
www.allitebooks.com

http://www.allitebooks.org

Force.com Development
Blueprints

Design and develop real-world, cutting-edge
cloud applications using the powerful Force.com
development framework

Stephen Moss

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Force.com Development Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First Published: May 2014

Production reference: 1140514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-245-1

www.packtpub.com

Cover Image by Tony Shi (shihe99@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Stephen Moss

Reviewers
Naveen Gabrani

Srikanth Goati

Aruna A Lambat

Caleb Poitevien

Karanraj Sankaranarayanan

Michael Edward Vargas Jr.

Commissioning Editor
Akram Hussain

Acquisition Editor
Owen Roberts

Content Development Editor
Govindan K

Technical Editors
Mrunal Chavan

Gaurav Thingalaya

Copy Editors
Sarag Chari

Mradula Hegde

Adithi Shetty

Project Coordinator
Venitha Cutinho

Proofreaders
Simran Bhogal

Amy Johnson

Samantha Lyon

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

www.allitebooks.com

http://www.allitebooks.org

About the Author

Stephen Moss is a Salesforce.com-certified administrator and Force.com developer.

After his first brush with computing on Apple II, he was hooked to it and started
programming on a Commodore 64 computer, back in the 1980s, to automate his
math homework.

He has over 20 years' experience in the IT industry in a multitude of roles, ranging
across application domains as diverse as CRM, GIS, manufacturing, broadcast
engineering, billing, field services, IVR speech recognition, and call center
management systems.

In addition to cloud computing, he also has a keen interest in the SOA/BPM systems
(he is an Oracle BPM Suite Certified Implementation Specialist) and mobile device
development (he even has an original PalmPilot in his attic somewhere!).

He is currently consulting with a range of clients, helping them embrace cloud
computing and digitizing their businesses for the 21st century.

I dedicate this book to my mother and father, whose love and
understanding made me into the person I am today (they also
bought me my Commodore 64). I only wish they were here today
to share this achievement with me. Wherever you are, this book is
for you.

Also, I want to thank my wife and children for their understanding
and patience in having a husband/father who worked during the
day and lived in his study for the months it took to write this book.
Finally, I want to thank my two sisters, their partners, and my nieces
and nephews, who also had to put up with an "invisible" brother and
uncle. Thank you all from the bottom of my heart.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Naveen Gabrani is a Force.com architect and the founder/CEO of a
Salesforce consulting company, Astrea IT Services. Astrea is a leader in providing
Salesforce.com services. Astrea has seven apps on AppExchange, such as Smart
vCard, Astrea Clone, Smart Calendar, Print It, Format Me, Chatrules, and Object
Hierarchy that were envisioned by Naveen. He has 20 years' experience in the IT
Industry in various technical and management positions. Naveen is passionate
about providing high-quality software deliveries that exceed customers'
expectations, and building teams of motivated and happy members.

Srikanth Goati is a Salesforce-certified professional and the cofounder of Salesforce
Hyderabad User Group. Currently, he is working as a Salesforce Administrator with
Birlasoft India Pvt. Ltd., Bangalore, India. He is an MCA graduate from Hyderabad
and has certificates in DEV401 and ADM201. Overall, he has four years' experience
in developing and administering Salesforce.com. Birlasoft is a global IT services
provider and part of the 150 year old, multibillion dollar CK Birla Group. With a global
workforce of over 4,000 employees, Birlasoft has global footprints and best-in-class
delivery centers in China and India.

Srikanth has reviewed Force.com Tips and Tricks, Packt Publishing. He can be contacted
via e-mail at srikanth.sfa@gmail.com and followed on Twitter at @srikanthsfdc.
He can be searched on LinkedIn using the name Srikanth Goati and on Facebook
with /srikanth.goti.

I wish to thank my parents and all my family members, friends,
and colleagues for all the joy they bring into my life. Thanks to
my Salesforce community friends. Thanks to the folks at Packt
Publishing, the author of this book, and many others who have
provided help and inspiration along the way.

www.allitebooks.com

mailto:srikanth.sfa@gmail.com
http://www.allitebooks.org

Aruna A Lambat is an enthusiastic architect working on Salesforce.com technology
with a profound understanding of software design and development. She is passionate
about building better products and providing excellent services, thereby leading to
healthier customer satisfaction. She has been working on the Salesforce.com platform
since 2008. She entered IT acquaintance as a student in 2004. She has completed her
master's degree in Computer Applications from Maharashtra, India. She is associated
with the IT industry since 2007. Having started her career as a Java developer, she has
shifted her focus to cloud computing, specifically in Salesforce.com.

She is a Salesforce-certified developer (DEV401), administrator (ADM201), and
advanced administrator (ADM301/211) along with her regular contribution to the
Salesforce developer community. Also, she is certified in Java as a Sun Certificated
Java Programmer (SCJP) and Sun Certified Web Component Developer (SCWCD).

Before contributing to this book as a reviewer, she worked as a technical reviewer for
Force.com Tips and Tricks, Visualforce Development Cookbook, Visualforce Developer's Guide,
and Salesforce CRM: The Definitive Admin Handbook. All these books were published by
Packt Publishing. She has also contributed for a technical example cited in Force.com
Developer Certification Handbook (DEV401), Packt Publishing.

Aruna works with a reputed India-based IT MNC; it is primarily engaged in providing
a range of outsourcing services, business process outsourcing, and infrastructure
services. She works as a project manager on Salesforce.com technology-based
customer services. She can be contacted via e-mail at Aruna.Lambat@gmail.com
and on LinkedIn using the name Aruna Lambat. She can be contacted via Twitter
at @arunalambat and on Facebook with /aruna.lambat.

Special thanks to my parents, Mrs. and Mr. Anandrao Lambat,
for always being there with me, their immense help and support,
and guiding me through each and every step of making the book
reviewing process enlightened.

www.allitebooks.com

mailto:Aruna.Lambat@gmail.com
http://www.allitebooks.org

Caleb Poitevien is an analytic philosopher with a deep passion for continual
improvement. He has grown due to diverse experiences ranging from eight years
in financial operations to over 12 years in IT in enterprise application development
based on Java and Salesforce. He has been consulting for XM Satellite Radio, Motorola,
Level3 Communications, Quick Loans, MTS, NBTY, Apple, and currently Tata
Consultancy Services. Caleb lives by Colin Powell's quote:

Excellence is not an exception, it is a prevailing attitude.

Karanraj Sankaranarayanan, who likes to go by Karan, is a certified
Salesforce.com developer and works as a Salesforce consultant at HCL Technologies.
Karan holds a bachelor's degree in Engineering from Anna University with a
specialization in Computer Science. He has more than three years' experience
in the Salesforce platform and IT industry. He is passionate about the Salesforce
platform and is an active member/contributor of the Salesforce customer
community/developer forum. He writes technical blogs too.

He is also the leader of Chennai Salesforce Platform Developer User Group
based in Chennai, India. He is one of the reviewers of Force.com Tips and Tricks
and Visualforce Development Cookbook, both by Packt Publishing. He can be
reached via Twitter (@karanrajs) and through the Salesforce community
at https://success.salesforce.com/profile?u=00530000004fXkCAAU.

www.allitebooks.com

http://www.allitebooks.org

Michael Edward Vargas Jr. is an American software engineer and entrepreneur
who is best known for his ongoing involvement in the development of federal and
private enterprise application systems using the best of breed technologies. He is
currently a member of the Java User Group in Miami. In addition, he is a huge fan
of Douglas Crockford and John Resig for their involvement with the JavaScript
community. On his mornings, nights, and sometimes weekends, he is passionately
devoted to the discipline of software engineering. Originally, he started out in the
field working at Motorola and has gone on to contribute to organizations such as
ADT Security Services, Interval International, and Engility Corporation.

I'd like to acknowledge all of the publishers, editors, authors,
colleagues, friends, and family for the development of this book. I
would particularly like to thank Teo Montoya, Russell Reynolds, and
Michelle Reagin for all they have taught me along the way. Also, many
thanks to my beautiful wife and gorgeous daughter, who inspire and
motivate me to achieve great things.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Building and Customizing Your Own Sites 7

Determining the community requirements 8
Building a community 8

Enabling communities 9
Creating the community 11
Configuring custom objects and user profiles 12

Customizing the Account object 12
Creating a volunteering event custom object 13
Creating volunteering event custom fields 14
Connecting the Account and VolunteerEvent objects 15
Configuring the community public user profile 18
Creating authenticated community user profiles 20
Configuring Force volunteers Salesforce user profiles 22

Configuring Chatter 23
Enabling Chatter feeds for VolunteerEvent 23
Creating the VolunteerEvent custom object tab 24
Creating a custom application 25

Progress check – what have we achieved so far? 25
Adding community members 27
Branding the community 29

Specifying Site.com for the community 30
Creating a public community site 32

A quick tour of the Site.com community 32
Customizing the site header and footer 35
Creating a data access page 43

Securing the volunteers page 51
Creating the Volunteer users 53

Going live 54
Summary 56

Table of Contents

[ii]

Chapter 2: The E-Commerce Framework 57
Building a basic Force.com fulfillment application 58

Defining the data model 58
Defining the Order object 58
Defining the Order Line Item object 62
Defining the Order Line object 63
Defining the Order Line relationships 65
Finishing the data model 66

Defining application tabs and page layouts 68
Creating the application 69

A dash of workflow 70
Loading in Order Line Items 72

Importing with the Custom Object Import Wizard 72
Building the e-commerce application 77

Setting up the development environment 78
Ruby on Rails 78
Git 80
Heroku 80

Configuring the e-commerce application 81
Configuring a Force.com remote access application 84
Deploying to Heroku 89
Placing an order 92

Building the final Force.com Fulfillment application 97
Building the Order Search custom controller 97

The working of the Order Search custom controller 98
Building the Order Search Visualforce page 99

The working of the Order Search page 100
Configuring the Visualforce Orders tab 102
Building the Orders custom controller 104

The working of the Orders custom controller 105
Building the Orders Visualforce page 111

The working of the Orders page 112
Summary 118

Chapter 3: Building a Full CRM System 121
Student admissions system requirements analysis 122

Functional requirements 122
Data requirements 123
Security requirements 123

Building the student admissions system 124
Defining the custom data objects 124

Defining the Course object 124
Defining the Applicant object 127
Defining the Course Application object 129

Table of Contents

[iii]

User profiles 133
The Course Administration profile 133
The Admissions Office profile 134
The Selection Officer profile 135

Organization-Wide Defaults 136
The role hierarchy 137

Configuring the top-level roles 138
Configuring the admissions office hierarchy 140
Configuring the business faculty hierarchy 141
Configuring the science faculty hierarchy 142

Chatter 143
Enabling the Chatter feeds for Course 143
Enabling the Chatter feeds for Applicant 144
Enabling the Chatter feeds for Course Application 146

Defining the custom object tabs 147
Setting the tab permissions for profiles 148

Creating the Force.com application 149
The user interface 149

Applicants 149
Courses 151
The Course Application page layout 152
The Applicants tab 154
The Courses tab 155
The Course Applications tab 156

Queues 157
The system administrators public group 157
The Business Faculty Course Applications queue 157
The Science Faculty Course Applications queue 158
The Course Application Exception queue 158
Restricting access to the business faculty queue 159
Restricting access to the science faculty queue 163
Restricting access to the exceptions queue 164

Custom settings 166
The Course Application routing logic 168

Building the faculty assignment Apex trigger 168
How the faculty queue assignment trigger works 170
Testing the faculty queue assignment trigger 171

A decision entry publisher action 172
Enabling the publisher actions 172
Developing the publisher action 172
Adding the publisher action to the Chatter feed 174
Try out the publisher action 175

Summary 177

Table of Contents

[iv]

Chapter 4: Building a Reporting System 179
Reporting system overview 180

Reporting requirements 180
Reporting system design 181

The EIS Dashboard custom object 182
KPI formulae 182
The EIS Dashboard Visualforce page 184
The EIS Dashboard custom controller 184

Reporting system build 184
Defining the EIS Dashboard custom object 184
Creating the skeleton EIS Dashboard application 185

Creating the initial Visualforce page 186
Defining the application tabs 186
Creating the EIS Dashboard application 187
Importing EIS policy data 187

Building the final reporting application 188
The EIS Dashboard custom controller 188
EIS Dashboard Visualforce page 202

Summary 211
Chapter 5: The Force.com Mobile SDK Application 213

Mobile application overview 214
Building a base AngularJS HTML5 application 218

Downloading AngularJS 219
Downloading Twitter Bootstrap 220
Downloading jQuery 221
Downloading the Salesforce AngularJS Mobile Pack 221
Building a base HTML5 application structure 222
Copying the base HTML5 application files 222
Building a base HTML5 Heroku application 223
Configuring a remote access application 226
Deploying the HTML5 base application to Heroku 227

How the base application works 228
Building the final AngularJS HTML5 application 230

Finalizing the application folder structure 230
Finalizing the application landing page 230
Initializing the AngularJS application 233
The Salesforce authentication components 237

Home controller 237
The login controller 238
The callback controller 239
The logout controller 240

The opportunity display components 240
The opportunity factory 240

Table of Contents

[v]

The opportunity list controller 244
The opportunity detail view controller 246

The opportunity map components 247
Adding a geolocation trigger to the Account object 248
Location service 255
The map view controller 256

JavaScript object reflection service 261
Deploying an application to Heroku 261

Summary 262
Chapter 6: Cloud-connected Applications 263

The development process overview 264
Configuring the development environment 264

Installing Node.js 264
Installing Android Developer Tools 265

Installing the Android SDK 265
Configuring an Android virtual device 266
Signing in to the Android virtual device 268

Installing the Salesforce Android Native Mobile SDK 272
Configuring a Salesforce-connected application 273
Configuring Google Cloud Messaging 274
Configuring the Azure Notification Hub 275

Getting the Azure Service Bus credentials 278
Downloading the Azure Android SDK 280

Building an Android mobile application 281
Creating the Salesforce Android Mobile SDK application 281
Configuring an application using ADT 282

Importing the Salesforce Mobile SDK and Salesforce Android application 282
Updating the Android manifest file 284
Updating the bootconfig.xml file 286
Adding the Azure SDK and Android support libraries 286
Importing the Google Play Services Library 287

Enhancing the Android Mobile SDK application code 288
Enhancing the MainActivity class 289
Creating the Broadcast Receiver class 292

Creating the Force.com broadcast application 295
Configuring the remote site settings 295
Creating the Notification Hub Interface class 296

How the Notification Hub Interface class works 297
Creating the broadcast application custom controller 301

How the broadcast application custom controller works 302
Creating the broadcast application Visualforce page 304

How the broadcast application Visualforce page works 305

Table of Contents

[vi]

Running the application 306
Debugging the Azure Notification Hub 309

Summary 310
Appendix A: Importing Data with the Apex Data Loader 311
Appendix B: Installing Ruby on Rails on Ubuntu 315

Installing Ruby on Rails 315
Index 321

Preface
Welcome to Force.com Development Blueprints.

Since its unveiling in 2008, the Force.com platform has been used by developers
all over the world to build a multitude of business applications running on
Salesforce-powered cloud computing infrastructure.

The true strength of the Force.com platform is the ease with which developers can
quickly acquire the application development skills required for today's modern
cloud-based development, without the burden of configuring and managing
infrastructure such as operating systems, application servers, and databases.

To their credit, Salesforce has invested heavily in the platform to ensure that it remains
state of the art. Force.com provides out-of-the-box support for modern web browsers,
mobile devices, and importantly, integration standards such as REST and SOAP. This
ensures that Force.com applications can be easily integrated with other cloud-based
and enterprise applications.

Throughout this book, we will see how the versatility of the Force.com platform can
be leveraged to develop a range of cloud-based solutions across various application
domains. I sincerely hope that by the time you have read this book, you will be
confident enough to apply your Force.com development skills to build virtually
any business application.

Preface

[2]

What this book covers
Chapter 1, Building and Customizing Your Own Sites, demonstrates how to build a
Salesforce community using Site.com. We will also access the data of Force.com
in the site and provide the ability to users to log in to the community.

Chapter 2, The E-commerce Framework, shows how to build an e-commerce application
on Heroku, powered by data from Force.com. We will also be building a Force.com
fulfillment application using Visualforce.

Chapter 3, Building a Full CRM System, covers how to build a traditional Salesforce
CRM application to manage student admissions for a university, which features a
custom Apex workflow engine to automatically route the course applications to
a faculty.

Chapter 4, Building a Reporting System, provides guidance on how to build a custom
reporting dashboard using Visualforce, Apex, and Visualforce charting.

Chapter 5, The Force.com Mobile SDK Application, leverages the Salesforce mobile
SDK to build a mobile application to display the opportunity data of Salesforce.
The technologies used with the mobile SDK in this chapter include HTML5,
Heroku, AngularJS, Twitter Bootstrap, and Google Maps.

Chapter 6, Cloud-connected Applications, combines multiple techniques used throughout
the previous chapters to build a Visualforce page that can send push notifications of
Windows Azure Notification Hubs to an Android application that is running.

Appendix A, Importing Data with the Apex Data Loader, shows you how to import data
with the Apex Data Loader.

Appendix B, Installing Ruby on Rails on Ubuntu, provides guidance on installing a
Ruby on Rails development environment on the Ubuntu distribution of Linux.

What you need for this book
To build the applications in this book, you will need an Enterprise, Unlimited, or
Developer (recommended) edition of Salesforce and system administrator access. You
will also need a modern web browser such as the latest version of Google Chrome,
Mozilla Firefox, Safari 5 or 6, or Internet Explorer 9 or 10.

The downloading and installation instructions for other technologies used throughout
the book will be presented in the relevant chapters.

Preface

[3]

Who this book is for
This book is intended for intermediate Visualforce developers, who are familiar with
the basics of Force.com, Visualforce, and Apex development. An understanding of
HTML5, CSS, and JavaScript is also useful for some of the more advanced chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The first step in creating a custom
application is to create a custom object tab for the VolunteerEvent custom object."

A block of code is set as follows:

// results from the Order search
public List<Order__c> orderSearchResults {get; set;}

// textbox for search parameters
public string orderNumber {get; set;}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<apex:column style="width:15%" headerValue="Actions"
 rendered="{!line.id == editOrderLineId}">
 <apex:commandButton action="{!saveOrderLine}"
 rerender="OrderInformation, OrderLines, messages"
 value="Save" />
 <apex:commandButton action="{!cancelEditOrderLine}"
 rerender="OrderInformation, OrderLines, messages"
 value="Cancel" />
</apex:column>

Any command-line input or output is written as follows:

$ cd ~/rails_projects/ecommerce_app

$ git status

On branch master

nothing to commit (working directory clean)

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the Edit link in the Action column for the Force Volunteers Community option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Building and Customizing
Your Own Sites

Communities were made generally available in the Salesforce Summer '13 release
and are available in Performance, Unlimited, Developer, and Enterprise editions
of Salesforce. The purpose of communities is to share information and support
collaboration between companies, their customers, and their partners. A Salesforce
organization can have multiple communities, each serving a distinct purpose or
segment of customers/partners.

A community can be implemented using a Force.com site augmented by Visualforce
where required, or by a more traditional HTML/CSS-based site using Site.com.

Communities share a lot in common with the customer and partner portals, which
have been a mainstay to connect your Salesforce organization to external customers
and partners. Although they are still available, and still supported by Salesforce,
it is clear that the future direction of Salesforce is to use (or migrate to) communities
in lieu of these portals.

In this chapter, we will be building a Volunteer Community for Force volunteers,
a volunteer organization dedicated to providing support services for youth as they
reach adolescence and approach adulthood. They already use Force.com to track
sponsors, volunteer teams, and volunteer events, but would like to implement a
community to connect to their growing network of volunteers.

I strongly encourage that you work through each chapter and build
the examples. Feel free to use them as a springboard for your own
Force.com application development projects.

Building and Customizing Your Own Sites

[8]

Determining the community requirements
Some key points to keep in mind when determining the requirements for a Salesforce
community are as follows:

• Who is my target audience?
• What business processes am I trying to add value to?
• What Salesforce information do I need to expose to my community?
• What changes will be required to my organization's security model?
• Will the standard Salesforce styling and appearance suffice, or do I need

the HTML/CSS capabilities of Site.com?
• Will I need to use Visualforce? In this case, you will probably need to use

Force.com sites for your community.
• Do I need to purchase more Salesforce licenses for my community members?

Building a community
The community we are building will be provided by a Site.com site. Site.com is
a cloud-based content management system of Salesforce used to build websites and
social pages. The community that we are building will provide the following pages:

Community page Description
Home This is the welcome page for the community.
Services This is the description of the support services offered by the Force

volunteers.
Who We Are This is the information about the Force volunteers' organization.
Events This is the display of current events being volunteered.
Contact Us This is the contact information and an online form to send a message

to Force volunteers. This form will populate a custom object in
Force.com.

Volunteers Online This is an online area for volunteers to collaborate with the volunteer
Force employees using Salesforce Chatter.

Chapter 1

[9]

An overview of the steps that we will follow to build a community is as follows:

1. Enable the communities.
2. Create a community.
3. Configure the custom objects and user profiles for the community.
4. Add members to the community.
5. Brand the community.
6. Create a public community site.
7. Publish the community.

This chapter assumes that you have enabled the improved setup user
interface in Salesforce by going to Customize | User Interface and
selecting the Enable Improved Setup User Interface checkbox.

Enabling communities
To use communities in Salesforce, we need to enable them first. To enable
communities in Salesforce, log in to your Salesforce Developer edition and complete
the following steps:

1. Go to Setup | Customize | Communities | Settings.

As a shortcut, you can use the Quick Find feature in Setup to search
for communities.

2. Select Enable communities.
3. At this point, you will be asked for a domain prefix to use for your

communities. Enter a domain name prefix that will uniquely identify
your communities on Force.com, and click on the Check Availability
button. If the domain prefix is already used, enter a different domain
prefix and try again.

Building and Customizing Your Own Sites

[10]

It is worth noting at this stage the URL naming conventions that Force.
com uses for Developer, Sandbox, and Production instances of Force.com
sites. Your unique subdomain is listed first, followed by the edition or
environment type, then the instance name, and a Force.com suffix. Sandbox
organizations also use the sandbox name as an extra identifier to distinguish
them even further. In the following examples, the unique subdomain prefix
is volunteerforce, and the sandbox name is vfsandbox. The instance name
is na1, and the sandbox instance name is cs1. The URLs for different type of
organizations are summarized as follows:

Type of organization URL
Developer edition https://volunteerforce-developer-edition.na1.

force.com

Sandbox https://vfsandbox-volunteerforce.cs1.force.com

Production https://volunteerforce.secure.force.com

4. Once your domain prefix has been accepted, your screen should resemble the
following screenshot (except for the domain prefix):

5. Click on Save and then click on OK in the dialog window that will give you
a warning that the changes cannot be undone.

Chapter 1

[11]

You will also notice a new item titled Manage Communities in the
Customize | Communities section of the Setup menu.

Creating the community
To create the Volunteer Community, complete the following steps:

1. Go to Setup | Customize | Communities | Manage Communities.
2. Click on the New Community button.
3. Enter Force Volunteers for the community name.
4. Enter A Community to connect Force Volunteers with their growing

network of volunteers for the Description field to describe the purpose of
the community.

5. The next step is to enter a URL for the community. This will equate to a
subdirectory name underneath the domain prefix entered by you, when you
enabled the communities and the Salesforce instance that you are running on.
For this example, enter volunteers.

6. Your screen should resemble the following screenshot:

7. Click on the Create button to create the community.
8. Click on Close. You will configure the community later.

Building and Customizing Your Own Sites

[12]

Configuring custom objects and user profiles
Now that we have created a community, there is some configuration required
to ensure that the users can access your community and view data from your
Salesforce organization.

The objects that we will be configuring and the relationships between them are
depicted in the following diagram:

Volunteer Team
(Account)

Volunteer Team
Member
(contact)

Volunteer
Event

(new custom object)

Customizing the Account object
The Account object will be used to represent a team of volunteers. Each volunteer
within a team will be stored as a contact on the volunteer team account.

To configure the Account object, complete the following steps:

1. Navigate to Setup | Customize | Accounts | Fields.
2. In the Account Custom Fields and Relationships section, click on the

New button.
3. For the Data Type section, select Lookup Relationship and click on Next.
4. Select User as the related object in the Related To drop-down list and then

click on Next.
5. Enter Team Leader for the Field Label field.
6. Press Tab to automatically generate Field Name as Team_Leader.
7. Enter A Volunteer Force Team Leader in the Description field and click

on Next.
8. Accept the default values of the Field-Level Security for Profile section and

click on Next.
9. Add the field to the Account Layout option only and click on Save, as shown

in the following screenshot:

Chapter 1

[13]

Creating a volunteering event custom object
Your community will require a custom object to display the volunteering events for
the community users and volunteers. The steps to create a custom object to display
the volunteering events are as follows:

1. Navigate to Setup | Create | Objects.
2. Press the New Custom Object button.
3. Enter VolunteerEvent for the object's Label field.
4. Enter VolunteerEvents for the Plural Label field.
5. Enter Events for Volunteers to attend for the Description field to

describe the purpose of the custom object.
6. Enter Event_Name for the Record Name field and leave the Data Type

drop-down menu as Text.
7. Select the following checkboxes:

 ° Allow Reports (optional)
 ° Allow Activities (optional)
 ° Track Field History
 ° Add Notes and Attachments related list to default page layout

www.allitebooks.com

http://www.allitebooks.org

Building and Customizing Your Own Sites

[14]

8. Assuming that you are using a development environment, ensure that the
Deployment Status section is set to Deployed.

9. Click on the Save button to create the custom object.

Creating volunteering event custom fields
You will now need to configure some custom fields for the VolunteerEvent object.
The following steps will create the custom fields:

1. Navigate to Setup | Create | Objects.
2. Click on the VolunteerEvent label hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type section, select Date/Time and click on Next.
5. Enter Start/Date Time for the Field Label field.
6. Enter The date/time that the volunteering event starts for the

Description field and click on Next.
7. Accept the defaults for the Field-Level Security for Profile section and click

on Next.
8. Accept the defaults for the Page Layouts section and select Save & New.
9. Repeat the steps to create the remaining fields as described in the

following table:

Field type Field label description Description
Date/Time End Date/Time The date/time that the

volunteering event ends
Text Area Location The location of the

volunteering event
Text Area Description A description of the

volunteering event
Text Area Special Skills Any special skills required

for the volunteering event;
for example, driver's license
and first aid

Chapter 1

[15]

Connecting the Account and VolunteerEvent
objects
The final step in configuring our data model is to connect the Account and
VolunteerEvent objects together. This will be a simple lookup relationship
from the VolunteerEvent object to the Account object to record which team
of volunteers will be the primary point of contact for the Volunteer event.

1. Navigate to Setup | Create | Objects.
2. Click on the VolunteerEvent label hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type section, select Lookup Relationship and click on Next.
5. Select Account as the related object in the Related To drop-down list and

click on Next.
6. Enter Volunteer Team for the Field Label field.
7. Enter The Volunteer Team attending the event for the Description field

and click on Next.
8. Accept the defaults for the Field-Level Security for Profile section and click

on Next.
9. Accept the defaults for the Page Layouts section of VolunteerEvent

(there should only be one page layout) and click on Next.
10. Add the custom-related list only to the Account Layout option, as per the

following screenshot:

Building and Customizing Your Own Sites

[16]

11. Click on Save. We will now need to add one more custom field to
VolunteerEvent to display the volunteer team leader, using the
following steps:

1. Navigate to Setup | Create | Objects | VolunteerEvent.
2. Click on the New button in the Custom Fields & Relationships

section.
3. For the Data Type section, select Formula and click on Next.
4. Enter Team Leader for the Field Label field.
5. Select Text for the Formula Return Type section and click on Next.
6. Click on the Advanced Formula tab in the formula editor.
7. Click on the Insert Field button; the Insert Field dialog will

be displayed.
8. Navigate to Volunteer Event > | Volunteer Team > |

Team Leader > | First Name and then click on Insert,
as shown in the following screenshot:

9. From the Insert Operator drop-down menu in the formula editor,
select the & Concatenate operator. Enter a space between two quotes:
" ". Then, select another concatenation operator. Your formula should
resemble the following screenshot:

Chapter 1

[17]

10. Click on the Insert Field button; the Insert Field dialog will
be displayed.

11. Select Volunteer Event > | Volunteer Team > | Team Leader > |
Last Name and click on Insert.

12. Your formula editor should now resemble the following screenshot:

13. Enter Team Leader of Volunteer Team in the Description field
and click on Next.

14. Accept the default settings for the Field-Level Security for Profile
section and click on Next.

15. Accept the default values for the Page Layouts section of
VolunteerEvent and click on Next.

Building and Customizing Your Own Sites

[18]

16. Your VolunteerEvent custom fields should now resemble the
following screenshot:

Configuring the community public user profile
When you create a community, a public user profile is automatically created for any
guest (unauthenticated) users who access the community. This profile is cloned from
the default guest user profile, but can be customized for your needs. The profile does
not exist in the standard user profile maintenance screen, so to configure the profile
you will need to complete the following steps:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Force.com hyperlink to access the underlying Force.com site for

the community.
3. Click on the Public Access Settings button to access the Force Volunteers

Community profile, as shown in the following screenshot:

Chapter 1

[19]

4. Click on the Edit button.
5. Scroll down to the Standard Object Permissions section.
6. Select the Read permission option for the Account standard object.
7. Scroll down to the Custom Object Permissions section.
8. Select the Read permission option for the VolunteerEvent custom object.
9. Click on Save.
10. Scroll to the Custom Field-Level Security section.
11. Click on the View hyperlink next to VolunteerEvent.
12. Click on the Edit button.
13. Make sure that the Description, End Date/Time, Location, and Start Date/

Time fields are selected as Visible. There will be system-level fields selected
as well and they can't be changed.

14. Click on the Save button.
15. Click on the Back to Profile button.

This ensures that any guest users accessing the community can see a list of the
volunteering events that we will be constructing later in the chapter.

Building and Customizing Your Own Sites

[20]

Creating authenticated community user profiles
To allow volunteers to log into your community, they will need a Salesforce user
account and an associated profile. When you enabled the communities in your
Salesforce organization, a default set of communities-related profiles was created,
as shown in the following screenshot:

Although you can use these default profiles and assign them to the users, it is
recommended to clone one of the default profiles and customize it for your needs.
This is the approach that we will be taking for the Volunteer Community.

To clone and customize a default community profile, complete the following steps:

1. Navigate to Setup | Manage Users | Profiles.
2. Select the Clone link for the Customer Community User profile.
3. Enter Volunteer Community User for the Profile Name field.
4. Click on Save. We will now need to configure the Volunteer Community

User profile to restrict access to only the objects that volunteers will need,
using the following steps:

1. Navigate to Setup | Manage Users | Profiles.
2. Select the Edit link for the Volunteer Community User profile.
3. Scroll down to the Standard Object Permissions section of the

Volunteer Community User profile page and ensure that the profile
has only a Read access to Accounts and Contacts (deselect all
permissions for any other objects).

Chapter 1

[21]

4. In the Custom Object Permissions section, ensure that the profile has
only a Read access to the VolunteerEvents custom object.

5. Your object permissions for the profile should resemble the
following screenshot:

6. Click on Save.
7. Scroll to the custom Field-Level Security section.
8. Click on the View hyperlink next to VolunteerEvent.
9. Click on the Edit button.
10. Make sure that Description, End Date/Time, Location, Special

Skills, Start Date/Time, Team Leader, and Volunteer Team are
selected as Visible. There will also be system-level fields selected,
which can't be changed.

11. Click on the Save button.
12. Click on the Back to Profile button.

Building and Customizing Your Own Sites

[22]

Configuring Force volunteers Salesforce user
profiles
The final profile that we will need to configure is for the Force volunteers Salesforce
users. For these users, you can clone almost any standard Salesforce user profile.
However, to make the most efficient use of the limited number of licenses available in
a development organization, we will use Force.com - App Subscription User as the
base license (for full details of the licenses supplied with a Developer edition, refer to
https://wiki.developerforce.com/page/Developer_Edition). This profile can
be cloned and configured to give sufficient access without using one of the very limited
full Salesforce licenses available in a development organization. To configuring Force
volunteers Salesforce user profiles, perform the following steps:

1. Navigate to Setup | Manage Users | Profiles.
2. Select the Clone link for the Force.com – App Subscription User profile.
3. Enter Volunteer Force User for the Profile Name field.
4. Click on Save.
5. Assuming that you are at the Volunteer Force User profile screen after

saving, click on Edit.
6. Scroll down to the Standard Object Permissions section and ensure that

the profile has the Read, Create, Edit, and Delete access to Accounts and
Contacts only (deselect all permissions for any other objects).

7. In the Custom Object Permissions section, ensure that the profile has the
Read, Create, Edit, and Delete access to the VolunteerEvents custom object.

8. Your object permissions for the profile should resemble the following
screenshot:

Chapter 1

[23]

9. Click on Save.

Configuring Chatter
Volunteer Force has decided to use Salesforce Chatter as a key component of their
Volunteer Community. It is envisaged that the collaborative features of Chatter
will form a natural fit with those volunteers who are naturally inclined to form
self-organizing teams for volunteering events.

It is assumed in this section that you have already activated Chatter
for your Salesforce organization. Note that Chatter is automatically
enabled when a developer organization is created.

Enabling Chatter feeds for VolunteerEvent
To enable community users to subscribe to a volunteer event and to collaborate
and receive notifications, we will need to activate Chatter feed tracking for the
VolunteerEvent object.

1. Navigate to Setup | Customize | Chatter | Feed Tracking.
2. In the list of objects being tracked, select VolunteerEvent.

www.allitebooks.com

http://www.allitebooks.org

Building and Customizing Your Own Sites

[24]

3. Select the Enable Feed Tracking checkbox.
4. In the list of fields available to be tracked, select Description, Event Name,

Start Date/Time, End Date/Time, Location, and Special Skills.
5. Click on Save.
6. Your Chatter feed tracking for VolunteerEvent should now resemble the

following screenshot:

Creating a volunteer Force.com application
The final step to perform before working on the Volunteer Community site is to
create a Force.com custom application to tie all of the components of the community
together into a cohesive unit. This will provide a consistent interface and a set of
Salesforce tabs for volunteer Force employees.

Creating the VolunteerEvent custom object tab
The first step in creating a custom application is to create a custom object tab for
the VolunteerEvent custom object. The steps to do this are as follows:

1. Navigate to Setup | Create | Tabs.
2. Select the New button in the Custom Object Tabs section.
3. In the Object drop-down menu, select Volunteer Event.
4. Select the Tab Style lookup icon and select a style from the Tab Style dialog

(if it is unused, a good match is the tab titled People).

Chapter 1

[25]

5. Enter Events for Volunteers to attend in the Description field to
describe the purpose of the tab and click on Next.

6. Accept the default value to add the tab to the user profiles and click on Next.
7. Deselect all of the checkboxes (a shortcut is to use the Include Tab checkbox,

which will deselect all checkboxes) in the next screen, so that the tab will not
be included in any application, and click on Save.

Creating a custom application
Now that VolunteerEvent has a custom object tab, we can go ahead and create the
custom application by performing the following steps:

1. Navigate to Setup | Create | Apps.
2. Select the New button to create a new application.
3. Ensure that Custom app is selected for the application type and click

on Next.
4. Enter Volunteers for the App Label field.
5. Enter Collaborative Community for Volunteer Force Members

in the Description field to describe the purpose of the community and click
on Next.

6. Accept the default application logo and click on Next.
7. Move Chatter, Accounts, and VolunteerEvents from the Available

Tabs list to the Selected Tabs list by highlighting the relevant tab and
clicking on the Add button. Leave the option for Home as Default Landing
Tab and click on Next.

8. Assign the application as Visible and Default for the Volunteer Community
User and Volunteer Force User profiles, and Visible for the System
Administrator profile. All other profiles should not have access to the
application.

9. Click on Save.

Progress check – what have we achieved
so far?

If you want to keep progressing with building the community,
feel free to skip this section and continue to the Adding community
members section.

Building and Customizing Your Own Sites

[26]

You might be questioning what you have been doing up to this point. Aren't we
supposed to be working with communities? It is worth remembering that a community
is really an extension of a Force.com application. You have actually successfully built a
Force.com application that can now serve as the basis for your Volunteer Community.

To see your application in action, create and activate a user account with the Volunteer
Force User profile.

When you log in as a volunteer Force user, you can see the application you have
built, as shown in the following screenshot:

It is now possible to perform the following functions from within the application:

• Record the volunteer teams using the Accounts object
• Associate a team leader (via the User object) with a volunteer team
• Record the volunteers against a volunteer team (as Contacts)
• Record a volunteer event using the VolunteerEvent custom object
• Associate a volunteer event with a volunteer team

Congratulations! You are now in a position to build out the rest of the
Volunteer Community.

Chapter 1

[27]

Adding community members
Now, we will add members to the Volunteer Community. This can be a set of
profiles or permission sets. Adding members will enable them to log into the
community and collaborate on the volunteer events together. The following steps
will guide you to add members to the Volunteer Community:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Edit link in the Action column for the Force Volunteers

Community option.
3. The Community Settings dialog is displayed, as shown in the

following screenshot:

4. Click on the Members button.
5. In the Select Profiles section of the window, select Internal in the Search

drop-down list.

Building and Customizing Your Own Sites

[28]

6. Move the Volunteer Force User profile from the Available Profiles list to
the Selected Profiles list by highlighting it and clicking on the Add button,
as shown in the following screenshot:

7. In the Select Profiles section of the window, select Portal in the Search
drop-down list.

8. Move the Volunteer Community User profile from the Available
Profiles list to the Selected Profiles list by highlighting it and clicking
on the Add button.

9. The community members list should now resemble the following screenshot:

10. Click on Save.

Chapter 1

[29]

The addition of members to a community runs as a background
process. You will receive an e-mail notification entitled Force
Volunteers: Processing Complete when the processing is complete.

Branding the community
Communities provide a declarative interface to define the following elements:

Branding element Description
Header This specifies a default header for the pages in your

community. For best results, it is recommended that
the header be a publicly-accessible HTML document
stored using the Documents tab.

Footer This specifies a default footer for the pages in your
community. For best results, it is recommended that
the footer be a publicly-accessible HTML document
stored using the Documents tab.

Color scheme This selects a default color scheme for your
community. This can be a predefined color palette
from the Select color scheme drop-down list, or
a custom color palette defined using HTML color
notation for each color, for example, #FFFFFF for
white color.

For the Volunteer Community, we do not need to specify a default header and footer
as we will be building the community pages with Site.com. Make the following
minor adjustments to the community branding:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Edit link in the Action column for the Force Volunteers

Community.
3. The Community Settings dialog is displayed.
4. Click on the Branding button to display the Branding Settings for

the community.
5. Set the background for each page to white by entering #FFFFFF into the Page

Background field.

Building and Customizing Your Own Sites

[30]

6. Assuming that you are using the default color palette, the Colors section of
the dialog should resemble the following screenshot:

7. Click on Save.

Any changes that you make to the community branding declaratively
are automatically propagated to Site.com in the community site
template and style sheet.

Specifying Site.com for the community
Force.com sites are a feature of Salesforce that allow you to create public websites
and applications that are directly integrated with a Salesforce organization. As
mentioned earlier, Site.com is designed as a content management system and
provides more fine-grained control over the HTML and CSS of your site.

Force.com sites are available in Developer, Enterprise, Performance, and Unlimited
editions of Salesforce. Visualforce is available in Contact Manager, Group, Professional,
Enterprise, Unlimited, Performance, and Developer editions of Salesforce. However,
if you wish to use Apex, you will need the Performance, Unlimited, Developer, or
Enterprise edition of Salesforce (Apex is also available on Database.com).

Site.com is purchased as a separate license for Enterprise, Performance,
and Unlimited Salesforce editions (a limited Site.com license for use only
with communities is available in a Developer edition).

Chapter 1

[31]

For more information about Site.com and links to resources
and recommended learning path, refer to https://wiki.
developerforce.com/page/Site.com.

By default, Salesforce will use a standard Force.com site for the community. This
allows the website to be configured in a declarative fashion by specifying the
Salesforce tabs that will be made available to the community users. This can then
be customized or extended as required by using Visualforce and Apex.

The second option to define a community website is to use Site.com. This is
better suited to build a more customized interface using HTML and CSS as the
key components, with a limited set of data access functionality.

For the Volunteer Community, we will be using Site.com to provide a more
customized interface for the community website. Our data access requirements
can also be supported by Site.com out of the box, without the need to use
Visualforce or Apex.

To define a Site.com website for the Volunteer Community, the following steps will
need to be completed:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Edit link in the Action column for the Force Volunteers

Community.
3. The Community Settings dialog is displayed.
4. Click on the Tabs & Pages button.
5. The drop-down list at the top of the Tabs & Pages dialog will be set to Use

Salesforce.com tabs, by default.
6. Select Use Site.com to create custom community pages from the drop-down

list to specify that you will be using Site.com.
7. The Tabs & Pages dialog should now resemble the following screenshot:

8. Click on Save and then on Close to dismiss the Community Settings dialog.

Building and Customizing Your Own Sites

[32]

Creating a public community site
Now, we get to the fun part! We are going to use Site.com to build the custom user
interface for the Volunteer Community.

A quick tour of the Site.com community
When you selected Site.com to build the pages for the community, Salesforce
automatically created a skeleton website with minimal content.

To open your Site.com community website, complete the following steps:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Site.com link in the Custom Pages column for the Force

Volunteers Community option.
3. If this is the first time you are using Site.com, you will be presented

with the Getting Started with Site.com Studio introduction window. Select
the Don't show this again checkbox, and click on the x icon in the top-right
corner of the window.

4. You will now be presented with the Site.com landing page for your
community, as shown in the following screenshot:

Chapter 1

[33]

As seen in the screenshot, the Site Pages section displays the pages for your site.
Currently, this is empty as you haven't created any pages yet.

Clicking on the Page Templates section will display the current list of templates
that can be used for the pages on your site. Your screen should look like the
following screenshot:

Salesforce has automatically generated the Community Template page for you,
based on your selections when branding the community.

www.allitebooks.com

http://www.allitebooks.org

Building and Customizing Your Own Sites

[34]

Clicking on the Style Sheets section will display the current list of style sheets
associated with your site. Your screen should look like the following screenshot:

Salesforce has automatically generated the CommunityBranding style sheet for
you, again based on your selections when branding the community. The default
SiteStyleSheet is also generated by Salesforce, and supplies a base level of styling
for site elements, such as menus, tables, and forms.

The Assets section is where you upload any images, scripts, videos, or documents
that will be used by your site. Currently, this is empty as we haven't uploaded
anything yet.

Clicking on the Widgets section will display the current list of reusable components
that can be used for the pages on your site. Your screen should look like the
following screenshot:

Chapter 1

[35]

Salesforce has automatically generated the Header and Footer widgets for you,
also based on your selections when branding the community.

Customizing the site header and footer
The initial items that we will need to customize for the community site are the
header and footer.

Customizing the header
The following sections detail the steps required to customize the community header.

Importing the community logo
The steps to import the community logo are as follows:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Site.com link in the Custom Pages column for the Force

Volunteers Community option.
3. On the Overview tab, hover over Assets and click on Import.
4. In the Import an Asset dialog, click on the Browse... button.
5. In the file picker dialog, locate the image Force Volunteers Logo.png from

the code download for this chapter and click on Open.
6. Leave the Overwrite existing files checkbox selected and click on Import.

Building and Customizing Your Own Sites

[36]

7. Once the file has been uploaded, you will see a success message. At this point,
you can click on Browse... again to import another asset if required. We don't
have any more assets to upload at this point, so click on the x sign in the
top-right corner of the window to close the dialog.

8. The ForceVolunteersLogo.png file will now appear in the Assets list for
the site.

Adding the community logo to the header
The steps to add the community logo to the header are as follows:

1. On the Overview tab, click on Widgets.
2. In the list of widgets, click on Header.
3. Ensure that the Page Structure tab is selected, as shown in the

following screenshot:

4. In the Page Structure tab, there will be a page element of type Custom Code
underneath the Widget section. This contains any header information that
has been saved as part of the community branding. You can leave this page
element as it is since you didn't enter any header information when branding
the community.

If you subsequently enter any header information into the community
branding, it will appear in the Custom Code element. You may
wish to delete the Custom Code page element to prevent this from
happening. To restore the default header at a later stage, you will
need to readd a Custom Code page element with the following code:

{!Network.header}

Chapter 1

[37]

5. Select Widget, click on the gear icon, and select Add Page Elements. From
the list of page elements, select Image.

6. In the Add an Image dialog, select ForceVolunteersLogo.png. A preview of
the logo will be displayed. Click on Apply.

Adding the site navigation menu
To add the site navigation menu, perform the following steps:

1. Select Widget, click on the gear icon, and select Add Page Elements. From
the list of page elements, select Panel. Close the dialog.

2. Using the Properties pane on the right of the screen, type navigation in the
Class Name field, and press Enter.

3. Select the div.navigation panel, click on the gear icon, and select Add Page
Elements, as shown in the following screenshot. From the list
of page elements, select Menu. Close the dialog.

Building and Customizing Your Own Sites

[38]

4. From the Properties pane, expand the THEME section and select Default for
the menu Theme Name.

At this point the menu is blank. The menu will be built automatically
from the pages in the site.

5. Your Header widget should now resemble the following screenshot:

6. Close the Header tab.

Customizing the footer
To customize the footer, perform the following steps:

1. Assuming that you are still in Site.com, in the list of widgets, click on Footer.
2. Ensure that the Page Structure tab is selected.
3. In the Page Structure window, there will be a page element of type Custom

Code underneath the Widget section. This contains any footer information
that has been saved as part of the community branding. You can leave this
page element as it is since you didn't enter any footer information when
branding the community.

Chapter 1

[39]

If you subsequently enter any footer information into the community
branding, it will appear in the Custom Code element. You may wish to
delete the Custom Code page element to prevent this from happening. To
restore the default footer at a later stage, you will need to readd a Custom
Code page element with the following code:

{!Network.footer}

4. Select Widget, click on the gear icon, and select Add Page Elements.
From the list of page elements, select Content Block.

5. Select the content block, click on the gear icon, and select Edit.
6. Delete the existing text.
7. From the Insert Symbol drop-down menu (the drop-down menu on the

right-hand side of the Add or Edit Media drop-down list in the top toolbar),
select the copyright symbol.

8. In the content block, type Copyright 2014 Volunteer Force. All rights
reserved. and click on Save, as shown in the following screenshot:

9. Close the Footer tab.

Adding some style to the community site
Currently, your community site is using a base collection of styling information
determined by the CommunityBranding style sheet and the default SiteStyleSheet.
You will now upload an additional style sheet to add some more CSS styling
information using the following steps:

1. Navigate to Setup | Build | Customize | Communities | Manage Communities.
2. Click on the Site.com link in the Custom Pages column for the Force

Volunteers Community option.

Building and Customizing Your Own Sites

[40]

3. Click on Style Sheets to display the list of style sheets currently available.
4. Click on the Import... button at the top of the page, underneath the

Overview tab.
5. In the Import an Asset dialog, click on the Browse... button.
6. In the file picker dialog, locate the force.css style sheet from the code

download for this chapter and click on Open.
7. Leave the Overwrite existing files and Convert CSS files into style

sheets checkboxes selected and click on Import.
8. Once the file has been uploaded, you will see a success message.

At this point, you can click on Browse... again to import another asset if
required. We don't have any more assets to upload at this point, so click on
the x in the top-right corner of the window to close the dialog.

9. Click on Page Templates to display the list of templates for
community pages.

10. In the list of page templates, select Community Template, click on
the gear icon, and select Edit.

11. In the Properties pane, expand the STYLE SHEETS section, as shown in the
following screenshot:

12. Click on the + button underneath the Style Sheets list.
13. A drop-down list containing the style sheets loaded into the community is

displayed. Select /force.css and click on the + button next to the drop-down
list (the highlighted button in the following screenshot):

Chapter 1

[41]

14. The styles from force.css will now be applied to the Community Template.
15. Close the Community Template tab.

Creating the static site pages
The building of the site infrastructure for the community is now complete. We are
now in a position to build the pages of the site itself. The following steps are to be
completed to create the static site pages:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Site.com link in the Custom Pages column for the Force

Volunteers Community option.
3. Click on Site Pages to display the list of pages for the community.

At this stage, it should be blank.
4. Click on the New drop-down button at the top of the list and select

Site Page.
5. In the Create a Site Page dialog, enter Page name as Home.
6. Ensure that Community Template is selected in the Page templates list.
7. Click on Create.
8. The Home page will be created and displayed in the Site.com editor.
9. Close the Home page.
10. Repeat steps 4 to 9 to create the following pages:

 ° Services
 ° Who We Are
 ° Events
 ° Contact Us
 ° Volunteers

Building and Customizing Your Own Sites

[42]

Adding text to static pages
To add text to static pages, perform the following steps:

1. Click on Site Pages to display the list of pages for the community.
2. Hover over Home, click on the gear icon, and select Edit.
3. Select the div#content.brandPrimaryBrd page element, click on the gear icon,

and select Override Parent Content. Click on OK to confirm your wish to
override inherited content.

4. Select the div#content.brandPrimaryBrd page element, click on the gear
icon, and select Add Page Elements.

5. Click on Panel in the Add Page Elements dialog and close it.
6. Select the div page element you have just created, click on the gear icon,

and select Add Page Elements.
7. Click on Content Block in the Add Page Elements dialog and close it.
8. Select the content block you have just created, click on the gear icon,

and select Edit.
9. Delete the existing text.
10. Currently, Paragraph is the selected style for the text. Click on the

style drop-down menu where Paragraph is selected and select Heading 1.
11. Type Welcome to Force Volunteers! and press Enter.
12. Click on the Style drop-down menu and select Paragraph.
13. Type We are an organization dedicated to supporting young

people and helping them make positive life choices.
14. Click on Save.
15. Click on Preview Page and admire your home page, as shown in the

following screenshot:

Chapter 1

[43]

16. Repeat steps 1 to 15 and add static text to the following pages as per the
following table:

Page Heading Paragraph text
Services Services We Offer We offer a range of support

services encompassing Schools,
Universities, Festivals and
Events.

Who We Are Who We Are Our founders recognized the need
for an organization to support
young people at a very vulnerable
stage of their lives. We now
offer a comprehensive range
of programs aimed at helping
young people make positive life
choices.

Events Events A list of volunteer events we
will be involved in.

Contact Us Contact Us For any enquiries, contact us at
volunteers@forcevolunteers.com.

Volunteers Volunteers Online Welcome to our Volunteers Online
Page.

The e-mail address link for the Contact Us page will be
automatically generated by Site.com.

Creating a data access page

Before creating the volunteer events' data access page, take some
time to create some sample volunteer teams, volunteers, and
volunteer events in your Salesforce development organization.

It will be beneficial to display a list of volunteer events on the Events page. This
will require us to utilize the Salesforce data access functionality built into Site.com.
Fortunately, for us, Salesforce has gone to great lengths to make the process as
painless as possible.

www.allitebooks.com

http://www.allitebooks.org

Building and Customizing Your Own Sites

[44]

To add a list of events to the Events page, complete the following steps:

1. Click on Site Pages to display the list of pages for the community.
2. Hover over Events, click on the gear icon, and select Edit.
3. Select the div#content.brandPrimaryBrd page element, click on the gear

icon, and select Add Page Elements.
4. Click on Panel in the Add Page Elements dialog and close it.
5. In the Properties pane, give the div page element an ID of EventList.
6. Click on the div#EventList element, click on the gear icon, and select

Add Page Elements.
7. From the DATA section of page elements, select Data Table. The Create Data

Table wizard will open.
8. In the Choose a Salesforce object drop-down menu, choose VolunteerEvent.

You will notice that the Connection Preview section is populated with data
from VolunteerEvent.

9. We don't want to display events from the past, so we will need to filter the
data to display events with a date on or after the current date. Expand the
FILTERS section.

10. From the Field drop-down list, select Start Date/Time.
11. From the Operator drop-down list, select Greater than or equal to.
12. From the Source drop-down list, select Global Property.
13. From the Value drop-down list, select Current date.
14. We will be sorting the events by Start/Date Time in an ascending order.

Expand the SORTING section.
15. In the Field drop-down list, select Start Date/Time.
16. In the Sort Order drop-down list, select Ascending.
17. Your filtering and sorting criteria should resemble the following screenshot:

Chapter 1

[45]

18. Click on Next.
19. You will now need to select the data fields to be displayed in the table. From

the Available Fields list, select Start Date/Time and move it across to the
Selected Fields list by clicking on the > button.

20. Move the End Date/Time, Event Name, Description, and Location
fields across to the Selected Fields list by pressing the > button.

21. Click on the Reload Preview button to see a preview of your table.
22. When you are satisfied with the results, click on Save.
23. The events list will now appear on your Events page. At this point, you can

select Preview Page to see your events list in action.

Customizing the events list
Congratulations! You now have a list of events on your site.

However, there are a few improvements that we can make to the events list, which
are listed as follows:

• Fix the styling and placement of the events list to match the rest of the site
• Format the Start Date/Time and End Date/Time columns to display the

dates and times correctly
• Add paging support to limit the number of events listed on a page and

provide a mechanism to scroll through them

Styling the events list
To correct the styling and placement of the events list, complete the following steps:

1. Open the Events page from the Site Pages list.
2. Select the div#EventsList page element.
3. Select the Style pane (next to the Properties pane).
4. Expand the DIMENSIONS section.
5. Scroll down to the Padding section and enter 15 for the Top padding value.
6. From the drop-down menu, next to the Top textbox, select pixels.
7. Click on the Overview tab and select Style Sheets.
8. Click on SiteStyleSheet to open it.
9. From the list of CSS styles on the left-hand side, find the .Tabletheme thead

th style and select it.

Building and Customizing Your Own Sites

[46]

10. In the CSS code box to the right-hand side of the style, add the following line
of CSS code, as shown in the following screenshot:
font-size:12px;

11. Click on Save.
12. From the list of CSS styles, find the .Tabletheme tbody tr td style and

select it.
13. In the CSS code box to the right-hand side of the style, change the

border-color entry to black, so the line reads the following code:
border-color:black;

14. Finally, add the following line of CSS code, as shown in the
following screenshot:
font-size:12px;

Chapter 1

[47]

15. Click on Save and close SiteStyleSheet.

Fixing the Date/Time columns
Now, we need to fix the formatting of the Start Date/Time and End Date/Time
columns in the events list. To reformat the columns, complete the following steps:

1. Open the Events page from the Site Pages list.
2. Double-click on the Start_Date_Time__c table cell. The Edit Column dialog

will be displayed.
3. From the Display the field value as: drop-down list, select Formatted Text.
4. From the Format drop-down list, select Short date and time.
5. Click on Save.
6. Perform the same steps for the End_Date_Time__c table cell.

Building and Customizing Your Own Sites

[48]

Add paging support to the events list
The final step in customizing the events list is to add paging support to the table.
This will allow a user to step through the list of events. To add paging support,
complete the following steps:

1. Select the Default View option of the Data Table.Tabletheme page element,
click on the gear icon and select Edit, as shown in the following screenshot:

2. Expand the LIMITS section and enter 5 for the Results per page field.
3. Click on Next and then on Save.
4. Select the div#EventsList page element from the Page Structure tab,

click on the gear icon, and select Add Page Elements.
5. Select Panel. In the Properties pane, give the panel an ID of ButtonRow.
6. Select the Style pane (next to the Properties pane).
7. Expand the DIMENSIONS section.
8. Scroll down to the Padding section and enter 15 for the Top padding value.
9. From the drop-down menu next to the Top textbox, select pixels.

Chapter 1

[49]

Adding the paging buttons
The steps to add the paging buttons are as follows:

1. Select the div#ButtonRow page element, click on the gear icon, select Add
Row and Column Panels, and then select Add Row and Column Panels
from the Inside the panel... section.

2. Select a 1 x 2 grid (two columns in the first row).
3. Select the first div page element underneath div#ButtonRow and

give it an ID of PrevButton in the Properties pane.
4. In the Style pane, expand the DIMENSIONS section, and set the

Width field to 100 pixels.
5. Select the second div page element underneath div#ButtonRow and

give it an ID of NextButton in the Properties pane.
6. In the Style pane, expand the DIMENSIONS section, and set the

Width field to 100 pixels.
7. Select the div#PrevButton page element, click on the gear icon, select

Add Page Elements, and then select Button. Close the dialog.
8. In the Properties pane, change the name to Previous Page.
9. In the Events pane, select the click event.
10. Click on the + button underneath the Actions list.
11. In the Select an Action drop-down list, select Previous Page.
12. In the Target Element drop-down list, ensure that

VolunteerEvent__c Data Table is selected (it should be the only element in
the list).

13. Click on Save.
14. Select the div#NextButton page element, click on the gear icon, select

Add Page Elements, and then select Button. Close the dialog.
15. In the Properties pane, change the name to Next Page.
16. In the Events pane, select the click event.
17. Click on the + button underneath the Actions list.
18. In the Select an Action drop-down list, select Next Page.
19. In the Target Element drop-down list, ensure that

VolunteerEvent__c Data Table is selected (it should be the only element in
the list).

20. Click on Save.

Building and Customizing Your Own Sites

[50]

Catering for the end of the event list
To cater for the end of the event list, perform the following steps:

1. Select the Content Block option underneath the No Data View page element
of Data Table.Tabletheme, click on the gear icon, and then select Edit.

2. Replace the text No Data Found with No More Events....
3. Replace the text There is no data to display for this query with There are no

more Events to display at this time. Please check back later., as
shown in the following screenshot:

4. Click on Save.
5. Your Events page should now resemble the following screenshot:

Chapter 1

[51]

Securing the volunteers page
The build of the Volunteer Community is nearly complete. Our last task is to secure
the volunteers page. This is achieved by activating Authorization for the site.

There are three options available when activating authorization in Site.com,
as shown in the following screenshot:

We want all pages to be available for public access, except the volunteers page.
In this case, the custom authorization setting suits our purpose.

Complete the following steps to activate authorization for the community site:

1. On the Overview tab of the site, expand the Site Configuration section,
and select Authorization.

2. The default setting is No Authorization. To change this, select Custom from
the Site Setting drop-down list.

By default, all site pages are still publicly available when enabling the Custom
authorization. We will need to manually configure the authorization for the
volunteers page by completing the following steps:

1. On the Overview tab of the site, select Site Pages.
2. Select the Volunteers page, click on the gear icon, and select the Requires

Authorization checkbox.

Building and Customizing Your Own Sites

[52]

3. A padlock icon will now appear next to the Volunteers page name indicating
that it is now secured. This is illustrated in the following screenshot:

To personalize the Volunteers page, we will now add a Chatter feed for the logged
in user:

1. Double-click on the Volunteers page to open it for editing.
2. Select the div#content.brandPrimaryBrd page element, click on the gear

icon, and then select Add Page Elements.
3. Click on Panel in the Add Page Elements dialog and close it.
4. In the Properties pane, give the div page element an ID of VolunteerChatter.
5. Select the Style pane (next to the Properties pane).
6. Expand the DIMENSIONS section.
7. Scroll down to the Padding section and enter 15 for the Top padding value.
8. From the drop-down list, next to the Top textbox, select pixels.
9. Click on the div#VolunteerChatter element, then on the gear icon,

and select Add Page Elements.
10. From the WIDGETS section of the dialog, select the News Feed widget.
11. Click on x to close the Add Page Elements dialog.

Chapter 1

[53]

12. Click on Preview Page to see your Volunteers page with a personalized
Chatter feed for the currently logged in user, as illustrated in the
following screenshot:

The first time you display the Volunteers page after it has been
secured, you may be prompted to log in. If so, make sure that you
select the link to log in as Member Of your Salesforce Organization.

Congratulations! The build of the community is now complete!

Creating the Volunteer users
To create community users, they must first be added as contacts against a Salesforce
account. To add a community user, complete the following steps:

1. Open the contact record for the community user in Salesforce.
2. Click on Manage External User and select Enable Customer User.
3. The New User screen will now be displayed.
4. Complete the user details for the user (you can use any data you

like) and be sure that you select Volunteer Community User for the profile
(assuming the profile has been created previously and is active).

5. Ensure that Customer Community is selected for the User License section.
6. Click on Save.

www.allitebooks.com

http://www.allitebooks.org

Building and Customizing Your Own Sites

[54]

In order to create community users, the logged in user must be
assigned to any role, or else the Portal Account Owner Has No Role
error will be displayed. Also, the community user will not receive an
activation e-mail until the community is live.

Going live
Now, we are ready to publish the community on Salesforce. Once the community has
been published, it will be available to all users with the correct access privileges. In
our case, this will be public (anonymous) users, and users with a profile of Volunteer
Force User or Volunteer Community User.

To publish the Volunteer Force community, complete the following steps:

1. Navigate to Setup | Customize | Communities | Manage Communities.
2. Click on the Edit link in the Action column for the Force Volunteers

Community option.
3. Click on the green button labeled Publish.
4. A dialog box will be displayed informing you that publishing the

community will make it available to all members, and that all members will
be sent a welcome e-mail. Click on OK.

5. A success message will be displayed and the community status will change
to Published, as shown in the following screenshot:

Chapter 1

[55]

6. The community users will also receive a welcome e-mail, as shown in the
following screenshot:

Congratulations! Your community is now live!

To view the licensing options for Salesforce communities, visit
https://help.salesforce.com/HTViewHelpDoc?id=users_
license_types_communities.htm&language=en_US.

Building and Customizing Your Own Sites

[56]

Summary
In this chapter, we built a fully functional Salesforce community that is powered
by Site.com.

First, we enabled Salesforce communities for our development organization.
We then proceeded to create a new community. From there, we configured the
Force.com objects and user profiles required for the community, before adding some
community members. With the building blocks in place, we branded the community
and built the public-facing site with Site.com. Finally, we integrated the community
site to our Force.com data, secured the community, and published it.

Some possible enhancements that you could make to the community are as follows:

• Add a status field to the VolunteerEvent object, with statuses such as Draft
and Published. Use the data filtering capabilities of Site.com to only display
the published events.

• Publish a form for prospective volunteers to register their interest and
capture this as a lead in Salesforce.

• Customize the community login page that is displayed when a volunteer
logs in.

The E-Commerce Framework
E-commerce was a major driving force behind the Internet in the late 1990s and early
2000s and continues to be a major driver of Internet innovation and growth to this
current day.

The ability to order goods and services via the Internet revolutionized how companies
interacted with customers, and the addition of Web 2.0 technologies and the social
media has allowed the development of some very sophisticated and personalized
online shopping experiences. The ongoing success of companies such as Amazon,
eBay, and PayPal has ensured that e-commerce will continue to be a major Internet
force in the future.

In this chapter, we will be building an e-commerce solution for the fictional
Force E-Commerce company. They specialize in the development and sales of
high-performance and racing car engines for motoring enthusiasts and racing teams.

The company has decided to increase their digital footprint by offering online ordering
of their high performance engines on the Internet. We have been engaged by them to
develop a Force.com powered e-commerce solution to achieve this requirement.

In this chapter we will be:

• Building a Heroku-powered Ruby on Rails e-commerce application that will
allow Force E-Commerce customers to sign up and place orders. Heroku has
been chosen, because it is Salesforce's Platform as a Service (PaaS) offering,
which makes integrating to Force.com extremely simple.

• Building a Visualforce Force.com fulfillment application to allow Force
E-Commerce employees to manage and fulfill orders placed in the
e-commerce application.

• Using the new Salesforce1 force.rb Ruby gem to integrate the Heroku
e-commerce application to Force.com to allow it to query and update
Force.com data.

The E-Commerce Framework

[58]

We have a lot to get through in this chapter, so let's get started!

Building a basic Force.com fulfillment
application
The first step in building our e-commerce application is to develop a basic fulfillment
application in Force.com. This will give us the base configuration and custom objects
we need to allow us to integrate the e-commerce site on Heroku and ensure that the
integration is working correctly.

You may be tempted at this stage to develop a full-blown fulfillment
application in Force.com using Visualforce and Apex. Patience is a
virtue! Experience has taught me (the hard way) that when integrating
one or more applications, it is better in the early stages to have the
bare minimum of application functionality required to prove that the
integration(s) work. If integration issues do occur (and they will), it is a lot
easier to debug a basic Force.com application with standard functionality
rather than having to potentially wade through Visualforce pages, Apex,
and, if you are particularly unlucky, Ajax and JavaScript as well.

Defining the data model
The first step in building the base fulfillment application is to define the Order, Order
Line, and Order Line Item custom objects and the relationships between them.

Order Order Line Order Line
Item

Defining the Order object
Your application will require a custom object to store the orders placed on the
e-commerce site:

1. Navigate to Setup | Create | Objects.
2. Click on the New Custom Object button.
3. Enter Order for Label.
4. Enter Orders for the Plural Label.

Chapter 2

[59]

5. Enter An Order Placed by a Customer for Description to describe the
purpose of the custom object.

6. Enter Order No for the Record Name and change the Data Type to
Auto Number.

7. Enter Order-{00000} in the Display Format field.
8. Enter 1 in the Starting Number field.
9. Select the following checkboxes:

 ° Allow Reports (optional feature)
 ° Allow Activities (optional feature)
 ° Track Field History (optional feature)
 ° Add Notes and Attachments related list to default page layout

(object creation option)

10. Ensure that the Deployment Status is set to Deployed.
11. Press the Save button to create the custom object.

You will now need to configure the custom fields for the Order object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type, select Picklist and click on Next.
5. Enter Channel for the Field Label.
6. Ensure that the Field Name equals Channel.
7. In the picklist values field enter Internal and External.
8. Select the checkbox titled Use first value as default value.

The E-Commerce Framework

[60]

9. If desired, enter a Description and Help Text. Your field definition should
look similar to the following screenshot:

10. Click on Next.
11. Accept the defaults for field-level security and click on Next.
12. Accept the defaults for the Page Layout Name and click on Save & New.
13. Create the remaining fields described in the following table:

Field Type Field Label Field Name Description
Text Area Comments Comments Comments entered

against the order
on the e-commerce
site.

Text Area Customer Address Customer_
Address

The delivery
address of the
customer placing
the order. Ensure that
the Required checkbox
is selected.

Chapter 2

[61]

Field Type Field Label Field Name Description
Email Customer Email Customer_

Email
The e-mail address
of the customer
placing the order.
Ensure that the Required
checkbox is selected.

Number Customer ID Customer_
ID

The unique
identifier for the
customer from the
e-commerce site.
Ensure that the External
ID checkbox is selected.

Text Customer Name Customer_
Name

The name of the
customer placing
the order. Ensure that
the Required checkbox
is selected and the
maximum length is 255
characters.

Checkbox Delivered Delivered Flag to indicate
whether the order
has been delivered
to the customer.

Percent Discount Discount A discretionary
discount that can
be applied to an
order. Ensure that the
Length is set to 3, and
the Decimal Places are
set to 2.

Date Planned Delivery
Date

Planned_
Delivery_
Date

The planned
delivery date for
the order.

It is imperative that the Field Type and Field Name for each field in
this table is an exact match to your custom object to ensure that the
e-commerce site will integrate correctly.

The E-Commerce Framework

[62]

Defining the Order Line Item object
Your application will require a custom object to store the Order Line Item objects
that represent products in the product catalog on the e-commerce site. Perform the
following steps to define the Order Line Item object:

1. Navigate to Setup | Create | Objects.
2. Click on the New Custom Object button.
3. Enter Order Line Item for Label.
4. Enter Order Line Items for the Plural Label.
5. Enter A product item ordered on an Order Line for Description to

describe the purpose of the custom object.
6. Enter Order Item Number for the Record Name, and change the Data Type

to Auto Number.
7. Enter OLI-{00000} in the Display Format field.
8. Enter 1 in the Starting Number field.
9. Select the following checkboxes:

 ° Allow Reports (optional feature)
 ° Allow Activities (optional feature)
 ° Track Field History (optional feature)
 ° Add Notes and Attachments related list to default page layout

(object creation options)

10. Ensure that the Deployment Status is set to Deployed.
11. Press the Save button to create the Custom Object.

You will now need to configure the custom fields for the Order object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order Line Item hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. Create the fields described in the following table:

Field Type Field Label Field Name Description
Number Capacity Capacity The capacity of

the engine in
cubic inches

Chapter 2

[63]

Field Type Field Label Field Name Description
Picklist Induction Induction The induction

method of the
engine. Picklist
values are Naturally
Aspirated,
Supercharged, and
Turbocharged. Select
the checkbox titled Use
first value as default
value.

Text Item Name Item_Name The name of the
item. The maximum
length is 255 characters.
Ensure that the Required
checkbox is selected.

Number Power
Output

Power_
Output

The power output
of the engine in
horsepower.

Number Torque Torque The pulling power
of the engine in
ft lb.

Currency Unit Price Unit_Price The price of the
engine. Ensure that the
Required checkbox is
selected.

It is imperative that the Field Type and Field Name for each field in
this table is an exact match to your custom object to ensure that the
e-commerce site will integrate correctly.

Defining the Order Line object
Your application will require a custom object to store the Order Line objects that
represent products purchased in an order on the e-commerce site. Perform the
following steps to do so:

1. Navigate to Setup | Create | Objects.
2. Click on the New Custom Object button.
3. Enter Order Line for Label.
4. Enter Order Lines for Plural Label.

The E-Commerce Framework

[64]

5. Enter An Order Line Item for an ordered item for the Description
to describe the purpose of the custom object.

6. Enter Order Line No for the Record Name, and change the Data Type
to Auto Number.

7. Enter OL-{00000} in the Display Format field.
8. Enter 1 in the Starting Number field.
9. Select the following checkboxes:

 ° Allow Reports (optional feature)
 ° Allow Activities (optional feature)
 ° Track Field History (optional feature)
 ° Add Notes and Attachments related list to default page layout

(object creation option)

10. Ensure that the Deployment Status is set to Deployed.
11. Press the Save button to create the Custom Object.

You will now need to configure the Custom Fields for the Order object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order Line hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. Create the fields described in the following table:

Field Type Field Label Field Name Comments
Currency Line Item Price Line_Item_Price The price of the

item in the order.
Set the default value to
0.

Number Quantity Quantity The quantity of
the item ordered.
Ensure that this field is
a Required field.

It is imperative that the Field Type and Field Name for each field
in this table is an exact match to your custom object to ensure that
the e-commerce site will integrate correctly.

Chapter 2

[65]

Defining the Order Line relationships
To complete our data model, we will need to establish the following relationships:

• A master-detail relationship from the Order object to the Order Line object.
• A lookup relationship from the Order Line object to the Order Line

Item object

First, we will configure the lookup relationship for the Order Line Item object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order Line hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type, select a Lookup Relationship. Click on Next.
5. In the Related To picklist, select Order Line Item. Click on Next.
6. For the Field Label, accept the default Order Line Item.
7. Ensure that the Field Name defaults to Order_Line_Item.
8. Accept the default Child Relationship Name of Order_Lines.
9. Ensure that the Required checkbox is selected.
10. Ensure that the Don't allow deletion of the lookup record that's part of a

lookup relationship option is selected to preserve the referential integrity
of orders. Click on Next.

11. Accept the defaults for field-level security and click on Next.
12. Accept the defaults to add the lookup field to the Order Line standard page

layout. Click on Next.
13. Accept the defaults for the related lists and click on Save.

Finally, we will configure the master-detail relationship for the Order object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order Line hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type, select a Master-Detail Relationship. Click on Next.
5. In the Related To picklist, select Order. Click on Next.
6. For the Field Label, accept the default of Order.
7. Ensure that the Field Name defaults to Order.
8. Accept the default Child Relationship Name of Order_Lines.

The E-Commerce Framework

[66]

9. Ensure that the Sharing Settings are set to Read/Write: Allows users with at
least Read/Write access to the Master record to create, edit, or delete related
Detail records. Click on Next.

10. Accept the defaults for the field-level security page and click on Next.
11. Accept the defaults to add the Order field to the Order Line page layout.

Click on Next.
12. Accept the defaults to add the Order Lines related list to the Order page

layout. Click on Save.

Finishing the data model
Now that the objects and relationships for the data model are complete, we can finish
it off by adding the following fields:

• Add Order Line Total and Grand Total formula fields to the Order object to
support discounting and displaying the overall amount of an order

• Adding a formula field to the Order Line object to lookup the Item Name for
an Order Line

• Adding a formula field to the Order Line object to calculate the total amount
for the Order Line

We will start by configuring the fields for the Order Line object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order Line hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type, select Formula. Click on Next.
5. For the Field Label, enter Line Item Total.
6. Ensure that the Field Name defaults to Line_Item_Total.
7. Select Currency for the Formula Return Type. Click on Next.
8. Select List Item Price from the Insert Field drop-down list, Multiply from

the Insert Operator drop-down list, and then Quantity from the Insert Field
drop-down list. The Formula Editor looks as follows: Line_Item_Price__c *
Quantity__c. At the beginning, we created a formulae field on Order Line in
the Formula Editor. Click on Next.

9. Accept the defaults for the field-level security page. Click on Next.
10. Accept the defaults to add the field to the Order Line page layout.

Click on Save & New.
11. For the Data Type, select Formula. Click on Next.

Chapter 2

[67]

12. For the Field Label, enter Item Name.
13. Ensure that the Field Name defaults to Item_Name.
14. Select Text for the Formula Return Type. Click on Next.
15. Enter Order_Line_Item__r.Item_Name__c in the Formula Editor.

Click on Next.
16. Accept the defaults for the field-level security page. Click on Next.
17. Accept the defaults to add the field to the Order Line page layout.

Click on Save.

Finally, we will configure the fields for the Order object:

1. Navigate to Setup | Create | Objects.
2. Click on the Order hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. For the Data Type, select a Roll-Up Summary. Click on Next.
5. For the Field Label, enter Order Lines Total.
6. Ensure that the Field Name defaults to Order_Lines_Total. Click on Next.
7. Select Order Lines in the Summarized Object drop-down list.
8. Select SUM for the Roll Up Type.
9. In the Field to Aggregate drop-down list, select Line Item Total.

Click on Next.
10. Accept the defaults for the field-level security page. Click on Next.
11. Accept the defaults to add the Line Item Total to the Order page

layout. Click on Save & New.
12. For the Data Type, select Formula. Click on Next.
13. For the Field Label, enter Grand Total.
14. Ensure that the Field Name defaults to Grand_Total.
15. Select Currency for the Formula Return Type. Click on Next.
16. Enter Order_Lines_Total__c - (Order_Lines_Total__c *

Discount__c) in the Formula Editor. Click on Next.
17. Accept the defaults for the field-level security page. Click on Next.
18. Accept the defaults to add the field to the Order page layout. Click on Save.

Congratulations! The data model for the application is now complete.

The E-Commerce Framework

[68]

Defining application tabs and page layouts
Our next task is to define the tabs required for the Orders application and make
some minor adjustments to some page layouts generated by Force.com.

To define the application tabs, perform the following steps:

1. Navigate to Setup | Create | Tabs.
2. Click on New in the Custom Object Tabs section.
3. In the Object dropdown list select Order.
4. Select the Lookup icon to set a Tab Style (a suggestion is Stack of Cash).

Click on Next.
5. Accept the defaults for the Add to Profiles page and click on Next.
6. Deselect all applications to ensure this tab is not added. Click on Save.
7. Click on New in the Custom Object Tabs section.
8. In the Object drop-down list, select Order Line Item.
9. Select the Lookup icon to set a Tab Style (a suggestion is Treasure Chest).

Click on Next.
10. Accept the defaults for the Add to Profiles page and click on Next.
11. Deselect all applications to ensure this tab is not added. Click on Save.

We don't add a tab for Order Line as they will only ever be displayed
as a related list on the Order tab in our application.

To adjust the dialog lookup for Order Line Item objects, perform the following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Order Line Item hyperlink.
3. Scroll down to the Search Layouts section and select the Edit link next to

Lookup Dialogs.
4. Add Item Name and Unit price to the Selected Fields list.
5. Click on Save.
6. Finally, we will adjust the Order Lines related list on the Orders page layout:
7. Navigate to Setup | Create | Objects.
8. Click on the Order hyperlink.

Chapter 2

[69]

9. Scroll down to the Page Layouts section, and select the Edit link next to
Order Layout.

10. Scroll down to the Order Lines related list and select the wrench icon
to adjust the list properties.

11. Add the Order Line No, Item Name, Quantity, Line Item Price, and
Line Item Total to the Selected Fields list.

12. Select Order Line No in the Sort By drop-down list. Ensure that Ascending
is selected for the sort order:

13. Click on OK and then on Save in the page layout header to complete
the changes.

Creating the application
To define the Orders application, perform the following steps:

1. Navigate to Setup | Create | Apps.
2. Click on the New button.

The E-Commerce Framework

[70]

3. Select Custom app as the type of app to create. Click on Next.
4. For the App Label, enter Orders. The App Name should also be defaulted to

Orders. Click on Next.
5. Click on Next to accept the default logo.
6. Move Orders and Order Line Items to the Selected Tabs list.
7. Leave Home as the Default Landing Tab. Click on Next.
8. Make the application visible to System Administrator and click on Save.

A dash of workflow
The next step in our base application is to configure a workflow rule to populate the
Line Item Price of an Order Line when it is created. The price will be sourced from
the Order Line Item object.

The workflow will check if the Line Item Price on an Order Line is blank at the
time of creation, and if true, copy the price from the linked Order Line Item into
the Line Item Price field of the Order Line. In our sample application, this will be
true for orders created through the Salesforce interface. The e-commerce site will
automatically populate the Unit Price on an Order Line.

In the sample application, we are using a workflow to populate the
Order Line price to shield against a price change in the underlying
Order Line Item object. If licensing allows it in a production
application, it is recommended to use the standard products and price
book functionality instead.

To configure the workflow, perform the following steps:

1. Navigate to Setup | Create | Workflow & Approvals | Workflow Rules.
2. If an Understanding Workflow page is displayed, click on Continue.
3. Click on the New Rule button to create a new workflow rule.
4. Select the Order Line as the object to apply this workflow rule to.

Click on Next.
5. For the Rule Name, enter Order Line Created.
6. In the Evaluation Criteria, select the Evaluate the rule when a record is

created option.
7. In the Rule Criteria, select the drop-down list option to Run this rule if the

following formula evaluates to true.

Chapter 2

[71]

8. In the Formula Editor, enter Line_Item_Price__c = 0. Click on Save & Next
9. In the Specify Workflow Actions screen, click on the Add Workflow Action

dropdown, and select New Field Update.
10. Enter Insert Order Line Price for the Name of the action. The Unique

Name should default to Insert_Order_Line_Price.
11. In the Fields to Update, select Order Line and Line Item Price.
12. In the Specify New Field Value section, select Use a formula to set

the new value.
13. For the Formula Value, enter Order_Line_Item__r.Unit_Price__c. Click

on Save. Your workflow rule should resemble the following screenshot:

The E-Commerce Framework

[72]

14. Your workflow action should resemble the following screenshot:

Loading in Order Line Items
In the code download for this chapter, you will find a file called Order Line Item.
csv in the sample_data directory. This file contains some sample Order Line Items
to get you started. You can use the import wizard or apex data loader to load the
sample data into your development organization.

Importing with the Custom Object Import Wizard
1. Navigate to Setup | Data Management | Import Custom Objects.
2. In the Custom Object Import Wizard introduction screen, select Start

Import Wizard!:

Chapter 2

[73]

3. In Step 1 of the import wizard, choose to import Order Line Item objects and
click on Next:

The E-Commerce Framework

[74]

4. In Step 2 of the import wizard, select No – insert all records in my import
file and click on Next:

5. In Step 3 of the import wizard, select None so that no fields from the file are
used to specify the record owner for the imported objects. The import process
will then use your login ID as the record owner. Click on Next:

6. In Step 4 of the import wizard, select the Order Line Item.csv file from the
code download for the chapter and click on Next:

Chapter 2

[75]

7. In Step 5 of the import wizard, set the Field Mapping as per the following
screenshot and click on Next:

The E-Commerce Framework

[76]

8. Click on OK in the warning dialog that is displayed:

9. In Step 6 of the import wizard, click on Import Now! to submit the
import request:

10. Click on Finish in Step 7 of the import wizard:

Chapter 2

[77]

11. When the import has completed, you will receive a confirmation e-mail:

Building the e-commerce application
We are now ready to build the e-commerce application. It will be written in Ruby on
Rails and hosted on the Heroku platform (http://www.heroku.com).

In this chapter, we will be configuring and deploying a prebuilt Ruby
on Rails e-commerce application to Heroku. We will only be examining
in detail the aspects of the application that integrate to Force.com. If you
are familiar with Ruby on Rails, I encourage you to explore the source
code included in the code download for the chapter to understand the
mechanics of the application. If you are unfamiliar with Ruby on Rails,
a great place to start learning is http://rubyonrails.org before
starting to familiarize yourself with the source code.

Heroku is a PaaS acquired by Salesforce in 2010 to provide a state-of-the-art cloud
development platform to help organizations accelerate their adoption of cloud
computing. Heroku is a polyglot platform and provides excellent support for Ruby
on Rails applications as well as applications written in multiple languages, including
the following:

• Java
• Node.js
• Python

The E-Commerce Framework

[78]

A book could easily be written about the Heroku platform in its own right. In this
chapter, we will concentrate on the steps required to get our e-commerce application
running on the platform. To find out more information about Heroku, refer
to the following websites: http://developer.salesforce.com/ and
http://www.heroku.com.

As part of the Salesforce1 development platform announcement,
Heroku was rebranded as Heroku1, and a number of new features
and APIs were announced (including the force.rb Ruby gem
we will be using in this chapter). For the purposes of this chapter,
the terms are interchangeable. Whenever we refer to Heroku, we
are also referring to Heroku1.

Setting up the development environment
To configure a local development environment, you will need to install and
configure the following software on your local machine:

• Ruby on Rails
• Git
• Heroku toolbelt

If you have any or all of these already installed, feel free to skip
through the relevant section(s).

Ruby on Rails
Ruby is an object-oriented language released in 1995 by Yukihiro "Matz" Matsumoto.
The language blended parts of Perl, Smalltalk, Eiffel, Ada, and Lisp to form a new
language. The intent of Ruby is to strike a balance between functional programming
and imperative programming styles.

Ruby has grown into a full-fledged programming language backed by a very active
community of developers. However, it was the arrival of the Rails framework in 2003
that fueled a massive amount of interest and growth in Ruby. Rails was developed
by David Heinemeier Hansson as a better way of building web applications. Two
standout features of Rails are its native support for both the model-view-controller
(MVC) paradigm and the REST routing style.

Chapter 2

[79]

The installation of Ruby on Rails can be challenging, especially for Windows users
where Ruby 2.0.0 support is still evolving. To ensure a consistent experience, I
recommend that you use the instructions contained in Appendix B, Installing Ruby
on Rails on Ubuntu, to install Ruby on Rails on an Ubuntu-based Linux system.

For Windows and Mac users, I recommend that you set up an Ubuntu
virtual machine using applications such as VirtualBox (https://www.
virtualbox.org/) and install Ubuntu (http://www.wikihow.com/
Install-Ubuntu-on-VirtualBox). Be sure to download and use
Ubuntu Desktop version 14.04 LTS as a minimum.

Once you have Ruby on Rails installed on your system, use a command window and
issue the following command to check the version of Ruby you are running:

$ ruby -v

If Ruby 2.0.0 is installed correctly, you will see a response similar to the following
(the version may differ):

ruby 2.0.0p247 (2013-06-27 revision 41674)

Issue the following command to check your Rails installation:

$ rails -v

If Rails is installed correctly, you will see a response similar to the following (again,
the version may differ):

Rails 4.0.0

Note that a minimum of Rails 4.0.0 is required for the e-commerce application. If you
have installed Ruby 2.0.0, Rails 4.0.0 will be installed by default.

If you have successfully run the previous commands and received the correct
responses, Ruby on Rails is successfully installed on your system.

On some systems, particularly if there is an existing Ruby installation,
there may be a conflict when attempting to check the Ruby 2.0.0
installation. In this case, it will be necessary to run the following
commands to explicitly use the Ruby 2.0.0 and Rails 4.0.0 environment
installed with rvm:

$ rvm 2.0.0 do ruby -v

$ rvm 2.0.0 exec bundle install –-without production

$ rvm 2.0.0 rails -v

The E-Commerce Framework

[80]

Git
Git is a source code control system developed by Linus Torvalds in 2005 to manage
builds of the Linux kernel. It was released in December 2005 and now enjoys a wide
level of support among software developers. Online code repositories such as GitHub
(https://github.com/) provide an extensive level of support for Git and host some
of the most popular open source projects on the Internet (Twitter Bootstrap, Node.js,
jQuery, and Ruby on Rails to name just a few).

If you are running on a Mac, and you have installed the Xcode 4 or Xcode 5
command-line tooling, you should already have Git installed on your system.

If you don't have Git installed, go to http://git-scm.com/ to download and install
it on to your system.

Once you have Git installed on your system (or to verify that it is already installed),
open a command window and issue the following command:

$ git --version

If Git is installed correctly, you will see a response similar to the following (the version
may differ):

git version 1.7.12.4

If you have successfully run the previous command and received the correct
response, it means that Git has been successfully installed on your system.

Heroku
To begin working with Heroku, you will first need to sign up at
https://www.heroku.com/. This is an easy process, and fortunately
Heroku provides enough free processing capacity for us to develop
and run the e-commerce application.

After you have established your Heroku account, you will need to install the Heroku
toolbelt on your system. This is a command line utility that will allow you to deploy
applications to Heroku and interact with the Heroku environment. To install the
Heroku toolbelt for your system, go to https://toolbelt.heroku.com/.

Once the Heroku toolbelt is installed, you can log in to your Heroku account by
issuing the following command:

$ heroku login

You will then be asked to enter your user credentials to log in to your account.

Chapter 2

[81]

The first time you log in to your Heroku account from the command
line, you will be asked to generate a public key. This key is required
to be able to deploy applications to Heroku. Windows users will be
unable to generate a public key using the Windows command shell.
A workaround is to login in to Heroku using the bash shell that is
installed with Git.

Congratulations! You have now successfully configured your
development environment.

Configuring the e-commerce application
The download for the chapter contains the source code for the Ruby on Rails
e-commerce application. The download also comes with a preconfigured Git repository.

From the chapter download, copy the ecommerce_app folder to a working directory.
From a command prompt, navigate to the working directory and check the status
of the Git repository. For example, if you copy the application to a rails_projects
subdirectory in your home directory, the commands and results would be as follows:

$ cd ~/rails_projects/ecommerce_app

$ git status

On branch master

nothing to commit (working directory clean)

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

All of the remaining commands in this section assume you are using the
application root directory.

The next step is to install the required Ruby gems contained in the application
Gemfile. Issue the following command:

$ bundle install --without production

The E-Commerce Framework

[82]

The --without production flag ensures that gems that are specific
to Heroku are not installed in our local environment.

The following commands will create a local development database and populate it
with some sample data:

$ rake db:migrate

$ rake db:populate

You will now see a file named development.sqlite3 in the db subdirectory. The
Rails console can be used to check that the database has been populated correctly:

$ rails console

The Rails console will start, and you will be presented with the console prompt.
Issue the following command to check how many sample users have been loaded
into the database:

2.0.0p247 :001 > User.count

The response should be similar to the following, indicating that there are 100 sample
users in the database:

 (1.3ms) SELECT COUNT(*) FROM "users"

 => 100

To check the details of the first user in the database, issue the following command:

2.0.0p247 :001 > User.first

The response should be similar to the following displaying the details of the first user
in the database:

 User Load (0.9ms) SELECT "users".* FROM "users" ORDER BY "users"."id"
ASC LIMIT 1

 => #<User id: 1, name: "Example User", email: "example@
forceblueprints.com", address: nil, created_at: "2013-12-03 10:42:17",
updated_at: "2013-12-03 10:42:17", password_digest: "$2a$10$yHa/
zgmLzZS5W1VGIo7.GO0wnVm2NUsaMCbYGwnSeG3....", remember_token:
"225f81230d98caef6074b145b25023e33833f70d", admin: true>

A sample Rails console session is illustrated in the following screenshot:

Chapter 2

[83]

Type exit or press Ctrl + D to exit the Rails console.

Finally, we will create a target Heroku application. Assuming you have previously
issued the heroku login command and are currently logged into your Heroku
account, issue the following command:

$ heroku create

Heroku will create a new application against your account, and you should get a
response similar to the following (the application name will differ):

Creating polar-cliffs-8870... done, stack is cedar

http://polar-cliffs-8870.herokuapp.com/ | git@heroku.com:
polar-cliffs-8870.git

Git remote heroku added

There is quite a bit happening behind the scenes when issuing the heroku create
command, so let's examine it in a bit more detail:

• Heroku creates a blank application against your account and gives it a
default name, in this case, polar-cliffs-8870.

• Heroku assigns an application stack to your new application. In Heroku
parlance, an application stack is a deployment environment that includes the
operating system, language runtime, and associated libraries. In our case,
we have been assigned the cedar application stack.

• Heroku assigns a default URL to your application. In our case, the default
URL is http://polar-cliffs-8870.herokuapp.com/.

• Heroku creates a remote Git repository for our application. In our case, the
remote repository is named git@heroku.com:polar-cliffs-8870.git.

• Finally, our local Git repository is updated to add the remote repository
created by Heroku.

The E-Commerce Framework

[84]

To confirm that the Heroku remote Git repository has been added, issue the
following command:

$ git remote

The response should list heroku and any other remote repositories that have been
configured. (A local Git repository can be linked to more than one remote repository,
which is very useful if you wish to also store your code at a repository such
as GitHub.)

If you log in to your Heroku dashboard at www.heroku.com, you will also see that
your new application has been added:

At this point, we now have a local development environment configured, our
development database populated with some sample data, and a target application
created on the Heroku platform. Our final task before deploying the application to
Heroku is to configure the Force.com remote access connection that will allow us to
view and modify the Force.com data.

Configuring a Force.com remote access
application
To be able to access Force.com data from our Heroku e-commerce application, we
need to configure a remote-access application in Force.com. This will give us the
authentication and authorization information we need to be able to configure our
e-commerce application. To configure a remote-access application, perform the
following steps:

1. Navigate to Setup | Create | Apps.
2. Scroll down to the Connected Apps section and click on New.

Chapter 2

[85]

3. Enter Heroku E_Commerce App for the Connected App Name.
4. The API Name will be autopopulated.
5. Enter your e-mail address in the Contact Email field.
6. Enter Test E-Commerce Heroku app to access Salesforce.com

data for the Description. Your screen should now resemble the
following screenshot:

7. Select the Enable OAuth Settings checkbox. A new set of fields will
be displayed.

8. Enter https://<<your app name>>.herokuapp.com/_auth
for the Callback URL. For example, using the application created in the
previous section, the callback URL would be http://polar-cliffs-8870.
herokuapp.com/_auth.

9. From the Available OAuth Scopes list, move the Provide access to your data
via the Web (web) option to the Selected OAuth Scopes list.

The E-Commerce Framework

[86]

10. Under Web App Settings enter https://<<your app name>>.herokuapp.
com/ for the Start URL. For example, using the application created in the
previous section, the Start URL would be http://polar-cliffs-8870.
herokuapp.com/. Your screen should now resemble the following screenshot:

11. Click on Save.

Force.com will now configure the remote-access application and present you with a
screen similar to the following:

Chapter 2

[87]

The key information that you will need from this screen to connect the Heroku
e-commerce to Force.com consists of the consumer key and consumer secret. You
will need them when we configure the e-commerce application in the next task.

The e-commerce application uses the force.rb Ruby gem to connect to Force.com.
The gem provides a nice wrapper around the Force.com REST API and relieves us
of writing a lot of boilerplate to make the REST API calls. More information on
the force.rb gem is available at the project homepage hosted at GitHub:
https://github.com/heroku/force.rb.

To configure local development environment access for the e-commerce application,
we need to set some operating system environment variables with our Force.com
OAuth credentials. To do this, perform the following steps (Windows users can use
the Git bash shell):

1. Open a command prompt. Issue the following command and substitute
<<username>> with your Force.com username:
$ export SALESFORCE_USERNAME="<<username>>"

2. Issue the following command and substitute <<password>> with your
Force.com password:
$ export SALESFORCE_PASSWORD="<<password>>"

3. Issue the following command and substitute <<security token>> with
your Force.com security token:
$ export SALESFORCE_SECURITY_TOKEN="<<security token>>"

4. Issue the following command and substitute <<client id>> with your
Force.com remote application consumer key:
$ export SALESFORCE_CLIENT_ID="<<client id>>"

5. Issue the following command and substitute <<client secret>> with your
Force.com remote application consumer secret:

$ export SALESFORCE_CLIENT_SECRET="<<client secret>>"

With the environment variables in place, you can now run the application on your
local workstation. At the command prompt in the application root directory, issue
the following command:

$ rails server

The E-Commerce Framework

[88]

On some systems, particularly if there is an existing Ruby installation,
there may be a conflict when attempting to run the application. In this
case, it will be necessary to run the following commands to explicitly
use the Ruby 2.0.0 and Rails 4.0.0 environment installed with rvm:
$ rvm 2.0.0 exec bundle install –-without production

$ rvm 2.0.0 rails server

When the application has booted up, you will see the following, which indicates that
it is now ready to be accessed locally:

=> Booting WEBrick

=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000

=> Run `rails server -h` for more startup options

=> Ctrl-C to shutdown server

[2013-12-04 14:44:33] INFO WEBrick 1.3.1

[2013-12-04 14:44:33] INFO ruby 2.0.0 (2013-06-27) [x86_64-darwin11.4.2]

[2013-12-04 14:44:33] INFO WEBrick::HTTPServer#start: pid=3178 port=3000

If you navigate to http://localhost:3000/products with your web browser, you
will see the product catalog populated with data from Force.com:

Chapter 2

[89]

An extremely useful source of information about your running
application is the log files in the log subdirectory. When running
locally in the development mode, the log file will be named
development.log.

Congratulations! We have now finished the configuration of the e-commerce
application and can run it locally. The next step is to deploy the application to Heroku.

Deploying to Heroku
After all of the configuration so far, it might seem a bit of an anticlimax when you
see how easy it is to deploy the e-commerce application to Heroku. For this, we can
thank the folks at Heroku who have really turned this into a simple operation.

Assuming you are in the ecommerce_app application root directory and are logged
in to your Heroku account, issue the following command:

$ git push heroku master

Similar to the heroku create command, there is quite a bit happening behind the
scenes here, so let's examine it in a bit more detail:

1. The current contents of the master branch in your local Git repository are
uploaded to the remote Git repository that was automatically created when
you issued the heroku create command earlier.

2. Heroku detects that you are installing a Ruby on Rails application and starts
compiling it into an executable format for the Heroku environment.

3. Heroku examines the Gemfile shipped with your application and
links it to existing gems and installs any missing gems.

4. The database configuration is rewritten to point to a Heroku
Postgres instance.

5. The Heroku compilation is completed, and the compiled application
(a slug in Heroku parlance) is installed and accessible at your
application URL; in the case of the example in this chapter,
the URL is http://polar-cliffs-8870.herokuapp.com.

The E-Commerce Framework

[90]

If you are having issues deploying to Heroku, check that your Git
repository is configured correctly by referring to the following blog at
github.com: https://gist.github.com/bhousman/8713170. If
you are having permission issues with the remote Git repository, refer to
https://devcenter.heroku.com/articles/keys for information
on generating and managing the SSH keys required to deploy to Heroku.
Finally, if you are behind a corporate firewall, you might need to check
with your network administrator to confirm that you are able to access
Heroku from the command line.

Now that our application has been deployed to Heroku, our next task is to initialize
the application database and populate it with some sample data. To initialize the
application database, issue the following command:

$ heroku run rake db:migrate

This will initialize the database and set up the table structure for the objects defined
in the e-commerce application.

To populate the database with some sample users, issue the following command:

$ heroku run rake db:populate

In some corporate environments, you may have some problems
using the heroku run command, because it can't connect to a
terminal instance on Heroku. In this instance, you can use the heroku
run:detached command. For example, heroku run:detached
rake db:migrate will initialize the database. You can the check the
result of the initialization using the heroku logs command.

Finally, we need to set up some Heroku configuration variables to hold our
Force.com OAuth credentials:

1. Issue the following command and substitute <<username>> with your
Force.com username:
$ heroku config:set SALESFORCE_USERNAME="<<username>>"

2. Issue the following command and substitute <<password>> with your
Force.com password:
$ heroku config:set SALESFORCE_PASSWORD="<<password>>"

3. Issue the following command and substitute <<security token>> with
your Force.com security token:
$ heroku config:set SALESFORCE_SECURITY_TOKEN="<<security token>>"

Chapter 2

[91]

4. Issue the following command and substitute <<client id>> with your
Force.com remote application consumer key:
$ heroku config:set SALESFORCE_CLIENT_ID="<<client id>>"

5. Issue the following command and substitute <<client secret>> with your
Force.com remote application consumer secret:

$ heroku config:set SALESFORCE_CLIENT_SECRET="<<client secret>>"

You only need to set the Heroku configuration variables once. They
are retained by Heroku for all subsequent runs of your application
even if it is shutdown and restarted. For more information, refer to
http://docs.developer.salesforce.com/docs/atlas.en-
us.186.0.salesforce1api.meta/salesforce1api/heroku_
best_practices.htm.

At this stage, you can check the status of you application by checking the application
log on your Heroku instance:

$ heroku logs

To see your application in action, issue the following command:

$ heroku open

You will now see your application running live on Heroku, similar to the
following screenshot:

The E-Commerce Framework

[92]

From here, you can also select the Products link to see the product catalog populated
with data from your Salesforce development organization.

You can also select the Sign in link to log in as a preconfigured user. To log in as an
administrator, use the following credentials:

• Username: example@forceblueprints.com
• Password: foobar

To log in as a regular user, use the following credentials:

• Username: example-1@forceblueprints.com
• Password: password

You can use any regular user login ranging from example-1@
forceblueprints.com to example-99@forceblueprints.com.

Placing an order
Now that our Heroku site is up and running, we test that our integration is working
by placing an order and verifying that it flows through to Force.com.

The e-commerce application supports orders being placed by anonymous or logged in
users. For this example, we will use a logged in user and perform the following steps:

1. If you haven't already logged in, log in as an example user with the
credentials specified in the previous section.

2. Select the Products link to display the product catalog.
3. For any product, select the Add link to add it to your cart.
4. When a product has been added successfully, you will see a success message

displayed, which is similar to the following screenshot:

Chapter 2

[93]

5. You can add additional products to the cart by pressing their Add links.
6. When you have finished adding products, select the My Cart link to display

your shopping cart. Your screen should look similar to the following
screenshot (your products may differ):

7. Click on the Checkout button to navigate to the checkout screen.

The E-Commerce Framework

[94]

8. Enter an Address to ship the order to and any order Comments you might
want to add. If you scroll to the bottom of the screen, you will also see a
summary of the items in your order:

9. Click on the Create Order button to create the order in Force.com. You will
then be directed to the Account Profile page, where you will see a success
message and a summary of your orders:

Chapter 2

[95]

10. We can now verify that the order exists in Force.com. Leave the Account
Profile page open in your browser, open a new tab / browser window,
and log in to your development organization. Select the Orders tab, and
the newly created order should appear in your Recent Orders list:

11. Click on the order name's link to display it in more detail:

The E-Commerce Framework

[96]

12. If you scroll down further to the related lists, you will also see the Order
Lines for the order:

13. We can now edit the order in Force.com and see the update instantly in the
e-commerce application. In the Force.com Order Detail screen, double-click
on the Planned Delivery Date to edit it. Select a date and click on Save.

14. Navigate back to the Account Profile screen in the e-commerce application
and refresh the browser window. You will now see the Planned Delivery
Date populated in your Order Summary:

Congratulations! You now have a working e-commerce application deployed to
Heroku and have successfully integrated it with Force.com.

Chapter 2

[97]

Building the final Force.com Fulfillment
application
At this point, we have a working Force.com Fulfillment application that can receive
and update orders from the Heroku-powered e-commerce application. Admittedly,
it is very basic, but it has provided us with enough confidence to trust that the
integration between the e-commerce site and Force.com is working correctly. We are
now in a position to enhance it with Visualforce and Apex to provide a much more
advanced interface.

We will be modifying the Orders tab to provide a Visualforce interface, where users
will be able to choose to create a new order or search for a specific order by the order
reference number and display matching orders.

A new Visualforce page will also be developed to create and maintain orders.

The steps in the following section can be performed using the Force.
com declarative interface or the Force.com IDE. I have chosen to show
the steps using the declarative interface due to the fact that I will
be using prebuilt code contained within the code download for the
chapter. When developing your own code from scratch, I recommend
that you use the Force.com IDE.

Building the Order Search custom controller
Our first task is to create the order search custom controller. This controller will be
responsible for searching the Orders object for records that match criteria entered by
the user and returning the results of the search.

To create the order search custom controller, perform the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the apex classes for your organization will be displayed. Click on New.
3. In the code download for the chapter, locate the OrderSearchController.cls

file in the force_com folder.
4. Copy and paste the contents of OrderSearchController.cls into the Apex

Code Editor in your Force.com window.
5. Click on Save.

The E-Commerce Framework

[98]

The working of the Order Search custom controller
We start by declaring two controller properties:

// results from the Order search
public List<Order__c> orderSearchResults {get; set;}

// textbox for search parameters
public string orderNumber {get; set;}

The orderSearchResults property will contain a list of orders that match the search
criteria entered by the user. The orderNumber property is used to store the criteria
that will be used for the search.

Next, we implement the constructor for the custom controller:

public OrderSearchController() {
 // initialize Order No string
 orderNumber = 'Order-';
}

This constructor simply sets some initial text to aid the user in entering an order
reference number provided on the e-commerce site.

Finally, we implement the controller method that performs the actual search and
returns the results:

public PageReference searchOrders() {

 // initialize or clear order Search results
 if (orderSearchResults == null) {
 orderSearchResults = new List<Order__c>();
 } else {
 orderSearchResults.clear();
 }

 // Execute SOQL query
 orderSearchResults = [SELECT Id, Name, Customer_Name__c,
 Customer_Email__c, Planned_Delivery_Date__c, Delivered__c,
 Grand_Total__c FROM Order__c

 WHERE Name LIKE
 :String.escapeSingleQuotes(orderNumber)
 + '%'
 ORDER BY Name
 LIMIT 100];

 return null;
}

Chapter 2

[99]

Initially, we check if we have an existing results list for an order search. If not, we
create and initialize a new list of orders to hold the search results. If we do have an
existing results list, we clear it out.

Next, we execute an SOQL query to search Force.com for any order(s) that match
the search criteria. The key here is the WHERE clause, which uses the LIKE operator,
substitutes the orderNumber controller property into the SOQL query, and appends
the % character to perform a wildcard search (we escape the string to guard
against SOQL injection attacks). The results of the search are then stored in the
orderSearchResults controller property so that they can be accessed by the calling
Visualforce page.

Finally, we return a null page reference to the calling Visualforce page to redisplay
the order search page with the search results.

Building the Order Search Visualforce page
Now our custom controller for the order search is in place, we can build the
Visualforce page that will be responsible for:

• Obtaining the order search criteria from the user
• Executing the search and passing the search criteria to the controller
• Receiving the results of the order search and presenting them to the user
• Allowing the user to select an existing order to edit it
• Allowing the user to create a new order if required

The Order Search page can be seen in the following screenshot:

To create the Order Search page, perform the following steps:

1. Navigate to Setup | Develop | Pages.
2. All of the Visualforce pages for your organization will be displayed. Click

on New.

The E-Commerce Framework

[100]

3. In the Page Information section, enter Order Search Page in the Label field.
4. Enter OrderSearchPage in the Name field.
5. In the code download for the chapter, locate the OrderSearchPage.

page file in the force_com folder.
6. Clear the default markup in the Visualforce Page Editor.
7. Copy and paste the contents of OrderSearchPage.page into the Visualforce

Page Editor in your Force.com window.
8. Click on Save.

The working of the Order Search page
The first line of the Visualforce page instructs it to use our custom
OrderSearchController class, sets the tabStyle property to use the
Order__c custom object tab, and finally hides the default Force.com sidebar
to maximize the display area and to add a more customized feel to the interface:

<apex:page controller="OrderSearchController" tabStyle="Order__c"
 sidebar="false" >

The next item of interest is the PageBlockSection control that provides the interface
to enter search criteria, execute the search, or create a new order:

<apex:pageBlockSection columns="1" >
 <apex:pageBlockSectionItem >
 <apex:outputLabel for="orderNumber"
 value="Order Number" />
 <apex:panelGroup >
 <apex:inputText id="orderNumber"
 value="{!orderNumber}" />
 <apex:commandButton value="Search Orders"
 action="{!searchOrders}"
 rerender="orderSearchResults,
 messages" />
 </apex:panelGroup>
 </apex:pageBlockSectionItem>
 <apex:outputLink value="/apex/OrdersPage">
 <apex:outputLabel value="Create New Order" />
 </apex:outputLink>
</apex:pageBlockSection>

Chapter 2

[101]

The apex:outputLabel and apex:panelGroup controls provide the search criteria
entry and execution interface. The apex:inputText control within the panelGroup
control is linked to the orderNumber property on the controller through the value
attribute. Thus, when the search is executed, the controller is automatically aware
of the search criteria entered by the user.

The apex:commandButton control executes the search. The action attribute links
the button to the searchOrders method on the controller. Recall that this method
executes the SOQL query to find matching orders and returns the results to the
Visualforce page.

The apex:outputLink control provides a link to the Visualforce OrdersPage.page
file to allow the user to add a new order. We will be building this page shortly.

The next PageBlockSection control is responsible for displaying the results of an
order search to the user:

<apex:pageBlockSection id="orderSearchResults" columns="1">
 <apex:pageBlockTable value="{!orderSearchResults}"
 var="order"
 rendered="{!NOT(ISNULL(orderSearchResults))}">
 <apex:column headerValue="Order No"
 style="text-align: center"
 headerClass="centerHeader">
 <apex:outputLink
 value="/apex/OrdersPage">
 <apex:param name="id"
 value="{!order.Id}" />
 <apex:outputLabel
 value="{!order.Name}" />
 </apex:outputLink>
 </apex:column>
 <apex:column headerValue="Customer Name" >
 <apex:outputLabel
 value="{!order.Customer_Name__c}" />
 </apex:column>

...more column definitions...

 <apex:column headerValue="Grand Total"
 style="text-align: center"
 headerClass="centerHeader">
 <apex:outputField
 value="{!order.Grand_Total__c}" />
 </apex:column>
 </apex:pageBlockTable>
</apex:pageBlockSection>

The E-Commerce Framework

[102]

The apex:pageBlockTable control is used to present the list of orders found to the
user. It is linked to the orderSearchResults property on the controller through the
value attribute. The rendered attribute ensures that the pageBlockTable control is
only displayed if matching orders have been found in Force.com.

The first apex:column control in the table is used to display the order number and
provide a link to the Visualforce OrdersPage.page file to allow the order to be
edited. This is achieved by embedding an apex:outputLink control inside the table
column. Inside apex:outputLink, there is an apex:param control to supply the
internal Force.com identifier to OrdersPage and an apex:outputField control to
display the order number itself.

The final step is to configure the Orders tab in our Force.com application to use the
custom Order Search page by default when it is clicked.

Configuring the Visualforce Orders tab
To finish the implementation of the custom order search functionality, we will
now reconfigure the Orders tab in our Force.com application to use it when
Orders is selected.

Your initial thought might be to override the List action in the buttons,
links, and actions for the Order__c custom object. Unfortunately for
us, this will not work because we are using a custom controller. You can
only override the standard action(s) when your Visualforce page uses a
standard controller or a standard controller with controller extensions.

The first step is to delete the existing custom object tab for Order__c:

1. Navigate to Setup | Create | Tabs.
2. In the Custom Object Tabs section, select the Del link in the Actions column

for the Orders object.
3. Select OK in the confirmation dialog to delete the tab.

Next, we need to configure a new Visualforce tab to use the OrderSearchPage.page
file we have just created:

1. Select Setup | Create | Tabs.
2. In the Visualforce Tabs section, click on New.
3. In the Visualforce Page drop-down list, select Order Search Page.
4. Enter Orders for the Tab Label.

Chapter 2

[103]

5. Enter VFOrders for the Tab Name.
6. Choose Stack of Cash for the Tab Style.
7. Enter Visualforce Order Search Page for the Description. Your screen

should resemble the following screenshot:

8. Click on Next. Accept the defaults for profile tab settings. Click on Next again.
9. Deselect the Include Tab checkbox.
10. Select the Orders checkbox in the Include Tab column.
11. Click on Save.

If you click on the Orders tab now, you will see the Order Search page displayed.
However, if you look closely, you will see that there is a slight issue with the page.
If you haven't spotted it already, you should now notice that the Orders tab is not
highlighted when we clicked on it. Let's fix that now:

1. Select Setup | Develop | Pages.
2. Click on the Edit link in the Action column for the Order Search Page.
3. Modify the apex:page declaration at the top of the page so that it

uses VFOrders__tab for the tabStyle property:
<apex:page controller="OrderSearchController"
 tabStyle="VFOrders__tab" sidebar="false" >

4. Click on Save.

The E-Commerce Framework

[104]

If you click on the Orders tab now, you will see it highlighted and the custom Order
Search page displayed:

If you subsequently click on the Search Orders button, you will see a list of matching
orders displayed (just don't click on any of the links yet!):

We are nearly finished with our e-commerce fulfillment application. Our next and
final task is to build the Order Maintenance page.

Building the Orders custom controller
This controller will be responsible for the creation and maintenance of order records
in our fulfillment application.

To create the Orders custom controller, perform the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed. Click

on New.
3. In the code download for the chapter, locate the OrdersController.cls file

in the force_com folder.

Chapter 2

[105]

4. Copy and paste the contents of OrdersController.cls into the Apex Code
Editor in your Force.com window.

5. Click on Save.

The working of the Orders custom controller
We start by declaring the properties we need in the controller:

// Order for the current context
public Order__c CurrentOrder{get; set;}

// Order Lines for current Order
public List<Order_Line__c> OrderLines{get; set;}

// public property for inserting new Order Line record
public Order_Line__c NewOrderLine {get; set;}

// public property for the Order Line being edited
public Id editOrderLineId {get; set;}

// public property for the Order Line being removed
public Id removeOrderLineId {get; set;}

// flag whether to render Order Header only
public boolean renderOrderDetails {get; set;}

// flag whether any changes have been made to order
public boolean isOrderDirty {get; set;}

The code comments explain the purpose of each controller property. We will see
them used throughout the code for the controller.

The first method in our controller is the constructor that is responsible for
establishing the current context and initializing controller properties as required:

public OrdersController()
{
 // initialize CurrentOrder property
 CurrentOrder = new Order__c();

 // initialize property in case we want to add a new order
 line
 NewOrderLine = new Order_Line__c();

 // initialize editOrderLineId to null
 editOrderLineId = null;

The E-Commerce Framework

[106]

 // get the Order Lines
 prepareFullOrder();

 // no changes to order at this point
 isOrderDirty = false;

}

The next method determines if we are editing an existing order. If so, it fetches the
order and its linked order lines from the Force.com database:

public void prepareFullOrder()
{
 // get the Current Order using id page parameter
 String id =
 ApexPages.currentPage().getParameters().get('id');
 if (id <> null) {
 // attempt retrieve existing order
 try {
 // render all components by default
 renderOrderDetails = true;

 // attempt to retrieve order
 CurrentOrder = [select Id, Name,
 Delivered__c, Planned_Delivery_Date__c,
 Order_Lines_Total__c, Discount__c,
 Comments__c, Grand_Total__c,
 Customer_Name__c,
 Customer_Email__c,
 Channel__c,
 Customer_Address__c
 from Order__c
 where id = :id];

 // Get the Order Lines for the Order
 OrderLines = new List<Order_Line__c>();
 OrderLines = [Select Name, Order_Line_Item__c,
 Line_Item_Price__c, Line_Item_Total__c,
 Order_Line_Item__r.Item_Name__c,
 Order__c, Quantity__c
 FROM Order_Line__c
 WHERE Order__c = :this.CurrentOrder.Id
 ORDER BY Name ASC];
 } catch (QueryException ex) {
 ApexPages.Message myMsg = new ApexPages.Message(
 ApexPages.Severity.ERROR,
 'Order ID does not exist or is not unique!');

Chapter 2

[107]

 ApexPages.addMessage(myMsg);
 } catch (Exception ex) {
 ApexPages.addMessages(ex);
 }
 } else {
 // we are adding a new Order
 renderOrderDetails = false;
 }
}

First, we check if an id parameter has been passed to the page as part of the HTTP
request. If an id parameter is found, we substitute it into an SOQL query to retrieve
the order from the Force.com database (refer to the highlighted code).

Once we have retrieved the order, we execute another SOQL query to retrieve the
order lines associated with the order. It is important to note that we substitute the
Force.com unique identifier for the order into the SOQL query in the highlighted code.

We then use two catch statements to handle any errors encountered during the data
access operations. The first catch statement handles a QueryException, which will
be thrown if we can't uniquely identify an order using the ID passed into the page.
The second catch statements acts as a "catch all" to handle any other errors we might
encounter. If an error is encountered, we write a message to the Visualforce page.

Finally, if an ID is not passed into the page as part of the HTTP request, we assume
we are adding a new order and only render the order header information.

The next method in the controller saves the order header information to Force.com:

public PageReference saveOrderHeader() {
 PageReference pageRef = null;
 try {
 if (CurrentOrder.Id == null)
 {
 // add record and reset flags
 insert CurrentOrder;
 renderOrderDetails = true;
 // set up page reference to display newly
 // added order
 pageRef = ApexPages.currentPage();
 pageRef.getParameters().put('id', CurrentOrder.Id);
 pageRef.setRedirect(true);
 } else {
 // update the current order
 update CurrentOrder;
 }

The E-Commerce Framework

[108]

 // reset flag and refresh order details in controller
 isOrderDirty = false;
 prepareFullOrder();
 successMessage('Order Successfully Saved!');
 } catch (DmlException ex) {
 ApexPages.addMessages(ex);
 }
 return pageRef;
}

We begin by entering a try-catch block and checking if the CurrentOrder controller
property has a unique ID. If it doesn't, we are adding a new order to Force.com. We
call the insert statement to create the new order. After the order is inserted, it will
contain the unique Force.com identifier. We then use this unique identifier to set up
a redirection to the Order Maintenance page for the newly created order and set the
renderOrderDetails controller property to true to instruct the Visualforce page to
display all order information.

If we do detect a unique identifier for the CurrentOrder property, we are updating
an existing order. We call the update statement to save the order to Force.com.

Finally, we set the isOrderDirty controller property to false to indicate that there
are no pending changes for the order and call the prepareFullOrder method to
refresh the CurrentOrder and OrderLines controller properties with the latest
information from the Force.com database.

The next controller method cancels an order, in effect deleting it, and its linked order
lines, from the Force.com database:

public PageReference cancelOrder() {
 try {
 // Delete Order
 delete CurrentOrder;
 } catch (DmlException ex) {
 ApexPages.addMessages(ex);
 return null;
 }
 // re-direct back to Orders tab
 return closeOrder();
}

The method begins by calling the delete statement against the CurrentOrder
controller property. If the deletion is successful, the user is redirected to the Orders tab.
If the deletion is unsuccessful, a message is displayed and the order is not deleted.

The next set of methods maintains the order lines that are linked to an order. The
following method adds a new order line to an order:

Chapter 2

[109]

public PageReference insertOrderLine() {
 try {
 NewOrderLine.Order__c = this.CurrentOrder.Id;
 insert NewOrderLine;
 // re-display Order Line Items
 prepareFullOrder();
 // reset public property for new insert
 NewOrderLine = new Order_Line__c();
 successMessage('Order Line Successfully Added!');
 } catch (DmlException ex) {
 ApexPages.addMessages(ex);
 }
 return null; // no page re-direct
}

The method begins by assigning the unique identifier from the CurrentOrder
controller property to the new order line to establish the link between them. Next,
the insert statement is called to create the order line in the Force.com database. The
CurrentOrder controller property is refreshed by calling the prepareFullOrder
method. Finally, the NewOrderLine controller property is reinitialized, ready to
add another new order line.

Next, we add a method to delete an order line that is linked to an order:

public PageReference removeOrderLine() {
 try {
 Order_Line__c lineToDelete = [SELECT Id
 FROM Order_Line__c
 WHERE Id = :removeOrderLineId
 LIMIT 1];
 delete lineToDelete;
 prepareFullOrder();
 successMessage('Order Line Successfully Removed!');
 removeOrderLineId = null;
 } catch (DmlException ex) {
 ApexPages.addMessages(ex);
 }
 return null;
}

First, we execute an SOQL query to retrieve the order line to be deleted, based on
the unique identifier in the removeOrderLineId controller property. When we have
retrieved the order line, we remove it from the Force.com database using the delete
statement. Finally, we refresh the CurrentOrder controller property by calling the
prepareFullOrder method.

The E-Commerce Framework

[110]

The next method updates the order lines that are linked to an order:

public PageReference saveOrderLine()
{
 try {
 update OrderLines;
 successMessage('Order Line Successfully Saved!');
 } catch (DmlException ex) {
 System.debug(TAG + methodName + ex);
 ApexPages.addMessages(ex);
 return null;
 }
 return cancelEditOrderLine();
}

In this method, we simply pass the order lines held in the OrderLines controller
property to the update statement that will save them to the Force.com database.

The next method resets the controller in case the editing of an order line is cancelled:

public PageReference cancelEditOrderLine()
{
 editOrderLineId = null;
 prepareFullOrder();
 return null;
}

In this method, we simply reset the editOrderLineId controller property to null to
indicate that no order line is being edited and refresh the CurrentOrder controller
property by calling the prepareFullOrder method.

The last two utility methods set up a page redirection back to the Visualforce Orders
tab and set up the display of messages in the Visualforce page:

public PageReference closeOrder()
{
 // Note this may differ for your org
 return new PageReference('/apex/OrderSearchPage');
}

private void successMessage(string messageToDisplay) {
 ApexPages.Message myMsg = new
 ApexPages.Message(ApexPages.Severity.INFO, messageToDisplay);
 ApexPages.addMessage(myMsg);
}

Chapter 2

[111]

Building the Orders Visualforce page
The final piece of the fulfillment application is the Order Maintenance page.

This page will be responsible for providing the following functionality to a user:

• Creating a new order
• Editing an existing order
• Adjusting the quantity of existing order lines on an order
• Deleting existing order lines from an order
• Adding new order lines to an order

To create the Orders page, perform the following steps:

1. Navigate to Setup | Develop | Pages.
2. All of the Visualforce pages for your organization will be displayed.

Click on New.
3. In the Page Information section, enter Orders Page in the Label field.
4. Enter OrdersPage in the Name field.
5. In the code download for the chapter, locate the OrdersPage.page file in the

force_com folder.
6. Clear the default markup in the Visualforce Page Editor.
7. Copy and paste the contents of OrdersPage.page onto the Visualforce Page

Editor in your Force.com window.
8. Click on Save.

The E-Commerce Framework

[112]

The working of the Orders page
The first line of the Visualforce page instructs it to use our custom OrdersController
control, sets the tabStyle property to use the VFOrder__tab Visualforce tab, and
finally hides the default Force.com sidebar to maximize the display area and to add
a more customized feel to the interface:

<apex:page controller="OrdersController" tabStyle="VFOrders__tab"
 sidebar="false">

The top of the file defines a few small JavaScript functions to stop the planned
delivery date control from grabbing the focus when the page is loaded and a utility
function to display a confirmation message when the user is about to perform a
destructive action:

<!-- this small script stops date picker from grabbing focus -->
 <script>
 function setFocusOnLoad() {}
 </script>
<!-- this script allows user to confirm a destructive action -->
 <script type="text/javascript">
 function confirmAction(confirmMessage) {
 return confirm(confirmMessage);
 }
 </script>

Next, we define two apex:actionFunction controls:

<apex:actionFunction name="editOrderLine" rerender="OrderLines">
 <apex:param name="editOrderLineId" value=""
 assignTo="{!editOrderLineId}" />
</apex:actionFunction>
<apex:actionFunction name="isOrderDirty"
 rerender="OrderInformation"
 immediate="true">
 <apex:param name="isOrderDirtyFlag" value=""
 assignTo="{!isOrderDirty}" />
</apex:actionFunction>

The editOrderLine action function is called when an order line is selected to be edited
and sets the editOrderLineId controller property to the unique identifier of the order
line. The isOrderDirty action function is called when the value of an Order field is
changed. When this occurs, it sets the value of the isOrderDirty controller property
to indicate that there are pending changes on the order.

The apex:pageBlockButtons control is defined next to provide a row of buttons for
saving and canceling an order and returning to the order search page:

Chapter 2

[113]

<apex:pageBlockButtons location="bottom">
 <apex:commandButton value="Save Order"
 action="{!saveOrderHeader}" />
 <apex:commandButton value="Cancel Order"
 onClick="if (!confirmAction('Are your sure?')) return false;"
 rendered="{!renderOrderDetails}"
 action="{!cancelOrder}" />
 <apex:commandButton value="Return to Search"
 onClick="if ({!isOrderDirty}) {if (!confirmAction('Abandon
 Unsaved Changes?')) return false;}"
 immediate="true"
 action="{!closeOrder}" />
</apex:pageBlockButtons>

When the Save Order button is pressed, the saveOrderHeader controller method will
be invoked to save the current order header information to the Force.com database.

Pressing the Cancel Order button will first call the confirmAction JavaScript
function, which will display a confirmation dialog with the message specified. If the
user clicks on OK in the dialog, the cancelOrder controller method will be invoked
and the order will be deleted. If the user clicks on Cancel, the deletion is aborted.

Clicking on the Return to Search button will first check if the isOrderDirty controller
property is true. If so, it will call the confirmAction JavaScript function to confirm
if the changes need to be saved. If the user confirms that they wish to abandon the
changes by clicking on OK in the dialog, they will be redirected to the Order Search
page and the changes will be lost. If they click on Cancel in the dialog, they will be
returned to the Orders page where they can save their changes. If there are no
pending changes on the order, the user will be instantly redirected back to the
Order Search page.

The following pageBlockButtons is an apex:pageBlockSection control containing
the order header information:

<apex:pageBlockSection title="Order Header" id="OrderHeader">
 <apex:outputField value="{!CurrentOrder.Name}" />
 <apex:inputField value="{!CurrentOrder.Channel__c}"
 onchange="isOrderDirty('true')" />
 <apex:inputField value="{!CurrentOrder.Customer_Name__c}"
 onchange="isOrderDirty('true')" />

 ...more control definitions for Order Header...

 <apex:outputField value="{!CurrentOrder.Grand_Total__c}" />
</apex:pageBlockSection>

The E-Commerce Framework

[114]

The order header apex:pageBlockSection consists of the standard apex:inputField
and apex:outputField control definitions. The only thing to note is the onchange
attribute on fields that will invoke the isOrderDirty action function when the value
in a field is changed. This will also set the isOrderDirty controller property to
indicate that there are pending changes on the order.

An apex:pageBlockSection control containing the order lines is the next item of
interest. There is quite a bit happening inside this pageBlockSection control, so
we will examine it in small pieces.

Initially, pageBlockSection is declared with an apex:pageBlockTable control to
render the order lines:

<apex:pageBlockSection title="Order Lines" columns="1"
 id="OrderLines">
<apex:pageBlockTable value="{!OrderLines}" var="line"
 style="width:90%">

The first apex:column control of interest in the table is the Item column. This displays
the name of the order line item being ordered and provides a link to its detail page:

<apex:column headerValue="Item">
 <apex:outputLink value="/{!line.Order_Line_Item__c}"
 target="_blank">
 {!line.Order_Line_Item__r.Item_Name__c}
 </apex:outputLink>
</apex:column>

The quantity actually consists of two apex:column controls:

<!-- make Quantity editable if it is clicked on -->
<apex:column headerValue="Quantity"
 value="{!line.Quantity__c}"
 title="click to edit Quantity"
 onclick="editOrderLine('{!line.id}')"
 rendered="{!line.id != editOrderLineId}" />

<apex:column rendered="{!line.id == editOrderLineId}"
 headerValue="Quantity"
 style="text-align:center;width:5%" >
 <apex:inputField value="{!line.Quantity__c}"
 style="text-align:center;width:80%" />
</apex:column>

The actual column to be rendered depends on whether the order line being rendered
is currently being edited.

Chapter 2

[115]

When the current order line isn't being edited, the first apex:column control is used
for Quantity because the rendered attribute expression evaluates to true.

When the Quantity Apex column for an order line is clicked on, the editOrderLine
action function is invoked to set the editOrderLine controller property to the
unique identifier for the order line that has been clicked on. The order lines are then
rerendered, and if the unique identifier for the order line being rendered matches the
editOrderLine controller property, the second apex:column control is rendered. This
provides an apex:inputField control for the user to adjust the quantity of the item
being ordered.

This provides a nice segue into the apex:column control, which provides a set of
buttons for controlling the editing of an order line:

<apex:column style="width:15%" headerValue="Actions"
 rendered="{!line.id == editOrderLineId}">
 <apex:commandButton action="{!saveOrderLine}"
 rerender="OrderInformation, OrderLines, messages"
 value="Save" />
 <apex:commandButton action="{!cancelEditOrderLine}"
 rerender="OrderInformation, OrderLines, messages"
 value="Cancel" />
</apex:column>

The rendered attribute for the apex:column control also defines that it is rendered
only when the current order line is being edited. When this is the case, two
apex:commandButton controls are displayed: one to save the changes and another
to cancel the edit.

When the Save button is pressed, the saveOrderLine controller method is invoked
to save the order line being edited to the Force.com database. The order lines are
then rerendered to display the most current information.

When the Cancel button is pressed, the cancelEditOrderLine controller method
is invoked to abort the editing of the order line. The editOrderLineId controller
property is cleared, and the apex:inputField control for the quantity will
be dismissed.

The final apex:column control of interest in the order lines pageBlockTable is the
button to delete an order line:

<apex:column style="width:15%" headerValue="Actions"
 rendered="{!line.id != editOrderLineId}">
<apex:commandButton onClick="if (!confirmAction()) return false;"
 action="{!removeOrderLine}"
 rerender="OrderInformation, OrderLines, messages"

The E-Commerce Framework

[116]

 value="Delete">
 <apex:param name="removeOrderLineId"
 value="{!line.Id}"
 assignTo="{!removeOrderLineId}" />
 </apex:commandButton>
</apex:column>

When the current order line isn't being edited, this apex:column control is rendered
instead of the Save and Cancel buttons. When the Delete button is clicked on, the
confirmAction JavaScript function is called to confirm if the user wishes to proceed.
If so, an apex:param control is used to set the value of the removeOrderLineId
controller property to the unique identifier of the order line where the Delete button
was clicked. Then, the removeOrderLine controller action is invoked to delete the
order line.

The final item of interest in the Orders page is an additional apex:form control to
allow an order line to be added to the order:

<apex:form>
 <apex:pageBlock rendered="{!renderOrderDetails}">
 <apex:pageBlockSection title="Add New Order Line"
 columns="3">
 <apex:inputField
 value="{!NewOrderLine.Order_Line_Item__c}" />
 <apex:inputField
 value="{!NewOrderLine.Quantity__c}" />
 <apex:commandButton action="{!insertOrderLine}" value="Create
 Order Line" />
 </apex:pageBlockSection>
 </apex:pageBlock>
</apex:form>

This is a simple apex:form control that provides two apex:inputField controls
to allow the order line item to be selected and a quantity entered. Clicking on the
Create Order Line button invokes the insertOrderLine controller method to add a
new order line to the order.

Chapter 2

[117]

You might be wondering why we added an additional form to the page
for the adding of order lines. If we didn't, the validation rules for the
order line item and quantity fields will be evaluated whenever the page
is posted to the server and will fail if both fields don't contain a value.
This is especially inconvenient when performing operations such as
saving the order header or editing an order line—they will never work.
Encapsulating the adding of order lines in its own form ensures that these
validation rules are only evaluated when adding an order line, which is
the behavior we want. Another way to achieve this is through the use of
apex:actionRegion controls, but due to the complexity of the page, an
additional apex:form control was a much simpler and cleaner option.

Congratulations! You should now have a fully functional Order Maintenance page
added to your Force.com Fulfillment application. Clicking on the link to an order in
the Order Search page will now display it in the Orders page:

The E-Commerce Framework

[118]

Clicking on the Quantity column of an order line will allow it to be edited:

Summary
In this chapter, we built a fully functional Heroku powered e-commerce application
and integrated it to our Force.com Fulfillment application.

We started by building a basic Force.com application and loading some sample data.
We then built a Ruby on Rails / Heroku development environment and deployed a
Ruby on Rails application to Heroku.

From there, we successfully integrated the Heroku e-commerce application to our
Force.com application, which allowed us to display a product catalog and place
orders. Users could also view their order status and order history in real time.

Finally, we implemented a full-blown Force.com application to handle order
fulfillment using Visualforce and Apex custom controllers.

Chapter 2

[119]

Some possible enhancements you could make are:

• Enhancing the product catalog in the Heroku e-commerce application
to support the display of images from Force.com and display products
in detail. (You will need to consult the force.rb gem documentation
at https://github.com/heroku/force.rb to find out how to access
attachments for a record.)

• Adding some Visualforce interface to the order line item detail page to add a
more polished display.

• Adding some Ajax inline editing capabilities to the Heroku e-commerce
application shopping cart. (Check out the bootstrap-editable-rails gem at
https://github.com/tkawa/bootstrap-editable-rails.)

• Integrating the Salesforce product and price book functionality

Building a Full CRM System
In this chapter, we are going to build a more traditional CRM system to manage the
student admissions process for the fictional Force University.

The student admissions system will allow the university staff to manage a catalog
of courses, record the applicant details, and manage the course applications from
applicants until a decision is made on whether the applicant is eligible or not.

In this process, we will be utilizing a great deal of the Force.com platform
functionalities, which you will use to build your real-world applications,
including the following:

• Custom data objects and relationships
• User profiles
• Organization-wide defaults and role hierarchy
• Chatter
• Custom object tabs
• Page layouts
• Lookup and search dialogs

We will also build a custom workflow to route the course applications to the relevant
faculty within the university when they are created. The standard Force.com platform
functionalities and workflows are not powerful enough for this, so we will construct a
custom routing engine using queues, custom settings, and Apex.

Finally, we will implement a publisher action to allow a decision to be entered
quickly against a course application.

Building a Full CRM System

[122]

Student admissions system requirements
analysis
The first step in building a system is to analyze the business requirements that we
intend to satisfy. The student admissions system will manage the overall process for
admitting students into a university or higher education institution (for the rest of
the chapter, I will be referring to a university).

The high-level business requirements of a system are as follows:

• The users of the system will be course administrators, the admissions office
staff, and faculty selection officers

• The system will allow the course administrators to fully maintain the courses
offered by the university

• The system will allow the admissions office staff to register applicants for a
course and to register, manage, and allocate course applications to the faculty
selection officers

• The system will allow the faculty selection officers to assess course
applications and record their decisions

I've highlighted the keywords that are crucial in helping us identify
the functional, data, and security requirements, which are described
in the following sections.

Functional requirements
A further analysis into business requirements yields the following functional
requirements:

• The system will allow the course administrators to create, update, and delete
courses that are offered by the university.

• The system will allow the admissions office staff to create, update, and delete
applicants who wish to apply for a course.

• The system will allow the admissions office staff to create, update, and delete
course applications.

• The system will allow the admissions office staff to assign a course
application to the relevant faculty; for example, a business degree course
application will be referred to the business faculty.

• Once a course application has been assigned to a faculty, the system will
allow the faculty selection officers to assess it and record their decision.

Chapter 3

[123]

• A successful course application will result in an admit, whereas an
unsuccessful course application will result in denial.

Data requirements
Analyzing the business and functional requirements provides us with the following
entities that we will need to record the information that we will be capturing in
the system:

• The course entity will be used to record all of the individual courses offered
by the university

• The applicant entity will be used to record the details of applicants who
apply for a course

• The course application entity will be used to record an instance of an
applicant applying for a course

The relationships between the entities are depicted in the following entity-relationship
diagram:

Course
Course

Application
Applicant

The key cardinality rules for data requirements are as follows:

• An applicant may lodge one or more course applications
• A course application must have an applicant
• A course application must be linked to a course
• A course may have one or more course applications

In Salesforce parlance, the course application is referred to as a
junction object.

Security requirements
On Further analysis with business stakeholders, the following security requirements
have been uncovered:

• Only the course administration staff can add, update, or delete courses. All
other users will have read-only access.

Building a Full CRM System

[124]

• Only the admissions office staff can add, update, or delete applicants.
The faculty selection officers will have read-only access.

• All the admissions office staff will have full access to all the course
applications and their applicants.

• The faculty selection officers will only have access to the course applications
they are assigned to within their faculty.

• The faculty management will have an access to all the course applications
within their faculty.

Building the student admissions system
Now that we have captured all of the requirements for this version of the student
admissions system (always assume there will be more requirements in the future!),
we are in a position to build the system. Fortunately for us, the Force.com
platform provides a rich base of functionalities we can leverage to build a
comprehensive solution.

You will find an unmanaged package that contains the application
contents for this chapter at https://login.salesforce.com/
packaging/installPackage.apexp?p0=04t90000000ArFt.

Defining the custom data objects
Our first task is to define the custom data objects we will require to capture information
about the courses, applicants, and course applications.

Defining the Course object
Perform the following steps to configure the Course custom object:

1. Navigate to Setup | Create | Objects.
2. Click on the New Custom Object button.
3. Enter Course for the object's Label field.
4. Enter Courses for the Plural Label field.
5. Enter A course offered by the University for the Description field to

describe the purpose of the custom object.
6. Enter Course Code for the Record Name field and change the Data Type

drop-down menu to Auto Number.

Chapter 3

[125]

7. Enter Course-{00000} in the Display Format field.
8. Enter 1 in the Starting Number field.
9. Select the following checkboxes:

 ° Allow Reports (an optional feature)
 ° Allow Activities (an optional feature)
 ° Track Field History (an optional feature)
 ° Add Notes and Attachments related list to default page layout

(an object creation option)

10. Ensure that the Deployment Status section is set to Deployed.
11. Click on the Save button to create the custom object.

You will now need to configure the custom fields for the Course object.

1. If you aren't already on the Course object's detail page, navigate to
Setup Create | Objects.

2. Click on the Course label hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. Create the fields described in the following table by accepting the Force.com

default values for the field-level security and page layout assignments, unless
otherwise specified, and clicking on Save & New after creating each field:

Field types Field labels Comments
Picklist Faculty This field indicates the faculty for

the course. The Picklist values are
Business and Science. Select the
Use first value as default
value checkbox.

Picklist Faculty Course Area This field indicates the courses
offered by the faculty. The
Picklist values are Accounting,
Management, Marketing,
Chemistry, Physics, and
Biotechnology. Select both the
Sort values alphabetically not in
the order entered. Values will be
displayed alphabetically everywhere
and Use first value as default value
checkboxes.

Building a Full CRM System

[126]

Field types Field labels Comments
Picklist Achievement This field indicates the academic

achievement earned from the course
The Picklist values are Diploma,
Degree, and PhD. Select the Use first
value as default value checkbox.

Text Name This field indicates the name of the
course. Ensure that the Required and
Unique checkboxes are selected, and
set the maximum length to
255 characters.

Text Area Description This field gives an optional
description of the course.

Finally, we need to set up a field dependency between the Faculty and Faculty Course
Area picklists. This will ensure that when a faculty is selected, only the relevant faculty
course areas will be available for selection.

To set up a field dependency, perform the following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course label.
3. Click on the Field Dependencies button in the Custom Fields &

Relationships section.
4. Click on New to create a new field dependency.
5. For the Controlling Field section, select Faculty.
6. For the Dependent Field section, select Faculty Course Area.
7. Click on Continue.
8. In the Business column, select Accounting, Management, and Marketing.

Click on the Include Values button to include them in the Business
column-dependent values.

9. In the Science column, select Biotechnology, Chemistry, and Physics.
Click on the Include Values button to include them in the Science
column-dependent values.

10. The output on your screen should resemble the following screenshot:

Chapter 3

[127]

11. Click on Preview to display a pop-up dialog, where you can test out your
field dependency.

12. When you have finished testing, click on Close in the pop-up dialog.
13. Click on Save.

If you look at the Custom Fields & Relationships section for the
Course object, you will now see that the Controlling Field section
for Faculty Course Area fields has a value of Faculty.

Defining the Applicant object
Perform the following steps to configure the Applicant custom object:

1. Navigate to Setup | Create | Objects.
2. Click on the New Custom Object button.
3. Enter Applicant in the object's Label field.
4. Enter Applicants in the Plural Label field.
5. Enter A Person applying for a Course in the Description field to

describe the purpose of the custom object.
6. Enter Applicant Code for the Record Name field and change the Data Type

drop-down menu to Auto Number.
7. Enter Applicant-{00000} in the Display Format field.
8. Enter 1 in the Starting Number field.

Building a Full CRM System

[128]

9. Select the following checkboxes:
 ° Allow Reports (an optional feature)
 ° Allow Activities (an optional feature)
 ° Track Field History (an optional feature)
 ° Add Notes and Attachments related list to default page layout (an

object creation option)

10. Ensure that the Deployment Status section is set to Deployed.
11. Click on the Save button to create the custom object.

You will now need to configure the custom fields for the Applicant object. For this,
we will perform the following steps:

1. If you aren't already on the Applicant object's detail page, navigate to Setup
Create | Objects.

2. Click on the Applicant label.
3. Click on the New button in the Custom Fields & Relationships section.
4. Create the fields described in the following table by accepting the default

values of the Force.com functionalities for the field-level security and page
layout assignments, unless otherwise specified, and clicking on Save & New
after creating each field:

Field types Field labels Comments
Text Salutation This field lists the salutation for

the applicant, for example, Mr. The
maximum length is 50 characters.

Text Given Names The fields lists the name of the
applicant. Ensure that the Required
checkbox is selected and the
maximum length is set to 255
characters.

Text Surname This field lists the surname of
the applicant. Ensure that the
Required checkbox is selected and
the maximum length is set to 255
characters.

Picklist Gender The field lists the gender of the
applicant. The Picklist values are
Male and Female.

Chapter 3

[129]

Field types Field labels Comments
Date Date of

Birth
This field lists the applicant's date
of birth. Ensure that the Required
checkbox is selected.

Text Area Address This field lists the applicant's
address. The maximum length of
this field is 255 characters. Ensure
that the Required checkbox is
selected.

Phone Phone This field lists the applicant's phone
number.

Phone Cell This field lists the applicant's cell
number.

Email Email This field lists the applicant's e-mail
address.

Defining the Course Application object
Perform the following steps to configure the Course Application custom object:

1. Navigate to Setup | Create | Objects.
2. Click on the New Custom Object button.
3. Enter Course Application in the object Label field.
4. Enter Course Applications in the Plural Label field.
5. Enter An application for a course in the Description field to describe

the purpose of the custom object.
6. Enter Application Number in the Record Name field and change the Data

Type drop-down menu to Auto Number.
7. Enter Application-{00000} in the Display Format field.
8. Enter 1 in the Starting Number field.
9. Select the following checkboxes:

 ° Allow Reports (an optional feature)
 ° Allow Activities (an optional feature)
 ° Track Field History (an optional feature)
 ° Add Notes and Attachments related list to default page layout

(object creation options)

10. Ensure that the Deployment Status section is set to Deployed.
11. Click on the Save button to create the custom object.

Building a Full CRM System

[130]

You will now need to configure the custom fields for the Course Application object.
For this, we will perform the following steps:

1. If you aren't already on the Course Application detail page, navigate to
Setup | Create | Objects.

2. Click on the Course Application label.
3. Click on the New button in the Custom Fields & Relationships section.
4. Create the fields described in the following table by accepting default values

for the field-level security and page layout assignments of the Force.com
functionalities, unless otherwise specified, and clicking on Save & New after
creating each field:

Field types Field labels Comments
Lookup Relationship Applicant This field indicates the applicant who

is applying for a course.
A lookup relationship to the
Applicant object. Ensure that
the Required checkbox is selected.

Formula Applicant Name For this field, the following formula is
to used :
Applicant__r.Salutation__c
& " " & Applicant__r.
Given_Names__c & " " &
Applicant__r.Surname__c

In the Blank Field Handling
section, select Treat blank fields
as blanks.

Lookup Relationship Course This field indicates the course that
is being applied for. A lookup
relationship to the Course object.
Ensure that the Required checkbox is
selected. Do not add a related list to
the Course Layout section in the last
step of the wizard.

Formula Course Faculty For this field, the following formula is
to be used:
TEXT(Course__r.Faculty__c)

In the Blank Field Handling section,
select Treat blank fields as blanks.
Do not add the field to the Course
Application page layout.

Chapter 3

[131]

Field types Field labels Comments
Formula Course Name For this field, the following formula is

to be used:
Course__r.Name__c

In the Blank Field Handling section,
select Treat blank fields as blanks.

Picklist Application
Status

This field indicates the status of
the course application. The Picklist
values are New, Queued For
Assessment, Under Assessment,
Under Conditional Approval,
Closed – Admit Applicant,
Closed – Application Denied,
Withdrawn by Applicant, and
Cancelled by Admissions. Select
the Use first value as default value
checkbox.

Text Area Personal
Qualifications

This field states any personal qualities
that the applicant believes are
relevant to the application.

Text Area Academic
Qualifications

This field states any academic
qualifications that the applicant
believes are relevant to the
application.

Text Area Employment
Experience

This field states any employment
experience that the applicant believes
is relevant to the application.

Text Area Professional
Memberships

This field states any professional
memberships that the applicant
believes are relevant to the
application.

Text Area Decision Notes This field states any notes relevant to
the decision on the application.

Text Area Decision
Conditions

This field states any conditions on the
application decision. This field will
be mandatory when the status will be
Under Conditional Approval.

Text Area General
Comments

This field states any general
comments relevant to the application.

Building a Full CRM System

[132]

We need a validation rule to ensure that the decision conditions are mandatory when
the application has a Under Conditional Approval status. To set up the validation
rule, perform the following steps:

1. If you aren't already on the Course Application detail page, navigate to
Setup | Create | Objects.

2. Click on the Course Application label.
3. Click on the New button in the Validation Rules section.
4. In the Rule Name field, enter Conditional_Approval_Decision_

Conditions.
5. In the Description field, enter Ensure that Decision Conditions are

entered when the application is under conditional approval.
6. In the Error Condition Formula section, enter ISPICKVAL(Application_

Status__c , "Under Conditional Approval") && ISBLANK(
Decision_Conditions__c). Your formula on the screen should resemble
the one given in the following screenshot:

7. For the Error Message section, enter You must enter Decision
Conditions when a Course Application is under conditional
approval.

8. Select Top of Page for the Error Location section.
9. Click on Save.

Chapter 3

[133]

User profiles
We will now configure the following three user profiles in our system:

• Course Administration (for the course administrators)
• Admissions Office (for the admissions office staff)
• Selection Officer (for the faculty selection officers)

This will ensure that only authorized users are able to access the student
admissions' data.

The Course Administration profile
To create the Course Administration profile, perform the following steps:

1. Navigate to Setup | Manage Users | Profiles. A shortcut is to enter
Profiles in the Search box.

2. Select the Clone link for the Standard Platform User profile.

If your developer organization doesn't have a Clone link for
the profiles, select the New Profile button and select Standard
Platform User in the existing profiles drop-down list.

3. Enter Course Administration for the Profile Name field.
4. Click on Save.

We will now need to configure the Course Administration profile to restrict access to
only those objects that the course administrators will need in the student admissions
system. To do this, perform the following steps:

1. Navigate to Setup | Manage Users | Profiles.
2. Select the Edit link for the Course Administration profile.
3. Leave the Standard Object Permissions section with the default settings.
4. In the Custom Object Permissions section, ensure that the profile has

the Read, Create, Edit, Delete, View All, and Modify All access options
available to the Courses custom object.

Building a Full CRM System

[134]

5. Your Custom Object Permissions section for the profile should resemble the
one in the following screenshot:

6. Click on Save.
7. Click on the Back to Profile button.

The Admissions Office profile
To create the Admissions Office profile, perform the following steps:

1. Navigate to Setup | Manage Users | Profiles.
2. Select the Clone link for the Standard Platform User profile.
3. Enter Admissions Office in the Profile Name field.
4. Click on Save.

We will now need to configure the Admissions Office profile to restrict access to
only those objects that the admissions office staff will need in the student admissions
system. To do this, perform the following steps:

1. Navigate to Setup | Administer | Manage Users | Profiles.
2. Select the Edit link for the Admissions Office profile.
3. Leave the Standard Object Permissions section with the default settings.
4. In the Custom Object Permissions section, ensure that the profile has Read,

Create, Edit, Delete, View All, and Modify All access options available to
the Applicants and Course Applications custom objects.

5. Ensure that the profile has a Read access to the Courses custom object.

Chapter 3

[135]

6. Your Custom Object Permissions section for the profile should resemble the
one in the following screenshot:

7. Click on Save.
8. Click on the Back to Profile button.

In a production application, you probably wouldn't allow anyone to
have the Delete access option to the Course Applications object. It
is likely that all Course Applications would need to be retained for
auditing and reporting purposes, or if an applicant appeals against a
decision. Instead of using the Modify All permission, you will need to
use Sharing Rules to grant Edit access to all Course Applications for
the Admissions Office profile.

The Selection Officer profile
To create the Selection Officer profile, perform the following steps:

1. Navigate to Setup | Manage Users | Profiles.
2. Select the Clone link for the Standard Platform User profile.
3. Enter Selection Officer in the Profile Name field.
4. Click on Save.

Building a Full CRM System

[136]

We will now need to configure the Selection Officer profile to restrict access to only
those objects that the selection officers will need in the student admissions system.
To do this, perform the following steps:

1. Navigate to Setup | Administer | Manage Users | Profiles.
2. Select the Edit link for the Selection Officer profile.
3. Leave the Standard Object Permissions section with the default settings.
4. In the Custom Object Permissions section, ensure that the profile has a Read

and Edit access option to the Course Applications custom object.
5. Ensure that the profile has the Read access option to the Courses and

Applicants custom objects.
6. Your Custom Object Permissions for the profile should resemble the one in

the following screenshot:

7. Click on Save.
8. Click on the Back to Profile button.

Organization-Wide Defaults
Now that we have configured the user profiles, we need to configure the
Organization-Wide Defaults settings for our custom objects. The Organization-Wide
Defaults values will provide the base-level record-sharing rules that we will build
upon in the role hierarchy, which we will be configuring in the next section.

We will be setting the default values for Applicants and Courses to give all users
in the role hierarchy the ability to see the records in the system. The role hierarchy
permissions will then determine who can edit the records.

Chapter 3

[137]

We will be setting the default values for Course Applications to the more restrictive
private-sharing rule. This limits all record access to the owners of the course
application records and users that we enable through the role hierarchy.

To configure the Organization-Wide Defaults section, perform the following steps:

1. Navigate to Administer | Security Controls | Sharing Settings.
2. In the Organization-Wide Defaults section, click on Edit.
3. For the Applicant object, set Default Internal Access to Public Read Only.
4. For the Course object, set Default Internal Access to Public Read Only.
5. For the Course Application object, set Default Internal Access to Private.
6. Ensure that Grant Access Using Hierarchies is checked for Applicant,

Course, and Course Application.
7. Your configuration settings for Organization-Wide Defaults should

resemble the one in the following screenshot:

8. Click on Save.

The role hierarchy
Our final task in configuring security of the users and data is to configure the
following role hierarchy:

President of University

Dean of Admissions
Manager of Admissions

Admissions Officer

Dean of Business Faculty
Dean of Business Admissions

Business Faculty Selection Officer

Dean of Science Faculty
Dean of Science Admissions

Science Faculty Selection Officer

Building a Full CRM System

[138]

The role hierarchy will allow us to add permissions to the Organization-Wide Defaults
values to give roles the extra permissions they need to perform their assigned tasks in
the system.

Configuring the top-level roles
To configure the top-level role hierarchy, perform the following steps:

1. Navigate to Setup | Administer | Manage Users | Roles.
2. If a page titled Understanding Roles is displayed, click on Set Up Roles.
3. Click on the + symbol next to the CEO role to see a default role hierarchy

generated by Force.com, as shown in the following screenshot:

For simplicity, this sample application we will be leaving the role of
CEO and its subordinates intact. In a real production application, you
would most likely edit the default role hierarchy to suit your needs.

4. Click on the Add Role link that is located directly underneath your
organization name (in the current example, it is Force University).

5. Change the Label field to President of University.
6. Make sure that the Role Name field defaults to President_of_University.
7. Enter President in the Role Name as displayed on reports field.
8. Click on Save.
9. Return to the role hierarchy by navigating to Setup | Administer | Manage

Users | Roles (you will need to perform this step after adding each role).

If the Understanding Roles page is redisplayed, it is a good idea to
select Don't show this page again before selecting Set Up Roles.

Chapter 3

[139]

10. Click on the Add Role link located directly underneath the President of
University role.

11. Change the Label field to Dean of Admissions. The Role Name
field should automatically generate Dean_of_Admissions.

12. Make sure that the role reports to President of University.
13. Enter Dean of Admissions for Role Name as displayed on reports.
14. Click on Save.
15. Return to the role hierarchy and select the Add Role link located

directly underneath the President of University role.
16. Change the Label field to Dean of Business Faculty. The Role

Name field should automatically generate Dean_of_Business_Faculty.
17. Make sure that the role reports to President of University.
18. Enter Dean of Business in the Role Name as displayed on reports field.
19. Click on Save.
20. Return to the role hierarchy and select the Add Role link located

directly underneath the President of University role.
21. Change the Label field to Dean of Science Faculty. The Role

Name field should automatically generate Dean_of_Science_Faculty.
22. Make sure that the role reports to President of University.
23. Enter Dean of Science in the Role Name as displayed on reports field.
24. Click on Save.
25. Return to the role hierarchy. Click on the + button next to President of

University to expand that branch. Your output on the screen should now
resemble the following screenshot:

Building a Full CRM System

[140]

Configuring the admissions office hierarchy
To configure the admissions office hierarchy, perform the following steps:

1. Return to the role hierarchy and select the Add Role link located directly
underneath the Dean of Admissions role.

2. Change the Label field to Manager of Admissions. The Role Name field
should automatically generate Manager_of_Admissions.

3. Make sure that the role reports to Dean of Admissions.
4. Enter Admissions Manager in the Role Name as displayed on reports field.
5. Click on Save.
6. Return to the role hierarchy and expand the Dean of Admissions branch.

Select the Add Role link located directly underneath the Manager of
Admissions role.

7. Change the Label field to Admissions Officer. The Role Name field should
automatically generate Admissions_Officer.

8. Make sure that the role reports to Manager of Admissions.
9. Enter Admissions Officer in the Role Name as displayed on reports field.
10. Click on Save.
11. Return to the role hierarchy. Click on the + button next to the President

of University role, the Dean of Admissions role, and the Manager of
Admissions role to expand those branches. Your output on the screen
should now resemble the following screenshot:

Chapter 3

[141]

Configuring the business faculty hierarchy
To configure the business faculty hierarchy, perform the following steps:

1. Return to the role hierarchy and select the Add Role link located directly
underneath the Dean of Business Faculty role.

2. Change the Label field to Dean of Business Admissions. The Role Name
field should automatically generate Dean_of_Business_Admissions.

3. Make sure that the role reports to Dean of Business Faculty.
4. Enter Dean of Business Admissions in the Role Name as displayed

on reports field.
5. Click on Save.
6. Return to the role hierarchy and expand the Dean of Business Faculty

branch. Select the Add Role link located directly underneath
the Dean of Business Admissions role.

7. Change the Label field to Business Faculty Selection Officer.
The Role Name field should automatically generate Business_Faculty_
Selection_Officer.

8. Make sure that the role reports to Dean of Business Admissions.
9. Enter Business Selection Officer in the Role Name as displayed

on reports field.
10. Click on Save.
11. Return to the role hierarchy. Click on the + button next to the President of

University role, the Dean of Business Faculty role, and the Dean of Business
Admissions role to expand those branches. Your output on the screen should
now resemble the following screenshot:

Building a Full CRM System

[142]

Configuring the science faculty hierarchy
To configure the science faculty hierarchy, perform the following steps:

1. Return to the role hierarchy and select the Add Role link located directly
underneath the Dean of Science Faculty role.

2. Change the Label field to Dean of Science Admissions. The Role Name
field should automatically generate Dean_of_Science_Admissions.

3. Make sure that the role reports to Dean of Science Faculty.
4. Enter Dean of Science Admissions in the Role Name as displayed

on reports field.
5. Click on Save.
6. Return to the role hierarchy and select the Add Role link located

directly underneath the Dean of Science Admissions role.
7. Change the Label field to Science Faculty Selection Officer.

The Role Name field should automatically generate Science_Faculty_
Selection_Officer.

8. Make sure the role reports to Dean of Science Admissions.
9. Enter Science Selection Officer for Role Name as displayed on reports.
10. Click on Save.
11. The university role hierarchy is complete and should now resemble the

following screenshot:

Chapter 3

[143]

Chatter
Chatter is an integral part of the Force.com platform and the development of
applications with social capabilities. The admissions process by its very nature
requires collaboration across different areas of the university, so it makes perfect
sense to use Chatter in our admissions system.

In this section, it is assumed that you have already activated Chatter
for your Salesforce organization. Note that Chatter is automatically
enabled when a developer organization is created.

Enabling the Chatter feeds for Course
To enable the Chatter feeds for the Course object, perform the following steps:

1. Navigate to Setup | Build | Customize | Chatter | Feed Tracking.
2. In the list of objects being tracked, select Course.
3. Select the Enable Feed Tracking checkbox.
4. In the list of fields available to be tracked, select Description, Faculty,

Faculty Course Area, and Name.
5. Click on Save.
6. Your Chatter feed tracking for Course should now resemble the

following screenshot:

Building a Full CRM System

[144]

Enabling the Chatter feed for the Course object will add it at the top of the Course
detail page, as shown in the following screenshot:

Enabling the Chatter feeds for Applicant
To enable the Chatter feed for the Applicant object, perform the following steps:

1. Navigate to Setup | Build | Customize | Chatter | Feed Tracking.
2. In the list of objects being tracked, select Applicant.
3. Select the Enable Feed Tracking checkbox.
4. In the list of fields available to be tracked, select Address, Cell, Email,

Given Names, Phone, and Surname.
5. Click on Save.
6. Your Chatter feed tracking for Applicant should now resemble the

following screenshot:

Chapter 3

[145]

Enabling the Chatter feed for the Applicant object will add it at the top of the
Applicant detail page:

Building a Full CRM System

[146]

Enabling the Chatter feeds for Course Application
To enable the Chatter feed for the Course Application object, perform the
following steps:

1. Navigate to Setup | Build | Customize | Chatter | Feed Tracking.
2. In the list of objects being tracked, select Course Application.
3. Select the Enable Feed Tracking checkbox.
4. In the list of fields available to be tracked, select Academic

Qualifications, Applicant, Application Status, Course, Decision
Conditions, Decision Notes, Employment Experience, General Comments,
Personal Qualifications, and Professional Memberships.

5. Click on Save.
6. Your Chatter feed tracker for Course Application should now resemble the

following screenshot:

Enabling the Chatter feed for the Course Application object will add it at the top of
the Course Application detail page, as shown in the following screenshot:

Chapter 3

[147]

Defining the custom object tabs
To configure the tabs for the custom objects, perform the following steps:

1. Navigate to Setup | Create | Tabs.
2. Click on New in the Custom Object Tabs section.
3. In the Object drop-down list, select Course.
4. Select the lookup icon to set any unused tab style. Click on Next.
5. Select Tab Hidden as the default setting for all profiles. Click on Next.
6. Deselect all applications (a shortcut is to deselect the Include Tab checkbox) to

ensure that this tab is not added. Leave Append tab to user's existing personal
customizations checked.

7. Click on Save.
8. Click on New in the Custom Object Tabs section.
9. In the Object drop-down list, select Applicant.
10. Select the lookup icon to set any unused tab style. Click on Next.
11. Select Tab Hidden as the default setting for all profiles. Click on Next.
12. Deselect all applications (a shortcut is to deselect the Include Tab checkbox)

to ensure that this tab is not added. Click on Save.
13. Click on New in the Custom Object Tabs section.
14. In the Object drop-down list, select Course Application.
15. Select Tab Hidden as the default setting for all profiles. Click on Next.
16. Accept the default settings for Add to Profiles and click on Next.

Building a Full CRM System

[148]

17. Deselect all applications to ensure that this tab is not added. Leave
Append tab to user's existing personal customizations checked.

18. Click on Save.

Setting the tab permissions for profiles
We now need to set the correct tab visibility flags for each profile in the application,
and this can be done by performing the following steps:

1. Navigate to Setup | Administer | Manage Users | Profiles.
2. Select the Course Administrator profile.
3. Click on Edit.
4. In the Tab Settings section, set the Courses tab to Default On.
5. Click on Save.
6. Select the Selection Officer profile.
7. Click on Edit.
8. In the Tab Settings section, set the Course Applications tab to Default On

and the Applicants tab to Default On.
9. Click on Save.
10. Select the Admissions Office profile.
11. Click on Edit.
12. In the Tab Settings section, set the Course Applications tab to Default On,

the Courses tab to Default On, and the Applicants tab to Default On.
13. Click on Save.
14. Select the System Administrator profile.
15. Click on Edit.
16. In the Tab Settings section, set the Course Applications tab to Default On,

the Courses tab to Default On, and the Applicants tab to Default On.
17. Click on Save.

Chapter 3

[149]

Creating the Force.com application
To define the admissions Force.com application, perform the following steps:

1. Navigate to Setup | Create | Apps.
2. Click on the New button in the Apps section.
3. Select Custom app as the type of app to create. Click on Next.
4. In the App Label field, enter Admissions. The App Name field

should also be defaulted to Admissions. Click on Next.
5. Click on Next to accept the default logo.
6. Move the Courses, Applicants, and Course Applications tabs to the

Selected Tabs list.
7. Leave Home as the Default Landing Tab option. Click on Next.
8. Make the application visible to the System Administrators,

Admissions Office, Course Administration, and Selection Officer profiles.
9. Set Admissions as the default application for the Admissions Office,

Course Administration, and Selection Officer profiles.
10. Click on Save to create the Force.com application.

The user interface
Now that we have the base Force.com application in place, we can customize the
default user interface to make it more intuitive for users.

Applicants
Firstly, we will adjust the Applicant page layout by performing the following steps:

1. Navigate to Setup | Build | Create | Objects.
2. Click on the Applicant label.
3. Scroll down to the Page Layouts section and select the Edit link next

to the Applicant Layout option.
4. Scroll down to the Related Lists section.
5. Move the list related to Course Applications at the top of the Related

Lists section.
6. Select the wrench icon for the list related to Course Applications.
7. Remove the Applicant Name option from the Selected Fields list.

Building a Full CRM System

[150]

8. In the Sort By: drop-down list, select Application Number and Descending
as the sort order (this will show the most recent applications first in the
related list). Click on OK to close the Related List Properties – Course
Applications window, as shown in the following screenshot:

9. Click on Save.

The Lookup Dialog layout for Applicants will also need to be modified; this can be
done by completing the following steps:

1. Scroll down to the Search Layouts section and select the Edit link next to the
Lookup Dialogs layout.

2. Move the Salutation, Given Names, Surname, and Date of Birth fields
(in this order) to the Selected Fields list.

3. Click on Save.

Chapter 3

[151]

Courses
The default page layout for Courses will suffice for our needs; however, we will adjust
the Lookup Dialogs and Mini View layouts for Courses with the following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course label hyperlink.
3. Scroll down to the Search Layouts section and select the Edit link

next to the Lookup Dialogs layout.
4. Move the Name, Achievement, Faculty, and Faculty Course Area

fields (in this order) to the Selected Fields list.
5. Click on Save.

The Mini View page layout is displayed when you move the cursor over the Course
field in the Course Application Detail page, as shown in the following screenshot:

To adjust the Mini View page layout, perform the following steps:

1. Scroll down to the Page Layouts section and select the Edit link next to the
Course Layout option.

Building a Full CRM System

[152]

2. Select Mini Page Layout from the top-right row of hyperlinks, as shown in
the following screenshot:

3. Move the Name, Achievement, Faculty, and Faculty Course Area fields
(in this order) to the Selected Fields list.

4. Click on Save.
5. Click on Save in the page layout editor.

The Course Application page layout
Next, we will adjust the Course Application page layout by completing the
following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course Application label.
3. Scroll down to the Page Layouts section and select the Edit link next

to Course Application Layout option.
4. Drag a new section from the palette. Place it underneath the existing

Information section and name it Decision Information. Ensure that
the new section has two columns. Click on OK.

5. Drag the Decision Notes field from its existing position on the screen
to the Decision Information section.

6. Drag the Decision Conditions field from its existing position on the
screen to the Decision Information section.

7. Drag the General Comments field from its existing position on the
screen underneath the Decision Notes field.

8. Drag the Applicant Name field from its existing position on the
screen next to the Applicant field.

9. Drag the Course Name field from its existing position on the screen next to
the Course field.

Chapter 3

[153]

10. Add a blank space from the palette underneath the Course and Course
Name fields.

11. Add a blank space from the palette next to the Application Status field.
12. Add two Blank Space components from the palette underneath the

Application Status field (one in the left-hand side column and one
in the right-hand side column).

13. Drag the Academic Qualifications field from its existing position on
the screen next to the Personal Qualifications field.

14. Drag the Professional Memberships field from its existing position
on the screen next to the Employment Experience field.

15. Your Course Application page layout should now resemble the
following screenshot:

16. Click on Quick Save.
17. Select Mini Page Layout from the top-right row of hyperlinks.
18. Move the Application Number and Application Status fields to the Selected

Fields list in this order (Applicant and Course should already be in the
Selected Fields list).

19. Click on Save.
20. Click on Save in the page layout editor.

Building a Full CRM System

[154]

The Applicants tab
Similar to the Courses tab, we will adjust the Applicants tab by completing the
following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Applicant label.
3. Scroll down to the Search Layouts section and select the Edit link next to the

Applicants Tab layout, as shown in the following screenshot:

4. Move the Salutation, Given Names, Surname, Phone, Cell, and Email fields
(in this order) to the Selected Fields list.

5. Click on Save.

We will also need to adjust the Applicants tab listview columns while viewing all
the Applicant records by performing the following steps:

1. Select the Applicants tab.
2. In the View: drop-down list, ensure that All is selected (it should be the only

item in the list unless you have already created some custom views), and
click on the Edit hyperlink, as displayed in the following screenshot:

Chapter 3

[155]

3. Scroll down to the Step 3. Select Fields to Display section.
4. Move the Applicant Code, Salutation, Given Names, Surname, Phone, Cell,

and Email fields (in this order) to the Selected Fields list.
5. In the Step 4. Restrict Visibility section, ensure that Visible to all users

(Includes partner and customer portal users) is selected.
6. Click on Save.

The Courses tab
Next, we will adjust the Courses tab by completing the following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course label hyperlink.
3. Scroll down to the Search Layouts section and select the Edit link

next to the Courses Tab layout.
4. Move the Name, Achievement, Faculty, and Faculty Course Area fields

(in order) to the Selected Fields list (Course Code should already be selected).
5. Click on Save.

We will also need to adjust the Courses tab listview columns while viewing all the
Course records with the following steps:

1. Select the Courses tab.
2. In the View: drop-down list, ensure that All is selected (it should be the only

item in the list unless you have already created some custom views), and click
on the Edit hyperlink, as shown in the following screenshot:

3. Scroll down to the Step 3. Select Fields to Display section.
4. Move the Course Code, Name, Achievement, Faculty, and Faculty Course

Area fields (in this order) to the Selected Fields list.

Building a Full CRM System

[156]

5. In the Step 4. Restrict Visibility section, ensure that Visible to all users
(Includes partner and customer portal users) is selected.

6. Click on Save.

The Course Applications tab
We will also need to adjust the Course Applications tab by completing the
following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course Application label.
3. Scroll down to the Search Layouts section and select the Edit link

next to the Course Applications Tab layout.
4. Move the Applicant Name, Course Name, and Application Status

fields (in this order) to the Selected Fields list.
5. Click on Save.

We will also need to adjust the Course Applications tab listview columns while
viewing all the Course Application records:

1. Select the Course Applications tab.
2. In the View: drop-down list, ensure that All is selected (it should be the only

item in the list unless you have already created some custom views), and
click on the Edit hyperlink, as shown in the following screenshot:

3. Scroll down to the Step 3. Select Fields to Display section.
4. Move the Application Number, Applicant Name, Course Name, and

Application Status fields (in this order) to the Selected Fields list.
5. In the Step 4. Restrict Visibility section, ensure that Visible to all

users (Includes partner and customer portal users) is selected.
6. Click on Save.

Chapter 3

[157]

Queues
In this section, we will create a set of queues that will be instrumental in developing
a workflow capability to automatically route the course applications to the various
faculties within the university when they are created.

The system administrators public group
The first task is to set up a public group for system administrator user(s). A public
group is different from a profile as it contains roles, users, and other public groups.
This will become necessary when we start to restrict access to the queues that
we will be creating in the later sections. To set up a public group for the system
administrators, perform the following steps:

1. Navigate to Setup | Manage Users | Public Groups.
2. Click on New.
3. In the Label field, enter System Administrators.
4. The Group Name field should default to System_Administrators.
5. Select Users in the Search: drop-down list.
6. In the Available Members list, select all system administrator users

and move them to the Selected Members list.
7. Click on Save.

The Business Faculty Course Applications queue
To create a queue for the course applications to the business faculty, perform the
following steps:

1. Navigate to Setup | Manage Users | Queues.
2. Click on New.
3. In the Label field, enter Business Faculty Course Applications.
4. The Queue Name field should default to Business_Faculty_Course_

Applications.
5. Enter business@forceuniversity.com for the Queue Email field.
6. In the Supported Objects section, move Course Application to the

Selected Objects list.
7. In the Queue Members section, select Roles and Internal Subordinates

in the Search: drop-down list.

Building a Full CRM System

[158]

8. In the Available Members list, select Role and Internal Subordinates:
Dean of Business Faculty and move it to the Selected Members list.

9. In the Queue Members section, select Public Groups in the Search:
drop-down list.

10. In the Available Members list, select Group: System Administrators
and move it to the Selected Members list.

11. Click on Save.

The Science Faculty Course Applications queue
To create a queue for the course applications to the science faculty, perform the
following steps:

1. Navigate to Setup | Manage Users | Queues.
2. Click on New.
3. In the Label field, enter Science Faculty Course Applications.
4. The Queue Name field should default to Science_Faculty_Course_

Applications.
5. Enter science@forceuniversity.com in the Queue Email field.
6. In the Supported Objects section, move Course Application to the

Selected Objects list.
7. In the Queue Members section, select Roles and Internal

Subordinates in the Search: drop-down list.
8. In the Available Members list, select Role and Internal

Subordinates: Dean of Science Faculty and move it to the Selected
Members list.

9. In the Queue Members section, select Public Groups in the Search:
drop-down list.

10. In the Available Members list, select Group: System Administrators
and move it to the Selected Members list.

11. Click on Save.

The Course Application Exception queue
In a real-world application, it is frequently necessary to capture exceptions when
they occur so that the support and administrative staff can action them where
appropriate. To support this, we will create an exceptions queue for the course
applications that can't be routed automatically to a faculty.

Chapter 3

[159]

To create the exceptions queue, perform the following steps:

1. Navigate to Setup | Manage Users | Queues.
2. Click on New.
3. In the Label field, enter Course Application Exception Queue.
4. The Queue Name field should default to Course_Application_

Exception_Queue.
5. Enter administrator@forceuniversity.com for the Queue Email field.
6. In the Supported Objects section, move Course Application to the Selected

Objects list.
7. In the Queue Members section, select Public Groups in the Search:

drop-down list.
8. In the Available Members list, select Group: System Administrators

and move it to the Selected Members list.
9. Click on Save.

Restricting access to the business faculty queue
We only want members of the business faculty to be able to view and access the
course applications in their queue. This is achieved by creating a view on the
Course Applications tab and adjusting the permissions on the view. It is also
necessary to ensure that system administrators can access the queue to provide
administrative support.

To restrict access to the business faculty queue, perform the following steps:

1. Select the Course Applications tab, as shown in the following screenshot:

Building a Full CRM System

[160]

2. In the View: drop-down list, click on the Create New View hyperlink,
as shown in the following screenshot:

3. The View Name field will be highlighted. Enter Business Faculty
Course Applications.

4. The View Unique Name field should default to Business_Faculty_
Course_Applications, as shown in the following screenshot:

5. In the Step 2. Specify Filter Criteria section, select Queue and select
Business Faculty Course Applications from the drop-down list, as
shown in the following screenshot:

Chapter 3

[161]

6. Scroll down to the Step 3. Select Fields to Display section.
7. Move the Application Number, Applicant Name, Course Name, and

Application Status fields (in this order) to the Selected Fields list, as
shown in the following screenshot:

Building a Full CRM System

[162]

8. In the Step 4. Restrict Visibility section, remove All Internal Users from the
Shared To list.

9. Select Public Groups in the Search: drop-down list.
10. In the Available Members list, select Group: System Administrators

and move it to the Selected Members list.
11. In the Queue Members section, select Roles and Internal

Subordinates in the Search: drop-down list.
12. In the Available Members list, select Role and Internal Subordinates:

Dean of Business Faculty and move it to the Shared To list, as shown
in the following screenshot:

13. Click on Save.

Chapter 3

[163]

Restricting access to the science faculty queue
In a similar vein to the business faculty, we only want members of the science faculty
to be able to view and access the course applications in their queue. This is achieved
by creating a view on the Course Applications tab and adjusting the permissions on
the view. Again, it is also necessary to ensure that system administrators can access
the queue to provide administrative support.

To restrict access to the science faculty queue, perform the following steps:

1. Select the Course Applications tab.
2. In the View: drop-down list, click on the Create New View hyperlink.
3. The View Name field will be highlighted. Enter Science Faculty

Course Applications.
4. The View Unique Name field should default to Science_Faculty_Course_

Applications, as shown in the following screenshot:

5. In the Specify Filter Criteria section, select Queue and select Science
Faculty Course Applications from the drop-down list, as shown in the
following screenshot:

Building a Full CRM System

[164]

6. Scroll down to the Step 3. Select Fields to Display section.
7. Move the Application Number, Applicant Name, Course Name, and

Application Status fields (in this order) to the Selected Fields list.
8. In the Step 4. Restrict Visibility section; remove All Internal Users

from the Shared To list.
9. Select Public Groups in the Search: drop-down list.
10. In the Available Members list, select Group: System Administrators

and move it to the Selected Members list.
11. In the Queue Members section, select Roles and Internal Subordinates in the

Search: drop-down list.
12. In the Available Members list, select Role and Internal Subordinates:

Dean of Science Faculty and move it to the Shared To list, as shown
in the following screenshot:

13. Click on Save.

Restricting access to the exceptions queue
Finally, it is necessary to ensure that only system administrators can access the
exceptions queue. This is achieved by creating a view on the Course Applications
tab and adjusting the permissions on the view.

Chapter 3

[165]

To restrict access to the exceptions queue, perform the following steps:

1. Select the Course Applications tab.
2. In the View: drop-down list, select Course Applications Exception Queue

and click on the Create New View hyperlink.
3. The View Name field will be highlighted. Enter Course Application

Exception Queue.
4. The View Unique Name field should default to Course_Application_

Exception_Queue.
5. In the Specify Filter Criteria section, select Queue and select Course

Application Exception Queue from the drop-down list, as shown in the
following screenshot:

6. Scroll down to the Step 3. Select Fields to Display section.
7. Move the Application Number, Applicant Name, Course Name, and

Application Status fields (in this order) to the Selected Fields list.
8. In the Step 4. Restrict Visibility section, remove All Internal Users

from the Shared To list.
9. Select Public Groups in the Search: drop-down list.

Building a Full CRM System

[166]

10. In the Available Members list, select Group: System Administrators and
move it to the Selected Members list, as shown in the following screenshot:

11. Click on Save.

Custom settings
We will use the custom settings capability of Force.com to provide a mapping
between a faculty and the Force.com queues we have created. This will allow us to
simplify our Apex trigger logic that will do the actual assignment to a faculty queue
in the next section.

To create the custom settings for the queue mappings, perform the following steps:

1. Go to Setup | Develop | Custom Settings.
2. Click on New.
3. In the Label field, enter Admissions Faculty Queues.
4. In the Object Name field, enter FacultyQueueMapping.
5. Select List from the Setting Type drop-down list.
6. Select Protected from the Visibility drop-down list.

Chapter 3

[167]

7. For the Description field, enter Mapping to a Course Application queue
for a Faculty.

8. Click on Save.

You will need to add some custom fields to the custom settings, which can be done
by completing the following steps:

1. Go to Setup | Develop | Custom Settings.
2. Click on Admissions Faculty Queues in the Label column.
3. Click on New in the Custom Fields section.
4. Select Text for the Data Type section. Click on Next.
5. In Field Label, enter Faculty.
6. Enter 50 in the Length field.
7. Ensure that the Required checkbox is selected.
8. Ensure that the Unique checkbox is selected, and that duplicate matches are

set to case sensitive.
9. Click on Next, and in the final screen, click on Save & New.
10. Perform similar steps to create the remaining custom fields specified

in the following table:

Field label Type Length Comments
QueueCode Text 100 Required: Yes

Unique: Yes (case sensitive)
Description Text 255 Required: No

Unique: No

Finally, we will create the custom setting entries by completing the following steps:

1. Go to Setup | Build | Develop | Custom Settings.
2. Click on Admissions Faculty Queues in the Label column.
3. Click on Manage and then click on New.
4. Enter BusinessFacultyQueue in the Name field.
5. Enter Business in the Faculty field.
6. Enter Business_Faculty_Course_Applications in the QueueCode field.
7. Enter Queue Mapping for Business Faculty Course Applications in

the Description field.
8. Click on Save & New.

Building a Full CRM System

[168]

9. Enter ScienceFacultyQueue in the Name field.
10. Enter Science in the Faculty field.
11. Enter Science_Faculty_Course_Applications in the QueueCode field.
12. Enter Queue Mapping for Science Faculty Course Applications in the

Description field.
13. Click on Save & New.
14. Enter ExceptionQueue in the Name field.
15. Enter Exception in the Faculty field.
16. Enter Course_Application_Exception_Queue in the QueueCode field.
17. Enter Queue Mapping for exceptioned Course Applications in the

Description field.
18. Click on Save.

The Course Application routing logic
Now that the queues are in place, we can complete the logic required to automatically
route a course application to the relevant faculty within the university.

Building the faculty assignment Apex trigger
We will use an Apex trigger on the before insert event of a course application to
route it to a faculty queue. The primary responsibilities of the trigger will be to
determine the faculty to Force.com queue mappings and route the course application
to the correct faculty queue. The faculty assignment will be determined by the course
that the applicant is applying for.

To create the faculty assignment Apex trigger, perform the following steps:

1. Navigate to Setup | Develop | Apex Triggers.
2. All of the Apex triggers for your organization will be displayed. Click on

Developer Console.
3. Go to File | New | Apex Trigger in the developer console.
4. Enter assignToFacultyQueue in the Name field.
5. Select Course_Application__c in the sObject drop-down list and click on

Submit, as shown in the following screenshot:

Chapter 3

[169]

6. In the code download for this chapter, locate the assignToFacultyQueue.
trigger file.

7. Clear the existing code, copy, and paste the contents of
assignToFacultyQueue.trigger to the developer console code-editing
window, as shown in the following screenshot:

8. Navigate to File | Save.

Building a Full CRM System

[170]

How the faculty queue assignment trigger works
For this, we will start by retrieving the Force.com queues that we configured earlier
with the following code:

// retrieve the queue information
List<Group> queues = [SELECT Id, DeveloperName, Type
 FROM Group
 WHERE Type = 'Queue'];

We then load the queue information onto Map, keyed by DeveloperName for each
queue (which corresponds to the queue name we used when we configured the
queues) with the following code:

// Map to hold Queue information mapped to each queue code
Map<string, Group> facultyQueues = new Map<string, Group>();

// construct the map of Faculty Queues
for (Group queue : queues) {
 facultyQueues.put(queue.DeveloperName, queue);
}

Next, we define Map which will hold the unique queue identifier for each faculty with
the following code:

// Map to hold Queue Mappings
// string = the Faculty the queue is assigned to
// string = the Force.com unique Id for the queue
Map<string, string> facultyQueueMappings = new Map<string,
 string>();

The final piece of information we need to complete the faculty to queue mappings are
the custom settings we defined earlier, and this is done by using the following code:

// get the custom setting information
List<FacultyQueueMapping__c> facultyQueueMappingsList =
 FacultyQueueMapping__c.getAll().values();

Now, we can map each faculty to a corresponding Force.com queue using the
following code:

for (FacultyQueueMapping__c facultyQueueMapping :
 facultyQueueMappingsList) {
 Group facultyQueue = facultyQueues.
get(facultyQueueMapping.QueueCode__c);

Chapter 3

[171]

 // if the queue exists, map it to the Faculty
 if (facultyQueue != null) {
 facultyQueueMappings.put(
 facultyQueueMapping.Faculty__c, facultyQueue.
Id);
 }
}

With the faculty to queue mappings in place, we can now assign the course
application to the correct faculty by using the following code:

for (Course_Application__c courseApplication : trigger.new) {
 // assign Course Application to Faculty queue
 string queueId = facultyQueueMappings.get(
 courseApplication.Course_Faculty__c);
 if (queueId != null) {
 courseApplication.OwnerId = queueId;
 } else {
 // assign Course Application to Exception Queue
 string exceptionQueueId = facultyQueueMappings.
get('Exception');
 courseApplication.OwnerId = exceptionQueueId;
 }
}

Even though currently we expect only a single course application to
be processed at a time, we are still using a bulkified trigger, which
is a Salesforce best practice. You should always write your triggers
in this fashion.

Testing the faculty queue assignment trigger
As a bonus, I've included the testFacultyQueueAssignment.cls file in the
code download for this chapter. This is the test class that I used to test the faculty
assignment trigger while developing the application for this chapter.

To create the faculty assignment Apex trigger, perform the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed.

Click on New.
3. In the code download for this chapter, locate the

testFacultyQueueAssignment.cls file.
4. Copy and paste the contents of testFacultyQueueAssignment.cls

to the Apex code editor in your Force.com window.

Building a Full CRM System

[172]

5. Click on Save.

I highly recommend that you take time to study the code in
testFacultyQueueAssignment.cls as there are quite a few
things you need to take into account while writing the code to test
the custom settings and assign records to a queue.

A decision entry publisher action
As a final touch, we will add a publisher action to the Course Application object. This
will allow a selection officer to quickly enter a selection decision against an application.

Enabling the publisher actions
If the publisher actions are not enabled already, you will need to enable them in your
organization. To enable the publisher actions, perform the following steps:

1. Navigate to Setup | Customize | Chatter | Settings.
2. Click on Edit.
3. Scroll down to Publisher Actions and select the Enable Publisher Actions

checkbox, as shown in the following screenshot:

4. Click on Save.

Developing the publisher action
Now we can develop a publisher action for an entry of a decision. While developing
a publisher action, you need to think about what the user is trying to achieve, and
the bare minimum of information that needs to be added or updated. Also, to make
life easier for users (especially on mobile devices), you can specify the default values
that are independent of those defined for a Force.com object.

Chapter 3

[173]

To develop the publisher action, perform the following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course Application label.
3. Scroll down to the Buttons, Links, and Actions section.
4. Click on New Action.
5. Select Update a Record from the Action Type drop-down list.
6. Specify Enter Decision in the Label field.
7. Leave None selected in the Standard Label Type field.
8. In the Description field, enter Publisher Action to allow a Selection

Officer to quickly enter a decision.
9. Your screen should now resemble the following screenshot:

10. Click on Save.

Building a Full CRM System

[174]

11. You will now be directed to the publisher layout editor. Add the Blank
Space, Application Status, Decision Notes, and Decision Conditions fields
and rearrange the fields in the layout so that your publisher layout editor
resembles the following screenshot:

12. Click on Save.
13. You will now be returned to the Enter Decision detail page.
14. Click on New in the Predefined Field Values section.
15. Select Application Status in the Field Name drop-down list.
16. Select Closed – Admit Applicant in the A specific value drop-down list.
17. Click on Save.

Adding the publisher action to the Chatter feed
To add the Enter Decision action to the Chatter feed for the course application,
perform the following steps:

1. Navigate to Setup | Create | Objects.
2. Click on the Course Application label.
3. Scroll down to the Page Layouts section and select the Edit link next

to Course Application Layout.
4. In the Publisher Actions section, click on the override the global

publisher layout link.
5. From the Actions section of the page layout editor, drag the Enter

Decision action and place it between the Post and File actions.
6. Your Publisher Actions window should resemble the following screenshot:

Chapter 3

[175]

7. Click on Save.

Try out the publisher action
The Enter Decision action is now ready for us to try out. This can be done with the
following steps:

Before using the publisher action, you will need some existing course
applications in your organization. I have provided some sample data
for Applicants and Courses in the code download for this chapter that
you can import. You can then create some course applications to try
out the publisher action.

1. Select the Course Applications tab.
2. Open an existing course application, as shown in the following screenshot:

Building a Full CRM System

[176]

3. Click on Enter Decision in the Chatter feed. The following layout will now
be displayed:

4. Fill in the Decision Notes field with a comment and click on Update.
5. You will see a flash message that indicates the record has been

successfully updated.
6. If you refresh the page or reopen the course application, you will see that it

has been updated and a post is automatically added to the Chatter feed, as
shown in the following screenshot:

Chapter 3

[177]

You can also use a Visualforce page for a publisher action, which
provides quite a powerful platform for development. Refer to
the Salesforce1 App Developer Guide page for more details at
https://developer.salesforce.com/docs/atlas.en-us.
salesforce1.meta/salesforce1/salesforce1_guide_
introduction.htm.

Congratulations! Our admissions application is now complete!

Summary
In this chapter, we have built a comprehensive CRM system using a major portion of
the Force.com platform functionalities. I sincerely hope that the application we have
built can be used as a starting blueprint for your real-world projects.

Hopefully, you can now appreciate the ease with which we can tap into the vast
amount of power contained within the platform as well as extend it when required.

Even though the application is fairly complete, there are still a few improvements
that you can make, and they are listed as follows:

• Add a custom logo to the application to refine it a bit
• Implement an approvals process for conditionally approved

course applications
• Implement a workflow to send the result of a course application, when

a decision is made, to the applicant (you may also need to use an Apex
trigger for this)

• Implement a set of reports and dashboards to aid the university staff in
tracking and managing the admissions process.

Building a Reporting System
Reporting is a crucial requirement for any business. The old adage, If you cannot
measure it, you cannot improve it, is as true today as it was when Lord Kelvin coined
the term.

Force.com provides extremely powerful analytics and reporting capabilities out
of the box. The standard details, summary and matrix reports, and charts and
dashboards should suffice for the majority of business reporting needs.

However, as powerful as the standard reporting capabilities are, there will be times
when the standard reporting isn't enough. At this stage, a business usually has
two choices:

1. Download a reporting system from AppExchange or export data from
Salesforce to a more powerful data warehouse / operational reporting
environment to build custom reports. Examples of this are the IBM Cognos
or the Oracle Business Intelligence suite of tools.

2. Build a custom reporting capability in Force.com using Visualforce and Apex.

If you work in an enterprise environment and you have an existing data
warehouse / operational reporting capability and the available budget,
the first option could be a feasible option.

For smaller-or medium-sized businesses that don't have the luxury of a data
warehouse, the second option becomes much more attractive. This will be the
subject of this chapter.

Our customer will be Force Majeure Insurance Brokers, a fictional insurance
brokerage firm, which negotiates insurance policies for clients in home and
property, personal liability, motor vehicle, and marine.

Building a Reporting System

[180]

Force Majeure has recently adopted Salesforce to track their customer accounts and
policy information. The management would now like an executive dashboard to
allow them to track business performance. In this chapter, we will build the executive
dashboard that they require.

Reporting system overview
The reporting system will be responsible for generating an on-demand Executive
Information System (EIS) Dashboard for Force Majeure management to quickly
assess the performance of their insurance broker operations.

This will allow Force Majeure executives to monitor business performance against a set
of Key Performance Indicators (KPIs) and, if required, to make informed decisions to
improve operational performance.

Reporting requirements
The following criteria will be used for the executive dashboard:

• Date from
• Date to
• Policy type

The following KPIs will be displayed for the policies being renewed:

KPIs Description
Terminating renewals The policy amount ($) and number of renewal

policies in the selected date range for the selected
policy type

Unsuccessful renewals The policy amount ($) and number of policies
that were not renewed in the selected date range
for the selected policy type

Successful renewals The policy amount ($) and number of renewal
policies that were successfully renewed in the
selected date range for the selected policy type

Renewal success rate The success rate of renewals in the policy amount
($) and number of renewal policies in the selected
date range for the selected policy type

New policies won The policy amount ($) and number of new
policies that were won in the selected date range
for the selected policy type

Chapter 4

[181]

KPIs Description
Total policies won The combined policy amount ($) and number of

policies won (new and renewals) in the selected
date range for the selected policy type

Policy growth percentage The percentage growth of the policy amount ($)
and number of policies from the total due for
renewal in the selected date range

The following KPIs will be displayed for the new policies:

KPIs Description
New policy requests received The policy amount ($) and number of new

policies that were requested in the selected
date range for the selected policy type

New policy requests quoted The policy amount ($) and number of new
policies that were quoted on in the selected
date range for the selected policy type

New policy request quote rate The percentage of new policy requests that
were quoted on (the policy amount ($) and
number of new policies) in the selected date
range

New policy success rate The success rate of new policies in the policy
amount ($) and number of policies in the
selected date range for the selected policy type

Reporting system design
In this section, we will examine the components that will be required to build the
EIS Dashboard:

• The BrokerPolicy custom object
• KPIs' formulae
• The EIS Dashboard Visualforce page
• The EIS Dashboard custom controller

Building a Reporting System

[182]

The EIS Dashboard custom object
The EIS Dashboard custom object will contain summarized insurance policy
information for new policies being sold and existing policies that are being renewed.
The main information we will be interested in is whether a policy has won or lost, if
it has been quoted on, and the policy amount.

In a real-life production environment, your customer will most
probably be using Sales Cloud and Opportunities for this type
of application. If this is the case, I recommend you use a monthly
Analytical Snapshot to populate a custom object similar to the
EIS Dashboard object we are using in this chapter for this type of
application. For information on how to configure and use Analytical
Snapshots, refer to http://help.salesforce.com/apex/
HTViewHelpDoc?id=data_about_analytic_snap.htm.

KPI formulae
Each KPI will require a specific set of data or formula. The following tables list each
KPI and describe the set of data or formula required.

The following are the KPI formulae for the policies being renewed (all formulae
assume the selected date range and a policy type):

KPIs Formulae
Terminating renewals • Sum of policy amount where policy renewal is

True

• Count of policies where policy renewal is True
Unsuccessful renewals • Sum of policy amount where policy renewal is

True and status is Lost
• Count of policies where policy renewal is True

and status is Lost
Successful renewals • Sum of policy amount where policy renewal is

True and status is Won
• Count of policies where policy renewal is True

and status is Won
Renewal success rate • (Successful renewals policy amount / Terminating

renewals policy amount) * 100
• (Successful renewals number of policies /

Terminating renewals number of policies) * 100

Chapter 4

[183]

KPIs Formulae
New policies won • Sum of policy amount where policy renewal is

False and status is Won
• Count of policies where policy renewal is False

and status is Won
Total policies won • Policy amount: (Terminating renewals -

unsuccessful renewals) + new policies won
• Number of policies: (Terminating renewals -

unsuccessful renewals) + new policies won
Policy growth percentage • Policy amount: ((Total policies won – terminating

renewals) / terminating renewals) * 100
• Number of policies: ((Total policies won –

terminating renewals) / terminating renewals) *
100

The following are the KPI formulae for the new policies (all formulae assume the
selected month/year):

KPIs Formulae
New policy requests received • Sum of policy amount where policy renewal is

False

• Count of policies where policy renewal is False
New policy requests quoted • Sum of policy amount where policy renewal is

False and quoted is True
• Count of policies where policy renewal is False

and quoted is True
New policy request quote rate • Policy amount: (New policy requests quoted /

new policy requests received) * 100
• Number of policies: (New policy requests quoted

/ new policy requests received) * 100
New policy success rate • Policy amount: (New policies won / new policy

requests received) * 100
• Number of policies: (New policies won / new

policy requests received) * 100

Building a Reporting System

[184]

The EIS Dashboard Visualforce page
The EIS Dashboard Visualforce page will be responsible for receiving report criteria
from a user and then presenting the EIS Dashboard results. The Visualforce page will
also present a range of Visualforce charts to present selected dashboard data in
a graphical format.

The EIS Dashboard custom controller
We will use a custom controller for the EIS Dashboard Visualforce page. The main
responsibility of the custom controller will be issuing the SOQL queries against the
database and performing the calculations required to generate the report results for
the EIS Dashboard.

Reporting system build
Now that our analysis and design is complete, we can start to build the EIS Dashboard.

This chapter assumes you are quite familiar with Apex programming. If
you haven't done a lot of Apex programming, I advise you to complete
the Apex Workbook from the developer Force site at http://wiki.
developerforce.com/page/Force.com_workbook.

Defining the EIS Dashboard custom object
To configure the custom object that we will be using for the EIS Dashboard, perform
the following steps:

1. Navigate to Setup | Create | Objects.
2. Press the New Custom Object button.
3. Enter EIS Policy for Label.
4. Enter EIS Policies for the Plural Label.
5. Select the Starts with vowel sound checkbox.
6. Enter a Description to describe the purpose of the custom object.
7. Enter EIS Policy Code for the Record Name and change the Data Type to

Auto Number.
8. Enter Policy-{00000} in the Display Format field.
9. Enter 1 in the Starting Number field.

Chapter 4

[185]

10. Select the Allow Reports checkbox only (we are assuming this object will be
used for reporting purposes only).

11. Ensure that the Deployment Status is set to Deployed.
12. Click on the Save button to create the custom object.

You will now need to configure the custom fields for the object:

1. Navigate to Setup | Create | Objects.
2. Click on the EIS Policy hyperlink.
3. Click on the New button in the Custom Fields & Relationships section.
4. Create the fields described in the following table, accepting the Force.com

defaults for field level security and page layouts unless otherwise specified:

Field Type Field Label Comments
Picklist Status This is the status of the policy. Picklist

values are Won and Lost. Select
the Use first value as default value
checkbox.

Picklist Policy Type This is the type of policy. Picklist
values are Home and Property,
Personal Liability, Motor
Vehicle, and Marine. Select the Use
first value as default value checkbox.

Checkbox Renewal If true, the policy is a renewal. If the
checkbox is not selected, the policy
is a new business.

Checkbox Quoted If true, policy has been quoted on.
Currency Policy Amount This is the cost of the policy.
Date Policy Date This is the date of the policy.

Creating the skeleton EIS Dashboard
application
Next, we will create a skeleton EIS Dashboard application. This will consist of an
Application Tab, and a basic Visualforce page.

Building a Reporting System

[186]

Creating the initial Visualforce page
To create the initial version of the EIS Dashboard page, perform the following steps:

1. Navigate to Setup | Develop | Pages.
2. All of the Visualforce pages for your organization will be displayed. Click

on New.
3. In the Page Information section, enter EIS Dashboard Page in the

Label field.
4. Enter EIS_Dashboard_Page in the Name field.
5. Enter EIS Dashboard Visualforce Page in the Description.
6. Accept the default markup in the Visualforce Page Editor.
7. Click on Save.

Defining the application tabs
To define the application tabs, perform the following steps:

1. Navigate to Setup | Create | Tabs.
2. Click on New in the Custom Object Tabs section.
3. In the Object drop-down list select EIS Policy.
4. Select the Lookup icon to set a Tab Style (a suggestion is Trophy). Click

on Next.
5. Accept the defaults for Add to Profiles and click on Next.
6. Deselect all applications to ensure this tab is not added. Click on Save.
7. Click on New from the Visualforce Tabs section.
8. Select EIS Dashboard Page for the Visualforce Page.
9. Enter EIS Dashboard for the Tab Label.
10. Enter EIS_Dashboard for the Tab Name.
11. Select the Lookup icon to set a Tab Style (a suggestion is PDA). Click

on Next.
12. Accept the defaults for Add to Profiles and click on Next.
13. Deselect all applications to ensure this tab is not added. Click on Save.

Chapter 4

[187]

Creating the EIS Dashboard application
To define the EIS Dashboard application, perform the following steps:

1. Navigate to Setup | Create | Apps.
2. Click on the New button.
3. Select Custom app as the type of app to create. Click on Next.
4. For the App Label, enter EIS. The App Name should also be defaulted to

EIS. Click on Next.
5. Click on Next to accept the default logo.
6. Move EIS Policies and EIS Dashboard to the Selected Tabs list.
7. Leave Home as Default Landing Tab. Click on Next.
8. Make the application visible to System Administrator and click on Save.

Importing EIS policy data
The code download for the chapter contains the eis_policy_sample_data.csv file
in the sample_data folder. This contains some sample data you can use while you are
developing and testing your reports. Refer to Chapter 2, The E-Commerce Framework,
for details on loading data into your Force.com organization.

We have now completed the skeleton application. If you select EIS from the Force.
com application dropdown, your screen should resemble the following screenshot:

Building a Reporting System

[188]

Building the final reporting application
With the skeleton EIS application in place, we can commence the build of the
final application.

The application will display a Visualforce page, accept the Date From and
Date To inputs, and allow the user to select a Policy Type (or all policy types)
from a drop-down list. When the user selects a Generate button, the EIS
Dashboard will be generated and displayed on the Visualforce page.

To support this functionality, we will build the following components:

• EIS Dashboard custom controller
• EIS Dashboard Visualforce page
• EIS Dashboard charts

The EIS Dashboard custom controller
This custom controller will be responsible for generating the KPIs for the EIS
Dashboard. To create the EIS Dashboard custom controller, perform the
following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed. Click on New.
3. In the code download for the chapter, locate the EISDashboardController.

cls file in the force_com folder.
4. Copy and paste the contents of EISDashboardController.cls into

the Apex Code Editor in your Force.com window, as shown in the
following screenshot.

5. Click on Save.

Chapter 4

[189]

Working of the EIS Dashboard controller
The first step in the controller is to declare the properties that we will need to store
the dashboard criteria entered by the user:

// Date From
public Date dateFrom {get; set;}

// Date To
public Date dateTo {get; set;}

// Policy Type picklist values
public List<selectOption> policyTypeOptions {get; set;}

// selected value in picklist
public string selectedPolicyType {get; set;}

The dateFrom and dateTo controller properties will hold the selected date range for
the dashboard entered by the user on the EIS Dashboard Visualforce page. We will be
populating the drop-down list for the policy type manually and adding an All option
to support generating the dashboard for all policy types. The policyTypeOptions
property will hold this list of values. Note the List<selectOption> property type that
directly corresponds to a list of the <apex:selectOption> elements on a Visualforce
page. Finally, we declare the string variable selectedPolicyType, which will store
the policy type the user has actually selected in the drop-down list.

Building a Reporting System

[190]

The next set of properties we declare will hold the KPIs for policies being renewed:

// Terminating Renewal Totals
public decimal totalTerminatingRenewalsPolicyAmount {get; set;}
public decimal totalTerminatingRenewalsPolicyCount {get; set;}

// Successful Renewal Totals
public decimal totalSuccessfulRenewalsPolicyAmount {get; set;}
public decimal totalSuccessfulRenewalsPolicyCount {get; set;}

// Unsuccessful Renewal Totals
public decimal totalUnsuccessfulRenewalsPolicyAmount {get; set;}
public decimal totalUnsuccessfulRenewalsPolicyCount {get; set;}

// Renewal Success Rate
public decimal renewalSuccessRatePolicyAmount { get; set;}
public decimal renewalSuccessRatePolicyCount { get; set;}

// Total Policies Won
public decimal totalPoliciesWonPolicyAmount { get; set;}
public decimal totalPoliciesWonPolicyCount { get; set;}

// Policy Growth Rate
public decimal policyGrowthRatePolicyAmount { get; set;}
public decimal policyGrowthRatePolicyCount { get; set;}

The next set of properties we declare will hold the KPIs for new policies:

// New Policy Request Totals
public decimal totalNewPolicyRequestAmount {get; set;}
public decimal totalNewPolicyRequestCount {get; set;}

// New Policies Won Totals
public decimal totalNewPolicyRequestWonAmount {get; set;}
public decimal totalNewPolicyRequestWonCount {get; set;}

// New Policy Request Quoted Totals
public decimal totalNewPolicyRequestQuotedAmount {get; set;}
public decimal totalNewPolicyRequestQuotedCount {get; set;}

// New Policy Quote Rate
public decimal newPolicyQuoteRateAmount { get; set;}
public decimal newPolicyQuoteRateCount { get; set;}

// New Policy Success Rate
public decimal newPolicySuccessRateAmount { get; set;}
public decimal newPolicySuccessRateCount { get; set;}

Chapter 4

[191]

Finally, we declare a set of properties that will hold the data series for the
Visualforce charts:

// Chart Data Series for Renewals Charts
public List<ChartData> renewalPieData {get; set;}
public List<ChartData> renewalGaugeData {get; set;}

// Chart Data for New Policy Charts
public List<ChartData> newPolicyGaugeData {get; set;}
public List<ChartData> newPolicyPieData {get; set;}

The ChartData type is a simple wrapper class to hold a series of data points for
a chart and is also declared in the controller:

// Wrapper class for Chart Data
public class ChartData {

 public String name { get; set; }
 public Integer data { get; set; }

 public ChartData(String name, Integer data) {
 this.name = name;
 this.data = data;
 }

 public ChartData(String name, decimal data) {
 this.name = name;
 this.data = integer.valueOf(data);
 }
}

The EIS Dashboard controller constructor
The constructor method for the controller is used to initialize the controls displayed
on the Visualforce page:

public EISDashboardController() {

 // initialize values for "Policy Type" picklist
 policyTypeOptions = new List<selectOption>();
 policyTypeOptions.add(new selectOption('All','All'));
 List<Schema.PicklistEntry> policyTypes =
 EIS_Policy__c.fields.Policy_Type__c
 .getDescribe().getpicklistvalues();

 for (Schema.PicklistEntry a : policyTypes) {

Building a Reporting System

[192]

 policyTypeOptions.add(new selectOption(a.getValue(),
 a.getLabel()));
 }

 // set initial value for Policy Type to 'All'
 selectedPolicyType = 'All';

 // initialize dashboard values
 initializeEISDashboard();

}

We begin by initializing the policyTypeOptions list and then adding a new element
for the All drop-down list option. The next line of code defines a list of the Schema.
PicklistEntry objects. The Schema.PicklistEntry class is defined in the Schema
namespace in the Apex Developers Guide (Reference Section) (http://www.salesforce.
com/us/developer/docs/apexcode/index_Left.htm) and represents a picklist entry
for a Force.com object picklist field. We then call the getDescribe() method
on the Policy Type field of the EIS Policy object, which returns an instance of Schema.
SObjectType representing the field. A further call to the getpicklistvalues()
method then returns the Policy Type picklist values.

Now that the list contains the picklist values for the policy type, we can iterate
through it in the succeeding for loop and load them into the policyTypeOptions list.

Finally, we set the selectedPolicyType property to All as its default value and call
the initializeEISDashboard() method to set all KPI-related properties to 0.

Generating the button click handler method
The next method we define is startGenerateEISDashboard(), which handles the
click event for the Generate button on the EIS Dashboard Visualforce page:

// start EIS Dashboard generation
public PageReference startGenerateEISDashboard() {
 if (dateFrom != null && dateTo != null) {
 if (dateTo >= dateFrom) {
 generateEISDashboard();
 } else {
 // display custom page message
 ApexPages.Message myMsg = new ApexPages.Message(ApexPages.
Severity.ERROR,'Date To must be greater than or equal to Date From!');
 ApexPages.addMessage(myMsg);
 }
 } else {
 // display custom page message

Chapter 4

[193]

 ApexPages.Message myMsg = new ApexPages.Message(ApexPages.
Severity.ERROR,'You must select a Date From and a Date To!');
 ApexPages.addMessage(myMsg);
 }
 return null;
}

First, we check that values for Date From and Date To have been entered. If either of
them contains a null value, we construct an appropriate error message and rerender
the EIS Dashboard Visualforce page. If Date From and Date To have been entered,
we then check that Date To occurs after Date From. If both validations are passed,
we call the generateEISDashboard() method, which will commence generating the
KPIs for the dashboard. If any of the validations fail, we construct an appropriate
error message and rerender the EIS Dashboard Visualforce page.

Generating the EIS Dashboard
The generateEISDashboard() method itself calls a set of methods to generate the
dashboard:

// generate the dashboard
private void generateEISDashboard() {
 initializeEISDashboard();
 generateRenewals();
 generateNewPolicies();
 generateSuccessIndicators();
 generateCharts();
}

As described earlier, initializeEISDashboard() sets all KPI values to 0. This is
important, especially if the dashboard has previously been generated in the current
session (we don't want to accidentally display any old values from a previous
generation of the dashboard).

The generateRenewals() method generates renewal-policy-related KPIs.
The generateNewPolicies() method generates new-policy-related KPIs.
The generateSuccessIndicators() method then uses the KPIs generated
by generateRenewals() and generateNewPolicies() to calculate success
indicators such as success rates and growth rates of policies.

Building a Reporting System

[194]

Generating the renewal totals
The generateRenewals() method performs a set of SOQL queries and processes the
results to generate the renewal-policy-related KPIs. First, we define a map we will
use throughout the method to store the totals from a SOQL query:

Map<string, decimal> renewalQueryTotals = new Map<string, decimal>();

We then perform a SOQL query to retrieve the policy amount and policy count to
terminate renewals:

// get amounts for Terminating Renewals
List<AggregateResult> renewalsAggregateResult =
 [SELECT SUM(Policy_Amount__c) totalRenewalsAmount,
 COUNT(Id) totalRenewalsCount, Policy_Type__c
 FROM EIS_Policy__c
 WHERE Renewal__c = true
 AND Policy_Date__c >= :dateFrom AND Policy_Date__c <= :dateTo
 GROUP BY Policy_Type__c];

There is quite a bit happening in this SOQL query, so we will examine it in
greater detail:

1. In the SELECT statement, we are retrieving the SUM value of terminating
renewals through the Policy Amount field and the number of terminating
renewals by applying the COUNT aggregator to the Id field. We also retrieve
the Policy Type field, as we will use it to group the results of the query.

2. In the WHERE statement, we are specifying that we are only interested in
policies where the Renewal field is true, and the Policy Date occurs
between the Date From and Date To values.

3. Finally, we specify the GROUP BY clause on the Policy Type field. This will
return renewalsAggregateResult, which is a list of AggregateResult
objects, with one AggregateResult object for each Policy Type. Each
AggregateResult object will contain the total policy amount and number
of policies for an individual policy type.

Now that we have the query results in the renewalsAggregateResult list, we can
call the calculateAggregateTotals() generic method to calculate the dashboard
values for us:

// get the Terminating Renewal totals
renewalQueryTotals =
 calculateAggregateTotals(renewalsAggregateResult,
 'totalRenewalsAmount',
 'totalRenewalsCount');

Chapter 4

[195]

We pass the renewalsAggregateResult list and the string identifiers for the total
policy amount and policy count elements within the renewalsAggregateResult
object. Note that the string identifiers are an exact match to the aliases we defined
for the fields in the SOQL query.

The calculateAggregateTotals method is defined as follows:

// generic function to calculate totals from an AggregateResult
private Map<string, decimal>
 calculateAggregateTotals(List<AggregateResult> results,
 string amountString, string countString) {

 decimal policyAmount = 0;
 decimal policyCount = 0;

 // Loop through aggregate results returned and get totals
 for (AggregateResult a : results) {
 if (selectedPolicyType == 'All') {
 policyAmount =
 decimal.valueOf(String.valueOf(a.get(amountString)));
 policyCount =
 decimal.valueOf(String.valueOf(a.get(countString)));
 } else {
 if (String.valueOf(a.get('Policy_Type__c')) ==
 selectedPolicyType) {
 policyAmount =
 decimal.valueOf(String.valueOf(
 a.get(amountString)));
 policyCount =
 decimal.valueOf(String.valueOf(
 a.get(countString)));
 }
 }
 }

 // construct Map and return it
 Map<string, decimal> resultMap = new Map<string, decimal>();
 resultMap.put(amountString, policyAmount);
 resultMap.put(countString, policyCount);

 return resultMap;

}

The method begins by declaring the policyAmount and policyCount variables,
which will hold the total policy amount and policy count, respectively.

We then begin a for loop to iterate through the list of the AggregateResult objects
passed into the method (one per policy type).

Building a Reporting System

[196]

Within the for loop, we check if the user has selected All in the Policy Type
drop-down list on the Visualforce page. If so, we add the policy amount and
policy count for the current policy type to the policyAmount and policyCount
variables, respectively.

If the user hasn't selected All in the Policy Type drop-down list, we then check if the
policy type for the current AggregateResult object matches the user-selected policy
type. If the policy type values match, we add the policy amount and policy count for
the policy type to the policyAmount and policyCount variables.

In a nutshell, the for loop provides the following behavior:

• If the user selects All in the Policy Type drop-down list, the policy amount
and policy count values for every policy type returned by the SOQL query
are added together to give a grand total for all policy types.

• If the users select a specific policy type from the drop-down list, only the
policy amount and policy count for the selected policy type are included in
the total.

Once the for loop is completed, we construct a map with an element for the total
policy amount and total policy count keyed by the string identifiers we passed into
the calculateAggregateTotals() method. The map is then passed back to the
generateRenewals() method.

Back in the generateRenewals() method, we retrieve the values from the map and
assign them to the EIS Dashboard values:

totalTerminatingRenewalsPolicyAmount =
 renewalQueryTotals.get('totalRenewalsAmount');
 totalTerminatingRenewalsPolicyCount =
 renewalQueryTotals.get('totalRenewalsCount');

We then use similar logic to calculate the totals for successful renewals, using a
different SOQL query and alias values:

////// get amounts for Successful Terminating Renewals
List<AggregateResult> successfulRenewalsAggregateResult =
 [SELECT SUM(Policy_Amount__c) successfulRenewalsAmount,
 COUNT(Id) successfulRenewalsCount, Policy_Type__c
 FROM EIS_Policy__c
 WHERE Renewal__c = true
 AND Status__c = 'Won'
 AND Policy_Date__c >= :dateFrom AND Policy_Date__c <= :dateTo
 GROUP BY Policy_Type__c];

// get the successful Terminating Renewals Totals

Chapter 4

[197]

renewalQueryTotals =
 calculateAggregateTotals(successfulRenewalsAggregateResult,
 'successfulRenewalsAmount',
 'successfulRenewalsCount');
 totalSuccessfulRenewalsPolicyAmount =
 renewalQueryTotals.get('successfulRenewalsAmount');
 totalSuccessfulRenewalsPolicyCount =
 renewalQueryTotals.get('successfulRenewalsCount');

As we have the total and successful renewals' values, we can simply calculate the
unsuccessful renewals:

totalUnsuccessfulRenewalsPolicyAmount =
 totalTerminatingRenewalsPolicyAmount -
 totalSuccessfulRenewalsPolicyAmount;
totalUnsuccessfulRenewalsPolicyCount =
 totalTerminatingRenewalsPolicyCount -
 totalSuccessfulRenewalsPolicyCount;

Generating the new policy totals
The generateNewPolicies() method uses very similar logic to the
generateRenewals() method. First, we declare a map to hold the totals
from an SOQL query:

Map<string, decimal> newPolicyQueryTotals = new Map<string,
decimal>();

Then, we execute an SOQL query and process its results to get the totals of
new policies:

// get amounts for New Policies
List<AggregateResult> newPolicyAggregateResult =
 [SELECT SUM(Policy_Amount__c) totalNewPolicyAmount,
 COUNT(Id) totalNewPolicyCount, Policy_Type__c
 FROM EIS_Policy__c
 WHERE Renewal__c = false
 AND Policy_Date__c >= :dateFrom AND Policy_Date__c <= :dateTo
 GROUP BY Policy_Type__c];

// get the New Policy Totals
newPolicyQueryTotals =
 calculateAggregateTotals(newPolicyAggregateResult,
 'totalNewPolicyAmount',
 'totalNewPolicyCount');
totalNewPolicyRequestAmount =

Building a Reporting System

[198]

 newPolicyQueryTotals.get('totalNewPolicyAmount');
totalNewPolicyRequestCount =
 newPolicyQueryTotals.get('totalNewPolicyCount');

We execute another SOQL query and process its results to get the totals of the new
policies that won:

// get amounts for New Policies
List<AggregateResult> newPolicyAggregateResult =
 [SELECT SUM(Policy_Amount__c) totalNewPolicyAmount,
 COUNT(Id) totalNewPolicyCount, Policy_Type__c
 FROM EIS_Policy__c
 WHERE Renewal__c = false
 AND Policy_Date__c >= :dateFrom AND Policy_Date__c <= :dateTo
 GROUP BY Policy_Type__c];

// get the New Policy Totals
newPolicyQueryTotals = calculateAggregateTotals(newPolicyAggregateRes
ult,
 'totalNewPolicyAmount',
 'totalNewPolicyCount');
totalNewPolicyRequestAmount =
 newPolicyQueryTotals.get('totalNewPolicyAmount');
totalNewPolicyRequestCount =
 newPolicyQueryTotals.get('totalNewPolicyCount');

Our final task in generateNewPolicies() is to get the totals for new policies that
have been quoted:

// get amounts for New Policies Quoted
List<AggregateResult> newPolicyQuotedAggregateResult =
 [SELECT SUM(Policy_Amount__c) totalNewPolicyQuotedAmt,
 COUNT(Id) totalNewPolicyQuotedCount, Policy_Type__c
 FROM EIS_Policy__c
 WHERE Renewal__c = false
 AND Quoted__c = true
 AND Policy_Date__c >= :dateFrom AND Policy_Date__c <= :dateTo
 GROUP BY Policy_Type__c];

// get the New Policy Totals
newPolicyQueryTotals =
 calculateAggregateTotals(newPolicyQuotedAggregateResult,
 'totalNewPolicyQuotedAmt',
 'totalNewPolicyQuotedCount');
 totalNewPolicyRequestQuotedAmount =
 newPolicyQueryTotals.get('totalNewPolicyQuotedAmt');

Chapter 4

[199]

 totalNewPolicyRequestQuotedCount =
 newPolicyQueryTotals.get('totalNewPolicyQuotedCount');

Generating KPIs
The generateSuccessIndicators() method uses the data generated in the
generateRenewals() and generateNewPolicies() methods to calculate
the KPIs related to success and growth rate.

First, we calculate the success rate for the renewal policies:

// Renewals Success Rate
if (totalTerminatingRenewalsPolicyAmount != 0 &&
 totalSuccessfulRenewalsPolicyAmount != 0) {
 renewalSuccessRatePolicyAmount =
 (totalSuccessfulRenewalsPolicyAmount /
 totalTerminatingRenewalsPolicyAmount) * 100;
 renewalSuccessRatePolicyCount =
 (totalSuccessfulRenewalsPolicyCount /
 totalTerminatingRenewalsPolicyCount) * 100;
}

Note that we check for zero values in the totalTerminatingRenewalsPolicyAmount
and totalSuccessfulRenewalsPolicyAmount properties to guard against a division
by zero runtime error.

Next, we calculate the total policies won, which takes into account the number of
successful renewals, unsuccessful renewals, and new policies won:

// Total Policies Won
totalPoliciesWonPolicyAmount =
 totalTerminatingRenewalsPolicyAmount -
 totalUnsuccessfulRenewalsPolicyAmount +
 totalNewPolicyRequestWonAmount;

totalPoliciesWonPolicyCount =
 totalTerminatingRenewalsPolicyCount -
 totalUnsuccessfulRenewalsPolicyCount +
 totalNewPolicyRequestWonCount;

The overall policy growth rate calculates the overall rate in policy growth across
both, renewals and new policies:

// Policy Growth Rate
if (totalTerminatingRenewalsPolicyAmount != 0 &&
 totalPoliciesWonPolicyAmount != 0) {
 policyGrowthRatePolicyAmount =

Building a Reporting System

[200]

 ((totalPoliciesWonPolicyAmount -
 totalTerminatingRenewalsPolicyAmount) /
 totalTerminatingRenewalsPolicyAmount) * 100;

 policyGrowthRatePolicyCount =
 ((totalPoliciesWonPolicyCount -
 totalTerminatingRenewalsPolicyCount) /
 totalTerminatingRenewalsPolicyCount) * 100;
}

The policy-quoted rate calculates the percentage of new policy requests that have
been quoted:

// New Policy Quoted Rate
if (totalNewPolicyRequestQuotedAmount != 0 &&
 totalNewPolicyRequestAmount != 0) {
 newPolicyQuoteRateAmount =
 (totalNewPolicyRequestQuotedAmount /
 totalNewPolicyRequestAmount) * 100;
 newPolicyQuoteRateCount =
 (totalNewPolicyRequestQuotedCount /
 totalNewPolicyRequestCount) * 100;
}

Finally, we calculate the success rate of new policies:

// New Policy Success Rate
if (totalNewPolicyRequestWonAmount !=0 &&
 totalNewPolicyRequestAmount !=0) {
 newPolicySuccessRateAmount =
 (totalNewPolicyRequestWonAmount /
 totalNewPolicyRequestAmount) * 100;

 newPolicySuccessRateCount =
 (totalNewPolicyRequestWonCount /
 totalNewPolicyRequestCount) * 100;
}

Generating the Visualforce charts
The final method in the controller takes care of generating the data for the
Visualforce charts, which will be displayed with the dashboard:

private void generateCharts() {

 // Renewals Pie Chart
 renewalPieData = new List<ChartData>();
 renewalPieData.add(new ChartData('Successful $',

Chapter 4

[201]

 totalSuccessfulRenewalsPolicyAmount));
 renewalPieData.add(new ChartData('Unsuccessful $',
 totalUnsuccessfulRenewalsPolicyAmount));

 // Renewals Success Rate Gauge
 renewalGaugeData = new List<ChartData>();
 renewalGaugeData.add(new ChartData('Success Rate %',
 renewalSuccessRatePolicyAmount));

 // New Policy Success Rate Gauge
 newPolicyGaugeData = new List<ChartData>();
 newPolicyGaugeData.add(new ChartData('Success Rate %',
 newPolicySuccessRateAmount));

 // New Policy Quoted Amount Pie Chart
 newPolicyPieData = new List<ChartData>();
 newPolicyPieData.add(new ChartData('Quoted $',
 totalNewPolicyRequestQuotedAmount));
 newPolicyPieData.add(new ChartData('Not Quoted $',
 totalNewPolicyRequestAmount
 - totalNewPolicyRequestQuotedAmount));

}

Testing the controller
I've included the testEISDashboardController.cls file in the code download for
the chapter. This is the test class that I used to test the EIS Dashboard custom controller
during the development of the application for this chapter.

To create the test class for the controller, perform the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed. Click on New.
3. In the code download for the chapter, locate the

testEISDashboardController.cls file.
4. Copy and paste the contents of testEISDashboardController.cls into

the Apex Code Editor in your Force.com window.
5. Click on Save.

Building a Reporting System

[202]

EIS Dashboard Visualforce page
To create the final version of the EIS Dashboard page, perform the following steps:

1. Navigate to Setup | Develop | Pages.
2. All of the Visualforce pages for your organization will be displayed.
3. Click on EIS Dashboard Page in the Label column.
4. In the code download for the chapter, locate the EIS_Dashboard_Page.page

file in the force_com folder.
5. Clear the default markup in the Visualforce Page Editor.
6. Copy and paste the contents of EIS_Dashboard_Page.page into the

Visualforce Page Editor in your Force.com window.
7. Click on Save.

How the Dashboard Visualforce page works
We begin with the page declaration that introduces a few elements we haven't yet
used in this book:

<apex:page readOnly="true" controller="EISDashboardController"
 docType="html-5.0" tabStyle="EIS_Dashboard__tab"
 sidebar="false" >

The readOnly attribute relaxes the following restrictions for our Visualforce page,
and by extension, the custom controller we are using:

• Allows us to perform unrestricted queries against the Force.com database
• Removes the limit on the number of rows returned for a request (allows up

to a million rows to be returned)

However, the following restrictions are introduced:

• Code cannot perform DML operations
• Calls to future methods are not allowed
• Sending of e-mails from code is not allowed

Fortunately for us, the restrictions introduced by using readOnly have no impact on
our application while we can definitely take advantage of the relaxed restrictions for
queries and number of returned rows.

Setting the docType attribute to html-5.0 allows us to take advantage of new features
introduced as part of the HTML 5 specification (http://www.w3.org/TR/html5/).
In particular, we will be using HTML 5 when we declare some date picker fields that
aren't bound to a Force.com object field.

Chapter 4

[203]

We also declare a few inline CSS styles we will use throughout the page:

<style>
 .centerHeader { text-align:center;}
</style>
<style>
 .centerHeaderBold { text-align:center; font-weight:bold; }
</style>

Declaring the input criteria controls
We start the actual page structure by declaring form and pageBlock for the
Visualforce page. We also declare a pageMessages component to display any errors:

<apex:form >
 <apex:pageBlock title="EIS Dashboard">
 <apex:pageMessages id="messages" ></apex:pageMessages>

The first pageBlock section we declare will hold the Visualforce controls to allow the
user to enter criteria for the dashboard:

<apex:pageBlockSection title="Enter Criteria" columns="1">

Then, we declare the dashboard criteria controls themselves:

<apex:panelGroup >
 <apex:outputLabel value="Date From" />
 <apex:input label="Date From" value="{!dateFrom}"
 type="auto" />
 <apex:outputLabel value="Date To" />
 <apex:input label="Date To" value="{!dateTo}" type="auto" />
 <apex:outputLabel value="Policy Type" />
 <apex:selectList label="Policy Type"
 value="{!selectedPolicyType}" size="1">
 <apex:selectOptions
 value="{!policyTypeOptions}">
 </apex:selectOptions>
 </apex:selectList>
 <apex:commandButton value="Generate"
 action="{!startGenerateEISDashboard}" />
</apex:panelGroup>

Building a Reporting System

[204]

We use apex:panelGroup to present the controls on a single line. The Date From
and Date To controls take advantage of the html-5.0 declaration for the docType
attribute and will actually present a date picker control, because they are linked
to the dateFrom and dateTo date type properties in the controller. The following
screenshot shows a date picker in action using the Google Chrome browser:

The Policy Type picklist is linked to the selectedPolicyType property
in the controller. Therefore, whenever a picklist item is selected, it will be
stored in the controller property. The picklist items themselves are supplied
by the policyTypeOptions controller property. Remember that this is a
List<selectOption> type of property that we initialize in the constructor
for the controller.

With all the controls in place, our dashboard criteria section resembles the
following screenshot:

Displaying the renewal KPIs
Now, we close the current pageBlockSection for the dashboard criteria and start a
new pageBlockSection for the textual dashboard results:

</apex:pageBlockSection>
<apex:pageBlockSection title="EIS Dashboard" columns="2">

Chapter 4

[205]

We have declared a two-column pageBlockSection. The first column will hold
the renewal-related dashboard results and the second column will hold the
new-policy-related dashboard results.

We begin declaring the first column using an apex:panelGrid control, using the
inline CSS styles declared earlier to format the column headings:

<apex:panelGrid columns="3" width="100%"
 columnClasses=",centerHeaderBold,centerHeaderBold">
 <apex:outputText value="" />
 <apex:outputText value="Amount" />
 <apex:outputText value="# Policies" />

The apex:panelGrid control is rendered as an HTML table when the Visualforce page
is generated. Therefore the apex:outputText controls declared above will be rendered
as a table row <tr> element and a series of <td> elements for each table cell.

You might be wondering how apex:panelGrid knows when
to render a new table row. If you look at the apex:panelGrid
definition, you will see that the columns attribute has been set to a
value of 3. This means that after every third control in panelGrid,
Visualforce will render a new table row.

We then render the renewal KPIs required to calculate and display the success rate
for renewals:

<apex:outputText value="Terminating Renewals" />
<apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalTerminatingRenewalsPolicyAmount}" />
</apex:outputText>
<apex:outputText value="{0,number,###,###,##0}">
 <apex:param value="{!totalTerminatingRenewalsPolicyCount}" />
</apex:outputText>
<apex:outputText value="Unsuccessful Renewals" />
<apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalUnsuccessfulRenewalsPolicyAmount}" />
</apex:outputText>
<apex:outputText value="{0,number,###,###,##0}">
 <apex:param value="{!totalUnsuccessfulRenewalsPolicyCount}" />
</apex:outputText>
<apex:outputText value="Successful Renewals" />
<apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalSuccessfulRenewalsPolicyAmount}" />
</apex:outputText>
<apex:outputText value="{0,number,###,###,##0}">

Building a Reporting System

[206]

 <apex:param value="{!totalSuccessfulRenewalsPolicyCount}" />
</apex:outputText>
<apex:outputText value="Renewal Success Rate %" />
<apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!renewalSuccessRatePolicyAmount}" />
</apex:outputText>
<apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!renewalSuccessRatePolicyCount}" />
</apex:outputText>

To make the code easier to read, I have highlighted every second row of the KPI
values. For each row, we are displaying an apex:outputText control containing the
description for the row, an apex:outputText control containing the KPI value for
the policy amount, and finally an apex:outputText control containing the KPI value
for the policy count.

You will notice that the currency values are formatted using a format mask in the
value field for the apex:outputText control, which then passes the value from an
apex:param control that contains the KPI value from the controller we are displaying
and formatting.

We adopt a similar pattern for the remaining renewal KPI rows and add the closing
tag for apex:panelGrid, as shown in the next code. This completes the first column.

 <apex:outputText value="New Policies Won" />
 <apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalNewPolicyRequestAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,###,###,##0}">
 <apex:param value="{!totalNewPolicyRequestCount}" />
 </apex:outputText>
 <apex:outputText value="Total Policies Won" />
 <apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalPoliciesWonPolicyAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,###,###,##0}">
 <apex:param value="{!totalPoliciesWonPolicyCount}" />
 </apex:outputText>
 <apex:outputText value="Policy Growth Rate %" />
 <apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!policyGrowthRatePolicyAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!policyGrowthRatePolicyCount}" />
 </apex:outputText>

</apex:panelGrid>

Chapter 4

[207]

Displaying the new policy KPIs
The second column contains the KPI values for new policies. We declare another
apex:panelGrid and display the values using the same pattern as the first column:

<apex:panelGrid columns="3" width="100%"
 columnClasses=",centerHeaderBold,centerHeaderBold">
 <apex:outputText value="" />
 <apex:outputText value="Amount" />
 <apex:outputText value="# Policies" />
 <apex:outputText value="New Policy Requests Received" />
 <apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalNewPolicyRequestAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,###,###,##0}">
 <apex:param value="{!totalNewPolicyRequestCount}" />
 </apex:outputText>
 <apex:outputText value="New Policy Requests Quoted" />
 <apex:outputText value="{0,number,$###,###,##0}">
 <apex:param value="{!totalNewPolicyRequestQuotedAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,###,###,##0}">
 <apex:param value="{!totalNewPolicyRequestQuotedCount}" />
 </apex:outputText>
 <apex:outputText value="New Policy Requests Quote Rate" />
 <apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!newPolicyQuoteRateAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!newPolicyQuoteRateCount}" />
 </apex:outputText>
 <apex:outputText value="New Policy Success Rate %" />
 <apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!newPolicySuccessRateAmount}" />
 </apex:outputText>
 <apex:outputText value="{0,number,##0.00}">
 <apex:param value="{!newPolicySuccessRateCount}" />
 </apex:outputText>
</apex:panelGrid>

Next, we close the apex:pageBlockSection for the dashboard textual values:

</apex:pageBlockSection>

Building a Reporting System

[208]

When the Visualforce page is first rendered, the EIS Dashboard's pageBlockSection
will resemble the following screenshot:

When an EIS Dashboard is generated, the values will be displayed and formatted as
per the defined format masks, as illustrated in the following screenshot:

Displaying the renewal dashboard charts
In the next apex:pageBlockSection, we will display the renewals-related
Visualforce charts. We begin by declaring the beginning of pageBlockSection:

<apex:pageBlockSection title="Renewals Charts" columns="2">

Next, we declare pageBlockSectionItem to display the pie chart for the share
between successful and unsuccessful renewals:

<apex:pageBlockSectionItem >
 <apex:panelGroup >
 <apex:chart height="350" width="400" data="{!renewalPieData}">
 <apex:pieSeries dataField="data" labelField="name"/>
 <apex:legend position="right"/>
 </apex:chart>
 <apex:outputText value="Share of Renewals" />
 </apex:panelGroup>
</apex:pageBlockSectionItem>

The key elements in the chart declaration are highlighted. The data attribute of the
apex:chart control points to the renewalPieData controller property, which you will
recall is a list of the ChartData elements. Subsequently, the dataField attribute of
the apex:pieSeries control points to the data element in each ChartData instance,
which contains the value for each occurrence of the renewalPieData data series. In a
similar fashion, the labelField attribute holds the label for each occurrence
of renewalPieData.

Chapter 4

[209]

Similarly, we declare another pageBlockSectionItem to display the gauge chart for
the renewal success rate:

<apex:pageBlockSectionItem >
 <apex:chart height="350" width="650"
 animate="true" data="{!renewalGaugeData}">
 <apex:axis type="Gauge" position="gauge"
 title="Renewal Success Rate"
 minimum="0" maximum="100" steps="10"/>
 <apex:gaugeSeries dataField="data" donut="50"
 colorSet="#78c953,#ddd"/>
 </apex:chart>
</apex:pageBlockSectionItem>

The only difference is that we don't require a labelField attribute for each data
series value in a gauge chart.

With both pageBlockSectionItem controls declared, we can close the
pageBlockSection for the renewal charts:

</apex:pageBlockSection>

The following screenshot shows some example renewal charts when an EIS
Dashboard is generated:

Displaying the New Policy Dashboard Charts
The final apex:pageBlockSection we declare will display the new-policy-related
Visualforce charts. We begin by declaring the beginning of the pageBlockSection:

<apex:pageBlockSection title="New Policy Charts" columns="2">

Building a Reporting System

[210]

We then declare pageBlockSectionItem to display a gauge chart for the new policy
success rate:

<apex:pageBlockSectionItem >
 <apex:chart height="350" width="650" animate="true"
 data="{!newPolicyGaugeData}">
 <apex:axis type="Gauge" position="gauge"
 title="New Policy Success Rate"
 minimum="0" maximum="100" steps="10"/>
 <apex:gaugeSeries dataField="data" donut="50"
 colorSet="#78c953,#ddd"/>
 </apex:chart>
</apex:pageBlockSectionItem>

The final pageBlockSectionItem will display a pie chart showing the share of
quoted and unquoted new policies:

<apex:pageBlockSectionItem >
 <apex:panelGroup >
 <apex:chart height="350" width="400"
 data="{!newPolicyPieData}">
 <apex:pieSeries dataField="data" labelField="name"/>
 <apex:legend position="right"/>
 </apex:chart>
 <apex:outputText value="Share of Quoted Policies" />
 </apex:panelGroup>
</apex:pageBlockSectionItem>

The following screenshot shows an example of new policy charts when an EIS
Dashboard is generated:

Chapter 4

[211]

With all of the Visualforce elements in place, we declare all of the remaining closing
tags for the page:

 </apex:pageBlockSection>

 </apex:pageBlock>

 </apex:form>

</apex:page>

Congratulations! The EIS Dashboard reporting system is now complete.

Summary
In this chapter, we have built a dashboard-style reporting system using Visualforce
and Apex. Once again, we started by defining the application requirements and
design and building a base application to serve as a starting point.

We then built out the remaining application functionality in a modular manner,
implementing tests where appropriate. I hope you have noticed this development
pattern used throughout the book. By following this pattern, you will greatly increase
your chances of building high-quality applications that are easier to maintain.

Along the way, we have learnt how to build a Visualforce page and custom
controller that are well suited to querying data (through the use of the readOnly
attribute). We have also used some grouped SOQL queries and generic controller
logic to calculate the dashboard results. Finally, we added some graphical
representations of data using the Visualforce charting feature.

As always, there are a few improvements you can make to the application:

• Implement some Force.com Ajax functionality to generate the dashboard
without requiring a total page refresh every time.

• Experiment with some different types of charts to include in the dashboard. I
suggest you consult the Visualforce Developers Guide for some further examples.

• Attempt to implement an analytical snapshot to populate an object to serve
as the data source for a report.

The Force.com
Mobile SDK Application

The release of the iPhone in 2007 and the iPad in 2010 have fueled a mobile computing
revolution. The market for smartphones and tablets has experienced an explosive
period of growth, to the point that shipments of these devices are beginning to
consistently outstrip the demand for traditional desktop PCs.

There has been a corresponding surge in the amount and breadth of mobile
applications being built by developers around the world. Millions of mobile
applications are available for mobile devices, with more being added every day.

Salesforce has recognized that mobile devices are here to stay and with the release
of Salesforce1, has provided a huge level of support and toolkits for established and
emerging mobile technologies. In Salesforce1, there are three main options available
when developing Force.com mobile applications, as follows:

• HTML5
• Hybrid (iOS and Android, based on Apache Cordova)
• Native (iOS and Android software development kits)

Each option has its strengths and weaknesses, and the future dominant mobile
development platform is yet to be defined. However, it is obvious that the demand for
mobile applications will only increase in the future. If you haven't dipped your feet
into mobile development with Salesforce yet, you better start now!

In this chapter, we will be building a Salesforce Mobile SDK HTML5 application using
the AngularJS JavaScript Framework and Twitter Bootstrap, powered by Node.js
running on Heroku.

The application will display the Salesforce opportunity information, and present
nearby opportunities on a Google map. We have a lot to get through, so let's get started.

The Force.com Mobile SDK Application

[214]

Mobile application overview
To help put the chapter into context, we will take a quick tour of the mobile
application. There is a fair bit of code to write in this chapter, and it is always easier
to build something when we can visualize the end result. By performing the following
steps, we can get an overview of the mobile application:

1. First, we will be presented with a screen to log into Salesforce, as shown in
the following screenshot:

2. Clicking on the Login button will start the Salesforce Open Authorization
(OAuth) authentication process, as shown in the following screenshot:

Chapter 5

[215]

A good introduction to the Salesforce OAuth protocol is provided on
the developer Force website at https://wiki.developerforce.
com/page/Digging_Deeper_into_OAuth_2.0_on_Force.com.

3. After a successful login, we will be asked to confirm the mobile application
permissions, as illustrated in the following screenshot:

The Force.com Mobile SDK Application

[216]

4. After granting the mobile application permissions, we will be presented with
a list of open Salesforce opportunities, as shown in the following screenshot:

5. Tapping on an opportunity will display a screen containing further
information, as displayed in the following screenshot:

Chapter 5

[217]

6. We will also build a page to display the nearby opportunities on a Google
map, as shown in the following screenshot:

The Force.com Mobile SDK Application

[218]

7. Finally, tapping on an opportunity on the map will display an information
window, as shown in the following screenshot:

Building a base AngularJS HTML5
application
Initially, we will be building a basic HTML5 application and deploying it to Heroku.
The aim is to assemble the majority of required technical components for the
application and ensure that they are successfully integrated before diving in to
build the final, fully functional version.

Chapter 5

[219]

In the base application, we will be assembling the following technical components:

• Salesforce Mobile SDK JavaScript libraries
• AngularJS
• Twitter Bootstrap
• jQuery
• Salesforce AngularJS Mobile Pack

Downloading AngularJS
We will be using the AngularJS framework to build the bulk of the application.
AngularJS is a JavaScript Framework, maintained by Google, which is well
suited to build single-page web applications using the Model-View-Controller
(MVC) paradigm.

To download AngularJS, perform the following steps:

1. Navigate your web browser to the AngularJS home page at
http://angularjs.org.

2. Click on the Download button.
3. For the Branch option, select 1.2.x (legacy), as shown in the

following screenshot:

The Force.com Mobile SDK Application

[220]

4. For the Build option, select Zip to download all AngularJS files.
5. Click on the Download button.
6. Expand the .zip file contents to a working folder for the chapter.

The AngularJS version used for this chapter is v1.2.16.

For a great introduction to AngularJS, I highly recommend
that you watch an introductory video by Dan Wahlin at
https://www.youtube.com/watch?v=i9MHigUZKEM.

Downloading Twitter Bootstrap
We will be using Twitter Bootstrap to provide a more attractive interface for our
application (well, much more attractive than my HTML UI skills!). Twitter Bootstrap
is a responsive web design framework developed by Mark Otto and Jacob Thornton
to standardize the user interface development. In August 2011, Twitter released
the framework as an open source project, and it is now used by a multitude of web
developers across the world.

To download Twitter Bootstrap, perform the following steps:

1. Navigate your web browser to the Twitter Bootstrap home page
at http://getbootstrap.com.

2. Click on the Download Bootstrap button.
3. From the available download choices, select Download source, as shown in

the following screenshot:

4. Expand the .zip file contents to a working folder for the chapter. The Twitter
Bootstrap version used for this chapter is v3.1.0.

Chapter 5

[221]

The Getting started section of the getbootstrap.com site contains
a great introduction as well as some downloadable samples that
you can also use to kick start your applications. It is well worth
checking them out.

Downloading jQuery
The Salesforce Mobile SDK we will be using requires jQuery. To download it,
perform the following steps:

1. Navigate your web browser to the jQuery home page at http://jquery.com.
2. Click on the Download jQuery button.
3. Select the link to download the uncompressed, development version of jQuery

2.x (at the time of writing, the version was 2.1.0) to a working directory.

If you haven't used jQuery before, there is a ton of information on
the web. A great place to start is the jQuery Learning Center at
http://learn.jquery.com/.

Downloading the Salesforce AngularJS
Mobile Pack
As described earlier, we will be using AngularJS to build the user interface for the
application. To make accessing Salesforce data easier, we will be using the AngularJS
Mobile Pack for Salesforce.

To download the AngularJS Mobile Pack for Salesforce, perform the following steps:

1. Navigate your web browser to the AngularJS Mobile Pack GitHub repository
at https://github.com/developerforce/MobilePack-AngularJS.

2. Select the Download ZIP button.
3. Expand the .zip file contents to a working folder for the chapter.

The Force.com Mobile SDK Application

[222]

Building a base HTML5 application structure
We will now build the folder structure required for the HTML5 application. In a base
folder for the chapter, set up a folder structure as per the following screenshot:

In the js folder, set up two additional folders as per the following screenshot:

Copying the base HTML5 application files
We will now copy the base Salesforce Mobile SDK, JavaScript Framework, and
Twitter Bootstrap files for the HTML5 application by completing the following steps.

For the rest of the chapter, I will be referring to the MyMobileApp
folder created in the previous section as the application
base folder.

1. Navigate to the folder where you unzipped the Salesforce AngularJS
Mobile Pack.

2. Navigate to the samples/AngularHerokuBootstrapNode folder.
3. Copy the following files to the application base folder: app.js, package.

json, and Procfile.

Chapter 5

[223]

4. Navigate to the samples/AngularHerokuBootstrapNode/public/js
/sdk folder.

5. Copy the following files to the application base/public/js/sdk folder:
angular-force.js, forcetk.mobilesdk.js, forcetk.ui.js,
and smartsync.js.

6. Navigate to the samples/AngularHerokuBootstrapNode/public/js/
vendor folder.

7. Copy the following file to the application base/public/js/vendor folder:
underscore-1.4.4.min.js.

8. Navigate to the folder where you have unzipped Twitter Bootstrap.
9. Navigate to the dist/css folder.
10. Copy the following files to the application base/public/css folder:

bootstrap-theme.css and bootstrap.css.
11. Navigate to the dist/fonts folder.
12. Copy the following files to the application base/public/fonts folder:

glyphicons-halflings-regular.eot, glyphicons-halflings-regular.
svg, glyphicons-halflings-regular.ttf, and glyphicons-halflings-
regular.woff.

13. Navigate to the folder where you unzipped jQuery.
14. Copy the jQuery 2.x file that you have downloaded earlier to the

application base/public/js/vendor folder (at the time of writing,
my filename was jquery-2.1.0.js).

15. Navigate to the folder where you unzipped AngularJS.
16. Copy the following files to the application base/public/js/vendor

folder: angular.js and angular-route.js.

Building a base HTML5 Heroku application
At this point, we have all of the building blocks in place to build our HTML5
application. As we will be using Heroku to host our application, now is a good
time to verify if we can deploy to Heroku successfully.

I'm assuming that you have completed the e-commerce Heroku
application in Chapter 2, The E-Commerce Framework, so I won't
be going into detail about the commands used to initialize a git
repository and deploy an application to Heroku.

The Force.com Mobile SDK Application

[224]

First, we will need a user interface for our base application. Create a file named
index.ejs in the application base/views folder and add the following code:

<!doctype html>

<html>
<head>
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <!-- set 60 pixel padding for top bar -->
 <style>
 body {
 padding-top: 60px;
 }

 .button {
 text-align: center;
 }
 </style>
 <link href="css/bootstrap.css" rel="stylesheet">
 <link href="css/bootstrap-theme.css">
</head>

<body>

 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="navbar-inner">
 <div class="container">
 My Mobile App
 </div>
 </div>
 </div>

 <div class="container">
 <div>
 <h1>Hello from Twitter Bootstrap!</h1>
 <p>This is a Test Mobile Application powered by Heroku and Node.
js</p>
 </div>
 </div>

 <script type="text/javascript">

Chapter 5

[225]

 var configFromEnv = {
 client_id: '<%= client_id %>',
 app_url: '<%= app_url %>'
 };
 console.log('***client_id = ' + configFromEnv.client_id);
 console.log('***app_url = ' + configFromEnv.app_url);

 </script>

<!-- references for jquery and angularjs -->
<script src="js/vendor/jquery-2.1.0.js"></script>
<script src="js/vendor/underscore-1.4.4.min.js"></script>
<script src="js/vendor/angular.js"></script>
<script src="js/vendor/angular-route.js"></script>

<!-- references for the Force.com Libraries -->
<script src="js/sdk/forcetk.mobilesdk.js"></script>
<script src="js/sdk/smartsync.js"></script>
<script src="js/sdk/angular-force.js"></script>
<script src="js/sdk/forcetk.ui.js"></script>

</body>
</html>

You may need to adjust the version number of some script libraries if
they are different to the code listing.

Now, we will need to initialize a local git repository for the application. Open
a terminal window and issue the following commands from the application
base folder:

$ git init

$ git add -A

$ git commit -m 'Base HTML5 application'

Now, you will need to create a new Heroku application by using the
following commands:

$ heroku login

$ heroku apps:create

The Force.com Mobile SDK Application

[226]

Make a note of your Heroku application's name and ensure that
you substitute your Heroku application's name when required.

Configuring a remote access application
To be able to access Force.com data from our mobile application, we need
to configure a remote access application in Force.com. This will give us the
authentication and authorization information, which we need to be able to configure
our mobile application. To configure the remote access application, perform the
following steps:

1. Navigate to Setup | Create | Apps.
2. Scroll down to the Connected Apps section and click on New.
3. Enter My Mobile App for the Connected App Name field.
4. The API Name field will be autopopulated.
5. Enter your e-mail address in the Contact Email field.
6. Enter Mobile app to access Salesforce.com data for the

Description field.
7. Select the Enable OAuth Settings checkbox. A new set of fields will

be displayed.
8. Enter https://<<your Heroku App Name>>/#/callback for the Callback

URL field. For example, https://limitless-sierra-9138.herokuapp.
com/#/callback.

9. From the Available OAuth Scopes list, move all the options to the Selected
OAuth Scopes list.

10. Click on Save.

The key information that you will need from this screen to connect the mobile
application to Force.com is the consumer key. This is the key that will connect your
mobile application to the Salesforce remote access application, as shown in the
following screenshot:

Chapter 5

[227]

Deploying the HTML5 base application to
Heroku
Now, we are ready to deploy the HTML5 base application to Heroku. To do this,
complete the following steps:

1. Set the Heroku environment variables for the HTML5 application client ID
and URL by issuing the following commands:
$ heroku config:add app_url="https://[your Heroku Application
URL]"

$ heroku config:add client_id="[your Connected Application
Consumer Key]"

for example:

$ heroku config:add app_url="https://limitless-sierra-9138.
herokuapp.com"

$ heroku config:add client_id="3MVG9A....."

The Force.com Mobile SDK Application

[228]

Make sure that when copying your consumer key from the browser,
you don't inadvertently include a newline character. If you start
getting errors in your browser console regarding illegal or unexpected
characters, this is likely the root cause for those errors.

2. Issue the following command to deploy the application to Heroku:
$ git push heroku master

3. Open the application in your browser by issuing the following command:
$ heroku open

4. You can also use a mobile device to navigate to the application and view the
application, as shown in the following screenshot:

Congratulations! We now have a solid base to start building our final
HTML5 application.

How the base application works
Even though the application is only in its basic form, it is worth examining
how it works, especially if you are new to Node.js and are wondering how
the page is rendered.

Chapter 5

[229]

The key is the three files that we copied to the application base folder earlier.

The package.json file tells Heroku which Node.js modules to load when we deploy
the application to Heroku. In this case, the key modules that we are interested in are
express, which provides web server support; and ejs, which provides a rendering
engine for our web pages.

The Procfile mechanism is used by Heroku to start the application and consists of
the following one line of code:

web: node app.js

This instructs Heroku to start up Node.js and use app.js as the startup script.

The app.js file is the bootstrap script for the Node.js application. It sets up the web
server environment using the express module, and initializes the ejs module as
the default page renderer. It then extracts the Heroku configuration variables for
client_id and app_url so that they can be made available to our index.ejs page.
Finally, the script sets up a route for the base application URL to render index.ejs,
and passes through the app_url and client_id information.

The index.ejs page is a fairly straightforward Twitter Bootstrap HTML page,
except for the following script block:

<script type="text/javascript">

 var configFromEnv = {
 client_id: '<%= client_id %>',
 app_url: '<%= app_url %>'
 };
 console.log('***client_id = ' + configFromEnv.client_id);
 console.log('***app_url = ' + configFromEnv.app_url);

</script>

The highlighted lines of code show where we are extracting the client_id and
app_url parameters provided by app.js and making them available to our
application through ejs substitution. These variables will be required when
authenticating against Salesforce using OAuth in our final application.

The Force.com Mobile SDK Application

[230]

Building the final AngularJS HTML5
application
Now that we have proven that our technical environment is functioning correctly,
we can proceed to build the final, fully functional version of the application.

We will be adding the following features:

• Ability to authenticate and log in to Salesforce
• Adding a page to display a list of opportunities
• Adding a detail page to display information about a single opportunity
• Adding a page to display a Google map showing opportunities within a 5

mile radius of your current location

I am assuming that you have at least a basic understanding of HTML5,
JavaScript, AngularJS, jQuery, the Google Maps Geocoding API,
and the Google Maps v3 API. If any of these areas are unfamiliar,
I recommend that you take some time to familiarize yourself with
the technology before attempting to build the final application. For
information on AngularJS and jQuery learning resources, check
their respective download sections in this chapter. For HTML5 and
JavaScript tutorials, check out http://www.w3schools.com/. For
learning resources for the Google Maps API, check out https://
developers.google.com/maps/documentation/javascript/,
and for the Google Geocoding API check out https://developers.
google.com/maps/documentation/geocoding/.

Finalizing the application folder structure
To finalize the application folder structure, create the following folders: application
base/public/js/controller, application base/public/js/model,
application base/public/js/service, application base/public/partials,
and application base/public/partials/opportunity.

Finalizing the application landing page
The first step in finalizing the application logic is to enhance application base/
views/index.ejs. We will add some AngularJS elements; import the required
JavaScript files; and add some structural page elements for the AngularJS application,
logout, and navigation.

Chapter 5

[231]

The inline CSS styles have been modified where necessary to ensure that all <div>
containers use 100 percent of the available height. This ensures that our Google map
will be rendered correctly. This process can be done using the following code:

<!doctype html>

<html>
<head>
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <!-- set 60 pixel padding for top bar -->
 <style>
 html { height: 100%; }
 body {
 padding-top: 60px;
 height: 100%;
 }

 .button {
 text-align: center;
 }
 #map-canvas { height: 100%; }
 </style>
 <link href="css/bootstrap.css" rel="stylesheet">
 <link href="css/bootstrap-theme.css">

</head>

The ng-app directive declares our AngularJS application and informs the framework
that we will be using an AngularJS module named MyMobileApp to provide the logic
for the application.

The new navbar items provide links for the opportunity list, opportunity map, and
application logout respectively. We have used the glyph icons of Twitter Bootstrap
for the opportunity list and map links, with a button for the application logout.
The ng-show='isLoggedIn()' directive ensures that these elements will only be
displayed when a user is successfully authenticated against Salesforce. This process
can be done by using the following code:

<!-- app reference for AngularJS -->
<body ng-app="MyMobileApp">

 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="navbar-inner">
 <div class="container">

The Force.com Mobile SDK Application

[232]

 My Mobile App
 <!-- Set up Logout Link -->
 <div ng-show='isLoggedIn()' class="pull-right">
 <span class="glyphicon glyphicon-
list">
 </
span>
 <button class="btn btn-xs btn-primary" ng-
click="logout()">Logout</button>
 </div>
 </div>
 </div>
 </div>

The <div> element will be the main container for the application itself immediately
after the navbar item. The ng-view directive instructs AngularJS to manage the
content for the application. In effect, we have defined a Single Page Application
(SPA), where AngularJS will manage the application data (model), display the
correct HTML page fragments (view), and manage the application business logic
(controller). Do you notice a familiar pattern here? The following code presents the
<div> element immediately after the navbar item, which will be the main container
for the application itself:

 <div class="container-fluid" style="height: 100%">
 <!-- Display Container for AngularJS application -->

 <div ng-view style="height: 100%"></div>
 </div>

</body>

<script type="text/javascript">

var configFromEnv = {
 client_id: '<%= client_id %>',
 app_url: '<%= app_url %>'
};
console.log('***client_id = ' + configFromEnv.client_id);
console.log('***app_url = ' + configFromEnv.app_url);

</script>

<!-- references for jquery and angularjs -->
<script src="js/vendor/jquery-2.1.0.js"></script>
<script src="js/vendor/underscore-1.4.4.min.js"></script>

Chapter 5

[233]

<script src="js/vendor/angular.js"></script>
<script src="js/vendor/angular-route.js"></script>

<!-- references for the Force.com Libraries -->
<script src="js/sdk/forcetk.mobilesdk.js"></script>
<script src="js/sdk/smartsync.js"></script>
<script src="js/sdk/angular-force.js"></script>
<script src="js/sdk/forcetk.ui.js"></script>

The final script declarations in the following code import the Google Maps v3 API
and the AngularJS code that we will be creating as we work through the chapter:

<!-- Google Maps API -->
<script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js?key=[Your API key
here]&sensor=false">
</script>

<!-- AngularJS files -->
<script src="js/MyMobileApp.js"></script>
<script src="js/model/Opportunity.js"></script>
<script src="js/service/ReflectionService.js"></script>
<script src="js/service/LocationService.js"></script>
<script src="js/controller/HomeController.js"></script>
<script src="js/controller/LoginController.js"></script>
<script src="js/controller/LogoutController.js"></script>
<script src="js/controller/CallbackController.js"></script>
<script src="js/controller/OppListController.js"></script>
<script src="js/controller/OppViewController.js"></script>
<script src="js/controller/MapViewController.js"></script>

</html>

For your convenience, I have highlighted the differences in the
base application version of the file.

Initializing the AngularJS application
In the application base/public/js folder, create a file named MyMobileApp.js
and enter the code from this section.

The Force.com Mobile SDK Application

[234]

The following line in application base/views/index.ejs initializes the
AngularJS application:

<!-- app reference for AngularJS -->
<body ng-app="MyMobileApp">

Correspondingly, in MyMobileApp.js, we bootstrap the application by declaring
the app variable, which will be the MyMobileApp application module for
our application (as defined in the <body> tag). In AngularJS, an application
module is a container for application logic artifacts such as controllers, services,
and model-related code. We also use the context dependency injection to
inject the dependencies that the application requires to run. In this instance,
AngularForce, AngularForceObjectFactory, and ngRoute. AngularForce and
AngularForceObjectFactory are AngularJS modules, which are defined in the
Salesforce AngularJS Mobile Pack and provide a wrapper around the lower-level
Salesforce Mobile SDK JavaScript libraries. This makes authenticating against
Salesforce and retrieving Salesforce data a lot easier than if we had to code against
the Salesforce Mobile SDK libraries directly. The ngRoute module provides support
that will enable us to define the RESTful AngularJS routes for our application, as
mentioned in the following code:

/* This file initializes the AngularJS app
 and includes the necessary Force.com
 SDK Libraries
*/

// initialize base AngularJS module
var app = angular.module('MyMobileApp', ['AngularForce',
'AngularForceObjectFactory', 'ngRoute']);

We then proceed to define the SFConfig object, which is a key component of our
application. This object will hold the OAuth session token and authentication
information required by the application to retrieve data from Salesforce. To initialize
SFConfig, a call is made to getSalesforceConfig(), which checks that we have
defined the required environment configuration variables for the Heroku application
URL and the Salesforce connected application consumer key. If the variables are
defined, we store them in the SFConfig object. Finally, we populate SFConfig with
the URL required to authenticate against Salesforce. The object is then stored as an
application constant that can be used throughout the application. This is done with
the following code:

// get Salesforce Configuration
var SFConfig = getSalesforceConfig();

// set maximum list size

Chapter 5

[235]

SFConfig.maxListSize = 25;

// define a constant for the AngularJS app
app.constant('SFConfig', SFConfig);

The next block of code defines the RESTful routing for our application. For each
application route, we define the route pattern (for example, '/'), the AngularJS
controller that will be used to handle the request (for example, 'HomeController'),
and the HTML page fragment that will be displayed in the application container for
the route (for example, 'partials/home.html'):

/***************************
 Configure AngularJS routes
****************************/
app.config(function ($routeProvider) {
$routeProvider
 .when('/', {controller: 'HomeController', templateUrl:
 'partials/home.html'})
 .when('/login', {controller: 'LoginController', templateUrl:
 'partials/login.html'})
 .when('/logout', {controller: 'LogoutController',
 templateUrl: 'partials/logout.html'})
 .when('/callback', {controller: 'CallbackController',
 templateUrl: 'partials/callback.html'})
 .when('/opportunities', {controller: 'OppListController',
 templateUrl: 'partials/opportunity/list.html'})
 .when('/view/:oppId', {controller: 'OppViewController',
 templateUrl: 'partials/opportunity/view.html'})
 .when('/map', {controller: 'MapViewController', templateUrl:
 'partials/map.html'})
 .otherwise({redirectTo: '/'});
});

The initApp() method is called when the application user is successfully
authenticated against Salesforce (as described later in the The Salesforce authentication
components section). This method takes the information returned from the
authentication process and uses it to initialize the Salesforce Mobile SDK Force
toolkit. Once the Force.init method is called, the SFConfig object has all the
information it needs to connect to Salesforce and retrieve data. This process is
done with the following code:

/***
 initApp - called when authentication successful
***/
function initApp(options, forcetkClient) {
 // initialize options object to hold Salesforce

The Force.com Mobile SDK Application

[236]

 // access and configuration information
 options = options || {};
 options.loginUrl = SFConfig.sfLoginURL;
 options.clientId = SFConfig.consumerKey;
 options.apiVersion = 'v29.0';
 options.userAgent = 'SalesforceMobileUI/alpha';
 options.proxyUrl = options.proxyUrl || SFConfig.proxyUrl;

 // initialize forcetk toolkit
 Force.init(options, options.apiVersion, forcetkClient);

}

/************************************
 Salesforce Configuration Functions
************************************/

function getSalesforceConfig() {
 // first check if environment configuration variables are set
 if (!configFromEnv || configFromEnv.client_id == "" ||
 configFromEnv.client_id == "undefined" ||
 configFromEnv.app_url == "" ||
 configFromEnv.app_url == "undefined") {
 throw 'Environment variable client_id and/or app_url is
missing. Please set them before you start the app';
 }
 // return config information for login URL, OAuth information and
proxy URL
 return {
 sfLoginURL: 'https://login.salesforce.com/',
 consumerKey: configFromEnv.client_id,
 oAuthCallbackURL: removeTrailingSlash(configFromEnv.app_url) +
'/#/callback',
 proxyUrl: removeTrailingSlash(configFromEnv.app_url) + '/proxy/'
 }
}

//Helper
function removeTrailingSlash(url) {
 return url.replace(/\/$/, "");
}

Chapter 5

[237]

Finally, by using the following code, we declare two functions that will be available
globally to the application. The isLoggedIn() function will determine whether
a user is successfully logged in, and logout() will be used to log a user out of
Salesforce, and the application itself:

/*******************************
 Authentication Functions to
 check if user logged in, and
 log user out
*******************************/

// return authentication status
app.run(function (AngularForce, $rootScope) {
 $rootScope.isLoggedIn = function() {
 return AngularForce.authenticated();
 }
});

// logout user
app.run(function (AngularForce, $rootScope, $location) {
 $rootScope.logout = function() {
 AngularForce.logout();
 // Now go to logout page
 $location.path('/logout');
 }
});

The Salesforce authentication components
We will now build the AngularJS application components necessary to execute the
OAuth process that will enable the application users to authenticate against Salesforce.

Home controller
In the application base/public/js/controller folder, create a file named
HomeController.js and enter the following code:

// AngularJS Controller for Home Page
app.controller('HomeController', function($scope, AngularForce,
$location, $routeParams) {
 // check if user authenticated
 var isAuthenticated = AngularForce.authenticated();

 if (AngularForce.refreshToken)

The Force.com Mobile SDK Application

[238]

 {
 // try to relogin using refresh token
 AngularForce.login(function() {
 $location.path('/opportunities');
 });
 } else {
 $location.path('/login');
 }

});

In the application base/public/partials folder, create a file named home.html.
Leave this file blank as we will not be displaying any content for this HTML
page fragment.

How the home controller works
The home controller commences by calling the AngularForce.refreshToken()
method to check for a refresh token from a successful login. If a refresh token is
found, the AngularForce.login() method is called to relogin to Salesforce and
refresh the session token. Once the login is completed successfully, the application
presents a list of opportunities using the /opportunities AngularJS route.

If the user isn't logged in, they are redirected to the /login AngularJS route to allow
them to authenticate against Salesforce using the OAuth process.

The login controller
In the application base/public/js/controller folder, create a file named
LoginController.js and enter the following code:

app.controller('LoginController', function($scope, AngularForce,
$location) {

 // check if authenticated
 if (AngularForce.authenticated()) {
 return $location.path('/opportunities');
 }

 // login to Salesforce
 $scope.login = function() {
 AngularForce.login();
 };

});

Chapter 5

[239]

In the application base/public/partials folder, create a file named login.html
and enter the following code:

<div class="span4 well">
 <p>Please log into Salesforce.</p>
 <p style='text-align: center;padding-bottom: 30px;'>
 <button class="btn btn-large btn-primary" ng-
click="login()">Login</button>
 </p>

</div>

How the login controller works
The login controller first checks if the user is logged in by calling the
AngularForce.authenticated() method. If the user is logged in,
they are redirected to the /opportunities AngularJS route.

If the user isn't logged in, the login.html page is displayed. The Login button
is linked to the AngularJS $scope.login() event handler. When the button is
clicked, the AngularForce.login() method is called to start the Salesforce OAuth
authentication process.

The callback controller
In the application base/public/js/controller folder, create a file named
CallbackController.js and enter the following code:

app.controller('CallbackController', function($scope, AngularForce,
$location) {
 AngularForce.oauthCallback(document.location.href);

 // set hash to empty before setting path to /opportunities
 $location.hash('');
 $location.path('/opportunities');

});

In the application base/public/partials folder, create a file named callback.
html and enter the following code:

<p>You are successfully logged into Salesforce.</p>

The Force.com Mobile SDK Application

[240]

How the callback controller works
The callback controller is executed when the /callback route is invoked after a
user is successfully authenticated against Salesforce (as defined in our Salesforce
connected application). The authentication information (session token and Salesforce
REST API endpoint) is included as parameters to the callback URL. The controller
calls the AngularForce.oauthCallback() method and passes it in the URL
information. Behind the scenes, this invokes the initApp() method defined in
MyMobileApp.js.

The method then proceeds to remove the authentication information from the URL
(by removing the hash) and redirect the user to the opportunities list page.

The logout controller
In the application base/public/js/controller folder, create a file named
LogoutController.js and enter the following code:

app.controller('LogoutController', function($scope, AngularForce,
$location, ReflectionService) {

 $location.path('/');

});

In the application base/public/partials folder, create a file named logout.html
and enter the following code:

<p>You are now logged out of the application.</p>

How the logout controller works
When the user clicks on the Logout button in the application, the logout() method
defined in MyMobileApp.js is invoked. This logs the users out of the application and
redirects them to the /logout route. At this point, the message defined in logout.
html is displayed to the users and they are redirected to the application's home page.

The opportunity display components
We will now build the application components necessary to retrieve and display the
Salesforce opportunities in our mobile application.

The opportunity factory
The opportunity AngularJS factory contains the following three methods that
provide opportunities to the application:

Chapter 5

[241]

Method Description
getOpportunityList This method returns a list of open opportunities
getOpportunity This method returns information about a single

opportunity
getOpportunitiesWithinRadius This method returns opportunities within a 5

mile radius of the user's current location

Each method follows the AngularJS promise pattern. This is a pattern used to define
methods that return results asynchronously. First, we declare the deferred variable
to set up the AngularJS promise context. The method initially returns a deferred.
promise object to the calling method as a placeholder for the results when they
arrive. When the results are ready, they are returned to the calling method through
the deferred.resolve() method. If an error occurs, the deferred.reject()
method is used to return the error details to the calling method. We will see how the
calling method handles the AngularJS promise when we examine the The opportunity
list controller section.

In the application base/public/js/model folder, create a file named
Opportunity.js and enter the following code from this section:

app.factory('Opportunity', function($q, AngularForceObjectFactory,
ReflectionService) {

 var factory = {};

 // get a list of opportunities
 factory.getOpportunityList = function() {

 var deferred = $q.defer();

The objQuery object is initialized through JSON and defines the Salesforce object
to be queried, the fields to be returned, the Where filtering clause, the field(s) to sort
by, and the maximum number of rows to be returned. This is done by using the
following code:

 // Configure Opportunity Object Criteria
 var objQuery = {
 type: 'Opportunity',
 fields: ['Id', 'Name', 'Account.Name', 'StageName', 'Amount',
 'CloseDate'],
 where: "StageName <> 'Closed Won' AND StageName <> 'Closed
 Lost'",
 orderBy: 'Id',
 limit: 20
 };

The Force.com Mobile SDK Application

[242]

The Opportunity object is defined next, passing in the objQuery object into the
constructor by using the following code. The query() method is then called. When
the query results are returned, the success function returns the results to the calling
method. If an error occurs, the error information is passed back to the calling method:

 var Opportunity = AngularForceObjectFactory(objQuery);

 Opportunity.query(function(data) {
 var opportunities = data.records;
 deferred.resolve(opportunities);
 }, function(error) {
 deferred.reject(error);

 });

 // return promise to controller to deliver deferred results
 return deferred.promise;

 };

The getOpportunity() method uses a similar pattern. The only difference is the
Where clause, which uses the id parameter to extract a single opportunity. This is
explained in the following code:

 // get a single opportunity
 factory.getOpportunity = function(id) {

 var deferred = $q.defer();

 // Configure Opportunity Object Criteria
 var objQuery = {
 type: 'Opportunity',
 fields: ['Id', 'Name', 'Account.Name', 'Account.Phone',
 'StageName', 'Amount', 'CloseDate'],
 where: "Id = '" + id + "'",
 orderBy: 'Id',
 limit: 20
 };

 var Opportunity = AngularForceObjectFactory(objQuery);

 Opportunity.query(function(data) {
 var opportunity = data.records;
 deferred.resolve(opportunity);

Chapter 5

[243]

 }, function(error) {
 deferred.reject(error);

 });

 // return promise to controller to deliver deferred results
 return deferred.promise;
 };

The following code from the getOpportunitiesWithinRadius() method is of
particular interest, which uses a geolocation SOQL query to find opportunities within
the 5 mile radius. We will see how the location-related data is populated in Salesforce
when we will examine the The opportunity map components section:

 // get a list of opportunities within a given map radius
 factory.getOpportunitiesWithinRadius = function(currLat, currLng) {

 var deferred = $q.defer();

 // Configure Opportunity Object Criteria
 var objQuery = {
 type: 'Opportunity',
 fields: ['Id', 'Name', 'Account.Name', 'Account.Phone',
 'Account.BillingStreet',
 'Account.BillingCity', 'Account.BillingState',
 'Account.BillingCountry',
 'Account.BillingPostalCode',
 'Account.Location__Latitude__s',
 'Account.Location__Longitude__s'],
 where: "DISTANCE (Account.Location__c, GEOLOCATION(" +
 currLat +
 "," + currLng + "),'mi') < 5",
 orderBy: 'Id',
 limit: 20
 };

 var Opportunity = AngularForceObjectFactory(objQuery);

 Opportunity.query(function(data) {
 var opportunity = data.records;
 deferred.resolve(opportunity);
 }, function(error) {
 deferred.reject(error);
 });

The Force.com Mobile SDK Application

[244]

 // return promise to controller to deliver deferred results
 return deferred.promise;
 };

 return factory;

});

The opportunity list controller
In the application base/public/js/controller folder, create a file named
OppListController.js and enter the following code:

// AngularJS Controller for Opportunity List
'use-strict';
app.controller('OppListController', function($scope, $rootScope,
AngularForce, $location, Opportunity, ReflectionService) {

 // set flag to display progress message
 $scope.isWorking = true;

 if ($rootScope.isLoggedIn()) {

 Opportunity.getOpportunityList().then(function(data) {
 // model for view
 $scope.isWorking = false;
 $scope.opportunityList = data;

 }, function(data) {
 console.log('***OppListController.js - Error Retrieving
 Opportunity List...');
 console.log('readyState = ' + data.readyState);
 console.log('responseText = ' + data.responseText);
 console.log('responseJSON = ' + data.responseJSON);
 console.log('status = ' + data.status);
 console.log('statusText = ' + data.statusText);

 });

 } else {
 // re-direct to login page
 $location.path('/');
 }

});

Chapter 5

[245]

In the application base/public/partials/opportunity folder, create a file
named list.html and enter the following code:

<div ng-show='isWorking'>
 <p>Retrieving Opportunities...</p>
</div>

<!-- responsive table (class="hidden-xs") -->
<div ng-show='!isWorking'>
 <table width="80%" class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th class="hidden-xs">Account</th>
 <th>Amount</th>
 <th class="hidden-xs">Stage</th>
 <th>Closes</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat='opportunity in opportunityList'>
 <td>{{opportunity.Name}}</
a></td>
 <td class="hidden-xs">{{opportunity.Account.Name}}</td>
 <td>{{opportunity.Amount | currency:"USD$"}}</td>
 <td class="hidden-xs">{{opportunity.StageName}}</td>
 <td>{{opportunity.CloseDate | date:"shortDate"}}</td>
 </tr>
 </tbody>
 </table>
</div>

How the opportunity list controller works
The opportunity list controller first ensures that the user is logged in. If so, the
Opportunity.getOpportunityList() method is called. This illustrates the other
half of the AngularJS promise pattern. The block of code contained in the .then()
block is executed after the query results or error information is returned by the
deferred.resolve() or deferred.reject() methods in the opportunity factory
method. In the case of a successful query, the results are injected into the current
AngularJS scope so that they can be accessed by the AngularJS view.

If the user isn't logged in, they are redirected back to the application home page.

The view consists of an HTML table, augmented with some Twitter Bootstrap
responsive CSS classes and AngularJS directives. The hidden-xs class causes
bootstrap to automatically hide columns on smaller displays.

The Force.com Mobile SDK Application

[246]

The ng-repeat directive is then used to render a table row for each opportunity
that is returned. The opportunity values are inserted into HTML using AngularJS
substitution. AngularJS filters are applied to the opportunity amount and close date
to format them as US dollars and a short date, respectively.

The opportunity detail view controller
In the application base/public/js/controller folder, create a file named
OppViewController.js and enter the following code:

// AngularJS Controller for Opportunity View
'use-strict';
app.controller('OppViewController', function($scope, $rootScope,
AngularForce, $routeParams, $location, Opportunity, ReflectionService)
{

 // set flag to display progress message
 $scope.isWorking = true;

 if ($rootScope.isLoggedIn()) {
 Opportunity.getOpportunity($routeParams.oppId).then(function(data)
{
 // model for view
 $scope.isWorking = false;
 $scope.opportunity = data[0];
 }, function(data) {
 console.log('***OppListController.js - Error Retrieving
 Opportunity...');
 console.log('readyState = ' + data.readyState);
 console.log('responseText = ' + data.responseText);
 console.log('responseJSON = ' + data.responseJSON);
 console.log('status = ' + data.status);
 console.log('statusText = ' + data.statusText);

 });

 } else {
 $location.path('/');
 }

});

Chapter 5

[247]

In the application base/public/partials/opportunity folder, create a file
named view.html and enter the following code:

<style>

a[href^="tel:"]:before {
 content: "\260E";
 display: block;
 margin-right: 0.5em;
}
</style>
<div ng-show="isWorking">
 <p>Retrieving Opportunity...</p>
</div>

<div ng-show="!isWorking">
 <h3>{{opportunity.Name}}</h3>
 <p>for {{opportunity.Account.Name}}</p>
 <p>{{opportunity.
Account.Phone}}</p>
 <p>Value: {{opportunity.Amount | currency:"USD$"}}</p>
 <p>Stage: {{opportunity.StageName}}</p>
 <p>Closes: {{opportunity.CloseDate | date:"shortDate"}}</p>
 Back to List
</div>

How the opportunity detail view controller works
The opportunity detail controller follows the same pattern as the opportunity list
controller. The Opportunity.getOpportunity() method is called, passing in the
opportunity id received in the route.

The view uses AngularJS substitution to inject the opportunity values into HTML.
Again, filters are applied to the opportunity amount and close date. Note the inline
CSS style, which is used to display a Unicode telephone character in the HTML output.

The opportunity map components
We will now build the application components necessary to retrieve and display
Salesforce opportunities on a Google map.

The Force.com Mobile SDK Application

[248]

Adding a geolocation trigger to the Account object
We will need to add a trigger to the Account object to geolocate the account addresses.
This will allow us to display the location of an opportunity for an account on a Google
map in our mobile application.

The geolocation trigger functionality that is built in this section
was inspired by a blog article located at http://blog.
internetcreations.com/2012/09/creating-a-geolocation-
trigger-in-salesforce-winter-13/.

First, you need to obtain an API key for Google Maps and a geolocation API by using
the following steps:

1. Visit https://code.google.com/apis/console and sign in with your
Google account (assuming that you already have one).

2. Click on the Create project… button.
3. Enter My Mobile Project in the Project name field.
4. Accept the default value for the Project ID field.
5. Click on Create.
6. Click on APIs & auth from the left-hand side navigation bar.
7. Set the Geocoding API field to ON, as shown in the following screenshot:

8. Also, set Google Maps Javascript API v3 to ON, as shown in the
following screenshot:

9. Select Credentials and click on CREATE NEW KEY.
10. Click on the Browser Key button.
11. Click on Create new Server key… to generate the key. Make a note of the

API key, as shown in the following screenshot:

Chapter 5

[249]

Now, we need to add a Salesforce remote site for the Google Maps API by
performing the following steps:

1. Navigate to Setup | Security Controls | Remote Site Settings.
2. Click on the New Remote Site button.
3. Enter Google_Maps_API in the Remote Site Name field.
4. Enter https://maps.googleapis.com for the Remote Site URL field.
5. Ensure that the Active checkbox is checked
6. Click on Save.
7. Your Remote Site Detail screen should resemble the following screenshot:

Next, we need to add a Location field to the Account object:

1. Navigate to Setup | Customize | Accounts | Fields.
2. Click on the New button in the Custom Fields & Relationships section.
3. Select Geolocation for the Data Type field. Click on Next.
4. Enter Location for Field Label. The Field Name should also default

to Location.

The Force.com Mobile SDK Application

[250]

5. Select Decimal for the Latitude and Longitude Display Notation section.
6. Enter 7 for the Decimal Places field. Click on Next.
7. Click on Next to accept the default settings for Field-Level Security.
8. Click on Save to add the field to all account-related page layouts.

Next, we need an Apex utility class to geocode an address using the Google
Geocoding API by completing the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed.

Click on New.
3. In the code download for the chapter, locate the AccountGeocodeAddress.

cls file in the force_com folder.
4. Copy and paste the contents of AccountGeocodeAddress.cls into the Apex

code editor in your Force.com window.
5. Insert your Google API key in the following line of code:

String geocodingKey = '[Your API Key here]';

6. Click on Save.

Finally, we need to implement an Apex trigger class to geocode the billing address
when an account is added or updated. For this, perform the following steps:

1. Navigate to Setup | Develop | Apex Triggers.
2. All of the Apex triggers for your organization will be displayed. Click on

Developer Console.
3. Navigate to File | New | Apex Trigger in the developer console.
4. Enter geocodeAccountAddress in the Name field.
5. Select Account in the sObject drop-down list and click on Submit, as shown

in the following screenshot:

Chapter 5

[251]

6. In the code download for the chapter, locate the geocodeAccountAddress.
trigger file in the force_com folder.

7. Copy and paste the contents of geocodeAccountAddress.trigger into the
Apex code editor in your developer console window. Go to File | Save.

How the geolocation trigger works
We begin by declaring the Apex class that will perform the geocoding by using the
following code:

public with sharing class AccountGeocodeAddress {

A static variable is then declared to flag whether the geocoding has already been
performed in the current execution context by using the following code:

private static Boolean geocodingCalled = false;

A problem can potentially occur when you geocode an address as a result of an
update to an account. For example, account A is updated, which invokes the after
update trigger, which in turn invokes a future method to perform the geocoding
operation. The geocoding operation within the future method then updates account
A by adding/updating the Location field coordinates. This in turn calls the after
update trigger on account A again, which invokes another future method to perform
the geocoding operation. This will trigger an error because you cannot invoke a
future method from within a future method.

The Force.com Mobile SDK Application

[252]

The following code prevents this from happening:

public static void DoAddressGeocode(id accountId) {
 if (geocodingCalled || System.isFuture()) {
 System.debug(LoggingLevel.WARN, '***Address Geocoding Future
Method Already Called - Aborting...');
 return;
 }

 // if not being called from future context, geocode the address
 geocodingCalled = true;
 geocodeAddress(accountId);
}

Then, we will declare a future method using the following code that will accept an
account ID as a parameter and geocode the billing address against the Google API:

// we need a future method to call Google Geocoding API
@future (callout=true)
static private void geocodeAddress(id accountId) {

We then declare some variables by using the following code to hold our Google
Maps API key and the Account object we are geocoding:

// Key for Google Maps Geocoding API
String geocodingKey = '[Your API Key here]';

// get the passed in address
Account geoAccount = [SELECT BillingStreet, BillingCity, BillingState,
BillingCountry, BillingPostalCode
 FROM Account
 WHERE id = :accountId];

A quick check is then performed by using the following code to ensure that we have
enough information to geocode the address:

// check that we have enough information to geocode the address
if ((geoAccount.BillingStreet == null) ||
 (geoAccount.BillingCity == null)) {
 System.debug(LoggingLevel.WARN, 'Insufficient Data to Geocode
Address');
 return;
}

The billing address for the Account object is then inspected to build a string
representation of the address by using the following code:

// create a string for the address to pass to Google Geocoding API
String geoAddress = '';

Chapter 5

[253]

if (geoAccount.BillingStreet != null)
 geoAddress += geoAccount.BillingStreet + ', ';
if (geoAccount.BillingCity != null)
 geoAddress += geoAccount.BillingCity + ', ';
if (geoAccount.BillingState != null)
 geoAddress += geoAccount.BillingState + ', ';
if (geoAccount.BillingCountry != null)
 geoAddress += geoAccount.BillingCountry + ', ';
if (geoAccount.BillingPostalCode != null)
 geoAddress += geoAccount.BillingPostalCode;

The address string is then URL encoded by using the following code so that it can be
included in the call to the Google Geocoding API:

// encode the string so we can pass it as part of URL
geoAddress = EncodingUtil.urlEncode(geoAddress, 'UTF-8');

We then declare an instance of the Apex Http class to initiate the HTTP request
and response. We also declare and build an instance of the HttpRequest class to
represent the GET request to the Google Maps API by using the following code:

Http http = new Http();
HttpRequest request = new HttpRequest();
request.setEndpoint('https://maps.googleapis.com/maps/api/geocode/
json?address='
 + geoAddress + '&key=' + geocodingKey
 '&sensor=false');
request.setMethod('GET');
request.setTimeout(60000);

With the HTTP request constructed, we then proceed to make the call from within a
try-catch block by using the following code:

try {
 // make the http callout
 HttpResponse response = http.send(request);

We have requested a response from the Geocoding API in JSON format. Therefore,
we create an Apex JSON parser to process the JSON format returned from the API.
We also declare two variables to hold the latitude and longitude of the address by
using the following code:

JSONParser responseParser = JSON.createParser(response.getBody());

// initialize co-ordinates
double latitude = null;
double longitude = null;

The Force.com Mobile SDK Application

[254]

With everything now in place, we can parse the response from the Geocoding API
and extract the latitude and longitude of the address by using the following code:

while (responseParser.nextToken() != null) {
 if ((responseParser.getCurrentToken() == JSONToken.FIELD_NAME) &&
(responseParser.getText() == 'location')) {
 responseParser.nextToken();
 while (responseParser.nextToken() != JSONToken.END_OBJECT) {
 String locationText = responseParser.getText();
 responseParser.nextToken();
 if (locationText == 'lat')
 latitude = responseParser.getDoubleValue();
 else if (locationText == 'lng')
 longitude = responseParser.getDoubleValue();
 }
 }
}

Finally, we check if we have received co-ordinates from the API. If so, we update the
Account object and close the try-catch block, as shown in the following code:

 // update co-ordinates on address if we get them back
 if (latitude != null) {
 geoAccount.Location__Latitude__s = latitude;
 geoAccount.Location__Longitude__s = longitude;
 update geoAccount;
 }
} catch (Exception e) {
 System.debug(LoggingLevel.ERROR, 'Error Geocoding Address - ' +
e.getMessage());
}

The Account after insert / Account after update trigger itself is relatively
simple. If the Location field is blank or the billing address has been updated, a call is
made to the AccountGeocodeAddress.DoAddressGeocode method to geocode the
address against the Google Maps geocoding API with the following code:

trigger geocodeAccountAddress on Account (after insert, after update)
{

 // bulkify trigger in case of multiple accounts
 for (Account account : trigger.new) {

 // check if Billing Address has been updated
 Boolean addressChangedFlag = false;
 if (Trigger.isUpdate) {

Chapter 5

[255]

 Account oldAccount = Trigger.oldMap.get(account.Id);
 if ((account.BillingStreet != oldAccount.BillingStreet) ||
 (account.BillingCity != oldAccount.BillingStreet) ||
 (account.BillingCountry != oldAccount.BillingCountry) ||
 (account.BillingPostalCode != oldAccount.BillingPostalCode)) {
 addressChangedFlag = true;
 System.debug(LoggingLevel.DEBUG, '***Address changed for - ' +
 oldAccount.Name);
 }
 }

 // if address is null or has been changed, geocode it
 if ((account.Location__Latitude__s == null) || (addressChangedFlag
== true)) {
 System.debug(LoggingLevel.DEBUG, '***Geocoding Account - ' +
account.Name);
 AccountGeocodeAddress.DoAddressGeocode(account.id);
 }
 }
}

Location service
In the application base/public/js/service folder, create a file named
LocationService.js and enter the following code:

/*******************************
 Location Services for
 Application
*******************************/

console.log('***LocationService.js - Initializing
LocationService...');
app.service('LocationService', function($q) {

 this.getCurrentLocation = function() {
 var deferred = $q.defer();

 // default co-ordinates are Sydney, Australia
 var defaultLatitude = -34.397;
 var defaultLongitude = 150.644;

 var success = function(position) {
 deferred.resolve(position);
 }

The Force.com Mobile SDK Application

[256]

 var error = function() {
 var defaultPosition = {
 latitude: defaultLatitude,
 longitude: defaultLongitude
 };
 deferred.reject(defaultPosition);
 }

 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(success, error);
 } else {
 error();
 }

 // return promise to controller to deliver deferred results
 return deferred.promise;
 }

});

How it works
Once again, we use the AngularJS promise pattern to determine the user's current
location. We start by setting some default co-ordinates, in case the device can't
determine the current location, or the user does not grant permission for us to use it.

We then set up a success function for a successful attempt to search for a location.
This function returns the user's current position to the calling method using the
deferred.resolve() method. Next, an error handler function is set up in case of an
unsuccessful location find attempt. In this case, we return the default co-ordinates to
the calling method using deferred.reject().

Finally, we check if the current device supports finding the user's location by
checking the browser's navigator.geolocation property. If so, we call the
navigator.geolocation.getCurrentPosition() method to find the user's current
location. If the browser doesn't support geolocation, we invoke the error handler
method to return the default co-ordinates.

The map view controller
The map view controller is the most complicated controller in the entire application,
so we will take some time to examine it in a greater level of detail.

Chapter 5

[257]

In the application base/public/js/controller folder, create a file named
MapViewController.js and enter the following code from this section.

app.controller('MapViewController', function($scope, $rootScope,
 AngularForce, $location, $routeParams, LocationService,
Opportunity, ReflectionService) {

We begin with a check to ensure that the user is logged in, and initialize the map
position and the map itself by using the following code:

 if ($rootScope.isLoggedIn()) {

 var mapLocation = {
 latitude: 0,
 longitude: 0
 };

 var map = null;

We then use an AngularJS promise to get the user's current location. If the location
find attempt is successful, we store the co-ordinates in the mapLocation object. In the
event that it is unsuccessful, we store the default co-ordinates in the mapLocation
object. For this, we use the following code:

 // use LocationService to get current position or default
 // co-ordinates
LocationService.getCurrentLocation().then(function(position) {
 mapLocation.latitude = position.coords.latitude;
 mapLocation.longitude = position.coords.longitude;
 }, function(defaultPosition) {
 defaultPosition.latitude;
 mapLocation.longitude = defaultPosition.longitude;
 })

We then use another .then() block to execute the following code after the users'
location has been determined. Here, we are also initializing the Google map and
placing a marker on it to show the users' current location:

 .then(function() {
 var mapOptions = {
 center: new google.maps.LatLng(mapLocation.latitude,
 mapLocation.longitude),
 zoom: 15,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 map = new google.maps.Map(document.getElementById("map-canvas"),
 mapOptions);

The Force.com Mobile SDK Application

[258]

 // mark current position on map
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(mapLocation.latitude,
 mapLocation.longitude),
 map: map
 });
 })

Now that we have the Google map initialized with the users' current location, we are
ready to add markers for the opportunities within a 5 mile radius. We use another
.then() block to execute the following code:

 .then(function() {
 // select any opportunities within a 5 mile radius and plot
 // them on the map
 Opportunity.getOpportunitiesWithinRadius(
 mapLocation.latitude, mapLocation.longitude).then(

We make a call to the Opportunity.getOpportunitiesWithinRadius() method
and pass in the user's current location. What is important to note here is that the
getOpportunitiesWithinRadius() method is also asynchronous in nature, so we
need to start another AngularJS promise within the current .then() block to ensure
that we process the results in the correct sequence.

Next, we will process the getOpportunitiesWithinRadius() results when they are
returned, by using the following code:

 function(data) {
 // LatLng Bounds Object to determine zoom level
 var bounds = new google.maps.LatLngBounds();
 // flag to determine whether to adjust default boundary
 var extendBounds = false;

 $.each(data, function(i, val) {
 // add marker to map
 var oppMarker = new google.maps.Marker({
 position: new
 google.maps.LatLng(val.Account.Location__Latitude__s,
 val.Account.Location__Longitude__s),
 map: map,
 icon: 'http://gmaps-samples.googlecode.com/svn/trunk/
 markers/green/blank.png'
 });

Chapter 5

[259]

First, we initialize the bounds object. This will help us to ensure that the zoom level
of the Google map is set correctly to ensure that all opportunities are displayed. We
also set up the extendBounds flag, which will tell us whether we need to trigger a
map resizing once the opportunities have been processed. We give it an initial value
of false because we haven't processed any opportunities yet.

A very cool feature of AngularJS is that it plays nicely with jQuery. We take advantage
of this by using a jQuery for-each loop to place a marker on the map at the location
of each opportunity using the Account.Location field. We use a green marker to
differentiate them from the users' current location marker.

Still within the jQuery for-each loop, we set up an information window to be displayed
when the user taps on an opportunity marker, by using the following code:

 // info window for the marker
 (function(i, oppMarker, val) {
 // Event listener has access to values of i and
 // marker as they were during marker creation
 google.maps.event.addListener(oppMarker, 'click',
 function() {
 var infoWindow = new google.maps.InfoWindow({
 content: '' + val.Name +
 '
'
 + val.Account.Name + '
'
 + val.Account.BillingStreet + '
'
 + val.Account.BillingCity + '
'
 + val.Account.BillingState + ' '
 + val.Account.BillingPostalCode + '
'
 + val.Account.BillingCountry + '
'
 + ''
 + val.Account.Phone + '
'
 });
 infoWindow.open(map, oppMarker);
 });
 })(i, oppMarker, val);

At this point, we have placed an opportunity marker and its associated information
window on the map. In the following code, we will also adjust the bounds object
to encapsulate the geographical area of the current marker by calling the bounds.
extend() method. We also set the extendBounds flag to true to indicate that we
need to adjust the map viewport:

 // Extend bounds object with each opportunity
 bounds.extend(new
 google.maps.LatLng(val.Account.Location__Latitude__s,
 val.Account.Location__Longitude__s));
 extendBounds = true;
 });

The Force.com Mobile SDK Application

[260]

Now that the for-each loop has been completed, we have placed all of the markers
on the map. At this point, we call the map.fitBounds() method to adjust the map
viewport to ensure that all opportunity markers are displayed. This is done by using
the following code:

 // if we have at least 1 opportunity adjust the boundary
 // to fit all opportunities
 if (extendBounds) {
 map.fitBounds(bounds);
 }

We then complete the AngularJS promise with the standard error handling function.
Finally, if the user isn't logged in, we redirect them to the application home page, by
using the following code:

 }, function(data) {
 console.log('***MapViewController.js - Error Retrieving
 Opportunity List...');
 console.log('readyState = ' + data.readyState);
 console.log('responseText = ' + data.responseText);
 console.log('responseJSON = ' + data.responseJSON);
 console.log('status = ' + data.status);
 console.log('statusText = ' + data.statusText);

 });
 });

 } else {
 // re-direct to login page
 $location.path('/');
 }

});

In the application base/public/partials/opportunity folder, create a file
named map.html and enter the following code:

<!-- Google Map Canvas -->
<div id="map-canvas">

</div>

Chapter 5

[261]

JavaScript object reflection service
In the application base/public/js/service folder, create a file named
ReflectionService.js and enter the following code:

/*******************************
 Reflection Services for
 Javascript objects
*******************************/

app.service('ReflectionService', function() {

 // This is some fantastic utility code to get properties of
 // a Javascript object using reflection
 this.Reflector = function(obj) {
 this.getProperties = function() {
 var properties = [];
 for (var prop in obj) {
 if (typeof obj[prop] != 'function') {
 properties.push(prop);
 }
 }
 return properties;
 };
 }
});

The reflection service is a utility that I use to display the properties of JavaScript
objects such as SFConfig and the data returned by the opportunity factory. The
purpose was mainly to debug JavaScript objects and log their property values to the
JavaScript console during development. I have included it as part of the application
as I think it will be a handy utility that you can use in your own AngularJS projects.

Deploying an application to Heroku
Now that the development of the final application is complete, we can update
our local git repository and deploy the application to Heroku by issuing the
following commands:

$ git add .

$ git commit -m "Final HTML5 Application for Chapter 5"

$ git push heroku master

The Force.com Mobile SDK Application

[262]

To see the application in action, navigate your web browser to your Heroku
application URL or issue the following command:

$ heroku open

Congratulations! It has been quite a journey but you now have a fully functional
HTML5-based mobile SDK application running on Heroku.

Summary
The aim of an effective mobile application is to present relevant information to a user
based on their current context. Don't fall into the trap of trying to completely replicate
the desktop functionality on a mobile device. We have achieved both of these aims
by providing key opportunity data using the mobile application, and presented
context-aware information by placing nearby opportunities on a Google map.

Along the way, we have combined an impressive array of technologies to form a
fully working application.

Although, at the time of writing, AngularJS is a relatively new JavaScript Framework,
I hope this chapter has convinced you that it is an extremely promising technology.
In particular, its native support of context dependency injection and the AngularJS
promise construct make life a lot easier for JavaScript developers. If you have ever had
to debug nested JavaScript functions more than two levels deep, you should know
what I mean!

The application itself should give you a good idea of the power of the Salesforce1
mobile SDK, and how you can apply it to your real-world applications. The sheer
breadth of the Salesforce1 mobile SDK is extremely impressive, and I encourage you
to explore it in more detail.

As always, following are some suggestions on how you can extend the application:

• You can add some limited update functionality to the application, for
example, to change the status of an opportunity.

• You could change the color of the opportunity map markers based on the
value of an opportunity to give the user a visual cue.

• The HTML5 application forms a perfect base to migrate it to a hybrid app
using the Apache Cordova mobile SDK. Try to implement the application
in the platform of your choice (iOS or Android).

Cloud-connected Applications
In this chapter, we will connect a Force.com application to Microsoft Windows Azure.
In a similar vein to mobile devices, cloud computing adoption has skyrocketed in
recent years (with Salesforce leading the charge) and shows no signs of slowing down.

Windows Azure is Microsoft's cloud computing environment and provides an
impressive array of cloud-based services. We will be connecting a Force.com
application to the Azure Service Bus, which offers a feature called Notification Hubs.

Notification Hubs offer a service to send mobile device push notifications to iOS,
Android, and Windows mobile devices. The service exposes this functionality
through a REST API, which can be accessed from Force.com.

The real strength of this feature is that it abstracts the lower-level details of each
platform's notification service, relieving us from complex details, such as load
balancing, queuing, and in the case of Google Cloud messaging, exponential back
off. All we need to do is supply the required credentials for the mobile platform(s)
we wish to target, and use the REST API to start sending push notifications.

Fortunately for us, Force.com provides a robust toolkit to access cloud computing
platforms such as Azure, and integrates their functionality into our applications.

In this chapter, we will be building the following two applications:

• The first application will be a Force.com application called Force Notify.
This application will present a Visualforce page to a Salesforce administrator
and allow the administrator to broadcast mobile push notification messages
to registered Android mobile device users within their organization. The push
notifications will be delivered through a Windows Azure Notification Hub.

• Secondly, we will build an accompanying Android application using the
Salesforce Android Native Mobile SDK. This application will receive and
process push notifications posted from the Windows Azure Notification
Hub, and post them in the Android device notification area.

Cloud-connected Applications

[264]

It goes without saying that we have a lot to do in this chapter, so let's begin!

The development process overview
The application we will be building in this chapter will be quite complex, and
involves extensive configuration and development. Taking this into account, it is
prudent at this point to examine the following components in our development
process at a high level:

• Development environment: We will begin by configuring the development
tools we will require (in addition to Force.com). The toolset we will be using
is Node.js, Android Developer Tools, and the Salesforce Android Native
Mobile Software Development Kit (SDK).

• Salesforce-connected application: We are required to configure a
Salesforce-connected application to allow our Android application
to connect to Salesforce.

• Google Cloud Messaging: We need to configure Google Cloud Messaging
to allow push notifications to be sent to our Android application.

• Azure Notification Hub: Next, we will configure a Notification Hub in
Windows Azure, which we will be connecting to from our Force.com
application. In addition, we will gather the credentials that we will need to
connect to Azure from Force.com and Android, and download the Azure
Android SDK.

• Android application: At this point, we are ready to begin developing the
Android application that will be receiving our push notifications.

• Force.com application: Finally, we will build a Force.com application that
will be used to send push notifications to our Android application through
the Azure Notification Hub.

Configuring the development environment
The first step in building the application is to configure the development tools we
will need. We will need to install Node.js, the Android Developer Tools, and the
Salesforce Native Android Mobile SDK.

Installing Node.js
Node.js is a JavaScript platform well-suited to building fast, scalable network
applications. The Native Android Mobile SDK requires Node.js. To download
and install Node.js, perform the following steps:

Chapter 6

[265]

1. Navigate your web browser to the Node.js homepage at http://nodejs.org.
2. Click on the INSTALL link to download the installer for your platform.
3. Start the installer and install Node.js on your system.
4. Take note of the Node.js install locations and ensure that they are part of

your system path. For example, the path to Node.js on my system is /usr/
local/bin/node.

5. Start a terminal window and issue the following commands to verify that
Node.js was installed successfully:
$ node --version

$ npm --version

6. Each command should result in the version number of Node.js and the
Node.js package manager being reported. At the time of writing, the Node.js
version was v0.10.25 and the Node.js Package Manager version was 1.3.24.

Installing Android Developer Tools
Android Developer Tools (ADT) provides a development environment to build
Android applications. To develop the Android application for this chapter, we will
use the ADT Bundle, which provides a version of the Eclipse IDE with essential
Android SDK components preinstalled.

To install ADT, navigate your web browser to http://developer.android.com/sdk/
index.html and download the ADT Bundle for your operating system. Once you have
downloaded the ADT Bundle, follow the instructions at http://developer.android.
com/sdk/installing/bundle.html to install the ADT environment.

Installing the Android SDK
We need to ensure that we have the correct version of the Android SDK installed for
our application. The steps to do this are as follows:

1. Click on the Android SDK Manager toolbar button from the ADT toolbar,
as shown in the following screenshot:

Cloud-connected Applications

[266]

2. In the Android SDK Manager window, ensure that the items displayed in
the following screenshot are selected for the Android 4.4.2 platform and click
on Install:

3. When the installation is complete, close the Android SDK Manager window.

Configuring an Android virtual device
The next item of configuration for the ADT is to set up an Android virtual device to
test our application. The steps to do this are as follows:

1. Click on the Android Virtual Device Manager toolbar button from the ADT
toolbar, as shown in the following screenshot:

2. In the Android Virtual Device Manager window, click on the New… button,
as shown in the following screenshot:

Chapter 6

[267]

3. Configure the Android virtual device settings, as per the following screenshot:

Cloud-connected Applications

[268]

4. Click on OK to create the Android virtual machine. The new virtual machine
will now appear in the Android Virtual Device Manager window, as shown
in the following screenshot:

Signing in to the Android virtual device
The final item of configuration is to sign in to the newly created Android virtual device
with a Google account (assuming you already have one) so that we can register the
virtual device to receive push notifications. The steps to do this are as follows:

1. Assuming that you still have the Android Virtual Device Manager window
open, highlight your newly created virtual machine and click on the Start…
button, as shown in the following screenshot:

Chapter 6

[269]

2. From the Launch Options dialog window, click on Launch, as shown in the
following screenshot:

3. The virtual device will be launched (this may take a while!). From the Home
screen, select the Applications icon, as shown in the following screenshot:

4. From the list of applications, choose Settings, as shown in the
following screenshot:

Cloud-connected Applications

[270]

5. Choose the Add account option, as shown in the following screenshot:

6. Select Google from the list of account types, as shown in the
following screenshot:

7. Choose to add an existing Google account, as shown in the
following screenshot:

Chapter 6

[271]

8. Follow the sign-in process with your Google e-mail and password, as shown
in the following screenshot:

Cloud-connected Applications

[272]

9. Once you have signed in, the configuration of your Android environment
is complete.

If you haven't developed an Android application before, I
recommend that you complete the tutorial located at http://
developer.android.com/training/basics/firstapp/
index.html.

Installing the Salesforce Android Native
Mobile SDK
The Salesforce Android Native Mobile SDK is a toolkit that enables developers to
build Android applications that securely connect to the Force.com platform. To
install the Salesforce Android Native Mobile SDK, perform the following steps:

1. Start a terminal window and issue the following command:
$ sudo npm install forcedroid –g

Windows users should omit sudo and use npm install
forcedroid –g.

2. Issue the following command to verify that the SDK was installed successfully:
$ forcedroid

3. If the command runs and displays a list of options, the SDK has been
installed successfully, as shown in the following screenshot:

Chapter 6

[273]

If you are located on a corporate network, you may need to configure
the proxy settings to enable npm to download the SDK. For example,
npm config set proxy http://proxy.company.com:8080
and npm config set-https-proxy http://proxy.company.
com:8080. You may need to contact a network administrator for the
proxy server address and port number.

Configuring a Salesforce-connected
application
We will also need a Salesforce-connected application to allow our Android
application to access Salesforce data. A connected app is different to a traditional
Force.com application as it is designed to allow external applications to securely
access your Salesforce organization. To configure the remote access application,
perform the following steps:

1. Navigate to Setup | Create | Apps.
2. Scroll down to the Connected Apps section and click on New.
3. Enter MyNotificationApp in the Connected App Name field.
4. The API Name field will be autopopulated.
5. Enter your e-mail address in the Contact Email field.
6. Enter Mobile app to receive Salesforce.com Push Notifications in

the Description field.
7. Select the Enable OAuth Settings checkbox from the API section. A new set

of fields will be displayed.
8. Enter testsfdc:///mobilesdk/detect/oauth/done in the Callback

URL field.
9. From the Available OAuth Scopes list, move all options to the Selected

OAuth Scopes list.
10. Leave all of the other unspecified fields blank.
11. Click on Save.
12. Make a note of the consumer key and callback URL as you'll need these later.

Cloud-connected Applications

[274]

Configuring Google Cloud Messaging
Google Cloud Messaging is the Google API service used to deliver push notifications
to Android devices. We will need to configure Google Cloud Messaging so that we
can connect to it from Windows Azure and our Android application. To configure
Google Cloud Messaging, perform the following steps:

1. Visit https://code.google.com/apis/console and sign in with your
Google account (assuming you already have one).

2. If you aren't automatically redirected there, navigate to https://console.
developers.google.com/project.

3. Click on the Create Project… button.
4. Enter My Notification Project in the Project name field.
5. Accept the default value for the Project ID field.
6. Click on Create.
7. Click on APIs & auth from the left-hand side navigation bar.
8. Set the Google Cloud Messaging for Android option to ON, as shown in the

following screenshot:

9. Select Credentials and click on CREATE NEW KEY.
10. Click on the Server Key button.
11. Click on Create to generate the key. Make a note of the API key, as shown in

the following screenshot:

Chapter 6

[275]

Configuring the Azure Notification Hub
We will now need to configure the Azure Notification Hub we will be using to send
the push notifications.

If you don't have one already, you must sign up for a Windows Azure
account to complete the steps in this section.

To configure an Azure Notification Hub, perform the following steps:

1. If you don't have a Windows Azure account, sign up at http://www.
windowsazure.com/en-us/. Note that a 30-day free trial is available.

2. Log on to your Windows Azure Management Portal at https://manage.
windowsazure.com.

3. Click on the NEW button in the bottom-left corner of the screen.
4. Navigate to APP SERVICES | SERVICE BUS | NOTIFICATION HUB |

QUICK CREATE, as shown in the following screenshot:

5. Enter a name for your Notification Hub and select the region closest to your
location. Note that the name in the Namespace Name field is automatically
generated and must be unique, as shown in the following screenshot:

Cloud-connected Applications

[276]

6. Click on CREATE A NEW NOTIFICATION HUB, as shown in the
following screenshot:

7. Your Notification Hub will be created and your namespace name will appear
in your service bus list, as shown in the following screenshot:

8. Click on the namespace name that you just created and click on
NOTIFICATION HUBS, as shown in the following screenshot:

Chapter 6

[277]

9. Click on the Notification Hub you just created, as shown in the
following screenshot:

10. The Dashboard section for your Notification Hub will be displayed, as
shown in the following screenshot:

Cloud-connected Applications

[278]

11. Click on Configure. Scroll down to the google cloud messaging settings
section and enter the API key that you created in the Configuring Google Cloud
Messaging section, as shown in the following screenshot:

12. Click on Save.
13. Select Dashboard and click on View Connection String. Make a note of the

DefaultListenSharedAccessSignature connection string, as shown in the
following screenshot:

Your Notification Hub has now been configured for Google Cloud Messaging!

Getting the Azure Service Bus credentials
When we build the Force.com and Android components of the application, we will
require the Azure Service Bus credentials to connect to and send messages through
the Notification Hub. To get the required credentials, perform the following steps:

1. In the Azure Control Panel, select the Service Bus icon, as shown in the
following screenshot:

Chapter 6

[279]

2. In the service bus screen, select the Notification Hub namespace name you
have created (by clicking on any cell but the first cell in a column), as shown
in the following screenshot:

3. Click on CONNECTION INFORMATION, as shown in the
following screenshot:

4. The connection information for the Notification Hub namespace will be
displayed. Make a note of the endpoint (non-blurred string)in the ACS
CONNECTION STRING window, as shown in the following screenshot:

Cloud-connected Applications

[280]

5. Also make a note of the DEFAULT ISSUER and DEFAULT KEY values,
as shown in the following screenshot:

6. Click on the Open ACS Management Portal link.
7. Click on the Application integration link in the left-hand side menu.
8. In the list of Endpoint Reference, make a note of the OAuth WRAP and

Management Portal endpoints, as shown in the following screenshot:

Downloading the Azure Android SDK
We will also need to download the Azure Android SDK. This will simplify
development in our Android application when we need to interface with our
Notification Hub.

To download the Azure Android SDK, perform the following steps:

1. Navigate to http://www.windowsazure.com/en-us/.
2. Select the Downloads link.
3. In the list of SDKs, select Android Install from the Mobile list.
4. The SDK will be downloaded as a compressed ZIP archive.
5. Expand the contents of the SDK in a working folder and make a note of the

location of the notification-hubs-0.1.jar file in the notificationhubs
subfolder of where you unzipped the SDK.

Chapter 6

[281]

The version of the Azure Android SDK may have changed by the time
you are reading this book.

Building an Android mobile application
We will now use the Salesforce Android Native Mobile SDK that we have
downloaded earlier to build an application that will receive push notification
messages from our Azure Notification Hub.

To run the Android application and receive push notifications, you
will need to create an Android Virtual Device (AVD) or Android
device running the Google APIs, and sign in to it using a Google
account. Refer to the Installing the Android SDK section of this chapter
for more details.

Creating the Salesforce Android Mobile SDK
application
To create an Android native application, perform the following steps:

1. Open a terminal window.
2. Navigate to a working folder.
3. Issue the following command to create a Force.com Android project:

$ forcedroid create --apptype="native" --appname="forceNotify"
--targetdir="forceNotifyApp"
--packagename="com.packt.forcenotify"

4. Press Enter to accept the default setting of not using SmartStore.

Cloud-connected Applications

[282]

5. The following screenshot shows a sample session of creating the project:

Configuring an application using ADT
We will be using ADT that we have downloaded earlier to build the rest of the
Android application.

Importing the Salesforce Mobile SDK and
Salesforce Android application
The first step in building the rest of the application is to import the Salesforce Mobile
SDK and forceNotify projects into the ADT environment. To import the projects,
perform the following steps:

1. Start ADT.
2. Navigate to File | Import....

Chapter 6

[283]

3. In the first step of the import wizard, select Existing Android Code Into
Workspace, as shown in the following screenshot:

4. Click on Next.
5. Click on Browse... and navigate to the folder where you created the

forceNotify application.
6. Select the forcedroid/native/SalesforceSDK folder, as shown in the

following screenshot:

Cloud-connected Applications

[284]

7. Click on Open. The wizard window will now be populated with the code
that is to be imported, as shown in the following screenshot:

8. Click on Finish.
9. Perform the same steps to import the forceNotify project from the folder

where you created the application.
10. Right-click on the forceNotifyApp project and select Properties.
11. Select Android in the list of property groups.
12. Select the latest version of the Google APIs for the Project Build Target

option. At the time of writing, this was Google APIs Platform 4.4.2 Level 19.
13. Click on OK.

Updating the Android manifest file
The Android manifest file contains essential configuration information required for
an Android application to run.

For a full explanation of the Android manifest file and its
components, refer to http://developer.android.com/guide/
topics/manifest/manifest-intro.html.

To update the Android manifest file for the forceNotifyApp project, perform the
following steps:

1. In the ADT, expand the forceNotifyApp project and open AndroidManifest.
xml, as shown in the following screenshot:

Chapter 6

[285]

2. Open the source code view for the manifest file and update the <uses-sdk>
tag to the following (your targetSdkVersion may differ if a higher level
version is available) version:
 <uses-sdk android:minSdkVersion="9"
 android:targetSdkVersion="19" />

3. At the top of the file, before the <application> tag, add the following
application permissions:
<uses-permission
 android:name="android.permission.INTERNET"/>
<uses-permission
 android:name="android.permission.GET_ACCOUNTS"/>
<uses-permission
 android:name="android.permission.WAKE_LOCK"/>
<uses-permission
 android:name="com.google.android.c2dm.permission.RECEIVE"/>

4. Inside the <application> tag, add the following <receiver> tag:

<receiver
 android:name=".MyBroadcastReceiver"
 android:permission="com.google.android.c2dm.permission.SEND">
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.
RECEIVE" />
 <category android:name="com.packt.forcenotify" />
 </intent-filter>
</receiver>

Cloud-connected Applications

[286]

Updating the bootconfig.xml file
We need to update the bootconfig.xml file with the consumer key from our
Salesforce-connected application. To do this, perform the following steps:

1. In the forceNotifyApp project, open the bootconfig.xml file from
the res/values folder.

2. Add the consumer key from your Salesforce-connected application to
the <string name="remoteAccessConsumerKey"> tag, using the
following format:

<string name="remoteAccessConsumerKey">[Your Consumer Key]</string>

Adding the Azure SDK and Android support
libraries
We also need to add the Azure Notifications Hub SDK and Android v4 support
libraries to the application. To do this, perform the following steps:

1. Add a new lib folder to the forceNotifyApp project by highlighting it and
navigating to File | New | Folder.

2. Enter libs for the Folder name: field and click on Finish.
3. Open a folder explorer window in your operating system, and

navigate to the folder where you installed the ADT. For example, on my
system, I have installed the ADT in the /Users/stephenmoss/Documents/
adt-bundle-mac-x86_64-20130729 folder.

4. From the Android Developer Tools folder, navigate to the sdk/
extras/android/support/v4 folder.

5. Drag-and-drop the android-support-v4.jar file to the libs folder
in ADT for the forceNotifyApp project.

6. Select Copy Files and click on OK.
7. Navigate to the folder where you installed the Azure Android SDK.
8. From the notificationhubs subfolder, drag-and-drop the

notification-hubs-0.1.jar file to the libs folder in the
forceNotifyApp project.

9. Select Copy Files and click on OK.
10. Your forceNotifyApp project should now resemble the

following screenshot:

Chapter 6

[287]

Importing the Google Play Services Library
To work with Google Cloud Messaging in our Android application, we require the
Google Play Services Library. The Google Play Services Library adds extra Google
features to an application such as Maps and Google+. To import Google Play Services
and reference it from inside our forceNotify project, perform the following steps:

1. Navigate to File | Import.
2. Select to import using Existing Android Code into workspace. Click on Next.
3. Click on Browse... and navigate to the folder where you installed the ADT.
4. From the Android Developer Tools folder, navigate to the sdk/extras/

google/google_play_services/libproject/google-play-services_lib
folder and click on Open.

5. Click on Finish to import the Google Play Services Library project.
6. Right-click on the forceNotifyApp project and select Properties.

Cloud-connected Applications

[288]

7. In the Library section of the Android properties group, click on Add... and
select the google-play-services_lib library in the Project Selection window,
as shown in the following screenshot:

8. Click on OK and then on Apply.
9. Click on OK to close the Project Properties window.

Enhancing the Android Mobile SDK
application code
Now we are ready to make the required code enhancements to the Android
application. This will enable it to receive and process push notifications from the
Azure Notification Hub. Fortunately, the Salesforce SDK creates an application
with a lot of default functionalities that we will be taking advantage of the
following parameters:

• Salesforce login and authentication
• Fetching and listing contacts from your Salesforce organization
• Fetching and listing accounts from your Salesforce organization

Chapter 6

[289]

In this chapter, I will only be covering the specific modifications to the
generated Mobile SDK application required to process the Notification
Hub messages. I encourage that you further explore the default code
generated by the SDK to see how to leverage it in your own mobile
applications.

Enhancing the MainActivity class
The first file that we will be enhancing is MainActivity.java. This is the default
activity for the Android application and is displayed when a user successfully logs
in. To enhance the MainActivity class, perform the following steps.

The MainActivity class that we are modifying is a descendent
of SalesforceActivity, which provides the methods we
are modifying in this chapter. For more information, refer to
the reference page at http://forcedotcom.github.io/
SalesforceMobileSDK-Android/index.html.

1. Add the following imports to MainActivity.java:
import android.util.Log;
import android.os.AsyncTask;
import com.salesforce.androidsdk.rest.RestClient.ClientInfo;
import com.google.android.gms.gcm.*;
import com.microsoft.windowsazure.messaging.*;

2. Add the following class members to the MainActivity class:
private String SENDER_ID = "[Your Google API Project #]";
private GoogleCloudMessaging gcm;
private NotificationHub hub;
private String TAG = "MainActivity.java";
private String sfUserId = null;

The SENDER_ID string is the Google API project number from
the Configuring Google Cloud Messaging section.

3. Add the following highlighted code to the end of the onCreate method:
// Setup view
setContentView(R.layout.main);

// Set up Notification Hub
Log.d(TAG, "***Initializing Notification Hub...");

Cloud-connected Applications

[290]

gcm = GoogleCloudMessaging.getInstance(this);
String connectionString = "[Your Hub Connection String]";
hub = new NotificationHub("[Your Hub Name]", connectionString,
this);

The Hub Connection String is the
DefaultListenSharedAccessSignature connection you noted
down earlier when creating the Azure Notification Hub. The
hub name is the name of the hub and not the namespace the
hub is created in. For example, if you have created the hub
using the naming in the screenshots for this chapter, your hub
name will be chapter6notificationhub.

For example, the Hub Connection String will look as
follows:

String connectionString = "Endpoint=sb://
chapter6notificationhub-ns.servicebus.windows.
net/;SharedAccessKeyName=DefaultListenSharedAcc
essSignature;SharedAccessKey=DCTgXeBODcq6mwB1Do
7Q0yuEenBXDJLBoasK5frdpic=";

hub = new NotificationHub("chapter6notification
hub", connectionString, this);

4. Add the registerNotificationHubs method to MainActivity.java,
using the following code:
@SuppressWarnings("unchecked")
private void registerNotificationHubs() {
 // register device with Notification Hub
 new AsyncTask() {
 @Override
 protected Object doInBackground(Object... params) {
 try {
 Log.d(TAG, "***Executing Asynchronous Hub
Registration...");
 String regid = gcm.register(SENDER_ID);
 NativeRegistration hubRegistration = hub.register(regid,
sfUserId);
 Log.d(TAG, "***Asynchronous Hub Registration
Completed...");
 } catch (Exception e) {
 return e;
 }
 return null;
 }

Chapter 6

[291]

 }.execute(null, null, null);

}

5. Finally, add the following highlighted code to the onResume(RestClient
client) method:
// Show everything
findViewById(R.id.root).setVisibility(View.VISIBLE);

Log.d(TAG, "***Getting Logged In User...");
ClientInfo ci = client.getClientInfo();
sfUserId = ci.userId.toString();
String username = ci.username.toString();
Log.d(TAG, "***Registering Notification Hub...");
registerNotificationHubs();

Make sure that you modify the correct overloaded onResume
method in MainActivity.java.

How the MainActivity class works
We start by importing the libraries we require, and adding some class members to
MainActivity. We then proceed to add the code required to initialize Google Cloud
Messaging and connect to the Azure Notification Hub in the onCreate method,
using the following code:

gcm = GoogleCloudMessaging.getInstance(this);
String connectionString = "[Your Hub Connection String]";
hub = new NotificationHub("[Your Hub Name]", connectionString,
 this);

We also add the following code to the overloaded version of the onResume method
to get the details of the logged in Salesforce user. We place the code here because this
method is called after a user has logged in:

ClientInfo ci = client.getClientInfo();
sfUserId = ci.userId.toString();
String username = ci.username.toString();

Then we call the registerNotificationHubs method, using the following code:

registerNotificationHubs();

The registerNotificationHubs method runs asynchronously. It first registers the
application with Google Cloud Messaging with the following line of code:

String regid = gcm.register(SENDER_ID);

Cloud-connected Applications

[292]

It then registers the Android application with the Azure Notification Hub, by using the
following code, passing in the identifier received from Google Cloud Messaging and
the Salesforce user ID as a registration tag. We will see how we use the registration tag
to target a specific user with a message when we build the Force.com application.

NativeRegistration hubRegistration = hub.register(regid, sfUserId);

Creating the Broadcast Receiver class
We will now create the MyBroadcastReceiver class. This class will be responsible for
receiving and processing push notifications received from the Azure Notification Hub.

To create the class, perform the following steps:

1. Select the com.packt.forcenotify package in the src folder.
2. Navigate to File | New | Class.
3. In the New Java Class window, enter MyBroadcastReceiver in the Name

field of the class.
4. Enter android.content.BroadcastReceiver for the Superclass field.
5. Your window should now resemble the following screenshot:

Chapter 6

[293]

6. Click on Finish.
7. Add the following import statements to the MyBroadcastReceiver class:

import com.google.android.gms.gcm.GoogleCloudMessaging;
import android.app.Activity;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.support.v4.app.NotificationCompat;
import android.util.Log;

8. Add the following members to the MyBroadcastReceiver class:
public static final int NOTIFICATION_ID = 1;
private NotificationManager mNotificationManager;
NotificationCompat.Builder builder;
Context ctx;

private String TAG = "MyBroadcastReceiver.java";

9. Add the following code to the onReceive method:
// Set up Application Class to receive notification
// from Azure Notification Hub
GoogleCloudMessaging gcm =
 GoogleCloudMessaging.getInstance(context);
ctx = context;
String messageType = gcm.getMessageType(intent);
if (GoogleCloudMessaging.MESSAGE_TYPE_SEND_ERROR.
equals(messageType)) {
 sendNotification("***Send error: " +
 intent.getExtras().toString());
} else if (GoogleCloudMessaging.MESSAGE_TYPE_DELETED.
equals(messageType)) {
 sendNotification("***Deleted messages on server: "
 + intent.getExtras().toString());
} else {
 sendNotification("Received: " +
 intent.getExtras().getString("message"));
}
setResultCode(Activity.RESULT_OK);

10. Finally, add the sendNotification method, using the following code:

private void sendNotification(String msg) {

 Log.d(TAG, "***Processing Notification from Hub...");

Cloud-connected Applications

[294]

 // Display Notification on Android Device
 mNotificationManager = (NotificationManager)ctx.
getSystemService(Context.NOTIFICATION_SERVICE);
 PendingIntent contentIntent = PendingIntent.getActivity(ctx, 0,
new Intent(ctx, MainActivity.class), 0);
 NotificationCompat.Builder mBuilder =
 new NotificationCompat.Builder(ctx)
 .setSmallIcon(R.drawable.sf__icon)
 .setContentTitle("ForceNotify")
 .setStyle(new
 NotificationCompat.BigTextStyle().bigText(msg))
 .setContentInfo(msg);
 mBuilder.setContentIntent(contentIntent);
 mNotificationManager.notify(NOTIFICATION_ID, mBuilder.build());
 Log.d(TAG, "***Successfully Processed Notification from
Hub...");

}

How the Broadcast Receiver class works
We begin by importing the required libraries for the class and setting up the required
class members.

The key code in the onReceive method is the if statement, which checks the type
of notifications we receive. We first check for an error or a deleted message on the
server, and route them to the sendNotification method with a suitable message.
Finally, we route a valid push notification to the sendNotification method and
extract the message received using the else statement, as follows:

 else {
 sendNotification("Received: " +
 intent.getExtras().getString("message"));
}

The sendNotification method commences by getting a reference to the notification
service on the Android device and setting up a pending intent to allow us to return
control to MainActivity when we have finished processing the notification. This is
done with the following code:

mNotificationManager =
 (NotificationManager)ctx.getSystemService(Context.NOTIFICATION_
SERVICE);
PendingIntent contentIntent =
 PendingIntent.getActivity(ctx, 0, new Intent(ctx, MainActivity.
class), 0);

Chapter 6

[295]

We then use a notification builder to build the message we wish to display in the
Android device notification area, using the following code:

NotificationCompat.Builder mBuilder =
 new NotificationCompat.Builder(ctx)
 .setSmallIcon(R.drawable.sf__icon)
 .setContentTitle("ForceNotify")
 .setStyle(new NotificationCompat.BigTextStyle().bigText(msg))
 .setContentInfo(msg);

We are using the NotificationCompat.Builder class to
enable our code to work on older Android devices.

Finally, we pass the control back to MainActivity by calling the mBuilder.
setContentIntent method and posting the notification to the Android device,
using the following code:

mBuilder.setContentIntent(contentIntent);
mNotificationManager.notify(NOTIFICATION_ID, mBuilder.build());

Congratulations! The Android application is now complete.

Creating the Force.com broadcast
application
With the Azure Notification Hub and Android Application now in place, it is time to
build the Force.com application. This will consist of an Apex class, which acts as the
interface between Force.com and Azure, a Visualforce page to provide an interface to
the user, and a custom controller class for the Visualforce page.

Configuring the remote site settings
First, we need to add a Salesforce remote site for the Notification Hub authentication
REST endpoint. This is done by performing the following steps:

1. Navigate to Setup | Security Controls | Remote Site Settings.
2. Click on the New Remote Site button.
3. Enter AzureServiceBusAuthenticate for the Remote Site Name field.
4. Enter https://[Your Service Bus Management Portal] for the Remote

Site URL field.

Cloud-connected Applications

[296]

5. Ensure that the Active checkbox is checked.
6. Click on Save.

The Azure Service Bus management portal is the
management portal endpoint from the Getting the Azure
Service Bus credentials section.
For example, https://chapter6notificationhub-
ns-sb.accesscontrol.windows.net.

Finally, we need to add a Salesforce remote site for the Notification Hub REST
endpoint. This can be done by performing the following steps:

1. Navigate to Setup | Security Controls | Remote Site Settings.
2. Click on the New Remote Site button.
3. Enter AzureServiceBusREST in the Remote Site Name field.
4. Enter https://[Your Notification Hub Namespace Endpoint] in the

Remote Site URL field.
5. Ensure that the Active checkbox is checked.
6. Click on Save.

The Azure Service Notification Hub namespace endpoint
is the endpoint contained in the ACS connection string
from the Getting the Azure Service Bus credentials section. For
example, https://chapter6notificationhub-ns.
servicebus.windows.net.

Creating the Notification Hub Interface class
To create the Notification Hub Interface class, perform the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed. Click

on New.
3. In the code download for the chapter, locate the

azureNotificationHubInterface.cls file in the force_com folder.
4. Copy and paste the contents of azureNotificationHubInterface.

cls into the Apex code editor in your Force.com window.
5. Click on Save.

Chapter 6

[297]

How the Notification Hub Interface class works
The Notification Hub Interface class consists of the following three methods:

Method Description
getAzureAccessToken This method obtains a security access token for

Azure
getHubRegistrations This method gets a list of registrations for a

Notification Hub
sendHubMessage This method sends a message through a

Notification Hub

The getAzureAccessToken method commences by declaring Http and HttpRequest
objects, using the following code:

Http h = new Http();
HttpRequest req = new HttpRequest();

We then declare the objects we will need to use when authenticating against Azure
by using the following code:

string Url = '[Your OAuth WRAP Endpoint]';
string encodedLogin = EncodingUtil.urlEncode('[Your Default Issuer]',
'UTF-8');
string encodedPW = EncodingUtil.urlEncode('[Your Default Key]', 'UTF-
8');

The Azure endpoint and Service Bus credentials required are
the OAuth WRAP endpoint, DEFAULT ISSUER, DEFAULT
KEY, and the endpoint contained in the ACS connection
string from the Getting the Azure Service Bus credentials section.

For example, the Azure endpoint and Service Bus credentials
will look as follows:

string Url = 'https://chapter6notificationhub-
ns-sb.accesscontrol.windows.net/WRAPv0.9';

string encodedLogin = EncodingUtil.
urlEncode('owner', 'UTF-8');

string encodedPW = EncodingUtil.urlEncode('tM
reEBj2nMOwlgDA0HkkPcJ/CK8n5s2Ext12KtLFsI4=',
'UTF-8');

Cloud-connected Applications

[298]

Next, we set up the Http request using the following code:

req.setEndpoint(Url);
req.setMethod('POST');
req.setBody('wrap_name=' + encodedLogin + '&wrap_password=' +
encodedPW +
'&wrap_scope=[Your Notification Hub Namespace Endpoint]');
req.setHeader('Content-Type', 'application/x-www-form-urlencoded');

The Notification Hub namespace endpoint is the
endpoint contained in the ACS connection string from
the Getting the Azure Service Bus credentials section. For
example, https://chapter6notificationhub-ns.
servicebus.windows.net.

We set the request endpoint to the OAuth WRAP endpoint obtained when we
configured Azure, and also embed the DEFAULT ISSUER, DEFAULT KEY, and
Hub Namespace endpoints in the request body. We also set the request method to
POST, and set the Http header content type.

We then send the Http request to Azure and obtain the Http response in the result
variable with the following code:

HttpResponse res = h.send(req);
string result = res.getBody();

Finally, we use some Apex string methods to manipulate the result to build a valid
Azure security token and return it to the caller by using the following code:

// process result to create properly formatted token
string suffixRemoved = result.split('&')[0];
string prefixRemoved = suffixRemoved.split('=')[1];
string decodedToken = EncodingUtil.urlDecode(prefixRemoved, 'UTF-8');
string finalToken = 'WRAP access_token=\"' + decodedToken + '\"';

return finalToken;

The getHubRegistrations method takes a string argument containing an Azure
security access token, and returns a list of strings containing the registration tags
(in our case, the Salesforce user IDs) for registered mobile device users, using the
following code:

public List<string> getHubRegistrations(String token)

Chapter 6

[299]

The method commences by declaring the endpoint for the Azure REST API request,
as follows:

string readUrl = 'https://[Your Notification Hub Namespace
 Endpoint]/[Your Notification Hub Name]/registrations/?api-
version=2013-08';

The Notification Hub namespace endpoint is the endpoint
contained in the ACS Connection String connection from the
Getting the Azure Service Bus credentials section. For example,
https://chapter6notificationhub-ns.servicebus.
windows.net. The Notification Hub name in this instance is
chapter6notificationhub.

For example, the Notification Hub namespace endpoint will look as
follows:

string readUrl = 'https://chapter6notificationhub-
ns.servicebus.windows.net/chapter6notificationhub/
registrations/?api-version=2013-08';

We then set up the Http request, REST endpoint, and Http headers with the
following code:

Http h = new Http();
HttpRequest readRequest = new HttpRequest();
readRequest.setEndpoint(readUrl);
readRequest.setMethod('GET');
readRequest.setHeader('Authorization', token);
readRequest.setHeader('x-ms-version', '2013-08');

The highlighted line of code shows where we are passing the Azure security token in
the authorization Http header.

We then issue the request against Azure and capture the response in the readResult
variable with the following code:

HttpResponse readRes = h.send(readRequest);
string readResult = readRes.getBody();

The response from Azure gives us all of the XML data elements for an Azure
registration. We are only interested in extracting the <Tags> element where it exists
for each registration. To achieve this, we use an XmlStreamReader object to parse the
XML and extract the contents of each <Tags> element using the following code:

// parse XML and extract registration tags
XmlStreamReader reader = readRes.getXmlStreamReader();

Cloud-connected Applications

[300]

List<String> registrationTags = new List<String>();

// use XmlStreamReader to parse response and extract registration tags
boolean isSafeToGetNextXmlElement = true;
while (isSafeToGetNextXmlElement) {
 if (reader.getEventType() == XmlTag.START_ELEMENT) {
 if (reader.getLocalName() == 'Tags') {
 reader.next();
 registrationTags.add(reader.getText());
 }
 }
 // check if another node
 if (reader.hasNext()) {
 reader.next();
 } else {
 isSafeToGetNextXmlElement = false;
 break;
 }

}

Finally, we return the list of registration tags to the caller with the following code:

return registrationTags;

The final method in the following code is sendHubMessage, which triggers push
notifications to be sent from the Azure Notification Hub:

public string sendHubMessage(String token, String message,
 String userTag)

The sendHubMessage method accepts parameters for the Azure security token, the
message to be sent, and a user registration tag if we are sending a message to an
individual user.

Similar to the getHubRegistrations method, we declare the endpoint for the
Azure REST API request and some standard Http header information with the
following code:

string messageUrl = 'https://[Your Notification Hub Namespace
Endpoint]/[Your Notification Hub Name]/messages/?api-version=2013-08';
Http h = new Http();
HttpRequest messageRequest = new HttpRequest();
messageRequest.setEndpoint(messageUrl);
messageRequest.setMethod('POST');
messageRequest.setHeader('Authorization', token);
messageRequest.setHeader('Content-Type', 'application/
json;charset=utf-8');

Chapter 6

[301]

The Notification Hub namespace endpoint is the endpoint
contained in the ACS Connection String connection from the
Getting the Azure Service Bus credentials section. For example,
https://chapter6notificationhub-ns.servicebus.
windows.net. The Notification Hub name in this instance is
chapter6notificationhub.

For example, the Notification Hub namespace endpoint will
look as follows:

string readUrl = 'https://
chapter6notificationhub-ns.servicebus.windows.
net/chapter6notificationhub/messages/?api-
version=2013-08';

We then proceed to set up the specific Http header information and request the body
to send a push notification through Azure using the following code:

messageRequest.setHeader('ServiceBusNotification-Format', 'gcm');
if (userTag != null) {
 messageRequest.setHeader('ServiceBusNotification-Tags',
 userTag);
}
messageRequest.setBody('{ "collapse_key": "test_message",
 "time_to_live": 108, "delay_while_idle": true, "data":
 { "message": "' + message + '"}}');

Finally, we send the Http request and pass the Azure response back to the caller
with the following code:

HttpResponse messageRes = h.send(messageRequest);
string messageResult = messageRes.getBody() + ' ' + messageRes.
getStatus() + ' ' + messageRes.getStatusCode();
return messageResult;

Creating the broadcast application custom
controller
To create the broadcast application custom controller, perform the following steps:

1. Navigate to Setup | Develop | Apex Classes.
2. All of the Apex classes for your organization will be displayed. Click on New.
3. In the code download for the chapter, locate the forceNotifyController.

cls file in the force_com folder.

Cloud-connected Applications

[302]

4. Copy and paste the contents of forceNotifyController.cls into the Apex
code editor in your Force.com window.

5. Click on Save.

How the broadcast application custom controller
works
We begin by declaring the controller properties we will be using, with the
following code:

// Azure Interface Properties
private String azureSecurityToken { get; set; }
private azureNotificationHubInterface notificationHub = new
azureNotificationHubInterface();

// User picklist values
public List<selectOption> registeredDeviceUsers {get; set;}

// selected value in picklist
public string selectedUser {get; set;}

// Azure Notification Hub Registration Tags
List<String> registrationTags = new List<String>();

// message to send
public string messageToSend {get; set;}

Next, the constructor is defined. The first task is to get an Azure security token,
which we can use for future requests, with the following code:

azureSecurityToken = notificationHub.getAzureAccessToken();

We then start to build the data source for the user's drop-down list on the Visualforce
page with the following code:

// build dropdown list of users registered with Azure
registeredDeviceUsers = new List<selectOption>();
registeredDeviceUsers.add(new selectOption('All','All'));
registrationTags =
 notificationHub.getHubRegistrations(azureSecurityToken);
List<User> registeredUsers = [SELECT id, Name FROM User WHERE id
 IN :registrationTags ORDER BY Name];

Chapter 6

[303]

We initialize the registeredDeviceUsers controller property and add a default
item to represent all mobile device users. We then call the notificationhub.
getHubRegistrations method to get a list of registered mobile device users (recall
from the Android application that the registration tags in the Notification Hub are
Salesforce user IDs). We then use this list as the criteria for an SOQL query to extract
the Salesforce user IDs and usernames for those registered users.

Because it is possible for a user to register for more than one device (for example,
a Smartphone and a tablet), we need to remove any duplicate user records. This is
done with the following code:

List<User> finalDeviceUserList = new List<User>();
Set<string> idSet = new Set<String>();
for (User u : registeredUsers) {
 if (idSet.contains(u.id) == false) {
 idSet.add(u.id);
 finalDeviceUserList.add(u);
 }
}

After we have removed the duplicates from the list, we populate the data source for
the list and set the initial selected value, using the following code:

for (User finalUser : finalDeviceUserList) {
 registeredDeviceUsers.add(new selectOption(finalUser.id,
 finalUser.Name));
}

// set initial value for selected User to 'All'
selectedUser = 'All';

The final method in the controller handles the button click event to broadcast a
message through the Notification Hub, using the following code:

public PageReference sendNotificationHubMessage() {

 //check message not blank and < 255 characters
 if ((messageToSend.length() == 0) || (messageToSend.length() > 255))
{
 ApexPages.addMessage(new
 ApexPages.Message(ApexPages.Severity.ERROR,
 'Message must not be blank or greater than 255
 characters'));
 return null;
 }

Cloud-connected Applications

[304]

 // broadcast message to all users
 if (selectedUser == 'All') {

 string sendResult = notificationHub.sendHubMessage(
 azureSecurityToken,
 messageToSend, null);

 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO,
 'Message Send Result - ' + sendResult));
 } else {
 // broadcast to selected user only
 string sendResult = notificationHub.sendHubMessage(
 azureSecurityToken,
 messageToSend, selectedUser);

 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO,
 'Message Send Result - ' + sendResult));
 }

 return null;
}

We first check if the message is between 1 and 255 characters. If the message fails this
validation, we issue an error message and exit the method.

If the message is valid, we check if we are broadcasting it to all users. If so, we call
the notificationHub.sendHubMessage method and set the user tag to null to
indicate that we are broadcasting the message to all users. We then display the result
of the Azure send request. If we are not broadcasting it to all users, we pass in the ID
of the selected user.

Creating the broadcast application
Visualforce page
The broadcast application Visualforce page will present an interface to allow us to
send a push notification message to one or all users in our Salesforce organization
who have a registered Android device.

Chapter 6

[305]

To create a broadcast application Visualforce page, perform the following steps:

1. Navigate to Setup | Develop | Pages.
2. All of the Visualforce pages for your organization will be displayed.

Click on New.
3. In the Page Information section, enter ForceNotify in the Label field.
4. Enter ForceNotify in the Name field.
5. In the code download for the chapter, locate the ForceNotify.page

file in the force_com folder.
6. Accept the default markup in the Visualforce page editor.
7. Click on Save.

How the broadcast application Visualforce
page works
The following is the code for the Visualforce page and is fairly simple:

<apex:page controller="forceNotifyController" >
<apex:form >
 <apex:pageBlock title="Force Notify">
 <apex:pageBlockSection title="Notification Message" columns="1">
 <apex:pageMessages id="messages" ></apex:pageMessages>
 <apex:selectList label="Device Users" value="{!selectedUser}"
size="1">
 <apex:selectOptions value="{!registeredDeviceUsers}">
 </apex:selectOptions>
 </apex:selectList>
 <apex:inputTextarea label="Message" value="{!messageToSend}"
rows="3"/>
 </apex:pageBlockSection>
 <apex:pageBlockButtons location="bottom">
 <apex:commandButton value="Send Message"
 action="{!sendNotificationHubMessage}" />
 </apex:pageBlockButtons>
 </apex:pageBlock>
</apex:form>
</apex:page>

The highlighted blocks of code show where we are linking the drop-down list to
the controller properties, thus providing an input text control to enter a broadcast
message and the command button to the event handler in the controller.

Congratulations! The application is now complete.

Cloud-connected Applications

[306]

Running the application
The first step in running the application is to start an Android emulator (or use
your Android device) and run the forceNotify application. After you have logged
into Salesforce, the main application screen will be displayed (I have selected Fetch
Contacts), as shown in the following screenshot:

Chapter 6

[307]

When the Android application starts, access the Visualforce page in Salesforce,
as shown in the following screenshot:

Type in a message and click on Send Message, as shown in the following screenshot:

Cloud-connected Applications

[308]

The message will be sent to the Azure Notification Hub and the result will displayed
on the Visualforce page, as shown in the following screenshot:

In the Android application, access the notifications area. The notification sent from
Force.com will appear, as shown in the following screenshot:

Chapter 6

[309]

Debugging the Azure Notification Hub
The code download for the chapter contains extensive debug statements in the Force.
com and Android applications to help you with debugging and tracking application
execution. An additional debugging facility exists in Azure to help you isolate the
problem if push notifications aren't being received by your Android application, as
shown in the following screenshot:

The preceding screen allows you to send push notifications directly from Azure to
registered mobile devices. If your device is receiving notifications from this screen,
and not Force.com, it is likely that there is an issue in your Force.com application.
Conversely, if your device isn't receiving notifications from this screen, there is likely
an issue with your Android application.

Cloud-connected Applications

[310]

Summary
In this chapter, we have successfully combined multiple techniques used throughout
the entire book to build a cloud-connected Force.com application. We have seen that
Force.com, the Azure Cloud, and Android can all be combined to build a compelling
mobile application for your Force.com users.

A key learning from this chapter should be that as we move toward a more
cloud-oriented computing paradigm, the configuration capabilities and metadata
from working with cloud services goes hand-in-hand with traditional coding tools
and SDKs. It is important to know the capabilities of both, and how to combine them
into a working application.

As always, there are some improvements you can make to the application,
as follows:

• Try sending messages through Azure to other mobile platforms (iOS and
Windows). Even though we are only targeting Android devices in this
chapter, it is extremely simple to configure a Notification Hub for other
platforms. Refer to the Windows Azure documentation for more details.
Microsoft has also developed a range of SDKs that simplify developing for
Notification Hubs on each platform.

• You can implement a multiselect picklist instead of a drop-down list for user
selection to target multiple users.

• You can add a dash of Ajax functionality to the Visualforce page to provide a
more dynamic user interface.

Finally, if you have got this far and successfully built all of the example applications
in the book, please accept my heartfelt congratulations and gratitude. I sincerely
hope that you have learnt some new Force.com development techniques, and
perhaps brushed up on a few existing ones. Ultimately, I hope that you can now use
these techniques in your own Force.com applications, speed up your development
cycles, and delight your customers!

Importing Data with
the Apex Data Loader

You can load the sample data onto your development organization by using
the LexiLoader (Apex Data Loader) in OS X by performing the following steps.
Alternatively, for Chapter 2, The E-Commerce Framework, you can load the data as
mentioned in the Importing with the Custom Object Import Wizard section. The steps
to load the sample data onto your development organization for the Windows
Apex Data Loader are identical to LexiLoader:

1. Start the Apex Data Loader on your computer.
2. Select Insert from the main window.
3. Enter your Salesforce Username and Password. Note that your password

must be appended with your security token. Click on Log in.
4. When you have logged in successfully, click on Next.

Importing Data with the Apex Data Loader

[312]

5. In step 2 of the import wizard, select the Order Line Item (Order_Line_Item_c)
option and the Order Line Item.csv file. Click on Next, as shown in the
following screenshot:

6. Click on OK in the dialog when the initialization is successful.
7. In step 3 of the import wizard, click on Create or Edit a Map.
8. In the Mapping Dialog window, click on Auto-Match Fields to Columns.

The Mapping Dialog window on your screen should resemble the following
screenshot. Click on OK:

Appendix A

[313]

9. Upon doing this, you are returned to step 3 of the import wizard.
Here, you need to click on Next.

10. In step 4 of the import wizard, select a folder for the success and error
files and click on Finish.

11. Click on Yes in the dialog warning you have chosen to insert records.
12. The import process will begin importing records. When the import has

completed, the Operation Finished dialog will be displayed, as shown
in the following screenshot:

13. From this dialog, you can also view the audit reports for the import successes
and failures by clicking on the View Successes or View Errors button.

14. Click on OK to complete the import.
15. Verify whether the import was successful by checking your development

organization's order line items object.
16. Close the Data Loader.

Congratulations! You have now finished building the base application.

Installing Ruby on Rails
on Ubuntu

I am assuming that you have a clean install of Ubuntu Desktop version 14.04 LTS,
which was the version at the time of writing. You also need superuser (root) access to
the system.

There are three main steps to install Ruby on Rails on Ubuntu:

• Install Ruby Version Manager (RVM)
• Install Ruby 2.0.0
• Install Rails 4.0.0

Installing Ruby on Rails
To install Ruby on Rails on your system, perform the following steps:

1. Open a terminal window in Ubuntu (I recommend Terminal):

Installing Ruby on Rails on Ubuntu

[316]

2. Install cURL (a tool to transfer data to and from servers) by issuing the
following command:
$ sudo apt-get install curl

3. Install RVM by issuing the following command:
$ curl -sSL https://get.rvm.io | bash -s stable

4. Add rvm to your Ubuntu environment:
$ source ~/.rvm/scripts/rvm

5. Instruct rvm to install and update the prerequisite Ubuntu modules required
for it to run Ruby:
$ rvm requirements

Appendix B

[317]

6. Install Ruby 2.0.0 by issuing the following command:
$ rvm install 2.0.0 –-with-openssl-dir=~/.rvm/usr

Installing Ruby on Rails on Ubuntu

[318]

7. When Ruby has been installed, your terminal should look similar to the
following screenshot:

8. Once Ruby has been installed, you can install Rails 4.0.0 with the
following command:
$ gem install rails –-version 4.0.0

Appendix B

[319]

9. The installation of Rails will take some time. When it has been installed,
your terminal should look similar to the following screenshot:

10. To support the running of the e-commerce application locally in Chapter 2,
The E-Commerce Framework, we need to install a few Ubuntu modules with
the following command (don't worry if the command reports that the latest
versions of some of the modules are already installed):
$ sudo apt-get install libxslt-dev libxml2-dev libsqlite3-dev

Installing Ruby on Rails on Ubuntu

[320]

11. Finally, the e-commerce application requires a JavaScript runtime, so we will
install Node.js with the following command:
$ sudo apt-get install nodejs

12. Congratulations! Ruby on Rails is now installed.

Index
A
Account object

and VolunteerEvent object,
connecting 15-17

customizing 12
ADT

about 265
Android SDK, installing 265, 266
Android virtual device,

configuring 266, 268
Android virtual device, signing in 268-271
installing 265
used, for configuring Android mobile

application 282
ADT Bundle

URL, for downloading 265
Analytical Snapshot

about 182
URL 182

Android Developer Tools. See ADT
Android manifest file

updating 284, 285
Android mobile application

Android manifest file, updating 284, 285
Android support libraries, adding 286
Azure Notifications Hub SDK, adding 286
bootconfig.xml file, updating 286
building 281
code, enhancing 288, 289
configuring, ADT used 282
executing 306-308
Google Play Services Library,

importing 287, 288
Notification Hubs, debugging 309

Salesforce Android application,
importing 282-284

Salesforce Android Mobile SDK
application, creating 281

Salesforce Mobile SDK, importing 282-284
Android Mobile SDK application code

Broadcast Receiver class, creating 292, 293
enhancing 288, 289
MainActivity class, enhancing 289-291

Android SDK
installing 265, 266

Android support libraries
adding 286

Android virtual device
configuring 266, 268
signing in 268-271

AngularJS
downloading 219, 220
URL, for downloading 219

AngularJS Mobile Pack
downloading 221
URL, for downloading 221

Apex 30
Apex Data Loader. See LexiLoader
application stack 83
application tabs

defining, for skeleton EIS Dashboard
application 186

defining , for basic Fulfilment
application 68, 69

authenticated user profile
creating 20, 21

Azure Android SDK
downloading 280, 281

[322]

Azure Notification Hub. See
Notification Hubs

Azure Notifications Hub SDK
adding 286

Azure Service Bus credentials
getting 278, 279

B
base AngularJS HTML5 application

(base application)
about 218
building 218
building, AngularJS Mobile Pack used 221
building, AngularJS used 219, 220
building, jQuery used 221
building, Twitter Bootstrap used 220, 221
deploying, to Heroku 227, 228
files, copying 222, 223
Heroku application, building 223, 226
remote access application, configuring 226
structure, building 222
working 229

basic fulfillment application
application tabs, defining 68, 69
building 58
data model, defining 58
Order Line Item, loading 72
Orders application, defining 69
page layouts, defining 68, 69
workflow, configuring 70-72

bootconfig.xml file
updating 286

branding element, Volunteer Community
Color scheme 29
Footer 29
Header 29

broadcast application custom controller
creating 301, 302
working 302-304

broadcast application Visualforce page
creating 304, 305
working 305

Broadcast Receiver class
creating 292, 293
working 294, 295

bulkified trigger 171

business requirements, student admissions
system

analyzing 122

C
callback controller

about 239
working 240

Chatter
Chatter feeds, enabling 23
configuring 23
custom application, creating 25
Force.com application, creating 24
VolunteerEvent custom object tab,

creating 24
Chatter feed

enabling 23
Chatter, student admissions system

Chatter feeds, enabling for
Applicant 144, 145

Chatter feeds, enabling for Course 143, 144
Chatter feeds, enabling for Course

Application 146
enabling 143

community logo
adding, to Site.com header 36
importing 35, 36

community, Salesforce
building 8, 9
enabling 9, 10

components, EIS Dashboard
custom controller 184
custom object 182
KPI formulae 182, 183
Visualforce page 184

configuration, Android virtual
device 266, 268

configuration, e-commerce application 81-84
configuration, Git 80
configuration, Google Cloud Messaging 274
configuration, Heroku 80
configuration, Notification Hubs 275-278
configuration, remote access

application 84-89, 226
configuration, remote site settings 295, 296
configuration, Ruby on Rails 78, 79

[323]

configuration, Salesforce-connected
application 273

Course Application routing logic
faculty assignment Apex trigger,

building 168, 169
faculty assignment Apex trigger,

testing 171
faculty assignment Apex trigger,

working 170, 171
CRM system

building, for student admissions 121
custom application

creating 25
Custom Object Import Wizard

importing 72-76
custom object tabs, student

admissions system
defining 147
permissions, setting for profiles 148

custom settings, student admissions system
creating 166-168

D
data

loading, LexiLoader used 311-313
data access page

creating 43, 44
Date/Time column, fixing 47
events list, catering 50
events list, customizing 45
events list, styling 45-47
paging buttons, adding 49
paging support, adding 48

data model, basic fulfillment application
fields, configuring for Order Line object 66
fields, configuring for Order object 67
Order Line Item object, defining 62, 63
Order Line object, defining 63, 64
Order Line relationships, defining 65, 66
Order object, defining 58-61

data objects, student admissions system
Applicant object, defining 127-129
Course Application object, defining 129-132
Course object, defining 124-126
defining 124

data requirements, student
admissions system

analyzing 123
cardinality rules 123

development environment
ADT, installing 265
configuring 264
Node.js, installing 264, 265
Salesforce Android Native Mobile SDK,

installing 272
development environment,

e-commerce
application

configuring 78
Git, configuring 80
Heroku, configuring 80, 81
Ruby on Rails, configuring 78, 79

E
e-commerce application

building 77, 78
configuring 81-84
deploying, to Heroku 89-92
development environment, configuring 78
order, placing 92-96
remote access application,

configuring 84-89
EIS Dashboard

about 180
building 184
components 181
custom object, defining 184, 185
final EIS Dashboard application,

building 188
overview 180
requirements 180, 181
skeleton EIS Dashboard application,

creating 185
EIS Dashboard custom controller

about 184
button click handler method,

generating 192, 193
constructor method, defining 191, 192
creating 188
EIS Dashboard method, generating 193
KPIs method, generating 199, 200

[324]

new policy totals method,
generating 197, 198

properties, declaring 189-191
renewal totals method, generating 194-197
testing 201
Visualforce charts, generating 200

EIS Dashboard custom object
about 182
defining 184, 185

EIS Dashboard Visualforce page 184
EIS policy data

importing 187
events list, data access page

catering 50
customizing 45
paging support, adding 48
styling 45-47

Executive Information System Dashboard.
See EIS Dashboard

F
files

copying 222, 223
final AngularJS HTML5 application

(final application)
about 230
application logic, finalizing 230-233
building 230
deploying, to Heroku 261, 262
folder structure, finalizing 230
initializing 233-237
JavaScript object reflection service 261
opportunity display components 240
opportunity map components 247
Salesforce authentication components 237

final EIS Dashboard application
building 188
custom controller, creating 188
final Visualforce page, creating 202

final EIS Dashboard Visualforce page
creating 202
declaring 202, 203
input criteria controls, declaring 203, 204
new policy dashboard charts,

displaying 209, 210
new policy KPIs, displaying 207

renewal dashboard charts,
displaying 208, 209

renewal KPIs, displaying 204, 206
final Fulfillment application

building 97
Orders custom controller, building 104
Orders custom controller, working 105-110
Order Search custom controller,

building 97
Order Search custom controller,

working 98, 99
Order Search Visualforce page, building 99
Order Search Visualforce page, working

100, 102
Orders Visualforce page, building 111
Orders Visualforce page, working 112-118
Visualforce Orders tab, configuring 102,

103, 104
folder structure

building, for base application 222
finalizing, for final application 230

footer, Site.com
customizing 38, 39

Force.com
using 7, 22

Force.com application
creating 24
creating, for student admissions system 149

Force.com broadcast application
broadcast application custom controller,

creating 301, 302
broadcast application Visualforce page,

creating 304, 305
creating 295
Notification Hub Interface class,

creating 296
remote site settings, configuring 295, 296

Force.com Developer edition
URL 22

Force.com fulfillment application. See
Fulfilment application

force majeure insurance brokers 179
Force volunteers user profile

configuring 22, 23
fulfillment application 58

[325]

functional requirements, student
admissions system

analyzing 122, 123

G
geolocation trigger

adding 248-251
working 251-254

Git
about 80
configuring 80
URL, for downloading 80

GitHub
URL 80

Google APIs Platform 4.4.2 Level 19 284
Google Cloud Messaging

configuring 274
Google Geocoding API

URL 230
Google Maps API

URL 230
Google Play Services Library

importing 287, 288

H
header, Site.com

community logo, adding 36
community logo, importing 35, 36
navigation menu, adding 37, 38

Heroku
base application, deploying to 227, 228
configuring 80
e-commerce application, deploying to 89-92
final application, deploying to 261, 262
URL 77, 80

Heroku application
building 223, 226

Heroku toolbelt
installing 80
URL, for installing 80

home controller
about 237, 238
working 238

I
initial EIS Dashboard Visualforce page

creating 186
installation, ADT 265
installation, Android SDK 265, 266
installation, Node.js 264, 265
installation, Rails 4.0.0 318-320
installation, Ruby 2.0.0 317, 318
installation, Ruby on Rails 315
installation, RVM 316
installation, Salesforce Android Native

Mobile SDK 272

J
JavaScript object reflection service 261
jQuery

downloading 221
URL, for downloading 221

K
Key Performance Indicators. See KPIs
KPI formulae

about 182
for new EIS Dashboard policy 183
for renewed EIS Dashboard policy 182

KPIs
about 180
for new EIS Dashboard policy 181
for renewed EIS Dashboard policy 180, 181

L
LexiLoader

about 311
used, for loading data 311-313

licensing options, Salesforce
URL 55

location service
about 255
working 256

login controller
about 238
working 239

[326]

logout controller
about 240
working 240

lookup relationship
configuring 65

M
MainActivity class

enhancing 289-291
working 291, 292

map view controller 256-260
members

adding, to Volunteer Community 27-29
mobile application

overview 214-218
Model-View-Controller (MVC) 78, 219

N
navigation menu

adding, to Site.com 37, 38
Node.js

installing 264, 265, 320
URL 265

Notification Hub Interface class
creating 296
getAzureAccessToken method 297
getHubRegistrations method 297
sendHubMessage method 297
working 297-301

Notification Hubs
about 263
Azure Android SDK, downloading 280, 281
Azure Service Bus credentials,

getting 278, 279
configuring 275-278
debugging 309

O
Open Authorization (OAuth) 214
opportunity detail view controller

about 246
working 247

opportunity display components
opportunity detail view controller 246
opportunity factory 240-243
opportunity list controller 244

opportunity factory
about 240-243
getOpportunitiesWithinRadius method 241
getOpportunityList method 241
getOpportunity method 241

opportunity list controller
about 244
working 245

opportunity map components
about 247
geolocation trigger, adding 248-251
location service 255
map view controller 256-260

Order Line Item, basic fulfillment
application

Custom Object Import Wizard,
importing 72-76

loading 72
Organization-Wide Defaults, student

admissions system
configuring 136, 137

P
page layouts, basic fulfillment application

defining 68, 69
paging buttons

adding, to data access page 49
Platform as a Service (PaaS) 57
public user profile

configuring 18, 19
publisher action, student admissions system

adding, to Chatter feed 174, 175
developing 172-174
enabling 172
implementing 175-177

Q
queues, student admissions system

business faculty course applications,
creating 157

business faculty queue access,
restricting 159-162

[327]

course application exception, creating 159
creating 157
exceptions queue access,

restricting 164-166
science faculty course applications,

creating 158
science faculty queue access,

restricting 163, 164
system administrators public group,

setting 157

R
Rails 4.0.0

installing 318-320
Rails console 82
remote access application

configuring, in Force.com 84-89, 226
remote site settings

configuring 295, 296
reporting system. See EIS Dashboard
role hierarchy, student admissions system

admissions office, configuring 140
business faculty, configuring 141
configuring 137, 138
science faculty, configuring 142
top-level roles, configuring 138, 139

Ruby 78
Ruby 2.0.0

installing 317, 318
Ruby on Rails

configuring 78, 79
installing 315
URL 77

Ruby on Rails installation
performing 315
Rails 4.0.0, installing 318-320
Ruby 2.0.0, installing 317, 318
RVM, installing 316

Ruby Version Manager (RVM)
about 315
installing 316

S
Sales Cloud and Opportunities 182
Salesforce

about 7

community, building 8, 9
community, enabling 9, 10
community requirements, determining 8
Volunteer Community, creating 11
Volunteer Community, publishing 54, 55

Salesforce Android application
importing 282-284

Salesforce Android Mobile SDK application
creating 281

Salesforce Android Native Mobile SDK
installing 272

Salesforce authentication components
callback controller 239
home controller 237, 238
login controller 238
logout controller 240

Salesforce community page
Contact Us 8
Events 8
Home 8
Services 8
Volunteers Online 8
Who We Are 8

Salesforce-connected application
configuring 273

Salesforce Mobile SDK
importing 282-284

security requirements, student admissions
system

analyzing 123
Single Page Application (SPA) 232
Site.com

about 7, 8
creating 32-35
data access page, creating 43, 44
designing, for Volunteer Community 30-31
footer, customizing 38, 39
header, customizing 35
static site page, creating 41
style, adding 39-41
text, adding to static site page 42, 43

skeleton EIS Dashboard application
application tabs, defining 186
creating 185
defining 187
EIS policy data, importing 187
initial Visualforce page, creating 186

[328]

Software Development Kit (SDK) 264
static site page

creating 41
text, adding to 42, 43

student admissions system
about 121
building 124
business requirements, analyzing 122
Chatter, enabling 143
Course Application routing logic 168
custom object tabs, defining 147
custom settings, creating 166, 167
data objects, defining 124
data requirements 123
Force.com application, creating 149
functional requirements, analyzing 122, 123
Organization-Wide Defaults,

configuring 136, 137
publisher action 172
queues, creating 157
role hierarchy, configuring 137, 138
security requirements, analyzing 123
user interface, customizing 149
user profile, configuring 133

styles
adding, to Site.com 39-41

T
text

adding, to static site page 42, 43
Twitter Bootstrap

downloading 220, 221
URL, for downloading 220

U
Ubuntu

URL, for installation 79
user interface, student admissions system

Applicant 149, 150
Applicants tab 154, 155
Course Application page layout 152, 153
Course Applications tab 156
Courses 151, 152
Courses tab 155
customizing 149

user profile, student admissions system
Admissions Office profile, creating 134, 135
configuring 133
Course Administration profile, creating 133
Selection Officer profile, creating 135, 136

users
creating, for Volunteer Community 53

V
VirtualBox

URL 79
Visualforce 7, 30
Volunteer Community

Account and VolunteerEvent objects,
connecting 15-17

Account object, customizing 12
authenticated user profile, creating 20, 21
branding element 29, 30
Chatter, configuring 23
creating 11
custom objects, configuring 12
Force volunteers user profile,

configuring 22, 23
members, adding 27-29
progress check 26
public user profile, configuring 18, 19
publishing, on Salesforce 54, 55
Site.com, designing for 30-31
user profile, configuring 12
users, creating 53
volunteering event custom field,

creating 14
volunteering event custom object,

creating 13
volunteers page, securing 51-53

VolunteerEvent custom object tab
creating 24

volunteering event custom field
creating 14
Description 14
End Date/Time 14
Location 14
Special Skills 14

volunteering event custom object
and Account object, connecting 15-17
creating 13

[329]

W
Windows Azure

about 263
URL 280

Windows Azure Management
URL 275

workflow, basic fulfillment application
configuring 70-72

Thank you for buying
Force.com Development Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Salesforce CRM: The Definitive
Admin Handbook
ISBN: 978-1-84968-306-7 Paperback: 376 pages

A comprehensive, power-packed guide for all
Salesforce Administrators covering everything
from setup and configuration, to the customization
of Salesforce CRM

1. Get to grips with tips, tricks, best-practice
administration principles, and critical design
considerations for setting up and customizing
Salesforce CRM with this book and e-book.

2. Master the mechanisms for controlling access to,
and the quality of, data and information sharing.

3. Take advantage of the only guide
with real-world business scenarios
for Salesforce CRM.

Force.com Developer
Certification Handbook (DEV401)
ISBN: 978-1-84968-348-7 Paperback: 280 pages

A comprehensive handbook to guide Force.com
developers through important fundamentals and
prepare them for the DEV401 exam

1. Simple and to-the-point examples that can be
tried out in your developer org.

2. A practical book for professionals who want
to take the DEV401 Certification exam.

3. Sample questions for every topic in an exam
pattern to help you prepare better, and tips
to get things started.

Please check www.PacktPub.com for information on our titles

Force.com Tips and Tricks
ISBN: 978-1-84968-474-3 Paperback: 224 pages

A quick reference guide for administrators and
developers to get more productive with Force.com

1. Tips and tricks for topics ranging from
point-and-click administration, to fine
development techniques with Apex
and Visualforce.

2. Avoids technical jargon, and expresses
concepts in a clear and simple manner.

3. A pocket guide for experienced
Force.com developers.

Salesforce CRM Admin Cookbook
ISBN: 978-1-84968-424-8 Paperback: 266 pages

Over 40 recipes to make effective use of Salesforce
CRM with the use of hidden features, advanced
user interface techniques, and real-world solutions

1. Implement advanced user interface techniques
to improve the look and feel of Salesforce CRM.

2. Discover hidden features and hacks that extend
standard configuration to provide enhanced
functionality and customization.

3. Build real-world process automation, using
the detailed recipes to harness the full power
of Salesforce CRM.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building and Customizing
Your Own Sites
	Determining the community requirements
	Building a community
	Enabling communities
	Creating the community
	Configuring custom objects and user profiles
	Customizing the Account object
	Creating a volunteering event custom object
	Creating volunteering event custom fields
	Connecting the Account and VolunteerEvent objects
	Configuring the community public user profile
	Creating authenticated community user profiles
	Configuring Force volunteers Salesforce user profiles

	Configuring Chatter
	Enabling Chatter feeds for VolunteerEvent
	Creating the VolunteerEvent custom object tab
	Creating a custom application

	Progress check – what have we achieved
so far?
	Adding community members
	Branding the community
	Specifying Site.com for the community

	Creating a public community site
	A quick tour of the Site.com community
	Customizing the site header and footer
	Creating a data access page

	Securing the volunteers page
	Creating the Volunteer users

	Going live

	Summary

	Chapter 2: The E-Commerce Framework
	Building a basic Force.com fulfilment application
	Defining the data model
	Defining the Order object
	Defining the Order Line Item object
	Defining the Order Line object
	Defining the Order Line relationships
	Finishing the data model

	Defining application tabs and page layouts
	Creating the application
	A dash of workflow

	Loading in Order Line Items
	Importing with the Custom Object Import Wizard

	Building the e-commerce application
	Setting up the development environment
	Ruby on Rails
	Git
	Heroku

	Configuring the e-commerce application
	Configuring a Force.com remote access application
	Deploying to Heroku
	Placing an order

	Building the final Force.com Fulfillment application
	Building the order search custom controller
	Working of the Order Search custom controller

	Building the Order Search Visualforce page
	How the Order Search page works

	Configuring the Visualforce Orders tab
	Building the Orders custom controller
	Working of the Orders custom controller

	Building the Orders Visualforce page
	Working of the Orders page

	Summary

	Chapter 3: Building a Full CRM System
	Student admissions system requirements analysis
	Functional requirements
	Data requirements
	Security requirements

	Building the student admissions system
	Defining the custom data objects
	Defining the Course object
	Defining the Applicant object
	Defining the Course Application object

	User profiles
	The Course Administration profile
	The Admissions Office profile
	The Selection Officer profile

	Organization-Wide Defaults
	The role hierarchy
	Configuring the top-level roles
	Configuring the admissions office hierarchy
	Configuring the business faculty hierarchy
	Configuring the science faculty hierarchy

	Chatter
	Enabling the Chatter feeds for Course
	Enabling the Chatter feeds for Applicant
	Enabling the Chatter feeds for Course Application

	Defining the custom object tabs
	Setting the tab permissions for profiles

	Creating the Force.com application
	The user interface
	Applicants
	Courses
	The Course Application page layout
	The Applicants tab
	The Courses tab
	The Course Applications tab

	Queues
	The system administrators public group
	The Business Faculty Course Applications queue
	The Science Faculty Course Applications queue
	The Course Application Exception queue
	Restricting access to the business faculty queue
	Restricting access to the science faculty queue
	Restricting access to the exceptions queue

	Custom settings
	The Course Application routing logic
	Building the faculty assignment Apex trigger
	How the faculty queue assignment trigger works
	Testing the faculty queue assignment trigger

	A decision entry publisher action
	Enabling the publisher actions
	Developing the publisher action
	Adding the publisher action to the Chatter feed
	Try out the publisher action

	Summary

	Chapter 4: Building a Reporting System
	Reporting system overview
	Reporting requirements

	Reporting system design
	The EIS Dashboard custom object
	KPI formulae
	EIS Dashboard Visualforce page
	EIS Dashboard custom controller

	Reporting system build
	Defining the EIS Dashboard custom object
	Creating the skeleton EIS Dashboard application
	Creating the initial Visualforce page
	Defining the application tabs
	Create the EIS Dashboard application
	Importing EIS policy data

	Building the final reporting application
	The EIS Dashboard custom controller
	EIS Dashboard Visualforce page

	Summary

	Chapter 5: The Force.com
Mobile SDK Application
	Mobile application overview
	Building a base AngularJS HTML5 application
	Downloading AngularJS
	Downloading Twitter Bootstrap
	Downloading jQuery
	Downloading the Salesforce AngularJS Mobile Pack
	Building a base HTML5 application structure
	Copying the base HTML5 application files
	Building a base HTML5 Heroku application
	Configuring a remote access application
	Deploying the HTML5 base application to Heroku
	How the base application works

	Building the final AngularJS HTML5 application
	Finalizing the application folder structure
	Finalizing the application landing page
	Initializing the AngularJS application
	The Salesforce authentication components
	Home controller
	The login controller
	The callback controller
	The logout controller

	The opportunity display components
	The opportunity factory
	The opportunity list controller
	The opportunity detail view controller

	The opportunity map components
	Adding a geolocation trigger to the Account object
	Location service
	The map view controller

	JavaScript object reflection service
	Deploying an application to Heroku

	Summary

	Chapter 6: Cloud-connected Applications
	The development process overview
	Configuring the development environment
	Installing Node.js
	Installing Android Developer Tools
	Installing the Android SDK
	Configuring an Android virtual device
	Signing in to the Android virtual device

	Installing the Salesforce Android Native Mobile SDK

	Configuring a Salesforce-connected application
	Configuring Google Cloud Messaging
	Configuring the Azure Notification Hub
	Getting the Azure Service Bus credentials
	Downloading the Azure Android SDK

	Building an Android mobile application
	Creating the Salesforce Android Mobile SDK application
	Configuring an application using ADT
	Importing the Salesforce Mobile SDK and Salesforce Android application
	Updating the Android manifest file
	Updating the bootconfig.xml file
	Adding the Azure SDK and Android support libraries
	Importing the Google Play Services Library

	Enhancing the Android Mobile SDK application code
	Enhancing the MainActivity class
	Creating the Broadcast Receiver class

	Creating the Force.com broadcast application
	Configuring the remote site settings
	Creating the Notification Hub Interface class
	How the Notification Hub Interface class works

	Creating the broadcast application custom controller
	How the broadcast application custom controller works

	Creating the broadcast application Visualforce page
	How the broadcast application Visualforce
page works

	Running the application
	Debugging the Azure Notification Hub

	Summary

	Appendix A: Importing Data with
the Apex Data Loader
	Appendix B: Installing Ruby on Rails
on Ubuntu
	Installing Ruby on Rails

	Index

