FileMaker Pro, your

find results will always display a found set of records from a single table.

 � To learn more about working with multiple tables, see Chapter 6 , “Working with Multiple

Tables.”

Omitting and Showing All Records
After performing a find, you can opt to omit individual records from the resultant found set. Choose

Records, Omit Record to omit a single record or Omit Multiple to omit a specified number of records.

To restore your found set to the full set of records in your current table, choose Records, Show All

Records.

With the Status toolbar, use the button shown in Figure 2.33 to switch between the found and omit-

ted records. Choosing whether to find or omit records while you are constructing find requests in

Find mode is done with the Matching Records choice; after you have performed the find, use this

icon in Browse mode to switch between the found and omitted records. For example, you can find

all records assigned to Oscar and omit those that have not been checked out (in other words, they

might have been assigned to Oscar but he has returned them).

 Saving Find Requests
You can save find requests for future use. This is particularly helpful with complex find requests.

The Save Finds icon at the right of the Status toolbar brings up the menu shown in Figure 2.34 .

ptg8106388

Using FileMaker Pro64

I

PA
RT

 Figure 2.33
Switch between found
and omitted records.

 Figure 2.34
You can save finds in
FileMaker Pro.

ptg8106388

65Finding Data with FileMaker

2

C
H
APTER

If you choose to save a find, you are prompted to name it, as shown in Figure 2.35 .

 Figure 2.35
 Save finds by name.

The Advanced button in the lower left lets you open the details of the saved find. At first, all you

see is the find command you have just performed, as shown in Figure 2.36 .

 Figure 2.36
 See the find you have just performed.

 You can edit the find command, as shown in Figure 2.37 , to customize it before you save it.

ptg8106388

Using FileMaker Pro66

I

PA
RT

 Sorting
When you’re working with multiple records, an obvious requirement is the capability to sort them so

that they are arranged in a logical order.

 Figure 2.37
You can modify the find before you
save it.

 note
Before you go further, a few words of caution are in order. Sorting is perhaps the most overused feature in databases
such as FileMaker Pro. Sorting is expensive in terms of computer resources and, particularly in the case of shared data-
bases, can slow down performance for everyone. Many people think nothing of sorting a large database so that the
records are in alphabetical order (last name first, first name last, or whatever). They then scroll through the list view to
find the record they want and proceed to edit the record using a form layout.

In almost every case, it is much, much faster to eschew the sort and simply use a find request to find the record you
wanted. Doing so takes fewer computer resources, and you do not have to spend your time scrolling through the alpha-
betized list. Sorting is essential for printed reports, but for routine data manipulation, finding is often what you should
be doing.

If you do need to sort data, it can be very useful to precede the sort with a find. Find the general set of records in which
you are interested and then sort it. Doing so substantially lessens the demands on the computer.

FileMaker doesn’t store its records in a sorted order; it stores them in the order in which they were

created. When you first open an unsorted table, the records follow that order. There aren’t any real

mysteries here; for a view of the Sort Records dialog, see Figure 2.38 . By default, the Sort Records

dialog shows only those fields available on your current layout, but you can use the menu in the

ptg8106388

67Sorting

2

C
H
APTER

upper left of the dialog to choose from among all the fields in your database (including those related

to the records in your found set).

 Figure 2.38
You can control how a field is sorted:
ascending by type (alpha or numeric gener-
ally), descending, or in custom order by
value list.

To sort the records from a table in your database, move fields from the left side of the dialog into

the right. There, you can choose to have a field sort ascending, descending, or based on the order in

which values appear in a specific value list. Choosing Descending,

for example, sorts a number field from largest to smallest.

If you move multiple fields into the dialog, FileMaker sorts all

records by the first field. In cases where records contain the same

values in the first field, FileMaker then uses the second field as an

additional criterion.
By adding multiple fields to your sort criteria, you are specifying

secondary sorts: First sort by last name and then by first name, for

example.

Often, sorts are attached to buttons so that you don’t have to enter

the sort specifiers each time. For example, in the Assets list view

shown in Figure 2.39 , you can sort assets by item, category, or

status.

 � Sorting by summary field is a bit tricky. See “Using Summarized Reports,” p. 295 .

 tip
Sorting by value list enables
you to set up your own order in
which things should appear. For
example, if you have a workflow
process that flows from Pending
to Approved to Complete, you
can have your records sort in
that order rather than alphabeti-
cally.

ptg8106388

Using FileMaker Pro68

I

PA
RT

 Printing
Printing is straightforward in FileMaker. Choose File, Print. In the subsequent dialog that appears,

you have the choice to print your found set, just the current record, or a blank record showing field

names.

If you’d like to see what something will look like before wasting paper on something you don’t

want, use Preview mode via the Preview button in the center of the Status toolbar, or the View

menu. Choose the layout from which you want to print and change to Preview mode.

After you’re there, you can see where page margins will fall, and the Book icon enables you to step

through the pages you will send to the printer. Keep in mind that Preview mode shows you what

will be sent to the printer if you choose to print current records.

Presenting Data with Summary and Subsummary Reports
One prevalent type of report is a summary or subsummary report. A subsummary report enables you

to group records that share some bit of common data.

You should design reports for the most restrictive printer on which they will be produced, which

means adjusted paper sizes, color, and the like so that they will always look correct.

 Figure 2.39
Attach sort scripts
to interface ele-
ments.

ptg8106388

69Printing

2

C
H
APTER

In Figure 2.40 , you see the report that the Assets Starter Solution actually provides. It contains sub-

summary parts that organize the data by category. Totals can be provided for subsummary parts if

the report designer specifies, and, as you can see, FileMaker can generate a chart for the data. The

report is accessed from a script attached to the button Inventory Report. It is very common to pro-

vide reports that are generated by a script that selects data (perhaps with a find) and then sorts it

in preparation for the report. The script then pauses, and a Exit Preview button is displayed in the

Status toolbar. Very few commands are available while the script is paused, but printing is one of

them. If the report looks right, you can print it and then click Exit Preview to go on with your work.

The script normally returns you to another layout.

 Figure 2.40
 A summarized
report can be
more compre-
hensible than
detailed data.

FileMaker Pro has the capability to display subsummary and summary data in Browse mode while

you are viewing data in Table or List view.

 � More information on how to display subsummary and summary data is included in Chapter 4 ,

“Working with Layouts.”

 tip
Developing summarized reports very early in your database design process can be useful. Although you might want a
totally interactive database, many people are used to seeing information on paper. Also, as you design a report that
is sorted and contains subsummaries, the structure of the report sometimes makes omissions of categories and data
fields obvious.

ptg8106388

Using FileMaker Pro70

I

PA
RT

Importing and Exporting Data

Having to manually type every bit of data into a database can be an excruciating experience.

Fortunately, FileMaker has excellent capabilities for importing data from a wide variety of sources.

Later chapters cover integration with other systems. For now, keep in mind that there are options

other than spending all day at the keyboard.

Importing data moves data from one environment to another in a batch mode, and that is what the

following sections summarize. FileMaker Pro now also provides a number of ways to share data in

real time. You can use ODBC to access external SQL data sources in real time. You can also add SQL

tables to your database graph, and you can even add supplemental fields to the external tables—

your FileMaker database stores the supplemental fields.

 � To explore how to bring data, including a directory of images, into your FileMaker Pro solution,

see Chapter 22 , “Importing Data into FileMaker Pro.”

 � To learn about ODBC connectivity and exporting, see Chapter 23 , “Exporting Data from

FileMaker.”

Saving PDF and Excel Documents

Often you will want to prepare a report in FileMaker and create an electronic document you can

then share with your colleagues. From the File menu, you can now save directly to PDF or Excel

without having to use any third-party software.

Notice that you can automatically attach your documents to an email or even use FileMaker to com-

pose an email message from data within your database. This function depends on your having an

email client installed on your computer or having access to an SMTP server.

 � For more information on saving PDF documents and sending email from FileMaker, see

“Delivering Reports,” p. 309 .

Using the Web Viewer

No overview of FileMaker’s features would be complete without a discussion of the Web Viewer.

First introduced in FileMaker Pro 8.5, the Web Viewer provides a way to display data from the Web

on a FileMaker Pro layout. As long as an Internet connection exists, the data can be live, and the

user can interact with it much as with a browser.

The Web Viewer does not replace a browser, but it does provide a very significant set of features to

users of FileMaker Pro. Because the address used to set up the Web Viewer is a calculation, you can

display a Web Viewer that presents a map of a customer location from your database. You can dis-

play a client web page containing contact information so that you do not have to continually update

your Contact Management database with new telephone extensions and mail stops.

 � For more information on the Web Viewer, see Chapter 13 , “Using the Web Viewer.”

ptg8106388

71Troubleshooting

2

C
H
APTER

 Troubleshooting
Most of the trouble you’ll run into as a user will be with issues specific to your own database solu-

tions. The best advice we can offer both developers and users is to work together! When you run

into problems, knowing your developer will be a great first step.

 Data Loss
I’ve noticed that I’m suddenly missing some data. What happened? What can I do?

One of the most critical aspects of your database is what gives it its name: your data. A wide range

of possible problems can affect your data, but the most dangerous is accidentally deleting a record...

or worse yet, discovering that you had the wrong found set when performing a Delete All Records

command. FileMaker doesn’t have an undo function, so if you delete a record, it’s gone forever. Be

sure that you haven’t simply altered your found set to exclude the records you’re looking for. Go to

Records, Show All Records to recall all the data in your table.

Back up your data. We can’t stress this point enough. FileMaker Server deployment best practices

and backup routines are easy to learn. If you’re not using FileMaker Server, you can make time-

stamped copies of your files and store them on CD or on another computer. By far the best backup

strategy is to use an automated procedure. That way, no one has to remember to do anything. It

always seems to be the case that the only time you do not back up your data is the one time your

hard disk fails.

Also, make certain you have practiced recovering data (backing it up and then restoring it to disk).

It is common for someone to note a data loss and proceed to take all sorts of steps to recover the

data (inadvertently destroying data in the process). And then, at the end of the day, it turns out that

there was no data loss—all the day’s data was entered with an incorrect date.

 Data Integrity
How do I ensure that the data I have in my database is “good” data?

Making sure that good data is entered into your database is vital. If you properly put people’s names

in the first name and last name fields of a contact database, but your office assistant decides to

enter nicknames and other random tidbits, your data will be compromised.

In addition, duplicate data is a problem that plagues all databases everywhere. If you’ve already cre-

ated a record for, say, Uryas Forge, you won’t want to create a second record for him. What happens

if his phone number changes? You’ll change one record, but not the other.

Dealing with bad data is a challenge and almost always requires the power of the human brain.

Become adept at running find requests. Use the ! mark to find duplicates and use * characters for

wildcard characters.

You can also work with your developer to put validation in place, or even build an approval process

by which new data is added to your system in phases, with raw data in one set of fields and con-

firmed data in another. Alternatively, you can add a single check box field to each record that indi-

cates whether the data has been reviewed.

ptg8106388

Using FileMaker Pro72

I

PA
RT

 Reverting Records
What does Revert Record do?

As you enter data into fields, that information is not saved (committed) until you exit the record in

question. You do so by clicking outside any fields or by changing modes, changing layouts, and so

on. Before the record is committed, you can choose Records, Revert Record. This command undoes

all the data you’ve entered while working with active fields. If you’ve tabbed from field to field,

it reverts all those not yet saved. If you have created a new record, it even reverts the entire new

record if you haven’t yet committed it.

FileMaker Extra: Becoming a FileMaker Pro
Power User

Manipulating data can illuminate a wide range of information and can allow business users to draw

conclusions they might not have been able to perceive anecdotally. For example, in our consulting

firm, we were able to analyze our time entry data and calculate the average amount of time we need

for testing. This helped greatly for future estimating.

Becoming adept at using FileMaker Pro enables you to understand what information you can pull

from the system, but, most important, it enables you to know what to ask for. In working with a

developer, you can guide that person’s priorities (or your own) based on a solid understanding of

the platform.

Technique 1: Using Your Keyboard for More Speed
This advice is obvious. Entering (Command-F) [Ctrl+F] brings you into Find mode. Tabbing takes

you from field to field. The (Return) [Enter] key executes default values in dialog boxes, performs

finds, and so on. (Command-up arrow) [Ctrl+up arrow] and (Command-down arrow) [Ctrl+down

arrow] page through your data. You’ll become much faster with FileMaker Pro if you take the time to

learn your key commands. FileMaker’s online help details all the key commands available.

Technique 2: Working with Table View
User interfaces have their purpose and more often than not greatly assist data entry and working

with a given solution. But if you just need to look at the raw data in your system, you can opt to

change to Table view from any layout in FileMaker Pro, assuming that your developer hasn’t dis-

abled the option. This gives you a bird’s-eye view of your information. Don’t forget that clicking a

column header sorts for that column. A second click re-sorts in descending order.

Technique 3: Replacing Data
You’ll often run across cases in which you need to globally replace some data with other data. For

example, perhaps you’ve changed a value list of vehicle types to read “auto, bike, boat, plane,”

rather than “bike, boat, car, plane.” If you leave things alone after changing the value list, you’ll

have both “car” and “auto” data in your system. Enforcing the consistent use of terms is important

ptg8106388

73FileMaker Extra: Becoming a FileMaker Pro Power User

2

C
H
APTER

in maintaining your data integrity. To quickly take care of migrat-

ing from an old value to a new one, follow these steps:

 1. Choose Records, Show All Records; otherwise, your change is

applied to only your current found set.

 2. Place your cursor into the field in question.
 3. Choose Edit, Find/Replace to open the Find/Replace dialog box

(see Figure 2.41).

 4. Type your old and new values.

 5. Choose All from the Direction drop-down menu so that your

entire database will be covered.

 note
In the case of a field that is
shown with a pop-up menu,
you’re out of luck. FileMaker Pro
doesn’t recognize a cursor in a
pop-up menu. You need to do a
little development (covered in
 Chapter 3 , “Defining and Working
with Fields and Tables”), copy
the field to an open spot on your
layout, and change its format-
ting to a pop-up list. Then don’t
forget to delete the layout field
when you’re finished.

 Figure 2.41
Find/Replace can step through your
records or be applied across the
entire database. Be careful: You can-
not undo these functions!

 6. Depending on your preferences, choose Current Field or apply

your change to entire records. We recommend changing just

the selected field because that’s much safer than accidentally

changing all instances of a text string.

 7. Click Replace All.

Technique 4: Inserting Specific Information

The Insert menu is an often-ignored source of handy time-saving commands. From a single menu

choice or keyboard command, you can insert the current time, the current date, or your username

into an active field.

In addition to that, Insert, From Index enables you to select from all the values in a given field from

all records in a database. If you can’t quite remember the spelling of a given item, or you simply

want to be perfectly consistent, this is a great way to see the data in your system and make a com-

patible selection. This works only if the field in question allows indexing.

 � To learn about field indexing, see “Storage and Indexing,” p. 104 .

 caution
It’s important to note that this is
a function that you cannot undo!
Be sure that you know what
you’re doing with your data.

ptg8106388

Using FileMaker Pro74

I

PA
RT

Finally, there’s a handy way to pull data from another record in your database. If three or four fields

need to contain data identical to another record in your database, visit the source record first and

then, via a List view or Table view, jump to the destination record by clicking the appropriate row.

Click into the specific fields you want and choose Insert, From Last Visited Record.

Technique 5: Getting to Know Your Entire Database
This item isn’t so much a technique as it is just common sense: One of the best ways to make the

most of a FileMaker database is to learn how it works. Review all the layouts in your system, take a

look at the fields you see, and explore other files (if there are others) in the solution. Be sure to dis-

cuss with your developer how the information fits together.

Technique 6: Using Multitiered Sorts
Sorting can be a fairly powerful way to derive meaning and see patterns in data. To make the most

of the Sort Records dialog, don’t forget that you can provide multiple sort criteria. For example, in a

contacts database, you could sort by Last Name, First Name, City, descending by Age, and finally by

Pet Name.

You can also sort by the custom order of a value list. If you have, say, a status field managed by a

value list of “open, pending, closed,” you can sort by that order.

Technique 7: Using Multiple Windows
FileMaker provides you with a Window menu. If you’d like

to work with multiple layouts at once, choose Window, New

Window, and then navigate to the second layout in question by

using either the Layout pop-up menu in the Status toolbar or the

buttons provided by a developer.

Multiple windows are also useful when you open two windows

looking at the same List view layout: It’s possible for you to have

two separate found sets. Imagine finding all the invitees of an

event in one window and all the people you’ve not yet invited in

the other.

Technique 8: Applying Text Styling and Tabs
You can apply a wide range of formatting options to text within FileMaker Pro fields: bold, italic,

font choice, color choice, and so on. FileMaker Pro preserves this information, and you can copy and

paste formatted text with other applications.

There is another neat trick in FileMaker Pro: In any field, you can establish an internal tab place-

ment and apply tabs by using (Command-Tab) [Ctrl+Tab]. Choose View, Ruler. When you click into

a field, a horizontal ruler appears above it, into which you can click to establish tabs. Double-click a

tab to set its properties: left, center, right, align to character, and whether to use a fill character.

 tip
If you are designing a solution
that might be used on FileMaker
Go, remember that multiple win-
dows cannot be opened at the
same time on iOS devices (you
move from one to the other with
the control at the left of the tool-
bar at the top of the screen).

ptg8106388

 3

DEFINING AND WORKING WITH
FIELDS AND TABLES

 Working Under the Hood
Fields and tables are the heart of any database. By storing information in

properly named fields within well-organized tables, you impart both func-

tion and meaning to what could otherwise be an incomprehensible pile of

raw data.

This chapter describes what kinds of fields exist in FileMaker, how

they store information, and how to ensure proper data integrity in your

database solutions. You will also find naming conventions for fields and

tables—techniques that you can use to make your FileMaker databases

meaningful to yourself and others for the long period of time that they

may be in use.

If you’re new to development in FileMaker Pro, this chapter is a good

place to start. Establishing a solid foundation in field definition is a vital

part of becoming a practiced developer.

 Creating New Databases
To create a new database, simply launch FileMaker Pro, and then choose

File, New Database or File, New Database from Template. Alternatively,

from the Quick Start screen, you can choose Create Database to get

started. The Quick Start screen also lets you choose to create a database

from an Excel workbook, a tab-delimited text file, a comma-separated

values text file, a merge file, or a Bento source. As is the case with much

of FileMaker, you can let FileMaker do a lot of the work or you can get

deeply involved with the construction of your database. The simplest

ptg8106388

Defining and Working with Fields and Tables76

I

PA
RT

strategy is to either use a Starter Solution or to let FileMaker Pro

work with you to create a basic database.

In the following section, “Using the Manage Database Dialog,”

you learn how to get more involved with the building of a data-

base. You also learn how you can switch back and forth between

the simple and more complex ways of working.

If you use File, New Database to create a new empty database

file, you are prompted to provide a filename and a location to use

for that file. Based on that name, FileMaker creates the database

and opens the new database in Table view and Browse mode, as

you see in Figure 3.1 .

 note
The Use Manage Database Dialog
to Create Files in FileMaker Pro,
Preferences enables you to
adjust this setting. Also note that
when you hover the mouse over
the table the + might appear; it
might disappear when you move
the mouse away.

 Figure 3.1
Create a new
empty data-
base.

As you can see in Figure 3.1 , Table view looks like a spreadsheet. There is one field, labeled Field.

There are no rows in this table, but there is a + at the left, indicating that you can click in that row

to create an empty cell in that row.

If you click in that row, you’ll see that the + moves down one row, and you can type in the data for

the first field and first row. The + continues moving down, and you can always click next to it to add

another row to the table. Figure 3.2 shows one entry in the table.
As shown in Figure 3.3 , you can add another row in the same way—click next to the + and enter the

data.

ptg8106388

77Working Under the Hood

3

C
H
APTER

 Figure 3.2
Create the first
record.

 Figure 3.3
 Add another
record.

If you hover the mouse over the title of a column, as shown in Figure 3.4 , you have access to a short-

cut menu with commands to use in modifying the data.
Double-click in the top row to change the name of the field to something more meaningful than

Field. Figure 3.5 shows the result.

ptg8106388

Defining and Working with Fields and Tables78

I

PA
RT

 Figure 3.4
 Access shortcut
menu com-
mands.

 Figure 3.5
 Provide a
meaningful
name for the
field.

ptg8106388

79Working Under the Hood

3

C
H
APTER

You can add another column or field by clicking the + at the

right of the first row. Figure 3.6 shows the result.
Name the second field, as shown in Figure 3.7 .

tip
Remember that column is spreadsheet-
ese, whereas field is database-ese.

 Figure 3.6
 Add another field.

 Figure 3.7
You should name
fields as soon as
you create them.

ptg8106388

Defining and Working with Fields and Tables80

I

PA
RT

You now have your database. You can add more data (rows) and more fields (columns) in the same

way. You also can use the down-pointing arrow to select commands for each column. Some of the

commands, such as for sorting, are straightforward; others are described throughout this book.

You can work with a database constructed in this way very quickly. Behind the scenes, FileMaker

has built the database that you described with a few mouse clicks and keystrokes. However, to

unleash the power of FileMaker Pro, you can use other tools and techniques.

Using the Manage Database Dialog
You can gain access to the internal structure of the database using File, Manage, Database. The

resultant dialog is shown in Figure 3.8 . As a developer, you’ll spend a good bit of time in the three

tabs in this dialog. FileMaker Pro’s Manage Database dialog allows you to create the fields, tables,

and relationships you need to form your database. It also enables you to modify a wide range of

attributes associated with fields, such as auto-entry functions, validation, storage, and calculation

formulas. These elements comprise a database’s structure or schema . It is here that you form your

database behind the scenes.

 Figure 3.8
The three tabs enable you to
switch among defining tables,
fields, and relationships.

If you are creating a new database from a Starter Solution or an existing file such as an Excel work-

book or a text file, FileMaker Pro automatically creates the necessary schema and opens the new

database without going through the Manage Database dialog. While you are working with a data-

base, you can open the Manage Database dialog at any time to modify the schema.

ptg8106388

81Working with Tables

3

C
H
APTER

FileMaker Pro will have already created a default table for you, named the same as the file itself.

Notice the Table pop-up menu on the Fields tab of the dialog in Figure 3.8 . Any fields you create

will be created in that table.

 � For some basic information on tables, see “Understanding Tables,” p. 29 .

 � For a detailed discussion of multiple-table solutions, see Chapter 6 , “Working with Multiple

Tables.”

Notice the third tab in the Manage Database dialog: Relationships. We don’t cover relational data-

bases in this chapter, but it is on that tab that you would create the relational associations among

tables in your solution.

 � For information on relational data modeling, see Chapter 5 , “Relational Database Design.”

 Working with Tables
As you saw in the preceding chapter, your database consists of tables, each of which is made up of

rows or records with columns or fields that contain the data. A database can consist of a single table

or a number of tables.

By default, when you create a new database, a single table is created that has the same name as

the database. That actually might not be what is best. You might want to rename that default table

so that it fits into the naming convention of all the tables in your database.

 Table Naming Conventions
The Manage Database dialog lets you create and name (and

rename) fields and tables. It is a good idea from the start to enforce

some naming conventions on both fields and tables.

FileMaker Pro’s flexibility with regard to things such as legal char-

acters in names and the length of names for tables and fields can

be too much of a good thing. You can use up to 100 characters in

a name, but chances are you will need far fewer for your actual

names.
Stick with the conventions—that is, within a single database or

even a project. One problem with implementing design conven-

tions is that the world is a large place, and it is likely that your

naming conventions will need to interact with naming conventions

of other systems and databases. Being internally consistent keeps

your own house in order. That is the most that you can hope for,

unless you volunteer to serve on a committee that drafts conven-

tions for your organization, industry, or other group.

Naming tables is simultaneously simple and almost irrelevant. The reason is that as soon as you

have a database with more than one table in it, you will most likely be using the Relationships

Graph (described in Chapter 7 , “Working with Relationships”). The Relationships Graph initially

 note
This section includes some sug-
gestions based on conventions
used by various FileMaker devel-
opers. However, you can find
more information about conven-
tions in the Support area of the
FileMaker website. In addition,
FileMaker’s TechNet membership
gives you access to still more
information and guidelines. Pick
what are the most useful conven-
tions, but stick with them.

ptg8106388

Defining and Working with Fields and Tables82

I

PA
RT

shows each table with the name you assign to it. However, you will create additional instances of

your tables in the Relationships Graph, and you will name each of them. In practice, you will usually

be working not with the base table, but with the additional instances.

For example, you might have a table called Personnel. In the Relationships Graph, you might have

instances of this table called PersonnelByID, PersonnelByName, PersonnelByDepartment, and so

forth. Practically, you could name the base table Table 1, and, as long as the other names appear in

the Relationships Graph (and in your code), everything would be clear (keep in mind that this is pre-

sented only as a hypothetical example, not a good practice).

When you create a database, by default you will wind up with a database, a single table, and an

instance in the Relationships Graph all with the same name. Many people begin by renaming that

first table right away. Here are some of the suggested standards:

 • Use only the characters 0–9 and a–z (both uppercase and lowercase).

 • If table names contain several words, separate them with underscores or with intermediate capi-

talization (as in personnel_salary_info and personnelSalaryInfo, respectively).

 • Be consistent in capitalization and number (that is, use table names such as Contacts or Contact,

contacts or contact).

 • Do not use special characters or reserved words in table names. Reserved words include

FileMaker reserved words as well as words that might be reserved in SQL or other languages

you can use to access the tables. Select is not a good table name because, although it might be

useful for storing selection values for records in your database, it is a SQL reserved word.

In addition, consider whether you want to place any descriptive information in the table name. If

you do so, the usual convention is to place it at the end following an underscore. This approach is

particularly useful if you separate words within the table name using intermediate capitalization.

For example, inventorySuppliers_pub and inventory_Quantities_pri are reasonable names for inven-

tory tables that, respectively, contain the publicly available names and addresses of suppliers and

the private quantities of inventory items on hand. You can enforce access to these tables with your

security accounts and privileges, but it can be useful to indicate not only what is in the tables but

also the sensitivity of the data.

 tip
Explore the Starter Solutions to see various examples of naming conventions. Note that some people disagree with the
use of the pipe character (|) in some of the field and table names. As noted earlier, it can cause issues when interact-
ing with SQL. Whether this is relevant to your project is up to you. Also, be aware that deep down inside FileMaker,
the names of objects are converted to codes. Thus, a field named Address is ultimately stored as field number N. If you
rename a script, field, layout, or table, its internal ID number is unchanged. This means that if you reference a field from
a script or layout, changing the name of the script or layout does not break the script or layout: it simply uses the new
field name. Thus, worrying about interoperability of field and table names is an issue that can easily be put off for the
future.

ptg8106388

83Working with Tables

3

C
H
APTER

 Creating New Tables
To create a table, go to the Manage Database dialog (File, Manage, Database). Click the Tables tab

to see the view shown in Figures 3.9 and 3.10 . Note that this is one of the places in which FileMaker

Pro and FileMaker Pro Advanced differ.

 Figure 3.9
Use the Tables tab in
Manage Database to create,
change, and delete tables in
FileMaker Pro.

 Figure 3.10
Use the Tables tab in Manage
Database to create, change,
and delete tables in FileMaker
Pro Advanced.

ptg8106388

Defining and Working with Fields and Tables84

I

PA
RT

To create a new table, enter a name for the table at the bottom.

Click Create, and your table will be created in the list of tables.

An instance of the table will also be created automatically in the

Relationships graph. To rename a table, highlight its name in the

list of tables in the Tables tab, type in the new name at the bot-

tom, and click Change.

To delete a table, highlight its name and click Delete. If you want

to print out the fields in one or more tables, highlight them and

click Print.

 � You learn how to import data along with the table definition

using the Import command in Chapter 22 , “Importing Data

into FileMaker Pro.”

 Working with Fields
The heart of the database is the data within it—data that is stored in fields. This section provides

some basics about working with fields.

 Field Naming Conventions
The naming conventions for tables with regard to spaces, characters, capitalization, and so forth

apply also to fields. There are some additional considerations when it comes to naming fields.

Specifically, they have to do with the identification of field types and the naming of internally used

fields.

Many developers use abbreviations for data types in field names. Often it’s handy to know the data

type of a given field when working with it without having to refer to the Manage Database dialog.

Here we’ve used t for text, n for number, and c for calculation:

 • ProductName_t

 • Price_n

 • TaxRate_n

 • Tax_c

Some developers also note whether a field is indexed (x for indexed, n for unindexed):

 • Location_Name_tx

 • Location_Desc_tn

 • Location_Size_nn

Some naming conventions also break out a division between data fields and what are commonly

referred to as developer fields —those fields that you need only to make your FileMaker Pro solution

work. If you ever went to import your database wholesale into another system, you would probably

 note
The Manage Database dialog
in FileMaker Pro Advanced has
three additional buttons in the
lower-right corner, as shown in
 Figure 3.10 . You can copy a table
and paste it in your database
(thereby duplicating it), or copy
and paste it into another data-
base. You can also import a table
definition, not the data, from
another FileMaker Pro database.

ptg8106388

85Working with Fields

3

C
H
APTER

leave behind the developer fields. Here, we have two abbreviations: k for key (or match field) and zz

(so that it sorts to the bottom of an alphabetized list of fields) for developer utility fields. We also use

underscores to ensure that keys sort to the top of our field list, with the primary key coming first.

 � To understand how keys are used to identify records in tables and form relationships, see

 Chapter 5 , “Relational Database Design.”

 • __kp_primary_AlbumID

 • _kf_foreign_ArtistID

 • AlbumName

 • Date

 • zz_SelectedPortalRow

 • zz_UserColor_Preference

 • zz_UserGenre_Preference

Many developers use a minimal set of field-naming standards. It relies on leading lowercase charac-

ters to indicate the field type. If you choose to use that minimal set, here are the conventions used:

 • g —Global.

 • c —Calculation.

 • s —Summary.

 • zz —Internal use. (This causes the field name, when shown in an alphabetical list, to be at the

bottom. If you use a single z, your internal fields will be interspersed with fields such as ZIP

code.)

Another naming convention that you will see in some Starter Solutions uses capital letters for inter-

nally used fields. For example, in Research Notes you will find TYPE MATCH FIELD, which is a field

that is used to match related records based on their type.

Descriptions of field types might or might not use this set of standards, which you can add to the

end of the field name following an underscore:

 • t —Text

 • n —Number

 • d —Date

 • ts —Timestamp

 • tm —Time

 • c —Container

ptg8106388

Defining and Working with Fields and Tables86

I

PA
RT

Putting these together, you could have field names such as these:

 • creationDate_d

 • gProcessingOffice_t

 • gcNextInvoiceNumber_n

You can even go further by not bothering with a field type where the field name already includes it.

creationDate_d really adds no information to creationDate.

Whatever you do, be consistent. The point is not to create a set of naming conventions that over-

shadows the database but, rather, to create naming conventions that help you and future develop-

ers build and maintain the solution.

 tip
Don’t imagine that all the fields on your Relationships Graph will adhere to these naming conventions. You control your
own fields, but as you begin to use external data sources, you will be incorporating fields from other databases. You can
have a field called payrollDate_d in your own table, but if you are relating it to a field called datePaid in the corporate
database, chances are slim that the database administrator will want to rename the field to make it consistent. The
ProjectID field in your database might be related to a field that is called JobNumber in another FileMaker database that
you do not control. And, in a global world, the external data source names might just be in another language. Be as
clear and consistent as you can, but do not assume that you can control the names of fields in other databases. (In gen-
eral, the owner of the Payroll database wins out.)

 � If you’re planning on using FileMaker Pro as a web backend, see “Problematic Field Names” in

the “Troubleshooting” section at the end of this chapter.

 � For more information on using databases on the Web, see “Designing for IWP Deployment,”

p. 587 , as well as Chapter 25 , “Custom Web Publishing with PHP and XML.”

 Adding Field Comments
Notice also that you can add comments to your field definitions. Field comments are a clear indica-

tion that the database designer has thought through the database design. They also are a good

example of the difference between the simple building of a

database, as shown at the beginning of this chapter, and the

deeper work that you can do with the Manage Database dialog:

Comments can only be entered through the Manage Database

dialog.

Commenting is a vital discipline to develop. Spending a few

moments to add information to the Comment text box, below

the field name, as you create a field will save time later in trying

to figure out what you were thinking at the time. Don’t bother

repeating information that is in the field name. If the field rep-

resents pixels or pennies, adding that information to the field

 tip
You can extract field comments
using the FieldComment func-
tion so that you can use them in
a tooltip or other dynamic docu-
mentation in your solution. If you
use that design, remember that
your comments will appear to
end users, so word them accord-
ingly.

ptg8106388

87Working with Field Types

3

C
H
APTER

name might be worthwhile (as in Width_In_Pixels). Use comments for in-progress remarks (such as

“Added 4/1/2013 JF for task restructure” or “for reporting only”).

 Creating New Fields

To create fields in FileMaker Pro, you need to enter some text in the Field Name area of the Manage

Database dialog and click Create. One important aspect of databases to keep in mind is that it’s

important to establish a discrete field for each bit of information

you want to store. If you create a field called Contact Information

and cram an entire address and a set of phone numbers into it,

technically it will work fine. But if you ever need to export that

information, sort by area code, or run a report by city, you won’t be

able to cull the information you want from the field without suffer-

ing a good headache.

 � For information on relational data modeling and defining

fields, see “Relationship Types,” p. 159 .

As shown previously in Figure 3.1 , the Manage Database dialog lets you create, change, duplicate,

and delete fields. As is the case with the Tables tab, FileMaker Pro Advanced offers additional but-

tons: Copy and Paste. If you select a field or fields, you can click Copy and then paste the fields into

the same or another table. Pasting them into the same table is the same as duplicating them.

Working with Field Types
Some of the most important aspects of understanding FileMaker Pro involve comprehending field

types, realizing how they differ from one another, and knowing how to use them effectively. Simply

stated, field types identify what kind of information each field of

your database expects to hold. A person’s name is text, the pur-

chase amount for a transaction is a number, a birthday is a date,

and so on. Generally, it should be quite clear to you what each

needs to be.

Field types determine what types of operations can be performed

on a given field, what information a field can accept, and the rules

by which a field is sorted. The combination of a proper identify-

ing field name and a data type definition is what gives a database

its context and meaning. You can set field types in the Manage

Database dialog, or in Table view you can use the Field, Field Type

submenu in the shortcut menu.

 tip
Use the most specific field type
you can. This allows you to use
FileMaker Pro editing and for-
matting. Although FileMaker can
convert a text field to a number
where necessary, it can apply
numeric formatting only to a
number field. The same goes for
dates and times.

 note
To database wonks, the Contact
Information example would be a
violation of first normal form—or
more colloquially, “one fact, one
field.”

ptg8106388

Defining and Working with Fields and Tables88

I

PA
RT

 Text
Text fields are the most free-form of the field types. Users can enter any range of information in

them, including carriage returns, and there’s no expectation of what form or sort of information a

text field will hold. The only requirement is that it be character based; in other words, you can’t

place a picture in a text field. A text field can store up to 2GB of information (limited by RAM and

hard drive space, of course) and indexes up to approximately 100 characters, depending on what

language you’re using. We cover indexing in more depth later in the chapter. For now, simply

remember that each field type has different limits and approaches on indexing.

 Number
Number fields can store values from 10 -400 up to 10 400 , and negative values in the same range.

FileMaker Pro indexes the first 400 significant digits (numbers, decimal points, or signs) of a num-

ber field, ignoring letters and other symbols. Number fields can accept text (although not carriage

returns), but any text in a numeric field is ignored. FileMaker interprets 12ax3 as 123 if you enter it

into a numeric field, for example.

Something to keep in mind with FileMaker Pro: You can express a number field as a Boolean. A

Boolean value is either true or false, and often used to test the condition of something. FileMaker

Pro treats a zero or null value in a number field as false in the Boolean sense; it treats any other

data as true. You will often run across the use of number fields to store Boolean values.

The primary distinction between a number field and a text field lies in how they sort: A text field

sorts 1, 10, 2, 20, 3, 4, 5, whereas a number field sorts 1, 2, 3, 4, 5, 10, 20.

 Date

Date fields accept only Gregorian calendar dates. FileMaker Pro honors whatever date formatting

your country follows by taking the standard your operating system uses at the time you create a

new file. Date formats—the order of year, month, and day—are common for a given file. Although

it’s possible to change the way FileMaker Pro displays dates, it fixes basic ordering at the time of

file creation.

Dates in FileMaker Pro are internally stored as the number of days since 01/01/0001. January 1,

2013, for example, is 734869. If you need to compare dates or perform any functions on them,

remember that behind the scenes they’re really just numbers. This feature is actually quite handy.

To switch a date to a week prior, all you need to do is subtract 7. Date fields can store values from

January 1, 0001, to December 31, 4000.

 � If your fields are sorting or displaying oddly, see “Mismatched Data Types” in the

“Troubleshooting” section at the end of this chapter.

ptg8106388

89Working with Field Types

3

C
H
APTER

 Time
Time fields hold HH:MM:SS.ddd information. Notice that you can

add a decimal to the end. An additional useful fact: If a user enters

25:00 , FileMaker Pro rightly interprets this as 1:00 a.m. Similarly,

99:30 becomes 3:30 a.m. The clock simply keeps rolling over. This

behavior is useful when you need to add, say, 30 hours to a time

and don’t want to be bothered with calculating what hour that

becomes. Likewise, if you are doing data entry in a time-tracking

system and don’t want to create two entries for a case in which you worked from 2:00 p.m. until

2:00 a.m. on Monday (really Tuesday), entering 26:00 for the ending time in your system rightly cal-

culates to 12 hours.

As in dates, FileMaker Pro stores time internally as the number of seconds from 12:00:00 on the cur-

rent day: 1 is 12:00:01, and 43200 is 12:00 p.m. As it does with date formats, FileMaker Pro estab-

lishes your time format during the creation of the file, based on the operating system settings.

 Timestamp
The timestamp data type combines date and time information. It

appears as a field with both date and time values, separated by a

space: 1/1/2013 12:00:00. As in date and time formats, timestamps

are also stored as numbers: the count of seconds from 1/1/0001

00:00:00. Be prepared to work with large numbers when using

this field type. Timestamps are an important aid to interoper-

ability with other databases (such as those powered by the SQL

language), which often store date and time information in a single

timestamp field. The maximum value of a timestamp is 12/31/4000

11:59:59.999999 p.m. or 126,227,764,799.999999 seconds.

 Container
Container fields are different from the ones already mentioned:

They store binary information. Information is often inserted into container fields rather than being

entered manually (you can copy and paste). You can place any sort of digital document in your data-

base, limited again by the practical limits of your computer hardware, up to 4GB.

Beginning with FileMaker Pro 12, there are two sets of considerations for container fields. With a

container field selected, you can use the Insert menu to insert a file in the field. At the bottom of the

dialog, you have the option to insert the file itself or only a reference to it. If you insert a reference,

FileMaker looks for that file every time it needs to display the data in the container. This keeps your

database file smaller because the external files are located elsewhere on disk. However, the refer-

ence identifies the file, and if the file (or the FileMaker Pro database) is moved, that reference is

likely to break.

 tip
The maximum time value you
can store in a FileMaker Pro time
field is 2,147,483,647. That’s a
lot of time.

 tip
To extract just the date from
timestamp data, simply use the
GetAsDate() function. Likewise,
use GetAsTime() to extract just
the time. In a layout, you can for-
mat a timestamp as a date or as
a time (as well as leaving it as a
timestamp). If you format a time-
stamp as a date, the time value
is not shown in the layout.

ptg8106388

Defining and Working with Fields and Tables90

I

PA
RT

FileMaker Pro 12 adds an extra option: FileMaker Pro can place the files for container fields into a

directory in a known location. This means that you can have the advantage of keeping your data-

base file small by not including container field files inside the database, but you do not need to store

fragile references. (This is the design of many industrial-strength databases.) Users still have the

option to store references or the complete file for every record in the database when they use the

Insert menu, but if they choose to store the file instead of a reference, FileMaker (and you, the data-

base designer) take care of where the file is placed.

 � For additional information on displaying files in container fields, see “Using the Inspector,”

p. 137 .

When you set a field to be a container field, you have the ability to set options for it. The Options

button, shown previously in the lower right of Figure 3.8 , is available for a number of field types

such as calculations as well as containers. Click it to open the Options dialog shown in Figure 3.11 .

Click the Storage tab at the top to continue.

 Figure 3.11
 Choose storage options for a container field.

The check box at the bottom of the dialog lets you specify external storage for the contents of

container fields. By default, that storage is in a folder called Files/<database filename>/. That

folder is placed next to the database itself. Thus, if your database is named Products and is placed

in a folder called Inventory, the container field files will be in a folder called Inventory/Files/

Products/<filename>.

ptg8106388

91Working with Field Types

3

C
H
APTER

At least, that will be the case if you choose the option for open storage. This may give you a sense

of confidence because you’ll be able to see the files that are stored in your container fields, but so

will other people. For that reason, the default is secure storage. Files are stored in encrypted ver-

sions. Once you have set the storage options, you will see them displayed in the Manage Database

dialog for the relevant field, as you see in Figure 3.12 .

 Figure 3.12
You can choose open or
secure storage for files.

If you make a change to the storage options for a container field, you are given the opportunity to

transfer existing data to the new storage option, as you see in Figure 3.13 .
On completion, you are informed of the results, as you see in Figure 3.14 .
You can customize the storage locations for files in two ways. If you are using open storage, you

can browse to the directory where you want the files to be placed; however, this can have the prob-

lem of broken references, as mentioned previously. In some production environments, a separate

server is dedicated to storing files and, in those cases, you don’t have to worry about the files being

moved.

ptg8106388

Defining and Working with Fields and Tables92

I

PA
RT

 Figure 3.13
FileMaker can move your data to the new
storage option.

 Figure 3.14
 Review the results of the transfer.

You can also manage storage locations using File, Manage, Containers, as shown in Figure 3.15 . You

can add other directories to be shown in the pop-up menu shown previously in Figure 3.11 . You still

have the option to customize storage for each field, but this strategy is appropriate if you have a

dedicated location for all (or at least many) external files.
The final piece of the puzzle with regard to container fields and file storage is a little bonus from

FileMaker in FileMaker Pro 12. In the File, Manage, Container dialog, the Thumbnails tab shown

in Figure 3.16 lets you store automatically generated thumbnails of images. This can dramatically

improve performance.

ptg8106388

93Working with Field Types

3

C
H
APTER

 Calculation
Calculations evaluate formulas and return the requisite results. When you create a calculation field,

the Specify Calculation dialog opens, as shown in Figure 3.17 . You use the same dialog to specify

calculations used for script parameters, web viewers, security privileges, and other purposes in

FileMaker Pro.
Features of the Specify Calculation dialog include the following:

 • Field list— Select fields to include in your calculation from the list below the table menu. Use the

drop-down menu to change from table to table. Note that double-clicking inserts a field into your

calculation where your cursor currently sits.

 • Operators— Use these buttons to insert math and special operators.

 Figure 3.15
Set container options for storage directo-
ries.

 Figure 3.16
Manage automatically generated thumb-
nails.

ptg8106388

Defining and Working with Fields and Tables94

I

PA
RT

 • Function list— Just below the View drop-down menu is a list of functions. Here, you’re able to

scroll through all of FileMaker Pro’s various functions and then double-click to insert. It’s a good

idea to start here to get your syntax correct. The menu above enables you to filter your list by

category to show the functions you need.

 • Expression text box— This is the place where you assemble your actual formula or expression.

This is a simple text entry area: If you want, you can work in a text editor and paste the calcula-

tions here.

 • Calculation Result Is list— Calculations return varying information, depending on what data/field

type is required. If you want the field to be sortable by alphabet, set the return data type to Text.

If you have a field returning, say, a price, set the type to Number.

 • Learn More link— You can find more information by using this link in the lower left of the dialog.

Examples of calculations include the following:

 • 3 + 4 always displays its result of 7 .

 • Sale + Tax displays the sum of two fields named Sale and Tax.

 • Personnel::EmployeeID displays the value of a field in a related table. This type of calculation

is sometimes utilized to create a field in a table that takes part in a sort or other routine where

 Figure 3.17
 Calculations form
an essential part of
FileMaker Pro devel-
opment.

ptg8106388

95Working with Field Types

3

C
H
APTER

you cannot use a related field. In old FileMaker Pro databases, relationships cannot be used more

than one table away. Calculations designed simply to provide an in-table copy of a related value

frequently litter such databases.

 • Position (Notes; “a”; 1; 1) returns a numeric position, starting from the first character

in the field Notes, for the first a found.

 • IsEmpty (MyField) returns a 0 or 1 (Boolean) depending on whether MyField has a value

in it, including 0. If 0 is entered, the field is technically not empty. Only a null value is considered

empty.

 • If (MyDate > 900; “yes” ; “no”) displays a yes for dates entered in MyDate greater

than 6/19/0003; otherwise, it displays no (remember that you just tested for the number of days

past 1/1/0001).

You can use the Specify Calculation dialog to create a calculation just by clicking fields, opera-

tors, and functions. However, you can also type directly into the expression text box. As you saw

in Figure 3.17 , you can spread out your calculation; spaces do not matter except within quotation

marks. You can also use indentation to clarify the calculation. Comments can be inserted using

two slashes (//), which mean that the remainder of the line is ignored. Multiline comments can be

entered starting with /* and ending with */ .

 � For more detail on calculations, see Chapter 8 , “Getting Started with Calculations,” and Chapter

 15 , “Advanced Calculation Techniques.”

� If your calculation formula looks correct but FileMaker is returning an odd result or ? , see

“Mismatched Calculation Results” in the “Troubleshooting” section at the end of this chapter.

 tip
You can use calculations to create calculation fields with data derived from other fields or constants. Calculations can
also format data, just as fields in layouts can be used to format data.

In general, good database design separates the presentation of data from the content of data, and layouts are the
primary tools to be used to format data. However, with FileMaker, the situation is now not so clear. Because you can
access FileMaker Pro databases over the Web, with ODBC, and from remote copies of FileMaker Pro that use their own
layouts, you might want to consider formatting data with calculations, rather than layouts. Calculation fields that round
a number to two decimal places or that perform automatic formatting of dates and so forth produce formatted results
visible to all potential users of the FileMaker Pro database, not just those using a layout in the database itself.

 Summary Fields
Summary fields enable you to evaluate information across a found set of records. Sum, Average,

Max, Min, and Count are among the summaries you can establish. Don’t forget that they apply to

found sets: Change your found set, and the result changes.

ptg8106388

Defining and Working with Fields and Tables96

I

PA
RT

 � Summary fields can be placed in subsummaries, where they summarize data for a specific subset

(perhaps individual clients or dates). FileMaker takes care of summarizing only the appropriate

data, as you learn in Chapter 4 , “Working with Layouts.”

For example, say you have a table called Transaction, which contains Transaction_Date and

Transaction_Amount fields. You can then define and place a summary field on a layout to total the

Transaction_Amount field. The summary field adds the values of the Transaction_Amount fields

for the currently active set of records. If you perform a find, by date, on 10/1/2013–10/31/2013, your

found set will be all the transactions for the month of October, and the summary field will show just

the aggregate monthly transaction amount. Perform a different find request and your total changes,

reflecting the aggregate of the new found set. Table 3.1 contains a list of summary field functions.

 Table 3.1 Summary Field Functions

 Function Summary Behavior

Total of Adds values from the specified field in your found set. Think of it
as a subtotal or grand total from a column of numbers. You can also
enable the option to display a running total for your record set. This
shows a running tally of your total if you place the summary field in
the body area of a list.

Average of Averages the values from the specified field in your found set. The
weighted average option enables you to specify a second field to
act as a weight factor for calculating the average. The field you
choose must be a number or a calculation with a number result.

Count of Counts the number of records in your found set that have data
in the specified field. For example, if 18 of the 20 current found
records have data, your summary field displays 18 . A running count
functions similarly to a running total: It displays the incremented
count of each record in your record set.

Minimum Returns the lowest number, date, time, or timestamp in a given
found set from the referenced field.

Maximum Returns the highest number, date, time, or timestamp in a given
found set from the referenced field.

Standard Deviation of

Determines how widely the values in the referenced field differ.
The function returns the standard deviation from the mean of the
values in your found set. The standard deviation formula is n –1
weighted, following the normal standard deviation. Standard devia-
tion comes in two flavors; to perform a biased or n –0 evaluation,
select the By Population option.

Fraction of Total of Returns the ratio of a total for which a given record (or set of
records, when the field is placed in a subsummary part) is respon-
sible. For example, you can track what percentage of sales is attrib-
utable to a given person. The subtotaled option enables you to
specify a second field by which to group your data.

ptg8106388

97Working with Field Options

3

C
H
APTER

When you create a summary field, the Options for Summary Fields dialog opens, prompting you to

choose the function you want to use and the field for which you want a summary (see Figure 3.18).

Note that only number fields are shown: You cannot sum up text fields or images and the like.

 Figure 3.18
Summary fields are useful for
performing functions across sets
of records.

In Browse mode, a summary field evaluates your found set and displays a result when it is actually

visible on a layout. For example, if a summary field is below the visible portion of a layout, it dis-

plays information only when the user scrolls to that portion of the window. Summary fields evaluate

a found set for a given layout whenever you enter Preview mode, which is the logical behavior for

printing—the primary use of Preview mode.

In FileMaker Pro 10 and later, subsummary fields are displayed and updated in Browse mode as

well as Preview mode.

Working with Field Options
In addition to establishing fields and assigning data types, you can assign various options to your

fields as well. These options range in function from managing auto-entry of default data to valida-

tion checks and internal storage settings. They can vary for each field type.

After you name a field and choose its type on the Fields tab of the Manage Database dialog, click

Create to save it to your database. You can then opt to apply further behaviors via the Options but-

ton on the right. The first set of options is the auto-entry behaviors.

 Auto-Entry Field Options
When defining noncalculation fields in FileMaker Pro, you can choose to have data automatically

entered into a field as records are created and/or modified. The applications for this can range from

ptg8106388

Defining and Working with Fields and Tables98

I

PA
RT

assigning default values to fields, to automatically reformatting data, to inserting values from other

fields based on certain trigger events.

In some cases you might also want to prevent users from modifying these auto-generated values,

such as when tracking a serial ID or applying a date you don’t want adjusted afterward (see Figure

3.19).

 Figure 3.19
FileMaker’s auto-entry options enable you to define rules
for automatically populating data into fields in your data-
base.

Based on some trigger event, FileMaker inserts auto-entry data into a field. The most common event

is record creation: When a user clicks New Record, data can be prepopulated into the record and be

accessible for making changes. Each auto-entry function has its own particular rules for what trigger

event applies. In addition to new record creation, other trigger events include record modification

and modification of a particular field. We cover both cases in the sections that follow.

 Creation and Modification
The first two options on the Auto-Enter tab deal with tracking and applying certain values as a

record is committed to your database. They behave essentially the same way, with Creation values

being applied the first time a record is committed, and Modification values applied thereafter as it is

subsequently modified (committed again).

Values that can be automatically entered include the current date, current time, current timestamp,

current username (from the General tab of the Preferences dialog under the Edit menu), and current

account name (the one entered by the user when logging in to the database).

ptg8106388

99Working with Field Options

3

C
H
APTER

 Serial Number
Using the Serial Number option enables you to auto-enter a num-

ber that increments every time a new record is added to the table.

Often this number uniquely identifies individual records in a table.

The value can be generated either when the record is created or

when it is committed. The difference is subtle: In the case of incre-

menting on creation, your number increments even if a user reverts

and effectively cancels a record’s creation. The next record will

then have skipped a number in your sequence. This doesn’t have

much of an effect on your database unless your business requires

strict tracking of each serial number, even those voided. In those

cases, choosing On Commit helps avoid spaces in the sequence.

It is possible to include text characters in addition to a number as

the starting value if you want. This enables you to create serial

numbers that look something like “a1, a2, a3, a4...” Only the right-

most numeric portion of the value is incremented; the text portion

remains unchanged. If you do this, you will want to use a Text field

to allow for the alphanumeric combination.

One of the common uses of auto-entry options is in establishing

serialized key values or IDs. This is a vital element of your data-

base structure when you’re working with more than one table, but

we encourage you to adopt some best practices regardless of how

complex or simple your plans.

For every table in your database, the first field you should create is

a primary key or ID field. These IDs uniquely identify each record

in your database. You could go about having the system establish

unique IDs automatically in several ways; our recommendation in

most cases is to use a serial number set to increment automatically.
To create a serial key field, use the following steps:

 1. Define a number field. It is generally advisable to use number-

based serial keys, but it is possible to use text as well; the

important point is to make certain your keys are unique and

users cannot modify them.

 2. Go into the Options for that field and select the Serial Number

option.

 3. Click the Prohibit Modification of Value During Data Entry

option at the bottom of the dialog. This is an important step: If

you establish unique identifiers that your users can override,

you’re risking the chance that they’ll introduce duplicate IDs.

 caution
Both the name and account name
can be problematic because users
can change them. Knowing how
your solution will be used can
help you to decide what value to
use. The name value is the name
of the computer user—obviously
not a good choice if your database
will be used in a public library.
The FileMaker environment typi-
cally controls account names, so
they can be a better choice as
long as people do not share them.

 note
If you do not change any of the
account settings of a new file,
FileMaker establishes two default
accounts for you: Guest and
Admin. Admin begins with full
access to the database; Guest
begins with Read-Only access.

 note
We can’t stress this practice
strongly enough. If you ever want
to tackle relational data struc-
tures, these serial IDs are a vital
element in doing so. Further,
if you ever export your data to
another system or need to inter-
act with other databases, having
a key field that uniquely identi-
fies each record in your database
guards against confusion or even
possible loss of data integrity.

ptg8106388

Defining and Working with Fields and Tables100

I

PA
RT

If you need an ID field for a business purpose (SKUs, student IDs, employee IDs from your organi-

zation, and so on), we recommend that you create separate fields for such cases. Generally, users

should never need to access this serialized ID field, but you can opt to put it on a layout and allow

entry in Find mode so that they can search if they choose.

 � For a full discussion of the use of keys (or match fields), see the discussion in “Working with

Keys and Match Fields,” p. 176 .

Value from Last Visited Record
Used most often as a way to speed data entry when information repeats often for groups of records,

the Value from Last Visited Record function copies the value from a prior record into a given new

record. Bear in mind that Visited means the last record in which you entered data. If you enter data

in a record and then view a second record without clicking into and activating a field, a new record

obtains its value from the data in the first, edited record.

 Data
In the Data field, you can specify literal text for auto-entry. This is frequently used to set default

states for field entry. For instance, in an Invoice table, you might have a text field called Status

where you want to enter Not Paid as a default. As a regular text field, the value is still fully modifi-

able by a user.

 Calculated Value

In addition to establishing a field as a calculation field, where a defined formula determines its

value, it is possible to use the Calculated Value option to insert the result of a calculation into a

field of another type, including a container field, by using an auto-entry option. Furthermore, if you

uncheck the Do Not Replace Existing Value for Field (If Any) option, the result of the calculation

formula is entered into the field, overriding any existing value, any time a field referenced by the

calculation changes.

Put differently, any field referenced in your calculation statement acts as a trigger: Any time that

referenced field updates, the calculation retriggers and puts its result back into the auto-entry field.

 � To learn more about advanced calculation functions, including custom functions, see Chapter 15 ,

“Advanced Calculation Techniques.”

 Looked-Up Value
The Looked-Up Value auto-entry option copies a value from a

record in a related table into a field in the current table. Any

time the field controlling your association to the related record

changes, FileMaker Pro updates the value in the lookup field. For

example, if a user enters a postal code into a given record, it’s

 tip
If there are multiple related
records, the value from the first
record will be copied. This means
you might want to think twice
about using looked-up values for
relations in which there might be
more than one related record.

ptg8106388

101Working with Field Options

3

C
H
APTER

possible you could have another table auto-populate your City and

State fields with the appropriate information.
When a user enters a postal code in the record, the City and State

fields trigger to pull values from the ZipCodes table. An important

fact to keep in mind is that FileMaker copies the values from the

ZipCodes table. If the source data changes or is deleted, this record

remains unmodified until it is retriggered by someone editing the

Zip Code field again.
Understanding this distinction is important, especially as we get

into indexing later in this chapter. Consider an example for prod-

uct prices: If you were to build an Orders database that tracks the

prices of products, you would want to store the price of each Order

line item or product within the order itself. That way if your prices

change, your historical orders preserve their original prices. To see

how to create a lookup field, refer to Figure 3.20 .

 note
Take special note that lookup
auto-entry functions work just as
all auto-entry functions do: They
copy or insert information into
a field. You are not displaying
related information, nor are you
controlling content by calculation.
Thus, lookup values are not live
links to related data. If you were to
delete the records in the ZipCodes
table in the preceding example, all
your people records would remain
untouched, thus preserving your
city and state data.

 Figure 3.20
Often you’ll want only exact matches, but in
some cases you can use the closest value
based on a comparison of the trigger values
in your related table.

Remember that any time your match field changes, your lookup refreshes. In this case, the auto-

entry function does not act on record creation, but rather on committing.

When you’re performing a lookup, it is possible to work with near matches in addition to exact

matches. In the case of the postal codes example, obviously you would want only an exact match

or you might end up with incorrect data. In a different case, however, you need not be so strict.

Consider a scheduling system that automatically finds the closest available appointment: Enter a

target date into a field, and the lookup function could return the closest match. Another application

ptg8106388

Defining and Working with Fields and Tables102

I

PA
RT

might be a parts database with units of measurement. You may not be able to find a .78 wrench,

but a .75 might work. This sort of requirement is easy to meet by using the Copy Next Lower Value

setting (or its higher value companion).

How you set up your matching field values is important here. It’s easy to compare numbers and

come up with the next closest value. If your matching field is text, FileMaker Pro uses ASCII value

rules to compare and determine order.

 � For further discussion of lookups, see Chapter 6 , “Working with Multiple Tables.”

 Housekeeping Creation and
Modification Fields

As a best practice, we also recommend that you create another

set of fields in all tables that help track changes. Create a time-

stamp field and in the Auto-Enter options, choose Creation

Timestamp. Define another timestamp field for Modification

Timestamp, and text fields for Creation and Modification Account

Names.

These four fields tell you exactly when a record was created or

modified and by whom (assuming that you assign an account to

each individual person using your database). If you ever need to

identify problem records for a given day range, time, or account,

these fields allow you to do this. We strongly recommend that

you add them every time you create a new table. The only down-

side to following this practice is that additional storage space

is required for this data; in this version of FileMaker Pro, this is

unlikely to be a concern.

 Field Validation
Storing correct and complete information is critical for generat-

ing accurate reports; establishing proper, expected conditions on

which other functions and calculations are performed; and ensur-

ing overall data integrity. Unfortunately, most data applications

suffer from a chronic condition of having humans interacting with

them; although some humans are worse than others, no one is

perfect. We all make mistakes.

As a user enters data into FileMaker, you might opt to apply one

or more validation checks to test that a record meets certain con-

ditions before allowing the user to commit it to your system. This

task can be as simple as ensuring that a field isn’t empty or as

complex as making sure that an invoice doesn’t contain multiple

entries for the same product. To review the various validation

options available, see Figure 3.21 .

 tip
Using FileMaker Pro’s capability
to import tables allows you to cre-
ate a boilerplate new table, com-
plete with a primary key serial
ID, four housekeeping fields, and
whatever other standard fields
you want to define. Whenever you
need to add a table to your data-
base, import from the boilerplate
rather than having to re-create
these standard fields. If you are
using FileMaker Pro Advanced,
you can use the Copy and Paste
commands for fields or a table
containing these fields. If you are
copying and pasting a serial num-
ber field, you should know that it
starts at the next serial number
beyond what it had used before.
This means that after copying
and pasting a serial number field,
you might want to reset it to 1 as
described previously in the Serial
Numbers section.

 note
Some of the validation rules
shown in Figure 3.21 are not
available for all types of fields;
others vary. For example, as you
see in Figure 3.21 you can specify
the maximum size for an inserted
file in a container field; for a text
field, you can specify the maxi-
mum number of characters.

ptg8106388

103Working with Field Options

3

C
H
APTER

This example demonstrates a common approach to ensuring proper maintenance of your primary

keys. This might be overkill if you’ve enabled the Prohibit Modification of Value During Data Entry

option on the Auto-Enter tab, but on the chance that a developer turns that option off for some rea-

son or that users import records into your database, this is a handy bit of insurance.

 � Importing records can circumvent your carefully designed field validation rules. For a full discus-

sion, see Chapter 22 , “Importing Data into FileMaker Pro.”

Validation Conditions and Failure
Field validation simply tests whether one or more conditions, as defined in your Validation dialog,

are false. If all validation tests are true, FileMaker does not interrupt or prompt the user for action.

Figure 3.22 shows an example of what your users might see when validation fails.

 Figure 3.21
You can set validation rules for the database fields.

 Figure 3.22
The OK option appears only if a user has the option to override
the validation warning.

ptg8106388

Defining and Working with Fields and Tables104

I

PA
RT

In this case, the check box allowing users to override has been left enabled, so they have the option

to ignore the warning. When that function is disabled, the field does not allow bad data to be com-

mitted, and the system forces users to deal with the problem. They can choose either to revert the

field to its previous state or to clear it.

 When Validation Occurs

Validation occurs when users manually enter data into the field being validated; some validations

happen the moment the user leaves the field, whereas other validations are deferred until the user

commits the record. Remember, however, direct entry is not

the only way to get information into a field. You can also import

records or use various script steps, such as Set Field() .

Simply clicking or tabbing into a field does not trigger validation;

a change has to be attempted. Keep in mind that validation does

not apply in cases in which users modify other, nonvalidated

fields of a given record. A given field’s validation check occurs

only when data in that specific field changes.

At the top of the Validation tab of the Options dialog (refer to

Figure 3.21), notice the Always and Only During Data Entry

choices. The latter choice tests for validation conditions only

when users modify the field in question. If you enable the Always

option, validation occurs during scripts and imports as well as

during data entry.

If an import process attempts to write invalid data to a field,

FileMaker Pro simply ignores the improper entry. The field

remains unchanged and does not import your data. You will see

a note in the Import Records Summary dialog listing how many

errors FileMaker Pro encountered. If you enable the Only During

Data Entry option, FileMaker Pro would insert the improper data

into your database.

 � If you get trapped in a series of validation dialogs, see

“Validation Traps” in the “Troubleshooting” section at the

end of this chapter.

 Storage and Indexing
Field storage and indexing options exist on the Storage tab in your Field Options dialog. These

options control how FileMaker Pro indexes each field to speed up searches and sorts and form rela-

tionships.

 tip
Some designers make a distinc-
tion between validation errors
and quality errors. In general,
validation errors must always
be corrected and can never be
ignored by users. They are hard-
and-fast rules about the data:
no nonnumeric data in a numeric
field, no missing data, and so
forth.

 Quality errors (which FileMaker
nevertheless implements
through the Validation tab of
Options) can be overridden.
You can construct a quality edit
based on a calculation that com-
pares the entered value to the
value from the previous record; a
difference of more than a certain
margin might result in a flag
and require the user to confirm
the value. This type of quality
checking can catch many keying
errors.

ptg8106388

105Working with Field Options

3

C
H
APTER

 Global Storage

A developer can designate a field to have global storage on the Storage tab of the Field Options

dialog. Fields with this option are commonly referred to as global fields , and collectively they’re usu-

ally referred to as globals . Global fields exist independently from any specific record in the database

and hold one value per user session. Developers often use global fields to establish special relation-

ships or to display unchanging information, such as interface graphics or field labels, across multiple

records and layouts.

One vital element to learn is when data is committed and stored for

globals: In a single-user environment, any change to a global field

is permanent and saved across sessions. In other words, what-

ever value you last entered into a global will remain the next time

you open your database. In the case of a multiuser environment,

where a FileMaker Pro solution is hosted on FileMaker Server or

via multiuser hosting, global values for each guest default to the

value from the last time the database was in single-user mode;

any change made to these defaults will be specific only to a given

user’s session. Other users continue to see the default values, and

after the database session is closed, the database reverts to its

original, default state.
Using globals is a great way to keep track of certain states of your

database. For example, you could use a global field to store which

row of a portal was last selected. This field could then be used in

scripts or calculation formulas.

Another common use of globals is for storing system graphics.

Establish a container field, set it for global storage, and paste a favorite company logo, a custom

button graphic, or any number of elements that you can then control globally in a field rather than

having to paste discrete elements on each and every layout.

Beginning with FileMaker 8, a new feature was created in the form of variables defined within

scripts (as well as similar variables defined by using the Let() function within calculations). These

variables exist only in memory and are not permanent fields that you add to your database schema.

In the past, developers had to content themselves with using a slew of global fields; starting in

FileMaker 8, the need for global fields has dropped considerably. However, you will still encounter

them in legacy databases.

 � To learn more about variables in FileMaker, see Chapter 16 , “Advanced Scripting Techniques.”

 Repeating Fields
The second section of the Storage tab on the Field Options dialog lets developers allow a field to

contain multiple values. Such fields are known as repeating fields . On a given layout, the developer

can array repetitions either horizontally or vertically, and in scripts can refer to specific repetitions

within the field.

Repeating fields can be problematic. They behave just as individual fields might and are really just

a shortcut for having to define multiple instances of a given field. It’s possible, for example, to have

 note
In the case of globals with values
that can change, it is good to
initialize them in a startup script.
This could mean having pairs of
globals. One of them can never
change, and the other one can
be changed by various users
at various times, but you will
always reset it in a startup script
to the unchanging value. Now
that local and global variables
are available, it is often the case
that they are better suited than
global fields for values that
might change.

ptg8106388

Defining and Working with Fields and Tables106

I

PA
RT

no values in the first and second repetitions, but to have a value in the third. This sounds conve-

nient and makes sense intuitively, but imagine having to write a script that references that field.

How do you know which repetition of the field to reference? Unlike an array in other programming

languages, you cannot manipulate a repeating field as a whole. You can reference only one specific

repetition at a time.

FileMaker 8 extended the usefulness of repeating fields somewhat by allowing the script step Set

Field to programmatically reference a repeating instance. You can now open a Specify Calculation

dialog to point a script to a specific cell within a repeating field. Note that the same is true for set-

ting variables.

Repeating fields do have their place, however. Sometimes a single data value does have several

components. An RGB color, for example, has three values: one for red, one for green, and one for

blue. Creating an RGBColor field with three repetitions makes a great deal of sense.

 Indexing
Databases store data, of course, but they are also required to perform functions such as searches

and sorts with that data. FileMaker Pro, like many databases, can index some of the data in a file

to increase the speed at which it performs some of these functions and to enable it to relate data

across tables.

An index is somewhat like a database within a database. FileMaker Pro can store, along with a

specific value in a given field, a list of all the records in which that exact data is used. This enables

FileMaker to recall those records quickly, without having to resort to a linear scan of your file. Aptly

named, these indexes work just as a book index works: They facilitate finding all the locations in

which a given item is used, without searching page by page through the entire book.

To familiarize yourself with the concept, look at a given field’s index. Click into a field and select

Insert, From Index. If the field is indexable, and has already been indexed, you see a dialog showing

all the discrete values indexed for a given field. Just as when selecting from a value list, you can opt

to choose from this list rather than type. As you can see in Figure 3.23 , FileMaker Pro can create the

index based on data values or individual words.

 Figure 3.23
You can view index values using From Index in the Insert
menu.

ptg8106388

107Working with Field Options

3

C
H
APTER

Allowing a user to select from an index is only one of the reasons to use indexes in FileMaker.

Indexes enable FileMaker Pro to quickly perform find requests, sort records, and establish relation-

ships.

There are two kinds of indexes in FileMaker: value indexes and

word indexes. Value indexes apply to all field types, with the

exception of container or summary fields. Word indexes apply only

to text fields and are based on a given language or character set.

The difference between the two index types, and when either is

specifically enabled, lies in their applications.

FileMaker Pro’s default indexing setting (found on the Storage

tab of the Field Options dialog, displayed in Figure 3.24) is None,

with the check box for Automatically Create Indexes As Needed

enabled. Most developers, even the more advanced, should find

that this setting serves most of their needs.

 tip
The Minimal setting produces
a value index for text fields or
calculation fields returning text.
For all indexable fields, the All
setting creates a value index,
and for text fields or calculation
fields returning text, it also pro-
duces a word index.

 Figure 3.24
FileMaker creates either one type of index
or both, depending on how users define and
use a field.

A database’s schema definition establishes value indexes, as a developer defines fields and builds

relationships. In addition, value indexes allow for relationship matches and value lists. If a developer

creates a serial ID and joins a relationship via such a field, FileMaker Pro creates a value index for

the serial ID field.

Unless a developer explicitly sets a field to generate an index, FileMaker Pro creates word indexes

as users are interacting with and using a given database. Word indexes are utilized in text fields for

find requests; they are created when a user explicitly chooses Insert, From Index. If a user enters

ptg8106388

Defining and Working with Fields and Tables108

I

PA
RT

data in a find request for a field that lacks a word index, FileMaker Pro enables indexing for that

field and builds one (unless it’s explicitly unindexed or an unindexable calculation).

At this point you might be wondering what all the fuss is about. Why not index every field in a

database and be done with it? The downside to indexes is increased file size and the time it takes

FileMaker to maintain the indexes. Creating new records, and deleting, importing, and modifying

them, all take more time, in addition to the fact that the indexes themselves take up more file space.

Notice that FileMaker doesn’t allow you to explicitly control word and value indexes. Value indexes

are possible for all field types; word indexes apply only to text fields. The Minimal setting is an

available option only for text fields, and when you see it marked, it indicates that at least one of the

two indexes exists for the field. There’s no straightforward way of determining which index exists.

If you explicitly set the field to Minimal, FileMaker creates, on demand, either of the two indexes

based on how the field is used. When a user creates a find request including that field, FileMaker

creates a word index; if a developer uses the field in a relationship, FileMaker creates a value index.

Only a subset of the fields in your database will ever need to be indexed, and FileMaker’s “on

demand” approach makes things simple for developers. In general, it’s best if a field is indexed only

when necessary.

 � To explore the vagaries of storage and indexing considerations for calculation fields, see

“Options,” p. 223 .

An important point to remember is that some fields are not indexable. This means that they will be

slow when used in sorts and find requests, but, most important, you cannot use them to establish

relationships. A field is unindexable if it is a calculation based on a related field, a summary field, or

a global field, or if it references another unindexed, unstored calculation field.

You can also explicitly make a field unindexable by turning indexing options to None and uncheck-

ing the Automatically Create Indexes As Needed setting. In the case of a calculation field, an addi-

tional radio button option is available: Do Not Store Calculation Results—Recalculate When Needed.

These settings are important to remember; they allow you to force FileMaker to reevaluate and dis-

play dynamic information. The Get (CurrentDate) function, for example, displays the current date

if you have indexing turned off but displays whatever date was last stored with the record if you

leave indexing (and storage) turned on.

 Furigana
The fourth tab in the Field Options dialog is one that many English-speaking developers will

have trouble properly pronouncing, let alone using. Because of the adoption of Unicode support

in FileMaker Pro 7, it is now possible to offer Asian-language double-byte language support. As a

result, you can now manage Japanese.

Japanese is written using a combination of kanji, complex glyphs borrowed from Chinese that rep-

resent complete concepts, and hiragana, a simpler alphabet that represents the phonetic syllables

of the language. Furigana is a smaller version of hiragana that acts as a cheat sheet for readers who

aren’t familiar with a kanji character’s reading. The Furigana feature in FileMaker makes it possible

to render a kanji-based block of text into its phonetic hiragana equivalent—quite useful when you

don’t know how to read one of the more than 20,000 kanji characters.

ptg8106388

109Troubleshooting

3

C
H
APTER

 Troubleshooting

 Mismatched Data Types
My data isn’t sorting properly. Where should I look first to diagnose the problem?

One of the most common bugs you’ll run into in FileMaker Pro is confusion stemming from mis-

matched data types. If your users are entering text data into a field you have defined as numeric,

you’re bound to get unexpected results, and sorting will be unpredictable. Check your field types

when your data appears to be misbehaving.

 Mismatched Calculation Results
One of my date calculations looks like an integer. What’s going on?

Some of the more subtle extensions of the data type problem are calculation fields. Note that their

result is both the determination of their formula and a data type that you set at the bottom of the

Specify Calculation dialog. If you’re working with dates and return a number, for example, you’ll get

an entirely valid calculation that will look nothing like “12/25/2013.”

 Problematic Field Names
My web programmers are complaining about my field names in FileMaker Pro and that I keep

changing them. What should I consider when naming fields?

Some other systems are not as flexible as FileMaker Pro; this is especially true for URLs and the

Web. Spend some time with Chapters 24 , 25 , and 26 if you ever plan to publish your database to the

Web. FileMaker Pro breeds a certain freedom when it comes to changing field names as the need

arises, but you’ll send your XSLT programmer into fits every time you do.

Also be sure to check the restrictions of various SQL databases in your organization. If you need to

interoperate with them, your field names might have to conform to stricter naming standards.

You’ll be safe if you never use spaces or special characters and start each field with a letter of the

alphabet or an underscore.

 Validation Traps
My field validation seems to have gone haywire. I defined a field that now simply throws up one

error message after another. What’s the problem?

At the end of the day, field validation is only a helpful bank of sandbags against the storm of human

interaction your database will suffer. And as in all aspects of your database, the first and worst

human in the mix is the developer. Just as with any programming logic, carefully test your valida-

tion conditions. FileMaker Pro can’t totally prevent you from illogically conflicting restrictions. For

example, if you set a field to be unique and nonempty but also prohibit modification in the auto-

entry options, the first record you create will trap your system in an irresolvable conflict.

It’s a good idea to leave the Allow User to Override During Data Entry option enabled while you’re

building a solution and turn it off only after you have completely tested the field in question.

ptg8106388

Defining and Working with Fields and Tables110

I

PA
RT

 Re-creating Indexes
I am getting find errors returned for valid requests. What has happened? What should I do?

These errors can be a symptom of a corrupted index. In Manage Databases, go to the Fields tab and

select Options, then the Storage tab. This is the place where you manage indexes. Note the set-

tings; then click the None check box and turn off Automatically Create Indexes as Needed. Close

the various dialogs until you are back in FileMaker itself. If you want to be absolutely safe, quit

FileMaker, restart it, and then reopen the database. You will then have no indexes on the field in

question. Go back to Manage Databases, through the Fields tab, Options button, and the Storage

tab. Turn indexing back on using the settings that you noted. The index is re-created and should be

correct.

FileMaker Extra: Indexing in FileMaker

One of the more significant changes beginning in FileMaker 7 revolves around indexing. In prior

versions, indexing was restricted to 60 characters total, broken into blocks of up to 20-character

words. Relationships had to be built around match fields or keys

that were relatively short and generally nondescriptive. This fact

is one reason we generally advocate using simple serial numbers

for indexing purposes. It’s rare that you’d need more than 20 dig-

its to serialize the records in a data table.

FileMaker can index words up to approximately 100 characters.

It can index text fields to a total of 800 characters, and numbers

up to 400 digits. The limits to indexing have been effectively

removed.

What this means to developers is that you can now use far more

complex concatenated key combinations (ironically, there will be

less of that in FileMaker, given that data can be related across

multiple tables), use longer alphanumeric keys, or, as suggested

earlier, introduce descriptive elements to keys.

 tip
This bit of history is particularly
useful if you are working with
older FileMaker solutions. Even
though you are looking at a
database in FileMaker 12, it may
have had its roots in a much ear-
lier version. Workarounds with
indexes often survive, leaving
mysterious remnants for you to
try to figure out.

ptg8106388

 4

WORKING WITH LAYOUTS

 What’s a Layout?
In the preceding chapter, we discussed how to define fields for holding

the data you want to store in your database. In this chapter, we discuss

the tools at your disposal for creating user interfaces to manage that data.

You use layouts to create user interfaces in FileMaker Pro. A layout is a

collection of graphical objects that a user interacts with to view and mod-

ify data. These objects include fields, buttons, static text blocks, graphic

elements (such as lines or rectangles), images, and even a Web Viewer

object that can dynamically display a web page. FileMaker Pro contains a

rich set of tools for manipulating these

objects, allowing you to create attrac-

tive and functional interfaces for your

users easily.
You can create many kinds of layouts

in FileMaker. Form layouts are useful

for data entry; often form layouts are

shown as forms using the View as Form

command from the View menu with a

single record’s form shown at a time.

List layouts are often used for reports

and can contain summary parts; such

layouts are often viewed in Preview

mode, from which they are printed. List

layouts are also created to be viewed as a list so that many records can be

viewed at a time. Such list layouts generally have navigation tools to allow

you to switch with a single mouse click to a Form view with more details

for an individual record, and Form views often contain a button to let you

 note
Beginning with FileMaker Pro
12, themes are part of the
developer’s toolkit. They con-
sist of coordinated settings for
graphical elements so that your
default background, buttons,
and other interface elements all
work together. Themes are dis-
cussed in Chapter 14 , “Advanced
Interface Techniques.”

ptg8106388

Working with Layouts112

I

PA
RT

switch to a multirecord list view. In addition, Table layouts display multiple records in a spread-

sheet-like view.

Some layouts might be designed for system administrators to clean up data quickly with a minimum

of interface elements and a maximum of data. Such layouts might also allow access to fields other-

wise not shown on a layout or that do not allow entry on standard layouts. Still others can serve as

user navigation tools and contain no data at all.

One of the aspects that makes FileMaker different from database products such as MySQL, SQLite,

and databases such as Oracle, DB2, and SQL Server is that the layouts themselves are stored in the

database file, along with data, scripts, access privileges, and other elements of application logic.

Every FileMaker Pro file must have at least one layout; there is no practical limit to the number of

layouts a file can contain. It’s neither unheard of nor undesirable to have anywhere from a dozen to

a hundred or more layouts in a file.

Layouts are created and managed in Layout mode. Almost all the material in this chapter deals

with tools and functions that require you to be in Layout mode to access them, but for simplicity

and brevity, we do not specifically mention that fact in conjunction with every tool and tip. When

you are in Layout mode, you can manipulate the objects in the layout. In addition, you can show the

Inspector —a floating window that lets you view and change settings for the currently selected lay-

out element. The layout itself in Layout mode and the Inspector together are sometimes referred to

as the design surface .

 � The introduction of triggers in FileMaker Pro 10 dramatically increased the options available to

you as an interface designer. For more information, see Chapter 17 , “Working with FileMaker

Triggers.”

There are two ways to enter and exit Layout mode:

 • Choose View, Layout Mode, or simply press (Command-L) [Ctrl+L]. To leave Layout mode, use

the similar commands to choose another mode.

 • At the right of the Status toolbar, click the Edit Layout button. That button turns to Exit Layout

when you are in Layout mode; clicking it returns you to where you were.

Layouts provide the interface tools with which people interact to use your FileMaker solution, but

the user interface is more than fields, buttons, and graphical elements. The user interface includes

scripts that run in response to user actions as well as the triggers that cause other scripts to run

in response to events that might or might not be caused by user actions. The user interface also

includes validations and messages that you specify when you create and manage fields in your

database. Together, all these make up the user interface. However, layouts are the most basic part

of that interface. This chapter provides an introduction to the design and creation of FileMaker Pro

layouts.

When you create a database and its fields, FileMaker Pro creates a default layout for you; each field

is added to the layout as you create it, along with a label providing the field’s name. If you update

the fields in the database while a layout based on the table you are updating is open, the fields

you create will be added to that layout. If you are updating the database while the current layout

ptg8106388

113What’s a Layout?

4

C
H
APTER

is based on another table, no fields are added. Similarly, if you

remove fields from tables, they are removed from all layouts on

which they appear.

Because FileMaker Pro is creating a default layout for you and

managing it as you add and delete fields, you can use that default

layout without any customization or design features. For example,

consider creating a new database called Tiny Task Management.
Tiny Task Management is shown in Figure 4.1 . It has three fields:

 • DueDate is a date field.

 • Name is the task name.

 • zzID is a unique number that is auto-entered using a field option.

In Figure 4.1 , a single record has been created in the database, and values have been entered for

those fields. Figure 4.1 shows the new layout in Table view.

 note
This is a companion to Small
Task Management, which
you will build in Chapter 6 ,
“Working with Multiple Tables,”
and Chapter 7 , “Working with
Relationships.”

 Figure 4.1
 FileMaker
Pro creates a
default layout
as you build
your database.

In Figure 4.2 , you see the same default layout with data entered as it appears in Form view.
In Figure 4.3 , you see a second record added to the database and the layout is shown in List view.

(Because List view shows multiple records at the same time, you don’t get the full effect until you

add a second record.)

ptg8106388

Working with Layouts114

I

PA
RT

 Figure 4.2
 The default
layout can be
shown in Form
view.

 Figure 4.3
With a second
record added,
you can view
the layout in
List view.

ptg8106388

115What’s a Layout?

4

C
H
APTER

The default layouts that FileMaker Pro builds for you are functional without any further work on

your part, so you can get started doing whatever it is you want to do with your database. However,

by building your own layouts, you can make your solution much more attractive and easy to use. In

addition, without a great deal of trouble, you can make your solution usable on desktops, iPhones,

and iPads as well as with Instant Web Publishing. Figure 4.4 shows the Contacts Starter Solution,

which comes with an attractive and very usable interface. This chapter shows you the basics of

moving from the layout shown in Figures 4.1 , 4.2 , and 4.3 to your own version of the layout shown

in Figure 4.4 .

 Figure 4.4
 The Contacts
Starter Solution
has an attractive
layout.

One of the major tools for improving the look of your layouts is themes. You can change the look of

the interface consistently just by selecting one theme or another. You can customize the themes, but

if you start by leaving them “as is,” you can switch easily from one theme to another. If you then

want to customize a theme, you can add specific refinements.

 � You can learn more about themes in Chapter 14 , “Advanced Interface Techniques.”

ptg8106388

Working with Layouts116

I

PA
RT

Using Multiple Layouts Automatically

As noted previously, layouts are just one part of the user interface: Scripts and triggers are other

important components, along with options for your database field. This section provides a quick

overview of how those tools can work together to help implement your user interface.

 � This is only an overview. Details of scripts are provided in Chapter 9 , “Getting Started with

Scripting,” and Chapter 16 , “Advanced Scripting Techniques.” Triggers are discussed in Chapter

17 , “Working with FileMaker Triggers.” Field options were discussed in Chapter 3 , “Defining and

Working with Fields and Tables.” Finally, Chapter 14 continues the discussion in this chapter in

more detail.

The Contacts Starter Solution comes with three sets of layouts, as you can see in Figure 4.5 .

 Figure 4.5
Contacts has mul-
tiple layouts.

There are layouts designed to be seen in Form view as well as layouts designed to show multiple

records in List view; each pair of layouts is implemented for the desktop, iPhone, and iPad, making

a grand total of six layouts. The user might not actually ever see the multitude of layouts because

Contacts—like most Starter Solutions, including those that you create—automatically manages them.

Here is how you set up automatic layout management. Don’t worry that the details of layouts, trig-

gers, and scripting haven’t been discussed yet: This process is used in almost the same form over

and over again.

ptg8106388

117Using Multiple Layouts Automatically

4

C
H
APTER

 1. The first step is to design and create your layouts (which is the purpose of this chapter).

 2. Next, create a script that tests to see on which device your solution is running. This script is

used almost without change for many solutions, as you see in Figure 4.6 . The only changes you

normally make involve the highlighted lines: You identify the layouts you want to go to for each

device.

 Figure 4.6
 Create the
startup script.

 3. Select File, File Options to open the dialog shown in Figure 4.7 . In the Open tab, you may specify

an automatic login (Admin is the default for many databases including the Starter Solutions).

Then, automatically switch to the opening layout.

 4. In the same dialog, select the Script Triggers tab, as shown in

Figure 4.8 . Set the OnFirstWindowOpen trigger to your startup

script.

Having selected the right layout, you have made everything ready

for people to use the solution. The buttons on each layout let users

move from the Detail layout to the List layout, and vice versa. For

the iPad Detail layout, the button moves to the iPad List layout; the

same process occurs for iPhone and desktop. Once you have set

the initial layout, you are home free (that is, provided you imple-

ment the layouts!).

 note
If you have a sharp eye, you
might notice that the Startup
Screen layout shown in Figure
4.7 was not shown in the pop-up
menu of layouts shown in Figure
 4.5 . You can control whether lay-
outs appear in that menu.

ptg8106388

Working with Layouts118

I

PA
RT

 Figure 4.7
 Set the opening layout.

 Figure 4.8
 Run the startup script.

ptg8106388

119Creating and Managing Layouts

4

C
H
APTER

Creating and Managing Layouts
Creating and managing layouts are among the most important

tasks required of a FileMaker developer. They are also among the

most intuitive. Nonetheless, you need to know numerous subtle

facts and details. We encourage you to have a test file open as you

go through the following sections so that you can try things first-

hand.

Creating a New Layout
You can create new layouts anytime you want while in Layout

mode simply by choosing Layouts, New Layout/Report, or by press-

ing (Command-N) [Ctrl+N]. You are taken to a setup assistant that

can help you configure a layout according to one of a handful of

types of common layout designs. Figure 4.9 shows the first screen

of the New Layout/Report assistant, where you specify a name for

the layout and choose a layout type. You also specify a layout’s context here; the next section covers

that topic.

 tip
Beginning in FileMaker Pro 12,
you can select a theme for your
layout. As you build it—either by
hand or by using an assistant—
the theme attributes are used
for fields and other graphical
elements. Often, that is sufficient
to produce very attractive and
usable layouts. If you want to
further customize your layouts,
consider copying them and cus-
tomizing the copy so that you
can easily revert to the basic
theme.

 Figure 4.9
This is the first screen of the assistant for
creating new layouts.

You can create the following seven types of layouts. As you make your selection on the first screen,

schematic diagrams of the various layouts appear at the right of the dialog.

 • Standard Form— Useful for data-entry layouts, Standard Form generates a basic form view layout

with a set of fields you specify. You can select a theme for the layout as well; themes specify the

default background color and text styles that will be applied to the layout.

ptg8106388

Working with Layouts120

I

PA
RT

 • List View Report— As its name implies, this type is used for creating basic reports. It has the

data organized in columns, with the name of each field at the top of the appropriate column (you

can change these if you want). Each row of the layout is a single record’s data. Optionally you

can constrain the layout to the width of a page. You also can select which fields/columns appear

in the layout. If you don’t already have the necessary summary fields in your database, you can

create them right from within the assistant.

 • Report— This layout presents data in rows and columns, but it adds the capability to group and

summarize the data for the entire report as well as for subsummaries within it. For example, you

can group data based on an individual’s postal code in a subsummary, by state or province as a

larger subsummary containing multiple postal codes, and then with a grand total across all the

data. If you have declared summary fields in the table, not only will the data be grouped, but the

relevant summary fields can be calculated at each subsummary level and for the grand total.

 • Table View— Table View gives you a spreadsheet-like view of your data. When you select Table

View as your layout type, you can select the fields you want to appear on your new layout. They

are displayed in Table view according to your selected theme. Table view is quite useful for

behind-the-scenes data manipulation, but it might not be suitable as an end-user interface.

 • Labels— This type of layout is used for printing sheets of labels in standard or custom sizes. The

Layout assistant prompts you to specify the type of label you will be using; Avery 5160/5260 are

the labels used most commonly. If you don’t see your label type listed, you can specify custom

measurements.

 � For some tips that come in handy for working with label layouts, see “Multicolumn Layouts,”

p. 126 .

 • Vertical Labels— This layout is used for Asian and full-width characters that will be rotated so

that the labels can be used vertically.

 • Envelope— You are prompted to select fields you want to use for the address portion of the enve-

lope. The default layout is sized for standard business envelopes. You might have to do some

testing and tweaking of the layout to get things just right for

your envelopes and printer.

 • Blank Layout— Choosing Blank Layout gives you just that: a

completely blank layout that you can manipulate any way you

want, free of assistants.

We do not discuss all the screens of the New Layout/Report

assistant here; they’re quite intuitive, even for new developers.

Besides, if you are new to FileMaker, nothing beats spending an

hour just playing around with the assistant to see firsthand what

the various configuration options do for you. You won’t cause

harm to any existing layouts by doing so, nor can you hurt the

database even if you mess up the creation of a new layout.

 tip
No tool is available for importing
layouts from one file to another.
If you ever need to do this, the
best method is to set up a new,
blank layout with layout parts
sized the same as the source
layout. Then copy all the objects
from the source file and paste
them into the new file. Fields,
buttons, and portals must be re-
specified to point to their correct
referents, but at least all your
formatting will be retained.

ptg8106388

121Creating and Managing Layouts

4

C
H
APTER

After you create a layout, you can modify it and turn it into what-

ever you need it to be. Much of the remainder of this chapter is

devoted to the tools at your disposal to do just that.
Within a file, you can duplicate layouts by choosing Layouts,

Duplicate Layout. Often, this is a preferred method for creating

new layouts, even if they end up looking significantly different

from the original. All part sizes, graphic elements, and formatting

options are retained, so modifying as necessary with these as a

starting point is usually much faster than creating new layouts

from scratch.

 Layout Context

Every layout is linked to a table occurrence from the Relationships

Graph. You specify this on the first screen of the Layout assistant

in the Show Fields From area; a similar area exists in the Layout

Setup dialog, described later. Many layouts can be linked to a par-

ticular table occurrence, but each layout must be tied to one, and

only one, table occurrence.

 � For more information on table occurrences, see “Adding a

Table Occurrence to the Relationships Graph,” p. 195 .

The reason layouts need to be associated with table occurrences is that, in a multitable file,

FileMaker needs some way to know which records to display in a given layout. In the old days,

when FileMaker allowed only one table per file, it was always clear that layouts in file X should

display records from table X. Now, layouts in file X can be configured to display records from table

A, B, or C. The context of a layout is determined by the table occurrence to which it is tied. Context,

in turn, determines the table from which the layout will show records, and establishes the reference

point for other types of operations, such as displaying data from related tables and evaluating calcu-

lations that reference related tables.
You might wonder why layouts need to be associated with table

occurrences and not source tables themselves. If you were only

concerned with displaying records from the source table, you

wouldn’t have to worry about table occurrences. But layouts must

also be able to contain records from related tables (that is, portals),

and relationships are built between table occurrences, not between

source tables. Having a layout linked to a table occurrence makes it

unambiguous which context FileMaker should use to access related

records.

Consider this situation in terms of perspective. To view any data

within your solution, your user needs a starting point, or perspective, and an endpoint. For example,

you might be looking from Company Detail through a portal to Employees related to that company

 tip
Create a template layout for
yourself that has examples of
all the necessary bits and pieces
specified (portals, fields, field
labels), along with color squares
and grid lines. Then you can
simply duplicate your template
when you need to create a new
layout, and you’ll be well on
your way to a finished product.
In a large project, you might
create several template layouts:
one for form views, another for
layout views, and so forth. If you
base your templates on themes
(beginning in FileMaker Pro 12),
you will dramatically streamline
your design process.

 note
The concept of layouts being
tied to table occurrences
can be a bit confusing. See
“Determining Which Records Will
Be Displayed on a Layout” in the
“Troubleshooting” section at the
end of this chapter.

ptg8106388

Working with Layouts122

I

PA
RT

record. The associated table occurrence tied to a given layout serves as a user’s starting point, and

any related data is viewed from that table occurrence’s perspective on the Relationships Graph.

 � If you’re unfamiliar with relational data modeling or how to display related data in FileMaker,

see Chapter 5 , “Relational Database Design,” and Chapter 6 , “Working with Multiple Tables.”

When you define a new layout, the first prompt of the New Layout/Report assistant lets you specify

where to show records from. The options in the pick list are all the table occurrences from the cur-

rent file’s Relationships Graph. If you want to use a table from another file, just add that table to the

Relationships Graph (you may have to also add an external data source for the file if you have not

done so already).

Working with relationships is the subject of the first three chapters of Part II, “Developing Solutions

with FileMaker.” However, looking at a preview of the general issue is worthwhile because it

illustrates the key role that layouts play. Figure 4.10 shows a FileMaker Relationships Graph for an

ordering and quoting system. (Don’t worry about the details; they will be explained in Part II.)

 Figure 4.10
Create an ordering
and quoting system.

Customers can be related to quotes or orders. Each quote or order can have multiple line items,

and each line item is related to a given product. As will be explained in Part II, FileMaker requires

that there be a unique path between any two related table occurrences in the Relationships Graph.

Thus, the Products table appears as two different table occurrences: ProductsForOrders and

ptg8106388

123Creating and Managing Layouts

4

C
H
APTER

ProductsForQuotes. It is the same table, but there must be two separate occurrences because other-

wise there would be two paths between Customers and Products, and that is not allowed.

You can solve this problem in another way, as shown in Figure 4.11 . Here, the duplicated table

occurrences are for the orders and quotes. Note that there is no direct link from customers to any

product table occurrence. For this structure to work, it must be tied to layouts. One layout can dis-

play customers; in a portal within that layout or in another layout, it can display orders and quotes

for that customer. But when you want to look inside an order or quote, a button or some other inter-

face element takes you to a layout that is based on either the Orders or Quotes table occurrence that

is related to its own line items and thence to a single Products table occurrence. Many people would

agree that this structure—although it contains nine table occurrences rather than seven—is simpler

than the one shown in Figure 4.10 . The layouts supporting both structures are going to be similar;

they just are based on different table occurrences. The moral of this story is that layouts help you

structure your database; they are not just for the interface.

 � For the implications of context for scripting, see “Script Context and Internal Navigation,”

p. 268 .

 Figure 4.11
Create an alternative
structure.

ptg8106388

Working with Layouts124

I

PA
RT

 Layout Setup
The Layout Setup dialog, accessed from the Layouts menu, allows you to edit many of the funda-

mental characteristics of a layout, such as the name of the layout, its context, and how it can be

viewed (see Figure 4.12).

 Figure 4.12
The Layout Setup dialog allows you to change the name
of a layout and its context, for example.

In the Layout Setup dialog, you name the layout and select the

table (actually the table occurrence from the Relationships Graph)

that is the base table for the layout. Data from other tables can

appear in the layout, but there is always one, and only one, base

table for each layout.
Check boxes also let you save record changes automatically if

you want to. These changes are the changes to the layout itself

(not to its data). If you are doing a lot of layout modification, you

can choose to have your changes automatically saved without a

prompt. When major development is over, you might want to turn

this option back on so that the relatively rare updates to layouts

are reviewed more carefully.

The Show Field Frames When Record Is Active check box influ-

ences the layout’s behavior in Browse mode. It is a good idea to

select the same setting for this check box for all layouts in a given

solution so that users know what to expect.

 � You can provide custom menu sets for each layout. To do so, see Chapter 14 , “Advanced

Interface Techniques.”

 note
Naming your layout as well as
the objects within it is just as
important as naming fields and
tables. The “Layout Naming
Conventions” section, later in
this chapter, provides guidance
in these areas. The “Hiding and
Reordering Layouts” section,
also later in this chapter, gives
you some tips on how to handle
the Include in Layout Menus
check box.

ptg8106388

125Creating and Managing Layouts

4

C
H
APTER

 View Options
Every layout you develop could potentially be viewed in three

ways: as a form, as a list, or as a table. A user with access to stan-

dard menu commands can use the View menu in Browse mode to

switch among them. When you navigate to a layout, you will see it

in whatever state it was last saved, so bear in mind that switching

from layout to layout might change the view setting as well.
The differences among the three view types are quite straightfor-

ward:

 • View as Form— This view type always shows one record at a

time. Any header and footer parts are not fixed on the layout;

if the layout has a long body, a user might have to scroll to see

the footer. If the body part is short, the last part on the layout

expands to fill the empty space in the window. If you are using

scripts to navigate among layouts, you can adjust the window

automatically to fit the form so that there is no empty space.

For some long forms, such as legal contracts, you might have to

split the form into two separate layouts.

 • View as List— With View as List, the height of the layout body

part and the height of the window determine the number of

records displayed. If more records are present in the found set

than can be displayed onscreen, the vertical scroll bar enables users to see additional records.

Any header and footer parts are fixed onscreen at all times, even when a user scrolls to see addi-

tional records. Subsummary parts are never visible in Browse mode with View as List. If fields

are placed in the header or footer parts, they take their values from the currently active record.

Any modification to a field in the header or footer part likewise affects the currently active

record.

 • View as Table— In Table view, all the fields placed in the layout’s body are presented in a

spreadsheet-like grid. The fields’ top-to-bottom position on the layout determines their initial

order. That is, the first column is the topmost field on the layout. No nonfield elements (for

example, buttons, text, or graphics) from the body of the layout are rendered in Table view. Field

formatting (for example, color, font, and font size) is honored, however. The column headers

conform to the format of the first field. Other properties of the Table view can be specified under

the Views tab of the Layout Setup dialog. As you can see in Figure 4.13 , you can specify whether

header and footer parts should be visible and whether columns can be sorted, reordered, and

resized. You can also specify row heights here.

Using the Views tab of the Layout Setup dialog, you can disable user access to certain view types.

Although usually not necessary, this can be a good precaution to take to keep adventurous users on

the right track. Accessing an inappropriate view type is likely not going to cause much harm, but it

certainly can confuse users.

 tip
In developing a custom solution,
you can provide scripted buttons
to switch from layout view to
layout view. If you do so, you can
use the scripts to enforce cer-
tain standards, such as always
viewing a certain layout with a
certain view (at least to start).
By using a combination of hiding
the Status Toolbar and a custom
menu set, you can even hide the
standard FileMaker Pro com-
mands that allow users to switch
from view to view without using
the controlled scripts that will
limit the experience and flexibil-
ity but provide more consistency.
This capability is particularly
useful when your users are not
adept at using FileMaker Pro.

ptg8106388

Working with Layouts126

I

PA
RT

 Multicolumn Layouts
When printing labels and certain types of reports, you might want to present your data in multiple

columns. You can specify the number of columns to display on the Printing tab of the Layout Setup

dialog; this is shown in Figure 4.14 .

 Figure 4.13
You can alter the look and functionality of the Table view by using the Table View Properties dialog.

 Figure 4.14
You can customize the print settings for a par-
ticular layout on the Printing tab of the Layout
Setup dialog.

ptg8106388

127Creating and Managing Layouts

4

C
H
APTER

In Layout mode, dashed vertical lines represent the boundaries between columns. FileMaker grays

out columns other than the first; the idea is that you need to place any objects you want displayed

in the first column, and these objects replicate to the other columns as necessary. Figure 4.15 shows

an example of a three-column layout: Labels layout from Contacts. (These happen to be Avery 5160

labels: the New Layout/Report label section provides dozens of standard labels from Avery as well

as DYMO.) Notice that the header and footer part are not divided into columns. This means that if

you want headers to appear above the second and third columns, you have to add them explicitly.

 Figure 4.15
This example shows a layout
for the three-column label
layout from the Contacts
Starter Solution.

You can use subsummary parts and leading and trailing grand

summaries on multicolumn layouts, but they behave slightly dif-

ferently depending on whether you choose to display data using

the Across First or Down First option. If you choose the Down First

option, any summary parts are also columnar. On the other hand,

if you choose the Across First option, summary parts span the full

width of the layout, just as the header and footer parts do.

 � Subsummary parts are covered in depth in “Working with

Parts,” p. 130 .

The effects of a multicolumn layout can be viewed only in Preview

mode. In Browse mode, the user sees only a single column of data.

Hiding and Reordering Layouts
In Browse mode, layouts can be designated to be either accessible or inaccessible via the layout

pull-down menu in the Status Area. If a layout is accessible, users can see it and navigate to it at

will, assuming that the Status Area is visible and/or accessible. If the layout is inaccessible, users

can navigate to it only by running a script that takes them there. In Layout mode, all layouts are

accessible.

 tip
It’s not possible to have columns
of differing widths; every column
is the same width as the first
one. You can manually adjust
the column width by clicking the
dashed divider between the first
and second columns and drag-
ging left or right as appropriate.

ptg8106388

Working with Layouts128

I

PA
RT

Typically, layouts are set to be inaccessible when you need to prevent users from manually navi-

gating to a layout. For instance, you might have report layouts or find screens that require certain

preparation before they become useful. There might be unanticipated and/or undesired results if a

user is able to bypass the scripts you created and navigate directly to a layout.

The option to have a layout be accessible or not is the Include in Layout Menus check box on the

first screen of the New Layout/Report assistant; it can also be set through the Layout Setup dialog.

The Manage Layouts dialog, shown in Figure 4.16 , also has a check box on each line that can be

toggled to change a layout from visible to hidden, and vice versa. Using this method is the quick-

est way to hide or show a number of layouts at once. Open the Manage Layouts dialog from File,

Manage, Layouts, or as shown in Figure 4.17 .

 Figure 4.16
Use the Manage Layouts dialog to set the
accessibility and order of layouts.

The Manage Layouts dialog also enables you to change the order in which layouts appear in the

Layout pop-up list. You can use the double-arrowed selection tool to move a layout up or down in

the order. On OS X, you can accomplish the same thing by selecting a line and pressing (Command)

[Ctrl] and the up or down arrow.

ptg8106388

129Creating and Managing Layouts

4

C
H
APTER

 Layout Naming Conventions
You have a great deal of flexibility in how you name layouts. Layout names do not have to be unique

and can be up to 100 characters long. They can include numbers, symbols, spaces, and pretty much

anything else you want to use. Although flexibility is a good thing, we suggest that you follow a few

guidelines:

 • If a layout has the potential for access via ODBC or Custom Web Publishing, you should avoid

symbols, punctuation, and spaces in its name.

 • Only the first characters of a layout name are visible in the layout selection pop-up menu in the

Status toolbar. The full name is visible when a user clicks the pop-up, but it can be helpful to use

short, unique names for easy identification.

 • Try to use names that are somewhat descriptive of the purpose of the layout. Names such as List

and Layout #3 might not convey much meaning to users, or future developers, for that matter.

 • In a multitable file, consider having the base table name as part of the layout name. For instance,

Customer:Data Entry and Data Entry (Customer) might be good names if you need to differenti-

ate among multiple data entry layouts. Note that this may conflict with the first guideline about

not having symbols, punctuation, or spaces in the layout name.

 • You can use a z or zz prefix for internally used layouts. You can omit them from the Layout menu

or place them at the bottom (using the Set Layout Order command from the Layouts menu in

Layout mode). You can also use a distinctive theme in the Layout assistant. Any or all of these

will make it clear when you are working in a layout that users will not normally see.

 Figure 4.17
 Open Manage
Layouts from
the Layouts
pop-up menu in
the Status tool-
bar in Layout
mode.

ptg8106388

Working with Layouts130

I

PA
RT

 • Finally, if you use a single hyphen (-) as a layout name, this appears in the Layout pop-up list as

a divider. Users can’t select divider layouts, which merely serve to help organize what might oth-

erwise be an unwieldy list. Typically, such layouts would be left completely blank, but this isn’t a

requirement.

As you see in Figure 4.16 , you can construct a sophisticated naming guideline—many of the Starter

Solutions use this type of naming convention so that the base table as well as the device are

included in the name. In practice, the issues involved in nam-

ing layouts might work themselves out quite easily. If you are

building a solution with multiple layouts, you might very well

build navigation tools into the layouts (commonly at the top of a

layout). This means that when you go to a layout using a script,

you automatically adjust the window, or in the case of a layout

designed for printing, you automatically go into Preview mode. In

that case, you can name layouts from the developer’s perspective

and hide them from users in the Layouts menu.

 Working with Parts

Parts make up layouts. Depending on your objectives, your layout might contain header and footer

parts, a body part, one or more subsummary parts, and maybe even a leading or trailing grand sum-

mary. Every layout must contain at least one part. Briefly, the purpose and some characteristics of

each type of part are as listed here:

 • Title Header— Title headers are used when you need a header on the first page that differs from

the header on subsequent pages of a multipage report. In Form view, a user can view a title

header while in Browse mode, but not in List or Table view.

 • Header— Objects in the header part appear at the top of each page of a multipage report, except

the first page when a title header is present. A header part remains fixed onscreen in List and

Table views, even when a user scrolls to see additional records. Data in fields placed in a header

part can be edited; fields in a header part always display data from the currently active record.

 • Leading Grand Summary— Typically used on report layouts, a leading grand summary appears

between the header and any subsummary or body parts. Summary fields placed in this part

aggregate across the entire found set.

 � For more information about using summary fields and summary parts to create reports, see

“Using Summarized Reports,” p. 295 .

 • Body— The body part is used to display data from a single record. A data-entry layout often con-

sists of nothing other than a body part. Almost every layout you create will have a body part.

 • Subsummary— Subsummary parts are used primarily for displaying subtotals on reports. For a

subsummary to display properly, the found set must be sorted by the same field as that on which

the subsummary is based. Subsummaries can be placed either above or below the body part,

depending on whether you want the subtotals displayed before or after the data they summarize.

 tip
The single-hyphen naming trick
works in other areas of FileMaker
as well, such as within value
lists.

ptg8106388

131Working with Parts

4

C
H
APTER

 • Trailing Grand Summary— Similar to a leading grand summary,

a trailing grand summary is typically found on report layouts

and is used to display aggregate summaries. When printed, the

trailing grand summary report appears directly following the

body part and any trailing subsummaries.

 • Footer— Objects in the footer appear on every page of a mul-

tipage printout, except on the first page when a title footer is

present. In List view, the footer remains fixed on the layout

when a user scrolls through records.

 • Title Footer— A title footer part is used when you want to dis-

play a different footer on the first page of a multipage printout.

Adding and Ordering Parts
There are two ways to add parts to a layout. The first is by click-

ing and dragging the Part button in the Status toolbar to the point

where you want the new part to appear. FileMaker prompts you

to select a part type when you release the mouse. Although this

method is convenient, we discourage using it to add new parts. New parts, except when added

to the bottom of the layout, always come at the expense of existing parts. That is, if you have a

50-pixel header followed by a 200-pixel body, and you attempt to add a subsummary between these

parts, the body part shrinks by the size of the subsummary part. Moreover, fields that were in the

body part might now be part of the subsummary part.

The other option for adding new parts, which we prefer in almost every circumstance, is to use the

Part Setup dialog (shown in Figure 4.18), which can be found under the Layouts menu. When you

add parts with this tool, it’s not at the expense of any existing part; the total height of the layout

increases.

 tip
You can save time creating com-
plex layouts by beginning with
a layout that might never see
the light of day. Create a layout
with a body part and as many
subsummaries as you might
ever need. Then duplicate the
layout and remove parts that you
don’t need. For example, you
can delete the body part from a
duplicate and—voilà—you have
a summary layout. Likewise, you
can delete some of or all the sub-
summaries to produce a detail
report. To finish up, you can even
delete the original layout.

 Figure 4.18
You can add, edit, delete, and reorder the parts on a layout from
the Part Setup dialog.

ptg8106388

Working with Layouts132

I

PA
RT

The Part Setup dialog can also be used to reorder, edit, and delete parts. The only types of parts

that can be reordered are the body and subsummary parts. To reorder them, click the arrow in front

of the part name and drag it to the desired position. Other part types appear with a lock in front of

them, indicating that they are fixed in a certain order by definition.

You can delete a part from a layout either by selecting it from the Part Setup dialog and clicking

Delete or by clicking the part label while in Layout mode and pressing the Backspace or Delete key

on your keyboard. Either way, when you delete a part, you also delete any objects contained in that

part.

 Formatting a Part

You can configure a few attributes of parts directly from Layout mode itself. First, you can set a

background color and/or fill pattern for a part by clicking the part label and then selecting a color

and/or fill pattern. (Control-clicking) [right-clicking] the part label similarly pulls up a contextual

menu with access to these attributes.

You can achieve much the same effect simply by drawing a large

rectangle on the layout, sending it to the back, and locking it.

Setting a background color for the part is preferred because the

color extends to the right and downward if the user expands the

window beyond the boundaries of your rectangle.
You can also change a part’s size. To do this, simply click the

dividing line between two parts and drag either up or down.

When making a part smaller, you can remove whitespace from

the part, but you are prevented from dragging through any

objects in the part. Any expansion of a part increases the overall

size of the part.

Holding down (Option) [Alt] as you resize a part changes the

rules slightly. First, any expansion or contraction comes at the

benefit or expense of the neighboring part; the overall height of

the layout remains the same (except, of course, when enlarging

the last part on the layout). Also, you can “run over” objects this way; an object that was in one

part might end up belonging to another part after you resize things. An object that ends up strad-

dling two (or more) parts belongs to the part that contains its upper-left corner.

The Object Info palette can also be used to see and set a part’s length. This is the best way to set

part lengths precisely, especially when you’re trying to duplicate complex layouts from one file to

another. Click the part label to display that part’s data in the Size palette.

 � For more information about the Object Info palette, see “Positioning Objects on a Layout,”

p. 145 .

 tip
For users with monitors set to
higher resolutions than your
database was designed for,
consider adding a footer with a
background color different from
the body part so that users can
visually see where the layout
ends and size their windows
appropriately. Alternatively, use
buttons and scripts for layout
navigation so that you can auto-
matically adjust the window to
the layout.

ptg8106388

133Working with Parts

4

C
H
APTER

 Part Definition
Beyond the size and background color of a part, some part attributes can be set only in the Part

Definition dialog, shown in Figure 4.19 . You can get to this dialog either by using the Part Setup dia-

log (by clicking Create or Change) or by double-clicking the part label itself.

 Figure 4.19
The Part Definition dialog specifies a part’s type and
attributes.

The radio buttons on the left side of this dialog indicate the type of part. You can change the type of

a part simply by selecting a different radio button. If a type is grayed out, it means you already have

a part of that type. The only part type for which you can have multiples is subsummary.

The fields on the right side of the dialog apply only to subsummary parts. When you make a sub-

summary part, you must specify which field will act as the break field for the summary. The break

field doesn’t actually have to appear in that part, but the found set must be sorted by the break field

for the subsummary part to appear on a report.

 � For more information on break fields and subsummary reports, see “Using Summarized

Reports,” p. 295 .

At the bottom of the dialog are some options for configuring page

breaks and page numbers. In subsummary reports, you’ll often

want each new subsection to start on a new page. To do this, you

edit the part definition of the subsummary part to include the Page

Break Before Each Occurrence option. As you would expect, a page

break precedes only each occurrence after the first one.

You can also opt to use the Alternate Background Fill feature. This

option is available only on body parts. Any color and/or fill that you

 tip
If there is a script to display the
layout, as is the case if you have
used the assistant, that script
contains a Sort step. When you
add or change a subsummary
part, make it a habit to immedi-
ately go to the script and change
the sort so that it reflects the
new or changed sorting order.

ptg8106388

Working with Layouts134

I

PA
RT

specify is used as the background for every other record. It alternates with any background color

specified for the part itself. A slight shading of alternate rows on a report often makes it easier to

read.

Working with the Layout Status Toolbar
You have seen how the Status toolbar works and can be customized in Browse and Find modes;

now you will see how it can be used in Layout mode. As noted previously, the Status toolbar has a

slightly different appearance in Windows and OS X. Furthermore, the methods of customizing it dif-

fer across the two platforms. Nevertheless, its buttons and other interface objects behave the same

way on the two platforms.

The Status toolbar can be customized in many ways. This section describes the components of the

Status toolbar; they may or may not be in the Status toolbar you are looking at, and even if they are,

they may be in different places. Figure 4.20 shows the Status toolbar with a minimal configuration.

 Figure 4.20
 The Status
toolbar varies
in its appear-
ance.

Using the Layout Bar
Below the main area of the Status toolbar is an uncustomizable Layout bar. From left to right, here

are the tools available:

 • The Layout pop-up menu lets you select a layout by name. The first item in the pop-up menu is

Manage Layouts. It opens the Manage Layouts dialog shown previously in Figure 4.16 .

ptg8106388

135Working with the Layout Status Toolbar

4

C
H
APTER

 • The pencil icon opens the Layout Setup dialog shown previously in Figure 4.12 .

 • Next, you see the base table occurrence for the layout. (Set it in the General Pane of Layout

Setup.)

 • Three buttons show or hide palettes and the formatting bar. Further details about these palettes

and the formatting bar are provided later in this chapter. The first shows or hides the device

dimension stencils, the next shows or hides the Inspector, and the third one shows or hides the

formatting bar.

 • The last three buttons let you save the layout. The first lets you revert to the last saved version.

The second lets you explicitly save your layout changes. The last one lets you exit Layout mode.

Using the Customizable Status Toolbar Tool Groups
On OS X, the View, Customize Status Toolbar command opens the sheet shown in Figure 4.21 . You

can drag items into or out of the toolbar; you can also rearrange them. In Windows, the same com-

mand opens the text-based dialog shown in Chapter 2 , “Using FileMaker Pro.” Also in Windows,

you can use the small arrow at the right of the Status toolbar to open a hierarchical set of menus

in which you can select what tools are used in the Status toolbar. This menu hierarchy is shown in

Figure 4.22 .

 Figure 4.21
 Customize the
Status toolbar
on OS X.

ptg8106388

Working with Layouts136

I

PA
RT

The tools described here are actually groups of tools: You cannot

split them apart. They move into and out of the Status toolbar as

a group. Many of the tools correspond to menu commands.

 � For more information on how to customize the Status tool-

bar, see Chapter 2 , “Using FileMaker Pro.”

 Layouts Group
The Layouts tools are shown installed in the Status toolbar at the

top left of Figure 4.20 . At the left, the book icon lets you move to the next and previous layouts (pro-

vided that there is a next or previous). The slider lets you quickly drag through your layouts, and the

text field above the slider shows the current layout number; you also can type in a number to go to

that layout. Finally, you will see a layout-editing icon that displays the number of layouts in the file.

 Layout Tools Group
The Layout tools collection consists of five groups of tools. Their use is described in the following

section.

 • The pointer lets you select an item in the layout. Holding down the Shift key lets you select mul-

tiple items. You can then drag the items around the layout and resize or reshape them by using

the handles at their corners and sides.

 Figure 4.22
 Customize the
Status toolbar
in Windows.

 tip
Because all the tools are shown
in the Customize Status Toolbar
sheet shown on OS X in Figure
 4.21 , earlier in this chapter, you
might want to refer to that figure
throughout this section.

ptg8106388

137Using the Inspector

4

C
H
APTER

 • Next come five tools that let you draw a text box, a line, a rectangle, a rounded rectangle, or an

oval. Holding down the Shift key while you draw constrains the object vertically and horizontally;

holding down the Option key makes it regular (that is, a rectangle becomes a square, and an oval

becomes a circle).

 • The next six tools let you draw specific FileMaker objects. From left to right, they let you draw

fields or controls, buttons, tab controls, portals, charts, and Web Viewers. Select a tool and draw

the object on the layout. After you have finished drawing, a setup dialog opens for you to specify

further details. These setup dialogs are described in the sections related to using fields, buttons,

tab controls, portals, and Web Viewers.

 � For more information on adding fields to a layout, see “Working with Fields,” p. 149 .

 • The next pair of tools lets you add a field or part to a layout. Drag a tool onto the layout and

select its field or its part. Note that these tools are dragged into the layout; the previous five let

you draw on the layout.

 • Finally, the Format Painter tool lets you copy formatting attributes from one object to another.

Using the Status Toolbar Items
Many of the Status toolbar’s customizable items correspond to individual commands or to a group of

commands:

 • New Layout/Report (Layouts, New Layout/Report).

 • Delete Layout (Layouts, Delete Layout).

 • Duplicate Layout (Layouts, Duplicate Layout).

 • Import (File, Import command and its subcommands).

 • Export (File, Export command and its subcommands)

 • New Window (Windows, New Window).

 • Manage. This is the File, Manage set of submenus: Database, Accounts & Privileges, Value

Lists, Layouts, Scripts, External Data Sources, Custom Functions (FileMaker Pro Advanced), and

Custom Menus (FileMaker Pro Advanced).

 Using the Inspector
Beginning with FileMaker Pro 11, the Inspector was added to Layout mode. You find inspectors in a

number of modern programs like FileMaker. In the initial versions of graphical user interfaces, there

was a routine process for users: Select something, and then choose a menu command to act on it.

Over time, the menu commands multiplied, and inspectors were devised to manage the multitude of

commands for selected objects. The Inspector is shown in Figure 4.23 .

ptg8106388

Working with Layouts138

I

PA
RT

The three tabs on the Inspector let you work with the data for

a selected object, its position, and its appearance. You open the

Inspector with View, Inspector, (Command-I) [Ctrl+I], or by using

the Inspector button on the Layout bar. Remember that the data

displayed in the Inspector varies depending on what is currently

selected.

 Inspecting Data Settings
The data settings are composed of three sections: Field, Behavior, and Data Formatting. All of these

are related to the data itself rather than its appearance or position on the layout. It is important to

note that you can have more than one field showing the same data element from the database. By

judiciously combining the various attributes of fields in the Inspector, you can display the same data

in various formats (different numbers of decimals on numeric fields, for example), and in various

types of controls (radio buttons as well as edit boxes, for example).

 Figure 4.23
The Inspector lets
you work with
layout objects.

 tip
You can open up to three inspec-
tors at the same time. If your
screen is large enough, that
means that you can see all three
of the tabs at the same time.

ptg8106388

139Using the Inspector

4

C
H
APTER

 Using Field Settings
At the top of the Inspector, you can specify data settings for a selected field. These settings include

the field name and the style of the control that is used to display or edit it. Depending on which type

of control you select, some additional settings may be displayed. For example, if you select a radio

button or check box, you can specify a value list that is used to support it.

For standard fields where a user will be manually entering and editing data, the Edit Box format is

appropriate. The option to include a vertical scroll bar is normally used only when a user is able and/

or expected to type multiple lines of text.

The options to format a field as a Drop-Down List, Pop-Up Menu,

Checkbox Set, or Radio Button Set require you to specify a value

list that provides the content for the selection values.

You can apply a Drop-Down Calendar to a field to help with enter-

ing dates, and you can toggle either a drop-down indicator icon or

a calendar picker icon for the fields you’re working with. The two

icons—drop-down indicator and calendar icon—appear only if a

field has its right border turned on.
The lower left of the field settings is relevant only for fields defined

to allow multiple repetitions. You can hard-code the starting and

ending repetitions and specify whether a vertical or horizontal ori-

entation should be used.

 Controlling Field Behavior
The behavior settings contain controls for setting when a field is enterable and how a user can

exit it.

In this section, you can control whether a user is able to enter a particular field while in Browse

or Find mode. Typically, a user should be able to enter a field in both Browse and Find mode.

Sometimes, though, you’ll want a field to be enterable in only one of these modes. For instance, you

might have a field that you don’t want users to manually edit but that they might have to use as

part of a query. On the other hand, there might be unindexed fields on your layout that, for perfor-

mance reasons, you don’t want users to search on.

You can also use a check box to determine whether a field is used in Quick Find. As described in

Chapter 2 , “Using FileMaker Pro,” Quick Find lets users search from Browse mode. The search term

is entered at the right of the Status toolbar, and FileMaker Pro searches all Quick Find fields for the

value.

You can also specify visual spell-checking for each individual field in this section. You set the file-

wide spell-checking option in the File Options dialog in the File menu; this setting overrides that

value on a field-by-field basis.

The other setting in this section is the Go to Next Object Using option. By default, in FileMaker Pro,

pressing the Tab key lets users move to the next field on the layout. Developers can also specify the

option to allow the Return and/or Enter key to perform this function. This is desirable in some cases

to allow rapid data entry and to prevent data-entry mistakes. For instance, by setting a text field to

 tip
As you choose the control style
of a field, bear in mind that on
mobile devices tappable inputs
(radio buttons, checkboxes,
drop-down lists, and drop-down
calendars) are particularly
useful.

ptg8106388

Working with Layouts140

I

PA
RT

use the Return key to go to the next field, you prevent users from

accidentally adding stray returns at the ends of fields. Obviously,

if a user needs to be able to enter carriage returns in a text

field—say in a Comments field—you wouldn’t set the Return key

to go to the next field.

Note that you can also choose the input method that FileMaker

uses for this field in Japanese.

 Managing Data Formatting
At the bottom of the Inspector, you can set the formatting for

numbers, dates, times, and images. Note that for container fields

beginning in FileMaker 12, you can set optimization. Images such

as PNG, JPEG, and BMP, are simply downloaded. If you choose

the interactive radio button (PDF, MP3, and the like), you can allow interaction and set an option the

start playback automatically.

 Inspecting Appearance Settings

These are the standard settings you expect for text and graphics: fonts, alignments, colors, and the

like. You can also set styles for objects.

 � Styles are discussed in Chapter 14 .

 Inspecting Position Settings
These settings let you size and position an object as well as arrange and align several selected

objects. Autosizing settings let you anchor the edge of an object to its container so that as the con-

tainer changes size or shape, the object does so, too. This is particularly important if you are devel-

oping layouts that will be used on iOS devices that can be rotated.

Naming Objects on a Layout
You can name objects on a layout. Object names must be unique

on a given layout. They most often work in conjunction with the

new Go To Object script step. When you go to a layout, you can

immediately select the specific field, portal, tab, or any other lay-

out object that you want to select. You can even determine this

dynamically in a script that goes to a given layout—yet another

reason for using scripts for layout navigation. The combina-

tion of object names and the Go To Object script step makes

FileMaker Pro a much more powerful interface development

system.

 caution
Normally, the Enter key serves
to commit a record and exit all
fields. If you change all your field
behavior to have a press of the
Enter key move focus to the next
field, be aware that users must
explicitly click the background of
a layout or perform some script
or navigation routine to commit
record changes.

 tip
The name of an object as speci-
fied on the position tab is used
for scripting. In the case of text
that is formatted as a button
using Format, Button Setup, that
text is totally separate from the
name. You might even want to
establish a naming convention
for names that makes it clear
what they are. For example, a
button that appears on the lay-
out as Print might have a name
of btnPrint or PrintBtn.

ptg8106388

141Using the Inspector

4

C
H
APTER

 Using Tooltips

A tooltip is a small snippet of text that appears when a user hov-

ers the mouse pointer over a layout object (a data field, field label,

button, or any other item that can be placed on a layout in Layout

mode). The tooltip can provide information about the item beneath

it, or it can provide additional information about data in the data-

base, among many possible uses.
You can supply a simple text string as the tooltip. Note, though,

that you can also use the edit button (the pencil next to the tooltip field), which enables you to

define a calculation that is used to generate the tooltip text. The capability to have tooltip text

derived from a calculation can lead to some elegant applications. Here are a few examples:

 • In a list or portal view of data, in which some data might be too wide for its column, add a tooltip

to display the entire data value of the field.

 • Create contextual help. If you have Next Record and Previous Records links on a layout, create

tooltips that will warn the user if there is no next or previous record (that is, they’re at the begin-

ning or the end of the found set).

 • Create “smart” Next and Previous buttons that use the GetNthRecord() function to display

some information about the next or previous record in the set.

 � For more information on FileMaker’s GetNthRecord() function, see “ GetNthRecord ,”

p. 438 .

Tooltips are a standard feature of modern user interfaces. Because they are a relatively new addition

to FileMaker Pro, you might want to add them whenever you work on an older solution.

Automatically Resizing Objects on a Layout
The autosizing section of the Position tab lets you resize and relocate an object. For a selected

object, you can choose to bind it to the edge of the window or its container (such as a portal) by

clicking the appropriate box by the anchor in the direction you want to bind it. You can check from

zero to four boxes.

As the layout window is resized, any bound edge of an object moves to keep its same distance from

the edge to which it is bound. Thus, you can create a text field that expands horizontally with the

window, but whose vertical height is fixed (that is, unbound).

Objects that contain data or that are backgrounds are prime candidates for auto-resizing. Objects

such as buttons are not normally expected to change size as a window resizes, but you may choose

to anchor them to a constant location relative to the window.

The default behavior is what has happened until now: Objects are placed in a layout, and, as the

window is resized, they remain where they are relative to the top and left. Thus, if you widen or

lengthen a window, you might have unused space at the right or bottom. Now that you can see

what the bindings are, you will see that this is implemented by default with the top and left sides of

objects bound to the window.

 note
Remember that there is no such
thing as hovering on an iOS
device. This means that tooltips
never appear on iPads and
iPhones.

ptg8106388

Working with Layouts142

I

PA
RT

If you bind an object to the right and bottom, it will stay at the

bottom right of the window as you change its size. If you bind

an object to the right and left, it will stretch as the window is

resized horizontally; likewise, an object bound to the top and

bottom will stretch vertically. If you have a large object such as

a Web Viewer, you may choose to bind it to all four edges. It will

resize as the window is resized in any direction and will retain its

distance from each of the new edges.

 Arranging Objects
The Arrange & Align section of the position inspector lets you

manage objects.

 • Grouping Objects— Objects can be grouped together to form

a new object. You do so by selecting the desired objects and

choosing Arrange, Group or pressing (Command-R) [Ctrl+R].

The resulting object behaves just like any other object. It has a single set of selection handles,

and you can move and resize it as described in the previous sections. Any formatting applied to

the grouped object is applied to each of the elements of the group, as if you had simply selected

all the elements individually. Grouped objects can be further grouped with other objects to form

new objects.

 To ungroup an object, select the object and then choose Arrange, Ungroup or press (Command-

Shift-R) [Ctrl+Shift+R]. If an object was formatted as a button, ungrouping it deletes the button

definition.

 • Locking Objects— To prevent an object from being moved, resized, reformatted, or deleted,

you can lock it by selecting it and choosing Arrange, Lock or pressing (Command-Option-L)

[Ctrl+Alt+L]. When you select a locked object, its handles appear grayed out rather than black.

 When you select a combination of locked and unlocked objects and attempt to move or resize

them as a set, only the unlocked objects are affected. If you attempt to change the formatting of

the selected set, you see an error that the formatting can’t be applied to some objects in the set

because they are locked.

 Locking objects is useful when you have objects stacked on top of or overlapping one another.

It’s as if the locked objects become a backdrop against which you do your work. Whether you

leave the objects permanently or temporarily locked, it becomes much easier to select and work

with certain objects when the objects behind them are locked. To unlock an object, choose

Arrange, Unlock, or press (Command-Option-Shift-L) [Ctrl+Alt+Shift+L].

 • Layering Objects— FileMaker maintains a stacking order for objects on a layout. When you add

a new object to a layout, it becomes the frontmost item in the stacking order. The stacking order

becomes important when objects overlap one another. If two objects overlap, object A appears in

front of object B if it is forward in the stacking order. In addition, if object B is completely behind

object A, it is impossible to select object B simply by clicking it. When you click a spot on a lay-

out where multiple objects overlap, you select the frontmost of the objects.

 note
In Preview mode (and, thus, in
printing), there is no vertical resiz-
ing. Horizontal resizing occurs if
the page size is wider than the lay-
out. Furthermore, remember that
autosizing happens on the desktop
when a user resizes the window.
On mobile devices where there
are no resizable windows, autosiz-
ing happens automatically as the
layout is shown on different-sized
screens and in different orienta-
tions.

ptg8106388

143Using the Inspector

4

C
H
APTER

 There is no way to review the stacking order of the objects on a layout visually. But you can

manipulate the stacking order by using the Bring to Front, Bring Forward, Send to Back, and

Send Backward functions, all of which can be found under the Arrange menu.

 � The stacking order also determines the tab order of layouts published to the Web with Instant

Web Publishing. For more on IWP, see “Layout Design,” p. 591 .

 The stacking order also determines the order in which objects draw on the screen. With a local

file or on a fast network, the drawing is probably imperceptible, but on slow networks, you will

sometimes see the objects draw one by one, from back to front.

 • Rotating and Selecting Objects by Type— You can rotate object by using commands in the

shortcut menu or the Arrange menu of the toolbar.

 Aligning Objects

Aligning objects on a layout relative to one another often is desirable, and FileMaker Pro has some

built-in tools to make this easy to do. For instance, a layout might have ten fields that you want to

be aligned along their left edges. You can use the Align, Distribute, and Resize To menu options,

under the Arrange menu, to manipulate objects relative to each other.

You can specify a Top to Bottom alignment, or a Left to Right alignment, or both. You can also dis-

tribute objects or resize to the largest or smallest dimensions of the selected objects.

When you align a set of objects relative to one another, one of the objects usually serves as the ref-

erence point. For instance, when you left-align a set of objects, the leftmost object is the reference

point. The other objects move left while the leftmost object remains in place. Similar results are

obtained for aligning to the right, top, and bottom. The exception to this is when one or more of the

selected objects is locked. If this is the case, and you want to, say,

left-align a set of objects, the leftmost locked object becomes the

reference point.

The rules for centering are slightly different. When you are center-

ing left to right, the objects align on the midpoint between the left-

most and rightmost selection points. For top-to-bottom centering,

they align on the midpoint between the topmost and bottommost

selection points.

The option to distribute space is useful when you want to be sure

that objects in a set are equidistant from one another. The two

outermost objects, whether left-to-right or top-to-bottom, act as

anchors for the distribution: The selected objects in between them

are spaced apart evenly.

 tip
Even the sloppiest of develop-
ers can benefit from this simple
process: Select a group of irregu-
larly placed and irregularly sized
fields. Then choose Arrange,
Align, Left Edges, followed by
Arrange, Distribute, Vertically.
Last, select Resize To, Largest
Width and Height. Voilà—your
layout objects are now nicely
sized and positioned.

ptg8106388

Working with Layouts144

I

PA
RT

Working with Objects on a Layout
Many tools and techniques exist for configuring and manipulating layout objects. Some apply only

to specific types of objects, whereas others are more general in nature. The better you know how to

work with the tools for crafting layouts, the better your user interface will be, although there are, of

course, no guarantees.

Adding Objects to a Layout
Normally, after you finish creating an object, FileMaker reselects the pointer tool automatically. At

times, however, you’ll want to create multiple objects of the same type at once. In those cases, it’s

useful to lock in the selection of a particular tool. You can do this by double-clicking the tool in the

Status toolbar. There’s also a preference named Always Lock Layout Tools that is located on the

Layout tab of the application preferences screen, although we advise against enabling it.

The Insert menu provides another means for adding objects to a layout. At the top of this menu,

you’ll find selections for adding all the object types found in the Status toolbar.

To insert a picture or another graphic element developed externally, you can use the Insert, Graphic

menu command. Alternatively, you can simply cut and paste objects from many other applications

directly into your FileMaker layouts.

The Format Painter Tool
You can copy the formatting attributes from one object to other objects on your layout by using the

Format Painter tool. The Format Painter can be found under the Format menu and in the Status

toolbar.

To use the Format Painter, you select an object that has the formatting attributes you want to

propagate and then turn on the Format Painter, using either of the two methods just mentioned.

A small paintbrush appears next to your mouse pointer, indicating that the Format Painter tool is

active. Then select the object or set of objects to which you want to apply the formats. You can lock

in the Format Painter tool by double-clicking its icon on the Status toolbar. This enables you to click

several objects and apply formats as you go.

 Duplicating Layout Objects
Any object on a layout can be duplicated in one of two ways. When you duplicate an object or a set

of objects, the new objects have all the same attributes of the source objects. It is, therefore, often

faster and more efficient to create a new object by duplicating an existing one and modifying it

rather than by adding a new one using the layout tools.

ptg8106388

145Working with Objects on a Layout

4

C
H
APTER

The first way is simply to select some set of objects and choose Edit, Duplicate or press

(Command-D) [Ctrl+D]. The entire set of objects is duplicated, with the new objects appearing 9

points to the right of and 9 points below the original set. The new objects are selected (as opposed

to the original set), so you can easily move them to wherever you want.

Points Versus Pixels

 A point is a unit of measurement; specifically, 1/72 of an inch. Pixels are elements of a display.
Until the advent of the Retina Display, the assumption was that there were 72 pixels to an inch.
As a result, point and pixel could be used interchangeably. With the higher density of pixels
on Retina Display screens and other high-resolution screens, this interchangeability no longer
exists. You will notice that in the Position tab of the Inspector, the units are points (pt), not pix-
els (px).

A useful technique exists for creating multiple copies of an object spaced out at consistent intervals.

Begin by selecting a set of objects, which we’ll call set A, and duplicate it as described, creating

set B. Without deselecting any of the objects in set B, move them to some desired place on a lay-

out. Choose Edit, Duplicate again; the new copy, set C, instead of having the “6 pixels to the right,

6 pixels down” relationship to its source, is spaced an equal distance from set B as B is from A.

Continued selection of Edit, Duplicate results in additional new sets, each positioned a consistent

distance from its source. This technique is useful for creating columnar lists and grids of equally

spaced lines.

The second way to duplicate layout objects is to (Option-drag) [Ctrl+drag] them. Simply select a set

of objects, and then start to drag them as if you intended to move them to a new location on the

layout. As you move the objects, however, hold down the (Option) [Ctrl] key. Continue to hold down

this key until after you release the mouse click; the objects are not moved, but a copy of them is

placed at the new location.

Positioning Objects on a Layout
Much of layout design is simply moving things around until they look just right. This is also one of

the most intuitive things for new developers to learn. So much so, in fact, that many never learn

some of the fine points of working with objects on a layout. We attempt to remedy that problem

here.

Selecting Objects on a Layout
Most object formatting and positioning on a layout begins with the selection of a set of objects to

work with. You can go about selecting objects in several ways; knowing these methods can greatly

increase your efficiency at designing layouts. Here are your options:

 • Click an object— You can select any object simply by clicking it. When you do so, small squares,

called handles , appear at the four corners of the object, indicating that the object is indeed

selected. Another set of handles appears in the middle of the top and bottom sides.

ptg8106388

Working with Layouts146

I

PA
RT

 • Shift+click— When you have one or more objects selected, you can Shift+click an additional

object to add it to the selected set. Similarly, Shift+clicking an already-selected object removes it

from the selected set.

 • Selection box— If you click the background of the layout (that is, any place there’s not an object)

and drag a rectangle across the screen, any objects that were contained within your selection

box are selected when you release the mouse. This is typically the easiest and quickest way to

select multiple objects.

 • Select all objects— To select all the objects on a layout, choose Edit, Select All, or use the

(Command-A) [Ctrl+A]) keyboard shortcut.

 • Select all instances of a type of object— It’s also possible to select all instances of a particular

type of object, such as all the text objects, or all the fields, or all the rectangles. There are several

ways to do this. You can select an object and then press (Command-Option-A) [Ctrl+Alt+A] to

accomplish the same thing. Finally, if you have a tool other than the Button or Portal tool selected

from the layout tools, you can select all the objects of that type by choosing Edit, Select All.

 Moving Objects
After you select a set of objects, you can move those objects around on the layout—provided that

they are not locked—in a few ways. First, you can click the interior of any object in the selected set

and drag the set to a new location. You can also use the arrow keys on your keyboard to move a

selected set of objects point by point.

 Resizing Objects

When you select an object, four handles appear at the corners of the object and another four appear

at the midpoints of all four sides of the object. All objects, even circular ones, have a rectangular

footprint defined by the four handles at the corners. Gray handles indicate that the object is locked;

it can’t be moved or resized in this state.

 � For more information on this topic, see the bulleted entry, “Locking Objects,” p. 142 .

You can resize an object by clicking one of the handles and dragging in the desired direction. If you

have selected multiple objects, resizing any one of them causes all the objects to resize by a similar

amount. This capability is useful in cases where you want to select, for instance, five fields and

make them all slightly longer or shorter. Resizing them as a set ensures that they all change by the

same relative amount.

To use the Resize To alignment tools, access the Arrange menu in Layout mode. These tools allow

developers to make a group of objects consistent by resizing all objects in the group to the largest or

smallest width or height of the objects selected.

ptg8106388

147Working with the Tab Control Object

4

C
H
APTER

 The Object Grid

You have the option, when working with layouts, of enabling or disabling an object grid. You

can change the status of the object grid by toggling the Object Grids command found at the bot-

tom of the Arrange menu. You can also toggle the status of the object grid by pressing (Option-

Command-Y) [Alt+Ctrl+Y]. In addition, the grid options are available at the bottom of the Position

tab of the Inspector in the Grid section.

When object grids are enabled, all movement and resizing of objects takes place against a virtual

grid.

The object grids are defined relative to each object; that is, there’s no static grid to which every-

thing snaps. If object A and object B are 2 points apart, with object grids enabled, you could move

each object one “chunk” in any direction and they’d still be 2 points apart, each having moved 6

points from its original location.

Whether you choose to have object grids enabled as you design layouts is purely a personal prefer-

ence. Some developers love object grids; others loathe them. The benefit of using the object grids

is that they make it easy to keep things arranged and sized nicely. It’s much easier to notice visu-

ally when an object is 6 points off-line rather than 1 point. Plus, if you ever need to move things

in finer increments, you can simply use the arrow keys to nudge the objects into line. In addition,

you can temporarily suspend the object grids by holding down the

(Command) [Alt] key as you move or resize an object. On the con

side, for developers accustomed to positioning things exactly to the

point, the object grid can get in the way and prove simply cumber-

some to work around.
The object grid’s status is a file-level setting. That is, as you work

on different layouts within a file, the grid status carries through

to them all. But if you have multiple files in a solution, you could

conceivably have the object grid enabled in some files and not in

others.

 � For more positioning tools, see “Using Guides” and “Using Dynamic Guides,” p. 392 and 393 .

Working with the Tab Control Object
The tab control does one thing: It extends the amount of screen real estate you can provide users

by allowing them to flip from one pane to another while remaining on the same layout and same

record. For an example, refer to Figure 4.4 : at the right is a tab control with two tabs—one for home

address and the other for work address. This is a frequent type of use for a tab control because both

tabs are presenting variations on the same data element.

 note
The grid spacing can be set in
the Grid section at the bottom of
the Position tab of the Inspector.
It might start out as 6 points, but
you can modify it.

ptg8106388

Working with Layouts148

I

PA
RT

Adding a Tab Control Object to a Layout
To add a tab control object to a layout, click the Tab Control button in the Status toolbar and draw a

rectangular area on your layout. You are presented with the Tab Control Setup dialog, as shown in

Figure 4.24 .

 Figure 4.24
The Tab Control Setup dialog enables you
to create however many panes you require.

In the Tab Control Setup dialog, you can add as many tab panes as necessary and then choose

alignment and tab styles. Although the options aren’t exhaustive, the simplicity of working with the

tab control object will no doubt quickly win you over.

The width of the tabs on the tab control can be set in the Tab Control Setup dialog. Your choices are

as follows:

 • Label Width

 • Label Width + Margin of (to provide a small space on each side)

 • Width of Widest Label

 • Minimum of

 • Fixed Width of

If you select a tab in the tab control, you can use the Position tab of the Inspector to name it. Then,

when using a script to go to a layout with a tab control on it, you can go to a specific tab—even

changing the tab depending on circumstances. After you close the dialog, you remain in Layout

mode and can add layout objects—including additional tab control objects—to the tab pane cur-

rently selected.

The tab control is operational in Layout mode. If you click a tab once, you flip to the pane it repre-

sents. If you want to return to editing in the Tab Control Setup dialog, double-click the tab control

ptg8106388

149Working with Fields

4

C
H
APTER

object. If you want to edit the tab pane’s properties (color, line weight, and line color), click the tab a

second time. You will see an active rectangle appear.

When you select the tab control object, notice that its rectangular area includes its tab space. The

negative space next to your tabs when they’re not set to Full justification is still considered part

of the selected pane. One handy technique we’ve learned is to place a button or text or even field

objects in that space: They appear and disappear just as all objects for a pane do.

 Working with Fields
The primary purpose of a layout is to allow users to interact with data. By interact, we mean every-

thing from viewing, editing, and formatting to finding and sorting. Although a field is at some level

just another type of layout object and can be manipulated using the same tools as other layout

objects, a number of tools are designed specifically for working with fields. They provide you with

a great deal of freedom and flexibility for creating the interfaces that work best for your users and

your solution. We don’t cover every option of every tool here, but rather try to give you a sense of

what the tools are and some of the situations in which to use them.

Adding Fields to Layouts
There are several ways you can add fields to a layout: by using the Field tool in the Status toolbar

to draw it, by using the Add Field button in the Status toolbar, and by duplicating an existing field.

The first of these—which is generally also the first method that people learn—involves clicking and

dragging the Field button in the Status Area out to the section of the layout where you want to

place the field. The current theme format attributes govern the attributes of a field added this way.

There is another way to add fields to a layout. If Add Newly Defined Fields to Current Layout is set

in the Layout tab of Preferences, the Manage Database dialog will add fields automatically using the

default settings if the current layout’s base table is the table to which you have added the fields.

As with other layout objects, when you duplicate an existing

field, the new field has all the attributes of the previously exist-

ing field (including its width). Remember, to duplicate any layout

object, you can select it and either choose Edit, Duplicate or press

(Command-D) [Ctrl+D], or select it and then (Option-drag) [Ctrl-

drag] to a new location. In either case, if you have selected a single

field, when you duplicate it, you see the Specify Field dialog and

can select the new field. On the other hand, if you select multiple

objects, when you duplicate them, you get just the duplicated

objects. Keep in mind that you duplicate all the attributes of a

field—including any button behaviors you attached to it, tooltips

you assigned, and so on.
Each field object on a layout is defined to display data from a particular field. Unless you selected

Sample Data in the View, Show menu, you see the field’s name on the object when you’re in Layout

 note
There are some issues to be
aware of when copying and
pasting fields from a layout in
one file to a layout in another
file. See “Copying and Pasting
Fields Between Files” in the
“Troubleshooting” section at the
end of this chapter.

ptg8106388

Working with Layouts150

I

PA
RT

mode. If you see :: at the beginning of the field name, that’s an

indication that the object is linked to a related field. The Specify

Field dialog lets you view and change the database field used in

the field object on a layout. In Layout mode, double-click the field

to open that dialog. You can also view and change the database

field for a field object on a layout using the Field section of the

Data tab in the Inspector.

Setting the Tab Order
When moving from field to field on a layout with the Tab key—or

Return or Enter, as described in the preceding section—the order

in which the fields are activated is known as the tab order . The

default tab order is the order in which the fields appear on the

layout from top to bottom. Rearranging fields changes the tab

order.

Tab order is stored with the layout, so there’s no opportunity to

customize the tab order for different users. The Set Tab Order

dialog is shown in Figure 4.25 . After you edit the tab order manu-

ally, rearranging fields doesn’t change the tab order. New fields

are added to the end of the tab order automatically, regardless of

position.

 tip
If a field has been defined as a
button, double-clicking it takes
you to the Button Definition dia-
log, not the Specify Field dialog.
Similarly, if multiple fields are
grouped together, right-clicking
gives you only the control ele-
ments of the dialog. This is one
of the reasons many people
prefer to use the Inspector: Its
behavior is more predictable in
some ambiguous situations.

 note
If you click the Add Field button
in the Status toolbar, you are
simply asked to select the field
to use. You must later use the
Inspector to modify its attributes.

 Figure 4.25
You can change
the tab order
of a layout
to make data
entry flow in a
logical progres-
sion for end
users.

ptg8106388

151Working with Fields

4

C
H
APTER

Anyone with the ability to modify a layout can change its tab order; this is done by selecting

Layouts, Set Tab Order. You can click both fields (the arrows to the left of objects) and objects them-

selves (the arrows to the right of objects) to manually edit the tab order for a given layout. You can

remove items by pressing the Delete or Backspace key.

The dialog operates on like objects. If you want to add all fields to the tab order or remove all

objects, choose from the two menu options in the dialog and click the button for the appropriate

command.

Note that it is entirely possible to attach a button behavior to a field and for that field to appear

twice in the tab order. One instance tabs into the field for editing, and another selects the field to

perform the button action.

The Set Tab Order dialog allows developers to add and remove both fields and objects (including

tab control object tabs) from the tab order of a given layout.

 � To further enable users to work from keyboard commands, and review adding keyboard short-

cuts via Custom Menus, see “Working with Custom Menus,” p. 396 .

 Merge Fields

If you’ve ever done a mail merge, the concept of merge fields should be familiar to you. Merge fields

give you a way of incorporating field data within text blocks on a layout. This feature is useful for

creating form letters, labels, and reports.

Merge fields display field data, but they don’t behave like or have all the properties of normal fields.

A user can’t click into a merge field to do data entry, for instance.

To add a merge field to a layout, choose Insert, Merge Field, or press (Command-Option-M)

[Ctrl+Alt+M]. You are prompted to specify a field. After you make your selection, the field name

shows up on your layout surrounded by angle brackets. Note that you can add a merge field alone

to a layout or you can incorporate it, and potentially others, into a

block of text within a text object. A single merge field can contain

several actual fields as well as constant text so that it might appear

as follows:

Total: <<sTotalPopulation>>; Average Age: <<sAverageAge>>

The primary benefit of merge fields is that field data can be flexibly

placed within a text block; text before and after the merge field

is repositioned to close up any extra space. Thus, within a text

block, you could have “Hi, <<First Name>>, how are you?” On one

record, that would come out as “Hi, Joe, how are you?”, whereas

on another it might be “Hi, Frederick, how are you?”

Text, number, date, and time formatting applied to a text block

is applied to any appropriate merge field within the text block. It

is not possible to have a single text block that contains multiple

merge fields having different formats applied to them.

 note
Merge fields provide a good way
of displaying uneditable data on
a layout so that it wraps as you
would expect it to in a word pro-
cessing program. (On report lay-
outs shown in Preview mode or
that are printed, the field-sliding
controls can do the same thing.)
However, remember that a field
can be searchable, whereas a
merge field cannot. You might
want to use a field where the
behavior does not allow editing
in Browse mode but does allow
editing in Find mode so that a
title is searchable.

ptg8106388

Working with Layouts152

I

PA
RT

 Troubleshooting

Copying and Pasting Fields Between Files
When I copy and paste fields from a layout in one file into another file, sometimes the fields retain

their proper identity, sometimes they have no identity, and sometimes they have the wrong identity.

Why is that?

When you copy fields from a layout in one file and paste them into another file, they might or might

not retain their identity, as you’ve discovered. A field retains its identity when there exists a field in

the destination file that has the same source table and field name as the source field. Additionally,

the layouts must be based on identically named table occurrences. It’s not enough for the source

tables to be named the same. If the table occurrences match, but no similarly named field is found

in that table, the field displays <Field Missing> when it’s pasted into the destination file. If the table

occurrence names don’t match, the field shows up without any identity in the destination file.

Given the ease with which you can copy and paste tables using FileMaker Pro Advanced, we recom-

mend first creating a compatible schema in the destination file and then copying your layout objects.

Determining Which Records Will Be Displayed on a Layout
I created a table occurrence that’s supposed to display only invoices that are more than 60 days

overdue. However, when I build a layout based on this table occurrence, I still see all the invoice

records. What did I do wrong?

The problem here isn’t anything you’ve done or haven’t done, but rather your expectations. The

table occurrence to which a layout is tied never determines which records from the source table are

displayed on that layout. It merely determines the starting point on the Relationships Graph from

which any action or object involving a relationship is evaluated. To view a set of related records,

you must establish a perspective through which those records are viewed; in other words, you’ll

need a portal.

If you have a layout that’s tied to an occurrence—any occurrence—of an Invoice source table, all the

records from the Invoice table can be viewed from the context of that table occurrence. Think of it

this way: A layout’s table occurrence doesn’t determine what records you can view from that lay-

out; rather, it determines what records the records of that table can view. Therefore, in the case of

your table occurrence, which is supposed to show only invoices that are more than 60 days overdue,

you’d need to view those via a portal from a layout tied, say, to a Customer table.

ptg8106388

 5

RELATIONAL DATABASE DESIGN

 Understanding Database Design
By now you’ve designed a simple FileMaker database and built some

nice data entry screens and some reports. Your friends and coworkers

are clamoring for you to add features. Can your system do invoicing?

Inventory tracking? Barcoding?

Well, it can probably do all those things, but it’s going to take some plan-

ning. If this is your first time out with FileMaker, you’re like the home

carpenter who’s just built a birdhouse. It’s a nice birdhouse, but the kids

wanted a tree fort. That’s not just going to take more work; it’s going to

take more thought as well.

FileMaker is a tool for building database solutions. The solution consists of

both the database and the interface that you build in FileMaker. The work

of designing and building the database is related to the work of designing

and building the interface, but the two tasks have different features. As a

broad generalization, you can think of the design and implementation of a

database as being focused on the data, while the design and implementa-

tion of the interface are focused on the people who will use the data.

In this chapter, you’ll see the fundamentals of database design. When

you’re designing a simple contact manager or recipe book, the database

structure is pretty clear as long as you understand the problem you are

addressing. You know what fields you need to track and what kinds of

fields they are. However, as you will see throughout this part of the book,

sometimes the first intuitive ideas are actually not the best choices. And

when you get into tracking additional categories of data in the same data-

base, things can really get trickier. If you want to build bigger and better

databases, you need a firm grounding in database analysis and database

design. Don’t worry if that sounds ominous. It’s easier than it appears.

ptg8106388

Relational Database Design154

II

PA
RT

 Database Analysis
One of the great beauties of FileMaker is that it’s very easy to just jump right in and start building

things that work. And this is fine, as long as you can keep the whole plan in your head.

Earlier chapters have looked at some practical techniques for separating and organizing data in a

FileMaker database system. This chapter takes that work another step. Here, you learn some tools

for analyzing database problems and translating them into buildable designs.

This chapter approaches things and their relationships somewhat abstractly. Your goal here isn’t

a finished FileMaker solution, but rather a more general design document. You learn a simple but

powerful design process to help you take a real-world problem description and translate it into a

blueprint that a database designer could use to build the database in a real-world database develop-

ment system. This design document is an entity-relationship diagram (ERD). The process for creat-

ing an entity-relationship diagram, somewhat simplified, looks like this:

1. Identify all the types of things involved in the problem being modeled (customers and sales, for

example, or trucks, drivers, and routes).

2. For each type of thing, identify its attributes (customers have first and last names; truck routes

have a beginning and an end).

3. Looking across all the types of things, determine the fundamental relationships between them

(truck drivers have routes; trucks have drivers).

4. Draw up your findings into an entity-relationship diagram.

The ERD, again, is an abstract document that you can implement (build) with FileMaker or some

other database tool. The sections that follow examine each of the steps of this process in much more

detail.

Working with Entities and Attributes
When you set out to design a database, there are two concepts you simply must be familiar with

before you can say you have a solid planning foundation. You need to know the types of things your

system will track, and you need to know the characteristics of each of those things. In a recipe list,

for example, you track one kind of thing: recipes. A recipe’s characteristics are, for example, recipe

name, recipe type, calories, ingredients, and instructions. A bigger database might store information

about several kinds of things, each with its own set of characteristics. For example, if you want to

write a database for a motorcycle company, you might want to track information about motorcycles,

customers, and sales. Now you have three kinds of things, each with its own set of characteristics.

In database design terminology, the things in your database system are entities . Each entity is a

specific, distinct kind of thing about which you need to track information. This system tracks data

about three distinct kinds of things, and each kind of thing has certain characteristics, which in the

technical jargon are attributes . The motorcycle example includes three entities, and each has some

specific number of attributes (see Table 5.1).

ptg8106388

155Working with Entities and Attributes

5

C
H
APTER

 Table 5.1 Simple Analysis of a Database Structure

 Motorcycle Customer Sale

Model Number First Name Customer Name

Model Year Last Name Date

Vehicle ID Number Birth Date Amount

Factory Serial Number Street Address

Accessories City

Manufacturer State

Model Name ZIP

The first step in database design is to determine what entities (things) your proposed system needs

to track, and what the attributes (characteristics) of each entity are. Your list of entities and their

attributes will change during your analysis.

An entity is a class of things that all look more or less alike. In other words, from a database stand-

point, you track many instances of an entity, and you track the same kind of information about each

instance. In a banking system, you’d probably have an entity called Customer because a banking

database needs to keep track of many different customers, and needs to record roughly the same

kinds of data about each one. You’ll always want to know a customer’s birth date, Social Security

number, home address, and the like.

Attributes, on the other hand, refer to the kinds of information you

track about each entity. If Customer is an entity in your banking

database, some of the attributes of the customer might include

birth date, home address, and Social Security number.

Entities often correspond to actual database tables, and attributes

often correspond to database fields. More likely than not, a banking

database will have a Customer table with fields for date of birth,

address, and Social Security number.
It’s fairly easy to represent entities and attributes in the graphical

notation of an ERD. Sometimes it’s more convenient to draw an

entity without showing any of its attributes, in which case you can

draw it in a simple box, as shown in Figure 5.1 .

 note
The entities in these diagrams
are purely abstract things. They
might or might not translate
directly into database tables
or even physical objects. Your
FileMaker solution might (and
almost certainly will) end up with
tables not represented on your
design diagram.

 Customer Account Figure 5.1
A simple, preliminary ERD showing entities for customers and
accounts, with no attributes shown.

Sometimes it’s appropriate to show entities with some or all of their attributes, in which case you

can add the attributes as shown in Figure 5.2 .

ptg8106388

Relational Database Design156

II

PA
RT

 Customer Account

Customer ID
First Name
Last Name
Middle Initial
Date of Birth
Address
SSN

Account ID
Customer ID
Account Type
Min. Balance
Balance

 Figure 5.2
An ERD showing entities for customers and accounts, with attri-
butes shown.

 tip
All design processes are iterative. As you move along, constantly check your logic; it is easy to enthusiastically wander
down a garden path into a swamp. For example, in the database structure described here, look to see whether you
made any invalid assumptions. Not every assumption is wrong, but you should know if you are in any way limiting or
distorting the data.

For example, the attributes of customers include a birth date. That means that a customer can be only a single person
with a single birth date. Is that a reasonable assumption? It might be. Perhaps there is a terminology tweak: If your
customer is a company, the birth date field might be the date of incorporation or registration of the company. You would
then change the name of the field so that both circumstances are covered. Depending on the purpose for which the field
is to be used (in the case of two people joining together to buy a motorcycle, for example), the birth date might be that
of the younger (or older) customer.

Or, after realizing that the inclusion of that field raises questions, you might go back to the user (or to yourself if you are
the user) and ask why that field is included. Sometimes the review and questioning process clarifies the data structure
by simplifying it and removing unneeded data.

Entities Versus Attributes: A Case Study
The focus of this chapter is in taking descriptions of real-world problems and turning them into

usable ERDs. As was noted earlier, your first step in trying to model a problem into an ERD is sort-

ing out the entities from the attributes. To see how to tackle this, let’s begin with an example of a

simple process description:

Maurizio’s Fish Shack is ready to go digital. Maurizio sells fish out of his storefront, but he’s not

worried about electronically recording his sales to consumers just yet. He just wants to keep

track of all the fish he buys wholesale. Every time he buys a load of fish, he wants to know the

kind, the quantity, the cost of the purchase, and the vendor he bought it from. This informa-

tion will give him a better handle on how much he’s buying and from whom, and may help him

negotiate some volume discounts.

Now you know the basics of Maurizio’s business. Next, you need to develop a list of potential enti-

ties. Here are some possibilities:

ptg8106388

157Working with Entities and Attributes

5

C
H
APTER

Fish Load of Fish Purchase

Storefront Variety Vendor

Sale Quantity Volume Discount

Consumer Cost

These possibilities are typically referred to as candidate enti-

ties in that they all represent possible entities in the system. But

are they all entities? You can immediately cross Storefront, Sale,

and Consumer off the list, for the simple reason that the process

description already says that these are parts of his business that

Maurizio doesn’t want to automate at this time. That leaves us

with the following potential entities:

Fish Quantity Vendor

Load of Fish Cost Volume Discount

Variety Purchase

Well, Fish and Load of Fish look as though they refer to the same thing. According to the process

description, a load of fish is actually a quantity of fish that Maurizio bought to resell. Put in those

terms, it’s clearly the same thing as a purchase. Now the list looks like this:

Purchase (of Fish) Quantity Vendor

Variety Cost Volume Discount

These possibilities all seem like reasonable things to track in a database system. But are they all

entities? Remember that an entity is a kind of thing. The thing will probably appear many times in

a database, and the system will always track a coherent set of information about the thing. Put that

way, a purchase of fish sounds like an entity. You’ll record information about many fish purchases in

Mauriziodatabase.

What about something like cost? Cost in the process description refers to the price Maurizio paid for

a load of fish, so cost isn’t really an entity. It’s the price paid for one load of fish. It’s actually a piece

of information about a fish purchase because each fish purchase has an associated cost. The same is

also true for Variety and Quantity. These are all attributes of the Purchase entity.

Then you get to Vendor. A vendor is clearly a category of things; you’ll probably want to store

information about many vendors in this database, so you can consider a vendor to be an entity.

This leaves Volume Discount. Well, that one’s a bit tricky. It probably applies to a vendor and might

reasonably be called an attribute of a vendor. If you assume that each vendor can offer a discount of

 tip
Usually, the rule of thumb to
apply when coming up with a
list of possible entities is to pull
out every word that’s a noun;
in other words, every word that
represents a specific thing.

ptg8106388

Relational Database Design158

II

PA
RT

some kind, it makes sense for Volume Discount to be an attribute of Vendor. Figure 5.3 shows what

the fledgling ERD for this system might look like with the two entities from the process description

and their various attributes.

Purchase Vendor

Purchase
Date
Fish Type
Weight
Unit Price
Total Price
Vendor

Vendor Name
Address
Volume
Discount

 Figure 5.3
An ERD showing entities for fish purchases and vendors, with attri-
butes shown.

Design as an Iterative Process

Your general task when designing a database (or indeed any piece of software) is to take a set of

things in a real-world problem domain and translate them into corresponding things in the software

domain. In your software, you create a simplified model of reality. Concepts such as “fish purchase”

and “fish vendor” in the problem domain turn into concepts such as “purchase entity” and “vendor

entity” in a design, and might ultimately turn into things such as “purchase table” and “vendor

table” in the finished database.

But this translation (from problem domain to software) is not a one-way street. It’s rare that a single,

unambiguous software model exists that corresponds perfectly to a real-world problem. Usually,

your software constructs are approximations of the real world, and how you arrive at those approxi-

mations depends a lot on the goal toward which you’re working.

For example, in your initial reading of the design problem, you

might miss an entity or two, or you might create entities you

don’t really need on later examination. Later, as you do more

work on the project and learn more about the problem domain,

you may revise your understanding of the model. Some entities

might disappear and become attributes of other entities. Some

attributes might turn out to be entities in their own right. You

might find you can combine two similar entities into one. Or you

might find out that one entity really needs to be split in two. At

this stage, you are working on paper, so even a massive redesign

is not costly.

 Understanding Relationships
We’ve dealt with the first two steps of the design process now: the sorting out of entities and attri-

butes. After you have what you think is a decent draft of a set of entities and attributes, the next

step is to start considering how these entities relate to one another. You need to become familiar

with the fundamental types of entity relationships and with a simple notation for representing rela-

tionships graphically in a diagram.

 tip
Consciously looking at the prob-
lem from varying perspectives
can be a useful design tool. You
can easily get trapped in one
way of looking at things. Another
point of view (or a break from the
design process) can often help
you create a simpler structure.

ptg8106388

159Understanding Relationships

5

C
H
APTER

Representing Relationships in a Diagram
Consider a system that stores information about farmers and pigs, among other things. Farmers and

pigs are each entities, and these two entities have a direct relationship, in that each pig ties back to

a single farmer.

There’s a name for the farmer-pig relationship. It’s called a one-to-many relationship , meaning that

for each farmer there may be any number of pigs.

Now you can expand on the entity-relationship notation. You already have a graphical shorthand for

depicting the entities and attributes in a database system. Next, you should add some conventions

for showing the relationships among them. Each entity can be represented by a box, as before, and

each relationship can be represented by a line that indicates the relationship type. In this simple

notation, you would depict the relationship between farmers and pigs along the lines of what’s

shown in Figure 5.4 .

Farmer Pig

Name
Address
Social Security No.

Name
Weight
Birth Date

 Figure 5.4
Entity-relationship notation for a database that stores
information about farmers and pigs.

Notice that the line between the two entities that depicts their relationship branches out where

it touches the Pig entity into a kind of crow’s foot. In a one-to-many relationship, this crow’s foot

indicates the “many” end of the relationship. This notation tells us that one farmer can be linked to

many pigs. If the fork were on the other end, it would imply that one pig could be associated with

many farmers, which would be a very different assertion about the data we’re trying to model.

 Relationship Types
Those simple graphical conventions are the foundation of what you need to draw your entity-

relationship diagrams. Another important concept is an understanding of the different relationship

types you could encounter. You need to reckon with four types: the one-to-one relationship; the

one-to-many and many-to-one relationships (the latter is simply a one-to-many relationship looked

at from the other direction); and the many-to-many relationship. (This is sometimes referred to as

cardinality). We’ll consider each of these relationship types in turn and show how to represent them

in the ERD notation.

 One-to-One Relationships
Consider a data set concerning children and their birth records. Let’s say that for now, you’ve

decided that children and birth records should represent separate entities.

In a standard analysis sequence, after you’ve decided on entities and attributes, you’ll start to ask

questions about relationships. What’s the relationship between children and birth records? Can one

child have many birth records? No, each child is born only once. And can one birth record pertain to

ptg8106388

Relational Database Design160

II

PA
RT

more than one child? Again, probably not. Therefore, the relationship between a child and a birth

record appears to be one-to-one. You can depict that as shown in Figure 5.5 .

Child Birth Record

First Name
Last Name
Middle Name
Social Security No.

Birth Date
Birth Weight
Birth Location

 Figure 5.5
This ERD shows the one-to-one relationship between
children and birth records. A single line with no
crow’s-foot is used.

You’ll often fold one of the one-to-one entities into the other. In this case, you might decide to move

all the attributes of a birth record into the Child entity and get rid of Birth Record as a separate

entity.

But there are many cases in which a one-to-one relationship is the appropriate choice. Perhaps the

most common is the situation in which the data involved comes from two separate domains (or even

two databases, using external data sources such as ODBC databases). If you have a complete data-

base structure for contacts, with one-to-many relationships for contacts and their multiple addresses

as well as contacts and their multiple activities, you might choose to leave that entire structure

intact. You could choose to forge a one-to-one relationship between employee, a key part of your

own database, and the contact, which is in another database or another area of your database.

One of the biggest obstacles to successful database development is the tendency for some design-

ers to insist that their database is the center of the universe. In fact, the most successful databases

are those that work well with other well-designed databases.

 One-to-Many Relationships
We’ve already devoted some attention to the one-to-many relationship. The relationships of a cus-

tomer to sales, of a farmer to pigs, and of a worker to timesheets are all examples of one-to-many

relationships. And as you’ve seen, the crow’s-foot notation is used for indicating these relationships

in which the fork notation indicates the “many” side of the relationship.

You’ll frequently see the entity that represents the “one” side

of the relationship referred to as the parent entity , whereas the

“many” side is often referred to as the child entity .

 Many-to-One Relationships
There’s no difference at all between the concepts of a one-to-

many and a many-to-one relationship. They’re the same idea, just

seen from different points of view. If the relationship between

customers and sales is one-to-many, it’s equally true that the

relationship between sales and customers is many-to-one.

Customer is the parent of Sale, and Sale is the child of Customer.

These statements are equivalent. Figure 5.6 shows the Customer-

Sale relationship.

 note
Whether you choose to describe
this as a one-to-many or a many-
to-one relationship depends on
which side you start from in your
description. The relationship of
a customer to a sale is one-to-
many; the relationship of a sale
to a customer is many-to-one.
One-to-many and many-to-one
are two sides of the same coin; a
relationship can’t be one without
being the other.

ptg8106388

161Understanding the Role of Keys in Database Design

5

C
H
APTER

 Many-to-Many Relationships
Consider the relationship between actors and movies. One actor can play roles in many movies, and

one movie involves roles played by many actors. Therefore, each actor can relate to many movies,

and each movie may be associated with many actors. In fact, one actor might even play several roles

in a single movie. This is a classic many-to-many relationship. You can depict it as shown in Fig-

ure 5.7 .

 Customer Sale Figure 5.6
The Customer-Sale relationship drawn as both a one-to-many
and a many-to-one relationship.

Actor Movie
 Figure 5.7
 Entity-relationship notation for a many-to-many relationship.

Many-to-many relationships are extremely common in relational database systems. Here are exam-

ples of some other many-to-many relationships:

 • Attorney-Case— One attorney can serve on many cases, and one case can involve many

attorneys.

 • Player-Game— One player can play in many games, and one game involves many players.

 • Product-Invoice— One invoice can contain orders for many products, and one product can be

ordered on many different invoices.

 • Student-Class— One student can participate in many classes, and one class can have many stu-

dents enrolled.

Many-to-many relationships are a bit trickier than the others to actually implement in real life. When

we get to the details of how to build a FileMaker database based on an ERD, you’ll see the specific

techniques you need to bring a many-to-many relationship to life in FileMaker. For now, though,

we’ll just use the ERD as an analysis tool and not worry about implementation.

Understanding the Role of Keys in Database
Design

So far there’s been no discussion of exactly how a relationship between two entities is created and

maintained. The answer is simple: We create fields in each entity called keys , which allow instances

of one entity to be associated with instances of another. You might relate orders to customers, for

example, by using a customer’s customer number as a key. Each order would then contain the cus-

tomer number of the related customer as one of its attributes. The following sections explore the

concept of keys in more detail.

ptg8106388

Relational Database Design162

II

PA
RT

Keys That Determine Uniqueness
One of the crucial tenets of relational database theory is that it has to be possible to identify any

database row, anywhere, without ambiguity. Put differently, every row in every table should have

a unique identifier. If I have a record in a table of orders, I want to be able to ask it “What customer

do you tie to?” and get an unambiguous answer. I need a simple answer: “Customer 400.” End of

story. The number 400, as it appears in the customer table, is a unique identifier.

A piece of data capable of uniquely identifying a database row is a primary key . A primary key is an

attribute whose values are (and always will be) unique for every single row in the database. It’s a

unique identifier, such as a customer number, a book’s ISBN number, or a library card catalog num-

ber. A unique key is not a requirement in FileMaker, but it is a good idea to provide one.

What Makes a Good Primary Key?

So far, we’ve mentioned that every database table should have a primary key, and that those
keys have to be unique, to distinguish one row from another absolutely. There’s one other
important rule: Primary keys are best if they’re meaningless.

The important idea here is that data chosen to act as a primary key should be free of real-world
meaning or significance. When data has meaning in the real world, such meaning is subject to
change. In simple terms, data that is supposedly unique might turn out not to be.

Here’s an example. You’re designing a database that holds information about the different
offices of a company. Offices are stored in their own table. You decide that because there’s no
more than one office in a city, the City field in the Office table would make a great primary key.
It’s unique, after all, and every Office record has a City value.

Just to be sure, you check with someone highly placed in the firm, and they assure you that, no,
the company will never need to open more than one office in any one city. You go ahead and
build a database structure around the assertion that the City field in the Office table is unique.
Seven months later, the company announces plans to open its second office in New Delhi, and
you’re left to explain why an important part of the database structure has to be rewritten.

Imagine instead that you had decided that the database system itself should generate a pri-
mary key. Offices will be numbered sequentially starting from 1. The important thing about
this data is that it has meaning only to the database system itself. No one else cares, or even
knows, that the New Delhi office is office number 14. The number 14 has no business signifi-
cance.

The critical difference here is that when you used the City field as a primary key, you relied on
the stability of an assertion about the real world (a place notoriously subject to change). By
contrast, when you create your own key, you’re working in an environment that no one but the
database programmers care about, so you’re at liberty to design uniqueness rules unaffected
by decisions beyond your control.

ptg8106388

163Many-to-Many Relationships

5

C
H
APTER

Keys That Refer to Other Tables
Keys are essential to specifying relationships between tables. Going back to the example of cus-

tomers and orders, the relationship between these entities is one-to-many: One customer can have

many orders.

If you’ve followed the rule about always having a primary key, your Customer entity has a primary

key, which you might call Customer ID. Now, each unique customer may have many related orders.

To forge that relationship, each record in the Order table needs to store the Customer ID (the pri-

mary key) of the related customer. This value, when it’s stored in the Order table, is a foreign key .

The reason for the term is simple: The value in the Order table refers to a primary key value from a

different (“foreign”) table.

Figure 5.8 demonstrates how primary and foreign keys work together to create relationships

between database tables. In a one-to-many relationship, the “many” side of the relationship always

needs to contain a foreign key that points back to the “one” side. The child record thus “knows”

who its parent is.

Customer Table

Name Customer ID

Jack Arleth
Sharon Bogosian
Erlend Stephansson
Kyra Stupanov
Mike Reilly
Terese Bucci
Jason Li

1
2
3
4
5
6
7

Order Table

Customer ID Order # Date

3
3
1
4
5
5
5
7
7
7

001
002
003
004
005
006
007
008
009
010

4/1/2003
4/11/2003
4/17/2003
5/12/2003
7/1/2003
7/5/2003
8/3/2003
8/20/2003
9/1/2003
9/12/2003

Primary Key

Foreign Key

 Figure 5.8
A one-to-many relationship
between customers and orders,
showing primary and foreign keys.

 � FileMaker Pro has several built-in capabilities that help you add strong key structures to your

FileMaker databases. For some ideas on how best to define key fields in FileMaker Pro, see

“Working with Keys and Match Fields,” p. 176 .

 Many-to-Many Relationships
Assume that you’re building a class registration database. It’s intended to show which students

are enrolled in which classes. It sounds as if you just need to deal with two entities: students and

classes. Students and classes have a many-to-many relationship. One student might participate in

many classes, and one class can contain many students. That sounds fine, but how would you actu-

ally construct the relationship?

Based on the fundamental rule mentioned earlier, you need a primary key for each entity. Student

needs a Student ID, and Class needs a Class ID. If you look at things from the student side for a

ptg8106388

Relational Database Design164

II

PA
RT

moment, you know that one student can have many classes. Accordingly, from that viewpoint,

Student and Class have a one-to-many relationship. If that’s the case, from what you now know

about foreign keys, you might conclude that each Class record should store a Student ID to indicate

the student record to which it relates.

This won’t work, though, for the simple reason that one class can contain many students. This

means that the Student ID attribute in Class would have to contain not just one student ID, but a

list of student IDs—one for each enrolled student. The same would be true in the other direction:

Each student record needs a Class ID attribute that stores a list of all classes in which the student is

enrolled.

Using Join Tables
One rule of relational database design that has already been touched on is that it’s almost always a

bad idea to store lists of things in database fields. As a general rule, when you find you’re using a

field to store a list of some kind, that’s a sign you need to add another entity to your system where

you can then store the list items as single records. This should suggest to you that the many-to-

many problem can’t be solved without some kind of additional entity. This is true, and it leads to a

simple rule:

Resolve a many-to-many relationship by adding an additional entity between the two in

question.

Figure 5.9 shows an ERD for students and classes with an additional entity to solve the many-to-

many problem.

Student Enrollment Class

Student ID
First Name
Last Name

Student ID
Class ID

Class ID
Teacher
Semester

 Figure 5.9
 An ERD for students and classes.

This middle entity is often called a join table . Each of the outer entities now has a one-to-many

relationship with this middle entity. Not surprisingly, then, the middle entity has two foreign keys

because it’s on the “many” side of two different relationships. It needs to hold both a Student ID

and a Class ID.

What, if anything, does this entity represent in the real world and what should it be called? One

useful exercise, after you’ve resolved a many-to-many relationship, is to say to yourself, “This join

entity represents the association of one A with one B.” In the example of students and classes, the

middle entity represents the association of a specific student with a specific class. If you think of

the entity as a database table (which it will almost certainly become), each row of the table holds

one student ID and one class ID. If such a row holds the student ID for student number 1009023

(Sam Tanaka) and the class ID for class H440 (History of the Sub-Sahara), this record tells us that

Sam is (or was at some point) enrolled in History 440. This also suggests a good name for the entity:

Enrollment. Each record in this table stores the enrollment of one student in one class.

ptg8106388

165Normalizing Data: What Goes Where

5

C
H
APTER

Using Checkboxes and Multiple Values
With FileMaker, you can store multiple values in a field. Although it is normally not a good idea to

store lists, these multiple values are an important part of FileMaker, and you can safely use them for

many-to-many joins. Each value is separated by a return character. When you create a relationship

from a multivalued field to another field, all the matching values can be used, giving you a many-to-

many join.

And just to make things even simpler, the simplest way to store multiple values in a field is by

using a checkbox set. FileMaker takes care of inserting the return characters as needed. This gives

you a simple way of managing many-to-many joins. Using a separate join table is essential if you’re

going to want to store data in the join table (see “Attributes in a Join Entity” next), or if you want

to use the five standard fields to track when each of the components of the many-to-many join was

created and by whom.

Attributes in a Join Entity

You’ve seen that this join entity needs, at the very least, two foreign keys: one pointing to each side

of a many-to-many relationship. What other attributes does it need?

Well, looking at the example of students and classes, you might wonder where you’d store an

important piece of information such as a student’s GPA. A stu-

dent has only one GPA at one time, so you should store that as an

attribute of the student. But what about course grades? Where do

you record the fact that Sam earned a B+ in H440? Well, Sam can

be enrolled in many courses and thus can receive many grades.

Therefore, it’s not appropriate to try to store the grade somewhere

on Sam’s student record. It belongs instead on the enrollment

record for that specific course. And, if attendance was being taken,

Sam’s attendance would logically go on his enrollment record as

well.

Sometimes join entities have attributes of their own, and some-

times they don’t. You’ll have to ask yourself whether you’re merely

trying to record the fact that the entities are associated or whether

there are additional attributes of their association.

Normalizing Data: What Goes Where
In addition to looking at the relationships among entities, a standard process of relational database

design involves normalizing the data. This is a process whereby the data within tables is examined

to see whether its logical structure can be simplified. Fully normalized relational database tables

generally function more efficiently than non-normalized (or less normalized) tables. There is a wide-

spread belief that normalizing data can use more storage space or even more processing resources,

but experienced database designers tend not to agree with that belief.

 note
The question of adding keys to
a join table is moot if you follow
the suggestion to use five stan-
dard fields in every table (zzID,
zzCreator, zzModifier, zzCre-
ationTS, and zzModificationTS).
They take up little space, and
FileMaker takes care of maintain-
ing the data. You can use them
to track down anomalies and
bugs in the database.

ptg8106388

Relational Database Design166

II

PA
RT

First Normal Form: Eliminate Repeating Groups
Perhaps the most common type of repeating group is addresses

or phone numbers for a contact. The Contact Management Starter

Solutions demonstrates this problem: Each contact can have two

addresses—one for home and one for work.

But what if someone has three addresses? And what if someone

has two jobs? Some lucky people have two homes. There is no

room for a third address.

A normalized database would move the address information to a

subsidiary table. In that way, a contact could have any number of

addresses. The need to create a subsidiary table and a relation-

ship (which is very easy to do in FileMaker Pro) is the reason

some people believe that normalized data is expensive. But the power of the related table is worth

the cost. Not only is there no wasted storage and no arbitrary limit on the number of addresses to

be stored, but you can add a Type field to each address so that people can flag each address as

Home, Work, Weekend, and the like. There is no need to create and use (or not use) fields in the

main table such as Work Phone, Weekend Phone, Mobile Phone, Voicemail Phone, and so forth.

Second Normal Form: Eliminate Redundant Data
There is no reason to store the same data in two places. Doing so wastes space, and the two repre-

sentations of the same data can easily get out of sync.

In the case of a subsidiary table of addresses for a contact, you would not store the name of the con-

tact in both the main and the subsidiary table—doing so would violate second normal form. But if a

different data item, such as the name to use in addressing correspondence, varies depending on the

address, you would store that data twice. Sometimes people in the public eye are known by one name

in town and by another name—perhaps just an initial for the first name—in a weekend getaway.

Another common situation arises with invoicing of items sold. The price of an item is stored in a

table describing the item. To store the price again in an invoice table might violate the second nor-

mal form: storing the same data twice.

In this case, the data is not the same. If the product table contains the current price of a product,

then the price that is stored in the invoice table is the price that was charged when the item was

invoiced—a different piece of information. Storing the price in two places (with two meanings)

means that you can, indeed, have the two values get out of

sync—which is what you want. You want to be able to change

the product price without inadvertently changing already-

invoiced prices.

Third Normal Form: Eliminate Fields Not
Dependent on the Key

Third normal form is a way of saying that you should not store

data that can be derived from data that you do store. Do store

 note
With FileMaker Pro, you can
modify this stricture. By using
calculation fields, you make it
clear that the data you are using
is derived. The main point of
third normal form is not to create
fields that you fill yourself with a
derivable computation.

 tip
Repeating fields might be
giveaways of violations of first
normal form. Fields ending with
numbers also are clues, as in
Employee 1, Employee 2, and so
forth, or Ingredient 1, Ingredient
2, and the like.

ptg8106388

167FileMaker Extra: Complex Many-to-Many Relationships

5

C
H
APTER

the data if the derivation might differ over time as related data changes, but do not bother with

unchanging data.

FileMaker Extra: Complex Many-to-Many
Relationships

Most of the examples in this chapter involved fairly simple, commonly found data-modeling prob-

lems. But in the real world, matters can get quite complex. Some problems are hard to model in the

language of relational databases. Others involve concepts you’ve already seen, but in more complex

forms.

Let’s say that you have to sketch out a database system for a trucking company. The company

needs to track which drivers are driving which trucks and where they’re driving them. After some

thought, you decide you’re dealing with three entities: Driver, Truck, and Route. A route consists of

a start location, a destination, and a number of miles driven.

With the entities fixed, you start to think about relationships. Driver and Truck seem to have a

many-to-many relationship: One driver can (over time) drive many different trucks for the company,

and one truck will be driven by many drivers (again, over time). Driver and Route also seem to have

a many-to-many relationship. Thus, you have three entities, and three many-to-many relationships.

Earlier you learned how to resolve a many-to-many relationship. For any two entities that have

a many-to-many relationship, you add a join entity between them that holds a primary key from

each side of the relationship. You might take that to suggest that you should interpose a join table

between each of the many-to-many relationships, but if you take a high-level view of things, you can

add a single join table that manages all the many-to-many relationships.

These three associations (Truck-Driver, Truck-Route, Driver-Route) are not independent of each

other. They all happen at the same time. When a trucker drives a truck from point A to point B,

all three associations happen at once. Why not put them all into just one record? That’s the right

answer, as it turns out, and it implies the structure shown in Figure 5.10 .

RouteDriver

Truck

Trip Assignment

Driver ID
Truck ID
Route ID
Start Date
End Date
Cargo Weight

 Figure 5.10
The trucking system ERD with a single central join
entity.

ptg8106388

Relational Database Design168

II

PA
RT

What you’re dealing with here is not three many-to-many relationships, but a single “many-to-many-

to-many” relationship. This kind of structure is sometimes referred to as a star join . The central

entity in a star join (which in the example stores information about the associations between a

truck, a driver, and a route) is sometimes called a fact table . If you see a number of join entities in

your diagram that are symmetrical, as they are here, and seem to capture different pieces of the

same data, you might want to think about whether you have a star join of some kind on your hands.

ptg8106388

 6

WORKING WITH MULTIPLE
TABLES

 Multitable Systems in FileMaker Pro
This chapter shows you how to take the ideas from Chapter 5 , “Relational

Database Design,” and use them to build FileMaker database systems.

You learn how to use FileMaker to cre-

ate database systems that model the

types of relationships covered in the

preceding chapter.

Chapter 5 laid out a set of design

concepts that centered around the

ideas of entities, their attributes, and

the relationships between entities. In

FileMaker Pro, you generally represent

a database entity (“student,” for exam-

ple) as a table. You generally represent

an entity’s attributes (“first name,”

“year of graduation,” for example) by

the fields of that table. And you cre-

ate relationships among tables with

FileMaker’s Relationships Graph.

The focus of this chapter is on imple-

menting the relational model. Further

chapters on layout design help you

with additional interface features and

modifications to the basic layout.

 note
The sequence of steps involved
in building a database solution
such as this varies from person
to person. Some people prefer
to build the tables first and then
add the fields and their options.
Other people, knowing the basic
fields used in each table, prefer
to create a table with its fields
and options and then move onto
the next one. Do whatever makes
most sense to you, realizing that
FileMaker database development,
more than most database devel-
opment, is an iterative process.
The only necessity is that to create
a relationship in the Relationships
Graph, you must have the two
tables involved and the two fields
that you want to use as the pri-
mary and foreign keys.

ptg8106388

Working with Multiple Tables170

II

PA
RT

Creating a One-to-Many Relationship in
FileMaker

In the Small Task Management database that you build in this chapter, there are going to be three

basic tables (this is a multitable solution). Each table will have the five basic fields previously men-

tioned. Each is auto-entered by FileMaker Pro, and none can be modified by the user during data

entry. To show the database structure more clearly in this chapter, only zzID is shown in the figures.

 • zzID— This is the auto-entered serial number. Because it is auto-entered and unique, you can use

it as the primary key of each record in each table of the database.

 • zzCreator— This is the name of the creator of the record. It could be set to the account name if

you prefer.

 • zzModifier— This is the name of the last modifier of the record. It could be set to the account

name if you prefer.

 • zzCreationTS— This is the creation timestamp of the record.

 • zzModificationTS— This is the last modification timestamp of

the record.

These are the tables:

 • Tasks— Each task has a name, a type of task, and a due date.

Each task belongs to a single project.

 • Projects— Each project has a name. It is related to zero or

more tasks.

 • Contacts— These are people or organizations who are assigned to tasks. Each contact can be

assigned to zero or more tasks; each task can have zero or more contacts assigned to it.

Each entity in an entity-relationship diagram (ERD) generally translates into one table in a FileMaker

system. The following sections describe how to begin.

Creating the First Table in a Multitable System
When you create a FileMaker database for the first time, you get a single table with the same

name as the database file, along with a single layout that also has that name. If you create a new

database called Small Task Management, you get within it a single table, also called Small Task

Management.

By default, FileMaker Pro automatically switches to the spreadsheet-like table view shown in Figure

6.1 . (You can change this in Preferences using the General tab and the “Use Manage Database dia-

log to create files” setting.)

 note
If you are using FileMaker Pro
Advanced, you can create a table
with these fields and then copy
and paste it for each new table
you create. Alternatively, you can
create the fields in a single table
and copy and paste them into
other tables.

ptg8106388

171Creating a One-to-Many Relationship in FileMaker

6

C
H
APTER

You create new fields by typing in the top row and entering the field name to replace Create Field.

Press Tab. You will see that you now have a new field at the right that is named Field 2, as shown

in Figure 6.2 . If you use the Return key after entering a field name, you commit the name and stay in

the same column (that is, no Field 2 is created).

 Figure 6.1
 FileMaker Pro
automatically
creates your
first table.

 Figure 6.2
 Create new
fields.

When you click in a field title, a down-pointing arrow lets you

choose field types and options, as shown in Figure 6.3 .
You can also manage fields and tables from the Manage Database

dialog found in the File, Manage submenu, as shown in Figure

6.4 . The Manage Database dialog offers you more options. Use the

table view or Manage Database dialog, depending on your prefer-

ence at the time.

 tip
Many people use both interfaces
in different circumstances.

ptg8106388

Working with Multiple Tables172

II

PA
RT

 Figure 6.3
Set the field types
and options.

 Figure 6.4
Use the Manage
Database dialog.

ptg8106388

173Creating a One-to-Many Relationship in FileMaker

6

C
H
APTER

One circumstance in which you probably want to use the Manage Database dialog is if you want to

create several tables, as is the case here. For a multitable solution, the first step might be to rename

the first table. Figure 6.5 shows the first table selected in the Tables tab of the Manage Database

dialog; its name is about to be changed to Tasks.

 Figure 6.5
Rename the first
table.

In Figure 6.6 , you can see four fields created in the newly renamed Tasks table. They are the pri-

mary key, zzID; the due date for the task; the name of the task; and the foreign key that will iden-

tify the project in the project table when that is created. Later, there will also be the other four basic

timestamp and identification fields described previously.

� For a refresher on the details of creating fields within a single table in FileMaker, see Chapter 3 ,

“Defining and Working with Fields and Tables.”

ptg8106388

Working with Multiple Tables174

II

PA
RT

Adding a Table to a Multitable System
You’ve taken care of the Tasks table. To add a table for Projects, stay in the Manage Database dia-

log, but switch to the Tables tab. You see just one table, which in this example is called Tasks. To

add a new table, type the name in the Table Name box and click Create. The new table is added to

the list. This will be the Projects table, as shown in Figure 6.7 .

 Figure 6.6
Field definitions for
an initial table in a
database of Tasks
information.

 Figure 6.7
 FileMaker’s Tables
view, showing a
database with mul-
tiple tables.

ptg8106388

175Creating a One-to-Many Relationship in FileMaker

6

C
H
APTER

You’re now free to add fields to the new table. Figure 6.8 shows the basic starting fields for the

Projects table.

The Projects table automatically has a primary key (as do all tables that have an auto-entered zzID

serial number). It does not need a foreign key as the tasks table does. The next section shows you

why.

� For a refresher on primary and foreign keys, see “Understanding the Role of Keys in Database

Design,” p. 161 .

 Adding a Relationship
You now have two tables, as well as the primary and foreign keys that good database design

demands. To create a relationship between these two tables, move to the Relationships tab of the

Manage Database dialog. This window, known as the Relationships Graph, should have a couple of

graphical elements already displayed. Each one represents one of the database tables that exist in

this database. These elements are known as table occurrences . Each shows the name of the table it

represents, along with that table’s fields.

Adding a relationship between these two table occurrences is simple: Draw a line from ProjectID in

the Tasks table to zzID in the Projects table. You can also draw it in the other direction, from zzID in

the Projects table to ProjectID in the Tasks table. Relationships have no direction in FileMaker Pro.

You should see a line extend from one table to the other. When you release the mouse, FileMaker

creates the relationship and displays it as a link between one or more match fields at the top of the

table occurrence pair. Figure 6.9 shows how the Graph will look as a result.

 Figure 6.8
Field structure for a
table of projects.

ptg8106388

Working with Multiple Tables176

II

PA
RT

You might have noticed the crow’s foot at the end of the relation-

ship line where it touches the Projects table occurrence. This is

none other than the indicator that you’re accustomed to seeing

on the ERDs from the preceding chapter. It’s intended to indicate

the “many” side of a one-to-many relationship.
At this point you’ve seen how to add a new table to FileMaker’s

default one-table database configuration and how to define a

one-to-many relationship between two FileMaker tables. The

next sections clarify some important points about multitable sys-

tems.

Working with Keys and Match Fields
You should remember from Chapter 5 that keys are fields within tables—fields that are essential

elements in forming the relational structure of a multitable system. FileMaker takes a somewhat

broader view of keys than many other relational databases, and for that reason these fields are

referred to as match fields when you’re working in a FileMaker context. A match field in FileMaker

 Figure 6.9
 FileMaker’s
Relationships
Graph, with a rela-
tionship between
two table occur-
rences.

 note
Be warned, though! FileMaker
provides this graphical adorn-
ment as a kind of a hint or
guess about the relationship;
it might not always be accurate
(although, in this case, it is). You
find out more in the next section,
where the creation of key fields
in FileMaker is discussed.

ptg8106388

177Creating a One-to-Many Relationship in FileMaker

6

C
H
APTER

is any field that participates in a relationship between two FileMaker tables. Primary keys and for-

eign keys fit this definition, of course, but so do a number of other types of fields explored in the

next chapter.

� For more details on the broader uses of match fields in FileMaker Pro, see “Relationships as

Queries,” p. 194 , as well as other sections of Chapter 7 , “Working with Relationships.”

Key fields (which form the structural backbone of the system) need to play by some special rules—

especially primary keys. Consider the current example, the Small Task Management database sys-

tem, and consider the zzID field in the Projects table. This field has been identified as the primary

key for the Projects table. To play the role of primary key, it must have a unique value. This was

done automatically when you made it an auto-enter serial number in the Field Options dialog; this

was further implemented by forcing it to have a unique value in the Validation tab and not allowing

the user to modify it during data entry.

Cardinality in the Relationships Graph

This discussion provides an opportune moment to look again at that crow’s foot that FileMaker
so cleverly applied to the Projects-Tasks relationship created earlier. FileMaker looks at the
field definition options to try to determine the cardinality of a relationship. Any field that is
either defined to be unique or has an auto-entered serial number is assumed by FileMaker to
be the “one” side of a relationship. Lacking either of those characteristics, it’s assumed to rep-
resent the “many” side. That, in brief, is how FileMaker determines how to draw the cardinality
indicators (that is, the crow’s foot) in the Relationships Graph. It’s a useful indicator, to be sure,
but not bulletproof, and is really just advisory. The cardinality indicator neither creates nor
enforces any rules, and it can’t be changed from FileMaker’s default “guess” value. It simply
tells you what FileMaker thinks is going on.

The Database So Far

At this point, you have created two tables and added fields to each of them. You have used the

Manage Database dialog to create a relationship between them. You have also created two default

layouts—or at least FileMaker Pro has done it automatically for you while you were working in the

Manage Database dialog. The order of the fields in the layout reflects the sequence in which you

created them.

You can create a new record by choosing New Record from the Records menu in Browse mode. The

serial number (1) is automatically filled in, and you can type a project name, such as Chapter 6 .

Figure 6.10 shows the Tasks layout created for you with a single record entered.

ptg8106388

Working with Multiple Tables178

II

PA
RT

Working with Related Data
So far in this chapter you’ve learned how to create additional tables in a FileMaker system and how

to build relationships between those tables based on well-constructed match fields. The following

sections show you how to begin to use your relationships to work with and create data in multiple

tables at once.

Using a Portal to View Related Child Data
The Small Task Management database system has two tables in

it now, and there is a relationship between Projects and Tasks.

In this example, a single record has now been created in the

Projects table.

Now it is reasonable to create tasks for the project and to display

them. You can do this with a FileMaker layout element called a

portal . A portal lets you display multiple related records for a par-

ent record in a layout.

� For additional discussion of the parent/child naming

convention, see “Creating a One-to-Many Relationship in

FileMaker,” p. 170 .

To create a portal on the Projects layout, choose the portal tool

from the Status toolbar tools in Layout mode, as Figure 6.11

shows, and draw the portal in the approximate location you want

it on the layout.

 Figure 6.10
 FileMaker Pro
has created
two layouts
for you.

 note
Although nothing prevents you
from using a portal to display
a one-to-one relationship, its
design is optimized for the
display of multiple records in
a one-to-many relationship.
The context or base table for
the layout in which a portal is
placed should be the “one” side
of the relationship; the portal
will be the “many” side. You can
have multiple portals in a single
layout, but they will all be the
“many” sides of various relation-
ships of which the base table is
the “one.”

ptg8106388

179Working with Related Data

6

C
H
APTER

Click once on the tool, and then, on the layout, drag out a box wide enough to show the Task

information and release the mouse. You get a dialog asking for details about the portal’s contents,

behavior, and display. The dialog is shown in Figure 6.12 .

 Figure 6.11
This is a lay-
out in Layout
mode, showing
the FileMaker
portal tool.

 Figure 6.12
 FileMaker’s Portal Setup dialog.

ptg8106388

Working with Multiple Tables180

II

PA
RT

In general, when you set up a portal for the first time, you need to do the following:

 • Choose a table occurrence from which to display data.

 • Choose additional portal options.

 • Choose data fields for display in the portal.

More details on each of these steps follow.

First, you need to specify where the portal gets its data. In the Portal Setup dialog, the Show Related

Records From list enables you to choose which table to draw data from. The list is divided into sec-

tions: one for related tables and one for unrelated tables. (The Relationships Graph determines the

question of whether a table is related or unrelated.) In the current example, for a portal on a layout

in which the table context is the Projects table, there should be only one available choice in the

menu: the Tasks table, which is the only other table related to Projects in the Relationships Graph.

By choosing Tasks from this menu, you’re instructing FileMaker to show you all Tasks records

related to the currently visible Projects record.

The Portal Setup dialog contains a number of other choices as well. For now, you can opt to display

just four portal rows and put a vertical scroll bar on the portal so that you can scroll down if a proj-

ect has more than four tasks. You can also apply coloring or striping to the portal if you choose.

FileMaker also displays a dialog at the end of the portal-creation process, asking which fields from

the related table you want to show in the portal, as shown in Figure 6.13 .

 Figure 6.13
The Add Fields dialog shows the available
fields in the related table.

You can double-click field names or select them and click Move to add fields to the portal. As with

everything else in the portal design, you can come back later to make modifications if you want.

Note also that the pop-up menu at the upper left of the Add Fields dialog lets you select other

related table fields to display in the portal. After you have added fields to the portal list on the right,

you can rearrange them by dragging the double-headed arrows up or down (see Figure 6.14).

ptg8106388

181Working with Related Data

6

C
H
APTER

You can reopen the Portal Setup dialog by double-clicking the portal itself. Doing so lets you make

other changes. You could, for example, click the Sort button to sort the data displayed in the portal,

as shown in Figure 6.15 . Here, the data is sorted in ascending order by date due (earliest first).

 Figure 6.14
 Reorder portal fields if necessary.

 Figure 6.15
 You can sort portal data.

In addition to sorting the portal, you usually want to add a scroll

bar to it in the Portal Setup dialog. A check box lets you do this, as

shown in Figure 6.16 .
Now that you have set up your portal, you are ready to enter

related records.

 note
Fields are automatically added
to a portal row the first time the
Portal Setup dialog is shown,
immediately after you have
drawn the portal. Thereafter, you
need to add them manually.

ptg8106388

Working with Multiple Tables182

II

PA
RT

Using a Portal to Add Related Records
You can use portals for data entry as well as data viewing. You can even configure the portal and its

underlying relationship so that a user can add Tasks to a Projects record by typing directly into the

portal rows. To accomplish this task, you need to edit the relationship between Tasks and Projects.

On the Relationships Graph, double-clicking the relationship line between the two tables brings up

the Edit Relationship dialog, shown in Figure 6.17 .

 Figure 6.16
In the Portal Setup dialog, you can control where the data comes
from, how it is sorted, and whether there is a scroll bar.

 Figure 6.17
In the Edit Relationship dialog, you
can edit individual relationships in
the Relationships Graph.

ptg8106388

183Working with Related Data

6

C
H
APTER

For each table participating in a relationship, there’s an Allow

Creation of Records in This Table via This Relationship check box

under it. If you check this box on the Tasks side of the dialog, you

are able to create task records via this relationship. You also can

choose to delete related records automatically, which in this case is

a good idea.
Relationships in FileMaker have no direction, so you cannot tell

which side a table will appear on in this dialog (the direction in

which you drew the relationship actually determines it).

If you check this option and return to the Projects layout in the parent table, you’ll discover that you

can now click an empty row of the portal and type in a task. If you do so, you automatically create

a second, empty row for yet another task as soon as you have clicked out of the field into which

you entered data. When the check box to allow creation of records is checked, you always have an

empty row in the portal for data entry, as shown in Figure 6.18 . With portals, it’s easy to view, cre-

ate, and manipulate records on the “many” side of a one-to-many relationship.

 note
You cannot have a task without
an associated project, so if the
project is deleted, all its tasks
should be.

 Figure 6.18
You can enter data in
the portal for a related
record.

You can add a feature to the portal to increase its usability: You can add a widget so that you can

go to the related record. In Layout mode, select a widget from a Starter Solution or create one your-

self and paste it into the portal row, as shown in Figure 6.19 . Any graphic will do; at this point it is

merely an image with no functionality.
With the widget selected, choose Button Setup from the Format menu to open the dialog shown in

Figure 6.20 . (Alternatively, just double-click the widget.)

ptg8106388

Working with Multiple Tables184

II

PA
RT

 Figure 6.19
Add a widget to the por-
tal row.

 Figure 6.20
Use the Button Setup dialog to
implement a button.

ptg8106388

185Working with Related Data

6

C
H
APTER

Choose Go to Related Record for the widget’s action, as shown in Figure 6.20 . Click Specify to open

the Go to Related Record Options dialog, shown in Figure 6.21 .

 Figure 6.21
 Set the table and layout to go to.

You will want to display records from the Tasks table. You can choose the layout to use (there is

only one at this point, the default Tasks layout). Make certain that you use the check box at the bot-

tom to show only related records.

Back in Browse mode, you will see your widget in the portal row; it is also in the next (empty) row

at the bottom of the portal, as shown in Figure 6.22 . If you click the widget in the first row (where

you have entered data), you should go to the related Tasks record using the Tasks layout.

 Figure 6.22
The widget lets you move to
a related record in its own
layout.

ptg8106388

Working with Multiple Tables186

II

PA
RT

You have implemented a relationship in the database and implemented half the navigation needed

to move around the relationship.

Working with Related Parent Data in a Child File
In the Tasks layout, you can make two improvements that will complete the process. First, add a

merge field (Insert, Merge Field) in the header of the layout. From the Specify Field dialog shown in

Figure 6.23 , select Name from the Projects table.

 Figure 6.23
Add a merge field with the name of the related Projects record.

You can select the merge field and make it clickable by choosing Format, Button Setup. Repeat the

process you used for the widget, but this time go to the related Projects record (you are already

viewing the Tasks record), and use the Projects layout.

As shown in Figure 6.24 , you now have the ability to move back and forth between projects and

tasks.

ptg8106388

187Creating a Many-to-Many Relationship

6

C
H
APTER

Creating a Many-to-Many Relationship
The preceding sections introduced you to most of FileMaker’s fundamental tools for working with

multiple related tables. Now it’s time to extend those concepts and see how to use them to create a

many-to-many relationship structure.

 � As noted in “Many-to-Many Relationships” in Chapter 5, you can also implement a many-to-

many join using a multivalued field and checkboxes.

 Building the Structure
As described in the preceding chapter, a many-to-many relationship requires a join table. You have

to add two tables to the Relationships Graph to implement a many-to-many relationship between

tasks and contacts. The first is a Contacts table, which you can create exactly as you did the

Projects and Tasks tables. For now, it is sufficient to give it a zzID and a Name field. Then create an

Assignments table. This is the join table, and it needs three fields: its own zzID field, a TaskID field,

and a ContactID field.

In the Manage Database dialog, create relationships between the Assignments table and the

Contacts and Tasks tables. The process is the same as it was for relating Tasks to Projects. Your

Relationships Graph should look like Figure 6.25 (subject to spacing variations).

 Figure 6.24
The Tasks lay-
out now has
a link to the
related Project
when you click
the project
name.

ptg8106388

Working with Multiple Tables188

II

PA
RT

 Creating Value Lists
You can use value lists to let users choose the values for the

fields in the Assignments table. This is a good idea because the

table itself uses the meaningless ID numbers. You must have cre-

ated the Contacts and Tasks tables to complete this step. To cre-

ate a value list, choose Manage, Value Lists from the File menu

or use the Manage icon in the status toolbar, as shown in Figure

6.26 . When the Manage Value Lists dialog opens, click New to

create a new value list.
The Edit Value List dialog shown in Figure 6.27 opens next. You

want to use data from a field, so name the new value list Contacts , and then choose the first radio

button; it opens the Specify Fields dialog.
On the Specify Fields dialog shown in Figure 6.28 , choose the zzID field from Contacts. Choose to

show data from a second field—the Name field in Contacts—at the right of the dialog. Sort the data

on the second field. Create a value list for Tasks in the same way.

 Figure 6.25
 Add relationships
for the join table.

 note
The Manage icon shown in Figure
6.26 is not part of the standard
status toolbar, but you can add
it using View, Customize Status
Toolbar. It is a very useful icon to
add; many people add it to the
Layout mode status toolbar.

ptg8106388

189Creating a Many-to-Many Relationship

6

C
H
APTER

 Figure 6.26
 Manage the
value lists.

 Figure 6.27
 Use data from a field.

ptg8106388

Working with Multiple Tables190

II

PA
RT

 Designing the Interface

FileMaker Pro has created an Assignments layout for you automatically. You can modify that layout

to make it more user friendly. The first thing to do is to make the ContactID and TaskID fields pop-

up menus using the value lists you just created. Select the ContactID field in the default layout and

set it to use the Contacts value list as a pop-up menu, as shown in Figure 6.29 . Do the same for the

TaskID field using the Tasks value list.
If you add some new tasks to the database, your interface might look like Figure 6.30 .

 Figure 6.28
 Choose the zzID and Name fields.

 tip
You will find out more about relationships and layouts throughout this book. The principles are quite simple. It is impor-
tant to remember that, compared to pre–FileMaker 7 databases, relationships can span many tables in the Relationships
Graph. As long as a path can be found between two tables, they are related and you can use the relationship to con-
struct portals and related fields.

As you build layouts, it is frequently a good idea to implement both sides of navigation—from a parent to child records
(frequently using portals) and from a child record to its parent (with a widget—often in a portal row—that uses the Go
to Related Record action). If you don’t do this, you might inadvertently construct traps that a user cannot easily get out
of.

Another tip to remember is that frequently (but not always) it is the join table that should be the base table for a layout
that will show a many-to-many relationship. Although the join table normally stays in the background, it has the infor-
mation about both sides of the relationship.

ptg8106388

191Creating a Many-to-Many Relationship

6

C
H
APTER

 Figure 6.29
 Use the value list for data entry.

 Figure 6.30
Your basic join table and its
interface are complete.

ptg8106388

Working with Multiple Tables192

II

PA
RT

 Rapid Multitable Development
Working with the complex database schemas of a multitable file, or a solution composed of several

such files, can sometimes be daunting. Using FileMaker Pro Advanced, you can import the defini-

tions for multiple tables from one file to another. This schema import does not import any data, only

the table and field definitions for selected tables. If you like to add a standard set of tables to most

of your solutions (utility tables, logging tables, and resource tables), this procedure is now as simple

as importing the table schemas from one file to another. It’s also possible to copy and paste table

definitions, between or within files.

The same is also true of field definitions. They can be copied and pasted, either between files or

within files, allowing you to quickly reuse blocks of standard fields. The enhancements extend to

ScriptMaker as well, where you can copy and paste scripts and script steps with ease.

 Troubleshooting

 Repeating Portals
I’ve created a portal, but instead of seeing a set of different records, I see that every row of the por-

tal shows exactly the same data.

This problem indicates a mismatch of table occurrences. Specifically, it suggests that although the

portal is set to look at records from table occurrence A, the fields you’ve chosen to display in the

portal are actually from table occurrence B. Because it’s possible to have several different table

occurrences based on the same underlying table, it’s possible to see the same field list for several

different table occurrences. Nevertheless, if the portal and the fields displayed in it draw from dif-

ferent table occurrences, you probably won’t get a meaningful display even if all the different table

occurrences are based on the same underlying table.

 Accidental Delete Restrictions
I set up a cascade-delete relationship between my Customer table and my Invoice table so that

when I delete a customer, all related invoices are deleted as well. But when I try to delete a cus-

tomer, I receive a message that I don’t have sufficient privileges. I checked my privileges, and I do

have delete privileges in the Customer table.

Check to make sure you have delete privileges on the Invoice table as well. To perform a delete

operation successfully in FileMaker, a user needs delete access to any and all records to be deleted.

If you have delete privileges for Customer but not for Invoice, the entire deletion operation is forbid-

den.

ptg8106388

 7

WORKING WITH RELATIONSHIPS

 Relationships Graphs and ERDs
Chapter 5 , “Relational Database Design,” outlined some database theory

that helps produce an ERD—an entity-relationship diagram that shows

the fundamental building blocks of a database system and the ways in

which they relate. In Chapter 6 , “Working with Multiple Tables,” you

saw how to use FileMaker’s relationship tools to turn an ERD into a work-

ing FileMaker database. This might mislead you into thinking that the

Relationships Graph is really the same thing as an ERD, and that the

relationships you build there match one-to-one with the relationships you

sketch out on your ERD.

In fact, there’s a lot more to relation-

ships in FileMaker. The Relationships

Graph certainly handles all the struc-

tural relationships present on an ERD.

But there are many other ways to

use relationships in FileMaker. The

ERD-based relationships are the struc-

tural core of any FileMaker database

(or any relational database), but this

chapter takes you beyond the core and

shows you some other ways you can

use relationships in FileMaker. It also

delves further into the features of the

Relationships Graph and discusses dif-

ferent ways of organizing files, tables,

and table occurrences in a FileMaker

system.

 note
Like the preceding chapter, this
chapter uses the Small Task
Management database. You can
download it from the author’s
website as described in the
Introduction. Although the name
is the same as the database from
 Chapter 6 , the downloadable
database for this chapter incor-
porates the changes made here,
so make certain that you look at
the Chapter 7 version if you want
to compare the downloadable
database with the text of the
chapter.

ptg8106388

Working with Relationships194

II

PA
RT

 Relationships as Queries
Relationships can be more than classical database relationships in FileMaker Pro: They can be

saved queries (something that does not exist in the world of SQL). In the Small Task Management

database created in Chapter 6 , you saw how to add a Tasks portal to the layout based on the

Projects table.

The portal looks into the table of tasks and is based on the one-to-many relationship between a proj-

ect and task set, based on a shared key called zzID in Projects and ProjectID in Tasks. But the portal

also represents a kind of query, which says, “Show me all tasks for this project.”

Relationships are often (but not always) simple matches of key

values, but queries typically involve many components. You can

create a relationship that is a saved query that will, for example,

display not only all the tasks for a project, but also those tasks for

a project that have a due date before or after a given date.
The database as it is now contains the basic relationship of tasks

for a project. To be able to create a new relationship to implement

this query, we need to add a field to the database and then delve

into three new concepts in FileMaker relationships:

 • Nonequijoins

 • Table occurrence

 • Multiple match

The new field to add is a date field that you can use in the

relationship as a cut-off date before or after which data will be

included (or excluded) from the Tasks table. This new date field

is added to Projects so that it can control the date-sensitive rela-

tionship from Projects to Tasks. Fields that control relationships

such as this one are frequently global fields: There is no need to

have a different value for each record. Create a global date field

in Projects and call it gDateLimit.

 Nonequijoins
In the Relationships Graphs shown in Chapter 6 , all the relationships have a box with an equal sign

in the middle of the line connecting the two table occurrences. To explore what that means, you can

double-click that box to edit the relationship. Figure 7.1 shows the Edit Relationship dialog.
This relationship is built between a ProjectID in Tasks and a zzID in Projects. The match criterion

is based on equality, meaning that records match (and hence are displayed in a portal that shows

records from this relationship) if and only if the ProjectID in Tasks is exactly equal to the zzID in

Projects. This is the correct behavior for the structural relationship represented on the ERD. Such a

relationship, based on equality, is called an equijoin .

 note
The distinction between a rela-
tionship and a saved query in
FileMaker is in the purposes
for which you use them: All are
FileMaker relationships.

 tip
Not using a global for this type of
control field matters only if you
want to allow multiple windows
to be open using the same rela-
tionship at the same time and if
you want each to be able to have
its own control value.

ptg8106388

195Relationships as Queries

7

C
H
APTER

The upper part of the Edit Relationship dialog is the place where the match actually is defined.

Notice, in Figure 7.1 , that equality is not the only operator available for defining a match. In fact, you

can build relationships based on combinations of any of the seven comparison operators.

To build the new relationship that implements the query showing you a project’s tasks that are due

before or after gDateLimit, you need to build a nonequijoin relationship that uses < or > to match to

the date field in Tasks. You could update the existing Relationships Graph to modify the relationship

between Tasks and Projects, but it makes more sense to add a new relationship that implements

this query while leaving the existing one intact because both relationships have useful but different

purposes in the database.

Adding a Table Occurrence to the Relationships Graph
The Relationships Graph displays table occurrences and the relationships between them. A table

occurrence is based on an actual table (that is, one that appears in the Tables tab of the Manage

Database dialog or in an external data source), but it is not the table itself. When you create a new

table in the Tables tab, a table occurrence with that name is added to the Relationships Graph, so it

is easy to think that the occurrence is the table itself.

A single table can have multiple table occurrences in the Relationships Graph. Indeed, there are

certain cases in which you need to do this. Paths in the Relationships Graph must be unambiguous.

Consider the case of three tables with three table occurrences in a Relationships Graph: call them

 Figure 7.1
FileMaker can use any of seven different
operators to compare match fields.

ptg8106388

Working with Relationships196

II

PA
RT

table/table occurrence A, B, and C. If there is a relationship from A to B and another from B to C,

you have established a path from A to C, and it is unambiguous.

Now add table and table occurrence D. You can create a relationship from A to D with no problem.

But if you attempt to create a relationship from D to C, FileMaker Pro will not let you. To do so

would create a second path from A to C using the A-to-D relationship and the D-to-C relationship.

The criteria for the intermediate relationships almost certainly will be different, so if you traverse

the A-B-C path, the specific data you retrieve will be different than if you traverse the A-D-C path.

The solution is to create a new table occurrence based on C. Call it C2 for the moment. Now you

have two unambiguous paths from table A to table C. One goes through the table occurrences A-B-

C, and the other goes through the table occurrences A-D-C2. In both cases, you can access data from

table C from table A, but by using distinct paths, you can control the relationships that are used.

In the current example, you want a new view of Tasks from the perspective of Projects based on a

nonequijoin match of dates. Therefore, you need to add a new occurrence of the Tasks table to the

Graph. (All the existing table occurrences were automatically added when you created the underly-

ing tables.) To add the new table occurrence of Tasks, open the Relationships Graph in the Manage

Database dialog and click the Add Table Occurrence icon in the lower-left corner (it is the leftmost

icon in the bottom row). Figure 7.2 shows the resulting Specify Table dialog.

 Figure 7.2
You can add a new table occurrence to the Relationships Graph.

In the Specify Table dialog, choose a source table to include in the Graph. In this case, you want

to add another occurrence of Tasks. At the bottom of the box is a place for you to name the table

occurrence. Because the original occurrence of the Tasks table is already named Tasks, you need a

new name. FileMaker automatically generates a name with a number added to the last occurrence

name. We recommend a name that says something about the way the new relationship will be used.

In this case, TasksBeforeDate fits the bill. Figure 7.3 shows the Relationships Graph with the new

table occurrence, as well as the gDateLimit field you added to Projects.

ptg8106388

197Relationships as Queries

7

C
H
APTER

All that’s left is to create a relationship from Projects to this new table occurrence, which will incor-

porate the gDateLimit field into the match criteria.

Defining a Relationship with Multiple Match Criteria
Chapter 6 showed you how to define new relationships in the Relationships Graph with a graphi-

cal technique consisting of dragging from one match field to another. In addition, you can add a

new relationship simply by clicking the small Add Relationship icon (the second icon in the Tables/

Relationships icon group at the lower left of the Relationships Graph, as shown in Figure 7.3).

Clicking that icon brings you the familiar Edit Relationship dialog, but it’s initially completely empty.

Begin by selecting the two tables that are to participate in the relationship. Draw the relationship

between Projects and TasksBeforeDate. It doesn’t matter which direction you draw the relationship,

but you need to notice which table is on which side in the Edit Relationship dialog. Define the first

match criterion. Select the ProjectID field from TasksBeforeDate and the zzID field from Projects,

make sure that the menu of operators in the middle shows an equal sign, and click the Add button.

So far it looks exactly like the Edit Relationship screen for the original Projects-Tasks relationship

that was shown in Figure 7.1 , except that the table occurrence on the left is now TasksBeforeDate

instead of Tasks.

 Figure 7.3
A second occurrence
of the Tasks table has
been added to the
Graph.

ptg8106388

Working with Relationships198

II

PA
RT

But you still need to tell FileMaker to consider only those Tasks on which the due date is before the

cut-off date in the gDateLimit field. To make this happen, you add another criterion to the relation-

ship. Select gDateLimit on the right in Projects, DueDate on the left in TasksBeforeDate, and from

the operator menu in the middle, select the < sign. Click Add, and the new match criterion is added

in the middlemost box, as shown in Figure 7.4 .

 Figure 7.4
Using a nonequality condition to
build a relationship.

Notice what that middle box is saying now. There’s a large AND in the left margin, which says that

this relationship pulls only those tasks for which the project ID matches AND the due date is before

the cut-off date.

 note
Relationships in the Relationships Graph are bidirectional; you can access one table occurrence from the other side.
This does not matter with equijoins. However, with nonequijoins, you must make certain that the logic recognizes which
table is on which side. In this case, because the cut-off date is in Projects on the right, the operator to select due dates
for Tasks (on the left) must be <. If TasksBeforeDate were on the right, the operator to select due dates would be >.
Both relationships would enforce the same logic.

ptg8106388

199Relationships as Queries

7

C
H
APTER

Notice also how FileMaker represents this new relationship in the Relationships Graph. Each end

of the relationship line forks to indicate the multiple match criteria—and the operator symbol in the

middle of the line is a curious kind of X, indicating a complex match with multiple operators at work.

Figure 7.5 shows the Relationships Graph with the new relationship.

 caution
You might be wondering how to create a multiple-match relationship that works if any one of the criteria is true, as
opposed to those that work only if all the criteria are true. This isn’t possible, unfortunately. To learn more, see “No OR
Conditions with Multiple Match Criteria” in the “Troubleshooting” section near the end of this chapter.

 Figure 7.5
 The Relationships
Graph indicates
when a relationship
is based on multiple
match fields. The [X]
comparison opera-
tor shows that mul-
tiple operators are
in use as well.

To use the new relationship, you could draw another portal on the Projects layout. Base it on

TasksBeforeDate instead of plain Tasks, and use the same data fields. The result should be similar

to what you see in Figure 7.6 . When you simply change the date, different data is automatically

displayed. (You use the Projects layout on the base because that is the place where the gDateLimit

field is located; the portal is to TasksBeforeDate.)

ptg8106388

Working with Relationships200

II

PA
RT

To add a comparable TasksAfterDate relationship, you can repeat the steps in this section; just

reverse the direction of the relationship operator (in other words, the cut-off date will be before the

task due dates).

 Figure 7.6
More complex rela-
tionships can pro-
duce sophisticated
views, such as the
TasksBeforeDate
view shown here,
which uses a portal
onto the complex
relationship as well
as the FileMaker Pro
drop-down calendar
interface elements.

 tip
You can also duplicate the existing Projects layout, rename it, and double-click the portal to change its source from
Tasks to TasksBeforeDate. Remember to double-click the fields in the portal to also change their source from Tasks to
TasksBeforeDate. That is the method used in the downloadable example.

 note
In designing an interface like this, you have to decide how to handle exact matches. If you use less than or equal or
greater than or equal, you will display exact matches to the cut-off date in both portals, which could be misleading. You
can add a third portal that displays the exact date’s events, or, provided that you clarify this in the interface, you can
choose a combination of less than or equal and greater than (or the reverse) so that exact match dates appear in only
one place or the other.

ptg8106388

201Creating Self-Relationships

7

C
H
APTER

These three concepts—nonequijoins, multiple table occurrences, and multiple match criteria—afford

you extraordinary flexibility as a database developer. The sections ahead explore examples that

show how to use these tools to solve particular problems of database design.

 Creating Self-Relationships
In the preceding section, you created a relationship controlled by a date in the Projects table to dis-

play related data from Tasks. You can use the same logic to relate one occurrence of the Tasks table

to another occurrence of the Tasks table so that you can see tasks due before a given task.

The basic process is the same: You select a field in the controlling table (which is a Tasks occur-

rence, such as the original Tasks table), and you implement the relationship to a new table occur-

rence, which drives a portal that is displayed in the window of the basic Tasks occurrence. You do

not even have to add another date field. You can use this mechanism to display the tasks due before

the date of a given task in the same project. This section shows you how to do that.

First, create a new table occurrence based on the Tasks table called TasksBeforeThisTask using the

same technique illustrated previously in Figure 7.2 .

Then, instead of creating a relationship to Projects, you can create a relationship between the new

occurrence, TasksBeforeThisTask, and the original Tasks occurrence. Figure 7.7 shows that relation-

ship.

 Figure 7.7
 Create a self-join relationship.

ptg8106388

Working with Relationships202

II

PA
RT

Both occurrences are based on the Tasks table, so the fields are the same. Match the DueDate field

of Tasks to DueDate in the new occurrence so that DueDate in Tasks is greater than DueDate in the

new occurrence (or vice versa—it doesn’t matter as long as you are consistent in your naming). You

also need to match the ProjectID in both Tasks records so that you are including only peer tasks

with the same Project ID.

This is the same logic you applied in the preceding section, and you can now update the Tasks lay-

out so that it displays data for a Tasks record at the top and displays a TasksBeforeThisTask portal

below, as shown in Figure 7.8 . As you page through tasks, you will see that the portal is always

updated to show peer tasks on the project with due dates before the current task’s due date.

 Figure 7.8
 Display the
self-join.

Creating a Relationship with a Global Value
You have seen how to implement the Project-Tasks relationship where a global date field controls

the selected Tasks records. (Remember that you have to take into account the issues of multiple

windows in deciding whether to use a global field.)

You can also use a constant global value, one that is not entered dynamically by the user, to imple-

ment a relationship.

An obvious candidate for such a relationship is a modification to the preceding self-join. You can

add a third component to the join so that you select peer projects (that is, those with the same

Project ID), due dates before the given task’s due date, and a new field—status—equal to a global

status value. To implement this, you add two fields to the Tasks table: Status and gStatus. One is

the status of the task, and the other is a global value that contains a status value from the status

value list.

ptg8106388

203Creating a Relationship with a Global Value

7

C
H
APTER

You can build on the relationship between Tasks and TasksBeforeThisTask to incorporate the new

status field. The clause that you want to add is a match in which Status in TasksBeforeThisTask

matches gStatus.

 � For more details on globals in a multiuser environment, see Chapter 19 , “Debugging and

Troubleshooting.”

Figure 7.9 shows the completed relationship. One additional feature has been added: The zzID field

on both sides must not match. This is one way of resolving the issue noted previously in which a

greater than or equal (or less than or equal) operator can include the base task itself in the list of

related tasks. This prevents the task from being related to itself.

 Figure 7.9
 Enhance the relationship.

As always, when you add fields to the Tasks table, you will notice that the Relationships Graph is

automatically updated so that all table occurrences display the new fields.

If you create a Status value list, you can add a set of radio buttons to the Task layout (see Figure

7.10); if that layout or another one displays related tasks (such as TasksBeforeThisTask described in

the preceding section), you can add the status field to the portal.

ptg8106388

Working with Relationships204

II

PA
RT

Self-joins come into play whenever you want to relate like objects. For example, you can use them to

implement hierarchies such as employment structures in which each employee has a manager, who

in turn has a manager.

 Creating Cross-Product Relationships
In working with nonequijoin relationship matches, you might have noticed one oddball operator in

the little menu of match criteria. Most of them are familiar comparison operators—but what about

the last one, the one that looks like a ✕?

That operator is known as a cross product (or Cartesian product). The cross product provides a “uni-

versal match” between the records in two tables. This means that it does no limiting of any kind. If

you think of a relationship again as a kind of query, a cross-product relationship is a “find all” query.

If you define a cross-product relationship from Projects to Tasks, a portal based on that relation-

ship would always show all Tasks, no matter which Project record was being viewed. The choice of

fields on the left and right sides is more or less unimportant; this “all to all” relationship is fulfilled

regardless of the choice of match fields.

 Figure 7.10
 Finish up the layout.

 tip
This relationship, whether implemented between two tables or as a self-join, demonstrates the basics of a vast number
of queries that you can implement in FileMaker Pro as relationships. One of the virtues of implementing queries as
relationships is that they are always there: The logic is supplied in the relationship, and you do not have to worry about
implementing find requests. Everything that you can implement in the database—be it in the Relationships Graph, in
validation rules, or with auto-entry of data—represents something that does not have to be implemented in the scripts
and interface or with user commands. That means after it is done, it is there and correct for all uses.

ptg8106388

205Working with Multiple Files

7

C
H
APTER

Cross products really make sense only by themselves, in single-match relationships. They have no

effect at all if they’re added into multimatch criteria sets. A cross-product match condition is always

true, so it can never further limit the potential matches of other criteria.

The cross product is the ultimate nonstructural relationship. After all, its purpose is to show all of

something. These are generally used for various user-interface purposes. Sometimes you might want

users to pick from a list of things, for example, and it’s more pleasing to allow them to pick from a

scrolling list in a portal than from a drop-down list or menu. Generally, such techniques need to be

coupled with some scripting to react to users’ choices.

Working with Multiple Files
In all the discussions of multitable systems in Chapters 5 and 6 and so far in this chapter, we’ve

assumed that all the tables you want to work with live within a single FileMaker file. The capabil-

ity to have many tables in a single physical file is, after all, one of the more convenient features of

FileMaker. But there are still many reasons to build systems that are multifile, in addition to being

multitable. This and the following sections review the mechanics of working with several files at

once and then discuss different design strategies that use a multifile structure.

The FileMaker History of Multiple Files

The simplicity of placing multiple tables in a single database file and relating them to one
another using the Relationships Graph was introduced in FileMaker 7. Prior to that, there was
really no distinction between tables and files: A database file was treated as a single table, and
relationships were made between files (not tables, because the separate concept of a table did
not exist).

Relationships were built from one file to another, and, in part because there was no overall
Relationships Graph, relationships could not extend beyond a single other file (this was often
referred to as a hop). The relationship between Tasks and Contacts shown previously in Figure
7.2 exists because of the relationship between Tasks and Assignments, and then the relation-
ship between Assignments and Contacts, which together create a path from Tasks to Contacts.

To be able to access data more than one hop away, you needed to use a simple workaround
before FileMaker 7. The relationships that were shown in Figure 7.2 would have been imple-
mented as follows: In Assignments, a calculation field would be created that used a relation-
ship to Contacts to store some Contacts data into the calculation field in Assignments. Then
Tasks could access this calculated field one hop away in Assignments, which itself contained
related data from Contacts.

It is important to know this history because if you are working with a database that was initially
created before FileMaker 7, you might still see these intermediate calculated values. The auto-
matic conversion of pre–FileMaker 7 databases to FileMaker 7 does not change this architec-
ture, but as you modify these older databases, you might want to implement the more modern
multihop relationships and remove the calculated fields.

ptg8106388

Working with Relationships206

II

PA
RT

So far we’ve looked just at relationships between tables within the same file. But it’s also possible

to build relationships between tables in different files. A very common situation arises when you are

building a solution that uses data from an existing FileMaker database. In the case of the example

used in this chapter, perhaps the Contacts table already exists in its own database file.

To reference the Contacts table in another file from your file, you only need create an external data

source that uses the other file. You can then use that external data source to create new table occur-

rences for those tables. The data remains in the external file, but you can access it through the file

references.

 � The use of external data sources lets you use other FileMaker database files. You can also ref-

erence external databases using SQL and ODBC, as described in Chapter 21 , “Connecting to

External SQL Data Sources.”

Creating an External Data Source
External data sources are an extremely important topic in FileMaker. In a number of places in

FileMaker, you might want to refer to or work with another file. Here are some of the things you can

do with other files in FileMaker:

• Call a script in the other file.

• Use a value list defined in the other file.

• Refer to one or more tables from the other file in your Relationships Graph.

To do any of these things, you must first create a reference to the other file using an external data

source. A file reference simply tells FileMaker where and how to find another file. FileMaker is

capable of working with external files present on a local hard drive, present on a shared network

volume, or present on an available FileMaker server. You can also specify multiple search locations

for a file, and the priority in which they should be searched. You can, for instance, create a file refer-

ence that says, “First search for the file on the FileMaker server at 192.168.100.2. If you don’t find it

there, look on the FileMaker server at 10.11.1.5. If you don’t find it there, give up or go on to these

locations…”

Before FileMaker 7, versions kept track of these references behind the scenes and didn’t let you

alter the order in which FileMaker searched for a given file. Problems with file references were

harder to spot in previous versions and could occasionally give rise to a problem called crosstalk , in

which the wrong copies of files could be accessed by mistake.

Since FileMaker 7, each physical file maintains its own list of file references. You can work with

these references centrally and create them on the fly as needed. Let’s see how this works in prac-

tice.

Your first step is to define an external data source that will contain a file reference to the exter-

nal file. To do this, choose File, Manage, External Data Sources. Click the New button on the next

screen, and you see the Manage External Data Sources dialog, as shown in Figure 7.11 .
When you click New or select an existing data source and click Edit, the dialog shown in Figure

7.12 opens. You can name the data source and select whether it is an external FileMaker file or one

accessed via ODBC.

ptg8106388

207Working with Multiple Files

7

C
H
APTER

 Figure 7.11
Add external data sources to a FileMaker data-
base file.

 Figure 7.12
 Edit the external data sources.

 � Additional information on working with external FileMaker files is included in Chapter 21 ,

“Connecting to External SQL Data Sources.”

ptg8106388

Working with Relationships208

II

PA
RT

Then you provide the actual file references for the data source.

You can type in the path to the file that you want to use, or you

can click Add File to use the standard Open File dialog to select

the file from your local hard disk or the network. As you can see

in Figure 7.12 , you can provide several file references. FileMaker

will search them in order until it finds a file to use.
In Figure 7.12 , you can see a reference to a file in the same folder

as the database into which the file reference is created. Below

that is a file reference to a file in a folder with a common parent

folder as that of the database file. On the third line is a reference

to a file accessed through FileMaker Server or FileMaker peer-to-

peer networking. In that case, as is always true when you use the

Open Remote command, you connect to a copy of FileMaker and

through it to the database. The other syntax connects to the data-

base using your own copy of FileMaker.

As you can see at the bottom of the dialog, there are different

forms of the syntax for OS X and Windows. Because the file refer-

ences are searched in order, you can vary them for your develop-

ment process.
If none of the file references can be resolved, you get an error

message.

 note
In general, all the different file
paths in the path list point to the
same file; that is, a file with the
same name and contents. In the-
ory, you could also use a single
path list to point to a number of
different files, indicating that the
later ones should be used if the
earlier ones can’t be found. You
could perhaps use this feature
to fall back to other versions of a
file or system if necessary.

 caution
If you inserted a local reference
to the file to aid offline develop-
ment, you need to remember to
remove that reference later, or
perhaps move it lower on the list.
Otherwise, FileMaker continues
to search your local drive first,
which is probably not desirable.

 note
File references are resolved as FileMaker needs to access the given file rather than when the database opens. That
improves the efficiency of cases in which not all file references are used in a particular session of FileMaker. It also
is the reason why resolving file references occasionally can provide some frustration. If you have a situation in which
sometimes there is an error in your FileMaker solution but not always, it might be that a file reference is to blame
and the apparent randomness of the error is caused by the sequence in which file references need to be resolved.
Sometimes you can track down these intermittently appearing bugs by reviewing all the file references in your external
data sources and verifying that they are correct. Trailing spaces at the end of the file references are a notorious source
of error.

ptg8106388

209Working with Multiple Files

7

C
H
APTER

Adding an External Table to the Relationships Graph
After you create the file references in your external data sources list, you can add tables from these

external files to your Relationships Graph. If you open the Relationships Graph and click the Add

Table Occurrence icon, you’ll notice something we didn’t highlight before. In the resulting Specify

Table dialog, a menu lets you choose which file you want to browse for table choices. This menu

always includes the current file and any file references you defined using the techniques covered in

the previous sections of this chapter. Figure 7.13 illustrates this point.

 Figure 7.13
When adding a table
occurrence to the
Relationships Graph,
you can base the
new occurrence on a
table in an external
data source.

Because you name the external data source, you will see that name in the pop-up menu, as shown

in Figure 7.13 . Not only might you be accessing files in various locations, they may have different

names, but the external data source name that appears in this dialog is what you work with.

The table is added to the Relationships Graph, much as all the other tables we’ve seen. The result

is shown in Figure 7.14 . There’s one subtle visual indication that the Contacts 2 table occurrence is

based on a table from another file: The table occurrence name for Contacts 2 is italicized. In addi-

tion, if you hover the mouse pointer over the arrow in the upper left of the table, you can see the

data source name. Otherwise, it’s just as though you were working with a table in the same file.

ptg8106388

Working with Relationships210

II

PA
RT

 Troubleshooting

Trouble Creating Related Records with Nonequijoins
I want to create a relationship that allows creation of related records on one side of the relationship,

but the box that enables that capability is grayed out.

You might have noticed that the option Allow Creation of Records in This Table via This

Relationship has mysteriously been disabled when a nonequijoin is part of the relationship. This

suggests that you have one or more nonequality conditions in your relationship match criteria. The

rule is this: FileMaker can allow the creation of related records only if the relationship in question

consists only of conditions involving an equality comparison. This limits such relationships to using

only the equal (=), less than or equal (≤), or greater than or equal (≥) operators.

Multiple match criteria are fine, as long as they’re all based on one of those three operators. This

can actually be rather useful: A multimatch relationship that allows the creation of related records

automatically fills in all the key fields of the related record. But as soon as any nonequality condition

becomes involved in the match, the capability to create related records goes away.

This makes sense if you think about it. FileMaker can create a record via an equijoin because only

one condition satisfies the match criteria for the current record. Suppose that you’re on a Customer

 Figure 7.14
In this Relationships
Graph, the italicized title
of the Contacts 2 table
occurrence shows that
the source table exists
in an external file.

ptg8106388

211FileMaker Extra: Managing the Relationships Graph

7

C
H
APTER

Layout, looking at customer number 17, and you have a portal into Invoices, in which the relation-

ship to Invoices is an equijoin on CustomerID. FileMaker can create a new record in the portal by

creating a new invoice record and setting the CustomerID to 17. But suppose that the relationship

instead were based on a “not equal to” relationship? To create a record on the other side, FileMaker

would need to create an Invoice record with a customer ID other than 17. Fine, but what customer

ID should it use? There’s really no way to say. Similar reasoning holds for other nonequijoin types:

There’s no sensible way for FileMaker to decide what match data should go into the related record.

If the capability to create related records is enabled, the key fields in the related record will always

be populated with values equal to the key field in the parent record, regardless of which of the three

allowable relational operators is chosen. If you need to create related records where the relationship

is not equality, you almost always do it with a script and, in many cases, that script is launched by a

button that you place next to a portal.

No OR Conditions with Multiple Match Criteria
Whenever I add multiple match criteria to a relationship, FileMaker always tells me the match will

work if condition 1 AND condition 2 AND condition 3 are true. But I have a match that needs to

work if 1 OR 2 OR 3 is true. Where do I set that up?

You don’t, unfortunately. Using the native FileMaker relationship features, relational matches are

always AND matches whenever multiple match criteria are specified. If you want to mimic the effect

of an OR search in another table, you need to find another means of doing that. Say, for example,

that you have a database with tables for teachers, classes, enrollments, and students. From the

viewpoint of a teacher, you want to be able to view all students who are outside the norm—they

have either a very low GPA or a very high GPA. You could try to do this with two match criteria, but

that would necessarily be an AND match, which would never be fulfilled (no student would have

both a low and a high GPA at once). The solution here would be to create a stored calculation in the

student table called something like ExceptionalGPA, defined as follows:

If (GPA < 2 or GPA > 3.75; 1; 0)

The calculation will have the value 1 when the student’s GPA is exceptionally high or low, and a

value of 0 otherwise.

You could now create a field called Constant in the teacher table and define it as a calculation that

evaluates to 1. Then specify a relationship between the teacher table and the student table, with

multiple match criteria: TeacherID=TeacherID and Constant=ExceptionalGPA, meaning “Find me all

students with the same teacher ID and an exceptional GPA.”

FileMaker Extra: Managing the Relationships
Graph

The Relationships Graph in FileMaker is a nice answer to developers who clamored for years for a

visual representation of relationships in FileMaker systems. But for large or complex systems, with

many table occurrences, the Graph has the potential to be a bit unwieldy. Table occurrences in the

Graph take up a fair amount of space, and it can be difficult to organize the occurrences without cre-

ating a web of overlapping relationship lines.

ptg8106388

Working with Relationships212

II

PA
RT

Using Formatting Tools to Manage the Relationships Graph
You can use a number of tools for Graph management. For one thing, the small “windowshade”

icon at the upper right of a table occurrence can be used to hide the fields in the table occurrence,

leaving only the match fields used in relationships. This can save valuable space. If you like to work

from the keyboard, („) [Ctrl+T] will cycle through the various table occurrence display states (fully

open, key fields only, fully closed). If you use („) [Ctrl+A] to select all objects in the Graph, you can

windowshade your entire Graph with a few keystrokes.

You can also manually resize an individual table occurrence to save space. This, again, needs to be

done one table occurrence at a time. It’s also possible to zoom out from the Graph as a whole and

view it at 75% or 50% of regular size, or smaller.

It might also be useful to you to organize your table occurrences into logical groups of some kind

within the Relationships Graph. Let’s say you’re working on a trucking module with four table

occurrences, and you also have a file reference to an external user-management module and you’ve

used that to bring a number of user-oriented table occurrences into the Graph. FileMaker enables

you to color-code table occurrences in the Graph, so it’s possible to give each group of table occur-

rences its own color.

You can add notes directly to the Graph. If you drag a rectangle in the Graph while holding („-N)

[Ctrl+N], you’ll create something like a sticky note. You can choose the color and typeface, and

adjust the size and position. Notes appear behind other objects in the Graph.

While you are working, several keyboard shortcuts can make your life easier. Pressing („-Y) [Ctrl+Y]

will select all related table occurrences that are one step away from the current table occurrence.

Pressing („-U) [Ctrl+U] will select all table occurrences with the same source table as the current

table. Finally, you can use („-D) [Ctrl+D] to duplicate one or more selected table objects, as well

as any relationships between them. This last point is a big convenience: You can select a complex

group of related table occurrences and duplicate the entire cluster and its relationships at once.

You can perform all these functions with the mouse by clicking new buttons that appear in the

Relationships Graph.

Using Table Occurrences to Manage the Relationships Graph
As you have seen in this chapter, there must be unique paths between any two related table occur-

rences. A Customers table may be related to an Invoices table, which is in turn related to an Invoice

Line Items table, which ultimately is related to Products. Thus, a path from Customers to Products

exists.

If you want to track inquiries about products from a customer, you might have a path from

Customers to Queries to Products. But that can’t be done, because now there are two paths

between Customers and Products. The solution is to create a new table occurrence and name it

something like ProductQueriesForCustomer. Even relatively small FileMaker solutions quickly wind

up with special-purpose table occurrences of this sort. There is nothing wrong with this: It is just

part of the development process.

Rather than creating duplicate table occurrences on an as-needed basis, many developers have

begun to create them as part of the design process. Instead of a spider web of related and duplica-

tive table occurrences, you can build smaller relationship sets that are tied into specific layouts and

ptg8106388

213FileMaker Extra: Managing the Relationships Graph

7

C
H
APTER

their purposes. Remember that a layout is always based on a primary table occurrence; from that

table occurrence, related table occurrences can be shown in portals or individual fields. The set of

table occurrences together with the layouts that use them form a logical group.

In the example described previously, you could create a Customer Query layout based on Queries.

Right from the start, you can create new table occurrences such as Customers For Queries and

Products For Queries. Relate both of those to Queries and use them

in your Customer Query layout.

Now create a Customer Order Layout based on Orders. Again, cre-

ate new table occurrences such as Customers for Orders, Order

Line Items for Orders, and Products for Orders (or, more accurately,

Products for Order Line Items).

This approach gives you more table occurrences in most cases, but

the sections of your Relationships Graph are separate and easily

understood. Each cluster will use its own table occurrences to sup-

port its own layouts. When you implement scripts or buttons to go

to related records, you can go to a related record from the appropri-

ate table occurrence.

 � For more details on using table occurrences, see “Go to Related Record,” p. 478 .

 tip
Remember that you always have
the option to display that related
record in its own layout. Your
layout choices consist of the
layouts based on the underlying
table (not the table occurrence).
It is that particular feature that
lets you “jump” from cluster to
cluster.

ptg8106388

This page intentionally left blank

ptg8106388

 8

GETTING STARTED WITH
CALCULATIONS

 Understanding How and Where
Calculations Are Used

Calculations are among the most important and powerful tools at your

disposal in the development of FileMaker Pro solutions. Some people

find learning calculations to be an easy task, whereas others can find

writing complex calculations to be daunting. Whichever camp you fall

into, calculations will enable you to unlock much of the advanced power

within FileMaker. This chapter and its companion, Chapter 15 , “Advanced

Calculation Techniques,” will provide you with a solid grounding.

This chapter focuses on basic calculation functions and techniques for

using them well. Chapter 15 looks at more advanced calculation formulas

and specific techniques. If you’re new to FileMaker, you should start here.

From the outset, it’s important to understand the difference between

calculation fields and calculation formulas. The term calculation is often

used to denote both concepts. A calculation field is a particular type of

field whose value is determined through the evaluation of a calculation

formula. Calculation formula is a broader concept that refers to any use of

a formula to determine an output, and that output can be a value that is

stored in a calculation field or it can be a value that is used in evaluating

an if statement, constructing a tooltip, determining whether access to

a field is allowed, or dynamically specifying a layout to go to. When you

learn “calculations,” you’re really learn-

ing calculation formulas. It so happens

that you’ll use calculation formulas to

construct calculation fields, but the

formulas are applied widely throughout

FileMaker solutions.

 note
Many of the examples in this
chapter are based on the Time
Billing Starter Solution.

ptg8106388

Getting Started with Calculations216

II

PA
RT

Exploring Calculation Expressions

Calculations are grouped into categories, such as those for manipulating text, those for manag-
ing statistical calculations, a wide variety of functions that interact directly with FileMaker, and
a growing group of introspective functions.

You are able to use functions to query the environment in which a calculation is running.
Querying the environment is referred to in the programming world as introspection . Certain
functions in FileMaker can let you know whether you are running in FileMaker for Windows or
FileMaker for Mac. With the advent of FileMaker Go, mobile devices, and web publishing, you
can find introspective functions that help to identify the device and operating system on which
your calculation is being evaluated.

This is not just a matter of idle curiosity. Introspective functions let you automatically switch
from a desktop-based layout to one designed for a mobile device or for the Web. All of this
depends on the presence of introspective functions (often the Get function, described later in
this chapter) and your knowledge of the use of those functions.

 Writing Calculation Formulas

Essentially, the purpose of a calculation formula is to evaluate an

expression and return a value. In Figure 8.1 , for example, you can

see the field definition for a calculation field called Amount (this

is from the Time Billing Starter Solution). The value of this field

is defined to be the result of the rate multiplied by the time as

specified in the Time in Unit Total field. The Time in Unit

Total field itself is also a calculation field—one that converts

seconds into hours, which is the unit on which Rate is based.

Thus, you have a chain of calculations that are all evaluated as

necessary so that the Amount field is calculated and ready for you to use as you wish.
Most of the expressions you use in calculation formulas are intended to return a value, and that

value might be a number, a text string, a date or time, or even a reference to a file to place in a con-

tainer field. You select the calculation result type in the lower left of the Specify Calculation dialog.

Another class of formulas, however, is intended to evaluate the truth of an equation or statement.

The value returned by these formulas is either a 1 , indicating that the equation or statement is true,

or 0 , indicating that the equation or statement is false. Typically, calculations are used in this man-

ner in If script steps, in calculated validations, and for defining field access restrictions.

The calculation itself is created in the space in the lower center of the Specify Calculation dialog, as

you see later in this chapter. Just above that space, you can see the distinction between a calcula-

tion that is used to define a calculation field and one that is designed to return a Boolean value. In

the first case, as you see in Figure 8.1 , the name of the calculation field (Amount, in this case) is

shown. In the second case, that area is blank.

 � To learn more about field validation, see Chapter 3 , “Defining and Working with Fields and

Tables.”

note
You can use calculations in any
of the FileMaker products; how-
ever, you can create them only in
FileMaker Pro and FileMaker Pro
Advanced.

ptg8106388

217Understanding How and Where Calculations Are Used

8

C
H
APTER

In Figure 8.2 , you can see a calculation dialog that specifies the condition for an If script step. This

very common calculation checks to see whether the SystemPlatform value is greater than 2 (in

other words, it checks to see whether you are running on an iPad). The result of this calculation is

used to switch between desktop and iPad layouts. (This is one of those introspective functions.)

 Figure 8.1
 When defining
calculation fields,
you specify an
expression to evalu-
ate in the Specify
Calculation dialog.

 Figure 8.2
Calculation formulas are often
used to determine the truthful-
ness of an equation or a state-
ment.

ptg8106388

Getting Started with Calculations218

II

PA
RT

In situations where FileMaker is expecting a formula that returns

a true/false result, you see the words “Calculation result must be

Boolean” near the bottom of the Specify Calculation dialog. The

If script step shown earlier is a typical example of this situation.

Boolean is a software programming term for a value with one of

two states: true or false. Any value returned other than 0 or a

null value (for example, an empty string) is considered true.

Uses for Calculation Formulas
This chapter focuses on the use of calculation formulas in field

definitions, but it’s important that you understand that calcu-

lation formulas are used in other places as well. Briefly, they

include the following:

 • Script steps— Calculation formulas come into play in many

script steps. The If , Set Field , and Set Variable script

steps are notable examples. Many other script steps allow you

to use a calculation formula to act as a parameter. A sampling

includes Go to Layout , Go to Field , Go to Record ,

Pause/Resume Script , and Omit Multiple . Additionally,

calculation formulas can be used to define script parameters

and script results.

 • Field validation— One of the options available to you for vali-

dating data entry is validating by calculation. This, in effect,

lets you define your own rules for validation. For example, you

might want to test that a due date falls on a weekday, or per-

haps that a status field not allow a value of “complete” if data

is missing elsewhere in a record.

 The equation you provide is evaluated every time a user modi-

fies the field. If it evaluates as true, the user’s entry is commit-

ted. If it doesn’t, the user receives an error message. For instance, if a user is supposed to enter

a callback date on a contact record, you might want to validate that the entry is a future date. To

do this, you might use the formula Call_Back_Date > Get (CurrentDate) as the valida-

tion for the Call_Back_Date field.

 • Record-level security— When you define privilege sets, you have the option of limiting a user’s

access to view, edit, and delete records based on a calculation formula you provide. If the equa-

tion you provide evaluates as true, the user can perform the action; if not, the action is prohib-

ited. For instance, you might want to prevent users from inadvertently modifying an invoice that

has already been posted. So, you set up limited access for editing records based on the formula

Invoice_Status ≠ “Posted” . Only records for which the formula is a true statement would be

editable.

 note
Boolean rules apply for text val-
ues, dates, negative numbers,
and so on. “Hello” is true (not
zero and not null), a single space
character (“ “) is true, and -1
is true. Note also that the results
of a formula evaluate in the same
way: (0 * 100) is false. (0 +
100) is true. Last, also note that
you can use comparative opera-
tors: 1 and 1 is true (where
each clause on both sides of the
and operator evaluates to true),
1 or 1 is true, 1 xor 1 is
false, and so on. You learn about
operators later in the chapter.

 caution
 The GetAsBoolean() func-
tion treats all data as numeric
such that, for example,
“hello” evaluates as false
and “hello999” evaluates as
true. This is inconsistent with
the way in which other Boolean
logic operates, so be sure to take
note of it.

ptg8106388

219Exploring the Specify Calculation Dialog

8

C
H
APTER

 • Auto-entry options— When you’re defining text, number, date, time, and timestamp fields, sev-

eral auto-entry options are available for specifying default field values. One of these options is to

auto-enter the result of a calculation formula. For instance, in a contact management database,

you might want a default callback date set for all new contact records. The formula you would

use for this might be something like Get (CurrentDate) + 14 , if you wanted a callback

date two weeks in the future.

 • Calculated replace— A calculated replace is a way of changing the contents of a field in all

the records in the current found set. It’s particularly useful for cleaning up messy data. Say, for

example, that your users sometimes enter spaces at the end of a name field as they enter data.

You could clean up this data by performing a calculated replace with the formula Trim (First

Name) .

Exploring the Specify Calculation Dialog
Now that you know something about how and where calculation formulas are used, it’s time to turn

to the layout of the calculation dialog itself. The various calculation dialogs you find in particular

areas in FileMaker Pro have some small differences. We focus our attention on the dialog used for

defining calculation fields because it’s the most complex.

 Writing the Formula

The large box in the middle of the Specify Calculation dialog is the place where you define the for-

mula itself. If you know the syntax of the functions you need and the names of the fields, you can

simply type in the formula by hand. In most cases, though, you’ll want to use the lists of fields and

functions above the text box. Double-clicking an item in those lists inserts that item into your for-

mula at the current insertion point.

Every calculation formula is made up of some combination of fields, constants, operators, and func-

tions. All the following are examples of formulas you might write:

2 + 2
FirstName & “ “ & LastName
Get (CurrentDate) + 14
Left (FirstName; 1) & Left (LastName; 1)
“Dear “ & FirstName & “:”
$loopCounter = $loopCounter + 1
LastName = “Jones”

In these examples, FirstName and LastName are fields.

$loopCounter is a variable by virtue of being prefixed with a

dollar-sign character. Get (CurrentDate) and Left are func-

tions. The only operators used here are the addition operator (+) and the concatenation operator (&).

(Concatenation means combining two text strings to form a new text string.) There are also num-

bers and text strings used as constants (meaning that they don’t change), such as 14 , “Dear” , and

“Jones” . Text strings are the only things you have to place within quotation marks.

 � To learn about variables, see Chapter 16 , “Advanced Scripting Techniques.”

 tip
FileMaker assumes that any
unquoted text in a formula is a
number, a function name, or a
field name. If it’s none of these,
you get an error message when
you attempt to exit the dialog.

ptg8106388

Getting Started with Calculations220

II

PA
RT

 Selecting Fields

In the calculation dialog, above the formula box and to the left is

a list of fields. By default, the fields in the current table are listed.

You can see the fields in a related (or unrelated) table by making

a selection in the pop-up menu above the field list. Double-click

a field name to insert it into your formula. You can also type field

names directly.

 � If you’re having difficulty with field name syntax in formu-

las within ScriptMaker, see “Formulas in Scripts Require

Explicit Table Context” in the “Troubleshooting” section at

the end of this chapter.

 Choosing Operators
In between the field and function areas in the Specify Calculation

dialog is a list of operators you can use in your formulas.

Operators are symbols that define functions, including the math

functions addition, subtraction, raising to a power, and so on.
There is often some confusion about the use of & , + , and the

and operator. The ampersand symbol (&) is used to concatenate

strings of text together, as in the previous example where we

derive the FullName by stringing together the FirstName , a

space, and the LastName . The + symbol is a mathematical opera-

tor used, as you might expect, to add numbers together. The

and operator is a logical operator used when you need to test

for multiple Boolean conditions. For instance, you might use the

formula Case (Amount Due > 0 and Days Overdue > 30,

“Overdue”) . Here, the and indicates that both conditions must be satisfied for the test to return

true.

The other operators are quite intuitive, with the exception of xor . xor , which stands for exclusive

or , tests whether either of two statements is true, but not both of them. That is, (A xor B) is the

same thing as (A or B) and not (A and B) . The need for such logic doesn’t come up often, but

it’s still handy to know.

 Selecting Functions
The upper-right portion of the Specify Calculation dialog contains a list of the functions you can use

in your formulas. By default, they are listed alphabetically, but you can use the View pop-up menu

above the list to view only formulas of a certain type. The Get functions and External functions, in

fact, will display only if you change to View by Type.

Double-clicking a function inserts the function into your formula at the current insertion point.

Pressing Control and the spacebar (Macintosh) or the Insert key (Windows) while highlighting the

 caution
Be aware that the only fields you
can use from an unrelated table
are those with global storage.
There’s no way FileMaker could
determine which record(s) to
reference for nonglobally stored
fields. You get an error message
if you attempt to use a nonglobal
field from an unrelated table in
a formula.

 note
Strictly speaking, not all the
symbols listed here are opera-
tors. The ¶ paragraph symbol
(or pilcrow), for instance, is
used to represent a literal return
character in strings. The symbols
and concepts available in the
Operators section are common
to many programming and script-
ing languages; there are no
FileMaker-specific concepts in
this part of the dialog.

ptg8106388

221Exploring the Specify Calculation Dialog

8

C
H
APTER

function also adds it to your formula. The guts of the function—the portion between the parenthe-

ses—is highlighted so that you can begin typing parameters immediately.

 � To learn more about how to read and use functions, see “Parts of a Function,” p. 229 .

 Writing Legible Formulas
Whether you’re typing in a formula by hand or are using the selection lists to insert fields and func-

tions, here are a few general comments about how to make your functions easy to read. First, when

you’re writing functions, spacing, tabs, and line returns don’t matter at all except within quotation

marks. You can put spaces, tabs, and returns just about any place you want without changing how

the formula evaluates. For legibility, it’s therefore often helpful to put the parameters of a function

on separate lines, especially when you have nested functions. In its own formatting, FileMaker

leaves spaces between values and parentheses; this can make for more easily read code.

You can also add comments to calculation formulas. You can prefix a comment with two forward

slashes (//) and anything following until the end of that line will not be evaluated. To comment a

block of multiple-lined text, begin with /* and close with */ .

Figure 8.3 shows a calculation from the Time Billing Starter Solution with a few modifications. As

you can see in the lower left of the dialog, the result of the calculation will be a Text value. This

function fills the Customer Name field with a value selected by a Case statement.

 Figure 8.3
A complex formula
written without
adequate spacing
can be very difficult
to understand and
troubleshoot.

ptg8106388

Getting Started with Calculations222

II

PA
RT

This is a typical calculation field. It evaluates several statements based on data fields and returns a

value for the Customer Name field. Because it is spaced out, it is clear to see the following:

 • If both First and Last (name) are empty, set Customer Name to the Company field.

 • Otherwise, if First is empty, set Customer Name to Last .

 • Otherwise, if Last is empty, set Customer Name to First .

 • Otherwise, set Customer Name to First , a space, and then

Last .

That is the code you see in Figure 8.3 . Some people would argue

that it is quite clear, and because the statement appears on a

single line, it is easy to see what is happening.

In Figure 8.4 , that same formula has been reformatted with extra spacing to make it more legible.

Legibility isn’t merely an idle concern; it has real value. If you, or someone else, ever need to debug

or alter one of your formulas, it will take much less time and effort if you’ve formatted your formula

well in the first place. And that is why the actual calculation field in the Time Billing Starter Solution

looks as shown in Figure 8.4 .

 About Case Statements and Functions

If you are familiar with programming languages, this is the same construct you know in
that context. If you are not familiar with programming languages, see the section on “Using
Conditional Functions,” later in this chapter.

 Figure 8.4
 Adding spaces,
returns, and com-
ments to a formula
can make it much
more legible, and
hence easier to main-
tain in the future.

 note
Lining up sections of code by
indenting them helps to make
it much easier to see errors and
logical flaws.

ptg8106388

223Exploring the Specify Calculation Dialog

8

C
H
APTER

 Options
At the bottom of the Specify Calculation dialog, you can see a variety of miscellaneous options.

These options pertain only to defining calculation fields; you don’t see them in any of the other cal-

culation dialogs, such as those used to evaluate an If statement.

 Data Type

The first of these miscellaneous options is to specify the type of data the calculation will return.

Usually, it’s obvious. If you’re concatenating the FirstName and LastName fields to form the

FullName field, your calculation result will need to be a text string. If you’re adding the SalesTax

to an InvoiceSubTotal to generate the InvoiceTotal , the expected result will obviously be a

number. Adding 14 days to the current date to generate a callback date should result in a date.

Simply ask yourself what type of data the formula should produce and select the appropriate result.

 � If you choose the wrong data type for a calculation field, you might experience some unexpected

results. See “Errors Due to Improper Data Type Selection” in the “Troubleshooting” section at

the end of this chapter.

 Number of Repetitions
The only time you’ll ever have to worry about the number of repetitions in a calculation field is

when your formula references one or more repeating fields. If it does, you’ll typically define your cal-

culation to have the same number of repetitions as the fields it references. The formula you define is

applied to each repetition of the source fields, resulting in different values for each repetition of your

calculation field.

If you reference nonrepeating fields in your calculation, they affect only the first repetition of output.

You can, however, use the Extend() function to allow a nonrepeating field to be applied to each

repetition of output.

 Do Not Evaluate
By default, for new calculation fields, the Do Not Evaluate If All Referenced Fields Are Empty

box on the Specify Calculation dialog is checked. This means that the calculation returns a null

(empty) value as long as all the fields it refers to are empty. If this box is unchecked, the formula

will be evaluated using the empty values in the referenced fields. For instance, say that you had a

StatusCode field in an invoice database and wanted to use it to generate a status message, the

formula of which was If (StatusCode = “P”; “Paid”; “Not Paid”) . If you left the Do

Not Evaluate... box checked, invoices with no status code would have no status message. If it were

unchecked, their status message would be Not Paid .

Another example draws from this feature’s most common use: financial calculations. If you have

a field that calculates, say, a price total based on quantity and sales tax fields, it’s often helpful to

return an explicit zero rather than leaving the calculation field null or blank. Consider a calculation

field that calculates a discount based on a transactionAmount field:

If (transactionAmount >= 1000; 50; 0)

ptg8106388

Getting Started with Calculations224

II

PA
RT

If the check box is unchecked, this evaluation will return a zero

if either transactionAmount is less than 1000 or the field is

empty. In this way, the zero is explicit and demonstrates for the

user that the calculation was performed. If the check box is left

checked and transactionAmount is empty, this discount field

will be empty as well, leading to possible uncertainty on the part

of users.

 Storage Options
The last things in this anatomy lesson are the storage options

available when you’re defining calculation fields. Be aware that

the output of your calculation formula may differ depending

on the storage method selected. The Storage Options dialog is

shown in Figure 8.5 .

 note
There’s no simple rule as to when
you want to check or uncheck this
option. You need to look at your
formula and determine whether
the inputs to the formula—those
fields referenced in the formula—
could all ever be blank, and if so,
whether you would still want the
formula to evaluate. Typically, if
your formulas have default results
(as in the StatusCode example),
rather than using explicit logic for
determining results, you probably
want to uncheck the box.

 Figure 8.5
The Storage Options dialog enables you to
set calculation fields so that they have global
results and to specify indexing options.

In the top portion of the dialog, you can specify global storage as an option. This is a concept intro-

duced in FileMaker Pro 7 and one perhaps not immediately intuitive even for longtime FileMaker

developers. Global storage for regular fields (that is, text, number, date, time, timestamp, and con-

tainer) is typically used when you need a temporary storage location for a value or for infrequently

changing, solutionwide values such as your company’s name and address. For instance, globally

stored text fields are often used in scripts as a place to hold users’ preferences or selections as they

navigate through your interface.

 � For more information on global storage of field data, see “Storage and Indexing,” p. 104 .

ptg8106388

225Exploring the Specify Calculation Dialog

8

C
H
APTER

If you set a calculation field to be stored globally, the results of the calculation formula will be avail-

able to you from any record and, indeed, any table in your system without having to establish a

relationship to a table occurrence tied to its source table. The formula isn’t evaluated for each record

in the system; it is evaluated only when one of the inputs of the

formula changes or when you modify the formula.

Consider a scenario involving a sales commission calculation. You

might create a utility table containing the fields necessary to cal-

culate a daily sales commission (based on market values or what-

ever variable data affected the business in question) in which a

manager could modify the data in the formula on demand. A global

calculation then would provide the system with its current sales

commission without requiring a series of relationships.
The bottom half of the Storage Options dialog enables you to spec-

ify indexing options. Indexing a field speeds up searches based

on that field, but it results in larger files. FileMaker also uses field

indexes for joining related tables.

 � For more detailed information on indexing, see “Storage and Indexing,” p. 104 .

In most cases, the default indexing option for a calculation field will be set to None, and the

Automatically Create Indexes as Needed box will be checked. For most calculations you write, this

configuration is perfect. FileMaker determines whether an index is needed and creates one if it is.

Performing a find in the field and using the field in a relationship are both actions that trigger the

automatic indexing of a field.

For some calculation formulas, the default storage option is to have the Do Not Store Calculation

Results option checked and for everything else to be grayed out. This is an indication that the field

is unindexable. Calculation fields that return text, number, date, time, or timestamp results can be

indexed as long as they are stored. Calculations can be stored as long as they don’t reference any

unstored calculations, globally stored fields, related fields, or summary fields. Not saving a calcula-

tion means that finds or sorts using the field will be slower than if it is stored. For a field that is fre-

quently used for finds, this is a serious consideration; for other fields, it might be irrelevant.

There are a few circumstances in which you’ll want to explicitly turn off storage. For instance,

when you use any of the Get functions in a calculation, you should make sure that the calculation

result is unstored. Get functions typically return information relating to the state of a user session.

By definition, that information changes on a second-by-second basis, and formulas based on it

should not be stored so that they continue to reflect present reality. If you do so, the calculation is

forced to evaluate based on the current environment each time it’s evaluated (as opposed to always

“remembering” the environment at the time the record was created or modified). Imagine you

defined a calculation to return the number of records in the current found set by using the Get (

FoundCount) formula. If you don’t explicitly set the results to be unstored, for a given record, the

formula evaluates once and keeps that value, regardless of changes to the size of the found set. The

 note
Note that the sales commission
example assumes there to be
one record in the utility table in
question. If there were multiple
records, it would be possible to
include the concept of an active/
inactive status into the calcula-
tion or simply rely on the fact
that the last edited record will be
that from which the calculation
will draw its source information.

ptg8106388

Getting Started with Calculations226

II

PA
RT

count of found records the first time the calculation is triggered

is the value that will be stored. As their name implies, unstored

calculations do not make your files larger, but because they must

evaluate each time you view them, they can slow down a system

if they’re based on complex formulas.

 Specifying Context
Across the top of the Specify Calculation dialog, you’re asked to

specify the context from which to evaluate this calculation. This

choice is necessary only when the source table you are work-

ing with appears in your Relationships Graph more than once as

several table occurrences. And even in those cases, it really mat-

ters only when your calculation formula involves related fields. In

such cases, the calculation might return different results, depend-

ing on the context from which it’s evaluated. To make this point

clear, consider the example of a database that contains transac-

tions for buyers and sellers.
There are two tables in the database: Persons and Transactions.

Figure 8.6 shows the Transactions table in Table view.
In this example, a person can act as either a buyer or a seller for

a given transaction. This means then that a Persons record will

have potentially two sets of related transactions: those for which

that person is a seller and those for which she is a buyer.

 note
As a rule of thumb, you should
stick with the default storage
options unless you know for sure
that you need the result to be
unstored. You’ll almost never need
to explicitly turn indexing on; let
FileMaker turn it on as necessary.
Very seldom should you uncheck
the option to have FileMaker turn
on indexing as needed. Be aware
that indexing increases the size of
your files, sometimes by a great
deal. By unchecking the option to
have FileMaker turn on indexing
as needed, you can ensure that
certain fields won’t be indexed
accidentally just because a user
performs a find on them.

 note
This database, CalculationDemo,
can be downloaded from the
author’s website as described in
the Introduction.

 Figure 8.6
Transactions are stored with
the IDs of buyer and seller as
well as amount and descrip-
tion.

ptg8106388

227Exploring the Specify Calculation Dialog

8

C
H
APTER

Figure 8.7 shows the Relationships Graph of the database. Note that there is a single Transactions

table and three occurrences of the Persons table: one is named Buyers, one is named Sellers, and

one has the default name Persons. Buyers and Sellers are related to Transactions by relationships

between sellerID or buyerID in Transactions and the zID in the appropriate table occurrence of

Persons (Buyers or Sellers).

 Figure 8.7
The two tables (Persons and
Transactions) are the basis
for four table occurrences.

Note, too, that in the Persons table (as well as the Sellers and Buyers occurrences based on it) are

two additional fields: salesTotal and buysTotal . These calculation fields contain the total amount

of sales and purchases for that person.

The relationship between Buyers, Sellers, and Transactions enables you to construct a layout such

as the one shown in Figure 8.8 . It is based on the Sellers table occurrence, and it has a portal show-

ing the Transactions table to which the seller is related. A copy of this layout, based on the Buyers

table occurrence, has a portal for Transactions based on the relationship between Buyers and

Transactions.
To create the salesTotal field in the Persons table, you need to use a function that sums up all

sales—that is, all records in the Transactions table that are found via the relationship between

Sellers and Transactions. Likewise, to create the buysTotal field, you need a calculation that sums

up all records in the Transactions table found via the relationship between Buyers and Transactions.

ptg8106388

Getting Started with Calculations228

II

PA
RT

The problem is that these two calculation fields are in the Persons table. You need a way to specify

which relationship from a table occurrence of the Persons table is to be used. You do so by setting

the context for the calculation using the pop-up menu at the top of the Specify Calculation dialog, as

shown in Figure 8.9 .

 Figure 8.8
A Sellers layout contains a
portal to Transactions.

 Figure 8.9
Specify the context for an
ambiguous relationship.

ptg8106388

229Essential Functions

8

C
H
APTER

Having specified the context, you then add the Sum function and, for the field to be summed, you

select the table as shown in Figure 8.10 and then select the field.

 Figure 8.10
Select the table and field to be
used.

As you saw from the same layout in Figure 8.8 , this calculation correctly computes the totals

needed. You only need to specify a context for a calculation when there is ambiguity. The ambiguity

arises if the table in which you are creating a calculation has more than one relationship to the table

in which a related field resides.

 Essential Functions
Now that you know your way around the Specify Calculation dialog itself, it’s time to start learning

more about particular calculation functions. Here is an in-depth tutorial on the most essential func-

tions and techniques. These will form a solid base for your own work and for assembling complex

formulas. As a reminder, Chapter 15 covers advanced calculation formulas and techniques.

Parts of a Function
Let’s begin with a general discussion about what functions do and how to learn about them. Their

sole mission in life is to act on some set of inputs and produce an output. The inputs are usually

referred to as parameters ; the function’s syntax specifies the number of parameters it expects to be

fed and provides a clue about what the nature of each of those parameters is.

ptg8106388

Getting Started with Calculations230

II

PA
RT

An example will help clarify this point. Look at the syntax of the

Position function as it’s taken directly from the function list in

the calculation dialog:

Position (text ; searchString ; start ; occurrence)

A function’s parameters are always placed in parentheses

directly after the name of the function itself. They are separated

from one another by semicolons.
You can see that the Position function has four parameters. The function reference will tell you

that the first parameter should be a text string in which you want to search, and the second should

be a text string you want to find within it. The third parameter is a number that specifies the char-

acter number at which to begin searching. The final parameter is also a number; it specifies which

occurrence of the search string to find.

Besides knowing what to feed a function (here, two text strings and two numbers), you also need

to know what type of output the function produces. Again, you first learn this by consulting some

reference source or the help system. There, you’d learn that the Position function returns a num-

ber—not just any number, of course, but the character number where the search string was found

within the initial text string. If the string was not found at all, it returns a 0 . So, for example, if you

had the function

Position (“Mary had a little lamb”; “a”; 1; 1)

the function would return 2 because the first occurrence of the letter a is at character 2 of the input

string. If you change the function slightly, to

Position (“Mary had a little lamb”; “a”; 1; 2)

you’d now expect a value of 7 because that’s the position of the second occurrence of the letter a .

In these examples, all the parameters were hard-coded with constant values. More typically, the

parameters that you feed a function will be either fields or the outputs of other functions. For

instance, if you have a field called PoemText and another called SearchCharacter , you might end

up using the Position function as shown here:

Position (PoemText; SearchCharacter; 1; 1)

Now, each record in your database will contain a different result, dependent on the contents of

those two fields.

Using functions as parameters of other functions is called nesting . In those cases, the inner func-

tions evaluate first, and their results are used as the inputs for the outer functions. For instance, you

might have the following function:

Position (PoemText; SearchCharacter; Length(PoemText) - 5; 1)

 note
In English versions prior to
FileMaker 7, the parameter sepa-
rator was a comma. In fact, if you
use commas now, they are trans-
formed into semicolons for you.

ptg8106388

231Essential Functions

8

C
H
APTER

Notice that the third parameter of the Position function here is the expression Length(

PoemText) - 5 . The Length function (which we discuss in more detail shortly) takes a single

parameter, a text string, and returns the number of characters in the string. So, in the preceding

function, the length of the PoemText field will be determined, and that value less 5 will be used as

the third parameter of the Position function. No practical limit exists on the number of layers you

can use to nest functions within one another. Just remember that readability becomes very impor-

tant as your calculations become more complex.

At this point, you know quite a bit about the Position function. You know about its inputs and

outputs; you’ve worked with a few examples. Eventually, you’ll likely want to memorize the inputs

and outputs of a core set of functions. For lesser-used functions, you can look up the parameters

and usage on an as-needed basis. There’s still a difference between proficiency with a function and

a complete understanding of it. For instance, to truly master the Position function, you’d need to

know such things as whether it’s case sensitive (it’s not), and what happens if you supply a nega-

tive number for the occurrence (it searches backward from the specified start character). Over time

and with use, you’ll learn about the subtle and esoteric usage of various functions, thereby moving

from mere proficiency to mastery.

Let’s turn now to a close look at those functions and techniques that should form the core of your

calculation knowledge.

 Text Operations
Text functions enable you to interrogate and manipulate text

strings. If you haven’t done much programming before, the concept

of a string might require some explanation. Essentially, a string is

a series of characters. Think about threading characters on a string

like you do popcorn to make holiday decorations, and you’ll have a

good mental image of a text string. The characters can be anything

from letters and numbers to spaces and punctuation marks.
Typically in FileMaker, text strings are found in text fields, but be

aware that you can treat any numeric, date, and time data as a

text string as well. When you do that, it’s called coercing the data. FileMaker automatically coerces

data into the type expected for a given operation. If you ever need to override the automatic coer-

cion for any reason, you can use the GetAs functions. They include GetAsDate() , GetAsNumber() ,

GetAsTime() , and GetAsText() .

The simplest text operation you can perform is concatenation. Concatenation means taking two or

more text strings and placing them beside each other to form a new, longer text string. As an exam-

ple, consider the following formula:

FirstName & “ “ & LastName

Here, we’re taking three strings, two of which happen to be field data, and we’re concatenating

them into a full name format.

Let’s look next at several functions that can be used to interrogate text strings. By interrogate , we

mean that we’re interested in answering a specific question about the contents of a text string. For

 note
In versions of FileMaker prior to
7, the size limit for text strings
was 64,000 characters. It has
now been expanded to a whop-
ping 2GB.

ptg8106388

Getting Started with Calculations232

II

PA
RT

the examples in this section, assume that you have a field called fullName with the string “Fred

Flintstone” and the field someString , which contains “The quick brown fox jumped over

the lazy dog” . The following is a list of some of the core calculation functions with examples that

apply to the fullName and someString fields:

 • Length (text) — The Length function takes a single argument and simply returns the num-

ber of characters in the string. Remember that spaces and return characters are considered char-

acters. So, Length (fullName) would return 15 .

 • PatternCount (text; searchString) — The PatternCount function tells you the number

of times a search string occurs within some string. As an example, PatternCount (

someString; “the”) would return 2 . Note that this function is not case sensitive. If the

search string is not found, the function returns 0 . Although the function returns an integer, it’s

often used as a true/false test when you just want to know whether something is contained in

a string. That is, you don’t care where or how many times the string is found; you just care that

it’s there somewhere. Recall that any nonzero value represents “true” when being used as a

Boolean value.

 • Position (text; searchString; start; occurrence) — You’ve already looked in depth

at the Position function. To recap, it returns an integer that specifies the place where one

string is found in another. The start argument specifies where to begin the search; the

occurrence argument specifies whether you want the first occurrence, the second, and so on.

Much of the time, you’ll simply use 1 for both the start and the occurrence parameters.

 • WordCount (string) — WordCount is similar to the Length function, except that instead of

counting every character, it counts every word. So, WordCount (someString) would return

9 because there are nine words in the phrase. Be careful if you use WordCount that you have a

good understanding of what characters FileMaker considers as being word delimiters.

What’s in a Word?

Several FileMaker functions, such as WordCount() , LeftWords() , RightWords() , and
MiddleWords() , treat text strings as collections of words rather than as collections of char-
acters. But how does FileMaker determine what constitutes a word? It’s actually quite simple.
FileMaker recognizes a handful of characters as word separators. Spaces and carriage returns
are both word separators, as you’d probably expect. Additionally, just about every punctua-
tion symbol and other special character is considered a word separator. The two exceptions
are worth knowing: Neither a period (.) directly after a number nor an apostrophe (’) is a word
separator. Also, in versions of FileMaker prior to 7, hyphens (-) were not considered word sepa-
rators, but they are now. If you have multiple word separators right next to each other, they’re
considered together as a single delimiter. For instance, the string “ hello ,-, world “ is
considered to have two words, even though there are a total of nine word separators in the
string.

ptg8106388

233Essential Functions

8

C
H
APTER

 • Exact (originalText, comparisonText) — The Exact function takes two strings as its

inputs, and it compares them to see whether they are exactly the same string. It returns a 1 if

they are, a 0 if not. By “exactly,” we mean exactly ; this function is case sensitive. The order of

the two input arguments is irrelevant.

The other broad category of text operators consists of those functions that enable you to manipulate

a string. Whereas the interrogatory functions returned a number, these functions all return a string.

You feed them a string; they do something with it and spit back another string. The text operators

that fall into this category are explained in the following sections.

Trim()

The simplest of these functions is the Trim (text) function. Trim() takes a string and removes

any leading or trailing spaces from it. Spaces between words are not affected; no other leading or

trailing characters other than a space (that is, return characters at the end of a field) are removed.

There are two common uses of Trim() . The first is to identify data-entry problems. Imagine you

have a field called FirstName and that some users have been accidentally typing spaces after the

first name. You might want to display a message on such records, alerting users to that error. You’d

define a new calculation field, called something like SpaceCheck . Its formula could be one of the fol-

lowing:

Case (FirstName ≠ Trim (FirstName), “Extra Space!”)
Case (not Exact(FirstName, Trim (FirstName)), “Extra Space!”)
Case (Length(FirstName) > Length(Trim(FirstName)), “Extra Space!”)

 � To review the use and syntax of the Case() function, see “Using Conditional Functions,”

p. 240 .

The other common usage of Trim() is in a calculated replace to clean up fixed-length data that has

been imported from another application. Fixed length means that the contents of a field are padded

with leading or trailing spaces so that the entries are all the same length. After importing such data,

you’d simply replace the contents of each field with a trimmed version of itself.

 Substitute()
The next text manipulation function we’ll explore is the Substitute() function. Substitute

(string; searchString; replacementString) is used to replace every occurrence of some

substring with some other substring. So Substitute(fullName; “Fred”; “Wilma”) would

return the string “Wilma Flintstone” . If the initial substring were not found, the Substitute

function would simply return the original string. You should be aware that the Substitute() func-

tion is case sensitive.

One common use of Substitute() is to remove all occurrences of some character from a string.

You just substitute in an empty string for that character. For instance, to remove all occurrences of a

carriage return from a field, you could use Substitute (myString; “¶”; “”) . If there are mul-

tiple substitutions you want to make to a string, you simply list them all as bracketed pairs in the

ptg8106388

Getting Started with Calculations234

II

PA
RT

order in which they should be performed. Let’s say you have a PhoneNumber field from which you

want to strip out any parentheses, dashes, or spaces that users might have entered. One way to do

this would be to use the following formula:

Substitute (PhoneNumber; [“(“; “”] ; [“)”; “”] ; [“-”; “”] ; [“ “, “”])

Be aware when performing multiple substitutions like this that the substitutions happen in the

order in which they are listed, and that each subsequent substitution happens on an altered ver-

sion of the string rather than on the original string. Say you had the string “xxyz” and you wanted

to put z ’s where there are x ’s, and x ’s where there are z ’s. The formula Substitute (“xxyz”;

[“x”; “z”]; [“z”; “x”]) incorrectly returns “xxyx” . First, the two leading x ’s are turned to

z ’s, yielding “zzyz” ; then all three z ’s are turned into x ’s. If you ever want to swap two characters

like this, you need to temporarily turn the first character into something you know won’t be found

in your string. So to fix this example, we could use the formula Substitute(“xxyz”; [“x”;

“**TEMP**”]; [“z”; “x”]; [“**TEMP**”, “z”]) . That would correctly yield “zzyx” .

 Case-Altering Functions
You can use a few text functions to alter a string’s case. These are Lower (text) , Upper

(text) , and Proper (text) . It’s quite intuitive how these act. Lower (“Fred”) returns

“fred” ; Upper (“Fred”) returns “FRED” . Using Proper() returns a string in which the first letter

of each word is capitalized. For instance, Proper (“my NAME is fred”) returns “My Name Is

Fred” .

 Text-Parsing Functions
The final category of text operators we’ll look at here is text-parsing functions. Text-parsing func-

tions enable you to extract a substring from a string. The six text-parsing functions are Left() ,

Middle() , Right() , LeftWords() , MiddleWords() , and RightWords() . The first three operate at

the character level; the other three operate at the word level.

The Left() function extracts a substring of length N from the beginning of some string. For exam-

ple, Left (“Hello”; 2) returns the string “He” ; it simply grabs the first two characters of the

string. If the number of characters you ask for is greater than the length of the string, the function

simply returns the entire string. A negative or zero number of characters results in an empty string

being returned.

The Right() function is similar, except that it grabs characters from the end of the specified string.

Right (“Hello”; 2) would return “lo” . Middle() , as you might expect, is used to extract a

substring from the middle of a string. Unlike the Left() and Right() functions, which require only

a string and a length as parameters, the Middle function requires a starting position. The syntax is

Middle (text; startCharacter; numberOfCharacters) . For example, Middle

(“Hello”; 2; 3) yields “ell” .

The LeftWords() , MiddleWords() , and RightWords() functions all operate exactly as Left() ,

Middle() , and Right() functions, except that they operate at the word level. One typical use of

these functions is to extract names or addresses you’ve imported as a lump of data from some other

application. Say that your import resulted in contact names coming in as full names. You might want

ptg8106388

235Essential Functions

8

C
H
APTER

to create a LastName calculation field so that you could sort the records. If you knew that the last

name was always the last word of the FullName field, you could use the formula RightWords

(FullName; 1) .

 Nested Functions
The text operators we discussed often appear nested within each other in formulas. Writing nested

formulas can be tricky sometimes. One thing that helps is to think of a particular example rather

than trying to deal with it abstractly. For instance, let’s say that you have a big text field, and you

need a formula that extracts just its first line—that is, everything up until the first carriage return.

So, imagine that you had the following text:

The quick
brown fox
jumped over the
lazy dog

Think first: What text-parsing formulas would potentially yield “The quick” from this text? Well,

there are several of them:

Left (myText; 9)
LeftWords (myText; 2)
Middle (myText; 1; 9)

Of course, at this point these formulas apply only to this particular example. Think next: Could one

of these be extended easily to any multiline text field? If there were a constant number of words per

line, the LeftWords() formula would work. And if not? What do the text interrogation formulas tell

us about this field? Length (myText) is 44. Not particularly helpful. PatternCount (myText;

“¶”) is 3. This indicates that there are four lines total. Interesting, but not obviously helpful for

extracting the first line. WordCount (myText) is 9. It’s just coincidence that this is the number

of characters in the first line; be careful not to be misled. Position (myText; “¶”; 1; 1) is

10. Finally, something interesting. In this example, the length of the first line is one less than the

position of the first carriage return. Is that true in all cases? At this point, if you write out a few

more examples, you’ll see that indeed it is. Therefore, a general formula for extracting the first line

of text is

Left (myText; Position(myText, “¶”; 1; 1) - 1)

How about extracting the last line from any multiline text field? You should approach this problem

the same way, working from a specific example. Counting characters by hand, assemble a list of

options:

Middle (myText; 36, 8)
Right (myText; 8)
RightWords (myText; 2)

ptg8106388

Getting Started with Calculations236

II

PA
RT

What clues do the interrogatory functions yield? If you spend a few minutes thinking about it, you’ll

realize that 36 is the position of the last return character. You can derive that by using the number

of returns as the occurrence parameter in a Position() function, like this:

Position (myText; “¶”; 1; PatternCount(myText; “¶”))

After you have the 36 figured out, recall that the length of the string is 44 characters, and notice

that 44 – 36 = 8. Given these discoveries, you’ll soon see that a simple and elegant generalized for-

mula for grabbing the last line of a text field is

Right (myText; Length (myText) - Position(myText; “¶”; 1;
�PatternCount(myText; “¶”)))

 Number Functions
In general, most people find working with math functions simpler and more intuitive than work-

ing with string functions. Perhaps the reason is that they remind us of various high-school math

courses. Or it could be they typically have fewer parameters. Regardless, you’ll find yourself using

number functions on a regular basis. This chapter focuses not so much on what these functions do,

but rather on some interesting applications for them.

The first set of functions we’ll look at includes Int() , Floor() , Ceiling() , Round() , and

Truncate() . Each of these can be thought of as performing some sort of rounding, making it some-

times difficult to know which one you should use. You can look up these functions in the help sys-

tem for complete syntax and examples, but it’s helpful to consider the similarities and differences of

these functions as a set. Here’s a rundown:

 • Int (number) — The Int() function returns the integer portion of the number that it’s fed—

that is, anything before the decimal point. Int (4.5) returns 4 . Int (-2.1) returns -2 .

 • Floor (number) — Floor() is similar to Int() , except that it returns the next lower integer

of the number it’s fed—unless that number is an integer itself, of course, in which case Floor()

just returns that integer. For any positive number, Floor (number) and Int (number)

return the same value. For negative numbers, though, Floor (number) and Int

(number) don’t return the same value unless number is an integer. Floor (-2.1) returns

-3 , whereas Int (-2.1) returns -2 .

 • Ceiling (number) — The Ceiling() function is complementary to the Floor() function: It

returns the next higher integer from the number it’s fed (unless, again, that number is already an

integer). For example, Ceiling (5.3) returns 6 and Ceiling (-8.2) returns -8 .

 • Round (number; precision) — Round() takes a number and rounds it to the number of

decimal points specified by the precision parameter. At the significant digit, numbers up to 4

are rounded down; numbers 5 and above are rounded up. So, Round (3.6234; 3) returns

3.623 , whereas Round (3.6238; 3) returns 3.624 . Using a precision of 0 rounds to the

nearest whole number. Interestingly, you can use a negative precision. A precision of -1 rounds

a number to the nearest 10; -2 rounds to the nearest 100, and so on.

ptg8106388

237Essential Functions

8

C
H
APTER

 • Truncate (number, precision) — Truncate() is similar to Round() , but Truncate() sim-

ply takes the first n digits after the decimal point, leaving the last one unaffected regardless of

whether the subsequent number is 5 or higher. Truncate (3.6238; 3) returns 3.623 . For

any number, Truncate (number; 0) and Int (number) return the same value. Just as

Round() can take a negative precision, so can Truncate() . For example, Truncate (258;

-2) returns 200 .

Which function you use for any given circumstance depends on your needs. If you’re working with

currency and want to add an 8.25% shipping charge to an order, you’d probably end up with a for-

mula such as Round (OrderTotal * 1.0825 ; 2) . Using Truncate() might cheat you out of

a penny here or there.

Floor() , Ceiling() , and Int() have some interesting uses in situations where you want to group

numeric data into sets. For instance, imagine you have a list report that prints ten records per page

and that you have a found set of 57 records to print. If you want, for whatever reason, to know how

many pages your printed report would be, you could use Ceiling (Get(FoundCount)/10

) . Similarly, if you want to know what page any given record would print on, you would use the

formula Floor ((Get(RecordNumber)-1)/10) + 1 . The Int() function would yield the

same result in this case.

Another common use of these functions is to round a number up or down to the multiple of some

number. As an example, say you had the number 18, and you want to know the multiples of 7 that

bounded it (...14 and 21). To get the lower bound, you can use the formula Floor (18/7)* 7 ;

the upper bound is Ceiling (18/7)* 7 . These generalize as the following:

Lower bound: Floor (myNum / span) * span
Upper bound: Ceiling (myNum / span) * span

The span can be any number, including a decimal number, which comes in handy for rounding cur-

rency amounts, say, to the next higher or lower quarter.

You should know a few other number functions as well:

 • Abs (number) — The Abs() function returns the absolute value of the number it’s fed. One

interesting use of the function is to determine which platform FileMaker Pro is running on. The

three possible return values are –1 for PowerPC-based Macs, 1 for Intel-based Macs, and –2 for

Windows. Abs (Get (SystemPlatform)) returns 1 for both flavors of Macs.

 • Mod (number; divisor) — The Mod() function returns the remainder when a number is

divided by a divisor. For instance, Mod (13; 5) returns 3 because 13 divided by 5 is 2,

remainder 3.

 • Div (number; divisor) — The Div() function is complementary to the Mod() function. It

returns the whole-number result of dividing a number by a divisor. For instance, Div (13;

5) would return 2 . In all cases, Div (number; divisor) and Floor (number/divisor

) return exactly the same value; it’s a matter of personal preference or context which you should

use.

 • Random() — The Random() function returns a random decimal number between 0 and 1. Usually,

you’ll use the Random() function when you want to return a random number in some other

range, so you’ll need to multiply the result of the function by the span of the desired range. For

ptg8106388

Getting Started with Calculations238

II

PA
RT

instance, to simulate the roll of a six-sided die, you use the formula Ceiling (Random * 6) .

To return a random integer between, say, 21 and 50 (inclusive), the method would be similar:

First, you generate a random number between 1 and 30, and then you add 20 to the result to

translate it into the desired range. The formula would end up as Ceiling (Random * 30)

+ 20 .

 Character Functions
In their simplest form, these character functions let you convert a character to its numeric code, and

vice versa. This capability is particularly useful in dealing with special characters such as the Return

key. Because FileMaker Pro supports Unicode, these functions actually work on Unicode code points,

but many people refer to ASCII codes, which are a subset of Unicode code points:

 • Char (number) — This function returns a character for a Unicode code point. It may return

more than one character if the number string describes multiple characters.

 • Code (text) — This is the reverse of the preceding function: It provides a text string (often a

single character), and the function returns its numeric value. This function is often used with Get

(TriggerKeystroke) , which is described in “ Get Function,” later in this chapter.

Working with Dates and Times
Just as there are functions for working with text and numbers, FileMaker Pro provides functions

that enable you to manipulate date and time fields. This section introduces you to the most common

and discusses some real-world applications you’ll be likely to need in your solutions.

The most important point to understand at the outset is how FileMaker itself stores dates, times,

and timestamps. Each is actually stored as an integer number. For dates, this integer represents a

serialized number beginning with January 1, 0001. January 1, 0001, is 1 ; January 2, 0001, is 2 ; and

so on. As an example, October 19, 2013, is stored by FileMaker as 735160 . FileMaker understands

dates from January 1, 0001, until December 31, 4000.

Times are stored as the number of seconds since midnight. Midnight itself is 0 . Therefore, times are

typically in the range of 0 to 83999 . It’s worth knowing that time fields can contain not only abso-

lute times, but also elapsed times. That is, you can type 46:18:19 into a time field, and it will be

stored as 166699 seconds. Negative values can be placed in time fields as well. FileMaker doesn’t

have the capability to deal with microseconds; however, it can manage fractional elements:

10:15:45.99 is a valid time within FileMaker and 10:15:45.99 - 10:15:44 = 00:00:01.99 .

Note that this is not hundredths of a second, but rather simply a case of using a decimal instead of

an integer.

Timestamps contain both a date and time. For example, “10/19/2013 8:55:03 AM” is a timestamp.

Internally, timestamps are converted to the number of seconds since midnight on January 1, 0001.

You could derive this number from date and time fields with the formula ((myDate - 1) *

86400) + myTime .

The easiest way to begin learning date, time, and timestamp functions is to split them into two

categories: those that you feed a date or time and that return a “bit” of information back, and those

ptg8106388

239Essential Functions

8

C
H
APTER

that are constructors , in which you feed the function bits and you get back a date, time, or time-

stamp. These aren’t formal terms that you’ll find used elsewhere, but they’re nonetheless useful for

learning date and time functions.

The “bit” functions are fed dates and times, and they return numbers or text. For instance, say that

you have a field myDate that contains the value 10/19/2013 . Here’s a list of the most common “bit”

functions and what they’d return:

Month (myDate) = 10
MonthName (myDate) = October
Day (myDate) = 19
DayName (myDate) = Saturday
DayOfWeek (myDate) = 7
Year (myDate) = 2013

Similarly, a field called myTime with a value of 9:23:10 AM could be split into its bits with the fol-

lowing functions:

Hour (myTime) = 9
Minute (myTime) = 23
Seconds (myTime) = 10

You need to know only three constructor functions. Each is fed bits

of data and returns, respectively, a date, time, or timestamp:

Date (month; day; year)
Time (hours; minutes; seconds)
TimeStamp (date; time)

For example, Date (10; 20; 2013) returns 10/20/2013 .

TimeStamp (myDate; myTime) might return 10/19/2013

9:23:10 AM . When using these formulas in calculation fields, be

sure to check that you’ve set the calculation result to the proper

data type.

Using Date and Time Functions
There are many practical uses of the date and time functions. For instance, the “bit” functions are

often used to generate a break field that can be used in subsummary reports. Say that you have

a table of invoice data, and you want a report that shows totals by month and year. You would

define a field called InvoiceMonth with the formula Month (InvoiceDate) and another called

InvoiceYear with a formula of Year (InvoiceDate) .

A common use of the constructor functions is to derive a date from the bits of a user-entered date.

Say, for example, that a user entered 10/19/2013 into a field called myDate , and you wanted a cal-

culation formula that would return the first of the next month, or 11/1/2013 . Your formula would be

Date (Month(myDate) +1; 1; Year(myDate)) .

 note
One very interesting and useful
fact to know about these con-
structor functions is that you can
“overfeed” them. For example,
if you ask for Date (13;
5; 2013) , the result will be
1/5/2014 . If the bits you pro-
vide are out of range, FileMaker
automatically adjusts accord-
ingly. Even zero and negative
values are interpreted correctly.
Date (10; 0; 2013)
returns 9/30/2013 because
that’s one day before 10/1/2013.

ptg8106388

Getting Started with Calculations240

II

PA
RT

If you’re importing dates from other systems, you might have to use text-manipulation functions in

conjunction with the constructor functions to turn the dates into something FileMaker can under-

stand. Student information systems, for example, often store students’ birth dates in an eight-digit

format of MMDDYYYY. To import and clean this data, you first bring the raw data into a text field.

Then, using either a calculated replace or a looping script, you would set the contents of a date field

to the result of the formula:

Date (
 Left (ImportedDate; 2);
 Middle(ImportedDate; 3; 2);
 Right(ImportedDate; 4)
)

 Using Timestamps
Timestamps are quite useful for logging activities, but sometimes you’ll find that you want to extract

either just the date or just the time portion of the timestamp. The easiest way to do this is via the

GetAsDate() and GetAsTime() functions. When you feed either of these a timestamp, it returns

just the date or time portion of that timestamp. Similarly, if you have a formula that generates a

timestamp, you can set the return data type of the calculation result to date or time to return just the

date or just the time.

 Using Conditional Functions
Conditional functions are used when you want to return a different result based on certain condi-

tions. The most basic and essential conditional function is the If() function. If takes three param-

eters: a test, a true result, and a false result. The test needs to be a full equation or expression that

can evaluate to true or false.

Let’s look at an example. Suppose you have a set of records containing data about invoices. You’d

like to display the status of the invoice—“Paid” or “Not Paid”—based on whether the AmountDue

field has a value greater than zero. To do this, you’d define a new field, called InvoiceStatus , with

the following formula:

If (AmountDue > 0, “Not Paid”, “Paid”)

For each record in the database, the contents of the InvoiceStatus field will be derived based on

the contents of that record’s AmountDue field.

The test can be a simple equation, as in the preceding example, or it can be a complex test that uses

several equations tied together with and and or logic. For the test

If (A and B; “something”; “something else”)

both A and B have to be true to return the true result. However, for the test

If (A or B; “something”; “something else”)

if either A or B is true, it will return the true result.

ptg8106388

241Aggregate Functions

8

C
H
APTER

The true or false result arguments can themselves be If() statements, resulting in what’s known

as a nested If() statement. This allows you to test multiple conditions and return more than two

results. For instance, let’s revise the logic of the InvoiceStatus field. Say that we wanted invoices

with a negative AmountDue to evaluate as Credit Due . We could then use the following field defi-

nition:

If (Amount Due > 0; “Not Paid”; If (Amount Due < 0; “Credit Due”; “Paid”))

The other commonly used conditional function is the Case() statement. The Case() statement

differs from the If() statement in that you can test for multiple conditions without resorting to

nesting. For instance, say that you have a field called GenderCode in a table that contains either M

or F for a given record. If you wanted to define a field to display the full gender, you could use the

following formula:

Case (GenderCode = “M”; “Male”; GenderCode=”F”; “Female”)

A Case() statement consists of a series of tests and results. The tests are conducted in the order

in which they appear. If a test is true, the following result is returned; if not, the next test is evalu-

ated. FileMaker stops evaluating tests after the first true one is discovered. You can include a final

optional result that is returned if none of the tests comes back as true. The gender display formula

could be altered to include a default response as shown here:

Case (GenderCode = “M”; “Male”; GenderCode=”F”; “Female”; “Gender Unknown”)

Without the default response, if none of the tests is true, then the Case() statement returns a null

value.

 Aggregate Functions
Another important category of functions includes those known as aggregate functions. They include

Sum() , Count() , Min() , Max() , and Avg() . These functions all work in similar, quite intuitive

ways. Each operates on a set of inputs (numeric, except for the Count() function) and produce a

numeric output. The name of the function implies the operation each performs. Sum() adds a set

of numbers, Min() and Max() return (respectively) the smallest and largest items of a set, Avg()

returns the arithmetic mean of the numbers, and Count() returns the number of non-null values in

the set. List() returns a text field with the inputs concatenated together and separated by carriage

returns.

The inputs for an aggregate function can come from any one of three sources:

 • A series of delimited values— For example, Sum (6; 4; 7; 2) yields 19 . Average (6;

4; 7; 2) yields 4.75 . An interesting use of the Count() function is to determine the number

of fields in a record into which a user has entered values. For instance, Count (FirstName;

LastName; Phone; Address; City; State; Zip) returns 2 if the user enters values into

only those two fields.

ptg8106388

Getting Started with Calculations242

II

PA
RT

 • A repeating field— Repeating fields enable you to store mul-

tiple values within a single field within the same record. For

instance, you might have repeating fields within a music

collection database for listing the tracks and times of the con-

tents of a given disc. The functions Count (Tracks) and

Sum (Times) produce the number of tracks and the total

playing time for a given disc.

 • A related field— By far, this is the most common application

for aggregate functions. Imagine that you have a Customer

table and an Invoices table and you want to create a field

in Customer that totals up all the invoices for a particular

customer. That field would be defined as Sum

(Invoices::InvoiceTotal) . Similarly, to tell how many

related invoices a customer had, you could use the formula

Count (Invoices:: CustomerID) .

Learning About the Environment: Introspective
Functions

FileMaker has two categories of functions whose job it is to tell you information about the environ-

ment—the computing and application environment, that is. These are the Get() functions and the

Design() functions. There are more than 70 Get() functions and 20 Design() functions. Here, our

goal is to give you an overview of the types of things these functions do and some of the most com-

mon uses for them.

 Get Function
A Get() function provides a broad array of information about a user’s computing environment and

the current state of a database. Each takes a single parameter that identifies the type of information

you want.

As an example, the Get (TotalRecordCount) function returns the total number of records in

some table. One typical use for this is as the formula for a calculation field. If you have hidden the

Status Area from users, this field could be used as part of constructing your own “Record X of Y”

display. If you’re using this function in a script—or any Get() function, for that matter—be sure that

you’re aware that the active layout determines the context in which this function is evaluated.

Whenever you use a Get() function as part of a field definition, you need to be acutely aware of the

storage options that have been set for that field. For Get() functions to evaluate properly, you must

explicitly set the calculation to be unstored. If it is not set this way, the function evaluates only once

when the record is created; it reflects the state of the environment at the time of record creation,

but not at the current moment. Setting the calculation field to unstored forces it to evaluate every

time the field is displayed or used in another calculation, based on the current state of the environ-

ment.

 note
When you are using the
Count() function to count
related records, it usually
doesn’t matter what field you
count, as long as it’s not empty.
The count will not include
records where the specified field
is blank. Typically, you should
count either the related primary
key or the related foreign key
because these, by definition,
should contain data.

ptg8106388

243Learning About the Environment: Introspective Functions

8

C
H
APTER

 Frequently Used Get Functions
Although you don’t need to memorize all the Get() functions, a handful of them are used frequently

and should form part of your core knowledge of functions. To remember them, you might find it

helpful to group them into subcategories based on their function.

The first subcategory includes functions that reveal information about the current user:

Get (AccountName)
Get (ExtendedPrivileges)
Get (PrivilegeSetName)
Get (UserName)
Get (UserCount)

Another subcategory includes functions used frequently in conditional tests within scripts to deter-

mine what actions should be taken:

Get (ActiveModifierKeys)
Get (LastMessageChoice)
Get (LastError)
Get (ScriptParameter)

There are four functions for returning the current date and time:

Get (CurrentDate)
Get (CurrentHostTimeStamp)
Get (CurrentTime)
Get (CurrentTimeStamp)

Many Get() functions tell you where the user is within the application and what the user is doing:

Get (FoundCount)
Get (LayoutNumber)
Get (LayoutName)
Get (LayoutTableName)
Get (PageNumber)
Get (PortalRowNumber)
Get (RecordNumber)

Another group of functions reveals information about the position, size, and name of the current

window:

Get (WindowName)
Get (WindowTop)
Get (WindowHeight)
Get (WindowWidth)

The last set of functions lets you find two file paths. You can use them in scripts when you need to

create an exported file from FileMaker Pro or a PDF file. The desktop path is just that: the path to

the user’s desktop. On both OS X and Windows it is a fully qualified path name, which means that

ptg8106388

Getting Started with Calculations244

II

PA
RT

it starts at the drive (a letter like C: in Windows or a name in OS X). You can use the path as a pre-

fix for a file that you will create on the user’s desktop. Alternatively, you can use text functions in

FileMaker to drop Desktop/ from the end of the path so that you can save a file in another location

inside the user’s home folder.

The new Get (TemporaryPath) function in FileMaker Pro 10 and later gives you access to a

folder created by FileMaker Pro (or by FileMaker Server) for each session (FileMaker Pro) or schedule

(FileMaker Server). This folder is automatically deleted when the program ends. You can place files

in this folder confident that they will not clutter up the user’s hard disk once FileMaker Pro has ter-

minated.

Get (DesktopPath)
Get (TemporaryPath)

To see the list of Get() functions in the Specify Calculation dialog, you have to toggle the view

to either All Functions by Type or to just the Get functions. They don’t show up when the view

is All Functions by Name. Be aware that there are a number of functions with Get in their name

that aren’t Get() functions. They include functions such as GetRepetition() , GetField() ,

GetAsText() , and GetSummary() . These are not functionally related in any way to the Get() func-

tions that have just been discussed.

 Design Functions
The Design functions are used to get information about the structure of a database file itself. With

just two exceptions—specifically, DatabaseNames() and WindowNames() —not one of the Design

functions is session dependent. That is, the results returned by these functions won’t differ at all

based on who is logged in or what that user is doing. Unlike the Get() functions, Design functions

often take parameters.

Fully half of the Design functions simply return lists of names or IDs of the major structural compo-

nents of a file. These include the following:

FieldIDs (fileName; layoutName)
FieldNames (fileName; layout/tableName)
LayoutIDs (fileName)
LayoutNames (fileName)
ScriptIDs (fileName)
ScriptNames (fileName)
TableIDs (fileName)
TableNames (fileName)
ValueListIDs (fileName)
ValueListNames (fileName)

Six other Design functions return information about a specified field:

FieldBounds (fileName ; layoutName ; fieldName)
FieldComment (fileName ; fieldName)
FieldRepetitions (fileName ; layoutName ; fieldName)
FieldStyle (fileName ; layoutName ; fieldName)

ptg8106388

245Device Identif ication Functions

8

C
H
APTER

FieldType (fileName ; fieldName)
GetNextSerialValue (fileName ; fieldName)

The DatabaseNames() function returns a list of the databases that the current user has open. The

list doesn’t include file extensions, and it doesn’t distinguish between files that are open as a host

versus those that are open as a guest.

Similarly, the WindowNames() function returns a list of the window names that the current user has

open. The list is ordered by the stacking order of the windows; it includes both visible and hidden

windows across all the open database files.

Typically, the DatabaseNames() and WindowsNames() functions are used to check whether a user

has a certain database file or window open already. For instance, if you have a navigation window

that you always want to be open, you can have a subscript check for its presence and open it if the

user closed it. To do this, you use the formula PatternCount (WindowNames; “Nav

Window”) . This formula returns a 0 if there was no open window whose name included the string

“Nav Window” .

The final Design function is ValueListItems (fileName ; valueList) . This function returns

a list of the items in the specified value list. As with most of the Design functions, the primary

purpose of this function is to help you catalog or investigate the structure of a file. There’s another

common usage of ValueListItems() that is handy to know. Imagine that you have a one-to-many

relationship between a table called Salespeople and a table called Contacts, which contains demo-

graphic information about all of a salesperson’s contacts. For whatever reason, you might want

to assemble a list of all the cities where a salesperson has contacts. You can do this by defining a

value list based on the relationship that shows the City field and then creating an unstored calcula-

tion field in Contacts with the formula ValueListItems (“Contacts”; “CityList”) . For any

given salesperson record, this field will contain the “sum” of all the cities where the salesperson

has contacts.

 Device Identification Functions
FileMaker’s built-in security mechanism lets you determine and control who is using your database.

The device identification functions let you determine what device they are using. These functions

return either

 • UUID— This is the Universally Unique Identifier of the device. It is a text string containing letters

and numbers separated by hyphens.

 • PersistentID— This is an MD5 hash value of the UUID.

The UUID is the actual identifier value. If you display it or store it in a database, you have identified

the user’s device, and that may be an invasion of privacy. The MD5 has the value of the PersistentID

and is a one-way encryption of the UUID.

This means that you can store the hash value in your database safely. At another time, you can

check to see whether the PersistentID of the current device matches that of the previous device. If

so, the same device is being used. However, because these values are hashed, you do not directly

ptg8106388

Getting Started with Calculations246

II

PA
RT

check whether the device is the same, which could reveal the UUID. You only check to see if the cur-

rent and former PersistentID values are the same.

 Mobile Functions
Scripts that can be run on mobile devices can interrogate the location of the device.

You Can’t Control How the Location Is Obtained

The location of a mobile device is determined using a built-in GPS unit or by triangulating based
on cell towers or Wi-Fi locations. You cannot determine which technique is used.

Location returns the latitude and longitude of the device. It takes a single required parameter,

accuracy . This is the accuracy of the distance in meters of the returned result. You can optionally

provide timeout , which is the number of seconds after which to stop the query. The latitude and

longitude are returned as two comma-separated values. If the timeout or accuracy prevent the loca-

tion from being returned, you get and empty string.

This function is only available on mobile devices; on FileMaker Pro, it is a no-op (that is, not an

error, just no operation).

For more precise location information, you can use LocationValues , which takes the same param-

eters. It returns six values you can parse using GetValue :

 • Latitude in decimal

 • Longitude in decimal

 • Altitude in decimal

 • Horizontal accuracy in integer meters

 • Vertical accuracy in integer meters

 • Age of value in decimal minutes

Again, you might get an empty string returned if the accuracy or timeout prevent completion of the

request.

Container and Window Functions

Specialized functions let you interrogate containers and window styles.

The container functions refer to the contents of the container:

• GetWidth
• GetHeight
• GetThumbnail
• VerifyContainer

For windows, you can interrogate the window style with GetWindowStyle.

ptg8106388

247Troubleshooting

8

C
H
APTER

 Troubleshooting

Formulas in Scripts Require Explicit Table Context
I’m used to being able to type field names into calculation formulas rather than selecting them from

the field list. Sometimes, even if I’ve typed the field name correctly, I get a Field not found mes-

sage when trying to leave the calculation dialog. It seems that sometimes calculations need the

table occurrence name before the field name, and sometimes they don’t. What are the rules for this?

When you define calculation fields, any fields within the current table can be entered into the

formula without the table context being defined. For instance, you might have a FullName field

defined to be FirstName & “ “ & LastName .

All formulas you write anywhere within ScriptMaker require that the table context be explic-

itly defined for every field, even when there’s only a single table in the file. For instance, if you

wanted to use a Set Field script step to place a contact’s full name into a field, you wouldn’t

be able to use the preceding formula as written. Instead, it would need to be something like

Contact::FirstName & “ “ & Contact::LastName .

If you’re used to being able to manually type field names into formulas, be aware that the table

context must be included for every field referenced in the formula. The reason for this is that

the table context for a script is determined by the active layout when the script is executed.

Contact::FirstName might have a very different meaning when evaluated on a layout tied to the

Contact table than it would, say, on one tied to an Invoice table.

Errors Due to Improper Data Type Selection
I’ve heard that the data type selection for calculation fields is important. What kind of problems will

I have if I select the wrong data type, and how do I know what type to choose?

Every time you define a calculation field, no matter how simple, be sure to check the data type that

the formula is defined to return. The default data type is Number unless you’re defining multiple cal-

culations in a row, in which case the default for subsequent fields will be the data type defined for

the previous calculation.

A number of errors can result from selecting the improper data type. For instance, if your formula

returns a text string but you leave the return data type as Number, any finds or sorts you perform

using that field will not return the expected results.

Be especially aware that formulas that return dates, times, and timestamps are defined to have date,

time, and timestamp results. If you leave the data type as Number, your field displays the internal

serial number that represents that date and/or time. For instance, the formula Date (4 ; 26 ;

2013) returns 734984 if the date type is set to number.

ptg8106388

Getting Started with Calculations248

II

PA
RT

FileMaker Extra: Tips for Becoming a Calculation
Master

As mentioned at the outset of this chapter, mastering the use of calculation formulas takes time. We

thought it would be helpful to compile a list of tips to help you get started on the path:

 • Begin with a core— Don’t try to memorize everything at once; chances are you’ll end up frus-

trated. Instead, concentrate on building a small core of functions that you know inside and out

and can use without having to look up the syntax or copy from examples. Then gradually expand

the core over time. As you have a need to use a new function, spend a few minutes reading

about it or testing how it behaves in various conditions.

 • Work it out on paper first— Before writing a complex formula, work through the logic with pencil

and paper. This way, you can separate the logic from the syntax. You’ll also know what to test

against and what to expect as output.

 • Search for alternative methods of doing the same thing— It’s uncommon to have only one way

to approach a problem or only one formula that will suit a given need. As you write a formula,

ask yourself how else you might be able to approach the problem, and what the pros and cons of

each method would be. Try to avoid the “if your only tool is a hammer, all your problems look like

nails” situation. For instance, if you always use If() statements for conditional tests, be adven-

turous and see whether you could use a Case() statement instead.

 • Strive for simplicity, elegance, and extensibility— As you expand your skills, you’ll find that it

becomes easy to come up with multiple approaches to a given problem. So how do you choose

which to use? We suggest that simplicity, elegance, and extensibility are the criteria to judge

by. All other things being equal, choose the formula that uses the fewest functions, has tightly

reasoned logic, or can be extended to handle other scenarios or future needs most easily. This

doesn’t mean that the shortest formula is the best. The opposite of simplicity and elegance is

what’s often referred to as the brute-force approach. There are certainly situations in which

that’s the best approach, and you shouldn’t hesitate to use such an approach when necessary.

But if you want to become a calculation master, you’ll need to have the ability to go beyond

brute-force approaches as well.

 • Use comments and spacing— Part of what makes a formula elegant is that it’s written in a way

that’s logical and transparent to other developers. There might come a time when someone else

needs to take over development of one of your projects, or when you’ll need to review a com-

plex formula that you wrote years before. By commenting your formulas and adding whitespace

within your formulas, you make it easier to expand on and troubleshoot problems in the future.

 • Be inquisitive and know where to get the answer— As you write formulas, take time to digress

and test hunches and learn new things. Whip up little sample files to see how something

behaves in various conditions. Also, know what resources are available to you to get more infor-

mation when you get stuck or need help. The Help system and online discussion groups are all

examples of resources you should take advantage of.

ptg8106388

249FileMaker Extra: Tips for Becoming a Calculation Master

8

C
H
APTER

 • Use your keyboard— Entering a less-than character followed by a greater-than character (<>)

equates to the “not equal to” operator (≠) within an expression. The following expressions are

functionally identical:

1 <> 2
1 ≠ 2

 This is true for >= and <= for > and < , respectively.

 • Use tabs to improve clarity— To enter a tab character into an expression (either as literal text or

simply to help with formatting), use (Option-Tab) [Ctrl+Tab].

 • Learn the exceptions— FileMaker allows for a shorthand approach to entering conditional

Boolean tests for non-null, nonzero field contents. The following two expressions are functionally

identical:

Case (fieldOne; “true”; “false”)
Case ((IsEmpty (text) or text = 0); “false”; “true”)

 Note that the authors do not recommend this shortcut as a best practice. We tend to believe you

should write explicit (and, yes, more verbose) code, leaving no room for ambiguity, but if you

ever inherit a system from another developer who has used this approach, you’ll need to be able

to grasp it.

 • Use defaults with conditionals— FileMaker allows for optional negative or default values in both

the Case() and If() conditional functions. The following expressions are both syntactically

valid:

Case (
 fieldOne = 1; “one”;
 fieldOne = 2; “two”

)

Case (
 fieldOne = 1; “one”;
 fieldOne = 2; “two”;
 “default”

)

 We strongly recommend you always provide a default condition at the end of your Case state-

ments, even if that condition should “never” occur. The next time your field shows a value of

“never happens,” you’ll be glad you did.

ptg8106388

Getting Started with Calculations250

II

PA
RT

 • Remember that Case short-circuiting can simplify logic— The Case() function features a

“short-circuiting” functionality whereby it evaluates conditional tests only until it reaches the

first true test. In the following example, the third test will never be evaluated, thus improving

system performance:

Case (
 1 = 2; “one is false”;
 1 = 1; “one is true”;
 2 = 2; “two is true”

)

 • Repeating value syntax— Note that fields with repeating values can be accessed either using

the GetRepetition() function or via a shorthand of placing an integer value between two brackets.

The following are functionally identical:

Quantity[2]

GetRepetition (Quantity; 2)

 • Common calculations— Create custom functions for common calculations, particularly those that

are specific to your solution or to a set of solutions. For example, you can create a custom func-

tion that takes a date and returns the fiscal year or the quarter in which it occurs. Depending

on the chances of your company changing its accounting year, you might choose to incorporate

the start date of the fiscal year into the custom function itself or to place it in a more changeable

location such as a custom-built table for such settings.

ptg8106388

 9

GETTING STARTED WITH
SCRIPTING

 Scripts in FileMaker Pro
Scripts are sets of stored instructions that specify a series of actions

FileMaker should perform when they’re initiated; they’re programs that

run within FileMaker Pro or FileMaker Go solutions. They can be just one

command in length, or they can be hundreds of commands long.

Scripts do two important things in FileMaker Pro and FileMaker Go:

They automate internal processes, and they add interactivity to custom

user interfaces. Internal processes might consist of creating a batch of

monthly invoices, setting the status of sales leads, or exporting data for

an aggregated report, for example. By adding interactivity , we refer to the

capability to create interface elements (such as buttons or icons) that will

do something in response to user actions. (This is particularly important in

FileMaker Go on mobile devices where there is not a menu bar.)

Scripts can also run in response to triggers —actions (usually on files, lay-

outs, or layout objects) that automatically cause the scripts to run. It is one

thing to click a button that causes something to run; it is a far different

thing to enter text in a field and—incidentally—have a script run to auto-

matically handle some necessary action. There has long been the ability to

specify validation rules and lookup routines that run when data is entered,

but now that any script can be triggered, you can specify any action at all.

Scripts are written using the Manage Scripts command from the Scripts

menu in FileMaker Pro or FileMaker Pro Advanced. It provides a point-

and-click interface that minimizes syntax errors. Scripts can perform tasks

ranging from simple things (such as simply entering Find mode) to com-

ptg8106388

Getting Started with Scripting252

II

PA
RT

plex automated import/export processes, multitable reporting,

data reconciliation, and anything that can be expressed as a pro-

grammed series of FileMaker steps.
A script usually runs in sequence from its first step to the last,

exiting or ending after it is complete. Here’s a simple example:

Show All Records
Go to Record/Request/Page [First]
Beep
Show Custom Dialog [Title: “First Record”;
➥Message: “This is your first record.”; Buttons: “OK”]

As you can see from this short example, FileMaker Pro scripts are

easy to read and comprehend. This script resets the found set of

the current layout/window to consist of all the records in a given

table and then takes the user to the first record in that set, beeps, and shows a dialog with an OK

button. Each step of the script executes in order: Show All Records is completed and then Go to

Record / Request / Page is dealt with.

It’s possible to create branching scripts by using logical If statements, and it’s also possible to con-

struct scripts that execute other scripts (hereafter referred to as subscripts). We get into both such

techniques later in the chapter.

Script writing is one of the areas where FileMaker Pro Advanced differs from FileMaker Pro. Some of

these features are the script debugger, data viewer, the Database Design Report, tools to optimize

databases and to create standalone solutions, as well as the ability to copy and paste scripts. Note

that it is the writing of scripts that is expanded; scripts written using the authoring features in

FileMaker Pro Advanced run perfectly well in FileMaker Pro.

 � For more information on FileMaker Pro Advanced, see Chapter 16 , “Advanced Scripting

Techniques.” That chapter also provides information about the more programmer-like features

of FileMaker scripting such as parameters, variables, and the like.

 Creating Scripts
Creating and editing scripts in FileMaker is straightforward. Simply choose File, Manage, Scripts (or

Scripts, Manage Scripts) and the Manage Scripts window opens, as shown in Figure 9.1 . You can

also use the keyboard shortcut of (Command-S) [Ctrl+S]. Keep in mind you’ll need to have signed

in with an account that allows script access (the default Admin account for databases allows this

access).
When you open the Manage Scripts window, you’ll see a list of existing scripts and can manage all

the scripts in your file (you can delete, reorder, and so on). You can use the search box at the upper

right of the dialog to search for script titles.

 note
Although you can only create
scripts on FileMaker Pro (or
FileMaker Pro Advanced), they
can run on FileMaker Go as well
as in web publishing solutions,
where they can be important
enhancements to the interface.
Not all script steps are available,
however. See “Script Editing,”
later in this chapter, for a discus-
sion of compatibility.

ptg8106388

253Creating Scripts

9

C
H
APTER

Writing an actual script requires first that you have a goal in mind: What purpose is the script

intended to accomplish? A script steps through a series of instructions, one at a time, until the script

either reaches its last instruction or reaches some exit condition. Exit conditions can vary, and this

chapter covers many of their implementations.

One common use for scripts is to arrange windows, global values, and other settings when

FileMaker opens its first file—as well as when it ends. This means that users opening a database

will be presented with a known condition of the database, windows, and data; if a companion script

runs when the file is closed, everything will be set to an appropriate condition for the next restart.

These are not inconsistent goals: For example, the closing script might store the specific state of the

current record and so forth, and, if that value is not found when it is opened the next time, the data-

base will be opened to a known condition.

One particularly important setting that a startup script can manage

is a setting for a global variable when you are running in a shared

environment on FileMaker Server. FileMaker Server carefully man-

ages separate copies of global fields for each user, and that is true

even from one session to another. If user A changes a global value,

because it is global only to user A, user B will not see user A’s

value, which, in most cases, is correct behavior. However, if the

global value is a setting such as the current semester for a school,

you want it to change for all users at the same time. In that case,

you can set the global variable (or a global field) in a startup script.

You modify the script once, and then, each time a user runs the

startup script that same value is available in a global field or vari-

able.

 Figure 9.1
The Manage Scripts window enables you to create, edit, and
organize your scripts, and decide which ones to display in
FileMaker’s Script menu.

 tip
Note that during the period
between the change of the
startup script and the time users
open the database again, the
previous value may be used. This
type of change to a script is typi-
cally implemented over a week-
end or other downtime.

ptg8106388

Getting Started with Scripting254

II

PA
RT

Before FileMaker 12, you could set both a startup script and a layout. Beginning with FileMaker 12,

the startup layout (if you want to set it) is accessed via File, File Options. The resultant dialog is

shown in Figure 9.2 .

Figure 9.2
You can set a layout to appear automatically when a file opens.

To automatically run a script when a file opens, use the Script Triggers tab in File Options, as

shown in Figure 9.3 .

 Figure 9.3
Set a script trigger to run a script at file open.

ptg8106388

255Creating Scripts

9

C
H
APTER

Scripts to run when a file is opened are becoming more and more important with the advent of

FileMaker Go and mobile devices. One of the purposes of such a script is to determine what device

is being used. Based on that information, a layout for the appropriate device is displayed. Once that

layout is displayed, its navigation tools generally move to other layouts appropriate for that device,

so that first layout that is automatically selected in the startup script is critical.

Figure 9.4 shows the script that runs with the On First Window Open trigger event.

Write the Script First

This example is from the Tasks Starter Solution; you can open it to see how it is set up. Note
that if you are building this type of structure yourself, you must first write the script you want to
run and then select it with a script trigger, as shown in Figure 9.3 .

 Figure 9.4
 A startup
script can dis-
play a layout
for the current
device.

Similarly, in Figure 9.5 you see the script that runs when a window is closed.

ptg8106388

Getting Started with Scripting256

II

PA
RT

The names of the scripts shown in Figure 9.3 include the | character. It is a regular text character

and not a part of FileMaker Pro syntax that has any special meaning.

 � For some guidance on using characters such as these and other naming conventions for scripts,

see “Naming Scripts,” p. 278 .

 � Many of the syntax elements of these scripts are described later in this chapter, as well as in

 Chapter 16 , “Advanced Scripting Techniques.”

 The Scripting Interface
The Manage Scripts window shown previously in Figure 9.1

allows you to manage all the scripts in your current file. As you

saw in Figure 9.1 , the Manage Scripts window lets you organize

scripts into folders and divide them with separators.

As you move separators or scripts into folders, they automatically

indent. You can create folders within folders to provide further

organization of the scripts. To reorder scripts, folders, or separa-

tors, simply drag the individual items up or down the list.

 Figure 9.5
A script can
be set to run
when a win-
dow is closed.

 tip
Use (Command-up/down arrow)
[Ctrl+up/down arrow] to move
scripts via your keyboard.

ptg8106388

257Creating Scripts

9

C
H
APTER

You can use the pop-up menu at the top of the dialog to select whether you want to see all scripts

or only the scripts in a given folder.

Buttons at the bottom of the Manage Scripts window let you perform a number of tasks. From the

left to right, as shown previously in Figure 9.1 , these buttons let you perform the following func-

tions:

 • You can create new scripts, folders, or separators with the plus button at the left, together with

the down-pointing arrow to its right.

 You also have an option to create a default script, as shown in Figure 9.6 . The default script

enters Browse mode, goes to the layout you currently have open, and then shows all records. You

can use it as a starting point for your scripts.

 Figure 9.6
Start from a
default script.

 • If you select a script in the list, you can edit it with the Edit button. If you select a group, the Edit

button lets you change its name just as you can change the name of a script.

 • If you select a script, Delete lets you delete it. You receive a warning before the deletion occurs

in case you change your mind or clicked the button by accident.

 • If you select a script, the Duplicate button makes a copy of it with

the word Copy appended to the name. You might want to make

one or more standard scripts and then copy and customize them

as needed. As part of editing a script, you can change its name.

 • You can use the Print button to print a script. Printing a script is

a good way to create documentation and to spot problems more

easily.

 tip
Notice that by using Command-
click [Ctrl+click], you can select
multiple, noncontiguous scripts
and then delete, duplicate, or print
as you need. Shift-click selects
multiple contiguous scripts.

ptg8106388

Getting Started with Scripting258

II

PA
RT

 • You can import scripts from one file to another. This feature works similarly to copying scripts.

 • By selecting a script and clicking Perform, you can execute scripts directly from this dialog.

 Script Editing
After you create a new script or edit an existing script, the Edit

Script window opens (as you saw previously in Figure 9.6). Here,

you construct the actual script by inserting script commands from

the list on the left into the window on the right. Nearly every

script step has additional options you need to specify, such as

the name of a layout to go to, or the name of a file from which to

import. These options appear under your script when you high-

light a given step in it.
As an example, Go to Layout is a common step you’ll use quite often. Notice that when you insert

it into a script, a menu appears in the Script Step Options area at the lower right, from which you

can choose an existing layout, the layout on which the script began, or one determined by calcula-

tion.

To reorder script steps, simply drag them by the two-headed arrow icon located to the left of the

step.

You can open as many script-editing windows as you want at the same time: Just select the

script(s) you want to edit and click Edit in the Manage Scripts window. If you try to close a script

window with unsaved changes, you receive a prompt with a dialog to save the changes. In addition,

when you are working with scripts, the Scripts menu contains commands to let you save or revert

the script in an editing window or to save all scripts.

In the lower left of the Edit Script window, the Show Compatibility pop-up menu lets you see which

commands are compatible with the various environments in which a script might run:

 • Desktop

 • Server

 • iOS

 • Instant Web Publishing

 • Custom Web Publishing

Any script step that is not compatible with the selected environment will be grayed out. You can

still use these script steps, but they will have no effect (and, in fact, may cause your script to exe-

cute in unexpected ways). Rather than relying on these script steps simply not executing, it is bet-

ter to actually check the environment in which you are running and skip over or modify such script

steps. The startup script shown previously in Figure 9.3 provides good examples of this practice.

 tip
You can (Command-click)
[Ctrl+click] multiple script steps
at once and insert the batch into
a script in one move.

ptg8106388

259Creating Scripts

9

C
H
APTER

 Full Access Privileges

Notice the Run Script with Full Access Privileges check box at the bottom of the Edit Script dialog.

Designating that a script run with full access privileges simply means that for the duration of that

script, FileMaker overrides all security restrictions. When this option is not enabled, scripts run subor-

dinate to whatever privilege set the currently signed-in user has. For instance, if a script makes a call

to delete a record and the user running that script cannot do so based on his current security privi-

leges, the script usually presents an alert message to the user and ignores that step of the script. The

rest of the script is still performed.

Note that when this option is checked, the security privilege set for the current user actually does

change for the duration of the script: If you use the calculation function Get (PrivilegeSetName) ,

it returns [Full Access] as long as the script is running. If your script contains logic in which you

need to check a user’s assigned privilege set, you’ll need to capture the user’s privilege set information

elsewhere before running the script and refer to it however you’ve stored or captured the information.

 � Error management in scripts is an important element in all scripting. For more detail, see “ Set

Error Capture ,” p. 265 .

 � To understand FileMaker security and privilege sets, see Chapter 12 , “Implementing Security.”

 Commenting Scripts
Keeping track of what scripts do is a difficult task. What seemed

perfectly intuitive at the time you wrote a given script might become

hopelessly obscure a few weeks—or sometimes even hours—later.

Although developers vary in how they use comments, nearly all

developers recognize the value of commenting their work.
In addition to describing the purpose of the script, it is particularly

helpful to note if the script changes from one layout to another. Entry

assumptions (such as the layout from which it is called) and exit

assumptions (such as the layout that it leaves open) are important to

people who are calling scripts. In this case, as well as many others,

documenting the script in a standard way can force you to consider

important issues such as these.

Listing 9.1 shows a simple example of a commented script. Notice

that the # symbol prefixes comments in FileMaker Pro.

 note
Remember that you’re not cod-
ing in a vacuum. We can virtually
guarantee that although you
might never intend that a given
database be seen by someone
else’s eyes, if it stands the tests
of time and proves useful, at
some point you’ll crack it open
with the infamous words, “Let
me show you how I did this....”
Likewise, professional-grade
systems are nearly all collabora-
tive efforts. Comments exist to
help your peers understand what
your caffeine-sodden brain was
thinking at the time you wrote a
particular routine.

ptg8106388

Getting Started with Scripting260

II

PA
RT

Listing 9.1 Script with Comments

Purpose: initiate the running of a report while allowing users
to choose what sort order they want
History: sl 2007 02 04; bb 2008 02 05
jf 2012 04 2
Dependencies: Invoices: Monthly Report layout
Entry assumptions: none
Exit assumptions: layout Monthly Report unless cancelled
#
prompt user for sort order
Show Custom Dialog [Title: “Sort Order”; Message: “Do you want to sort by
➥amount or date?”; Buttons: “Date”, “Amount”, “Cancel”]
#
check for cancel first
If [Get (LastMessageChoice) = 3]
Go to Layout [original layout]
Exit Script
#
sort by Amount
Else If [Get (LastMessageChoice) = 2]
Go to Layout [“Monthly Report”]
Perform Script [“Sort by Amount”]
#
sort by Date
Else If [Get (LastMessageChoice) = 1]
Go to Layout [“Monthly Report”]
Perform Script [“Sort by Date”]
#End If

 Exiting a Script

You can exit a script with an explicit call to Exit Script ; you can also exit the script just by exe-

cuting the last line of code. If you are passing back a result value from the script, you must use the

call. Also, if you are leaving the script at any location other than the last line (perhaps as a result of

an error you have encountered), you must use Exit Script .

The Exit Script step is a script step like any other. That means that if you are stepping through a

script with the debugger, you will pause just before the script step is executed—that is, just before

you exit the script. During that pause, you can inspect the values of the variables in the script.

Because Exit Script is required in some cases and is helpful in debugging, it is a good idea to

always use it in writing your scripts.

 � For more information on script results, see Chapter 16 , “Advanced Scripting Techniques.”

 � For more details on script debugging, see Chapter 19 , “Debugging and Troubleshooting.”

ptg8106388

261Creating Scripts

9

C
H
APTER

Using a Script Template

It is often helpful to create a template script that you can duplicate when you need to create a new

script. In our templates, we include several comment lines at the top where we record information

about the purpose and revision history of the script. A template script looks something like this:

purpose:
dependencies:
history:
entry assumptions:
exit assumptions:
parameters in:
result value out:
#
set error handling
Allow User Abort [Off]
Set Error Capture [On]
#
establish context
Go to Layout [Original Layout]
#

Although it is simple, this template does save time and promote

good code. If you don’t need a particular piece of it, you can delete

it easily enough.

 � Parameters and result values are discussed in Chapter 16 ,

“Advanced Scripting Techniques.”

 Using Subscripts
One of the most useful features in FileMaker Pro scripting is the Perform Script step itself. One

FileMaker script can call another script, which is then commonly known as a subscript . This allows

you to divide scripts into smaller logical blocks and to break out discrete scripts for anything you are

likely to want to use again. This degree of abstraction in your system is something we very much

recommend. Abstraction makes scripts easier to read, easier to debug, and modular in that a sub-

script can be generic and used in a variety of scripts. Here’s an example:

Sales_Report
purpose: to run the Sales Report, weekly or monthly
history: scl 2-5-2009
#
Perform Script [“CheckPermission_forSales”]
Perform Script [“Find_CurrentSales”]
#
Show Custom Dialog [Title: “Run Report”; Message: “Would you like this
➥report broken out by Weekly or Monthly subtotals?”; Buttons:

 tip
Adding the Go to Layout
step to your template can help
ensure that the script begins
on the correct layout and thus
is associated with the proper
base table attached to that lay-
out. Including this step in the
template prompts developers to
make a conscious decision and
reminds you that context needs
management.

ptg8106388

Getting Started with Scripting262

II

PA
RT

“Monthly”, “Weekly”, “Cancel”]
#
If [Get (LastMessageChoice) = 1]
 Perform Script [“Monthly_Report”]
#
Else If [Get (LastMessageChoice) = 2]
 Perform Script [“Weekly_Report”]
#
End If

Notice that the script actually doesn’t do much on its own. It first runs a permission check script and

then runs another script to establish a found set. It then prompts the user to make a choice and runs

one of two report subscripts based on what choice the user makes. This approach is quite common

and demonstrates a flexible approach to programming. The Find_CurrentSales subscript could

have other uses elsewhere in the database. Creating separate routines for weekly and monthly

reports makes the script more readable. Imagine seeing all the logic for those two reports embedded

here as well.

As another example of script abstraction, imagine sorting a contacts database by last_name and

then by first_name for a given report. If you write a script to produce that report, sorting is a step

in the process. However, odds are that you’ll want to be able to sort by last_name , first_name

again—perhaps for a different report, perhaps as a function that lives on a List view or in a menu,

or perhaps before running an export script (or perhaps all the

above). Whenever reasonable, we recommend looking for ways

to abstract your code and foster reuse. Doing so saves time and

complexity if your client (or boss) suddenly comes to you and

says now you have to present everything by first name. If that

logic lives in one place, it’s a one-minute change. If you have to

hunt for it, the change could take days and require extensive

debugging.
Some other good candidates for subscripts are sort and find rou-

tines; these are often reusable by a wide range of scripts or by

users as standalone functions. Other uses of subscripts might be

for the contents of a loop or If function. Sometimes it’s easier to

separate logic into separate paths by dividing logical groups into

separate scripts, as in the example we gave a little earlier. When

you have a branching script (covered later in the chapter), it’s helpful to encapsulate a single branch

in a subscript. This allows you to see the flow of logic in the parent script and cover each branch in

its own respective subscript.

Finally, consider separating scripts by whether or not they have user interactions. Often a script

interacts with the user, collecting options and values it passes on to a subscript that does not inter-

act with the user.

 tip
Even if you’re not planning to
reuse blocks of code, it’s still a
good idea to break scripts into
subscripts. They’re easier to
read, they’re easier to enable
and disable during testing, and
they allow you to name them in
logical ways that are comprehen-
sible even at the Define Scripts
dialog level.

ptg8106388

263Managing the Scripts Menu

9

C
H
APTER

 Importing Scripts
You can import scripts from another database file by clicking the Import button at the bottom of the

Manage Scripts window. This lets you select a file; after you have done so, the Import Scripts dialog

shown in Figure 9.7 opens.

 Figure 9.7
 You can import scripts from another file.

Use the check boxes to select as many scripts as you want to import. After the import completes,

you receive a warning about any conflicts or errors encountered.

Managing the Scripts Menu
The Scripts menu in Browse mode shows the available scripts

organized into the groups you have created. The check box col-

umn to the left of a script, folder, or separator controls whether it

appears in FileMaker’s standard Scripts menu. If you hide a script

by unchecking its check box, you need to provide the user with

another means of performing, or executing, the script. Typically,

this entails either associating the script with one or more button

objects that appear on various layouts or tying the script to a cus-

tom menu item. And, of course, subscripts often should not appear

in the Scripts menu because only other scripts call them.

Figure 9.8 shows the Scripts menu with the groups and scripts

visible, as indicated previously in Figure 9.1 . If a script is visible

but its group is not, it appears on its own in the menu as if it were

not part of a group. In addition, even if a group is supposed to be

shown, it will be grayed out if there are no visible scripts within it.

 note
In addition to controlling
whether the Scripts menu shows
scripts, note that FileMaker Pro
Advanced allows developers to
create custom menu sets. Quite
often you might want to have a
menu item run a certain script.
You might want to use custom
menus to hide the regular Scripts
menu altogether and attach
your scripts to other menu items
throughout other menus.

ptg8106388

Getting Started with Scripting264

II

PA
RT

 � To learn how to implement custom menus in a solution, see Chapter 14 , “Advanced Interface

Techniques.”

 Common Scripting Topics
We will now delve into some useful and common scripting techniques and discuss topics that are

germane to a wide range of scripts. They will help you establish a solid foundation in scripting.

 Error Management
Error management is an important part of the scripting process. Frequently scripts make assump-

tions about the presence of certain data or the existence of certain objects, or depend on a layout to

establish context. If any one of a given script’s assumptions is not met, the script either might not

work or might produce unintended results. Error management involves identifying these assump-

tions and creating ways of dealing with them. You can bank on users finding odd, unpredictable

ways to break your system. Applying some thought to how to manage such situations will serve you

well in the long run.

Note that FileMaker Pro Advanced has the capability to enable and disable individual script steps.

This facilitates testing significantly: You can turn off sections of your script that aren’t finished and

run discrete sections of your logic.

 Figure 9.8
You can control
visibility of the
Scripts menu
items.

ptg8106388

265Common Scripting Topics

9

C
H
APTER

 � For further discussion of error handling, see “Handling Errors in Scripts,” p. 490 .

 � For more ideas on error management, see Chapter 19 , “Debugging and Troubleshooting.”

 Allow User Abort

Allow User Abort enables and disables a user’s ability to press (Command-period) [Esc] to cancel

a script in midstream. Generally speaking, it’s the rare script that’s designed for graceful cancella-

tion at any time in its process. There’s really no reason to turn on Allow User Abort unless you’re

testing a loop script or some other long-running process. Any script that doesn’t have Allow User

Abort disabled allows users to cancel a script in progress, with consequences you might not intend.

Note that this is true for scripts users run, but the opposite is true for developers: If you’re in the

midst of writing a script and need to test a loop, for example, you should leave this setting turned

on to halt your script if necessary.

The other thing Allow User Abort does is take away the Cancel button when a script pauses, giv-

ing users only the option to continue. There are many cases in which canceling a script would leave

the user stuck on a report layout or stranded midstream in some extended process.

 � To learn more about how to deal with incomplete script completion (atomicity in database

lingo), see “Unfinished Scripts” in the “Troubleshooting” section at the end of this chapter.

 Set Error Capture

The Set Error Capture script step either prevents or allows the display of FileMaker’s default

error messages to the user. When error capturing is off, FileMaker displays its own alert dialogs to

the user if, for example, a record fails validation or a user runs a search without any find criteria.

When error capture is on, the script in question captures errors and doesn’t present them to the

user. This allows you, the developer, to present your own, cus-

tomized error messages but imposes a greater burden in terms of

checking for and managing errors yourself.

 � Handling errors well in scripts is a black art because it’s dif-

ficult to anticipate what errors will crop up. For more infor-

mation on using the Set Error Capture script step, see

 Chapter 19 , “Debugging and Troubleshooting.”

When doing your own error checking and managing, you’ll want to

use the Get (LastError) calculation function to programmati-

cally deal with errors within your script. Use the If function to test

Get (LastError) and present dialogs to the user, as appropriate.

Refer to FileMaker Pro’s online help system for a list of error codes.
 � To explore problems with error messages you think are being

wrongly suppressed in scripts, see “Lost Error Messages in

Scripts” in the “Troubleshooting” section at the end of this

chapter.

 caution
Be careful with the Set Error
Capture script step. It certainly
doesn’t prevent errors from happen-
ing; it simply doesn’t show the user
a message about one that did. An
error might happen, but FileMaker
won’t interrupt the user’s experi-
ence to deal with it. This allows you
to control how you manage errors
within your script itself. You should
not turn on error capture unless
you also add steps to identify and
handle any errors that arise.

ptg8106388

Getting Started with Scripting266

II

PA
RT

Here’s an example of a script segment that tests for an error—in

this case a find request that results in zero found records:

Find_BirthdaysThisMonth
Enter Find Mode []
Set Field [Person::birthMonth[Month (Get (CurrentDate)
➥)]]
Perform Find []
If [Get(LastError) ≠ 0]
Show Custom Dialog [Title: “No Birthdays Found”;
 Message: “There are no birthdays listed for this
 ➥month.”;
 Buttons: “OK”]
End If

Setting and Controlling Data
Some of the primary uses of scripts lie in manipulating, moving, and creating data. The Fields cat-

egory contains most of the script steps for manipulating field data.

Essentially, these field category steps allow you to insert data into a given field programmatically,

just as a user otherwise would. This could mean setting the field contents to the result of a calcula-

tion, copying the contents of one field into another, or simply inserting into a field whatever is on

the user’s Clipboard.

As an example, imagine that you wanted to give users a button that inserts their name, the current

date, and the current time into a comments field, and then places the cursor in the proper place for

completing their comment:

purpose: To insert user and date/time data into a comment field, preserving
the existing information, and place the cursor in the correct position
for the user to begin typing.
dependencies: Need to be on the Main_Info layout, with the Comment field
available. The script takes the user there.
history: sl 2009 jan 25
#
#
Allow User Abort [Off]
Set Error Capture [On]
#
#
Go to Layout [“Main_Info” (Movie)]
#
this next step applies the comment info in italics.
Set Field [Movie::Comment; TextStyleAdd (
Movie::Comment & “¶¶” & Get (AccountName) & “ “ &
Get (CurrentDate) & “ “ & Get (CurrentTime);
Italic)
& “¶”]
#

 note
This script includes the full com-
menting approach described in
this chapter and the two Allow
User Abort and Set Error
Capture steps. From here on
out, we’ll forgo those details in
the interest of brevity.

 note
This segment reports that no
birthdays are found if any error
occurs. You might want to refine
the test so that if the database is
not accessible or some other error
occurs, the report is more spe-
cific. However, the message "No
Birthdays Found" is, indeed, cor-
rect no matter what the error is.

ptg8106388

267Common Scripting Topics

9

C
H
APTER

Go to Field [Movie::Comment]
Commit Records/Requests [No dialog]

When using a Go to Field step, FileMaker Pro places the cursor at the end of whatever content

already exists in the field unless the Select/Perform option is enabled, in which case FileMaker Pro

selects the entire field. If you wanted, you could use the Set Selection script step to place the

cursor somewhere within the body of text.

Notice that the comment info is nested within a TextStyleAdd() function so that it displays in italics.

 � For more information on calculation functions, including text formatting, see Chapter 8 , “Getting

Started with Calculations,” and Chapter 15 , “Advanced Calculation Techniques.”

Set Field is by far the most used of the field category steps. Nearly all the other functions in this

category depend on the field in question being on the layout that performs the script. You should

get into the habit of using the Set Field command whenever possible, in preference over the oth-

ers. It doesn’t depend on a field being on a specific layout—or any layout, for that matter—and it can

usually accomplish what you’re trying to do with one of the other steps.

You’ll generally need the Insert script steps only when you expect user input. For example, you

might place a button next to a field on a given layout called “index” that then calls up the index for

a given field and waits until the user selects from its contents. That script could often be a single

step: Insert from Index (table::fieldname) . As always, you would use your template for

clarity, but this script would open the index for a given field and wait for the user to select a value.

Again, you should tend to think of scripts as evolutionary. Consider writing a script even for a one-

step process because you might want to attach that script to multiple buttons or extend its opera-

tion in the future.

 � To manage cases in which your script seems to be affect-

ing the wrong portal row or related record, see “Editing the

Correct Related Records” in the “Troubleshooting” section at

the end of this chapter.

 � For more discussion on indexes, see “Storage and Indexing,”

p. 104 .

 � For further discussion of layout dependencies, as well as

other types of dependencies that can get your scripts into

trouble, see “Context Dependencies,” p. 497 .

Another example of using the Set Field script step concerns

totaling child record data calculations and saving the results in

a new record (presumably to track the growth of some quantity

over time). Often a simple calculation field with a Sum (related

field) function works, but consider that with a large related

data set, the performance of such calculations can become a prob-

lem. Furthermore, you cannot index that sort of a calculation field—

which might prove problematic for users performing find requests

 caution
You might also discover the
Copy , Cut , and Paste script
steps. They work as you would
expect. Copy and Cut place
data onto the user’s Clipboard,
and Paste inserts from it. Cut
and Copy overwrite anything
already on the user’s Clipboard.
Furthermore, Copy , Cut , and
Paste depend on having access
to the specified fields and are
therefore layout dependent. If,
for some reason, you remove
those fields from the specific lay-
out in the future, your script will
stop working. You should almost
never use Copy and Paste for
these reasons and should defer
instead to Set Field .

ptg8106388

Getting Started with Scripting268

II

PA
RT

or for your needs as a developer. Consider instead creating a script to calculate and store your totals

and calling that script only on demand:

Go to Layout [“Customer” (Customer)]
Set Field [Customer::storedTotal; Sum (OrderbyCustomer::Amount)]
Set Field [Customer::storedDate; Max (OrderbyCustomer::Date)]
Commit Records/Requests
[No dialog]
Go to Layout [original layout]

The preceding script is a typical example of drawing data from related records, of moving from lay-

out to layout to establish proper context, and finally of using Set Field to populate data.

The Set Field script step lets you specify the field to be set as well as the value to be used with

two Specify buttons in the lower right of the options area. In FileMaker Pro, a new script step was

added: Set Field By Name . Both of these script steps open a calculation dialog to let you specify

the value to be placed in the field. However, the Set Field Specify button for the field opens a list

of fields in the database tables, whereas the new Set Field By Name script step opens another

calculation dialog in which you can construct a field name based on any conditions. This script step

allows you much more flexibility in developing scripts, and it is one of the most valuable additions

to scripting in FileMaker Pro.

 � For examples of the use of Set Field By Name , see Chapter 14 , “Advanced Interface

Techniques.”

 Providing User Navigation
You might have noticed a section of the script steps list devoted to navigation in FileMaker’s Edit

Script dialog. One of the most common uses of scripts is to provide a navigation scheme to users

whereby they can navigate from layout to layout, record to record, or window to window by using

buttons or some other intuitive means.

There’s not too much magic here: By using the Go to Layout script step, you’ll get the fundamen-

tals. Consider placing buttons along the top of each layout to offer a means of navigating to all user-

facing layouts in your solution with a Go to Layout script attached.

By building complete navigation scripts, you can control the entire user experience of your solutions

and can opt to close the Status toolbar if you want. Armed with find routines, sort buttons, reporting

scripts, and a navigation interface, you are able to build a complete application with a look and feel

all its own.

Script Context and Internal Navigation
Consider that FileMaker uses layouts to determine script context: For any script step that depends

on a specific table, you need to use Go to Layout steps to provide that context. Review the script

we introduced at the beginning of the chapter:

Go to Layout [“zdev_GlobalAdmin” (Globals)]
Set Field [Globals::gAccountName; Get (AccountName)]

ptg8106388

269Common Scripting Topics

9

C
H
APTER

Set Field [Current_User::LastLoginDate; Get (CurrentDate)]
Set Field [Globals::gUserNameDisplay; Current_User::Name_First]
Set Field [Globals::gUserMessage; “Welcome Back, “
 & Globals::gUserNameDisplay & “.”]
Go to Layout [“Main Menu” (Globals)]

This script takes itself to a zdev_GlobalAdmin layout, executes some steps (in this case sets data

into fields), and then brings the user to a Main Menu layout. All the users see (presumably when

they log in) is that they’ve landed on a Main Menu layout. They’ll never see, or interact with, the

zdev_GlobalAdmin layout, but the system will have done so. Had we written the script without the

initial Go to Layout step, the routine would have had quite unexpected results.

Notice that the script makes use of a Current_User table occurrence. As related data, that informa-

tion would likely be very different depending on the perspective from which a user views it. The

purpose of navigating internally to a specific layout is to control this context precisely.

The point here is that you’ll need to bring a script to a specific layout to establish a different con-

text. The table occurrence associated with a given layout determines context. The user might never

see this internal navigation going on, but if you were to walk through the script step by step, you’d

see the system go to the zdev_GlobalAdmin layout and then to the Main Menu layout.

 � To see an example of how to walk through a script using the Script Debugger, see Chapter 19 ,

“Debugging and Troubleshooting.”

 � Using object names on layouts provides greater control of navigation. For more information, see

 Chapter 14 , “Advanced Interface Techniques.”

 Saved Script Options
Scripts tend to mirror the actions a user could perform manually but, obviously, do so without

human intervention. It is possible in FileMaker to save find, sort, export, and other actions in a script

(hard-coding them, if you will), or to prompt the user for some input to help perform these steps.

The advantages of hard-coding requests should be obvious. If, for example, you need to prepare a

report on active real estate listings, it makes sense to have one of your script steps be a Perform

Find that returns all the records with a status of “active.” The requirements of your report will

rarely change, so you’ll save users time (and possible errors) if you hard-code the find request.

On the other hand, allowing the user to provide input is a great way to make scripts more flexible.

Continuing the example, you might create a real estate listings report and in your script prompt the

user for some search criteria. This can be done either by using a dialog that gives the user one or

two choices (we cover that later in the chapter, in the “Working with Custom Dialogs” section) or by

simply allowing the report to act on the current found set and sort.

You will often find it helpful to build hard-coded find and sort routines. For example, you might want

a script for finding overdue invoices, or easy-access buttons for sorting by first name, last name, or

company. FileMaker allows you to save complex find, sort, export, and import requests as necessary,

and allows you to edit these requests.

ptg8106388

Getting Started with Scripting270

II

PA
RT

 Find Script Steps
FileMaker allows you to assemble and store complex requests within scripts using find requests .

You create and edit them by double-clicking Perform Find in the script editing window. In Figure

9.9 , the script finds all records from the Jasmine company and omits those with status Pending; the

result replaces the found set.

 Figure 9.9
Assemble as many find requests as
necessary.

You can assemble a single find request via the Edit Find Request dialog; from the Specify Find

Requests dialog shown in Figure 9.9 , click New or Edit to open the Edit Find Request dialog.

Note in Figure 9.9 that we have opted to omit records that match the second request. You choose

this in the Action pop-up menu shown at the top left of Figure 9.10 . Setting a request to omit

records simply means that FileMaker finds those records that match the overall request and takes

out or ignores those that meet the omit criteria. If you create a find request that does nothing but

omit records, it replaces your existing found set with all records that don’t match your request. The

example shown in Figure 9.10 shows a script that combines a find request with an omit request:
Other actions options include Constrain Found Set and Extend Found Set . Just as though a

user had chosen each command from FileMaker’s menu-driven interface, Constrain reduces the

current found set, eliminating any records that don’t match the search criteria, and Extend adds

those records from outside the set that match its criteria to the current found set.

 � With FileMaker Pro 10 and later, you can now save and manage Find requests from scripts. For

more on this, see Chapter 16 , “Advanced Scripting Techniques.”

 Sort Script Step
Establishing saved sort orders in the Sort dialog works, happily, just as it does for users performing

a manual sort (see Figure 9.11).

ptg8106388

271Common Scripting Topics

9

C
H
APTER

 Figure 9.10
By adding multiple criteria to a single
find request, you are performing an
And search.

 Figure 9.11
Creating sorting scripts for users is gener-
ally quite helpful. Sorting needs are usu-
ally predictable and always needed more
than once.

One of the most common applications of sorting scripts is in building column header buttons. Simply

create a series of sorting scripts and apply them to the buttons along the top of a list view. That is

what is done in the Time Billing Starter Solution, which is shown in Figure 9.12 .

ptg8106388

Getting Started with Scripting272

II

PA
RT

 � For more details on using scripts to sort data, see Chapter 14 , “Advanced Interface Techniques.”

Keep in mind that many of your reports depend on sorting, especially as you get into reporting by

subsummary data. It’s a good idea to create sort scripts for your reports and call them as subscripts,

rather than hard-coding sort criteria into your report scripts themselves.

You might well create reports that behave differently depending on different sort orders—by setting

up different, multiple subsummary parts on one report layout, for example—so you’ll want to factor

the sorting logic into its own script or subscripts. A report with both a week-of-year subsummary

part and a month subsummary part will display by week, by month, or by week and month, depend-

ing on the sort options your script establishes. This technique is handy for reducing the number of

layouts you need in a system; with a little bit of scripting, you can use a single layout for three dif-

ferent reports.

 � For more details on summary reporting, see Chapter 10 , “Getting Started with Reporting and

Charting.”

 Using Conditional Logic
Another important element of scripting is the capability to branch scripts based on various condi-

tions. To manage logically branching scripts, you use the If , Else , Else If , and End If script

steps. These conditional script steps work by performing a logical test, expressed as a calculation. If

 Figure 9.12
 Use pop-up
menus with
triggers to per-
form multi-level
finds and sorts.

ptg8106388

273Common Scripting Topics

9

C
H
APTER

that calculation formula resolves to a true statement, FileMaker executes all the script steps subordi-

nate to (that is, nested within) an If or Else If statement.

One of the most common applications of conditional logic in FileMaker revolves around Perform

Find script steps. Because we, as developers, can never guarantee the state of a given table’s

data—in other words, how many records it contains—we have to test for their existence in scripts

that perform find requests and then branch accordingly if no records are found. Here’s an example:

Find Overdue Orders
Set Error Capture [On]
Allow User Abort [Off]
#
Go to Layout [“Order” (Order)]
#
Perform Find [Specified Find Requests:
 Find Records; Criteria: Order::Status: “”Overdue””][Restore]
If [Get (LastError) = 401]
Show Custom Dialog [Title: “Overdue Orders”;
 Message: “There are no overdue orders in the system.”;
 Buttons: “OK”]
Show All Records
Else If [Get (LastError)≠ 0]
Show Custom Dialog [Title: “Overdue Orders”;
 Message: “Unexpected error in finding data [12-3].”;
 Buttons: “OK”]
Show All Records
End If

In this simple script, two outcomes are possible: Users see either a set of order records whose sta-

tuses have been set to Overdue or a dialog informing them that no overdue orders exist and ending

with a full set of all orders.

The entire idea behind conditional logic is to allow the computer to determine which of multiple

possible paths to take. Computers aren’t terribly smart, so they make these decisions based entirely

on Boolean (true/false) tests. At the end of every script step, FileMaker records an internal error that

you can retrieve using the Get (Last Error) function. In the preceding script, if that function

is storing a value of 401 , the first set of nested steps within the If clause will be performed; if the

value is not zero (no error) and not 401 , the second set of nested steps will be performed, provid-

ing a true error message. If you turn on error capture, it is your job to capture errors; typically, you

either capture all of them, or, in cases such as this, you handle some “errors” as normal conditions,

passing along other, unexpected errors.

 � To learn how to bake error checking into your conditional tests, see “Conditional Error Defaults”

in the “Troubleshooting” section at the end of this chapter.

There’s no practical limit to the number of branches a script might take. For scripts of particular

complexity, we recommend breaking them into subscripts and, when necessary, creating a flow-

chart of the process before writing these scripts.

ptg8106388

Getting Started with Scripting274

II

PA
RT

 Using Loops

Another key scripting technique is looping. Looping allows you to execute a series of script steps

repeatedly until some exit condition is met. This is very much the same as an If / Else If construct.

But this time, instead of performing a new branch of logic, you simply tell the script to perform the

same actions over again until a controlling conditional test returns a true value—for example, if the

end of a found set is reached or the results of a calculation come to a specific number.

A simple example of this might be stepping through each record in an invoice table’s found set and

generating a new invoice for any invoice that remains unpaid or should be sent out again for some

reason. The logic, without worrying about syntax, might look like this:

Go to first record in found set.
Begin Loop.
 Check whether the invoice is closed. (We’ll assume
 unclosed invoices are those that need to be resent.)
 If CLOSED
 Go to next record.
 If there is no next record (you’re at the end of
 your found set), then exit the loop.
 Else begin loop again (go to the “Begin Loop” step).
 If NOT CLOSED
 Close current invoice.
 Create/duplicate new invoice. (In a real system,
 there would likely be more steps involved here.)
 Go to next record.
 If there is no next record (you’re at the end of
 your found set), then exit the loop.
 Else begin loop again (go to the “Begin Loop” step).
End Loop
Exit Script

Notice that an exit condition is established. The system tests in both If branches whether you’re at the

end of a found set and exits the script regardless of whether the last record in the set closes. Imagine

you’re a user doing this manually. You would start at the top of a found set, use the book icon to page

through each record one at a time, and then stop the process when you reach the end of your record set.

A loop exit condition is almost always useful if something changes during the course of a script. It’s

possible you might be sitting in a loop, waiting for something elsewhere to change and checking peri-

odically, but this kind of polling activity is not commonly needed in FileMaker Pro.

Loops become more interesting when combined with conditional logic more complex than check-

ing for an incremented counter. Loops can be exited in various ways. A common technique is to use

the Go to Record/Request/Page [Next, Exit After Last] script step. It enables you to step

through a found set and exit a loop after reaching the last record.

Another way to exit a loop is to exit or halt the script altogether. You have two processes running: the

script itself, which you can terminate, and the internal loop.

 � To cope with endless loop problems, see “Testing Loops” in the “Troubleshooting” section at the

end of this chapter.

ptg8106388

275Common Scripting Topics

9

C
H
APTER

Working with Custom Dialogs

One of the most common user interactions necessary for a system is to capture a response to a

question. “Are you sure you want to delete all records?” “Do you want to report on all records, or

just your found set?” “Would you like fries with that?”

The Show Custom Dialog script step is a great, built-in way to capture this sort of interaction.

(There are ways to create layouts that act and behave like dialogs, but they’re a good bit more

work.) Custom dialogs allow you to present some descriptive text or a question to a user and then

capture a response.

 � To learn how to create pop-up layouts that behave as modal dialogs, see “Multiwindow

Interfaces,” p. 473 .

Naturally, after you create a custom dialog, you need to deal with the results. FileMaker Pro stores

the user’s button choice until the end of the current script or until you present another custom dia-

log. Think of these dialogs as existing solely within the space of a given script.

To identify which response the user chose to your dialog, use the Get (LastMessageChoice)

function. This function returns a 1 , 2 , or 3 based on which button the user clicked. As you can see

in Figure 9.13 , you assign names to each of the buttons in a dialog. You also can specify whether

each button commits data (that is, serves as a standard OK button). Typically, only one of the but-

tons is a commit button, but in some cases you might want to use two or even three buttons for that

purpose; you then would sort out the specific action to take based on the actual button that was

clicked. The label you assign to the button is inconsequential.

 Figure 9.13
 Set buttons for your custom dialog.

ptg8106388

Getting Started with Scripting276

II

PA
RT

Conditional scripting allows you to test the choices a user made and respond accordingly. Here’s an

example:

Report_Revenue_Start
Show Custom Dialog [Title: “Revenue Report”; Message:
“Do you want to view a Revenue
➥Report by month, year, or a date range?”;
➥Buttons: “Range”, “Year”, “Month”; Input #1:
➥Invoices::Date_Range, “Date Range (e.g., 1/1/2004...2/15/2004)”]
If [Get (LastMessageChoice) = 1]
 Perform Script [“__Report_DateRange”]
Else If [Get (LastMessageChoice) = 2]
 Perform Script [“__Report_YearSummary”]
Else If [Get (LastMessageChoice) = 3]
 Perform Script [“__Report_MonthSummary”]
End If

Custom dialogs are flexible, but they do have limitations. The

most obvious limitation is that you cannot alter their appearance

or size. In a FileMaker layout, you can apply images, background

color fills, and other graphical attributes of the screen. Not so in a

custom dialog. You are limited to a system-style dialog.

 � See Chapter 14 for other ways to approach this issue.

The second limitation of the dialog lies in scope: You’re limited to

three input fields and three buttons. If you need anything more

complex, you have to use a standard FileMaker layout to build a

custom pop-up layout.

 � For more ways to handle windows and dialogs, see “Using

Styles,” p. 385 .

Starting and Triggering Scripts
One of the most significant features in FileMaker Pro 10 and later is the capability to use script trig-

gers. One of the side effects of this major new feature is that you now need to distinguish between

starting a script and triggering a script. In previous versions, there was no distinction, but now it is

important to use the terminology carefully.

 tip
Dialogs of all sorts were quite
popular in the early days of per-
sonal computers. Today, dialogs
are used less and less frequently
because they bring processing
to a halt until the user deals
with them (which is the point).
Allowing users to continue with
other operations, as you can
do by using multiple windows,
increases user control and
productivity. If you have used
versions of FileMaker Pro before
FileMaker Pro 9, compare the
modal, dialog-based ScriptMaker
interface with the current win-
dow-based interface.

ptg8106388

277Starting and Triggering Scripts

9

C
H
APTER

 Starting Scripts

Starting a script means just that—doing something to cause a script to run.

There are several ways to start scripts:

• By selecting a script via the Scripts menu

• By establishing a custom menu item tied to a script

• By opening the Scripts dialog, selecting a script, and clicking Perform

• By calling a script from another FileMaker script (within the same file or externally)

• By calling a script from an external web source

• By attaching a script to a layout element, which a user then clicks (and thus it becomes a button)

• By calling it from AppleScript or VBScript

 To start a script, the user generally has to actively click something. You can attach scripts to

layout objects so that a user clicking the object triggers them, or they can be activated directly

from the Scripts menu, if you choose to make particular scripts visible there. You can also use

FileMaker Pro Advanced to create custom menus that run scripts. There are other ways to call

scripts externally through web publishing as well.

 � To tie a script to a custom menu item, see Chapter 14 , “Advanced Interface Techniques.”

 � To call scripts externally through Instant Web Publishing, see Chapter 24 , “Instant Web

Publishing.”

 Triggering Scripts

A script trigger fires automatically when certain events occur, such as editing a record or opening a

layout. In general, the user’s focus is on entering data, going to a new layout, going to a record, or

going from one FileMaker mode to another. The developer associates a trigger with specific events

and specific objects (such as fields), layouts, or files. The user does whatever she wants to do, and

the script is coincidentally triggered.

There are many significant advantages to being able to use script triggers. Perhaps the most com-

mon is that users do not have to remember an extra step. Most of the time, if you have to tell a user,

“Remember, after you do X , make certain you do Y ,” you can create a trigger that will always fire

when X happens, and FileMaker will remember to do Y .

 � Triggers are discussed extensively in Chapter 17 , “Working with FileMaker Triggers.”

ptg8106388

Getting Started with Scripting278

II

PA
RT

Working with Buttons on Layouts

More often than not, clickable layout objects are graphical buttons, but it is possible to attach a

script to anything you can place on a layout: a field, a graphic, even a portal. These layout objects

then become button-like so that when a user clicks such an object, the script associated with the

object runs.

Creating buttons on FileMaker layouts is straightforward. You

can opt to use the Button tool to draw a 3D-esque button, or you

can attach a button behavior to any object on a layout (including

fields, merge fields, text, images, and even binary files pasted

onto layouts).

Apply button behaviors to an object either by right-clicking and

choosing Specify Button, or, with a layout object selected, by

navigating to the Format menu and choosing Button.
Given that fact, when one is adding interactivity to a button,

why use any of the other single script steps other than Perform

Script itself? Well, we’re going to argue that you shouldn’t. If

you use single script steps, you’re out of luck if you ever want

a button to do two things. You’re out of luck again if you cre-

ate a bunch of buttons that perform the same step (such as Go

to Layout) and you need to change them all—it’s insufficient

abstraction to not allow the same button behavior to be reused

elsewhere. Because it’s likely that you will want to add steps, or duplicate a button and edit its

behavior globally, you should ignore every button behavior other than Perform Script .

Even if a script is one step long and is likely never to be reused, take the few extra seconds to cre-

ate a script. If the button performs a script, you can easily add steps whenever you need them, and

you can change at once all the buttons that need to go to, say, the Invoice layout. After you select

the script in question, you can opt to modify the behavior of the script that might or might not be

currently running.

 � For more details on controlling script flow via button attributes, see “Script Parameters,” p. 443 .

 Naming Scripts
As you saw in Figure 9.1 , scripts can include special characters

in their names—the | character is a good example. There is much

discussion among FileMaker developers about appropriate nam-

ing conventions for scripts (as well as tables, layouts, fields, and

internal variables). Names that may be exposed to other database

management systems must conform to the strictest rules.

 tip
We’ve talked about buttons as a
tool for starting scripts. This is
actually a little inaccurate. A but-
ton, when clicked, can perform
any single script step: Go To
Layout , for example, or Hide
Window . Of course, one of the
available script steps you can
attach to a button is Perform
Script . Choose that option,
and your button can perform
a script of any length or
complexity.

 tip
You can often work around
limitations on the use of special
characters with escape charac-
ters, but that makes your code
difficult to read.

ptg8106388

279Troubleshooting

9

C
H
APTER

The most basic rule for naming everything in a database environment is to make the name clear:

In the case of scripts, it should describe what the script does. As described previously in this

chapter in the “Using a Script Template” section, you can structure your scripts so that they con-

tain comments and documentation in a structured fashion so that you know where to look in a

script—indeed, in every script that conforms to the template—for detailed information. This normally

includes a summary of the script’s actions, information on its parameters, and a description of its

result. Along with this information, a log of modifications is invaluable.

Beyond that, it can be useful to identify the type of script it is: For example, is it a script that is

designed to be run by a trigger as opposed to user interaction? Along those lines, you may want to

separate scripts that interact with users from those that have no interaction. You can add this infor-

mation in a naming convention, but gradually you may find your script names becoming longer and

longer.

Some people use single letters to identify aspects of the script as in a convention such as

GetAdjustedValue | i and DoAdjustValue | . This particular convention might indicate that

GetAdjustedValue has user interaction (the | i) whereas GetAdjustedValue simply gets a value

and has no user interaction. There are many such naming conventions you can consider. If at all

possible, be consistent within a single project.

 Troubleshooting

Lost Error Messages in Scripts
My script is not working properly, but I’m not getting any error messages. Where do I start?

Be sure that you properly account for potential errors if you turn on error capture. What if a find

request returns zero records? What if a user doesn’t have access to a given layout needed for a

script? To manage debugging, turn off error capture while you’re testing. Some developers write

scripts that toggle error capture for all scripts in a system. This is a convenient way to turn on and

off a debugging mode.

 Unfinished Scripts
I need a script to run to completion without fail. I set Allow User Abort [off] , but it appears

that a user aborted the script at some point. How can I make sure that users can’t muck with my

scripts?

Remember that turning off Allow User Abort doesn’t always save you from errors in the script

itself, power outages, the user closing FileMaker Pro, or other random acts of unpredicted computer

wonkiness. You can never absolutely depend on a script completing in FileMaker Pro. If necessary,

write a “check conditions” script in your system and run it when appropriate. Another way to deal

with this problem is to write a script log that saves a record when a script starts and another when

it ends. You can check for incomplete pairs.

ptg8106388

Getting Started with Scripting280

II

PA
RT

Editing the Correct Related Records
My Set Field script step is continually changing the first record in a portal instead of the one I

want. How do I get the script to act on the proper row?

Be careful when setting fields through relationships. It’s possible to think that you’re pointing to a

single record when you’re really pointing to the first of many. In that case, FileMaker blithely applies

your script steps to the first related record it finds. Either put a button directly in a portal, in which

case the script will apply to that row, or use a Go To Related Record script step to explicitly con-

trol both the context and the record against which a script operates.

 Conditional Error Defaults
My If/Else statement isn’t returning the proper result. How can I test what’s going on?

Be sure to account for all variations of logic in your conditional scripts. We strongly recommend that

you build If routines that end with an option you think will never occur. Here’s a quick example:

If [Invoices::Total > 0]
 Do something
Else If [Invoices::Total = 0]
 Do something
Else If [Invoices::Total < 0]
 Do something
Else
 Handle error conditions here
End

This function should never return the default error, but you cannot perfectly predict all such behav-

iors. For example, what if a calculation for Total is wrong and returns a null or empty value? Or if a

calculation you expect to be numeric returns text in some cases?

 Testing Loops
My loop seems to be stuck endlessly looping. How do I debug the problem?

Rare is the developer who gets everything right the first time, and if you don’t, you might find your-

self in the middle of an endless loop. A handy trick is to always create an exit condition that tests

whether the Shift key is held down by using the Get(CurrentModifierKey) function. It’s a

backdoor out of your loop that’s quite handy if you have an error in logic. A much easier way to go

if you own FileMaker Pro Advanced is simply to turn on the script debugger the first time you test a

new loop.

FileMaker Extra: Creating a Script Library
You might consider having a utility file sitting around your hard drive with all the basic scripts each

of your solutions will need. You can then import these scripts into your own solution files as needed.

We always have the following in our databases:

ptg8106388

281FileMaker Extra: Creating a Script Library

9

C
H
APTER

 • StartUp — Here’s a script we use to open all the files of a given solution at once, to set default

values for globals, to set a login history record if necessary, and so on.

 • ShutDown — The partner for StartUp , the ShutDown script can close out your user session by set-

ting any tracking information and can close all the files in a solution so that FileMaker Pro need

not be quit.

 • ToggleAllStatusAreas — This is another critical script for developers working in multiple files

or windows. Very often we’ll close and lock the Status toolbar to maintain control and keep users

from accessing records or layouts we have carefully scripted around. This handy script reopens

the Status toolbar for development.

 • ToggleMultiUser — This script simply turns on or off peer-to-peer sharing. It is useful to use the

Set Multi-User [on/off] script step when you need to isolate your system during testing.

 • InitializeGlobals — Often a subscript of StartUp , but best abstracted as it is here, this script

sets all the initial values of globals and global variables in your system, ensuring that they all

start out user sessions in a predictable state. You need to add explicit steps for each global you

add to your system as you work, but you’ll find it invaluable to have a “global” global initializer.

 • ScriptTEMPLATE — This is the template we duplicate for new scripts. It has initial comment

headers and default script steps as needed.

 • PrintSetUp_landscape and PrintSetUp_portrait — Every printer-bound output of your sys-

tem needs page properties established. Write them once.

If you find yourself writing certain scripts time and time again, add them to your library. Using the

capability to copy and paste scripts in FileMaker Pro Advanced enables you to leverage prior work

more easily.

ptg8106388

This page intentionally left blank

ptg8106388

 10

GETTING STARTED WITH
REPORTING AND CHARTING

 Reporting in FileMaker Pro
You have seen how to use layouts to display data and allow it to be

entered. Both Browse and Find modes are designed for interactive use on

the screen. You can print a layout, but obviously the interactive parts of

the layout such as buttons, pop-up menus, and scrolling portals become

static when printed. FileMaker Pro provides another mode, Preview mode,

that is used for reporting. Preview mode is not interactive. It is designed

primarily for printing, so instead of using scroll bars, which require inter-

activity, it paginates data that is too big for a printed page. In addition,

because it is the heart of FileMaker Pro’s reporting mechanism, Preview

mode supports summaries that can include calculated fields that total,

average, or count data. This means that each mode has its own function:

Browse for interactive entry and display on the screen; Find for finding

data; Layout for designing layouts; and Preview for printing, pagination,

and summarizing data.

Beginning in FileMaker Pro 10, major changes were made to reporting.

Everything that was there remains, but, in addition, reports and their cal-

culated summary data can be live. This chapter explores reporting in the

traditional sense of producing reports that are displayed in Preview mode

and are suitable for printing (and are not interactive). Then it explores the

FileMaker Pro features that add features of Preview mode to certain views

in Browse mode to provide live reporting.

Finally, you learn how to use FileMaker’s built-in charting tools to convert

your text-based data to charts. Charting is just another way of display-

ing your data so that people can understand it. You can think of it as just

another method for developing reports.

ptg8106388

Getting Started with Reporting and Charting284

II

PA
RT

Deriving Meaning from Data
Reporting is an important component of almost every database project. Indeed, the need to cre-

ate reports that summarize or synthesize data is often the reason many databases exist in the first

place. No matter what your database does, it’s a fair bet that you have many reporting needs.

Reports come in many shapes and sizes: There are simple list reports, summarized reports, work-

flow reports, cross-tabulated reports, variance reports, and graphic reports such as charts (to name

but a few). There are standard reports that have to be generated periodically; there are ad hoc

reports for which the report criteria must be defined on the fly (FileMaker Pro excels at this). Some

reports need to be printed and distributed, whereas others are meant to be viewed onscreen.

Despite the wide range of things that can be classified as reports, most reports tend to have a few

characteristics in common:

 • Reports are generally used for viewing data rather than creating or editing data.

 • Reports generally display (or draw on data contained in) multiple records from one or more

tables. They are usually designed to provide an overview or higher-level understanding of a data

set than you would obtain by looking strictly at data-entry screens or at a single record’s data.

 • Reports capture a snapshot in time and reflect the database’s current state. Running the same

report at different times might yield different results if the data in the system has changed. For

this reason, reports are often stored for future reference either on paper or on unchangeable ref-

erence versions, such as PDF files.

 • Often, but not always, reports are distributed by some means other than FileMaker: on paper, via

email, or as an electronic document. FileMaker Pro provides the capability to create PDF docu-

ments and Excel spreadsheets from reports.

To generate meaningful reports, you should learn several standard reporting techniques. From

there, it’s just a matter of coming up with variations that suit your particular needs. This chapter

covers working with lists of data and reporting with grouped data (also known as subsummary

reports).

In FileMaker, layouts are used to display data and, in some cases, to allow for its printing as well

as its entry in Browse or Find mode. The distinction between layouts designed for the displaying or

printing of data and layouts designed for interaction with the user has to do with their design (page

width, for example) and, in many cases, the mode in which they are viewed. Data entry can be

done only in Browse mode, and entry of data to be used in a find operation can be done only in Find

mode. Preview mode, which allows no interaction, is often used to display reports. It must be used

for you to be aware of page breaks (which is the first step in using headers and footers and creat-

ing page numbers), as you will see in this chapter. Before FileMaker Pro 10, it was required to view

subsummary reports.

ptg8106388

285Deriving Meaning from Data

10

C
H
APTER

Begin with the End in Mind
One of the keys to creating successful reports is beginning with the end in mind. Right at the begin-

ning of a project, you should start thinking about the reports that a system will have to generate. A

system’s intended outputs can have a profound impact on its design and implementation.

 Determine Report Requirements
Just as a system’s reporting requirements influence its design, an organization’s business needs

influence the design of the reports themselves. When thinking about how you’ll go about generating

any given report, ask yourself (or your client/users) the following types of questions:

 • What questions is this report trying to answer? Focus first on the purpose the report will serve,

not on its design. Is it trying to monitor progress toward a goal? To be an early warning of poten-

tial problems? To help spot business trends? The more you know about how a report will be

used, the more effective you can make it.

 • Who will read this report? Is it going to be used strictly for internal purposes, or might it be pre-

sented to customers or vendors? Should the report be accessible to everyone, or should certain

users be prohibited from viewing it?

 • How will be it read? Will it be distributed in hard copy, emailed

to a group of people, or read onscreen 18 times a day? If the

report is distributed, should the document be secured with a

password or encrypted?

 • What media constraints are there in terms of page size, color,

and resolution?

 • Is this a one-time report, or will it be used on a regular basis?

For one-time or special occasion reports, you probably won’t go

to the trouble of setting up scripts and/or find screens, but you

should do so for reports intended to be run regularly.

 • What level of granularity is appropriate? Will the consumers of

the report be interested in seeing details or just the big picture?

Generic Versus Specific Report Structures
Another part of report planning is determining whether the report is to meet a specific or a generic

need. That is, should users be able to select a data set to feed into a report shell, or should the

search criteria for the report be hard-coded?

For example, say you have a List view layout that displays customer data. If you feed it a found

set of customers obtained since a certain date, it becomes a New Customers report. If you feed the

same shell a set of inactive customers, it transforms into an Inactive Customers report.

 tip
After you collect answers to
questions like these, we strongly
recommend writing out a sample
report (using whatever tools you
choose—pencil and paper and
whiteboards are our favorites)
and showing it to its appropri-
ate consumers for feedback.
Although the report will be
implemented in FileMaker, any
tool from Excel or Numbers to
InDesign can help people visual-
ize what you are thinking of.

ptg8106388

Getting Started with Reporting and Charting286

II

PA
RT

In instances like this, it’s often helpful to think of a report as consisting of two distinct components:

its format and its content. If you can create a generic multipurpose format, you create different

reports simply by sending in different content. The point is that in planning reports, you should

have the distinction between format and content in mind. You can sometimes save yourself a lot

of work if you recognize when a report can be created by simply feeding new data into an existing

format.

The simplest way to do this is to use a script for the data selection and sorting and a second script

for the report. Sophisticated users can do the sorting and selection manually, whereas others might

choose to use the script. The script can be highly interactive, allowing users to choose the data to

find and the way it should search. Alternatively, there can be multiple scripts, each of which does a

specific set of sorted data for the same report. This is an excellent model for scripting: One script is

interactive, and the other—the reporting script—has no interaction whatsoever.

Working with Reports, Layouts, View As Options,
and Modes

FileMaker Pro provides a number of ways of viewing data: Layouts provide the overall format, and

the specific view shows that layout as a form (one record per screen), as a list (a scrolling list of lay-

outs on a single screen), or as a table (a spreadsheet-like display that is based on the given layout’s

fields). Figure 10.1 shows the Inventory Starter Solution’s Product Details layout, which is shown as

a form.

 Figure 10.1
 The Inventory
Starter
Solution’s
Product
Details layout
is shown with
the View As
Form option.

ptg8106388

287Working with Reports, Layouts, View As Options, and Modes

10

C
H
APTER

You can select a specific layout and its default viewing option by using the Layout pop-up menu in

the Status toolbar (you can also use a script to select a layout as well as a viewing option). You can

choose the View As option from the buttons on the Status toolbar. These choices can also be made

in scripts or by using the View, Go to Layout submenu to select a layout and the View, View As

Form/List/Table commands.

If you switch to the Inventory layout (which has the View As List option set as its default), you see

the one-line layouts in a scrolling list, as shown in Figure 10.2 . The black bar at the left of each row

indicates the current record. The List View layout uses a single line, but you can have larger layouts

shown in View As List if you want. To experiment, select the Form View and choose View As List.

 Figure 10.2
 Use the
Inventory lay-
out with the
View As List
option.

Both Figures 10.1 and 10.2 show layouts in Browse mode. You can

edit the data. If you click the Print Inventory Report button at the

upper right of the view shown in Figure 10.1 , you will run a script

that sorts the data, switches to the Inventory Report, and enters

Preview mode, as shown in Figure 10.3 . At the center of the Status

toolbar, you can see that the script is paused; you can use the Exit

Preview button to move on. Very few commands are available at

this point. If there are multiple pages to the report, you can use the

book in the Status toolbar to move from page to page; you can also

print some or all of the pages. You cannot enter data, however.

 note
Although this book focuses on
FileMaker Pro and the ways in
which you can create solutions
that run on a variety of devices,
it is worthwhile to take a look
at Figure 10.4 , which shows the
same Inventory starter solution
running on an iPhone.

ptg8106388

Getting Started with Reporting and Charting288

II

PA
RT

 Figure 10.3
The Inventory Summary
Report is displayed by a script
in Preview mode.

 Figure 10.4
Use the same
solution on an
iPhone.

ptg8106388

289Using the New Layout/Report Assistant

10

C
H
APTER

Working with Lists of Data

List views are easy to create; they make nice reports for several other reasons. The first is that

they’re very flexible. You can allow users to perform ad hoc finds, or you can write scripts with

canned searches and then display the results using your List view.

Users can use list reports while in Browse mode or in Preview mode. We recommend that you con-

sider the final delivery of a report as a separate issue from generating the report for users to view

onscreen. We often design systems in which a report displays for a user (in Browse mode), and then

the user can, as a second step, send it to a printer, attach it to an email, and so on.

The key benefit of being able to work with a report in Browse

mode is that you can place buttons on your report that give the

user additional functionality, such as drilling down to additional

levels of detail, re-sorting the data without having to regenerate

the report, and providing buttons for printing, emailing, and so on.

You might have buttons or other objects, such as navigation but-

tons, on your layout that you wouldn’t want to appear when the

report is printed. While you are building the report in Layout mode,

select those objects. Then, in the Inspector, choose the Position tab

and select Hide when printing in the Sliding & Visibility section

toward the bottom.

 � To find more information about these controls, see “Sliding

Objects,” p. 308 .

 � If you have problems printing your reports, see

“Printed Reports Show Only a Single Record” in the

“Troubleshooting” section at the end of this chapter.

Using the New Layout/Report Assistant
In Layout mode, you can choose Layouts, New Layout/Report to start the interactive tool that helps

you design layouts and reports. This section provides an overview of the process. Along the way,

you can choose a variety of options. On completion, you can modify the layout itself in a variety of

 note
In fact, what is happening in the previous figures is that the Inventory Starter Solution is running in a copy of FileMaker
Server (the server is named JFWindows). Throughout this chapter, you see a Mac, a Windows computer, and an iOS
device (in this case an iPhone) connecting to the same database. You can enter data on the iPhone and view it on the
Mac as soon as you leave the field into which you entered data. Note in Figure 10.4 that the report shown full-size in
Figure 10.3 is shown in a compressed version on the smaller screen, but you can print it or email it from the iPhone. The
printed or emailed version will be full size.

 note
If your users are likely to print
from a List view, be sure that
you constrain your report to the
width of the printed page rather
than the monitor screen width.
You’ll also find that although
10- to 12-point fonts generally
work well for reports that will be
viewed onscreen, 8- to 10-point
fonts are more appropriate for
printed reports. Be sure to actu-
ally print your reports to proof
them rather than simply relying
on what you see onscreen.

ptg8106388

Getting Started with Reporting and Charting290

II

PA
RT

ways. Many people start with the assistant and then provide their own customization in this way.

The distinction between layouts designed for printing and summarization—that is, reports—and

other layouts is based on their use. Reports are a special type of layout , and in this section the terms

are used interchangeably. In this section, you learn how to create a new list report. The built-in list

shown in the Inventory layout simply lists the items. This one lists them and groups them by loca-

tion and category.

To begin, enter Layout mode and choose Layouts, New Layout/Report. The dialog shown in Figure

10.5 opens.

 Figure 10.5
 Select the base table and name the layout.

You can select from various types of reports. As you select each type, the thumbnail at the right of

the dialog changes to show you the basics of the layout you have selected. In this example, a list

report is developed. (Note that layouts with “view” in the name are usually designed for the screen,

whereas layouts with “report” in the name are usually designed for printing.)

If there are groups, you can opt for a grand total, subtotals, or both. As before, the thumbnail to the

right shows a schematic of what the report will look like. Note that this schematic is logical, not

actual. Subtotals and totals can be right- or left-aligned; the point is that they exist. In addition, sub-

totals can precede or follow their detailed data; in the schematic, they are shown as following the

detail data, but you can move them during the development process.

Next, specify the fields for the report (see Figure 10.6). You can use fields from the base table or

from related tables.

ptg8106388

291Using the New Layout/Report Assistant

10

C
H
APTER

If you have chosen to group data, the next step lets you select the

fields for grouping, as shown in Figure 10.7 . At this stage, it is

not uncommon to discover that a field you want to use for group-

ing was not included in the list of fields in the window shown in

Figure 10.6 . That is no problem: You can go back to a previous step

(and frequently may need to do so). As you select grouping fields,

the thumbnail shows how the layout is proceeding. If you select

multiple grouping fields, they will be indented as subgroups. To

change the ordering, move report categories up or down using the

two-headed arrow.
The next step is not shown; it is a standard sorting dialog that

lets you determine how the data will be sorted. The sorting order

includes the grouping fields already selected; they are shown with

padlocks because you cannot move them. (If you move them, the

grouping will not be done properly. If you change the order of the

groups as was shown in Figure 10.5 , these locked sort fields will

automatically be rearranged.)

You can add additional sorting fields below them so that within a

group (or subgroup) data is sorted alphabetically, by date, or any

other way you want. After the sort, the Next button lets you add

subtotals if you chose them in the window shown previously in

Figure 10.5 . Figure 10.8 shows this process. You select the sum-

mary field for the category, indicate if the summary should be

above or below the detail records, and then select a summary field.

 � For more details on summaries, see “Using Summarized

Reports,” p. 295 .

 Figure 10.6
 Select layout fields.

 tip
Groupings are often called
summaries and subsummaries .
In those roles, they contain
FileMaker summary fields.
However, you need not include
summary fields in summaries and
subsummaries. As is the case in
this example, you can sort and
group the data and display text
in the summary or subsummary
(here, it will be the name of a
location or category).

 tip
If you have forgotten to create a
summary field, you don’t have to
worry. Just click Specify as shown in
 Figure 10.8 . The Specify Field dialog
shown in Figure 10.9 lets you select
the field. If you haven’t created it
yet, the Add button in the lower left
lets you do so at this point without
interrupting your work.

ptg8106388

Getting Started with Reporting and Charting292

II

PA
RT

 Figure 10.7
 Select the fields to use for grouping.

 Figure 10.8
 Select summary fields for subtotals.

 � For more details on creating and using summary fields, see “Using Summarized Reports,”

p. 295 .

In the next step, a similar process is used to determine the grand total summary. Following that, you

can choose the theme for the layout as shown in Figure 10.10 . You are almost finished.

ptg8106388

293Using the New Layout/Report Assistant

10

C
H
APTER

In the next step, you can set titles, page numbers, and the like, as shown in Figure 10.11 .

 Figure 10.9
 Select or add the summary field.

 Figure 10.10
 Choose a theme for the layout.

ptg8106388

Getting Started with Reporting and Charting294

II

PA
RT

In the penultimate step, you can choose to create a script that will sort the appropriate database and

go to the layout. Finally, you can also decide whether to view it in Browse or Preview mode. Having

completed these steps, you can use your layout/report with its script, or you can customize it.

If you have chosen to create a script, run it and view the report as shown in Figure 10.12 .

 Figure 10.11
 Set titles, page numbers, and the like.

 Figure 10.12
 View the
report.

ptg8106388

295Using Summarized Reports

10

C
H
APTER

If you did not create a script, go to the layout and then sort by location and category (in that order).

Enter Preview mode to get page numbers if you want.

 Using Summarized Reports
As you have seen, you can use the New Layout/Report assistant to create layouts with grouped and

summarized data. There are two parts to this. The first is to create summary fields (that is, fields of

type Summary, not just an arithmetic or calculation summaries), and the second is to create groups

based on a field’s values. (This field is called the break field .)

The first part—summary fields—is optional. You saw how to create a summary in Figure 10.10 . That

process lets you select or add a summary field rather than just using group data such as a name.

Now you create a summary field.

Creating a Summary Field
A summary field lets you summarize data. The data that you summarize must be from a field in the

table you are working with. The Units on Hand calculation uses values from the Stock Transactions

table, so you can’t summarize it in the Inventory table (see the sidebar, “Summarizing Distant Data”

for workarounds). However, there is a Stock Value field in Inventory that can be summarized. This

can be a valuable addition to the report: It will show the value of each inventory item, and, because

it is a summary field, it will summarize those values for each category and each location.

Summarizing Distant Data

There are several ways to summarize distant data. One way is to simply create a local field that
is a calculation and that copies the distant data. This places it in the local table, and you can
summarize the calculated field.

In the case of a summarized table such as Inventory, you can use another strategy. In the table
as it is shown here, you have a body part that contains records from Inventory. Subsummary
parts group that data by location and category.

If you promote the body part to be a subsummary part, the new body part can consist of each
transaction from the Stock Transactions table. Then, the body consists of the individual transac-
tions, and you summarize by item (that’s the new subsummary part), and then by category and
location. With this strategy, you do not even need to display the body part: The subsummary
parts show the data, but the body part is summarizing data from its own table.

In this case, there is a further complication, and it is so common that it is worth pointing out. In
Stock Transactions, there are separate fields for Units In and Units Out. If you want to summa-
rize them to get a total number of units, you need to create a new calculation field that consists
of Units Out prefixed with a minus sign. In other words, you want the sum of Units Out (1) plus
Units In (2) to be 1 (2–1) not 3 (2+1).

This happens all the time. Often, people expect to see unsigned numbers in these types of
transactions, so that when you add them up, you must adjust the sign of one of the compo-
nents.

ptg8106388

Getting Started with Reporting and Charting296

II

PA
RT

Add the new summary field to summarize Stock Value (see Figure 10.13). Using a common conven-

tion, the summary field name begins with s (sStockValue).

 Figure 10.13
 Add sStockValue.

Add the field to the layout you have been working on. It can appear in the detail lines of the body as

well as in the subsummaries (you will see how it looks in Figure 10.15). Once the field is added, you

can rearrange things and use the Inspector to change the appearance of the new field. Figure 10.14

(left) shows you how you can use the Inspector to set the format for a numeric field using the Data

Formatting section of the Data tab. Figure 10.14 (right) shows how to right-align the field in the

Paragraph section of the Appearance tab. In a column of numbers, aligning them to the right and

specifying a fixed number of decimals makes for a better appearance.
Figure 10.15 shows the layout in Browse mode. Note that the summary field is updated automati-

cally in the subsummary part when you select the part or one of its components.

ptg8106388

297Using Summarized Reports

10

C
H
APTER

 Figure 10.14
 Adjust the format for the new field.

 Figure 10.15
Subsummary parts are
updated sometimes.

ptg8106388

Getting Started with Reporting and Charting298

II

PA
RT

To get the best result, view the layout as Table view, as shown

in Figure 10.16 . This takes advantage of the dynamic reporting

that was introduced in FileMaker Pro 10. You can see that the

subtotals are correctly updated.

 Figure 10.16
 Using dynamic
reporting in Table
view.

Working with Subsummary Parts
Working with subsummary parts is easy when you use the assistant, as shown in the previous sec-

tion, but you can also do it on your own. Often, you start from an existing report and modify it to

add additional break or summary fields. You can use the Part tool, as shown in Figure 10.17 , or you

can choose Insert, Part to open the Part Definition dialog. You can also use Layout, Part Setup and

click Create to open the Part Definition dialog. Whichever method you use, you will open the Part

De8finition dialog shown in Figure 10.18 .

 note
This sequence matters. Create
the subsummary parts before
switching to Table view.

ptg8106388

299Using Summarized Reports

10

C
H
APTER

 Figure 10.17
Drag the Part
tool into a
layout to add a
part.

 Figure 10.18
 Open the Part Definition dialog.

ptg8106388

Getting Started with Reporting and Charting300

II

PA
RT

You have seen how this dialog is used for headers and footers, but now you will see how to use it

for subsummary parts. You click the radio button to select a subsummary part, and then you select

the break field from the list at the right (notice that you can use the pop-up menu at the top to

choose another table). The part will be created, and you can set the appropriate pagination options.

FileMaker Pro has two ways of identifying parts. The first, shown in Figure 10.17 , identifies the

parts vertically in the left-hand margin of the layout. You can use the fifth button from the left in the

lower frame of the window to switch the labels to a horizontal orientation, as shown in Figure 10.19 .

Vertically, the labels obscure no data, but they are hard to read; horizontally, they are legible, but

they may obscure data. You will probably switch back and forth.

 Figure 10.19
You can use
horizontal part
labels.

When placed in subsummary or summary parts, summary fields behave as you would expect: They

provide the appropriate summary for the data in that part. Therefore, it is common to place the same

summary field in several parts to provide different but appropriate information. In Figure 10.19 , for

example, the summary field sStockValue appears three times:

• First, it provides the total for a subsummary based on location.

• Then, it provides the total for a subsummary based on category.

• Finally, it provides the value for a single record in the body part.

ptg8106388

301Using Summarized Reports

10

C
H
APTER

To create or rearrange parts, choose Layouts, Part Setup, which will open the dialog shown in

Figure 10.20 . Some parts cannot be moved (you cannot put a footer before a header, for example).

The core of the report is the body part, but you may not need it for summary reports without details;

in that case, you can delete it.

 Figure 10.20
 Create and rearrange parts.

If you display data for locations and then within locations by categories, the subsummaries are for

categories and then for locations. You can use the dialog shown in Figure 10.20 to create a grand

summary part that will include sStockValue .

When you sort records for a report, you can use a summarized field in the sort. In the example

shown in Figure 10.20 , the report must be sorted by location and category to work properly. But you

can sort based on a summary value to modify that report. As Figure 10.21 shows, you can sort the

category field based on the sStockValue summary field by clicking Reorder Based on Summary

Field toward the bottom of the dialog box.
If you do that, the report will appear with the categories sorted in ascending order by their total cost

field.

Calculations Involving Summary Fields
After you begin using summary fields on reports, you’re likely to come across situations in which

you need to perform some sort of calculation involving a summary field. For instance, in a Student

Quiz database, imagine that Quiz 1 is a pre-test for a unit and that Quiz 3 is a post-test for the same

unit. You might want to find out the change in scores from the pre-test to the post-test.

 tip
What you must remember about the Part Setup dialog is that the sort order in your script or manual sort must match the
implied sort order. The sequence is down toward the body part. Thus, in the example shown in Figure 10.20 , the data
must be sorted by location and, within that, by category. It does not matter how the data is sorted (ascending, descend-
ing, or a custom order based on a value list), but it must be sorted. When you set up the subsummary parts, the sorting
sequence must be reversed below the body part.

ptg8106388

Getting Started with Reporting and Charting302

II

PA
RT

For an individual student, you could generate this information simply by adding a calculation field

called something like ScoreIncrease, defined as Quiz3 - Quiz1 . But what if you wanted to find out

the average increase for each class? Can you do math with summary fields?

The answer to the preceding question is both yes and no. Summary fields can be, but should not be,

used directly in calculation formulas. There’s nothing to prevent you from doing so, but it’s usually

nonsensical to do so. Inside a calculation formula, a summary field is evaluated as the aggregate

result of the entire found set. Thus, if you were to define a field called Average_ScoreIncrease as

Average_Quiz3 - Average_Quiz1 , the result would be -0.84 no matter what record you were

viewing or in what layout part you placed the field. This formula doesn’t properly generate subsum-

mary values.

The solution to the problem is to use the GetSummary function. GetSummary takes two parameters:

a summary field and a break field. When the current found set is sorted by the break field, this func-

tion returns the same value that would appear if the summary field were used in a subsummary

layout part (based on the same break field, of course). If the found set is not sorted by the break

field, the function returns the value of the summary field over the entire found set, which the astute

reader might recall is the same value returned by simply putting a summary field in a calculation

without the GetSummary function.

In the current situation, to produce a summary ScoreIncrease at the teacher level, the following

calculation (called Average_ScoreIncrease_Teacher) would be necessary:

GetSummary (Average_Quiz3 ; Teacher) - GetSummary (Average_Quiz1 ; Teacher)

This field could then be placed in the trailing subsummary part to display the results for each

teacher.

 Figure 10.21
 Sort on summary fields.

ptg8106388

303Modifying Table Views

10

C
H
APTER

The fact that you must explicitly name a break field means that calculations involving summary

fields aren’t as reusable as summary fields themselves. If you were making another report show-

ing quiz scores by gender, you would need a new calculation field called Average_ScoreIncrease_

Gender that specifies Gender as the break field instead of Teacher. Similarly, for use in a trailing

grand summary, you would need yet another version of the formula that didn’t use GetSummary

at all.

If this lack of reusability is a problem for you, there actually is a way around the break field problem.

The solution is to make a new field—a global text field—that you set (either manually or via script)

to be the name of the break field that you need. Then you can dynamically assemble an appropriate

GetSummary function and use the Evaluate function to return the proper value. Using this tech-

nique in the present example, you would just define a single Average_ScoreIncrease field with the

following formula:

Evaluate (“GetSummary(Average_Quiz3; “ & gSortValue & “)”) -
Evaluate (“GetSummary(Average_Quiz1; “ & gSortValue & “)”)

Although the purpose of using a GetSummary function is to produce a value appropriate for display

in a subsummary part, the values also display properly when placed in a body part. That is, each

record of the subgroup knows the aggregate value for its particular set. This is distinctly different

from the result of simply placing a summary field into a body part, in which case the value displayed

represents an aggregation of the entire found set.

 Modifying Table Views
When you choose View As Table in Browse mode, the current layout is shown in a spreadsheet-like

display. The fields in the Table view are the fields from the current layout. You can rearrange the

columns, but, initially, the columns in the Table view are the current view’s fields from top to bot-

tom and left to right.

With the advent of live reporting, you now can modify the fields shown in a Table view rather than

using all the fields in the current layout. As you can see in Figure 10.22 , you can do this when you

are in Table view by clicking the Modify button at the right of the Status toolbar and choosing new

fields for the Table view with the Add button at the lower-right of the Modify Table View dialog

box. You can use the check boxes to remove fields from the Table view. The initial state—all fields

top-to-bottom and left-to-right—remains.

ptg8106388

Getting Started with Reporting and Charting304

II

PA
RT

Customizing Layouts and Reports
The methods of customizing layouts described in Chapter 4 , “Working with Layouts,” apply to all

layouts. When you are creating layouts designed for displaying data in report formats, several spe-

cific customizations are often used:

• Alternating row colors

• Column sorting

• Sliding objects

 Alternating Row Color
An enhancement you might want to make to a list report is to

alternate the row color. The option to alternate row color is found

in the Part Definition dialog, shown earlier in Figure 10.21 ; the

quickest way to get there is by double-clicking the body part

label while in Layout mode. Figure 10.23 shows the setting for

the Inventory layout. As you saw in Figure 10.2 earlier in this

chapter, there is a very subtle variation in the background color of

each row. (Subtle variations are often the best.)

 Figure 10.22
Manage fields in a
Table view.

 note
Colors appear differently on
paper and on the screen, and
they often differ from printer
to printer and from display to
display. Text on dark colors can
be legible on the screen, but on
paper can be unreadable. If you
are using color for either the row
background or the text, make
certain that there is a strong con-
trast. If the row background color
will be alternating, the contrast
must be strong with both colors.

ptg8106388

305Customizing Layouts and Reports

10

C
H
APTER

Sorting Data in a Table
One of the easiest methods to use for sorting reports is to teach users how to employ the built-in

Sort dialog in FileMaker; however, there are other ways to accomplish the goal.

Sorting with a Click on a Field
Another easy way to sort a set of records in FileMaker Pro is to (Control-click) [right-click] any field

and choose one of the three sort options. You don’t need to know the name of the field or fret about

finding it in a long list of available fields.

Sorting with a Column Title
An interface convention that has been widely adopted by software applications involves clicking the

various column headers of a list report to sort the set of records by that column.

The two components of a sortable column header routine are a script (which does the actual sorting)

and a graphic indicator to let the user know by which column the list is sorted. You can use what-

ever graphic indicator you want for this purpose.

The other part of the logic is the indicator for the order of the sorted column. This is a calculation

field, the value of which is a container. This calculation relies on a global container with two repeat-

ing values: the up arrow image and the down arrow image. (This field can be filled by creating

a layout with the field on it, pasting the images in, and then deleting the layout. The values will

remain.)

The appropriate image is inserted into the container field through the calculation; note that it is

blank if the column is not sorted.

 Figure 10.23
The option to alternate row colors can be applied
only to body parts; it is grayed out as an option
for any other type of part.

ptg8106388

Getting Started with Reporting and Charting306

II

PA
RT

Sorting with a Pop-up Control
In the Inventory Starter Solution, yet another method of sorting is used. As you see in Figure 10.24 ,

a pop-up menu lets you choose the sort order of the report.

 Figure 10.24
Choose the sort
order of the report.

As you can see at the top of Figure 10.25 , the pop-up menu is based on a value list, and it stores its

value in the database in a field called Inventory::Sort Selection.
Write a script to perform the sort as shown in Figure 10.26 . Note that the sort criteria for some of the

sorts is specified in the specific sort script steps, so they are not visible in the script.

ptg8106388

307Customizing Layouts and Reports

10

C
H
APTER

 Figure 10.25
 Store the sort order in the database.

 Figure 10.26
 Write the
sorting script.

ptg8106388

Getting Started with Reporting and Charting308

II

PA
RT

Finally, select the field for the pop-up menu control. Choose Format, Set Script Triggers and enable

the trigger for OnObjectModify; then attach the script to it as shown in Figure 10.27 . Now when a

user chooses a sort order, the sort will automatically be performed.

 Figure 10.27
 Implement the sort with a trigger.

 Sliding Objects
If you are developing layouts that you intend to be printed, and you have variable amounts of text in

certain fields, you might want to configure some objects on your layout to slide. Sliding eliminates

excess whitespace from an object, allowing it to appear closer to its neighboring objects. You can

configure an object to slide either up or to the left, using the controls at the bottom of the Position

Inspector shown in Figure 10.28 .
The effects of sliding can’t be seen unless you are in Preview mode (or you actually print). If you set

a field to slide, any whitespace in the field is removed in Preview mode. One caveat to know is that

the contents of a field must be top-aligned to slide up and left-aligned to slide left.

Sliding does not reduce the amount of space between objects. Imagine you have a large text field

with a horizontal line located 10 pixels below the bottom of the field. If you set both objects to slide

up, empty space in the field will be removed, and the line will slide up until it is 10 pixels away from

the bottom of the field.

The option titled Also Resize Enclosing Part is useful when you have a list of variable-length

records. Set the layout to accommodate the longest possible amount of data and then turn on sliding

for all the fields in the body and reduce the size of the enclosing part. The rows of the list will have

a variable length when you preview and print them. You must be sure to set all the objects in the

list to slide; a single nonsliding object can prevent the part from reducing properly. Objects such as

vertical lines do not shrink in size to accommodate variable record widths, so if you need this effect,

use left or right field borders, which do shrink appropriately.

ptg8106388

309Delivering Reports

10

C
H
APTER

Sliding can be applied to portals as well, but objects in a portal can’t slide. If a portal is set to slide

up, any blank rows of the portal are suppressed, but there’s no way to make the height of the indi-

vidual rows of the portal variable. Portal sliding is useful and necessary in reports that must pull in

data from related files. Typically, if there’s a portal on a printable report, you should set the portal to

display a large number of records and not to have a vertical scroll. If you enable sliding as well, any

unneeded portal rows simply disappear.

The Sliding & Visibility section of the Position tab also has an option to hide a layout object when

printing. As with sliding, this setting is apparent only in Preview mode. Typically, you use this

option to allow buttons, background images, and data-entry instructions—items you typically

wouldn’t want to have on a printout—to be visible only in Browse and Find modes.

 Delivering Reports
Reports are typically among the most important things a database solution produces. Workflows

often include using a database for data entry and then running a routine of some sort to have that

data synthesized and presented as output in the form of a report. After a report has been generated

(usually onscreen in Preview mode), users almost always want to take an additional step and deliver

that report to some other medium. Often, delivering a report is as simple as clicking a Print menu

option; however, FileMaker Pro provides additional capabilities for distributing reports to various

users.

 Figure 10.28
You can configure an object to slide either up or to the left by using the Sliding &
Visibility on the Inspector’s Position tab.

ptg8106388

Getting Started with Reporting and Charting310

II

PA
RT

 Save/Send as PDF
Available from the File menu is the option titled Save/Send Records as PDF. For the FileMaker family

of products, FileMaker, Inc., offers the complete PDF application programming interface; the cre-

ation features provide comprehensive control over PDFs generated from FileMaker Pro (see Figure

10.29).

 Figure 10.29
From any layout in FileMaker, users
can save PDF reports directly from the
File menu.

Just as with printing, users can opt to save to PDF a single record, a set of records, or a blank view

of their current layout. The end result is a PDF file that can be viewed by anyone with the capability

of opening PDF files—virtually everyone with a modern Windows or Mac computer.

The Create Email with File as Attachment option in the dialog where you select the file to send cre-

ates a PDF and automatically opens a new email message with the PDF document as an attachment.

This one-step process makes it simple to send documents directly from FileMaker.

The Options button at the lower right of Figure 10.29 gives you access to document options as

shown in Figure 10.30 .
The Security tab lets you control the document’s security as shown in Figure 10.31 .
Last but certainly not least, notice the Create Email with File as Attachment option at the very bot-

tom of Figure 10.30 . When you select this choice, FileMaker creates a PDF and automatically opens

a new email message with the PDF document as an attachment. This one-step process makes it

simple to send documents directly from FileMaker.

ptg8106388

311Delivering Reports

10

C
H
APTER

 Save/Send as Excel
Just as FileMaker allows you to export data, users can now save and email Excel documents directly

from the File menu. Users don’t have to manipulate export dialogs; they simply get whatever data

columns are available on their current layout, and the resultant file is a native Excel document. No

formatting is available, but the document properties can be set from the Excel Options dialog, as

shown in Figure 10.32 .
Notice that as with Save/Send Record as PDF, users can opt to create a new email message with the

resultant file attached in a single, easy step. Likewise, as with the Save as PDF script step, devel-

opers can automate the creation of Excel documents by using the Save As Excel script step.

In FileMaker Pro, you can save Excel workbooks both in .xls and .xlsx formats.

 Figure 10.30
 Set document metadata for PDF files.

 Figure 10.31
 Set security for the PDF document.

ptg8106388

Getting Started with Reporting and Charting312

II

PA
RT

 Send Mail
FileMaker has had the capability to send email via the Send Mail script step as well as directly

from the File menu without your having to do any scripting or development work.

Note that the Send Mail dialog allows users to pull calculated values from a database and can send

multiple emails—one per record in the found set—in a batch process.

The Send Mail script step enables developers to automate batch email processes and can dynami-

cally generate recipient addresses, subject lines, email body text, and more from the records in a

given database.

Figure 10.33 shows the options dialog for the Send Mail script step. The pop-up menu at the top lets

you choose to send mail from the mail client on the user’s computer or through SMTP on a server

that you identify.

 Figure 10.32
Saving documents to Excel directly can save multiple steps
and delivers information in a form that is often more familiar
to other constituents in an organization.

 Figure 10.33
 Send email with an email client.

ptg8106388

313Delivering Reports

10

C
H
APTER

You can use the pop-up menu at the top of the dialog to choose an SMTP client, as you see in Figure

10.34 .

 Figure 10.34
 Send email with an SMTP host.

Notice that each of the fields in the dialogs can be specified with a calculation, thus making the

entire process totally customizable.

 Scripting Send Mail
This process can be scripted as you can see if you explore the Send by Email button in the Inventory

layout shown previously in Figure 10.2 . The script that is attached to the button is shown in Figure

10.35 .
If you use the SMTP option, it can be scripted, or the user can specify the values as the script runs.

This is shown in Figure 10.36 .

ptg8106388

Getting Started with Reporting and Charting314

II

PA
RT

 Figure 10.35
You can script
a button to
produce a
report and
send it.

 Figure 10.36
Users can enter SMTP values as the script
runs.

The end result of the script is shown in Figure 10.37 .

 � To learn more about scripting routines, see Chapter 9 , “Getting Started with Scripting,” and

 Chapter 16 , “Advanced Scripting Techniques.”

ptg8106388

315Introducing Charting

10

C
H
APTER

 Introducing Charting

FileMaker Pro includes built-in charting that is very powerful and easy to use. The principle of chart-

ing in FileMaker Pro is that you can easily create a chart that is placed in its own layout. From there,

you can adjust that chart itself. Alternatively, if the data in the chart changes, the chart is adjusted

automatically. The chart on the layout is easily modified if you need to do so. In this section, you will

see an introductory overview.

 � More information about charting can be found in Chapter 14 ,

“Advanced Interface Techniques.”

You start by selecting a field in Browse mode to serve as the basis

for the chart. Charts often have two data sources (an x-axis and

a y-axis), but you normally start with one of them. Get started by

selecting the basic field and opening the shortcut menu shown in

Figure 10.38 .
A basic chart is created for you in its own window, as shown in

Figure 10.39 .

 Figure 10.37
View the email message with
the PDF.

 tip
As always, the shortcut menu is
opened with (Control-click) on
Mac and with a [right-click] on
Windows. Note that charting is
available in the shortcut menu
from Form, List, and Table views
in Browse mode.

ptg8106388

Getting Started with Reporting and Charting316

II

PA
RT

 Figure 10.38
Choose a chart from
the shortcut menu.

 Figure 10.39
FileMaker Pro cre-
ates a basic chart.

ptg8106388

317Introducing Charting

10

C
H
APTER

From here, you can use the Inspector-like tools at the right to adjust the chart. You also can use the

buttons at the bottom to make changes to the chart. Perhaps the most useful of these tools is the

Swap Axes button at the lower left. This switches the x- and y-axes; often experimenting is the

fastest way to come up with the best presentation. Also, at the lower right of the chart area, you

can choose to switch between actual data and sample data. Sometimes the sample data is easier to

work with, as shown in Figure 10.40 . This is because it significantly distinguishes between

the chart components; sometimes real data is close in value so that the chart is not as clear as it

might be.

 Figure 10.40
 Use sample
data.

You can also explore the sections of the Inspector at the right to adjust the settings for the chart,

styles, and data sources. In the Styles section, for example, you can choose from the chart types

shown in Figure 10.41 .
When you are satisfied (or want to stop for a break or to rethink things), you can save the chart as a

layout with the button in the lower right. Name it as shown in Figure 10.42 .

ptg8106388

Getting Started with Reporting and Charting318

II

PA
RT

 Figure 10.41
 Select the chart type.

 Figure 10.42
 Save the chart as a layout.

As you explore the chart, you will probably catch a number of errors. You can always come back to

the chart layout, go into Layout view, and adjust them. For example, in Figure 10.43 , you can see

that, by default, the years are shown as decimal numbers. You probably want to remove the decimal

point. A simple way to do that is to use a calculation instead of the raw field.

ptg8106388

319Troubleshooting

10

C
H
APTER

 Troubleshooting

Printed Reports Show Only a Single Record
Sometimes, my printed reports contain only the first record of data. Why is that?

Chances are that your print settings are configured to print the current record rather than the cur-

rent found count. When printing from a List view, be sure to select the Records Being Browsed

option. This configuration can be specified within a script, so be sure to set your print scripts to use

this configuration as well.

Reports Don’t Go to Preview Mode from the Assistant
I just created a new report with the Layout/Report assistant but it didn’t end up in Preview mode

the way it used to.

FileMaker Pro supports dynamic reports. In previous versions, the last screen of the assistant let you

choose to open the report in Preview mode or Layout mode. If you look carefully, you see that the

choice is now Browse mode or Layout mode. Here’s what FileMaker Pro is doing if you choose the

non–Layout mode option. It inserts code in the script it is generating to test if the user is running

FileMaker Pro or later. If so, the report opens in Browse mode. If you move to List view, you can

manipulate the data and see the subsummary parts update appropriately. You can always manually

 Figure 10.43
 Review the
chart.

ptg8106388

Getting Started with Reporting and Charting320

II

PA
RT

go to Preview mode if you want to print it or see the results of paginations. If the user is running an

earlier version of FileMaker, the older process (opening in Preview mode) continues. Here’s where

it gets slightly complicated. In order to keep old scripts running as they have always done, this

behavior is only for new scripts created with the assistant. You might want to copy and paste the

code from the end of the new script into older scripts so that the behavior is consistent across your

scripts. Changing the behavior of your existing scripts is a choice for you to make—not for FileMaker

to automatically do behind your back.

FileMaker Extra: Incorporating Reports into the
Workflow

The focus of this chapter has been on the creation of list and subsummary report layouts. There’s

a bit more to creating useful reports, however, than merely setting up nice-looking layouts: You

have to incorporate reports into the user workflow, controlling how a user both accesses and exits a

report. The methods you choose can vary from solution to solution, and your choice is a function of

both what the system does and the particular audience. If the users are proficient with FileMaker,

they might be comfortable manually finding and sorting a set of records and navigating to the

appropriate layout. More often, however, users benefit from your taking some time to set up some

infrastructure to help them access the reports properly.

There are many ways you can go about building reports into the workflow of a solution. Following

are some of the most common we’ve seen over the years:

 • Place buttons to run reports on relevant data-entry layouts— For instance, on an Invoice Entry

screen, you might have buttons for creating an Invoice Aging report; on a Contact Entry layout,

there might be a Callback Report and a Contact Activity Report. Users typically are expected to

find whatever data they want included in the report; the script simply goes to the correct layout,

sorts, and previews, and then potentially returns the user to the original layout.

 • In your report scripts, use custom dialogs to give users certain choices about how the report

will be generated— For instance, a dialog might prompt users as to whether they want to pro-

duce a report for the current month’s data or the previous month’s.

 • You can create a centralized Report Menu layout that can be accessed from anyplace in your

solution— By centralizing your reports, you can avoid having to clutter data-entry layouts with

report buttons. In addition, you give your users one place to go any time they want a report,

rather than requiring that they memorize which reports they can generate where. A centralized

report menu works well when the report scripts run predetermined finds.

 • As a variation on the Report Menu concept, you can give users control over finding and sort-

ing the data— You can, for example, place global fields on a layout so that the user can enter a

date range on which to search. The find criteria are usually specific to a certain report or group of

reports, so you need to branch to the appropriate “finder” layout when a user makes a selection

from the report menu.

ptg8106388

321FileMaker Extra: Incorporating Reports into the Workflow

10

C
H
APTER

 • A third variation on the Report Menu idea is to literally create a Reports custom menu— A cus-

tom menu of reports could offer contextual listings of available reports from a given area of your

database, or it might simply offer all the reports available within your solution.

 • You can enable users to modify the title of a report or to add a secondary header of their own

choice— This typically is done with custom dialogs, but you can also incorporate this element

into a report menu or layout dedicated to preparing records sets for reports.

After generating the report, you’ll probably want to return users to wherever they were before run-

ning the report. Try to avoid a situation in which a user is stranded on a report layout without any

tools to get back to familiar territory.

You should also strive to have some consistency in how reports look and function in your system;

this will make using them easier and more intuitive for your users. For instance, you might set up as

a convention that reports are always (or never) previewed onscreen, and users are prompted as to

whether they want to print a report. Similarly, place layout elements such as the title, page number,

and report date and time in consistent locations on your reports so that users don’t have to hunt for

them.

ptg8106388

This page intentionally left blank

ptg8106388

 11

DEVELOPING FOR MULTIUSER
DEPLOYMENT

 Developing for Multiple Users
Some of the best, most lovingly developed FileMaker Pro systems are only

ever used by a single person. Then there are the rest of the databases

out there. FileMaker Pro enjoys a graceful growth curve from single-user

applications to systems that support enterprise-level workgroups and

operations of hundreds of users.

We can be thankful that this graceful transition from single user to mul-

tiuser means that issues to take into consideration when building mul-

tiuser systems are reasonably modest. Much of what you already know

about building FileMaker Pro systems—regardless of your planned deploy-

ment—also applies directly to building a multiuser application.

In this chapter we cover two primary topics: how the FileMaker engine

handles multiple users and the development techniques you need to con-

sider when building multiuser applications. As a third discussion, we also

go into some depth about audit trails, given that they often are used to

help ensure data integrity in systems used by larger organizations and are

used specifically to track multiple-user scenarios.

We recommend that anyone intending to deploy a system to multiple

users read this chapter. Some of the issues we discuss become necessary

considerations only in systems getting heavy use from multiple users, but

they’re good to have in mind nonetheless.

ptg8106388

Developing for Multiuser Deployment324

III

PA
RT

 � This chapter is a good companion to Chapter 26 ,

“Deploying and Extending FileMaker.”

 � To grasp the IT infrastructural logistics of hosting a

FileMaker Pro solution, see Chapter 27 , “FileMaker Server

and Server Advanced.”

Sessions in FileMaker Pro
FileMaker Pro is a client/server application (at least when files

are hosted by an individual user or by FileMaker Server). Each

time someone using FileMaker Pro or FileMaker Go (a client)

connects to FileMaker Server (or, using peer-to-peer sharing, con-

nects to a copy of FileMaker Pro sharing a database) and opens

an instance of the database hosted there, that person creates a

session .
In practical terms, this means that one of your users can be on

layout #10 while you yourself are working with layout #2. You

can run a script, and nothing will necessarily happen on another

user’s computer; likewise, someone else can export data on a

computer while you’re performing a find request in the same

database table on yours. You each have a separate connection to

the database, with its own unique environment. While working

with the same data, all your users can be performing separate,

distinct tasks in your system. Each user can have a separate view

of the database, with different active windows, active tables, or

active found sets, among other things.

Generally, these individual user sessions don’t interfere with

each other at all; however, in some cases they can conflict—for

example, when two users try to edit the same record at the same

time. Throughout this chapter we cover various techniques for

 note
 Multiuser used to be a simple concept: several users access the solution at the same time. Today, the concept needs to
be considered in a broader manner. Although only one user might be involved, a solution that runs on FileMaker Pro in
someone’s office and on FileMaker Go when that person is, well, on the go, can be considered a multiuser solution. It is
not the identity of the user that makes it multiuser but rather that more than one person may be accessing the system
at the same time. Whether it is one person on several devices or several people, the concepts and concerns described in
this chapter are the same.

It is also worth noting that, in this chapter, FileMaker is used to refer to both FileMaker Go and FileMaker Pro (and
FileMaker Pro Advanced) because, in a multiuser environment, they function in the same basic manner.

 tip
Remember that sessions apply to
connections to hosted files—that
is, connections opened with File,
Open Remote rather than File,
Open. Direct connections created
with the File, Open command
may use sessions internally,
but the concept is not visible
to users. On FileMaker Go, ses-
sions come into play when you
connect to a FileMaker database
on a server. When you open a
database located on your mobile
device, that is analogous to
using the File, Open command on
FileMaker Pro.

 note
The one thing that is consistent
across all user sessions is the
actual data in the database.
Changes you make to records
you are editing are immediately
visible to other users in the sys-
tem, and vice versa. Our discus-
sion of sessions pertains only to
global fields and variables, win-
dow states, and layouts. Actual
data is stored and displayed
consistently for everyone.

ptg8106388

325Sessions in FileMaker Pro

11

C
H
APTER

identifying and coping with such issues, although most of the work is already done for you inside

FileMaker.
Before we approach ways to manage sessions and potential con-

flicts, it is important to understand what a session is and how

FileMaker manages multiple users. In FileMaker, sessions are

implicit and enjoy a stateful, persistent, always-on connection to

the server. The system preserves and isolates each user experience

in the FileMaker client. Keep in mind that after the session is over

(an individual user closes the database), all information about that

session—what layout was in use, where windows were positioned,

what the found set was—is discarded. The next time that user

opens the database in question, it opens in its default state, with

no preservation of how the user last left the system.
You might have heard the term session as applied to the Web.

FileMaker is quite different. On the Web, connections are stateless by default; they have no

memory. The web server does not maintain a connection to a user; the effect of a persistent ses-

sion is approximated by the explicit creation of an identifier for a given user when she logs in to a

system. That identifier is then passed (and often stored and retrieved via a cookie) through all the

page requests a person may make in a given time period. Web developers need to explicitly create

the mechanics of a session to preserve a user’s experience from page to page. Whenever you buy

a book from Amazon, the developers there have no doubt labored to make sure that each page you

visit tracks sensibly your use of the site—especially when it comes to the multipage shopping cart

experience. FileMaker, by contrast, provides persistent database sessions with no additional effort

by you, the developer.

 Session-Specific Elements
FileMaker’s sessions maintain a consistent user experience until the application itself is closed. This

experience includes your login account (unless you explicitly log out and log back in), the position

and number of windows you have open, which layouts you’re on, your current found set, your cur-

rent sort order, and the portal scroll positions. On the development side of things, custom colors

you’ve stored in the layout tools are, unfortunately, lost at the end of a session as well. And, as you

might expect, global variables (which are not stored in the database) are session specific.

 Global Behavior

Globals (fields specified as having global storage as well as global script variables) are session

specific and require additional discussion. In a multiuser client session, they utilize and hold values

unique to one specific user’s session. This enables you, as a developer, to depend on globals storing

different information for each user.

 � For more details on global field storage, see “Storage and Indexing,” p. 104 .

At the start of a session, each global field is initialized to the last value it had in single-user mode. If

you run only in single-user mode, this makes the global field value appear to persist across sessions,

 tip
You can use a trigger to run a
script when the last window of
a file is closed (that is, when
the file is closed). That script
can capture and store the user’s
layout and choices so that they
can be restored when the file is
opened again.

ptg8106388

Developing for Multiuser Deployment326

III

PA
RT

but it’s misleading to infer that there are multiuser and single-user types of sessions. Storing infor-

mation in global fields for single users is a handy way to leave things the way they were, but it also

allows developers to create a default state for global fields.

Global fields are used for a range of functions in multiuser databases: They often hold images for

navigation and user interface purposes, and they sometimes hold session information such as the

current date or the active, logged-in user. It makes sense, then, that they would be specific to a

given user’s experience.

 � If your global fields suddenly seem to be holding wrong data, see “Unpredictable Global Default

Values” in the “Troubleshooting” section at the end of this chapter.

Global variables, on the other hand, do not have stored values from session to session in single-user

or multiuser mode. As a developer, you have to explicitly initialize the variables you intend to have

the system utilize, ideally at the beginning of each session.

 � For a complete discussion of script variables, see “Script Variables,” p. 453 .

User Accounts and Session Data

One common use of global behavior in a multiuser environment

is to set a global field with your currently logged-in account. This

enables you always to have a central stored value that’s easy to

use in calculation formulas and scripts. One could argue that sim-

ply using the Get (AccountName) function wherever necessary

would accomplish the same end, but there’s an additional use

for storing the current account name in a global: You can drive a

relationship with it into a user table by using the account name

as a unique match field.
By using the account name this way, you can tie account informa-

tion to data. You might want to do this if, for example, you need

to store someone’s real name, her preference always to start on a

specific layout when the system opens, or in what language she

wants to use your database.

All these examples depend on your having done something with

the information you store in a user table. It’s useful to store some-

one’s preference for a starting layout only if you then write the

requisite script that uses this as a reference.

Another possibility lies with tracking database use. Although

you might debate whether a database or database administrator

should be looking over someone’s shoulder, you could write rou-

tines that post records to a user log table whenever users log in, log out, or even when they perform

certain scripted actions (delete records, create records, run an invoice report, and so on).

One more user-friendly option is to accommodate users simply by enabling them to specify where

they prefer a window to be positioned and sized. All these various options can be enabled by stor-

ing information specific to a single person’s session in global fields.

 note
Note that a global variable, as
opposed to a global field, can-
not drive a relationship. This
difference can play a significant
role in determining whether to
store particular session data in a
global field or a global variable.

 tip
If you are storing user settings
and preferences, consider which
of them should be restored
when the user reopens the data-
base file. Storing open window
locations is relevant only to
FileMaker Pro (there is only a
single window on FileMaker Go).

ptg8106388

327Concurrency

11

C
H
APTER

 Concurrency
You might have heard the term concurrency as it relates to databases. It refers to the logic and

behavior of database systems when two (or more) users attempt to interact with the same infor-

mation. A simple metaphor might be two people trying to use a phone book or dictionary at once;

they’re likely to trip over each other a bit. Every multiuser database platform has to address this

issue. Certainly, the easiest solution would be simply to restrict using the database to one user or

function at a time, but clearly that’s unrealistic.

 The ACID Test
To address issues of concurrency and transaction integrity, database engineers have developed

what has come to be known as the ACID test . Database software needs to pass this test to manage

concurrency issues completely. ACID stands for atomicity , consistency , isolation , and durability ;

these four terms describe the features and requirements for processing transactions in a database

system. If a system does not meet these requirements, the integrity of the database—and its data—

cannot be perfectly guaranteed.

In the context of databases, the term transaction relates to a single logical operation comprising one

or more steps that results in data being posted to the system. Examples might include committing

a new record to the database, performing a script that calculates summary information, or, in real-

world terms, completing the multiple steps of debiting one financial account and crediting another.

The ACID test exists to ensure such transactions are reliable.

FileMaker databases, on their own, do not fully meet ACID compliance, nor is it realistic to develop

a solution in FileMaker that perfectly does. FileMaker scripts can be interrupted (a machine crash

or a force-quit of the application), and as such it is possible to leave a transaction half completed.

Rolling back a half-completed operation is entirely feasible in FileMaker, but if it is necessary, you

must implement it yourself.

We’re including this section not to point out a shortcoming of

FileMaker, but rather to illustrate some important guidelines

on how you should consider building solutions for critical busi-

ness systems or large workgroups. It is possible to go a long way

toward ACID compliance in a FileMaker Pro database—if it’s prop-

erly engineered. It’s also quite possible to build a FileMaker Pro

database that leaves wide opportunity for data integrity problems

to crop up (as with any other database tool).
Here are the components of the ACID test:

 • Atomicity— Atomicity requires that transactions be completed

either in their entirety or not at all. In other words, a logical rou-

tine (say, crediting one account and debiting another) cannot

be left half done. In FileMaker terms, data is either committed

or not committed to your database, a script needs to reach its

logical conclusion, and a calculation function stores and indexes

its results properly. Although a script can be interrupted, it

 note
As consultants, we’re pragma-
tists. Often the craftsman in all
of us yearns to build the world’s
most perfect system, but in real-
ity there are trade-offs in com-
plexity, time, and flexibility to
consider. We use the guidelines
that follow as just that—guide-
lines. By identifying the critical-
ity of certain data and using
sensible safeguards to ensure its
integrity to the degree possible,
we are able to cover all but the
most extreme cases of database
failures.

ptg8106388

Developing for Multiuser Deployment328

III

PA
RT

is important to approach atomicity by writing scripts that conclude whatever routines they’re

designed for. In the case of complex processes that might be carried out by several scripts, hav-

ing a master scripts that manages the subscripts can help you make certain the process is fully

completed or rolled back properly.

 • Consistency— Consistency ensures that your database is left in a legal state at the beginning

and end of any given transaction. This means that the transaction won’t break any of the rules,

or integrity constraints, of the system. This often can encompass business logic: An example

might be that all financial credit transactions be positive numbers.

 • Isolation— Transactions in mid-process are never exposed to other processes or users. In the

credit/debit example, a user should never see a credit appear on one account before the debit

has been posted. Likewise, an account balance report should not be allowed to run when a credit

or debit is in the midst of being added.

 • Durability— After a transaction has been performed and completed, the information resulting

from that process needs to be persistent. It should be saved with the database, and if someone

pulls that computer’s plug, the information is still present in the file.

ACID compliance is a goal of development to ensure data integrity. We encourage you, especially

when writing scripts, to focus on delivering on these guidelines to an appropriate degree, especially

in a multiuser environment.

 tip
Even though FileMaker does not provide a mechanism for rolling back partially completed operations, your design can
often use a simple technique to achieve almost the same goal. It is the technique often used to update websites. New or
updated pages are created, and then, as the last step, a link from a landing page or other known location is provided to
the new or updated pages.

Likewise, in a FileMaker solution, take care to make the last operation whatever it is that reveals all the other compo-
nents of the transaction. You will have a structure in which, if the transaction fails in the middle, there might be some
orphan or incomplete records, but they will not be visible because the main link or the main record that will point to the
detail records has not been updated. This is not always possible, but, if it is, it can make your FileMaker solution more
robust.

And you can also use one of the oldest techniques in the book to prevent some interrupted transactions. Make certain
that all non-battery-powered computers are connected to uninterruptible power supply (UPS) systems.

 Script Log
One technique we use for verifying processes and debugging is a script log . By building one, you

better approach atomicity and are able to identify cases where it fails.

In large, complex solutions where transaction integrity is vital, it might be warranted to create a

process that causes all scripts to write log records to a separate table (often in a separate file as

well) when they start and again when they are successfully completed. It’s possible to track other

ptg8106388

329Concurrency

11

C
H
APTER

data as well: who initiated the script, on what layout the user

was, which instance of a window was in use, timestamp data for

start and end (for performance and troubleshooting purposes), and

potentially any data the script manipulates.
By adding a script log to your system and periodically checking it

for incomplete conclusions, you can identify cases where scripts

fail and then manually address such issues when necessary. By

definition, if a script log start entry doesn’t have a corresponding

close entry, it failed ACID’s atomicity test and possibly the consis-

tency test as well.

Commit Versus Create and Serial IDs

In FileMaker, data is committed (saved) after a user exits the

record, either by clicking outside a field or by performing a range of

other actions such as running a script, changing modes, changing

layouts, or pressing a “record-entry” key. The default is the Enter

key, but field behaviors can be changed to allow the Return and

Tab keys as well.

 � For more details on field behaviors, see “Controlling Field

Behavior,” p. 139 .

It is possible to use the Records, Revert Records option to undo the

creation of a record. Until a record has been committed, it exists in a temporary state, not yet visible

to other users of the system. Relying on a transaction remaining unsaved until expressly committed

helps ensure better ACID compliance. This point is important to remember in a multiuser environ-

ment where you might be operating on assumptions established with prior versions of FileMaker.

For example, if you’re attempting to serially number certain records and two users create two

records at the same time, it is possible that one will commit the record in an order different from

that in which the records were initially created. It is also possible that a user will undo his or her

changes with a Revert Record command and leave you with a gap in your serialization.

In the case of auto-entry serial values, FileMaker enables you to specify when the serial num-

ber is incremented: on creation or on commit. This enables you to control auto-enter serializa-

tion; however, it does not protect you from other assumptions. For example, if you’re relying on

GetSummary() calculation fields to keep track of an incremented total, remember that the calcula-

tions that control this are evaluated and displayed only after a record is committed.

 Record Locking
Just as a record is not saved to your database until it is committed—maintaining an isolated state

while you create new records—FileMaker does not allow editing of a record by more than one per-

son at a time. In this way, FileMaker meets the isolation test of ACID for posting data. Record lock-

ing exists to ensure that no two edits collide with each other (such as when multiple users attempt

to edit the same record simultaneously).

 note
This script log is not to be con-
fused with an audit trail, covered
later in the chapter. Audit trails
enable you to record all data
transactions in a database. A
script log is a means of confirm-
ing that your functional routines
are completed properly.

 tip
One final note on script logs: We
encourage you to create a global
variable that, when turned off,
disables all script logging in your
system. This is one of the few
examples in which a global vari-
able (rather than a local one) is a
good idea.

ptg8106388

Developing for Multiuser Deployment330

III

PA
RT

After a user begins editing a record, FileMaker locks that record from other users and script pro-

cesses and (when not captured and suppressed by a script) presents users with an error message if

they attempt to enter or change any data in that record.

It’s possible to place your cursor in a field and still leave the record unlocked (safe for other users to

enter data into the same record), but at the point when you actively begin typing, that record essen-

tially becomes yours until you either commit or revert it.

Locking applies to related records in portals as well. If you are modifying a record in a portal row,

that record’s parent is also locked. This behavior occurs only when the related child record is edited

via a portal or related field from the context of a parent record. If you are simply editing the child

record on its own table-specific layout (within its own context), just that single child record is

locked.

Also keep in mind that record locking applies only to editing. You can still find locked records, view

reports with them included, change sort orders with locked records in your found set, and even

export data. Only editing is protected.

If another user is editing a record and you try to edit it, you will receive the message shown on the

left in Figure 11.1 . If you choose, you can click Send Message to type a message that will be sent to

the other user; when it is received, it will appear as on the right in Figure 11.1 .

 Figure 11.1
You see this
message if
you try to
edit a record
someone else
is modifying.
If necessary,
use the Send
Message com-
mand to ask for
control.

 � See Chapter 17 , “Working with FileMaker Triggers,” to learn

how you can use an idle handler to deal with this issue.

 � To help with multiuser account testing, see “Use Re-Login

for Testing Access and Sessions” in the “Troubleshooting”

section at the end of this chapter.

Trapping for Record Locking in Scripts
A subtle way your database might prove error prone is in always

making the assumption in scripts that the routine in question

 tip
The one downside to record
locking is that you cannot force
a user out of a record remotely
through FileMaker Pro. If some-
one begins editing a record and
then goes to lunch, you need to
kick him off by using FileMaker
Server’s Admin Console, shut-
ting down the file, restarting the
server, or addressing the issue at
the user’s local computer.

ptg8106388

331Concurrency

11

C
H
APTER

has access to all the records in the current found set. Some of the records your script needs to work

with might in fact be locked.

A script can explicitly open a record for editing with the Open Record/Request script step. After

that script command has been issued, the record is reserved for that routine, and other users who

try to edit the record get a record lock error until the script (or the user running the script) releases

the record. Because any attempt to modify a record results in the same condition, explicitly using an

Open Record/Request script step might not be technically necessary, but we find it helpful to turn

to for clarity within scripts. The more important step is deliberately checking to see whether a given

record is open for editing or if some other user (or routine) has it locked.

To capture the error that results in cases where either one’s current privileges don’t allow editing

of the record in question or the record is locked by another user, we recommend testing first to see

whether a record can be opened. If that doesn’t work, deal with the result prior to attempting an

edit. Use the Open Record/Request script step followed by a Get(LastError) check. Here’s how

it might look:

Set Error Capture [On]
Open Record/Request
Set Variable [$$error; Get (LastError)]
If[$$error <> 0]
 Show Custom Dialog [“Error”; fnErrorMessage (“recordLock”)]
 // or write an error handler process here...
End If
//Execute your “real” script here...
//and don’t forget to commit your record at the end.

Use a Commit Record/Request script step at the end of your

script to release the record back into nonedit mode and unlock it

for other users.
Instead of checking simply for a nonzero error, you could also write

a series of If -> Else If script steps checking for errors such as

301 (Record is in use by another user), 303 (Database schema is in

use by another user), and so on.

 Multiwindow Locking
Multiwindow locking is closely related to multiuser record lock-

ing. It is possible to open a new window (via the Window, New

Window menu command), begin editing a record there, and in so doing, lock yourself out of editing

the same record in your original window. If you are actively editing a record that has yet to be com-

mitted and you try to edit the same record in another window, you’ll see this error message: This

record cannot be modified in this window because it is already being modified

in a different window . FileMaker tries to ensure that you’re not losing data or edits you’re in

the midst of creating.

The point here is that a user can lock himself out of a record. He might not realize that he has left

a record in an edit state before moving on to a new window. The simple answer is simply not to

 note
Consider building error utility
tables, or perhaps using custom
functions, for error handling. This
enables you to easily tailor error
messages in a central, easy-to-
edit location based on whatever
value is held in $$error . The
Custom Dialog step in the
preceding code snippet refer-
ences a custom function that pre-
sumably returns error-handling
text to the user.

ptg8106388

Developing for Multiuser Deployment332

III

PA
RT

try to edit a record in two places at once. A user would have to go a bit out of his way to encounter

this problem. If you’ve scripted routines for creating new windows with a script, you might want to

include a Commit Record/Request step before opening the new window.

Given the fact that window locking so closely resembles multiuser record locking, testing a solution

with multiple windows is an effective and efficient way to ensure that your scripts manage record-

locking checks properly, without having to resort to using two computers.

 Launch Files
One of the challenges users on a network have is actually finding the specific FileMaker files they

need to use. This is a no-brainer if you have only one FileMaker Pro solution with a single file, but

over time your Hosts dialog can become quite crowded in mul-

tiuser situations. In large organizations or companies with many

different FileMaker files, a server’s file list can be a bit daunting.

To offer a solution to this simple problem, we often build launch

files . These utility files are distributed as single-user files and sit

on each individual person’s computer. They have generally one

layout and one script that calls an open routine in a network file.
Although you might be tempted to put other niceties in these

launch files—the capability to load clusters of files or perhaps

some sense of acknowledging the individual user logging in—we encourage you to leave things as

simple as possible. You’ll have dozens of these files distributed on your network with no easy means

of replacing them with upgrades. The simpler you keep them, the easier they will be to maintain.

A final nice touch on launch files is that they close themselves after launching the system in ques-

tion. They’re no longer needed and shouldn’t have to clutter the Windows menu.

 Troubleshooting

Unpredictable Global Default Values
I have global fields, used for holding system settings, that have been working perfectly for weeks,

but today suddenly they have different data in them. What happened?

It’s likely they got reset by some script modification you’ve recently made, or when you had files

in an offline, single-user state. In our practice, we find it difficult to remember to set globals for

default states in single-user mode through the course of developing and maintaining a system. This

is a common source of bugs, and we’ve learned over the years not to make any assumptions about

global values; it’s better simply to set them explicitly within a startup script. It’s also important to

either explicitly set or test for values at the beginning of a script that depends on them.

 note
We generally put a solution logo
and a system loading...
please wait... message on
the single layout.

ptg8106388

333Troubleshooting

11

C
H
APTER

 Use Re-Login for Testing Access and Sessions
One of my users is reporting a problem that I don’t see when I’m logged in. I’m getting sick of hav-

ing to re-log in time and again to test this. Is there an easier way to test this?

If you’re having trouble testing how other users, with different access levels, might be interacting

with your system, write a re-login script that enables you to hop into another account at the click of

your mouse. You can even store passwords when using the Re-Login step. Connect it to a conve-

nient button or place it in the Scripts menu, and you have one-click account switching.

Another approach might be to create a “debugging” custom menu (with the various login scripts

available) and disable the menu before deploying the system.

Making Sure That Your Auto-Entry Always Edits
My auto-entry function worked the first time I edited a field, but then it got stuck and won’t update

again. What setting is the likely culprit?

If the auto-entry field for your audit log isn’t updating—it updates once but then never again—make

sure that you uncheck the Do Not Replace Existing Value for Field (If Any) option. It is always

checked by default and is easy to miss.

Likewise, the Audit Log routine we described depends on there being data in the field to begin

with. Either seed it with something (we use Creation TimeStamp) or turn off the Do Not Evaluate

If All Referenced Fields Are Empty option. It, too, is enabled by default.

 Trapping for Errors
I need to tighten my scripts and don’t want to have to code for every exception under the sun.

What’s the best approach to trapping for errors?

Trapping for errors is always a smart development practice. Get into the habit, and you’ll save your-

self years of your life debugging. A simple approach is to simply use the Get(LastError) function

and use a Case or If / If Else routine to display meaningful messages and logic branches to

your users. You can trap for either explicit errors or just a nonzero number.

A better way to abstract your code and provide yourself with a central place to reuse error handling

is to simply write an error routine once and be done with it.

There are two ways to manage error messaging. You can either set up your own errorCodes table

or build a custom function. Setting up a table is simple and allows you to add your own custom

error conditions and messages. You can do this as well with a custom function. The idea is simple:

Establish a global gError field in your main system and relate that to an errorID in your error

table. You can also use a $$error global variable and have a custom function reference it.

ptg8106388

Developing for Multiuser Deployment334

III

PA
RT

FileMaker Extra: Development with a Team
Sometimes systems are big enough that they warrant multiple developers in addition to multiple

users. Developing as a team can be a bit complex with FileMaker Pro, but one of the best (and often

unsung) features of FileMaker is that database schema changes can be made while the database

is live, on a server, as other users are in the system. This capability is an extraordinary boon for

FileMaker developers and will make a real difference in all of our lives.

The idea is simple: Set up a server (far better than multiuser peer-to-peer hosting) and have as

many developers as a given system needs to work together.

It’s important to keep a few points in mind: Only one person can adjust the schema in a given file

at a time. This is true for editing scripts as well. If another developer is working in ScriptMaker,

you can view scripts there, but you will be unable to make changes or add new scripts until your

teammate finishes. This means you can have one person focused on scripting, one defining a new

calculation field, and a handful of others working on different layouts all at once. One way to avoid

conflicts in this regard is to split your solution into multiple files and have those files reference

external table occurrences as needed.

Over the years we’ve assembled some best practices for working on a team. Here’s a list of tech-

niques we draw on:

 • Use FileMaker Server— Server (as opposed to simply working peer-to-peer) allows you to run fre-

quent backups, and if any one machine crashes, the files are still protected from the crash.

 • Use FileMaker Pro Advanced— The Script Debugger is handy to use in the multideveloper envi-

ronment, and the Data Viewer is an invaluable tool as well. When another developer is editing

scripts and you can’t open a script in ScriptMaker, turn on the debugging tool and you’ll at least

be able to see the script in question.

 • Use custom functions— Custom functions can be written while other programming activities are

underway, and they provide a deep layer of possible abstraction. It’s possible to have multiple

developers building custom functions while others work in the core system, and it’s also a great

way to reuse code across a team.

 • Set up a bug-tracking database— If you’re working on a multiuser system, then testing,

requests, random ideas, and other communication are vital. You’ve got some of the world’s best

database software at your fingertips; put it to use and build a bug-tracking system for your

development team and your users.

 • Build re-login scripts, toggle status area scripts, and developer layouts— Giving developers

access to the back stage area of a system is vital. Build scripts to get them there.

 • Assign a chief architect— With creating a meal, having too many cooks in the kitchen spoils the

broth. Similarly, one person should ultimately be responsible for the overall technical directions

the system requires.

ptg8106388

335FileMaker Extra: Development with a Team

11

C
H
APTER

 • Comment— Comment. Comment. Comment. Document what you intend to do and what you have

done in your scripts and field definitions. It is also useful to add comments to scripts about what

has been removed or found not to work so that someone does not come along a year later and

repeat a mistake.

 • Join TechNet and FileMaker Developer Subscription— The TechNet program at FileMaker pro-

vides access to webinars and discussion groups. It is free. The $99/year FileMaker Developer

Subscription provides as one of its benefits a development license for FileMaker Server and

FileMaker Server Advanced. These licenses are limited to three simultaneous users, but that is

sufficient for testing. You also may have access to pre-release software and briefings on future

directions. Find both at www.filemaker.com/technet/ .

 � For more information on TechNet, see www.filemaker.com/technet/index.html .

www.filemaker.com/technet/
www.filemaker.com/technet/index.html

ptg8106388

This page intentionally left blank

ptg8106388

 12

 IMPLEMENTING SECURITY

 Approaching Security
Security is a primary concern for all database developers and a significant

factor in an organization’s requirements for both the internal workings of

a database system and the technology used to build it. IT departments in

particular pay close attention to security issues and often have specific

needs that go beyond those of the users of your database solution.

FileMaker’s security architecture was completely overhauled in the

FileMaker 7 product line, and it offers a robust set of features for manag-

ing security. It meets the common standards for security and account

administration most IT organizations require of modern server-based tech-

nologies.

Regardless of how you plan to deploy a solution (you might not even have

an IT department), we strongly urge all developers to learn about security

and choose appropriate levels of safeguards for their FileMaker solutions.

This might be as simple as locking down the capability to modify the data-

base schema or as complex as deploying your solution on a network with

ties to an external authentication server. Whatever your specific needs for

security, three primary concerns bear consideration:

 • Physical access— The first issue for security is making sure that you

protect the database file itself. No matter how robust a security archi-

tecture is for any kind of software or server application, you will face

risks if a malevolent person gets direct access to your database file or

server. You have to protect your backups, including offsite copies, just

as much as your live database.

ptg8106388

Implementing Security338

III

PA
RT

 • Network access— The second area for security is the network traffic between a FileMaker host-

ing computer and the client computers connected to it. If you are working on an open network,

you might want to consider encrypting the data stream between FileMaker Server and its clients.

 • Internal data-level security— The third area for security has to do with the internal logic of your

specific database solution when someone is legitimately logged in. Who has rights to delete

records, who can make programming changes to the database, and who can view various layouts

in the system? These details are internal to the workings of a FileMaker solution and deal with

ensuring that your data remains both secure and reliable.

Every database solution should address these three areas. They

might be addressed by the facts that your database will never

leave your personal hard drive or be available to the network at

large, but what happens if your computer is stolen or if a col-

league sits down at it while you are away from your desk? We

encourage all developers to consider security issues and make

deliberate choices that are appropriate to the sensitivity of their

information and the consequences they might face if it were com-

promised.

 Identifying Risks
Security concerns are not all targeted at the clichéd image of a sophisticated hacker sitting in a dark

room somewhere surrounded by Mountain Dew cans and pizza boxes. Most FileMaker systems will

never be exposed to that level of threat. If you have a reasonably secure network and keep access

to your server (or hosting computer) controlled, you have addressed many of the concerns that an

extreme case such as hacking represents.

The biggest security threat a database system faces is actually from the legitimate users of the sys-

tem itself and often has most to do with data integrity. Let’s use an example to illustrate: Consider

a system for managing invoices that a company depends on for reporting monthly revenue. If every

user of the system (including perhaps a temporary employee there to answer phones for a few days)

has the capability to delete records, the chances that someone would inadvertently delete invoice

records are quite high.

Or let’s take a less clear-cut example: What if someone duplicated a record, intending to use the

new record to create a similar invoice, but miskeyed the command and duplicated it twice? In

those situations, the database could not be reliably depended on to deliver accurate revenue totals.

Although these sorts of issues are not the result of intended harm to a database, they are a risk to

the system, and its security architecture and data validation mechanisms have to address them.

The second general threat developers face is data sensitivity: In the examples given previously,

would it be appropriate for everyone in the system to be able to run the monthly invoice summary

report and see the financial performance of the organization? Or in the case of a database that

tracks, say, human resources information, which users should have the ability to view the layouts on

which people’s salary history appears? Security plans need to include an assessment of what data

 tip
Together with version control,
security is very difficult to ret-
rofit. You can plan a security
mechanism that you do not
implement at the beginning, but
the planning and any necessary
database design changes should
be present from the start.

ptg8106388

339Approaching Security

12

C
H
APTER

users can access (see and manipulate) in a given solution in addition to what they can do to that

data. We find it useful to work with two general categories of risks to data within a database:

 • Data integrity— Define the actions various users can perform on the data in your solution. Often

revolving around the creation and deletion of records, risks can also include the capability to edit

certain fields or run specific scripted routines.

 • Data sensitivity— Define the degree to which information should be visible and accessible after

a user legitimately logs in to a system. Risks include inappropriate access to private and propri-

etary information.

When you’re approaching security for a given solution, it is important to identify the risks the orga-

nization faces in terms of both of these areas. We advocate the creation of a risks document in proj-

ect planning that identifies these issues and the planned means of addressing them.

 tip
Your starting point in working with security must be any relevant laws, rules, and best practices you must adhere to in a
specific business. In recent years, laws protecting privacy and identity theft have proliferated. In revising old databases,
you might encounter data you would never put in a new database (credit card numbers, identification numbers such as
Social Security numbers, and the like). Today, sensitive data requires a more than cursory review before its inclusion in
a database. In the United States, legislation such as the Sarbanes-Oxley Act (officially the Public Company Accounting
Reform and Investor Protection Act of 2002), HIPAA (the Health Insurance Portability and Accountability Act of 1996),
and many other rules and statutes can enter into your security needs. In most cases, the client is responsible for letting
you know what the needs are; a consultant can perform a valuable service by asking about these matters, but interpre-
tation of the law is generally not the consultant’s job.

 Planning Security
When you’re approaching a new system, it’s important to identify the security issues you face and

include a plan for your security architecture early in your development process. For example, you

will have to plan ahead if some users of your system should not be allowed to view or work with

some set of fields, records, or layouts. Security, like reporting, is often left until last when building

a system, and, as with reporting, this tends to be a mistake. You will need to interweave access

issues throughout your database solution (considering security when placing objects on layouts,

writing scripts, and so on), and it is best to have this mapped out before building a solution.

Using a Security Matrix
To make sense of the myriad security issues many systems face, we recommend the use of a secu-

rity matrix. Table 12.1 shows a simple example. It identifies parts of the system such as access,

account control, data tables, scripts, and layouts (commonly known as assets) and specifies the type

of access for each type of user.

ptg8106388

Implementing Security340

III

PA
RT

 Table 12.1 Security Matrix Example

 Asset Developer IT Admin Manager Sales Finance Admin

Server Administration

Access to server Limited 1 Full None None None None

Access to backup
directory

Limited 1 Full None None None None

Access to server
admin tool

Limited 1 Full None None None None

User Accounts

New account Full Full None None None None

Delete account Full Full None None None None

Change password Full Full None None None None

Data Tables

Customer view Full None Full Limited 2 Full Full

Customer new Full None Full Limited 2 Full None

Customer delete Full None Full None None None

Customer edit Full None Full Limited 2 Full Full

Invoice view Full None Full Limited 2 Full Full

Invoice new Full None Full Limited 2 Full None

Invoice delete Full None Full None Full None

Invoice edit Full None Full Limited 2 Full None

Product view Full None Full Full Full Full

Product new Full None Full Full None Full

Product delete Full None Full None None None

Product edit Full None Full Full None Full

Script Routines

Monthly Revenue
Report

Full None Full None None None

Regional Revenue
Report

Full None Full Limited 3 None None

Layouts

Customer List Full None Full Full Full Full

Customer Detail Full None Full Full Full Full

Invoice List Full None Full Full Full None

Invoice Detail Full None Full Full Full None

ptg8106388

341Approaching Security

12

C
H
APTER

 Asset Developer IT Admin Manager Sales Finance Admin

Product List Full None Full Full Full Full

Product Detail Full None Full Full Full Full

1 Database developer will have full access to server during testing, but after deployment, passwords will
be changed.

2 Salespeople will be able to create, view, and edit customer and invoice records for customers and
invoices in their region only.

3 Salespeople will be able to run the regional revenue report, but it will report only on the region to which
a salesperson belongs.

Note in Table 12.1 that managers have full access to create and delete data records, that sales-

people have limited access to do so for customer records, and that people in the Admin role cannot

make any changes to invoices (however, they can view invoice information).

An additional distinction to note is that although people in the Admin role can view invoice informa-

tion, they do not have access to the Invoice List or Invoice Detail layouts. This suggests that other

layouts might display invoice information, perhaps as related fields or within a portal. It is important

to consider both the capability to view data globally throughout a system and the capability to make

use of specific layouts. In most cases, it is not enough simply to limit access to specific layouts; you

also need to limit access to the data itself.

Security grids such as the example in Table 12.1 need to be as detailed as they need to be; in other

words, they depend on the circumstances you face. If you don’t have six different roles in your

organization, clearly you won’t need the distinctions made in the example. If you want to grant

some development privileges to people other than developers (say, the capability to modify certain

layouts), you would need to add a subsection for that. This table should be taken as an instructional

example and is not a comprehensive representation of a real-world system.

Finally, be sure to grasp the use of the phrase “to view” (both in this book and within FileMaker

itself). In this context, we mean the ability to consume the data in various ways; a user can see the

data onscreen, can choose to print (if printing is enabled for the user’s account), can export that data

(if exporting is enabled for the user’s account), and can email data.

 Planning Implementation
Implementing security is done largely in the Manage Security dialog, but before we walk through

the mechanics of setting up security, you have to plan where and how to implement it from an over-

all perspective.

A significant part of your planning must include user interface considerations. If a user shouldn’t

have access to run a script, for example, she should be presented with a graceful message to that

effect if she inadvertently attempts to do so (as opposed to the script simply not doing anything).

Likewise, if someone doesn’t have access to a layout, your navigation system should reliably pre-

vent him from ever being left on that layout, or at least you should provide a way to get back to the

part of the system to which he does have access.

ptg8106388

Implementing Security342

III

PA
RT

Another consideration is the aesthetics of seeing <no access> displayed in various places through-

out the system. FileMaker displays <no access> when a user isn’t allowed to view field data,

record data, or a layout. If you do not want to remind your users of their own limited privileges, you

might choose to hide away restricted areas by controlling navigation or window access.

FileMaker 8 introduced the Custom Menus feature, allowing you to deal with many security consid-

erations by simply removing access to certain menu items. For example, if you want to restrict users

from being able to delete all records, you can choose to remove that menu item. It is critical to note,

however, that this is simply a user interface mechanism. If users have some other means of deleting

records (say, through a custom script you’ve written or some other aspect of FileMaker’s interface),

the only way to ensure that they cannot perform the restricted action is to control their ability to

perform the fundamental action in their security settings.

 � For more detail on custom menus, see “Working with Custom Menus,” p. 396 .

Here’s another example of how security plays a role in your planning: If you want to prevent people

from having to see fields to which they have no access, you can choose to place them on their own

layout. You can control access to specific layouts; however, you cannot prevent users from accessing

a Tab Control pane if they have access to the layout on which it sits. Given this, you might choose

to create separate layouts where a Tab Control object might have served had you not considered

security issues.

Your solution’s scripts are another area where you will want to plan for different levels of access.

If a user has a means of running a restricted script (say, by clicking a button that is present on all

layouts), you will need to present him with a message that he is not permitted to use that function.

A more subtle issue is what to do with scripts internal to the database operations; for example, you

might write a script that allows users to choose different printer settings. If you restrict access to

this script for some users, but then reference the script from all your reporting and printing routines,

you will need to address that conflicting dependency. Likewise, if a script takes the system to a lay-

out tied to a data table to establish context but the current user doesn’t have access to that layout,

your script might deliver unexpected results.

However you choose to approach security in your system, thinking through the user experience will

be an important part of the overall plan. You should note in your layout designs and scripting where

security considerations have to be taken into account.

 Maintaining Security
The best planned security can deteriorate over time in many ways. User IDs might be reused as

employees come and go, passwords might be posted on the sides of computer displays, and a vari-

ety of other compromises can occur.

Much of security maintenance can be managed if you have a robust password policy in place. For

many organizations, use of someone else’s user ID can be grounds for dismissal. You really need

that type of clout to keep people from destroying audit trails and otherwise appearing to be some-

one they are not (with all the privileges set up for the other person). For this to work, your security

ptg8106388

343User-Level Internal Security

12

C
H
APTER

mechanism must allow for quick ad hoc adjustments to security. If someone is away, no one else

should use that user ID; rather, the security administrator should be able to create a temporary user

ID on demand.

A set of issues involves passwords: How often should they be changed, and how complex should

they be? The proliferation of passwords is one of the biggest nuisances for computer users. Some

passwords must have special characters in them; others must not. Some must be a certain minimum

length, whereas others cannot be more than a specified length. The rules vary enough that a single

individual might need a half-dozen passwords to comply with the rules of various systems. If you

add to that a rule that passwords must be changed frequently, you quickly wind up with passwords

taped to the display because otherwise no one can remember them. There is no simple answer to

this problem other than the use of nonpassword security (which is generally biometric).

Yet another password issue has to do with who knows the passwords. In some organizations, a

password is assigned to a new user of a system, and the user must then change it (perhaps periodi-

cally). After the initial password is changed, the administrator has no control over the password

except to reset or delete it. This allows people to reuse passwords that they can remember.

In other cases, passwords are administered and changed by the administrator. (This is common

with passwords for email at some ISPs.) Thus, the administrator has access to all the organization’s

passwords; that document is clearly one of the most important security vulnerabilities. For this

reason alone, it is often a good idea not to allow anyone except each user to know a password. This

solution means less centralized control, but more security in the end.

 User-Level Internal Security
The mechanics of implementing security begin with the database file (or files) within your solution

itself. Generally, security is first a development task (first planning and then implementation) and is

then followed by issues of deployment. This chapter follows that same approach by first discussing

how to grant individual users access to your database.

 User Accounts
If you select File, Manage, Security, you are taken to the Manage Security dialog. This dialog has a

good deal of depth, and it is through this dialog that you will implement much of your security archi-

tecture.

On the first tab of the dialog, Accounts, you create individual user accounts and assign a privilege

set to each. It’s important to grasp that various security settings in FileMaker are not controlled at

the user account level, but rather are assigned with privilege sets. Accounts are associated with a

privilege set, and this association determines the functionality a given user has access to, as shown

in Figure 12.1 . This allows you to define a privilege set for each role in your system and assign indi-

vidual users to the corresponding set that matches their role for the database.

ptg8106388

Implementing Security344

III

PA
RT

Default Accounts and Automatic Login
By default, any new FileMaker file is created with an account named Admin with a blank password,

and it is set to log in to that account. The Admin account is assigned full access privileges, so in

effect the file is created with no restrictions whatsoever, but will have an account and privilege set

in place. If you choose to lock down your database, either give the Admin account a password, mark

it as inactive in the Accounts tab of Manage Security, or delete it. You should also disable the File

Options setting that first tries the Admin account and password on login.

In addition to the Admin account, FileMaker provides a [Guest] account with each new database.

The [Guest] account cannot be deleted and is set to be inactive by default. You can choose to enable

this [Guest] account in cases in which you want to restrict the development functions of a database

but want to open the rest of the system to any user.

To set a file to a default state in which users are not prompted to log in, create an account with the

appropriate access level you prefer and then turn on the Log In Using option in the File Options

dialog shown in Figure 12.2 . Users can override the Log In Using option by holding down the Option

key (OS X) or Shift (Windows).

 Account Management
The settings in Figure 12.3 are more typical for a small workgroup application: The Admin account

has been marked as inactive and there are four individual users with three privilege sets (Staff is

shared). Note the full list of accounts (some of which are disabled) and the assignment of privilege

sets.

 Figure 12.1
The Accounts tab
of the Manage
Security dialog
enables you to see
which accounts are
active and what
their respective
privilege sets are.

ptg8106388

345User-Level Internal Security

12

C
H
APTER

 Figure 12.2
A system can automatically log in users with a default account
via the File Options dialog.

 Figure 12.3
On the Accounts
tab of the Manage
Security dialog, you
can review which
accounts are active
and to what privilege
sets they belong.

The Type column shows the means by which authentication is set to occur. It shows either

FileMaker, in which case a user’s password is stored within FileMaker (in a fully encrypted, reliably

secure form), or External Server, in which case authentication is managed by a separate authentica-

tion server. We cover external authentication later in the chapter.

When editing an individual account via the Edit Account dialog shown in Figure 12.4 , you can con-

trol settings specific to that user. The setting to prompt users to change their password on their

next login allows developers and database administrators to reset passwords without having to

know the private passwords of their users. To administer a FileMaker database, we recommend cre-

ating temporary passwords for people and requiring them to change passwords on their next login.

ptg8106388

Implementing Security346

III

PA
RT

 � Note that this practice of creating temporary passwords is not recommended for Instant Web

Publishing or for external authentication. Both topics are covered in “Setting Other Feature

Privileges,” p. 353 .

Note also that you can disable an account from the Edit Account dialog. This capability allows a

database administrator to mark an account inactive without having to delete it. Having the capabil-

ity to mark an account inactive is useful if some users are gone for extended periods or if you want

to preserve the fact that an account exists with that specific name. You can also simply toggle the

check box on the leftmost side of the Accounts tab (unchecking it to disable an account).

Finally, you can assign a user’s privilege set. An account can have only one privilege set assigned,

and that privilege set determines the specific rights and privileges the user will have.

 Privilege Sets

Privilege sets compose the bulk of security control in FileMaker. With a privilege set, you can set

various access levels, restrict functions and areas within a database, and control who can do devel-

opment work within a given file. Privilege sets are associated (one to many) with accounts, and they

can be thought of as analogous to groups. It is common to see privilege sets established for develop-

ers, managers, and so on.

 � If you need help with the testing process for privilege sets, see “Closing and Reopening File for

Testing” in the “Troubleshooting” section at the end of this chapter.

The Privilege Sets tab of the Manage Security dialog, shown in Figure 12.5 , enables you to see at a

glance which accounts are assigned to which privilege set.

 Figure 12.4
The Edit Account dialog enables
you to control the authentication
and active status for each user.

ptg8106388

347User-Level Internal Security

12

C
H
APTER

Notice the three sets at the top of the dialog: [Full Access], [Data Entry Only], and [Read-Only

Access] are the default sets that FileMaker creates for a new FileMaker file. You cannot delete these

sets.

The [Full Access] privilege set is a unique set: It is the single set

that has complete access to the file including all development func-

tionality. It cannot be duplicated, and your file must have at least

one FileMaker-authenticated account associated with the [Full

Access] privilege set. Without [Full Access], you wouldn’t be able

to get in and modify your database. Therefore, although you can

temporarily create the configuration that was shown in Figure 12.3 ,

you have to provide one account with Full Access before closing

the window. (Although the default account is Admin, you can cre-

ate another one to use Full Access.)

 � To learn more about the Developer Utilities features, see

“Removing Admin Access,” p. 631 .

If you select a privilege set from those listed and double-click (or click the Edit button), you are

taken to the Edit Privilege Set dialog shown in Figure 12.6 . It enables you to control both the fea-

tures within FileMaker that assigned users can access and the degree to which members of a privi-

lege set can perform additional development work on your database file.
The Edit Privilege Set dialog is divided into three areas: Data Access and Design, Other Privileges,

and Extended Privileges. We look more closely at each area in the sections that follow.

 Figure 12.5
The three sets
in brackets are
defaults created for
each new FileMaker
file; those below are
custom sets created
for a specific data-
base solution.

 note
By using the Remove Admin
Access feature of the Developer
Utilities features in FileMaker
Pro Advanced, you can remove
the administrative/full access
accounts associated with a file
and prevent any future develop-
ment. This is most frequently
done with runtime solutions.

ptg8106388

Implementing Security348

III

PA
RT

 Controlling Data Access
The actual data of your file is protected by the Records drop-down list in the Edit Privilege Set dia-

log. It is important to remember that although you can hide fields from users in various ways (for

example, by not placing any field layout objects on layouts), the only way to fully protect your data

is through the Records drop-down list.

The menu enables you to apply global permissions where a privilege set can have full access to all

tables, no access at all, only the capability to create and edit records, or view-only access. View-only

access means that users with this privilege set can see data but cannot make changes or create new

records.

By choosing the fifth option, Custom Privileges, you open the Custom Record Privileges dialog,

shown in Figure 12.7 . Within this dialog, you can control on a table-by-table basis, or even a field-

by-field basis, what data a given set of users can view, edit, create, and delete. Each table in your

file is listed. You can select multiple tables by Shift-clicking for contiguous selections or Control-

clicking for noncontiguous selections. Any changes made to the settings below are applied to each

selected table.
Notice the settings for [Any New Table] at the bottom of your table listings. This privilege controls

tables added to the file after your security settings have been defined. In other words, if you were to

add a TeaPackage table to the database shown, this privilege set would initially have no access to

the records in that table. The settings at the bottom of the dialog are listed here:

 • View— Controls whether a set of users can consume the information stored in a selected table.

By consume , we mean see in Browse mode, search for in Find mode, export, print, email, and so

on. Users with View access can perform such actions as clicking into a given field and copying

data to their Clipboard.

 Figure 12.6
The Edit Privilege Set dia-
log allows you to define
the security access for all
accounts associated with a
given privilege set.

ptg8106388

349User-Level Internal Security

12

C
H
APTER

 • Edit— Allows users to make changes to data within a given table. Note that if you set View to

No, Edit automatically shows as No as well.

 • Create— Controls whether users can create new records in a selected table.

 • Delete— Determines whether users can delete records from a given table.

 • Field Access— Allows developers to apply view or edit privileges to individual fields rather than

to an entire record. In cases in which you have applied settings to the View, Edit, and Field

Access settings, the most restrictive setting takes precedence. In other words, if you set a table’s

View privileges to Yes but Field Access to None, users will not be able to see or edit any of the

fields within that table. Likewise, if you set Field Access to All and View privileges to No, users

will not be able to view any records in the given table.

The first four privileges listed offer Yes, No, and Limited options

(with the exception of Create, which offers only Yes and No). We

cover limited privileges shortly. Field Access controls have more

granularity than the other record privileges. The All and None

options should be self-explanatory, but the Limited option presents

a list of all the fields in a given table, as shown in Figure 12.8 .

 Conditional Privileges

For record privileges except Create, you also have the option to choose limited privileges. By doing

so for View, Edit, and Delete, you open a calculation dialog and can create conditional circumstances

by which you can control access on a record-by-record basis.

 � For a review of the calculation dialog and working with formulas, see Chapter 8 , “Getting Started

with Calculations.”

 Figure 12.7
These settings show that
access to this database
has been restricted to a
significant degree. The
hyphen indicates no
access.

 note
By setting a field to View Only,
you are ensuring that users
logged in with this privilege set
will be able to see data but not
to be able to make changes to
those fields.

ptg8106388

Implementing Security350

III

PA
RT

One common conditional privilege calculation is used to govern the deletion of records. If you are

storing the creation date or last modification date of a record in a field, you can create a calculation

that checks if the date is today. If it is, deletion is allowed; if not, deletion is not allowed. If you are

storing the creator or last modifier name, you can further refine the test so that deletion is allowed

today only for records that the user created (or modified).

Controlling Layout Use and Development
In the Edit Privilege Set dialog, the next setting after Records is the Layouts drop-down list for con-

trolling layout privileges. With it, you can set the following:

 • All No Access— This setting ensures that people associated with the privilege set you’re defining

will have no access to any layouts within the current file.

 • All View Only— The term view , again, really means consume or use . Users assigned this privi-

lege will not be able to make changes to a layout in Layout mode, but they will be able to use the

layout and (assuming that the developer hasn’t omitted the layout from that menu) see it in the

menu of layouts offered via the Status toolbar.

 • All Modifiable— This option enables you to change to Layout mode and to then edit all the lay-

outs within a file.

 • Custom Privileges— Choosing this option takes you to a dialog similar to the one shown previ-

ously in Figure 12.7 except that this one controls layouts rather than records (see Figure 12.9).

 Figure 12.8
Field-level access enables you to control individual
fields for a given privilege set.

ptg8106388

351User-Level Internal Security

12

C
H
APTER

The Custom Layout Privileges dialog enables you to set only spe-

cific layouts as modifiable or to turn off access to selected layouts.

Furthermore, you can control how users interact with records via

the layout in question. You can choose to lock down record access

on a layout-by-layout basis. Be aware of the Allow Creation of New

Layouts option with the check box in the upper left of the dialog.

With it, you can enable someone to add layouts to a file without

giving them access to the layouts you, as a developer, created.

Imagine the possibility of allowing users to add columns to report

layouts, for instance, without having to give them unfettered

access to the entire system. In general, modification is safer than

creation when it comes to layouts.

Controlling Access to Value Lists
The drop-down list for controlling value list privileges in the Edit

Privilege Set dialog is similar in function to that of layouts. You

can enable all value lists to be modifiable, view (or use) only, and all no access. Likewise, you can

choose Custom Privileges and will be presented with the Custom Value List Privileges dialog shown

in Figure 12.10 .

 Figure 12.9
This dialog enables you to control
who can modify which layouts.

 tip
One important note about layout
access: Just because you lock
down access to a certain layout
does not mean your users cannot
get access to the data in your
file. They might be able to pull
information via export, might be
able to create another FileMaker
file and create their own layouts,
and so on. The best way to con-
trol your data is to lock down
both record access and layout
access as appropriate.

ptg8106388

Implementing Security352

III

PA
RT

The dialog shown in Figure 12.10 can be used to prevent value

lists from being edited or, indeed, from being used at all. If a field

has a value list associated but a given user doesn’t have access

to use it, that user will be presented with <No Access> mes-

sages for radio buttons or check boxes. In the case of a pop-up

menu, the user will be able to see an already selected value but

will not be able to select a new one. And, last, for a drop-down

list, the list will simply not appear (nor will the down arrow, if

present, do anything), and the field will behave as though no

value list were associated with it.

Controlling the Capability to Run
Scripts
Developers can often control access to scripts by controlling where in a database’s interface scripts

are executed: by button, via the Scripts menu, or as associated with a custom menu. However, in

cases in which you simply do not want a class of users to run scripts, the fourth drop-down list in

the Data Access and Design area of the Edit Privilege Set dialog controls the capability to execute

scripts. As with the other menus, you can quickly set permissions so that all scripts are executable,

all modifiable, or all disabled (no access) for a given privilege set. In addition to the global menu

choices, you can choose Custom Privileges, which presents the dialog shown in Figure 12.11 .
The dialog shown in Figure 12.11 lets you set scripts to be modifiable, executable only, or to allow

no access for the current privilege set.

 Figure 12.10
The Custom Value List Privileges
dialog enables you to, among other
things, enable others to edit value
lists.

 tip
Note that, as with layouts, you
can control the capability to
create new value lists. If you’ve
given some users limited capa-
bilities to create layouts, it’s
somewhat likely that they will
need to create value lists as well.
The two settings often go hand
in hand.

ptg8106388

353User-Level Internal Security

12

C
H
APTER

The Notes column will indicate if a script has been set to run with full access. It also reminds you

that only people logged in with the [Full Access] privilege set can modify scripts set to run in full

access. This is also true for the capability to enable running scripts with full access: If someone is

not logged in with [Full Access] privileges, she will not be presented with the Run Script with Full

Access check box in ScriptMaker.

 � For more discussion of running scripts with full access, see “Full Access Privileges,” p. 259 .

It is important to understand that a script set to run with full access will do exactly that: A user’s

security privileges will be overridden, and the script will execute as though it were run by a user

with [Full Access] privileges. This dialog, then, is useful in making sure that you can prevent users

from executing a script, even if it is set to run with full access privileges.

Setting Other Feature Privileges
The area on the right of the Edit Privilege Set dialog controls access to a few of FileMaker’s interface

commands and offers some specific settings related to security.

The Allow Printing and Allow Exporting options should be somewhat obvious, but be sure to note

that they also control the functions to Save as PDF (tied to the capability to print) and Save as Excel

(tied to the capability to export). If you want to prevent your users from taking data elsewhere, you

will need to turn off printing and exporting. Note, too, that the only way to prevent users from mak-

ing use of the Email command is to use a custom menu to remove that menu item. There is no secu-

rity setting that controls whether someone can use the Email command in the File menu.

 Figure 12.11
The Custom Script Privileges dialog
enables script-by-script control over
access.

ptg8106388

Implementing Security354

III

PA
RT

Allowing users to override data validation warnings should be obvious as well. When a validation

error occurs, users with this privilege will not be presented with the capability to accept an invalid

entry into a validated field, regardless of whether Allow User to Override Data Validation Warnings

is turned on for the field. This provides you with a means of taking away the capability to override

validation warnings from some users.

 � For more detail on validation, see “Field Validation,” p. 102 .

The option Disconnect User from FileMaker Server When Idle (the time interval is defined in

FileMaker Server’s settings) should almost always be enabled. When it’s disabled, the server will

never disconnect idle users who have this privilege set. One occasion to disable this setting is if you

need a client computer set up to perform automated tasks.

 note
We recommend using the Allow User to Modify Their Own Password feature and requiring users to change their
passwords, but remember that Instant Web Publishing and external authentication do not support this capability.
Recommended best practices suggest that passwords should be changed regularly and should be of a certain minimum
length. (There is no capacity in FileMaker to set rules about the content of a password, only its length.) Note, though,
that these settings can get you in trouble: If you don’t allow someone to change his own password, but on the Edit
Account dialog require that he do so on the next login, the user can get trapped and be unable to log in to the database.

The last setting, Available Menu Commands, allows you to dis-

able FileMaker’s menu items, leaving just those to open and

close a file, run scripts, and so on, or additionally the Clipboard

and spelling items in the Edit menu. This option is often used to

completely lock down a FileMaker solution. When you disable all

menu items here, it’s an all-or-nothing proposition that will then

require that you re-create all the functionality you want users to

be able to have. We often recommend instead using a custom

menu set that doesn’t contain the items you’re trying to hide from

users.

 � To learn about custom menus, see “Working with Custom

Menus,” p. 396 .

 Extended Privileges
Extended privileges comprise the third area of security within

FileMaker files. Think of extended privileges as nothing more

than on/off switches. A privilege set has a specific extended priv-

ilege either enabled or disabled. There are no other settings or logic to extended privileges.

 caution
Note that the feature to change
passwords is not supported
by Instant Web Publishing. Do
not enable it for users who will
exclusively access your database
via IWP.

 tip
Note that if you choose Minimum
or Edit Only, these settings will
disable custom menus just as
they will standard FileMaker
menu items.

ptg8106388

355User-Level Internal Security

12

C
H
APTER

 Default Extended Privileges
FileMaker Pro ships with some extended privileges already in place, as shown in Figure 12.12 .

These privileges are used to enable access into FileMaker by various means; the behaviors of these

privileges are controlled by FileMaker itself.

 Figure 12.12
FileMaker ships with
a set of existing
extended privileges.

The default extended privileges are as follows:

 • Access via Instant Web Publishing— This privilege enables users to access the file via a web

browser using Instant Web Publishing.

 � To learn about Instant Web Publishing, see Chapter 24 , “Instant Web Publishing.”

 • Access via ODBC/JDBC— Access via ODBC/JDBC needs to be enabled if you want an ODBC or

JDBC client to use SQL to converse with FileMaker.

 � To learn more about x DBC connectivity, see Chapter 22 , “Importing Data into FileMaker Pro,”

and Chapter 23 , “Exporting Data from FileMaker.”

 • Access via FileMaker Network— This privilege allows users to access the file remotely, across a

network, using FileMaker Pro (or Advanced) client connections. This is true for both peer-to-peer

sharing and hosting files on FileMaker Server.

 � To learn about hosting FileMaker via FileMaker Server, see Chapter 27 , “FileMaker Server and

Server Advanced.”

ptg8106388

Implementing Security356

III

PA
RT

 • Access via XML Web Publishing— As noted in the dialog, this extended privilege works with

files hosted by FileMaker Server Advanced. It allows users (or other systems) access to your data

via XML.

 • Access via PHP Web Publishing— This features enables you to publish files hosted by FileMaker

Server Advanced using the FileMaker PHP API.

 • Require re-authentication after the specified minutes— There are two privileges in this cat-

egory: fmreauthenticate10 and fmreauthenticate0 . For FileMaker Go, they require reau-

thentication after it has been asleep or in background for the designated number of minutes.

A 10-minute grace period might be right for trusted users, whereas casual users might need a

0-minute grace period. Figure 12.13 shows details of this extended privilege.

 Figure 12.13
You can control re-authentication in
FileMaker Go with extended privilege
sets.

 � To learn about Custom Web Publishing, PHP, and XML, see Chapter 25 , “Custom Web Publishing

with PHP and XML.”

 � If you are having trouble getting your database files to appear on FileMaker Server and are sure

that your authentication is correct, see “Database Doesn’t Appear on FileMaker Server” in the

“Troubleshooting” section at the end of this chapter.

 Custom Extended Privileges
Beyond the six extended privileges included with FileMaker, you can add your own. After creat-

ing the extended privileges, you can use the Get (ExtendedPrivileges) function to see what

extended privileges have been granted to the current user. This gives you the capability of modify-

ing your solution’s logic to take these extended privileges into account; script branching, calculation

results, field validation, and even custom menu loading could all take the current extended privi-

leges into account. The options are nearly endless.

One of the advantages of extended privileges is that you can grant users the ability to manage

them. On the right of the Edit Extended Privilege dialog, as shown in Figure 12.14 , you can give

ptg8106388

357User-Level Internal Security

12

C
H
APTER

users access to a security dialog devoted only to extended privileges. You might choose to do this if

you want to expose some security control in your system without granting someone [Full Access].

 Figure 12.14
Users can assign which privilege sets are
associated with an extended privilege
when the Manage Extended Privileges
security setting is enabled.

Another advantage to extended privileges is that they are not session specific: If you enable an

extended privilege for a privilege set, it is immediately available to all users logged in with that priv-

ilege set. If, for example, you want to disable access to a file via the Web while you complete some

development, you can simply turn off the extended privilege for all the associated privilege sets.

As an example of putting extended privileges to use, consider a database with a series of reports

that many, but not all, users will need to have access to. You could certainly control whether

users could execute the individual scripts and navigate to the layouts in question, but creating an

extended privilege for these reports will allow you to enable them across your various privilege sets

in one central place. You can also disable them when it would perhaps be inappropriate to run them

before some full set of data is input. A portion of the script you might use to begin the reporting pro-

cedure could look like this:

If [PatternCount (Get (ExtendedPrivileges); “yearendReports”)]
 Perform Script [“Goto Report Menu”]
Else
 Show Custom Dialog [“Reports Access”; “Access not allowed.”]
End If

Extended privileges are a useful way to extend FileMaker’s security model into the logic of your

solutions.

 File Access
The last tab on the Security dialog lets you control which files can access the file in which you are

working. This provides a new dimension of security beyond that of accounts and privileges. As

you see in Figure 12.15 , by default this tab is blank. No external files have been authorized, which

means that any file can access this one subject to the security settings for the accounts defined in

this file.

ptg8106388

Implementing Security358

III

PA
RT

Use the check box to flip this setting; when it is checked, only listed files have access. Once you

have turned the check box on, the Authorize button at the lower left of the dialog is enabled. You

can use it to navigate to a file that you want to authorize, as shown in Figure 12.16 .

 Figure 12.15
Blank file access
means all files have
access.

 Figure 12.16
 Authorize a
file to access
the current
one.

ptg8106388

359File-Level Access Security

12

C
H
APTER

When you click Open, that file will be added to the list of authorized files, as shown in Figure 12.17 .

Also note that a record is created of who authorized that file and when.

 Figure 12.17
A record of authori-
zations is kept.

This level of security works together with account security: Both the account and the external file

must have access.

 File-Level Access Security

After you have a FileMaker database properly secured from a development standpoint, you need to

consider how people will gain access to the file itself and log in. If you are hosting the file peer-to-

peer, FileMaker’s internal file security is your only option. FileMaker Server, on the other hand, has

additional security settings and capabilities that can better safeguard your solutions.

 � If you’ve forgotten your Admin-level password to a database (and mostly just need sympathy),

see “Forgotten Admin Password” in the “Troubleshooting” section at the end of this chapter.

 Server Administration Security
To protect the files and access to your databases properly, you will need to consider the physical

makeup of your server and its environment. Is it in a locked room? Is it properly situated behind a

firewall? The actual hardware configuration for FileMaker Server from a security standpoint requires

ptg8106388

Implementing Security360

III

PA
RT

that you follow the best practices of IT organizations in general. Although this is not an exhaustive

list, here are some guidelines:

 • Place your physical server in a controlled, locked room.

 • Make certain that the server is situated behind a firewall and that as few ports as possible allow

traffic, especially incoming, to it.

 • Do not turn on file sharing for the server. Putting files on the server should be something you do

on the server or from another computer using Admin Console.

 • Do not allow file sharing on your backup directory, or at least secure it from your organization’s

general network.

 • Make certain to secure the server with OS-level accounts and passwords, and set it to lock auto-

matically after a short period of idle time.

As stated previously, this list is hardly comprehensive. The intent here is that you consider the

environment in which you place FileMaker files as carefully as you’ve considered the development

of your files internally. If you spend effort to lock away data from certain accounts but then leave

backup files within easy reach of everyone on your network, your exposure to risk increases.

The first step in securing your server is to establish a password for administering the server itself.

You will need to use the FileMaker Server Admin Console to con-

figure these settings.

 � To understand how to configure FileMaker Server using

the FileMaker Server Admin Console, see “Using Admin

Console,” p. 657 .

You also have the option of enabling remote administration and

setting an additional password for such. This will allow you to

open the FileMaker Server Admin Console from any computer

and, using a network address, connect to your server to perform

tasks such as opening and closing databases as well as running

backup routines.

Security over the Network
In addition to the administration of the server, you will have to consider securing the data stream

that passes from FileMaker clients and FileMaker Server. FileMaker uses TCP/IP as its network pro-

tocol, and when you either host a file via FileMaker Server or share it via peer-to-peer connections,

information passes from host to client in a near-constant exchange. To secure this stream of data

from possible threats such as network packet sniffing software, you should minimally use firewall

and VPN technologies to prevent outsiders from gaining access to your internal network. To pro-

vide the most secure environment possible, you can also choose to encrypt the data passing from

FileMaker Server to clients. You begin by going into FileMaker Server Admin Console, as shown in

Figure 12.18 .
In the Database Server section at the upper right, choose Security Settings to open the dialog shown

in Figure 12.19 .

 tip
Even when your server is physi-
cally secure, we recommend
setting a password for admin-
istering FileMaker Server. Good
security is a case of rainy-day
thinking, and the more precau-
tion you take, the better you’ll
avoid unanticipated problems.

ptg8106388

361File-Level Access Security

12

C
H
APTER

 Figure 12.18
 Use Server
Admin Console
to adjust
security.

 Figure 12.19
 Adjust security
settings in
Server Admin
Console.

ptg8106388

Implementing Security362

III

PA
RT

FileMaker client computers decrypt encrypted information before displaying it. The setting is at the

bottom of the dialog shown in Figure 12.18 : Secure Connections to Database Server.

 User Authentication
After your server is secure and you protect your network traffic by either isolating your network

itself or encrypting your data (or both), you need to establish a means for each individual user to

authenticate to your databases. An account can be authenticated either internally or externally. In

the Edit Account dialog, if you set the authentication method to FileMaker, the account names will

be stored within the file. Passwords are not actually stored in the file; they are encrypted every time

they are used or changed with a one-way hash algorithm (based on respected industry-standard

security methods). Each time your password is used, its encrypted hash changes. If someone were

to gain access to your FileMaker file and crack the file somehow, he would be able to decipher only

the last used hash algorithm. If you take the added precaution of securing your FileMaker files on

FileMaker Server, you will remove even the opportunity to manipulate the physical database file.

 External Authentication
External authentication is the other means by which users’ credentials can be tested before they

gain access to a database file. When you designate an account as externally authenticated, in the

Edit Account dialog shown previously in Figure 12.4 , the dialog changes to be slightly different in

that no password or individual user account is specified. Instead, a group name is associated with a

privilege set (just as accounts are), as shown in Figure 12.20 .

 Figure 12.20
External authentication passes
credentials to an external server
and expects a list of valid groups
in return.

Instead of creating an account name and password, with external authentication, you designate just

the account name. Most often this name will correspond to a group created on the external authen-

tication server. For example, consider a user of your system, Merzal Gold, with an Active Directory

account of mgold and a password of c0pp3r . His Active Directory administrator assigned him to the

ptg8106388

363File-Level Access Security

12

C
H
APTER

companywide groups Sales and Marketing. When he logs in with

mgold/c0pp3r , FileMaker Server passes these credentials to the

Active Directory server. That external server then verifies that he’s

logged in correctly according to his credentials and returns a list of

groups—Sales and Marketing—to FileMaker. FileMaker scans its

accounts list for externally authenticated accounts with either of

those names and logs Merzal in to the first match it finds.

It is important to understand that, for an externally authenticated

account, individual user accounts and their passwords are man-

aged and stored not by FileMaker itself, but by your server’s

operating system (hence, external to FileMaker). If your FileMaker

Server is part of an Active Directory (on Windows) or Open

Directory (on OS X) domain, your users will be authenticated by

the server that controls access to your domain. This authentication

server could be the same computer on which FileMaker Server is

hosted or a different computer. If your server instead makes use of

local users and groups, FileMaker Server uses those accounts for

authentication.

This external authentication is used solely to determine whether

someone should have access to a FileMaker file and to what groups

that person belongs. The only thing FileMaker relies on in external

authentication is to have the operating system verify a person’s

password and return the group names to which she belongs. Those

names are compared to the externally authenticated accounts

within FileMaker and a user’s privileges determined by the first

valid match.
Keep in mind that authentication is determined on an account-by-

account basis. You can combine externally authenticated accounts

with internal FileMaker accounts as needed. In fact, FileMaker

requires that you keep at least one internally authenticated account

associated with the [Full Access] privilege set to ensure that you

will still be able to access the file if the external authentication

server is unavailable.

Note that you can opt to have an internal account name and exter-

nally authenticated account name be identical. You, as a developer,

might have credentials on the external server but also want internal

authentication. The first account listed by authentication order in

the Manage Security dialog will be used if duplicates are present.

By default, FileMaker Server is set to allow only internal authen-

tication. To enable both external and internal authentication, you

will have to use Server Admin Console and check the FileMaker

and External Server Accounts check box shown at the top in the

Client Authentication section, which was shown in Figure 12.20 .

 note
Note that within FileMaker an
account can be associated with
only one privilege set; however,
in an externally authenticated
scenario, a single user might
belong to multiple groups. It is
the first group, from top to bot-
tom (when sorted by authentica-
tion order), to which a user will
be associated when externally
authenticated.

This then means that you will
need to coordinate the naming
of groups between your authen-
tication server and accounts
within FileMaker. We recommend
adopting a naming convention
that reminds your server admin-
istrator that the groups estab-
lished are there to serve your
FileMaker databases.

 caution
A few words of caution regarding
external authentication: It is the-
oretically possible for someone
to gain access to the physical file
of your database, host it on his
own FileMaker Server, and then
manage to rightly determine
what group names were used
in its security scheme to grant
himself access. This multistep
process is fairly unlikely, and
you can protect against it by
securing your server and keep-
ing your [Full Access] accounts
tightly controlled. Note, too, that
external authentication requires
FileMaker Server. It is not sup-
ported in peer-to-peer hosting.

ptg8106388

Implementing Security364

III

PA
RT

 File List Filtering
The last element in security is a final bit of protection and convenience: Users can’t break into data-

bases they don’t know are there. Using FileMaker Server, you can limit the list of databases users

see to only those to which they have access. In the FileMaker Server Admin Console, enable the

Display Only the Databases Each User Is Authorized to Access setting.

When a user uses the Open Remote File dialog and chooses a server, FileMaker first tries the cre-

dentials the person used to log in on her computer (based on operating system). If that fails, the

user is asked for a username and password. On Windows, you can go directly to the username and

password prompt by holding down the Shift key when selecting a server.

The process is similar in OS X, but the credentials used are stored in the keychain. To override the

keychain, hold down the Option key when selecting a server.

After users are authenticated, they are shown a list of databases within which they have valid

accounts or group memberships. In the case of external authentication, this is a seamless process.

In the case of internally authenticated databases, users may have to enter their login information

twice: once to get a list of databases and a second time when logging in to the specific database

they then choose. However, if you have set an auto-enter login in File Options, that will be used and

there is no two-step login.

 Troubleshooting

 Forgotten Admin Password
What can I do if I forget my Admin password and no longer have [Full Access] privileges?

Unfortunately, you’re out of luck. In the past, FileMaker was able to open its own databases and

provide access again, but this is no longer technically possible given the encryption used.

We recommend that you create two accounts with [Full Access] privileges and make sure that you

(or a single person in your organization) aren’t the only one who can gain full access into a database

file.

Database Doesn’t Appear on FileMaker Server
I am hosting a file on FileMaker Server. It’s open and I know my [Full Access] admin account infor-

mation, but the file doesn’t show up in the list of databases available on that server.

Remember that to access a FileMaker file remotely through the network, you will need to turn

on the extended privilege for FileMaker Network Access (fmapp) from a computer other than the

server. Even though you have a [Full Access] account, by default no extended privileges are enabled

for any accounts within FileMaker.

ptg8106388

365FileMaker Extra: Working with Multiple Files

12

C
H
APTER

Closing and Reopening File for Testing
I’m trying to enable security settings, and I have to keep closing and reopening the file to do proper

testing. Is there some better way to test other accounts?

We strongly recommend that you create a logout script and button for your users to use. Then, after

that’s available via whatever interface you choose, we recommend folding some conditional logic

in for you as a developer. If, for example, you hold down the Shift key in the following script, it per-

forms a re-login step without forcing the user to close and reopen the file:

Logout
purpose: Logout with relogin for testing
Shift key performs relogin
If [Get (ActiveModifierKeys) = 1]
 Re-Login []
Else
 Close File [Current File]
End If

FileMaker Extra: Working with Multiple Files
Throughout this chapter we have been careful to note that security settings are specific to a single

file within FileMaker. If you have a solution that spans multiple files, you will have to duplicate your

account and privilege settings across those multiple files. This task can become onerous when you

have more than a handful of accounts or groups.

Privilege sets within FileMaker cannot be programmatically controlled. In other words, you cannot

use a script to define a privilege set. You will have to create the appropriate privilege sets in each

file of your solution. This is as expected; by definition, each privilege set should be specific to the

file in which it sits.

Accounts, on the other hand, can be managed by script, and there are some techniques you can use

to simplify the management of accounts within your suite of files. The following are the Accounts

script steps available to you:

 • Add Account — Using this script step, you can add an account to your file. Note that the script

step dialog shown in Figure 12.21 requires that it be associated with a specific privilege set. You

will need to create as many Add Account scripts as you have privilege sets. Note that this script

step works only for internally authenticated accounts.

 • Delete Account — This script step enables you to permanently remove an account (by name)

from your file.

 • Reset Account Password — Resetting the account password allows you to change it to a

default of some sort without knowing the prior password.

 • Change Password — Change Password requires the current password followed by the new

password.

ptg8106388

Implementing Security366

III

PA
RT

 • Enable Account — This script step enables you to activate and deactivate an account. This is a

nonpermanent way to deny someone access.

 • Re-login — FileMaker prompts the user to log in again, or you can store credentials in this script

step to do so without a dialog.

To use these script steps to support work in multiple files, you will need to create a user interface

that allows users to create accounts and change passwords. Note that in the dialog shown in Figure

12.21 , which you complete as you are building the script in ScriptMaker, there is a Specify button

next to both the Account Name and the Password boxes.

First, create a layout (or dialog) that asks a user for a new account name and password she wants

to add to your multifile solution. You can also, by default, set all new passwords to “password”

and require the user to change them immediately. You should have the user enter that information

into two fields set with global storage. You will also need a pop-up menu of privilege sets available

within your solution, and certainly you should feel free to omit those that are sensitive, such as [Full

Access].

Second, write a script that calls subscripts in each of your solution files. The subscript should use

the Add Account script step to create the new user account. Where you have to provide an account

name and password, simply reference the two global fields you had set up previously. Note that

with global fields, you can add an external table occurrence from a different file and gain access

to the fields as you need. You can follow similar techniques for changing passwords, deleting

accounts, and enabling them.

 Figure 12.21
 The Add Account script step allows you to add
internally authenticated users to a file.

ptg8106388

 13

USING THE WEB VIEWER

 Introducing the Web Viewer
The Web Viewer is a layout element that uses the platform’s native Web

controls (Internet Explorer on Windows and Safari/Web Kit on OS X) to

display web pages.

Although it displays web pages, the Web Viewer is not a browser. Some

of a browser’s features, such as built-in history, are not present. However,

by the same token, any basic functionality built into the Web controls or

added by the user is available. This includes plug-ins such as Flash.

You can use the Web Viewer to display a static address that you hard-

code into the layout such as your own website. You can also use the Web

Viewer to display data from a URL stored in a given database record—per-

haps the home page of a client or a Contact Us page with updated names

and phone numbers. You can also use built-in templates to merge a data-

base field, such as a tracking number, with a request to a delivery service

to display the delivery status.

The Web Viewer is frequently used in a tab control. It fills with web data

when necessary—for example, in a tab control, when its tab is clicked. In

general, Web Viewers do not unduly slow down FileMaker, but they do

involve Internet access and imaging, both of which can take time. There is

no cancel button or feature for the Web Viewer: You simply go to another

record, another layout, or another tab. The current Web Viewer will stop

loading, and if another one is visible, it will load.

ptg8106388

Using the Web Viewer368

III

PA
RT

Exploring the Web Viewer in Contacts
You can see Web Viewers in action in Starter Solutions such as Contacts. Figure 13.1 shows an

address being typed into the address field of a new record. As soon as you tab or click out of the

address field, the Web Viewer maps the address.

 Figure 13.1
Start to map an
address.

 As you tab out of another field, the map may shift, as shown in Figure 13.2 .

 note
This behavior of the map is part of the mapping software. In Figure 13.1 , it assumed New York City; the correct city
(Plattsburgh) is mapped in Figure 13.2 . This lets you see that this map is truly being drawn in real time based on the
database fields. Your own tests with streets, cities, and states may vary. Main Street can be mapped for many states
and for many localities within a given state.

ptg8106388

369Creating and Editing a Web Viewer

13

C
H
APTER

Creating and Editing a Web Viewer
A Web Viewer can display a specific URL that you hard-code in the layout, or it can display dynamic

data from the database. Furthermore, you can use a variety of built-in templates in the Web Viewer

to construct URLs for a variety of common web destinations such as FedEx tracking, Wikipedia, and

the like. All of these techniques are described in this section.

Creating a Web Viewer
To add a Web Viewer to a layout, begin by entering Layout mode. Then, select the Web Viewer tool,

as shown in Figure 13.3 , and draw the Web Viewer just as you would draw a tab, portal, or other

object. Alternatively, you can use Insert, Web Viewer.
Either way, the Web Viewer Setup dialog shown in Figure 13.4 opens.

 Figure 13.2
Add the city to
the address.

ptg8106388

Using the Web Viewer370

III

PA
RT

 Figure 13.3
Add a Web Viewer
to a layout.

 Figure 13.4
 Set the web address.

ptg8106388

371Creating and Editing a Web Viewer

13

C
H
APTER

Setting a Web Viewer to a Constant URL

To open a constant URL, simply type it into the Web Address field. When you go back to Browse

mode, it opens automatically, provided you have an Internet connection.

 � The check boxes at the bottom of the Web Viewer Setup dialog are described later in this chap-

ter in the “Setting Web Viewer Options” section, p. 373 .

Constructing a URL Dynamically Based on a Search
Another way to build a web address is to interactively search for the data you want to retrieve. For

example, you will see a FedEx template, but there isn’t a corresponding UPS tracking template. Go to

the UPS site and experiment with tracking a package (you’ll need a valid UPS tracking number to do

this). When you have retrieved the data, copy the URL that was generated and use it in a calculation

to construct the URL you want to create. Use the calculation text functions, such as Left , Middle ,

and Right , to replace the tracking number you searched for with data from a field in your database.

Setting Up a Web Viewer with the Templates
The templates in the Web Viewer Setup dialog let you construct complex URLs from templates and

specific database fields. You choose the template you are interested in, and the fields it contains are

shown at the right of the dialog, as you see in Figure 13.5 . For each field, you can select a database

field to use or create a calculation for the field.

 Figure 13.5
 Explore fields in a template.

ptg8106388

Using the Web Viewer372

III

PA
RT

The default Google template appears quite complex, but if you click the Specify button next to the

Web Address calculation field, you can open the Specify Calculation window and add some line

feeds to rearrange the calculation, as shown in Figure 13.6 .

 Figure 13.6
Make the Google mapping
template more readable.

Note that all that has been done here is some reformatting. You can see that prompts enclosed as

comments (/*Address=*/ , for example) have been inserted into the calculation. Because they are

comments, they have no effect on the calculation’s evaluation. In fact, if you enter no data at all, this

complex calculation does, in fact, produce a Google map.

You can remove the comments and adjust the calculation so that it uses the Contacts Starter

Solution fields to map the address already specified in Contact Management, as shown in the fol-

lowing calculation code:

“http://local.google.com/maps?” & “q=” &
“Address=” & Contacts::Work Address 1 & “,” &
“City=” & Contacts::Work City & “,” &
“State=” & Contacts::State

Whether you modify the web address with the fields at the right

or by typing in a calculation for the web address, the result is the

same: The Web Viewer displays the data as you specified.

 tip
Keep in mind that you can
specify a URL that does not exist
or that contains an error, so be
careful when you construct the
URL, and always test the result-
ing Web Viewer.

ptg8106388

373Controll ing the Web Viewer with the Set Web Viewer Script Step

13

C
H
APTER

Setting Web Viewer Options
You can set five Web Viewer options, shown at the bottom of the Web Viewer Setup dialog shown

previously in Figure 13.4 :

 • Allow Interaction with Web Viewer Content —If you turn off this option, the web page displays

but no links are active. This can be the appropriate setting if the web page contains static infor-

mation—for example, a known site’s known page containing contact information. You can “trap”

a user there, and the user will not be able to wander off to other places on the Web.

 • Display Content in Find Mode —By default, this option is off. When the user is in Find mode, it is

often the case that the Web Viewer should be blank. When a Find operation completes, its result

can be used to display data in the Web Viewer. However, if the Web Viewer is based on a global

or on data that will be entered during the Find setup, you might want to make the Web Viewer

active at that time.

 • Display Progress Bar —This feature provides a small progress bar across the bottom of the win-

dow. It is on by default.

 • Display Status Messages —This option controls whether status messages appear. It is on by

default.

 • Automatically Encode URL — Sometimes, URLs contain characters that are not part of the stan-

dard ASCII character set. In such cases, the characters are encoded by specifying the bytes as

a number that follows an ampersand (&) or a pound sign (#). FileMaker uses standard encoding

practices so that when a space follows & or a number follows #, nothing is changed because

these combinations specify nonprinting characters. When a space does not follow & or a number

does not follow #, these are assumed to be literal characters, and they are encoded. Typically,

you want to enable this option.

Controlling the Web Viewer with the SET WEB
VIEWER Script Step

The Web Viewer itself provides no controls, but you can add your own controls. The addition of the

Web Viewer to FileMaker layouts was one of the catalysts for providing object names. To control a

Web Viewer, you must name it in the Position tab of the Inspector.

Then you can use the Set Web Viewer script step in ScriptMaker to control it, as shown in Figure

13.7 .
Many of the options are simple—Go Forward, Go Back, and so forth. Reset sets the Web Viewer

to its initial URL. You also can specify a URL to go to. If you choose the Go to URL option, the Web

Viewer Setup dialog (shown previously in Figure 13.4) opens.

Figure 13.8 shows an all-purpose script that you can use for Web Viewer controls. It takes a variety

of parameters. Depending on which one is sent, one of the standard actions is performed. Go is used

to go to a URL entered in a database field.

ptg8106388

Using the Web Viewer374

III

PA
RT

 Figure 13.7
Use the Set
Web Viewer
script step.

 Figure 13.8
Use a script
to control the
Web Viewer.

 � For more information on script parameters, see Chapter 16 , “Advanced Scripting Techniques.”

 � For more information on the Inspector and auto-resizing, see Chapter 4 , “Working with Layouts.”

ptg8106388

375FileMaker Extra: Using the Web Viewer for Fi les

13

C
H
APTER

FileMaker Extra: Using the Web Viewer for Files
Any URL that can be processed by the appropriate control can be displayed in a Web Viewer.

That means you can use a File URL to display files in the Web Viewer. This capability provides an

additional way of displaying graphics files in FileMaker. You can add them to container fields them-

selves, or you can place references to them in container fields. You can also store the file location in

a database field either as a File URL or as the filename part of the File URL. Then you can construct

a File URL as you want.

For example, Figure 13.9 shows a Web Viewer with a calculated URL based on a path, folder, and

filename (the file is one of the illustrations from this book). The calculated filename is shown in

Figure 13.9 , but you can simply place that calculation inside the Web Viewer itself. If you change

the field containing the server address or path, you will quickly pick up another file.

 Figure 13.9
Use File URLs to display
a file in a Web Viewer.

This technique handles an issue with file references in which they break when the files move. In a

case like this, you can store the prefix in a global or database field and then concatenate it with the

unchanging filename, as necessary.

ptg8106388

This page intentionally left blank

ptg8106388

 14

 ADVANCED INTERFACE
TECHNIQUES

 What’s New in the Interface World
Arguably, the biggest event in the world of computer interfaces occurred

on April 3, 2010 when Apple shipped the first iPad. Although the iPhone

actually pioneered many of the interface changes that reached fruition

in the iPad, the size and shape of the iPad quickly got people to think

that this wasn’t a new kind of phone but rather a new kind of computer.

Compared to existing computers, the iPad was as powerful (or even more

powerful) than many of them. What’s more, the iPad’s powerful battery

meant that it was more portable than even laptop computers, which had

seemed so svelte only a few years before.

People also noticed what the iPad did not have that desktop and laptop

computers did: connections for external drives, expandable memory, ports

to connect devices such as digital cameras, and the like. Rather than limit

the iPad’s usability, Apple’s focus on its core functionality was arguably a

wise choice.

One of the most important parts of the desktop computer interface—

menus—was also missing on the iPad. The iPad caught on very quickly,

and people soon used it for a wide variety of tasks. For most people, it just

worked, but others examined the interface thoroughly and noticed differ-

ences from previous interfaces. (Many of these differences were based on

Apple’s Human Interface Guidelines.) As you’ll see in the list that follows,

many of the key features of the new interface are old news to FileMaker

users:

 • There are fewer buttons. Many things on the iPad happen automati-

cally. For example, popovers present choices and information that

ptg8106388

Advanced Interface Techniques378

III

PA
RT

on OS X might have been presented in a dialog with an OK and a Cancel button. There is no

Cancel button in a popover; you just tap anywhere outside the popover and it disappears. With

FileMaker, triggers implement automatic behaviors eliminating the need for buttons in many

cases. (In the Projects Starter Solution, a pop-up menu lists layouts you can choose. There’s no

Go button next to the pop-up menu: instead, an OnObjectModify trigger takes you to the layout

automatically.)

 • In most apps, there is no Save command. Saving is done for you automatically. This behavior has

carried back to the Mac with OS X 10.7 (Lion). FileMaker saves data automatically and has done

so for years (as do many databases).

 • Information structures are flattened. To set values, instead of

a sequence of windows as you might have on a desktop, you

often have a view with tabs or other controls that let you see

data from various sources and relationships all in a single

layout.

 • Finally, apps are very attractive. In everything from icons to

the apps themselves, Apple has placed a high premium on

appearance. Because the company approves all apps sold in

the App Store, it can enforce that premium.

 � For more information on interface design, see Apple’s iOS

Human Interface Guidelines and Mac OS X Human Interface

Guidelines at developer.apple.com.

The next section discusses the themes that were implemented in

FileMaker Pro 12.

 Working with Themes
Themes provide you with a variety of designs for your FileMaker solutions. They start you off with

colors, fonts, field borders, and other graphic elements that are coordinated for the theme. Most

important, themes are interchangeable.

If you create a new database, you will find that you have a table and a layout created for you auto-

matically. Both carry the name of the database file. Thus, in Figure 14.1 , you see a new database

called UIDatabase and its UIDatabase layout. No records are present in the database.
The underlying table is also named UIDatabase. The Manage Database dialog shown in Figure 14.2

lets you see the table as well as the fact that no fields are yet defined for it.

 note
In practice, it appears that with-
out having to take much action,
Apple has been able to encour-
age developers to improve the
look of their apps just by let-
ting them know that esthetics
will factor into the decision of
accepting an app into the App
Store. Many FileMaker solutions
are beautiful and elegant to look
at because they have been cre-
ated by talented designers using
the very flexible FileMaker layout
tools. Other FileMaker solutions
are not quite so beautiful to
look at.

ptg8106388

379Working with Themes

14

C
H
APTER

 Figure 14.1
Create a new
database.

 Figure 14.2
 Review the database.

ptg8106388

Advanced Interface Techniques380

III

PA
RT

 Changing a Theme
Not only do themes give you a head start on the design of your layouts, but they are changeable.

The layout created in Figure 14.1 uses a default theme called Cool Gray. You can examine the cur-

rent theme in Layout mode by selecting Layouts, Change Theme, as shown in Figure 14.3 .

 Figure 14.3
 You can
change
themes.

As you can see in the Change Theme dialog shown in Figure 14.4 , you have a lengthy list of

themes from which to choose. They are grouped together in several collections. As you select vari-

ous themes from the list, the sample layout at the right of the dialog changes so that you can get a

general idea of the effect. However, until you actually start laying out the fields and other interface

elements you will be using, you won’t be able see exactly what your layout will look like in this pre-

view.
At the top of the list of themes, in the Basic group, you find the Classic theme along with two

variations of it in the Classic Refined group: Cool and Warm. Figure 14.5 shows the Classic theme

selected. If you have used FileMaker in versions prior to FileMaker 12, you will recognize the default

fonts and styles.

ptg8106388

381Working with Themes

14

C
H
APTER

 Figure 14.4
 Choose themes and see previews.

 Figure 14.5
 Change a theme.

As you explore the themes, you will note that some of them are designed specifically for touch

devices. For example, just below Cool Gray you will find Cool Gray Touch, as shown in Figure 14.6 .

Note that the buttons and fields are larger in this theme.

ptg8106388

Advanced Interface Techniques382

III

PA
RT

 Exploring Themes
To demonstrate themes in action, Figure 14.7 implements a few additions to the database:

 Figure 14.6
 Explore touch themes.

 Figure 14.7
Add fields to the data-
base.

ptg8106388

383Working with Themes

14

C
H
APTER

 • The text fields Name, Address, and Member are added to the table using File, Manage,

Database.

 • Default fields and labels are automatically added by FileMaker.

 • A value list called YesNo, with the values Yes and No, is added using File, Manage, Value Lists.

(It is not yet visible in Figure 14.7 .)

 • Using the Inspector, the Member field is changed to a radio button set that uses the YesNo value

list, as you see in Figure 14.8 .

 Figure 14.8
Change a field
to a radio but-
ton set.

You can now change the theme. Use Layouts, Change Theme to

change your theme back to Cool Gray, which was shown originally

in Figure 14.1 before the fields were added.
As you can see in Figure 14.9 , if you add a new field to the data-

base and a new field to the layout, the new field reflects the sizing

of the theme. At the left, the Name field has a height of .236 while

at the right, the City field has a height of .306. The font (Tahoma)

and size (12) are the same in both versions. If you have followed

the steps in this section, the Name field (along with Address and

Member) was created with the Classic theme. Classic uses Arial

12 for text fields, so the .236 height of the fields works out well.

 tip
If you look closely, you will see
that when the fonts change for
the added fields, the spacing is
a little off. This is because when
you modify a theme, such as
by adding a field to the layout,
those modifications are not
reflected when you subsequently
change themes.

ptg8106388

Advanced Interface Techniques384

III

PA
RT

However, because Tahoma 12 is slightly larger than Arial 12, that text field height is no longer satis-

factory when the theme is changed to Cool Gray.

Because you might have to make some adjustments after you change a theme, it is a good idea to

experiment with themes using a few layout fields without bothering with the tweaks to field sizes.

Select the theme you want, and then either tweak the existing fields or delete them and create new

ones in the new theme.

 Figure 14.9
 Compare field sizes with different themes.

Using Styles and States
Along with themes, FileMaker Pro 12 has implemented styles and states in the Inspector and design

surface. These features enable you to build more sophisticated layouts that respond in more ways to

user actions. You adjust styles and states in the top part of the Appearance tab of the Inspector, as

shown in Figure 14.10 .

ptg8106388

385Using Styles and States

14

C
H
APTER

 Using Styles
The Style section in the Inspector, shown on the left in Figure 14.10 , is disabled there. No interface

elements are selected and the theme defaults are used. That is not something that happened prior

to FileMaker Pro 12. Before FileMaker Pro 12, changes to attributes, such as fonts and graphic fills

that were made when no field was selected, were applied to what is now the theme. The new set-

tings took effect for the next objects that were created. With the advent of themes and styles, this

behavior no longer exists.

Instead, you can select an object in the layout and set its styles and states: You can no longer set

attributes for objects that have not yet been created (that is the role of themes). The right side of

Figure 14.10 shows the Appearance tab of the Inspector when an object in the layout is selected.

Note that the Style section is now enabled.

The left side of Figure 14.10 shows that the style that will be used for new objects is Theme

Defaults. All objects in a newly created layout start with the theme’s default style. You can change

attributes for the specific objects in your layout using the Inspector.

 Figure 14.10
 Adjust styles and states.

ptg8106388

Advanced Interface Techniques386

III

PA
RT

If you change the theme with Layouts, Change Theme, the style at the top of the Inspector is dis-

played as Theme Defaults. Objects you had customized before changing the theme (that is, objects

with custom styles rather than Theme Defaults) now revert to Theme Defaults rather than the cus-

tom styles you created. Figure 14.11 shows a field that had been customized as it appears after a

theme change.

Using Gradients and Rounded Corners

Figure 14.10 shows several other features of the Appearance tab. You can fill an object with a
color or an image, but you can also choose a gradient. You can select the two colors in the gra-
dient by clicking the markers at the beginning and end of the gradient in the Inspector. You can
also choose linear and radial gradients as well as the direction of the gradient.

Note also in the line section that you can now adjust the radius of rounded corners.

 Figure 14.11
After a theme
change,
styles revert
to theme
defaults.

Often, this is the correct behavior: You want to adopt the theme in its entirety. However, sometimes

you want to keep your customized styles for objects. To do that, use the Edit, Undo Styles command.

Your previous customized styles will appear back, as you see in Figure 14.12 .
You can use Edit, Undo Theme to revert to your previous theme if you want. What you can see from

this behavior is that the theme and your customizations are changed in two separate tasks in the

Change Theme command. They are done together, but you can undo them separately using the

commands or the standard undo keyboard shortcut (Cmd-Z)[Ctrl-Z] twice.

ptg8106388

387Using Styles and States

14

C
H
APTER

 Using States
States let you specify attributes for the selected interface element using the Inspector. These let you

change the appearance of the selected element(s) based on what the user is doing in the interface.

The pop-up menu shown in Figure 14.13 enables you to set four separate sets of state attributes:

 • Normal State

 • In Focus— This state is used when you have entered a field with a mouse click or tap, the Tab

key, or the Go to Object script step.

 • Hover— This state is unavailable on iOS devices because there no such thing as hovering.

 • Pressed

The undo mechanism described in the previous section is frequently used with states. If, for exam-

ple, you have created a pressed state attribute for a button, you might want that appearance to be

brought over to the new theme. Just change the theme, which will revert to the Theme Defaults, but

immediately after that use Edit, Undo Styles to bring over your pressed-state style. Do not use Edit,

Theme after that so that you get the new theme together with the old state appearance.

 Figure 14.12
 Use Undo
Styles to revert
to your previ-
ous customized
styles.

 tip
Experiment with styles for the various states, but also observe how apps behave. Often, very subtle changes are sufficient
to let the user know that the button has been pressed. Remember, your FileMaker Pro solution is about the solution and its
data rather than a never-ending parade of visual effects. Often, in usability labs, users will emphatically deny that anything
about an object’s appearance has changed with a change to state. The subtle (and often best) distinctions might not even
register consciously, but users see and respond to them. Finding the right balance between subtle yet perceptible and gro-
tesque state appearances can take a good deal of testing, but it can make your solution look better and be easier to use.

ptg8106388

Advanced Interface Techniques388

III

PA
RT

 Copying Styles
When an object is selected in Layout mode, four buttons at the top of the Appearance pane may be

enabled (they are just to the right of the style text—either Theme Defaults or Custom). They corre-

spond to four commands in the Edit menu in Layout mode:

• Copy Object Style

• Paste Object Style

• Apply Theme Style

• Remove Styles

 Copy Object Style
This command is available if you have set a custom style for the selected object (that means it is not

available if the object’s style is Theme Defaults). Copying the object’s style with the menu command

or the button at the top right of the Inspector copies all the attributes for all the states of the object.

 Paste Object Style
This button and the corresponding menu command are enabled if you have copied an object’s style

and have also selected an object to edit. If so, the attributes for all the styles are pasted to the

selected object.

 Figure 14.13
 Set state attributes.

ptg8106388

389Using FileMaker Formatting Tools

14

C
H
APTER

 Apply Theme Style
If an object is selected, this command or button will set the attributes to the theme’s style.

 Remove Styles
This removes the styles whether you customized them or you are using the theme’s styles. Fill, Line,

and Baseline are set to None, for example.

Using FileMaker Formatting Tools
FileMaker Pro provides several tools to help you format the appearance of layouts and objects. A

few of the most useful tools are described in the following sections.

 Conditional Formatting
Using styles and states, you can adjust the appearance of layout objects based on the state of the

interface. Conditional formatting lets you adjust the appearance of an object based on its content.

In Layout mode, select the field or text object to which you want to apply conditional formatting,

and choose the Conditional command from the Format menu to open the dialog shown in Figure

14.14 .

 Figure 14.14
Use conditional formatting to pro-
vide user feedback.

ptg8106388

Advanced Interface Techniques390

III

PA
RT

You can set two choices. One is to set the condition based on the value of the field. To do this,

select the test shown in Figure 14.15 and type in a value to use in the test.

 Figure 14.15
 Select the test to perform.

You also can specify a formula to evaluate, as shown in Figure 14.16 .

 Figure 14.16
You can supply a formula
for the test.

ptg8106388

391Using FileMaker Formatting Tools

14

C
H
APTER

 � To learn about the basics of calculation functions, see Chapter 8 , “Getting Started with

Calculations.”

 � For detailed examples of text-formatting functions, see Chapter 15 , “Advanced Calculation

Techniques,” and Chapter 19 , “Debugging and Troubleshooting.”

Setting the Layout Width
In addition to themes and styles, FileMaker Pro 12 introduces the ability to set the width of a lay-

out. Until now, you did not worry about the width of a layout: It automatically was sized to be wide

enough for all the objects you placed on it. In other words, the right side of the layout was the right

side of the rightmost object in the layout.

You now have the ability to explicitly set the layout width. As you see at the right of Figure 14.17 ,

you can drag the right edge of the layout from side to side. Objects that are placed entirely beyond

the layout’s right edge are not visible in Browse mode, but they are still there and you can reference

them in scripts if you want to.

 Figure 14.17
Adjust the lay-
out width.

 Using Grids
To help position interface elements consistently, you can turn on grids in Layout view. Use View,

Grid, Show Grid and View, Grid, Snap to Grid to control the behavior of the grid. As shown in Figure

14.18 , show rulers (View, Rulers) and set the units to inches, centimeters, or points.

ptg8106388

Advanced Interface Techniques392

III

PA
RT

Note that beginning with FileMaker 12, the use of pixels as a measurement is deprecated in favor of

points. Pixels are not a stable unit to use in the world of resolution independence. (See the “Points

Versus Pixels” sidebar, later in this chapter.)

If you choose View, Grid, Snap to Grid, objects snap to the grid as you drag them. If you position

them by nudging them with the arrow keys or by setting their location with the Inspector, the grid

does not come into play.

 Using Guides
Guides let you set a vertical or horizontal location to use as a reference point. You create a guide by

dragging from the ruler at the left or top of the design surface in Layout view. Position it where you

want regardless of whether it is a grid unit. You can control behavior for guides just as you do with

grids. The commands are View, Guides, Show Guides and View, Guides, Snap to Guides. Just as

with grids, snapping applies to dragging objects rather than nudging them or setting their location

with the Inspector.

 Figure 14.18
 Choose grid units.

ptg8106388

393Using FileMaker Formatting Tools

14

C
H
APTER

 Using Dynamic Guides
Turn dynamic guides on and off with View, Dynamic Guides in Layout view. As you move objects,

guides appear when they are aligned with adjacent objects based on an edge or the middle, as

shown at the left in Figure 14.19 . In that case, the lower text field (Address) is being moved. The

dynamic guide shows when it is aligned with the middle of the Name field above it.

If you select multiple objects, they move as a group, as you see at the right of Figure 14.19 . As you

drag, the position of the grouped objects appears. Furthermore, you can drag any of the resizing

knobs to resize all the selected objects.

 Figure 14.19
 Use dynamic
guides.

 Using Screen Stencils

In addition to the guides and grid discussed previously, beginning

with FileMaker Pro 12, you can use screen stencils to help you

design your layouts.

In Layout mode, you can turn screen stencils on or off from the lay-

out bar as shown in Figure 14.20 . There are two controls. The one

shown in Figure 14.20 lets you turn the provided stencils on and

off. Just to its left, the button lets you show or hide stencils.
The stencils are yellow lines that appear over all your layouts in

Layout mode until you turn them off. As you see in Figure 14.20 ,

eight stencils are built in to FileMaker; you can add one more for a

total of nine.

 note
It is important to note that the
dimensions in the names of the
built-in stencils are represented
in points rather than the com-
monly used pixels. You can verify
this if you open the Custom Size
dialog, as shown in Figure 14.21 .

ptg8106388

Advanced Interface Techniques394

III

PA
RT

 Figure 14.20
 Use screen
stencils.

 Figure 14.21
 Create a custom screen stencil.

Points Versus Pixels

A point is a unit of length—specifically, 1/72 of an inch. Many people became used to talking
about pixels as if they were units of length. This is because on many Apple (and other) displays,
there were 72 pixels to an inch. It was not unreasonable to read 1024✕768 as being measure-
ments in pixels because that assumption turned out to be true. However, it only happened to
be true when there were 72 pixels to the inch on a display.

With the advent of high-resolution screens, such as Apple’s Retina Display, the resolution was
achieved by pixel doubling . Where there had been a single pixel, there now were four pixels:
two pixels across and four pixels down.

ptg8106388

395Using GetLayoutObjectAttribute

14

C
H
APTER

 Using GETLAYOUTOBJECTATTRIBUTE
The GetLayoutObjectAttribute function lets you interrogate

layout objects about their current state. Many times you know

this information already because you set these objects. However,

for other objects, such as the Web Viewer, you do not necessarily

know what page the user has navigated to.
The GetLayoutObjectAttribute function requires two param-

eters; it may take two additional ones. The first parameter is

the name of the object, as set in the Inspector. Remember that

FileMaker enforces the uniqueness of layout object names within

a layout.

The second parameter is the attribute you want returned. Table 14.1 shows the various attributes

you can query and what the results are. All measurements are in points.

 Table 14.1 Attributes for GetLayoutObjectAttribute

 Name Meaning (If Not Obvious)

objectType Possible return values are field , text , graphic , line , rectangle ,
rounded rectangle , oval , group , button group , portal , tab
panel , web viewer , and unknown groups source .

Web Viewer: current URL.

Field: table name::fieldname.

Text object: text (without merge fields).

Portal: related table name.

Graphic: image data (Container data type, for example).

Chart: XML description of the chart object

Other objects: empty string

Now the distinction between pixels and points becomes important. An iPhone screen measures
320✕385 points in Portrait mode whether it is a Retina Display or an earlier model. However, an
iPhone screen that measures 320✕385 pixels in an earlier model, measure 640✕770 pixels in a
Retina Display.

To measure dimensions and locations on the screen, the unit to use is points. One rule of
thumb that many people use is that if you work with Photoshop or InDesign, you use pixels. If
you work with Xcode or FileMaker, you use points.

 note
This is not a Get func-
tion in the sense of Get (
ScriptParameter) .
The name of the function is
GetLayoutObjectAttribute
(with no space after Get).

ptg8106388

Advanced Interface Techniques396

III

PA
RT

 Name Meaning (If Not Obvious)

content Web Viewer: HTML code.

Field: data formatted as the layout object has specified.

Text object: text (including merge fields).

Graphics: same as source.

Chart: bitmap representation of the chart object

Other objects: empty string

source Web viewers: returns current URL

Fields: returns the fully qualified field name (table name::field name)

Text objects: returns the text (does not return merge fields)

Portals: returns the related table name

Graphics: returns image data, such as Container data type; for all
other objects, returns an empty string

Charts: returns the XML description of a chart object.

hasFocus True (1) if the object is active. For a portal, returns true if any row is
selected.

containsFocus True (1) if the object is active or contains an isFrontTabPanel active
object.

bounds left right top
bottom width height

Left, top, right, bottom.

rotation Rotation in degrees of the object.

startPoint , endPoint Lines: pair of values (horizontal/vertical) for start or end point.

enclosingObject
containedObjects

The result is a list.

One of the common uses of this function is to get the HTML that is currently displayed in a Web

viewer page to which the user has navigated.

 Working with Custom Menus
To modify the menu sets in FileMaker, you have to develop using FileMaker Pro Advanced; how-

ever, anyone working with FileMaker Pro (or a bound runtime solution) can utilize the custom

menus you create. The custom menus feature dramatically alters the user interface landscape for

FileMaker: Developers can now control menus beyond simply turning them off and can drive a great

deal of application logic.

Table 14.1 Continued

ptg8106388

397Working with Custom Menus

14

C
H
APTER

Suppose that you have built a solution with a section for customers

and another for orders. Assume that the system is somewhat com-

plex and that you, as a developer, do not want users creating new

order records or new customer records by selecting New Record

from the Records menu in FileMaker—perhaps new record creation

needs also to create child records in parallel or do some other book-

keeping within your system. Instead, you want scripts that you’ve

written to manage the creation of these important records.
Using custom menus enables you to do the following:

 • Change the names of menus or menu items

 • Override or extend the functionality of native FileMaker menu

items with your own scripts

 • Change or add keyboard shortcuts to existing or new menu

items

 • Disable or remove individual menu items or entire menus

 • Load custom menu sets on demand or tie menu sets to particular layouts, modes, or operating

systems

Before delving further into custom menus, you have to be clear on the nomenclature used. There are

four separate elements to consider when working with custom menus:

 • Menu Item— This is a single item on a menu. A user can often select it, as is the case with the

New Record and Save As menu items. Menu items can also be separators or submenus.

 • Command— Commands refer to the native controls “baked into” FileMaker: They perform an

action in FileMaker. In FileMaker’s standard menu set, all the actions are predefined by the appli-

cation—for example, entering Find mode or opening the Help system. You can also create custom

commands that initiate a script you, as a developer, will have written. It is possible to tie a menu

item to a command in FileMaker and thus offer the native functionality that the command con-

trols.

 • Menu— A menu is a collection of menu items and comprises the full set of menu items available,

regardless of whether they are all active or visible in any given mode or situation. Examples of

menus are File and Edit. The File menu starts with the New Database, Open, and Open Remote

menu items.

 • Menu Set— A menu set is the set of all menus currently active or potentially available in

FileMaker. It is a collection of menus and is the element you will load or associate with layouts.

The FileMaker Standard menu set includes all the menus we’ve worked with for years: File, Edit,

View, Insert, and so on.

Note that any specific menu or menu item is present or not, grayed out or not, depending on certain

conditions. For example, in Browse mode, the standard FileMaker Pro Advanced menu set includes

the Records menu; but in Layout mode, the Records menu is not available and instead the Layouts

 note
In FileMaker Pro Advanced,
you can create your own menu
set and control at the most
granular level when menu items
appear, how they work, and
even what keyboard shortcuts
they use. Such customizations,
if made, apply throughout the
FileMaker interface, affecting
contextual menus, the close
box on Windows systems, and
potentially every menu item in
FileMaker.

ptg8106388

Advanced Interface Techniques398

III

PA
RT

menu becomes available. These conditional states can be tied to FileMaker modes, layouts, or user

platforms.

Specifying Custom Menu Elements
One important concept you will need to grasp is that FileMaker controls all custom menu elements

at the menu set level. That means if you want your Records menu to show New Customer on a

Customers layout and New Order on an Orders layout, you will need to create two additional cus-

tom menu sets—one to contain each new variant of the Records menu.

This does not mean, however, that you have to create duplicate menus or menu items. Menus and

menu items can be used by multiple menu sets. You need only create menu items that are unique

and require customization. In the preceding example, you would have to create two menu sets (a

Customers set and an Orders set), two versions of the Records menu, and also two new menu items

(New Customer and New Order).

When you change from one set to the other, all the user will see is that one menu item has changed;

however, in the mechanics of working with custom menus, you

will in fact have loaded a new menu set altogether.

Using the Menu Sets Interface
In FileMaker Pro Advanced, choose Tools, Manage, Custom

Menus, Manage Custom Menus to open the dialog shown in

Figure 14.22 .

 tip
Note that if you are starting from
scratch, the menu set called My
Menu Set will not yet exist: You
create it in this section.

 Figure 14.22
 Manage your menu sets.

Click Create to create your menu set. The dialog shown in Figure 14.23 will open. Name your menu

set. Notice that My Menu will not yet exist: That is what you will create in this step.

ptg8106388

399Working with Custom Menus

14

C
H
APTER

Click Add in the lower left to open the Select Menu dialog shown in Figure 14.24 .

 Figure 14.23
 Name your menu set.

 Figure 14.24
 Select a menu to use.

Scroll down to the bottom. You will see the various FileMaker menus, but at the bottom you will be

able to add your own. Figure 14.22 shows what it looks like when you have done your work.

Click the + button at the lower left to open the Create Custom Menu dialog shown in Figure 14.25 .

ptg8106388

Advanced Interface Techniques400

III

PA
RT

Use the radio buttons at the top either to start with a standard FileMaker menu or to create a new

empty menu. An empty menu is the choice to make for now.

The Edit Custom Menu dialog opens, as shown in Figure 14.26 .

 Figure 14.25
 Create a custom menu.

 Figure 14.26
Edit your custom
menu.

ptg8106388

401Working with Custom Menus

14

C
H
APTER

Provide a name for your new menu (this is the name you’ll use in the Manage Custom Menus dialog.

Don’t confuse it with the menu title you specify on the third line down: That is what the user sees.

The Install When field is a calculation you set up to determine when this menu is to be installed. By

default, it is set to 1 (true), but you can specify a calculation. Perhaps the most common calculation

uses the Get (SystemPlatform) function so that you install different menus on the different

FileMaker platforms.

Next, check boxes let you determine which modes the menu should be installed in. When you click

Create, a new menu item is created and selected, as you see at the lower left in the figure.

Your choices for Menu Item Type are

 • Command

 • Submenu

 • Separator

In the basic case, you want a command. If you click Based On Existing Command, you can then

select an existing FileMaker command and modify it by changing its name, its keyboard shortcut, or

its action (or all three).

In this example, you build a totally new command, so you must specify its name and any keyboard

shortcut you want to use. As you saw in Figure 14.26 , in this example a script has been written.

Click Specify for Action (or just click the check box) and you’ll see a

standard dialog for you to choose a script.
Finally, you have another Install When calculation: This controls

the installation of the menu item.

The last part of installing the custom menu is attaching it to a lay-

out or to a file. Use the Layouts, Layout Setup command in Layout

mode to select the menu set for a layout, as shown in Figure 14.27 .

 tip
Note that this is the dialog you
have always used before to
select a script, and you can pass
a parameter into the script.

 Figure 14.27
Use Layout Setup to attach a menu set to a layout.

ptg8106388

Advanced Interface Techniques402

III

PA
RT

To set up a custom menu set for a file, use the drop-down menu at the bottom of the Manage

Custom Menus dialog, shown previously in Figure 14.22 .

In addition, these techniques are also available to you:

 • Load a menu set on demand by using a script.

 • Load custom menu sets on demand, or tie menu sets to particular layouts, particular modes, or a

particular operating system.

 • Choose from among the available custom menus in the Tools, Custom Menus menu choices. This

last option assumes that you’re working with FileMaker Pro Advanced.

 • Assign a custom menu set as the default menu set for an entire file.

 • Assign a specific custom menu set to a layout.

 • Load a menu set on demand by using a script.

 • Load custom menu sets on demand, or tie menu sets to particular layouts, particular modes, or a

particular operating system.

 • Choose from among the available custom menus in the Tools, Custom Menus menu choices. This

last option assumes that you’re working with FileMaker Pro.

 Providing Accessibility
FileMaker provides tools for the solution developer to improve access to solutions. This section cov-

ers the three aspects of providing improved accessibility for screen readers:

• Use the FileMaker Pro Accessibility Inspector to set up attributes for screen readers (developer)

• Turn on accessibility features in FileMaker and/or the operating system (end user)

• Use accessibility features (end user)

Set Up Accessibility Attributes in Layout Mode
In Layout mode, choose View, Accessibility to open the Accessibility Inspector as you see in Figure

14.28 . As with all inspectors, the Accessibility Inspector reflects the values for the selected object. If

no object in the layout is selected, the fields in the inspector are blank.
You can enter any of the three values in the Accessibility Inspector:

 • Name— By default, this is the unqualified name of the field in the database that appears in the

selected object. (Unqualified means that a field such as Customers::Address is shown as

Address .)

 • Title— This is the title that you want to be read by the screen reader. In this case, it might be

Customer Address. This field can be entered as a calculation, which means you can incorporate

data into it, such as a calculation like “Address for < name of customer field >”. If < name of

customer field > contains “Anatol,” the spoken text would be “Address for Anatol.”

ptg8106388

403Providing Accessibil ity

14

C
H
APTER

 • Help— This is help text that will be spoken. It, too, can be a calculation field that incorporates

data.

In the title and help fields, use punctuation in the text strings. The screen reader responds

appropriately to commas and periods, so the resulting speech is easier to understand. Use Name,

Title, and Help to provide different perspectives on the content: Do not simply repeat “Name” or

“Address” in each label.

Turn On Accessibility Features
On OS X, use „, System Preferences to turn on accessibility:

 • In Universal Access, use the Seeing tab to turn on VoiceOver, as seen at the left in Figure 14.29 .

 • In Keyboard, use the Keyboard Shortcuts tab to select All Controls. This enables you to add

accessibility to controls and fields. This is shown at the right of Figure 14.29 .

Accessibility features can also be provided by third-party products, such as JAWS for Windows.

This step needs to be done only once for your computer unless you want to change the settings.

 Figure 14.28
Use the Accessibility
Inspector.

ptg8106388

Advanced Interface Techniques404

III

PA
RT

 Use Accessibility Features

As people use the solution with the accessibility features turned on, the appropriate text will be dis-

played and read, as shown in Figure 14.30 .

 Figure 14.29
Turn on acces-
sibility in OS X.

 Figure 14.30
 Use accessibility.

ptg8106388

405FileMaker Extra: User Interface Heuristics

14

C
H
APTER

FileMaker Extra: User Interface Heuristics

We opened this chapter by saying we wouldn’t preach to you about what makes a good interface

and what doesn’t. Well, we’re breaking our word here. Although we won’t argue about pop-up win-

dows versus single-pane applications, or whether buttons should be 3D beveled or just text on the

screen, here are a few guidelines we recommend to all our clients, students, and developers alike:

 • Use real-world terminology— You should strive to speak your customers’ language. Use terms

they’ll find familiar. In some cases, you might need to retrain them, but whenever possible, lever-

age the body of knowledge already in place in an organization to make your system more intui-

tive.

 • Impart meaning with more than just labels— Text is only one of many things your users will see

on a layout. They’ll also see colors, shapes, headlines, subheads, footers, and so on. Use all the

objects in your toolbox to impart meaning: Consider, for example, changing the background color

of find layouts or perhaps making navigation buttons look different from functional buttons. Keep

this in mind though: Don’t rely too heavily on color. A great many people have varying degrees

of colorblindness.

 • Give users the freedom to click around without fear— Users should be able to cancel out of any

destructive function (delete, for example) so that they can explore your application and learn by

doing.

 • Be consistent— We can’t stress this point enough. Whatever the colors, shapes, sizes, styles, and

so on that you prefer, make sure your layouts follow the set of rules you establish. Name fields

and buttons consistently, place them in the same positions, and give your users a visual grammar

for your system that they can learn.

 • Manage errors— Errors happen. Handle them behind the scenes whenever possible, but when

they’re unavoidable, make sure you present the users with a graceful error routine that informs

them, proffers a course of action, and then returns them to what they were doing.

 • Focus your screens— Less is more. Whitespace is your friend.

Leave the important bits on your layouts and dialogs and

remove the objects that can be pushed elsewhere. If you offer

focus to users, you will help them understand what to do on a

given layout.

 • Remember your power users— Contrary to all the earlier advice,

don’t forget your power users. On desktop and laptop layouts,

offer keyboard shortcuts through “Are you sure?” dialogs, give

them simple Table view access to your data, and don’t bother

them with assistants.

 tip
With FileMaker Go, remember
that touch-oriented interfaces,
such as radio buttons, check-
boxes, and pop-up menus, can
be easier to use than the key-
board.

ptg8106388

This page intentionally left blank

ptg8106388

 15

 ADVANCED CALCULATION
TECHNIQUES

 Logical Functions
Chapter 8 , “Getting Started with Calculations,” presented an introduction

to FileMaker Pro calculation formulas. This chapter deals not only with

more specialized functions than the ones presented in Chapter 8 , but also

deals with the more programmatic functions—those that allow you to con-

trol operations of calculations. These are often called logical functions .

Chapter 8 discussed two of them: the If and Case conditional functions.

This section continues with other logical functions.

 The Let Function
The Let function enables you to simplify complex calculations by declar-

ing variables to represent subexpressions. (In programming lingo, they are

very much like subroutines.) These variables exist only within the scope

of the formula, and you cannot reference them in other places. As an

example, here is a formula presented in Chapter 8 for extracting the last

line of a text field:

Right(myText; Length(myText) - Position(myText; “¶”; 1;
➥PatternCount(myText; “¶”)))

ptg8106388

Advanced Calculation Techniques408

III

PA
RT

With the Let function, you could rewrite this formula this way:

Let ([fieldLength = Length(myText) ;
 returnCount = PatternCount(myText; “¶”) ;
 positionOfLastReturn = Position (myText; “¶”; 1; returnCount) ;
 charactersToGrab = fieldLength - positionOfLastReturn];

 Right (myText, charactersToGrab)
)

The Let function takes two parameters. The first is a list of variable declarations. If you want to

declare multiple variables, you have to enclose the list within square brackets and separate the indi-

vidual declarations within the list with semicolons. There are four variable declarations in the first

parameter of the Let function shown here. The second parameter is some formula you want evalu-

ated. That formula can reference any of the variables declared in the first parameter, just as it would

reference any field value.

 � If you experience unexpected behavior of a Let function, the trouble might be your vari-

able names. For more information, see “Naming Variables in Let Functions” in the

“Troubleshooting” section at the end of this chapter.

Notice in this example that the third variable declared, positionOfLastReturn , references the

returnCount variable, which was the second variable declared. This capability to have subse-

quent variables reference previously defined ones is one of the powerful aspects of the Let function

because it enables you to build up a complex formula via a series of simpler ones.

It is fair to observe that the Let function is never necessary ; you could rewrite any formula that

uses the Let function, without using Let , either as a complex nested formula or by explicitly defin-

ing or setting fields or variables to contain subexpressions. The main benefits of using the Let

function are simplicity, clarity, and ease of maintenance. For instance, you could write a formula that

returns a person’s age expressed as a number of years, months, and days, as shown here:

Year (Get (CurrentDate)) - Year(birthDate) - (DayOfYear(Get(CurrentDate))
➥ < DayOfYear(birthDate)) & “ years, “ & Mod (Month(Get(CurrentDate))
➥- Month (birthDate) - (Day (Get(CurrentDate)) < Day(birthDate)); 12) &
➥“ months, and “ & (Get(CurrentDate) - Date (Month(Get(CurrentDate))
➥- (Day (Get(CurrentDate)) < Day(birthDate)); Day (birthDate);
➥Year (Get(CurrentDate)))) & “ days”

This is a complex nested formula, and many subexpressions appear multiple times. The steps in

writing and debugging this formula are difficult, even when you understand the logic on which it’s

based. With the Let function, you could rewrite the formula this way:

Let ([C = Get(CurrentDate);
 yC = Year (C) ;
 mC = Month (C) ;
 dC = Day (C) ;
 doyC = DayOfYear (C) ;

ptg8106388

409Logical Functions

15

C
H
APTER

 B = birthDate;
 yB = Year (B) ;
 mB = Month (B) ;
 dB= Day (B) ;
 doyB = DayOfYear (b) ;

 num_years = (yC - yB - (doyC < doyB)) ;
 num_months = Mod (mC - mB - (dC <dB) ; 12) ;
 num_days = C - Date (mC - (dC < dB) ; dB ; yC)] ;

 num_years & “ years, “ & num_months & “ months, and “ & num_days
 ➥& “ days”)

Because of the extra space in the formula, this version is a bit longer than the original, but it’s vastly

easier to comprehend. If you were a developer needing to review and understand a formula written

by someone else, we’re sure you would agree that you’d prefer seeing this Let version rather than

the first version.

The Let function’s simplicity extends to fields that are similar to one another. For example, if you

want to reformat a telephone number to insert standard symbols (parentheses and hyphens, for

example), you can write a Let function to do so. You can then create calculation fields for a variety

of phone numbers and simply paste the Let function into each one; all you have to do is change

the first variable assignment statement to reference the particular phone number field you want to

format.

In addition to simplicity and clarity, there are also performance benefits to using the Let function.

If you have a complex subexpression that you refer to multiple times during the course of a calcula-

tion, FileMaker evaluates it anew each time it’s referenced. If you create the subexpression as a

variable within a Let statement, the subexpression is evaluated only once, no matter how many

times it is subsequently referenced. In the example just shown, for instance, FileMaker would evalu-

ate Get(CurrentDate) eight times in the first version. In the version that uses Let , it’s evaluated

only once. In many cases, the performance difference might be trivial or imperceptible. Other times,

optimizing the evaluation of calculation formulas might be just the answer for increasing your solu-

tion’s performance.

The more you use the Let function, the more likely it is to become one of the core functions you use.

To help you become more familiar with it, we use it frequently throughout the examples in the rest

of this chapter.

Quick Calculation Testing Using Let

 The Let function makes it much easier to debug calculation formulas. It used to be that if
you wanted to make sure that a subexpression was evaluating correctly, you had to create a
separate field to investigate it. Using Let , you can just comment out the second parameter
of the Let function and have the function return one or more of the subexpressions directly.
When you’ve got each subexpression working as intended, just comment out the test code and
uncomment the original code.

ptg8106388

Advanced Calculation Techniques410

III

PA
RT

 The Choose Function
The If and Case functions are sufficiently robust and elegant for most conditional tests that you’ll

write. For several types of conditional tests, however, the Choose function is a more appropriate

option. As with If and Case , the value returned by the Choose function depends on the result of

some test. What makes the Choose function different is that the test should return an integer rather

than a true/false result. A number of possible results follow the test; the one chosen depends on the

numeric result of the test. If the test result is 0 , the first result is used. If the test result is 1 , the sec-

ond result is used, and so on. The syntax for Choose is as follows:

Choose (test ; result if test=0 ; result if test=1 ; result if test=2)

A classic example of when the Choose function comes in handy is when you have categorical data

stored as a number and you need to represent it as text. For instance, you might import demo-

graphic data in which an integer from 1 to 5 represents the ethnicity of an individual. You might use

the following formula to represent it to users:

Choose (EthnicityCode; “”; “African American”; “Asian”; “Caucasian”; “Hispanic”;
➥“ Native American”)

Of course, you could achieve the same result with the following formula:

Case (EthnicityCode = 1; “African American”; EthnicityCode = 2; “Asian”,
➥EthnicityCode = 3; “Caucasian”; EthnicityCode = 4; “Hispanic”;
➥EthnicityCode= 5; “Native American”)

You should consider the Choose function in several other situations. The first is for generating ran-

dom categorical data. Say your third-grade class is doing research on famous presidents, and you

want to randomly assign each student one of the six presidents you have chosen. By first generating

a random number from 0 to 5, you can use the Choose function to select a president. Don’t worry

that r isn’t an integer; the Choose function ignores everything but the integer portion of a number.

The formula would be this:

Let (r = Random * 6; // Generates a random number from 0 to 5
 Choose (r, “Washington”, “Jefferson”, “Lincoln”, “Wilson”, “Truman”, “Kennedy”))

Several FileMaker functions return integer numbers from 1 to n , so these naturally work well as the

test for a Choose function. Most notable are the DayofWeek function, which returns an integer from

1 to 7, and the Month function, which returns an integer from 1 to 12. As an example, you could use

the Month function within a Choose to figure out within which quarter of the year a given date fell:

Choose (Month(myDate)-1; “Q1”; “Q1”; “Q1”; “Q2”; “Q2”; “Q2”; “Q3”; “Q3”; “Q3”;
➥“Q4”; “Q4”; “Q4”)

The -1 shifts the range of the output from 1–12 to 0–11, which is more desirable because the

Choose function is zero based , meaning that the first result corresponds to a test value of 0. There

ptg8106388

411Logical Functions

15

C
H
APTER

are more compact ways of determining the calendar quarter of a date, but this version is easy to

understand and offers much flexibility.

Another example illustrating when Choose works well is when you need to combine the results of

some number of Boolean tests to produce a distinct result. As an example, imagine that you have a

table that contains results on Myers-Briggs personality tests. For each test given, you have scores

for four pairs of personality traits (E/I, S/N, T/F, J/P). Based on which score in each pair is higher,

you want to classify each participant as one of 16 personality types. Using If or Case statements,

you would need a long, complex formula to do this. With Choose , you can treat the four tests as a

binary number and then simply do a conversion back to base-10 to decode the results. The formula

might look something like this:

Choose((8 * (E>I)) + (4 * (S>N)) + (2 * (T>F)) + (J>P);
 “Type 1 - INFP” ; “Type 2 - INFJ” ; “Type 3 - INTP” ; “Type 4 - INTJ” ;
 “Type 5 - ISFP” ; “Type 6 - ISFJ” ; “Type 7 - ISTP” ; “Type 8 - ISTJ” ;
 “Type 9 - ENFP” ; “Type 10 - ENFJ” ; “Type 11 - ENTP” ; “Type 12 - ENTJ” ;
 “Type 13 - ESFP” ; “Type 14 - ESFJ” ; “Type 15 - ESTP” ; “Type 16 - ESTJ”)

Each greater-than comparison is evaluated as a 1 or 0, depending on whether it represents a true

or false statement for the given record. By multiplying each result by successive powers of 2, you

end up with an integer from 0 to 15 that represents each of the possible outcomes. (This is similar to

how flipping a coin four times generates 16 possible outcomes.)

As a final example, you also can use the Choose function any time you need to “decode” a set

of abbreviations into their expanded versions. Consider, for example, a situation in which survey

respondents have entered SA, A, N, D, or SD as a response to indicate Strongly Agree, Agree,

Neutral, Disagree, or Strongly Disagree. You could map from the abbreviation to the expanded text

by using a Case function like this:

Case (ResponseAbbreviation = “SA”; “Strongly Agree” ;
 ResponseAbbreviation = “A”; “Agree” ;
 ResponseAbbreviation = “N”; “Neutral” ;
 ResponseAbbreviation = “D”; “Disagree” ;
 ResponseAbbreviation = “SD”; “Strongly Disagree”)

You can accomplish the same mapping by using a Choose function if you treat the two sets of

choices as ordered lists. You simply find the position of an item in the abbreviation list and then find

the corresponding item from the expanded text list. The resulting formula would look like this:

Let ([a = “|SA||A||N||D||SD|” ;
 r = “|” & ResponseAbbreviation & “|” ;
 pos = Position (a; r ; 1 ; 1) ;
 itemNumber = PatternCount (Left (a; pos-1); “|”) / 2];

 Choose (itemNumber, “Strongly Agree”; “Agree”; “Neutral”; “Disagree”;
 “Strongly Disagree”)
)

ptg8106388

Advanced Calculation Techniques412

III

PA
RT

In most cases, you’ll probably opt for using the Case function for simple decoding of abbreviations.

Sometimes, however, the list of choices isn’t something you can explicitly test against (such as with

the contents of a value list), and finding one choice’s position within the list might suffice to iden-

tify a parallel position in some other list. Having the Choose function in your toolbox might offer an

elegant solution to such challenges.

 The GetField Function
When writing calculation formulas, you use field names to refer abstractly to the contents of particu-

lar fields in the current record. That is, the formula for a FullName calculation might be FirstName

& “ “ & LastName . FirstName and LastName are abstractions; they represent data contained in

particular fields.

Imagine, however, that instead of knowing in advance what fields to refer to in the FullName calcu-

lation, you wanted to let users pick any fields they wanted to. So, you set up two fields, which we’ll

call UserChoice1 and UserChoice2. How can you rewrite the FullName calculation so that it’s not

hard-coded to use FirstName and LastName , but rather uses the fields that users type in the two

UserChoice fields?

The answer is the GetField function. GetField enables you to add another layer of abstraction

to your calculation formulas. Instead of hard-coding field names in a formula, GetField allows you

to place into a field the name of the field you’re interested in accessing. That sounds much more

complicated than it actually is. Using GetField , we might rewrite our FullName formula as shown

here:

GetField (UserChoice1) & “ “ & GetField (UserChoice2)

The GetField function takes just one parameter. That parameter can be either a literal text string

or a field name. Having it be a literal text string, although possible, is not particularly useful. The

function GetField(“FirstName”) would certainly return the contents of the FirstName field, but

you can achieve the same thing simply by using FirstName by itself. It’s only when the parameter

of the GetField function is a field or formula that it becomes interesting. In that case, the function

returns the contents of the field referred to by the parameter.

There are many potential uses of GetField in a solution. Imagine, for instance, that you have a

Contact table with the fields First Name, Nickname, and Last Name (among others). Sometimes

contacts prefer to have their nickname appear on badges and in correspondence, and sometimes the

first name is desired.

To deal with this, you could create a new text field called Preferred Name and format that field as

a radio button containing First Name and Nickname as the choices. When doing data entry, a user

could simply check off the name to use for correspondence. When it comes time to make a Full

Name calculation field, one of your options would be the following:

Case (Preferred Name = “First Name”; First Name;
 Preferred Name = “Nickname”; Nickname) &
 “ “ & Last Name

ptg8106388

413Logical Functions

15

C
H
APTER

Another option, far more elegant and extensible, would be the fol-

lowing:

GetField (PreferredName) & “ “ & Last Name

 The Evaluate Function
The Evaluate function is one of the most intriguing functions in

FileMaker. In a nutshell, it enables you to evaluate a dynamically

generated or user-generated calculation formula. With a few exam-

ples, you’ll easily understand what this function does. It might, however, take a bit more time and

thought to understand why you would want to use it in a solution. We start by explaining the what

and then suggest a few potential whys. The syntax for the Evaluate function is as follows:

Evaluate (expression { ; [field1 ; field2 ;...]})

The expression parameter is a text string representing some calculation formula that you want to

evaluate. The optional additional parameter is a list of fields whose modification triggers the reeval-

uation of the expression. Often, the expression itself uses these fields; if one of them changes, you

want to reevaluate the expression.

For example, imagine that you have a text field named myFormula and another named myTrigger .

You then define a new calculation field called Result, using the following formula:

Evaluate (myFormula; myTrigger)

Figure 15.1 shows some examples of what Result will contain for various entries in myFormula.

 note
When there are only two choices,
the Case function certainly isn’t
cumbersome. But if there are
dozens or hundreds of fields to
choose from, GetField clearly
has an advantage.

 Figure 15.1
Using the Evaluate function, you can have a
calculation field evaluate a formula contained
in a field.

ptg8106388

Advanced Calculation Techniques414

III

PA
RT

There’s something quite profound going on here. Instead of having to hard-code calculation formu-

las, you can evaluate a formula that has been entered as field data. In this way, Evaluate provides

an additional level of logic abstraction similar to the GetField function. In fact, if myFormula

contained the name of a field, Evaluate(myFormula) and GetField(myFormula) would return

exactly the same result. It might help to think of Evaluate as the big brother of GetField . Whereas

GetField can return the value of a dynamically specified field , Evaluate can return the value of a

dynamically specified formula .

Uses for the Evaluate Function
A typical use for the Evaluate function is to track modification information about a particular field

or fields. A timestamp field defined to auto-enter the modification time triggers any time any field

in the record is modified. Sometimes, however, you might want to know the last time that anyone

modified the Comments field, without respect to other changes to the record. To do this, you would

define a new calculation field, CommentsModificationTime, with the following formula:

Evaluate (“Get(CurrentTimestamp)” ; Comments)

The quotation marks around Get(CurrentTimestamp) are important, and are apt to be a source of

confusion. The Evaluate function expects to be fed either a quote-enclosed text string (as shown

here) or a formula that yields a text string (as in the Result field earlier). For instance, if you want

to modify the CommentsModificationTime field so that rather than just returning a timestamp, it

returns something like “Record last modified at: 11/28/2012 12:23:58 PM by Lily Bart,” you would

need to modify the formula to the following:

Evaluate (“\“Record modified at: \“ & Get (CurrentTimeStamp) & \“ by \“ &
➥Get (AccountName)” ; Comments)

Because the formula you want to evaluate contains quotation marks, you must escape them by pre-

ceding them with a slash. For a formula of any complexity, this becomes difficult both to write and

to read. Fortunately, a function named Quote eliminates all this complexity. The Quote function

returns the parameter it is passed as a quote-wrapped text string, with all internal quotation marks

properly escaped. Therefore, you could rewrite the preceding function more simply as this:

Evaluate (Quote (“Record modified at: “ & Get (CurrentTimeStamp) & “ by “ &
➥Get (AccountName)) ; Comments)

In this particular case, using the Let function further clarifies the syntax:

Let ([
 time = Get (CurrentTimeStamp) ;
 account = Get (AccountName);
 myExpression = Quote (“Record modified at: “ & time & “ by “ & account)] ;

 Evaluate (myExpression ; Comments)
)

ptg8106388

415Logical Functions

15

C
H
APTER

 Evaluation Errors
You typically find two other functions used in conjunction with the Evaluate function:

IsValidExpression and EvaluationError . IsValidExpression takes as its parameter an

expression; it returns a 1 if the expression is valid, a 0 if it isn’t. An invalid expression is any

expression that FileMaker Pro can’t evaluate due to syntax errors or other runtime errors. If you plan

to allow users to type calculation expressions into fields, be sure to use IsValidExpression to test

their input to be sure that it’s well formed. In fact, you probably want to include a check of some

kind within your Evaluate formula itself:

Let (valid = IsValidExpression (myFormula) ;
 If (not valid; “Your expression was invalid” ; Evaluate (myFormula))

The EvaluationError function is likewise used to determine whether there’s some problem with

evaluating an expression. However, it returns the actual error code corresponding to the problem.

One point to keep in mind, however, is that rather than testing the expression, you want to test the

evaluation of the expression. So, as an error trap used in conjunction with an Evaluate function,

you might have the following:

Let ([result = Evaluate (myFormula) ;
 error = EvaluationError (result)] ;
 If (error ; “Error: “ & error ; result)
)

 Lookup Functions
In versions of FileMaker before version 7, lookups were exclusively an auto-entry option. FileMaker

7 added two lookup functions, Lookup and LookupNext , and both are useful additions to any devel-

oper’s toolkit.

The two lookup functions operate quite similarly to their cousin, the auto-entry lookup option. In

essence, a lookup copies a related value into the current table. Lookups (all kinds) have three neces-

sary components: a relationship, a trigger field, and a target field. When the trigger field is modified,

the target field is set to some related field value.

It’s important to understand the functional differences between the lookup functions and the auto-

entry option. Although they behave similarly, they’re not quite equivalent. Some of the key differ-

ences include the following:

 • Auto-entry of a looked-up value is an option for regular text, number, date, time, or timestamp

fields, which are subsequently modifiable by the user. A calculation field that includes a lookup

function is not user modifiable.

 • The lookup functions can be used anywhere—not just in field definitions. For instance, they can

be used in formulas in scripts, record-level security settings, and calculated field validation. Auto-

entering a looked-up value is limited to field definition.

 • The lookup functions can be used in conjunction with other functions to create more complex

logic rules. The auto-entry options are comparatively limited.

ptg8106388

Advanced Calculation Techniques416

III

PA
RT

 Lookup
The syntax of the Lookup function is as follows:

Lookup (sourceField { ; failExpression})

sourceField is the related field whose value you want to retrieve. The optional failExpression

parameter is returned if there is no related record or if sourceField is blank for the related record.

If the specified relationship matches multiple related records, the value from the first related record

is returned.

There are two main differences between using the Lookup function and simply referencing a related

field in a formula. The first is that calculations that simply reference related fields must be unstored,

but calculations that use the Lookup function to access related fields can be stored and indexed.

The other difference is that changing sourceField in the related table does not cause the Lookup

function to retrigger. Just as with auto-entry of a looked-up value, the Lookup function captures

sourceField as it existed at a moment in time. The alternative, simply referencing the related

field, causes all the values to remain perfectly in sync: When the related value is updated, any cal-

culations that reference it are updated as well. The downside is that, as with all calculations that

directly reference related data, such a calculation cannot be stored.

 LookupNext
The LookupNext function is designed to allow you to map continuous data elements to categorical

results. It has the same effect as checking the Copy Next Lower Value or Copy Next Higher Value

option when specifying an auto-entry lookup field option. Here is its syntax:

LookupNext (sourceField ; lower/higherFlag)

The acceptable values for the second parameter are Lower and Higher . These are keywords and

shouldn’t be placed in quotation marks.

An example should help clarify what we mean about mapping continuous data to categorical

results. Imagine that you have a table containing information about people, and that one of the

fields is the person’s birth date. You want to have some calculation fields that display the person’s

astrological information, such as a zodiac sign and ruling planet. Having birth dates mapping to

zodiac signs is a good example of continuous data mapping to categorical results: A range of birth

dates corresponds to each zodiac sign.

In practice, two small but instructive complications arise when you try to look up zodiac signs.

The first complication is that the zodiac date ranges are expressed not as full dates, but merely as

months and days (for example, Cancer starts on June 22 regardless of what year it is). This means

that when you set up your zodiac table, you’ll use text fields rather than date fields for the start and

end dates. The second complication is that Capricorn wraps around the end of the year. The easi-

est way to deal with this is to have two records in the Zodiac table for Capricorn—one that spans

December 22–December 31, and the other that spans January 1–January 20.

Figure 15.2 shows the full data of the Zodiac table. The StartDate and EndDate fields, remember, are

actually text fields.

ptg8106388

417Logical Functions

15

C
H
APTER

In the Person table, you need information such as the name of the person as well as the birth

date—a true date field (you can call it BirthDateAsDate). Create a calculation formula for a separate

BirthDate field that generates a text string containing the month and date of the person’s birth date

from the BirthDateAsDate field. The BirthDateAsDate field is defined this way:

Month (BirthdateAsDate) & “/” & Day (BirthdateAsDate)

Next, create a relationship between the Person and Zodiac tables, matching the BirthDate field (the

text field) in Person to the StartDate field in Zodiac. Figure 15.3 shows this relationship.
Obviously, many birth dates aren’t start dates for one of the zodiac signs. To match to the correct

zodiac record, you want to find the next lower match when no exact match is found. For instance,

with a birth date of February 13 (2/13), there is no matching record

where the StartDate is 2/13, so the next lowest StartDate, which is

1/21 (Aquarius), should be used.

In the Person table, therefore, you can grab any desired zodiac

information by using the LookupNext function. Figure 15.4 shows

an example of how this date might be displayed on a person

record. The formula for ZodiacInfo is as follows:

“Sign: “ & LookupNext (Zodiac::ZodiacSign; Lower) & “¶” &
“Symbol: “ & LookupNext (Zodiac::ZodiacSymbol; Lower)
➥& “¶” &
“Ruling Planet: “ & LookupNext (Zodiac::RulingPlanet;
➥Lower)

It would have been possible in the previous examples to match to

EndDate instead of StartDate. In that case, you would simply need to

match to the next higher instead of the next lower matching record.

 Figure 15.2
The data from the Zodiac
table is looked up and is
transferred to a person
record based on the per-
son’s birth date.

 note
An entirely different but perfectly
valid way of approaching the prob-
lem would have been to define a
more complex relationship between
Person and Zodiac, in which
DateMatch is greater than or equal
to StartDate and less than or equal
to EndDate. Doing this would allow
you to use the fields from the Zodiac
table as plain related fields; no
lookup would have been required.
There are no clear advantages or
disadvantages of this method over
the one discussed previously.

ptg8106388

Advanced Calculation Techniques418

III

PA
RT

 Figure 15.3
By relating the Person table to
Zodiac, you can look up any infor-
mation you want based on the
person’s birth date.

 Figure 15.4
Using the LookupNext func-
tion, you can create a cal-
culation field in the Person
table that contains informa-
tion from the next lower
matching record.

ptg8106388

419Text Formatting Functions

15

C
H
APTER

 Text Formatting Functions
In versions of FileMaker Pro before version 7, there was no way to affect the display of a field (that

is, color, size, font, style) via calculation formulas. Developers had to come up with workarounds

for seemingly simple tasks, such as having the contents of a field change color based on some con-

ditional test. For example, a typical workaround was stacking two calculation fields on top of one

another, each formatted with a different text color on the layout, and then having a conditional test

in each to turn it “on” or “off” to simulate the effect of the text changing color. Beginning with

FileMaker Pro 8, nine text formatting functions obviate the need for many of these old workaround

options.

 note
Other typical scenarios for using LookupNext are for finding shipping rates based on weight ranges, determining price
discounts based on quantity ranges, and defining cut scores based on continuous test score ranges, for example.

Conditional Formatting Versus Multiple Layouts

Beginning with FileMaker Pro 9, conditional formatting in layouts (as discussed in Chapter 14 ,
“Advanced Interface Techniques”) can be used to dynamically change the appearance of fields.
This gives you three ways to format fields: by formatting the field in a layout, by formatting the
contents with a function as described here, and by using conditional formatting on the layout.
The user, of course, can use FileMaker’s text formatting commands when editing data; that is a
separate matter from the developer’s formatting of text.

In addition, you can use multiple versions of a layout to format the same field in different ways.
This is most frequently used to provide alternate layouts for desktop and mobile devices. You
use a startup trigger script to switch to the appropriate layout, and thereafter the navigation
from one layout to the next is handled on generally parallel tracks for each device.

In general, conditional formatting is best used for formatting that is context sensitive (an error,
for example). Formatting with a function is best used when the formatting is always to be used
in displaying the text.

Text Color, Font, and Size
The TextColor , TextFont , and TextSize functions are quite similar. The first parameter of each

function is the text string you want to act on; the second parameter contains the formatting instruc-

tions you want to apply.

For example, perhaps you have a Tasks table, and you want any tasks due within the next week to

display in red. To accomplish this task, you would define a calculation field named TaskDisplay with

the following formula:

Case (DueDate <= Get (CurrentDate) + 7;
 TextColor (TaskName; RGB (255; 0; 0)); // Red
 TextColor (TaskName; 0)) // Black

ptg8106388

Advanced Calculation Techniques420

III

PA
RT

The TaskDisplay field displays the task name in either red or black, depending on the due date.

The second parameter of the TextColor function must be an integer from 0 to 16777215 (which is

256 3 – 1), which represents a unique RGB color. If you know the integer value of the color you want

(for example, black is 0), you can simply use that integer. More typically, you’ll use the RGB function,

which returns the integer representation of the color specified. Each of the three parameters in the

RGB function must be an integer between 0 and 255. The first parameter represents the red compo-

nent of the color; the second, the green component; the third parameter represents the blue compo-

nent. The RGB function determines the integer representation by the following formula:

((255^2) * Red) + (255 * Green) + Blue

 Text Style
The next two text formatting functions are TextStyleAdd and TextStyleRemove . Each of these

functions takes two parameters. The first is a text string to act on; the second is a style or styles to

apply to the text string. If listing multiple styles, you have to separate them with a plus sign (+). The

style names are keywords and should not appear in quotation marks. They also must be hard-coded

in the formula; you can’t substitute a field that contains style instructions. Here is a list of the valid

styles for both TextStyleAdd and TextStyleRemove :

Plain

Bold

Italic

Underline

Condense

Extend

Strikethrough

SmallCaps

Superscript

Subscript

Uppercase

Lowercase

Titlecase

WordUnderline

DoubleUnderline

AllStyles

To remove all styles from a chunk of text, you can either add Plain as a style or remove AllStyles .

Additionally, there are numeric equivalents for each of the text style keywords. Unlike the keywords

themselves, the numeric equivalents can be abstracted as field values.

 Removing Text Formatting
In addition to functions for selectively adding formatting to text strings, FileMaker has functions for

removing formatting from text. In addition to TextStyleRemove , mentioned previously, there are

functions named TextFontRemove , TextColorRemove , TextSizeRemove , and TextFormatRemove .

ptg8106388

421Array Functions

15

C
H
APTER

The first three of these remove some specific styling attribute from the designated text.

TextFormatRemove removes all formatting from the selected text in one operation.

For most of these functions, you can specify an optional second parameter that specifies exactly

what value you want to remove. For example,

TextSizeRemove(text)

removes all text sizing from text , causing all of text to return to whatever text size was specified

for the field in Layout mode, whereas

TextSizeRemove(text; 14)

removes only the 14-point size from text , causing any characters in a 14-point size to revert to the

field default size.

TextFormatRemove , as mentioned, is the exception to this pattern. TextFormatRemove takes just

one parameter, the text string to be reformatted, and strips all formatting from the field.

 � You might have difficulty applying text formatting functions within calculations that return

something other than plain text. See “Text Formatting in Nontext Calculations” in the

“Troubleshooting” section at the end of this chapter.

 Array Functions
Arrays are a powerful and extremely useful programming concept. If you’ve done any programming

in languages such as C++, Perl, PHP, or Visual Basic, you’re probably familiar with both the concept

of arrays and some uses for them. We think it likely, however, that most FileMaker Pro developers

out there haven’t had much experience with arrays and will benefit from both a formal and a practi-

cal discussion of them.

Abstractly, an array is essentially a structure that can hold multiple values. The values are ordered

within the structure and can be referenced by their position or index number. Figure 15.5 shows a

representation of a simple array. The array has been defined to hold up to seven values, but only

four values are present. The first element in the array is the value red .

red

1

green

2

blue

3

white

4 5 6 7 Figure 15.5
An array is a structure that can hold multiple
values. Each value can be identified and refer-
enced by an index number.

Arrays are useful for a wide variety of tasks, including storing lists of data, efficiently moving mul-

tiple values through a system, and dealing with variable-size data structures where it’s impossible

to define separate fields for each individual data element. FileMaker Pro doesn’t have an explicit

“array” data type, but fields defined to hold multiple repetitions can be regarded as arrays. More

commonly, if you want to use arrays in FileMaker, you can create your own by placing into a text

field multiple values separated by some delimiter.

ptg8106388

Advanced Calculation Techniques422

III

PA
RT

Return-delimited lists pop up all over the place in FileMaker Pro.

Many functions and operations in FileMaker generate return-

delimited lists, including most of the Design functions and the

Get (ExtendedPrivileges) function. When a user selects mul-

tiple values in a check box–formatted field, FileMaker stores that

data as a return-delimited list of the selections. Additionally, the

Copy All Records script step generates a return-delimited list

of the data elements on the current layout for the current found

set (the tab character separates elements within a record).

Working with Return-Delimited Data
Arrays

FileMaker Pro has five functions that greatly facilitate working with return-delimited data arrays

such as the ones just described. They are ValueCount , LeftValues , MiddleValues , RightValues ,

and GetValue . Syntactically, they are similar to the four “word” functions (WordCount , LeftWords ,

MiddleWords , and RightWords) as well as to the four “character” functions (Length , Left ,

Middle , and Right).

Briefly, the syntax of these functions is as described here:

 • ValueCount (text) — Returns the number of items in a return-delimited list. Unlike its cousin

the WordCount function, which interprets sequential word delimiters as a single delimiter, if you

have multiple carriage returns in a row, even at the beginning or end of a list, ValueCount treats

each one as a delimiter. For example, ValueCount (“++Red+Blue+Green++White+”) returns 7 .

It’s immaterial whether the list contains a single trailing return; the ValueCount is unaffected by

this. Multiple trailing returns affect the ValueCount .

 • LeftValues (text; numberOfValues) — Returns a list of the first n elements of a return-

delimited text string. The list always has a trailing return, even if you are requesting only the

first item of the array.

 • MiddleValues (text; startIndex; numberOfValues) — Returns a list of n elements from

the middle of a return-delimited array, starting from the position specified in the second param-

eter. As with LeftValues , the output of this function always contains a trailing return.

 • RightValues (text; numberOfValues) — Returns a list of the last n elements from a return-

delimited array. This function, too, always generates a trailing return at the end of its output.

 • GetValue (listOfValues; valueNumber) — Returns a single value from a return-delimited list

of values. This value will not contain a trailing carriage return. This function is useful when you

want to loop through a set of values and perform some operation using each value in turn.

 � If you ever use arrays that use delimiters other than return characters, see “Working with

Arrays” in the “Troubleshooting” section at the end of this chapter.

To demonstrate how you might use these functions in a solution, we present an example of iterating

through a user’s selections in a check box–formatted field and creating records for each selection

 note
In FileMaker Pro, you can use
“array notation” to refer to data in
a repeating field. myField[3] ,
for instance, refers to the data in
the third repetition of myField .
It’s really just a shorthand notation
for GetRepetition(myField,
3) , but it makes formulas much
easier to read.

ptg8106388

423Array Functions

15

C
H
APTER

in another table. Imagine that you have a table containing information about kids coming to your

summer camp, and that one of the pieces of information you are capturing is a list of sports in which

the child wants to participate. When you originally set up the table, you simply created a check box–

formatted field in the CamperInfo table for this information. You now realize that it’s impossible to

run certain reports (for example, a subsummary by sport) with the data structured this way and that

you should have created a separate table for CamperSport data. You’d like not to have to reenter all

the data, so you want to create a script that loops through all the CamperInfo records and creates a

record in the CamperSport table for each sport checked for that camper.

We can approach a challenge such as this in many ways. We might, for instance, temporarily set

data from CamperInfo into variables, navigate to a layout based on the CamperSport table, cre-

ate records, and populate data from the variables. We’ve chosen instead to use a portal from the

CamperInfo table to the CamperSport table that allows the creation of related records. This way, we

avoid having to navigate between layouts for each camper, and the CamperID field is automatically

set correctly in the CamperSport table.

Stepping Through an Array
A user’s selections in a check box field are stored as a return-delimited array, in the order in which

the user checked them. You can step from element to element in such an array in two ways. One

method is to iteratively “lop off” the first element of the array until there’s nothing left to process.

This requires first moving the data to be processed into a temporary location where it can be cut

apart without harming the original data.

The other method is to use a counter to keep track of what element is being processed. You con-

tinue processing, incrementing the counter as you go, until the counter exceeds the number of ele-

ments in the array. To some extent, which method you use is personal preference. Some developers

preferred the first method in earlier versions of FileMaker Pro because it was simpler syntactically,

but the newer “value” functions (introduced in FileMaker 7) make the second method appealing

now. Listings 15.1 and 15.2 present both versions of the script so that you can decide for yourself

which approach is preferable.

Listing 15.1 Method 1: “Lop off” the Top Element of the Array

Go to Layout [“CamperInfo” (CamperInfo)]
Go to Record/Request/Page [First]
Loop
 Set Variable [$sportArray; Value: CamperInfo::SportArray]
 Loop
 Exit Loop If [ValueCount ($sportArray) = 0]
 Go to Portal Row [Select; Last]
 Set Field [CamperSport::Sport; GetValue ($sportArray; 1)
 Set Variable [$sportArray; Value: Let (count =
 ➥ValueCount($sportArray);
 ➥RightValues ($sportArray; count-1))
 End Loop
 Go to Record/Request/Page [Next; Exit after last]
End Loop

ptg8106388

Advanced Calculation Techniques424

III

PA
RT

Notice that in line 8, the first element of the SportArray field is pushed through the portal, where it

becomes a record in the CamperSport table. In the next line, the $sportArray variable is then reset

to be everything after the first line. It gets shorter and shorter with each pass through the loop, until

finally there aren’t any more items to process, concluding the inner loop.

Listing 15.2 Method 2: Walk Through the Elements One by One

Go to Layout [“CamperInfo” (CamperInfo)]
Go to Record/Request/Page [First]
Loop
Set Variable [$counter; Value: 1]
 Loop
 Exit Loop If [$counter > ValueCount (CamperInfo::SportArray)]
 Go to Portal Row [Select; Last]
 Set Field [CamperSport::Sport;
 ➥GetValue (CamperInfo::SportArray; $counter)
 Set Variable [$counter; Value: $counter + 1]
 End Loop
 Go to Record/Request/Page [Next; Exit after last]
End Loop

Again, the main difference in this method is that the inner loop steps through the elements of the

SportArray field based on a counter variable.

 The “ FILTER ”-ing Functions
The Filter and FilterValues functions, introduced in FileMaker 7, are nifty tools for complex text

comparison and manipulation. The following sections provide an example of each.

 The Filter Function
The syntax for the Filter function is as follows:

Filter (textToFilter; filterText)

The filterText parameter consists of a set of characters that you want to “protect” in

textToFilter . The output of the Filter function is the textToFilter string, minus any charac-

ters that don’t appear in filterText . For example:

Filter (“This is a test” ; “aeiou”) = “iiae”

Here, the filter is the set of five vowels. Therefore, the output from the function contains all the vow-

els from the string “This is a test” . The filter is case sensitive, so if you want to include both

uppercase and lowercase vowels in your output, you have to make the filterText parameter

aeiouAEIOU . The output is ordered according to the order in which characters in the filter are found

in the first parameter. The order of the characters in the filter itself is irrelevant.

ptg8106388

425The “Filter”-ing Functions

15

C
H
APTER

The Filter function is useful any time you want to constrain the domain of possible characters that

a user can enter into a field. The most common use of Filter , therefore, is as part of an auto-entry

calculation for text fields. Figure 15.6 shows the auto-entry options dialog for a field named Phone.

Note that the option Do Not Replace Existing Value of Field (If Any) has been unchecked. That

means the auto-entry calculation does not trigger only when the record is created, but also when

the Phone field is modified. Essentially, this means that whenever a user modifies the Phone field,

the result of the specified calculation formula immediately replaces his entry.

 Figure 15.6
 The Filter function is often used as part of the auto-entry
of a calculated value.

You can use the Filter function as part of the auto-entry calculation for the Phone field to remove

any non-numeric characters entered by the user. A nice thing about the Filter function is that

you don’t need to anticipate all the incorrect things a user can enter (text, punctuation, spaces), but

rather you can specify what the acceptable characters are. The actual function you use to reformat

the user’s entry in the Phone field depends on your needs and preferences, but one option would be

the following:

Let ([
 ph = Filter (Phone; “0123456789”);
 len = Length (ph) ;
 areaCode = Case (len = 10; Left (ph; 3); “”);
 exchange = Case (len = 10; Middle (ph; 4; 3); Left (ph; 3)) ;
 end = Right (ph; 4)];

ptg8106388

Advanced Calculation Techniques426

III

PA
RT

 Case (
 len =10 ; “(“ & areaCode & “) “ & exchange & “-” & end ;
 len =7 ; exchange & “-” & end ;

 “Error: “ & TextStyleAdd (Phone ; Bold)
)
)

The formula starts by stripping out any non-numeric characters from the user’s entry. Then, if the

length of the remaining string is either 7 or 10, the number is formatted with punctuation and

returned to the user. If it’s not, the function shows the user an error message, complete with the

original entry presented in bold text.

 The FilterValues Function
The FilterValues function is similar to the Filter function,

except that it filters the elements in one return-delimited set by

the elements in a second return-delimited set. When each set

consists of unique elements, the FilterValues function essen-

tially returns the intersection of the two sets. In Figure 15.7 , you

can see that FilterValues returns the items common to the

two sets. Had the two parameters been reversed and the formula

been written as FilterValues (Set B; Set A) , the only dif-

ference would have been the order of the elements in the result-

ing list.

 note
The result list always is ordered
based on the first set. If an ele-
ment appears multiple times in
the first set, and it’s included in
the filter set, it appears multiple
times in the result set.

Set A

coffee

scone

harpsichord

Sigmund Freud

oatmeal

ennui

Set B

coffee

oatmeal

bagel

muffin

scone

FilterValues (Set A; Set B)

coffee

scone

oatmeal

 Figure 15.7
 The FilterValues function returns a
list of all the items of Set A that are
also in Set B.

FilterValues comes in handy any time you want to see whether two lists contain any of the

same elements. For instance, if you’ve defined any extended privileges as part of your secu-

rity settings, you can see a list of all the privileges granted to the current user with the Get

(ExtendedPrivileges) function. If you have some routine that only users with PrivSetA or

PrivSetC should have access to, you can use the formula FilterValues(“PrivSetA+PrivSetC”;

Get (ExtendedPrivileges)) . If the result is not empty, the user has at least one of those two

privilege sets.

As another example, imagine that you are a third-grade teacher and that you have given your stu-

dents a ten-question true/false test. Rather than setting up a related table for their answers, you’ve

ptg8106388

427Custom Functions

15

C
H
APTER

entered all their responses into a return-delimited text field. By also putting the answer key into

a global text field, you can use the FilterValues function to determine the number of correct

answers each student had. Figure 15.8 shows how this might look when you’re finished. The for-

mula for the NumberCorrect field is the following:

ValueCount (FilterValues (TestResults; AnswerKey))

 Figure 15.8
By using the FilterValues
and ValueCount functions, you
can count how many items in
one array are contained within
some other array.

 Custom Functions
In addition to all the wonderful and powerful calculation functions built into FileMaker Pro, you can

create your own custom functions. To create custom functions, you must have a copy of FileMaker

Pro Advanced. Any custom functions you create using FileMaker Pro Advanced remain in the data-

base file and are fully usable when the regular FileMaker Pro client or FileMaker Go application

subsequently uses that file. You just can’t edit the formula of a custom function unless you have

FileMaker Pro Advanced.

As with other objects, such as scripts, tables, and user account information, custom functions live

in a particular file. There is, unfortunately, no easy way to move or import custom functions defined

in one file into another one. The implications of this are obvious: If you have a solution that consists

of multiple files, you have to define custom functions redundantly in all the files that need to access

them, thus complicating maintenance and troubleshooting. This fact shouldn’t scare you off from

using custom functions—they’re really quite wonderful—but it’s certainly a constraint you must be

aware of.

ptg8106388

Advanced Calculation Techniques428

III

PA
RT

Alternatively, if you use several custom functions, you can add a file containing those functions and

relations to the relevant tables in other files. You then just have to reconnect those tables in copies

if you want.

Custom functions created for a particular file show up with all the built-in functions in the list of

functions within the calculation dialog. To see only the custom functions, you can choose Custom

Functions from the filter above the function list. Custom functions are used in a formula just as

any other function. The person who writes the custom function defines the function name and the

names of its parameters.

Uses of Custom Functions
There are several reasons for using custom functions in a solution. Custom functions enable you to

abstract snippets of calculation logic so that they become reusable. Abstracting out bits of logic also

makes your code easier to read and eliminates redundancy.

 Simplifying Complex Formulas
The best place to begin understanding the potential uses of custom functions is with a simple exam-

ple. Imagine that you need to generate a random integer from 10 to 50. Knowing, as you do from

reading Chapter 8 , that the Random function returns a random number between 0 and 1, you eventu-

ally conclude that the following formula solves this particular problem:

Int(Random * 41) + 10

With the problem solved, you write your formula and go on your merry way. Now, imagine that the

next day you come back and discover that you need to write another function that requires a ran-

dom integer from 1 to 6. After a bit more thinking, you come up with the following:

Int(Random * 6) + 1

About this time, you’d be wishing that the engineers at FileMaker, Inc., had thought to create a

function that would return a random integer from x to y . Using FileMaker Pro Advanced, you can

write your own custom functions for situations such as this. Rather than continuing to solve particu-

lar problems, you can solve the general case and never again need to divert your attention to the

particular.

So, what would a generalized solution to the random number problem look like? First, you need to

have some way of abstractly representing the “from” and “to” numbers. Let’s call these two num-

bers lowNumber and highNumber . Then the function that satisfies the general condition would be

this:

Int (Random * (highNumber - lowNumber + 1)) + lowNumber

For any lowNumber and highNumber you feed this function, you get back an integer between the

two. In a moment we’ll look at how you would go about setting this up as a custom function, but

for now the important point is the concept that custom functions, just like the built-in functions you

use all the time, have inputs (called parameters) and an output. Let’s say that you decide to call this

ptg8106388

429Custom Functions

15

C
H
APTER

function randomInRange . Now, to solve the first problem we looked at, finding a random integer

from 10 to 50, you could just use the following function:

randomInRange (10; 50)

And to find a number from 1 to 6, you could use this function:

randomInRange (1; 6)

You’ve simplified your code by replacing a complex expression with a single function, thereby mak-

ing it easier to read and maintain. You’ve abstracted that bit of logic out of whatever larger formula

you were working on, leaving you with one fewer thing to think about.

Custom Functions as System Constants
A few different schools of thought exist regarding when you should write a custom function to

abstract your programming logic and when you should use existing tools to solve the problem. Some

developers hold that you should always write custom functions. Even if you use a given custom

function only a single time, you made your code more modular, thus making it easier to track down

and troubleshoot problems. Plus, if you ever need that function again, it’s there, ready and waiting.

Other developers find that they use custom functions more sparingly. Their attitude is this: If you

find yourself solving a particular problem more than once, go ahead and write a custom function

for it, and go back to change the original occurrence to reference the custom function instead. This

process, often called refactoring as a general programming concept, has a certain pragmatism to it:

Write a custom function as soon as it’s more efficient to do so, but not sooner.

Whatever camp you find yourself falling into, you should be aware of two other common uses for

custom functions. The first is for defining system constants. As an example, imagine that the com-

mission rate is 15% in your sales organization. In calculations where you determine commission

amounts, you might find yourself writing numerous formulas that multiply sales figures by 0.15. If,

heaven forbid, you ever need to change that figure to, say, 0.18, you’d need to sift through all your

code to find all the instances where you had hard-coded the commission figure.

As an alternative, you might consider defining custom functions to represent systemwide constants

such as these. In this example, you would simply have a custom function called CommissionRate that

had no parameters and returned a value of .15 . By abstracting out the hard-coded value, you’re able

to quickly and easily make global changes by editing a single function. You should never refer directly

to the magic number in a formula; use the custom function instead. Other examples of numbers and

strings that should be abstracted out of your formulas include IP addresses, URLs, and colors.

 note
There’s a subtle pitfall here. Note that stored values that reference custom functions do not automatically update when
a custom function definition changes. For example, if you implement a system constant called commissionRate as a
custom function and then go on to create one or more stored calculations that reference commissionRate , the values
in those calculations do not update if you later redefine commissionRate to be 18%. The same would hold true of
data that’s auto-entered into a field. If you want these stored values to take account of the new commission rate, you
have to force the fields to explicitly refresh their contents—perhaps by using a field for rate.

ptg8106388

Advanced Calculation Techniques430

III

PA
RT

 Creating Recursive Functions
The final common situation in which custom functions are used is for making recursive functions.

One of the limitations often lamented by developers over the years has been the fact that you can’t

create looping constructs within calculation formulas. That is, you can’t instruct a regular calculation

formula to keep doing something until some condition holds.

Custom functions, on the other hand, can contain recursive logic, which mimics the effects of a

looping control structure. This means that a class of problems can be solved only by the creation

of custom functions. This stands in stark contrast to the “custom functions as vehicles for abstrac-

tion” idea discussed previously. As an abstraction tool, custom functions can always be replaced in

a formula by the logic they abstract. No such substitution can be made when dealing with recursive

functions. In those cases, using custom functions is not a convenience; it’s a necessity. In the sec-

tion that follows, we develop and discuss several recursive functions.

 Creating Custom Functions
Now that you understand what custom functions are and why you might want to use them, it’s time

to turn to the mundane subject of how to actually create them. First, recall that custom functions

can be created and edited only with FileMaker Pro Advanced, and that custom functions live in a

specific file. To see a list of custom functions defined in a particular file, and to define new ones,

choose File, Manage, Custom Functions. Figure 15.9 shows the resultant Manage Custom Functions

dialog.

 Figure 15.9
With FileMaker Pro Advanced, you
have access to a Manage Custom
Functions dialog.

Buttons from this dialog enable you to create, edit, and delete a custom function. The dialog shows

the names of the parameters defined for each function, as well as whether a function is available to

all accounts or just those with the Full Access privilege set. When you go to create or edit a custom

function, you’re taken to the Edit Custom Function dialog, shown in Figure 15.10 .

ptg8106388

431Custom Functions

15

C
H
APTER

This dialog is similar in many ways to the standard calculation

formula dialogs, so it shouldn’t seem terribly unfamiliar. The

main difference is the upper-left portion of the dialog where,

instead of seeing a list of fields, you can instead name your func-

tion and its parameters. The restrictions for function and param-

eter names are the same as those for field names: They can’t

contain any mathematics symbols (such as + - * / ^ =); they

can’t contain the word AND , OR , XOR , or NOT ; they can’t begin

with a digit or period; and they can’t have the same name as an

existing function or keyword.
There is no practical limit to the number of parameters you can

define for a function, but most functions require anywhere from

zero to a handful. The order of the parameters is important:

When you use a function and specify the input parameters, they

are interpreted as being in the order in which they are listed in

the Edit Custom Function dialog.
The other significantly new and different portion of this dialog

is the Availability section at the bottom. By default, a function is

available to all user accounts. Any time a user or developer has

access to a calculation dialog, he or she will see and be able to

use all the unrestricted custom functions. The other option avail-

able to you is to restrict the use of the function to only those

users who have the Full Access privilege set. The latter can be

referred to as private functions, and the former can be thought

of as public functions.

 Figure 15.10
You define the parameters and formula
for a custom function in the Edit Custom
Function dialog.

 tip
When you are naming your custom
functions and parameters, we think it’s
best to follow the same naming con-
ventions used in the built-in functions.
The initial letter of each word in a func-
tion name should be capitalized, and
the name should contain no spaces or
other punctuation. Parameters should
be in camel case , with the first letter in
lowercase and the first letter of subse-
quent words capitalized (for example,
numberOfCharacters ,
textString1). Some developers
prefer the function name itself in camel
case as well.

 note
If you find yourself writing a function
that requires more than four or five
parameters, that’s a pretty good signal
that you should break the function down
into two or more smaller functions.

ptg8106388

Advanced Calculation Techniques432

III

PA
RT

If access to a function is restricted, users who don’t have full

access never see that function. If those users ever view a calcula-

tion dialog that references a private function (say, in a script),

<Private function> replaces the name of the function in the

calculation dialog.
You might want to restrict access to a function for several rea-

sons. As you will see in some of the examples in the section that

follows, when you define recursive functions, you often need

to define two functions to accomplish one goal. In those cases,

the first function is often a public function, whereas the other

is restricted, thereby keeping users from accidentally calling it

directly.

Another reason to define a function as private is simply to keep

from confusing novice developers. Your function might not be

documented anywhere, and it might not contain adequate error

trapping to handle improper parameter values. By making the

function private, you reduce the risk that it will be used improp-

erly.

Examples of Custom Functions
We think the best way to learn how to write your own custom

functions is to study examples so that you can get ideas about

uses in your own solutions. Some of the sample functions that

follow might have intrinsic value to you, but the ideas and tech-

niques are more important than the specific formulas. To that

end, following each of the examples presented here, we provide

commentary about the syntax and/or use of the function.

 Hypotenuse (leg1Length ; leg2Length) =
Let ([
 a2 = leg1Length * leg1Length;
 b2 = leg2Length * leg2Length;

 c2 = a2 + b2] ;
 Sqrt (c2)
)

Although FileMaker Pro provides built-in functions for many common mathematical formulas and

operations, a number of common equations are missing. The preceding Hypotenuse function uses

the Pythagorean Theorem (a 2 + b 2 = c 2) to find the length of the hypotenuse of a right triangle

given the lengths of the two legs.

 tip
We find it helpful to place an
underscore or a z (or zz) at the
beginning of the name of private
functions so that they are quickly
and obviously identifiable. The
z or zz at the beginning of the
name of a private field, table,
layout, function, or other object
is a FileMaker convention. The
underscore at the beginning of
the name of a private variable
is a programming convention
in many languages, including
Objective-C.

 note
Declaring a function as private
has no impact on what data is
displayed or accessible to a user.
The functions still do their jobs
and work properly. It’s just the
functions themselves that can’t
be viewed.

ptg8106388

433Custom Functions

15

C
H
APTER

Examples:

Hypotenuse (3 ; 4) = 5

Hypotenuse (5 ; 12) = 13

 NthRoot (number ; root) =
Exp (Ln (number) / root)

This is another example of creating a custom function to provide an abstraction for a mathematical

formula. There is a built-in function that returns the square root of a number but no function that

returns the n th root of a number. The NthRoot function uses logarithms to find this number.

Examples:

NthRoot (8 ; 3) = 2

NthRoot (64; 4) = 4

 Quarter (myDate) =
Ceiling (Month (myDate) / 3)

This function returns the calendar quarter (1–4) of myDate . This function exemplifies the idea of

using custom functions to substitute for code chunks, making your code easier to read and maintain.

The Month function returns a number from 1 to 12, so taking the ceiling of that number divided by 3

yields an integer from 1 to 4.

Examples:

Quarter (“12/11/08”) = 4

Quarter (“4/1/10”) = 2

 WeekEndingFriday (myDate) =
myDate + Mod (6 - DayOfWeek(mydate); 7)

Given a date, this function returns the date of the following Friday. This sort of functionality is often

necessary in time-tracking systems so that you can summarize records by week. It would be easy

to alter or extend this function to be referenced to some day other than Friday. To extend it, you

would just specify a second parameter in the function and replace the hard-coded 6 (which is the

DayOfWeek of any Friday) with a value derived from the parameter.

ptg8106388

Advanced Calculation Techniques434

III

PA
RT

Examples:

WeekEndingFriday (“3/30/2013”) = “4/5/2013 // the 30th is a Saturday

WeekEndingFriday (“3/24/2013”) = “3/29/2013 “ // the 24th is a Sunday

 RepeatText (text ; numberOfRepetitions) =
text & Case (numberOfRepetitions>1; RepeatText (text; numberOfRepetitions - 1))

This is the first example of a recursive function. The RepeatText function returns n repetitions

of the text string passed in the first parameter. For instance, RepeatText (“t”; 3) returns the

string ttt . If the concept of recursive functions isn’t clear to you, this is a good place to begin

experimenting. Figure 15.11 traces through exactly what the function is asked to do when it

evaluates this simple example. RepeatText (“t”; 3) is first evaluated as t and the result of

RepeatText (“t”; 2) .

RepeatText(“t” ; 3) =

”t” & RepeatText(”t” ; 2)

”t” & RepeatText(”t” ; 1)

”t”

 Figure 15.11
This diagram shows how the recursive custom function
RepeatText (“t” ; 3) is evaluated.

Of course, the latter is then evaluated as t and the result of

RepeatText (“t” ; 1) , which is simply t . The iteration stops

at this point because numberOfRepetitions is not greater than

1. This is known as the function’s exit condition ; without one,

you have endless recursion (picture a dog endlessly chasing its

tail), which fortunately FileMaker Pro is smart enough to recover

from after some large number of iterations.
Possible uses of the RepeatText function include creating prog-

ress bars or bar graphs. If you ever tried to do this sort of thing in previous versions of FileMaker,

you know what a kludgy workaround was required to get a repeating string of characters. Another

use is for padding out spaces when generating fixed-length data formats. Say that you need to

pad out a FirstName field to 15 characters by adding spaces at the end. In previous versions of

FileMaker, you would have used this formula:

Left (FirstName & “ “ ; 15)

Using RepeatText , you could simply use this:

FirstName & RepeatText (“ “ ; 15 - Length(FirstName))

 caution
Be sure that any recursive func-
tion you write has some exit
condition that is guaranteed to
be reached.

ptg8106388

435Custom Functions

15

C
H
APTER

Of course, if you have a lot of padding to do, you might decide to abstract this one more layer and

build the PadCharacters function shown next.

Examples:

RepeatText (“|” ; 10) = “||||||||||”

RepeatText (“hello”; 3) = “hellohellohello”

 PadCharacters (text ; padLength; characterToPad;
 side) =

Let ([
 padString = RepeatText (characterToPad; padLength - Length(text));
] ;
Case (
 Length (text) > padLength ; Left (text; padLength);
 side = “start”; padString & text;
 side = “end”; text & padString
)
)

Building on the preceding example, the PadCharacters function pads either leading or trailing

characters onto a string. We used four parameters here to gain flexibility. The third and fourth

parameters specify, respectively, the pad character and whether the padding should be at the start

or end of the string. If you knew you always wanted to pad leading zeros, you could define this

function with just two parameters and then hard-code the location and character within the formula.

Notice that this function makes a call to the RepeatText function to generate the padString . We

could have included the formula for RepeatText , but by abstracting it out, we centralize the code

for RepeatText (making it easier to troubleshoot) and also make the formula easier to read.

Examples:

PadCharacters (“foo”; 8 ; “x”; “end”) = “fooxxxxx”

PadCharacters (“123”; 10; “0”; “start”) = “0000000123”

 TrimChar (text; removeCharacter; location) =
// valid locations are “start”, “end”, “all”
Let ([
 leftChar = Left (text; 1);
 rightChar = Right (text; 1);
 remainderLength = Length(text) -1

ptg8106388

Advanced Calculation Techniques436

III

PA
RT

] ;
Case (
 (location = “start” or location = “all”) and leftChar = removeCharacter;
 TrimChar (Right(text; remainderLength) ; removeCharacter; location) ;
 (location = “end” or location = “all”) and rightChar = removeCharacter;
 TrimChar (Left(text; remainderLength) ; removeCharacter; location) ;
 text
)
)

FileMaker Pro’s built-in Trim function removes any leading and trailing spaces from a text string.

Sometimes, however, you might need a more generalized way of removing a specific leading or trail-

ing character from a string. The TrimChar function does just this. The first parameter is the string

you want trimmed; the second is the character you want removed. The third parameter, location ,

specifies whether you want the character removed from the start or the end of the string, or from

both. Valid inputs are start , end , and all .

This function works by checking whether the first or last character in the string needs to be lopped

off. If so, the remainder of the string is fed back recursively to itself. Each iteration removes at most

a single character; the “loop” continues until no more characters have to be removed, at which

point the shortened text string is simply returned.

Examples:

TrimChar (“xxThis is a testxxx”, “x”, “all”) = “This is a test”

TrimChar (“Another test¶¶¶”, “¶”, “end”) = “Another test”

 CrossProduct (array1; array2) =
_CrossProductGenerator (array1; array2; 1)

This, the final custom function example, looks at a more complex recursive function. In the recursive

examples shown previously, the exit condition for the recursion was based on either an explic-

itly passed parameter reaching a certain value (RepeatChar) or a condition no longer being true

(TrimChar). Other situations exist in which you want to be able to increment a counter with every

iteration and base the exit condition for the loop on that counter reaching some threshold. The inter-

esting part is that because the counter has to be passed along from iteration to iteration, it must

be defined as a parameter. This means, however, that anyone using the function must initialize the

counter for you, most likely setting it to 1.

The other solution is that you have a private function with a counter parameter called by a public

function without one. In this case, the public function CrossProduct takes only two parameters,

both expected to be return-delimited arrays. The function is defined merely to call another function,

_CrossProductGenerator , which has three parameters. The first two inputs to

_CrossProductGenerator are simply passed along based on the user’s input. The third, however,

is hard-coded to 1 , hence initializing a counter used there.

ptg8106388

437Custom Functions

15

C
H
APTER

The syntax for the private function is as follows:

_CrossProductGenerator (array1; array2; counter)

It has the following formula:

Let ([
 array1count = ValueCount (array1);
 array2count = ValueCount (array2);
 limit = array1count * array2count;

 pos1 = Ceiling (counter / array2count) ;
 pos2 = Mod (counter - 1; array2count) + 1;

 item1 = TrimChar (MiddleValues (array1; pos1; 1); “¶” ; “end”);
 item2 = TrimChar (MiddleValues (array2; pos2; 1); “¶” ; “end”)
] ;

Case (counter <= limit ;
 item1 & item2 & “¶” & _CrossProductGenerator (array1; array2; counter + 1))

)

The cross-product of two sets is a set containing all the two-element sets that can be created by

taking one element of each set. For example, if Set1 contains { A, B }, and Set2 contains { P, Q, R, S },

their cross-product would consist of { AP, AQ, AR, AS, BP, BQ, BR, BS }. The number of elements in

the cross-product is the product of the number of elements in each of the two sets.

The _CrossProductGenerator function “loops,” incrementing a counter as it goes, until the

counter is no longer less than the number of elements expected in the result set. Each time it iter-

ates, it figures out what element number to grab from each list. With Set1 and Set2 of the example,

the function would iterate eight times. If you were on iteration 5, the function would realize that it

needed to grab the second item from the first list (because Ceiling (5 / 4) = 2), which is B,

and the first item from the second list (because Mod (4; 4) + 1 = 1), which is P. That’s how BP

becomes the fifth element of the result set.

Notice also that this function, in addition to recursively calling itself, also calls the TrimChar func-

tion created earlier in this section. From the section on working with arrays, you’ll remember that

the LeftValues , MiddleValues , and RightValues functions return a trailing return after the item

list; that trailing return has to be removed before the item is processed.

Examples:

CrossProduct (“A¶B¶C” ; “1¶2¶3¶4”) =
“A1¶A2¶A3¶A4¶B1¶B2¶B3¶B4¶C1¶C2¶C3¶C4¶”

CrossProduct (“Red¶Yellow¶Blue” ; “-fish”) = “Red-fish¶Yellow-fish
➥¶Blue-fish¶”

ptg8106388

Advanced Calculation Techniques438

III

PA
RT

 GETNTHRECORD
GetNthRecord merits its own discussion. In general, in FileMaker, if you are situated on one record

and you want to see data from some other record, you need a relationship of some kind. This is

intuitive; if you are on, say, a customer record and want to see data from an invoice, you need some

kind of relationship between Customer and Invoice to accomplish this task. But this has also been

true if you want to see data from somewhere else in the same table.

However, relational access has never covered all the possible scenarios in which you might want

to access data from other records. What about when you’re situated on a customer record, and you

also want to know the names of the customers immediately before and after the current record? Or

what if, when you’re looking at a set of related invoices from the viewpoint of a customer, you want

to get some specific information from the second related invoice record, or the third? It has always

been possible to do these things in previous versions of FileMaker, but it has sometimes involved

some cumbersome techniques. GetNthRecord solves these problems as well as a number of others.

Its syntax looks like this:

GetNthRecord(fieldName; recordNumber)

Here, fieldName is the name of a field in the current table or a related table, and recordNumber is

the number of the specific record from which to fetch data. Let’s look at some examples:

GetNthRecord(CustomerName; 17)

returns the value of the CustomerName field in the seventeenth record in the found set in the cur-

rent table. The two expressions

GetNthRecord(CustomerName; Get(RecordNumber) + 1)

and

GetNthRecord(CustomerName; Get(RecordNumber) - 1)

return the value of the CustomerName field from the records immediately succeeding and preceding

the current record, respectively.

GetNthRecord(InvoiceLineItem::ProductName; 3)

returns the product name from the third line item related to a given invoice.

These applications are useful enough, but when you use some other advanced calculation tech-

niques, some very interesting things are possible. For example, you’ll often see cases in which

you want to collect or aggregate non-numeric data from some set of records. Say, for example, you

wanted to extract the personal names from a found set of records and present them in a comma-

separated list. In the past, it would have been necessary to write a looping script to run through all

the records and collect the results into a list. In FileMaker, a recursive custom function that invokes

GetNthRecord can accomplish the same thing more economically. Consider a function that looks

like this:

allNames(recordNum, currentList)

ptg8106388

439GetNthRecord

15

C
H
APTER

Consider its definition as shown here:

Case(recordNum > Get (FoundCount); currentList;
allNames(recordNum + 1; currentList &
Case(recordNum > 1; “, “; “”) & Evaluate(“GetNthRecord (name ;” &
➥recordNum & “)”)))

Initially, you’d need to call this function with a recordNum value of 1 and a currentList value

composed of an empty string. From there, the function keeps calling itself until recordNum is equal

to the current found count. With each fresh function call, the value of the name field returned by

GetNthRecord is appended to the list, and the list is passed back into the function again for the

next iteration.

Note that it was necessary to use the Evaluate function here. The reason is that a custom function

cannot directly access record data, such as the name field. Without the Evaluate function, when

you attempt to save the function definition, FileMaker warns you that the name name is unknown.

As a result, you have to build up the call to GetNthRecord as a text string, incorporating the current

value of recordNum , and then pass that entire text string off to the Evaluate function.

As written, the function is designed to operate on data within the current table. It’s rather limited

in that sense, and we could certainly recast the function to be more extensible. It might be better

to determine the total count of records from somewhere outside the function and pass that in along

with the name of the field to be aggregated. Such a function might be called like this:

aggregateRecords(field; start; end)

And it might be defined something like this:

Case (start <= end ; GetNthRecord (field ; start) &
➥Case (start < end; “¶”; “”) & GetRelated (field ; start+1 ; end) ; “”)

In this case, you need to decide for yourself what the end value would be; this is simply the total

number of records you’re trying to aggregate, and it could be the result of a Get(FoundCount) on

the current file or a Count() operation against a related file. The function needs to be called with a

start value of 1, unless you want to begin aggregating from a later record for some reason. So, a call

to this function would look like this:

aggregateRecords(firstName; 1; Get(FoundCount))

This would aggregate the firstName field across all the records in the current found set of the cur-

rent table.

A recursive custom function, with or without an Evaluate , is probably one of the more complex

pieces of coding you would need to do in FileMaker, but the results can be quite striking.

ptg8106388

Advanced Calculation Techniques440

III

PA
RT

 Troubleshooting

Text Formatting in Nontext Calculations
I want some of my dates to come out in red. I created some calculations that apply text formatting to

certain dates, but they just don’t work.

For a calculation containing text formatting functions to work correctly, the calculation must have

an output type of Text or Number. Calculations defined to output a data type of Date, Time, or

Timestamp will not show the effects of text formatting calculations.

However, if you use conditional formatting and the Self function, you can perform the necessary

manipulation regardless of the field type.

Naming Variables in Let Functions
Can I use spaces in the names of variables used in Let functions? Are the variable names case

sensitive? What happens if I give a Let variable the same name as an existing field name, variable

name, or function name?

First off, yes, you can use spaces in the names of variables used in Let functions. Variable names

can’t begin with numbers, nor can they contain certain reserved characters (such as ; , \ / + - * = ()

[] < > & and). You can, however, use characters such as $ and % in variable names.

Some complexity arises when we look at the possible use of script variables (variables beginning

with $ or $$) within Let statements. We explore this complex topic in the following chapter. For

now, suffice it to say that because various parts of a Let statement can work with script variables,

you should avoid using $ or $$ in naming any of your Let variables.

Variable names within Let statements are not case sensitive. You can use a particular name several

times within a function, and names can also be reused in separate functions.

There are no restrictions against giving variables the same names used for fields and functions. Be

aware that any subsequent use of the name within the function refers to the local variable, not the

field or function. With most functions, you don’t need to worry about this, but names of functions

that don’t take parameters, such as Random , WindowNames , and Pi , should not be used for variables

within a Let function. For instance, the formula Let (Pi = “Hello”; Pi) would return the string

Hello , not the trigonometric constant pi that you might expect. As a rule, it’s wise to avoid any

overlap of names with reserved FileMaker names or names of objects elsewhere in the system. Even

if the logic works, it might be confusing and hard to read.

 Working with Arrays
I use arrays that have pipe characters as delimiters. Can I use the “values” functions to extract ele-

ments from these arrays?

The five “values” functions (ValueCount , LeftValues , MiddleValues , RightValues , and

GetValue) operate only on return-delimited lists of data. If you have lists delimited by other charac-

ters, such as pipes or tabs, you would first need to do a substitution to change your delimiter into a

ptg8106388

441FileMaker Extra: Creating a Custom Function Library

15

C
H
APTER

return. For example, if myArray is a pipe-delimited array, you could count the number of values in it

with the following formula:

Let (tempArray = Substitute (myArray; “|”; “¶”); ValueCount (tempArray))

Of course, one of the reasons you might not have used returns as your delimiter in the first place is

that your data elements could possibly contain return characters. If that’s the case, you can’t swap

in returns as your delimiters and expect the structure of the array to remain unchanged. Before turn-

ing pipe characters into carriage returns, turn any existing carriage returns into something else—

something that’s guaranteed not to be found in an element and that’s easy to turn back into a return

character if necessary. You might, for instance, use the Substitute function to turn returns into the

string ***RETURN*** .

FileMaker Extra: Creating a Custom Function
Library

If you or your organization uses custom functions across several solutions, you’ll likely want to cre-

ate some sort of centralized library of the functions you develop. That way, when you find yourself

in need of a particular function, you won’t have to rack your brain remembering where you used

that function before. In addition, centralizing the function library is one way to create a knowledge

base that can help your organization leverage its past work and can aid in the training of new devel-

opers.

Your library can take many forms. One option, of course, is to create a FileMaker Pro file for your

function library. Minimally, you’ll want to include fields for the function name, its parameters, its

formula, and a brief description. You might also use a container field to store a sample file for a par-

ticular function. Another “nice to have” is a related table for storing information about where you

used the function.

As of the time of this writing, there’s no way to move custom functions from one file to another

using tools in the FileMaker product line, although cutting and pasting formulas to and from the

library isn’t terribly time-consuming. Custom functions are, however, part of the Database Design

Report (DDR) that you can produce with FileMaker Pro Advanced. If you’re handy with XML or are

looking for a fun first XML project, you might want to use the XML output of the DDR to create your

function library.

Finally, if you always want to have a particular set of custom functions in your files, create a sparse

template file that has them in it. Then, rather than creating new files from scratch, you can just

duplicate and develop on top of your template.

 Matching Multiple Values
As you saw in Chapter 2 , “Using FileMaker Pro,” the Quick Start screen lets you filter the various

Starter Solutions by typing in the field at the upper right. This feature is useful, and it can be imple-

mented in a number of ways; the following is one of them.

ptg8106388

Advanced Calculation Techniques442

III

PA
RT

First, create a field (it is usually a global) in a table to contain what is typed into the filter field. This

can be a field in the table itself, and you can use a self-relationship, but it could be a field in another

table. Now you need to create a relationship between the filter field and the field containing the

words you want to filter. The problem is, what operator do you use?

One way to do this is to create a calculation field that contains each word separated by a carriage

return. Because an equijoin matches based on any of the values in a field, this will do the trick. For

example, if the value of the field containing the data is computer furniture , it will match

computer furniture in an equijoin. However, if the data in the field is

computer
furniture

it will match either computer or furniture .

If the field containing the data is called thing , here is the calculation:

thing & ¶ &
MiddleWords (thing ; 1 ; 1) & ¶ &
If (WordCount (thing) >= 2; MiddleWords (thing ; 2 ; 1) ; “”) & ¶ &
If (WordCount (thing) >= 3; MiddleWords (thing ; 3 ; 1) ; “”) & ¶ &
If (WordCount (thing) >= 4; MiddleWords (thing ; 4 ; 1) ; “”) & ¶ &
If (WordCount (thing) >= 5; MiddleWords (thing ; 5 ; 1) ; “”)

This example creates a calculation, each value of which has something to match: the whole name,

the first word, and then, for each of the next words, a value for each word.

ptg8106388

 16

 ADVANCED SCRIPTING
TECHNIQUES

 What Is Advanced Scripting?

Chapter 9 , “Getting Started with Scripting,” presented an introduction to

FileMaker Pro scripting techniques. It covered such topics as error trap-

ping, linking scripts together via subscripts, conditional branching, loop-

ing scripts, and using custom dialogs. You should become familiar with all

these essential scripting techniques.

This chapter explores several additional scripting techniques, includ-

ing working with script variables, and script input/output techniques.

Although we think that everyone can potentially benefit from learning

these techniques, they do require a solid familiarity with general scripting

techniques, calculation formulas, and the Relationships Graph. For this

reason, we have opted to present these as advanced scripting techniques.

 � To put these topics together with advanced layout and calcula-

tion techniques, see Chapter 18 , “Advanced FileMaker Solution

Architecture.”

 Script Parameters
FileMaker 7 introduced script parameters, a means of passing inputs into

a script. FileMaker 8 added to the picture by adding script results , the

capability for a script to output a piece of data after it’s finished executing.

In FileMaker 9, an enhanced script debugger and a significant redesign

of the script-editing interface brought everything together so that a truly

powerful programming language is part of FileMaker.

The capability to move data in and out of scripts is desirable because it

means that scripts can be written more abstractly and thus can be reused.

ptg8106388

Advanced Scripting Techniques444

III

PA
RT

By abstractly , we mean scripts written to solve general problems rather than specific ones. Using

script input/output saves you time, reduces the number of scripts that are necessary in your files,

and makes your scripts easier to maintain.

By abstracting the information, you can create a script that, for example, goes to a layout as

specified by a script parameter. Such a script can replace a multitude of other scripts such as

GoToCustomerLayout , GoToGroupLayout , and so forth. If you are converting an older FileMaker

solution to a current version of FileMaker, you will probably find that you can remove a lot of scripts

by converting them to use parameters (parameterizing them).

Much of what there is to say about script input/output applies equally well to script parameters

(inputs) and script results (outputs). We discuss script parameters first and then delve into a consid-

eration of script results.

 Script Parameters
Before we get into the details of how and why to use script parameters, a short example will

give you a concrete sense of what script parameters are all about and why you want to learn this

information. Imagine that you want to create several navigation buttons that take users to vari-

ous layouts. One way to do this is to create a separate script that’s hard-coded to go to a particular

destination. You would need as many scripts as you have destination layouts, and every time you

wanted to add a new destination, you’d create a new script.

Another way to accomplish this task is to create a generic Navigate script that navigates to a layout

specified by the script parameter passed to it. Then, when setting up the buttons themselves, you

would simply call the Navigate script, specifying the destination as the parameter. This approach

has the advantage of requiring only a single script. To add another destination in the future, you

simply specify the new destination as the parameter. There is no need to add a new script or to edit

the original Navigate script.

It’s clear from this example that extracting hard-coded values from a script and placing them instead

into script parameters has a tangible benefit. Keep this example in mind as you read further about

script parameters.

Parameters Versus Triggers

As you will see in Chapter 17 , “Working with FileMaker Triggers,” there is some overlap
between script parameters and triggers. For example, you can attach a script to a button
and launch a script with a parameter indicating which button has been clicked. With a field,
you can attach a script to it that will be triggered when that field is entered. The trigger can
specify the event and the script to run; it also can set the parameter for the script that indi-
cates what object has been the trigger. In that case, the trigger sets the parameter to Get
(ActiveLayoutObjectName) . There is a certain simplicity in using the trigger because
nowhere do you hard-code the name of the triggering object as you would with a button.
Setting a script parameter automatically rather than hard-coding it is a more durable style of
programming, although it is not possible to do so in every case. For that reason, you must be
aware of both technologies.

ptg8106388

445Script Parameters

16

C
H
APTER

 Specifying Script Parameters
Script parameters can be set in several places: as part of a button definition, as an option for invok-

ing a subscript within the Perform Script script step, or as part of the definition of a custom

menu item. Figure 16.1 shows the first of these: the dialog for specifying which script should run

when a button is clicked. The interface for specifying a subscript is the same; it, too, gives you a

place to specify a parameter when calling a script.

 Figure 16.1
When attaching a script to a button, you can also specify an
optional script parameter, which is passed into the script.

At the bottom of this dialog, you have the option to specify a script

parameter. The parameter can be some text string you type into

the space provided, or you can enter a calculation formula as the

parameter. Clicking the Edit button brings up a standard calcula-

tion formula dialog. If you use a calculation formula as your script

parameter, when the button (or subscript) is triggered, the formula

is evaluated and the results are used as the parameter.

The actual string or formula you use as your parameter completely

depends on what you’re trying to accomplish. Later in this section,

you see some sample applications of script parameters.

Retrieving a Script Parameter
The Get(ScriptParameter) function can be used to retrieve the

value of the parameter passed to a script. If no parameter was

 note
Only scripts launched by buttons
or triggers, launched through
Custom Web Publishing, or
called as subscripts of other
scripts can have script param-
eters passed to them. Scripts
launched through the Scripts
menu or as startup/shutdown
scripts (under File, File Options)
cannot have script parameters
passed to them.

ptg8106388

Advanced Scripting Techniques446

III

PA
RT

specified, this function simply returns an empty string. The value of the script parameter can be

accessed anywhere from within the script in this way. It can’t be changed or altered in any way,

and it expires as soon as the script is complete.

Any subscripts called by a script can have their own independent script parameters; they do not

inherit the parameter of the script that calls them. As an example, say that the string abc was

designated as the parameter to be passed to a script called Main Script. Assume further that Main

Script called a subscript called Child Script as its second step, and that the parameter xyz was

specified as part of the Perform Script step. Within Main Script, Get(ScriptParameter) always

returns abc . Within Child Script, Get(ScriptParameter) always returns xyz .

The parameter passed to a script can be the result of a calculation, so by using

Get(ScriptParameter) as the script parameter, as shown at the bottom of Figure 16.1 , you can

pass a script’s parameter down to the subscripts it calls.

 Passing Multivalued Parameters
The interface for specifying script parameters allows only a single value to be passed to a script.

For many situations, that is sufficient to achieve the desired outcome. Other times, however, you

will find that you want to be able to pass multiple parameters to a script. Although this isn’t directly

possible, there are several methods to achieve such a result.

Parsing a Text Array

The simplest way to pass multiple values in a script param-

eter is to specify a delimited array as the script parameter. For

instance, if you wanted to send a parameter that contained

the values Fred , 123 , and Monkey , you could send the string

Fred|123|Monkey , or even Fred+123+Monkey .
To retrieve a portion of the passed parameter, use the built-in

text-parsing functions of FileMaker Pro. If you’ve used carriage

returns as your array delimiter, the GetValue function is the

easiest way to extract a particular value. Say that you want to

grab the third value from within your script, any time you wanted

access to this value, you would use the following formula:

GetValue (Get (ScriptParameter) ; 3)

 � For more details on text-parsing functions, see Chapter 8 , “Getting Started with Calculations,”

and Chapter 15 , “Advanced Calculation Techniques.”

 note
The delimiter you use (here
we’ve used pipe characters and
carriage returns) is up to you;
just choose something you know
won’t be found in the data you’re
passing.

ptg8106388

447Script Parameters

16

C
H
APTER

The nice thing about using delimited lists to pass multiple values

is that you can set them up easily. Even if some of the values are

derived as calculated results, it’s still quite easy to set up a formula

that concatenates all the appropriate pieces together. For instance,

if you wanted to pass the current layout name and the current time

as the two values of your script parameter, you would use the fol-

lowing formula:

Get (LayoutName) & ¶ & Get (CurrentTime)

 Using the Let Function

Another method for passing multiple values in a script parameter

involves the Let and Evaluate functions. If you have a good understanding of those functions,

you’ll likely appreciate the elegance of this technique.

 � For more information on the Let and Evaluate functions, see “Logical Functions,” p. 407 .

Imagine that you pass as your script parameter the following string:

“First Name = \“Fred\“; Favorite Number = 123 ; Favorite Animal = \“Monkey\“”

What you have here is a set of name/value pairs, separated by semicolons. Immediately you can see

one of the benefits of this method over the previous one: When you pass both names and values,

the parameter becomes more meaningful. In six months when you need to troubleshoot or enhance

your script, you won’t have to rack your brain to remember what the elements in your parameter

represent. Another benefit of this method is that the order of the values doesn’t matter. They’re

retrieved by their name rather than by their position within the parameter.

You’ll notice that within the parameter are backslashes before all the internal quotation marks.

This process, known as escaping your quotes, is necessary any time you want to pass a string that

contains internal quotation marks. For this technique, you need to escape the quotation marks sur-

rounding any text values in your parameter; numeric values (such as the 123) do not need quotation

marks and hence don’t need to be escaped.

You might recognize that the parameter specified previously is structured similarly to the first

parameter of a Let function. This isn’t a coincidence. Recall that the Let function allows you to set

variables within a calculation formula. Imagine you had the following formula:

Let ([First Name = “Fred”;
 Favorite Number = 123 ;
 Favorite Animal “Monkey”
]
 ;
Favorite Animal)

 note
The main drawback of this
method is that the burden is
on you, the developer, to know
what each position in the array
represents. There’s nothing in
the parameter itself that offers
any assistance. This can (and
should!) be clarified with script
and/or calculation comments.

ptg8106388

Advanced Scripting Techniques448

III

PA
RT

This formula sets three variables (First Name , Favorite

Number , and Favorite Animal) and then returns the value of

the Favorite Animal variable. It would, in fact, return Monkey .

By combining the Let and Evaluate functions, you can build a

formula that pulls out a named value from within a script param-

eter. The Evaluate function executes a dynamically constructed

calculation formula. Therefore, within your script, any time you

want to retrieve the value of the variable Favorite Animal , you

would use the following formula:

Evaluate (“Let ([“ & Get(ScriptParameter) & “];
➥Favorite Animal)”)

As you can see, a string containing a Let function is dynamically

assembled from the value of the script parameter. The Evaluate

function is used to execute it. To return one of the other variables

within the script parameter, you would simply need to change the end of the formula to reference

the proper variable name.

 � You need FileMaker Pro Advanced to create custom functions. For more details on creating cus-

tom functions, see “Custom Functions,” p. 427 .

 tip
If you foresee a need to do much
parsing of multivalued script
parameters, you should consider
creating a custom function to
simplify the process even more.
That way, you won’t have to
remember the syntax for the
Let and Evaluate functions
every time you need to retrieve
a parameter value. Figure 16.2
shows the definition for a custom
function called GetParam .

 Figure 16.2
The custom function GetParam abstracts
the script parameter-parsing routine even
more.

ptg8106388

449Script Parameters

16

C
H
APTER

The GetParam function takes a single argument, paramName . The formula for the function is the

same as the Evaluate formula shown previously, but with the paramName inserted in the place of

the hard-coded parameter name:

Evaluate (“Let ([“ & Get(ScriptParameter) & “]; “ & paramName & “)”)

Now, within your script, to retrieve the value of the variable Favorite Animal , you just need the

following formula:

GetParam (“Favorite Animal”)

This final abstraction provided by the GetParam custom function certainly makes the parameter

parsing more convenient. After it’s in place, you can pass and retrieve multivalued script parameters

with ease.

Passing Structured Data Elements in the Style of XML
The final method in this discussion for passing multivalued script parameters involves creating your

own structured data elements. It’s really a hybrid of the other two methods in that it requires stan-

dard text parsing to retrieve an element (like the first method), but the elements are meaningfully

named (as in the second method).

The syntax you create for naming elements is up to you. We generally prefer an XML-like structure

because it’s easy to use and organize. For instance, to pass the same three values discussed in the

preceding section, you might specify the following as your script parameter:

“<First Name>Fred</First Name><Favorite Number>123</Favorite Number><Favorite
Animal>Monkey</Favorite Animal>”

This is, of course, simply another way of specifying element names and values. But you don’t

need to worry about escaping any quotation marks, as you do with a string that will be used in

an Evaluate statement. To retrieve the value of a particular element of the script parameter, you

would need to use standard text-parsing functions. This is best accomplished with the creation of a

custom function; you then need to write the parsing logic just once. The following formula could be

used as the definition for such a custom function; the function’s only parameter is paramName :

Let ([
 openElement = “<” & paramName & “>”;
 closeElement = “</” & paramName & “>” ;

 startPos = Position (Get(ScriptParameter) ; openElement ; 1; 1) +
 ➥Length (openElement);
 endPos = Position (Get (ScriptParameter) ; closeElement ; 1; 1)] ;

Middle (Get(ScriptParameter) ; startPos ; endPos - startPos)
)

ptg8106388

Advanced Scripting Techniques450

III

PA
RT

If this function were called GetParamXML , the value of one of the

script parameter elements could then be retrieved with the func-

tion GetParamXML(“First Name”) . The custom function is hard-

coded to parse out a value from a script parameter.

Strategies for Using Script Parameters
Using script parameters can greatly reduce the number of scripts

in a file and can make your database much easier to maintain. You should consider using script

parameters in several common programming scenarios.

 Modularizing Scripts
The first—and most important—reason for using script parameters is to add a layer of abstraction to

your scripts, thereby making them more modular and reusable. Instead of writing scads of single-

purpose scripts, if you can generalize your scripts by using script parameters, you will need fewer

scripts and your solution will be easier to maintain.

You will know if you have encountered a situation that can potentially be simplified and strength-

ened by using script parameters if you find yourself writing several scripts that do basically

the same thing, differing only in some specific value. In place of that specific value, use Get

(ScriptParameter) and then have the buttons or other scripts that trigger the script specify the

particular value.

For example, say that you’ve developed a system that contains a calendar and that one of your lay-

outs shows all the scheduled appointments for a given week. You’d like to be able to place a button

above each of the seven days of the week (Sunday through Saturday) that users can click when they

want to create a new appointment on that particular day. Assume that you have a field that con-

tains the date of the Sunday of the week. Therefore, a script that would create a new appointment

on Wednesday would do something like the following:

New Record/Request
Set Field [Appointments::AppointmentDate ; SundayDate + 3]

The scripts for creating appointments on the other days of the week would differ from what’s shown

in the preceding formula only by the constant that’s added to the SundayDate . You could therefore

write seven scripts, link them to your buttons, and move on to your next task.

We hope you can already see how and why script parameters can be used here. In the sample

script, if you change the + 3 to + Get (ScriptParameter) , you need only a single script to do the

work of the seven required without script parameters. Each of the seven buttons calls the generic

version of this Add Appointment script, passing as a parameter an integer from 0 to 6 to differ-

entiate them from each other. By using this method, you replaced seven hard-coded scripts with a

single generalized one.

 tip
Andy Knasinski has an XML-
parsing custom function posted
at www.briandunning.com/cf/1
that you can explore.

www.briandunning.com/cf/1

ptg8106388

451Script Results

16

C
H
APTER

Passing Data Between Files
Another situation in which script parameters can be beneficial is for passing data between files.

Using script parameters for this purpose saves you from needing to create extra fields and relation-

ships in your files.

As an example, imagine that you have a file called Transactions and another called

TransactionArchive (each with a single table with the same name as the file). You periodically

archive old transactions into the archive file, but occasionally you need to pull a record back from

the archive into the main production file. Further, you’d like to avoid placing a table occurrence from

the archive file in the main file because the two need to be able to function independently.

Because you can call scripts in another file without having a relationship to that file, script param-

eters make an ideal transfer mechanism for moving data between unrelated files. In the sample

scenario, you might set up a script in the TransactionArchive file that calls a subscript in the

Transaction file, passing a multivalued parameter (using one of the methods described in the pre-

ceding section) that contains the pertinent data elements from the transaction. In the Transaction

file, then, your subscript would create a new record and populate it using the parsed-out parameter

data.

In this example, importing the record from one file to the other would have been another solution

within the defined constraints. Nonetheless, this example still clearly demonstrates the role that

script parameters can play in moving data around. It’s certainly preferable to copying and pasting

data, or even parking data in global fields for later retrieval (both of which were common techniques

with versions of FileMaker before version 7).

 Script Results
Script results are, if you like, the flip side of script parameters. A script parameter lets you feed data

into a script; a script result lets you pass data back out of a script. In the past, you might have done

this by putting some data into a global field or a global variable for other scripts to look at later. But

the best choice now is generally to use a script result.

Using a script result is the best choice because the script result is not stored automatically unless

you choose to do so. Thus, a subscript can return a value, and the calling script can test that value

and decide what to do next. If you use a global variable or global field, the value persists after you

test it. In the future, you or someone else might look at the global field or variable and use its value

for an unrelated purpose, possibly jeopardizing the logic of the script that relies on it.

To return a result from a script, you use the Exit Script script step to specify a result to return

when the script exits. Much as when specifying the value for a Set Field or Set Variable script

step, you can create a calculation expression that defines the result to return.

That takes care of how to return a script result. To access the returned result, you have to use the

Get(ScriptResult) function, a sort of twin to Get(ScriptParameter) . Get(ScriptResult)

hands back whatever result was returned by the most recently completed script or subscript.

ptg8106388

Advanced Scripting Techniques452

III

PA
RT

Let’s consider a full example. As we’ve suggested, one of the main reasons to use script input/out-

put is to increase the reusability of your scripts. Consider a solution with a large number of reports.

When you allow users to print reports, it’s common to display the report in Preview mode first,

pause the script, and then, on resuming, pop up a dialog box asking whether the user wants to print

the report. The task of prompting the user for print confirmation might happen over and over again

in a report-intensive solution. Using script results, you can write a single script to query the user

and then return the user’s choice as a script result. Here’s what such a script might look like:

Show Custom Dialog [Title: “Print Confirmation”; Message: “Would you
➥like to print the report?”; Buttons: “Yes”, “No”]
Exit Script [Result: Let (
 [
 msg = Get(LastMessageChoice) - 1;
 choiceText = Choose (msg ; “Yes”; “No”)
];
 choiceText)]

Notice the difference in the Exit Script step. As part of this step, the script specifies that a calcu-

lated result be returned from the script. The calculation looks at the numeric result of the dialog box

choice, converts it into text using the Choose function, and returns the corresponding text result.

To use this script’s modular functionality, another script has to call it. A script to display and option-

ally print a single report might look like this:

Go to Layout [“Report”]
Sort Records [Specified Sort Order: Reporting::Region; ascending]
➥[Restore]
Enter Preview Mode
Pause/Resume Script [Indefinitely]
Perform Script [“Print Confirmation Dialog”]
If [Get (ScriptResult) = “Yes”]
 Print [] [No dialog]
End If
Go to Layout [original layout]
Enter Browse Mode

This script performs all the usual sort of management common to previewing reports: navigating to

a layout, sorting the records in some way, entering Preview mode, pausing for the user to look over

the report. When the user resumes the script, though, the script goes straight into the confirmation

subscript. Thereafter, the outer script uses Get(ScriptResult) to determine the result of the con-

firmation dialog and then prints the displayed report, or not, accordingly.

With such a script, instead of having a dozen print dialogs coded all over your system, you now

have just one. If a user reports a problem with the print dialog, you now know where to start look-

ing. And any changes or improvements made to the print confirmation process immediately benefit

all reports that use this functionality.

ptg8106388

453Script Variables

16

C
H
APTER

Final Thoughts on Script Input/Output
The script input and output capabilities of FileMaker Pro represent a major advance in the capability

to construct streamlined, reusable routines within a FileMaker solution. Mastering the use of these

techniques is critical to getting the most out of FileMaker Pro. We recommend that you study these

features carefully and that you aggressively look for opportunities to use them. Any time a script

does similar work with different input values, consider using script parameters. Any time a script

might be better structured as a tool that does some work and then reports on the results, consider

reporting those results via a script result. Your solutions will become cleaner, simpler, and more

elegant.

 Script Variables
If you’ve worked with other languages or development environments, you’re familiar with a variable

as a type of named, temporary storage. For example, in the PHP programming language, you might

write this:

$x = 7;
$y = 9;
$z = $x + $y;

Here $x , $y , and $z are all variables —temporary storage elements to which values are then

assigned (the $ in PHP indicates that these are variable names, and FileMaker uses a similar con-

vention for variable names). They contrast with the permanent storage of fields in databases. In

later expressions, the variable names stand in for the values stored in them. So, you’d expect that

when the preceding program runs, the variable $z will end up storing a value of 16 .

Often, as you build up a program or routine, you’ll find yourself wanting to rely on named, tempo-

rary storage elements like these. In previous versions of FileMaker, the only place to cache such

data was within FileMaker’s database structures, by putting the data into one or another kind of

field.

Consider the simplistic example of a script that beeps ten times in succession. Previously, you might

have defined a field with global storage to act as a counter and written the script like this:

Set Field [Loop::gCounter; 1]
Loop
 Beep
 Pause/Resume Script [Duration (seconds):1]
 Set Field [Loop::gCounter; Loop::gCounter + 1]
 Exit Loop If [Loop::gCounter > 10]
End Loop

This approach has always worked fine, but it has some drawbacks:

 • Even though the counter field is used only in this script, it has to be defined within the field

definitions for the table as a whole. It will always be there, cluttering up the list, even though it

might apply to only a single script.

ptg8106388

Advanced Scripting Techniques454

III

PA
RT

 • The storage is not as temporary as you would like. The field

gCounter goes on holding its value and being accessible after

the script completes. This is one reason you need to reset

the field to 1 at the start of the script. If the script has run

previously, it might still have its old value of 11 , or it might

have some other value altogether if someone edited the field

directly and stored it in the database.

 About Local Variables
A local variable is one that exists and has meaning only within a

single script—exactly what you want for the loop-counting exam-

ple shown previously. If you were to rewrite the looping script

using script variables, it might look like this:

Set Variable [$counter; Value:1]
Loop
 Beep
 Pause/Resume Script [Duration (seconds):1]
 Set Variable [$counter; Value: $counter + 1]
 Exit Loop If [$counter > 10]
End Loop

Local variables are named using a single dollar sign ($), and they’re created and manipulated using

the Set Variable script step. Figure 16.3 shows the options for the Set Variable script step.

 note
If you are working with a
FileMaker database that has
its roots in the past, you might
encounter a number of global
fields. Converting them to vari-
ables is a routine part of conver-
sion to the current versions of
FileMaker; doing so can make
the databases smaller and the
scripts simpler and most robust.
One of the great recommenda-
tions of variables is that they are
temporary, so they cannot hang
around to take up storage and
confuse future developers who
work on the database.

 Figure 16.3
The capability to set variables is a powerful feature in
FileMaker Pro.

You’ll notice that the Set Variable script step enables you to set the variable’s value dynamically,

using the Specify option. This means that a variable can be used to hold the results of any expres-

sion you can define using FileMaker’s Calculation dialog. You could store the current username, the

current date, or the results of an expression such as $counter + 1 . You’ll note also, by the way,

ptg8106388

455Script Variables

16

C
H
APTER

that variables can be referenced from within such calculations just by using the variable name. For

example, the following are perfectly valid calculation expressions:

$counter + 1

“Name: “ & $userName

If a variable of the specified name is not currently defined, a reference to the variable returns an

empty string (or a null result). The first expression of the preceding two would give a result of 1 ,

whereas the second would give a result of “Name: “ if the respective variables were not defined.

 About Variable Scope
Variable scope is the area in which a variable has meaning and can be accessed. Variables in

FileMaker have one of two kinds of scope: either local scope or global scope.

So far, the variables we’ve examined have local scope. It’s most common to refer to them as

local variables . A local variable exists and has meaning only within the context of a single script.

Consider the example of the $counter variable discussed previously. This variable exists only

within the script in which it’s defined and manipulated. After the script completes, the $counter

variable is undefined and cannot be accessed. Likewise, if you called a subscript from within that

script, the subscript would not have access to the value of $counter contained in the parent script.

 tip
Because local variables exist only within the context of a single script, this can lead to subtle confusion. Consider a
parent script that uses a $counter variable that then also calls a subscript. If you were to try to access the value of
$counter within the subscript, you’d get a null value because you’d be trying to access a variable that had never
been set within the context of the subscript. And if you were to try to set the value of $counter within the subscript
by using the Set Variable script step, this would create a new variable, local to the subscript, with the same name,
$counter . There would consequently be a total of two $counter variables: one local to the parent script and one
local to the subscript. The two exist simultaneously and independently; they don’t conflict, and they don’t affect one
another.

 Local Variables Summary
So, let’s summarize what has been said about local variables:

 • They are set using the Set Variable script step.

 • They must have names beginning with $.

 • They can be referenced within calculation expressions.

 • They are limited in scope to the script in which they are defined (via the Set Variable script

step). Neither subscripts nor parent scripts can access the value of a local variable.

 • They do not appear in the Manage Database dialog.

ptg8106388

Advanced Scripting Techniques456

III

PA
RT

 About Global Variables
Global variables, denoted with a double dollar sign ($$userName , $$currentLayout), share many

features with local variables. The only difference is in their scope. Whereas local variables are lim-

ited in scope to a single script, global variables retain their value no matter what script is running or

whether a script is running at all. They can store values that persist across any or all scripts for the

duration of a user’s session.

The last point bears repeating. Whereas local variables have script scope , meaning that they are lim-

ited in scope to a single script, global variables have file/session scope . Like globally stored fields,

global variables are unique to an individual user: Each user has his own copy of a global variable,

so the variable $$userName can have a different value for each active user. In addition, global vari-

ables cease to exist when a user session ends. If you work with a global variable, quit FileMaker,

and then open the same file again, the global variable will disappear, until some logic in the files

creates it again.

Global variables also have scope only within a single file. There is no way to “reach across” to pull

a global variable’s data from one file into another. Such a thing is , by contrast, possible with glob-

ally stored fields. Global variables from other files cannot be accessed via relationships because they

don’t appear in the field list.

So, what good are global variables? When does it make sense to use them? We recommend that, by

and large, you use global variables for user session data : data specific to one user that is intended

to persist for just that user session. Examples include the name of the currently logged-in user, user

preferences such as a user’s chosen default layout, or any other user-specific data you might be stor-

ing, such as a user department or sales region—particularly when this information is not available

from a database.

Global variables cannot completely obviate the need for globally stored fields. Globally stored fields

have several capabilities not shared by global variables:

 • Globally stored fields can be accessed across files by using relationships.

 • Globally stored fields can accept user input.

 • Globally stored fields can be used to drive relationships.

 • Globally stored fields can be used to store the content of an input field from a custom dialog.

For example, if you were implementing a filtered portal (a portal whose contents change in response

to user input), you would have to use a globally stored field to do so, both because you would need

to capture user input and because you would need to use that input to drive the portal relationship.

Other Ways to Work with Variables
When you’re first starting out with variables, we recommend you try to stick to the following pre-

cepts until you feel you’ve mastered the basics:

 • Use local variables for temporary storage used within the context of a single script.

 • Use global variables to store user-specific session data (with the exceptions noted in the next

point).

ptg8106388

457Script Variables

16

C
H
APTER

 • Use globally stored fields, not variables, to store user-specific session data that must be captured

directly from the user, must drive a relationship, or must be shared heavily across files.

Now that we’ve said all that, if you have mastered the basic concepts of variables, there are some

advanced points to be made about them.

About Dynamic File Paths
There’s another nice feature of variables in FileMaker Pro that’s very much worth mentioning.

Certain script steps, such as Export Records , as well as the Save Records as Excel/PDF script

step, allow you to specify the location of an output file by typing in a file reference. In FileMaker Pro,

that file reference can be taken from a variable, rather than being hard-coded.

If such usefulness isn’t obvious, let it sink in for a moment. In the past, it wasn’t possible to create

names for exported files on the fly: You either had to let the user enter a filename or had to hard-

code a single specific filename into the script step. If you wanted to name exported or saved files

dynamically (say, you wanted to include the current date in the filename), you were out of luck,

unless you chose to use a third-party plug-in.

To save files to a dynamically specified file path, you need to create that file path in your script and

put it into a variable. (The path begins with the user’s desktop, so that is where the file is placed.)

That variable can then be used in specifying a file path, as the following script example illustrates:

Go to Layout [“Contacts”]
Show All Records
Set Variable [$filePath; Value: Let (
 [
 theDate = Get(CurrentDate);
 theYear = Year(theDate);
 theMonth = Month(theDate);
 theDay = Day(theDate);
 dateText = theYear & “_” & theMonth & “_” & theDay;
 filePath = Get (DesktopPath) & “Export_” & dateText
];
 filePath)]
Save Records as PDF [File Name: “$filePath”; Records being browsed]

 Viewing Your Variables
One final note on variables in FileMaker Pro. We’ve made the point a few times that variables are

beneficial in that they don’t add clutter to the database schema: They don’t appear in the Manage

Database dialog, nor do they appear in the field lists that go along with operations such as Sort or

Import Records . There’s a disadvantage to this as well: There’s currently no way to see a list of

all the variables currently active in a FileMaker solution.

ptg8106388

Advanced Scripting Techniques458

III

PA
RT

It is possible to view the values of individual variables in the FileMaker Pro Advanced Data Viewer,

but you must enter the variable names one at a time, as with any other expression.

FileMaker Extra: Recursive Scripts
Chapter 15 discusses how you could make custom functions recursive by including calls to them-

selves within their formulas. In a similar manner, you can use script parameters to create recursive

scripts. Although this isn’t something you need to do on a daily basis, there are some interesting

applications for recursive scripts.

A recursive script is one that calls itself repeatedly until some exit condition is satisfied. Each time

the script calls itself as a subscript, it passes a script parameter that can be used as part of an exit

condition test. In many ways, recursive scripts are quite similar to looping scripts, and many tasks

you can accomplish with one can be done as easily by the other. As an example of a recursive script,

consider this Recursive Add script:

If [Get (ScriptParameter) >= 100]
 Exit Script
End If
New Record/Request
Perform Script [“Recursive Add”; Parameter: Get (ScriptParameter) + 1]

This script adds 100 new records to the current table. It’s first called without a script param-

eter, so the first time through, the script calls itself as a subscript, passing a parameter of 1 .

The parameter increments each subsequent time through until eventually the exit criteria (Get

(ScriptParameter) >= 100) are met.

If there are any steps in the script after the recursive subscript call, they are all executed, from the

inside out, after the exit criteria have been met. Try to predict what would happen if you added the

following steps to the end of the preceding script:

Beep
Show Custom Dialog [“The parameter is:” ; Get (ScriptParameter)]

The 100 records would be created exactly as they were originally. But after they were all created,

you would hear a beep and see a message telling you that the script parameter value is 99. After

clicking OK, you would then hear another beep and see a message telling you that the parameter is

98. This would continue for some time, and eventually the last message you’d see would be that the

parameter is empty, which, of course, was the condition on the first trip through the script.

As a final example of recursive scripting, consider the following script, which flags duplicates

among a set of records. Assume that the set contains a list of names, which has been sorted by

name before this script is called:

If [IsEmpty (Get (ScriptParameter))]
 Go to Record/Request/Page [First]
Else
 Go to Record/Request/Page [Next; Exit after last]
 If [Get (ScriptParameter) = Contacts::Name]

ptg8106388

459FileMaker Extra: Recursive Scripts

16

C
H
APTER

 Set Field [Contacts::DuplicateFlag; “Duplicate”]
 End If
End If
Perform Script [“Mark duplicates”; Parameter: Contacts::Name]

During each iteration through the script, the current record’s name is compared against the value

of the script parameter, which was set to the value of the previous record’s name. The exit condi-

tion here is the Exit after last option on the fourth line; the script continues through the set of

records, stopping only when there’s no next record to go to.

ptg8106388

This page intentionally left blank

ptg8106388

 17

WORKING WITH FILEMAKER
TRIGGERS

 Introducing FileMaker Triggers
Triggers are nothing new to FileMaker or to programming in general.

They are operations (scripts, in the FileMaker world) that run when cer-

tain events occur. These events can be a click in a field, a click out of a

field, a change from one mode to another (Browse to Preview to Layout

to Find), the opening or closing of a

file or window, the selection of a tab,

or a change in a data value. Once the

trigger is established—and that means

defining the action to be taken as well

as the event that causes the trigger to

run—everything works by itself.

FileMaker Triggers Before FileMaker Pro 10

Some triggers have always been present in FileMaker, although the term

was not always used. The previous FileMaker triggers are as follows:

 • Calculations— Like spreadsheets, FileMaker has logic that makes

certain that calculations are updated as needed when fields that they

reference are modified.

 • Lookups— Likewise, FileMaker keeps track of when a Lookup field

needs to be updated.

 note
A trigger is said to “fire” when
the event occurs and the action
is started.

ptg8106388

Working with FileMaker Triggers462

III

PA
RT

 • File Open and Close— You can use File, File Options to specify scripts to run when the file is

opened or closed.

 • Buttons— In Layout mode, you can use Format, Button Setup to attach a script to the selected

interface element (the interface element can be a button, a graphic, or even text).

Triggers in FileMaker Pro Today

As described previously, a trigger consists of an event that, if it occurs, causes a script to run. The

trigger must have both components: Without a script, there is nothing to run, and without the

event, there is nothing to cause the trigger to fire.

 � The scripts associated with triggers are just like any other scripts, although they may use some

new functions, described later in this chapter in “Trigger Functions,” p. 468 .

A trigger has several components:

 • Name— This is the name of the type of trigger, not the name of a trigger associated with a spe-

cific field, button, or the like.

 • Target— This is the thing that is acted upon—a field, a button, a layout, a file, or the like.

 • Event— This is the thing that is done to the target—a tap or mouse click, for example.

 • Timing— This determines whether the trigger fires before the event is processed (but after it has

been initiated) or after the action has taken place. In other words, when an event is intercepted,

is the trigger the first or the last thing to happen? The two values are Pre and Post. For Pre trig-

gers, you can supply a script that returns false (0) to stop the event from occurring. A return

value of 1 lets the event continue.

 • Result— A trigger may have a result. Pre triggers most often will return a result that can deter-

mine whether the action should proceed.

Triggers, FileMaker Pro, and FileMaker Go

Like layouts and the Database Relationship Graph, triggers are created and modified in
FileMaker Pro, but they are active in FileMaker Pro and FileMaker Go.

 Trigger Targets
There are three primary type of targets in FileMaker Pro and FileMaker Go: objects, layouts, and

files. Layouts and files are common concepts, but a precise discussion of trigger object targets is in

order.
In general, trigger objects are objects in layouts that can have

keyboard focus: You can control them from the keyboard. These

objects include fields, portals, web viewers, radio buttons, pop-

ups, buttons, and check boxes. If you can type into it, tab into it,

or activate it with the Return/Enter key, it can obtain keyboard

focus and it can be an object target of a trigger.

 note
This section describes general
behavior; some triggers imple-
ment a subset of these features.

ptg8106388

463Introducing FileMaker Triggers

17

C
H
APTER

These types of objects can have triggers attached to them, but unless the specified event occurs, the

triggers will not fire. This means that if you have a field on a layout that is set not to allow entry, an

associated trigger will not necessarily fire because the event cannot occur.

 Trigger Events
A single user action can trigger a variety of trigger events. For example, clicking in a field in a portal

row can trigger OnObjectEnter events for both the field and the portal, but this is not always the

case. If the portal row is selected (perhaps because another field has been clicked), only the field’s

OnObjectEnter event is triggered. In deciding how to set up your trigger settings, consider what

you really want to capture: events at the field level or events at the portal row level. Perhaps you

want both types of events to fire triggers, but they would probably be very different types of trig-

gers.

A Typical FileMaker Event Handler Chain
Today’s operating systems are generally event driven. At various levels, event handlers (triggers in

FileMaker Pro) can respond to events. Usually, each event handler can pass the event that triggered

it on to the next handler in the chain; it also can stop the chain so that events are dropped. An

example of taps, clicks, and keystrokes demonstrates this. Here is a conceptual view of what hap-

pens to taps, clicks, and keystrokes made to a FileMaker window:

 • The operating system gets to respond. It may decide not to pass certain events along. An exam-

ple of this is a key that increases or decreases speaker volume on a laptop: That keystroke event

goes to the operating system, which adjusts the speaker volume. It is not passed along.

 • If the event is passed along, FileMaker Pro receives that event. Similarly to the speaker volume

keystroke, it may decide that this keystroke should be handled by FileMaker Pro and not passed

along. FileMaker Pro checks to see which layout object should receive the keystroke (if it is in a

field that does not allow entry in the current mode, it is passed along to the containing object).

 • The layout object (such as a field) to which the tap, click, or keystroke was directed can act. If an

OnLayoutKeystroke trigger is installed, it runs. If it returns a result of true, processing contin-

ues with the next step.

 • If there is no OnLayoutKeyStroke trigger or if no layout object received the event, the layout

itself receives the keystroke and fires its own OnLayoutKeyStroke trigger. If it returns a result

of true, processing continues with the next step.

 • Navigation keystrokes are handled by FileMaker (for example, by tabbing into the next field).

Other keystrokes are handled by the active object.

 • If no object has handled the tap, click, or keystroke, FileMaker Pro posts an alert, beeps to indi-

cate that the keystroke is inappropriate, or, in some cases, does nothing. (For example, a tap

or click in a data-entry-enabled field selects it. A tap or click in an already selected field has no

effect.)

Note that if triggers are installed for both layout objects and the layout itself, those triggers can stop

processing of Pre events by returning false as the trigger script’s result. In most cases, the trigger

ptg8106388

Working with FileMaker Triggers464

III

PA
RT

script will perform its own action in response to the keystroke. That action should be a logical and

consistent action. Do not redefine standard modifier keys or keystrokes.

Triggers and Underlying Data
In the case of layout objects, it is clear that the triggers associated with them fire only when some-

one interacts with the layout itself either directly or through a script. However, you may think that

a trigger such as OnObjectModify would be triggered when the object’s data is modified. As you

think it through, you will realize that a trigger such as OnObjectModify will fire only when the lay-

out object itself is modified. A modification to the underlying data (such as displaying the result of a

changed calculation in a field) is not a modification to the layout object itself. (As noted previously,

the updating of the data display is a form of conceptual trigger, but it is not part of the FileMaker

Pro 10 triggering mechanism.)

Triggers and Web Publishing
When Instant Web Publishing (IWP) or Custom Web Publishing (CWP) is used, the FileMaker web

experience is different in one very important way from the basic FileMaker Pro experience: The win-

dow with which the user interacts is a browser window, not a FileMaker Pro window. One of the

important consequences of this is that whereas FileMaker Pro can keep track of user events such as

entering fields and changing data, on the Web, FileMaker sees only the overall result of such events

when a user clicks a Submit button or its equivalent.

Because FileMaker cannot know what the user is doing in browser interactions, triggers on the Web

occur only if the event (such as entering a field) is caused by a script step. Because FileMaker is

running the script (even on the Web), it can know whether a field is entered and can fire a trigger

appropriately.

File Open/Close triggers do fire on the Web because FileMaker has to actually open the file so that it

knows that it has to fire a trigger.

 Attaching Triggers
Triggers can be attached to different objects. The next sections explain how you can attach triggers

to layouts, objects, and windows.

 Layout Triggers
You can attach triggers to layouts using the Layout Setup dialog, as shown in Figure 17.1 .
As you see in the dialog, each event for the layout can have a script attached to it. The combination

of event and script creates a trigger. You can attach only one script to an event, although that script

can call other scripts, as is the case with any script.

The Layout trigger events are shown in Table 17.1 .

ptg8106388

465Attaching Triggers

17

C
H
APTER

 Table 17.1 Layout Trigger Events

 Name Pre/Post

OnLayoutEnter Post

OnLayoutExit Pre

OnLayoutLoad Post

OnLayoutKeystroke Pre

OnModeEnter Post

OnModeExit Pre

OnViewChange Post

OnRecordLoad Post

OnRecordCommit Pre

OnRecordRevert Pre

 Object Triggers
You attach triggers to an object in a layout by selecting it and choosing Format, Set Script Triggers

in Layout Mode, as shown in Figure 17.2 .
The Set Script Triggers command opens the dialog shown in Figure 17.3 , which is similar to the

layout dialog shown in Figure 17.1 . In the case of events that are available both at the layout and

object level, make certain you know which will fire first.

 Figure 17.1
 Set triggers for layouts.

ptg8106388

Working with FileMaker Triggers466

III

PA
RT

 Figure 17.2
Set an object’s
triggers.

 Figure 17.3
 Specify the script for each trigger.

ptg8106388

467Attaching Triggers

17

C
H
APTER

The triggers shown in Table 17.2 apply to objects on layouts.

 Table 17.2 Object Trigger Events

 Name Pre/Post

OnTabSwitch Pre

OnObjectEnter Post

OnObjectExit Pre

OnObjectModify Post

OnObjectValidate Pre

OnObjectKeystroke Pre

OnObjectSave Post

 Window Triggers
A set of script triggers is available to you in the File Options command in the File menu, as shown

in Table 17.3 .

� To review information on script triggers, see Chapter 9 , “Getting Started with Scripting.”

 Table 17.3 Window Trigger Events

 Name Pre/Post

OnFirstWindowOpen Post

OnLastWindowClose Pre

OnWindowOpen Post

OnWindowClose Pre

Renamed Triggers Starting in FileMaker Pro 12

Note that in versions of FileMaker Pro before FileMaker Pro 12, OnFirstWindowOpen was called
OnFileOpen , and OnLastWindowClose was called OnFileClose.

ptg8106388

Working with FileMaker Triggers468

III

PA
RT

 Using a Timer
There is a script step, Install On Timer Script, that installs a timer for a window. In some ways, the

timer is like a trigger. The timer has two components:

 • A calculation that determines how many seconds to wait before firing

 • A script to execute when the timer fires

Each window has its own timer (and only one timer). When you

install a timer with the new script step, it overwrites any previ-

ous timer for that window.

 Trigger Functions
Several functions implement triggers in a variety of ways. Triggers reverse the traditional flow of

scripting in some ways. Before the existence of triggers, layout objects that caused scripts to run

had to have scripts attached to them in the Format Button dialog. Parameters can be specified in

that dialog to control the execution of the script.

Scripts can be triggered when specific events occur: when a file is opened, when an object is modi-

fied, and when a layout is loaded, for example. In many ways, the trigger is a side effect of a user’s

action. The user enters some data in a field on a layout, thereby modifying that object, and with no

additional action on the user’s part, a trigger causes a script to run. In part because there is no but-

ton whose sole purpose is to start a script in these cases, the script that is started cannot always

know how or why it was started. This is the reverse of a common scripting paradigm in which

parameters are passed in to the script when a button is clicked, and those parameters indicate to

the script what has happened (what object has been clicked) and what should be done.

The functions in the following section help implement the mechanism by which a script needs to

find out how it was triggered. In addition, several field functions that previously were classified in

another area have been moved here because of the commonality they have with the trigger-

supporting functions.

 The Self Function
One of the features added in FileMaker Pro 9 was the Self function. This function lets you access

the value of an object. It is applicable to calculations defined within fields. The function takes no

parameters: The single word self provides the object’s value.

If you want to use conditional formatting to change the appearance of a field, you can use the Self

function to do so. For example, if you set up conditional formatting where the formula to be used

is Self = “test” , typing test into the field will trigger the conditional formatting as soon as you

click out of the field.

So far, there is no improvement over using the field’s value itself for the conditional formatting.

However, you can demonstrate the value of this function by copying the field (which also copies its

formatting) and then changing the field’s content to another field in the database. The original field

might show the database name field, and the copy might now show the database address field. But

 tip
The default timer has a wait time
of zero, which means that it will
never run until it is replaced by a
timer you set.

ptg8106388

469Trigger Functions

17

C
H
APTER

the conditional formatting for both fields is triggered if the field’s content is test—regardless of

what the underlying database field is.

By setting conditional formatting in this way, you can create a

layout field object that can be used for a variety of database fields

but displays the same conditional formatting regardless of the field.

One real-world application of this would be a layout field with con-

ditional formatting attached to it that always flags numbers outside

a specific range.

Char and Code Functions
FileMaker Pro has two character functions that are common in programming languages but rela-

tively new to FileMaker Pro: Char() and Code() . In their simplest form, they let you convert a char-

acter to its numeric code, and vice versa. This capability is particularly useful in dealing with special

characters such as the Return key when working with script triggers. Because FileMaker Pro sup-

ports Unicode, these functions actually work on Unicode code points, but many people refer to ASCII

codes, which are a subset of Unicode code points.

 • Char (number) — This function returns the character for a Unicode code point. It may return

more than one character if the number string describes multiple characters.

 • Code (text) — This is the reverse of the preceding function; it provides a text string (often a

single character), and the function returns its numeric value. This function is often used with Get

(TriggerKeystroke) , which is described in Chapter 8 , “Getting Started with Calculations.”

 The GetFieldName Function
This function lets you find out the name of a field. This matters particularly when you are using

a parameter in a custom function or when you are using self in conditional formatting. Neither

self nor the parameter discloses what the underlying field’s name is. For that purpose, use

GetFieldName —note the absence of parentheses.

 The Get (TriggerKeystroke) and Get (TriggerModifierKeys)
Functions

Two functions support the implementation of triggers discussed in Chapter 4 , “Working with

Layouts”: Get (TriggerKeystroke) and Get (TriggerModifierKeys) .

Get (TriggerKeystroke) returns the character that triggered a script triggered by

OnObjectKeystroke or OnLayoutKeystroke . Frequently, you want to check for a special character

such as the Return key. A simple way of doing so is to use the Code function to convert the char-

acter to a numeric code and to test for that. The following line of code tests for the Return key (the

numeric value of which is 13):

If [Code (Get (TriggerKeystroke)) = 13]

 tip
You can also use the Self func-
tion in auto-enter and validation
calculations.

ptg8106388

Working with FileMaker Triggers470

III

PA
RT

Get (TriggerModifierKeys) returns whatever modifier keys were pressed when the script

was triggered.

These functions are used frequently in conjunction with script triggers when you are trying to deter-

mine what keys have triggered the script. The numeric values of modifier keys are shown in Table

17.4 .

 Table 17.4 Numeric Values of Modifier Keys

 Key Number

Backspace 8

Tab 9

Shift-Tab 9

Enter 10

Return 13

Escape 27

Left arrow 28

Up arrow 29

Right arrow 30

Down arrow 31

Space 32

Forward delete 127

FileMaker Extra: Using Triggers for an Interactive
Interface

Triggers are not good for performing data validation, in part because they do not fire when certain

batch processes (or web updates) are done. But they are great to use in many other cases, including

in an interactive interface.

Consider the traditional way of enforcing certain fields to be entered: You require them not to

be blank by setting an option for the field in the database. This is still the best and most reliable

method because if you do not allow it to be overridden, that edit will ensure that there are values in

all the fields.

But you can supplement that edit with an interactive interface. There are many ways of doing this.

One way is to use the OnObjectModify trigger (a Post trigger) to check not only what has been

modified, but also the status of other fields on the layout. You can then modify a field on the layout

that displays suggestions for what might be entered next. This enables people to fill in a form in

whatever sequence they want without skipping any required fields.

ptg8106388

 18

ADVANCED FILEMAKER SOLUTION
ARCHITECTURE

This chapter focuses on a variety of architectures and techniques used in

FileMaker solutions. You might encounter them as you modify and update

existing FileMaker solutions; you also might adopt them in new solutions

that you create. Many of these techniques involve managing windows,

which, after all, are at the heart of traditional graphical user interfaces.

As time and technology have changed, the role of windows in interfaces

has changed. Most significantly, on mobile devices the concept of multiple

windows has changed. What might have been implemented as multiple

windows on a desk- or laptop computer may now be implemented by

several views within a single window or even by a sequence of views.

Building a solution to run on FileMaker Go means that you will not have

multiple windows visible at the same time.

 � For more information on interface design, see Apple’s iOS Human

Interface Guidelines and Mac OS X Human Interface Guidelines at

developer.apple.com.

 Window Management Techniques
Among the many important features of FileMaker, the capability to have

multiple windows showing data from the same table stands out as one of

the most important. To aid developers with managing this feature, several

window management script steps are present in ScriptMaker, including

the following:

 • New Window

 • Select Window

ptg8106388

Advanced FileMaker Solution Architecture472

III

PA
RT

 • Close Window

 • Move/Resize Window

 • Adjust Window

 • Set Window Title

Also, 11 Get functions return data about the active window, ranging from its size and location

to its name and the mode it’s in. Another function that plays a role in window management is

WindowNames , which returns a list containing the names of all the open windows, ordered according

to the stacking order of the windows. (WindowNames is listed as a Design function rather than a Get

function.)

These script steps and calculation functions provide you with tremendous ability to control the user

experience. The amount of window management you do might vary widely from solution to solution,

but having a good grounding in the options available to you is important.

When you create, move, and resize windows, you have the opportunity to specify both a location for

the window and its size. The unit of measure for all window manipulation is the point. Figure 18.1

shows the options for the Move/Resize Window script step.

 Figure 18.1
 The Move/Resize Window script step
enables you to specify the exact coordi-
nates (in points) and size for any given
window.

For each parameter of the Move/Resize Window script step, you can either specify a literal number

or supply a calculation formula whose result determines the parameter’s value. If you leave any of

the parameters empty, their values are inherited from the current active window. For instance, if

you merely want to move the current window without changing its size, you don’t have to specify

anything for the Height and Width parameters.

The Adjust Window script step includes a Resize to Fit option, which resizes the window to the

layout in which it is displayed. If you use a script to go to the appropriate layout and immediately

adjust the window with Resize to Fit, the window will be just the right size for the layout.

ptg8106388

473Multiwindow Interfaces

18

C
H
APTER

 Multiwindow Interfaces
Opening a new window for your navigation or other button ele-

ments is only the tip of the iceberg when it comes to working with

multiple windows. It is possible in FileMaker Pro to strictly control

multiple windows—their positions, sizes, and titles.
The simple nuts and bolts of these features can be found in the

New Window script step options. With them, you can create new

windows, close windows, select (bring to front) a specific window

by name, adjust and resize windows, tile and cascade multiple

windows at once, and control the availability of the Status toolbar

as well. Figure 18.2 shows a simple example of the script options

for the New Window script step.

 caution
Remember that FileMaker Go
and Instant Web Publishing do
not support multiple windows. If
you are designing a solution that
will run in those environments,
you must address the issues
addressed with multiple win-
dows in this section using other
techniques.

 Figure 18.2
This 231-by-392 window opens with a title of
Add Note.

 Using Window Styles
Advanced styles, which can be specified at the bottom of the dialog, let you use new interface

options starting in FileMaker Pro 12, as you see in Figure 18.3 .
As you can see in Figure 18.3 , you can specify not only the style of a window but also which con-

trols are available. This provides a degree of interface customization that dramatically increases

your flexibility in building interfaces.

ptg8106388

Advanced FileMaker Solution Architecture474

III

PA
RT

Working with Document Windows
Document windows are traditional windows that people can move and resize, although you will see

ways to constrain that behavior later in this section. A floating document window is always on top

of other windows even if the users activates another window. A dialog window is modal (that is,

users cannot activate other windows).

The possible uses for multiple windows are quite varied:

 • To view as many layouts at once as your screen real estate allows

 • To create multiple List view windows of the same table, with

different found sets, at once

 • To use a form for editing a single record while still viewing

multiple records via either List or Table view

 • To create a pop-up window, similar to a dialog

 • To keep navigation, function, and other palettes off to the side

of your workspace

 • To view reports while not having to leave the windows/

layouts in which you’re working

Creating a Modal Dialog with a Window Style
Modal dialogs —windows that stay open in the foreground while waiting for some action to be per-

formed by the user—are a common user interface standard that users will find familiar. Certainly,

the Show Custom Dialog script step will take care of some of your basic needs, but in cases where

you would like to control the look and feel of a dialog or need more than three simple text-entry

fields, you will need to turn to crafting your own window dialogs.

 Figure 18.3
 Set advanced styles for a new window.

 tip
Remember that with FileMaker
Go on iOS devices, you can cre-
ate multiple windows, but only
one window is visible at a time.
The control at the left of the
toolbar shows you how many
windows are open and lets you
switch among them.

ptg8106388

475Creating a Modal Dialog Using a Script Pause State

18

C
H
APTER

With the window styles, it is easy to manage dialog windows. You simply use the new window

script step and choose a dialog window. You can provide a layout with the required information

and/or data entry fields. By omitting a Close control, you can pre-

vent users from closing the window, and users will not be able

to activate other windows. They are trapped in the modal dialog,

which is actually what you want. However, you need to provide

some means of escape such as an OK or Cancel button (or both)

that at the very least performs the Close Window script step

for the current window. Of course, you can perform other tasks

with scripts for OK, Cancel, and any other interface elements

you provide. It is common to use a single script with a parameter

indicating whether the action is Close or OK (possibly by using

the name—not the title—of the selected button. That keeps your

actions together.
Cancel buttons imply that whatever action the user has taken in

the modal dialog window can be undone. That can be problematic,

especially if you’ve allowed the user to add and remove records

from a portal, so be careful with the use of that term. One tech-

nique for managing the undo process is to use global fields for data

entry and to populate true fields only when the user clicks Submit.

Other techniques involve record-level rollbacks.

 � To learn more about rollbacks and undo operations, see Chapter 11 , “Developing for Multiuser

Deployment.”

Creating a Modal Dialog Using a Script Pause
State

FileMaker solutions that predate FileMaker Pro 12 did not have access to window styles. As a result,

they typically use a different technique to create modal windows. You might find this code in solu-

tions that you are maintaining or modifying. In addition, you might find this code written in new

solutions either because the developer (who may be yourself) is not familiar with window styles or

for one reason or another prefers not to use them.

To build a modal dialog without using window styles, follow these steps:

 1. Build a layout intended to act as your dialog. You can add whatever functions and layout objects

to it that you want. The layout can be as simple as a single field, or it can be as complex as one

that displays a subsummary report in Preview mode.

 2. Add a button that will close the window. If it is to be used like a dialog, you will need two but-

tons: one for Cancel and one for Submit (or whatever terms you prefer). Both will close the win-

dow, but one or the other (or both) will have additional functionality. What is important is that

only the scripts behind those buttons can close the window.

 tip
This “trapping” in modal dia-
logs has been recognized as an
unfriendly user interface device,
but it is a good way of stopping
the action until a user clicks an
OK or Cancel button in the model
dialog.

 note
 A rollback essentially undoes a
transaction in a database, return-
ing it to a previous state.

ptg8106388

Advanced FileMaker Solution Architecture476

III

PA
RT

 3. Now place a button on your main layout to open the subsidiary window. This script assumes that

the layout and window are both named Add Note, although the window name has a space in it

and the layout name does not. Attach it to the following script:

Allow User Abort [Off]
New Window [Name: “Add Note”; Height: 231; Width: 392;
➥Top: 108; Left: 134 ; Style: Dialog]
//note that although the script step doesn’t report it,
➥the Close button is disabled in Window Controls
Go to Layout [“AddNote” (Notes)]
Adjust Window [Resize to Fit]
New Record/Request
Show/Hide Status Area [Hide, Lock]
Pause/Resume Script [Indefinitely]

 It’s important to disallow user abort; otherwise, users can

close your window without performing the action you’re

attempting to require. It’s also a good idea to lock the Status

toolbar. (For backward compatibility, the script step still refers

to the Status area.) Finally, you have to hold FileMaker in

a paused state so that users can’t perform any other action

while attending to the dialog.
 Keep in mind that your users will still be able to run scripts

that are visible in the Scripts menu or elsewhere. In solu-

tions that use this technique, developers often opt not to set

scripts to display in the Scripts menu and to control or change

any custom menu sets in use. Alternatively, they write their

scripts such that all scripts visible in the Scripts menu take

into account this paused state by either refusing to run or end-

ing gracefully so that the user’s state in the modal dialog window is not disrupted.

 4. Now write the Cancel and Submit scripts. For this example, the Cancel script is this:

Close Window [Name: “Add Note” ; Current file]

 The Submit script is as follows:

Commit Records/Requests[]
Close Window [Name: “Add Note” ; Current file]

 5. Finally, attach the script from step 3 to a button.

Adding a Pause State
You’ll notice we haven’t yet dealt with the pause state. If you add a Pause/Resume script step to the

Done script, FileMaker won’t know that you want it to resume a currently paused script. The behav-

ior it normally implements is to overlay a new pause state on top of the earlier pause state. This is

entirely as it should be because this allows you to build routines with multitiered pause states.

 note
Generally, it’s a bad idea to leave
a script paused—users can get
stuck in limbo—but in this case
it is exactly the behavior you
want. The script ends, leaving
the user in a paused state. You
need to remember that a paused
state is active when performing
any additional scripts or when
providing other functions in your
pop-up window.

ptg8106388

477Creating a Modal Dialog Using a Script Pause State

18

C
H
APTER

But in the case where you want to resume a previously paused script, the solution to dealing with

your pause state lies with the button options attached to each button object. Select your Done but-

ton object and either right-click or navigate to the Format menu (in Layout mode) and choose the

Button Setup option. Another technique is to simply double-click the button object in Layout mode.

Refer to the Current Script options shown in Figure 18.4 .

Multitiered Pause State

 A multitiered pause state can occur when you have one routine running, paused, while another
runs and then hits a pause state of its own. For example, you might be running a report that
pauses for a user to enter some find criteria. In performing the find subscript, your process
might turn up zero records and pause again to have the user respond to some options on what
do to about the situation. These multilayered pause routines fold into each other like Russian
dolls: Each pause needs its respective resume script step performed before the outer pause
state can itself be resumed.

 Figure 18.4
Notice the rarely used Current
Script pop-up menu in the Button
Setup dialog with its choices about
what to do with the current script—
Halt, Exit, Resume, or Pause.

The Current Script option for the Perform Script button behavior is almost never changed. Most

often its default state of pausing a currently running script while performing whatever new script

is necessary will meet your needs. In this case, however, you need it to resume the current script

(which will simply continue from the pause state, effectively ending it) before proceeding through

the Done script and closing the pop-up window.

ptg8106388

Advanced FileMaker Solution Architecture478

III

PA
RT

This then closes the pause state without creating a nested second one and allows the user back into

the state of using the database solution normally. This, combined with the Close Window script

step, gives the user the experience of clicking Done and seeing the window close. Clicking the Open

button sends users back to the layout from which they began.

 � For another example of working with modal dialogs using script results, see “Script Results,”

p. 451 .

 GO TO RELATED RECORD
Go to Related Record is one of the most useful and important script steps. In this discussion of

scripting, we’ve focused for the most part on categories of tasks that you can perform with scripts

rather than on specific steps, but Go to Related Record , which we’ll refer to as GTRR , merits a

discussion entirely its own.

Figure 18.5 shows the Go to Related Record Options dialog. Essentially, GTRR lets you navigate to

one or more records related to whatever record or records you’re currently viewing. As we discuss

in this section, there are several options for how and where that related set will be displayed. It

might take awhile for all the nuances of GTRR to sink in, but mastery of this script step is crucial for

becoming an experienced script writer.

 Figure 18.5
 Go to Related Record is one of the most useful script
steps. It’s also one of the most complex.

 GTRR Basics
It might be helpful to think of GTRR as a way to move or jump from one point on the Relationships

Graph to another point. But from where and to where? In the GTRR options dialog (shown previ-

ously in Figure 18.5), the first thing you specify is the destination table occurrence for this move.

The script’s context determines the starting point for the move. We use the terms origin and desti-

nation to refer to these table occurrences.

Whenever a script executes, it does so in a context determined by the active window, the active lay-

out, the active found set, and the active record. All these things can, of course, be changed during

the course of a script by using a wide variety of script steps. Whatever layout is active at the point

ptg8106388

479Go to Related Record

18

C
H
APTER

in the script at which the GTRR occurs determines the origin for a GTRR script step. The active

layout situates you at a particular point on the Relationships Graph. So, managing the origin of the

jump is done not in the GTRR step itself, but rather through navigation (if necessary) to the appro-

priate layout beforehand.

As the destination for the GTRR, you can select any table occurrence on the graph, including table

occurrences tied to external tables, table occurrences unrelated to the origin, and even the origin

itself. This last option produces a special result that’s discussed in the “Jumping to Disconnected

Table Occurrences” section a little later in this chapter.

The other pop-up list within the GTRR dialog is for specifying a layout to use for displaying what-

ever set of records the GTRR returns. Unlike the choice of a destination table occurrence, you are

restricted in your choice to selecting among layouts tied to the same table (not table occurrence) as

the destination table occurrence. That’s a convoluted way of saying that you’re expected to specify

an appropriate layout to display the related set of records. We therefore refer to this layout as the

display layout . If and only if the destination table occurrence is from an external file, you’ll have

the option to select the Use External Table’s Layouts check box. The choices for the display layout

consist of those layouts, in the external table, that are tied to the same table as the destination table

occurrence.

Another option in the GTRR dialog enables you to specify that the related set of records will appear

in a new window. If you select this option, you have access to the same setup parameters that you

do when using the New Window script step (window name, location, size). If you don’t check the

Show in New Window option, one of two things happens when the GTRR executes:

 • If the display layout is in the current file, that becomes the active layout.

 • If the display layout is in a different file, another window must be activated (windows are file

specific). If there are no windows for the required file currently open, a new window is created

regardless of whether you’ve checked this option. If there are windows belonging to the external

file (even hidden ones), the frontmost of those in the stacking order becomes the active window.

The final option on the GTRR dialog is Show Only Related Records. Your choice here partially deter-

mines what found set the display layout contains. It’s easier to discuss the possible implications of

selecting this option in the course of a specific example, which we do in the example that follows.

For now, know that in most cases, you’ll want to enable this option.

If you choose the Show Only Related Records option, you also have the choice to navigate to only

those records related to the current record or to records related to any record in the current found

set. For example, if you’ve isolated a subset of customer records, it is now possible to use GTRR to

navigate to a found set of all products ordered by any of those customers. This was possible in pre-

vious versions of FileMaker but required a complex workaround.

Predicting the Found Set
The origin and destination table occurrences must be connected on the graph for the GTRR to func-

tion. If they aren’t, the user sees an error stating, “This operation could not be completed because

the target is not part of a related table.” The actual error generated is Error 103: Relationship is

missing.

ptg8106388

Advanced FileMaker Solution Architecture480

III

PA
RT

Assuming that there is some unique path from the origin to the destination, you really need to know

just three rules to determine what found set will appear if you do a Go to Related Record script

step:

 • Every relationship along the path is evaluated.

 • The found sets are cumulative.

 • The sort setting of the final hop determines the sort order.

If any of the individual hops in a multihop GTRR yield a null set, the entire GTRR behaves the

same as a single-hop GTRR that yields a null set. If you’re ever in doubt about what records would

appear, or in what order, simply create a portal that displays records from the destination table

occurrence. The same set of records that shows up in the portal would end up as the found set after

a GTRR. Assuming that the portal itself wasn’t sorted, the order of the records would even be the

same.

Jumping to Disconnected Table
Occurrences

There’s one final behavior of the Go to Related Record step

that’s worth noting: It can be used to move a found set from

one table occurrence of a base table to another. This even works

for disconnected table occurrences. In a given window, all the

layouts associated with a given table occurrence share the same

found set and sort order. This is good because it means that

moving back and forth between, say, a list view and a form view

based on the same table occurrence doesn’t require any found set

manipulation.
By using the same table occurrence for both the origin and the destination of a GTRR, you can move

the current found set to another layout and/or window. There’s something about this behavior that

defies intuition, but it’s very handy nonetheless.

 Dedicated Find Layouts
Entering Find mode and performing find requests is a crucial

part of FileMaker Pro, but it’s also one of the more difficult things

to manage at the user interface level. As your solutions become

more complex, Find mode will not be as intuitive for users: They

might not have all the fields by which they want to search on one

layout, or they might want to perform find requests on related

data. Although FileMaker Pro can manage this task quite easily,

users might be disoriented or confused by the results.
Say you’ve created a utility relationship that displays related data

based on selected criteria or some temporary condition in the

database. The fields sitting on your layout are not a structural

 note
Keep in mind that if two layouts
are attached to different table
occurrences, their found sets and
sort orders are independent of
each other, even if they’re both
occurrences of the same base
table.

 tip
Before launching into dedi-
cated find layouts, remember
to explore Quick Find at the
right of the Status toolbar. For a
great many finds, users can get
to what they want just by using
Quick Find without specifying the
specific field(s) to search. This
brute-force finding is what drives
search engines, and most people
are comfortable with it for basic
searching.

ptg8106388

481Dedicated Find Layouts

18

C
H
APTER

one-to-many representation of your primary data architecture. Nonetheless, human users will intui-

tively want to hop into Find mode and have the process act on the primary relationship rather than

your utility relationship.

Here’s another example: Imagine looking at an author table with a related book-title field showing

the most recent book written by that author. By definition, only one book can be the most current.

Now imagine that someone is searching for an author who wrote a given book a long time ago. She

is likely to click into the related book-title field in Find mode and be baffled as to why her search

returned zero results—or worse yet, she might not realize her mistake and might conclude wrongly

that the data doesn’t exist (the book she’s looking for is not the most recent, so the search fails).

Given that the fields on the right relate to only the most current book for an author, the search

would be accurate but yield undesirable results. Furthermore, there might be dozens of fields in

your database, related and otherwise, but users will want to search on only a small handful of these

90% of the time.

To make the find process as intuitive as possible, you can create a separate find layout. An addi-

tional nicety is setting it up to open in a pop-up window. Your users will remain in context—in other

words, they’ll see where they were in the window behind the current one—and will intuitively

understand the process going on. You can build find processes generally in two ways, each of which

is covered in the following sections.

Dedicated Find Mode Layouts
The first process is perhaps the simplest. Create a separate layout and populate it with all the

appropriate fields specific to the table in which a find is to be performed. Take care to place primary

related fields on these layouts: Using the book example again, you would place a book title from

a primary-key-to-foreign-key relationship between the Book and the Author tables. The find result

would then properly return authors who wrote books—any books, not just the most current—that

matched the find criteria.

You can rely on users navigating to these find layouts themselves, along with entering Find mode

and performing finds, or you can script the process. The scripted process would involve a button on

your standard layouts to take the user to the special Find layout and enter Find mode. A second but-

ton on the Find layout itself would perform the request and return the user to the original layout and

Browse mode.

This approach is a great way to give your users an intuitive process and shield them from unpre-

dictable results. It’s also a nice way to reduce the sheer volume of fields from which they have to

choose in Find mode.

 Script-Driven Finds
A more complex Find routine replaces the fields in the preceding example with global fields.

Providing a dedicated Find layout will likely be something you might want to deliver in Browse

mode. Instead of having users work with the related fields themselves (which in Browse mode

would display actual data and could potentially pose a problem if users didn’t realize they had

access to actual data), you can control access and the entire process using a script and offer users

empty global fields for entering find criteria.

ptg8106388

Advanced FileMaker Solution Architecture482

III

PA
RT

This approach is labor intensive, and it relies on heavy scripting.

As in the example in the preceding section, you have to bring

users to the Find layout. This time, leave them in Browse mode.

After their find criteria are entered, they have to click a Find but-

ton that then takes the system into Find mode, populates and

performs the find request by using Set Field script steps, and

then returns the users to some proper result layout.

 Troubleshooting

Pop-up Window Issues on a Windows PC
Pop-up windows don’t appear in front of the current window when the current window is maxi-

mized.

On the Windows platform, when a window is maximized to fill the application window, no other

windows can also be visible on the screen. That is, only a single window can be maximized, and it

must be the foreground window. This means that if you try to pop up a window in front of a maxi-

mized window, the background window cannot remain maximized. It instead reverts to its reduced

state.

If you plan to build a user interface that makes use of multiple windows, be aware of this potential

pitfall. It would be better in such cases never to have any windows maximized, even though this

means you have to work within a reduced space. Users can still manually maximize a window, so

test your routines thoroughly to see what effect this action would have. You’ll likely need to add

some control routines such as Adjust Window [Resize to Fit] to your navigation scripts to get

the windows back to the size at which you intend them to be viewed.

Creating New Windows Loses My Found Sets
Whenever I create a new window, all the found sets of the nonvisible layouts are reset to show all

records. What causes this behavior?

When a new window is created, either manually from the Window, New Window menu command

or via script, it inherits many characteristics of the currently active window. Specifically, it keeps

the same size (except when opened via script and specified otherwise), active layout, found set, sort

order, and active record. To all appearances, it’s as if it’s an exact duplicate of the currently active

window.

In fact, only the settings of the active layout are retained when a new window is created. All layouts

that are not visible (except those tied to the same table occurrence as the active layout) lose any

sense of the found set, active record, and sort order. All records are displayed, unsorted, and the

first record in the table is the active record.

 caution
The difficulty here lies in repli-
cating all the Find functionalities:
inserting omit requests, extend-
ing found sets, constraining
found sets, and working with
multiple requests. We recom-
mend using this technique only
in rare cases when you want to
fully control the user experience.

ptg8106388

483Troubleshooting

18

C
H
APTER

 Incomplete Highlighting Rectangle
My row highlight is showing in its container field, but it doesn’t fill the entire portal row well.

Where should I first look to address this problem?

If you place an image in a container field and then have a calculation display the contents of that

container field in a portal row, even when Maintain Original Proportions is enabled, your rectangle

might show whitespace on either side. This is further complicated if you are trying to put something

more complex than just a colored rectangle in the highlight field. FileMaker’s resizing of images can

be unpredictable at times. The best way around this situation in many cases is simply to make the

image larger than you need it to be and set the graphic format to Crop.

ptg8106388

This page intentionally left blank

ptg8106388

 19

 DEBUGGING AND
TROUBLESHOOTING

 What Is Troubleshooting?
This chapter introduces you to some of the broader systematic problems

that can occur in a FileMaker system. We discuss how to spot these and

fix them, and we cover some useful debugging tools that the FileMaker

product line offers you.

In addition to reactive troubleshooting—the art of finding and fixing prob-

lems after they happen—we’re also going to spend some time talking

about proactive troubleshooting. To us, this means designing systems that

are simply less error-prone and designing them in such a way that any

errors that do appear are caught and handled in a systematic way. The

better you become at this kind of proactive troubleshooting, the less often

and less severely your reactive skills are likely to be tested.

Staying Out of Trouble
The following sections give you a few of the proactive steps you can take

to avoid problems.

 Understand Software Requirements
Even if you are the user as well as the developer (and, perhaps, particu-

larly in this case), you need to understand what your solution is supposed

to do. Draw the lines clearly as to what is in and out of the scope of the

project. These lines might shift (as in a phased project), but at any given

moment, make certain that you know what your current objective is.

ptg8106388

Debugging and Troubleshooting486

III

PA
RT

Understanding the requirements also means understanding the data to be used. Avoid sample data;

look at real data if you possibly can. People tend to remember extreme cases and might exaggerate

their frequency. Likewise, routine errors that are easily corrected, particularly in a manual system,

might be ignored. Grill your user (or yourself) with the limits of data: “Can part of an order be

returned?” “Will you ever allow someone to register for two classes at the same time—even if the

overlap is only five minutes?”

 Avoid Unclear Code
If you want to avoid unclear code, two acts in particular are important: giving descriptive names to

the components of your program (databases, tables, fields, layouts, and scripts, to name a few) and

using comments liberally throughout your program.

 Choosing Good Names
As much as possible, the names you choose should be descriptive and follow clear conventions

where possible. We offer some suggestions, but you should take them as just that—suggestions.

Think of them more as examples on which you could base your own naming conventions. The most

important point here is consistency: Try to adopt clear rules for naming things and do your best to

stick to them.

Databases and Tables Each database file (a collection of tables)

should be named for its overall function. If one file contains all the

tables for an invoicing module, call the database Invoicing, not

Module A.
For tables, we recommend that you name them according to

the types of things they store. For an intermediate join table,

you should give thought to the function of the table and then

decide what thing it represents. Therefore, a join table between

Students and Classes could be called StudentClass but is bet-

ter called Enrollment or StudentsForClasses. A join table

between Magazines and Customers is called Subscriptions or

MagazinesForCustomers, and so forth.
Some join tables don’t really evoke a natural function, in which

case you may need to fall back on a less descriptive name that

just incorporates the names of each file: ProjectsForEmployees,

for example, or OrdersForPayments. This naming convention

easily handles the case in which a variety of relationships is cre-

ated for tables: ProjectsForEmployees, ProjectsForDepartments,

and so forth. If there is a relationship between Employees and

Departments, it is quite possible that the Relationships Graph will not allow you to use it to get

from Projects to Departments, so you will need the explicit ProjectsForDepartments table. Of course,

remember that FileMaker relationships are bidirectional, so ProjectsForDepartments is equally

meaningful as DepartmentsForProjects; the name does not imply direction.

 tip
If the tables in a single database
file do not seem to have anything
in common that you can use as a
name, you might rethink the file
structure.

 tip
Some people like their table
names to be in the singular form.
Therefore, a table of customers
is called Customer, a table of
pets is called Pet, and so forth.
Others (including many Starter
Solutions) use the plural form.

ptg8106388

487Staying Out of Trouble

19

C
H
APTER

Some tables are naturally line item files. The children of other files, which are generally accessed

through portals, are characteristic of certain kinds of business documents. Order line items and

invoice line items are common examples. You can use a variety of

abbreviations as long as you are consistent: OLI (for Order Line

Item) or LI for Line Item (as in OrderLI, InvoiceLI, and so forth).

 � For additional discussion of field naming conventions, see

“Field Naming Conventions,” p. 84 .

Fields One of the main issues with fields in FileMaker is that

they’re a superset of what we normally think of as database fields.

FileMaker fields include, of course, the classic fields, which are

those that store static data, generally entered by users. But they

also include fields with global storage, which are not data fields at

all, but programming variables; calculation fields, which are in fact

small functions, or units of programming logic; and summary fields,

which are actually aggregating instructions intended for display in

reports.

As a developer, you must decide what things you need to be able

to distinguish quickly in this thicket of fields, and devise a suitable

naming scheme. Generally, we like to be able to pick out the fol-

lowing database elements quickly:

• User data

• Globally stored fields (often prefixed by g)

• Calculation fields (often prefixed by c)

• Summary fields (often prefixed by s)

• Developer or internally used fields (often prefixed by z or zz)

• Structural database keys

 note
If you identify keys (not all pro-
grammers do), you can prefix
them with kf for foreign keys
and kp for primary keys. We
sometimes go one step further
in naming key fields. For primary
keys, we precede the field name
with a double underscore (__),
and then kp to signify a primary
key. For foreign keys, we precede
the field name with a single
underscore and the designation
kf. The effect of this convention
is to cause all the key fields to
sort to the top of an alphabetized
field list in FileMaker, and for the
primary key to sort to the very
top, above all foreign keys. This
makes it easy to access the keys
when you are building relation-
ships in the Relationships Graph.

Other developers consider keys
in FileMaker as less important
than they may be in other data-
base environments and do not
bother to identify them at all.

 tip
Look at the Starter Solutions for some ideas about naming fields. You might also want to consider what information
about a field properly belongs in the field name and what information belongs in the comment that you can create in the
Manage Database dialog. Many database designers prefer to put information about key status of a field into the com-
ment section because as database tables are shared among different environments, what is a key for one environment
may not be one for another environment.

ptg8106388

Debugging and Troubleshooting488

III

PA
RT

Making a broad distinction between user fields and developer fields is harder. Those that try to

do this generally adopt some kind of overall field name prefix. It’s not uncommon to see a scheme

where all developer fields are prefixed with two z’s. This puts them all together at the end of the

field list and the use of the double z means that fields that actually begin with z (ZIP code, for exam-

ple) are not part of the developer fields group.

Layouts With naming layouts, again, we advocate that you have some clear naming scheme to dis-

tinguish between layouts your users interact with directly and those that you build for behind-the-

scenes use. One general rule is to prefix the names of all “developer” layouts with Dev_ or a similar

tag (you can even use the double-z convention or a variation thereof).

If you follow the Starter Solutions general guidelines, you will find that you have two types of lay-

outs: forms and lists. You can easily name these layouts Client Form and Client List, for example.

Scripts The scripting tools in FileMaker Pro provide major advances in script organization.

Grouping scripts together in folders makes sense both for users and developers. You can access

these features either from File, Manage, Scripts or Scripts, Manage Scripts.

 � For additional discussion of scripts, see Chapter 9 , “Getting Started with Scripting,” and Chapter

 16 , “Advanced Scripting Techniques.”

Other Elements There are, of course, still other areas where

improper names can sow confusion, such as the naming of value

lists, extended privileges, and custom functions. Function and

parameter naming are especially important, so we’ll touch on that

area as well.

It pays to take care when naming custom functions, custom

function parameters, and also the temporary local variables you

create in a Let statement. A few simple choices here can greatly

add to the clarity of your code or greatly detract from it.

Suppose that you have a custom function intended to compute a

sales commission, with a single parameter, intended to represent

a salesperson’s gross sales for the month. To be fully descriptive,

you should call this parameter something like grossMonthly-

Sales . That might seem like a lot to type, but if you call this

parameter something short and efficient, such as gms , you’ll be

scratching your head over it in a few months’ time. The longer

name will stay descriptive.

 � For additional discussion of custom functions, see “Custom Functions,” p. 427 .

 Using Comments Wisely
A comment is a note that you, the programmer, insert into the logic of your program to clarify the

intent or meaning of some piece of it. You can use comments many different ways, but we strongly

suggest you find ways that work for you and use them.

 note
For internal elements (script vari-
ables, field names, value lists,
and the like), we like to use a
style called camel case , popular
among Java programmers, in
which the first letter of the first
word is lowercase and all other
words in the name begin with
uppercase. We don’t use this
convention for names that the
user sees—layout and script
names, for example.

ptg8106388

489Staying Out of Trouble

19

C
H
APTER

FileMaker Pro offers a number of useful commenting facilities. You can add comments onto field

definitions and inside the body of calculations as well.

To add a comment to a field, just type your note into the Comment box in the field definition dialog.

To view comments, you need to toggle the Comments/Options column of the field list; the list can

display comments or options, but not both at once.

Comments can be useful for almost any field. They can be used to clarify the business significance

of user data fields or to add clarity to the use of global and summary fields.

Also present in FileMaker Pro is the capability to insert comments into the text of calculations and

custom functions. We recommend you make use of this feature as well as spaces and indentation to

clarify complex calculations.

Finally, FileMaker enables you to add comments to your scripts.

Some developers have elaborate script-commenting disciplines.

They might create an entire header of comments with space for the

names of everyone who has worked on it, the creation date, and

even a full modification history.

Other developers use script comments more sparingly, reserv-

ing them for places where the flow of the script is less than self-

explanatory, or for guiding the reader through the different cases

of a complex logic flow. Short, pointed comments throughout a

lengthy script can add a great deal to its clarity.

 Writing Modular Code
Modularity is one of those popular buzzwords for which it seems every programmer has a differ-

ent interpretation. To us, a modular program is one that avoids unnecessary duplication of effort.

Much as the concept of database normalization encourages that each piece of information be stored

once and only once in a database, you should try to program in such a way that you avoid (as much

as possible) writing multiple routines that do the same or similar things. Try instead to write that

routine or piece of logic once and then draw on it in many places. Furthermore, separating interac-

tive code from code that does not interact with users increases the reusability of scripts and often

simplifies testing.

FileMaker Pro offers several powerful features that can greatly

increase the modularity of your code if used with discipline. Three

of the most important are custom functions, script parameters, and

script results. These topics have been covered thoroughly in their

respective chapters, but it’s worthwhile to bring them up here

again. You should thoroughly understand the mechanics and uses

of custom functions and script parameters and use them aggres-

sively to make your code more general and extendable.

 � For more information on custom functions, see “Creating

Custom Functions,” p. 430 .

 � For more details on script parameters and script results, see “Script Parameters,” p. 443, and

“Script Results,” p. 451 .

 tip
Commenting increases the lon-
gevity and reusability of your
code, and we recommend you
learn about the different com-
menting options that FileMaker
allows.

 note
Bear in mind that custom func-
tions can be created only with
FileMaker Pro Advanced, not
with the regular FileMaker
Pro product. However, after
they’re created and added to a
database, they can be used in
FileMaker Pro.

ptg8106388

Debugging and Troubleshooting490

III

PA
RT

 Planning for Trouble
One of the most important ways to avoid software defects (the graceful term for bugs) is to be

aware of all the possible failure points in your system and, most importantly, calculate the conse-

quences of failure. Good programmers do this instinctively. They have a clear sense of what will

happen if some element of their program fails. The question is never a surprise to them, and they

almost always know the answer.

You can combine the proactive techniques in the preceding sections—particularly modularity—

in creating code that is as fail-safe as possible. If each module (usually a script or subscript in

FileMaker) does one logical thing, and if it reports the result of its processing via a script result, you

can call the script with certainty that it is doing only one set of related processes. When it returns a

result that you recognize as good, you can then move on. If the result is not good, you have only one

set of steps to reverse.

For example, if you are performing an operation on a record that will result in the deletion of that

record or the creation of one or more additional records, you can create a script that takes the

record’s data as a script parameter, processes it, and then returns a value. At that point, the initial

record will still exist, and you can delete it if you want to, but you will never have a case in which

the record is deleted before the consequent result is good.

Troubleshooting Scripts and Calculations
There are many specific areas of potential trouble in FileMaker, and we get to those in later sec-

tions. Here, though, we want to discuss some general principles for dealing with errors in scripts

and calculations.

Handling Errors in Scripts
Many FileMaker actions can result in an error. Error in this con-

text can mean any exceptional condition that has to be reported

to the user. This can be something as simple as a search that

returns no records or a field that fails to pass validation, or it

can be a more esoteric error involving something like a missing

key field. In general, in the normal operation of FileMaker, these

errors are reported to the user via a dialog of some kind, often

with some sort of choice as to how to proceed.

This approach is fine, up to a point. But you, the developer, might

not want the user to see this default FileMaker dialog. You might

want to present a different message or none at all. Well, if your

user performs her searches by dropping into Find mode, filling

in some search criteria, and clicking the Find button, there’s not

much you can do. But if your user is performing a find via a script

that you’ve written, you can intervene in such situations.

 � For more on custom menus, see “Working with Custom

Menus,” p. 396 .

 note
Using the Custom Menus feature
of FileMaker Pro Advanced, you
can bridge the gap between
applications that rely mostly on
the native, menu-driven function-
ality of FileMaker and those that
provide much of their functional-
ity through scripts. Using Custom
Menus, you can override selected
menu items from the regular
FileMaker menu set and attach
your own scripted functionality
to them. You could, for example,
replace the generic Find com-
mand in FileMaker’s View menu
with a menu item called Find
Customers and tie that menu
item to a specific, customized
Find script of your own devising.

ptg8106388

491Troubleshooting Scripts and Calculations

19

C
H
APTER

 Using Set Error Capture Script Step
There’s a very important script step called Set Error Capture . It’s worth your while to become

familiar with it. This step allows you to tell FileMaker whether to suppress error messages while

your script is running. If this step is not present in a script, or if it’s present and set to “off,”

FileMaker reports errors to the user directly. If your script performs a search and no records are

found, your users see the usual FileMaker dialog box for that situation. However, if you have error

capture set to “on,” the user sees no visible response of any kind. After you’ve set the error capture

state (on or off), this setting is carried down through all subscripts as well, unless you explicitly dis-

able it by using Set Error Capture [Off] somewhere down in a subscript.

In general, you don’t just turn error capture on and walk away. In fact, error capture obliges you to

do a lot more work than you normally might. With error capture on, FileMaker error dialogs are sup-

pressed, so it’s up to you to check for errors and either handle them or inform the user of those that

are important.

In addition to checking for specific conditions (such as a found

count of zero), it’s also possible to check more generically to deter-

mine whether the previous script step produced an error. Typically,

you use the Get (LastError) function. This function returns

whatever error code was produced by the most recent operation.

An error code of 0 means “no error.” Otherwise, an error of some

kind has occurred. You often check for 0, and if that is not the case,

you check for one or more specific errors, and then all others are

lumped together. You can use custom dialogs or default behaviors

to handle the various errors.
Get (LastError) can be tricky. It reports on the most recent action taken regardless of whether

the action was launched directly by a user or by a script. Let’s say that you have the following script

fragment:

Set Error Capture [On]
Perform Find[]
Go To Layout [“Search Results”]
If[Get(LastError)<>0]
 Show Message [“An error has occurred”]
End If

This script is not going to do quite what you would hope. If the Perform Find script step found no

records, at that point the “last error” would be 401 (the code for “no records found”). But after the

Go To Layout step runs, that error code no longer applies. If that step runs successfully (which

it might not if, for example, the particular user didn’t have privileges to view that layout), the last

error code would now be 0. So, if you want to check for errors, check for them at the exact point of

possible failure, not a couple of steps down the road. Alternatively, set one or more local variables to

Get (LastError) immediately after the call and then test the local variables when it is logical

to do so.

 tip
Remember that not all “errors”
are actually errors. Although
finding no records is a FileMaker
error, it might not be an error in
the context of your database.

ptg8106388

Debugging and Troubleshooting492

III

PA
RT

 Tracking Down Errors
Suppose that, despite your best efforts at defensive programming, some aspect of your system just

doesn’t work right. When this happens, of course, you’ll want to track down the problem and fix it.

There are a couple of verbs you’ll want to keep in mind: reproduce and isolate .

 Reproducing Errors
The first step to take with any problem is to render it reproducible. Bugs that occur only occasion-

ally are a programmer’s worst nightmare. Often the circumstances are clear and entirely reproduc-

ible: “If I hit Cancel in the search script, I end up on some goofy-looking utility layout instead of

back at the main search screen.” At other times, the problem is more slippery: “Sometimes, when I

mark an invoice as closed, the system creates a duplicate of that invoice!”

If the bug is not transparently reproducible, you need to gather as much data on the bug as you can.

Who experienced it? What type of computer and what operating system? Has it been experienced

by one user or several? Does it appear consistently? Look for hidden patterns. Does it occur more at

certain times of day? Only from specific computers? Only for a particular account or privilege set?

Only during the last week of the fiscal quarter? And so on.

Reproducing the bug should be your first priority because you can’t isolate it until it’s reproducible,

and isolating it is your best means of fixing it. You might find that you, yourself, are unable to make

the bug happen. This might be a sign that you are using the software differently from your users.

Your usage pattern might never cause the bug to happen. One way to leap this hurdle is just to sit

down with a user and watch him work. You might find that he’s using a feature of the software dif-

ferently than you had intended or expected or that he performs functions in a different order. This

might give you the clue you need.

 Debugging Calculations
As a general rule, we recommend that you debug complex calculations by breaking them down into

smaller pieces and testing subunits of the calculation code. This suggestion contains a strong impli-

cation for how you should build complex calculations in the first place: Define and test the smaller

pieces of functionality first and then add additional pieces to the calculation. Alternatively, if there’s

anything at all reusable in the smaller pieces, don’t just fold them into a larger calculation, but

define them as custom functions instead. You can recombine them if you want (the comments sec-

tion in the Manage Database Design is important here so that you know what is being done).

The key to the idea of isolation is specifically to isolate the broken part. Pull out the pieces that are

known to work. As you test each piece, remove it if it tests out correctly. As you do this, the area

that contains the problem grows smaller and smaller.

ptg8106388

493Troubleshooting in Specific Areas: Performance, Context, Connectivity, and Globals

19

C
H
APTER

Troubleshooting in Specific Areas: Performance,
Context, Connectivity, and Globals

The individual troubleshooting sections in the chapters of this book cover particular isolated “got-

chas” that we wanted to highlight. In the following sections, we want to do two things: Talk gener-

ally about broad areas of potential FileMaker trouble and how to diagnose them, and talk about a

number of specific areas that don’t pop up in the other chapters or at least don’t get a comprehen-

sive treatment.

 Performance
“The system is slow!” Performance is a critical part of the user experience. What can you do if

things seem slow? First, of course, it’s important to isolate the problem. Is just one area of the sys-

tem slow or one particular function? Or does the system generally seem sluggish? In general here,

we’re assuming that your solution is a multiuser solution hosted on FileMaker Server, but most

remarks (except those entirely specific to Server) apply equally to Server and non-Server configura-

tions.

 General Slowness
If you’re not hosting the files on FileMaker Server, but rather have a peer-to-peer configuration, and

things seem slow, you should seriously consider moving to Server. If you’re working with FileMaker

Server, you also need to make sure that your server settings are configured correctly for your situa-

tion. The first thing to look at is what else is happening on the server computer: Ideally, the answer

is nothing. If someone is editing video on the same computer on which FileMaker Server runs, you

will have serious performance problems.

The computer on which FileMaker Server runs might be your file server computer (this is a common

source of confusion, so make certain you know what you mean by server). The absolutely most effi-

cient configuration is a dedicated machine for FileMaker Server, but that is certainly not a require-

ment. If you are publishing databases on the Web, you can offload web publishing to a separate

computer to keep the FileMaker Server machine dedicated solely to supporting the database. Even

if you are sharing the hardware with other applications, you’ll want to look at FileMaker Server set-

tings such as the percentage of cache hits, the frequency with which the cache is flushed, and the

amount of RAM dedicated to the file cache size.

If you’re using Server and all the hardware seems reasonable, it’s time to look at your network. You

should know your network’s exact topology. What connections are there, at what speeds? Where

are the routers, switches, and hubs?

Today’s networks and computers are quite fast, but it is easy to wind up with an old router or com-

puter sitting in the middle of the network slowing down everyone. You should also be familiar with

your firewall situation. Does FileMaker traffic need to pass through any firewalls or packet filters?

This configuration can slow things down as well.

ptg8106388

Debugging and Troubleshooting494

III

PA
RT

A last point is that FileMaker Server can be set to encrypt traffic

between the client and the server. This encryption is somewhat

processor intensive and might impose a performance penalty. If

you’re experiencing slowness in a client/server environment, and

you’re using client/server encryption, you might want to disable

the encryption and see whether that makes a difference. If so,

you might consider investing in faster hardware.

Slowness in Searching and Sorting
Searching and sorting are among the operations that, in a Server

configuration, are handled chiefly by the server. Therefore, it’s

possible the slowness in searching or sorting is symptomatic of some general networking issue of

the type discussed in the preceding section.

It’s also possible that there’s a problem with the search or sort itself. In terms of performance, the

cardinal sin is to execute a search or a sort based on one or more unindexed fields. This, of course,

means that there’s no index for the field, which in turn condemns FileMaker to examining each and

every record in the database—somewhat akin to trying to find a word in a dictionary where the

order of the words is random.

As you might recall, some fields in FileMaker can be unindexed

merely because the designer chose to leave them that way,

perhaps to save space. For certain fields, this setting can be

changed, and FileMaker can be permitted to index the field.

Other fields, though, such as globals, or any calculation that ref-

erences a global or a field in another table, cannot be indexed

under any circumstances. If your search or sort includes such a

field, the operation will never go quickly, and in fact its perfor-

mance degrades linearly as the database grows in size.
Note, too, that “unindexable-ness” has a certain viral character

to it, where calculations are concerned. Suppose that you have

calculation A, which references calculation B, which references

fields 1, 2, and 3. For reasons of saving space, you decide at some

point to eliminate the index on field 3. Immediately, calculations

A, B, and C all become unindexed as well, for the simple reason that they now all depend on an

unindexed field. Any searches or sorts that use these calculations will now potentially run quite

slowly. Be aware of the issue cascading dependencies when working with indexes.

 � For additional discussion of indexes, see “Storage and Indexing,” p. 104 .

Slowness in Executing Calculations
If you have a calculation that seems to execute very slowly, there are a few avenues you can

explore. In general, the greater the number of fields and other calculations that your calculation ref-

erences, the slower it’ll be. It’s possible to build up quite lengthy chains of dependencies or to have

 note
In general, using triggers
as described in Chapter 17 ,
“Working with FileMaker
Triggers,” can dramatically
improve some performance
issues. Triggers let you do only
what is necessary when it is
necessary.

 note
You should allow an unindexed
search only if you’re sure that
the set of searchable records
is always going to remain fairly
small, and there’s no other way
to achieve the result you need. In
general, programming a search
or sort on unindexed fields
should be considered a design
error and should be avoided.

ptg8106388

495Troubleshooting in Specific Areas: Performance, Context, Connectivity, and Globals

19

C
H
APTER

dependencies with a nonobvious performance impact. Consider the previous example, with calcula-

tion C referencing calculation B referencing calculation A. Every time A or B changes, C gets reeval-

uated as well. Therefore, the calculation contains more work than you might expect. It’s very easy

to create elaborate chains of such dependencies, so watch out for them. If you find such a chain,

see whether there are ways to restructure it, perhaps in a way that allows some of the intermediate

data to be stored or set by a script.

Likewise, beware if your calculations reference any custom functions with recursive behavior. A

recursive function is like a little looping script. How long it loops for any case all depends on the

inputs. If you’re referencing these in your calculations, be aware of this fact.

 � For more information on recursion, see “Creating Custom Functions,” p. 430 .

Finally, if your calculation references related fields, it will likely be slower than a calculation that

looks only at fields in the same table.

Slowness in Performing Lookups
It is advisable to replace the Lookup option with a different auto-entry option that gives exactly the

same results and behavior but is much faster with large recordsets. The preferred method is to use

the Calculated Value auto-entry option instead. The calculation should simply make a direct refer-

ence to the related field you intend to copy.

 � For more information on the Lookup auto-entry option, see “Working with Field Options,”

p. 97 .

 Slowness in Scripts
You can do almost anything in a script, so in some sense a slow script could be caused by anything

that could cause slowness elsewhere in FileMaker. But there’s one additional point we want to

make here: You can often speed things up by using some of FileMaker’s complex built-in functional-

ity from a script, rather than building things up from simpler script steps.

Use Replace Rather than Loop Use the Replace Field Contents script step to update a set

of records. This step lets you specify a field and a value to put into the field. The value can be a

hard-coded value or the result of a calculation, possibly quite a complex one. (The latter technique is

called a calculated replace —an essential tool in a FileMaker developer’s toolkit.)

A Replace Field Contents , calculated or otherwise, has almost exactly the same effect as a

Loop / Set Field combination and is often much faster. In simple tests that we’ve performed,

Replace seems to run about twice as fast as Loop .

 Use Relationships Rather than Searching The Go To Related Records script step is one of

FileMaker’s most powerful tools. Using this step, you can navigate from a starting point in one table

to a related set of records in some other table, via the relationships defined in the Relationships

Graph (technically, you are navigating from one table occurrence to another via the Graph). This

navigational hop can be much quicker than running a search in the desired table.

ptg8106388

Debugging and Troubleshooting496

III

PA
RT

Creating Records Under certain circumstances, creating records can be a slow process.

Specifically, record creation will be slower the more indexes you have on a FileMaker table. Indexes

on a table are updated every time a table record changes, and each index on that table might poten-

tially have to be updated. As a general rule, indexes cause searches to run faster but may cause

record creation to be slower.

Connectivity and Related Issues
In many scenarios, FileMaker’s behavior might be affected by network and connectivity consider-

ations. Unless you are working alone with a FileMaker database that lives on one single computer

and is used only on that computer, you’re likely going to find yourself in a situation where FileMaker

data is being distributed over a network. This situation offers a number of potential problems.

Inability to Contact the Server

What happens if you’re running FileMaker Server and your users can’t see your files? There could be

any number of reasons for this turn of events, but the following list contains a few of the most com-

mon reasons:

 • The server is down— Verify that the server is running via inspection or a network utility such as

ping.

 • The server is up but the FileMaker service is not responding— Verify that both the FileMaker

Server and FileMaker Server Helper processes are running. Without the Helper process, clients

cannot connect to the server.

 • The server machine is working and the processes are running correctly, but the files have not

been correctly set for network hosting— Make sure you have granted network access to the files

for at least some users.

 • The files have been placed on the server but are not opened for sharing on the server— Even

if the files are on the server, with appropriate network hosting, it’s still necessary to instruct

FileMaker Server to open the files for sharing. If the files are marked Closed, they are not open

for hosted sharing.

 • Recent files cannot be opened— If the server’s IP address has changed, a recent or favorite file

might not be in the same place it was before the change. Using the Open Remote command to

locate the file will allow you thereafter to use the new Open Recent command that is now estab-

lished for the file.

 • Users might not have appropriate permissions to see the hosted files— In the FileMaker

Network Settings dialog, it’s possible to specify that the file will be visible for network sharing

only to users with certain privilege sets. Users with insufficient privileges could in theory have

no privileges that would allow them to see any of the hosted files.

 � Making files available via network access is covered fully in Chapter 27 , “FileMaker Server and

Server Advanced.”

ptg8106388

497Troubleshooting in Specific Areas: Performance, Context, Connectivity, and Globals

19

C
H
APTER

 • Firewall problems exist— If there’s a firewall between your server and any of your users, the

firewall needs to pass traffic on port 5003. If this port is blocked, users will probably not even be

able to see the server, much less access any files on it. See the list of firewall ports to open in

Chapter 27 .

 Crosstalk
If a user comes to you and says that all of last week’s sales data has disappeared, there are a num-

ber of possible causes for this effect. It’s possible, of course, that last week’s sales data really is

gone (in which case you’ll want to price tickets to Nome). But it’s also possible you’ve been bitten

by a case of crosstalk.

Crosstalk occurs when FileMaker opens a file other than the one you expect. The Edit Data Source

dialog lets you provide multiple paths for any given data source; if the first file cannot be found,

FileMaker tries the second and so on down the list. Review your data sources to verify that the

sequence is correct. Often it is when FileMaker Pro is trying an alternate file that it opens one that

you forgot you had left in the list.

 Context Dependencies
The idea of context covers a lot of ground. Speaking generally, it refers to the fact that many actions

that occur in FileMaker don’t happen in a vacuum. The effect of certain script steps, calculations,

or references can vary depending on where you are in the system. Where you are means specifi-

cally what layout you’re on, what window you’re in, what mode you’re in (Browse, Find, Layout, or

Preview), and what record you’re on in the current table. Each of these dependencies has its own

pitfalls, and each one is discussed in the sections that follow.

 Layout Dependencies
Be aware, when writing scripts, that a number of script steps might not function as you intend,

depending on what layout is currently active. Most of these steps require certain fields to be pres-

ent on the current layout. These include Go To Field , virtually all the editing functions (Undo ,

Cut , Copy , Paste , Clear , Set Selection , Select All , Perform Find/Replace), all the Insert

steps, Replace Field Contents , Relookup Field Contents , and Check Selection . These

are all script steps that act on a field on the current layout. You can run each of them without

specifying a field, in which case they run on whatever field is current. They can also be run with a

particular field specified. If you specify a field, and for some reason the script is invoked on a layout

that doesn’t contain the field, the desired action doesn’t take place. Even if you don’t specify a field,

the odds are very strong that you have a specific layout on which you intend that script to be run. In

general, these script steps are somewhat fragile, and you should use them with care. If you do use

them, you should be sure that your logic guarantees that the correct layout will be current when the

script step runs.

ptg8106388

Debugging and Troubleshooting498

III

PA
RT

 Table Context
You’re certainly familiar with table context if you’ve read much of the rest of this book. The topic

was introduced in Chapter 6 , “Working with Multiple Tables,” and it plays an important role in most

other chapters as well.

 � For a full discussion of table context, see “Working with Tables,” p. 81 .

FileMaker Pro databases can contain multiple tables. For many actions in FileMaker, then, it’s neces-

sary to specify which table is the current one. For new records, to what table does the new record

get added? When I check the current found count, for which table am I checking it? And so forth.

Table context introduces a new kind of layout dependency, and

one that, in our opinion, dwarfs the old layout dependencies of

earlier versions of FileMaker. If you’re not aware of table context

and don’t handle it correctly, your FileMaker solutions might

appear to be possessed. They will almost certainly not behave as

you expect unless your system is extremely simple.

In quite a number of areas in FileMaker Pro, table context comes

into play. A brief recap of each of these is provided here.
Layouts A layout’s table context is determined by the table

occurrence to which it’s tied. Table context governs which

records the layout displays. Note that the link is to a table occur-

rence, not to a base table; this is significant if you’ll be working

with related fields, or navigating to related record sets (via the Go

to Related Record script step). In that case, the choice of table

occurrence can make a difference in the contents of related fields.

 � For a discussion of table occurrences and their implications for related fields, see Chapter 6 ,

“Working with Multiple Tables,” and Chapter 8 , “Getting Started with Calculations.”

Importing Records When you import records into FileMaker, the target table is determined by the

current table context, which is, of course, determined by the current active layout. Before importing

records, manually or via a script, be sure to go to the appropriate layout to set the context correctly.

Exporting Records Exporting records is also context dependent. Furthermore, if you’re exporting

related fields and you’re exporting from a base table with multiple table occurrences, the choice of

table occurrence from which to export might also make a difference. As in the case of importing,

make sure you establish context before an export operation.

Calculations Calculations can also be context dependent, in very specific circumstances. If a cal-

culation lives in a base table that appears multiple times in the Relationships Graph (that is, there

are multiple occurrences of that table in the Graph), and the calculation references related fields, the

table context matters. The Calculation dialog in FileMaker Pro has a menu choice at the top, where

you can choose the context from which to evaluate the calculation. If the calculation matches the

criteria just mentioned, you should make sure you get the context right. In other cases, you can

ignore it.

 caution
As with other kinds of depen-
dencies, it’s important to make
sure that the context is correct
for an operation before trying to
perform that operation. This is a
special pitfall for scripts, which
can easily change context dur-
ing script operation via a Go To
Layout step. If your script steps
are context sensitive, make sure
to establish the proper context
first!

ptg8106388

499Troubleshooting in Specific Areas: Performance, Context, Connectivity, and Globals

19

C
H
APTER

Value Lists Like calculations, value lists can also access and work with related data, via the Also

Display Values From Second Field and/or Include Only Related Values options. Here again, if the

value list lives in a base table that appears with multiple occurrences, and it works with related

data, the table context will be an issue and you should make sure it’s set correctly.

Scripts Every script executes in a particular table context, which is determined by the table occur-

rence of the current layout in the active window. (FileMaker Pro can have several windows open

within the same file, and they might even display the same layout.) A large number of script steps

in FileMaker Pro are context dependent. If you fail to set the context correctly or change it inadver-

tently during a script by switching layouts or windows, you could end up deleting records in the

wrong table (to take an extreme case). Interestingly, FileMaker Pro currently doesn’t offer a Set

Context script step. You need to establish your context explicitly by using a Go To Layout step to

reach a layout with the appropriate context.

 Mode Dependencies
A variety of actions in FileMaker depend on the current mode. In other words, things taking place in

scripts (which is where these dependencies occur) don’t happen in a vacuum; they depend on the

current state of the application and the user interface. To take an easy example, some script steps

don’t work if the application is in Preview mode, including especially the editing steps such as Cut ,

Copy , and Paste , and others such as Find/Replace and Relookup . If you have a script that’s try-

ing to execute a Relookup step, and some other script has left the application in Preview mode,

your Relookup won’t happen.
Most of these mode dependencies are really “Browse mode depen-

dencies,” because in general it’s Browse mode that’s required. But

a few other mode-based quirks are also important to remember.

A few script steps have different meanings in Find mode than

in Browse mode. In Find mode, the Omit script step causes the

current Find request to become an Omit request, whereas New

Record and Delete Record create and delete Find requests,

respectively. These three steps work differently in Browse mode,

where they respectively omit a record from the current found set

and create or delete a record.

If you’re using such script steps, the answer’s the same here as

elsewhere: Explicitly set the context if you’re using script steps

that depend on it. In this case, you should use an explicit Enter Browse Mode script step when

using steps that depend on this mode.

Finally, there are also mode dependencies that occur outside the context of scripting. A number of

FileMaker’s presentation features are dependent on Preview mode. These features include the capa-

bility to display data in multiple columns, the capability to show the effects of any sliding options

you may have set, and the capability to show summary parts and summary fields.

 � To find full details on these Preview-dependent layout features, see “Working with Objects on a

Layout,” p. 144 and “Using Summarized Reports,” p. 295 .

 note
 The Copy command does actu-
ally have one meaningful and
useful behavior in Preview mode.
If no target field is selected, a
Copy command executed in
Preview mode copies the graphic
image of the current page to the
Clipboard.

ptg8106388

Debugging and Troubleshooting500

III

PA
RT

 The Record Pointer
In addition to all the other elements of context, there’s one other important one. Quite a number of

scriptable actions depend on what record you’re currently on. You might remember that this is a

function of two factors: what layout you’re on (which in turn translates to a table occurrence, which

in turn translates to a base table) and which window you’re in. FileMaker Pro, you might remember,

supports multiple windows open in the same layout, each with its own found set.

Within each found set, FileMaker keeps track of something called the record pointer —in other

words, on which record of the set you actually are. This is indicated both by the record number in

the Status toolbar, and possibly by the small black bar that appears to the left of each record in list

views.

Some script steps are affected by the record pointer, whereas others affect it. Obvious cases of the

former are Delete Record and Set Field . The record that gets deleted and the field that gets set

depend on which record you were on to start with. These kinds of cases are clear and trivial.

Less clear are the steps that affect the record pointer—in other words, that move it. Assume that

you have a found set of seven found records and you navigate to number 5 and delete it. Which

record do you end up on? Old number 6 or old number 4? Old number 6 is the answer: Deletion

advances the record pointer (except, of course, when you delete the last record of a set). The omis-

sion of one or more records from the found set is treated like deletion as far as the record pointer is

concerned.

What about adding or duplicating a record? Is the additional record created immediately after the

current record? Just before it? At the end or beginning of all records? Well, the answer depends

on whether the current record set is sorted. If the record set is unsorted, new or duplicate records

are added at the end of the found set. (More exactly, the set is then sorted by creation order, so, of

course, the newest records fall at the end.) But if the record set is sorted, things are different. New

records are created right after the current record. A duplicate is created at its correct point in the

sort order, which could be immediately after the current record, or possibly several records further

along.

The bottom line is that you have to be aware of which script steps move the record pointer. This

is a particular pitfall inside looping scripts that perform these kinds of actions, such as a looping

script that deletes some records as it goes. If, on a given pass through the loop, you don’t delete a

record, you need a Go to Record / Request / Page [Next] to advance the record pointer. But if you

delete a record on one pass, the pointer advances automatically, and unless you skip the “go to next

record” step this time around, you’ll end up one record ahead of where you want to be.

 Globals
Global fields (which in FileMaker Pro are more exactly called “fields with global storage” because

“Global” is no longer really a field type) have long been a powerful feature of FileMaker Pro. But

there are a few nonobvious facts about globals that can cause problems and confusion.

Unlike data values that are placed in record fields, the values of global fields are specific to each

database user (if the databases are being run in a multiuser configuration). That is, if you have an

invoicing system with an Invoice Date field, every logged-in user sees exactly the same invoice date

ptg8106388

501File Maintenance and Recovery

19

C
H
APTER

for invoice record number 1300. By contrast, if you have a globally stored field called gFlag, it’s pos-

sible that every single user could see a different value for that global field. If a global field gets set

to a value of 1300 by one user, that value isn’t seen by other users. They each have their own copy

of the field, unlike a nonglobal data field.

It’s helpful to remember that when a file containing globally stored

fields is first opened, all global fields are set to the last values they

had when the files were last open in single-user mode. This means

that users in a multiuser environment can’t save the values of

global fields. When a user closes a file, all global fields associated

with that file’s tables are wiped clean. (In effect, they disappear.)

If the same user reopens the file, all the globals will have reverted

to the server defaults. This is an important troubleshooting point. If

you are relying on global fields to store important session informa-

tion such as user preferences, be aware that if the user closes the

file containing those globals, all those session settings disappear,

and reopening the file does not, by itself, bring those stored global

values back.

File Maintenance and Recovery
A corrupted database system is every developer’s nightmare, as

well as every user’s. Database systems are complex and very sen-

sitive to the integrity of their data structures. Errors in the way

data is written to a database can damage a system, or in the worst

case, render it unusable. Periodic maintenance can help you avoid

file structure problems. In the worst case, if one of your files does

become corrupted, FileMaker has tools to help you recover from

this situation as well.
It might occasionally happen that a FileMaker file becomes so

badly damaged it cannot be opened. When this happens, the

reason is usually that the file’s host (either the FileMaker client

or the FileMaker Server) suffered a crash, leaving the database

file partially updated and in an inconsistent state. If a file is dam-

aged in this way, it’s necessary to use the File, Recover command.

When you choose the Recover command, you first select the file, as

shown in Figure 19.1 . (The file must not be opened at this point.)
If you click the Select button, FileMaker Pro will attempt to recover

the file. Before doing so, you can choose to run a consistency check

by clicking Check Consistency. This gives you an overview of the

file’s status, as shown in Figure 19.2 . The consistency check does

not modify the file. If you want to see the details of what has been

found, you can look at the log file.

 caution
From a troubleshooting perspec-
tive, it’s important to remember
that globals are volatile and
session specific. Even more
important, in a very large number
of cases, globals can be replaced
by variables—sometimes global
variables with a $$ prefix, but
even more often by local vari-
ables within a single script with
a $ prefix.

 tip
The best way to prevent cor-
rupted database files is to pre-
vent them from suddenly being
corrupted with a power loss.
All computers that host critical
information should be equipped
with an uninterruptible power
supply (UPS) that provides bat-
tery backup and a connection
(often universal serial bus [USB])
that allows the UPS to determine
when the power is off and to
shut down the computer in an
orderly manner. The UPS needs
only to protect your computer
and, possibly, Internet connec-
tion and network hardware.
Printers, scanners, and displays
can fend for themselves.

ptg8106388

Debugging and Troubleshooting502

III

PA
RT

If you have chosen to recover the file, you next must specify the name for the recovered file (the

original file will not be touched). As you can see in Figure 19.3 , in addition to naming the recovered

file, you can also choose advanced options.

 Figure 19.1
 Recover a damaged file.

 Figure 19.2
 Run a consistency check.

 Figure 19.3
 Name the recovered file.

If you have chosen Advanced Options, you will see the results shown in Figure 19.4 .

ptg8106388

503File Maintenance and Recovery

19

C
H
APTER

The three radio buttons control the general processing of the recovered file:

 • Copy File Blocks As-Is simply makes a copy of the file. It is the same as the Save a Copy com-

mand using the copy option.

 • Save Logical Structure is the same as the Save a Copy As command using the compacted copy

option.

 • Scan Blocks and Rebuild File will check each block, copying the good ones and dropping those

that are invalid. It is possible that some data may be dropped during this process, but the

remaining data should be usable. (This is the default.)

Next, a set of four check boxes lets you choose from a variety of options. All are on by default.

 • You can rebuild the schema (the database field and table structure).

 • You can rebuild the rest of the database structure (scripts, layouts, and so forth).

 • You can rebuild indexes during the recovery process or allow them to be rebuilt later, on an as-

needed basis.

 • You can drop saved settings for page setup, sort order, and so forth.

The final check box lets you skip a startup script and the startup layout: Recovery ignores those set-

tings and goes ahead to do its best to recover the database. Remember that the goal of recovery is

to return the database to a usable state even if some data needs to be dropped. Of course, nothing

is better than simply returning to the last good backup copy provided that no new data has been

entered. You can use a backup together with recovery. First, restore the backup copy (and make

certain to make a copy of the backup if you need to go back to it). Now, run recovery and watch the

messages to see if any data has been lost. If no data has been lost, you can rename damaged file,

change the name of the recovered file to the name of the damaged file, and go on your way.

Recovery will attempt to warn you if problems were detected, as you can see in Figure 19.5 .

 Figure 19.4
Use Advanced Options to control the recovery
process.

ptg8106388

Debugging and Troubleshooting504

III

PA
RT

However, if some data has been lost in recovery, you can open the recovered database (without

renaming it) and look. It is possible that the data that was entered or modified after the last backup

(data that exists only in the recovered file) may be intact. The data that had to be dropped could be

in an older portion of the database. In that case, you can import the recovered data to the backup,

thereby reconstructing the full database. Even if you have lost some data, you may still be able to

recover some of it.

As you proceed, make copies of everything in case you need to revert to the backups or earlier ver-

sions. Save copies at every step until you are certain that the crisis has passed.

As you work with a database file, the file can become slowly more fragmented and less efficient

over time. Large deletions can leave “holes” in the file’s data space. Heavy transaction loads can

cause indexes to become fragmented. If your databases are large or heavily used, it’s a good idea to

perform periodic file maintenance. Use the Recover command with the Copy Logical Structure option

to defragment the database and check for problems.

Using the Database Design Report
Beyond documenting your solution within its structure and code,

FileMaker Pro Advanced includes the Database Design Report

(DDR) feature, which is quite useful and might very well stand

as the centerpiece for your system documentation. The report

includes an overview of the system, along with detailed informa-

tion about your database schema, including tables, fields, rela-

tionships, layouts, value lists, scripts, accounts, privilege sets,

extended privileges, and custom functions. The report can be

created as an integrated set of linked HTML documents or as a

set of XML files.

 Figure 19.5
 Message warning of lost data.

 tip
Using XSLT, you can transform
the XML output of the DDR into
a Microsoft Word document that
your constituents might find
easier to digest and more com-
monly associated with what they
think of as documentation.

ptg8106388

505Using the Database Design Report

19

C
H
APTER

 Creating a DDR
Creating a Database Design Report is a simple task. But first, you must have FileMaker Pro

Advanced, and you must open all the files that you want to include in the report. The files must

be opened with an account that has full access privileges. After opening the files, choose Tools,

Database Design Report to display the dialog shown in Figure 19.6 .

 Figure 19.6
FileMaker’s Database Design
Report can document many
aspects of your databases.

By default, all tables in all available files are included in the report. You can uncheck files or tables

you do not want to include. You can also specify the types of information to include for each file.

Choose either HTML or XML for the report format. Finally, click the Create button and specify the

location to which to save the report files.

If you’re not sure whether the HTML or XML version of the DDR is more useful to you, think of it

this way: The HTML version produces a set of linked web pages that you can open and navigate

immediately in a browser. The XML output is more appropriate if you need the data in raw form and

plan to manipulate it in some way before viewing or presenting it. One type of manipulation might

consist of writing one or more XSLT stylesheets to transform the DDR XML data into a form suitable

for importing into a FileMaker database.

The HTML version of the DDR includes a Summary.html document along with various additional

HTML documents (<filename>_ReportFrame.html, <filename>_TOCFrame.html, and a Styles.css

file). To view the report, open the Summary.html file in any frames-capable web browser.

ptg8106388

Debugging and Troubleshooting506

III

PA
RT

Each of the solution’s files is listed, along with counts of elements within those files (fields, tables,

layouts, accounts, and so forth), as shown in Figure 19.7 . Click a filename or any of the element

counts to view details. All the details for a particular file are included on one (possibly lengthy)

page. Use the navigation frame at the left side of the window to quickly move to the section you are

interested in. You might also use your browser’s Find feature to locate a particular element within

the report.

 Figure 19.7
 The DDR
summary
shows
counts of
each data-
base ele-
ment.

The DDR includes many hyperlinks that make it easy to navigate the report. For instance, the Fields

section lists every layout, relationship, script, and value list that uses each field. Each of the listed

items is a link that displays the element.

Figure 19.8 shows part of the summary and the beginning of the section of tables in a DDR.

ptg8106388

507Using the Script Debugger

19

C
H
APTER

Using the Script Debugger
The principle of isolation applies to scripts as well as to calculations. Your problem might lie inside

one script, or you might have a complex chain of scripts and subscripts that’s exhibiting failure. By

far the best tools available for this are the Script Debugger and the Data Viewer, which are part of

FileMaker Pro Advanced. The Script Debugger vastly simplifies the process of script debugging,

which once upon a time (prior to FileMaker 7) relied chiefly on the insertion of numerous Pause

Script and Show Message script steps! But debugging scripts is still not an automatic process. In

the following sections, we walk you through the tools and how to use them.

About the Script Debugger
The Script Debugger and its close companion the Data Viewer are tools that are available only in

FileMaker Pro Advanced. This alone is reason enough to invest in Advanced. Trying to troubleshoot

a complex script without reasonable debugging tools is a bit like trying to assemble a jigsaw puzzle

with your eyes closed. It’s not strictly impossible, but it’s much harder than it needs to be.

Script debugging can be enabled or disabled from within FileMaker Pro Advanced at any time by

choosing Debug Scripts from the Tools menu. This opens the Script Debugger window shown in

Figure 19.9 .

 Figure 19.8
Increasing detail is
found as you click into
the DDR.

ptg8106388

Debugging and Troubleshooting508

III

PA
RT

Using the Script Debugger, you can step through a script line by line as it executes. You can see

when and whether it follows a certain logical path (which branch gets followed when it encounters

an If statement, for example), when and how it breaks out of a loop, and which subscripts it calls,

for example. Using the Data Viewer, you can see how record and calculation data change as the

script runs (we’ll say more about the Data Viewer later).

In FileMaker Pro, script triggers are supported in the Script Debugger. Not only is the name of the

script shown toward the top of the Script Debugger window, but a trigger—if any—is identified

at the bottom of the window. This is critically important because with script triggers, stepping

through a script line by line does not necessarily make it clear why a script suddenly starts running.

Compare Figure 19.9 with Figure 19.10 (a script launched by an OnLayout Load trigger), paying

particular attention to the bottom of the windows.

 Figure 19.9
The Script Debugger window helps
you track down bugs.

 Figure 19.10
The Script Debugger identifies scripts
launched by triggers.

ptg8106388

509Using the Script Debugger

19

C
H
APTER

The trigger appears in the Call Stack at the bottom of the window. The top window shows the

trigger or script that is running now. The second line (if it exists) shows the trigger or script that

caused this script to run. On down the call stack you go, tracing backward the scripts and triggers

that got you here.

You also see the last error that was encountered, and a checkbox lets you pause the script automati-

cally when an error occurs.

Figures 19.9 and 19.10 show the tools available in the Script Debugger. Most of them have to do

with controlling the flow of the script. In general, you’ll want to step through the script line by line

(using the Step command), but you’ll also often want to follow the execution path into subscripts

(the Step Into command). Sometimes, when you’re inside a subscript, you might want to finish with

the subscript and start debugging step-by-step again back in the parent script (the Step Out com-

mand).

Finally, the Authenticate/Deauthenticate script allows for immediate overriding of the user’s

privileges so as to use the Script Debugger. You can also stop the script altogether, open it in

ScriptMaker, or use the breakpoint features to allow even more precise control over script execution.

We discuss breakpoints in the following section.

At the top right of the window, four buttons let you control debugging. From left to right, they

• Enable/disable triggers

• Set/clear breakpoints (available only if you are stopped at a breakpoint)

• Edit the script

• Show the data viewer

 Placing Breakpoints
The Script Debugger enables you to place a breakpoint in a script so that execution stops there and

you can see what’s happening. In theory, if you have a troublesome script or script chain, you could

place a breakpoint at the start and step through the script. But if this is a lengthy script chain, or

one that contains a loop that might run many times, this approach may not be very time effective.

Consider a case in which you have a complex set of scripts that call each other; let’s say that there

are three scripts total. Somewhere in the middle of that script, a date field on the current record is

getting wiped out, but you don’t know where.

In a case like this, you can use a classic isolation technique called

binary search . If you have no idea where the problem is happen-

ing, place a breakpoint more or less in the middle of everything—

say, halfway through script #2. Turn on the Script Debugger, let

the script run, and see whether the field has been wiped out by

the time you stop at the breakpoint. If the problem has already

occurred, move the breakpoint to around the midpoint of the first

half of the script chain (that is, 25%) and try again. If it hasn’t hap-

pened by the 50% mark, move the breakpoint to 75%. Repeat until

you narrow the possible range to one or two lines. This may sound

 tip
If you have to debug a looping
script, it’s worthwhile to try to
reduce the number of records on
which the script runs. In general,
if you need to debug the loop
itself, one internal breakpoint
should suffice at first, either at
the beginning or end of the loop.

ptg8106388

Debugging and Troubleshooting510

III

PA
RT

like it’s not much of a timesaver, but using this technique can find the error in a script of more than

1,000 lines using at most ten of these check-and-move operations.

Using the Data Viewer
One of the most important uses of a debugger is to watch certain values and see how they change.

These could be database fields, global variables, or aspects of FileMaker state such as the current

layout.

The Watch tab lets you add calculations to be evaluated as the script executes. You can use the Add

to Watch button at the lower left of the Current tab to add a field or variable to the Watch list. The

Current tab, shown in Figure 19.11, shows the values of variables and fields that are accessed in the

current script. The Watch tab shows the variables you specifically want to watch. Use the Add to

Watch button in the lower left of the Current tab to add the variables and fields you want to watch.

You can also add calculations to watch.

 Figure 19.11
FileMaker’s Data Viewer, with Current tab
selected.

As an example of a typical use of the Data Viewer, consider the example of a script that mysteri-

ously clears out a field. You would like to step through the script line by line and find out when that

happens. Your first step is to bring up the Data Viewer and click the Current tab. You can turn on

Debug Scripts (if it’s not on already) and run your script. Using the various stepping operations, you

can move slowly through the script, watching the fields and seeing how they change. In this case,

you can pin down the exact step where the field gets cleared.

The Data Viewer is a critical tool in FileMaker troubleshooting, and we heartily recommend you

become familiar with it.

ptg8106388

 20

CONVERTING SYSTEMS FROM
PREVIOUS VERSIONS OF
FILEMAKER PRO

 Updating and Upgrading FileMaker
Software

FileMaker—like almost every software developer in the world—issues

updates and upgrades to its software periodically. Typically, updates are

downloadable, and, with rare exceptions, they’re free. On the other hand,

upgrades generally are priced.
Updates and upgrades are sometimes issued to correct bugs and tighten

security lapses that have been discov-

ered. More often, they implement new

features and new ways of doing things.

Most of the time this is due to the hard

work and imagination of the developers

at FileMaker, Inc., but it also is due to

requests from users.

 � Use the forums at www.filemaker.com/support/contact.html to ask

questions and make suggestions. FileMaker monitors them to see

where people are having problems and whether something can be

done to make life easier for the users. Find FileMaker conversion

documentation at www.filemaker.com/r/conver .

 note
You can set up FileMaker prod-
ucts to check automatically for
updates.

www.filemaker.com/support/contact.html
www.filemaker.com/r/conver

ptg8106388

Converting Systems from Previous Versions of Fi leMaker Pro512

III

PA
RT

Because updates contain fewer changes than upgrades, they

generally cause few, if any, problems. However, whenever you

change anything at all in your computing environment, you

should always back up the relevant files so that if anything does

go wrong, you can revert to the previous version. Many people

rely on full system backups for this purpose: It can be much

faster to just back up everything than to determine what might

be affected.

Migrating to New FileMaker File
Formats

As you have seen in this book, your FileMaker environment

frequently consists of a variety of FileMaker files and, often, a

variety of FileMaker software products. You might use FileMaker

Pro for your daily work, but you might have a copy of FileMaker

Pro Advanced that you use when designing new databases. You

might use FileMaker Go on your iPhone or iPad; you might access

databases that you have downloaded or sent to the iOS device, or

you might access them from shared files that you have hosted on

FileMaker Pro.
You also might use FileMaker Pro or FileMaker Go to access

files that are shared through FileMaker Server. Furthermore, you

might have deployed Custom Web Publishing (CWP) and Instant

Web Publishing (IWP) solutions with FileMaker Pro or FileMaker

Server. You (or others) may access CWP and IWP solutions via a

browser.

As a general rule, FileMaker maintains interoperability among

its products so that you don’t have to worry about upgrading

or updating all of your FileMaker products at the same time.

However, this is not always the case. Occasionally, it is necessary

for FileMaker to change the formats of database files in order to

implement new functionality or accommodate new features of hardware and environmental soft-

ware. At such times, you must migrate your FileMaker files to the new format. The change in format

is indicated by a change in the extension for FileMaker files.

This doesn’t happen very often. Here are the major extensions that have been used:

 • .fmp12 —The FileMaker 12 products (FileMaker Pro 12, FileMaker Server 12, and FileMaker Go

12) introduced this file format in 2012. Files are automatically converted from the prior .fmp for-

mat when you open them for the first time.

 • .fp7 —This format was introduced with FileMaker Pro 7 in 2004. Files were automatically con-

verted from previous file formats using the .fp3, .fp5, and .fpj extensions, which date back to

FileMaker 3 in 1995.

 tip
If you do regular backups of your
system (and you should), save
your pre-update backup in a safe
place. In the unlikely event that
something does go amiss with
one of your databases, it might
not be discovered for some time
and you may need to revert to
it in the future. As part of your
backup, make sure you back up
the current FileMaker software.
Don’t rely on very old backups
for permanent data storage.
Remember that, over time, you
may change operating systems
and even your computer hard-
ware. For many people, backups
that rely on software that is
many years old are unusable.

 note
Unless otherwise noted, in
this chapter FileMaker Pro
refers to both FileMaker Pro
and FileMaker Pro Advanced.
Similarly, unless otherwise
noted, FileMaker Server refers
to both FileMaker Server and
FileMaker Server Advanced.

ptg8106388

513Planning the Conversion

20

C
H
APTER

Because the .fp7 extension has been in use for nearly a decade (at the time this book was writ-

ten), the focus in this chapter is on migration from that format to the new FileMaker 12 format.

Fortunately, the issues involved in converting from .fp7 to .fmp12 are relatively few. This chapter

explores the major ones.

Themes in Conversion

The conversion to .fmp12 converts all layouts to the Classic theme. That doesn’t matter to you
because before FileMaker Pro 12, it was impossible to create themes. Therefore, automatically,
all pre–FileMaker 12 layouts effectively use the Classic theme.

Any customization of the layout with colors, fonts, and so forth, are retained as customizations
to the converted layout and its Classic theme.

 Planning the Conversion
Unless you are working with a single-file solution that is used for noncritical work, you should

plan for the conversion. The first step in planning a conversion is to decide what you will do. Your

choices range from totally rewriting the solution to doing the smallest amount of work necessary to

get everything up and running in the new environment. For an old solution with years and years of

edits (which often do not use scripting features such as parameters that make your life easier), this

can be an opportunity to start over or at least to clean up the code.

Beyond code cleanups, think about whether it is time to add functionality to your solution. One

major area to think about is making your solution accessible to mobile devices and FileMaker Go if it

is not already ready for them. You do not have to go all the way to mobile implementation; you can

begin to pave the way during your conversion. With even just a few of these steps, you will be mak-

ing the eventual mobile implementation easier.

Here are some steps you might consider with regard to layouts and layout names:

 • Look at the strategy used in the Starter Solutions where you have parallel layouts for iPhone,

iPad, and desktop. You can begin to implement that structure in your converted solution by nam-

ing layouts appropriately.

 • You can plan for an incremental evolution if you have a solution that does not run on mobile

devices. In that case, every layout is designed for the desktop.

 • Use the structure of layouts in the Starter Solutions by creating a Desktop layout folder and put-

ting the existing layouts in it.

 • Rename all the existing layouts with a prefix such as Desktop.

 • Any Go To Layout script steps will still work because they use internal layout ID numbers

rather than the layout names, unless you explicitly calculate the layout name. This will position

you to add mobile devices easily in the future.

ptg8106388

Converting Systems from Previous Versions of Fi leMaker Pro514

III

PA
RT

Whether you can afford the time and effort to start over or to clean up the code depends on the proj-

ect and the resources available. For critical multiuser systems, you must budget not only your own

development time, but also user time for testing.

For a system that has been running for years and years, users might have gotten out of the habit of

testing code. In fact, they might actually have never tested solutions that have always worked and

have just grown and grown without the benefit of testing.

Building a New Solution

If you think it might be time to rebuild your solution from scratch, take a few moments to con-
sider the details of such a project. Perhaps most important is to think about your existing data.
If you can use FileMaker’s powerful import and export functionalities to move your data, start-
ing over may not be a daunting task. The one thing to remember is that using the import and
export tools doesn’t work between FileMaker formats with the FileMaker format, but you can
move your data in tab- or comma-delimited format or even XML.

In considering a new solution, browse through this book’s detailed table of contents to remind
yourself of the features available in FileMaker. You may find new ways of doing things that can
improve your solution and reduce the effort needed to rebuild it. Features that are often not
used in very old solutions and that can be very useful in rewritten ones include script param-
eters, script results, triggers, and themes.

One thing that can help the conversion project is to plan right

from the start to do the project at least twice. The first conversion

will give you an idea of major issues that need to be resolved. In

other words, if you can’t do a basic task, you have to resolve that

issue.

A second conversion may incorporate changes and enhancements

subject to the resources available. Testing can continue with

this version. Having successfully tested the second conversion,

you can then do a real-life conversion, applying any changes you

made during testing. At that point you are ready to go live.

 Preconversion Tasks
You can and should do a number of things before converting

older solutions to a new version of FileMaker. Your preconversion

tasks vary somewhat from solution to solution, but some catego-

ries of tasks are still common to most solutions.

Our comments here are aimed at people who are converting older relational (multifile) systems of

some complexity. The purpose of doing any preconversion work at all is to make the post-conversion

work go more smoothly; for single-file and simple relational solutions, you might not need to have

rigorous conversion plans like this in place.

 note
Many users of FileMaker solu-
tions are relatively sophisticated
when it comes to the data and
databases they are using. In
the world of FileMaker, it is not
uncommon to find solutions
that are built and maintained
and not tested to the extent that
major enterprise systems are
tested. And, in many cases, this
works. The more you know about
FileMaker, the solution involved,
and—most of all—about your
organization, the more you will
be able to decide on a strategy.

ptg8106388

515Preconversion Tasks

20

C
H
APTER

 Document Your Solution
The more familiar you are with a solution, the better your conversion will go. Even if you’re the sole

creator of a system, having up-to-date documentation comes in handy during the conversion pro-

cess. We recommend having at least the following items:

 • An ER diagram —If you’ve never taken the time to formally create an ER diagram of your system,

now’s the time. For a refresher on creating ER diagrams, see Chapter 5 , “Relational Database

Design.” If you are converting from a pre–FileMaker 7 database, your ER diagram can be done

roughly on a piece of paper. When you are in the modern FileMaker world, you can use the

Relationships Graph with its documentation and design tools to produce a more complete ER dia-

gram.

 • Printouts of field definitions, scripts, and layouts —You might balk at the thought of actually

printing out and organizing all these documents, and some people might indeed find that creat-

ing PDFs rather than printing works well for them. Many subtle changes take place during con-

version, and it’s very helpful when looking at a script or calculation formula to be able to compare

it with the original. One nice thing about hard copies, of course, is that you can annotate them

as you go. You might, for instance, check off buttons on screenshots of layouts as you test them,

noting whether everything worked as planned or needs post-conversion attention. The printouts

become both your testing plan and your post-conversion audit trail.

 • An access privilege matrix —This is simply an overview of the privilege settings in your current

files. Create it in a database, spreadsheet, or text document; the location really doesn’t matter.

If you use FileMaker Pro Advanced, you might want to create a Database Design Report (DDR) of

your old solution as part of your documentation process. When you are finished, save the converted

solution and its own DDR for reference.

 Do Some Housekeeping
In addition to file references, you can avoid other potential post-conversion problems if you do a bit

of preconversion work. You can actually identify much preconversion work by examining the alpha

conversion files. You might, for instance, discover that you have objects with illegal names, which

are placed in between curly brackets during conversion. These can be changed in the original sys-

tem so that by the time you’re ready to do your beta conversion, they’re no longer an issue. By doing

as much work as possible in the pre-beta conversion stage, you reduce the amount of time and work

required to get your converted files ready for production.

If there are scripts, layouts, relationships, external data sources, passwords, value lists, or fields that

you know are no longer used or needed, try to eliminate them before conversion. If there has been

case inconsistency in the entry of passwords in your current system, take the time to standardize

them. These efforts will be rewarded by shorter conversion time and having less to test after con-

version. Any other housekeeping in the original files can only be beneficial, including organizing

scripts, editing object names, and archiving old data.

ptg8106388

Converting Systems from Previous Versions of Fi leMaker Pro516

III

PA
RT

 Converting Files
The actual conversion of files from previous versions of FileMaker is a simple task. In many cases, it

consists simply of opening a file in a FileMaker Pro 12 (or later) version of FileMaker, and respond-

ing to the dialog shown in Figure 20.1 . Everything just works.

 Figure 20.1
Many files can be converted with a single mouse
click.

This one-click conversion works with a single-file solution subject to some of the issues described

later in this chapter in “Potential Conversion Issues.” If you have a multifile solution, you need to

convert all of the files to .fmp12.

Figure 20.2 shows the relationships diagram for a two-file solu-

tion. Note that the People table title is shown in italics, which

indicates that the table is located in an external data source

rather than in the same file.
At this point, if you try to use the external table, FileMaker Pro

will be searching for the file with an .fmp12 prefix. Until you con-

vert it, FileMaker Pro will be unable to find the file. This means

that you should start by converting all of the files in your solution,

possibly by dragging them all onto FileMaker Pro 12 and convert-

ing them in a single operation.

 Post-Conversion Tasks
As discussed in the previous sections, you can avoid many potential post-conversion problems by

doing some preconversion work on your old system. However, a number of tasks can be done only

post-conversion. note

You should begin a list of post-conversion tasks during your exploration of the initial conversion files.

You’ll spot problems and potential areas of improvement. Anything that can’t easily be fixed through

preconversion work should go on your post-conversion task list. Keep in mind that you’ll end up

destroying the alpha files, so don’t spend too much time or effort fixing problems. Some fixes are nec-

essary just so that you can continue your exploration; you might opt to do other fixes just so that you

can test the results.

 tip
You might want to save the
unconverted (old) files as well as
the newly converted files in case
you need to go back to either
step.

ptg8106388

517Converting Files

20

C
H
APTER

 Figure 20.2
Tables in external
files have italicized
titles.

ptg8106388

This page intentionally left blank

ptg8106388

 21

CONNECTING TO EXTERNAL SQL
DATA SOURCES

 ODBC Basics
Initially developed by Microsoft in 1991 as Open Database Connectivity

interface, ODBC provides a way of accessing ODBC-compliant databases

without your knowing anything about the internal workings of the data-

base. ODBC is an API you can call from a variety of programming lan-

guages on a variety of operating systems. JDBC is a set of Java classes

that allows access to the ODBC database. (Sometimes the two concepts

are referred to collectively as x DBC.)

 SQL
FileMaker’s ODBC implementations convert internal FileMaker concepts

to SQL both when sending and receiving data. You never see the SQL, but

it is there, making the connections work. SQL is sometimes considered an

acronym for Structured Query Language, but it is not. Its original name

was Structured English Query Language (SEQUEL), but it turned out that

SEQUEL was a trademark already in use.

SQL is what is called a declarative language: It describes what the data

is and what its relationships are. Specific databases process the SQL dec-

larations in their own ways. The other style of programming, imperative

programming, specifies how a process is to be carried out, not what its

final state should be, although that is contained in the imperative instruc-

tions.

In FileMaker terms, the Manage Database dialog in which you specify

tables, fields, and relationships is declarative, as are layouts and value

lists. Scripts are imperative.

ptg8106388

Connecting to External SQL Data Sources520

IV

PA
RT

 FileMaker Architecture
FileMaker files contain a variety of items: scripts, layouts, value lists, accounts, privileges...and

data. One of the main benefits of FileMaker is that everything is in one place and works seam-

lessly together, even if you are working with multiple copies of FileMaker Pro or a shared copy of

FileMaker Server.

Database systems such as Oracle and SQL Server typically separate the data from the interface ele-

ments. In fact, although these products can have interface elements, programming, and scripting

features, other products that access the data in the database directly can replace them (usually by

using SQL).

FileMaker can interact with databases such as SQL Server, Oracle, and MySQL; it brings its own

nondatabase elements (scripts, layouts, and so forth), and interacts with the external database using

ODBC, an industry standard. Many databases use SQL internally, but FileMaker does not.

 ODBC Architecture
The ODBC architecture is very simple; understanding it will make it easier for you to use

FileMaker’s various ODBC features. There are four basic concepts in ODBC:

 • Applications are programs that need to access ODBC data.

 • Databases are repositories of data. They can be traditional databases such as Oracle, DB2,

FileMaker, and Access; but they can also be other repositories of data, such as Excel spread-

sheets.

 • Drivers interact with databases and driver managers.

 • Driver managers mediate between drivers and applications.

This structure means that applications and databases can talk

to one another without either one knowing the inner workings

of the other. Drivers must know about their specific databases,

and driver managers must know about their specific applications.

The ODBC API forges the critical link between drivers and driver

managers, and that link requires nothing specific to either the

application or the database. It frequently is a link between com-

puters. The database and its driver run on one computer, while

the driver manager and the application run on another.

Driver managers can be distributed or even built into applica-

tions. The necessary components to implement driver manage-

ment functionality are installed as part of standard FileMaker

installations. This allows FileMaker to connect to ODBC drivers

and through them to other databases. Applications that want to

use ODBC to connect to FileMaker as a database provide their

own driver managers.

The specific driver required depends on the operating system on

which the database is running—that is, the database in ODBC

 note
This section describes the stan-
dard architecture. In most cases,
there are a few notes and excep-
tions. Sometimes an application
supports a subset or superset
of ODBC commands; likewise,
a database can support a sub-
set or superset of ODBC com-
mands. Drivers can come from
the database vendor or from a
third party. A company such as
FileMaker often tests drivers and
recommends specific drivers that
it knows will work. This applies
both to the application side and
the database side.

ptg8106388

521Setting Up FileMaker Databases for ODBC

21

C
H
APTER

terms. It could be FileMaker, or it might be Oracle, SQL Server, or MySQL. They, too, can be built

into the database code. In the case of FileMaker functioning as a database (an ODBC data source),

the necessary code is built into FileMaker Server Advanced for up to 50 connections and into

FileMaker Pro for up to five connections on the same computer on which FileMaker Pro is running.

Setting Up FileMaker Databases for ODBC
ODBC can work with FileMaker as a data source or as a consumer. If you are going to be using

FileMaker as a data source, there is one essential step to setting up your FileMaker databases to

be shared, and there are several optional steps. The essential step is to enable the ODBC/JDBC

extended privilege for the database, as shown in Figure 21.1 .

 Figure 21.1
Enable the ODBC/JDBC
extended privilege.

Included with the electronic documentation for FileMaker Pro and

FileMaker Server (along with their Advanced versions) you will

find the ODBC and JDBC Guide. It outlines the optional steps.

 � If you have more questions, searching the FileMaker

Knowledge Base for “external SQL” will provide the latest

updates. In addition, for issues such as this, the TechNet

area on Filemaker.com is an excellent resource to search for

information and to pose questions.

 note
Because there are some differ-
ences in field types and the way in
which ODBC functions, as opposed
to FileMaker, you might have to
make some adjustments in these
areas or simply be aware of them.
In most cases, you can put this
information in the back of your
mind and deal with it only if your
testing reveals problems. For the
vast majority of cases, enabling
the extended privilege is sufficient.

ptg8106388

Connecting to External SQL Data Sources522

IV

PA
RT

Setting Up and Administering ODBC
This section helps you understand what you have to do to set up

ODBC without regard to FileMaker—that is, the steps that must

be taken before you can start to use the FileMaker ODBC and

SQL features described in the rest of this chapter.

ODBC enables you to access a database; it handles the technical

matters. You have to handle the practical matters: You need the

permission of the database administrator (DBA), and you might

need a whole host of sign-offs from various owners of the data

involved. Gaining access to data is sometimes difficult, particu-

larly if you are doing something that an organization has never

done before or if the data is particularly sensitive.

 Installing Drivers
You must set up a driver for each database management system

(DBMS) you will access. Often, the driver is set up or installed

when the DBMS is installed, and you have nothing further to do.

Even if you do have to install it yourself, as you will see here, it

is usually a matter of running an installer or dragging a file into a

specified location. Because drivers are specific to databases, you

normally have to do little configuration: It has all been done for

you, which is the point of the driver.

You must set up a data source for each database you will access.

Each data source will have its own data source name—a DSN.

Often, the DSN will be set up for you by the database administra-

tor and, again, you have nothing further to do.

All this is done outside FileMaker for anyone who wants to

access the relevant DBMS and the specific database using ODBC.

Because FileMaker itself can be used as an ODBC data source,

you will see instructions for setting up drivers and DSN for

FileMaker in this section, but you will not be using FileMaker to

do so. In this regard, FileMaker is just another DBMS.

Here are the ways in which you can integrate FileMaker with

SQL:

 • Use another application to access FileMaker data —In this case, FileMaker is the data source

and the other application is the ODBC client .

 • Use FileMaker to access other SQL data —In this case, FileMaker is the ODBC client and the

other database is the data source.

You need a driver that is compatible with the data source. The ODBC functionality for the ODBC cli-

ent might be built in, or it might require another driver.

 tip
Neither FileMaker nor ODBC can
help you out here except for the
general suggestion that by using
standards, you are not bypassing
security but enhancing it. That
is an argument that has worked
on occasion. You can phrase it
as, “Wouldn’t you rather I logged
in under your supervision using
ODBC than access the data in
some other way that you won’t
know about?”

 note
This section of the chapter might
be optional for you. It concerns
setting up drivers for databases
and setting up ODBC data source
names (DSNs). These steps are
basically done once, so if you
are taking over a project that has
already been configured and set
up, you can skip these steps and
jump right into the database.

 note
ODBC client functionality is
built in to FileMaker Pro and
FileMaker Server.

ptg8106388

523Setting Up and Administering ODBC

21

C
H
APTER

The driver used to access FileMaker data is distributed with

FileMaker applications. It may be an optional install. You can also

search Filemaker.com for downloadable drivers. Once the driver is

installed and configured, you usually do not have to worry about it

again.

When you use FileMaker as an ODBC client to access other data

sources, the driver(s) are usually provided by the other database

vendor.

 � Complete instructions are available in the Documentation

folder of your installation disc. Look for “FileMaker X ODBC

and JDBC Guide,” where X is your version number. The

filename for the English version is fmX_odbc_jdbc_guide_

en.pdf; others are similarly named. You might want to search

the FileMaker Knowledge Base just before doing the installa-

tion to check whether there are updated versions.
Check for the latest version numbers on the FileMaker website.

These are the certified drivers at the time the book is being

written.

 � For the latest information on drivers for external SQL data

sources, see the FileMaker website at www.filemaker.com/

support/technologies/sql.html .

 � Drivers for OS X are provided by Actual Technologies.

You can reach them at www.actualtechnologies.com/

filemaker.php

 Oracle
 • Oracle 9i Release 2 (9.2.0.1) on Windows use Oracle Database

Client version 9.2.0.6.5

 • Oracle 10g Release 2 (10.2.0.4) on Windows use Oracle Database Client version 10.2.0.3.0

 • Oracle 11g Release 1 (11.1.0) on Windows use Oracle Database Client version 11.1.0.6.0

 • For all versions of Oracle supported above on Mac OS X, use Actual Technologies, Oracle

version 3.0

 caution
Before installing new ODBC
drivers, check to see whether
you have older versions on the
computer. If so, uninstall them.
On Windows, use Add or Remove
Programs from the Start menu;
on OS X, you might have to phys-
ically remove them. Their most
likely locations are the locations
into which you will install the
new drivers.

 tip
If you are using FileMaker Server
Advanced, you can install the
drivers on that computer so that
it has access to the databases.
Then clients connect as usual to
FileMaker Server Advanced using
their own copies of FileMaker.
Because the server has ODBC
access through its drivers, cli-
ent users do not need drivers
on their computers. This can
be a more efficient installation
than having each FileMaker user
install drivers and connect indi-
vidually to the SQL databases.

www.filemaker.com/support/technologies/sql.html
www.filemaker.com/support/technologies/sql.html
www.actualtechnologies.com/filemaker.php
www.actualtechnologies.com/filemaker.php

ptg8106388

Connecting to External SQL Data Sources524

IV

PA
RT

 MS SQL Server
 • MS SQL Server 2000 SP4 (8.0.2039) on Windows use Microsoft SQL Server version

2000.85.1132.00

 • MS SQL Server 2005 SP3 (9.0.4035) on Windows use Microsoft SQL Native Client 2005.90.4035.00

 • MS SQL Server 2008 SP1 (10.00.2531.00) on Windows use Microsoft SQL Native Client

2007.100.2531.00

 • For all versions of MS SQL Server supported above on Mac OS X, use Actual Technologies, SQL

Server version 3.0

 MySQL
 • MySQL 5.0 Community Edition (5.0.51b-community-net) and MySQL 5.1 Community Edition

(5.1.24-community-nt) on Windows use MySQL Connector/ODBC version 3.51.14

 • For all versions of MySQL Community Edition supported above on Mac OS X use Actual

Technologies, Open Source Databases version 3.0

 Administering ODBC
If you have used ODBC in the past (either with FileMaker or other applications), there might be

changes for you to consider. Several years ago, ODBC shipped as a standard part of the Windows

operating system, but on the Macintosh it was a third-party product. This section describes the

administration process; in the next section you will see how to actually perform the tasks you need

to do.

Today, ODBC management is built into both operating systems. On Windows, you set up ODBC

using ODBC Data Source Administrator, which is inside Administrative Tools in Control Panel.

On recent versions of Windows, Administrative Tools is inside

System and Security in Control Panel. The item you are looking

for inside Administrative Tools is Data Sources (ODBC), which

opens the window shown in Figure 21.2 .
On OS X, you use ODBC Administrator in Applications, Utilities,

as shown in Figure 21.3 . Note that this name is used first in OS X

10.4. If you are using an earlier version of the operating system, it

is a good idea to upgrade to use ODBC.
These tools typically run on the computer where the database

resides. In fact, you might not have to run them; they might be

administered by the DBA as part of the database management

operation.
As you can see, both windows have similar tabs.

 note
The distinction between a host
and client computer is easy to
grasp in a large computing envi-
ronment. With small applications
such as FileMaker, it is quite
possible for a single computer
to be both host and client. If
you are using FileMaker Server,
that computer is the host for
the databases, so you run these
applications on the FileMaker
Server computer.

ptg8106388

525Setting Up and Administering ODBC

21

C
H
APTER

 Figure 21.2
Use ODBC Data Source Administrator on
Windows.

 Figure 21.3
Use ODBC Administrator
on OS X.

 Data Source Names
The first tabs let you manage data source names. These are the objects that link to a driver, which

in turn links to a database. Each DSN has the following information that you specify:

 • Name

 • Description

ptg8106388

Connecting to External SQL Data Sources526

IV

PA
RT

 • Driver to use to connect to the database

 • Database

 • Login information (user ID and password)

 • Other information required by the driver as needed

In short, a DSN has everything you need to connect to a database. There are three types of DSNs:

 • A user DSN is local to a given user.

 • A system DSN can be used by all users. This is the only type of DSN supported by FileMaker.

 • A file DSN (Windows only) stores the information for a system DSN in a file rather than internally

in the Registry.

 Drivers
This tab lists the available ODBC drivers on the computer. On Windows, a large number of ODBC

drivers come installed with the operating system, as you can see in Figure 21.4 . Not one comes pre-

installed on OS X.

 Figure 21.4
 ODBC drivers on Windows.

The SQL Server drivers are normally among the installed drivers on Windows. If you want to con-

nect to Oracle or to MySQL on Windows, you have to install the appropriate drivers. On OS X, you

have to install any driver you need. The next section shows you how to do this.

ptg8106388

527Setting Up and Administering ODBC

21

C
H
APTER

Tracing, Connection Pooling, and About
The Tracing, Connection Pooling, and About tabs are used to monitor performance, adjust perfor-

mance, and view miscellaneous information, respectively. They are normally the province of the

DBA rather than the user.

Example: Setting Up a DSN on OS X to Connect to MySQL

This example starts with the assumption that you have downloaded and installed the Actual ODBC

Driver for Open Source Databases, as described previously. You must have it to access MySQL via

ODBC. After you have done that, you can set up the DSN to allow FileMaker (and others) to connect

to a MySQL database.

 � This example uses a database from the Federal Election Commission (www.fec.gov). For more

information on how to download that data and how to create and load the MySQL database, as

well as to learn the basics of using MySQL, see Jesse Feiler’s book How to Do Everything with

Web 2.0 Mashups .

Figure 21.5 shows the MySQL database and its tables.

 Figure 21.5
The MySQL database for
which the DSN will be built.

You launch ODBC Administrator as described previously. Select

the System DSN tab and click Add (you might have to provide

your administrator password). You receive a prompt to choose a

driver, as shown in Figure 21.6 . You want the Actual Open Source

Databases driver to connect to MySQL.
When you select the Actual Open Source Databases driver and

click OK, the Open Source Database DSN Configuration window,

shown in Figure 21.7 , opens.

 note
If you do not see the Actual
Open Source Databases driver,
it is not properly installed.
Review the previous section,
the FileMaker documentation,
and the Knowledge Base on the
FileMaker website (search for
“MySQL” or “ODBC”).

www.fec.gov

ptg8106388

Connecting to External SQL Data Sources528

IV

PA
RT

Next, you specify the database you want to use, as shown in Figure 21.8 .

 Figure 21.6
 Select a driver.

 Figure 21.7
 Begin configuring the DSN.

 note
You can tell from the text and graphics in the lower left of this window that it is the specific driver you want to use.
ODBC Administrator takes care of launching the correct interface.

ptg8106388

529Setting Up and Administering ODBC

21

C
H
APTER

 Figure 21.8
 Identify the database.

You continue, as shown in Figure 21.9 , by specifying the connection and the login information.
Next, for a MySQL database, you get a prompt to specify the socket. As you can see in Figure 21.10 ,

there are two recommended defaults. Try the first one and then the next to see which works for you.

 Figure 21.9
Provide connection informa-
tion.

ptg8106388

Connecting to External SQL Data Sources530

IV

PA
RT

 Figure 21.10
 Specify the socket.

At this point, the driver attempts to connect to MySQL. If it is successful, you will be able to select

the database you want to use from the pop-up menu, as shown in Figure 21.11 .

 Figure 21.11
 Select the database.

Finally, you see a summary of the connection, as shown in Figure 21.12 . There is only one step left.
Before exiting the DSN configuration, test the connection with the Test button at the bottom of the

window. You should see the results of the test, as shown in Figure 21.13 .

ptg8106388

531Setting Up and Administering ODBC

21

C
H
APTER

 Figure 21.12
 The DSN is set up.

 Figure 21.13
 Test the connection.

ptg8106388

Connecting to External SQL Data Sources532

IV

PA
RT

Example: Setting Up a DSN on Windows to Connect to FileMaker
If you want to use FileMaker as a data source, you must configure

a DSN for it. This section walks you through the process of doing

this on Windows, but the process is the same on OS X.
Open the ODBC Data Source Administrator by choosing Start,

Control Panel, Administrative Told, Data Sources (ODBC). It was

shown previously in Figure 21.2 . Select the System DSN tab and

click Add. Select the FileMaker ODBC driver, as shown in Figure

21.14 , and click Finish.
The setup dialog shown in Figure 21.14 opens.

 tip
You might want to compare this
section, including its screen-
shots, with the previous sec-
tion. The underlying process is
the same, but the details differ
because you are using FileMaker
here and MySQL in the previous
section.

 Figure 21.14
 Create a new DSN.

As soon as you click Finish, you enter the same sequence you saw for setting up a MySQL data

source. The difference is that this time it is a FileMaker data source. The overview screen shown in

Figure 21.15 outlines the process for you.
Name the data source and provide a description, as shown in Figure 21.16 .

ptg8106388

533Setting Up and Administering ODBC

21

C
H
APTER

 Figure 21.15
Begin the process of creating the ODBC
driver and connections.

Specify the host address as shown in Figure 21.17 . Use localhost to connect to your own com-

puter. If you are connecting to FileMaker Pro or FileMaker Server on another computer, use its IP

address. It can be a good idea to use the check box to get a list of the sharable databases on the

other computer. This tests out the connection. If you don’t see the databases you’re interested in,

check the privileges, as shown previously in Figure 21.1 . ODBC sharing is not on by default in new

databases.

 Figure 21.16
 Name the data source.

ptg8106388

Connecting to External SQL Data Sources534

IV

PA
RT

Choose your database, as shown in Figure 21.18 . Note that you

can change FileMaker text fields to long varchar fields so that

when ODBC clients connect to your FileMaker table, they see a

SQL-compliant field type. Don’t worry: In the FileMaker database,

it is still a text field. The driver will take care of the conversion.

 Figure 21.17
 Specify the host location.

 Figure 21.18
 Choose the database.

 tip
You might have to provide a
password and ID to actually make
the connection—it depends on
how the database is configured.

Figure 21.19 shows the next step—a summary of your settings. Check it out and go back if neces-

sary to make changes. It is a good idea to click Test to make certain that it actually works.

ptg8106388

535Importing ODBC Data into FileMaker

21

C
H
APTER

 Figure 21.19
 Review your settings.

If all goes well, you will see the screen shown in Figure 21.20 . Your FileMaker database is now

ready to be accessed via ODBC from other applications.

 Figure 21.20
 Test the connection.

Importing ODBC Data into FileMaker
After you have an ODBC DSN set up, you can use it to import data into FileMaker. You use exactly

the same process as any other import. Choose File, Import, ODBC Data Source. This opens the win-

dow shown in Figure 21.21 .
You might be prompted to enter a username and password. Next, you must enter a SQL query to

generate the data to be imported. The simplest query retrieves all data from all rows in a table, as

shown in Figure 21.22 . If you are used to SQL, you can refine your query to retrieve only the needed

rows and columns.

ptg8106388

Connecting to External SQL Data Sources536

IV

PA
RT

 Figure 21.21
 Select a data source.

 Figure 21.22
 Enter a SQL query.

The query runs, and it generates a set of rows and columns. You will see the same Import Field

Mapping window that you see with other data imports; simply match the imported data fields to the

FileMaker fields you want to fill, and the import proceeds.

ptg8106388

537Using External ODBC Data Sources with the Relationships Graph

21

C
H
APTER

Using External ODBC Data Sources with the
Relationships Graph

After you have set up the relevant DSNs on the computer where

the external data source is located, incorporating the data is

remarkably easy.

Specifying the Data Source
From the File menu, choose Manage, External Data Sources, just

as you would to add any other data source. When you click New in

the Manage External Data Sources dialog, you will see the window

shown in Figure 21.23 (the window changes its contents depend-

ing on whether ODBC or FileMaker is selected). Click ODBC for the

type of the data source.

 note
This section continues from the
DSN that was set up previously
for MySQL. It was set up on OS
X, but the process here is the
same whether it was set up on
OS X or on Windows. If you want
to review where you are, refer to
 Figure 21.12 , which summarizes
the DSN.

 Figure 21.23
 Select an ODBC external data source.

You can use Windows Authentication (Single Sign-On).

Name the data source. You have to specify the DSN to use. Click Specify next to the DSN field to

open the window shown in Figure 21.24 . You will see the available DSNs on the host.

ptg8106388

Connecting to External SQL Data Sources538

IV

PA
RT

 Figure 21.24
 Select the DSN.

After you have selected the DSN, provide the authentication information if you want. You can

choose to have a prompt every time a user logs in, or you can specify the username and password

here.

That’s all there is to this process. You will now see your ODBC in the list of external data sources,

and you can use it just as you would any other data source.

Adding the External Data Source to the Relationships Graph
To add an external data source to the Relationships Graph, add a table just as you normally would

do. In the Specify Table dialog shown in Figure 21.25 , you can select the data source and the table

within it that you want to use as a base table. Note that there is absolutely no difference in this dia-

log between using an external FileMaker data source and an ODBC data source. FileMaker has done

all the work for you, provided that you have set up the DSN and driver properly. There is a slight dif-

ference in the pop-up menu from which you select data sources: They are now organized into local

data sources and external data sources grouped together by the name you specified in the Edit Data

Source dialog shown previously in Figure 21.23 .
The next dialog is specific to ODBC data sources. You will need a unique key in the external

table. Many SQL tables do have unique keys (all FileMaker tables have an internal unique key). If

your table does not have a unique key, you can construct one by selecting two or more fields that

together uniquely identify each record, as shown in Figure 21.26 .

 tip
This area is one where performance might be affected. If there is no unique key in the external table, see whether you
can find a database administrator to add one. If not, try using the method of selecting several fields that, together, form a
unique key. It is sometimes the case that you cannot find such a combination. You will know this because when you click OK,
FileMaker takes some time to read the external database to see that you have in fact specified a unique key or combination.

ptg8106388

539Using External ODBC Data Sources with the Relationships Graph

21

C
H
APTER

 Figure 21.25
 Select the table to use.

 Figure 21.26
 Select a unique key.

ptg8106388

Connecting to External SQL Data Sources540

IV

PA
RT

The external data source is now added to the Relationships Graph, just as any other table would

be. Figure 21.27 shows three external data source tables in the Relationships Graph. You can cre-

ate relations between them just as you normally do. The only distinction is that the external data

source tables have their titles in italics. Thus, in Figure 21.27 , the demo table is part of the current

FileMaker database file; committees and candidates are external ODBC data sources.

 Figure 21.27
The external SQL data sources
are now part of the Relationships
Graph.

If you go into Layout mode, you can add fields from the external data sources to layouts. Figure

21.28 shows a simple layout in Browse mode that displays data from the external data sources.

 Figure 21.28
You can use fields from exter-
nal data sources just as you
would local FileMaker tables.

ptg8106388

541Using External ODBC Data Sources with the Relationships Graph

21

C
H
APTER

In fact, everything you do with FileMaker tables you can do with external data sources. There is

very little distinction, although, as you see in Figure 21.29 , field names from external data sources

are italicized in the New Layout Report dialog.

 Figure 21.29
You can use fields from
external data sources in new
layouts.

Beginning with FileMaker Pro 10, fields from external data sources are like standard FileMaker

fields in yet another way: Their values can automatically populate a value list.

 Using Supplemental Fields
Just as exciting as adding external data sources to the Relationships Graph is the ability to add

shadow fields to those tables. Shadow fields appear in the Relationships Graph as if they were part

of the external data source, but they are stored in the FileMaker database and merged as necessary.

Figure 21.30 shows a calculation field added to the candidates tables.
Two points are relevant here. First, shadow fields frequently are calculation fields that modify the

external data in ways that make it easier for FileMaker to use. Here, the cCommitteeCount field is

the count of the number of committees for a candidate.

You also might notice the misspelled name of the first field, vandidate_ID. When you are using

external data sources, you cannot control field names; they might be in a foreign language, or they

might be misspelled. In this case, if you download the data, you will see that from the original data

source on, this field name is misspelled. Because it is visible only (!) to programmers, no one has

bothered to change it. With the calculation field that has been added, you can create a subsummary

part for a layout, as shown in Figure 21.31 .

ptg8106388

Connecting to External SQL Data Sources542

IV

PA
RT

 Figure 21.30
 Add a shadow field.

 Figure 21.31
Use the shadow calculation field as a sub-
summary break.

You can use the field in a sort as well, as shown in Figure 21.32 . This sorts the records for candi-

dates first by descending order of the number of committees and then in ascending alphabetical

order by name. The first sort field is the shadow field; the second sort field is part of the external

data source.
Although external data sources are treated almost exactly as local tables, you will notice that you

have the option to sync them with the external data source from the Tables tab of the Manage

Databases dialog, as shown in Figure 21.33 . For example, if a field in the database is renamed, sync-

ing with the database would update the table. Likewise, if you remove a field from the shadow table

of the external data source, it remains in the actual SQL table. You can restore it to the shadow table

in Manage Databases by clicking the Sync button.

ptg8106388

543Using External ODBC Data Sources with the Relationships Graph

21

C
H
APTER

 Figure 21.32
Use both shadow fields and external
data source fields in sorts.

 Figure 21.33
You can always sync external
data sources with your tables
in the Relationships Graph.

ptg8106388

Connecting to External SQL Data Sources544

IV

PA
RT

 Troubleshooting

Translating SQL to FileMaker
The DBA of the SQL database to which I want to connect is asking me a lot of questions that I can’t

answer and don’t understand. What should I do?

Go to the FileMaker website and look at the section for IT managers and technology professionals

(http://filemaker.com/articles/guide/it_resources.html). Or, better yet, give the DBA that link. The

articles and papers in this area are written in IT-ese.

Apparently FileMaker is executing many individual queries on the database; they show up in the

log for the SQL database. Is this normal?

It might be. FileMaker fetches data as it is needed, typically in batches of 25–100 records. FileMaker

retrieves external SQL data using primary keys, so the queries are very efficient, but they are more

numerous than some other methods of accessing the database in which all the needed records are

retrieved in one batch.

How can I track down performance issues on the SQL side?

Some of my queries seem to take a long time to execute in the external data source. More troubling

is the fact that some do not, and I can’t seem to find the distinction.

Most databases have a query log that keeps track of the queries executed against the database. The

DBA should have access to the log. In it, you will be able to see the exact queries that FileMaker is

generating. Table 21.1 shows some common FileMaker find requests and the SQL fragments that

they produce. SQL queries that use the % wildcard character at the beginning and end of the search

string cannot use an index in MySQL; thus, they must read the entire database. If you remove the

initial wildcard (using the whole word search shown in the second line of Table 21.1), you can use

the index, but it is still not as efficient as the exact match query in the third row, which generates

no wildcard characters in the SQL query.

 Table 21.1 FileMaker Find Requests and SQL Implementations

 FileMaker SQL

=abc LIKE ‘%abc%’

=“abc” LIKE ‘abc%’

==“abc” LIKE ‘abc’

http://filemaker.com/articles/guide/it_resources.html

ptg8106388

 22

IMPORTING DATA INTO
FILEMAKER PRO

 Working with External Data
FileMaker Pro can work with data from a variety of other sources. It’s

possible to bring data directly into FileMaker from a number of different

flat-file formats, as well as from remote databases and XML-based data

sources. In many cases, you can open data files from other applications

simply by dropping them onto the FileMaker Pro application as though

they were native FileMaker files. FileMaker can also import data that

resides on other computers (such as data from a remote database or a

web-based XML data source).

 Importing Data

FileMaker Go does not enable you to import data using the hands-
on process as described in this chapter. You can use the hands-on
process described here as the basis for a script step that can run
in FileMaker Go. After data has been imported into a FileMaker Pro
database, you can open that database in FileMaker Go.

 � Additional information on the topic of

FileMaker data exchange can be found

in Chapter 21 , “Connecting to External

SQL Data Sources,” and Chapter 23 ,

“Exporting Data from FileMaker Pro.”

 caution
Before you make the wholesale
changes to your FileMaker data-
base that importing creates,
make certain you have backed
up your database.

ptg8106388

Importing Data into FileMaker Pro546

IV

PA
RT

 Flat-File Data Sources
Flat file is a generic term that refers to a file containing data in row-and-column format. If you think

of a spreadsheet that holds data about personal contacts, the spreadsheet will have some number

of columns, for attributes such as first name, last name, address, and so forth, and some number of

rows, each one representing a single contact.

The formats of flat files vary. Some might separate one column from the next by tabs and one row

from the next by carriage returns (a tab-delimited file). Another might use commas to separate col-

umn values. Some might include a first row that gives a name for each column. Some might be in a

plain-text format that you could read with any text editor, whereas others might be in a specialized

file format (such as FileMaker Pro or Microsoft Excel). In general, though, all flat-file data sources

represent some variation of the idea of row-and-column data. The following sections show you the

various ways of importing from flat files using a variety of options. There is tremendous flexibility,

including the option to import flat-file data into a new table that FileMaker Pro creates automati-

cally.

Choosing the Target Table
As you can tell from the previous description, a flat data file maps well onto the concept of a data-

base table. And indeed, in FileMaker Pro, you do import data into only one table at a time. FileMaker

chooses this target table for you automatically, based on the prevailing table context.

 Current Table Context

The active layout determines the current table context. You can examine the table context for
a given layout by choosing View, Layout Mode, and then choosing Layouts, Layout Setup and
inspecting the Show Records From menu. Be sure to switch back to Browse mode before trying
to import records, though.

 � For a full discussion of table context, see Chapter 18 , “Advanced FileMaker Solution

Architecture.”

 Initiating the Import
The example of importing tab-separated data is a good place to start because it’s a typical text-

based flat-file format. Many of the other text-based formats vary from tab-separated text only in

small details. (Those differences are noted as necessary in this chapter.) Here, we walk through the

process of importing from a tab-separated text file. As with other formats, you can import a tab-

separated data file in one of three ways:

• Choose File, Import Records and then navigate to the file and select it.

• Choose File, Open and then navigate to the file and select it.

• Drag and drop the file directly onto the FileMaker Pro application.

ptg8106388

547Flat-File Data Sources

22

C
H
APTER

The actions of importing and opening non-FileMaker files are similar in FileMaker Pro. The main dif-

ference is that the “open” action creates a new FileMaker file (complete with data from the originat-

ing document), whereas the “import” action is used to bring data into an existing file. You can also

use the importing technique to bring in data from multiple files in a folder.

Automatic Recurring Imports

The File, Import Records command begins by letting you choose the file to import. A check box
in the lower left of the dialog lets you choose to make this an automatic recurring import. If you
choose that option, FileMaker creates a script and a layout for the import. See the “Creating
Automatic Recurring Imports” section later in this chapter.

The Import Field Mapping Dialog
When you’re importing data, after you choose your source file, FileMaker Pro presents you with the

Import Field Mapping dialog, as shown in Figure 22.1 . This dialog lets you choose how the records

in your source file will be imported and in what order. (This example uses the Inventory Starter

Solution to receive imported data.)

 Figure 22.1
FileMaker’s Import Field
Mapping dialog. All importing
processes pass through this
dialog at some point.

ptg8106388

Importing Data into FileMaker Pro548

IV

PA
RT

The top of the Import Field Mapping dialog lists two filenames: Source and Target. Source is the file

from which you’re importing, and Target is the current table in the current file—in other words, the

one that’s receiving the imported data.

Choosing an Import Action
One of the things you have to choose in the Import Field Mapping dialog is the Import Action. It’s

visible in the lower left of the dialog. This choice tells FileMaker whether to try to add new records

in the target table (one record per row of source data) or to try to update the existing FileMaker

records with the source data. Updating on import is a topic in its own right, one that we deal with

later in this chapter. For now, we cover what happens when we want to create new FileMaker

records based on the source data.

Aligning Source and Target Fields
You also have to decide which fields in the target are to receive data and from which source col-

umns they’ll receive it.

If you look at the way the source fields line up with the target

fields in Figure 22.1 , you’ll notice something isn’t right. At the

left, you see the value in the source field (the field to import); at

the right, you see the field into which the data will be imported.

The value “Plant” will be imported into Date Created; “South

Window” will be imported into InventoryID; and “Reception” will

be imported into Notes. Along with other mismatches, the import

obviously is not correct as it first stands.

It’s not possible to manipulate the ordering of the fields on the

left (the source fields in the input file), but you can use the black

up/down arrows next to each target field to change the target

ordering manually. In this case, you just drag the Item field up

until it is opposite Plant, and make the other adjustments in the

same way.

Deciding Where the Data Goes

After all the target fields correctly align with the source fields, you need to make sure they’re all set

to receive data. Between the columns of source and target fields is a column of field mapping indi-

cators. The possible indicators are shown in the Import Field Mapping dialog, in the section at the

lower right called Field Mapping.

The meaning of the different indicators is as follows:

 • Arrow— Data from the source field will be imported into the target field.

 • Straight line— Data from the source field will not be imported into the target field.

 caution
When you change the target
field ordering by dragging a field
manually, the field you drag
changes places with the field you
drop it on. Often you might want
to drop the field you’re moving
between two others in the import
ordering so that it pushes all the
fields underneath it down a step,
but this is not how the manual
ordering works.

ptg8106388

549Flat-File Data Sources

22

C
H
APTER

 • Equal sign— The source and target fields are being used as part of a match criterion. This choice

is available only if you’ve chosen one of the update import actions. We discuss the update

options fully in the section “Updating Records with Imported Data.”

 • Red X— This indicates that the target field cannot receive data. Typical causes are that the target

field is a calculation or summary field.

To sum up, make sure that all your target fields align with the correct source fields and that the

mapping indicators are set to allow data to flow into the fields you intend to receive it.

Ways of Auto-aligning Source and Target Fields
In the Import Field Mapping dialog, you might have noticed a menu at the middle right called

Arrange By. This menu simply governs the ordering of the target fields in the column on the right. It

might be that you can line up the target fields with the source fields by putting the target fields in

creation order, for example, or in alphabetical order by name. If you

choose one of these options, FileMaker rearranges the target fields

in the order you chose and then does its best to set the mapping

indicators accordingly. Most likely you’ll have to do some manual

adjustment of the result, but these choices can often eliminate a lot

of tedious hand labor.

One very useful choice in this menu is the first one: Matching Field

Names. This choice is available only when the source file has some

kind of data in it that attaches names to each of the source fields.

Examples of such files are actual FileMaker files (of course) or flat

data files with field names in the first row. If your source file con-

tains field names that correspond to the names of target fields, you

can choose this arrangement option, and all the fields with identi-

cal names will simply line up, no matter what position they have in

their respective files.

Scanning the Data Before Importing
When the Import Field Mapping dialog first opens, the Source col-

umn shows data from the first record in the source file. You might

find that the first record’s data is not enough to remind you of the

appropriate field mapping, or you might want to scan through the

source data for other reasons.

Directly under the Source column, you’ll notice forward-arrow and

back-arrow buttons, and a display that shows the total number of

inbound records as well as the record you’re currently viewing.

You can use the forward- and back-arrow buttons to scan through

the inbound data, either to verify that you have the correct map-

ping of source to target or to examine it for other reasons. Note, for

example, in Figure 22.1 that a blank value is going to be imported into Cost.

 note
Choosing Matching Field Names
doesn’t guarantee that the tar-
get fields will be able to accept
data. If a source field has the
same name as a field in the tar-
get table but the target field is
defined as a calculation, the two
will line up, but importing any
data into the target field will still
be impossible because you can-
not import into calculation fields.

 tip
Browsing through other records
in the file will help you under-
stand whether a blank field is
correct or whether it actually
contains other data, such as a
serial number. Documentation
can help!

ptg8106388

Importing Data into FileMaker Pro550

IV

PA
RT

 Performing the Import
After you verify all your field mappings and make your choice of

import action (so far we’ve looked only at adding records), click-

ing the Import button starts the import proper. When the import

completes, FileMaker displays a dialog telling you how many

records were imported and whether there were any errors in the

import process.
Assuming that there were no serious errors and at least some

records were imported, the newly imported records are isolated

in their own found set after the import is complete. This is an

important point because if something is seriously amiss with the

imported data, you have an opportunity to delete the whole set

and start over. Or, more optimistically, the records are all there

in one set if you need to perform any other operations on them as a group, such as a batch Replace

operation.

Updating Records with Imported Data
When you import data into a table, you have a choice as to whether FileMaker Pro should use the

source data to create new records or add it into records that already exist. You can also choose to

import the data into an entirely new table.

To match records, choose Update Matching Records in Found Set as the Import Action. This tells

FileMaker that you’re going to specify at least one pair of fields as matching fields. This pair of

fields acts a lot like a match field in a FileMaker relationship: Each row (or record) in the source is

matched with any corresponding records in the target.

FileMaker’s Update Matching Records feature can be tricky. For an overview of some of the poten-

tial pitfalls, see “Matching Imports” in the “Troubleshooting” section at the end of the chapter.

In the Field Mapping section, choose at least one field on which to match records. That field is

used only for matching; no data is imported to it (because the data value should be the same in the

database and in the import file if the fields match). In addition to selecting the match field, you then

select the fields into which you do want data to be imported. These fields may be empty, or your

import may override existing data.

As a final note on update importing, you should be aware that the update affects only records in the

current found set on the target side. If a record on the target matches a record in the source, but the

target record is outside the current found set, the import does not affect it.

Updating Records Without Using Match Fields
You’ve probably noticed that another update option is available in the Import Action section. It’s

called Update Existing Records in Found Set, and it’s simpler than the Update Matching Records

choice. When this action is selected, rather than matching records based on a match field or fields,

FileMaker matches records based purely on their position: The first record in the source updates the

 caution
Depending on how you set up
your field validation, the inbound
data might or might not be
acceptable. Under certain circum-
stances, FileMaker might reject
imported records for this reason.
See “Imports and Validation” in
the “Troubleshooting” section at
the end of this chapter for more
information.

ptg8106388

551Flat-File Data Sources

22

C
H
APTER

first record in the current found set on the target side, the second source record updates the second

found target record, and so on.

If the number of records in the source doesn’t exactly equal the number of records in the target

found set, FileMaker takes account of this. If there are more source records than target records,

FileMaker skips the extra source records. If there are more target records than source records, the

extra target records are left untouched. In either case, FileMaker provides an extra message to tell

you what happened.

The only exception occurs if you check the box labeled Add Remaining Data as New Records. In

that case, if extra records are available on the source side, FileMaker imports them into the target as

brand-new records.

Importing from Another FileMaker Pro File
As you might expect, you are able to import from other FileMaker Pro files. If you choose FileMaker

Pro as your source format, you also have to specify a table in the source file from which you want to

draw data. This choice is available in the Import Field Mapping dialog, as shown in Figure 22.2 .

 Figure 22.2
When importing from a
FileMaker database with mul-
tiple tables, you need to pick
the source table from which you
want to draw data.

ptg8106388

Importing Data into FileMaker Pro552

IV

PA
RT

Importing from a FileMaker file can be particularly convenient in that it allows you to use the

Matching Field Names option for lining up the source and target fields. Developers will often choose

to open a source file within FileMaker; create a new FileMaker file based on the originating docu-

ment; and then use that new FileMaker file for importing, data cleanup, and so on.

 � For some other uses of the FileMaker-to-FileMaker import feature, see the “FileMaker Extra:

Exploiting the FileMaker-to-FileMaker Import” section at the end of this chapter, p. 564 .

Using an Import to Create a New Table
You can choose to create an entirely new table at the time of import and have the imported data

flow into the new table. Figure 22.3 illustrates this feature.

 Figure 22.3
FileMaker Pro enables you
to create a new table from
imported data.

The new table will behave in many ways like a table created by

choosing File, Open and opening the data source directly; see

the discussion of this behavior earlier in this chapter. This fea-

ture is particularly useful, though, when you are importing from

another FileMaker table. In this case, the entire schema of the

table (including calculation and summary fields, for example) is

re-created.

 tip
Note that information such as
value lists, custom functions, rela-
tionships, and security privileges
will not be imported because
they are attached at the file level
rather than at the table level.

ptg8106388

553Setting Import Options and Reviewing Status

22

C
H
APTER

The newly created table will be an exact copy of the old one, including things such as field IDs,

which is important if you’re re-creating this table as a way of consolidating two formerly separate

FileMaker files.

 Importing from a Microsoft Excel File
FileMaker Pro has some special capabilities for importing data from Microsoft Excel documents.

FileMaker is aware of multiple worksheets within an Excel document and of any named ranges

(groups of cells that have been given specific names).

After you choose the specific part of the Excel document you

want to import, the rest of the import proceeds. If you’re bringing

Excel data into FileMaker by choosing File, Open, and selecting

an Excel file to open, FileMaker creates a new FileMaker file, as it

does when opening other importable file types. In this situation,

FileMaker can apply a little extra intelligence to creating the new

FileMaker file. If a column in the Excel file contains only one type

of data (numbers, text, dates), FileMaker assigns a suitable field

type to the resulting FileMaker field. If the data in the column is

somehow mixed—that is, the column contains some data that looks

like numbers, and other data that looks like dates, for example—

then the resulting FileMaker field will be a Text field.

FileMaker Pro supports Excel workbooks import (.xslx) as well as

older versions (.xsl).

Setting Import Options and Reviewing Status
No matter which import technique you use, just before the import is actually executed, you will see

the dialog shown in Figure 22.4 .

 note
When importing from an Excel
file, FileMaker brings in only
the raw data it finds in the file.
FileMaker does not import Excel
formulas, only their results.
FileMaker imports neither graph-
ics nor charts, nor does it import
notes. Programming logic, such
as Visual Basic macros, is also
not imported by FileMaker.

 Figure 22.4
 Set import options.

ptg8106388

Importing Data into FileMaker Pro554

IV

PA
RT

The most important setting in this dialog is the initial check box that controls auto-enter options. If

it is checked, the auto-enter options will be performed; records will have new serial numbers and

modification timestamps. This may be what you want if you want them to be marked as new to

your FileMaker database. However, if you are merging data from another data source (particularly

a FileMaker database with its own timestamps), you may want to preserve those, so you need to

make certain that the check box is not checked.

In the case of serial numbers, you need to think through your actions. First of all, if serial numbers

are used as keys for related records, changing them (by using the auto-enter option) will destroy all

the relationships based on old serial numbers. However, keeping the old serial numbers may result

in duplicate serial numbers, and that can be just as bad. The simplest way to handle this situation is

to browse the data in the new and old databases. Find the minimum and maximum serial number in

both databases: If you are lucky, there will be no overlap. If there is an overlap, consider how many

records are involved and then plan to resolve duplicates either manually or with a script. When

the process is complete, you may want to use the Options dialog for the affected field in Manage

Databases to set the next value for the serial number to a higher number than is found in either file

so that future serial numbers will be safe from duplication.

When the import is finished, a dialog will show you the results, as shown in Figure 22.5 . Check to

see whether errors were encountered and resolve them before proceeding. They will not go away on

their own.

 Figure 22.5
 Review import results.

Importing Multiple Files from a Folder
FileMaker can import data from several files at once. In this batch

mode, FileMaker takes the data from a file and imports it into one

or more fields in a FileMaker table. FileMaker can also bring in

information about each file’s name and directory path.

FileMaker can work with two types of data when performing a

folder import: image files and text files. In the case of image files,

FileMaker can bring the image data from each file into a container

field so that each image can be viewed inside FileMaker. In the

case of text files, FileMaker brings the entire contents of the file

into a specified text field.

 caution
FileMaker can store a maximum
of 2GB of data in a single field.
This amount might seem like
a lot, and it is a lot compared
to the limit of 64KB that was
in force in previous versions of
FileMaker! But it follows from
this that you shouldn’t import
text or image files into FileMaker
if any single imported file will be
larger than 2GB.

ptg8106388

555Importing Multiple Files from a Folder

22

C
H
APTER

 Importing Text Files
Assume that you have a folder with a number of plain-text files in it. Assume also that you have a

FileMaker database that has a table in it with fields called TextContent, FileName, and FilePath. If

you select File, Import Records, Folder, you’ll see FileMaker’s Folder of Files Import Options dialog,

as shown in Figure 22.6 .

 Figure 22.6
FileMaker kicks off the Import from Folder
process with a special initial dialog.

In the upper area, you can choose the folder from which to import data. You can also choose

whether to confine the import to files at the first level inside the folder or whether to drill into all the

subfolders that might be below the top level.

After you choose a folder from which to import, choose the file type. To import from text files,

choose the Text Files option and click Continue. You’ll then see a folder import dialog that is similar

but not identical to the regular Import Field Mapping dialog, as shown in Figure 22.7 .
When you’re doing a folder import, the names and contents of the source fields on the left are

fixed: They depend on the type of file from which you’re importing. When you’re importing from

text files, the source fields are called Text Content, File Name, and File Path. These fields contain,

respectively, the actual text content of the field, the name of the individual file from which the data

is coming, and the full name of the path to the file. As with any other data source, you can choose

to import some or all of these fields, and you can choose how to map them to fields in the FileMaker

table that’s the target of the import. You can also choose to create a new table as the example in

Figure 22.7 demonstrates.

Unlike imports from other kinds of flat-file data sources, FileMaker’s batch text import brings the

entire contents of each text file into a single FileMaker field.

ptg8106388

Importing Data into FileMaker Pro556

IV

PA
RT

 Figure 22.7
When you are importing from
a folder of files, the source
fields have a special name and
meaning.

Determining File Type

When you choose to import files from a folder, FileMaker scans the files in the directory to
determine which ones are of the right type to import. So, for each file in the folder, FileMaker
decides whether it’s an image file if you’re importing images or a text file if you’re importing
text. But how does it make this determination?

If you’re familiar with the way Mac OS X and Windows handle file types, you know that the file’s
extension (.html, .jpeg, and so on) often has a lot to do with it. Applications often use the file
extension to determine whether an application owns that file type and can try to open it.

FileMaker’s batch import determines file type differently, depending on platform. On Mac OS X,
FileMaker looks first at the file’s type and creator—special information (also called metadata)
that Mac OS X stores with each file. If a file has no type or creator (for example, if it was created
on a non-Macintosh platform), FileMaker falls back on the file extension. Windows, by contrast,
has no file type metadata, so FileMaker simply relies on the file extension to determine whether
a file is eligible for a batch import.

All this means that FileMaker has no other innate intelligence about file types. If you take an
image or PDF file in Windows and give it a .txt file extension, FileMaker considers it eligible for

ptg8106388

557Importing Multiple Files from a Folder

22

C
H
APTER

 Importing Image Files
Importing image files from a folder is quite similar to importing text files. As with text files, you

need to choose a source folder and decide whether to drill down into any subfolders as well. The

fields that can be imported are the File Name and File Path, as for text files. There is no Text

Content field to import, but there are Image and Image Thumbnail fields.

 Images or References?
Image data can take up a great deal of storage space, and it might not make sense to try to store

thousands of high-resolution images inside a FileMaker file. Accordingly, FileMaker offers you the

option (when importing images from a folder) to import only a reference to each file, rather than the

entire contents of the image. If you choose to import a reference, FileMaker remembers where the

image is stored on disk and refers to it when necessary in a fashion similar to the way in which Mac

OS and Windows work with shortcuts and aliases.

 � There are some additional considerations when using container fields with FileMaker’s Instant

Web Publishing: See “Container Fields,” p. 593 . Also, see the discussion of container fields in

Chapter 3 , “Defining and Working with Fields and Tables,” p. 89 .

 � Beginning in FileMaker 12, you can let FileMaker manage files that are placed in a container.

As described in the “Container” section of Chapter 3, “Defining and Working with Fields and

Tables,” you can set an option for a container field so that when you import a file to the con-

tainer field, it is stored outside the database file in a location you specify and that FileMaker can

manage. This can combine the benefits of importing files and using only references.

The benefit of storing references is, of course, that they take up much less space in the database.

The disadvantage is that if you move or rename the original files in any way, FileMaker will no lon-

ger be able to find them, and the images will not display in FileMaker or be otherwise usable.

This situation is especially problematic if the file containing the images is hosted for multiuser

access. Each user of the system has to see the image directory via the same network path. Because

Windows and Macintosh handle server paths differently, creating a unified server structure to work

in both environments could be challenging.

a text import and tries to bring its content into a text field. Likewise, if you strip out the file type
and creator on the Mac and manipulate the extension, it’s possible to confuse FileMaker about
the file type.

To see a file’s type and creator in Mac OS X, if you have the Apple Developer Tools installed,
you can use the command-line tool /Developer/Tools/GetFileInfo to see file metadata and
/Developer/Tools/SetFile to change the metadata. Alternatively, you can use a shareware tool
such as Xray (www.brockerhoff.net/xray/).

www.brockerhoff.net/xray/

ptg8106388

Importing Data into FileMaker Pro558

IV

PA
RT

In the end, the decision as to whether to import whole image files or just references is up to you,

keeping in mind the trade-off between the flexibility of having all images stored directly in the data-

base versus the increased capacity that comes from working with

the file references alone.

 Images Versus Thumbnails

When you import data from text files, you can bring in up to three

pieces of data: the filename, the full path to the file, and the text

contents of the file. With image files, it is possible to bring in four

pieces of data. As with text files, you can bring in the filename

and file path. You can bring in the full contents of the image file

(into a container field, presumably), and if you choose, you can

bring in a smaller version of the image, called a thumbnail.

Naturally, a full-sized image can take a lot of space, so FileMaker

gives you the option of bringing in only a smaller thumbnail

instead. You can bring in the thumbnail in addition to the larger

image or instead of it. (Of course, you could choose to import just

the filename and path if that suits your purpose.)

 � In FileMaker 12, you can specify that thumbnails are cre-

ated as needed or are stored when you access large images

in a remote database. This is described in Chapter 3.

 tip
FileMaker doesn’t give you
any control over how it creates
thumbnails during the image
import process. You might find
that although you do want to
store only a smaller copy of
the image in the database,
FileMaker’s thumbnail process
doesn’t give you what you want.
You might want the thumbnails
a little smaller or larger or with
some kind of color adjustment.
If so, you will want to experi-
ment with creating your own
thumbnails first and import them
instead.

 Manipulating Images

With a tool such as Adobe Photoshop, you are able to create batch-processing scripts (called
actions in Photoshop) that can apply a series of transformations to every image in a folder. You
might want to create an action to shrink every image to 120 pixels wide, 72 dots per inch, and
save it as a high-quality JPEG with a two-pixel black border. You could then batch-import the
resulting custom thumbnails. In doing so, make sure to import the image data rather than the
thumbnail data: If you asked FileMaker for the thumbnail data, your classy custom thumbnails
would be further scrunched down into thumbnails of thumbnails—probably not the desired
effect.

 Scripting Imports with FileMaker
The following sections explain the two ways you can script imports easily with FileMaker. The first

has FileMaker create an import script for you. The second enables you to create your own import

script. You can also choose a combination by letting FileMaker create the script and then modifying

it yourself.

ptg8106388

559Scripting Imports with FileMaker

22

C
H
APTER

Creating Automatic Recurring Imports
If you want FileMaker to create the import script for you, begin as you normally would with File,

File Import. In the Open File dialog where you select the file to import, choose the file to import, but

before clicking Open click the Set Up As Automatic Recurring Import box at the bottom, as shown in

Figure 22.8 .

 Figure 22.8
 Set up an automatic recurring import.

After you have chosen the import file, you are then asked to provide the recurring import informa-

tion, as shown in Figure 22.9 .
This information is going to be placed in the script that is generated, so you will be able to change

it if you want. However, in normal circumstances, it is best to leave it alone. Note that the recur-

ring import will expect the file to have the same name each time it is imported. This works well

with scripted exports from other systems that need to be imported into FileMaker. However, some

scripted exports may change the name of the file (perhaps including the date and time in the file

name). If that happens, modify the script before running it.

ptg8106388

Importing Data into FileMaker Pro560

IV

PA
RT

Using a Script to Import Data
Like most other actions in FileMaker Pro, a script can trigger a data-import operation. It’s possible to

save your import settings in a script for later reuse as well. Creating an import script is important if

you want to import data to FileMaker Go: The manual steps described previously in this chapter are

not available in FileMaker Go, but a scripted import will run.

A scripted import has a few steps and options that are slightly different from the regular File, Import

Records method. To import records from within a script, choose the Import Records script step and

add it to your script. ScriptMaker gives you several choices, as shown in Figure 22.10 . The data

source is the same set of choices as in the submenu of File, Import Records. The Specify Import

Order choice brings up the Import Field Mapping dialog for you to use to control the import. Unless

you choose to perform the import without a dialog, users can modify these choices when the script

runs.

 Figure 22.9
 Provide import information.

Know Which Side You’re On

Be careful about your naming conventions. Remember that every file you import usually has
been exported from another system. The export comes first in time, so that file may be called
an export file there. If you simply choose that file to import, the script and the layout that is
automatically created for import will have that name, which can be confusing. Many people
agree that the moment at which to change the name is the moment of import: In other words,
importing a file called Export Projects into a FileMaker layout called Import Projects may, in the
long run, be the best naming convention, particularly if the import and export processes are
managed by different people or groups. Alternatively, you may opt for more verbose but unam-
biguous names such as SQLExportProjects and FileMakerImportProjects.

ptg8106388

561Scripting Imports with FileMaker

22

C
H
APTER

When the Import Records script step is selected, a Specify Data

Source menu at the lower right gives you access to a set of options

identical to those you see when you choose File, Import Records.

Using this selection, you can save all the important information

about your data source. For files, this means mainly the filename.

For folders, it includes the file type and the choice of whether to

save references. For ODBC data sources, it includes the DSN infor-

mation, password, and other data such as a SQL query.

When an Import Records script step is selected, a Specify Import

Order button at the lower right gives you access to the Import

Field Mapping dialog, where you can set any or all of the relevant

import-mapping features. Finally, as with other script steps in

FileMaker, you have the choice of performing the import with or

without dialogs. If you choose to run the import with dialogs, the

user can re-specify any aspect of the data source or import order

on the fly. If you choose to run it without dialogs, the import is a

canned process that uses all the saved options you specified.

 Figure 22.10
 FileMaker
enables you to
save a number
of options
when you
import records
from within a
script.

 tip
When performing a complex
import, you might want to save
drafts of the import into a script
as you go. That way, if you make
a mistake or need to change
things, you don’t run the risk of
FileMaker forgetting the import
specification you worked so hard
on.

 caution
A scripted import can go awry if
your database structure changes
after you configure the script.
Adding fields should be no
problem, but deleting any fields,
especially those involved in the
import, disrupts your field map-
pings, and data will no longer
flow into the correct fields.

ptg8106388

Importing Data into FileMaker Pro562

IV

PA
RT

Using Bento Data Sources
Bento is a personal database from FileMaker; it runs only on Mac OS X Leopard and later versions.

It is not a stripped-down version of FileMaker; rather, it is something quite different. Its tight inte-

gration with Mac OS X means that iCal tasks and events, Address Book, and Mail messages can all

be accessed. Combined with MobileMe, you can use Bento and your iPhone to create an environ-

ment in which your calendar, addresses, and email messages are always where you are.

 � For more information, see The Bento Book: Beautify and Simplicity in Digital Organization , by

Jesse Feiler.

You can import data from Bento libraries directly into FileMaker. To do so, choose File, Import

Records, Bento Data Source. If there are collections for that data source, you will be prompted to

choose the one you want, as shown in Figure 22.11 .

 Figure 22.11
 Import from a Bento data source.

If there are no collections, the entire library is imported. Just as with any FileMaker import, a single

table is imported; this means that related Bento records are not imported unless you import those

tables from Bento.

Because Bento interacts with your Address Book (as well as iCal for Tasks and Events), you can

use Bento’s collections that it automatically creates from Address Book groups and iCal Calendars

to quickly import data to FileMaker. By choosing to import a Bento collection that is created from a

group or calendar, you quickly import relevant information into FileMaker.

ptg8106388

563Troubleshooting

22

C
H
APTER

 Troubleshooting

 Matching Imports
I can’t get an import to work using the Update Matching Records option. The outcome is never what

I expect.

When you choose the Update Matching Records option when importing data into a FileMaker table,

FileMaker tries to match records in the source to records in the target, based on the specified match

field or match fields. We’ve been assuming that there will be at most one source record and one

target record that share the same match criteria. But what happens if there are multiple matches on

either or both sides?

Assume that you’re doing a matching import based on a stock control number. If several records in

the source data have the same stock control number, FileMaker uses the data from the last of these

records to update matching records in the target (assuming that there are any).

On the other hand, if there are multiple records with the same stock control number on the target

side, FileMaker updates them all with whatever turns out to be the matching data from the source

side. So, FileMaker updates all target records with the same value in their match field(s) with the

same data from the source, whether that means updating two target records or two thousand.

If you put both scenarios together, and multiple records in both the source and target share the

same stock control number, the outcome is as follows: Data from the last such record in the source

is used to update all the matching records in the target. If four matching records were in the source,

and 19 in the target, data from the fourth matching source record would be used to update all 19

matching target records.

 Imports and Validation
I imported data, but some of it turned out to be invalid. I have field validation rules set up, but it

seems as though FileMaker is ignoring them.

Everything depends on your field validation settings. When you apply validation to a field in

FileMaker, you can choose to validate the data only during data entry, or always. If you select the

Only During Data Entry option, the behavior is similar to previous versions of FileMaker: Imported

data is not checked for validity, and it’s up to you to handle the consequences. On the other hand,

if you choose Always for the data validation on a field, imported records are checked. If this is the

case, any record that does not pass a validation check is rejected, and the dialog that appears at

the end of the import tells you how many records were rejected (although not which ones, unfortu-

nately).

ptg8106388

Importing Data into FileMaker Pro564

IV

PA
RT

FileMaker Extra: Exploiting the FileMaker-to-
FileMaker Import

You saw earlier that it’s possible to import data into one FileMaker table from another. Those tables

can be in the same FileMaker file or different ones. This capability has a number of useful and inter-

esting applications.

Duplicating a Found Set
Occasionally, you’ll encounter situations in which you want to duplicate a found set of records. Of

course, as with most things in FileMaker, there are several approaches. You could write a script that

starts at the beginning of the found set and loops through it, duplicating as it goes. But you’d quickly

find you had some tricky record-position issues to deal with. (Duplicating records can change which

record is the current one, so it can be hard to keep your place when looping through a found set.)

One general rule for speeding up FileMaker operations goes something like this: Where possible,

replace scripts, especially looping scripts, with built-in FileMaker operations. FileMaker’s Replace

command is much quicker than a script that loops over a group of records and performs a Set

Field step on each record. FileMaker’s Delete Found Records command is quicker than a script that

loops over a set of records and deletes each one. And so on.

Another choice is to export these records to a separate table and then import them into the original

table again. A single script can control both the export and the import, and the logic is much easier

to read and understand.

 Duplicating Between Tables
Suppose that you have a simple order-tracking database. The database has tables for customers,

orders, order lines, and products. Each order, of course, has one order line per product on the order.

Suppose also that users have said that they want to create new orders by checking off a number of

products from a list and then having a new order be created with one line for each selected product.

So, a user would check off Screwdrivers, Milk, and Roofing Tar in a product list, click a button that

says Make Order, and see a new order with lines for the three selected products.

Again, you can do a number of things with scripts, but one elegant solution is to gather the selected

products into a found set and then simply import that found set (well, the relevant fields from it,

anyway) into the Order Lines table, thus creating one new order line per selected product.

ptg8106388

 23

EXPORTING DATA FROM
FILEMAKER

 Getting Out What You Put In

Much of this book concentrates on tools for data entry—for getting data

into a database system. But that information often needs to be extracted

again. Sometimes the extraction takes the form of a report of some kind.

At other times, the best choice is simply to export the data into some spe-

cific format so that another program can import that data and work with

it using different tools than might be available in FileMaker. Reasons for

exporting might include the following:

 • Perhaps you know someone who is compiling a quarterly report in

Excel and needs some numbers from your FileMaker system.

 • Perhaps the payroll system needs a list of employee names that you

have in FileMaker.

 • Perhaps you’ve been storing images for an upcoming ad campaign in

FileMaker, but you would like to make all the images available so that

they can be used on a CD without FileMaker.

This chapter covers various means for getting data out of FileMaker. There

are two ways of doing so: exporting and real-time sharing. Exporting is a

batch or offline process. Real-time sharing of data is discussed in Chapter

21 , “Connecting to External SQL Data Sources.”

 � For more on saving and sending records as Excel or PDF files, see

“Delivering Reports,” p. 309 .

 � Information on real-time sharing of data can be found in Chapter 21 ,

“Connecting to External SQL Data Sources.”

ptg8106388

Exporting Data from FileMaker566

IV

PA
RT

 � Additional information on the topic of FileMaker web publishing can be found in Chapter 24 ,

“Instant Web Publishing,” and Chapter 25 , “Custom Web Publishing with PHP and XML.”

The Basic Mechanics of Exporting
The basic principles of exporting data from FileMaker are straightforward. You pick a single table

or layout from which to export. (Although you start from a table or layout, you can reference related

fields in the export process so that you can actually export from additional tables.) You then choose

an output file format and file location and pick specific fields from your chosen table for export.

Before you export, there are a few extra options you can choose that govern grouping and format-

ting of the exported data. That’s all there is to it. Let’s look at each step a bit more closely.

Choosing a Source Table
As with much else in FileMaker Pro, the starting point for a data export is determined by the user’s

context in the current system—specifically by the currently active layout, which in turn is tied (via

its table occurrence) to an underlying data table (a.k.a. source table). So, the currently active layout

controls implicitly which table is the source table for the export.

Choosing an Output File Format
After your context is established, you have to choose File, Export to begin the export process. The

next step in that process is to choose an output file format and file destination. FileMaker offers you

a choice of export formats, as shown in Figure 23.1 . Some of these are plain-text formats, such as

tab-delimited text, that could be read in any text editor; others are binary file formats that require

more specific software to open, such as FileMaker Pro. This chapter goes into greater detail on avail-

able file formats in a later section.

 Figure 23.1
 FileMaker Pro can export data to various formats.

When you chose File, Export, in addition to selecting your export format, you have the choice to

automatically open the file after saving it and the choice to automatically create an email with the

file attached. These choices parallel those available with the Save as Excel and Save as PDF fea-

tures; the goal in all cases is to make the final delivery of the data faster and easier.

ptg8106388

567The Basic Mechanics of Exporting

23

C
H
APTER

Selecting Fields to Export
After you’ve selected an output file type and destination, you’re prompted to choose some fields to

export via the dialog shown in Figure 23.2 .

 Figure 23.2
Most fields can be
exported from a
FileMaker database,
but container fields
cannot.

By default, the fields displayed in the list at the left are limited to those found on the current layout,

as indicated by the Current Layout menu setting. That is always the first item in the list. It’s also

possible to switch the view to show all fields in the current or related tables, as well as to select

fields from any related table for export.

 � For more information on exporting related fields, see “Exporting Related Fields,” p. 570 .

In addition to selecting fields for export, you also can select grouping options for the fields and

choose whether to format the exported data according to the current layout formats. These options,

too, are discussed in more detail later in this chapter.

 � For more information, see “Exporting Grouped Data,” p. 571 , and “Formatting Exported Data,”

p. 570 .

At any point in the field-selection process, you can use the small up/down arrows beside each

selected field name to change the order in which the fields are exported: Click the arrow and drag

ptg8106388

Exporting Data from FileMaker568

IV

PA
RT

to move the field, or use (Command-up/down) [Ctrl+up/down] if you prefer the keyboard. After you

have a satisfactory field list, click Export, and the data will be exported to the file format and loca-

tion of your choice.

Exporting Issues to Consider

Although the basic mechanics of exporting are simple, a few key points bear remembering:

 • To export data from a file, a user must have sufficient privileges to do so. This is governed by

selections within the user’s privilege set. The user must have the Allow Exporting check box

checked within the settings for her privilege set. Additionally, the user will not be able to export

any records for which she does not have at least the capability to view the record.

 � For more information on privileges and security in FileMaker, see Chapter 12 , “Implementing

Security.”

 • Data will be exported only from records in the user’s current found set. To export data from all

records in a table, the user first needs to choose Show All Records to ensure that no records are

omitted from the found set. Regardless of the found set, any records that the user’s privileges

prevent her from viewing cannot be exported.

 • There are certain practical limits on which fields you can export. Container fields can be exported

only if the target file format is a FileMaker Pro file (we discuss other strategies for exporting files

in container fields later in the chapter). And there are certain fields, such as summary or global

fields, for which exporting might not always make sense, even though doing so is technically

possible.

 � For more information, see “Working with Large Fields and Container Fields,” p. 572 , and

“Formatting Exported Data,” p. 570 .

 Export File Formats
FileMaker’s Export Records feature can create export files in various formats. Many of these are text

based, and a few are binary. The following sections provide an overview of the available file types,

with some specific notes on each. Each format has its own quirks and limitations. As is always

the case with data import and export, you’ll need to experiment to see just how a specific data set

translates to a chosen file format—not just theoretically but practically. The sooner you can test the

entire route from export to import with the actual software involved, the safer you will be.

 Character Transformations
When exporting data, FileMaker often performs substitutions on certain characters that tend to

cause confusion when they appear embedded in field contents. For example, FileMaker permits you

to embed a tab character in field data, but because the tab character is frequently used as a field

separator in text-based data, FileMaker transforms these internal tabs to spaces when exporting in

ptg8106388

569Export File Formats

23

C
H
APTER

many cases. In the same vein, carriage returns within fields some-

times are transformed to the vertical tab character (ASCII code 11).
One other common transformation occurs when repeating fields are

exported (for those formats that support it). Multiple repetitions of

a field are often exported with the individual repetition data sepa-

rated by the group separator character (ASCII code 29). Common

transformations are listed in Table 23.1 .

 Table 23.1 Character Transformation Information for Exporting FileMaker Data

 Character Transformation

Tab-
separated
text

One of the most common data interchange formats, the tab-separated text format,
exports each record as a single line of text, terminated by a carriage return. The con-
tents of individual fields are separated by the tab character. Return characters are trans-
formed to vertical tabs. The repetitions of repeating fields are run together into a single
string, with repetitions separated by the group separator character (ASCII code 29).

Comma-
separated
text

Comma-separated text (or values, commonly referred to as CSV) is another very com-
mon text interchange format. As with tab-separated text, records are separated by car-
riage returns; but individual records are separated by commas, and field contents are
enclosed in quotation marks. Quotation marks already present in the data are turned
into pairs of quotation marks, so “data” becomes “”data”” . The repetitions of repeat-
ing fields are run together into a single string, with repetitions separated by the group
separator character. Returns within quoted field contents are not transformed.

Merge The Merge format is intended for use with word processors and other applications
that support mail-merge or similar functionality. Field names are fully preserved, as
are internal tab characters. Internal returns are exported as vertical tabs. All repeti-
tions of a repeating field are exported.

HTML
Table

As the name suggests, this export format writes data from the selected records into
a basic HTML table. Field names are output as column headers. Internal tabs are pre-
served, as are internal carriage returns. Field repetitions are exported into a nested
table. Returns are transformed to
 . Horizontal tabs are not transformed, but they
are ignored by browsers.

FileMaker
Pro

This export format will create a new FileMaker Pro file with a field structure that
matches the fields being exported. This is the only file format into which it’s possible
to export data from container fields. Not all FileMaker field types are preserved; sum-
mary fields become number fields, and calculation fields become data fields of the
appropriate type (whatever the output type of the calculation is defined to be).

XML FileMaker can export its data with an XML format, or grammar , called
FMPXMLRESULT. You can choose whether to export raw XML or to apply a style
sheet as the XML is exported. Returns and tabs are exported without transformation.

Excel FileMaker Pro can export data to a file in the native Excel formats (.xls and .xlsx).
When doing so, you can specify certain parameters of the result file, such as the
name of the target worksheet, and whether to use the field names as column head-
ers, as shown in Figure 23.3 . Internal tabs and carriage returns are converted to
spaces. Only the first repetition of a repeating field is exported. FileMaker fields will
be assigned the appropriate Excel data type in their resultant columns, where pos-
sible. For an example of where this is not possible, consider FileMaker data that falls
outside the range of dates supported by Excel.

 note
The specific transformations that
occur depend on the output file
format; see the notes on each
format outlined in the following
sections for further details.

ptg8106388

Exporting Data from FileMaker570

IV

PA
RT

 � For more information on FileMaker’s XML grammars, see Chapter 25 , “Custom Web Publishing

with PHP and XML.”

 Figure 23.3
You have additional options when using the
capability to export to Excel.

 Formatting Exported Data
FileMaker maintains a distinction between the way data is stored in a field and the way it is dis-

played. For example, although all dates are stored internally as simple integers, they might be dis-

played in many different date formats, such as “1-3-2019.” Or a number, stored internally with 17

digits of precision, might be displayed with just three or four digits. Not one of these display options

has any effect on the data stored in the field; these options simply affect the way the data is shown

to the user.

On FileMaker layouts, these formatting options are governed by choices made via the Inspector,

in Layout mode. Some of these formatting options can be made to carry through to data when it’s

exported. To do so, when specifying fields for export, check the box labeled Apply Current Layout’s

Formatting to Exported Data. When this choice is selected, any formatting options applied via the

Number, Date, or Time formatting dialogs are preserved. Text formatting, even character-based

formatting such as uppercase, is not preserved. Date and time formatting may both be applied to a

timestamp field and will be carried through on export.

 Exporting Related Fields
All exporting in FileMaker takes place from the context of a single table. In general, then, it’s not

possible to export data from several tables independently in one stroke. It is possible, though, to

export data from tables related to the current one, whether immediately or more distantly.

Doing so is a simple matter of choosing fields from related tables when specifying fields for export.

If the related fields are in the layout you are using, they will be shown in the Specify Field Order

dialog, as shown previously in Figure 23.2 . When there are related records in a one-to-many rela-

tionship, you will get all the existing child records. The main record’s value will appear in the first

record.

ptg8106388

571Exporting to Fixed-Width Formats

23

C
H
APTER

 Exporting Grouped Data

A typical export outputs some data from each record in the current found set.

 � Sometimes you might get multiple sets of information per

current record if you export related fields. See “Exporting

Related Fields,” p. 570 , for more information.

But what if you don’t want data for each and every record? What if

you want to export only data that summarizes information from the

current record set, such as you might see in a subsummary report?

FileMaker makes this possible as well.

 � For more information on summary fields and summary reporting, see “Working with Field

Types,” p. 87 , and “Using Summarized Reports,” p. 295 .

It now remains to use this summary field in an export. The process is similar to that required for

preparing a subsummary report for display. First, isolate the transactions to be summarized (for

example, to summarize across all transactions, you would perform Show All Records). Next, sort by

the field that would be the break field if you were displaying the data in a subsummary report to

group the data. You can sort by more than that field. As shown in Figure 23.2 , the various sort fields

in use at the time you export data are shown; you select the check boxes on any for which you want

summarized data.

When you use more complex sorts and summary field choices, more complex summarized exports

are possible.

Exporting to Fixed-Width Formats
Many computer systems exchange data in some form of fixed-width format. This term refers to

formats in which an individual field always contains a certain number of characters of data. Data

that’s too wide for the field width is sometimes truncated to fit. Data that takes up less space than

the field width allows is padded with a padding character, such as a zero or a space, to bring it up

to the specified width. For example, the number 797 in a ten-character fixed-width format might be

rendered as “0000000797” (left-padded with zeros). The name Tomczak displayed in a 15-character

fixed-width format might be displayed as “Tomczak ” (right-padded with spaces). Fixed-width

formats also sometimes simply run all the columns together into a single big fixed-width string.

There’s no need for internal field separators; because the exact width of each field is known, you

can easily determine where each field’s data starts and stops.

If you need to export FileMaker data to a fixed-width format, you’ll have to do a bit of work by hand;

FileMaker has no built-in support for exporting to a fixed-width format. At a minimum, you’ll need

to define some calculations to perform padding and concatenation. If you want to build a more per-

manent framework for working with fixed-width data, you can consider developing a small library of

custom functions to do some of the work.

 tip
To output summary data, you
need to have one or more sum-
mary fields defined.

ptg8106388

Exporting Data from FileMaker572

IV

PA
RT

Padding data is a straightforward activity using FileMaker calculations. Say you have a number field

called OrderTotal. To left-pad this number with zeros and enforce a fixed width of ten characters,

you would use the following calculation:

Right(“0000000000” & OrderTotal; 10)

If you think about that for a moment, how it works should be

clear. The calculation tacks ten zeros onto the left of the numeric

value and then takes the rightmost ten characters of the result.

Likewise, to right-pad a text field called FirstName with spaces to

a width of ten characters, you would use a calculation that looks

like this:

Left(FirstName & “ “; 10)

Finally, if you needed to run a set of these fields together into

a single fixed-width row, a calculation that concatenates all the

individual padding calculations together using the & operator

would suffice. You could also create a single row-level calculation

without bothering with individual calculations for each field:

Right(“0000000000” & OrderTotal; 10) & Left(FirstName & “ “; 10)

Working with Large Fields and Container Fields

Most of the formats discussed so far are predominantly text oriented; that is, either they treat

exported data as text or, at the very least, they describe its attributes using text-based formats. But

FileMaker has extensive capabilities for handling binary data as well, via the container field type.

FileMaker can import files in batches, as discussed in the preceding chapter. FileMaker also has

tools that allow you to create a batch export of binary files.

The key to most such exporting operations is the Export Field Contents command, found in the Edit

menu. You can manually enter a single field on a FileMaker layout and choose Edit, Export Field

Contents, and the contents of that one field are exported to a file of the appropriate type: a text file

for most field types or the actual file contents of a container field. (For example, exporting from a

container field containing a file called hurricanes.dbf produces exactly the hurricanes.dbf file.) The

Export Field Contents option is not available for a container field unless the field contains some-

thing—either an embedded file or a reference to a file.

 � For more information on the batch import of images, see “Importing Multiple Files from a

Folder,” p. 554 .

When used via the menu, Export Field Contents exports the contents of one selected field from one

record. It uses UTF-16 Little Endian, so all characters are preserved, including returns and horizontal

tabs. To create something like a batch export of images, you need to write a script that uses the

 note
Calculations such as these are
fine for simple or occasional
fixed-width exports. FileMaker
also ships with an XSL style
sheet, called fixed_width.
xsl, which can be applied to a
FileMaker data set on export to
produce a fixed-width export.
The style sheet supports only a
single fixed width for all output
columns. For more complex
needs, you can build a tool of
some sort to streamline the
process.

ptg8106388

573Scripted Exports

23

C
H
APTER

Export Field Contents script step. Using scripted exports is a powerful technique that’s covered

in the next section.

 Scripted Exports

All the techniques covered so far involve manual export operations, in which the user drives the

process by hand, including the selection of output file type and filename as well as the selection of

fields for export. Exporting, though, is often an operation you want to be able to perform repeatedly,

on demand. You might have to export a membership list to a text file periodically or create a file con-

taining information on this month’s invoices to send to an accounting system that doesn’t interact

with FileMaker. In such circumstances, it’s typical that you’ll want to export the same set of fields,

for different data sets at different times. In these cases, it makes sense to consider using a script to

perform the export.

All aspects of exporting can be scripted, from the selection of the records to be exported; to the

determination of output file type, filename, and location; to the choices of specific fields and export

options.

 � You can use the Get (TemporaryPath) function to export data using schedules in

FileMaker Server. For more information, see Chapter 27 , “FileMaker Server and Server

Advanced.”

The Export Records script step is similar to the Import Records script step: You can specify the

output file and the export order, just as you could specify the input file and the import order.

ptg8106388

This page intentionally left blank

ptg8106388

 24

INSTANT WEB PUBLISHING

 Overview of Instant Web Publishing

Instant Web Publishing (IWP) lets you publish your FileMaker databases

to a web server with remarkably little effort.

Broadly speaking, Instant Web Publishing is one of several options for

sharing data from a FileMaker database to the Web. The other options

include exporting static Hypertext Markup Language (HTML), export-

ing XML and transforming it into HTML with a style sheet, and Custom

Web Publishing (CWP), which involves doing Hypertext Transfer Protocol

(HTTP) queries against the Web Publishing Engine and using PHP with

the Web Publishing Engine. Although less common, you can also use Web

Publishing with ODBC or JDBC with FileMaker Server Advanced.

 � For more details on Custom Web Publishing with PHP, see Chapter

 25 , “Custom Web Publishing with PHP and XML.”

The goal of IWP is to translate to a web browser as much of the appear-

ance and functionality of a FileMaker Pro database as possible, without

requiring that a developer do any additional programming. FileMaker

layouts are rendered in the user’s browser almost exactly as they appear

to users of the FileMaker Pro desktop application. To give you an idea

of what this looks like from the user’s perspective, Figures 24.1 and 24.2

show an example of a layout rendered both in FileMaker Pro and through

IWP in a web browser. (The database is the FMServer_Sample that is

installed automatically with FileMaker Server.)

ptg8106388

Instant Web Publishing576

IV

PA
RT

 Figure 24.1
 View FMServer_
Sample with
FileMaker Pro.

 Figure 24.2
 View FMServer_
Sample with
Instant Web
Publishing.

ptg8106388

577Overview of Instant Web Publishing

24

C
H
APTER

IWP is more, though, than simply rendering your layouts as web

pages. IWP users have much, if not all, of the same application

functionality as do FileMaker Pro users. They can run scripts and

view, create, edit, and delete data just like traditional FileMaker

Pro users.
Almost all the differences between IWP and FileMaker access to

databases have to do with the fact that in IWP the database dis-

plays in a web browser, and in FileMaker it displays in a FileMaker

window. The consequence of this is that the menus at the top of

the window or display belong to the browser, not to FileMaker.

Therefore, all FileMaker menu commands available in IWP have to

be provided as buttons, triggers, or other controls in the IWP con-

trols area at the left of the window.
To edit data in IWP, click Edit Record in the toolbar, as shown in

Figure 24.2 . The toolbar changes to the editing toolbar shown in

Figure 24.3 . You can edit data, submit changes, or cancel them.

 caution
As of FileMaker Pro 12, Instant
Web Publishing works only with
the Classic theme.

 tip
The fact that the IWP menu bar
has the browser’s menu bar
should be a familiar thought. You
must implement functionality
without resorting to menu com-
mands, just as is the case on the
iOS devices where there is no
menu bar.

 Figure 24.3
Edit data in
IWP.

ptg8106388

Instant Web Publishing578

IV

PA
RT

Most of the desktop commands are available in the IWP toolbar although, as you see in Figure 24.4 ,

they may be in different places. Here, some of the most frequently used commands from the desktop

Records menu are moved to a submenu in the toolbar.

 Figure 24.4
 Commands
may be in dif-
ferent places
on IWP.

Getting Started with IWP
After you decide that IWP is something you want to try, there isn’t too much you’ll need to do to get

started. There are two ways to deploy IWP. You can use the regular FileMaker Pro desktop applica-

tion, in which case you’re limited to publishing a maximum of ten database files to at most five con-

current users. Alternatively, you can use FileMaker Server Advanced, which allows for significantly

more files and users. The configurations for these options are covered in detail in the next section.

(FileMaker Server itself does not support IWP.)

The host machine—whether running FileMaker Pro or FileMaker Server Advanced—of course needs

to have an Internet (or intranet) connection. The host machine also must have a static IP address.

If you don’t have a static IP address on the host machine, remote users can have a difficult time

accessing your solution. Finally, any databases you want users to access via IWP need to be open

on the host machine.

ptg8106388

579Enabling and Configuring IWP

24

C
H
APTER

To access your IWP-enabled files, remote users need to have an Internet connection and a compat-

ible browser. Because IWP makes heavy use of Cascading Style Sheets (CSS), the browser restric-

tions are important and are something you need to consider carefully if you intend to use IWP as

part of a publicly accessible website.

On Windows, the supported web browsers are Internet Explorer 8 or 9, Firefox, or Safari 5. Later

versions of these browsers are supported as well. Obviously, these options might change with new

releases of browsers and new versions of operating systems, so consult the Filemaker.com website

for the latest configuration guidelines. Whichever approved browser is used, JavaScript needs to

be enabled, and the cache settings should be set to always update pages. The web browsers on

iPhone, iPad, and iPod touch do not support IWP. Use FileMaker Go instead.

Enabling and Configuring IWP
To publish databases to the Web via IWP, you must enable and configure IWP on the host machine,

and you have to set up one or more database files to allow IWP access. Each of these topics is cov-

ered in detail in the sections that follow.

Configuring FileMaker Pro for IWP
Using FileMaker Pro, you can share up to ten databases with up to five users. To share more files or

share with up to 100 users, you need to use FileMaker Server Advanced as your IWP host. FileMaker

Pro can serve only files that it opens as a host. That is, it’s not possible for FileMaker Pro to open a

file as a guest of FileMaker Server Advanced and to further share it to IWP users.

Figure 24.5 shows the Instant Web Publishing setup screen in FileMaker Pro. In Windows, you get

to this screen by choosing File, Sharing, Instant Web Publishing. On a Mac, choose FileMaker Pro,

Sharing, Instant Web Publishing. The top half of the Instant Web Publishing dialog relates to the

status of IWP at the application level; the bottom half details the sharing status of any currently

open database files. The two halves function independently of one another and are discussed sepa-

rately here. For now, we’re just concerned with getting IWP working at the application level and

therefore limit our discussion to the options on the top half of the Instant Web Publishing dialog.

 tip
A static IP address can be provided by your ISP; it will allow people outside your organization to connect to the IWP
databases. You may have to do a bit of research with your ISP. Some vendors try to make their offerings more con-
sumer-friendly by avoiding technical terms such as “static IP address.” You might have success if you inquire about a
business account and look to see if a static IP address is one of the features of a business account. If you have a local
area network that communicates with the Internet through a single connection, each machine on the network has a
separate IP address. They can be created dynamically, or they can be assigned within the network. (They typically start
with 192.168 or with 10.0, depending on the size of the network.) Your IWP host machine can have a static IP address
within the network that you assign even if the entire network’s IP address (visible from the outside) changes. This static
IP address will allow everyone inside the network to consistently connect to the IWP host, but outsiders will not be able
to do so.

ptg8106388

Instant Web Publishing580

IV

PA
RT

Turning Instant Web Publishing on and off is as simple as toggling the Off/On selection. Selecting

On enables this particular copy of FileMaker Pro to act as an IWP host. You can choose the language

that will be used on the IWP Database Homepage and in the IWP controls at the left of the window.

You can also configure a handful of advanced options, as shown in Figure 24.6 .

 Figure 24.5
To enable Instant Web
Publishing in FileMaker Pro,
simply select the On option
on the IWP configuration
screen.

 Figure 24.6
On the Advanced Web Publishing
Options dialog, you can configure
the port number, logging options, IP
restrictions, and session disconnect
time.

ptg8106388

581Enabling and Configuring IWP

24

C
H
APTER

 Port Number
By default, IWP is configured to use port 80 on the host machine.

If another application, such as a web server, is already using that

port, you see an error message and are asked to specify a differ-

ent port to use. FileMaker, Inc., has registered port 591 with the

Internet Assigned Numbers Authority (IANA), so that’s the recom-

mended alternative port number. The only downside of using a

port other than 80 is that users need to explicitly specify the port

as part of the URL to access IWP. For instance, instead of typing

127.0.0.1 , your users would have to type 127.0.0.1:591 (or whatever port number you specified).

 Security
If you know the IP addresses of the machines your IWP users will use when accessing your solu-

tion, you can greatly increase your solution’s security by restricting access to only those addresses.

Multiple IP addresses can be entered as a comma-separated list. You can use an asterisk (*)

as a wildcard in place of any part of the IP address (except for the first part). That is, entering

192.168.101.* causes any IP address from 192.168.101.0 to 192.168.101.255 to be accepted. Entering

192.* allows access to any user whose IP address begins with 192.

If you don’t set IP restrictions, anyone in the world who knows the IP address of your host machine

and has network access to it can see at least the IWP Database Homepage (which lists IWP-enabled

files). And if you’ve enabled the Instant Web Publishing extended privilege on the Guest privilege

set, remote users could open the files as well. This is, of course, exactly the behavior you would

want when IWP is used as part of a publicly accessible website.

 Logging
You can enable two activity logs for tracking and monitoring your IWP solution: the application log

and the access log. The application log tracks script errors and web publishing errors:

 • Script errors— These errors occur when a web user runs a script that contains non–web-

compatible script steps. See the section “Scripting for IWP,” later in this chapter, for more infor-

mation about what particular steps are not web compatible. A script error can also occur if a user

attempts to do something (via a script) that’s not permitted by that user’s privilege set. Logging

script errors—especially as you’re testing an existing solution for IWP friendliness—is a great

way to troubleshoot potential problems.

 • Web publishing errors— These errors include more generic errors, such as “page not found”

errors. The log entry generated by one of these generic errors is very sparse and might not be

terribly helpful for troubleshooting purposes.

The access log records all IWP activity at a granular level: Every hit is recorded, just as you’d find

with any web server. As a result, the access log can grow quite large very quickly, and there are

no mechanisms that allow for automatic purging of the logs. Be sure to check the size of the logs

periodically and to prune them as necessary to keep them from eating up disk space. (A knowledge-

 note
If you are using OS X, you might
be asked to type your comput-
er’s passphrase if you attempt
to change the port number
when configuring IWP within the
FileMaker client.

ptg8106388

Instant Web Publishing582

IV

PA
RT

able system administrator can configure both Windows and OS

X to periodically trim or rotate logs to prevent uncontrolled log

growth.)

 Ending a Session

The final option on the Advanced Web Publishing Options dialog

is the setting for the session disconnect time. As mentioned pre-

viously, IWP establishes a unique database session for each web

user. This means that as a user interacts with the system, things

such as global values, the current layout, and the active found

set are remembered. Because only five sessions can be active at

any given time when using FileMaker Pro as an IWP host, it’s

important that sessions be ended at some point. A session can be

ended in several ways:

 • A user can click the Log Out button in the IWP controls.

 • The Exit Application script step ends an IWP session and

returns the user to the Database Homepage.

 • You can automatically terminate a session after a certain

amount of inactivity. The default is 15 minutes, but you can

set it to anything from 1 to 60 minutes.

 � Are your IWP sessions not ending when you think they should? See “Problems Ending IWP

Sessions” in the “Troubleshooting” section at the end of this chapter.

Configuring FileMaker Server Advanced for IWP
One of the best features of the FileMaker product line is the capability to do web publishing directly

from files hosted by FileMaker Server Advanced. Using FileMaker Pro as an IWP host works well

for development, testing, and some limited deployment situations, but for many business applica-

tions, you’ll find that you want the added power and stability that come from using FileMaker Server

Advanced for this purpose.

Using FileMaker Server Advanced as your IWP host provides several significant benefits. The first

is simply that it scales better. With FileMaker Pro, you are limited to five concurrent IWP sessions;

with FileMaker Server Advanced, you can have up to 100 IWP sessions. FileMaker Server Advanced

can also host up to 125 files, compared to FileMaker Pro’s ten.

Even more important, you have the option to use SSL for data

encryption when using FileMaker Server Advanced as the web

host. FileMaker Server Advanced is a more reliable web host as

well. It is more likely that the shared files will always be available

for web users, that they’ll be backed up on a regular basis, and

that the site’s IP address won’t change when you use FileMaker

Server.

 note
Each of the two logs can be read
with any text editor, but you
might find it helpful to build a
FileMaker database into which
you can import log data. It will
be much easier to read and
search that way.

 tip
Clicking the home icon in the
IWP controls to return to the
Database Homepage does not
end a session. If a user reen-
ters the file from the Database
Homepage without ending his
session, he returns to exactly
the same place he left, even if a
startup script or default layout is
specified for the file.

 note
Even in organizations that use
dynamic addressing for desktop
machines, servers are typically
assigned static IP addresses.

ptg8106388

583Enabling and Configuring IWP

24

C
H
APTER

 � Chapter 27 , “FileMaker Server and Server Advanced,” covers in detail the various components

and installation options of FileMaker Server and the Web Publishing Engine. Here, we assume

that you have all the required components in place and merely touch on the relevant configura-

tion screens in the FileMaker Server Admin Console.

FileMaker Server Admin Console is a Java configuration tool that allows you to attach a Web

Publishing Engine to a FileMaker Server and configure it. As shown in Figure 24.7 , you turn on

Instant Web Publishing for FileMaker Server simply by checking the box on the Instant Web

Publishing pane of the Web Publishing screen.

 Figure 24.7
 Use the
FileMaker
Server Admin
Console to
allow FileMaker
Server
Advanced
to host IWP-
enabled data-
bases.

You can see a list of the databases accessible via IWP on the server by going to the Databases page,

shown in Figure 24.8 . For a database to be “IWP accessible,” one or more privilege sets needs to

have the fmiwp extended privilege enabled in the database itself, as described in the following sec-

tion. There’s no configuration or setup that you need to do in FileMaker Server Admin Console, or to

the files themselves, before hosting them with FileMaker Server Advanced. In fact, even while a file

is being hosted by FileMaker Server, a user with the privilege to manage extended privileges can

use FileMaker Pro to open the file remotely and edit the privilege sets so that the file is or isn’t IWP

accessible.

ptg8106388

Instant Web Publishing584

IV

PA
RT

Sharing and Securing Files via IWP

Security for Instant Web Publishing users is managed the same way it’s managed for FileMaker Pro

users: via accounts and privileges. Accounts and privileges also dictate which database files are

accessible via IWP. To be shared via IWP, a particular file must be open, and one or more privilege

sets in that file must have the fmiwp extended privilege enabled. This is true regardless of whether

you plan to use FileMaker Pro or FileMaker Server Advanced as the web host. You assign the fmiwp

extended privilege to a privilege set in any of three ways:

 • Go to File, Manage, Security. On the Extended Privileges tab, you’ll see a list of the various

extended privileges and be able to assign fmiwp to any privilege sets you want.

 � For more information on what extended privileges are and how to assign them to a privilege set,

see “Extended Privileges,” p. 354 .

 Figure 24.8
 FileMaker
Server Admin
Console lists
all the web-
accessible
databases on
the server,
but you don’t
need to do any
configuration
here at the file
level to allow
something to
be shared to
IWP.

 note
If you want a file to be accessible via IWP but not to show up on the Database Homepage, you have to open the file with
FileMaker Pro (open it directly, that is, not simply as a client of FileMaker Server) and go into the Instant Web Publishing
configuration screen. After you are there, select the file and then check the Don’t Display in Instant Web Publishing
Homepage check box. You do not need to actually enable IWP or add any extended privileges to privilege sets to have
access to this setting.

ptg8106388

585Enabling and Configuring IWP

24

C
H
APTER

 • Also in File, Manage, Accounts & Privileges, on the Privilege Sets tab, you can select a privilege

set to edit from the list of privilege sets. Then, you can select fmiwp as an extended privilege for

the currently active privilege set, as shown at the lower left in Figure 24.9 .

 Figure 24.9
Make certain that fmiwp is
an extended privilege for
the relevant privilege sets.

 • On the Instant Web Publishing setup screen (refer to Figure

24.5), the bottom half of the screen shows a list of open data-

base files. When you select a particular database, you can man-

age the fmiwp extended privilege right from this screen. If you

select All Users or No Users, the fmiwp extended privilege is

granted or removed from all privilege sets in the file. You can

also select Specify Users by Privilege Set to select those privi-

lege sets that should have access to IWP. Although the words

extended privilege and fmiwp never appear on this screen, it

functions exactly the same as the Extended Privilege detail

screen. This screen is intended to be more user friendly and

convenient, especially when you are working with multiple files.

The other sharing option you can configure on the Instant Web

Publishing setup screen is whether the database name appears on

the Database Homepage. In a multifile solution, you might want to

have only a single file appear so that users are forced to enter the

system through a single, controlled point of entry.
Users can get to your IWP site from a browser by typing <IP address or domain name>/fmi/iwp/

res/iwp_home.html . When they do this, the first thing they’ll see is the IWP Database Homepage,

 note
To assign extended privileges in
any of these ways, a user must
be logged in with a password
that grants rights to Manage
Extended Privileges.

 note
Any changes made in the sharing
settings and privileges for a file
take effect immediately; you do
not need to restart FileMaker or
close the file.

ptg8106388

Instant Web Publishing586

IV

PA
RT

an example of which is shown in Figure 24.10 . The Database Homepage lists, in alphabetical order,

all files on the host machine that have at least some privilege sets with the fmiwp extended privi-

lege enabled. The Database Homepage cannot be suppressed, although it can be customized or

replaced, as explained later in this chapter.

 Figure 24.10
 The Database
Homepage
provides
users with a
list of acces-
sible files.

Users aren’t prompted for a password on their way to the Database Homepage. The password

prompt occurs (unless they are logged in as guests, as described in the following bulleted list) when

users first try to interact with a database. IWP now uses an HTML forms-based interface for enter-

ing a username and password, as shown in Figure 24.11 . To be authenticated, users must enter an

active, valid username and password, and their accounts must be associated with a privilege set

that has the fmiwp extended privilege enabled.

 Figure 24.11
You need to
log in to the
database to
access it.

ptg8106388

587Designing for IWP Deployment

24

C
H
APTER

You should know a number of things about how accounts and

privileges are authenticated under IWP:

 • As in regular FileMaker authentication, the password is case

sensitive (although the account name is not).

 • IWP ignores any default login account information that has been

set up under File Options.

 • IWP does not support the Account option to require users

to change their passwords after the next successful login.

Changing passwords is not a feature supported by IWP. If this

option has been set, a web user who tries to log in with that

username and password receives Error 211 (Password Has

Expired) and cannot enter the system.

 • If the Guest account has been activated and given the fmiwp

extended privilege, users might not be prompted for a user-

name/password to access the database. For the users to skip

the login screen, though, it’s necessary that the fmiwp extended

privilege be assigned only to the [Read-Only Access] privilege

set (the privilege set used by the Guest account). Anyone auto-

matically logged in in this fashion will have the privileges of the

Guest account. Such a configuration would typically be used

only for websites that need to be accessed by the general

public.

After a user is authenticated as a valid user of the file, that user’s

privilege set then controls which actions can be performed, just

as it does for users of the FileMaker Pro desktop application. Field

and layout restrictions, record-level access, creation and deletion of

records—all of these are managed exactly the same for IWP users

as for FileMaker Pro users. The capability to make use of this uni-

fied security model is truly one of the best features of FileMaker

IWP and makes it much simpler to deploy robust and secure IWP

solutions.

 � For more information about setting up user accounts and privileges, see Chapter 12 ,

“Implementing Security.”

Designing for IWP Deployment
The preceding sections discussed how to enable IWP at the application level and how to set a file

so that users can access it via IWP. Although this is enough for IWP to function, there are usability

issues to consider as well. Not all layouts and scripts translate well to the Web, and some FileMaker

features simply don’t work via IWP. The following sections discuss the constraints that you, as a

 tip
Remember that many solu-
tions leave the security settings
unchanged, which means that
the user is Admin and the pass-
word is blank. When coupled
with auto-login in File, File
Options, this can mean that you
never have to use an ID and
password. When it comes to IWP,
however, you will need to do
so. If you don’t know the ID and
password, try the defaults. And,
remember that because it’s so
simple to get into an unprotected
database, you should make cer-
tain that your databases do use
good user IDs and passwords.

 tip
You can create a script that uses
the account management script
steps to create your own custom-
ized login routine. Users would
use Guest privileges to get to
your login screen, and then your
script would use the Re-login
step to reauthenticate them as
different users.

ptg8106388

Instant Web Publishing588

IV

PA
RT

developer, must be aware of when deploying an IWP solution. We also discuss a number of develop-

ment techniques that can make an IWP solution feel more like a typical web application.

 Constraints of IWP
Most of the core functionality of FileMaker Pro is available to IWP users. This includes being able

to view layouts, find and edit data, and perform scripts attached to buttons. However, a number of

FileMaker features are not available to IWP users. It’s important to keep these points in mind, espe-

cially when trying to port an already existing solution to the Web:

 • As noted previously, only the Classic theme is available in IWP. Other themes will not open, so

you might have to move layouts back to Classic before deploying them in IWP.

 • IWP users have no database development tools. This means IWP users can’t create new files;

define tables, fields, and relationships; alter layouts; manage user privileges; or edit scripts.

 • IWP users can’t use any of the FileMaker Pro keyboard shortcuts. Be sure that you leave the IWP

controls visible or provide your users with ample scripted routines for tasks such as executing

finds and committing records.

 • There is no capability to import or export data from an IWP session. In general, any action that

interacts with another application, the file system, or the operating system is not possible via

IWP.

 • IWP has no Preview mode. This means that sliding and multicolumn layouts, all of which require

being in Preview mode to view, are not available to IWP users. Similarly, printing is not sup-

ported. IWP users can choose to print the contents of the browser window as they would any

other web page, but the results will not be the same as printing from FileMaker Pro. (That is,

headers and footers won’t appear on each page, page setups will not be honored, and so on.)

 • There are a few data-entry differences for IWP users. For instance, web users can’t edit rich text

formatting in fields. That is, they can’t change the style, font, or size of text in a field. They can

generally, however, see rich text formatting that has already been applied to a field.

 • Most window manipulation tools and techniques do not translate well to IWP. The user’s

browser can show only the contents of the currently active window in the virtual FileMaker envi-

ronment. That environment can maintain multiple virtual windows and switch between them,

but a user can’t have multiple visible windows in the browser, and cannot resize or move win-

dows except to the extent allowed by the browser. In other words, the users can manually resize

their browser windows, but precision movement and placement of windows using script steps

such as Move Window are not supported in IWP.

 • None of the FileMaker Pro toolbars from the Status toolbar is available via IWP. IWP does offer

its own toolbars in the IWP controls, however, and they contain some of the same functionality

found in the FileMaker Pro toolbars.

 • Spell-checking is not available via IWP.

ptg8106388

589Designing for IWP Deployment

24

C
H
APTER

 • Many graphical layout elements are rendered differently, or not at all, on the Web. This includes

diagonal lines, rounded rectangles, rotated objects, ovals, and fill patterns. The sections that fol-

low discuss this topic in greater detail.

 • IWP users can’t edit value lists through a web browser.

 • There is no built-in way for users to change their passwords via IWP, even if they have the privi-

lege to do so. If you need this sort of functionality, you have to use the account management

script steps and come up with your own scripted routine.

 Scripting for IWP
IWP supports more than 70 script steps, and scripts can be of any length and complexity. Also,

because IWP is session based, scripts executed from the Web operate within what might be thought

of as a virtual FileMaker environment. This means that changes to the environment (active layout,

found set, and so on) are persistent and affect the browser experience, which is a good thing.

Even though IWP script support has come a long way, there are still some behaviors, constraints,

and techniques you should be aware of.

 Unsupported Script Steps
ScriptMaker itself has an option that makes identifying unsupported script steps quite easy. When

you use the Show Compatibility pop-up menu, all the unsupported script steps are dimmed. This

affects both the list of script steps and the steps in whatever script you’re viewing. Figure 24.12

shows an example of what script step dimming looks like. The Show Compatibility pop-up menu has

no effect other than showing you which steps are not supported; how you choose to use that infor-

mation is up to you (although unsupported script steps are dimmed out, you can still add them to a

script). Additionally, its status is not tied to any particular script. That is, it is either turned on or off

for the entire file, and it remains that way until a developer changes it. We point this out explicitly

because the check box right next to it, Run Script with Full Access Privileges, is a script-specific set-

ting.
Additionally, the option to perform with a dialog is not supported in a number of supported script

steps. They include Delete Record/Request, Replace Field Contents, Omit Multiple Records, and Sort

Records. These steps are always performed without a dialog via IWP, regardless of which dialog

option has been selected in ScriptMaker.

 Error Capture
The outcome of running a script (from the Web) that contains unsupported script steps depends

on whether the Allow User Abort setting has been turned on or off. If it’s not explicitly specified, a

script executes on the Web as if Allow User Abort had been turned on. So, not specifying any set-

ting is the same as explicitly turning it on.

ptg8106388

Instant Web Publishing590

IV

PA
RT

If user abort is on (or not set at all), script execution halts when

an unsupported step is encountered. Steps before the offending

script step are performed as normal. If you’ve chosen to log script

errors, the offending step is logged as an error in the application

log. The user does not see any error message or have any knowl-

edge that anything is amiss.

If user abort has been turned off, a script simply bypasses any

unsupported scripts and attempts to perform subsequent steps.

It’s performed as if the offending step were simply not there. No

error is logged to the application log when this occurs.

 Committing Records
If a script run via IWP causes a record to be altered in any way (such as using a Set Field script

step), be sure that you explicitly save the change by using the Commit Record/Request step

sometime before the end of the script. If you don’t, your web user will be left in Edit mode and, pro-

vided that the IWP controls are visible, will have the option to submit or cancel the changes, which

is likely not an option you want to offer at that point. Canceling would undo any changes made by

the script.

 Figure 24.12
When you are
writing scripts
that will be
used via IWP,
turn on the
Indicate Web
Compatibility
check box
to dim out
incompatible
script steps.

 note
Script steps with the unsup-
ported “perform with dialog”
options discussed earlier are not
affected at all by the error cap-
ture setting. These script steps
will always be performed as if
Perform Without Dialog had been
checked, regardless of error
capture.

ptg8106388

591Designing for IWP Deployment

24

C
H
APTER

Startup and Shutdown Scripts
If you have specified a startup script for a file, it is performed

for IWP users when the session is initiated. Similarly, IWP also

switches to a particular layout on startup if you’ve selected that

option. The shutdown script is performed when the user logs out,

even if the logout is the result of timing out.

Performing Subscripts in Other Files
A script can call a subscript in another file, but that file has to be

open and enabled for IWP for the subscript to execute. Calling a

subscript does not force open an external file, as happens in the

FileMaker Pro desktop application.

If your subscript activates a window in the external file, the IWP user sees that window in the

browser. Unless you provide navigation back to the first file, a user has no way of returning, except

by logging out and logging back in. You should make sure that any record changes are fully commit-

ted before the user navigates to a window in another file. It’s possible that the record will remain in

an uncommitted, locked state, even though the IWP user has no idea this has occurred.

Testing for IWP Execution Within a Script
If you have a solution that will be accessed by both FileMaker Pro desktop users and IWP users,

chances are they’ll use some of the same scripts. If those scripts contain unsupported script steps,

you might want to add conditional logic to them so that they behave differently for IWP users than

they do for FileMaker users. You can do this by using the Get (ApplicationVersion) function. If

the words Web Publishing are found within the string returned by this function, it means the person

executing the script is a web user. It’s not possible to discriminate between an IWP user and a CWP

user with this function; you simply know you have a web user. The actual syntax for performing the

test is as follows:

PatternCount (Get (ApplicationVersion); “Web Publishing”)

 Layout Design
Most layouts you design in FileMaker Pro will be rendered almost perfectly in a web browser via

Instant Web Publishing. IWP does this by using the absolute positioning capability of Cascading

Style Sheets, Level 2. The CSS requirements of IWP are the reason there are browser restrictions

for its use. We’ve already mentioned a few layout elements that don’t translate well to IWP—we’ll

recap them here as well—but there are several additional points to keep in mind when you are cre-

ating or modifying layouts for IWP use.

 caution
The startup script executes only
once per session, when the
user navigates there from the
Database Homepage or follows
an equivalent link from another
web page. The startup script
is not run if a file is activated
through the performance of an
external script.

ptg8106388

Instant Web Publishing592

IV

PA
RT

 “View As” Options
Web users have the same ability that FileMaker desktop users have to switch between View As

Form, View As List, and View As Table on a given layout, unless you restrict that ability at the

layout level. To do so, go into the Layout Setup options, shown in Figure 24.13 , and simply uncheck

any inappropriate views. The additional Table view options that can be specified all translate well

to IWP, except for resizable and reorderable columns.

 Figure 24.13
In Layout Setup, you can specify the types of
views to which a user should be able to switch
for a given layout.

You should be aware of a few special characteristics of List and Table views in IWP. By default,

View As List shows a set of at most 25 records, and View As Table shows a set of at most 50

records. You cannot change these settings. Also, while in List or Table view, whenever a user clicks

a record to edit it, the active record jumps to the top of the set. This response can be slightly discon-

certing for users habituated to working with lists of records in FileMaker. For instance, if a user is

viewing records 6–10 of a set as a list, and clicks record 8, record 8 jumps to the top, and the screen

then displays records 8–12.

 Layout Parts
IWP can render any and all parts that compose a layout. There are a few differences, however,

between how and when parts display in IWP and how and when they display in the FileMaker

desktop application.

First of all, in Form view, the vertical size of a part displayed via IWP is the size that the part was

defined to be. It doesn’t stretch to fill the vertical space. This is different from how FileMaker Pro

behaves. In FileMaker Pro, the last visible part expands to fill any remaining vertical space. Say,

for instance, that you have a layout that consists of only a single, colored body part. Via IWP, if a

ptg8106388

593Designing for IWP Deployment

24

C
H
APTER

user resizes a browser window so that it’s larger (vertically) than the body part, the space between

the bottom of the part and the bottom of the browser is a white void. This also means that if your

layout has a footer part, it won’t necessarily (indeed, won’t likely) be displayed at the bottom of the

browser window.

View As List in a browser also has some differences from its FileMaker Pro counterpart. In

FileMaker Pro, a header or footer part is locked on the screen at the top or bottom. The area in

between displays as many body records as space permits. In FileMaker Pro, leading and trailing

grand summary parts display in List view, but title header, title footer, and subsummary parts do

not (in Browse mode).

As we’ve mentioned, in a browser, List view always contains 25 records (except, of course, when

the found set is fewer than five or if the active record is one of the last four of the found set). The

header and footer are not fixed elements as they are in FileMaker Pro. If the 24 records of the list

take up less than the full browser window, the footer simply shows up in the middle of the screen;

if they take up more than the full window, a user would need to scroll to see the footer. Another

major difference is that title header, title footer, and subsummary parts are all visible in the browser

at all times (in List view).

 Container Fields
You should know about a few special restrictions and considerations when using container fields

in an IWP solution. Most important, there is no capability to add or edit data in a container field

via IWP; these fields are strictly view-only. The capability to enter and update pictures, sounds,

QuickTime movies, files, and objects is available only to regular FileMaker Pro users.

The visibility and/or accessibility of a container field’s contents are dependent on the types of

objects they are and how they were entered into the container field in the first place:

 • Graphic images that have been directly stored in a container field (that is, not stored as a refer-

ence) are visible through a browser. Images should be stored as pictures, not as files.

 • Graphic images that have been stored as a reference are visible to IWP users only if the images

are stored in the web folder of the FileMaker Pro application (if FileMaker Pro is the IWP host) or

if they are stored in the root folder of the web server (if FileMaker Server is the IWP host).

 • QuickTime movies can’t be accessed directly from the web browser. If you insert them as files

rather than as QuickTime, however, a user can play or download them.

 • Files stored directly in a container field render to an IWP user as a hyperlink. Clicking the link

begins a download of the file. No icon or other graphic representation of the file is visible to web

users.

 • Sounds that have been stored directly in container fields cannot be played via IWP.

 Application Flow
We’ve discussed many of the technical limitations and details of how various FileMaker features

translate to the Web. We turn now to more practical development matters. Certain routines and

development habits that work well in the FileMaker desktop application don’t work as well from a

ptg8106388

Instant Web Publishing594

IV

PA
RT

web browser. The following sections discuss how the constraints

of IWP will influence how you develop solutions.

 Explicit Record Commits
HTTP—the underlying protocol of the Web—is a stateless pro-

tocol. This means that every request a browser makes to a web

server is separate and independent from every other request.

Put differently, the web server doesn’t maintain a persistent

connection to the web client. After it has processed a request

from someone’s browser, it simply stands by waiting for the next

request to come in. To make HTTP connections appear to be

persistent, web programmers need to add information to each

request from a single client and then let some piece of web server

middleware keep track of which client is which, based on this

extra request data. This technique is referred to as session management .

The client/server connection between FileMaker Pro and FileMaker Server is persistent. The two

are constantly talking back and forth, exchanging information and making sure that the other is still

there. FileMaker Server is actively aware of all the client sessions. When FileMaker Server receives

new record data from any client on the network, it immediately broadcasts that information to

all the other clients. And when a user clicks into a field and starts editing data, FileMaker Server

immediately knows to consider that record as locked and to prevent other users from modifying the

record.

The fact that IWP is now capable of performing session management means that FileMaker main-

tains information about what’s happening on the Web in a virtual FileMaker environment. Even

though this doesn’t change the fact that HTTP is stateless, using sessions gives IWP a semblance of

persistence. Essentially, the server stores a bunch of information about each IWP user; each request

from a user includes certain session identifiers that enable the server to recognize the IWP guest

and to know the context by which to evaluate the request. One of the benefits of this session model

is that IWP users can lock records, and they are notified if they try to edit a record that a regular

FileMaker Pro user has locked.

Still, the statelessness of the Web makes the application flow for something even as basic as editing

a record much different in IWP than it is in FileMaker Pro. In FileMaker Pro, of course, a user just

clicks into a field, makes some changes, and then clicks out of the field to commit (save) the change.

On the Web, editing a record involves two distinct transactions. First, by clicking an editable field

or using the Edit Record button in the IWP controls, the user generates a request to the server to

return an edit form for that record and to mark the record as locked. As we discussed earlier in this

chapter, Edit mode in the browser is distinctly different from Browse mode.

The second transaction occurs when the user clicks the Commit button in the IWP controls (or clicks

a similar button you’ve provided for this purpose). No actual data is modified in the database until

and unless the record is committed explicitly.

This transaction model for data entry might feel alien to users who are accustomed to working with

a FileMaker Pro interface. As you evaluate the web-friendliness of existing layouts or build new

 tip
If you’re designing a new solu-
tion and you know that you’ll
have IWP users, you might con-
sider thinking about how you
would develop the solution if it
were a web application. Because
there are more constraints
placed on designing for the
browser, anything you build for
the browser should work well for
FileMaker users also.

ptg8106388

595Designing for IWP Deployment

24

C
H
APTER

layouts for IWP users, try to make the application flow work well as a series of discrete and inde-

pendent transactions. One common way to do this is by having tightly controlled routines that users

follow to accomplish certain tasks. For instance, instead of letting users just create new records any-

where they want, create a “new record” routine that walks users through a series of screens where

they enter data and are required to click a Next Screen or Submit button to move forward through

the routine.

Hiding the IWP Controls
As when designing a solution for FileMaker users, you have the

option to leave the IWP controls visible for your IWP users or to

hide these controls from them. And as with regular FileMaker,

unless you lock it open or closed, users can toggle it themselves.

By default, the IWP controls are visible for your IWP users. The

script step Show/Hide Status Area enables you to programmati-

cally control the visibility of the IWP controls. Typically, if you want

to hide the IWP controls, you do so as part of a startup script.
There are certainly benefits to having the IWP controls visible.

Most important, the IWP controls provide a wealth of functional-

ity for the IWP user. Navigation, complex searching, and a host of

record manipulation tools are all features that come at no charge in

the IWP controls.

There are also reasons that developers want to hide the IWP

controls from users. The first is simply to constrain users’ activi-

ties by forcing them to use just the tools you give them. This is

generally why developers hide the Status toolbar for FileMaker

desktop deployments as well. Hiding the IWP controls also makes

your application more web-like. If you are using IWP alongside an

existing website or plan to have the general public access your

site, you’ll probably want to hide the IWP controls. Public users are

more likely to expect a web experience than a FileMaker experi-

ence.

 Portals
Instant Web Publishing does an astonishingly good job of display-

ing portals in a browser, complete with scroll bars, alternating row

colors, and the capability to add data through the last line of a por-

tal (providing, of course, that the underlying relationship allows it).

Another nice feature of portals in IWP is that you can edit multiple

portal rows at once and submit them together as a batch.

When you are designing an IWP application that requires displaying search results as a list, con-

sider whether you can use a portal instead of a List view. A portal gives you flexibility as far as the

number of records that display, and you can use the space to the left or right of it for other purposes.

 note
The script step Show/Hide
Status Area shows or hides
the status area in pre–FileMaker
Pro 10 software and shows
or hides the Status toolbar in
FileMaker Pro 10 and later. The
name of the script step was kept
the same for version compat-
ibility.

 tip
If you do decide to hide the
IWP controls, you must provide
buttons in your interface for
every user action you want or
need to allow, including com-
mitting records, submitting Find
requests, and logging out of the
application. Because users have
no keyboard shortcuts—includ-
ing using the Enter key to submit
Find requests and continue
paused scripts, for example—
and no pull-down menus, you’ll
probably need even more but-
tons than you would when
designing without the Status
toolbar for FileMaker Pro users.

ptg8106388

Instant Web Publishing596

IV

PA
RT

Because you can let the portal scroll, you don’t strictly need to create Next and Previous links, but

it would make your application more web-like if you did. One option to do this is to take the return-

delimited list of record IDs and extract the subset that corresponds to a given page worth of IDs.

The MiddleValues function comes in handy for this task. You would simply need to have a global

field that kept track of the current page number. Then the function

MiddleValues (gRecordKeys; (gPageNumber-1) * 8 + 1; 8)

would return the eight record IDs on that page. Substitute a different number of records per page

in place of 8 , of course, if you want to have a hitlist with some other number of records on it. The

scripts to navigate to the next and previous pages then simply need to set the page number appro-

priately and refresh the screen.

Creating Links to IWP from Other Web Pages
The IWP Database Homepage provides a convenient access point for entering web-enabled data-

bases. It’s possible also to create your own links into a file from a separate HTML page, which is

perhaps more desirable for publicly accessible sites. To do this, you simply create a URL link with

the following syntax:

http://ip address:port number/fmi/iwp/cgi?-db=databasename&-loadframes

If you are using FileMaker Pro itself as your IWP host (as opposed to FileMaker Server Advanced),

you can place static HTML files and any images that need to be accessible to IWP users in the web

folder inside the FileMaker Pro folder. The web folder is considered the root level when FileMaker

Pro acts as a web server. If you had, for example, an HTML page called foo.html in the web folder,

the URL to access that page would be the following:

http://ip address:port number/foo.html

If you develop a solution that uses FileMaker Pro as the host and later decide to migrate to

FileMaker Server Advanced, you should move the entire contents of the web folder (if you’ve put

any documents or images there) to the root folder of your web server.

Creating a Custom Home Page
You can override the default page with a page of your own devising. The new file must be called

iwp_home.html. It can be used when serving files via IWP either from FileMaker Pro (in which case

it belongs in the web directory inside the FileMaker Pro application folder) or from FileMaker Server

Advanced (in which case it belongs in the FileMaker Server/Web Publishing/iwp folder).

 tip
The best way we’ve found to make a portal display an ad hoc set of records, such as those returned by a user search, is
to place all the record keys of the found set into a return-delimited global text field by using the Copy All Records script
step and then to establish a relationship between that field and the file’s primary key.

ptg8106388

597Troubleshooting

24

C
H
APTER

There are several approaches to creating such a file. You could

devise your own file from scratch, creating your own look and feel,

and populate that file with hard-coded links to specific databases,

as described in the preceding section. Or if you want a file that

dynamically assembles a list of all available databases, the way the

default home page does, you’ll want to customize the default page.

An example of that default page can be found on the FileMaker Pro

product CD.
The default page makes heavy use of JavaScript and in particular

of JavaScript DOM function calls, so familiarity with those technolo-

gies will be desirable if you want to customize the IWP home page.

 Troubleshooting

Problems Ending IWP Sessions
FileMaker Pro thinks that there are active IWP sessions, but I know

that all the users have closed their browsers.

Closing the browser window or quitting the browser application does not end a session, so be sure

to train your users to click the Log Out button (or an equivalent button that you provide). One of the

problems you could run into is that an IWP user might quit his browser but still have a record lock.

Until the session times out, no other user can modify that record. If you experience this problem, try

reducing the session timeout setting to something like 5 minutes.

 note
For the curious, an example of
the default page can also be
found in the FileMaker appli-
cation folder: On Windows,
it’s found in Extensions/Web
Support/Resources/iwpres. On
OS X, it’s found in Extensions/
Web Support/FM Web
Publishing/Contents/Resources/
iwpres. Note that Extensions/
Web Support/FM Web Publishing
is an OS X package, not a direc-
tory, so you’ll have to right-click
it and select Show Package
Contents to drill deeper.

ptg8106388

This page intentionally left blank

ptg8106388

 25

CUSTOM WEB PUBLISHING WITH
PHP AND XML

 About Custom Web Publishing

Custom Web Publishing (CWP) is one of two technologies you can use to

dynamically publish your FileMaker data on the World Wide Web. Custom

Web Publishing comes in two variations: One lets you work with XML,

and the other lets you work with PHP. Both are described in this chapter.

 � In addition to Custom Web Publishing, Instant Web Publishing,

which you can read about in Chapter 24 , “Instant Web Publishing,”

also lets you publish your database to the Web.

This chapter assumes a basic famil-

iarity with PHP and XML—or just

one of them, if that’s all you want

to use. Additional documentation is

installed with FileMaker Server in its

Documentation folder: You will find

separate documents for XML and

PHP publishing. On OS X, FileMaker

Server is installed in /Library/FileMaker

Server/Documentation rather than in

/Applications. On Windows, it is

\Program Files\FileMaker\Filemaker

Server\Documentation.

 note
In FileMaker Pro, it’s possible to
use Instant Web Publishing (IWP)
to publish data from a client
copy of FileMaker Pro. IWP can
also be used in FileMaker Server
Advanced, though, and can sup-
port many up to 100 users in that
way.

ptg8106388

Custom Web Publishing with PHP and XML600

IV

PA
RT

 � For more detail about the two different flavors in the

FileMaker Server product line, FileMaker Server and

FileMaker Server Advanced, see Chapter 27 , “FileMaker

Server and Server Advanced.”
Without web publishing, the only access to your databases

will be directly through the FileMaker Database server using

FileMaker Pro and FileMaker Go clients. If you have FileMaker

Server Advanced, you will be able to enable ODBC/JDBC, which

will allow access to your databases from ODBC/JDBC clients

other than FileMaker.

Most installations do enable web publishing if only because they

allow so many deployment options, and because FileMaker Server

supports web publishing except for Instant Web Publishing and

ODBC/JDBC, which require FileMaker Server Advanced. When

you install FileMaker Server or FileMaker Server Advanced, you

deploy it over one, two, or three computers.

Understanding the Three Parts of
FileMaker Web Publishing

Regardless of the number of computers you use, you must know about these three parts of

FileMaker web publishing:

 • Web server— Apache (OS X) or IIS (Windows). During installation, the FileMaker Web Server

Module is installed into the web server. In addition, the FileMaker PHP application programming

interface may be installed on the web server.

 • Web Publishing Engine (WPE)— The code that handles web publishing. It includes the Web

Publishing Core, which routes requests from the Web Server Module inside the web server to the

FileMaker Database Server. It also includes the Custom Web Publishing Engine (CWPE), which

routes return information to the web server.

 • FileMaker Database Server— The basic server to which you connect from FileMaker Pro and

FileMaker Go clients.

What is critically important is that the users use web browsers to access the web server just as they

normally would to access any web page. The Web Server Module installed by FileMaker routes the

requests to the WPE and the FileMaker Database Server.

Custom Web Publishing Versus Instant Web
Publishing

If you’ve read about Instant Web Publishing already in Chapter 24 , you’ll be aware that the IWP

capabilities of FileMaker are quite extensive—so extensive, in fact, that you might wonder whether

 tip
FileMaker Server provides the
web publishing capabilities for
CWP with PHP or XML. For Open
Database Connectivity/Java
Database Connectivity (ODBC/
JDBC) or Instant Web Publishing
beyond a single computer, you
need FileMaker Server Advanced.

 tip
FileMaker Server need not
have web publishing enabled.
However, if it is not enabled, you
will not be able to use Instant
Web Publishing or Custom Web
Publishing with PHP or XML.

ptg8106388

601Preparing for Custom Web Publishing

25

C
H
APTER

IWP would suffice for all your web publishing needs. But CWP has a number of important advantages

over IWP. Here are some of the most significant ones:

 • With CWP, integrating FileMaker data with other websites or providing FileMaker data to others

in the form of a web service is straightforward. CWP makes a strong distinction between the raw

data (which is returned as XML) and the final presentational form (which can result from writ-

ing PHP code). By contrast, in IWP, data and presentation combine in a way that makes it all but

impossible to use the data itself in other contexts.

 • CWP is best for sites that need to conform to the conventions of the World Wide Web. IWP pres-

ents data in a FileMaker-driven way: It’s easy, using IWP, to reproduce a complex FileMaker lay-

out on the Web. But it would be quite difficult to, for example, display a set of search results in a

two-column list or break up a large set of search results into multiple results pages—both of which

are common presentation styles on the Web.

 • IWP has a number of built-in limitations. For example, it cannot reproduce FileMaker’s Preview

mode. In addition, the IWP list and table views are limited to displaying 25 and 50 records at a

time, respectively. CWP can overcome these limits.

In general, IWP is best for making some portion of the functionality of an existing FileMaker database

accessible to remote users. IWP’s chief strength is in bringing the FileMaker experience into a web

browser. The most likely targets for this technology are remote users of a FileMaker system who

might not be able to be in the same building or same site as the server, but require ready access. This

is likely to cater to a relatively small group of users—hundreds, say, rather than the thousands and

tens of thousands that a public website can reach.

CWP, on the other hand, is best when you want to present FileMaker data in a non-FileMaker style,

either as familiar-looking web pages or in some other form. It enables you to make FileMaker data avail-

able over the Web as raw XML, to integrate FileMaker data into an existing website, or to build a new

website around FileMaker data while preserving all the conventions of web presentation. In addition,

the rich set of PHP functions provided by FileMaker let you enhance the user experience tremendously.

Preparing for Custom Web Publishing

CWP requires you to have FileMaker Server or FileMaker Server Advanced installed alongside a web

server. Beyond that, you must prepare each database that will use CWP, and you must enable the

appropriate CWP technologies on FileMaker Server.

 � For more information on FileMaker Server and FileMaker Server Advanced, see Chapter 27 ,

“FileMaker Server and Server Advanced.”

Getting Your Databases Ready for CWP
To get your FileMaker databases ready for CWP, you need to do a few specific things with access

privileges in each file you want to share via CWP. If you’re familiar with previous versions of

FileMaker Pro, you’ll recall that the various publishing options for a database (web sharing, local

ODBC, remote ODBC) were all accessed via a file’s sharing options. Enabling or disabling a sharing

method was simply a matter of checking or unchecking a sharing option.

ptg8106388

Custom Web Publishing with PHP and XML602

IV

PA
RT

Access to a FileMaker database using XML is handled via the security and privilege system. You

can allow or deny XML access to a file based on whether a user has the appropriate privilege, as

well as control that user’s rights and privileges down to the record or field level.

To enable CWP in a file, you must enable the correct extended privileges for each type of CWP

access you want to allow. To allow access to data from the file as raw XML, enable the extended

privilege with the keyword fmxml , as shown in Figure 25.1 .

 Figure 25.1
You must enable certain
extended privileges to enable
Custom Web Publishing with
XML.

To recap, each database that you want to share via CWP must

have the appropriate extended privileges created and added to

one or more privilege sets.

 � If you expect to see a database served via CWP and it

doesn’t appear, check to make sure that the appropriate

extended privileges are enabled. See “Getting the Right

Privileges” in the “Troubleshooting” section at the end of

this chapter.

Getting FileMaker Server Ready for Custom
Web Publishing

You also must configure FileMaker Server for the CWP technolo-

gies you will be using. The general settings in Admin Console

are shown in Figure 25.2 . The section for each CWP technology

shows you what the settings are.

 tip
 In Figure 25.1 , one important
point to note is that FileMaker
network access is enabled. If it
is, you can use the Open Remote
command in FileMaker Pro
to access the database being
shared by FileMaker Server.
This is an important safety valve
for you because it enables you
to log on and make changes
to accounts and privileges, for
example. In general, provid-
ing yourself with at least one
account that has network access
to each shared database is a
good idea.

ptg8106388

603Choosing a Custom Web Publishing Technology

25

C
H
APTER

Use the General Settings tab of Web Publishing to adjust the settings. At least for development, you

usually do want the logs enabled.

Choosing a Custom Web Publishing Technology
Both XML and PHP are powerful tools for Custom Web Publishing (CWP). Choosing between them

depends exactly on what you are trying to do and what your resources are. Perhaps most important,

if the developer of your CWP site is more comfortable with PHP than XML, or vice versa, your choice

is basically made for you. Let the technology work around the people, not the other way around.

Here are some general considerations you might want to contemplate:

 • PHP is an object-oriented procedural scripting language. The XML combination is more declara-

tive. Some web developers prefer one style to the other.

 • It might be easier to integrate PHP into a site that uses other web technologies.

There are also some considerations you don’t have to worry about in making your choice. These

apply to both forms of CWP:

 • FileMaker handles all security using accounts, privileges, and extended privileges.

 • Both XML and PHP are controlled by FileMaker Server. They are also available on FileMaker

Server Advanced, but the basic FileMaker Server product can serve up both forms of web pub-

lishing.

 Figure 25.2
 Set general
CWP settings.

ptg8106388

Custom Web Publishing with PHP and XML604

IV

PA
RT

Using Custom Web Publishing with PHP

CWP requires that you have FileMaker Server or FileMaker Server Advanced installed alongside a

web server. In addition to that, you have to prepare each database that will use CWP, and you must

enable the appropriate CWP technologies on FileMaker Server.

 � For more information on FileMaker Server and Server Advanced, see Chapter 27 , “FileMaker

Server and Server Advanced.”

 � For more information on Custom Web Publishing with PHP, see the FileMaker documentation

installed in the Documentation folder of FileMaker Server.

Getting Your Databases Ready for Custom Web Publishing
with PHP

Access to a FileMaker database via PHP is handled via the security and privilege system. You can

allow or deny PHP access to a file based on whether a user has the appropriate privilege, and you

can control that user’s rights and privileges down to the record or field level.

Setting the Extended Privilege for PHP
To allow access via PHP, enable the extended privilege with the

keyword fmphp . Figure 25.1 illustrates the use of these extended

privileges.

Setting Other Security Measures for the
Database

In addition to setting the extended privilege for PHP, you can

also take a variety of other steps if you choose. Still in the area of

security and access, you might want to review the accounts and

privileges you have set for the database. Even if you are behind

a corporate firewall, you often want to limit web access to your

database to the absolute minimum. If you are publishing public

data in a totally public environment, it is still worth occasion-

ally reviewing your database to make certain that, in its ongoing

maintenance and modification, no confidential data has appeared

there.

Getting FileMaker Server Ready for Custom Web Publishing
with PHP

You also must use Admin Console to enable PHP publishing, as shown in Figure 25.3 . The other

options in this window are described later in this chapter.

 tip
If you expect to see a database
served via CWP/PHP and it
doesn’t appear, check to make
sure the appropriate extended
privileges are enabled.

 note
This security issue is particularly
relevant to organizations such
as schools where the internally
public data (class lists, student
addresses, and so forth) is gen-
erally never shown in public.

ptg8106388

605Using Custom Web Publishing with PHP

25

C
H
APTER

Placing Files on the Web Server
The two types of files you need to worry about placing on the web server are the PHP files them-

selves and the files that are referred to by container fields.

Placing the PHP Files
When you are using Custom Web Publishing with PHP, your PHP files live in the normal web pub-

lishing folder on the web server. If you are using multiple machines, the Admin Console setup

establishes the link between the web server and the machine running the Web Publishing Engine.

Dealing with Container Fields

Beginning with FileMaker 12, it is possible to specify the location of container field data. By default,

container files are placed in a folder adjacent to the databases. This means that on FileMaker Pro

server, your databases folder (which may contain a subfolder) contains databases and a folder for

the container content, as you see in Figure 25.4 . On Windows, the databases are in \Program Files\

FileMaker\FileMaker Server\Data\Database\<optional subfolder>\. On OS X, the location is

/Library/FileMaker Server/Data/Databases/<optional subfolder>/.
Within the optional subfolder, you will find a folder for each database, as shown in Figure 25.5 .

 � For more on container fields, see Chapter 3 , “Defining and Working with Fields and Tables.”

 Figure 25.3
 Enable PHP
publishing in
Admin Console.

ptg8106388

Custom Web Publishing with PHP and XML606

IV

PA
RT

 Figure 25.4
 Location con-
tainer folders.

 Figure 25.5
 Subfolders for
each database
hold container
files.

ptg8106388

607Using Custom Web Publishing with PHP

25

C
H
APTER

Writing the PHP code for the FileMaker PHP API
The heart of the FileMaker PHP implementation is the FileMaker class. Typically, you include it in

each of your FileMaker PHP files, as shown here:

require_once (‘FileMaker.php’);

The file is located in Applications/FileMaker API for PHP/ along with examples and further docu-

mentation. It is worth reviewing that file as you plan your code: All of the methods are located in

that file and they are documented thoroughly.

The structure of FileMaker PHP files is usually the same. The FileMaker API for PHP/examples/API/

examples/viewRecord.php file is a good example. The file consists of six sections, which are detailed

next. Note that some spacing has been modified for the book’s layout.

 Typical PHP Headers
The beginning of the file consists of the standard opening code for a PHP file:

<html>
<?php

 Comments and Documentation
Next, comments and documentation of the file are provided (you do provide comments, don’t you?):

/*
* viewRecord.php
*
* Copyright © 2005-2006, FileMaker, Inc. All rights reserved.
* NOTE: Use of this source code is subject to the terms of the FileMaker
* Software License which accompanies the code. Your use of this source code
* signifies your agreement to such license terms and conditions. Except as
* expressly granted in the Software License, no other copyright, patent, or
* other intellectual property license or right is granted, either expressly or
* by implication, by FileMaker.
*
* Example PHP script to illustrate how to view a particular record in a
* database using PHP API.
*
* Requirements:
* 1. Working FileMaker Server Advanced installation
* 2. ‘FMPHP_Sample’ database hosted in FileMaker Server
*
*/

ptg8106388

Custom Web Publishing with PHP and XML608

IV

PA
RT

Get the FileMaker Object and Store It
Next, you include FileMaker.php and access the FileMaker object. Then you set up some other

variables that you might need. Most commonly, you want to get a database.

Here is the standard code to access a database and store it in a variable:

// Include FileMaker API
require_once (‘FileMaker.php’);

// Create a new connection to FMPHP_Sample database.
// Location of FileMaker Server Advanced is assumed to be on the same machine,
// thus we assume hostspec is api default of ‘http://localhost’ as specified
// in filemaker-api.php.
// If FMSA web server is on another machine, specify ‘hostspec’ as follows:
// $fm = new FileMaker(‘FMPHP_Sample’, ‘http://10.0.0.1’);
$fm = new FileMaker(‘FMPHP_Sample’);

The last line stores the FileMaker object in a local variable ($fm is the name commonly used). Note

that there are only two executable lines of code in this snippet:

 • require_once (‘FileMaker.php’); is usually the first executable line of code. It is

unchanged in your various FileMaker PHP files.

 • $fm = new FileMaker accesses a database and stores it in a variable. The argument is the

name of the database.

Get a Record from the FileMaker Object ($fm) as Needed
Store data such as a record in a local variable and close the PHP section:

// Since we’re passed in recid via param (i.e. viewRecord.php?recid=n), use
// FileMaker::getRecordById() to directly get record object with recid accessed
// via $_GET[] array
$record = $fm->getRecordById(‘Form View’, $_GET[‘recid’]);

if (FileMaker::isError($record)) {
 echo “<body>Error: “ . $record->getMessage(). “</
 ➥body>”;
 exit;
}
?>

Now you can use $record in your code.

tip
In many cases, two people write
this code: One knows FileMaker
and the other knows HTML. You
can use this formatting so that
they stay out of each other’s way.
Perhaps the HTML author writes
the code for the table and inserts
comments for the FileMaker
access. Alternatively, the FileMaker
author can write code for the PHP
accesses of the necessary fields,
and the HTML author works around
that code to put the data into a
table or other page elements.

ptg8106388

609Using Custom Web Publishing with PHP

25

C
H
APTER

Get Data from a Record
Finally, you write the HTML code for the page head and body. The code has been reformatted to

make it more obvious that you are using PHP snippets to move data from $record into the page lay-

out structures (a table and the page title in this case). tip

<head>
<title>
 <?php echo $record->getField(‘Title’); ?>
</title>
<!-- declare charset as UTF-8 -->
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”>
<link rel=”stylesheet” href=”style.css”>
</head>
<body>
<table>
<tr><th id=”table-title” colspan=”3”>America 24/7 Collection</th></tr>
<tr><th>Title</th><td>
 <?php echo $record->getField(‘Title’); ?>
 </td></tr>
<tr><th>Author</th><td>
 <?php echo $record->getField(‘Author’); ?>
 </td></tr>
<tr><th>Publisher</th><td><?php echo $record->getField(‘Publisher’); ?>
 </td></tr>
<tr><th>Cover Photo Credit</th><td><?php echo
 $record->getField(‘Cover Photo Credit’); ?>
 </td></tr>
<tr><th>Number of Pages</th><td>
 <?php echo $record->getField(‘Number of Pages’); ?>
 </td></tr>
<tr><th>Status</th><td>
 <?php echo $record->getField(‘Status’); ?>
 </td></tr>
<tr><th>Quantity in Stock</th><td>
 <?php echo $record->getField(‘Quantity in Stock’); ?>
 </td></tr>
<tr><th>Description</th><td>
 <?php echo $record->getField(‘Description’); ?>
 </td></tr>
<tr><th>Cover Image</th><td>
 <?php if ($record->getField(‘Cover Image’)) {?>
 <IMG src=”containerBridge.php?path=
 <?php echo urlencode($record->getField(‘Cover Image’)); ?>
 “>
 <?php } ?>

ptg8106388

Custom Web Publishing with PHP and XML610

IV

PA
RT

 </td></tr>
<tr><td colspan=”2” style=”text-align: center”>
 <a href=”editRecord.php?recid=<?php echo
 $record->getRecordId(); ?>”>Edit this record
 </td></tr>
<tr><td colspan=”2” style=”text-align: center”>
 <a href=”deleteRecord.php?recid=
 <?php echo $record->getRecordId(); ?>”>Delete this record
 </td></tr>
<tr><td colspan=”2” style=”text-align: center”>
 Back to Record List
 </td></tr>
</table>
</body>

Close the HTML Section
As always, you have to terminate the HTML element that you opened on the first line of the file:

</html>

Using Custom Web Publishing with XML

Preparing for XML Publishing
To publish FileMaker data as XML via the Web Publishing Engine, you must configure your data-

bases for XML publishing as described in the previous section. You also need to enable XML pub-

lishing in the Configuration tab of Admin Console, as shown in Figure 25.6 .

Introduction to XML Publishing
After you have enabled XML publishing in the database and in Admin Console, you can draw XML

data from a served database by opening a web browser and entering a URL like the following:

http://192.168.100.101/fmi/xml/fmresultset.xml?-db=Animal&-lay=web&-findall

This URL, 192.168.100.101, is the address of the web server

that we’ve configured to work with the Web Publishing Engine.

The path to fmresultset.xml indicates that we want the results

returned in the fmresultset grammar. The URL also instructs

the WPE to access a database called Animal, via a layout called

Web, and then to find all records and return them in the select

fmresultset grammar.

 note
You do not need to include the
filename suffix (.fp7 or .fp12)
when referencing the database
name in the URL.

ptg8106388

611Using Custom Web Publishing with XML

25

C
H
APTER

If you had a database called Animal open under FileMaker Server, and if it had privilege sets with

the extended privilege for XML enabled, and it had a layout called Web, the Web Publishing Engine

would return an XML document to your browser. If you’re using a browser capable of displaying

XML (which includes Firefox, Safari, and Internet Explorer), you would see something like the code

in Listing 25.1 .

Listing 25.1 XML Formatted with the fmresultset Grammar

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE fmresultset PUBLIC “-//FMI//DTD fmresultset//EN”
➥ “/fmi/xml/fmresultset.dtd”>
<fmresultset xmlns=”http://www.filemaker.com/xml/fmresultset” version=”1.0”>
 <error code=”0”>
 </error>
 <product build=”12/10/2003” name=”FileMaker Web Publishing Engine”
 ➥version=”7.0v1” />
 <datasource database=”animal” date-format=”M/d/yy” layout=”web”
 ➥table=”Animal” time-format=”h:mm:ss a” total-count=”17” />
 <metadata>
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”date_birth” not-empty=”no” result=”date” type=”normal” />
 <field-definition auto-enter=”yes” global=”no” max-repeat=”1”
 ➥name=”id_animal” not-empty=”yes” result=”text” type=”normal” />

 Figure 25.6
 Enable XML
publishing in
Admin Console.

ptg8106388

Custom Web Publishing with PHP and XML612

IV

PA
RT

 Listing 25.1 Continued
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”id_father” not-empty=”no” result=”text” type=”normal” />
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”id_mother” not-empty=”no” result=”text” type=”normal” />
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”name” not-empty=”no” result=”text” type=”normal” />
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”weight_birth” not-empty=”no” result=”number” type=”normal” />
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”weight_current” not-empty=”no” result=”number” type=”normal” />
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”HerdID” not-empty=”no” result=”text” type=”normal” />
 <field-definition auto-enter=”no” global=”no” max-repeat=”1”
 ➥name=”gender” not-empty=”no” result=”text” type=”normal” />
 </metadata>
 <resultset count=”17” fetch-size=”17”>
 <record mod-id=”6” record-id=”1”>
 <field name=”date_birth”>
 <data>4/23/1994</data>
 </field>
 <field name=”id_animal”>
 <data>A1</data>
 </field>
 <field name=”id_father”>
 <data></data>
 </field>
 <field name=”id_mother”>
 <data></data>
 </field>
 <field name=”name”>
 <data>Great Geronimo</data>
 </field>
 <field name=”weight_birth”>
 <data>107</data>
 </field>
 <field name=”weight_current”>
 <data>812</data>
 </field>
 <field name=”HerdID”>
 <data>H1</data>
 </field>
 <field name=”gender”>
 <data>Male</data>
 </field>
 </record>
 [... multiple additional records ...]
 </resultset>
</fmresultset>

ptg8106388

613Using Custom Web Publishing with XML

25

C
H
APTER

In general, when you want to access XML data from an appropriately configured FileMaker file, you

do so by entering a URL in the following format:

<protocol>//<server-ip>[:<port>]/fmi/xml/<grammar>.xml?[<query-string>]

 • protocol indicates a web protocol, either HTTP or HTTPS.

 • server-ip is the IP address of the web server that serves as the point of entry to the Web

Publishing Engine. Note that if the Web Publishing Engine is installed on a different machine

from the web server, you must specify the IP address of the web server machine here, providing

the address of the Web Publishing Engine does not work.

 • port is an optional part of the URL. In general, your web server will be running on the default

HTTP port of 80 or the default HTTPS port of 443. If for any reason you’ve configured your web

server to run on a different port than the protocol default, you need to specify that port number

here. This port has nothing to do with any of the WPE-specific ports (in the 16000 range) or the

FileMaker Server port (5003) that you might have encountered in the Web Publishing Engine

documentation; it refers strictly to the port on which your web server accepts incoming requests.

 • grammar refers to one of two FileMaker XML grammars: FMPXMLRESULT or FMPXMLLAYOUT . Only

the first of these grammars is available via XML export; the second is available only via Custom

Web Publishing.
 • query-string refers to a series of one or more specific pieces of information you pass to the

Web Publishing Engine to form the substance of your request. Among the pieces of informa-

tion you would pass in the query string are the name of the database to access, the name of the

layout you want to work with, and the name of a database action (such as “find all records,”

expressed in the sample URL by the -findall command).

In general, then, you’ll use specially formatted URLs to access FileMaker data as XML via Custom

Web Publishing. These URLs can be manually entered in a web browser, they can be linked from a

web page, or they can be used by other processes or applications that want to consume FileMaker

data as XML.

 Understanding Query Strings

A lot of the action in a Custom Web Publishing URL occurs inside the query string —that odd-looking

set of commands at the end of the URL. Here again is the sample URL from the previous section:

http://192.168.100.101/fmi/xml/fmresultset.xml?-db=Animal&-lay=web&-findall

The query string is the portion of the URL that comes after the

question mark. A query string consists of multiple name-value

pairs , with each name-value pair taking the form name = value . If

there are multiple name-value pairs in a URL, an ampersand char-

acter (&) separates additional pairs from the first one.

 note
Query strings are not peculiar
to FileMaker or to Custom Web
Publishing; they’re an HTTP stan-
dard for passing information to a
server-side program via a URL.

ptg8106388

Custom Web Publishing with PHP and XML614

IV

PA
RT

The sample URL passes three name-value pairs. Table 25.1 shows the names and their correspond-

ing values.

 Table 25.1 Name-Value Pairs in a Sample CWP URL

 Name Value Meaning

-db Animal Which FileMaker database to access

-lay Web Which layout in the specified database to use

-findall (no associated value) What action to perform

In general, any Custom Web Publishing URL has to specify at least a database name, a layout name,

and a database action to perform. In fact, you can omit the database name and layout name in the

case of a few specialized database actions. But, at a minimum, you will usually provide a -db value,

a -lay value, and the name of some database action.

A few more notes on query string syntax: The order of the name-value pairs within the query string

doesn’t matter, as long as all the required pairs are present. The initial dash (-) in the various

names is significant, however, and can’t be omitted. You’ll notice that the database action consists

of a name without a value (which is perfectly legitimate in an HTTP URL query string); database

actions always consist of a name with no value attached.

 � If you have spaces in your field, layout, or database names, this might cause trouble. See

“Dealing with Spaces” in the “Troubleshooting” section at the end of this chapter.

Performing Specific Searches with CWP URLs
The CWP URLs we’ve looked at so far are simply querying a FileMaker database table, finding all

records, and returning the results as raw XML according to the selected XML grammar. But what if

you want to query different tables within the chosen database, or select only certain records rather

than all records, or apply a sort order to the results? All these things are possible with CWP.

 Specifying the Table
One of the reasons it’s so important to supply a layout name with your CWP URLs (via the -lay

parameter) is that the active table is determined by the active layout, via that layout’s table context .

You might recall that there’s a Show Records From option in the Layout Setup dialog for each layout.

This enables you to select a table occurrence that will provide the layout’s table context. When you

specify a layout in a CWP URL, you are implicitly setting the active table as well. All commands in

the query string are considered to be applied to whatever table underlies the chosen layout.

ptg8106388

615Using Custom Web Publishing with XML

25

C
H
APTER

 Finding Specific Records
The Custom Web Publishing URL can also be used to search for

specific records. To do this, use -find as the database action,

instead of -findall . You also need to specify one or more search

criteria, which are also supplied as name-value pairs.

For example, if you’re working with a database of animals, and

there’s a name field for the animal’s name, you can use the follow-

ing URL to search for any animals named Hector:

http://192.168.100.101/fmi/xml/fmresultset.xml?-db=animal&-lay=web
➥&name=Hector&-find

This code snippet specifies a database action of -find and adds one more parameter to the query

string. We say name=Hector to cause the Web Publishing Engine to search for only records where

the name is Hector. If there are any such records, they’ll be returned in the chosen XML grammar. If

there are no matching records, we get back a response that looks a bit like Listing 25.2 .

Listing 25.2 Sample Error Response

<?xml version=”1.0” encoding=”UTF-8” standalone=”no” ?>
<!DOCTYPE fmresultset (View Source for full doctype...)>
<fmresultset xmlns=”http://www.filemaker.com/xml/fmresultset” version=”1.0”>
 <error code=”401” />
 <product build=”12/10/2003” name=”FileMaker Web Publishing Engine”
 ➥version=”7.0v1” />
 <datasource database=”” date-format=”” layout=”” table=”” time-format=””
 ➥total-count=”0” />
 <metadata />
 <resultset count=”0” fetch-size=”0” />
</fmresultset>

You can see that in the case where no records are found, the XML returned by the Web Publishing

Engine contains an error code appropriate to the situation. In this case, the code is a standard “no

records found” error. Note that the exact format of the error response varies depending on which

XML grammar you specified in the URL.

Specifying an Exact Match When Searching
In the previous example, the search appeared to be for all animals named Hector. This is not exactly

true. The previous URL will have exactly the same effect as entering Find mode in the regular

FileMaker client, typing Hector into the name field, and performing the search. FileMaker, when

searching text fields, searches on a “starts with” basis, so this search actually finds animals named

Hector, Hector II, Hectorax, and so on. To specify that you want an exact match, rather than a

“starts with” match, you need a bit more precision. In FileMaker’s regular Find mode, you’d type

 note
The database in question has
only a single table, also called
Animal, and that table is the
table context for the web layout.

ptg8106388

Custom Web Publishing with PHP and XML616

IV

PA
RT

=Hector in the search field, with the equal sign indicating an exact match. In a CWP URL, you

would write the following:

http://192.168.100.101/fmi/xml/fmresultset.xml?-db=animal&-lay=web&name=Hector
➥&name.op=eq&-find

Another parameter has been added to the query string here. The

new parameter specifies what kind of operator we want to apply

to one of the search fields. The syntax for this new parameter is

<field-name>.op=<operator>

Here, field-name is the field to which you want to apply the

operator, and operator is a short character string indicating one

of nine different possible operators. Here, the operator we’ve cho-

sen is eq for an exact match. Other possible operators are cn for

contains , bw for begins with (the default), and ew for ends with .

So, if you wanted to find all animals with a name ending in tor ,

you could use this URL:

http://192.168.100.101/fmi/xml/fmresultset.xml?-
db=animal&-lay=web&name=tor &name.op=ew&-find

This query string instructs the Web Publishing Engine to treat the search on the name field as an

“ends with” search.

 Table 25.2 Comparison Operators for the -find Command

 Operator Significance FileMaker Find Equivalent

eq Equals =value

cn Contains *value*

bw Begins with value*

ew Ends with *value

gt Greater than >value

gte Greater than or equal >=value

lt Less than <value

lte Less than or equal <=value

neq Not equal (Omit check box)

 note
The operators available to you in
Custom Web Publishing are simi-
lar to, but not identical to, the list
you would find in the FileMaker
client if you entered Find mode
and clicked the Operators drop-
down menu in the Status toolbar.
Both FileMaker Find mode and
the Custom Web Publishing find
syntax contain operators unavail-
able in the other. Table 25.2 lists
all the operators available in
Custom Web Publishing.

ptg8106388

617Using Custom Web Publishing with XML

25

C
H
APTER

Performing a Numerical Comparison Search
Consider a database that contains some numerical fields. The Animal database used as an example

so far contains a field called weight_birth for an animal’s birth weight. Suppose that you want to

find all animals with a birth weight less than 100 pounds. The following URL would do it:

http://127.0.0.1/fmi/xml/fmresultset.xml?-db=animal&-lay=web&weight_birth=100
➥&weight_birth.op=lt&-find

Here, 100 is specified for the weight_birth search field, but we go on to say that the operator for

that search field is the less-than operator, symbolized by the code lt .

Searching on Multiple Criteria
Suppose that you want to construct a more narrowly tailored search. You want to find all male ani-

mals with a birth weight less than 100. This is the equivalent of filling in two fields in FileMaker’s

Find mode, instead of just one. You would use a URL like the following:

http://127.0.0.1/fmi/xml/fmresultset.xml?-db=animal&-lay=
➥ web&weight_birth=100&gender=Male&weight_birth.op=lt&-find

Here, we’ve simply added one more search field: gender=Male . This constitutes a further limit on

the search you saw in the previous example. This search finds only records for male animals with a

birth weight less than 100.

Creating Multiple Find Requests
The preceding example showed how to use multiple criteria to narrow a search. But what if you

want to use multiple criteria to broaden a search? We’ve searched for animals with a birth weight

less than 100. What if you also want to find, in the same search, any animals that have a cur-

rent weight less than 500? You might recognize this as the equivalent of creating additional Find

requests in the regular FileMaker Pro software.

To explain this kind of search, we need to introduce the concept of a logical operator . In the search

demonstrated previously, for a record to be included in the search, all the search criteria in the

query string had to be true. That is, an animal would not be included in the search results unless it

was both male and had a birth weight less than 100. This kind of search is therefore often referred

to as an and search or an all-true search.

On the other hand, when you think about also finding animals with a current weight less than 500,

you have a situation in which an animal will be included in the search results if any of the search

criteria are true. In other words, a record will be found if the animal had a birth weight of less than

100 or it has a current weight of less than 500. This type of search is thus often called an or search

or an any-true search.

ptg8106388

Custom Web Publishing with PHP and XML618

IV

PA
RT

By default, the Web Publishing Engine treats all searches as and searches. To perform an or search,

you use a URL like this one:

http://127.0.0.1/fmi/xml/fmresultset.xml?-db=animal&-lay=web&weight_birth=100
➥&weight_current=500e&weight_birth.op=lt&weight_current.op=lt
➥&-lop=or&-find

Here, you supply two search criteria. You also have to supply the

field-level operator for each search field. In both cases, you’re

performing a less-than search, so you need to specify an operator

of lt for each field. The new element in the query string is the

-lop parameter, which stands for logical operator . -lop can have

a value of and (the default) or or (the one used here). The -lop

parameter here instructs the Web Publishing Engine to treat the

search as an or search.

Specifying a Sort Order for Search
Results
When you make a request to the Web Publishing Engine, you

can specify how the results should be sorted. You can specify

one or more fields to sort on, as you can in the regular FileMaker

application, and you can specify whether each sort field should

be sorted in ascending or descending order. Consider a URL that will find all records in the Animal

table and ask that the records be sorted by name:

http://192.168.101.100/fmi/xml/fmresultset.xml?-db=Animal&-lay=web
➥&-sortfield.1=name&-findall

The new query string command here is called -sortfield . You’ll notice we also added the suffix

.1 to this parameter. This indicates the sort field’s precedence . The concept of precedence is mean-

ingful only if you have more than one sort field, as you’ll see in a moment. Despite this fact, you

can’t omit the sort precedence, even for a one-item sort; otherwise, the records won’t be sorted

at all.

Suppose that you wanted to sort the records by gender and to sort within each gender by current

weight from highest to lowest. You would do that like this:

http://127.0.0.1/fmi/xml/fmresultset.xml?-db=Animal&-lay=web
➥&-sortfield.1=gender&-sortfield.2=weight_current&-sortorder.2=
➥ descend&-findall

Here, two sort fields are specified. The first sort is by gender, the second by weight_current .

There’s also a new parameter, called -sortorder . Like -sortfield , -sortorder also takes a

numeric suffix. Here, it’s used to indicate which sort field is being referred to. By default, each field

will be sorted in ascending order. If you supply a value of descend for the second sort field, you

ensure that the animals will be sorted, within each gender group, from heaviest to lightest.

 note
In FileMaker proper, you can con-
struct a search that’s a complex
mixture of and and or searches
by entering multiple Find
requests, each with more than
one field filled in. Such searches
can’t readily be reproduced with
Custom Web Publishing: The
-lop command can be applied
only to all the search fields taken
together. There is also no way to
invoke the additional FileMaker
search options of Constrain or
Extend Found Set.

ptg8106388

619Using Custom Web Publishing with XML

25

C
H
APTER

Applications of Custom Web Publishing with XML
The preceding sections show how to use the Web Publishing Engine to query a database and

publish the results as raw XML in one of several XML grammars. But what use is this capability,

exactly?

Well, the most obvious significant use is to allow FileMaker to act as a web service provider. If you

provide a web service client with an appropriate URL, remote services and programs can query your

FileMaker database via the Web Publishing Engine and extract whatever information you choose to

let them see.

 Other Query Parameters
In addition to a single database command, Custom Web Publishing URLs can contain other param-

eters. Some are mandatory, such as -db , and (generally) -lay and -grammar . Others, such as -lop

and -sortfield , are particular to specific commands. Table 25.3 shows a list of the most important

ones.

 Table 25.3 Other Custom Web Publishing URL Parameters

 Parameter Name Parameter Effect

-db Name of the database on which to act. Mandatory for all commands
except for -dbnames and -process . Do not include a filename
extension (such as .fp7 or .fp12) when using this parameter.

-field Use the -field parameter with the name of a container field to
request the contents of the container field.

fieldname Use plain, unadorned field names as query parameters when send-
ing data for use with the -new , -find , and -edit commands. Refer
to the “Performing Specific Searches with CWP URLs” section, ear-
lier in this chapter.

Fieldname.op Sets the comparison operator for fieldname when performing a
search. Refer to the table of operators, Table 25.2 , earlier in this
chapter.

-lay Specifies which layout and, therefore, which table context to use
for the request. Mandatory with all commands except -process ,
-dbnames , -layoutnames , and -scriptnames .

-lay.response Enables you to use one layout for processing the command con-
tained in a URL and a different layout for generating the XML that
comprises the response. For example, you might want to process
your request (an Add, say) via a layout with certain hidden fields on
it, but process the response via a layout that omitted those fields.
Data could thus be added to the hidden fields, but that hidden data
would then be omitted from the response.

-lop Used with the -find command, specifies whether to treat the
search as an and search or an or search.

ptg8106388

Custom Web Publishing with PHP and XML620

IV

PA
RT

 Parameter Name Parameter Effect

-max Used with the -find command, specifies the maximum number
of records to return. Sending a parameter of -max=all permits all
records to be returned. This is the default.

-modid FileMaker’s modification ID is an internal number that increments
every time a record is changed. Use the -modid parameter to
ensure that the record you’re editing has not been edited since the
time you last checked the modification ID. This is useful for prohib-
iting different users’ changes from overwriting each other.

-recid Specifies which record should be affected by a given action. This
parameter is mandatory with -edit , -delete , and -dup , and can
also be used with -find .

-script Use this parameter to run a FileMaker script during the processing
of the request. By default, the script runs after the query command
and any sorting have occurred. For example, if you run a script
in your FileMaker solution after each new record is created, you
can create a URL with the -new command that also includes the
-script parameter for that post-creation script.

-script.param Use this parameter to pass a parameter into a script.

-script.prefind If your command URL involves any kind of find request, use this
parameter to request a script to be run before the specified search
takes place.

-script.prefind.param Use this to pass a parameter into the -script-prefind script.

-script.presort If your command URL involves any kind of find request and a sort,
use this parameter to request that a script be run after the specified
search takes place, but before sorting.

-script.presort.param Use this to pass a parameter into the -script.presort script.

-skip Used with the various search commands, specifies that records should
be returned starting elsewhere than at the first record. If you specify
-skip=10 , the records are returned starting with the 11th record.

-sortfield.[1-9] Specify any of up to nine different fields to sort by.

-sortorder.[1-9] For a given sort field, specify whether it should sort ascending or
descending.

-styletype Used with -stylehref . Use this parameter to specify a client-
side stylesheet for additional processing. The most common
choices would likely be CSS. For these choices, you would specify
-styletype=text/css .

-stylehref Use this with -styletype to specify the location of a stylesheet for
client-side processing. Note that this option and the previous one
are effective only when the user’s client (generally a browser) sup-
ports some form of client-side stylesheet processing.

-token.[string] Use this to pass additional data from one stylesheet to another.
Refer to “Using Tokens to Share Data Between Stylesheets,” earlier
in this chapter, for more detailed information.

Table 25.3 Continued

ptg8106388

621About Sessions

25

C
H
APTER

 About Sessions
If you’ve read Chapter 24 , you’ve already encountered some discussion of the concept of sessions .

To recap briefly: The connection between a web browser and the Web Publishing Engine is very

much unlike the connection between a client copy of FileMaker and the FileMaker Server. FileMaker

Server can at any time reach out and push data to any connected client. It knows at all times what

its connected clients are, where they are in the system, and at what network address they can be

found. A web server, by contrast, retains no memory of a client from one connection to the next.

This is not a good thing for database work! I need my website to remember the contents of my

shopping cart as I shop around the site. This is possible only with session management . Session

management is generally a middleware feature. Web programming languages such as PHP and JSP

offer the programmer different means of managing sessions.

In general, under session management, each incoming web request is associated with a key

of some kind. The key can be passed in the URL (if you’ve ever seen a long ugly string such as

?jsession=A9238Ajasdj9mAEd in a web URL, odds are you were looking at a session key), or it

can be passed behind the scenes in an HTTP cookie. FileMaker’s Custom Web Publishing session

implementation lets you choose between these two methods. Whatever the means, the middleware

on the web server has a way of associating that key to other information about the client. In the

shopping cart example, the key might hook up to a database record that stores the actual contents

of your cart as you navigate around the site.

FileMaker’s Custom Web Publishing, like other middleware solutions, enables you to manage ses-

sions for your users behind the scenes. You would use this capability any time you wanted to store

important information about the user that would be carried from screen to screen. An experienced

HTML programmer could get away with passing a lot of data from page to page via the URL or via

an HTML form. But there are limits to the amount of data than can be passed by URL, and there are

limits to the type of data that can be passed by either method—generally just plain text strings.

FileMaker’s session implementation is quite elegant because it allows you to pass around XML

fragments behind the scenes. This allows for much richer data structures than you could pass with

regular HTML.

 Managing Sessions
In addition to passing around XML information by means of sessions, FileMaker’s session imple-

mentation allows you to keep track of the state of the FileMaker client session as well. Database

sessions are an additional capability on top of regular session management. In addition to “session-

izing” user information of your choice, they enable you to keep track of FileMaker-specific informa-

tion such as global fields or the current script state.

So, for example, if your stylesheets modify a global field and you have database sessions enabled,

the global field retains its new value for the specific current user as that user navigates from page

to page. Or, if you use a script to change some aspect of the user’s state (for example, by using the

Re-login script step to change the user’s privileges), this state is maintained across sequential

requests.

ptg8106388

Custom Web Publishing with PHP and XML622

IV

PA
RT

Session management is a large topic, and we don’t have space to do it justice. The FileMaker docu-

mentation helps you get a better grip on the specific functions and commands that Custom Web

Publishing uses for session management. If you intend to make heavy use of global fields or call

scripts from your stylesheets that would change the state of a user’s privileges, you should config-

ure the Web Publishing Engine to enable database sessions.

 Troubleshooting

Getting the Right Privileges
I can connect to my Web Publishing Engine and FileMaker Server via the Administration Console,

but I don’t see the databases I expect to see.

Make sure that for every database you want to make available via XML-CWP, you have attached the

appropriate extended privilege (fmxml) to at least one privilege set.

 Dealing with Firewalls
My web requests mysteriously time out, as though something were blocking them.

If you can get to the Administration Console, but your Custom Web Publishing URL requests

appear to get no response, you might have a firewall in your way. If you suspect a firewall might

be involved, consult your network administrator to explore this question. If it turns out that your

machines are set up such that your web server is on one side of a firewall and your Web Publishing

Engine machine or FileMaker Server machine is on the other, you need to open certain ports in the

firewall. Here are the rules:

 • When the web server and Administration Console are on one machine and the Web Publishing

Engine on another, traffic must be able to flow between the two machines on ports 16016 and

16018.

 • When the Web Publishing Engine is on a different machine from FileMaker Server, traffic must

be able to flow between the two machines on port 5003.

 Dealing with Spaces
The Web Publishing Engine doesn’t seem to see my entire URL. I enter a long URL, and the web

server appears to truncate it and reports that the shorter URL can’t be found.

If, despite the cautionary notes in this chapter, you have left any of your databases, fields, or

layouts with spaces or any other nonalphanumeric characters in their names, your Custom Web

Publishing URLs might very well break. If a web server or browser encounters a space in a URL, it

might assume that the URL ends there. Other nonalphanumerics have different but equally irritating

effects.

ptg8106388

623Troubleshooting

25

C
H
APTER

If you must work with URLs with spaces in them, you can get by

with replacing all spaces with the string %20 whenever you need

to write out a URL. Your stylesheet then might generate an HTML

page with the following link:

<a href=”http://192.168.101.100/fmi/xsl/process-this.xsl?
➥-db=Too%20Many%20Spaces&-lay=Spaces%20Here%too&-findall

 tip
If at all possible, we strongly
encourage you to use only alpha-
numeric characters for database,
layout, and field names and to
avoid the use of whitespace.
Extend this caution to script
names if you are planning to call
scripts from the Web.

ptg8106388

This page intentionally left blank

ptg8106388

 26

DEPLOYING AND EXTENDING
FILEMAKER

 FileMaker Deployment Options
One of the strengths of FileMaker is that a solution can be deployed in

various ways. It can be used by a single user running FileMaker Pro or

FileMaker Pro Advanced, it can be shared with peer-to-peer networking, it

can run on FileMaker Server, or with FileMaker Server Advanced it can be

published to the Web. This chapter explores runtime solutions, kiosk solu-

tions, and plug-ins—additional ways to deploy FileMaker databases.

 note
Perhaps the most popular deployment option today involves FileMaker Go and the
iOS devices (iPhone, iPad, and iPod touch). That topic is covered in Jesse Feiler’s
book, Building Data-Driven iOS Apps for iPad and iPhone with FileMaker Pro, Bento
by FileMaker, and FileMaker Go . As you have seen, although there are some con-
siderations for mobile devices that you take into account in building layouts for
FileMaker, the major work is provided for you automatically by FileMaker Go.

ptg8106388

Deploying and Extending FileMaker626

V

PA
RT

 Renaming Files
Renaming files might sound trivial, but don’t let the apparent

simplicity here deceive you. Multifile solutions in FileMaker

depend on filenames to maintain internal references. If you arbi-

trarily rename one of the files in a given solution via your oper-

ating system, FileMaker prompts you with a “File could not be

found” error when it next tries to resolve a reference to that file.

You risk breaking table occurrence references, script references,

value list references, and more by renaming your files manu-

ally. We very strongly recommend against manually renaming

individual files within a solution. You can, however, place all the

solution’s files within a single folder (which is generally a good idea) and then copy or rename the

entire folder without worrying. It is the renaming of individual files, not their enclosing folder, that

causes the problems.
You can name your files by using the Developer Utilities dialog. Notice, as in Figure 26.1 , that you

will need to add all the files for a given solution to the dialog. This is important: You have to add

both the file you want to rename and all the files that reference it. Then set new names for how-

ever many files you need to change. For example, suppose that you have a system composed of

ten linked files. Load all the files into the Developer Utilities dialog. Rename just the one file you

intend to rename by typing in a new name and clicking Change. When you click Create, FileMaker

generates new files in your destination project folder, leaving the old files unchanged. In the ten-file

example, the one file would have its name changed, and all ten files would have any references to

that file updated to use the new name.
After you click Create, the files are copied to the new location that you set by clicking Project Folder

and selecting (or creating) a new folder. Note that you can choose to overwrite files with the same

names.

 tip
These deployment options are not mutually exclusive; that is one of the great features of FileMaker Pro. If you use the
suggested architecture of separating your database file from interface files, you can create a solution with separate
interface files for different types of deployment: Custom Web Publishing, Instant Web Publishing, Kiosk mode, Runtime,
and standard. Each interface file can have its own set of accounts and privileges, along with layouts designed for opti-
mal use and display in each of the deployment vehicles. Your underlying database shouldn’t even know what type of
deployment is going on. Even better, such multiple deployments can run simultaneously (although runtime and kiosk
solutions cannot be networked and must run in single-user configurations unless they are hosted on FileMaker Server
and accessed by FileMaker Pro clients).

 tip
If you run across a file that
shows signs of having been
incorrectly renamed or lost
altogether, the Database Design
Report is a great place to turn to
root out “file missing” problems.

ptg8106388

627Runtime Solutions

26

C
H
APTER

The consequence of changing the names, setting a new project folder, and clicking Create is to

copy the files to the new location and to change their names. But much more important is the fact

that FileMaker changes the file path list appropriately. No-longer-needed file paths are removed.

Particularly if you manually rename individual files, over time the file paths can become long lists of

files no longer needed. In time, it is even possible for files that you no longer need and have long ago

renamed to reappear as you clean up your hard disk; lo and behold, your FileMaker solution can break.

 � To learn how to manually address filename and reference problems, see “File Reference Errors”

in the “Troubleshooting” section at the end of this chapter.

 Runtime Solutions
For some solutions, the best deployment option is as a bound, runtime solution. A runtime solution

can be distributed to users who can run it without having a copy of FileMaker Pro on their machine.

Runtime solutions are created with the Developer Utilities, which are available only in FileMaker Pro

Advanced.

 � Another deployment option that’s available via the Developer Utilities is to create a kiosk from

your FileMaker solution. When run as a kiosk, a solution takes up the entire screen. Users don’t

even have access to the Status toolbar or any menus, which means you must provide buttons for

every conceivable action they might perform. This topic is discussed later in this chapter in the

section “Developing Kiosk Solutions,” p. 633 .

 Figure 26.1
Use the Developer
Utilities dialog.

ptg8106388

Deploying and Extending FileMaker628

V

PA
RT

A typical example of a solution that you might deploy as a run-

time solution is a product catalog. Perhaps you developed a

FileMaker database of all your products, and you want to send it

to all your customers. You could create a runtime version of the

files and do just this. Your customers would be able to browse

and search for items, maybe even print or email orders to you, all

without having a copy of FileMaker on their machines.
You’ll have to keep some conditions in mind. On its own, a bound

runtime version does not support further development; a runtime

solution does not include Layout mode, ScriptMaker, and the

Manage Database functions, thus disallowing further editing of

the files. However, unless you have bound it with the option to

remove Admin privileges, you can open a bound runtime version

with FileMaker Pro to make such changes. A runtime solution

works only with the files bound with it; it may not be linked

to other databases, either other runtimes or files hosted via

FileMaker Server. Finally, a runtime solution is single-user only. If

end users want to share the files, they have to turn to FileMaker

Server and standard copies of FileMaker Pro.

 Solution Options

You start by using the Developer Utilities dialog shown previ-

ously in Figure 26.1 . Remember that all files must be closed at

this time. Add the files you will be using to the dialog as you

would do to rename them. Then, to create a solution, use the

Specify button under Solution Options, to set the range of actions

that FileMaker Pro Advanced can perform as it creates a new

solution and a new set of files. All these options generally pertain

to readying your files for deployment; you would not necessar-

ily use them during development, but rather at the end when

you’re preparing files for hand-off to users. Figure 26.2 shows the

Specify Solution Options dialog.
At the top of the Solution Options dialog, you choose the option

you want; in this case, you want to create a Runtime solution.

After you choose it, you get options specific to that choice:

 • Runtime Name— The runtime name will be used to name the

resulting solution directory, and it will also be the name of the

master file created for the runtime (more details on the master

file follow this list).

 tip
If you need to distribute a run-
time solution to both Mac and
PC users, you must bind a sepa-
rate version for each platform,
and you therefore need access
to both a Mac and a PC during
development—either on sepa-
rate computers or on an Intel-
based Macintosh that can run
both operating systems.

 note
It’s sometimes thought that a
runtime file is necessarily read-
only, but this isn’t the case.
Assuming that the database user
has the correct permissions, a
runtime can be used to create,
edit, and delete records just as
with the regular FileMaker client.
The misconception might stem
from the fact that bound files
are often distributed on CD, and
such files are indeed read-only
until they’re copied from the CD
to a writable medium such as a
hard drive.

 tip
Although you do not need to
create your runtime solution
until the development process is
complete, it is a good idea to do
periodic reality checks by creat-
ing runtime solutions along the
way. This will help you find prob-
lems before they become show-
stoppers at the last minute. This
advice also applies to any other
deployments you may be plan-
ning, including the Web.

ptg8106388

629Runtime Solutions

26

C
H
APTER

 • Extension— To distinguish the runtime files from regular FileMaker files, which in many senses

they still are, the binding process adds a custom file extension to each of the solution files. You

can choose your own extension; otherwise, a default extension of .usr will be applied.

 The extension for FileMaker-bound runtime solutions determines, in both Mac OS X and

Windows, what application becomes associated with your individual solution files—which by

definition is the runtime application you’re in the process of creating. These file extensions sim-

ply help identify the application that should open your files and differentiate them from other

FileMaker Pro documents.

 • Bind key— For the runtime application to recognize its associ-

ated files, the bind key in a given file needs to match the bind

key of the application. This simple pairing ensures that a given

application will authorize use of specific FileMaker Pro files.

Notice in Figure 26.2 that FileMaker Advanced inserts a time-

stamp, by default, as a bind key. (If you are going to be bind-

ing both Windows and Mac OS X versions, you may choose to

use the same bind key for both. This means that if you use the

default timestamp bind key for the first solution that you bind,

you should retype it exactly—or copy and paste it—into the sec-

ond solution that you bind.)

 Figure 26.2
Solution options enable you to pre-
pare a set of files for deployment.

 tip
To replace or add a file to a
solution that has already been
bound, use the same bind key
when preparing that new file,
and users will be able to drop
the file in question directly into
their solution folders. You need
not replace the entire solution.

ptg8106388

Deploying and Extending FileMaker630

V

PA
RT

 Consider cases in which you would want to be able to add files to a solution to upgrade func-

tionality or address bugs. This introduces the complex issue of upgrade paths in a FileMaker Pro

solution. You must remember that after someone begins using your solution, he will be adding

and storing data in your files. If you were to simply replace those files with no concern for export-

ing or managing that data, users would open their applications and discover an empty shell wait-

ing again for the creation of the first records.

 • Closing Splash Screen— When users close your solution, they will see a small closing splash

screen. You can determine how long the screen will be visible (2–12 seconds).

 • Custom Image— By default, the closing splash screen shows a FileMaker logo. You can instead

include an image of your own for display on the closing splash screen. If you choose to include a

custom closing image, size it for 382×175 pixels at 72 dpi. JPEG and GIF both work best in cross-

platform environments; we don’t recommend any other file type.

After you’ve chosen your solution options, you can click OK to start the process of creating the solu-

tion. The solution files are written into a directory with the same name as the runtime name you

established previously. It’s a common misconception about the runtime binding process that the

result is one single, monolithic file. Try the process for yourself and you’ll see that this is not the

case (remember, it creates a new set of solution files, so there’s no need to worry about hurting your

current files). On the Mac, you’ll get a sparse file set, whereas with Windows you’ll get dozens of

supporting DLLs. Don’t be surprised by the differences between the two platforms.
Regardless of platform, each bound solution contains a master file, of which you’ll want to take spe-

cial note. The file has the name solution_name . extension , where solution_name is the solution name

you chose when binding, and extension is the custom extension you chose. If you were creating a

solution called Sales, and chose the default .usr extension, the master solution file would be called

Sales.usr.

In addition to the master file, there will also be a single additional file for each FileMaker file that

went into the solution. Each will be named with your chosen file extension. So, if your Sales solution

was made up of files called Contact, Company, and Order, the bound solution would contain the fol-

lowing files: Sales.usr (the master file), Contact.usr, Company.usr, and Order.usr.

Using the Master File
The master file is significant because this is the file that must be run to gain access to the solu-

tion. For example, if you were packaging the runtime onto a CD, the CD might contain your solution

directory, but also a shortcut to the master file at the root level of the CD. You’d rather users not

have to rummage around in a directory full of files to find the right one.

The individual database files (as opposed to the master file) are actually not much changed by the

binding process. The database files within the application remain FileMaker Pro files, accessible

from FileMaker Pro proper, assuming that you haven’t disabled such access via the Remove Admin

Access solution option covered later. You could continue to work with these files in FileMaker Pro

ptg8106388

631Runtime Solutions

26

C
H
APTER

or FileMaker Advanced, add features, and simply redeploy the

altered files without having to re-create a runtime solution each

and every time a change is called for. Likewise, you can have some

users make use of the runtime applications and still others access

separate copies of the files (or share files) with full versions of

FileMaker Pro. It’s rare that you would build a database that could

be used in both single-user and multiuser modes, but the point

here is that it’s possible.

Note that the preceding discussion somewhat mitigates the point

that bound solutions are platform specific. This is true of the solu-

tion as a whole, but the constituent database files remain for all

intents and purposes FileMaker files and can be edited as such on

either platform.

 Removing Admin Access
Removing admin access often goes hand-in-hand with creating

a runtime solution, but it doesn’t necessarily have to. To prevent

anyone—including yourself—from changing the files in a given

solution (regardless of whether you intend to bind them into a run-

time), it is possible to remove all admin (or better, perhaps, devel-

oper) access to a set of files.
You’ll remove access to the Manage Database, Value Lists, File

References, Accounts & Privileges, and Custom Functions dialogs.

Access to Layout mode and ScriptMaker is also removed.

In addition, removing admin access removes any accounts set up

explicitly with the [Full Access] privilege set. This is quite impor-

tant because it actually modifies the account and privilege settings

of your files. Your “developer” account will be removed. If you

have written scripts that depend on a certain account being there,

you must be careful in how you accomplish such functions. You

also have to ensure that you have a password that will allow you

into the solution after you run this process.

It’s possible to define an account and assign a custom privilege set

that has the equivalent of full access without assigning it to the

built-in [Full Access] set, but keep in mind that, again, the capabil-

ity to use all editing functions will be removed from the files. Those

menu options, regardless of the account you used to sign in, will be

grayed out.

 � For a complete understanding of security in FileMaker, see Chapter 12 , “Implementing Security.”

 tip
Some bound runtime solutions
require a good bit of data entry
prior to their being ready to dis-
tribute to a wide audience. It can
be convenient to host the files—
just as they are—on FileMaker
Server to allow multiple people
to enter data. The fact that the
FileMaker files themselves are
unaltered by the binding pro-
cess means that you can swap
them between a bound runtime
application and FileMaker Pro or
Server as needed.

 caution
There’s no going back after you
remove admin access, so be cer-
tain that you have all the kinks
worked out of your solution, and
keep your original files backed
up!

 tip
Make certain there’s a good way
to export all data from a solution
before removing admin access.
Just write a scripted routine
that saves all records to XML
files. Doing this at least ensures
that you can extract data from
a locked-down version of your
solution.

ptg8106388

Deploying and Extending FileMaker632

V

PA
RT

Polishing Your Custom Solution
When distributing a custom solution, you can better tailor its look

and feel by creating a custom menu scheme that reflects and

supports the identity of your application. You can implement a

completely customized menu scheme.
A custom menu scheme allows you a very high degree of control

over your solution: You could write a complete help system that

might include opening a FileMaker Pro file or interface in itself.

Users might then be able to perform Find requests and employ

other familiar approaches to using your system. The About menu

could be as simple as a window with an image or a logo that is

brought forward, or you could get as fancy as a QuickTime movie

that is played within a container field. FileMaker Pro Advanced

gives you the opportunity to truly customize a solution so that it

takes on an identity of its own.

 � For more information on custom menus, see “Working with

Custom Menus,” p. 396 .

 Error Log
As Developer Utilities runs, it can keep track of any errors it

encounters. To generate a log, simply turn on this option in the

Solution Options. A text file named LogFile.txt is created in your

solution folder. Some Developer Utilities processes run into errors

that don’t prompt dialogs, so it’s a good idea to check the log

before wrapping up a solution for end users. The following are

the errors you’ll find in the log:

 • Updating File Specs for this destination file skipped due to a previous fatal error.

 • Destination file could not be created, and all further processing on it was skipped. File:

 • Skipped runtime generation, due to missing or damaged resources.

 • Destination folder could not be created, and all further processing was skipped. Folder name:

As you can see, these messages aren’t particularly illuminating and generally indicate that you have

a significant problem with the interaction between your OS and FileMaker’s processes. In testing for

these conditions, a full hard drive was the cause for some of these issues. If you see such messages,

verify that it’s possible and practical to create a solution directory in the place you chose (meaning,

check for a full disk, restrictive permissions, and the like), and verify that the source files open cor-

rectly and don’t appear corrupted.

 caution
Note that a custom menu scheme
will not be of any use in a solu-
tion destined for Kiosk mode
because Kiosk mode removes
menu access.

 tip
If you take pains to give your
solution a name and add even
simple levels of customization,
end users will more easily accept
the system that they will presum-
ably spend a good percentage of
their work lives using.

It’s also somewhat helpful in
getting users and IT folks to dif-
ferentiate FileMaker Pro—the
technology—from your specific
solution. If you name and mod-
estly customize it, you foster a
better sense of differentiation by
creating an identity other than
“the FileMaker database.”

ptg8106388

633Developing Kiosk Solutions

26

C
H
APTER

 Developing Kiosk Solutions
Kiosks are good ways to present users with a completely encapsu-

lated user experience. As an example, one favorite project is build-

ing a kiosk-based wine recommendation service for grocery stores

using touch-screen input.

Kiosk mode allows FileMaker Pro to open full-screen, with no tool-

bars or menus. On Windows and Mac OS X, the taskbar and Dock,

respectively, become unavailable as well. This has the effect of taking over the entire computer

environment and allowing you to build complete appliances that serve a specific purpose. If you

combine Kiosk mode with an alternative means of data input—touch-screen input, barcode readers,

or other devices—the result can be something that very much departs from what you might think of

as a database.

Securing Kiosk Mode

Kiosk mode does not completely lock down a computer. On Windows, users can still use
Alt+Tab to access different running processes. The way to avoid this is simply to establish
FileMaker Pro as the only running application. Also on Windows, Ctrl+Alt+Delete calls forward
the Windows Task Manager, and the Windows key on current keyboards brings forward the
Start menu. You need to take additional steps to lock down Windows.

If you plan on deploying many kiosks, this would be tedious, but you can use a system utility
such as gpedit on Windows XP to lock access to various elements such as the Alt key and Start
menu. Another approach is to use a third-party utility such as Win Control: www.salfeld.com/
software/wincontrol/index.html .

On Mac OS X, this is not as much an issue. Kiosk mode properly takes control of the computer
environment, but there are still backdoors, not the least of which is simply pulling the power
cable of the computer in question.

In general, though, keep in mind that Kiosk mode is meant to facilitate a storefront experience
especially geared toward touch-screen input, and it is not focused on delivering a specific level
of security.

Preparing a Kiosk Interface
When preparing a solution for Kiosk mode, you need to consider several unique issues, not the least

of which are important user interface elements. Because FileMaker’s menus are inaccessible in

Kiosk mode, a vital requirement is to offer users a means for at least exiting the application. Without

a scripted quit routine, users have to force-quit the application and might lose data as a result.

Being able to exit the application, though, is just the first requirement. Any function you’d like users

to be able to perform must be scripted and attached to a layout object. You can opt to leave the

FileMaker Status toolbar open if you want, but none of FileMaker’s native keyboard shortcuts will

work (for, say, creating or deleting records).

The completely encap-
sulated user experience

of kiosk mode often looks very
much like a FileMaker database
that is opened in FileMaker Go
on an iOS device.

www.salfeld.com/software/wincontrol/index.html
www.salfeld.com/software/wincontrol/index.html

ptg8106388

Deploying and Extending FileMaker634

V

PA
RT

Most kiosks offer a complete set of scripted functions attached to a custom-crafted user interface,

and very rarely do developers opt to leave the Status toolbar open. Therefore, you need to create

scripts and buttons for navigating from layout to layout, for creating records, for managing any

importing or exporting of data, and for dealing with upgrading the files themselves, if necessary.

Maintaining a Kiosk Solution
After deploying a kiosk to end users (it could just be a copy of a FileMaker database you’re distrib-

uting widely), you leave the world of modifying and managing workgroup solutions and enter the

world of commercial development, where your ability to tweak things becomes exponentially more

difficult. This suggests that a solution needs to be completely tested and perfect before it goes out

the door; otherwise, you have to craft and implement an upgrade strategy that allows you to pass

new functionality to your users without leaving them lost, with no means of preserving whatever

data they might have input. This strategy could be as simple as exporting all data from the old ver-

sion and importing into the new, or you could build a distributed file system in which it’s possible to

replace certain files without altering the data itself.

 � For ideas on user interface approaches, see Chapter 14 , “Advanced Interface Techniques.”

 Plug-Ins
Plug-ins extend FileMaker Pro’s capabilities and are quite varied.

Their offerings range from charting functionality, OS-level file

manipulation, and barcode readers, to scientific math functions,

credit-card authentication, help systems, telephony, and more.
Plug-ins are written and compiled in accordance with FileMaker

Pro’s plug-in API. They’re not something many FileMaker devel-

opers will ever have to create, and you generally do not have

access to the code from which they’re built.

If you want to delve into writing your own plug-ins, you must be

an expert in either the C or the C++ language. (We don’t recom-

mend a FileMaker plug-in as your first C++ project!) You also need a development environment,

such as Xcode for the Mac or Visual Studio for Windows, and the plug-in API documentation and

sample files that ship with FileMaker Pro Advanced. Plug-ins are platform specific, so if you want

your plug-in to work on both Mac and Windows, you need to do at least some reengineering to get

your code to compile and run correctly on both Mac and Windows.

As in all third-party software products, we recommend you get to know a given plug-in well and

test it along with the rest of your solution before deploying. Another obvious consideration is cost:

Some of your clients might benefit from utilizing a plug-in, but remember that this is third-party soft-

ware that might require a purchasing license.

 note
We encourage you to visit
FileMaker’s website to explore
a wide range of plug-ins. Just go
to http://solutions.filemaker.
com and click Plug-ins in the For
Developers area at the lower
right.

http://solutions.filemaker.com
http://solutions.filemaker.com

ptg8106388

635Plug-Ins

26

C
H
APTER

 Understanding Plug-ins
Plug-ins work by adding external functions to your calculation functions list. Generally, but not always,

they take a single text parameter (although the parameter may be internally delimited, containing sev-

eral values). The result of the plug-in operation is delivered in the form of a calculation result.

An actual external call might look like this:

XMpl_Add(numberInput1; numberInput2)

If you use this plug-in function, it returns the sum of two numbers. To make use of the function, you

generally have to store its result someplace—often in the context of a script step that puts the value

into a field or variable:

Set Variable [$sum; XMpl_Add(numberInput1; numberInput2)]

The name of the plug-in function is a string specific to the plug-in you’re working with. The plug-in

governs the string’s syntax, and if it follows proper FileMaker, Inc., conventions, the string includes

the name of the plug-in as well. In this case, the example is drawn from FileMaker’s included sample

plug-in (described further in the next section), and XMpl_ is the prefix FileMaker chose. Likewise, the

expected parameters passed as text vary widely from none to complex data arrays. FileMaker Pro’s

data storage limit of 2GB per field means that we could be facing some quite complex programming

within the realm of a single text field.

The results of a plug-in are returned as a calculation result, but often some other action might be

performed as well. For example, a dialog might appear. Often the calculation field simply serves as a

means for passing error conditions.

For example, a plug-in might copy an image file from one directory to another. Or it might display a dia-

log of some kind. Or it might create a chart image and place it on your Clipboard. The possibilities are

nearly endless, and we recommend, again, exploring available plug-ins to understand specific cases.

 Installing Plug-Ins

There are two distinct types of plug-ins: purely client-based and client-based with a server-side com-

ponent. Deployment is consistent between the two, and it has two varieties:

 • Extensions Folder for the Application— To enable a plug-in, place it in the Extensions folder with

the FileMaker application folder for each client, regardless of whether it has a server-side com-

ponent. In addition to the client-side installation, server-side plug-ins have to be deployed to the

Extensions folder on the server as well. This is true for both Windows and Mac OS X platforms.

 • Extensions Folder for the User— Instead of placing the plug-in in the FileMaker application’s

Extensions folder, you can place it in an individual user’s FileMaker Extensions folder. The loca-

tions of these folders are as follows:

 Windows: C:\Users\User Name\AppData\Local\FileMaker\Extensions

 Mac OS X: Macintosh HD/Users/User Name/Library/Application Support

 � If your plug-in is not responding, refer to “Plug-in Not Responding or Not Installing” in the

“Troubleshooting” section at the end of this chapter.

ptg8106388

Deploying and Extending FileMaker636

V

PA
RT

Configuring and Enabling Plug-Ins
To enable a particular plug-in, use the Preferences dialog within

your FileMaker Pro or FileMaker Pro Advanced application,

as shown in Figure 26.3 . To use a given plug-in, you have to

explicitly enable it by marking its respective check box. The

AutoUpdate plug-in is always available in this list; you can

choose to enable it or not (if you are using plug-ins, you usually

do want to enable it). Some plug-ins offer configuration choices.

 Figure 26.3
Plug-ins are enabled and configured via the Preferences
dialog.

 tip
If you’ve just installed a plug-in,
you might have to close and
restart your FileMaker Pro client
to gain access to its external
functions.

 � An exception is the case in which a plug-in is downloaded and installed by the Auto Update

function. When this occurs, the plug-in is immediately enabled for use. For a full discussion, see

 Chapter 27 , “FileMaker Server and Server Advanced.”

 Troubleshooting

Plug-in Not Responding or Not Installing
My plug-in isn’t working. Where do I start to diagnose and fix the problem?

Issues with plug-ins can be difficult to troubleshoot. If a plug-in isn’t responding, check first to

see that you have the latest version, and make sure that it is enabled on your client computer.

Restarting FileMaker Pro (or Developer) after adding a plug-in to the Extensions folder is also a nec-

essary first step.

Beyond that, your testing has to encompass the functionality of the plug-in itself. You might, for

example, be struggling with a plug-in written for another version of FileMaker Pro. Some plug-ins

are limited to specific versions of FileMaker.

ptg8106388

637Troubleshooting

26

C
H
APTER

 File Reference Errors
I renamed my files but still seem to have problems with missing files. How can I manipulate my file

references by hand?

If you encounter problems with file references, where you get “file missing” error messages when

FileMaker Pro opens your database solution, or you notice such in your DDR, we recommend first

working with the Define File References dialog (Manage, File References, under the File menu). You

might be able simply to repoint a file reference to repair some issues. In other cases, you might have

to reestablish connections manually; to identify all such places where that will be necessary, refer to

the DDR.

Again, this is a symptom of a file having been manually renamed at the OS level. The Rename Files

function in FileMaker Developer is a great way to rename files all you like; we encourage you to use

it whenever this is necessary.

ptg8106388

This page intentionally left blank

ptg8106388

 27

FILEMAKER SERVER AND SERVER
ADVANCED

 About FileMaker Server
You use FileMaker Server to make your FileMaker Pro databases avail-

able to many users at once across a network. On its own, the FileMaker

Pro software can host files for networked access from up to ten users at a

time, in what’s called a peer-to-peer configuration. The stability, security,

and management features of FileMaker Server make it a preferred solution

even for many environments that could manage with peer-to-peer solu-

tions. However, small shops (particularly those with part-time FileMaker

use) can function quite effectively with peer-to-peer configurations. As

you learn in this chapter, the actual sharing is accomplished by one user

running FileMaker Pro and allowing up to nine other users to connect to it,

for a grand total of ten users.

That configuration handles the needs of many small businesses. Because

it is ten users at a time, many small businesses with as many as a dozen

regular users of FileMaker Pro can manage with the restriction; small

businesses with much larger staffs, not all of whom use FileMaker, can

also handle this restriction. Using FileMaker Pro allows you to use Instant

Web Publishing for up to five users.

However, for larger environments, serious web publishing, or environ-

ments where automated management of databases and backups are

needed, FileMaker Server is what you need.

No discussion of FileMaker Server would be complete without mentioning

Apple’s iOS devices (iPad, iPhone, and iPod touch) along with FileMaker

Go, which runs on all of those devices. FileMaker Pro or FileMaker Pro

Advanced is the tool you use to create sharable FileMaker databases.

ptg8106388

FileMaker Server and Server Advanced640

V

PA
RT

As you have seen in Chapter 4 , “Working with Layouts,” and Chapter 14 , “Advanced Interface

Techniques,” FileMaker Pro now provides extensive support for mobile devices. Many of the Starter

Solutions come with alternate layouts for desktop and mobile devices

The FileMaker Server Product Line

Two products are available under the name FileMaker Server:

 • FileMaker Server— FileMaker Server is used to provide concurrent access to as many as 250

networked users running FileMaker Pro client software; it also provides Custom Web Publishing

(but not Instant Web Publishing) for 200 users.

 • FileMaker Server Advanced— This product supports an unlimited number of FileMaker Pro cli-

ents (in practice, the limit is determined by the hardware configuration). In addition, it supports

up to 200 XML or PHP web publishing clients, along with up to 100 Instant Web Publishing cli-

ents and ODBC/JDBC clients.

 � For a discussion on ODBC and JDBC, see Chapter 23 , “Exporting Data from FileMaker.”

 � To find out about Instant Web Publishing, see Chapter 24 , “Instant Web Publishing.”

 � Custom Web Publishing is discussed in Chapter 25 , “Custom Web Publishing with PHP and XML.”

To upgrade from FileMaker Server to FileMaker Server Advanced, you must purchase a new license

key that unlocks the FileMaker Server Advanced functionality; there is no installation to be done.

What Is a Server? What Is a Network?

 Server has at least three meanings in this chapter; as a result, it is usually qualified as a
FileMaker Server, file server, or network server.

 FileMaker Server is the simplest term: It is the software product from FileMaker that lets you
share databases for more than ten users at a time, the limit for FileMaker Pro. It runs on a com-
puter referred to as the FileMaker server (lowercase s) or, more awkwardly but precisely, “the
computer running FileMaker Server.”

 A file server is a computer on a local area network on which people share files. It can be used
for shared storage of corporate documents, as a backup location for individuals, or any other
purpose. A network can have more than one file server.

 A network server is a computer that manages a local area network. It might have shared net-
work applications on it (such as mail). Examples of network server products are OS X Lion
Server and Windows Server.

In a small environment, all three computers (FileMaker, file, and network servers) can be the
same computer. It can even be a computer on which someone also does ordinary work by run-
ning word processing or other applications. This configuration really stresses the hardware, but
it is a common situation in development environments where it is important to have all the fea-
tures of all the computers available, but there is not a great deal of processing going on.

ptg8106388

641About FileMaker Server

27

C
H
APTER

FileMaker Server Versus Peer-to-Peer Database Hosting
With peer-to-peer sharing, FileMaker database files may be served to no more than nine clients at a

time. The peer-to-peer method uses a regular copy of FileMaker Pro or FileMaker Pro Advanced as

the database host, so a deployment of this type also forgoes important features of FileMaker Server,

especially the capability to make regular, scheduled backups of the databases. Although such

schedules could be created with operating system–level scripting technologies, it’s much simpler to

use FileMaker Server’s built-in tools.

If you choose to begin with a peer-to-peer configuration for database sharing, we recommend that

you still treat this situation as a server-type deployment as far as possible. Give the database host

its own dedicated machine on which to run—one that people won’t casually use for other daily

tasks; make sure that you have a reliable solution for regular backups. Make sure that the machine

at least meets the minimum specifications for the FileMaker Pro client software and add a bit more

RAM if you possibly can.

Any other configuration is possible. In fact, if you are using the web publishing features of
FileMaker Server Advanced, you can run that set of tools on a separate computer from the
FileMaker Server computer.

The best performance of FileMaker (and of networking) comes when FileMaker Server and the
network software are the only applications running on their respective computers. The reason
is that both FileMaker and many networking tasks are numerous but relatively brief in duration:
querying a database, sending an email, downloading a web page, and so forth. Most of the
clients of these computers want action as soon as they click or tap a button or press the Enter
key, and then they disappear from the server computer environment while they type or read.

If you use some combination of computers and servers, make every possible effort to turn off
file sharing on the computer running FileMaker Server. It provides its own sharing, and there
can be corruption of databases if ordinary file sharing is turned on.

As for the second question, “What is a network?,” the answer is this: a local area network, a wide
area network, or the Internet. FileMaker can communicate over any TCP/IP network. You can even
use peer-to-peer database hosting over the Internet; if you have a broadband connection, perfor-
mance can be quite satisfactory.. Furthermore, any of the links in the network can be wireless.

Backing Up Open Files

If you’re backing up hosted FileMaker files by hand, be aware that you should never make a
copy of a FileMaker file while it is open—even if it’s not hosted and is in use by only a single
user. FileMaker can guarantee that a database file is in a fully consistent state on disk only if
the file has been closed properly by the server process. Otherwise, there might be database
transactions that exist only in RAM that have not yet been committed to disk.

As you’ll read in a later section, FileMaker Server’s built-in backup capability handles the
details of closing the files before backing them up. If you’re working in a peer-to-peer setting,
you don’t have that luxury. You’ll need to make sure that any automated solution you put into
place takes into account the need to close each database file before backing it up.

ptg8106388

FileMaker Server and Server Advanced642

V

PA
RT

It is common to begin with peer-to-peer networking and then to move on to a FileMaker Server

installation. The host computer’s software will change, but all the users of the database will connect

in the same way: by choosing the Open Remote command. They might have to select a different

computer from the list of local hosts, but the new server can be added to the favorites list. Users do

not normally know whether they are connecting to FileMaker Pro in a peer-to-peer environment or

to FileMaker Server.

 FileMaker Server Capabilities
We’ve talked about some of the features that set the FileMaker Server product line apart as a host-

ing solution: much greater scalability than the plain FileMaker Pro software and the capability to

perform automated tasks such as backups. There are quite a number of other distinguishing fea-

tures as well. Here are some of the most important:

 • Admin Console— FileMaker Server comes with Admin Console, a Java application that can be

used to administer one or several instances of FileMaker Server, potentially all running on differ-

ent machines. A separate copy of Admin Console is created for each FileMaker Server instance

to be managed. Subject to security constraints, Admin Console can run on any computer that can

connect to the server computer over a network.

 • Consistency Checker— FileMaker Server performs consistency checking on files as it opens them.

If the check fails, a message will be written to the application log and the file will not open.

 • Scheduling— You can create schedules to run automatically to back up or verify databases, send

messages, or run scripts.

 • Server-side scripting— FileMaker Server can run FileMaker scripts as well as operating system

scripts. You can schedule these within FileMaker Server. A particularly common use of these

is to periodically run an export script that puts files into a known location (perhaps using Get

(DocumentsPath)) where they can be retrieved by other applications.

 • SMTP email— FileMaker Server can send email on its own directly from an SMTP server rather

than through a mail client that in turn accesses the SMTP server.

 • Email notifications— You can configure FileMaker Server to provide email notifications of condi-

tions and status to one or more email addresses. Thus, instead of having to check the server sta-

tus, the server status will come to you.

 • External authentication— FileMaker Server can be configured to check user credentials against

a networked authentication source, such as a Windows Active Directory server or an OS X Open

Directory server.

 • Secure transfer of data— When FileMaker Pro clients are used in conjunction with FileMaker

Server, the transfer of data can be encrypted with Secure Sockets Layer (SSL).

In addition to these features, FileMaker Server offers a large number of other important functions,

such as the capability to send messages to guests, to disconnect idle guests, to limit the visibility of

database files based on user privileges, to be run in a scripted fashion from the command line, and

ptg8106388

643About FileMaker Server

27

C
H
APTER

to capture a variety of usage statistics and server event information for logging and analysis. All

these features are discussed in the sections to come.

 FileMaker Server Requirements
Like any piece of server software, FileMaker Server has certain minimum hardware and software

requirements. You’ll achieve the best results with a dedicated server; as with any piece of server

software, it’s best if FileMaker Server is the only significant server process running on a given

machine. Forcing FileMaker Server to compete with other significant processes, such as mail ser-

vices or domain controller services, is likely to hurt Server’s performance.

The server machine, in addition to being dedicated as far as possible to FileMaker Server, and hav-

ing the minimum amount of file sharing enabled (preferably none), also needs the items discussed in

the following sections.

 Web Server
FileMaker Server requires a web server. On Windows, this is IIS; on OS X, it is Apache. You might

have to install and configure IIS before beginning the FileMaker Server installation process. On OS

X, Apache is part of the standard installation; you might have to start it if you have not enabled it

before. And if it has been removed, of course, you will need to reinstall it.

The web server will need PHP; you can use a version of PHP on your own web server, or you can

have it installed as part of the FileMaker Server installation process (it does not require any extra

discs or licenses).

 Static IP Addresses
Clients must be able to connect to the server computer. It must

either have a static IP address or a domain name that is set to a

static IP address. If you are running a local area network, it is quite

possible that a single Internet connection to your router is shared

among all the computers. The router will have an IP address vis-

ible from the outside. This might or might not be static. In the case

of cable connections, it is frequently renewed once a day with the

same or a different address.
FileMaker Server is capable of multihoming , meaning that it can

take full advantage of multiple physical network interfaces, each

with its own IP address. FileMaker Server listens on all available

network interfaces. As far as we know, it’s not possible to config-

ure FileMaker Server to ignore one or more of the available inter-

faces; if the interface is available, FileMaker Server tries to bind

to port 5003 on that interface and begins listening for FileMaker

traffic. The FileMaker client/server port number, 5003, is also not

configurable.

 note
The computers on the local net-
work share that one changing IP
address, but they might have a
static IP address beginning with
192.168 or 10.0. This is deter-
mined by the configuration of the
network server. It is under your
control, not the control of your
ISP. If the only access to your
server computer is internal, you
can provide it with a static inter-
nal IP address. However, if it has
to be accessed from the outside,
you must work with your ISP to
provide it with a static IP address
that, like all IP addresses on the
Internet, must be unique.

ptg8106388

FileMaker Server and Server Advanced644

V

PA
RT

 Fast Hard Drive
Like any database, FileMaker Server is capable of being

extremely disk-intensive. For some database operations, particu-

larly those involving access to many records—such as a large

update or a report—the speed of the server’s hard disk might be

the limiting factor. Redundant Array of Inexpensive Disks (RAID)

technologies (whereby multiple physical disks are combined into

a single disk array , for greater speed, greater recoverability, or

both) are becoming ever cheaper, and some sort of RAID array

might well be the right answer for you. When it comes to FileMaker Server performance, buy the

biggest, fastest disk you can.

 Fast Processors
A fast processor is a fairly obvious requirement for a server machine. But it’s worth noting that

FileMaker Server can take full advantage of multiple processors.

 Lots of RAM
Beginning with FileMaker Server 12, the Database Server and Web Publishing Engine are now 64-bit

processes that can use much more RAM than their predecessors. There is a single installer for OS X

that contains both 32- and 64-bit software; on Windows there are two installers.

Turn Off Unnecessary Software
You do not want the computer running FileMaker Server to sleep, hibernate, or go into standby

mode. A screensaver is also unnecessary—most of the time, your server computer will not even

need a monitor, and the simplest screensaver of all—turning off the monitor’s power switch—is the

best.

Indexing Service (Windows) and Spotlight (OS X) are great tools to help you find information on

your computer, but they use resources in the background—both processor power and disks, both

of which are needed for FileMaker Server. If the computer running FileMaker Server does not need

Indexing Service or Spotlight, turn off those options. These settings apply to all types of servers.

You also should disable antivirus software on the folder where the database files are stored (but

only that folder).

 Fast Network Connection
FileMaker is a client/server application, which means that FileMaker Pro clients remain in constant

contact with a database host such as FileMaker Server. FileMaker Server constantly polls (attempts

to contact) any connected clients to determine what they’re doing and whether they’re still con-

nected. In addition, although Server is capable of handling a few more tasks than its predecessors,

it still has to send quite a lot of data to the client for processing in certain kinds of operations. All

this means that FileMaker is an extremely network-intensive platform that benefits greatly from

increased network speed. A switched gigabit Ethernet network will provide good results.

 note
At the time of this writing, a
RAID system with two 1TB drives
providing RAID 0 support of 2TB
or RAID 1 support (redundancy)
of 1TB can be purchased for less
than $500.

ptg8106388

645Instal l ing and Deploying FileMaker Server

27

C
H
APTER

 Supported Operating Systems

FileMaker Server runs on OS X and Windows.

 � For the latest OS X and Windows version information, see www.filemaker.com .

 Java Runtime Environment
You must have the Java Runtime Environment installed. If you do not have it installed, you will be

prompted to allow it to be automatically installed. You do not need any extra discs.

 Data Center Environment
Although not strictly a requirement for running FileMaker Server, proper care and housing of server

equipment is a necessity, one that’s often overlooked, especially in the small- and medium-sized

business sectors, some areas of education, and among nonprofit groups. These are all key groups of

FileMaker users, ones that do not always have sufficient resources to build and maintain anything

like a data center.

Ideally, a server of any kind should be housed in a physically secure and isolated area, with appro-

priate cooling and ventilation, with technical staff on hand 24 hours a day to troubleshoot any issues

that arise, and with automated monitoring software that periodically checks key functions on the

server and notifies technical personnel by email if any services are

interrupted. Some organizations are fortunate enough to be able to

house their FileMaker servers in such an environment. But even if

you can’t provide all those amenities, you can see to the key areas.

The server should minimally be up off the floor, well ventilated,

and under lock and key if possible. And some sort of monitoring

software is nice, and need not break the bank: Nagios (www.nag-

ios.org) is a popular and powerful open source monitoring package.

 External Data Centers
A number of companies provide FileMaker hosting. Search the FileMaker website for “FileMaker

hosting” to see a list. You can use a shared copy of FileMaker Server running at a remote site to

run your databases and support your web publishing. The vendor will provide you with the tools to

upload your databases and open them. Users will connect using your domain name or the IP address

of the FileMaker host. You do not have to purchase FileMaker Server because your monthly payment

reimburses the hosting company for its purchase of the software. Your monthly payment also covers

its data center environment, backups, and monitoring.

Installing and Deploying FileMaker Server
The process of installing and deploying FileMaker Server is different from installing software such

as a word processing application or even FileMaker Pro. FileMaker Server runs in the background

 note
Nagios runs on UNIX but can
monitor servers running on
almost any platform. Many
server monitoring packages exist
for Windows deployment as well.

www.filemaker.com
www.nagios.org
www.nagios.org

ptg8106388

FileMaker Server and Server Advanced646

V

PA
RT

and has no user interface; you interact with it using Admin Console, a Java application that runs on

the server computer or any other computer that has network access to the server computer.

 caution
Step 1 in the installation process is to uninstall any previous version of FileMaker Server. The easiest way to do this
is to use the original distribution discs or disk images from which you did the installation. Follow the instructions in
the Getting Started guide and through the links it contains to the FileMaker website. You will need to stop FileMaker
Server itself and the Web Publishing Engine (if installed and running), run the uninstall process, and restart the server
computer. If the server computer is running a previous version of FileMaker Server or any other applications, you should
know that a restart might be required as part of the uninstall process. Unless you are starting an install on a computer
that is currently not running any networked applications, you are probably going to find yourself doing this at night, on
a weekend, or on a holiday. Doing this when the production environment can be stopped is helpful. It might take only
you an hour to install, deploy, and configure FileMaker Server, but that hour will go much faster if users are not poking
their heads into the room or sending you text messages asking, “How much longer?”

 The Installation Process
On Windows, all files are installed in a directory called Program

Files\FileMaker\FileMaker Server. On the OS X, the FileMaker

Server components are installed in /Library/FileMaker Server. The

default install location can be changed on Windows, but not on

the OS X.
Installation is handled by an automated process. All that you

have to do is to enter your name and license code. Note that the

license code company name must exactly match the name on the

license you have received from FileMaker. If there are any mis-

spellings or mistakes in the name, you must either correct them

with FileMaker or grit your teeth and enter them in their incorrect

version during the install process.

 FileMaker Server Configurations
FileMaker Server can run in several configurations. There are

three components to deal with:

 • Database server— This is the FileMaker database engine. It controls access to the databases. In

FileMaker Server terminology, whatever computer is running the database server is the master

computer. All others (if any) are worker computers.

 • Web Publishing Engine— This is the FileMaker software that enables Custom Web Publishing

and Instant Web Publishing. Instant Web Publishing is available only for FileMaker Server

Advanced, but Custom Web Publishing is available in both products.

 • Web server— This is IIS (Windows) or Apache (OS X). The web server should be configured and

set up before you begin the FileMaker Server installation, but you can come back later to com-

 note
After FileMaker Server is
installed and deployed, you can
manage it using Admin Console
on any computer that has net-
work access to the FileMaker
Server computer. For the initial
installation and deployment,
however, you need hands-on
access to the FileMaker Server
computer. If it normally runs
without a keyboard and monitor,
attach them before beginning
the process. When everything is
complete, you can turn off the
monitor or even detach it.

ptg8106388

647Instal l ing and Deploying FileMaker Server

27

C
H
APTER

plete the configuration if you want. It is the Web Server module that lets the Web Publishing

Engine talk to the web server. Also, as part of the FileMaker Server installation process, PHP

might be installed. If it is already installed on your web server, you can use that version as long

as it meets the compatibility requirements for your version of FileMaker Server.

You can install these components on one, two, or three computers. Because the computers commu-

nicate using standard protocols, it does not matter which operating system is used on which com-

puter in a multicomputer environment. Here are the configurations you can use:

 • Single computer— The database server and the Web Publishing Engine on a single computer

along with your web server. This is obviously the simplest installation, and it might be the best

one to start with. Certainly, if you are creating a test environment to explore FileMaker Server, it

is a logical place to start. This configuration is recommended for no more than 50 FileMaker Pro

clients.

 • Two computers: web/database— With two computers, you can put all the web components on

one computer, leaving the database server alone on the other computer. This is generally the

highest performing configuration.

 • Two computers: FileMaker/web server— Another configuration places the main FileMaker

components (Web Publishing Engine and database server) together on one computer. The only

software that must be installed on the web server is the Web Server module. This configuration

might be advisable or even required where the web server is used to provide other services in

addition to FileMaker.

 • Three computers— Each of the components is on its own computer. This is suitable for very

heavy loads because the web server does not have to compete for resources with anything else.

Tuning the web server’s performance might be easier in this environment. Note that because

there is intercomputer communication between the web server and the Web Publishing Engine,

this configuration can in some cases provide slightly poorer performance than a two-machine

configuration.

Except in the very unusual situation in which everything is installed on a single computer and the

only clients accessing FileMaker Server are on that same computer (an environment usable only

for testing), there has to be communications among computers managing FileMaker Server, Admin

Console, the FileMaker Pro clients, and the clients of the web server. These communications should

be protected by firewalls on the various computers. Table 27.1 provides a list of the ports, their pur-

poses, and which computers need access to them.

 Firewalls
Whenever you are dealing with a network connection, you are usually dealing with firewalls

and ports (if you are not, you are running a major security risk). Table 27.1 provides the official

FileMaker Server port list. If you open these ports before you install FileMaker Server, things will

go faster. The users of the ports are the Web Server (WS), Database Server (DS), Web Publishing

Engine (WPE), Admin Console (AC), and FileMaker Pro clients (FPC).

ptg8106388

FileMaker Server and Server Advanced648

V

PA
RT

 Table 27.1 FileMaker Server Firewall Ports

 Port Used For WS DS WPE AC FPC

80 HTTP X X

5003 FileMaker sharing X X

*16000 HTTP X X

16001 HTTPS for Admin Console X X

16004 Admin Console X X X X X

16006 FileMaker Server X

16008 FileMaker Server X

16010 Custom Web Publishing X

16012 FileMaker Server X

16014 FileMaker Server X

16016 Apache Jakarta Protocol X

16018 Apache Jakarta Protocol X

50003 FileMaker Server service/daemon X

50006 FileMaker Server service/daemon X

* 16000 is also used for streaming container data in FileMaker 12 and later

 Selecting the Configuration
When you begin the installation process, the installer will present the window shown in Figure 27.1 to

begin configuration. Choose whether this will be a single-machine or multiple-machine installation.

 Figure 27.1
Choose a single- or multiple-
machine configuration.

ptg8106388

649Instal l ing and Deploying FileMaker Server

27

C
H
APTER

If you choose a multiple-machine configuration, you will need to install FileMaker Server on each

computer. The window shown in Figure 27.2 lets you specify for each computer whether it is a mas-

ter computer (with the FileMaker Database Server installed on it) or a worker.

 Figure 27.2
For multiple-machine configura-
tions, install FileMaker Server
on each computer.

Along the way, you might be asked to confirm various steps in the process, such as accepting a

security certificate. These are all normal parts of any installation. With regard to security, the dia-

logs you see should identify FileMaker as the origin of the software, and if that is the case, you are

okay to continue.

 The Deployment Process
After you have completed the basic installation process, you will be prompted to continue on to the

Deployment assistant. If you elect not to do so, pick up at this point by choosing Start, Programs,

FileMaker Server, FMS 12 Start Page (Windows) or by double-clicking the FMS 12 Start Page short-

cut that was installed on the desktop. The FileMaker Server Admin Console start page shown in

Figure 27.3 will appear. It gives you an opportunity to manually start Admin Server if it has not

started automatically.

 tip
In part because the Deployment assistant and Admin Console are Java applications and you might not have run Java
applications on your computer before, a little fiddling could be required to get them to run. You can find trouble-
shooting tips at the end of this chapter, and the Getting Started guide that is installed as part of the FileMaker Server
documentation is an invaluable resource. You can find additional information on the FileMaker TechNet site. After the
installation and deployment process is done, you should not have to worry about these issues again.

ptg8106388

FileMaker Server and Server Advanced650

V

PA
RT

The Admin Console Start Page will appear. It gives you an opportunity to manually start Admin

Server if it has not started automatically.

Along the way, you might see messages asking you if you want to allow access to specific resources

such as the Java application. If you are confronted by messages such as these, remember that you

have started a process of installation and deployment of a FileMaker product, so a message asking

if FileMaker is a legitimate provider of software should be answered Yes or Always. If you launch

an installation of FileMaker and see a message asking you to approve installation of software from

another vendor, you might get suspicious—although Java, which is not a FileMaker product, is

installed. If you get a warning of software from some other vendor or a name you do not recognize,

you might want to contact FileMaker customer support.

There are five or six steps, depending on whether you are doing a single-machine configuration. All

of these settings can be changed later.

 • Set up the Admin Console account with an ID and password as shown in Figure 27.4 . If several

people are administering the installation, they can share this account. You also will be able to

set up groups of administrators with their own security settings. Groups are available only with

FileMaker Server Advanced.

 • You have the option to import settings from a previous installation, as shown in Figure 27.5 .

 Figure 27.3
 Admin Console
start page.

ptg8106388

651Instal l ing and Deploying FileMaker Server

27

C
H
APTER

 Figure 27.4
Set up the
Admin Console
account.

 Figure 27.5
You can import
settings.

ptg8106388

FileMaker Server and Server Advanced652

V

PA
RT

 • Name this particular FileMaker Server installation, providing a brief description and the name

and contact information for the person responsible, as shown in Figure 27.6 .

 Figure 27.6
 Name the
FileMaker
Server.

 • You can enable ODBC/JDBC publishing if you are using FileMaker Server Advanced, as shown in

Figure 27.7 . You do not need to enable ODBC/JDBC publishing to access ODBC/JDBC data pub-

lished elsewhere that you and your users want to consume. This interface is simple: Click Yes

or No.

 • You are asked whether you want to enable web publishing. If you agree, choose which web

publishing technologies you want to use (XML, Instant Web Publishing [IWP requires FileMaker

Server Advanced], and PHP), as shown in Figure 27.8 .

ptg8106388

653Instal l ing and Deploying FileMaker Server

27

C
H
APTER

 Figure 27.7
 Enable ODBC/
JDBC if you
want.

 Figure 27.8
 Choose your
web publishing
technologies.

ptg8106388

FileMaker Server and Server Advanced654

V

PA
RT

 • You can then choose your web server (or choose to select it later), as shown in Figure 27.9 .

 Figure 27.9
 Select your
web server.

 • You can choose which of the configurations you want to

install, as shown in Figure 27.10 . The deployment type is set

in the pop-up menu at the top of the window.

 • A final summary screen reviews your choices, as shown in

Figure 27.11 . You can use the Back button to go back and

change them. You also can rerun Admin Console at another

time and change many of them. (Note that the initial installa-

tion of the software for the master and worker computers, as

well as the deployment type shown previously in Figure 27.10 , cannot be changed later.)

 tip
If the web server is not running
(perhaps it is installed but not
running), you cannot complete
this step and will have to come
back to it.

ptg8106388

655Instal l ing and Deploying FileMaker Server

27

C
H
APTER

 Figure 27.10
 Choose your
configuration.

 Figure 27.11
 Review the
installation
summary.

ptg8106388

FileMaker Server and Server Advanced656

V

PA
RT

You will be provided with information about the progress of the

deployment. When it is complete, you will be invited to register

(a good idea) and to run the technology tests (a critical step), as

shown in Figure 27.12
At this point, FileMaker Server is installed and deployed. You can

use the Admin Console on any computer with network access to

the FileMaker Server computer to administer it from now on.

 Running FileMaker Server
Installing FileMaker Server installs two separate components,

both of which run as services: FileMaker Server and the

FileMaker Server Helper. They appear as two separate services

(Windows) or processes (OS X). FileMaker Server does not func-

tion correctly without the FileMaker Server Helper service also

running. Installing FileMaker Server Advanced will cause addi-

tional services to be added.

Starting and Stopping FileMaker Server
When you install FileMaker Server, you can choose whether to

have these services start automatically, in which case they are

started every time the server computer itself starts up, or manu-

ally, in which case you need to start the services by hand. The

Admin Console lets you start and stop FileMaker Server manu-

ally.

 Figure 27.12
 Run the tests.

 tip
If you will not be using a monitor
or keyboard on the FileMaker
Server computer, it is a good
idea to take two additional
steps before removing them.
First, verify that any automated
power equipment is working
properly to avoid interruptions.
In the case of an extended out-
age, the uninterruptible power
supply (UPS) should shut down
the server computers grace-
fully. Make certain that you
can power them back on again
successfully and that the data-
bases open properly. If there are
any problems, check them out
before disconnecting the monitor
and keyboard. Likewise, make
certain that you can access the
computer using Admin Console
from another computer before
disconnecting the monitor and
keyboard.

ptg8106388

657Using Admin Console

27

C
H
APTER

 Hosting Databases

When FileMaker Server starts, it looks for files in the default

database file directory, and in the alternate database directory if

one has been specified. (We discuss how to specify the alternate

directory later.) It also tries to open any databases found in the

first directory level within either of those two top-level directo-

ries. Databases in more deeply nested directories are not opened.

You can find the main database directory at c:\ Program Files\

FileMaker\ FileMaker Server\ Data\ Databases (Windows) and /

Library/FileMaker Server/Data/Databases (OS X).

 tip
Take care to place these directo-
ries on hard drives that are local
to the server machine. It’s not at
all a good idea to host files from a
mapped or networked drive. In such
a configuration, every database
access has to be translated into
a network call and passed across
the network. At the very least, this
approach is likely to cause signifi-
cant loss of performance.

 note
In the world of databases, it is common to speak of starting and stopping databases, which is basically the same as
opening and closing them. FileMaker Server often uses the open/close verbs, but if you are working with people from
other environments, make certain you are all clear about what is meant by “stopping a database”—in other words, do
you mean closing the database and leaving FileMaker Server running, or closing FileMaker Server and all its databases?

 Using Admin Console
When you first install FileMaker Server, you might be prompted to install and open AdminConsole.

You have a variety of choices about when to do this, and you will have prompts and options to place

shortcuts on the desktop. At that time or thereafter, you can open Admin Console manually. To do

so, open a browser on any computer with network access to the computer where FileMaker Server

is running (even the same computer). Enter the IP address of that computer and port number 16000.

Here are three formats for that URL:

http://localhost:16000
http://10.0.1.2:16000
http://www.mydomain.com/rex:16000

The first is used if you are running the browser on the same

computer as FileMaker Server. The second is used to address

the server computer by its IP address (either locally or over the

Internet). The third is used if you have a domain name and have

configured a name for the computer running FileMaker Server. In

all cases, you use port number 16000.

FileMaker Server responds by sending a small Java application to

your computer. You will be asked to log in, and the database will

open. You also might be asked for permission to run it, as you see

in Figure 27.13 .

 note
If you look carefully at Figure
27.13, you will see that FileMaker
Server is running on a Windows
computer but Admin Console
is running on OS X. This (along
with the reverse) is a common
configuration.

ptg8106388

FileMaker Server and Server Advanced658

V

PA
RT

 FileMaker Server Overview
Figure 27.14 shows FileMaker Server Overview in Admin Console. It is the default screen, and you

can always return to it by clicking FileMaker Server Overview at the left.

 Figure 27.13
 Give permission to Admin Console.

 Figure 27.14
 FileMaker
Server
Overview
summarizes
the status
and settings.

All the windows in Admin Console have a similar layout. The navigation pane at the left lets you

view and change settings. The center and right of the window contains detailed information about

whatever you are viewing; in the lower left, links let you go to related tasks and documentation. At

the top of the window, in the toolbar, are seven icons:

 • The first two let you start and stop the database engine (not an individual database).

 • The third and fourth let you start and stop the Web Publishing Engine (if it is installed).

ptg8106388

659Using Admin Console

27

C
H
APTER

 • The fifth starts the Upload Database assistant.

 • The sixth lets you view the FileMaker Server Start page in a

browser.

 • The seventh opens the test page; you can run any needed tests

again.

The status overview at the center right shows what is running on

what machine. If you have a two- or three-computer configuration,

there will be a slight space between the boxes representing the

machines. In Figure 27.14 (a single-computer configuration), the IP

address of the single computer is shown. In a multiple-computer

configuration, the IP address for each computer is shown.

You should know the IP address of the master computer, but if you

do not, write it down the first time you see this display. It is the IP

address people will need to connect with Admin Console (remem-

ber to add port 16000 to the IP address when you connect with a

browser).

 Administration
The Administration section lets you manage clients, databases, schedules, and statistics. A sum-

mary screen lets you move among them, or you can click each item in the navigation pane at the

left.

 Clients
You can see the Clients display in Figure 27.15 . Select one or more clients and choose an action

from the pop-up menu. Click Perform Action to do it. In general, it is not a good idea to disconnect

clients; instead, send them a message to log off. However, if remote users do not respond (per-

haps because they have gone out to lunch), you might need to disconnect them if you need to stop

FileMaker Server.
The action options are

• Send Message (to the selected client)

• Send Message to All Clients

• Disconnect (the selected client)

• Disconnect All Clients

 tip
FileMaker Server provides the
ability to configure and custom-
ize your installation, whether it
is large or small. If it is small,
there are a few settings in Admin
Console that you must know
about; you can safely ignore
the others unless something
strange happens. Many people
run FileMaker Server for years
without changing the default
settings. The minimal items to
which you need to pay attention
are shown in Tips in the follow-
ing sections.

Minimum: Note the IP address
and the status of each of the
FileMaker Server components.

 tip
Minimum: Unless your FileMaker
Server environment is small and
in a confined area, you will prob-
ably use the Clients section to
send messages to your users.

ptg8106388

FileMaker Server and Server Advanced660

V

PA
RT

 Databases
The Databases section, shown in Figure 27.16 , provides information for databases managed by

FileMaker Server, whether or not they are open. A similar interface to that in Clients lets you send

actions to the databases.
Dots indicate the features enabled in the databases. Note that these report the status; you set

sharing and the other features in the databases themselves (in the Sharing submenu). This display

is useful when you have first added a database; you should check that the correct features are

enabled.

The action choices are

• Send Message (to the users of the selected database)

• Send Message to All (to the users of all databases)

• Open (the selected database)

• Open All

 Figure 27.15
 Manage
clients.

ptg8106388

661Using Admin Console

27

C
H
APTER

• Close (the selected database)

• Close All

• Verify (the selected database)

• Verify All

• Pause (the selected database)

• Pause All

• Resume (the selected database)

• Resume All

• Remote (the selected database)

• Upload Database

 Figure 27.16
 Manage data-
bases.

 tip
You use the Databases section to
open, close, and pause databases,
as well as to send messages to
database users without having
to identify them on the Clients
display. Pausing a database leaves
it open, but flushes the cache and
prevents reading or writing. It is
most frequently used to create a
copy of the database while it is
technically open but not in the
middle of processing. You can also
right-click (Windows) or Ctrl-click
(OS X) on the database file for a
contextual menu. Resume is the
command to leave the pause state.

ptg8106388

FileMaker Server and Server Advanced662

V

PA
RT

 Schedules
FileMaker Server includes a powerful scheduling feature, as shown in Figure 27.17 .

 Figure 27.17
 Schedule
events.

There are four types of events you can schedule:

 • Backups

 • Verifications

 • Execution of scripts and batch files

 • Messages

Using the scheduling feature, you can create, duplicate, delete, or

edit schedules; you also can select them and execute them manu-

ally. Note that you can enable each schedule with the check box

to the left of its name.
You will be walked through your choices when you create or edit

a schedule. For a backup schedule, those choices are as follows:

 • Select a task (backup, database verification, run a script, or send a message).

 • Select from several predefined schedules (daily, weekly, and so forth).

 tip
You can also enable all individu-
ally enabled schedules with the
check box at the top of the list.
This capability allows you to
temporarily turn off all schedules
without changing each one’s sta-
tus. You might want to do this for
diagnostic purposes if you are
experiencing slowness.

ptg8106388

663Using Admin Console

27

C
H
APTER

 • Select the databases to back up.

 • Select the location to which they will be backed up. You also have a choice to verify the backup.

This step takes more time, but it means that the backup copy is correct. If you can schedule

backups to run overnight when there are few users of the system, this is a useful option. If

you are automatically backing up databases, set your tape backup to back up the files from the

backup folder, not the live databases. That way, you can avoid issues with backing up live data-

bases that may temporarily be inconsistent.

 • Choose the number of backups to be kept. They will be in a single time-stamped folder at the

path you specified in the previous bullet. You also have the option to verify or clone the back-

ups. That provides you with more security but it puts a greater burden on the server. If you can

schedule the backups for the middle of the night, this may not be an issue.

 • When you choose the predefined schedule, you are given the opportunity to refine or change the

schedule, giving it a start and stop date, selecting specific days of the week (such as omitting

weekends), and specifying how often each day the schedule should be run. You can also specify

the number of backups to keep.

 • Name the schedule.

 • You can specify an email notification to be sent. If you have asked to verify the backups, the

verification status will be shown in the email. Note that you can have several recipients for the

email notification. What this can mean is that instead of someone having the task of checking

the backup schedule in the morning, all that has to happen is a check of email—not an extra step

involving the database.

 • The last step is a summary of the schedule. This information is also shown at the bottom of the

Schedules window shown previously in Figure 27.17 .

 tip
Set up a backup schedule, ideally at least once a day with an email notification. Back up the databases to a known loca-
tion, and then, if you have an automated file backup, copy the backup files to another disk, tape, or whatever storage
you are using. Make certain that the schedule of the file backup is set for a sufficiently long time after the database
backup so that the files are created. For example, schedule the FileMaker database backup for 1 a.m. and the file
backup for 5 a.m. Check periodically to see how long the FileMaker backup is taking (the email notification will help).
Back up the folder that is created. FileMaker will name it with the backup and the date (Daily_2012_02-21-2334, for
example). If you are backing up the backups to tape or some other storage medium, you may simply be able to back up
the entire contents of the Backups folder.

FileMaker Server now performs a live backup that requires significantly less time when the data-

bases are unavailable. At the beginning of the backup process, FileMaker Server flushes the cache

so that any data saved in memory is written to disk. Then it creates a dirty copy of the file. Users

can still access and modify the original file while this copy is being made. After that’s finished, the

live database is paused and compared to the dirty copy; incremental changes are made to the copy

so that it reflects the current state of the live file. The pause required for the incremental update is

usually quite short and may not even be perceptible to users.

ptg8106388

FileMaker Server and Server Advanced664

V

PA
RT

The Schedule assistant for scripts and email messages is quite similar. Note that you can run scripts

from FileMaker or from your operating system, so the capabilities are quite large. In the case of

FileMaker scripts, you select the database and provide the login information; in the case of system

scripts, you choose the file.

 � For an additional backup strategy, see “Using Progressive Backups,” p. 670 .

 Statistics
The Statistics window provides statistics, as shown in Figure 27.18 .

 Figure 27.18
 Review statis-
tics periodi-
cally.

For each parameter, you can see the current, average, low, and peak values. Here’s a list of some of

what’s monitored. Other items, such as times per call, are self-explanatory:

 • Clients— This tells you the number of connected FileMaker Pro, Instant Web Publishing, Custom

Web Publishing, and ODBC/JDBC clients.

 • Cache Hit %— This number indicates how often FileMaker Server is finding the data it’s looking

for in the cache. Here, you want to see a number over 90%. Much less than that, and FileMaker is

looking to the disk too often. In that case, it’s a good idea to increase the size of the RAM cache

on the Database tab of Database Server configuration. If the RAM cache is already as high as it

can allowably go, you might want to consider adding more RAM to the machine, unless you’ve

ptg8106388

665Using Admin Console

27

C
H
APTER

already reached the limit of 800MB of cache memory, which will be reached at 4GB of system

RAM.

 • Cache Unsaved %— Like many database servers, FileMaker Server sets aside an area of RAM (of

a size configured by the administrator) to use as a cache. When a user makes a request for data,

FileMaker Server checks first to see whether the data is in the cache, and if so, it fetches it from

the cache, more quickly than it could fetch it from disk. Over time, the contents of the cache are

written out to disk. The period over which this occurs is governed by a setting on the Databases

tab’s Database Server configuration. The setting is Cache Flush Distribution Interval. For exam-

ple, if that value were set to 1 minute, FileMaker would attempt to write the whole cache out to

disk over the course of a minute. The Cache Unsaved % should ideally be around 25% or lower. If

it’s much above that, you might want to shorten the length of the cache flush period. Having too

much unsaved data in the cache increases the odds of data corruption in the event of a crash.

 • Disk KB/Sec— This gives you some idea of how much data is actually being written to disk over

a given period. This is to some degree a measure of the extent to which the database files are

being changed. If the files are being predominantly read from, the disk write activity should be

low. If the files are constantly being written to, disk activity will be high. Keep an eye on this

number if you expect that hard disk performance may be a bottleneck.

 • Network KB/Sec— Average data transfer per second. This number tells you the extent to which

the raw network bandwidth of the machine is being used up.

If you are having performance problems, this is the raw material that will help you to track down

whether they are network, processor, memory, or other problems.

 Log Viewer
The Log Viewer is shown in Figure 27.19 . You can filter log entries by date and by the specific mod-

ules you want to view. Buttons are available to refresh the list as needed and to export data.
Log Viewer makes it easy to view the logs and to track down issues. If something unusual happens,

look at the Log Viewer before anything else. The columns are sortable by clicking their titles. In

addition, clicking a single log entry can provide more details at the bottom of the Log Viewer.

 Configuration
The Configuration section of Admin Console lets you adjust settings as necessary. Most of the time,

you will set and forget them: It is the Administrative settings that you use on a routine basis. Figure

27.20 shows the Configuration section. As you can see, there are four sections of the display, with

links within each one. As you will see, those links take you directly to tabs.

ptg8106388

FileMaker Server and Server Advanced666

V

PA
RT

 Figure 27.19
Use the Log Viewer
to troubleshoot
issues.

 Figure 27.20
 Configure the
databases.

ptg8106388

667Using Admin Console

27

C
H
APTER

 General Settings
The general settings are shown in Figure 27.21 . You might want to compare the tabs with the

General Settings links shown previously in Figure 27.20 .

 Figure 27.21
 Control admin-
istrative set-
tings.

Also in this area you can rename the FileMaker Server or change the administrator’s name and

address; you can configure Admin Console to be able to be run only from certain IP addresses, and

you can set the Auto Start options so that the Database Server and Web Publishing Engine start up

when the computer starts. You can also change the Admin Console password and account name.

The Email Notifications tab lets you set up email to be sent from FileMaker Server, as you see in

Figure 27.22 . Note that these messages are sent directly from FileMaker Server to an SMTP server—

you do not need to install a separate mail application on your server computer.

 Administrator Groups
You can set up administrator groups so that various people can control FileMaker Server. The pass-

word you create for the initial installation need not be shared by everyone who manages the server

if you use administrator groups. As you see in Figure 27.23 , you can add any number of groups.

Each group can manage a folder in your databases directory. Also, as you can see in Figure 27.23 ,

you can set up a start page for each group. Note that Administrator Groups are available only with

FileMaker Server Advanced.

ptg8106388

FileMaker Server and Server Advanced668

V

PA
RT

 Figure 27.22
 Send SMTP
mail from
FileMaker
Server.

 Figure 27.23
Set up adminis-
trator groups.

ptg8106388

669Using Admin Console

27

C
H
APTER

In addition, you can set specific privileges for a group, as shown in Figure 27.24 . This enables you

to show that page when a member of a group logs in. Particularly in the case of settings that are

not often modified, a reminder of how to set them (not just how to use FileMaker Server but how to

abide by the organization’s standards and policies) is useful.

 Figure 27.24
 Set privileges for a group.

 Database Server
The Database Server section provides the heart of your configuration settings. Here, you can set lim-

its on the number of users, turn on secure communications, and set the default folders for backups

and additional databases. Under FileMaker Pro Clients, you can use the Directory Assistant to select

an external LDAP directory to be used.

You can specify the maximum number of FileMaker Pro clients that can connect at one time on the

FileMaker Pro Clients tab, and on the Databases tab you can control the maximum number of files

that FileMaker Server will try to open. (You control the maximum number of web clients in the Web

Publishing section.)

You can also specify the amount of RAM to set aside for a database cache on the Databases tab.

Admin Console lets you know what it thinks the maximum allowable cache size is, based on total

available RAM. You can improve performance on 64-bit systems by setting the cache to the maxi-

mum of (MB of Physical RAM − 128MB) / 4.

ptg8106388

FileMaker Server and Server Advanced670

V

PA
RT

Using Progressive Backups

In addition to scheduled backups, you can take advantage of progressive backups which were
implemented first in FileMaker Server 12. You turn them on from the Folders tab of Database
Server as shown at the bottom of Figure 27.25 .

 Figure 27.25
 Use progressive backups.

When you turn on progressive backups, FileMaker Server makes a complete backup of all its
files. This can take time: In many cases, instead of thinking about doing this overnight, think
about doing it over a long weekend. If that isn’t enough time, it can still continue to run while
users are accessing the databases, so if you have a period of time in which the system is lightly
used, that might be the time to do it.

You assign a path for the progressive backup as shown at the bottom of Figure 27.25 . As
changes are made, they are stored in a log. Periodically, at periods from 1 to 60 minutes (you
set this at the lower right), the changes are merged into a new backup. This mechanism is much
faster than periodic large-scale backups.

Despite this, many people suggest that you use both strategies instead of choosing one of
them. After the initial setup is performed, progressive backups impose a very slight extra load
on the system in most cases.

ptg8106388

671FileMaker Extra: Best Practices Checklist

27

C
H
APTER

 Web Publishing

Web publishing sections are discussed in the relevant chapters.

 � For more information on Instant Web Publishing, see Chapter 24 , “Instant Web Publishing.”

 � For more information on PHP and XML, see Chapter 25 , “Custom Web Publishing with PHP and

XML.”

 ODBC/JDBC
The last item in the Configuration section lets you turn on ODBC/JDBC sharing so that other xDBC

clients can connect to FileMaker databases.

FileMaker Extra: Best Practices Checklist
Much of the work of server maintenance and administration consists of diligently following a rou-

tine. For each server or service you maintain, there should be a checklist of necessary tasks. Some of

these you have to do only once, when you set things up. Others are recurring tasks that you should

attend to carefully. In this section, we present a series of considerations for setting up and maintain-

ing a FileMaker Server installation.

If you’re working with network staff or administrators who don’t have previous experience with

FileMaker, offer them this list as a handy overview of the essentials of maintaining a FileMaker

Server.

 Determine Network Infrastructure
You’ll want to run FileMaker traffic over the fastest network possible. Before doing anything about

a server machine proper, make sure that you have a handle on prevailing networking conditions.

What’s the topology of the network over which FileMaker will run? Is it fully switched or are hubs

involved? What’s the minimum speed of links within the network? With what other services will

FileMaker traffic be competing? Knowing the answers to all these questions can help you make the

right hardware choices and will give you a leg up on diagnosing any later problems that appear to

be network related.

 caution
Progressive backups rely on being able to manage the files in the progressive backup directory that you have provided.
If you need to restore from a progressive backup, copy that file. Do not move files in the progressive backups directory,
and do not open them directly with FileMaker Pro. Always copy them to another directory and then proceed.

ptg8106388

FileMaker Server and Server Advanced672

V

PA
RT

 Purchase Hardware
We discussed ideal hardware characteristics earlier in the chapter. Simply put, buy the best machine

you can afford. Get a machine with one or more fast processors, a healthy dose of RAM, fast disk

storage, and consider a hardware RAID configuration), and a networking capability that matches the

prevailing speed of your network. Expandability is also a good idea: Additional drive bays, external

hard drive connectivity, and multiple slots (for additional or upgraded networking capability, for

example) are all desirable.

 Install Software
Use the latest version of an approved operating system, with all relevant patches and updates.

Avoid enabling any other services on the machine except for those strictly necessary for system

administration. In particular, avoid file sharing as much as possible. If it can’t be avoided, make sure

you do not enable file sharing for those areas that contain the hosted database files; otherwise, you

run the risk of file corruption.

Install FileMaker Server and make sure that all appropriate updates are applied. Make sure that your

version of FileMaker Server is compatible with both the operating system and, if applicable, the ser-

vice pack level of the operating system. Make sure that all drivers are up to date, especially drivers

for critical features such as disks. Make sure that the BIOS and firmware for the machine are up to

date as well.

It’s a good idea, if possible, to put the FileMaker Server data on its own volume, separate from the

volume containing the applications and operating system. Here are a few more useful tips for oper-

ating system configuration:

 • Disable any disk-indexing software.

 • Configure any virus-scanning software so that it does not scan the FileMaker data files for

viruses.

 • On Windows, turn off Volume Shadow Copy.

 • On Windows, set the network throughput in File and Print Sharing to Maximize Data Throughput

for Network Applications.

 • On Windows, set your virtual memory paging files to a specific size instead of allowing them to

grow as needed.

 Configure FileMaker Server
Configure FileMaker Server to a level appropriate for your expected usage (see the detailed notes

earlier in the chapter). Bear in mind that it’s worthwhile to try to use only those resource levels (for

ptg8106388

673FileMaker Extra: Best Practices Checklist

27

C
H
APTER

example, maximum numbers of connected clients and hosted files) that you think you’ll need. Here

are some other quick rules of thumb:

 • Set the cache to half the allowable maximum and increase it if the cache hit rate dips much

below 90%.

 • Set the cache flush interval to 1 minute. Fast, modern hard drives can flush most or all of even an

800MB cache in that period.

Deploy Databases and Schedule Backups
Decide on your database directory structure—that is, how you’ll group databases into directories

on the server. Decide whether to use an alternative database directory (but make sure that it’s on a

local hard drive, not on a networked volume!).

Regardless of your choice, establish backup schedules that provide you and your organization with

an appropriate level of security. How much data can you afford to lose? Decide on the answer and

back up accordingly. Remember that local backups by themselves are not sufficient security: You

should make provisions to transfer this data to offline storage such as a tape backup. Finally, con-

sider how many backups you want to keep in which place: how many on disk, and how many on

offline storage such as your tape backup.

 Monitor Usage Statistics
Keep a careful eye on usage statistics, especially early on when usage patterns are being estab-

lished. Be alert for signs of inappropriate configuration, such as a low cache hit percentage or a

high amount of unsaved data in the cache. Make sure that your network bandwidth continues to be

adequate.

 Recheck Performance
In addition to checking statistics and the logs, continually check the perceived performance of your

databases. Users complaining that “FileMaker is slow” do not distinguish between unindexed

searches and server configurations. Especially if you are using FileMaker Server Advanced, monitor

performance and reconsider the deployment across multiple computers from time to time.

Stay on Top of Java
Because Admin Console uses Java, which is a shared resource, keep an eye out for Java errors

when you launch it. If you can connect to Admin Console from one computer but not another, Java

may be the issue. Clear Java cache files and revert as much as possible to a clean Java installation.

ptg8106388

FileMaker Server and Server Advanced674

V

PA
RT

 Monitor Log Viewer
Check the Log Viewer periodically to make sure that things are operating smoothly.

Keep Current with Software Updates
It should go without saying, but you’ll want to keep current with all updates and patches to

your operating system and to all software packages installed on the server, including, of course,

FileMaker Server itself. You should monitor the updates that are available and probably not auto-

install updates that might cause problems with FileMaker. In general, the FileMaker website (either

TechTalk or the KnowledgeBase) will have information about major environmental updates soon

after they are released (particularly if there is a compatibility problem).

ptg8106388

 SYMBOLS
“ (quotation marks), 414

& (concatenation) operator, 219

+ (plus signs), 420

+ (addition) operator, 219

. (periods), 232

 A
About tabs, 527

Abs function, 237

Accessibility Inspector,
402-403

accessing . See also security
administration, removing,

631
controlling data access,

348 - 349
CWP, 600 , 602
databases, 39 , 522 . See also

ODBC
drivers, 523
file-level security, 359 - 364
files, 357
Full Access Privileges, 259 ,

347
GetNthRecord function, 438
interfaces, 402 - 404
Manage Database dialog

box, 80 - 81
multiple files, 205
mobile devices, 28
passwords, 586
privilege databases, 515
Script Debugger, 507
sessions, testing, 333

accounts
Admin Console, 651
managing, 344
multiple files, 365
multiuser deployment, 326
security, 343 - 346

ACID tests, 327 - 328

Actual Open Source Databases
driver, 527

Add Expression button, 509

Add Field button, 150

Add Fields dialog box, 180

Add Newly Defined Fields to
Current Layout, 149

adding
calculations, 509
comments, 221- 222 , 488 - 489
external data sources,

206-207 , 538 - 541
external tables, 209 - 210
fields, 382 , 540

comments, 86
layouts, 149

files, 17 , 50
objects to layouts, 144
parts, 131 - 132
pause states, 476
records, 77 , 182 - 186
relationships, 175 - 176 ,

195 - 197
returns, 222
script logs, 329
spaces, 222
summary fields, 292
tab control objects, 148
tables, 174 - 175
TasksAfterDate relationship,

200

themes, 382 - 384
Web Viewer, 369
widgets, 183

addresses
hosts, specifying, 533
modifying, 372
multiple, eliminating, 166
static IP, 643
Web Viewer, 368

Adjust Window script step, 472

Admin Console, 610 , 642 , 650
applying, 657 - 671
configuring, 667

administration, 527 . See also
managing

access, removing, 631
automatic layout manage-

ment, 116
FileMaker Server, 659 - 665
layouts, 112
passwords, retrieving, 364
server security, 359 - 360

administrator groups, config-
uring, 667

Advanced Options, recovery,
503

advanced scripting, 443
overview of, 443
parameters, 443 - 451
recursion, 458 - 459
results, 451 - 453
variables, 453 - 458

Advanced Web Publishing
Options dialog box, 580

aggregate functions, 241 - 242

INDEX

ptg8106388

aligning676

aligning
auto-aligning, 549
fields, 546
objects, 143

Allow User Abort script, 265

Alternate Background Fill fea-
ture, 134

alternating colors in rows, 304

Always Lock Layout Tools
preference, 144

analyzing
relational databases, 154
relationships, 160
structures, 154

Any Go To Layout script, 513

APIs (application program-
ming interfaces), 519

Appearance tab, 386

Apple, 377 , 471

application programming
interfaces. See APIs

applications
force-quits, 327
IWP, 578 , 593 - 597 . See also

IWP
ODBC, 520
rapid application develop-

ment, 10 - 11
registration, 24
technical specifications, 21
updating, 24
updating/upgrading, 511 - 512

Apply Theme Style command,
389

applying
Admin Console, 657 - 671
arrays, troubleshooting, 440
Bento data sources, 562
conditional formatting,

389 - 391
conditional logic, 272 - 273
constant global values,

202 - 204
custom dialogs, 275 - 276
Custom Menus feature, 490
Data Viewer, 509

DDR (Database Design
Report), 504 - 507

dynamic guides, 393
Evaluate function, 414
fields, 84 - 87

options, 97 - 108
types, 87 - 97

Find mode, 58 - 62
formulas to calculations,

218 - 219
grids, 391
guides, 392
Inspector to layouts, 137 - 143
Layout bars, 134
layouts to parts, 130 - 134
Let function, 447 - 449
lists, 289
Manage Database dialog

box, 172
master files, 630 - 631
multiple files in relation-

ships, 205 - 210
multiple layouts, 116 - 117
multitiered sorts, 74
Object Grid, 147
objects to layouts, 144 - 147
progressive backups, 670
Quick Find, 58
Quick Start screen, 24 - 26
related parent data in child

files, 186 - 187
relationships graphs,

537 - 543
Revert Record command, 44
screen stencils, 393 - 395
Script Debugger, 507 - 509
Set Error Capture script, 491
states, 387
Status toolbar, 35 - 39
styles, 385 - 386
subscripts, 261
supplemental fields, 541 - 543
tab control objects to lay-

outs, 147 - 149
tables, 81 - 84
timestamps, 240
tooltips, 141
triggers, 461
variables, 456

Web Viewer, 70 , 367 , 375
windows to documents, 474

architecture, 10 , 471
files, 520
ODBC, 520
windows, managing,

471 - 472

arranging
objects, 142
parts, 301

arrays
functions, 421 - 424
RAID, 644
text, parsing, 446
troubleshooting, 440

art Definition dialog box, 133 ,
299

ASCII characters, 373
transformations, 568 - 570
value rules, 102

Assets Starter Solution, 56

atomicity, 327

attaching
sort scripts, 68
triggers, 464 - 467

attributes
copying, 137 , 144
databases, 154 - 158
GetLayoutObjectAttribute

function, 396 - 422
join entities, 165
states, 387

audit trails, 329

Authenticate/Deauthenticate
scripts, 509

authentication
external, 362 - 363 , 642
user, 362

authorizations, 359 . See also
security

auto-aligning fields, 549

auto-entry options, 219 , 415
editing, 333
fields, 97 - 102
Filter function, 425
serial values, 329

ptg8106388

characters 677

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

automatic
layout management, 116
recurring imports, 547 ,

559 - 560 . See also importing
updates, configuring, 511

Avg function, 241

avoiding unclear code, 486 - 489

 B
backgrounds, parts, 133

backups, 334
open files, 641
progressive, 670
scheduling, 673

base tables, 178 . See also
tables

batch imports, 556 . See also
importing

behavior
buttons, 278
concurrency, 327 - 332
fields, 139
global fields, 325 - 326
summary fields, 96

Bento data sources, applying,
562

best practices checklists
fields, 102
FileMaker Server, 671 - 674

bind keys, 629

Blank Layout, 120

body parts, 130

bound runtime solutions, 627

branching scripts, 252

breakpoints, placing, 509

Browse mode, 32 , 481
dependencies, 499
reports, 289
Scripts menu, 263 - 264

browsers. See interfaces

bugs, tracking, 334

building . See also design; for-
matting

conversion solutions, 514
many-to-many relationships,

187
modal states, 475

built-in keys, 163 . See also
keys

Button Definition dialog box,
150

Button Setup dialog box, 184

buttons, 34 - 35 , 378
scripts, 278
triggers, 462

 C
caches, 665 , 673

Calculated Value option, 100

calculations, 215 , 407
adding, 509
aggregate functions, 241 - 242
arrays, 421 - 424
Choose function, 410 - 412
conditional functions,

240 - 241
context dependencies, 498
debugging, 409 , 492
Design functions, 244 - 245
device identification func-

tions, 245 - 246
Evaluate function, 413 - 415
expressions, 216
fields, 49 , 93 , 166
filters, 424 - 427
formulas

applying, 218 - 219
writing, 216 - 218

functions, 229 - 240
creating custom libraries,

441 - 442
customizing, 427 - 429

Get functions, 242 - 244
GetField function, 412 - 413
GetNthRecord function,

438 - 439
logical functions, 407 - 420
lookup functions, 415 - 419
mismatching, 109
mobile functions, 246

overview of, 215 - 219
padding data, 572
Self function, 469
slowness, 494 - 495
Specify Calculation dialog

box, 219 - 229
summary fields, 301 - 303
text, formatting, 419 - 421
timers, 468
triggers, 461
troubleshooting, 247 - 250 ,

440 - 441 , 490 - 492

calendars
Gregorian, 49
pop-up, 45 ,

capturing
errors, 589
Set Error Capture script,

265 - 266 , 491

cardinality, 159
Relationships Graph, 177

Cartesian products, 204 - 205

Cascading Style Sheets. See
CSSs

case
functions, 234
managing, 266
statements, 222

Case() statement, 241

case studies, attributes/enti-
ties, 156 - 158

categories, Choose function,
410 - 412

Ceiling function, 236

Char() function, 238 , 469

characters, 82 . See also naming
ASCII, 373
converting, 469
filters, 425
functions, 238
transformations, 568 - 570
value rules, 102

ptg8106388

charting678

charting, 283
overview of, 315 - 319
reports, 283 . See also reports

check boxes, 45

checklists, best practices, 102

checks, consistency, 502 , 642

child data
parent data, 186 - 187
viewing, 178 - 181

Choose function, 410 - 412

clients, 524 . See also FileMaker
Pro

functionality, 522
managing, 660

closing
files, 365
HTML sections, 610
splash screens, 630
triggers, 462 , 464

code
errors, 491 . See also trouble-

shooting
FileMaker PHP APIs, 607 - 610
modular, 489
unclear, avoiding, 486 - 489

Code() function, 238 , 469

colors
background parts, 133
rows, alternating, 304

columns, 13 , 30
flat-file data sources, import-

ing, 546 - 553
viewing, 499
width, 127

comma-separated text. See
CSV

commands, 397
Apply Theme Style, 389
Copy, 499
Copy Object Style, 388
Customize Status Toolbar,

135 - 137
Delete Record, 37
Export Field Contents, 572
File Options, 467
Find, 490
-find, 616

Import Records, 547 , 561
Manage Scripts, 252
menu, accessing shortcuts,

78
New Record, 37
Open, 40 , 324
Paste Object Style, 388
Recover, 501
Resource Center, 26
Revert Record, 44 , 52
Save, 378
Undo, 44
Undo Styles, 386

comments, 335
adding, 221 - 222
applying, 488 - 489
fields, adding, 86
PHP, 607
scripts, 259 - 260

committing records, 590

comparison
CWP to IWP, 600 - 601
equality, 210
operators, 616

compatibility, 522
Web Compatibility pop-up,

589

complex many-to-many rela-
tionships, 166 - 168

compliance, ACID tests, 327

components
ACID tests, 327
triggers, 462

concurrency, multiuser deploy-
ment, 327 - 332

conditional formatting,
389 - 391 , 468

multiple layouts, 419

conditional functions, 240 - 241

conditional logic
applying, 272 - 273
errors, 280

conditional privileges, 349

conditions
nonequality, 198
OR, troubleshooting, 211
searching, 491

configuring
Admin Console, 667
administrator groups, 667
charts, 315 - 319
CWP, 603
databases, 666
deployment, 19 - 21
DSNs, 527 - 535
fields, 171
FileMaker Server, 646 ,

665 - 672
importing, 553 - 554
IWP, 578 - 587

FileMaker Pro, 579 - 582
FileMaker Server

Advanced, 582 - 584
Layout Setup dialog box,

124 - 127
many-to-many relationships,

187 - 190
modal dialogs, 475 - 478
objects, 309
ODBC, 520 - 521
one-to-many relationships,

170 - 178
PHP

privileges, 604
security, 604

plug-ins, 636
recurring imports, 559 - 560
relationships, 163
Specify Calculation dialog

box, 223 - 226
tables, 170 - 173
updates, 511
value lists, 188 - 190
variables, 454
Web Viewer, 369

options, 373
Set Web Viewer script

step, 373 - 374
windows styles, 473

connecting . See also sessions
databases, 526
external SQL data sources,

519

ptg8106388

customizing 679

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

FileMaker Server Advanced,
523

MySQL, 527 - 531
networks, 644
ODBC (Open Database

Connectivity), 519 - 520
remote, navigating, 41 - 42
servers, troubleshooting, 496
specifying, 529
SQL, 544
testing, 531 , 535
troubleshooting, 496 - 497

Connection Pooling tabs, 527

consistency, 327- 328 , 486
checks, 502 , 642

constants
global values, 202 - 204
URLs, opening, 371

constraints
IWP, 588 - 589
requests, 62
system, 429

contacts
one-to-many relationships,

160
tables, 170
Web Viewer, 368

Contacts Starter Solution, 115 ,
127

layouts, 116

containers, fields, 49- 50 ,
89 - 93 , 605

exporting, 572 - 573
IWP, 593

context
calculations, 226
dependencies, troubleshoot-

ing, 497 - 500
explicit table, 247
layouts, 121 - 123
scripts, 268
tables, 498 - 499

controlling
data access, 348 - 349
setting data, 266 - 268

controls, 378
IWP, hiding, 595
Web Viewer, 373 - 374

conventions
naming

fields, 84
layouts, 129
tables, 81 - 82

programming, 432

converting
characters, 469
previous versions, 511

files, 516
migrating to new file for-

mats, 512 - 513
planning, 513 - 514
preconversion tasks,

514 - 515
updating/upgrading,

511 - 512
themes, 513

Copy command, 499

Copy File Blocks As-Is button,
503

Copy Object Style command,
388

copying
attributes, 137 , 144
fields, 152
found sets, 564
layout objects, 144
styles, 388 - 389

corruption, databases, 501 . See
also troubleshooting

Count function, 241

crashes, 327 , 500 . See also
troubleshooting

Create Field Press Tab, 171

criteria, multiple match,
197 - 201

cross-product relationships,
formatting, 204 - 205

crosstalk, troubleshooting, 497

CSSs (Cascading Style Sheets),
591

CSV (comma-separated text),
569

Current Script option, 477

current table context, view-
ing, 546

custom dialogs, applying,
275 - 276

Custom Menus feature, apply-
ing, 490

Custom Web Publishing. See
CWP

Customize Status Toolbar com-
mand, 135 - 137

customizing
automatic recurring imports,

559 - 560
buttons, 278
charts, 315 - 319
colors, rows, 304
databases, ODBC, 520 - 521
deployment, 19 - 21 , 632
development software, 14
DSNs, 527 - 535
extended privileges, 356
fields, 171
functions, 334 , 427 - 429 ,

441 - 442 , 489
images, 630
importing, 553 - 554
interfaces

accessibility, 402 - 404
menus, 395 - 402

IWP, 578
lists, 289
many-to-many relationships,

187 - 190
menu elements, 398
modal dialogs, script pause

state, 475 - 478
objects, sliding, 309
one-to-many relationships,

170 - 178
printing, 126
relationships, 163
reports, 304 - 309
screen stencils, 393 - 395

ptg8106388

customizing680

scripts, 252 - 263
sorting, 67
Status toolbars, 36 - 39 , 136
tables, 170 - 173
value lists, 188 - 190
Web Viewer

options, 373
Set Web Viewer script

step, 373 - 374
window styles, 473

CWP (Custom Web
Publishing), 258 , 512 , 575 ,
599 , 626

FileMaker Server, preparing,
604 - 605

IWP, comparing to, 600 - 601
overview of, 599 - 600
PHP, 604 - 610
planning, 601 - 603
sessions, 621 - 622
technology, selecting, 603
triggers, 464
troubleshooting, 622 - 623
URLs, searching, 614 - 618
XML, 610 - 620

 D
data

centers, external, 645
loss, troubleshooting, 71
source names. See DSNs
types, 223

mismatching, 109
troubleshooting, 247

Data Viewer, 509

Database Design Reports. See
DDRs

Database Homepage, 586

database management sys-
tems. See DBMSs

Database Server, 669

DatabaseNames function, 245

databases,
accessing, 39 , 522 . See also

ODBC

bugs, tracking, 334
configuring, 666
connecting, 526
corruption, 501 . See also

troubleshooting
CWP, preparing, 601 - 602
deployment, 673
elements, 487
FileMaker

Database Server, 600
Server hosts, 657

formatting, 75 - 80
identifying, 529
interactions, 520
managing, 43 , 661
MySQL. See MySQL
naming, 486
navigating, 40
ODBC, configuring, 520 - 521
opening, 39 - 43
overview of, 28 - 29
planning, 154
privilege, 515
relational, 153 . See also rela-

tional database design
selecting, 530 , 534
servers, 646
sharing, 42
software, overview of, 12 - 17
SQL. See SQL
troubleshooting, 71 - 72

databases administrators. See
DBAs

dates
fields, 46 , 48 , 88
functions, 238 - 240

DBAs (database administra-
tors), 522

DBMSs (database management
systems), 522

DDRs (Database Design
Reports), 18 , 504 - 507 , 515 , 637

debugging, 485
calculations, 409 , 492
Script Debugger, 507 - 509
tools, 18

declarative languages, 519

declaring variables, 407

dedicated find layouts, 480 - 482

defaults
extended privileges, 355
scripts, 257 . See also scripts
themes, 386
timers, 468

Define File References dialog
box, 637

defining
calculation fields, 217
fields, 174 , 515
layouts, 122
multiple match criteria,

197 - 201
noncalculation fields, 98
parts, 133 - 134

Delete Record command, 37

deleting
parts, 132
restrictions, troubleshoot-

ing, 192
styles, 389
tables, 83
text, formatting, 420

delimited values, 241

delivering reports, 309 - 314

dependencies
context, troubleshooting,

497 - 500
keys, eliminating fields, 166
layouts, 267 , 497
modes, 499

deployment
customizing, 632
databases, 673
FileMaker Server, 639 - 640
IWP, 587 - 597
Kiosk mode, 633 - 634
multiuser, 323 - 324
options, 19 - 21 , 625 - 626
peer-to-peer hosting, 19
runtime, 627 - 632
Solution Options, 628 - 631

design . See also configuring
DDRs (Database Design

Reports), 504 - 507
interfaces, 190 , 384 - 389
iterations, 158

ptg8106388

editing 681

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

layouts, IWP, 591 - 593
multiple tables, 169
relational databases, 153

analyzing, 154
attributes/entities,

154 - 158
keys, 161 - 163
overview of, 153
relationships, 158 - 161

themes, 378 - 384

Design functions, 244 - 245

Developer Utilities dialog box,
626

developers,
fields, 488
plug-ins, 634
third-party plug-ins, 21
tools, 10

development
rapid application, 10 - 11
rapid multitable, 192
software, customizing, 14

device identification functions,
245 - 246

diagrams
ER, 515
ERDs, 154- 155 , 193
relationships, 159

dialog boxes
Add Fields, 180
Advanced Web Publishing

Options, 580
Button Definition, 150
Button Setup, 184
Define File References, 637
Developer Utilities, 626
Edit Account, 346
Edit Custom Function, 431
Edit Find Request, 270
Edit Privilege Set, 348
Edit Relationship, 182 , 194
Edit Value List, 47 , 188
Field Options, 105
Format Button, 468
Import Field Mapping,

547 - 550 , 561
Layout Setup, 124 - 127 , 464

Manage Custom Functions,
430

Manage Database, 80 - 81 ,
171 , 195 , 519

Manage External Data
Sources, 206

Manage Security, 340
Manage Value Lists, 188
Network Settings, 496
New Layout Report, 289 - 295 ,

541
Open File, 26
Open Remote File, 42
Part Definition, 133 , 299
Part Setup, 132- 133 , 301
Portal Setup, 179
Sort Records, 67
Specify Calculation, 217 ,

219 - 229 , 226 , 509
Specify Field, 186 , 291
Specify Field Order, 570
Specify Fields, 188
Specify Solution Options, 628
Storage Options, 224
Tab Control Setup, 148
Table View Properties, 126
Use Manage Database, 76

disconnected table occur-
rences, 480

distant data, summarizing, 295

Div function, 237

Do Not Evaluate If All
Referenced Fields Are Empty
box, 223

documents, 18 . See also dia-
grams

ERDs, 154
Excel

importing from, 553
saving, 70

PDF, saving as, 70
PHP, 607
plug-ins, 634
solutions, 515
windows, applying, 474

dragging files, 546 . See also
importing

drivers
accessing, 523
installing, 522 - 524
managing, 526 - 527
ODBC, 520 , 526
selecting, 528

drop-down fields, 45 . See also
fields

dropping files, 546 . See also
importing

DSNs (data source names), 522 ,
525 - 526

configuring, 527 - 535
Windows, 532 - 535

duplicating . See copying
found sets, 564
between tables, 564

durability, 327- 328

dynamic file paths, 457

dynamic guides, applying, 393

dynamic reporting, 298

 E
ease of use, 9

Edit Account dialog box, 346

Edit boxes, 45

Edit Custom Function dialog
box, 431

Edit Find Request dialog box,
270

Edit Privilege Set dialog box,
348

Edit Relationship dialog box,
182 , 194

Edit Script window, 257

Edit Value List dialog box, 47 ,
188

editing
auto-entry options, 333
external data sources, 207
IWP, 577
layouts, 136
records, 330

ptg8106388

editing682

scripts, 257 - 258 , 280
spell-checking, 139
value lists, 188

elements
arrays, 424
databases, 487
interfaces, 30
menus, customizing, 398
naming, 488
sessions, 325
sort scripts, attaching, 68
structures, passing, 449

eliminating
fields, 166
redundant data, 166
repeating data, 166

email
notifications, 642
reports, 315
SMTP, 642

Email Notifications tab, 667

enabling
CWP, 602
IWP, 579 - 587
Maintain Original

Proportions, 483
ODBC/JDBC privileges, 521
plug-ins, 636
XML publishing, 610

encryption, troubleshooting,
494

ending sessions, 582 , 597

enforcing fields, 470

entering
data in portals, 183
layouts, 112

entities
databases, 154 - 158
join, attributes, 165
one-to-many relationships,

160
one-to-one relationships, 160
relationships, notation, 159

entity-relationship diagrams.
See ERDs

envelopes, 120

equality comparisons, 210

ER diagrams, 515

ERDs (entity-relationship dia-
grams), 154- 155 , 193

many-to-many relationships,
164

multiple tables, 170
notation, 159

errors
calculations, 247
capturing, 589
layouts, 139
logs, 632
messages, 279
reproducing, 492
scripts, 581

managing, 264
troubleshooting, 490 - 491

searching, 492
Set Error Capture script,

265 - 266 , 491
traps, 333
troubleshooting, 485 . See

also troubleshooting
Web publishing, 581

Evaluate function, 413 - 415 , 447

evaluating
Do Not Evaluate If All

Referenced Fields Are
Empty box, 223

formulas, 93

EvaluationError function, 415

events
scheduling, 662
triggers, 462 - 464 , 467

Exact function, 233

Excel (Microsoft)
character transformations,

569
documents, saving, 70
files, importing from, 553
reports, saving as, 311

executing scripts, 479

Exit Script script, 451

exiting
layouts, 112
scripts, 260

explicit record commits, 594

explicit table context, 247

Export Field Contents com-
mand, 572

Export Records feature, 568 ,
573

exporting, 70 , 565
fields

containers, 572 - 573
selecting, 567 - 568

files, formatting, 567 - 570
to fixed-width formats,

571 - 572
formatted data, 570
grouped data, 571
large fields, 572 - 573
overview of, 565 - 568
records, 498
related fields, 570
scripts, 573

expressions
calculations, 216
parameter, 413

extend requests, 62

extending
functionality, 21
privileges, 354 - 357 , 604

Extensible Markup Language.
See XML

extensions
files, 512 , 556
folders, 635
runtime, 629

external authentication,
362 - 363 , 642

external data centers, 645

external data sources, 206 - 208

external files
importing, 545
tables, 517

external ODBC data sources,
537 - 539

ptg8106388

f i les 683

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

external SQL data sources
connecting, 519
ODBC (Open Data

Connectivity), 519 - 520

external tables, 209 - 210

 F
failures, planning, 490

Favorite Files, 26

features
accessibility, 403 - 404
Custom Menus, applying,

490
Export Records, 568 , 573
interfaces, 377 - 378
Modify Last Find, 62
navigating, 27 - 35
presentation, 499
privilege settings, 353 - 354
Self function, 468
windows, managing,

471 - 472

feedback, 389

Field Options dialog box, 105

fields, 75
adding, 382 , 540
aligning, 546
applying, 84 - 87
auto-entry options, 97 - 102
behavior, 139
calculations, 49 , 93 , 166 , 215 .

See also calculations
comments, adding, 86 , 489
containers, 49 - 50 , 89 - 93 , 605

exporting, 572 - 573
IWP, 593

copying, 152
dates, 48 , 88
definitions, 515
developers, 488
eliminating, 166
enforcing, 470
exporting, 567 - 568
formatting, 45 - 46 , 86 - 87 , 171
Furigana option, 108

global
behavior, 325 - 326
storage, 51
troubleshooting, 500

highlighting, troubleshoot-
ing, 483

Import Field Mapping dialog
box, 547 - 550 , 561

indexes, 106 - 108 , 494
large, exporting, 572 - 573
layouts, 149 - 151 , 291
managing, 304
match, 59

multiple tables, 176 - 178
updating records, 550

merging, 151 , 186
modifying, 470
naming, 78 , 84 , 109 , 487
navigating, 44 - 53 , 371
numbers, 48 , 88
options, 97 - 108
overview of, 29 - 30 , 75 - 81
pasting, 152
portals, managing, 181
radio buttons, modifying,

383
related, exporting, 570
repeating, 105 , 242 , 569
selecting, 220
settings, 139
sizing, 384
storage, 104 - 108
summary, 49 , 57 , 95

reports, 295 - 303
subtotals, 292

supplemental, applying,
541 - 543

TaskDisplay, 420
text, 48 , 88
time, 49 , 89
troubleshooting, 109 - 110
types, 48 - 49 , 87 - 97
validation, 102 - 104 , 109 , 218 ,

550

Fields category, 266

file-level access security,
359 - 364

File Options command, 467

FileMaker
Database Server, 600
Developer Subscription, 335
Go, 28 , 251 , 625
PHP APIs, 607 - 610
Pro

character transforma-
tions, 569

IWP, configuring, 579 - 582
navigating, 39 - 43 , 72 - 74
scripts, 251 - 252
sessions, multiuser

deployment, 324 - 326
Pro Advanced, 28
Server, 28

Admin Console, 657 - 671
administration, 659 - 665
best practices checklists,

671 - 674
configuring, 646 , 665 - 67 2
CWP, preparing, 602 ,

604 - 605
deployment, 639 - 640
hosting, 20
installing, 646 - 649
overview of, 639 - 645 ,

658 - 659
requirements, 643 - 645
running, 656 - 657

Server Advanced, 523
hosting, 20
IWP, configuring, 582 - 584

filenames, 626 - 627
modifying, 375

files
accessing, 357
adding, 17
architectures, 520
backing up, 641
closing, 365
converting, 516 . See also

converting
data between, passing, 451
Excel (Microsoft), importing

from, 553
extensions, 512
external, importing, 545
fields, copying/pasting

between, 152
flat-file data sources, import-

ing, 546 - 553

ptg8106388

f i les684

formatting
exporting, 567 - 570
migrating to new,

512 - 513
global storage, 51
importing, 50 , 551 - 552
launching, 332
lists, filtering, 364
local, opening, 40
maintenance, 501 - 504
master, applying, 630 - 631
moving, 546 . See also

importing
multiple , 205 - 210

importing, 554 - 558
security, 365 - 366

navigating, 43
opening, 254 , 365 , 496
output, formatting, 566
paths, dynamic, 457
PHP, placing, 605
recovery, 502
references, troubleshooting,

637
remote, navigating, 40
renaming, 626 - 627
restoring, 326
security, 358 . See also secu-

rity
sharing, 584 - 587
types, 556
Web Viewer, applying, 375

Filter function, 424 - 426

filters
calculations, 424 - 427
files, lists, 364

FilterValues function, 426 - 427

Find command, 490

-find command, 616

Find mode, 32 , 58 - 62 , 480

find requests, 62 , 270

Firefox, 611

firewalls
CWP, 622
FileMaker Server, 647 - 648
troubleshooting, 497

fixed-width formats, exporting
to, 571 - 572

flat files, 13 , 16
data sources, importing,

546 - 553

flexibility, 9

Floor function, 236

flow, applications, 593 - 597

folders
extensions, 635
multiple files, importing,

554 - 558

footers, 131 . See also headers

force-quits, 327

foreign keys, 163 , 165

forgotten admin passwords,
364

Form view, 33 , 54

Format Button dialog box, 468

Format Painter, 137 , 144

formatting
auto-entry options, 98
automatic recurring imports,

559 - 560
buttons, 278
charts, 315 - 319
conditional, 389 - 391 , 419 ,

468
data, exporting, 570
databases, 75 - 80
DDRs, 505 - 507
deployment, 19 - 21
DSNs, 527 - 535
external data sources,

206 - 208
fields, 45- 46 , 86 - 87 , 171
FileMaker Server, 665 - 671
files

exporting, 567 - 570
migrating to new,

512 - 513
output, 566

fixed-width, exporting to,
571 - 572

flat files, 546

importing, 553 - 554
interfaces, 389 - 395

accessibility, 402 - 404
styles, 384 - 389

IWP, 578
Layout Setup dialog box,

124 - 127
layouts, 119 - 130 , 391
links, IWP, 596
lists, 289
managing, 140
many-to-many relationships,

187 - 190
modal dialogs, 474 - 475
objects, sliding, 309
ODBC, 520 - 521
one-to-many relationships,

170 - 178
panes, 148
parts, 132
pause states, 475 - 478
records, 77
related records with non-

equijoins, 210 - 211
relationships, 163

cross-product, 204 - 205
global values, 202 - 204

scripts, 252 - 263
self-relationships, 201 - 202
serial key fields, 99
sorting, 67
Specify Calculation dialog

box, 223 - 226
Status value lists, 203
summary fields, 295
tables, 83 - 84 , 170 - 173 , 541
text

calculations, 419 - 421
deleting, 420
troubleshooting, 440

themes, 378 - 384
tools, managing relationship

graphs, 212
value lists, 188 - 190
variables, 454
Web Viewer, 369

options, 373
Set Web Viewer script

step, 373 - 374
window styles, 473
XML, 611

ptg8106388

GetLayoutObjectAttribute function 685

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

Formatting bars, 36

forms
fields, eliminating, 166
layouts, 111
normalizing, 166
redundant data, eliminating,

166
Standard Form, 119
views, 125

formulas
calculations, 215 . See also

calculations
applying, 218 - 219
debugging, 409
writing, 216 - 218

Evaluate function, 413
evaluating, 93
Excel, importing, 553
Let function, 408
scripts, troubleshooting, 247
simplifying complex, 428 - 429
Specify Calculation dialog

box, 219 - 222

forums, support, 511

found sets, 58 , 479 - 480
copying, 564
troubleshooting, 482

free trial software, 24 . See also
software

Full Access Privileges, 259 , 347

functionality, 126 , 492
clients, 522
extending, 21
FileMaker Pro, 39
modular, 452

functions
Abs, 237
aggregate, 241 - 242
arrays, 421 - 424
Avg, 241
calculations, 229 - 240 ,

441 - 442
case, 222 , 234
Ceiling, 236
Char(), 238 , 469
characters, 238
Choose, 410 - 412
Code, 238

Code(), 469
conditional, 240 - 241
Count, 241
customizing, 334 , 427 - 429 ,

489
DatabaseNames, 245
dates, 238 - 240
Design, 244 - 245
device identification, 245 - 246
Div, 237
Evaluate, 413 - 415 , 447
EvaluationError, 415
Exact, 233
Filter, 424 - 426
FilterValues, 426 - 427
Floor, 236
Get, 242 - 244
Get (LastError), 491
Get (TriggerKeystroke), 469
Get (TriggerModifierKeys),

469
GetField, 412 - 413
GetFieldName, 469
GetLayoutObjectAttribute,

395
GetNthRecord, 438 - 439
GetParam, 449
GetValue, 422
If(), 240
Int, 236
Last Visited Record, 100
LeftValues, 422
LeftWords, 232
Length, 232
Let, 407 - 409 , 414 , 440 ,

447 - 449
Location, 246
logical, 407 - 420
LookupNext, 416
lookups, 415 - 419
Max, 241
MiddleValues, 422
MiddleWords, 232
Min, 241
mobile, 246
Mod, 237
nested, 235 - 236
numbers, 236 - 238
PadCharacters, 435
parts, 229 - 231

PatternCount, 232
PersistentID, 245
Position, 232
private, 432
Quote, 414
Random, 238
recursive, 430 , 434
RepeatText, 434
RightValues, 422
RightWords, 232
Round, 236
selecting, 220
Self, 468 - 469
Substitute, 233 - 234
Sum, 241
summary fields, 96
TestStyleAdd(), 266
text, 231 - 235
TextColor, 419
TextFont, 419
TextSize, 419
TextStyleAdd, 420
TextStyleRemove, 420
time, 238 - 240
triggers, 468 - 470
Trim, 233 , 436
Truncate, 237
ValueCount, 422
WindowNames, 245 , 472
WordCount, 232

Furigana options, fields, 108

 G
General Settings, 667

general slowness, trouble-
shooting, 493 - 494

Get (LastError) function, 491

Get (TriggerKeystroke) func-
tion, 469

Get (TriggerModifierKeys)
function, 469

Get functions, 242 - 244

GetField function, 412 - 413

GetFieldName function, 469

GetLayoutObjectAttribute
function, 395

ptg8106388

GetNthRecord function686

GetNthRecord function,
438 - 439

GetParam function, 449

GetValue function, 422

global
fields, 489

behavior, 325 - 326
troubleshooting, 500

positioning system. See GPS
storage, 51
values , 202 - 204
variables, 456

Go to Related Record. See
GTRR

Google, Web Viewer tem-
plates, 372

GPS (global positioning sys-
tem), 246

gradients, 386

graphics . See images

graphs, 479
ODBC, 537 - 543
relationships, 176 , 193

external tables, 209 - 210
managing, 211 - 213

Gregorian calendars, 49

grids, applying, 391

groups
administrator, configuring,

667
exporting, 571
fields, selecting, 292
layouts, 136
objects, 142
records, searching, 57
repeating, eliminating, 166

GTRR (Go to Related Record),
478

found sets, 479 - 480
overview of, 478 - 479

guides
applying, 392
dynamic, applying, 393

 H
hard-coding requests, 269

hardware
purchasing, 672
sharing, troubleshooting, 493

headers
PHP, 607
titles, 130

Help menu, 26

heuristics, interfaces, 405

hiding
IWP controls, 595
layouts, 127 - 128

highlighting troubleshooting,
483

HIPAA (the Health
Insurance Portability and
Accountability Act of 1996),
339

history of multiple files, 205

home pages, IWP, 596

hosts, 524
addresses, specifying, 533
FileMaker Server, 20 , 657
FileMaker Server Advanced,

20
managing, 43
peer-to-peer hosting, 19 , 641

HTML (Hypertext Markup
Language), 575

sections, closing, 610
tables, 569

HTTP (Hypertext Transfer
Protocol), 10 , 575

Human Interface Guidelines
(Apple), 377- 378 , 471

hyperlinks, DDRs, 506

Hypertext Markup Language.
See HTML

Hypertext Transfer Protocol.
See HTTP

 I
identifying databases, 529

If() function, 240

images
customizing, 630
importing, 557 - 558

implementing triggers, 468 - 470

Import Action, selecting, 548

Import Field Mapping dialog
box, 547 - 550 , 561

Import Records command, 547 ,
561

importing, 70 , 545
automatic recurring imports,

559 - 560
Bento data sources, 562
Excel (Microsoft) documents,

553
external files, 545
FileMaker-to-FileMaker, 564
files, 50 , 551 - 552
flat-file data sources, 546 - 553
images, 557 - 558
layouts, 120
multiple files, 554 - 558
ODBC, 535 - 536
options, 553 - 554
records, 498 , 550
scripts, 263 , 558 - 561
starting, 546 - 547
tables, 552 - 553
text, 555 - 557
troubleshooting, 563
validation, 563

inability to contact servers,
troubleshooting, 496

incomplete highlighting rect-
angles, 483

incorporating reports into
workflow, 320 - 321

incremental evolution, plan-
ning, 513

indexes, 110 , 266
fields, 106 - 108
re-creating, 110
troubleshooting, 494

ptg8106388

labels 687

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

Indexing Service, 644

indicators, 548

infrastructure, networks, 671

Insert menu, 144

inserting. See adding
files, 50
specific information, 73

Inspector, 137 - 143

Install On Timer Script, 468

installing
drivers, 522 - 524
FileMaker Server, 646 - 649
plug-ins, 635
software, 672

Instant Web Publishing. See
IWP

Int function, 236

integration, SQL, 522

integrity, 52 - 53
security, 339
troubleshooting, 71

interactions . See also buttons
databases, 520
drivers, 338
triggers, 470

interfaces, 377
accessibility, 402 - 404
APIs, 519
databases, 153 . See also

databases
design, 190
elements, attaching sort

scripts, 68
formatting, 389 - 395
heuristics, 405
Human Interface Guidelines

(Apple), 471
Kiosk mode, 633 - 634
layouts, 111
menus

customizing, 395 - 402
sets, 398 - 402

multiwindow, 473 - 475
new features, 377 - 378
ODBC, 519 - 520
overview of, 30 - 35
scripts, 256 - 257

styles, 384 - 389
themes, 378 - 384
tools, layouts, 112
triggers, 470
View menu, 35
XML, viewing, 611

internal data-level security,
338

internal navigation, scripts,
268

Internet Explorer, 611

interoperability, 9

Inventory Summary Report,
288

IP (Internet Protocol)
addresses, 643

iPad, 377

iPhone, 377

isolation, 327- 329 , 492 . See also
troubleshooting

items
menus, 397
Status toolbars, 137

iterations, design, 158

IWP (Instant Web Publishing),
258 , 512 , 575 , 626

application flow, 593 - 597
constraints, 588 - 589
container fields, 593
controls, hiding, 595
CWP, comparing to, 600 - 601
deployment, 587 - 597
enabling, 579 - 587
FileMaker

Pro, configuring, 579 - 582
Server Advanced, config-

uring, 582 - 584
layout design, 591 - 593
overview of, 575 - 579
scripts, 589 - 591
security, 584 - 587
testing, 591
triggers, 464
troubleshooting, 597

 J
Japanese, 108

Java
caches, 673
Database Connectivity. See

JDBC
Runtime Environment. See

JRE

JDBC (Java Database
Connectivity), 10 , 519 , 575 ,
671

enabling, 653
privileges, 521

joins
nonequijoins, 194 - 195
self-joins, viewing, 202
tables, 163 - 165 , 191 , 486

JRE (Java Runtime
Environment), 645

 K
keyboards

fields, navigating, 45
optimizing, 72

keys
bind, 629
dependence, eliminating

fields, 166
design, 161 - 163
foreign, 163
multiple tables, 176 - 178
numeric values of modifier,

470
primary, 162 , 164
selecting, 539
table references, 163
unique. See unique keys

Kiosk mode, 20 , 626 , 633 - 634

 L
labels

layouts, 120
printing, 126
vertical, 120

ptg8106388

languages688

languages, 519

large fields, exporting, 572 - 573

Last Visited Record function,
100

launching files, 332

layers, objects, 142

Layout bars, applying, 134

Layout mode, 33 , 540

Layout Setup dialog box, 464

layouts, 30 - 32 , 111
automatic layout manage-

ment, 116
context, 121 - 123
customizing, 304 - 309
dedicated find, 480 - 482
dependencies, 267 , 497
design, IWP, 591 - 593
documentation, 515
fields, 149 - 151
formatting, 119 - 130
hiding, 127 - 128
importing, 120
Inspector, applying, 137 - 143
Layout Setup dialog box,

124 - 127
modal dialogs, building, 475
multicolumn, 126
multiple

applying, 116 - 117
conditional formatting,

419
searching, 62

naming, 129 , 488
New Layout/Report assis-

tant, 119
Object Grid, 147
objects, 395

applying, 144 - 147
naming, 140
resizing, 141

opening, 118
overview of, 111 - 115
parts, applying, 130 - 134
records, viewing, 152
re-ordering, 127 - 128
reports, 284
scripts, 254 , 278
security, 350 - 351

selecting, 287 , 291
Status toolbars, 134 - 137
tab control objects, applying,

147 - 149
tables

associating, 121
context, 498

tools, 136
triggers, 464 - 467
troubleshooting, 152
viewing, 286
Web Viewer, 367 , 369
width, formatting, 391

LDAP (Lightweight Directory
Access Protocol), 42

leading grand summary, 130

LeftValues function, 422

LeftWords function, 232

legible formulas, writing, 221

Length function, 232

Let function, 407 - 409 , 414 , 440 ,
447 - 449

libraries
Bento data sources, 562
functions, customizing,

441 - 442
scripts, 280 - 281

Lightweight Directory Access
Protocol. See LDAP

links
DDRs, 506
IWP, 596
Manage Favorites, 26

List view, 33

List View Report, 120

lists
applying, 289
databases, 13
files, filtering, 364
layouts, 111
pop-up, 479
values

context dependencies,
499

controlling access, 351
creating, 188 - 190
modifying, 47

views, 125

local files, opening, 40

local variables, overview of,
454 - 455

Location function, 246

locations
container folders, 606
hosts, specifying, 534

locking
objects, 142
records, 329 - 332

Log Viewer
monitoring, 674
troubleshooting, 665

logic
concurrency, 327 - 332
conditional, applying,

272 - 273

logical functions, 407 - 420

logs
errors, 632
IWP, 581 - 582
scripts, 328 - 329

Looked-Up Value option,
100 - 102

LookupNext function, 416

lookups
functions, 415 - 419
slowness, 495
triggers, 461

loops, 436
debugging, 509
scripts, applying, 274
testing, 280
troubleshooting, 495

lost data, troubleshooting, 504 .
See also troubleshooting

lost found sets, troubleshoot-
ing, 482

 M
Mac OS X

files, 556
Status toolbars, customizing,

36 - 37 , 136

ptg8106388

modifying 689

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

Maintain Original Proportions,
enabling, 483

maintenance
files, 501 - 504
Kiosk mode, 634
security, 342 - 343

Manage Custom Functions dia-
log box, 430

Manage Database Design, 492

Manage Database dialog box,
80 - 81 , 171 , 195 , 519

Manage Extended Privileges,
585

Manage External Data Sources
dialog box, 206

Manage Favorites link, 26

Manage Scripts command, 252

Manage Scripts window, 252 ,
256

Manage Security dialog box,
340

Manage Value Lists dialog
box, 188

managing
accounts, 344
architectures, 471
automatic layout manage-

ment, 116
cases, 266
clients, 660
concurrency, 327
CWP sessions, 621
data sources, 537 - 538
databases, 43 , 661
dates, 48
DBMSs, 522
drivers, 526 - 527
drives, 520
DSNs, 525 - 526
fields, 171 , 304
formatting, 140
hosts, 43
layouts, 112
multiwindow interfaces,

473 - 475
ODBC, 522 - 535

parts, 131 - 132
passwords, 364 , 527
portals, 181
relationship graphs, 211 - 213
routines, 51
script errors, 264
Scripts menu, 263 - 264
server security, 359 - 360
sessions, 324
settings, 253
tables, 212 - 213
thumbnails, 93
Tiny Task Management, 113
windows, 471 - 472

many-to-many relationships,
161 , 163 - 165 . See also rela-
tionships

complex, 166 - 168
creating, 187 - 190

many-to-one relationships,
159- 160

mapping, Import Field
Mapping dialog box, 547 - 550 ,
561

master files, applying, 630 - 631

match fields, 59
multiple tables, 176 - 178
records, updating, 550

matching
exact matches, specifying,

615
multiple values, 441

matrices, security, 341 . See
also security

Max function, 241

memory, RAM, 644

menus, 377
commands, accessing short-

cuts, 78
Custom Menus feature,

applying, 490
elements, customizing, 398
Help, 26
Insert, 144
interfaces, customizing,

395 - 402
IWP, 577
Scripts, managing, 263 - 264

sets, interfaces, 398 - 402
Show Compatibility, 258
View, 35

Merge format, 569

merging fields, 151 , 186

messages
errors, troubleshooting, 279
recovery, 504
reports, 315
validation, 52

metadata, 556

Microsoft Excel. See Excel
(Microsoft)

MiddleValues function, 422

MiddleWords function, 232

migrating to new file formats,
512 - 513

Min function, 241

mismatching
calculations, 109
data types, troubleshooting,

109

mobile functions, 246

mobility, 9- 10 , 18 , 28

Mod function, 237

modal dialogs
formatting, 474 - 475
script pause state, 475 - 478

modes, 30 , 32 - 33
Browse, 32 , 481

dependencies, 499
reports, 289
Scripts menu, 263 - 264

dependence, 499
Find, 32 , 58 - 62 , 480
Kiosk, 633 - 634
Layout, 33 , 540
Preview, 32
reports, troubleshooting, 319

Modify Last Find feature, 62

modifying
addresses, 372
auto-entry options, 98
case functions, 234
colors, rows, 304
fields, 470

ptg8106388

modifying690

filenames, 375
found sets, 58
images, 558
layouts, width, 391
menus, 395 - 402
names, 627
passwords, 345
sorting, 67
states, 385
structures, calculation fields,

166
styles, 385
Table view, 303
tables, 83
text, strings, 231
themes, 380 - 382
value lists, 47
windows, 472

modularizing
code, writing, 489
functionality, 452
scripts, 450

monitoring
Log Viewer, 674
performance, 341
statistics, 673

moving
files, 546 . See also importing
objects, 146
ODBC data, 535 - 536
parts, 301
scripts, 263
windows, 472

MS SQL Server, 524

multicolumn layouts, 126

multihop GTRR yields, 480

multiple addresses, eliminat-
ing, 166

multiple columns, viewing,
499

multiple criteria, searching,
617

multiple files
importing, 554 - 558
relationships, applying,

205 - 210
security, 365 - 366

multiple find requests, 62

multiple match criteria
defining, 197 - 201
troubleshooting, 211

multiple layouts
applying, 116 - 117
conditional formatting, 419
searching, 62

multiple operators, 199

multiple portals, 54 , 178 . See
also portals

multiple relationships, 54

multiple tables, 29 , 169
keys, 176 - 178
many-to-many relationships,

187 - 190
one-to-many relationships,

creating, 170 - 178
rapid multitable develop-

ment, 192
related data, 178 - 187
related parent data in child

files, 186 - 187
relationships, adding,

175 - 176
tables, adding, 174 - 175
troubleshooting, 192

multiple values, matching, 441

multiple windows, 74

multitiered pause states, 477 .
See also pause states

multitiered sorts, applying, 74

multiuser deployment, 323
concurrency, 327 - 332
files, launching, 332
overview of, 323 - 324
sessions in FileMaker Pro,

324 - 326
teams, 334 - 335
troubleshooting, 332 - 333

multivalued parameters, pass-
ing, 446 - 450

multiwindows
interfaces, 473 - 475
locking, 331

MySQL, 524 , 527 - 531

 N
naming

accounts, 326
custom functions, 431
data sources, 341
DSNs, 525 - 526 . See also

DSNs
fields, 78 , 84 , 109
files, renaming, 626 - 627
layouts, 129 , 290
objects, 140
recovered files, 502
runtime, 628
scripts, 278 - 279
selecting, 486 - 488
servers, 652
tables, 81 - 82 , 173
triggers, 462 , 467
variables, Let functions, 440

navigating
databases, 28 - 29 , 40
features, 27 - 35
fields, 29 - 30 , 44 - 53 , 371
FileMaker Pro, 39 - 43 , 72 - 74
files, 43
GTRR (Go to Related

Record), 478
interfaces, 30 - 35 , 377

accessibility, 402 - 404
styles, 384 - 389
themes, 378 - 384

Layout bars, 134
layouts, 111 , 481
lists, 289
Manage Database dialog

box, 80
multiwindow interfaces,

473 - 475
portals, 55
records, 29 - 30 , 44
related data, 53 - 55
remote connections, 41 - 42
remote files, 40
reports, 284 - 286
scripts, 256 - 257 , 268 - 269
tables, 29
Web Viewer, 367 - 368

nested functions, 235 - 236

ptg8106388

options 691

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

Network Settings dialog box,
496

networks
access, 338
connecting, 644
defining, 640
infrastructure, 671
security, 360 - 362

new features, interfaces,
377 - 378

New Layout/Report assistant,
119

New Layout Report dialog box,
289 - 295 , 541

New Record command, 37

New Window script, 331 , 473

noncalculation fields, defin-
ing, 98

nonequality conditions, 198

nonequijoins, 194 - 195

nontext calculations, trouble-
shooting, 440

normalizing data, 165 - 166

notation
entity-relationships, 159
ERDs, 159

notifications, email, 642

numbers
comparison searches, 617
fields, 48 , 88
functions, 236 - 238
ports, IWP, 581
of repetitions, 223
serial, 554
values of modifier keys, 470

numeric codes, converting, 469

 O
Object Grid, 147

objects
aligning, 143
arranging, 142
layouts, 395 . See also layouts

applying, 144 - 147
resizing, 141

moving, 146
naming, 140
resizing, 146
sliding, 308 - 309
storage, 608
triggers, 463 , 467

occurrences, adding table,
195 - 197 , 209 , 212 - 213

ODBC (Open Database
Connectivity), 10 , 519 - 520 ,
575 , 671

architecture, 520
databases, configuring,

520 - 521
drivers, 526
enabling, 653
importing, 535 - 536
managing, 522 - 535
one-to-many relationships,

160
relationships graphs,

537 - 543
tools, 524

off-the-shelf software, 13

omitting records, 62

one-to-many relationships,
159- 160 . See also relation-
ships

creating, 170 - 178
keys, 163

one-to-one relationships,
159 - 160 , 178 . See also rela-
tionships

OnObjectModify trigger, 470

Open button, 40

Open command, 40 , 324

Open Database Connectivity.
See ODBC

Open File dialog box, 26

open files, backing up, 641

Open Remote File dialog box,
42

opening
constant URLs, 371
databases, 39 - 43

files, 254 , 365 , 496
layouts, 118
triggers, 462 , 464

operating systems, support,
645

operators
addition (+), 219
Cartesian products, 204 - 205
comparison, 616
concatenation (&), 219
multiple, 199
searching, 60 - 61
selecting, 220

optimizing keyboards, 72

options
auto-entry, 219 , 415

editing, 333
fields, 97 - 102
Filter function, 425

automatic recurring imports,
559 - 560

buttons, 278
Calculated Value, 100
charts, 315 - 319
Current Script, 477
deployment, 19 - 21 , 625 - 626
Export Field Contents, 572
fields, 97 - 108 , 171
FileMaker Server, 665 - 671
functions, 427 - 429
Furigana, 108
importing, 553 - 554
interface accessibility,

402 - 404
IWP, 578
Layout Setup dialog box,

124 - 127
lists, 289
Looked-Up Value, 100 - 102
many-to-many relationships,

187 - 190
one-to-many relationships,

170 - 178
Other, 48
relationships, 163
scripts, 252 - 263 , 269 - 272
Serial Number, 99
Solution Options, 628 - 631
Specify Calculation dialog

box, 223 - 226

ptg8106388

options692

tables, 170 - 173
Update Matching Records,

563
value lists, 188 - 190
View As Form, 286 , 592
views, 125
Web Viewer, 373

OR conditions, troubleshoot-
ing, 211

ordering
parts, 131 - 132
sorting, specifying, 618
tabs, 150 - 151
systems, 122

OS X
MySQL, connecting, 527 - 531
ODBC Administrator, 525

Other option, 48

output
files, formatting, 566
summary data, 571

 P
PadCharacters function, 435

padding data, 572

Page Break Before Each
Occurrence option, 133

panes, formatting, 148

parameters
expression, 413
functions, 229
GetField function, 412
Let function, 408
multivalued, passing,

446 - 450
naming, 431
queries, 619 - 620
scripts, 443 - 451

parent data in child files,
186 - 187

parsing text, 234 , 446

Part Setup dialog box, 132- 133 ,
301

parts
adding, 131 - 132
CWP, 600

defining, 133 - 134
formatting, 132
functions, 229 - 231
layouts, 130 - 134 , 592
moving, 301
subsummary, 130

passing
data between files, 451
multivalued parameters,

446 - 450
structured elements, 449

passwords
accessing, 586
Manage Extended Privileges,

585
managing, 527
modifying, 345
retrieving, 364

Paste Object Style command,
388

pasting
fields, 152
files, 50

paths
dynamic file, 457
external data sources, 208

PatternCount function, 232

pause states, 475 - 478

PDF documents
reports, 310
saving, 70

peer-to-peer hosting, 19 , 493 ,
641

Perform Find script, 491

performance . See also trouble-
shooting

monitoring, 341
rechecking, 673
SQL, 544
troubleshooting, 493 - 496
unique keys, 538

periods (.), 232

permissions
Admin Console, 658
troubleshooting, 496

PersistentID function, 245

photographs. See images

PHP . See also CWP
CWP, 604 - 610
extended privileges, config-

uring, 604
files, placing, 605
security, configuring, 604

physical access, 337

pixels, 145 , 398

placing
breakpoints, 509
PHP files, 605

planning
converting previous ver-

sions, 513 - 514
CWP, 601 - 603
databases, 154
for failures, 490
security, 339 - 342

plug-ins, 21 , 634 - 636
configuring, 636
enabling, 636
installing, 635
overview of, 635
troubleshooting, 636 - 637

plus signs (+), 420

pointers, records, 500

points, 145 , 394

pop-ups
calendars, 45 ,
lists, 45 , 479
windows, 482

Portal Setup dialog box, 179

portals, 53
IWP, 595
multiple, 54
navigating, 55
records

adding, 182 - 186
locking, 330

related child data, viewing,
178 - 181

relationship queries, 194
repeating, 192
sliding, 309
sorting, 55

ports, numbers, 581

ptg8106388

registration 693

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

Position function, 230 , 232

positioning
Inspector, 140 - 143
objects on layouts, 145
parts, 301

post-conversion tasks, 516 . See
also converting

preconversion tasks, 514 - 515 .
See also converting

predicting found sets, 479 - 480

presentation features, 499

preventative measures,
485 - 489 . See also mainte-
nance

Preview mode, 32 , 319

previewing themes, 381

previous versions, converting,
511

files, 516
migrating to new file for-

mats, 512 - 513
planning, 513 - 514
preconversion tasks, 514 - 515
updating/upgrading, 511 - 512

primary keys, 162 , 164

printing, 68 - 69
customizing, 126
labels, 126
reports, 452

private functions, 432

privileges
CWP, 602 , 622
databases, 515
extended, 354 - 357
feature settings, 353 - 354
Full Access Privileges, 259 ,

347
groups, 667
Manage Extended Privileges,

585
multiple files, 365
ODBC/JDBC, enabling, 521
PHP, configuring, 604
Script Debugger, 509
sets, 346 - 354
user accounts, 346

processors, 644

programming
arrays, 421 - 424
conventions, 432

progressive backups, 670

projects, tables, 170

protocols
HTTP, 10 , 575
LDAP, 42

publishing XML, overview of,
610 - 613

purchasing hardware, 672

 Q
queries

parameters, 619 - 620
SQL, 536 . See also SQL
relationships as, 194 - 201
strings, XML, 613 - 614

Quick Find, applying, 58

Quick Start screen, applying,
24 - 26

quotation marks (“), 414

Quote function, 414

quoting systems, 122

 R
radio buttons, 45 , 383

RAID (Redundant Array of
Inexpensive Disks), 644 , 672

RAM (random access memory),
644 , 672

random access memory. See
RAM

Random function, 238

rapid application develop-
ment, 10 - 11

rapid multitable development,
192

reactive troubleshooting, 485 .
See also troubleshooting

rechecking performance, 673

records
adding, 77
committing, 590
editing, 330
explicit record commits, 594
Export Records feature, 573
exporting, 498
formatting, 77
importing, 498 , 550
Last Visited Record function,

100
layouts, viewing, 152
locking, 329 - 332
match fields, updating, 550
navigating, 44
nonequijoins, troubleshoot-

ing, 210 - 211
omitting, 62
overview of, 29 - 30
PHP, 609
pointers, 500
portals, adding, 182 - 186
printing, 68 - 69
reverting, 72
searching, 56 - 66 , 615
security, 218
sorting, 55 , 66 - 67
viewing, 62

recovery, 501 - 504

re-creating
indexes, 110

recursion
functions, 430 , 434
scripts, 458 - 459

Redundant Array of
Inexpensive Disks. See RAID

redundant data, eliminating,
166

references
calculations, troubleshoot-

ing, 494 - 495
external data sources, creat-

ing, 206 - 208
files, 375 , 626 , 637
images, 557
keys, tables, 163

registration, 24

ptg8106388

related data, navigating694

related data, navigating, 53 - 55

related fields, exporting, 570

Related Record, 478 - 480

relational database design, 153
analyzing, 154
attributes/entities, 154 - 158
keys, 161 - 163
overview of, 153
relationships, 158 - 161

relationships , 193
adding, 175 - 176
cross-product, formatting,

204 - 205
design, 158 - 161
diagrams, 159
editing, 182
files, multiple , 205 - 210
GetNthRecord function, 438
global values, formatting,

202 - 204
graphs, 169 , 193

external tables, 209 - 210
managing, 211 - 213

layouts, 122
multiple, 54
multiple match criteria,

197 - 201
nonequijoins, troubleshoot-

ing, 210 - 211
as queries, 194 - 201
self-relationships, 201 - 202 ,

204
tables, adding, 195 - 197
troubleshooting, 210 - 211
types, 159

Relationships Graph, 479
ODBC, 537 - 543
tables, naming, 82

re-login scripts, 324

Relookup, 499

Remote button, 40

remote connections, navigat-
ing, 41 - 42

remote files, navigating, 40

removing administration
access, 631

renaming
files, 626 - 627
tables, 81 , 173
triggers, 467

rendering IWP, 577

re-ordering layouts, 127 - 128

repeating
data, eliminating, 166
fields, 105 , 242 , 569
portals, 192

RepeatText function, 434

repetitions, number of, 223

replacing
calculations, 219
data, 72 - 73

reports
charting, 283
customizing, 304 - 309
DDR (Database Design

Report), 504 - 507
delivering, 309 - 314
deriving meaning from data,

284 - 286
errors, 632
Inventory Summary Report,

288
layouts, 120
List View Report, 120
lists, 289
New Layout/Report assis-

tant, 119
New Layout Report dialog

box, 289 - 295
printing, 68 , 452
requirements, 285
structures, 285 - 286
summary fields, 295 - 303
Table view, modifying, 303
troubleshooting, 319 - 320
viewing, 286 - 289 , 294
workflow, incorporating,

320 - 321

reproducing errors, 492

requests
constrain, 62
extend, 62
find, 58 , 62 , 270

hard-coding, 269
multiple find, 62
searching, 617

requirements
FileMaker Server, 643 - 645
software, troubleshooting,

485 - 486

resizing
images, 558
objects, 141 , 146
windows, 472

Resource Center command, 26

restoring files, 326

restrictions, deleting, 192

results
calculations, mismatching,

109
scripts, 451 - 453
triggers, 462

Retina Display, 145

retrieving
files, 50
passwords, 364
script parameters, 445

return-delimited data arrays,
422 - 423 . See also arrays

returns, adding, 222

Revert Record command, 44 , 52

reverting records, 72

reviewing
charts, 319
statistics, 664
status, 553 - 554

RightValues function, 422

RightWords function, 232

risks, security, 338 - 339 . See
also security

rollbacks, 475

rotating objects, 143

Round function, 236

rounded corners, 386

routines
managing, 51
scripts, 269

ptg8106388

Secure Sockets Layer 695

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

rows, 13 , 30
colors, alternating, 304
flat-file data sources, import-

ing, 546 - 553
portals, creating, 55

rules, 30
data integrity, 52 - 53
scripts, naming, 279

running FileMaker Servers,
656 - 657

runtime, 626
deployment, 627 - 632
solutions, 628

 S
Safari, 611

Sarbanes-Oxley Act, 339

Save command, 378

Save Logical Structure button,
503

saving
Excel documents, 70
files, 50
find requests, 62
global storage, 51
PDF documents, 70
scripts, 269 - 272

Scan Blocks and Rebuild File
button, 503

scanning
data before importing, 549
files, 556

scheduling, 642
backups, 673
events, 662

screens
Quick Start, applying, 24 - 26
splash, closing, 630
stencils, applying, 393 - 395

Script Debugger, 334 , 507 - 509

Script Triggers tab, 117

ScriptMaker, 471

scripts, 251
access, controlling, 352
Adjust Window, 472

advanced scripting, 443 . See
also advanced scripting

Allow User Abort, 265
Any Go To Layout, 513
Authenticate/

Deauthenticate, 509
buttons, 278
comments, 259 - 260
conditional logic, applying,

272 - 273
context, 268
controlling/setting data,

266 - 268
creating, 252 - 263
custom dialogs, applying,

275 - 276
developer tools, 10
documentation, 515
editing, 257 - 258 , 280
errors, 264 , 581
executing, 479
Exit Script, 451
exiting, 260
exporting, 573
FileMaker

Go, 251
Pro, 251 - 252

Find mode, 481
formulas, troubleshooting,

247
importing, 263 , 558 - 561
Install On Timer Script, 468
interfaces, 256 - 257
IWP, 589 - 591
layouts, 278
libraries, 280 - 281
logs, 328 - 329
loops

applying, 274
debugging, 509

modularizing, 450
Move/Resize Window, 472
multiple files, 365 - 366
names, 278 - 279
navigating, 268 - 269
New Window, 331 , 473
pause state, creating modal

dialogs, 475 - 478
Perform Find, 491
records, locking, 330

recursion, 458 - 459
Related Record, 478 - 480
results, 451 - 453
saving, 269 - 272
Send Mail, 312 - 314
Set Error Capture, 265 - 266 ,

491
Set Variable, 455
Show Custom Dialog, 474
shutdown, 591
slowness, 495 - 496
sorting, attaching, 68
starting, 277
startup, 117 , 255 , 591
steps, 218
Submit, 476
subscripts, 261
table context, 499
templates, 261
triggers, 277 , 465 , 468 . See

also triggers
troubleshooting, 279 - 280 ,

490 - 492
variables, 453 - 458
Web Viewer, 373 - 374
windows, managing, 472
writing, 253

Scripts menu, managing,
263 - 264

searching, 56 - 66
conditions, 491
CWP URLs, 614 - 618
errors, 492
Modify Last Find feature, 62
multiple criteria, 617
multiple find requests, 62
multiple layouts, 62
operators, 60 - 61
records, 615
requests, 617
shortcuts, 61 - 62
slowness, 494
URLs (Uniform Resource

Locators), 371

sections, HTML, 610

Secure Sockets Layer. See SSL

ptg8106388

security696

security, 337
accounts, 343 - 346
extended privileges, 354 - 357
files

accessing, 357
file-level access, 359 - 364

firewalls
CWP, 622
FileMaker Server, 647 - 648

IWP, 581 , 584 - 587
Kiosk mode, 633
maintenance, 342 - 343
multiple files, 365 - 366
networks, 360 - 362
overview of, 337 - 343
PHP, configuring, 604
planning, 339 - 342
privilege sets, 346 - 354
records, 218
servers, 359 - 360
transferring data, 642
troubleshooting, 364 - 365 ,

497
user-level internal, 343 - 359

Select button, 501

selecting
charts, 316 , 318
CWP technology, 603
data

sources, 536
types, troubleshooting,

247
databases, 530 , 534
drivers, 528
fields, 220 , 567 - 568
FileMaker Server configura-

tions, 648
functions, 220
keys, 539
layouts, 287 , 291
names, 486 - 488
objects

on layouts, 145
by type, 143

operators, 220
sockets, 530
source tables, 566
summary fields, 292
target tables, 546

themes, 293
web servers, 654

Self function, 468 - 469

self-relationships, 201 - 202, 204

Send Mail script, 312 - 314

sending reports, 309 - 314

serialization, 329

serial key fields, creating, 99

Serial Number option, 99

serial numbers, 554

servers . See also FileMaker Pro
connecting, 496 , 523
Database Server, 669
databases, 646
defining, 640
FileMaker

Database Server, 600
Server, 28

administration, 659 - 665
applying Admin
 Console, 657 - 671
best practices check-
 lists, 671 - 674
configuring, 646 ,
 665 - 671
overview of, 639 - 645
running, 656 - 657

MS SQL Server, 524
naming, 652
security, 359 - 360
troubleshooting, 493
web, 600 , 643 , 646 , 654

sessions
accessing, testing, 333
CWP, 621 - 622
elements, 325
FileMaker Pro, multiuser

deployment, 324 - 326
global fields, 501
IWP

ending, 582
troubleshooting, 597

managing, 324
user accounts, multiuser

deployment, 326

Set Error Capture script,
265 - 266 , 491

Set Variable script, 455

Set Web Viewer script step,
373 - 374

sets
menus, interfaces, 398 - 402
privileges, 346 - 354

settings
automatic recurring imports,

559 - 560
CWP, 603
fields, 139
FileMaker Server, 665 - 671
functions, 427 - 429
importing, 553 - 554
Inspector

positioning, 140 - 143
viewing, 140

interfaces, accessibility,
402 - 404

IWP, 578
Layout Setup dialog box,

124 - 127
managing, 253
privileges, 353 - 354
Specify Calculation dialog

box, 223 - 226
themes, 378 - 384
variables, 454

sharing
databases, 42
hardware, troubleshooting,

493
IWP, 584 - 587

shortcuts
menu commands, access-

ing, 78
searching, 61 - 62

Show Compatibility menu, 258

Show Custom Dialog scripts,
474

Show Field Frames When
Record Is Active check box,
124

shutdown scripts, 591

simplifying complex formulas,
428 - 429

ptg8106388

structures 697

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

single
computer configurations, 647
user deployments, 19 - 20

sizing
fields, 384
images, 558
objects, 146
windows, 472

sliding objects, 308 - 309

slowness
calculations, 494 - 495
general, 493 - 494
lookups, 495
scripts, 495 - 496
searching, 494
sorting, 494

SMTP email, 642

sockets, selecting, 530

software
databases, overview of,

12 - 17
development, customizing,

14
FileMaker products, 17 - 19
installing, 672
off-the-shelf, 13
plug-ins. See plug-ins
registration, 24
requirements, 485 - 486
technical specifications, 21
troubleshooting, 490 . See

also troubleshooting
updating/upgrading, 24 ,

511 - 512 , 674

Solution Options, 628 - 631

solutions
architectures, 471
documentation, 515

Sort Records dialog box, 67

sorting, 66 - 67
ERDs, 156 . See also ERDs

(entity-relationship dia-
grams)

multitiered sorts, 74
orders, specifying, 618
portals, 55 , 182
scripts, 270
slowness, 494

summary fields, 302
tables, 305 - 308

source fields
aligning, 546
auto-aligning, 549

source tables, selecting, 566

spaces
adding, 222
CWP, troubleshooting,

622 - 623

specific information, insert-
ing, 73

Specify Calculation dialog box,
217 , 219 - 229 , 509

Specify Field dialog box, 186 ,
291

Specify Field Order dialog box,
570

Specify Fields dialog box, 188

Specify Solution Options dia-
log box, 628

specifying
connecting, 529
script parameters, 445
tables, 614

spell-checking, 45 , 139

splash screens, closing, 630

Spotlight, 644

spreadsheets, importing, 553

SQL (Structured Query
Language), 10

external data sources, con-
necting, 519

integration, 522
ODBC (Open Database

Connectivity), 519 - 520
queries, 536
troubleshooting, translating

to FileMaker, 544

SSL (Secure Sockets Layer), 642

Standard Form, 119

Starter Solutions, 513

starting
Admin Console, 650
FileMaker Server, 656

importing, 546 - 547
IWP, 578
scripts, 277

startup scripts, 117 , 255 , 591

statements, case, 222 , 241

states, interfaces, 384 - 389

static IP addresses, 643

statistics
monitoring, 673
reviewing, 664

status, reviewing, 553 - 554

Status toolbars, 125
applying, 35 - 39
customizing, 136
layouts, 134 - 137

Status value lists, creating, 203

stencils, screens, 393 - 395

stepping through arrays,
423 - 424 . See also arrays

steps, scripts, 218

stopping FileMaker Servers,
656

storage
fields, 104 - 108
global, 51
objects, 608

Storage Options dialog box,
224

strategies, converting, 513 . See
also converting

strings
queries, XML, 613 - 614
text, modifying, 231

Structured Query Language.
See SQL

structures, 378 . See also design
analyzing, 154
arrays, 421 - 424
calculation fields, 166
elements, passing, 449
fields, 175

ptg8106388

structures698

many-to-many relationships,
187

one-to-many relationships,
160

reports, 285 - 286

styles
interfaces, 384 - 389
modal dialogs, 474 - 475
text, 74 , 420
themes, 378 - 384
windows, 473

subcategories, Get functions,
243

subexpressions, 407

Submit script, 476

subroutines, 407

subscripts, 261 , 366 , 591 . See
also scripts

subsidiary tables, 166

Substitute function, 233 - 234

subsummary parts, 95 , 130 ,
297 - 301 . See also summary
fields

subtotals, summary fields, 292

Sum function, 241

summary data output, 571

summary fields, 49 , 57 , 95 , 489
printing, 68
reports, 295 - 303
subtotals, 292

supplemental fields, applying,
541 - 543

support . See also troubleshoot-
ing

forums, 511
operating systems, 645

system constraints, 429

 T
tab control objects, 147 - 149

Tab Control Setup dialog box,
148

Tab keys, navigating fields, 45

Table view, 34 , 72 , 76 , 120 , 174 ,
303

Table View Properties dialog
box, 126

tables, 75
adding, 174 - 175
applying, 81 - 84
context, 498 - 499
deleting, 83
disconnected table occur-

rences, 480
duplicating between, 564
explicit table context, 247
external, adding, 209 - 210
external files, 517
formatting, 83 - 84 , 170 - 173 ,

541
HTML, 569
importing, 552 - 553
joins, 163 - 165 , 191
key references, 163
layout, 112 , 121
managing, 212 - 213
modifying, 83
multiple, 169 , 178 - 187
naming, 81 - 82 , 486
overview of, 14 , 29 , 75 - 81
relationships, adding,

195 - 197
renaming, 173
sorting, 67 , 305 - 308
source, selecting, 566
specifying, 614
subsidiary, 166
summary fields, 295
targets, selecting, 546
views, 125

tabs, 54 , 74 , 378
Appearance, 386
controls (Web Viewer), 367
ordering, 150 - 151

tab-separated
files, importing, 546
text, 569

targets
fields

aligning, 546
auto-aligning, 549

tables, selecting, 546
triggers, 462 - 463

TaskDisplay field, 420

tasks, 53
tables, 170
Tiny Task Management, 113

Tasks Starter Solution, 53 , 255

TasksAfterDate relationship,
adding, 200

TCO (total cost of ownership),
11

teams, multiuser deployment,
334 - 335

TechNet, 335

technical specifications, 21

technology, CWP, 603

templates
layouts, 121
scripts, 261
Web Viewer, 371 - 372

testing
ACID tests, 327 - 328
connections, 531 , 535
FileMaker Server, 656
files, 365
formulas, 409
IWP, 591
loops, 280
sessions, accessing, 333

TestStyleAdd() function, 266

text
arrays, parsing, 446
comments, 488 - 489
fields, 48 , 88
formatting

calculations, 419 - 421
deleting, 420
troubleshooting, 440

Formatting bars, 36
functions, 231 - 235
importing, 555 - 557
parsing, 234

ptg8106388

two computer configurations 699

How can we make this index more useful? Email us at indexes@quepublishing.comHow can we make this index more useful? Email us at indexes@quepublishing.com

styles, 74
tab-separated, 569

TextColor function, 419

TextFont function, 419

TextSize function, 419

TextStyleAdd function, 420

TextStyleRemove function, 420

themes
converting, 513
interfaces, 378 - 384
layouts, 115
modifying, 380 - 382
selecting, 293

third-party plug-ins, 21 ,
634 - 636

three computer configurations,
647

thumbnails
images, 558 . See also images
managing, 93

time
fields, 49 , 89
functions, 238 - 240
triggers, 462

Time Billing Start Solution, 221

timers
default, 468
triggers, 468

timestamps, 49 , 89 , 240

Tiny Task Management, 113

titles
footers, 131
headers, 130

toolbars
IWP, 577
Status , 125

applying, 35 - 39
customizing, 136
layouts, 134 - 137

tools
buttons, 278
charting, 283
Data Viewer, 509
debugging, 18
developers, 10

Format Painter, 137 , 144
formatting, managing rela-

tionship graphs, 212
interfaces

formatting, 389 - 395
layouts, 112

layouts, 136
ODBC, 524
reports, 289 - 295
Script Debugger, 507 - 509
Web Viewer, 369

tooltips, applying, 141

total cost of ownership. See
TCO

Tracing tabs, 527

tracking
bugs, 334
entities, 155 . See also enti-

ties

trailing grand summary, 131

trails, audit, 329

transferring data, 642

transforming characters,
568 - 570

translating SQL to FileMaker,
544

traps
errors, 333
records, locking, 330
validation, 109

triggers, 112 , 461
attaching, 464 - 467
functions, 468 - 470
interactive interfaces, 470
layouts, 464 - 467
OnObjectModify, 470
overview of, 461 - 464
parameters, 444
Script Debugger, 508
scripts, 254 , 277
timers, 468
windows, 467

Trim function, 233 , 436

troubleshooting, 485
arrays, 440
calculations, 247 - 250 ,

440 - 441 , 490 - 492

connecting, 496 - 497
context dependencies,

497 - 500
crosstalk, 497
CWP, 622 - 623
Data Viewer, 509
databases, 71 - 72
DDR, 504 - 507
delete restrictions, 192
encryption, 494
failures, planning for, 490
fields, 109 - 110
files

maintenance, 501 - 504
references, 637

firewalls, 497
found sets, 482
global fields, 500
highlighting, 483
importing, 563
IWP, 597
layouts, 152
Log Viewer, 665 , 674
multiple tables, 192
multiuser deployment,

332 - 333
nonequijoins, 210 - 211
OR conditions, 211
overview of, 485
performance, 493 - 496
permissions, 496
plug-ins, 636 - 637
pop-up windows, 482
preventative measures,

485 - 489
recovery, 501 - 504
relationships, 210 - 211
reports, 319 - 320
Script Debugger, 507 - 509
scripts, 247 , 279 - 280 ,

490 - 492
security, 364 - 365
software requirements,

485 - 486
SQL, translating to

FileMaker, 544
windows, 482

Truncate function, 237

two computer configurations,
647

ptg8106388

types700

types
of charts, 318
of data, 223
of deployment, 19 - 21
of DSNs, 526
of events, 662
of fields, 48 - 49

applying, 87 - 97
configuring, 172

of files, 556
of layouts, 119
of relationships, 159
of reports, 290
of versions, 17 - 19
of views, 125

 U
underlying data, triggers, 464

Undo command, 44

Undo Styles command, 386

unfinished scripts, trouble-
shooting, 279

Uniform Resource Locators.
See URLs

uninterruptible power supply.
See UPS

unique keys, 162 , 539

universal serial bus. See USB

Universally Unique Identifier.
See UUID

unpredictable global default
values, 332

unsupported scripts, IWP, 589

Update Matching Records
option, 563

updating
import topics, 548
records

importing, 550
match fields, 550

software, 24 , 511 - 512 , 674

upgrading software, 511 - 512

UPS (uninterruptible power
supply), 328 , 501

URLs (Uniform Resource
Locators)

CWP, searching, 614 - 618
files, applying Web Viewer,

375
searching, 371

usage statistics, monitoring,
673

USB (universal serial bus), 501

Use Manage Database dialog
box, 76

users
accounts, multiuser deploy-

ment, 326
authentication, 362
interfaces. See interfaces
multiuser deployment. See

multiuser deployment
user-level internal security,

343 - 359

UUID (Universally Unique
Identifier), 245

 V
validation, 52 - 53 , 470

fields, 102 - 104 , 218 , 550
importing, 563
traps, 109

ValueCount function, 422

values
arrays, 421
Calculated Value option, 100
delimited, 241
global, 202 - 204
FilterValues function,

426 - 427
indexes, 106
lists

context dependencies,
499

controlling access, 351
creating, 188 - 190
modifying, 47

Looked-Up Value option,
100 - 102

multiple, matching, 441
numeric values of modifier

keys, 470
relationships, 194
unpredictable global default,

332

variables
applying, 456
declaring, 407
global, 456
local, overview of, 454 - 455
names, Let functions, 440
scope, 455
scripts, 453 - 458
viewing, 457

verifying versions, 523

versions
overview of, 17 - 19
previous. See previous ver-

sions
verifying, 523

vertical labels, 120

View As Form option, 286 , 592

View menu, 35

viewing
data settings, 138 - 140
files, 375
GetLayoutObjectAttribute

function, 395
Inspector, 140
layout records, 152
Log Viewer

monitoring, 674
troubleshooting, 665

multiple columns, 499
one-to-one relationships, 178
records, 62
related child data, 178 - 181
reports, 286 - 289 , 294
scripts, 264
self-joins, 202
variables, 457
Web Viewer, 367 - 368 . See

also Web Viewer
XML, 611

views, 30 , 33 - 34
options, 125
Table, 72 , 76 , 120 , 303

ptg8106388

zzModifier 701

How can we make this index more useful? Email us at indexes@quepublishing.com

Tables, 174
types of, 125

volatility, 501

 W
Watch tab, 509

Web Compatibility pop-up, 589

Web pages, IWP links, 596

web publishing, 464 , 653 , 671

Web Publishing Engine. See
WPE

web servers, 600 , 643 , 646 , 654

Web Viewer
applying, 70 , 367
files, 375
formatting, 369
GetLayoutObjectAttribute

function, 395
navigating, 367 - 368
options, 373
Set Web Viewer script step,

373 - 374
templates, 371 - 372

widgets, adding, 183

width
columns, 127
fixed-width formats, export-

ing to, 571 - 572
layouts, formatting, 391

WindowNames function, 245 ,
472

Windows
DSN, configuring, 532 - 535
files, 556
ODBC drivers, 526
pop-up windows, trouble-

shooting, 482
Status toolbars, customizing,

37 - 39 , 136

windows
documents, applying, 474
Edit Script, 257
Manage Scripts, 252 , 256

managing, 471 - 472
modal dialogs, 474 - 475
multiple, 74
multiwindows

interfaces, 473 - 475
locking, 331

styles, 473
timers, 468
triggers, 467
troubleshooting, 482

WordCount function, 232

words, 232 . See also text

workflow reports, incorporat-
ing, 320 - 321

worksheets, 569 . See also
Excel

WPE (Web Publishing Engine),
600 , 610 , 646

writing
code, FileMaker PHP APIs,

607 - 610
comments, 488 - 489
formulas

calculations, 216 - 218
Specify Calculation dialog

box, 219 - 222
functions, 431 . See also func-

tions
modular code, 489
scripts, 252- 253 , 590

 X
Xcode, 634

XML (Extensible Markup
Language), 10 . See also CWP

character transformations,
569

CWP, 610 - 620
elements, passing structured

data, 449
importing, 545
publishing, 610 - 613
query strings, 613 - 614
viewing, 611

 Z
zzCreationTS, 170

zzCreator, 170

zzID, 170 , 194

zzModificationTS, 170

zzModifier, 170

	Contents
	Introduction: Welcome to FileMaker 12
	I: Getting Started with FileMaker 12
	1 FileMaker Overview
	FileMaker and Its Marketplace
	Introduction to Database Software
	Overview of the FileMaker Product Line
	FileMaker Deployment Options
	Technical Specifications

	2 Using FileMaker Pro
	Getting Started
	Understanding FileMaker Pro Features
	Using the Status Toolbar
	Working in FileMaker Pro
	Working with Records
	Working with Fields
	Working with Related Data
	Finding Data with FileMaker
	Sorting
	Printing
	Importing and Exporting Data
	Using the Web Viewer
	Troubleshooting
	FileMaker Extra: Becoming a FileMaker Pro Power User

	3 Defining and Working with Fields and Tables
	Working Under the Hood
	Working with Tables
	Working with Fields
	Working with Field Types
	Working with Field Options
	Troubleshooting
	FileMaker Extra: Indexing in FileMaker

	4 Working with Layouts
	What’s a Layout?
	Using Multiple Layouts Automatically
	Creating and Managing Layouts
	Working with Parts
	Working with the Layout Status Toolbar
	Using the Inspector
	Working with Objects on a Layout
	Working with the Tab Control Object
	Working with Fields
	Troubleshooting

	II: Developing Solutions with FileMaker
	5 Relational Database Design
	Understanding Database Design
	Database Analysis
	Working with Entities and Attributes
	Understanding Relationships
	Understanding the Role of Keys in Database Design
	Many-to-Many Relationships
	Normalizing Data: What Goes Where
	FileMaker Extra: Complex Many-to-Many Relationships

	6 Working with Multiple Tables
	Multitable Systems in FileMaker Pro
	Creating a One-to-Many Relationship in FileMaker
	Working with Related Data
	Creating a Many-to-Many Relationship
	Rapid Multitable Development
	Troubleshooting

	7 Working with Relationships
	Relationships Graphs and ERDs
	Relationships as Queries
	Creating Self-Relationships
	Creating a Relationship with a Global Value
	Creating Cross-Product Relationships
	Working with Multiple Files
	Troubleshooting
	FileMaker Extra: Managing the Relationships Graph

	8 Getting Started with Calculations
	Understanding How and Where Calculations Are Used
	Exploring the Specify Calculation Dialog
	Essential Functions
	Using Conditional Functions
	Aggregate Functions
	Learning About the Environment: Introspective Functions
	Device Identification Functions
	Mobile Functions
	Troubleshooting
	FileMaker Extra: Tips for Becoming a Calculation Master

	9 Getting Started with Scripting
	Scripts in FileMaker Pro
	Creating Scripts
	Managing the Scripts Menu
	Common Scripting Topics
	Starting and Triggering Scripts
	Working with Buttons on Layouts
	Naming Scripts
	Troubleshooting
	FileMaker Extra: Creating a Script Library

	10 Getting Started with Reporting and Charting
	Reporting in FileMaker Pro
	Deriving Meaning from Data
	Working with Reports, Layouts, View As Options, and Modes
	Working with Lists of Data
	Using the New Layout/Report Assistant
	Using Summarized Reports
	Modifying Table Views
	Customizing Layouts and Reports
	Delivering Reports
	Introducing Charting
	Troubleshooting
	FileMaker Extra: Incorporating Reports into the Workflow

	III: Developer Techniques
	11 Developing for Multiuser Deployment
	Developing for Multiple Users
	Sessions in FileMaker Pro
	Concurrency
	Launch Files
	Troubleshooting
	FileMaker Extra: Development with a Team

	12 Implementing Security
	Approaching Security
	User-Level Internal Security
	File-Level Access Security
	Troubleshooting
	FileMaker Extra: Working with Multiple Files

	13 Using the Web Viewer
	Introducing the Web Viewer
	Creating and Editing a Web Viewer
	Setting Web Viewer Options
	Controlling the Web Viewer with the Set Web Viewer Script Step
	FileMaker Extra: Using the Web Viewer for Files

	14 Advanced Interface Techniques
	What’s New in the Interface World
	Working with Themes
	Using Styles and States
	Using FileMaker Formatting Tools
	Using GetLayoutObjectAttribute
	Working with Custom Menus
	Providing Accessibility
	FileMaker Extra: User Interface Heuristics

	15 Advanced Calculation Techniques
	Logical Functions
	Text Formatting Functions
	Array Functions
	The “Filter”-ing Functions
	Custom Functions
	GetNthRecord
	Troubleshooting
	FileMaker Extra: Creating a Custom Function Library

	16 Advanced Scripting Techniques
	What Is Advanced Scripting?
	Script Parameters
	Script Results
	Script Variables
	FileMaker Extra: Recursive Scripts

	17 Working with FileMaker Triggers
	Introducing FileMaker Triggers
	Attaching Triggers
	Using a Timer
	Trigger Functions
	FileMaker Extra: Using Triggers for an Interactive Interface

	18 Advanced FileMaker Solution Architecture
	Window Management Techniques
	Multiwindow Interfaces
	Creating a Modal Dialog Using a Script Pause State
	Go to Related Record
	Dedicated Find Layouts
	Troubleshooting

	19 Debugging and Troubleshooting
	What Is Troubleshooting?
	Staying Out of Trouble
	Planning for Trouble
	Troubleshooting Scripts and Calculations
	Troubleshooting in Specific Areas: Performance, Context, Connectivity, and Globals
	File Maintenance and Recovery
	Using the Database Design Report
	Using the Script Debugger
	Using the Data Viewer

	20 Converting Systems from Previous Versions of FileMaker Pro
	Updating and Upgrading FileMaker Software
	Migrating to New FileMaker File Formats
	Planning the Conversion
	Preconversion Tasks
	Converting Files

	IV: Data Integration and Publishing
	21 Connecting to External SQL Data Sources
	ODBC Basics
	Setting Up FileMaker Databases for ODBC
	Setting Up and Administering ODBC
	Importing ODBC Data into FileMaker
	Using External ODBC Data Sources with the Relationships Graph
	Troubleshooting

	22 Importing Data into FileMaker Pro
	Working with External Data
	Flat-File Data Sources
	Importing from a Microsoft Excel File
	Setting Import Options and Reviewing Status
	Importing Multiple Files from a Folder
	Scripting Imports with FileMaker
	Using Bento Data Sources
	Troubleshooting
	FileMaker Extra: Exploiting the FileMakerto- FileMaker Import

	23 Exporting Data from FileMaker
	Getting Out What You Put In
	The Basic Mechanics of Exporting
	Export File Formats
	Formatting Exported Data
	Exporting Related Fields
	Exporting Grouped Data
	Exporting to Fixed-Width Formats
	Working with Large Fields and Container Fields
	Scripted Exports

	24 Instant Web Publishing
	Overview of Instant Web Publishing
	Enabling and Configuring IWP
	Designing for IWP Deployment
	Troubleshooting

	25 Custom Web Publishing with PHP and XML
	About Custom Web Publishing
	Custom Web Publishing Versus Instant Web Publishing
	Preparing for Custom Web Publishing
	Choosing a Custom Web Publishing Technology
	Using Custom Web Publishing with PHP
	Using Custom Web Publishing with XML
	About Sessions
	Troubleshooting

	V: Deploying a FileMaker Solution
	26 Deploying and Extending FileMaker
	FileMaker Deployment Options
	Renaming Files
	Runtime Solutions
	Developing Kiosk Solutions
	Plug-Ins
	Troubleshooting

	27 FileMaker Server and Server Advanced
	About FileMaker Server
	Installing and Deploying FileMaker Server
	Running FileMaker Server
	Using Admin Console
	FileMaker Extra: Best Practices Checklist

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

