
www.allitebooks.com

http://www.allitebooks.org

Force.com Tips and Tricks

A quick reference guide for administrators and
developers to get more productive with Force.com

Ankit Arora

Abhinav Gupta

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Force.com Tips and Tricks

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1230113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-474-3

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Ankit Arora

Abhinav Gupta

Reviewers
Naveen Gabrani

Srikanth Goati

Aruna A. Lambat

Caleb Poitevien

Karanraj Sankaranarayanan

Dianne Siebold

Acquisition Editor
Rukhsana Khambatta

Lead Technical Editor
Dayan Hyames

Technical Editor
Prasad Dalvi

Project Coordinator
Leena Purkait

Proofreaders
Aaron Nash

Maria Gould

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Production Coordinators
Melwyn D'sa

Nilesh R. Mohite

Cover Work
Melwyn D'sa

Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Ankit Arora (@forceguru) is an avid Force.com-certified professional who
has been working on the platform since 2008. Since then, he has been involved in
architecting, building, and implementing Force.com solutions for on-premise and
AppExchange applications. He has also won many online challenges rolled out by
Salesforce such as TwitterTrivia, Hammer of Thor, and CloudTrivia.

Ankit is a Force.com MVP (Most Valuable Professional) and leader of Jaipur
Salesforce Platform Developer Users Group. He has been contributing to the
Salesforce community in various ways and through various channels. He is
passionate about Force.com and exhibits this by actively blogging at forceguru.
blogspot.in. He is acting as moderator on the Salesforce Discussion Boards
and shares his knowledge and experience by providing effective and converging
solutions to developer queries. He has submitted many cookbook recipes that can be
found in the online Force.com Cookbook.

Ankit resides in Jaipur, also known as the pink city, located in Rajasthan, India, a
city that has been able to maintain its rich heritage from the times of Maharajas, yet
picking up the pace to emerge as a strong contender for one of the fastest growing
cities in India. Ankit lives with his family and likes to play first person combat games
such as Counter Strike in his free time. He is an enthusiast sportsman and a national
level player in the online Counter Strike competition.

Though only my name appears on the cover of this book, a great
many people have contributed to its production. In particular, I
would like to thank my brother-in-law Ajay Deewan, for being my
greatest teacher, mentor, and for helping me throughout the book.
His patience and support helped me overcome many crisis situations
and finish this book.

Finally I would like to thank my family and friends for
supporting me.

www.allitebooks.com

http://www.allitebooks.org

Abhinav Gupta is a solution architect and an expert cloud computing consultant.
He is a Force.com contributor and an avid blogger. He actively participates on Force.
com discussion boards, blogs about cloud computing, Salesforce.com, and open
source technologies at http://www.tgerm.com, and also contributes to various open
source projects.

Abhinav has specialized in both native Force.com app development and B2B/B2C
integrations with other platforms/APIs. His area of expertise is not only limited
to Force.com; he has also done quality work on other cloud platforms such as
developing JEE apps on Heroku, Amazon Web Services (EC2, BeanStalk, and so on),
and Google App Engine. He is a Force.com MVP with notable achievements that
include creating the Code Share project Tolerado, winning third place in the 2010
Salesforce Developer Challenge with his mobile location sharing application, and
frequently being mentioned in the Salesforce.com newsletter and blog.

Abhinav lives in India with his wife and three-year-old daughter, and enjoys reading
technology books and magazines and playing computer games.

Thanks to my wife for being supportive and compromising her time
and weekends to spare me for the book, my little daughter for all
the fun and naughtiness she spreads around, my mom and dad for
all the affection and care, and last but not least the Packt Publishing
team and editors for their patience and cooperation throughout the
book writing process.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Naveen Gabrani is a Force.com architect and is founder of the Salesforce consulting
company Astrea IT Services. Astrea is a leader in providing Salesforce.com services.
Astrea has three products on AppExchange, Smart vCard, Astrea Clone, and Object
Hierarchy, which were envisioned by Naveen. Naveen has 20 years of experience in
the IT industry in various technical and management positions.

Srikanth Goati is a Salesforce-certified professional and co-founder of Salesforce
Hyderabad User Group. Currently, he is working as a Salesforce administrator with
Y-Axis Solutions Pvt Ltd, Hyderbad, AP, India.

Srikanth is an MCA Graduate from Hyderabad. He has acquired the Salesforce
Certifications DEV401 and ADM201. He is one of the top three bloggers in the
Salesforce community. He has conducted Salesforce training sessions for more than
350 users in his company.

Overall, he has more than 2 years of experience in Salesforce.com development
and administrating. He has experience in the Sales cloud, Service cloud, Apex,
Visualforce, Database.com, Site.com, and Customer portal.

Internally in his company, he has written more than 50 training manuals on different
modules of Salesforce.com.

I wish to thank my parents Prakash and Nagamani and all family
members, friends, colleagues, for all the joy they bring into my life.

Thanks to my Salesforce community friends.

Thanks to the folks at Packt Publishing, the authors of this book,
and the many others who have provided help and inspiration
along the way.

www.allitebooks.com

http://www.allitebooks.org

Aruna A. Lambat is an enthusiastic Technical Leader working on Salesforce.com
technology with a profound understanding of software design and development. She
is passionate about building better products and providing excellent services leading
to healthier customer satisfaction.

She has been working on the Salesforce.com platform since 2008. She entered into IT
in 2004 as a student. She completed her Master's Degree in Computer Applications
from the state Maharashtra, India. She has been working in the IT industry since
2007. She started her carrier as a Java developer and later shifted her focus to cloud
computing, specifically in Salesforce.com. She is a Sun-certificated Java developer,
web component developer, and Salesforce-certified developer. She is a regular
contributor to the Salesforce developer community. She helped the author to cite the
example in the book, Force.com Developer Certification Handbook (DEV401).

Aruna works for HCL Technologies; it is primarily engaged in providing a
range of outsourcing services, business process outsourcing, and infrastructure
services. Aruna works as a Lead Consultant on Salesforce.com technology-based
customer services.

Aruna resides in Pune, the cultural capital of Maharashtra, also known for its
educational facilities and relative prosperity. She is from Nagpur, the orange city.
Her parents staying in the heart of the orange city. She completed her education in
this city and achieved success at different time points in her career with immense
support from her parents Mr and Mrs Anandrao Lambat. Aruna loves travelling for
nature visits, reading fiction books, playing pool, and roaming with friends in her
free time.

Aruna can be contacted at:

•	 Gmail: Aruna.Lambat@gmail.com
•	 LinkedIn: Aruna Lambat
•	 Twitter: @arunalambat
•	 Facebook: /aruna.lambat

My special thanks to Siddhesh Kabe for his help and providing me
the opportunity for a little contribution for his book, which in turn
provided me with the opportunity to work for further Salesforce
books from Packt Publishing.

www.allitebooks.com

mailto:Aruna.Lambat@gmail.com
http://www.allitebooks.org

Karanraj Sankaranarayanan is a certified Salesforce.com developer and works
full time at Tiara Consulting Services (I) Pvt Ltd, Chennai, the Indian operations of
Tiara Consulting headquartered in California, USA. Karan holds a Bachelors Degree
in Engineering from Anna University with a specialization in Computer Science. He
is passionate about the Salesforce platform, an active member/contributor of the
Salesforce customer community/developer forum, and writes blogs. He is also the
leader of the Chennai Salesforce Developer user group based in Chennai, India. He
can be reached via Twitter (@karanrajs).

www.allitebooks.com

http://salesforce.com
http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Learning to Fly with Force.com	 9

What is cloud computing?	 9
Infrastructure as a service (IaaS)	 11
Platform as a service (PaaS)	 12
Software as a service (SaaS)	 12

What is Force.com?	 13
What empowers Force.com?	 13

Multitenancy	 13
Metadata	 14

Understanding the Force.com stack	 15
Infrastructure as a service	 15
Database as a service	 16
Integration as a service	 16
Logic as a service	 17
User interface as a service	 17
Development as a service	 18
Force.com AppExchange	 18

Introduction to governor limits	 18
Salesforce environments	 19
Summary	 21

Chapter 2: Admin Tools	 23
Data Loader	 23

When to use Data Loader	 24
Strategy to import data	 24

Identifying data sources	 24
Data preparation	 25
Testing the data import	 25
Analyzing the test import	 26
Final data import	 26
Validating the import	 26

Table of Contents

[ii]

Using Data Loader for data export	 27
Using Data Loader for uploading attachments	 28

The Import wizard	 28
When to use the Import wizard	 29
Notes on data import	 29
Undoing data import	 30

Third-party tools for data integration	 30
Force.com Integrated Development Environment (IDE)	 32

IDE communication	 33
Force.com perspective	 33
Problems view	 34
Execute Anonymous view	 34
Apex Test Runner view	 35
Schema explorer	 35
Deployment	 35

Force.com Migration Tool	 36
AppExchange – cloud application marketplace	 37

DupeCatcher – real-time deduplication	 38
Milestones PM – project and task management	 38
Salesforce CRM dashboards	 39
Salesforce for Twitter and Facebook (v4)	 39
Appirio Contact Sync for Salesforce and Google Apps	 39
Ribbit for Salesforce	 39
SnapShot Change And Release Management	 39
Salesforce Adoption Dashboards (2011)	 40
Survey Force	 40
Draggin' Role	 40
Find Nearby – Accounts, Contacts, Leads – Managed, PE/EE/UE/DE	 40
AppExchange Dashboard Pack	 40
Action Plans – v3 – Unmanaged – EE, UE, and DE	 41
Project and Issue Management	 41
CloudConverter for Force.com	 41
Opportunity Planning Wall	 41
Data Loader – Salesforce integration	 41
Mass Edit + Mass Update + Mass Delete	 42
Implementation Cloud – project management app	 42
S-Docs – free document generator (PDF, Word, Excel)	 42
CMSForce 2	 42
FormFactory quotes and invoices	 43
Chatter Usage Dashboards – Force.com Labs	 43
FinancialForce Accounting for Salesforce	 43

Table of Contents

[iii]

Professional Services Automation – PSA for Salesforce	 43
CVM Supplier Central Enterprise Edition	 43
CVM Supplier Locator	 44

Summary	 44
Chapter 3: Making Best Use of Salesforce Objects	 45

Understanding the field types	 46
Basic non-relational field types	 46
Relational field types	 47
Identity fields	 48
System fields	 48
The Name field	 48
Additional database features	 49

Considerations for relationships	 50
Types of objects	 53

Standard objects	 53
Account	 53
Contact	 54
Lead	 55
Campaign	 56
Opportunity	 57
Forecast	 58
Quote	 58
Product and price book	 59
Case	 60

Custom objects	 61
Design approach	 61
Implementation steps	 62
Tips	 63

Record types	 64
Summary	 66

Chapter 4: Understanding Analytics	 67
Report types	 68

Tips and considerations for report types	 69
Defining report types	 69
Choosing object relationships	 70
Adding lookup fields	 70

Reports	 71
Organizing reports	 72
Working with reports	 73

Creating reports	 73
Subtotaling the report results	 79
Running reports	 82
Scheduling a report	 83
Printing and exporting reports	 84

Table of Contents

[iv]

Report charts	 85
Combination charts	 85

Dynamic reports	 86
Dashboards	 86

Working with dashboards	 88
Dashboard filters	 92
Dashboard data refresh	 92

Analytic snapshots	 93
Tips for analytic snapshots	 93

Tips on target objects	 94
Summary	 95

Chapter 5: Setting Up Development Environments	 97
Building apps on Salesforce	 98
What is an environment?	 98

Production environment	 99
Development environments	 99
Sandbox orgs	 99

Configuration-only sandbox	 101
Developer sandbox	 101
Full sandbox	 102
Typical uses of sandboxes	 102
Tips for creating or refreshing a sandbox	 103

Developer Edition orgs	 103
Individual versus partner DE	 104
When to use individual DE org	 104
When to use partner DE org	 104

Tips and best practices	 104
Choosing a development environment	 104
Development considerations	 105

Testing environments	 105
When to use a Partner Test Edition org	 106
When to use a sandbox org	 106

Various development scenarios	 106
Scenario 1	 106
Scenario 2	 107
Scenario 3	 107

Migrating changes between environments	 107
Migrating changes manually	 108

Establishing a change process for production org	 108
Tracking changes	 109

Metadata migration	 110
Migration using change sets	 110
Migrating metadata files	 111

Table of Contents

[v]

Application lifecycle management	 111
Production development	 112
Developing with sandbox	 112
Isolating development and testing	 113
Multiple project development with integration, UAT, and staging	 114
Developing enterprise applications	 115

Summary	 116
Chapter 6: Tools and Destinations that Every Force.com
Developer Should Know	 117

Tools for developers and admins	 118
Choosing the right IDE	 118

Force.com IDE based on Eclipse	 118
Developer console based on your browser	 119
Sublime Text plugin for Force.com	 120

Exploring objects, fields, and relationships using Schema Browsers	 122
Schema Builder	 122
Force.com Explorer	 123
SoqlXplorer	 123

Data Loaders	 123
Data Loader for Windows	 123
Force.com Excel Connector	 124
LexiLoader for Mac OS	 124

Utility tools and apps for productivity boost	 125
Force.com migration tool	 125
Salesforce Workbench	 125
Force.com Security Code Scanner	 126
Force.com Utility Belt	 127
Trapdoor (Mac OS only)	 128

Toolkits and libraries	 129
Destinations	 130

developer.force.com	 130
Open source goodness	 130
Queries and troubleshooting	 131

Summary	 132
Chapter 7: Writing Better Apex Code	 133

Understanding the language basics	 134
Using the correct nomenclature for code files	 134
Language constructs	 136

Finding what's different with static keywords	 136
Simplifying the loops	 137
Making constants better with enums	 137
Reducing script statements	 138

Table of Contents

[vi]

Advanced Apex	 138
Security data access via the with sharing keyword in classes	 139
Enforcing CRUD and FLS	 139
Writing better SOQL queries	 140

Query-required fields only	 140
Using SOQL for loops	 141
Executing selective and index-based queries	 142
Combining multiple SOQLs to avoid governor limits	 142
Fixing SOQL that returns a single record	 143
Making the most out of dynamic SOQL	 144

Taking control on DML operations	 145
Controlling transaction commits and rollbacks	 145
Fine-tuning with extra DML options	 146
Error handling during DML operations	 147

Decoding the Apex Describe Information	 148
Getting info about sObjects and associated fields	 148
Accessing/updating the sObject records based on field names	 150
Getting SobjectType from ID	 150
Instantiating classes dynamically	 150

Writing better triggers	 152
Understanding the order of execution for triggers	 152
Writing triggers to handle bulk data	 152
Multiple triggers on an sObject	 153

Handling XML in Apex	 154
Handling JSON in Apex	 156
Packaging considerations with Apex	 156
API version	 157

Changing API versions	 158
Apex testing tips	 159

Isolating test data from org data	 159
Testing with various profiles	 159
Letting your class know about the test context	 160

Apex REST web services	 160
API versioning with REST web services	 160

Knowing the limits	 161
Tracking resource (limit) usage	 162

Summary	 165
Chapter 8: Writing Better Visualforce Code	 167

Knowing the Visualforce architecture	 168
Reusing the platform's native look and feel	 169

Starting the page design with native headers	 169
Native detail sections/forms	 170
Styling tables to look like native grids	 171
Printing messages in a native style	 172

Table of Contents

[vii]

Native (standard) versus custom controllers/extensions	 173
Reusing VF code	 174

Including other VF pages	 175
Defining templates or page layouts	 175
Defining your own components	 176

Limiting view states	 176
Use the view state inspector	 177

Using static when possible	 177
Trimming the view state by using transient variables	 178

Identifying a transient variable	 178
Avoid multiple forms	 179
Query-required fields only	 180
More tips and tricks on the view state	 181

Flexible pages using field sets	 181
Speeding up Ajax calls	 182

Using the immediate attribute	 182
Re-rendering required components only	 182
Demarcating using action regions	 183

Global variables and functions	 183
JavaScript remoting	 184

Public versus global – using the right access modifier	 184
Making the most out of the method arguments and return types	 185
Handling namespace prefixes in managed packages	 185

Approach 1	 185
Approach 2	 186

Taking care of security compliance in pages	 186
Encode/escape	 186
Enforcing CRUD and FLS	 187

Miscellaneous tips	 189
Querying a million rows	 189
Rendering a page as a PDF	 190
Dynamic VF components	 190
Charts	 190

Summary	 191
Index	 193

Preface
Force.com is an interesting platform, which allows us to do many things by using the
declarative or point-and-click model; without writing a single line of code. This book
takes you beyond any documentation or course, and promises hands-on expertise.

Force.com Tips and Tricks will quickly groom you for various Force.com platform
secrets that can normally be learnt only after years of exposure. This book is your
key to the authors' vast experience with the platform.

Force.com Tips and Tricks starts with very basic admin tasks and gradually moves to
hardcore coding tips and tricks for the multitenant Force.com platform.

You will learn admin concepts and basics where you will gain tips and tricks for key
topics such as schema and accurate reporting for an organization. Troubleshooting
a problem and code re-use are two important aspects that help in boosting
productivity; a complete chapter is dedicated to these tasks. As the Force.com
platform is multitenant in nature, it requires a more mature mindset compared
to other programming languages; expert tips on developing this skill are covered
in detail.

What this book covers
Chapter 1, Learning to Fly with Force.com, covers the basics of cloud computing.
This chapter discusses the principles and constructs of Force.com, the benefits and
building blocks of Force.com, when to choose this platform, and many more topics.

Chapter 2, Admin Tools, delves deeper into the Force.com platform. This chapter will
discuss topics such as Data Loader, the Import wizard, AppExchange marketplace,
and Integrated Development Environment.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 3, Making Best Use of Salesforce Objects, discusses different field data types in
Salesforce, various considerations for defining relationships between objects, key
standard objects (for CRM), and so on.

Chapter 4, Understanding Analytics, explains about the Salesforce analytics.
Salesforce.com provides a very comprehensive analytics and reporting system,
which can be used to organize, view, and analyze your data so as to provide
real-time visibility into the business.

Chapter 5, Setting Up Development Environments, discusses various development and
test environments, and their usages in different scenarios. This chapter will provide
tips on how to choose an appropriate development environment.

Chapter 6, Tools and Destinations that Every Force.com Developer Should Know,
introduces various tools such as Schema Explorers, toolkits, and data migrators,
and destinations such as Twitter, Cookbook, and the DeveloperForce wiki.

Chapter 7, Writing Better Apex Code, illustrates some key best practices, tips, and tricks
to write better code in Apex and maintain a good relationship with the governor,
that is, as a good tenant.

Chapter 8, Writing Better Visualforce Code, covers tips and tricks around key
Visualforce areas such as differentiating facts about Visualforce architecture,
how to re-use the native look and feel in pages, and limiting the view state.

What you need for this book
Here is the list of software that you may require for implementing the examples
discussed in this book:

•	 Stable version of a good A grade browser (latest version would be best)
supported by Salesforce, such as Chrome, Firefox, or Internet Explorer

•	 Salesforce Developer Edition Org—one you can sign up for an account at
http://www.developerforce.com/events/regular/registration.
php?d=70130000000EjHb

•	 Eclipse for desktop installation or an in-browser Developer Console should
be fine

•	 Salesforce DataLoader and Microsoft Excel for Data Loader related tasks

http://www.developerforce.com/events/regular/registration.php?d=70130000000EjHb
http://www.developerforce.com/events/regular/registration.php?d=70130000000EjHb

Preface

[3]

Who this book is for
Force.com Tips and Tricks is not a bible or a complete reference for the Force.com
platform development. The time-saving tips and tricks make this book handy for
novices as well as experienced developers. This is basically for Force.com developers,
who want to extend their Force.com applications, using Flex, Apex, and Visualforce.

When to adopt cloud computing
For an organization, shifting the delivery model from traditional on-premise
development to the cloud is a great strategic step, and there are some key
considerations to it. Services offered by the cloud vendors may not be suitable for
a particular enterprise as the size of an organization is one of the major deciding
factors. An organization may need a service when it is in the initial stages, but may
need to drop it as it grows.

Consider the following points when deciding on adopting the cloud delivery model:

•	 The cloud is built to scale its services on demand. Assess whether your
demand is stable or changes widely. If it's more or less stable, you may not
need to go for extensive cloud services, otherwise the cloud is for you.

•	 Is the usage frequency of cloud services high? If yes, you may not need to
opt for the cloud's "pay-as-you-go" model.

•	 If your application is mission critical, and needs very strict SLAs
(service-level agreements) and almost full control over the infrastructure,
you may need to reconsider going for the cloud.

•	 Are you a start up? If yes, you may not need to invest upfront heavily in
infrastructure. the cloud's "pay-as-you-go" model fits easily here.

•	 Does your organization have a preferred technology and development
platform? If yes, vendor lock-in may be a potential issue as migrating from
one cloud service provider to another would be much more painstaking than
doing it in-house with on-premise software.

•	 How do you want show your expenses in the balance sheet? Cloud
computing model related expenses are being treated as operational
expenses and not capital expenses!

Preface

[4]

When to adopt Force.com for your
project
If you have decided to go with the cloud computing way, you may want to consider
the option of using Force.com for your projects. We have listed some key guidelines
based on the features that the platform has to offer, to help you decide whether
Force.com is the right choice for you or not.

•	 Is your application data centric with storage and retrieval of structured data?
This is the core capability of the platform, and applications that are focused
on structured data are best suited for this platform.

•	 Is your application going to store and work with high data volume? Do you
have any data warehousing requirements or complex analytics? Force.com
may not be the right choice in this case as it's a simple transactional database,
limited to only a few million records per object/table.

•	 Does your application involve large binary content files, such as audio/
video, and other heavy marketing material content? The data size is costly
on Force.com, so you may either consider another platform or work in
conjunction with other cloud services such as Amazon S3 servers.

•	 Is your application built around designing configurable dynamic page
layouts, wizards, reports, dashboards? Force.com is for you then.

•	 Does your application address a complex business problem involving many
workflows and approvals? Do you want non-technical people to manage and
maintain applications with the point and click operations? Force.com is the
right choice here.

•	 Do you need fine-grained security and sharing settings on your data?
Do you want to provide hierarchical data access to your users based on
the organizational roles? Custom solutions take a lot of time to build this
capability, which is natively offered by the platform through the point and
click operations.

•	 Will your application talk to other applications? Is there any third-party
integration needed? Force.com has native robust and extensive support for
web services integration, both inbound and outbound.

•	 Does your application involve e-mails, discussions, and collaborations with
Twitter-like functionalities? Features such as e-mail services and chatter are
presented as native offerings, thus making Force.com the right choice.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Within the build.xml file, there are
named targets that process a series of commands when you run Ant with a
target name."

A block of code is set as follows:

IF(
AND(Payment_Due_Date__c < TODAY(),
ISPICKVAL(Payment_Status__c, "UNPAID")),
"PAYMENT OVERDUE",
null)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public with sharing class AccountExtension {
 public Account[] init() {
 // Apart from matching criteria, only those accounts visible to
 current user will be returned
 return [Select Id, Name from Account Where Name like '%corp'];
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If your
object name is not displayed, click on Show all objects."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Learning to Fly with
Force.com

The fact that you are reading this book implies that you have already chosen Force.
com as the preferred platform for developing your applications and may also have
developed a few. This book is not a complete, detailed reference of the Force.com
platform; its purpose is to provide tips and tricks in both configuration and code that
will help you ease some complex tasks, discuss approaches to work around governor
limits, talk about some hacks, and more. This book assumes that you are familiar
with the platform. In this chapter we will focus on the basics of cloud computing and
briefly go over the following:

•	 Principles and constructs of Force.com
•	 Benefits and building blocks of Force.com
•	 When to choose this platform
•	 Which edition is right for you?
•	 A cursory overview of how to manage your Salesforce.com org

What is cloud computing?
If you have been in the IT industry for some time, you probably know what cloud
means. For the rest, it is used as a metaphor for the worldwide network or the
Internet. Computing normally indicates the use of computer hardware and software.
Combining these two terms, we get a simple definition—use of computer resources
over the Internet (as a service). In other words, when the computing is delegated
to resources available over the Internet, we get what is called cloud computing. As
Wikipedia defines it:

Learning to Fly with Force.com

[10]

Cloud computing is the delivery of computing as a service rather than a product,
whereby shared resources, software, and information are provided to computers
and other devices as a utility (like the electricity grid) over a network (typically
the Internet).

Still confused? A simple example will help clarify it. Say you are managing the IT
department of an organization, where you are responsible for purchasing hardware
and software (licenses) for your employees and making sure they have the right
resources to do their jobs. Whenever there is a new hire, you need to go through all
the purchase formalities once again to get your user the necessary resources. Soon
this turns out to be a nightmare of managing all your software licenses! Now, what
if you could find an alternative where you host an application on the Web, which
your users can access through their browsers and interact with it? You are freed
from maintaining individual licenses and maintaining high-end hardware at the user
machines. Voila, we just discovered cloud computing!

Cloud computing is the logical conclusion drawn from observing the drawbacks
of in-house solutions. The trend is now picking up and is quickly replacing the on-
premise software application delivery models that are accompanied with high costs
of managing data centers, hardware, and software. All users pay for is the quantum
of the services that they use. That is why it's sometimes also known as utility-based
computing, as the corresponding payment is resource usage based.

Chances are that even before you ever heard of this term, you had been using it
unknowingly. Have you ever used hosted e-mail services such as Yahoo, Hotmail,
or Gmail where you accessed all of their services through the browser instead of an
e-mail client on your computer? Now that is a typical example of cloud computing.

Anything that is offered as a service (aaS) is usually considered in the realm of
cloud computing. Everything in the cloud means no hardware, no software, so no
maintenance and that is what the biggest advantage is. Different types of services
that are most prominently delivered on the cloud are as follows:

•	 Infrastructure as a service (IaaS)
•	 Platform as a service (PaaS)
•	 Software as a service (SaaS)

Chapter 1

[11]

Infrastructure as a service (IaaS)
Sometimes referred to hardware as a service, infrastructure as a service offers the
IT infrastructure, which includes servers, routers, storages, firewalls, computing
resources, and so on, in physical or virtualized forms as a service. Users can
subscribe to these services and pay on the basis of need and usage. The key player
in this domain is Amazon.com, with EC2 and S3 as examples of typical IaaS. Elastic
Cloud Computing (EC2) is a web service that provides resizable computing capacity
in the cloud. Computing resources can be scaled up or down within minutes,
allowing users to pay for the actual capacity being used. Similarly, S3 is an online
storage web service offered by Amazon, which provides 99.999999999 percent
durability and 99.99 percent availability of objects over a given year and stores
arbitrary objects (computer files) up to 5 terabytes in size!

www.allitebooks.com

http://www.allitebooks.org

Learning to Fly with Force.com

[12]

Platform as a service (PaaS)
PaaS provides the infrastructure for development of software applications. Accessed
over the cloud, it sits between IaaS and SaaS where it hides the complexities
of dealing with underlying hardware and software. It is an application-centric
approach that allows developers to focus more on business applications rather than
infrastructure-level issues. Developers no longer have to worry about the server
upgrades, scalability, load balancing, service availability, and other infrastructure
hassles, as these are delegated to the platform vendors. Paas allows development of
custom applications by providing the appropriate building blocks and the necessary
infrastructure available as a service.

An excellent example, in this category, is the Force.com platform, which is a
game changer in the aaS, specially in the PaaS domain. It exposes a proprietary
application development platform, which is woven around a relational database.
It stands at a higher level than another key player in this domain, Google App
Engine, which supports scalable web application development in Java and Python
on the appropriate application server stack, but does not provide equivalent robust
proprietary components or the building blocks as Force.com.

Another popular choice (or perhaps not) is Microsoft's application platform called
Widows Azure, which can be used to build websites (developed in ASP.NET, PHP,
Node.JS), provision virtual machines, and provide cloud services (containers of
hosted applications).

A limitation with applications built on these platforms is the quota limits, or the
strategy to prohibit the monopolization of the shared resources in the multitenant
environment. Some developers see this as a restriction, which allows them to build
applications with limited capability, but we reckon this as an opportunity to build
highly efficient solutions to work within governor limits, while still maintaining the
business process sanctity.

Specificcally for the Force.com platform, some people consider shortage of skilled
resources as a possible limitation, but we think the learning curve is steep on this
platform and an experienced resource can pick proprietary languages pretty quickly,
average ramp up time spanning anywhere from 15 to 30 days!

Software as a service (SaaS)
The opposite end of IaaS is SaaS. Business applications are offered as services over
the Internet to users who don't have to go through the complex custom application
development and implementation cycles. They also don't invest upfront on the IT
infrastructure or maintain their software with regular upgrades. All this is taken
care of by the SaaS vendors. These business applications normally provide the

Chapter 1

[13]

customization capability to accommodate specific business needs such as user
interfaces, business workflows, and so on. Some good examples in this category
are the Salesforce.com CRM system and Google Apps services.

What is Force.com?
Force.com is a natural progression from Salesforce.com, which was started as a
sales force automation system offered as a service (SaaS). The need to go beyond the
initially offered customizable CRM application and develop custom-based solutions,
resulted in a radical shift of cloud delivery model from SaaS to PaaS. The technology
that powers Salesforce CRM, whose design fulfills all the prerequisites of being a
cloud application, is now available for developing enterprise-level applications.

An independent study of the Force.com platform concluded that compared
to the traditional Java-based application development platform, development
with the Force.com platform is almost five times faster, with about a 40 percent
smaller overall project cost and better quality due to rapid prototyping during
the requirement gathering—thanks to the declarative aspect of the Force.com
development—and less testing due to proven code re-use.

What empowers Force.com?
Why is Force.com application development so successful? Primarily because of its
key architectural features, discussed in the following sections.

Multitenancy
Multitenancy is a concept that is the opposite of single-tenancy. In the Cloud
Computing jargon, a customer or an organization is referred to as tenant. The
various downsides and cost inefficiencies of single-tenant models are overcame by
the multitenant model. A multitenant application caters to multiple organizations,
each working in its own isolated virtual environment called org and sharing a
single physical instance and version of the application hosted on the Force.com
infrastructure. It is isolated because although the infrastructure is shared, every
customer's data, customizations, and code remain secure and insulated from other
customers.

Learning to Fly with Force.com

[14]

Multitenant applications run on a single physical instance and version of the
application, providing the same robust infrastructure to all their customers. This also
means freedom from upfront costs, ongoing upgrades, and maintenance costs. The test
methods written by the customers on respective orgs ensure more than 75 percent code
coverage and thus help Salesforce.com in regression testing of the Force.com upgrades,
releases, and patches. The same is difficult to even visualize with an in-house software
application development.

Metadata
What drives the multitenant applications on Force.com? Nothing else but the
metadata-driven architecture of the platform! Think about the following:

•	 The platform allows all tenants to coexist at the same time
•	 Tenants can extend the standard common object model without

affecting others
•	 Tenants' data is kept isolated from others in a shared database
•	 The platform customizes the interface and business logic without disrupting

the services for others
•	 The platform's codebase can be upgraded to offer new features without

affecting the tenants' customizations
•	 The platform scales up with rising demands and new customers

To meet all the listed challenges, Force.com has been built upon a metadata-driven
architecture, where the runtime engine generates application components from the
metadata. All customizations to the standard platform for each tenant are stored in
the form of metadata, thus keeping the core Force.com application and the client
customizations distinctly separate, making it possible to upgrade the core without
affecting the metadata. The core Force.com application comprises the application
data and the metadata describing the base application, thus forming three layers
sitting on top of each other in a common database, with the runtime engine
interpreting all these and rendering the final output in the client browser.

As metadata is a virtual representation of the application components and
customizations of the standard platform, the statically compiled Force.com
application's runtime engine is highly optimized for dynamic metadata access and
advanced caching techniques to produce remarkable application response times.

Chapter 1

[15]

Understanding the Force.com stack
A white paper giving an excellent explanation of the Force.com stack has been
published. It describes various layers of technologies and services that make up the
platform. We will also cover it here briefly. The application stack is shown in the
following diagram:

Infrastructure as a service
Infrastructure is the first layer of the stack on top of which other services function.
It acts as the foundation for securely and reliably delivering the cloud applications
developed by the customers as well as the core Salesforce CRM applications. It powers
more than 200 million transactions per day and more than 1.5 million subscribers. The
highly managed data centers provide unparalleled redundancy with near-real-time
replication, world class security at physical, network, host, data transmission, and
database levels, and excellent design to scale both vertically and horizontally.

Learning to Fly with Force.com

[16]

Database as a service
The powerful and reliable data persistence layer in the Force.com stack is known as
the Force.com database. It sits on top of the infrastructure and provides the majority
of the Force.com platform capabilities. The declarative web interface allows user to
create objects and fields generating the native application UI around them. Users
can also define relationships between objects, create validation rules to ensure data
integrity, track history on certain fields, create formula fields to logically derive new
data values, create fine-grained security access with the point and click operations,
and all of this without writing a single line of code or even worrying about the
database backup, tuning, upgrade, and scalability issues!

As compared with the relational database, it is similar in the sense that the object
(a data instance) and fields are analogous to tables and columns, and Force.com
relationships are similar to the referential integrity constraints in a relation DB.
But unlike physically separate tables with dedicated storage, Force.com objects are
maintained as a set of metadata interpreted on the fly by the runtime engine and all
of the application data is stored in a set of a few large database tables. This data is
represented as virtual records based on the interpretation of tenants' customizations
stored as metadata.

Integration as a service
Integration as a service utilizes the underlying Force.com database layer and
provides the platform's integration capabilities through the open-standards-based
web services API. In today's world, most organizations have their applications
developed on disparate platforms, which have to work in conjunction to correctly
represent and support their internal business processes. Customers' existing
applications can connect with Force.com through the SOAP or REST web services
to access data and create mashups to combine data from multiple sources. The
Force.com platform also allows native applications to integrate with third-party
web services through callouts to include information from external systems in
organizations' business processes.

These integration capabilities of the platform through API (for example, Bulk API,
Chatter API, Metadata API, Apex REST API, Apex SOAP API, Streaming API, and so
on) can be used by developers to build custom integration solutions to both produce
and consume web services. Accordingly, it's been leveraged by many third parties
such as Informatica, Cast Iron, Talend, and so on, to create prepackaged connectors
for applications and systems such as Outlook, Lotus Notes, SAP, Oracle Financials,
and so on. It also allows clouds such as Facebook, Google, and Amazon to talk to
each other and build useful mashups.

Chapter 1

[17]

The integration ability is the key for developing mobile applications for various device
platforms, which solely rely on the web services exposed by the Force.com platform.

Logic as a service
A development platform has to have the capability to create business processes
involving complex logic. The Force.com platform oversimplifies this task to automate
a company's business processes and requirements. The platform logic features
can be utilized by both developers and business analysts to build smart database
applications that help increase user productivity, improve data quality, automate
manual processes, and adapt quickly to changing requirements.

The platform allows creating the business logic either through a declarative interface
in the form of workflow rules, approval processes, required and unique fields,
formula fields, validation rules, or in an advanced form by writing triggers and
classes in the platform's programming language—Apex—to achieve greater levels of
flexibility, which help define any kind of functionality and business requirement that
otherwise may not be possible through the point and click operations.

User interface as a service
The user interface of platform applications can be created and customized by
either of the two approaches. The Force.com builder application, an interface
based on point-and-click/drag-and-drop, allows users to build page layouts
that are interpreted from the data model and validation rules with user defined
customizations, define custom application components, create application navigation
structures through tabs, and define customizable reports and user-specific views.

For more complex pages and tighter control over the presentation layer, a platform
allows users to build custom user interfaces through a technology called Visualforce
(VF), which is based on the XML markup tags. The custom VF pages may or may not
adopt the standard look and feel based on the stylesheet applied and present data
returned from the controller or the logic layer in the structured format.

The Visualforce interfaces are either public, private, or a mix of the two. Private
interfaces require users to log in to the system before they can access resources,
whereas public interfaces, called sites, can be made available on the Internet to
anonymous users.

Learning to Fly with Force.com

[18]

Development as a service
This a set of features that allow developers to utilize traditional practices for building
cloud applications. These features include the following:

•	 Force.com Metadata API: Lets developers push changes directly into the
XML files describing the organization's customizations and acts as an
alternative to platform's interface to manage applications

•	 IDE (Integrated Development Environment): A powerful client application
built on the Eclipse platform, allowing programmers to code, compile, test,
package, and deploy applications

•	 A development sandbox: A separate application environment for
development, quality assurance, and training of programmers

•	 Code Share: A service for users around the globe to collaborate on
development, testing, and deployment of the cloud applications

Force.com also allows online browser based development providing code assist
functionality, repository search, debugging, and so on, thus eliminating the need
of a local machine specific IDE.

DaaS expands the Cloud Computing development process to include external tools
such as integrated development environments, source control systems, and batch
scripts to facilitate developments and deployments.

Force.com AppExchange
This is a cloud marketplace (accessible at http://appexchange.salesforce.com/)
that helps commercial application vendors to publish their custom development
applications as packages and then reach out to potential customers who can install
them on their orgs with merely a button click through the web interface, without
going through the hassles of software installation and configuration. Here, you may
find good apps that provide functionality, that are not available in Salesforce, or
which may require some heavy duty custom development if carried out on-premises!

Introduction to governor limits
Any introduction to Force.com is incomplete without a mention of governor limits. By
nature, all multitenant architecture based applications such as Force.com have to have
a mechanism that does not allow the code to abuse the shared resources so that other
tenants in the infrastructure remain unaffected. In the Force.com world, it is the Apex
runtime engine that takes care of such malicious code by enforcing runtime limits
(called governor limits) in almost all areas of programming on the Force.com platform.

Chapter 1

[19]

If these governor limits had not been in place, even the simplest code, such as an
endless loop, would consume enough resources to disrupt the service to the other
users of the system, as they all share the same physical infrastructure. The concept
of governor limits is not just limited to Force.com, but extends to all SaaS/PaaS
applications, such as Google App Engine, and is critical for making the cloud-based
development platform stable.

This concept may prove to be very painful for some people, but there is a key logic to
it. The platform enforces the best practices so that the application is practically usable
and makes an optimal usage of resources, keeping the code well under governor
limits. So the longer you work on Force.com, the more you become familiar with
these limits, the more stable your code becomes over time, and the easier it becomes
to work around these limits.

In one of the forthcoming chapters, we will discover how to work with these
governor limits and not against them, and also talk about ways to work around
them, if required.

Salesforce environments
An environment is a set of resources, physical or logical, that let users build,
test, deploy, and use applications. In the traditional development model, one
would expect to have application servers, web servers, databases, and their costly
provisioning and configuration. But in the Force.com paradigm, all that's needed is
a computer and an Internet connection to immediately get started to build and test a
SaaS application.

An environment, or a virtual or logical instance of the Force.com infrastructure and
platform, is also called an organization or just org, which is provisioned in the cloud
on demand. It has the following characteristics:

•	 Used for development, testing, and/or production
•	 Contains data and customizations
•	 Based on the edition containing specific functionality, objects, storage,

and limits
•	 Certain restricted functionalities, such as the multicurrency feature (which is

not available by default), can be enabled on demand
•	 All environments are accessible through a web browser

Learning to Fly with Force.com

[20]

There are broadly three types of environments available for developing, testing, and
deploying applications:

•	 Production environments: The Salesforce.com environments that have active
paying users accessing the business critical data.

•	 Development environments: These environments are used strictly for the
development and testing applications with data that is not business critical,
without affecting production environment. Developer environments are of
two types:

°° Developer Edition: This is a free, full-featured copy of the
Enterprise Edition, with less storage and users. It allows users to
create packaged applications suitable for any Salesforce production
environment. It can be of two types:

°° Regular Developer Edition: This is a regular DE org whose sign
up is free and the user can register for any number of DE orgs.
This is suitable when you want to develop managed packages for
distribution through AppExchange or Trialforce, when you are
working with an edition where sandbox is not available, or if you
just want to explore the Force.com platform for free.

°° Partner Developer Edition: This is a regular DE org but with
more storage, features, and licenses. This is suitable when you
expect a larger team to work who need a bigger environment
to test the application against a larger real-life dataset. Note
that this org can only be created with the Salesforce Consulting
partners or Force.com ISV.

°° Sandbox: This is nearly an identical copy of the production
environment available to Enterprise or Unlimited Edition customers,
and can contain data and/or customizations. This is suitable when
developing applications for production environments only with no
plans to distribute applications commercially through AppExchange
or Trialforce, or if you want to test the beta-managed packages.
Note that sandboxes are completely isolated from your Salesforce
production organization, so operations you perform in your
sandboxes do not affect your Salesforce production organization, and
vice versa. Types of sandboxes are as follows:

°° Full copy sandbox: Nearly an identical copy of the production
environment, including data and customizations

°° Configuration-only sandbox: Contains only configurations and
not data from the production environment

Chapter 1

[21]

°° Developer sandbox: Same as Configuration-only sandbox but
with less storage

•	 Test environments: These can be either production or developer
environments, used speficially for testing application functionality before
deploying to production or releasing to customers. These environments
are suitable when you want to test applications in production such as
environments with more users and storage to run real-life tests.

Summary
This chapter talked about the basic concepts of cloud computing. The key takeaway
items from this chapter are the explanations of the different types of cloud-based
services such as IaaS, SaaS, and PaaS. We introduced the Force.com platform and
its key architectural features that power the platform types, such as multitenant
and metadata. We briefly covered the application stack—technology and services
layers—that makes up the Force.com platform. We gave an overview of governor
limits without going too much detail about their use. We discussed situations where
adopting cloud computing may be beneficial. We also discussed the guidelines
that help you decide whether your software project should be developed on the
Force.com platform or not. Last, but not least, we discussed various environments
available to developers and business users and their characteristics and usage.

www.allitebooks.com

http://www.allitebooks.org

Admin Tools
Now that we have set the ground work, we can delve deeper into the Force.com
platform. In this chapter, we will focus on simplifying some administrative tools and
utilities. We will cover:

•	 Data Loader
•	 Import Wizard
•	 Other third party tools for Data Integration
•	 Integrated Development Environment
•	 AppExchange Market Place
•	 Some good AppExchange listings

Data Loader
As the name itself indicates, this is a Windows-based client application that is used
for inserting, updating, upserting, deleting, and extracting records. It can be accessed
by navigating to Your Name | Setup | Administration Setup | Data Management
| Data Loader. This tool can be used to move data into and out of any object via CSV
files. The records do not get duplicated and it is ensured by maintaining a unique
ID from the external system called the External ID. During data import, the Data
Loader identifies the existing records by using this External ID and prevents creating
duplicate records by upserting them.

The org-wide data import for any object can only be carried out by administrators,
whereas the Import My Contacts operation can be performed by any user in the
system but only in those fields, which are accessible through field-level security and
their page layouts.

Admin Tools

[24]

In addition to using this tool in the interactive mode through the user interface, it can
also be run as a scheduled batch process from the command line (via the command
line interpreter) so that manual intervention is not required. In this case, the tool
needs configurations, data sources, mappings, and actions in the form of files to
avoid manual intervention.

The tool also supports Bulk API to import large datasets of up to 5 million records,
and can also be used for importing documents and attachments into Enterprise,
Unlimited, and Developer Editions of Salesforce.com.

When to use Data Loader
Salesforce.com has provided certain guidelines for using Data Loader over the
web-based import wizard. Use Data Loader when you want to:

•	 Import data of up to 5 million records
•	 Load records for objects not supported by the import wizard
•	 Schedule regular data load
•	 Export data for backup purposes
•	 Delete custom object data that can't be accessed through the web interface

Strategy to import data
One of the most important steps in any project implementation is importing legacy/
bulk data for testing the application being developed. The data import process can be
divided into the steps discussed in the following sections.

Identifying data sources
There's a lot of data around you when you actually start noticing it. You need to
analyze what goes into Salesforce. The following are some guidelines:

•	 This is the time to clean up source data when unused, old, archived, or
insignificant data gets thrown away during identification of data sources

•	 Clearly document the various data sources and their attributes of records,
such as type, count, and so on

•	 Generate the high-level mapping of source data to target schema
•	 Identify dependency of source data to define the sequence/order of data

import; for example, before importing the Opportunities data, it's logical to
import the Accounts and Contact data first

Chapter 2

[25]

Data preparation
There are differing opinions on data preparation. Some prefer to do it before they
do the import. Some prefer doing it after the data has been inserted into Salesforce.
Irrespective of the approach you decide to go with, here are a few tips that can help
you get your data prepared:

•	 You may export data to any third-party tools that allow you to delete
columns, sort rows, and make global changes

•	 Ensure the data follows any standardized naming conventions, otherwise
you may run the risk of data duplication

•	 Make the Salesforce schema changes at the field level as per the source data
to enable data migration

•	 Make sure to mark appropriate fields as External ID in Salesforce
•	 Generate field-level mappings
•	 Make sure the source data conforms to the Salesforce standards in terms of

size, type, and so on
•	 A data source column should be added as a custom field in Salesforce to the

data being imported to always identify where it came from
•	 Assign appropriate owners to the imported data records
•	 Get stakeholders' acceptance of the mapping and the migration strategy

document you prepared
•	 There may be triggers and/or workflows that may get executed when the

data is loaded—analyze whether you need to disable them when the data
is loaded

Testing the data import
You may want to test it out first before you go for final data import. Here are a
few tips:

•	 Select a small sample of data, usually containing the most significant records
for the stakeholders so that the most valued data gets immediately reviewed
and approved

•	 In addition, try using the page layouts to further validate data import
•	 Do not try it on the production environment directly; try on a full copy

sandbox instead, if available

Admin Tools

[26]

Analyzing the test import
Once the data has reached Salesforce, make sure you crosscheck it with the test file
that was imported to ensure correctness and integrity. Here are a few tips to analyze
your test data import results:

•	 Build a report that lets you look at the record data collectively
•	 Pick up a few samples of the imported records and compare them with

the original data; make sure that the relationship between objects is set up
properly and whether there are fields with large text data, and then validate
that the data is completely transferred

•	 Develop a custom view for the relevant tab's homepage with the most
important columns that can be viewed by the customers to verify the
imported data

•	 Get your imported data verified by the stakeholders as it's their feedback
which is of utmost importance

•	 Incorporate feedback and modify the data and/or the import process in
terms of mapping, schema, and so on, to rectify the data import

Final data import
After the test data import analysis, you are ready to take off. Get ready to commence
the final data import. Here are a few tips:

•	 Plan for the final data import as it cannot be expected to start abruptly
•	 Set the right expectations for the end users for the down time
•	 Large volume data might mean running the import process during

non-working hours
•	 Always plan for errors and start the process well before the

committed timelines

Validating the import
You have already done this, but let's quickly go over it again:

•	 As before, run the reports to verify correctness and integrity
•	 Have end users verify the import

Chapter 2

[27]

Using Data Loader for data export
Data Loader can also be used for exporting your org data. Follow these steps:

1.	 Click on Export.
2.	 Enter Salesforce username and password, and click on login.
3.	 Select an object whose data is to be extracted; if your object name is not

displayed, click on Show all objects. Choose the target for extraction. Click
on Next.

4.	 Create a SOQL query for data export. Here choose the fields you want to
export and add conditions to filter the dataset.

5.	 Click on Finish and a CSV is extracted to the location with all the values of
fields selected in the query.

Admin Tools

[28]

Using Data Loader for uploading attachments
Follow these steps for uploading attachments through Data Loader:

1.	 Log in to Data Loader.
2.	 Click on Insert.
3.	 Check the Show all Salesforce objects checkbox and select the attachment

object from the list. Choose the CSV file that contains the following:
°° ParentId: The Salesforce ID of the parent record
°° Name: The name of the attachment file
°° IsPrivate: The value in this field is 0 if the attachment is not private

and 1 if it is private
°° OwnerId: The Salesforce Id of the record owner
°° Body: The Salesforce Id of the attachment

4.	 Edit the values in the body column so that they contain the full filenames of
the attachments as they exist on your computer.

5.	 Create mapping for fields in object and on CSV.
6.	 Select the directory where your success and error fields will be saved and

click on Finish.

The Import wizard
This is a tool built into the native user interface, allowing bulk data to be imported
as new or updated records of custom objects. Import wizards for the leads, accounts,
contacts, solutions, and custom objects are located under Setup | Administration
Setup | Data Management. The administrator also sees these links in the Tools
section of certain tabs' homepages. For example, to import leads, click on the Leads
tab and then click on the Import Leads link in the Tools section.

Chapter 2

[29]

•	 For records you own: The Import wizards for the records you personally
own are located at:

°° Your Name | Setup | Import | Import My Contacts
°° Your Name | Setup | Import | Import My Person Accounts

•	 For your organization's records:
°° Import My Organization's Accounts and Contacts
°° Import My Organization's Person Accounts
°° Import My Organization's Leads
°° Import My Organization's Solutions
°° Import My Organization's Custom Objects

When to use the Import wizard
Use Import wizard over Data Loader when:

•	 You want to load fewer than 50,000 records
•	 The object you need to import is supported by the Import wizard
•	 You want to prevent duplicates by uploading records according to account

name and site, contact e-mail address, or lead e-mail address
•	 The Data Loader tool is not installed on your machine and you prefer

working over the Web instead of a desktop-based client application

Notes on data import
A few tips taken from Salesforce user guide on the field accessibility and how
different field type values are imported:

•	 Field accessibility:
°° In the organization-wide import of accounts and leads, you can

import data into any standard or custom field, even if it is hidden or
read-only in your page layout or the field-level security settings.

°° For the Import My Contacts wizard, you can import data in only
those fields that are editable in your page layout or the field-level
security settings.

Admin Tools

[30]

•	 New values for picklists:
°° If you import the data to any picklist field, the wizard warns you

when you attempt to load a value that does not match any existing
picklist value.

°° If you ignore the warning, the value gets automatically added to the
imported record. Your administrator can later add this value to the
picklist field.

•	 Multiselect picklists: To import values into this field, separate values by a
semicolon in the import file.

•	 Checkboxes: Use 1 for checked and 0 for unchecked values in the import file.
•	 Default values: For the picklist, multiselect picklist, and checkbox fields, the

default value gets automatically populated in the new or updated record, if
the field is not mapped in the Import wizard.

•	 Date/time fields: Ensure that the format of any date/time field that you are
importing matches how they display in Salesforce per your locale setting.

•	 Formula fields: Don't accept any value in the import as they are derived and
read-only.

•	 Field validation rules: Salesforce runs validation rules on the records prior to
importing them. Records that fail are discarded. You may want to deactivate
validation rules before running the Import wizard.

Undoing data import
If you have imported the accounts, contacts, leads, or solutions data by mistake, your
administrator can navigate to Your Name | Setup | Data Management | Mass
Delete Records to delete the items you accidentally or incorrectly imported. The Mass
Delete Records tools do not support custom objects. For custom objects data, your
administrator can use the Data Loader tool to delete the mistakenly imported records.

Third-party tools for data integration
The data import options provided by Salesforce face a limitation that they can only
work with the CSV files and have no capability of integrating with any other client's
backend databases or ERP applications. They mean an extra overhead whenever it
comes to integrating your Salesforce org with real-life customer business processes.
For example, if you need to synchronize your Accounts and Contacts data with your
client's backend system, be it an on-premise database or ERP application or a SaaS
application, the data would need to be constantly exported and imported in the form
of CSV files at both ends.

Chapter 2

[31]

Moreover, there is no capability of data transformations and/or applying complex
business logics with the Salesforce wizards and data loader. So an additional
middleware is required to perform these transformations. Again, this might mean
custom implementations for every specific data integration piece needed between
Salesforce and the customer backend.

To overcome these limitations, many reputed ETL or integration experts have
developed custom solutions that can exist either on the hosted environment or can
run on the SFDC platform as they are written in native Apex/Visualforce. These
custom developed solutions allow building very simple to very complex and
sophisticated integration processes that span hosted and on-premise applications.
They help automate complex business processes such as account/contact
synchronization between SFDC and ERP systems, sales transaction history, forecast
management, contact integration, product master, pricing master, orders, quotes,
cases, price list distribution, and so on. These solutions can help to virtually integrate
Salesforce with any customer backend system, such as SAP, Oracle, JD Edwards,
Quickbooks, Net Suite, Great Plains, Dynamics, Peachtree, Databases, Web Services,
and so on.

A few of the market players that provide integration capabilities are Informatica,
Boomi, Cast Iron, and Talend. Except Talend Open Studio community edition,
which is a highly feature-rich, free ETL tool available in the market, almost all of the
remaining ones are paid. So you may want to explore and evaluate Talend for your
data and business process integration requirements.

It is worthwhile to mention here a free and open source data integration tool
developed by Ron Hess, which is called Force.com Excel Connector. It is a Microsoft
Excel add-in that allows communicating with Force.com API via SOAP and is built
in Office Toolkit from Salesforce.com.

•	 It provides bi-directional access to Salesforce.com from an Excel spreadsheet
and you can manage data updates and extractions within the same
Excel spreadsheet

•	 It is also secure as users have to log in with their Salesforce credentials, which
means that role and profile permissions are automatically applied and they
see only that data which they are authorized to see

•	 The power of this tool lies in its simplicity and ease of usage as users can
manage data without leaving the Excel interface

www.allitebooks.com

http://www.allitebooks.org

Admin Tools

[32]

•	 You can make use of strong and effective Excel features such as:
°° Formulas to update data
°° Conditional formatting for de-duplication
°° Filters to update specific records
°° Charts for powerful analytics

•	 In Professional Edition orgs, where Data Loader is not available, the Excel
connector is of great help for data import/export

Another powerful data migration tool that is available for free is the Jitterbit Data
Loader for Salesforce, which has several powerful features such as automating the
import and export of data between flat files, databases, and Salesforce. This tool also
works on Group and Professional Editions and is available for Windows and Mac.
Please visit the developer's site (http://www.jitterbit.com/salesforce/data-
loader) for more details.

Force.com Integrated Development
Environment (IDE)
The Force.com IDE is a free, Salesforce.com-supported Eclipse plugin. It is an
extension to the standard Eclipse development tool that helps with developing,
modifying, testing, and deploying applications on the Force.com platform. It
communicates with Salesforce, using the metadata API, which requires a user's
profile to have the Customize Application and Modify All Data permissions.

The IDE is a plugin for Eclipse, so it requires specific compatible versions of Eclipse.
So even if you are already using an older version, which is not supported by the
IDE, you can have another newer, compatible version installed on your system as
multiple versions of Eclipse can coexist on a system. Instructions for the Force.com
IDE installation can be found at http://wiki.developerforce.com/index.php/
Force.com_IDE_Installation.

Chapter 2

[33]

IDE communication
The following diagram indicates how the IDE works on a local machine while saving
and refreshing the metadata to and from a server:

Force.com perspective
When the Eclipse is launched after installing the IDE, the Force.com perspective
becomes visible. A perspective in the context of Eclipse is a way to organize and view
the user interface components associated with a program and it acts like a visual
container for a set of views and editors. It presents an environment that is tailored
to a specific development task, providing you a perfectly adapted workspace.

The Force.com perspective allows creation of a Force.com project. This project
further allows you to create, update, and delete almost all of the metadata-driven
components such as Apex and Visualforce code, objects, labels, static resources, and
so on. This local editing of metadata is deployed through the metadata Web Services
API to the Salesforce server every time a save operation is initiated by the user. What
is important here to note is that this API call gets counted in the daily limit of API
calls and with many developers working on the same org using the Force.com IDE
may mean hitting the API governor limit very soon, thus resulting in its exhaustion
and stoppage of work. The work around to this problem is to switch back to the
web-based development interface, which could be problematic to a developer who is
used to working with the desktop-based IDEs.

Admin Tools

[34]

Problems view
The Force.com IDE uses the standard Eclipse view called Problems to display the
compilation errors when the metadata is sent to the Salesforce server for compilation.
If it fails, all compilation errors are displayed in this view. In almost all cases,
double-clicking on the issue takes you to the file and line of the problematic code.

Execute Anonymous view
Another important tool in the IDE is the Execute Anonymous view, which allows
you to run an anonymous block of Apex on the server. Anonymous blocks quickly
help you to evaluate Apex on the fly. This view is usually available on the lower
right-hand side of the Force.com perspective. This view provides an equivalent
functionality to the system log present in the Salesforce web-based UI.

Chapter 2

[35]

Apex Test Runner view
Yet another important and powerful view in the Force.com IDE is the Apex Test
Runner view in which you can run your test methods to see which Apex unit tests
are passing or failing, including code performance and test coverage. This view
displays a test results summary—which code pieces do and do not meet minimum
code coverage requirements for production deployment, including a list of all lines
not included. It also displays the output of the Apex debug statements and other
system log events captured during test execution. This information is necessary for
troubleshooting code, performance tuning, and checking resource usage.

Schema explorer
This is a tool for browsing objects and fields that exist in your Salesforce org. It
presents the logged-in user's view of the Force.com data model in the hierarchical
tree view including object visibility, permissions, data types, and lookup values that
are useful in developing the applications on the Force.com platform. The tool can be
used to directly interact with the Force.com database by executing queries on your
organization's live data and inspecting their results.

Deployment
The IDE allows deployment of the Force.com components to any server for the
purposes of testing, staging, publication, or production use by the end users, once
the components have been created and unit tested in the development organization.
The code can be deployed to a sandbox for testing against the copy of your
production data. The IDE allows selective movement of metadata components to
the destination org.

Admin Tools

[36]

After selecting the components to deploy, you can either validate the deployment,
which will fully execute the deploy process on the server, without actually committing
the changes, or you can execute the deployment so that the metadata component
changes are saved. In case of any deployment failures, the list of issues is presented to
the user for fixing.

Force.com Migration Tool
Force.com Migration Tool is a Java- or Ant-based command-line utility for scripting
deployments to move metadata between a local directory and a Force.com
organization. This tool can be downloaded from your Salesforce org. Navigate to
Your Name | Setup | Develop | Tools and then click on Force.com Migration Tool.

Consider using this tool in the following scenarios:

•	 When you need to populate a test environment with frequent and large
volumes of setup changes where the web interface could consume a lot
of time

•	 Where there is a multistage release process, the scripted deployment process
is much more time efficient

•	 When there is a repetitive process for retrieving and deploying a fixed set of
metadata components with the same parameters

•	 When you are already familiar with the scripted deployment process using
Apache Ant

Chapter 2

[37]

The tool uses the configuration file build.properties for determining org
connections and the package.xml file for determining the deployment components.
The XML file provides a fine-grained control over what goes into the deployment,
where it gets deployed, and what unit tests will be run. The tool also allows
destroying the metadata on the destination org through destructiveChanges.xml
to perform cleanups prior to the deployment. The build.xml file provides a series of
commands to be executed by Ant. Within the build.xml file, there are named targets
that process a series of commands when you run Ant with a target name. The sample
build.xml file contains a number of useful targets for various retrieve() and
deploy() options that you can modify or use as is.

Once the tool is executed, it behaves similarly to the deployment wizard in the sense
that it archives the files, sends them to the Force.com services for compilation, and
displays the deployment results on the command line.

AppExchange – cloud application
marketplace
This is a marketplace for cloud computing applications and services, built for the
Salesforce.com community delivered by partners or the third-party vendors. Users
can purchase it and add to their Salesforce.com environments.

Admin Tools

[38]

The AppExchange incorporates the best practices of already-existing marketplaces
and makes purchasing of apps a wonderful experience for the potential customers.
The applications are accompanied with demos, screenshots, trial versions,
specifications, and so on, which can be thoroughly reviewed by customers before
they can go ahead and make the decision for the final purchase. When they are
satisfied, they can simply go ahead and click on the Get It Now button, which guides
them through an easy wizard to install the app in their org.

Besides the paid applications, you will notice that a number of free applications exist
in the AppExchange and most of them have been published by Force.com Labs and
developed internally by the Salesforce employees to enhance the Force.com user
experience. These applications range from small, common utilities to large project
management applications and chatter plugins. So it is highly recommended that if
you plan to build an in-house Salesforce.com application of your own, make sure
to search for a similar application on the AppExchange. Chances are that you will
find what you are looking for, or at least get a close match for your needs that can
be tweaked to suit your requirements.

We have listed some free/paid apps from AppExchange, which we think might be
useful for your business as you make progress on the Force.com platform.

DupeCatcher – real-time deduplication
This app is developed by Symphonic Source.

DupeCatcher makes deduplication of Salesforce leads, accounts, and contacts
comprehensive and easy. Designed as a complementary utility, DupeCatcher can
identify and block duplicate records at the point of entry based on standard and/or
custom fields (including Person Accounts).

Milestones PM – project and task
management
This app is developed by Force.com Labs.

Milestones PM is a native Force.com app designed to help you track and manage
your projects and tasks. Milestones PM has a simple interface, Chatter integration,
and detailed reporting capabilities.

Chapter 2

[39]

Salesforce CRM dashboards
This app is developed by Force.com Labs.

With these CRM dashboards, your sales and service teams can stay on top of every
deal or case, and close more business on time than ever before. Sales managers will
have more visibility into open opportunities and gain greater pipeline predictability.
Dashboards and reports in this package are intended to provide you with a starting
point to make reporting easier in your organization.

Salesforce for Twitter and Facebook (v4)
This app is developed by Force.com Labs.

Connect your Salesforce CRM with social channels Twitter and Facebook. Monitor
your online footprint, connect with customers, promote your brand, and analyze
your social impact—all directly from Salesforce.com!

Appirio Contact Sync for Salesforce and
Google Apps
This app is developed by Appirio.

Appirio Contact Sync for Salesforce and Google Apps is a simple tool to select
and synchronize contacts between your Google and Salesforce address books
(unsupported).

Ribbit for Salesforce
This app is developed by Ribbit.

Ribbit for Salesforce is the only sales productivity tool that unifies mobile voice and
SMS communications, Salesforce CRM, e-mail, and voice-to-text transcriptions.
Built-in automation helps you work less and sell more.

SnapShot Change And Release Management
This app is developed by DreamFactory Software.

Snapshot is the ultimate tool for change management, change reporting, and
compliance documentation for the Salesforce orgs. With SnapShot's rich interactive
GUI, admins can compare and differentiate orgs, monitor changes to orgs, and push
customizations between orgs.

Admin Tools

[40]

Salesforce Adoption Dashboards (2011)
This app is developed by Force.com Labs.

Great user adoption doesn't just happen! The Salesforce Adoption Dashboards
provide visibility to relevant user login history and trending, adoption of key
features such as accounts and opportunities, and critical sales and marketing
productivity enhancers.

Survey Force
This app is developed by Force.com Labs.

Survey Force allows you to create, send, and capture customer feedback natively in
Salesforce.com. Surveys are deployed via e-mail templates and sites. Survey results
are related to the Contact and/or Case. Reports and Dashboards can be leveraged to
analyze survey results.

Draggin' Role
This app is developed by Qandor.

Manage your role hierarchy with ease! Now you can drag-and-drop your way
through any hierarchy modifications. Draggin' Role is a free application that allows
you to view and manipulate users and roles from a single Custom tab.

Find Nearby – Accounts, Contacts,
Leads – Managed, PE/EE/UE/DE
This app is developed by Force.com Labs.

With this tool you can:

•	 Find all your Accounts, Contacts, and Leads in an area
•	 Map the Custom Search items from list views
•	 Plan your next Sales Trip and get driving directions to each location

AppExchange Dashboard Pack
This app is developed by Force.com Labs.

It provides Consolidated AppExchange Dashboards for Installation, Sales,
Marketing, Support, Adoption, and more.

Chapter 2

[41]

Action Plans – v3 – Unmanaged – EE, UE,
and DE
This app is developed by Force.com Labs.

Action Plans encapsulates best practices into reusable task templates. An action plan
can be created for an Account, Opportunity, Contact, or Lead. Template tasks can be
pre-assigned to a specific individual or assigned to the running user.

Project and Issue Management
This app is developed by Force.com Labs.

With Project and Issue Management for AppExchange, organizations have a simple
framework for prioritizing and managing the logistics of projects and the resources
allocated to them.

CloudConverter for Force.com
This app is developed by Model Metrics.

Model Metrics' CloudConverter for Force.com is a cutting edge tool that automates
the process of migrating custom applications from a Lotus Notes environment or any
other common commercial database to Force.com.

Opportunity Planning Wall
This app is developed by LogicLine.

Got lost in your sales pipeline? Do you need a more visual and interactive tool for
sales planning? The Opportunity Planning Wall displays sales opportunities as cards
on a virtual wall and lets you filter, group, and modify on one simple screen.

Data Loader – Salesforce integration
This app is developed by Informatica Corp.

Informatica Cloud Data Loader is a free data integration service that enables ad
hoc import/export of Salesforce data between databases and files. This app is
installed as a tab. The first 30 days provide access to all Informatica Cloud services,
including scheduling.

www.allitebooks.com

http://www.allitebooks.org

Admin Tools

[42]

Mass Edit + Mass Update + Mass Delete
This app is developed by VersatileCapitalist, Inc.

This includes the Mass Update + Mass Edit + Mass Delete records from any list
view or related list and Mass Edit + Mass Update + Mass Delete Various Entities,
for example, Leads, Accounts, Contacts, and Opportunities.

Implementation Cloud – project
management app
This app is developed by Implementation Cloud Ltd.

It is a free app to project management and it manages the implementation and
ongoing administration of Salesforce. Plan, manage, and deploy your ideal Salesforce
setup and developments from within your own org.

S-Docs – free document generator (PDF,
Word, Excel)
This app is developed by ME2 Systems.

Create and e-mail custom quotes, tailored contracts, personalized newsletters, and
more. This app is incredibly simple to use and set up. It is completely integrated and
Chatter compatible. It is 100 percent native Force.com. It can generate the PDF, MS
Word, and Excel documents in minutes.

CMSForce 2
This app is developed by Force.com Labs.

This is a native Force.com web content management system. It allows you to define
templates for your web pages and create/edit pages with a WYSIWYG HTML editor.
It also includes a web form builder to move information entered by visitors into any
object in Salesforce.

Chapter 2

[43]

FormFactory quotes and invoices
This app is developed by DreamFactory Software, Inc.

FormFactory generates business forms including quotes, proposals, invoices, and
packing slips. Documents can be delivered as live web forms, PDF, or HTML files.
Salesforce users can create professional-quality forms for free with our visual
design tools!

Chatter Usage Dashboards – Force.com Labs
This app is developed by Force.com Labs.

Chatter Adoption Dashboard includes 20 dashboard components and reports for a
broad view into your org's usage of Chatter. Extend it with your own new reports by
using seven Chatter custom report types included in this app!

FinancialForce Accounting for Salesforce
This app is developed by Accounting & PSA from FinancialForce.com.

No more rekeying data to create invoices! FinancialForce cloud accounting app resides
on the same platform as Salesforce. The two systems share the same data. Billing,
invoicing, accounts payable, reporting; it all works seamlessly inside Salesforce CRM.

Professional Services Automation – PSA for
Salesforce
This app is developed by Accounting & PSA from FinancialForce.com.

FinancialForce Professional Services Automation includes timecards, billing,
expenses, project management, and accounting. Manage people, customers,
projects, and financials in one integrated services management app. Our PSA
app is Salesforce native.

CVM Supplier Central Enterprise Edition
This app is developed by CVM Solutions.

CVM Supplier Central Enterprise Edition addresses supplier management needs
with a comprehensive solution, empowering companies to centralize supplier
information across the organization, cut costs, and mitigate risks in the supplier base.

Admin Tools

[44]

CVM Supplier Locator
This app is developed by CVM Solutions.

CVM Supplier Locator leverages advanced faceted search technology to empower
users to quickly and easily find new or alternate sources of supply. Tap into CVM's
Master DB of millions of suppliers to find the suppliers needed to support
your business.

Summary
Phew! That was a lot of information, but we tried our best to keep it brief. Let us just
summarize what we discussed in this chapter. We talked about Data Loader, when
to use it, and a strategy to plan for data import. We then briefly covered the Import
wizard, how and when we should use it, and how to undo the data import. After the
standard functionalities, we quickly talked about the third-party tools available in
the market for achieving data integration with on-premise and other hosted business
applications. Next was Force.com IDE, where we discussed some key features of the
Eclipse plugin for Force.com development. Then we looked at the marketplace called
AppExchange, where developers can publish and showcase their products and
offerings. And last but not least, we provided our recommendations for some
free/paid app listings that exist on AppExchange.

Making Best Use of
Salesforce Objects

Now we are ready to take a more detailed look at Salesforce objects. Let us start with
a brief introduction of Force.com database. The powerful and reliable data persistence
layer in the Force.com stack is known as the Force.com database. This resides at the
core of the platform and powers most of it. The declarative web interface, called
the Force.com builder, allows users to create objects and fields, define relationships
between objects, declare various application components, and generate the native
application UI around them without actually writing even a single line of code.

As compared with a relational database, it is similar in the sense that the object
(a data instance) and fields are analogous to tables and columns, and Force.com
relationships are similar to the referential integrity constraints in a Relational DB.
But unlike physically separate tables with dedicated storage, Force.com objects are
maintained as a set of metadata interpreted on the fly by the runtime engine and
all of the application data is stored in a set of few large database tables. This data is
represented as virtual records based on the interpretation of tenants' customizations
stored as metadata.

Now that we know the basics of the Force.com database and how it differs from
a relational database, let us cover the following items in this chapter:

•	 Different field data types in Salesforce
•	 Various considerations for defining relationships between objects
•	 Key standard objects (for CRM)
•	 Custom objects—design and implementation strategy
•	 Record types—what are they and why are they important?

Making Best Use of Salesforce Objects

[46]

Understanding the field types
The Force.com database offers fields of various data types such as common scalar
and special data types, which otherwise either do not exist or make application
development a complicated task in a relational database. Again, keep in mind that
these exist as logical and not physical fields in the system.

Basic non-relational field types
Most of the Salesforce field types can be found in many relational databases. Here's a
brief summary of the supported data types:

•	 Auto Number: System-generated read-only sequence number, which is
useful for generating unique IDs, other than the internal object IDs, which are
non writeable fields.

•	 Checkbox: Boolean data.
•	 Email, Phone, and URL: Format-validated e-mail, phone, and URL

string representations.
•	 Data or Date Time: Represent dates or date and time combinations.
•	 Number: Represent real numbers, with optional decimal points.
•	 Currency: A formatted number type, with optional multi-currency support.
•	 Picklist or Multi Select Picklist: Represent values from a list.
•	 Text or Text Area: Represent text of various lengths.

Chapter 3

[47]

•	 Text (Encrypted): This field allows users to enter any combination of letters,
numbers, or symbols (up to 175 characters) that are stored in encrypted form,
encrypted with 128-bit master keys using the AES (Advanced Encryption
Standard) algorithm. Using this field you can enable master encryption key
management and contact Salesforce.com.

•	 Geolocation: This is currently in beta release and has some known
limitations (Winter 13). This field allows users to specify a location by its
latitude and longitude.

•	 Formula: A read-only field holding data generated from a
formula expression.

Relational field types
Unlike the relational database, which use keys for maintaining relationships, Force.
com utilizes the relationship fields, which hold the ID of the parent record. There are
three types of relationship fields in Force.com:

•	 Hierarchical Relationship: This relationship creates a hierarchical lookup
relationship between users. This also allows users to use a lookup field to
associate one user with another that does not directly or indirectly refer to
itself. For example, you can create a custom hierarchical relationship field to
store each user's direct manager.

•	 Lookup Relationship: This creates a relationship that links one object
to another object. This relationship field allows navigating from records
in one object to the related records in another object (both visually and
programmatically).

•	 Master-Detail Relationship: This provides tighter binding than the lookup
relationship. It creates a special type of relationship between two objects—the
child (detail) and the parent (master). For every detail record in a master-
detail relationship, Force.com requires a relationship field value, and once
the record is created, restricts any further update to it by default. However,
administrators can allow reparenting of records to different parent records.
A master record deletion triggers cascading delete action for all dependent
detail records; for example, deletion of forums should mean removal of
forum posts as well.

The master object in a master-detail relationship can also contain the Rollup
summary fields. These fields contain values calculated from the aggregate
functions performed over the child records in a relationship; for example,
count of child records, sum of values in a field of child records, maximum/
minimum value of a field in a set of filtered child records, and so on.

Making Best Use of Salesforce Objects

[48]

Although Salesforce does not natively support the concept of many-to-many
relationships between two objects, there is a nice little work around for
creating a custom object, called the junction object, containing two
master-detail relationships. This is covered in more detail in the
Consideration for relationships section.

Identity fields
Data in this field is completely managed by the Force.com database. It is either
stored in a 15-digit case sensitive form or an 18-digit case insensitive form. Every
record has such an identifier and it provides a convenient shortcut to retrieve and
display the record. You must have observed Salesforce forming URLs such as
https://na3.salesforce.com/00190000006J48S.

Notice here that 00190000006J48S is the record identifier, and when it is used in the
preceding format, retrieves the record data and the associated metadata and uses it
to render an appropriate user interface on the browser.

System fields
These are system-managed read-only fields present in all objects, some of which
under special circumstances can be updated programmatically. The ID field is one
of them and the rest are as follows:

•	 CreatedDate: The date and time when the object was created
•	 CreatedById: The ID of the user who created the object
•	 LastModifiedById: The ID of the user who last modified the object
•	 LastModifiedDate: The date and time when the object was last modified by

a user
•	 SystemModStamp: The date and time when the object was last modified by a

user or process, such as a trigger

The Name field
This is a required field that acts like a human-readable record identifier. Even though
it is mandated to be unique, but that's what it is intended for. This field is mandatory
on the native page layouts and forms the link for navigating to a record's detail page.
It can be of two types: a text string or an auto number field, in which case we have
to specify the format of the field and the starting number. With each new record, the
auto number field increments by one and is non-writable.

Chapter 3

[49]

Additional database features
The Force.com database goes beyond the conventional relation DBs and provides
additional features that speed up application development drastically. Let's talk
about them briefly:

•	 Formulas: This field reflects calculations based on other fields and operations
on those fields. For example:
IF(
AND(Payment_Due_Date__c < TODAY(),
ISPICKVAL(Payment_Status__c, "UNPAID")),
"PAYMENT OVERDUE",
null)

This formula determines if the payment due date is past and the payment
status is UNPAID. If so, it returns the text PAYMENT OVERDUE and if not, it
leaves the field blank. This example uses a custom date field called Payment
Due Date, a text custom field called Payment Status on contracts, and a
number of formula operators and functions, including IF, AND, ISPICKVAL,
and TODAY.

•	 Validation rules: This field helps prevent users from saving incorrect data
and display appropriate error message to the user. These rules utilize the
same formula syntax to define a formula that is evaluated every time a record
is saved. If the formula evaluates to False, the save operation is aborted and
an error message is displayed.

•	 Labels and help: Every object and record has a label and can include a
description (for internal documentation) and help, which gets automatically
included in the natively generated user interface.

•	 Triggers: Similar to those in a relational DB, triggers in the platform-specific
languages, such as Apex, can be invoked before/after insert, update, delete,
or undelete.

Making Best Use of Salesforce Objects

[50]

•	 Notes and attachments: Users can view, add, or edit notes and upload
attachments for individual records. This functionality can be turned on/off
for any object.

•	 Field History Tracking: User can turn on history tracking on certain fields so
that when any change is made a new entry gets created in the History related
list, which tracks the old value, new value, date, time, nature of change, and
who made the change.

•	 Security: The database service layer offers various security features for
data protection:

°° Administrative security: Used to allow or disallow a particular set
of users certain areas of the Force.com platform functionality.

°° Object-level security: Define CRUD permissions for users.
°° Field-level security: Controls the field visibility and editing ability

for users.
°° Record security: Controls the individual record level security

through sharing. Record owners have full control over that record
and can share it with others if it is set to private.

°° Permission sets: Collection of settings and permissions that extend
users' functional access without changing their profiles.

Considerations for relationships
Before defining relationships between objects, review the following considerations:

•	 Relationship limits: Note that each custom object can have up to two
master-detail relationships and many lookup relationships.

•	 Changing and converting relationships:
°° After you have created a relationship, you can't change which objects

are related via that relationship. If you need to do this, delete the
relationship and create a new relationship.

°° You can convert a master-detail relationship to a lookup relationship
as long as no roll-up summary fields exist on the master object.

°° You can convert a lookup relationship to a master-detail relationship,
but only if the lookup fields in all records contain a value.

Chapter 3

[51]

•	 Self relationships: You can create a relationship from an object to itself,
but it must be a lookup relationship, and a single record can't be linked to
itself. However, a record can indirectly relate to itself. You can't create a
many-to-many self relationship; that is, the two master-detail relationships
on the junction object can't have the same master object.

•	 Master-detail relationships:
°° You can have up to three custom detail levels.
°° Standard objects can't be on the detail side of a custom object

in a master-detail relationship.
°° An object can appear once in multilevel master-detail relationships.

For example, a subdetail object in one multilevel master-detail
relationship can't be the owner of the master object in another
multilevel master-detail relationship. Also, a subdetail object
can't be the master object of the subdetail object's detail object.

°° You can't create a master-detail relationship if the custom object
already contains data. You can, however, create the relationship as a
lookup and then convert it to master-detail if the lookup fields in all
records contain a value.

°° Converting relationships from lookup to master-detail or from
master-detail to lookup behaves the same as for two-object
master-detail relationships. That is, the two linked objects in the
detail-subdetail or subdetail1-subdetail2 relationship have the
same conversion limits as the master-detail relationship.

°° Roll-up summary fields work the same as two-object master-detail
relationships. A master can roll up fields on detail records, but it
can't directly roll up fields on subdetail records. To achieve this, the
detail record must have a roll-up summary field for the field on the
subdetail record, allowing the master to roll up from the detail's
roll-up summary field.

°° Custom junction objects can't have detail objects. That is, a custom
junction object can't become the master object in a multilevel
master-detail relationship.

°° When you delete a custom object that is on the detail side of a
master-detail relationship, the relationship is converted to a lookup
relationship. If you restore the custom object, you must manually
convert it to a master-detail.

°° As a best practice, don't exceed 10,000 child records for a
master-detail relationship.

www.allitebooks.com

http://www.allitebooks.org

Making Best Use of Salesforce Objects

[52]

•	 Many-to-many relationships:
°° Junction object records are deleted when in associated master record

is deleted and placed in the Recycle Bin. If both associated master
records are deleted, the junction object record is deleted permanently
and can't be restored. Sharing access to a junction object record is
determined by a user's sharing access to both associated master
records and the Sharing Setting option on the relationship field.
Refer to the Custom objects section in this chapter.
For example, if the sharing setting on both parents is Read/Write,
then the user must have read/write access to both parents in order to
have read/write access to the junction object. If, on the other hand,
the sharing setting on both masters is Read-Only, a user with
read-only rights on the master records would have the read/write
access to the junction object.

°° In a many-to-many relationship, a user can't delete a parent record if
there are more than 200 junction object records associated with it and
if the junction object has a roll-up summary field that rolls up to the
other parent. To delete this object, manually delete the junction object
records until the count goes below 200.

°° The first master-detail relationship you create on your junction object
becomes the primary relationship. This affects the following aspects
of the junction object records:

°° Look and feel: The junction object's detail and edit pages use the
color and any associated icon of the primary master object.

°° Record ownership: The junction object records inherit the value
of the Owner field from their associated primary master record.
Because objects on the detail side of a relationship do not have a
visible Owner field, this is only relevant if you later delete both
master-detail relationships on your junction object.

°° Division: If your organization uses divisions to segment
data, the junction object records inherit their divisions from
their associated primary master records. Similar to the record
ownership, this is only relevant if you later delete both
master-detail relationships.

°° The second master-detail relationship you create on your junction
object becomes the secondary relationship. If you delete the primary
master-detail relationship or convert it to a lookup relationship, the
secondary master object becomes primary.

Chapter 3

[53]

°° The roll-up summary fields that summarize data from the junction
object can be created on both master objects.

°° The formula fields and validation rules on the junction object can
reference the fields on both master objects.

°° You can define the Apex triggers on both the master object and the
junction object.

°° A junction object can't be on the master side of another master-detail
relationship.

°° You can't create a many-to-many self relationship; that is, the two
master-detail relationships on the junction object can't have the same
master object.

°° Workflow rules and approval processes on junction objects can be
created, but you can't create outbound messages on junction objects.

Types of objects
Two types of object exist in any org:

•	 Standard objects: Objects that are created and made available by Salesforce.
com as soon as the org is set up are called standard objects. These objects are
mostly customizable to some extent.

•	 Custom objects: Objects that you create in your org to store information
unique to your business are called custom objects. These are usually created
to build custom applications.

Standard objects
These comprise the heart and soul of the platform and are part of the out-of-the-box
CRM application in an org. The list of standard objects is long, but we can discuss the
most important ones that form the core of CRM functionality.

Account
Accounts represent your organization's customers, competitors, and any other
business entities that you deal with. In CRM application, almost anything and
everything rolls up to account in one way or another through a relationship. Each
account stores information such as name, address, and phone numbers. For each
account, you can store related information such as opportunities, activities, cases,
partners, contracts, and notes. An account can also be linked to another account
to create an account hierarchy to accommodate different corporate structures
representing a company and its subsidiaries and/or sales territories.

Making Best Use of Salesforce Objects

[54]

You can build an account team on each account that you own. When selecting an
account team member, depending on your sharing model, you can specify the level
of access each account team member will have to the account and any contacts,
opportunities, or cases associated with that account. So, you can give some team
members read-only access and others read/write access.

You can grant access to accounts based on the characteristics of the accounts such
as zip code, industry, revenue, or a custom field that is relevant to your business.
This type of account sharing system is called territory management. It enables
your company to structure your Salesforce data and users in the same way as you
structure your sales territories.

Contact
Contacts are the people associated with your business accounts that you need to
track in Salesforce. For each contact, you can store various kinds of information, such
as phone numbers, addresses, titles, and roles in a deal.

Social contacts have been introduced to enhance your traditional contact data. With
social contacts, you can see your contacts' social networking profiles, directly in
Salesforce. Easy access to this information helps you know your customers better,
so you can solve their problems and build stronger relationships. You can see social
information from several social networks such as LinkedIn, Twitter, and Facebook.

You can also link a contact to another contact by specifying the contact's manager
in the Report To field. This enables displaying an organization chart showing the
contact hierarchy when you click on the View Org Chart link on any contact's page
in the account.

Chapter 3

[55]

You can assign a contact role to any contact that affects your account, case, contract,
or opportunity. Contacts can have different contact roles on various accounts, cases,
contracts, or opportunities. A contact role defines the part that a contact or a person
account plays in a specific account, case, contract, or opportunity.

You can also allow your customers to access your Salesforce org by creating a portal
user for a contact, provided the corresponding account has the Customer or Partner
Portal enabled on it.

Lead
A lead is a prospect or potential opportunity—a person you met at a conference who
expressed interest or someone who filled out a form on your company's website.

You can enter into leads manually from the Leads tab, or your administrator can
import leads or set up Web-to-Lead to gather information from your company's
website. Users can also import leads via the campaign import wizards, if they have
the Marketing User checkbox checked on their user information and the Marketing
User profile (or the Import Leads permission and the Edit permission
on campaigns).

Your administrator can create a lead assignment rule to automatically assign leads
to different users or queues. Your administrator can assign new web-generated leads
by using the Web-to-Lead setup, or when creating or editing a lead, you can check a
box to assign the lead automatically by using your active lead assignment rule.

Making Best Use of Salesforce Objects

[56]

A lead can also be converted. When you convert a lead, Salesforce creates a new
account, contact, and, optionally, an opportunity by using the information from the
lead. Any campaign members are moved to the new contact and the lead becomes
read only. If an existing account and contact have the same names as those specified
on the lead, you can choose to update the existing account and contact. Information
from the lead is inserted only into blank fields; Salesforce does not overwrite existing
account and contact data.

All notes and attachments from the lead are converted and attached to the new
account and contact. All open activities and the activity history from the lead are
converted and attached to the new account, contact, and opportunity. The converted
lead record can no longer be viewed, although it does contribute data to the reports.

Campaign
A campaign is an outbound marketing project that you want to plan, manage, and
track within Salesforce. It can be a direct mail program, seminar, print advertisement,
e-mail, or other type of marketing initiative. You can organize campaigns into
hierarchies for easy analysis of related marketing tactics.

By associating campaigns with one another using a lookup relationship, you can
group campaigns within a specific marketing program or initiative. A hierarchy
can contain a maximum of five levels. Each campaign can have only one parent
campaign, but an unlimited number of sibling campaigns. To view the hierarchy
for a campaign, click on View Hierarchy next to the Campaign Name field on the
Campaign Detail page. If a campaign is not part of a hierarchy, its corresponding
Campaign Hierarchy page shows only the campaign you have selected.

Chapter 3

[57]

You can also manually or automatically associate multiple influential campaigns
to a single opportunity. You can view influential campaigns from the Campaign
Influence related list on the Opportunity Detail page. The Primary Campaign
Source field on an Opportunity Detail page allows you to designate the most
influential campaign for that opportunity.

Opportunity
Opportunities are the sales and pending deals that you want to track. By adding
opportunities, you are also building your pipeline, which will contribute to your
forecast. You can also link opportunities to campaigns to help measure the ROI
(return on investment) of your marketing programs. In addition, you can create
quotes that show proposed prices for products and services, from an opportunity.

You need to identify, at some point of time in your sales process, the decision makers
who influence the buying decision, as contacts and their titles don't directly represent
the influencers and decision makers. The Contact Roles features help you specify this
chain of command in an opportunity.

Making Best Use of Salesforce Objects

[58]

You can also define sales team and track competitors on an opportunity.

Forecast
Using forecasts, you can predict and plan your sales cycle from pipeline to closed
sales, and manage sales expectations throughout your organization. A forecast
is your best estimate of how much revenue you can generate in a quarter. The
forecast amount is based upon your pipeline and is the total amount of all Commit
opportunities divided by the total amount of all Best Case opportunities.

You can set up customizable forecasting to reflect how your organization forecasts
its sales. Customizable forecasting is a flexible solution for estimating how much
revenue your organization can generate or how many items your organization can
sell. With it, you can forecast on a monthly or quarterly basis, use different dates
when applying amounts to forecasts, forecast based on revenue or quantity or both,
and define additional quotas based on product families.

Quote
A quote is a record showing proposed prices for products and services. You create
a quote from an opportunity and its products. Each opportunity can have multiple
associated quotes, and any one of them can be synced with the opportunity. When a
quote and an opportunity are synced, any change to line items in the quote will sync
with products on the opportunity, and vice versa.

Chapter 3

[59]

When your quote is complete, you can generate a PDF and e-mail it to your
customer. Quote PDFs are based on templates. Salesforce provides a standard
template, and you can also create your own.

Product and price book
The product and price book objects are closely related. Technically, the product
and price book have a many-to-many relationship handled by the junction object
PricebookEntry.

•	 Products: Products are the individual items that you sell on your
opportunities and quotes. You can create a product and associate it with a
price in a price book. Each product can exist in many different price books
with many different prices. A product that is listed in a price book with an
associated price is called a price book entry. The Products related list on an
Opportunity Detail page and the Quote Line Items related list on a Quote
Detail page list the products for that record. Use this related list to associate
a price book with the opportunity or quote, add, or edit products, and for
opportunities, establish or edit product schedules.

Making Best Use of Salesforce Objects

[60]

•	 Price books: A price book contains products and their associated prices. Each
product with its associated price is referred to as a price book entry. You can
use the standard price book or create custom price books. The standard price
book is automatically generated to contain a master list of all products and
standard prices regardless of the custom price books that also contain them.

Case
A case is a description of a customer's feedback, problem, or question. You can
use cases to track and solve your customers' issues. Customer feedback can be
gathered from a company's website either by customers or support representatives
(Web-to-Case) and/or direct e-mails from customers (E-mail-to-Case). Your
customers can also create cases on your Self-Service or Customer Portal. New cases
can be assigned to support agents, case teams, or case queues using assignment rules.

To manage all your cases, the tools that you need for routing, queuing, escalating
cases, replying with knowledge articles or solutions, and so on are all provided out
of the box with the Case functionality.

Chapter 3

[61]

Custom objects
As mentioned earlier, these represent the custom data set that is unique and
important to you and your organization. For example, you may want to create a
custom object called AccountLocation_c with custom attributes to store data for
your customers' different office locations.

Design approach
It is highly recommended that you first decide your overall approach. Gather and
analyze requirements and finalize the design decisions up front to avoid bigger
problems in future. Answering the questions discussed in the following section may
help you reach to a conclusion.

Data
Analyze the data that is going to reside in the system. Find answers to the
following questions:

•	 What fields and data types would you need?
•	 Does the functionality relate to the CRM object model? Can any existing

object be extended?
•	 How would you logically group the new custom fields into one or more

custom objects?

Making Best Use of Salesforce Objects

[62]

Relationships
Identify how the objects will be related. Find answers to the following questions:

•	 Is the custom data object related to standard data, or is it independent? If
data is related, it should appear as a related list on a standard tab. If it is
independent, it should appear on a custom tab.

•	 If it is a related data, how tight is the data binding? If a record in one object is
deleted, should the related records in the other objects be also deleted?

User interface
Identify how the user interface is going to look like. Here are few questions that you
need to answer:

•	 Do you want to create custom tabs for users to maintain data or is it ok if
they maintain the data from related lists on existing tabs?

•	 What fields should appear in the page layouts?
•	 What fields should appear in the related lists?
•	 Do you want users to track tasks and events for the custom object?
•	 Do you want to imitate the Salesforce UI?

Implementation steps
When building custom objects, tabs, and related lists, follow these steps:

Use the following links to get started:

•	 For custom objects, click on Your Name | Setup | Create | Objects
•	 For custom tabs for a custom object, click on Your Name | Setup |

Create | Tabs

To create a custom tab, users can track data that is specific to your business:

•	 Design approach
•	 Create custom object
•	 Create custom tab
•	 Customize page layouts

Chapter 3

[63]

To create a custom related list, you can associate your data with standard tabs:

•	 Design approach
•	 Create custom object
•	 Define relationships
•	 Customize related lists

Tips
Here are a few tips on various topics discussed earlier in this chapter.

Custom objects
A few tips to keep in mind while designing custom objects are as follows:

•	 First establish object relationships before adding all custom fields, page
layouts, and related lists.

•	 Click on Edit List Layout to choose columns for key views and lookups.
•	 The standard Name field is required for custom object related lists and

page layouts.
•	 Provide meaningful names for your custom objects. The plural label of the

custom object is also used as the label of the custom tab based on that object.
•	 Build custom reports and dashboards, using the data in your custom objects.

Relationships
A few tips on object relationships:

•	 Each custom object can have up to two master-detail relationships and up to
25 lookup relationships

•	 The Related To entry can now be changed starting from the Summer
12 release

•	 Create a master-detail relationship before a custom object that contains data

Custom tabs
A few tips to keep in mind while creating custom tabs:

•	 You can create a certain number of custom object tabs or web tabs based
on your Salesforce Edition; for example, 25 in Enterprise Edition, 100 in
Developer Edition, and as many as you want in Unlimited Edition

•	 The title of the custom tab is the same as the plural label of the custom object

Making Best Use of Salesforce Objects

[64]

•	 It is recommended to select the Append tab to the user's existing personal
customizations checkbox

•	 Set permissions on tabs and page layouts so that users cannot see your
changes until they are finalized

Page layouts
A few tips for using page layouts:

•	 In Enterprise, Unlimited, and Developer Editions, use the field-level security
to restrict users' field access; use page layouts primarily to organize pages.

•	 To reduce the number of page layouts to maintain, use the same page layout
for all profiles for a specific record type.

•	 In Personal, Group, Contact Manager, and Professional Editions, field-level
security is not available. Use page layouts to restrict access to fields and to
organize pages.

•	 Mini page layouts contain subsets of items in an existing page layout and are
displayed in the Console tab, hover details, and event overlays. These inherit
record type and profile associations, related lists, fields, and field access
settings from their associated page layout.

Record types
Record types is an extremely powerful feature offered by Salesforce.com.
This feature allows you to offer different business processes, picklist values,
and page layouts to different users based on their profiles. In other words,
records of the same object adopt different behaviors in the native user interface.

For example, an Account object usually represents business entities that your
company deals with, but with minor tweaks it can also be used to store information
about individuals, and it's then called a Person Account. Salesforce intentionally
decided to go with the same object, just with a different record type.

Similarly, whenever you are tempted to create a new object, you should explore
whether it's entirely a new object or whether its data can be merged with another
entity with minor tweaks. In the case of minor adjustments, a single object can be
used to store variations of business entity and Force.com renders an appropriate
user interface based on the record type it finds.

By default, objects do not use record types; but when you define it, an additional
standard field called RecordTypeId gets added to the object, which can then be
utilized extensively either in native functionalities or can also be used in driving
custom user interfaces.

Chapter 3

[65]

Record types can be assigned to profiles and so different page layouts can be
shown to different users based on the record's record type. The picklist values
can also be assigned to record types so that the appropriate values get displayed
on the user interface.

For example, an issue can either be a bug or an enhancement and fields displayed
on the user interface for both will vary slightly, like bug will show an additional
field of Steps to Reproduce whereas it is not required in case of enhancement. So
when a user tries to create a new issue in the system, he/she is presented with a page
where he/she has to choose from the available record types, in this case Bug and
Enhancement, and the subsequent edit and detail page layouts will vary based on the
record type chosen.

A record type limitation is enforced by the platform only when the record is being
created and it can be skipped by specifying a default record type on an object. The
record type of a record can be changed at a later point in time by the record owner.

Making Best Use of Salesforce Objects

[66]

Summary
To recap, we talked about different field types that exist in Salesforce.com—don't
forget the master-detail and lookup types as they are key to any business application.
We then discussed when to choose master-detail over lookup and vice versa, their
pros and cons, and limitations. We then discussed some standard objects that
are important from the CRM perspective. Later we looked at custom objects and
discussed strategies to define and implement them in an efficient manner. Lastly, we
briefly covered record types, their strengths, and how they can be utilized to create
powerful business applications with point and click operations only.

Understanding Analytics
Data is the key to your customer's business. Almost every application is designed
and developed only to collect data that is critical to the business, which can then
be analyzed later. There could be a lot of information inside your system that
may complicate things and ultimately conceal what you should know. So the data
has to be viewed in a logical and user-friendly manner such that it makes sense.
What is needed is a simple dashboard of your data inside Salesforce, which can be
comprehended even with a cursory look. Salesforce.com provides a comprehensive
analytics and reporting system, which can be used to organize, view, and analyze
your data so as to provide real-time visibility into the business. The best part here is
that it requires neither a steep learning curve, nor a technical person's involvement in
developing reports that matter to you and your customers.

It's a very common mistake made by Salesforce developers that when designing
the object model, only the transactional needs are considered and analytical
requirements are almost always ignored. This leads to an object model that proves
ineffective down the line when reporting needs are realized and analyzed in later
stages. This may even lead to complete redesign of the application that has a
negative impact on client faith and your business.

The Salesforce analytics, which we will cover in this chapter, can be summarized
as follows:

•	 Report types are the templates from which users can build reports
•	 Reports organize data and are shared via folders
•	 Dashboard components, which are report driven, are also shared via folders
•	 Analytic snapshot is a feature that allows reporting on the historical data by

persisting a specific report's data in a custom object

Let us now take a closer look at the various terms that we used in the preceding
paragraph.

Understanding Analytics

[68]

Report types
A report type defines the set of records and fields available to a report based on the
relationships between a primary object and its related objects; reports then display
only those records that meet the criteria defined in the report type.

Salesforce provides a large set of pre-defined or standard report types, but at the
same time it also allows you to create custom report types when you want to report
on data based on your customizations. Custom report types allow you to build
a template or framework in the report wizard, from which users can create and
customize reports.

Salesforce allows you to bring together up to four related objects, and create stronger
and more impressive reports via custom report types. However, there is a limit to the
maximum number of custom report types (regardless of development status) that
can be created in an org. This limit varies depending on the org edition; for example,
for Enterprise it's 200 whereas for Unlimited it's 2000.

You can create a custom report type via Your Name | Setup | Create | Report Types.

See the following screenshot that displays the four level objects relationship based
hierarchy, which can be the master-detail or lookup type. Users can choose which
standard and custom objects to display to users by creating and customizing reports,
define the relationships (type of join) between objects, that is, whether it will be an
inner join or a left outer join, and select which objects' fields can be used as columns
in reports.

Chapter 4

[69]

For example, in the preceding screenshot, A and B have an inner join, but B and C
have a left outer join.

Once a primary object for a custom report type has been selected, it
can't be changed later.

Tips and considerations for report types
Keep the following tips and limitations in mind when you begin creating custom
report types for your organization.

Defining report types
Consider the following points when defining report types:

•	 If the selected primary object is a custom object, its deletion will cause the
associated custom report types and reports to be automatically deleted.
Report types associated with custom objects in the deleted custom objects
list are counted against the maximum number of custom report types you
can create.

•	 Removal of an object from a report type causes all references to that object
and its associated objects to be automatically removed from reports and
dashboards based on that type.

Understanding Analytics

[70]

•	 As of Spring 2012 release, a custom report type can contain up to 60 object
references and 1000 fields.

•	 Forecasts can't be added to custom report types.
•	 The following fields can't be added to custom report types:

°° Product Schedule fields
°° History fields
°° Person Account fields
°° The Age field on Case and Opportunity

Choosing object relationships
Consider the following points when choosing the child object relationship:

•	 If you select that object A may or may not have object B, all subsequent
(tertiary and quaternary) objects automatically default to the may-or-may-not
association on the custom report type.

•	 Blank fields are displayed in the report results for object B when object A
does not have object B. For example, if a user runs a report on accounts with
or without contacts, the contact fields are displayed as blank for accounts
without contacts.

•	 On reports where object A may or may not have object B, you can't use the or
condition to filter across multiple objects.

•	 In a custom report type with Account as the primary and Contact as the
secondary object with may-or-may-not association selected, the Row Limit
option on tabular reports shows only the fields from Account and not
Contacts or subsequent objects.

•	 Arrange fields on the layout sections as they should appear to users and
preview the field display of the layout created. If required, create new
sections to logically group similar fields on the field layout.

•	 Preselect the commonly-used fields by selecting the Checked by Default
property of the field on the field layout.

Adding lookup fields
Consider the following points when adding fields via lookup to the field layout page
of a custom report type:

Chapter 4

[71]

•	 A custom report type can contain fields available via lookup through four
levels of lookup relationships. For example, for an account you can get the
account owner, the account owner's manager, the manager's role, and that
role's parent role.

•	 You can only add fields via lookups that are associated with objects
included in the custom report type. For example, for a custom report type
with Contact as one of the objects, you can add fields from objects to which
Contact has a lookup relationship.

•	 The fields displayed in the Add Fields Via Lookup overlay do not include
lookup fields to primary objects. For example, if contacts are the primary
objects on your custom report type and cases are the secondary objects, the
Add Fields Via Lookup overlay does not display the lookup fields from
cases to contacts.

•	 Fields added to the layout via the Add Fields Related Via Lookup link are
automatically included in the section of the object from which they are a
lookup field.

•	 If you include activities as the primary object on a custom report type, you
can only add lookup fields from activities to accounts on the select column
layout of the custom report type.

Reports
A report is a set of records that meets certain criteria which is displayed in organized
rows and columns. In a report, you can select columns, filter your data, group,
subtotal, and limit your data, conditionally highlight it, embed formulas, display
it graphically as a chart, and export it in different formats.

Salesforce provides a strong and intuitive report builder that allows even untrained
users to create a report by guiding them through a wizard. The report builder allows
you to carry out all the functions related to a report almost visually and makes
it very easy for a non-technical user. There are three types of report formats that
Salesforce supports:

•	 Tabular: These are the simplest and fastest to build and display data just like
how you view in a spreadsheet. They consist of an ordered set of fields in
columns, with each matching record listed in a row, and are best for creating
lists of records or a list with a single grand total. They can't be used to create
groups of data or charts, and can't be used in dashboards unless rows
are limited.

Understanding Analytics

[72]

•	 Summary: They are similar to tabular reports, but also allow for grouping
rows of data, view subtotals, and create charts. They can be used as the
source report for dashboard components. Summary reports with no
groupings are shown as tabular reports on the report run page.

•	 Matrix: Similar to summary reports, but more complex and powerful, these
allow you to group and summarize data by both rows and columns. They
can also be used as source reports for dashboard components. You can use
this report format type for comparing related totals, especially if you have
large amounts of data to summarize and you need to compare values in
several different fields. Matrix reports without at least one row and one
column grouping are shown as summary reports on the report run page.

•	 Joined: These let users view different types of information in a single report.
For example, your report could contain Opportunities, Cases, Accounts,
and even Data from custom apps and objects; that is, these reports can
contain data from multiple standard or custom report types, provided they
have relationships with the same object or objects. You can add up to 16
report types, add up to five report blocks, and also create standard and
cross-block custom summary formulas, add a chart, filter individual blocks
using standard and Boolean filters, sort columns for each block, and more.
An example of such a report could be to predict future opportunity revenue
based on your sales reps' past performance, using cross-block custom
summary formulas!

The information that users see in reports is only the data to which
they have access. This includes records they own, records to which
they have read or read/write access, records that have been shared
with them, records owned by or shared with users in lower roles in
the hierarchy, and records for which they have "Read" permissions. In
addition, they can view only those fields that are visible in their page
layout and field-level security settings. (Field-level security is available
only in Enterprise, Unlimited, and Developer Editions.)

Organizing reports
If not planned and managed properly, reports can grow exponentially in your
org and you can lose track. So it is advised that you start doing this from day one
and that you define a process that provides a tighter control over the creation and
deletion of reports.

Chapter 4

[73]

The best way to organize reports is by placing them in different folders. This will
allow you to group them logically and also define who has access to what based on
roles, permissions, public groups, and license types. A folder can be made public,
hidden, or shared, and can be set to read-only or read/write. You can also make a
folder available to the entire organization or make it private so that it's accessible to
the owner only.

You should consider the following points to manage your report library in
a better way:

•	 Report names should be intuitive so that your users can identify their
contents just by looking at the name.

•	 You may optionally define a report naming convention, which makes use
of numbers embedded in report names so that it's sometimes easier to refer
to numbers than names.

•	 Do a periodic clean up of unnecessary reports in your org, and even if you
delete an in-use report, you can still recover it from the recycle within
30 days from deletion date.

•	 It's good to keep track of reports utilizing the picklist values in the filter
criteria. This will help you keep those reports up-to-date as and when
picklist values get changed.

•	 On a periodic basis, keep a check on the number of folders existing in your
org and delete or hide them as necessary.

Working with reports
Here is a brief walkthrough of the report creation process and things that you need
to consider while designing them.

Creating reports
Salesforce provides a user interface for building reports via the intuitive and
easy-to-use report builder, provided you are able to articulate what is needed by
the business users and in what format. Reports are created against a primary object
and a set of related objects. Salesforce provides certain combinations of primary and
related objects that are called standard report types. You can also develop your own
combinations by using custom report types.

Understanding Analytics

[74]

From the Enhanced Reports tab, you can create a new report by just selecting a
report type categorized by folders, as follows:

After the report type has been selected, define the report fields:

After a report has been created, you can then choose between tabular, summary, and
matrix formats, add and reorder groupings on summary and matrix reports, and
summarize fields on reports as indicated in the following screenshot:

Chapter 4

[75]

You can find fields by using Quick Find and field-type filters, add fields to the report
by double-clicking or dragging them into the Preview pane, and sort and reorder
columns, as indicated in the following screenshot:

Understanding Analytics

[76]

You can set report filters in the Filters pane to help further narrow your result set:

You can optionally add a chart to your report to add a graphical summary of
your results:

Chapter 4

[77]

Building custom summary formulas
Salesforce provides an out-of-the-box functionality to calculate the sum, average,
and the highest and lowest of the numeric fields selected in your reports. However,
there may be a business need to provide additional summary information with some
specific calculations. Salesforce allows you to create custom summary formulas to
calculate additional totals based on the numeric fields available in the report type.
You can create up to five formulas per report, which can't be shared across reports.

Consider the following points when creating custom summary formulas:

•	 A summary formula can't reference another summary formula.
•	 Dashboard and report charts that display values from custom summary

formulas display decimal places, using your default currency setting instead
of what you specified for the formula. For example, if the summary formula
specifies zero decimal places, no decimal places appear in columns, but
chart values show the number of decimal places specified for your default
currency (usually two decimal places). This applies to currencies, numbers,
and percentages.

•	 Regardless of the summary formula data type, your summary formula
can contain fields of different data types, including the number, currency,
percent, and checkbox (true/false) fields.

•	 Percents are represented as decimals in summary formulas. 20 percent is
represented as 0.20

•	 When fields are deleted, they are also deleted from the summary formulas
that reference them.

Understanding Analytics

[78]

•	 The summary types Sum, Largest Value, Smallest Value, and Average are not
available to use with the Record Count field.

•	 "#Too Big!" is displayed on report cells if your custom summary formula
output is over 21 digits. When this happens, check your formula for
calculations that could result in more than 18 digits.

•	 Formulas treat blank (null) report cells as zero values.
•	 "#Error!" is displayed on report cells whenever an error occurs while

calculating a formula's value. "#Error!" is also displayed when a formula
includes division by zero.

Bucketing in reports
Bucketing is a concept introduced by Salesforce to let you quickly categorize report
records without creating a formula or a custom field. There are only a few types
of fields that can't be bucketed. You can bucket the numeric, picklist, and text
fields. Bucket fields can be used like any other fields to sort, filter, and group your
report. The difference is once you create a bucket field in a report, the field is only
available in that report. So if you want to use the same bucket field criteria in another
report, you need to recreate it in that report. A simple and practical use case of
data bucketing could be grouping the Account records based on the value selected
in the picklist type Industry field into buckets of Industry Type (group of similar
industries) in reports. Other use cases could be grouping Opportunities by size of
revenue, or grouping cases by their age based on the number of days it was open.

Using conditional highlighting
You can apply conditional highlighting in your summary or matrix reports to highlight
values that may be of more importance to your business users, and you may want to
immediately draw your users' attention as soon as they look at the report.

You may use this along with custom summary formulas to highlight high or
low percentages, averages, and ratios. These are used to visually indicate and
differentiate via color coding that a threshold has been exceeded or not, instead of
the user identifying manually by comparing various values. Refer to the following
screenshot for an example of conditional highlighting:

Chapter 4

[79]

Subtotaling the report results
See the preceding screenshot. In summary and matrix reports, you may group sets of
information and compare subtotals for each set against the overall total, to analyze
trends in the data. In a subtotal, you may also get a subtotal by multiple fields to give
you cascading sets of information.

Salesforce uses smart totaling when you run reports that include duplicate data
in any of the columns chosen for summing or averaging. Smart totaling means
that duplicate data is counted only once in any subtotal or total. For example, if an
opportunity has two products and you run the Opportunity Product Report with the
total opportunity amount selected as a column to sum by, the amount appears twice
in the details of the report, once for each product on the opportunity. In this case,
smart totaling correctly calculates any subtotals, grand totals, and averages, adding
that opportunity amount only once.

Filtering on reports
A report may contain huge data that may not be of importance to the business users.
So to limit the data shown in the report, you can set standard filters, field filters,
filter logic, and row limits. Depending on your organization's setup, you may see
additional filters, such as probability, hierarchy, territory, and others.

Understanding Analytics

[80]

To get the results you desire, filter the data in a report by using the following
filter options:

•	 Field Filter (Filter Criteria): Available for reports, list views, workflow
rules, and other areas of the application. For each filter, set the field,
operator, and value.

•	 Filter Logic: Add Boolean conditions to control how field filters are
evaluated. You must add at least one field filter before applying filter logic.

•	 Row Limit: For tabular reports, select the maximum number of rows to
display, then choose a field to sort by, and the sort order. Tabular reports
that have a limited row count can be used in dashboard tables and charts.

Tips for entering filter criteria
Consider the following points when entering filter criteria:

•	 For faster performance:
°° Avoid using the "contains" and "does not contain" operators. Use the

"equals" or "not equal to" operators instead, for faster results.
°° Instead of filtering by the Name field, filter by Alias. A Name search

requires searching two fields, whereas Alias only searches one.
°° Avoid adding too many filters. You can include a maximum of 10

filters, but using fewer than five is recommended.

•	 Note that filtering is not case sensitive.
•	 If you lose access to a field defined in a filter, Salesforce removes it from the

report and displays results based on the remaining filters.
•	 To filter on picklist values in a report, use either the "equals" or "not equal to"

operators for these filters.
•	 When filtering on the multi-select picklist fields, use a semicolon between

values to specify an exact match.
•	 When searching for numbers or other data that includes commas, place

quotation marks around the data. For example, Amount equals "10,000"
returns records that have an amount of $10,000.

Chapter 4

[81]

•	 To create a filter that includes more than one value, enter your search terms,
separated by commas, in the corresponding field. You can enter up to 1000
characters, including the commas.

•	 To limit results to records that are blank or contain "null" values for a
particular field, choose the field and the "equals" or "not equal to" operators,
leaving the third field blank.

•	 Encrypted fields are not available to use in filters such as list views, reports,
roll-up summary fields, and rule filters.

•	 You may further use cross filters, by themselves or in combination with
field filters, to fine-tune your results by including or excluding records from
related objects. Just keep in mind that cross filters can potentially slow down
your report, so you may need to limit data returned by setting filters.

Tips for filter logic
Consider the following tips when entering filter logic:

•	 When you add filter logic, include each custom filter in the Boolean
expression to avoid an input error.

•	 Make sure all parentheses are closed.
•	 Enclose conditions that have priority in parentheses. For example, (1 AND

2) OR 3 finds records that meet either the first two filters or the third. While
1 AND (2 OR 3) finds records that meet the first filter as well as either the
second or third.

•	 If your filter logic is (1 AND 2) OR 3 and you add another field filter, the
updated logic becomes ((1 AND 2) OR 3) AND 4.

•	 You may begin with the term NOT, but cannot end with it. For example, NOT
1 AND (2 OR 3 OR 4) finds records that meet any of the last three filters
and excludes records that meet the first filter.

•	 If you remove a custom filter, remove the corresponding number from the
filter logic to avoid an input error.

•	 If you lose access to a field defined in a filter, Salesforce removes it from
the report and displays results based on the remaining filters. This does not
apply to filter logic on lookup filters.

•	 Filter logic isn't available for all filters. For example, you can't use them for
roll-up summary fields.

Understanding Analytics

[82]

Running reports
To run a report, you find the report on the Reports tab and click on its name. If you
are viewing the report, click on the Run Report button to run it immediately.

Some notes:

•	 No results: If you do not see any data when you run a report, consider
the following:

°° Check filter criteria to ensure it returns some data
°° Check whether you have access to all of the groupings you selected,

due to field-level security
°° Check if a custom summary formula's context does not match the

chart settings; for example, a formula is calculated for Industry but
the chart doesn't include Industry, so no results are returned

°° Check if the values are out of the range of acceptable value

•	 Visible records: Reports show only the information you can access. This
includes records you own, records to which you have read or read/write
access, records that have been shared with you, records owned by or shared
with users in roles below you in the hierarchy, and records for which you
have the "Read" permissions.

•	 Visible fields: You can view only those fields that are visible in your page
layout and the field-level security settings.

•	 Printing report folder contents: When viewing a list of reports in a particular
folder, you can click on Printable View to open the current list view in a
print-ready format.

•	 Running large reports: If your report returns more than 2,000 records, only
the first 2,000 records are displayed. To see a complete view of your report
results, click on Export Details. For security purposes, Salesforce may require
users to pass a CAPTCHA-based user verification test to export data from
their organization.

•	 Organizations using divisions: If you have the Affected by Divisions
permission, you can set your report options to include records in just one
division or all divisions.

•	 Organizations using multiple currencies: Amounts in reports are shown
in their original currencies, and report totals are displayed in your personal
currency or you can change the currency by selecting from active currencies.
For any amount, you can also choose to display the converted column (for
example, "Annual Revenue (converted)"), which will show amounts in the
selected currency.

Chapter 4

[83]

•	 Long or rich text fields truncated: Only the first 254 characters in a rich text
area or a long text area are displayed in a report.

Scheduling a report
You can also schedule reports to run and have the results automatically e-mailed to
the Salesforce users. Users with the View Setup and Configuration permission
can view all scheduled reports for their organization on the All Scheduled Jobs page
at Your Name | Setup | Monitoring | Scheduled Jobs. Users with the Modify All
Data permission can click on Del next to a specific scheduled report to unschedule
the report.

Consider the following points when scheduling a report to run:

•	 There is a daily limit to the number of scheduled reports, which varies
with the edition you purchase. Additional scheduled reports may be
available for purchase.

•	 Scheduled reports run in the time zone of the user who schedules them.
•	 If you schedule a report to run on a specific day of every month, the report

runs only on months that have that specific day. For example, a report
scheduled to run on the 31st day of every month will not run in February,
April, June, and so on. So, to schedule a report on the last day of every
month, it is wise to choose last from the On day of every month
drop-down list.

•	 The report runs within 30 minutes of the time you select for Preferred Start
Time. For example, if you select 2:00 PM as your preferred start time, the
report runs any time between 2:00 PM and 2:29 PM, depending on how
many other reports are scheduled at that time.

•	 For reports to run as scheduled, the user in the Running User field must have
access to the folder in which the report is stored.

•	 Scheduling reports is not tracked in the audit trail history.

Consider the following points when you plan to e-mail scheduled reports:

•	 To e-mail a report to other users, the report must be in a public folder with
access granted to the other users, because other users can't access reports in
your personal folders.

•	 Report recipients can click on the report name in e-mailed reports to log in to
Salesforce and view the report directly.

•	 Report charts are not included in the e-mailed reports. To e-mail a chart of
the report, create a dashboard and schedule a dashboard refresh.

Understanding Analytics

[84]

•	 The maximum size for the e-mailed reports is 10 MB. So to reduce the
amount of data in your report, try the following:

°° Filter for your own records rather than all records
°° Limit the scope of the data to a specific date range
°° Exclude unnecessary columns from your report
°° Hide the report details

Printing and exporting reports
Ideally, you will always want to run your reports out of your application, but
occasionally you need to print them for some meetings and/or export the report
data to do some complex calculation in the excel. All of that is easily possible in
few clicks. Note that you can export only up to 256 columns and 65,536 rows of
data in one report. For security reasons, Salesforce may optionally ask for a
CAPTCHA authentication.

Consider the following points when exporting reports:

•	 When exporting reports in the CSV (comma-separated values) format,
the locale settings on your User Detail page determine the field separator
(delimiter) included in the exported file; for example, if English (United
States) is the locale, the decimal separator is a "." (period), so the export in
the CSV format will have the field separator as "," (comma). For the French
locale, where the decimal separator is a "," (comma), the field separator will
be a ";" (semicolon).

•	 When using the 15-character, alphanumeric ID to identify a particular report
record in the export, make sure that you use the correct case for the record
because the ID is case sensitive.

•	 If you have set the Do not save encrypted pages to disk option in Internet
Explorer, you will not be able to view your report online in Excel when
you click on Printable View or Export Details. You must save the exported
report to your computer, and then open it in Excel.

•	 You can also run reports in the background to avoid time-out issues in case
of a large number of report results:

°° When the background report finishes, it is available to be viewed
for 48 hours, after which it is deleted permanently and not sent to
the Recycle Bin

°° You can export an unlimited number of reports to the background
°° You may optionally be presented with a CAPTCHA authentication,

when you try to download the exported report results

Chapter 4

[85]

Report charts
You may optionally add a chart to your report to add a graphical summary of your
results. Use a chart editor to choose a chart type, determine what data to represent,
and decide how you want to visually present that data.

Consider the following when using charts:

•	 If you lose access to a field used in a chart, another field may be used in its
place. If no other fields are available, the record count is used.

•	 Decimal-place precision on charts is not customizable. Numeric and
currency values round to two decimal places. Percentage values round
to one decimal place.

•	 If numeric values are too large or too small, they are shown in scientific
notation. For example, the number 5,750,000,000 is displayed as 5.75E9.

•	 Negative values are displayed on all line charts and non-stacked bar and
column charts. Negative values on pie, donut, funnel, and stacked charts are
not displayed.

•	 Dashboard and report charts that display values from custom summary
formulas display decimal places by using your default currency setting,
instead of what you specified for the formula. For example, if the summary
formula specifies zero decimal places, no decimal places appear in columns,
but chart values show the number of decimal places specified for your
default currency (usually two decimal places). This applies to currencies,
numbers, and percentages.

Combination charts
These are charts that plot multiple sets of data on a single chart. Each set of data
is based on a different field, so values are easy to compare. You can also combine
certain chart types to present data in different ways in a single chart.

With combination charts, you can:

•	 Add a line to an existing line, vertical column, grouped vertical column, or
stacked vertical column chart

•	 Add a cumulative line to an existing cumulative line chart
•	 Add up to three columns to a vertical column chart
•	 Add up to three bars to a horizontal bar chart

Understanding Analytics

[86]

Dynamic reports
As such, the reports are static and filter criteria are specified at the design time,
which can't be altered at runtime. So there is no official support provided by
Salesforce for report reusability. Although, there exists a hack that is being
currently used by the developer community to generate dynamic reports to achieve
reusability. The way in which you develop such reports is by creating a report in the
normal fashion, but leaving the values of the filter criteria blank. You then invoke the
reports via some custom link or button on detail pages or Visualforce pages that pass
some parameters, using merge fields or other logic, in the URL of the report as query
string, which are then dynamically picked up by the report and used as filter criteria
values. These parameters are pv0, pv1, pv2, and so on. Then, pv0 is used as the value
for the first filter criteria, pv1 is used as the value for second filter criteria, and so on.

So the URL to run the report with dynamic parameters would be something
like https://na7.salesforce.com/[Report Id]?pv0={!Opportunity.
Id}&pv1={Opportunity.Division}.

Dashboards
Dashboards are graphical representations of reports that you create in your org
and visually illustrate the key metrics and performance indicators that matter to
the business. They display multiple reports at once to give you a snapshot of the
data of business importance and you can analyze in a quick glance where you stand
and whether or not there are any concrete action items if you notice any slippage
against your goals. They allow the top management to make well-informed strategic
decisions to improve the overall health of your business by analyzing data trends.
They can be configured to be displayed on the home page so that user can review
them as soon as he/she logs in to the system.

Dashboards are collections of the dashboard components, which could further be
configured to display data from reports or Visualforce pages. Components from
reports can be displayed as gauges, charts (horizontal and vertical bar, line, pie,
donut, funnel), tables, or metrics. Each dashboard can have up to 20 different
components, but only summary and matrix report formats can be used with them.

Just like reports, dashboards are also stored in folders and all the rules that apply on
the report folders apply to the dashboard folders as well. Administrators can control
access to dashboards by storing them in folders with the restricted visibility settings.
These folders can be public, hidden, or restricted to groups, roles, or territories. So
simply put, access to a folder lets you view its dashboards. But at the same time,
to access dashboard component, users need to have access to the folder for the
underlying source report.

Chapter 4

[87]

There is a concept of running user in dashboards, which determines access to the data
The running user can be:

•	 A specified/named user: The dashboard runs by using the security settings
of a single specific user. All users who can access dashboards see the
specified user's view of the data, where their own personal security settings
are ignored. You should use this setting when you want to give your users a
holistic view of the system across a hierarchy/division or motivate your team
members by showing them peer performance within a team. For example,
create a sales performance dashboard to share it within the sales department
and set the running user as VP Sales or any other user whoever has the
highest visibility in the sales department.

•	 A currently logged-in user: These dashboards run by using the security
settings of the logged-in user who is currently viewing the dashboard,
so users see the dashboard according to their security settings and access
level. You can use this dashboard to share one common set of dashboard
components to users with different levels of access. These are what are
actually called dynamic dashboards as they give users that have access
to the dashboard a personalized view of the data.

Consider the following points when selecting a running user:

•	 Dashboard components that use Visualforce ignore the running user; content
displays only if the viewing user has access to the Visualforce page. Other
components in the dashboard are not affected.

•	 Consider creating separate dashboards for users with different license types
because as an example, users with the Salesforce Platform or Salesforce
Platform One license can only view a dashboard if the running user also has
the same license type.

View Team Dashboards is a flavor of dynamic dashboards where managers with
the View My Team's Dashboards or View All Data permissions can set an option
to preview the dashboard from the point of view of the users under them in the
role hierarchy.

Understanding Analytics

[88]

Working with dashboards
As with reports, the Enhanced Reports tab has made it easier to access your reports,
dashboards, and their folders. From this tab, users can:

•	 Create: Users can create both reports and dashboards from the same location
•	 Find and Use: The default view displays the most recently used reports and

dashboards, which can be changed to see everything and filtered to see just
reports or dashboards, or use search or navigate by folder

•	 Organize and Share: Move reports and dashboards into the right folders
and share them by providing appropriate (read-only or read/write) access
to others

•	 Manage: Both the reports and dashboards can be edited and deleted from the
same place, or export report data into an Excel or a CSV format

•	 Schedule and Follow: Users can follow their favorite reports and
dashboards, and can also schedule refresh

When users click on New Dashboard under the Enhanced Reports tab, they land on
the following page:

Chapter 4

[89]

A quick guided tour gives you a jumpstart to using dashboards. Dashboard
components such as charts, gauges, and so on, can be dragged-and-dropped
onto various columns/zones or a data source:

Understanding Analytics

[90]

Data sources can be located with Quick Find and by using filters, and can be
dropped onto existing components or various columns/zones:

Organize dashboards by adding/removing components and data sources,
reordering components, resizing and deleting columns, and editing headers,
titles, and/or footers:

Chapter 4

[91]

You can add filters on a dashboard to let your users choose which data to display on
a dashboard:

You can view the running user of the dashboard in the field as indicated in the
following screenshot:

Understanding Analytics

[92]

Dashboard filters
End users can change the view on the dashboard by selecting filters on the
dashboard using the drop-down menu. So a single dashboard with one set of source
reports can be used to serve a wide audience. Without the dashboard filters, you'd
have to create multiple dashboards, each with its own set of filtered reports. An
example might be creating a single dashboard with key performance indicators such
as Closed Revenue, and adding a filter on the Product Name field, so users can see the
performance of a product.

Consider the following tips when using the dashboard filters:

•	 Each dashboard can have one filter
•	 You can create filters on fields that are common to all dashboard components

or have equivalents
•	 You can't have filters on dynamic dashboards
•	 You can't add filters to dashboards containing a Visualforce component
•	 As of the Winter 12 release, filters can only be created for the picklist, lookup,

and text type fields
•	 Scheduling or e-mailing a filtered dashboard produces unfiltered data

Dashboard data refresh
The data in the dashboard does not reflect the current state, but is always as current
as the date and time displayed in the As of…. field displayed in the top-right corner
of the dashboard. You can either manually refresh the data or schedule it (Enterprise
and Unlimited Edition only) to happen at a specified frequency. The refresh always
happens in the background, so you can carry on with other tasks while the data is
being replenished.

Consider the following when scheduling a dashboard refresh:

•	 An org can have up to 200 scheduled dashboard refreshes. Unlimited Edition
users can schedule up to two dashboard refreshes an hour per day whereas
Enterprise Edition can have only one.

•	 Just like reports, if you schedule a dashboard refresh on a specific date of
every month, it refreshes only in those months which have that date, so if
you have scheduled it for 31st of every month accidentally, it's logical to
choose Last from the On day of every month drop-down list.

•	 Dashboards will not refresh if the running user does not have access to the
dashboard folder.

Chapter 4

[93]

•	 Refresh can't be scheduled for dynamic dashboards; they have to be
refreshed manually.

•	 To send a dashboard refresh notification to other users, store them in public
folders as other users can't see your personal folders.

•	 Users can click on the components in a dashboard refresh notification to view
the underlying source report in Salesforce.

•	 Dashboard components including Visualforce pages cannot be displayed in
the dashboard refresh notifications and have to be viewed in Salesforce.

Analytic snapshots
An inherent problem with the reports is that they always present the current state of
the system and provide no idea of how the system was before the data got changed,
and thus there is no scope for analyzing trends. With analytic snapshots, you get the
facility to report on historical data, thus allowing users to report on data changes and
trends in the org; for example, the number of open cases can be tracked by setting up
an analytic snapshot.

They work by simply channeling the output of a report to a custom object, so
authorized users can save the tabular or summary report results to a target custom
object by providing an appropriate report to object field mapping. Further reports
can then be created on the target object to identify trends.

So there is a source report that is scheduled to run and store results as records into a
custom object, a target object that receives the results of the source reports as records,
and a running user that determines the source report's level of access to data. This
bypasses individual security settings, thus allowing users to see data that they may
not be able to see otherwise.

Tips for analytic snapshots
Analytic snapshot is a less commonly used yet very powerful feature provided by
Salesforce and offers the following benefits:

•	 Running reports faster by reporting on data that is already summarized
•	 Creating dashboards that refresh quickly by associating them with the

pre-summarized data
•	 Sorting and filtering specific data summaries via list views
•	 Viewing trends in data via custom object records

The following sections cover various tips when using analytic snapshots.

Understanding Analytics

[94]

Tips on source reports
Consider the following tips when setting up the source reports for
analytics snapshots:

•	 A tabular report with its details hidden does not show up in the analytic
snapshot source report selection. If an already-used source report's details
are made hidden, the snapshot fails when it runs.

•	 You can include up to 100 fields in your source report.
•	 You can delete the schedule of an analytic snapshot. You can also delete the

source report of a snapshot provided the report has first been removed from
it by choosing some other report in the source report selection.

Tips on target objects
Consider the following tips when setting up the target objects for
analytics snapshots:

•	 Field-level security can be used to make a target object's fields visible to
appropriate users (Enterprise, Unlimited, and Developer Editions only).

•	 You can't delete a custom object, if it's being used by an analytic snapshot as
a target object.

•	 You can include up to 100 fields on the target object and the field mapping
availability is limited by the fields available on the target object.

•	 Target objects cannot contain validation rules or be included in a workflow.
•	 Analytic snapshots cannot contain target objects that trigger an Apex script to

run when new records are created. If a trigger is added to an already existing
target object, the snapshot fails when it runs.

•	 When an analytic snapshot runs, it can add up to 2000 new records to the
target object. If the source report generates more than 2000 records, an
error message is displayed for the additional records in the Row Failures
related list.

•	 You must map at least one field from the source report to one field on the
target object or data will not load from the source report to the target object
when the analytic snapshot runs.

Chapter 4

[95]

•	 You cannot map fields from the source report to the following fields on the
target object:

°° Created By
°° Last Modified By
°° Created Date
°° Last Modified Date

•	 When you map fields from the source report to the target object, some data
may lose its context when it is loaded to the target object. For example, if you
map a date and time field from the source report to a text field on the target
object, the date and time is loaded to the target object without the time zone.

•	 When executing an analytic snapshot, if the running user does not have read
or write access to a mapped field in the target object, that field is dropped
from the mapping, but does not cause the execution to fail.

Summary
Whew! That was a long chapter indeed and we have hopefully conveyed the basics,
and tips, and tricks for the key analytics features that Salesforce has to offer. We
covered report types which act as report templates, looked at how reports work and
their key features, how reports are grouped and placed in folders and considerations
and best practices when organizing them, dashboards, their key features and points
to keep in mind when planning to create, manage, organize, and schedule them,
looked at what analytics are, how they could be beneficial to us, and tips to consider
when choosing their source and target objects.

Setting Up Development
Environments

Force.com offers various different development environments depending on
whether you are part of an IT team carrying out development activities for the
production org used by your in-house business users, or you are an independent
software vendor (ISV) working to create software for your customers and offer it as
a service on the Force.com cloud platform. All these environments serve more or less
the same purpose, that is, application development, but differ in their natures and
capabilities and without proper guidance there can be confusion on the choice
of development environment.

In this chapter we will try to demystify these problems:

•	 Define an environment
•	 Look at various development and test environments and their usages in

different scenarios
•	 Provide tips on how to choose an appropriate development environment
•	 Migrating customizations between different environments, both manually

and via Metadata API
•	 Review various application development management strategies where we

take a look at how different combinations of environments fit in various
development scenarios

Setting Up Development Environments

[98]

Building apps on Salesforce
There are mainly two types of Salesforce customers, those who want to customize
Salesforce and/or develop applications for their own business use, called Customers,
and secondly those who want to build and distribute commercial applications for
selling via AppExchange, called ISVs.

Salesforce caters to both types of customers and provides multiple environments
for specific usage depending on the nature of the customer's business. For example,
the Salesforce.com customers building in-house apps purchase the production org
of a specific edition, depending on which they either get access to sandbox orgs or
not. They then carry out development, integration, testing, user acceptance testing
(UAT), and so on, mostly on sandboxes and sometimes on the DE orgs where
sandboxes are not available.

ISVs intending to build commercial apps start developing on the DE/Partner DE
orgs, create packages, and perform testing on the DE, Partner Test, or Sandbox orgs,
and finally create released managed packages for production orgs end users.

The following sections cover various development environments that Salesforce.
com has to offer and their benefits to help identify specific ways in which they can
be leveraged in the application development lifecycle. These sections are explained
generically, so the knowledge that you gain from them can be applied to both the
in-house application development as well as the AppExchange product
development scenarios.

What is an environment?
In Salesforce ecosystem, an environment is a synonym to an organization or an org in
short, which is nothing but an instance of the Force.com cloud computing platform
and infrastructure that allows developers and administrators to access, create, or
deploy applications with edition-specific feature sets.

Environments have the following characteristics:

•	 Can be used for development, testing, and/or production
•	 Contain data and customizations
•	 Are edition based, and vary in features and limits
•	 All environments are accessible via a web browser, but some can also be

accessed via API
•	 Not all advanced features such as multicurrency and territories are enabled

by default; instead a request has to be made to Salesforce support to enable
them on your org

Chapter 5

[99]

Different environments can be used depending on your customer's type of business.
For example, customers such as big corporates will typically need a production
environment to run their business along with one or more sandboxes to allow
parallel development without affecting the live data and users, whereas customers
such as ISVs will need multiple development and test environments to build and test
the product applications.

Production environment
Production environments are those that store live data and are used by customers
to run their business. These environments can be based on various editions such
as Group, Professional, Enterprise, or Unlimited Editions, if Salesforce CRM
functionality is required. If CRM functionality is not needed, customers can sign
up for Force.com Edition. For developing the applications for personal production
use or for selling them commercially to customers with the Salesforce production
environments, development environments are used. Note that Apex code editing is
not allowed in production environments; however, declarative development, such
as creating workflows, approval processes, or creating object validation rules can be
directly done here.

Development environments
These are environments that are strictly used for development and testing purposes,
where you can make changes without affecting end users on the production org.
These are necessary for enterprise application development, so there may be multiple
environments for various purposes such as development, integration, testing,
training, and so on.

There are two kinds of development environments: sandbox organizations
and Developer Edition organizations; these are covered in more detail in the
following sections.

Sandbox orgs
A sandbox is nearly an identical copy of your production environment available to
Enterprise or Unlimited Edition customers. It contains the copy of the metadata of
your production org and can include data, configurations, or both. Configurations
include custom objects, fields, applications, workflows, and anything else that has
been created to describe your organization and business processes.

Setting Up Development Environments

[100]

From a developer's perspective, it is highly unlikely that any development happens
directly in the production environment unless there are specific limitations such
as unavailability of sandboxes in Professional and Group Editions. Accordingly,
Salesforce has also provided corresponding environments that enable developers to
follow a traditional development approach where they can collaborate with other
developers to create or configure applications without affecting end users.

The following diagram illustrates the traditional development:

Deployment
Package

Production

Staging

Dev 1

Dev 2

QA

SCCS

And here's how the cloud-based software development looks:

Multiple sandboxes can be created for various purposes such as development,
integration, and testing, and all sandboxes are isolated from each other, just as
they are from production environment.

Sandboxes are ideal if:

•	 You are a Salesforce customer with Enterprise, Unlimited, or Force.com
Edition, which includes Sandbox

•	 You want to develop an application for in-house, non-commercial
production use

Chapter 5

[101]

•	 You want to test your beta managed packages, which can be installed on
sandbox orgs, but not on production environments

Note that features that automatically send e-mail messages to contacts, customers,
and users are disabled in sandboxes and cannot be enabled. For example:

•	 Case escalation
•	 Opportunity reminders
•	 Contract expiration warnings
•	 Data exports (using Export Now or Schedule Export from Your Name |

Setup | Data Management | Data Export)

Salesforce offers three types of sandboxes, namely configuration-only, developer,
and full. These are explained in the following sections.

Configuration-only sandbox
These contain a copy of all production org configurations such as dashboards,
reports, products, price books, apps, and other customizations, but exclude object
records, documents, and attachments. As these are just metadata-based orgs, it takes
much less time to create or refresh them. These orgs offer up to 500 MB of data, so
they can be used as development integration and QA environments, and can be
refreshed once per day. These orgs contain the same number of user licenses as
production and have API access enabled.

A customer may have up to a maximum of six configuration-only sandboxes.
Unlimited Editions include five, whereas Enterprise Edition customers may
procure them at additional cost.

Developer sandbox
These are special configuration-only sandboxes, which copy from production all
customizations including application and configuration information but not the data,
and are intended to be used by a single developer. The changes made by a developer
can be isolated until they are ready to be shared in a bigger integration environment
such as a configuration-only sandbox. The developer sandbox has a tighter data
storage limit of 10 MB, which is most of the time enough for test data generated by a
single developer. These orgs contain same number of user licenses as production and
have API access enabled.

Unlimited Editions include 10 developer sandboxes and Enterprise includes one.

Setting Up Development Environments

[102]

Full sandbox
A full sandbox is nearly an exact replica of your production org in terms of data
and customization, so it can be used as a staging environment for UAT purposes.
These orgs contain the same number of user licenses and data storage, and have API
access enabled. A full copy sandbox can be refreshed once every 29 days. From the
Summer'12 release, we can configure it not to copy data that is generally not useful
in a sandbox.

Salesforce customers can have a maximum of three full sandboxes. Unlimited Edition
includes one full sandbox and Enterprise Edition customers can purchase them at
additional cost.

Typical uses of sandboxes
Salesforce has provided guidelines for using different kinds of sandboxes and
identifying what development role they are best suited for. These are explained
in the following table:

Use Developer
sandbox

Configuration-only sandbox Full copy sandbox

Development Best for app
development

Good for app development Giving data access to
developers may be an
issue
Slower to copy

Testing Unit tests
Apex tests

Best for feature tests
Load standard data for
regression tests

Best for production
debugging

Testing external
integrations

Not a good fit Special cases only
Use sample or subset of data
Works well if using external
IDs

Best when external
system expects full
production data to be
present

Staging or UAT Not a good fit Sometimes appropriate if
testing against a subset of
production data is acceptable

Best for validation
of new apps
against production
configuration and
data

Limitations 10 MB storage

Chapter 5

[103]

Tips for creating or refreshing a sandbox
Keep in mind the following considerations when creating or refreshing a sandbox:

•	 Sandbox refresh should be planned well ahead of time as it may turn
out to be a long-running process, especially in case of full sandboxes.
Sandbox refresh gets queued and is an asynchronous process, not starting
immediately as soon as it is requested. Users are notified via e-mail when the
refresh is complete.

•	 Sandbox refresh from production overwrites any changes made in the
sandbox; for example, you have created new reports in your full copy
sandbox and when you refresh it from production, the new reports disappear
and you have to recreate them. So, it is recommended to take a back up of
any work in progress and restore it after refresh is complete.

•	 Freeze all changes to production while sandbox is being refreshed; otherwise
you may get inconsistent sandbox states

Developer Edition orgs
These are primarily used by ISVs where applications can be developed practically
for free! (You can sign up for a free dev org at http://www.developerforce.com/
events/regular/registration.php.)

•	 This is a free, fully-featured copy of the Enterprise Edition environment,
with less storage and users.

•	 You can register this environment for free and start using it instantly.
This environment comes with a number of pre-installed applications, such
as Sales, Call Center, Marketing, and Idea, in case you intend to develop
extensions to these.

•	 These environments can be used by developers and partners who want to
build commercial applications and want their apps to be distributed via
AppExchange.

•	 They can also be used whenever you are in need of a development
environment, either for proof of concepts or for in house apps.

•	 Developer Editions provide full access to many exclusive features available
to Enterprise and Unlimited Editions like API access is enabled so that you
can develop integrations with your external systems and applications.

•	 Developer Editions offer 5 MB of data storage limit, 20 MB of file storage, and
5000 API requests per 24 hours.

•	 These continue to be in service as long as they had any activity within the
previous six months.

Setting Up Development Environments

[104]

Individual versus partner DE
A DE org usually refers to an Individual Developer Edition, which is available to
anyone for free and is suited mostly for prototyping! However, as a Force.com ISV
or consulting partner, you become entitled to a variety of environments for robust
development and testing of Force.com apps. A partner de is a regular DE org, but
with enhanced limits in terms of features, user licenses, data storage, and API limits,
and hence it is also referred to as a super-sized DE org.

When to use individual DE org
Developer Editions are ideal when:

•	 You are a partner who intends to build a commercial Force.com app by
creating managed package for distribution via AppExchange and/or Trialforce

•	 You are a Salesforce.com customer with Professional, Group, or Personal
Edition and do not have access to a sandbox environment

•	 You want to explore Force.com for free

When to use partner DE org
Partner DE org is ideal when:

•	 You are working in a team and want a master environment to manage all
the source code. In this scenario, individual developers can work in their
own DE orgs and they can check their code in and out from this master
repository environment.

•	 When you expect more than two developers to log in to develop and test.
•	 You need a bigger environment to allow more users to run robust tests

against large data sets.

Tips and best practices
Things to keep in mind while choosing a development environment are discussed in
the following sections.

Choosing a development environment
A sandbox environment can be used when:

•	 You have an Enterprise or Unlimited Edition
•	 You want to create functionality for a single production org

Chapter 5

[105]

•	 You want to test the app on data that is similar to your production org
•	 You have special features, such as Person Accounts, enabled

A DE org can be used when:

•	 You want to develop a packaged app for commercial distribution
via AppExchange

•	 All your sandboxes are exhausted
•	 Your development does not depend on the rest of the organization
•	 You have a Professional, Group, or Personal Edition, where sandboxes are

not available to you

Development considerations
Keep in mind the following points when with working with development
environments:

•	 Always develop in a development environment, either a DE org or sandbox,
and then migrate it to production environment

•	 Plan well ahead whether or not you need a bigger environment for your
development, as a regular DE org cannot be upgraded to a partner DE org

•	 Always take into consideration the features available in different editions
while building applications; for example, Professional and Group Editions
have certain features missing as compared to a DE org

•	 Always test your application before deployment in a separate and isolated
environment so that development and test environments are separate

Testing environments
It is highly recommended that applications and other functionality must be
thoroughly tested before deploying them to production or releasing them to
customers. You should promote your changes to dedicated testing environments
where you can perform integration tests with large data sets, for various security
scenarios for multiple users, roles, and profiles, and stabilize the functionality by
detecting issues earlier and fixing them before it goes live.

Dedicated test environments can be created in various ways. You can create a
sandbox copy of your production environment where the application can be
deployed directly from the development environment. This way you will not
only mock the production deployment process, but also test the application in the
production-like environment against real-life data.

Setting Up Development Environments

[106]

If a sandbox is not available to you, you can use a DE org as your test environment.
The standard DE org may be limiting due to license and storage limits, but you can
have partner test environments based on various editions (Enterprise or Platform
and Professional Editions) that have higher license and storage limits.

When to use a Partner Test Edition org
Use Partner Test Edition (Enterprise, Platform, or Professional Edition) when:

•	 You want to test your app in a production-like environment with more users
and storage to execute real-life tests

•	 You want to develop a managed package to release commercially and want
to test your beta managed package

•	 You want to make sure that your app will run smoothly on Enterprise, Force.
com, or Professional Editions

When to use a sandbox org
Use a sandbox as a test environment when:

•	 You want to test your functionality against a copy of your
production environment

•	 You have an Unlimited, Enterprise, or Force.com Edition environment
with a sandbox

•	 You want to test a beta managed package

Various development scenarios
Now that we have gone through all the available environments, we can consider
various development scenarios and try to fit them in environments for the
development strategy.

Scenario 1
A developer wants to build a free Force.com app:

1.	 Sign up for a free DE org to be used as the development environment.
2.	 Build a Force.com app, using available platform features.
3.	 Sign up for another DE org to be used as the testing environment.
4.	 Use the Force.com IDE to develop and deploy your application from

development to test to production environment.

Chapter 5

[107]

Scenario 2
A customer wants to build a new Force.com app for a production environment:

1.	 Get a free DE org or set up a sandbox to be used as the
development environment.

2.	 Build a Force.com app in the development environment.
3.	 Use another DE org or sandbox environment to test the app functionality.
4.	 Use Force.com IDE to develop and deploy your application from

development to test to production.

Scenario 3
A partner wants to build a native Force.com app or a composite app that integrates
with Force.com, for selling:

1.	 Sign up for a free DE org or partner DE org to be used as the development
environment. Both these environments have API access enabled, which
allows building the integration.

2.	 Use the Force.com IDE to build the app.
3.	 Package the app and upload it as a beta managed package.
4.	 Test the beta managed package in the sandbox, DE, and/or Partner

Test environments.
5.	 Upload the package as released managed package and deploy it to

the customers.

Migrating changes between
environments
Migration refers to the movement of configuration changes from one Salesforce org
to another. This is done either to keep orgs in sync or to move changes through dev
orgs to production or the packaging org. Packaging org is the DE org that you use
to create your final packages. For the sake of simplicity, we will refer to both the
packaging org and production org as the production org.

Migration can happen either manually or via metadata.

Setting Up Development Environments

[108]

Broadly, the steps to migrate changes are as follows:

1.	 Determine components—some may be migrated through metadata while
others will be required to be moved manually.

2.	 Migrate components in the desired order maintaining dependency.
3.	 Optionally modify your Force.com project or outbound change set to deploy

only a subset of components.
4.	 Deploy.

Migrating changes manually
Those components that are not available via API need to be migrated manually and
this is achieved by performing setup changes through the Salesforce user interface.
An example could be that of an approval process, which when developed in sandbox
or DE org is not available in the Metadata API and the only way to migrate it on the
destination org is to recreate it via the web interface.

The best way to manage manual migrations is to establish a change process on your
production/packaging org and to track the changes that require manual migration.

Establishing a change process for production org
One of the strongest features of all the orgs is that all changes can be done directly
on any environment via the web user interface, but this becomes a pain in the
long run if you intend to develop enterprise-level apps, because due to this ease of
development, there may be a situation that changes may be made directly on the
production/packaging org whereas the application is being developed in the DE/
sandbox org. To ensure foolproof development and successful deployment, it is
essential that all changes should be present on development environments that exist
on production, because while migrating from development to production you may
overwrite changes made only and directly on production.

In a production/sandbox scenario, this can be made possible via regular sandbox
refreshes but this may not be always possible as full sandbox refresh can take place
only once every 29 days. In case of ISVs, doing development on DE orgs, migrating
changes to QA, and packaging orgs should be tightly tracked as these are more like
logical environments and not actually linked, unlike production/sandbox orgs.
To streamline things, it is best to define a change process for your production org.
A change process determines what kinds of modifications can take place on your
production org, when can they occur, and who is responsible for making changes.

Chapter 5

[109]

Best practices for change processes
As per Salesforce, the following points suggest some best practices for change
processes, arranged from simplest to most complex:

•	 Allow no changes on production: This is simplest, but also the strictest and
sacrifices immediate setup changes for easier deployment. This means that all
development happens on sandbox/DE orgs.

•	 Modify only components in the Metadata API: Limiting changes to
components that are accessible in the Metadata API will simplify change
tracking, merging, and deployment.

•	 Allow only one administrator to make setup changes: This simplifies
keeping track of changes on production and the administrator can replicate
back those changes into development environments. This is more flexible
approach that allows changes in production and project-based development
at the same time. However, this is practical only when the organization is
small enough that only one administrator can make all setup changes.

•	 Schedule production changes: If the production org requires more frequent
updates, migrating those changes back to development environments can
be scheduled.

Tracking changes
Changes that are made to components available in the Metadata API can be tracked
and merged easily using desktop tools. When using Force.com IDE or Salesforce.
com Migration Tool, you can put the metadata files in the version control system
and can track changes by using the built-in functionality of Source Code Control
System (SCCS). However, numerous changes are made to components that cannot
be tracked automatically as they are not available in the metadata API. Such changes
require manual tracking for both production and development environments.

Thus, it becomes essential to use tools and processes that help keeping a close track
of changes. The possible options are as follows:

•	 Creating a shared Google spreadsheet to log and track changes, which may
have the following format:

°° Who made the change
°° Org where the change was made
°° Date and time
°° Which component was changed

Setting Up Development Environments

[110]

•	 Creating a custom application within Salesforce to record change requests
and actual changes made. One such custom app is a free Change Control
app on AppExchange.

•	 Creating a change control request form that is filled by both users and
administrators for every enhancement requested and change performed.

Metadata migration
Components that are available in the Metadata API can be migrated by using the
desktop tools or change sets.

Migration using change sets
Change sets allow sending customizations from one org to another. They can only
contain modifications, such as apps, objects, reports, and so on, which you can make
through the Setup menu and so they cannot be used to upload records. In other
words, they contain metadata, not data. Organizations need to be connected before
change sets can be migrated. The outbound change set contains customizations to
be sent and the receiving organization sees it as the inbound change set. This can
happen only between those orgs that are associated with a common production
organization. Along with the connection, an administrator has to authorize each org
for sending and receiving change sets.

1.	 Click on Your Name | Setup | Deploy | Deployment Connections.
2.	 Click on Edit.
3.	 Select Allow Inbound Changes and click on Save.

Best practices for using change sets
Salesforce suggests the following best practices for using change sets:

•	 Deploy all dependent components: All interdependent components should
be included in the change set that doesn't exist on the target org, otherwise
the deployment will fail. For example, to deploy a custom object and all of its
fields, you must include the custom object and every field in it to the change
set, otherwise the deployment will result in an empty custom object on the
target org.

•	 Add permissions and access settings to outbound change sets: These allow
administrators to migrate permissions for users so that they can access the
new functionality.

Chapter 5

[111]

•	 Clone a change set to add dependent components to an uploaded change
set: Contents of an uploaded change set cannot be changed, so if you need
to add any dependent components that accidentally got missed during the
previous upload, clone the change set, add dependent components, and
upload the new change set.

•	 Validate change sets before deployment: It is a good practice to do a test
deployment of the inbound change set to view success or failures messages
ahead of time and can take necessary steps to rectify errors, if any.

•	 Change sets limited to 2500 components and 400 MB: These limits apply
for change sets and if they exceed them, you can create separate change sets,
clubbing e-mail templates, dashboards, reports in one change set as these are
components with minimum dependencies.

•	 Deleting and renaming the components: Change sets cannot be used
for deleting or renaming the components. For this, you have to delete the
component on target org first, and then upload the new component in the
change set.

Migrating metadata files
Metadata API was designed to support traditional software development tools that
operate on source files, text editors, diff/merge utilities, and version control systems,
all of which require a local filesystem. So migrating changes from one org to another
requires an intermediate tool that interacts with both environments using the
Metadata API. Visually the migration process from sandbox to production looks
like the following diagram:

Application lifecycle management
The flexibility of Salesforce.com to allow development in various environments
may introduce complexity and lead to confusion as to what development strategy
must be used to develop applications. Salesforce has discussed various development
scenarios where the release process depends on the complexity of the application
being developed, and accordingly there are different ways to manage different
development projects.

Setting Up Development Environments

[112]

Production development
Here, you carry out development directly on the production environment, using
the powerful declarative web user interface. As development happens directly in
production, there is no need for separate development and testing environment.

Production org

Test
and

Deploy

A typical application lifecycle includes the following steps:

1.	 Plan functional requirements.
2.	 Develop them by using Salesforce Web tools.
3.	 Notify end users of changes.

Typical development projects include creating new or modifying existing:

•	 Custom fields
•	 Dashboards, reports, and e-mail templates
•	 Profiles or permission sets
•	 Visualforce pages

Developing with sandbox
For slightly more complex project or where isolation from production is required,
a single sandbox org can be used. It can be used for both development and testing,
and the changes are subsequently promoted to the production org. In this case, it is
a good idea to keep track of changes, just like we discussed in the earlier section, to
avoid overwriting production changes with sandbox changes.

Production org

Production org

Chapter 5

[113]

A typical application lifecycle includes the following steps:

1.	 Create a development environment.
2.	 Develop it using Salesforce Web and local tools.
3.	 Test within the development environment.
4.	 Replicate production changes in development environment.
5.	 Schedule the release.

Typical development projects include:	

•	 New custom tabs, applications, and objects
•	 Integrations with other systems
•	 Apps involving Apex, Visualforce, workflow, or new validation rules

Isolating development and testing
In a single environment scenario for development and testing, the development
has to stop when testing is in progress and you can only resume development after
you have deployed the changes to production. This results in inefficient usage of
resources. In a more complex and sophisticated development model, development
can continue while testing deployment is in progress. The changes, however, made
in the production and test environment during testing will have to be brought back
to the development environment.

Develop Production

Test

A typical development lifecycle includes the following steps:

1.	 Create a dev environment.
2.	 Develop it using web and local tools.
3.	 Migrate changes from dev to the test environment.
4.	 Test them.

Setting Up Development Environments

[114]

5.	 Replicate production changes in the dev environment.
6.	 Schedule the release.

Typical development projects include:

•	 New custom tabs, applications, and objects
•	 Integrations with other systems
•	 Apps involving Apex, Visualforce, workflow, or new validation rules

Multiple project development with integration,
UAT, and staging
If there are multiple project development tracks that are scheduled to go live at the
same time, you will certainly need an environment for carrying out the development
integration to make sure code gets merged without any conflict. Then you will also
need an environment for carrying out UAT to ensure that the original requirements
are met. You may optionally need a staging environment where you can ensure that
the deployment to production will go exactly as planned.

In this process, it is a good idea to restrict the changes being made only on the
development environment as the complexity of the application has increased and
so has the number of environments. It will become extremely difficult to keep
environments in sync if changes are made in any environment other than the
development environment. So a controlled change management process, which
is repeatable over time for migrating changes to production, should be defined.

A typical development lifecycle includes the following steps:

1.	 Create dev environments.
2.	 Develop it by using Salesforce Web and local tools.
3.	 Create testing environments including integration and UAT.
4.	 Migrate changes from devlopment to the integration environment.
5.	 Test them.
6.	 Migrate changes from the integration environment to the UAT environment.
7.	 Perform UAT.
8.	 Migrate changes from UAT to the staging environment.
9.	 Replicate production changes in the staging environment.
10.	 Schedule the release.

Chapter 5

[115]

Typical development projects include:

•	 Concurrent development of new applications in multiple environments
•	 Projects that require team development
•	 Apps involving Apex, Visualforce, workflow, or new validation rules

Developing enterprise applications
Large organizations usually end up with having complex development processes
that span multiple release cycles. It is essential not just to separate out dev and
test environments, but also to sync up projects on different release schedules. In
this development scenario, you may have multiple development environments
that integrate with each other before merging into a staging area. Additional
environments could be added for purposes such as production support, training,
and so on.

A typical development lifecycle includes the following steps:

1.	 Create dev environments.
2.	 Develop it using Salesforce Web and local tools.
3.	 Create testing environments including integration and UAT.
4.	 Migrate changes from devlopment to the integration environment.
5.	 Test them.
6.	 Migrate changes from the integration environment to roll up and

UAT environments.
7.	 Perform UAT.
8.	 Migrate changes from UAT to the staging environment.
9.	 Replicate production changes in the staging environment.
10.	 Migrate changes to the training environment.
11.	 Schedule the release.

Typical development projects include:

•	 Multiple projects of various complexities and durations on different
release schedules

•	 Development teams that include distributed developers and testers

Setting Up Development Environments

[116]

Summary
By the end of this chapter, we hope that we have covered enough to explain various
development and testing environments such as sandboxes, DE orgs, partner DE,
and test orgs, different scenarios where they can be specifically leveraged, migrating
changes between environments both manually and via Metadata API, and tips and
best practices for using them. We discussed the application delivery strategies where
combinations of various environments and development projects were suggested
based on the complexity of the application development for the business.

Tools and Destinations that
Every Force.com Developer

Should Know
Tools are a developer's best friend, as they save time and increase productivity.
As a Force.com developer, you're lucky to have lots of tools coming straight from
the Force.com team, plus a lot of great tools are developed open source by the
community too.

Tools discussed in this chapter will not be limited to IDE, but we will introduce you
to various other tools. In this chapter we will cover:

•	 Schema Explorers, which are similar to database clients; for example, Tool
for Oracle Application Developers (TOAD)

•	 Toolkits to easily integrate Force.com with other clouds for example, Google,
Amazon, and so on

•	 Data migrators
•	 Libraries for various languages such as Java, .NET, Ruby, and so on

Destinations are various locations inside and outside the Force.com portals; they
save time in troubleshooting problems or finding solutions and best practices.
In this chapter, we will not limit the discussion to classic Force.com forums,
looking at the following as well:

•	 Twitter
•	 Cookbook
•	 DeveloperForce wiki
•	 Open source projects

Tools and Destinations that Every Force.com Developer Should Know

[118]

Tools for developers and admins
As a Force.com developer, you will find plenty of tools for various categories such
as integrated development environment (IDE), schema browsers, data migrators,
cloud integration libraries, and toolkits. These tools are continuously evolving and
upgrading with every Force.com platform release; this applies to community-driven
open source tools as well.

To stay updated with the latest on tools, you should keep an eye on the following:

•	 Official tools page from Salesforce at http://wiki.developerforce.com/
page/Tools

•	 Open source projects on popular sites such as:

°° Github: Similar CVS and SVN, Git is comparatively newer, but is
now the industry's most popular and preferred method for code
versioning. Github provides free hosting for open source projects and
is used by a lot of talented Force.com engineers and Developer-force
team themselves.

°° Code Share: This is the official Force.com open source project
directory. Developers upload their projects on various open source
sites such as Google Code, Github, and so on, and link them up on
Code Share for listing.

Choosing the right IDE
Force.com developers have a few options when it comes to IDE. These options range
from desktop applications to browser-based web apps. This section will give you
details and relevant pointers on the key IDEs available.

Force.com IDE based on Eclipse
This is a desktop application based on Eclipse (plugin). As it's based on Eclipse, you
can use it on any operating system, that is, Windows, Mac, or Linux. The following
are the salient features:

•	 Syntax coloring for Apex and Visualforce code, with some code assistance for
sObjects and classes in the Apex editor

•	 It works connected to a Force.com org; that is, after saving a file, all your
metadata (class, page, trigger, and so on) changes are reflected in the org

•	 One can run Apex unit tests here and see the code coverage for the test and
execution results

Chapter 6

[119]

•	 Schema Explorer can be used to fire SOQLs and explore structure of
available sObjects

•	 One can deploy metadata to other orgs, using deployment wizards

For complete details about Force.com IDE, please visit the official wiki page at
http://wiki.developerforce.com/page/Force.com_IDE.

Using Eclipse already?
It's quite possible that you already have an Eclipse installation that is in active use
for developing projects in Java/J2EE, Android, and so on. This existing Eclipse
installation can be used because Force.com IDE is also available as an Eclipse plugin,
just like various other Eclipse plugins.

Installing Force.com IDE as a plugin is pretty easy; just add the update site
http://www.adnsandbox.com/tools/ide/install/ and follow the usual plugin
installation steps. If you need detailed instructions about plugin installation, more
specifically for your version of Eclipse, please check out the online guide available
at http://wiki.developerforce.com/page/Force.com_IDE_Installation.

Developer console based on your browser
Developer console is a browser-based IDE, which means there are no software
installations, it's cross platform, and developers can use it on a machine without a
power user configuration. It allows developers to:

•	 Explore source repositories such as Apex classes, triggers, and
Visualforce pages.

•	 Create or edit source files, with syntax coloring for both Apex and
Visualforce code, plus auto completion or content assist for Visualforce tags.

•	 Debug application issues by viewing rich logs about application flow, which
includes database events, workflow, callouts, validation logic, Apex method
calls, and so on. Apart from that developers can set markers and view heap
dumps for them.

No more System.debug(); use heap dumps instead!
If they are getting bugged by logical issues, such as Attempt to
de-reference a null object, developers can nail down the
buggy code by setting a heap dump capture marker at the specific line
of code. On executing the process again, a request can be inspected
at that specific line in the execution to get the full context of what is
causing the error. Please note that developer console won't pause
execution like a classic debugger of Java or .NET.

Tools and Destinations that Every Force.com Developer Should Know

[120]

Developer console can be launched in a pop-up window by navigating through
Your Login Name | Developer Console, as indicated in the following screenshot:

Users need the following permissions to make the most out of the developer console:

•	 View All Data: To use the developer console
•	 Author Apex: To use the Execute anonymous text entry box
•	 Author Apex: To save changes to Apex classes and triggers
•	 Customize Application: To save changes to the Visualforce pages

and components

For more details about the developer console, please check the official
documentation available at https://help.salesforce.com/apex/HTViewHelpD
oc?language=en&id=code_system_log.htm. If login is required, please use your
Developer Edition credentials.

Sublime Text plugin for Force.com
Just like Eclipse, if you are already using Sublime Text (http://www.sublimetext.
com/) on your machine, you can use a community-developed open source plugin
called MavensMate.

Chapter 6

[121]

The following are the salient features of this bundle:

•	 Create Salesforce projects with specific package metadata
•	 SVN and Git support
•	 Create and compile Apex classes, Apex trigger, Visualforce pages, and

Visualforce components
•	 Compile and retrieve other Salesforce metadata
•	 Run Apex test methods and visualize test successes/failures and coverage
•	 Supports code completion for sObject fields and Apex primitive methods

(Alpha)
•	 Deploy metadata to Salesforce orgs

For detailed docs and installation instructions, please visit https://github.com/
joeferraro/MavensMate-SublimeText.

Tools and Destinations that Every Force.com Developer Should Know

[122]

Exploring objects, fields, and relationships
using Schema Browsers
Every developer must have tried this previously, when working in Java, .NET, or
PHP. Schema Browsers such as TOAD and other clients such as Squirrel are pretty
popular. Similar tools are also available for browsing Force.com schemas. Almost
all these tools allow browsing schemas such as subject and fields, with the ability to
build and fire SOQL queries. Let's look at the popular browsers.

Schema Builder
Schema Builder is a browser-based tool, which is available as part of other setup
screens in the org. It lets you visually view (as an entity relationship diagram),
design, and explore your objects and relationships between them; it also lets you
define new objects, fields, and relationships between them.

Chapter 6

[123]

One can access Schema Builder by using any of the following approaches:

•	 Navigate to Your Name | Setup | Schema Builder.
•	 Navigate to Your Name | Setup | Create | Objects. Then in the custom

objects page, click on Schema Builder.
•	 Navigate to Your Name | Setup. In the Quick Links box on the Force.com

home page, click on Schema Builder.

You can learn more about Schema Builder at https://help.salesforce.com/
htviewhelpdoc?id=schema_builder.htm&siteLang=en_US.

Force.com Explorer
This is an Adobe AIR based application, and it's installable on any OS that supports
Adobe AIR runtime. For fine details, please visit http://wiki.developerforce.
com/page/ForceExplorer.

SoqlXplorer
This is a third-party (by SimonFell) tool similar to Force.com explorer for Mac OS,
you can install it from http://pocketsoap.com/osx/soqlx/.

Data Loaders
Data Loaders help you to migrate sObject data to CSV (comma-separated values)
files, spreadsheets, and relational databases. The following are the salient features of
Data Loader:

•	 Provides both wizard-based GUI and command-line interface
•	 Supports batch operations and files with millions of rows
•	 Supports both standard and custom objects, with an easy drag-and-drop

interface for mapping fields
•	 Fine logs about success and failure of operations

Different flavors of Data Loader are available for various operating systems, such as
Windows, Linux, and Mac OS. Now we'll go through the complete list.

Data Loader for Windows
This version is developed and maintained by the Force.com tools team. It's
compatible with Windows XP and Windows 7, and it supports all the features
mentioned in the preceding section.

Tools and Destinations that Every Force.com Developer Should Know

[124]

For more details, please check the following links:

•	 DeveloperForce wiki page for Data Loader:
http://wiki.developerforce.com/page/Data_Loader

•	 User guide: http://na1.salesforce.com/help/doc/en/
salesforce_data_loader.pdf

Force.com Excel Connector
This is a Microsoft Excel add-in, useful for mass updating and cleaning up of
Salesforce data from spreadsheets. This add-in is based on Force.com Office toolkit
(http://www.salesforce.com/us/developer/docs/officetoolkit/index.htm)
and uses Salesforce web services (SOAP APIs) internally.

This add-in is open source (http://code.google.com/p/excel-connector/)
and written in VBA (Visual Basic for Applications). One can make most out
of this plugin by either using as it is or by altering the source to best fit the
business requirements.

For more details, please visit http://wiki.developerforce.com/page/
Force.com_Excel_Connector.

LexiLoader for Mac OS
Official Data Loader application from Salesforce is not available for Mac OS, but a
good third-party application (by Simon Fell) named LexiLoader is available. This
app comes with a similar interface as of official Salesforce Data Loader, as shown in
the following screenshot:

LexiLoader is compatible with Mac OS X 10.6 or later. For more details and
download links, please visit http://www.pocketsoap.com/osx/lexiloader/.

Chapter 6

[125]

Utility tools and apps for productivity boost
These apps are utilities such as browser plugins and password managers. Force.com
community is pretty active in developing various open source tools and utilities.
Let's take a look at a few popular apps.

Force.com migration tool
This tool lets you quickly push metadata components from one Force.com org to
other, this tools save a lot of time under various scenarios:

•	 Pushing code across various dev, test, staging, and production orgs.
•	 Quick replication of standard org configuration for testing, to a brand new

org. Doing the same will take a lot of effort from web interface.
•	 Setting up other automation tools such as CruiseControl or Hudson to call

migration tool (ANT tasks) on a time trigger.
•	 Eclipse also supports metadata migrations, but as this tool can remember

the components to be deployed, it's preferred approach for doing repeated
deployments for the same metadata.

The online guide available at http://www.salesforce.com/us/developer/docs/
daas/index_Left.htm has all the details to get you up to speed with this tool.

Learning from videos is usually faster. There is a good screencast video available at
http://wiki.developerforce.com/page/Migration_Tool_Guide that explains
the deployment process.

Salesforce Workbench
Workbench is a browser-based suite of utilities for admins and developers.
It includes support for:

•	 Working across different API versions of platforms
•	 Testing, troubleshooting, and exploring various Force.com APIs such as

Force.com Partner, Bulk, Rest, Streaming, Metadata, and Apex
•	 Data and metadata migrations
•	 Testing single sign-on integrations

Tools and Destinations that Every Force.com Developer Should Know

[126]

The following screenshot shows how you can add a Streaming API topic
via Workbench:

Workbench is an open source tool and is not supported by
Salesforce—the tool to be used against production data. This tool
is best utilized for development prototyping and research.

Learn more about Workbench at https://workbench.developerforce.com/
about.php.

Force.com Security Code Scanner
This tool scans your Apex and Visualforce code for any security vulnerabilities as per
the various rules for security and code quality. This tool is very useful for anyone to
keep hold on code from both quality and security standpoint. It's specifically useful
when developing apps for listing on AppExchange, as it saves time by informing you
about the issues that the Force.com security team will otherwise report.

Here are some key issues this tool can identify:

•	 Security issues: Cross site scripting, SOQL injection, SOSL injection, frame
spoofing, and access control issues

•	 Code quality issues: DML statements inside loops, SOQL/SOSL inside
loops, hardcoding Trigger.new[0], queries with no Where clause or no
LIMIT clause, not bulkifying Apex methods, Async (@future) methods
inside loops, hardcoding IDs, multiple triggers on the same object, and static
resource referencing

•	 Other issues: CRUD/FLS violations, open redirects, and hardcoded
passwords

Chapter 6

[127]

To scan your code via this tool, please submit it with the correct username on the
website, http://security.force.com/security/tools/forcecom/scanner.

Once the scanning is done, the tool will e-mail the results in a PDF file to the e-mail
address associated with the username provided on the website at the preceding link.
The results point out errors very neatly, as indicated in the following screenshot:

Force.com Utility Belt
This is a handy browser plugin developed by Jeff Douglas (https://twitter.com/
jeffdonthemic). Here is a screenshot of the plugin showing Quick Reference Topics:

Tools and Destinations that Every Force.com Developer Should Know

[128]

The following are the salient features of this plugin:

•	 The Quick Reference Topics interface: It gives quick pointers for Force.
com documentation about Apex, Visualforce, SOQL, Ajax Toolkit, and Web
Service API

•	 Search for stuff: Easily search for required piece in various Force.com
developer guides, cookbook, AppExchange, Snipplr, Code Share, and so on

•	 ID convertor: For 15 digit to 18 digit conversions

In Google Chrome, install this plugin from https://chrome.google.com/
webstore/detail/bchgkjmjnmekbampjoenadmoekocpbhp.

As the preceding URL is not easy to memorize, you can search for Force.com utility
belt in Chrome web store. It's listed under the Developer Tools category, as shown
in the following screenshot:

Trapdoor (Mac OS only)
It's pretty common for the Force.com developers to end up with lots of Force.com
orgs and credentials—remembering each of them is a big pain.

Trapdoor can help you by giving a quick dock context menu for your sandbox,
developer, and production org logins. Clicking on any one of the login usernames
will directly log in you in the default browser for that username.

The following screenshot shows the Trapdoor dock context menu:

Chapter 6

[129]

Trapdoor automatically scans all Salesforce login entries stored in the OS-provided
keychain, so you will find most of your existing browser logins without any manual
entry into the Trapdoor menu, plus you can add your new logins too.

For more details and installation instructions for Trapdoor, please visit
http://pocketsoap.com/osx/trapdoor/.

Toolkits and libraries
Force.com is a platform with an open mindset; it offers a rich collection of toolkits to
easily develop solutions across platforms and languages. These toolkits are libraries
developed in Apex, Python, Java, and other languages, which give you decent
integration and foundation code with code samples. This lets developers focus more
on solving business problems, rather than developing the integration. Toolkits are
available for:

•	 Cloud platforms such as Amazon, Facebook, Google, and Azure. For
more details, please check http://wiki.developerforce.com/page/
Tools#Cloud_Integration_Tools.

•	 Languages such as PHP, Java, .NET, Ruby, and Adobe AIR/Flex. For
more details, please check http://wiki.developerforce.com/page/
Tools#Language_Integration_Libraries.

Tools and Destinations that Every Force.com Developer Should Know

[130]

Destinations
Quite often, when working with any language or platform you will need solutions for
queries and problems, and the classic destination for getting those resolved is forums.
With the Force.com platform, a developer is not only limited to rich suite of forums,
but he can also use various other media sources such as wiki pages, cookbooks, and
Code Share—interacting with community is even more social via twitter.

developer.force.com
This is the ultimate destination that each Force.com developer should know and
visit often to keep up with latest happenings in the platform. It can be used for
the following:

•	 Technical Library: You can find all the documentation related to platforms
here. It lets you explore information by functional categories such as user
interface, database, security, and so on.

•	 Boards: Rich suites of forums or discussion boards on topics such as Apex,
Visualforce, Java, .NET, and many more.

•	 Cookbook: Yummy code samples and best practices for day-to-day
or complex problems can be found here.

•	 Blogs: Follow these blogs to stay updated about upcoming events
and updates to platform.

•	 Events: Get ideas about upcoming events such as webinars, code talks,
and so on.

Open source goodness
One can learn a lot from what is already done by going through the various open
source projects developed by experts from Force.com community. Fortunately, you
will find amazing number of open source apps developed by community for native
Force.com solutions, as well as in other languages such as Java, .NET, Objective – C,
Ruby, and so on. It's not possible to cover each of them in this book, and you can find
most of them at the following links:

•	 Github.com is the new destination for all open source actions. Follow these
accounts for the latest updates:

°° https://github.com/forcedotcom: Official Force.com account
on Github.

°° https://github.com/ForceDotComLabs: The account of the
Force.com labs team that develops App Exchange apps and the
associated open source code.

Chapter 6

[131]

°° https://github.com/cloudspokes: Cloudspokes.com is pretty
popular for running challenges on cloud platforms such as Force.
com, Google, Heroku, and so on. All the source code for submissions
in these challenges is available here.

•	 Force.com Code Share is the official open source hub from Salesforce, but it's
less active and popular as compared to Github now. For more details please
visit http://developer.force.com/codeshare.

Queries and troubleshooting
This section explains approaches to troubleshooting problems during development.
Here is the list of useful links:

•	 http://developer.force.com: As discussed in the preceding section,
this portal is the official Force.com forum for troubleshooting and queries.
Developers will find not only a huge community, but also that the Force.com
team itself is out here. On landing at this portal, please go to the Boards tab
as indicated in the following screenshot:

Tools and Destinations that Every Force.com Developer Should Know

[132]

•	 http://stackoverflow.com: This is a very popular online destination for
troubleshooting problems about any language. There is a good chance that
you will have already used Stackoverflow, if you have background in Java,
PHP, and so on. The Force.com community is pretty active on this portal; for
better responses ask questions with tags such as salesforce, apex-code, or
visualforce.

•	 twitter.com: Use the hash tag #askforce with your question tweets.
Many Force.com community members watch this hash and you might get
responses sooner than on other forums.

Summary
This chapter covered a range of tools and destinations, starting from tools
for coding, that is, IDE with both browser (Developer Console) and desktop
(Eclipse/SublimeText) options, Schema Browsers and ERD tools, Data Loaders,
and various other utility tools, such as Workbench and browser plugins, to make
you more productive.

Knowing good destinations for code snippets, information, and troubleshooting
is equally important. This chapter walked you through most the popular and key
destinations such as developer.force.com, troubleshooting via discussion boards
and social media, and learning from quality code in various open source channels
such as Github and Code Share.

In Chapter 7, Writing Better Apex Code, you will learn a variety of tips and tricks
about Apex language basics, designing triggers, getting the most out of SOQL/
DML statements, smoother integrations using XML/JSON, writing secure code
that respects governor limits, testing and debugging your code, and making
AppExchange listing or production deployments easier.

Writing Better Apex Code
Apex is the world's first on-demand, strongly-typed programming language. It lets
developers execute UI flow controls and backend transactions on the Force.com
platform. Apex is usually not the first programming language for most developers,
as they may have prior experience in languages such as C/C++, C#, Java, and so on,
and together with this experience comes expectations from Apex. It's important to
understand that Apex is different from other languages, mostly because of syntax,
but mainly because it's meant to compile and run in a multitenant cloud platform.
Because of this multitenancy, no one completely owns the server and everyone is
free to write any ridiculously crappy code in Apex. There is always a governor sitting
in Apex runtime that will stop the show in case the code tries to cross the limit. This
means your code is given a runtime quota and it must comply with that. This quota
has limits on various key areas in every flow, some of which are listed as follows:

•	 Number of code/script lines to be executed
•	 Number of Salesforce Object Query Language (SOQL) queries to be fired
•	 Heap memory used
•	 Data manipulation language (DML) statements issued

For more details on limits, please visit http://www.salesforce.com/us/
developer/docs/apexcode/Content/apex_gov_limits.htm.

This chapter attempts to cover some key best practices, tips, and tricks to write better
code in Apex and maintain good realtionship with the governor, that is, as a good
tenant. Here is the outline of topics that will be covered in this chapter:

Writing Better Apex Code

[134]

•	 Understanding the language basics such as:
°° Using the correct file nomenclature
°° What is different about static keywords in Apex?
°° Smart looping tricks
°° Using enums for constants
°° Reducing script statements

•	 Getting a hold on Advanced Apex practices such as:

°° Data, FLS, and CRUD security in Apex classes
°° Writing better SOQL queries and DML statements
°° Working on metadata information in Apex
°° Writing better Apex triggers
°° Handling XML and JSON responses in Apex
°° Considerations when packaging Apex code
°° Making the most out of API versions
°° Apex testing tips
°° RESTful web service tips
°° Understanding limits

Understanding the language basics
To write better Apex code, it's important to have the basics in place. In this section,
the focus will be on using the correct nomenclature for Apex code files and language
constructs (static, loops, constants, and so on).

Using the correct nomenclature for code files
Discipline in choosing file nomenclature is important in Apex, as all the Apex classes
are stored at the same level and the programmer doesn't get multilevel nested
packages/namespaces. If you are working on a moderately big project, it's not
difficult to end up having more than 50 Apex classes. The situation is more complex
when there are multiple developers; if no nomenclature is there, it's difficult to know
which Apex class file is for what purpose, unless someone peeks into the code. Here
are few tips:

Chapter 7

[135]

•	 Follow one standard for naming classes, methods, and variables:
Java standards are strongly recommended by the Force.com team.
Use Camel Case (http://en.wikipedia.org/wiki/Naming_convention_
(programming)#Java), for example, when:

°° Classes start with a capital letter, for example,
AccountTriggerHandler

°° Methods start with a lowercase verb, for example,
loadAllContacts()

°° Variable names should follow lowerCamelCase, for example,
Integer numberOfContacts

°° Constants' names should be all uppercase with words separated
by underscores, for example, MAX_NO_CHILDS = 10

•	 Use a prefix or suffix describing the nature of the Apex class: Here nature
means if it's a Batch, Scheduled, Future, Trigger, and Page Controller/
Extension class. Having some form of prefix or suffix makes it easier to locate
and know the purpose of the class without peeking into the code. For more
details on this topic, please visit http://www.tgerm.com/2011/11/apex-
class-naming-convention-suggestion.html. Here are a few Apex class
names using prefixes based on purpose:

°° trgr_ContactDuplicateCheck: Class used with a Trigger on
a Contact

°° trgr_OpportunityAmountValidator: Class used with a Trigger on
an Opportunity

°° page_OppLoadController: Custom Controller class used with an
Opportunity sObject

°° page_ContactMergeExtension: Custom Visualforce Extension class
used with a Contact sObject

°° ws_ContactService: Apex class exposed as a SOAP web service
°° btch_BulkRecordCleaner: Batch Job Apex class for cleaning

up records
°° schd_NightlyAccountSync: Scheduled job that runs on a

nightly basis

Writing Better Apex Code

[136]

•	 Avoid too many class files: Developers from a Java background are
especially habitual in splitting functionality across multiple class files.
This doesn't work well in Apex, and we strongly recommend keeping
functionality limited to minimal Apex classes, because:

°° Too many files make it difficult to manage dependencies; we don't
have options in Apex to know where in other Classes a given class,
method, or variable is referenced

°° Having too many classes slows down an Apex flow, because it
fires a validation routine on an invocation to make sure the
dependencies are correct

Language constructs
Most of the languages have basic language constructs behaving similarly; it's slightly
different with Apex, for example, with static variables. This section sets the correct
foundation about the Apex basics.

Finding what's different with static keywords
Static in Apex is very different from other languages, typically in Java, a static
variable once set persists until the lifetime of application, that is, until the app,
server, or container is shut down or a new version of app is hot deployed. But in
Apex static variables, the lifespan starts and ends with a request/flow because Apex
classes are not cached in memory forever, they are loaded back in memory when
a request comes via a page or trigger. So don't expect patterns such as Singleton
(http://en.wikipedia.org/wiki/Singleton_pattern) to work correctly in Apex.

Static can be used for good in the following situations:

•	 Sharing information across classes in a flow, I know this is not a good design,
but might be helpful in certain situations, typically when locking on some
shared variables.

•	 Control triggers and avoid firing the same triggers again. Static persists
across multiple trigger executions in the same flow, that is, if Object X trigger
performs a DML operation on Object Y, the static variable value will be
persisted for all changes during the course of the flow from X > Y. This can
be used for chained triggers to fire indefinitely.

•	 A static variable never becomes part of a view state, so apart from constants
some variables can also be declared as static.

Learn more about static at http://www.tgerm.com/2010/09/visualforce-apex-
static-instance.html.

Chapter 7

[135]

Simplifying the loops
All forms of looping, that is, do-while, while, and index-based for and for-each are
available in Apex. For the integer array, for example:

Integer[] ants = new Integer[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

I frequently notice developers using traditional index-based iteration via for loops:

for(Integer idx = 0; idx < ants.size(); idx++) {
 System.debug('Iterating :' + ants[idx]);
}

This loop can be easily simplified to for-each as follows:

for(Integer ant : ants) {
 System.debug('Iterating :' + ant);
}

For-each looping is recommended, unless you explicitly need an index
for some calculations, it might avoid some runtime errors such as
Index Out of Bounds.

Making constants better with enums
Developers usually declare constants in the form of static final variables as follows:

public static final String WEATHER_SPRING = 'SPRING';
public static final String WEATHER_SUMMER = 'SUMMER;
public static final String WEATHER_WINTER = 'WINTER;

This approach is fine, but the constants are related in nature, that is, all of these are
representing weather. So these are better candidates for enums. The same constants
can be easily declared as the following enum:

public enum Weather {WINTER, SPRING, SUMMER}

Declaring related constants as enum gives more comparison/type
safety (for which enums are known).

Writing Better Apex Code

[138]

Reducing script statements
Apex code is always under strict control of a governor, so unlike other languages
we can't run infinitely long code in Apex. As of now, the limit is 200,000 statements
per flow; this means we can run Apex code spanning multiple classes, but the total
number of executed script/code lines would be 200,000. This is a very important
limit to understand and keep in mind when coding complex logic in Apex.

For example, if you are creating a map, as shown in the following code snippet. it
will take four script lines:

Map <Integer, String >aMap = new Map <Integer, String>();
aMap.put(1 , 'a');
aMap.put(2 , 'b');
aMap.put(3 , 'c');

However, the same can be reduced to one script line as follows:

Map <Integer, String>aMap = new Map <Integer, String> {1 => 'a', 2 =>
'b', 3 => 'c'};

Similarly, one can create Set and List in the following manner. This type of
instantiation is counted as a single script statement.

Set <String> aSet = new Set <String>{'a', 'b', 'c'};
List<String> aList = new List<String>{'a', 'b', 'c'};
// Creating Map directly from SOQL query
Map<ID, Contact>contacts = new Map<ID, Contact>([SELECT Id, LastName
FROM Contact]);

Keep an eye on the script lines of a code executed in loops; they
are multiplied by the number of iterations.

The preceding code can easily be tested for script statement usage by executing it
in the Developer Console and keeping an eye on the logs (logs are explained in the
Knowing the limits section discussed later in this chapter).

Advanced Apex
This section will discuss advanced topics in Apex, such as SOQL, security,
XML/JSON handling, web services, and so on.

Chapter 7

[135]

Security data access via the with sharing
keyword in classes
Apex runs in the system context, which bypasses security, that is, the current user's
permissions, field-level security, and sharing rules. Apex gives the user options on
enabling/disabling sharing rules. This can be done at the time of declaring the class,
that is, the following Apex class respects the sharing rules, so the queries will only
return the rows that the current logged-in user is entitled to see.

public with sharing class AccountExtension {
 public Account[] init() {
 // Apart from matching criteria, only those accounts visible to
 current user will be returned
 return [Select Id, Name from Account Where Name like '%corp'];
 }
}

If this code was written using the without sharing keyword, it would have
returned all the Accounts. So this is a big security breach and very damaging to
the enterprise customers.

Please note if a class is declared with none of the with sharing
or without sharing keywords, it inherits the sharing settings of
the calling class or the parent class (inheritance). For more details,
please check an article from the Apex Developer's Guide available
at http://www.salesforce.com/us/developer/docs/
apexcode/Content/apex_classes_keywords_sharing.htm.

Enforcing CRUD and FLS
Apex has provision to support data security using only the "with sharing" or
"without sharing" keywords as discussed in the preceding section, but there
is no direct way to enforce sObject create, read, update, and delete (CRUD)
and field-level security (FLS). Some of the Visualforce standard tags, such as
<apex:outputField /> or <apex:inputField /> enforce FLS automatically.

But in general, it's a good idea to fail gracefully with missing permission errors,
in case logged-in user's profile is not having the required permission. To enforce
CRUD/FLS, developers can use Force.com ESAPI Library; this library gives handy
functions to check CRUD/FLS permissions on an sObject.

Writing Better Apex Code

[140]

To know more about ESAPI, please check http://code.google.
com/p/force-dot-com-esapi/.
I strongly recommend you to read more about CRUD/FLS here:
http://wiki.developerforce.com/page/Enforcing_CRUD_
and_FLS

Writing better SOQL queries
This section shares tips about how to make the most out of SOQL queries and still
stay within governor limits.

Query-required fields only
I usually notice developers use Eclipse Schema Explorer to build a query with all the
fields in an sObject, for example:

Account[] accounts = [Select a.mycustomfield__c, a.Website, a.Type,
a.TickerSymbol, a.SystemModstamp, a.Site, a.Sic, a.ShippingStreet,
a.ShippingState, a.ShippingPostalCode, a.ShippingCountry,
a.ShippingCity, a.Rating, a.Phone, a.ParentId, a.Ownership, a.OwnerId,
a.NumberOfEmployees, a.Name, a.MasterRecordId, a.LastModifiedDate,
a.LastModifiedById, a.LastActivityDate, a.JigsawCompanyId,
a.Jigsaw, a.IsDeleted, a.IsCustomerPortal, a.Industry, a.Id, a.Fax,
a.Description, a.CreatedDate, a.CreatedById, a.BillingStreet,
a.BillingState, a.BillingPostalCode, a.BillingCountry, a.BillingCity,
a.AnnualRevenue, a.AccountNumber From Account a];

The preceding SOQL loads the fields that will never be referenced in the code in
most cases, such as mycustomfield__c, Ownership, SystemModstamp, and so on.
Loading too many unrequired fields will impact in many ways, such as:

•	 Heap size consumption will be high, typically if there are many records or
unnecessary text area fields.

•	 Visualforce page will be slow, if the preceding Accounts collection is used
on Page.

•	 Invalid dependency will be created to custom fields, such as
mycustomfield__c. In case this field was mistakenly/accidentally created it
would create problems on rename or deletion.

Chapter 7

[135]

A SOQL query should contain only the bare minimum fields required
for the purpose; it's always better to change SOQL to add more fields
if the requirements change.

Using SOQL for loops
If you are expecting a large number of records from a SOQL query, it's a good idea to
refactor that SOQL to work via SOQL for loops.

For example, the following is a standard SOQL query to load Accounts:

Account[] accounts = [Select Id, AccountNumber, Remarks__cFrom
Account];
for (Account acc: acocunts) {
…
…
}

Let's say this SOQL query returns 20,000 rows, and the Remarks__c custom field is
a 255 character text area. This code could easily cross the maximum allowed heap
size limit (6 MB); here is how:

Approximate memory required to hold 1 Account Row = ID (18 characters) +
AccountNumber (40) + Remarks__c (255) = 300 characters

So for keeping 20,000 Account rows, we need almost 6 MB of heap. The same code
can be refactored to use SOQL for loop, to make it work within the heap limits:

for (Account acc: [Select Id, AccountNumber, Remarks__cFrom Account])
{
…
}

SOQL for loop loads data in chunks of 200 records. Check out this link
to know more: http://www.salesforce.com/us/developer/
docs/apexcode/Content/langCon_apex_loops_for_SOQL.
htm#soql_for_vs_soql.

Writing Better Apex Code

[142]

Executing selective and index-based queries
SOQL should mostly be selective in nature should have filters on indexed fields.
The following SOQL will fail if Account sObject has more than 50,000 records:

Select Id, Name from Account

This should be a rare use case where you need to process all Accounts in one go, if
the required Batch Apex is better option for dealing with such data volumes.

Official Apex documentation states that a SOQL query with filters on indexed fields
performs better. The following standard fields are auto indexed:

•	 Primary keys (ID, Name, and Owner)
•	 Foreign keys (lookup or master-detail relationships)
•	 Audit fields (Last Modified Date)
•	 Fields marked as External ID or Unique

If you are frequently filtering on a custom field, asking Salesforce
support to create a custom index on them can lead to good
performance. For more details, visit http://www.salesforce.
com/us/developer/docs/apexcode/Content/langCon_
apex_SOQL_VLSQ.htm.

Combining multiple SOQLs to avoid governor limits
The following code snippet costs two SOQL calls out of the total 100 available:

Account[] accs = [Select Id, Name from Account Where Name like 'a%'];
Contact[] contacts = [Select Id, Name from Contact Where AccountId in
:accs];

The same output can be achieved in one SOQL call:

Account[] accs = [Select Id, Name, (Select Id, Name from Contacts)
from Account Where Name like 'a%'];
for (Account acc: accs) {
 // get specific contacts to an account easily
 Contact[] contacts = acc.Contacts;
}

Combining SOQLs on multiple related objects reduces the risk of breaching governor
limits, especially when too many SOQL queries are fired in a code flow.

Chapter 7

[135]

Fixing SOQL that returns a single record
The following SOQL query loads a single record:

Account acc = [Select Id from Account where Name like '%Corp'];

The prceding query is prone to the following exceptions under certain conditions:

•	 System.QueryException: List has no rows for assignment to
sObject: When there are no matching records for the criteria

•	 System.QueryException: List has more than 1 row for assignment
to sObject: If there are multiple rows matching the criteria

The preceding problem can be handled gracefully in a couple of ways, depending on
the requirement, such as:

•	 Query as a list:
Account acc = null;
Account[] accs = [Select Id from Account where Name like '%Corp'];
if (accs != null && !accs.isEmpty()) {
 // note if more than 1 row is coming, that needs to be handled
here.
 acc = accs[0];
} else {
 System.debug ('No account found');
}

•	 Use try-catch block:

Account acc = null;
try {
 acc = [Select Id from Account where Name like '%Corp'
 limit 1];
}catch (System.QueryException qe) {
 // if record should exist throw an error here
 // if record is optional, do nothing in catch block
}

if (acc != null) {
 // rest of the logic that depends on acc
} else {
 System.debug ('No account found');
}

Writing Better Apex Code

[144]

Single row SOQL should be used carefully and tested under all possible
criteria situations to avoid any runtime issues.

Making the most out of dynamic SOQL
Dynamic SOQL lets the developer craft a SOQL string at runtime depending on the
flow state and user-provided criteria. If you haven't used dynamic SOQL yet, learn
more at http://www.salesforce.com/us/developer/docs/apexcode/Content/
apex_dynamic_soql.htm.

Variable binding in SOQL
One common gap in understanding that is common with most Apex developers is
about variable binding not being supported in dynamic SOQL, which is not true.
The following code snippet proves the point:

String name = '%Acme%';
String qryStr = 'SELECT Id FROM Account WHERE Name like :name' ;
Account[] accs = Database.query(qryStr);

This variable binding works like normal SOQL, and scans the binding variable in
various scopes such as local variable, parameter, instance level attribute, and so on.

Taking care of errors and security
Developers should take extra care of the following points when using
dynamic SOQL:

•	 Query syntax errors appear at runtime (no compile-time checks), if you are
building a complex SOQL query based on lot of conditions. Make sure you
test the generated query under all conditions, as code will break at runtime
in case of any gap.

•	 Give a first try to a normal SOQL statement to solve the purpose. In case
dynamic SOQL is the only way to a query then only it should be used.

•	 Incorrect use of dynamic SOQL can open your application to SOQL injection
attacks. The following code snippet shows how:

<apex:page controller="AccountSearchController" >
 <apex:form>
 <apex:outputText value="Account Name" />
 <apex:inputText value="{!name}" />
 <apex:commandButton value="Query" action="{!query}" />
 </apex:form>

Chapter 7

[135]

</apex:page>

public with sharing class AccountSearchController {
 public String name { get;set;}
 public Account[] queryResult{get;set;}

 public void query() {
 String qryString = 'SELECT Id FROM Account WHERE
 Name like \'%' + name + '%\'';
 queryResult = Database.query(qryString);
 }
}

The preceding code snippet leaves a hole for a hacker to tweak the SOQL
query as desired. A better way to write the same code would be as follows:

public void query() {
String queryName = '%' + name + '%'
 queryResult = [SELECT Id FROM Account
 WHERE Name like :queryName];
}

Taking control on DML operations
This section shares some unknown tips about DML operations, such as transaction
control, All or None behavior, and error handling.

Controlling transaction commits and rollbacks
Apex runtime transaction control works on flow or request level. Changes are
committed to the database only if the complete flow succeeds, otherwise everything
done is rolled back. Sometimes as part of a flow, a fine control over a bunch of DML
statements is required. The blog post available at http://blogs.developerforce.
com/developer-relations/2010/05/tricky-transactions-on-forcecom.html
from Force.com blogs illustrates a good example and usage of savepoint.

For learning more about transaction control, please refer the article from the Apex
Developer's Guide available at http://www.salesforce.com/us/developer/docs/
apexcode/Content/langCon_apex_transaction_control.htm.

Writing Better Apex Code

[146]

Fine-tuning with extra DML options
The Database.DMLOptions instances can be passed on with DML operations
to provide the extra configuration needed to fine-tune it. These extra
configurations include:

•	 All or None behavior: This controls if an operation allows partial success.
If it's true, all changes are rolled back, when any record causes errors.

•	 Field truncation: By default, DML fails if the value for a string is too large.
This behavior can be tweaked by setting this property to true.

•	 Assignment rule usage: Tells DML on Lead and Case to use a specific
assignment rule.

•	 E-mailing behavior: Controls if e-mail should be sent on various events
during DML.

The following code snippets show how to use DMLOptions:

•	 DML statement:
Database.DMLOptions dmlOpts = new Database.DMLOptions();
dmlOpts.allowFieldTruncation = true;

Account acc = new Account(Name = 'Abc');
acc.setOptions(dmlOpts);

insert acc;

•	 DML via database methods:
Database.DMLOptions dmlOpts = new Database.DMLOptions();
dmlOpts.allowFieldTruncation = true;

Account acc = new Account(Name = 'Abc');
Database.insert(acc, dmlOpts);

To learn more about various other properties and usage samples of
DMLOptions, please check the article from the Apex Developer's Guide
available at http://www.salesforce.com/us/developer/docs/apexcode/
Content/apex_methods_system_database_dmloptions.htm.

Chapter 7

[135]

Error handling during DML operations
DML means statements such as insert, upsert, update, or delete. These statements are
prone to failures because of various reasons. Some of these reasons are as follows:

•	 Fields marked as required are not populated
•	 Custom validation rules on objects
•	 Trigger logic for validation

If you are working with standard objects, give special attention to error handling,
as the target org where your code will be deployed might have any of the preceding
reasons. For example, the customer could create new validation rules.

The important thing here is to gracefully fail for such unknown error, and here is
where error handling comes into the picture. Ideally, DML should be executed in a
try-catch block with errors logged, handled, and reverted back to the user gracefully.
Let's take the example of the following code:

insert new Account(Name = 'XYZ corp');

This code will fail, if the website is marked as mandatory in some org. One way to
handle that in Visualforce page is as follows:

try {
insert new Account(Name = 'XYZ corp');
}catch(DmlException dmle) {
 ApexPages.addMessage(new ApexPages.message
 (ApexPages.severity.ERROR,'Failed to save Account,
 because of : ' + dmle.getMessage()));
}

Similarly, consider the following scenarios:

•	 Trigger: Trigger flow should be stopped and the operation should be rolled
back or reverted back to the user as an error. The way to stop the trigger
execution flow for a given record is to use the Sobject.addError() method.
For example:
trigger AccountValidator on Account(before delete) {
 try {
 Account_Inovice__c[] childObjRecords =
 [Select Id from Account_Inovice__c Where AccountId__c IN:
 Trigger.newMap.keySet()];
 if (!childObjRecords.isEmpty()) delete childObjRecords;
 delete childObjRecords;
 } catch(DmlException dmle) {
 for (Account a : Trigger.new) {

Writing Better Apex Code

[148]

 a.addError(dmle);
 }
 }
}

Learn more about trigger exception handling at http://www.salesforce.
com/us/developer/docs/apexcode/Content/apex_triggers_context_
variables.htm.

•	 Apex SOAP/REST webservice: Create a Type or JSON/XML response
indicating the error with required contextual information.
Learn more about correct exception handling on the developer force wiki
at http://wiki.developerforce.com/page/An_Introduction_to_
Exception_Handling.

Decoding the Apex Describe Information
Apex offers a rich API to work on sQbject metadata and write extensible code. A few
use cases for this are listed in the following sections.

Getting info about sObjects and associated fields
This is typically required in generic rule engines in Visualforce, which lets the
user select which sObject they want to pick out of all available in the org and then
create rules based on fields available in the same sObject. For example, creating
a Visualforce page with the UI elements indicated in the following screenshots
(something similar to view filters for sObjects):

Chapter 7

[135]

The following code snippet shows how to generate such a field list for rendering in
VF page DRO windows:

// Map of all objects in the org
Map<String, Schema.SObjectType> gd = Schema.getGlobalDescribe();
// if the type is known at compile time, one can use
// Schema.SObjectType.Account
Schema.SobjectType accType = gd.get('Account');
// alternate way to do the same if type is known
// Schema.SObjectType.Account.fields.getMap();
Map<String, Schema.SObjectField> fldMap = accType.getDescribe().
fields.getMap();
// selectoptions to show in dropdown on vf page
List<SelectOption> options = new List<SelectOption>();
for (Schema.SobjectField fld: fldMap.values()) {
 Schema.DescribeFieldResult fldDesc = fld.getDescribe();
 options.add(
 new SelectOption(fldDesc.getName(), fldDesc.getLabel()));
}

To learn more about describe information, please check the article available
at http://www.salesforce.com/us/developer/docs/apexcode/Content/
apex_dynamic_describe_objects_understanding.htm.

http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_dynamic_describe_objects_understanding.htm
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_dynamic_describe_objects_understanding.htm
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_dynamic_describe_objects_understanding.htm

Writing Better Apex Code

[150]

Accessing/updating the sObject records based on
field names
In some scenarios, we have field names not known at compile time, so writing such a
piece of code is not possible.

public void updateOpp(Opportunity opp, String fldName, Object val) {
 // update Opp if val is diff
 if (opp.fldName != val)
 opp.FldName = val;
}

To achieve this, one can make good use of the sObject system class methods, such as
get() and put(), as shown in the following code snippet:

public void updateOpp(Opportunity opp, String fldName, Object val) {
 // update Opp if val is diff
 if (opp.get(fldName) != val)
 opp.put(fldName, val);
}

You can find more details on the sObject methods at http://www.salesforce.com/
us/developer/docs/apexcode/Content/apex_methods_system_sobject.htm.

Getting SobjectType from ID
This requirement required some decent code until the new ID.getSObjectType()
method was introduced in the Winter '13 release. For code snippets and more details,
please check the Apex document available at http://www.salesforce.com/us/
developer/docs/apexcode/Content/apex_methods_system_id.htm.

Instantiating classes dynamically
Sometimes, the required class name is not known at compile time. This is typically
required only in the code of framework- or extensions-based code, for example, a
managed package that offers tax calculations on shipments, but wants to let your
customers provide their own tax calculation logic. One possible way to achieve that
using the Apex Type class is discussed here.

The following is the contract for tax calculation defined via the interface. This
interface is part of the managed package.

global interface I_TaxCalculator {
 Decimal calculate (String itemSku, Integer quantity, String
 address);
}

Chapter 7

[135]

The managed package ships with a default implementation of the contract. The
default is used if no custom is provided by the customer. Here is the managed
package code for this scenario:

•	 Default tax calculator in managed package:
public class DefaultTaxCalc implements I_TaxCalculator {
	 public Decimal calculate (String itemSku, Integer quantity,
String address) {
 // some default tax calculations
 return 1;
 }
}

•	 Managed package logic for tax calculation:
// taxCalcClassName is passed after reading some config like
// custom settings
public static Decimal calculateTax(String taxCalcClassName, String
itemSku, Integer quantity, String address) {
 I_TaxCalculator calc = null;
 if (taxCalcClassName == null) {
 calc = new DefaultTaxCalc();
 } else {
 Type typ = Type.forName(taxCalcClassName);
 calc = (I_TaxCalculator)typ.newInstance();
 }

 return calc.calculate(itemSku, quantity, address);
}

Now in the target customer org, they can provide their own implementation. One
example for this is as follows:

global class IndiaTaxCalc implements I_TaxCalculator {
 global Decimal calculate (String itemSku, Integer quantity,
 String address) {
 // some custom tax calculations
 return 0;
 }
}

Writing Better Apex Code

[152]

Uploaded managed package code would be something like this (kept simplified
for illustration):

TaxCalcConfig__c custSett = TaxCalcConfig__c.getInstance('Default');
// this could be 'IndiaTaxCalc'
String taxCalcClassName = custSett.Class_Name__c;
Decimal tax = TypeForName.calculateTax(taxCalcClassName, 'SKU-234', 2,
'New Delhi, India');

To learn more about the Type methods, please check the Apex document available
at http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_
methods_system_type.htm.

Writing better triggers
It's pretty easy to get it wrong when starting up with Apex triggers. The key is to
understand handling bulk data, re-using SQOL calls, and understanding the flow
of events with triggers.

Understanding the order of execution for triggers
Apart from triggers, a couple of events happen on DML, which include validation
rules, workflows, approvals, assignment rules, and so on. Knowledge of this order
and impact of all events on each other is must to understand for writing good trigger
code. It's strongly recommended to go through the guide from the Apex documents
available at http://www.salesforce.com/us/developer/docs/apexcode/
Content/apex_triggers_order_of_execution.htm.

Writing triggers to handle bulk data
It's easy to write triggers assuming only one record will be available in context
variables such as Trigger.new or Trigger.old. This practice should never be
followed, because of the following factors:

•	 A Visualforce page lets you perform DML on multiple records at the
same time

•	 The same sObject might be exposed as a web service (SOAP/REST) that takes
multiple records as input for DML operations

•	 If a data loader is used to populate the sObject

Chapter 7

[135]

So if you have written some code such as the following, with hardcoded references
to indexes, you are for sure in trouble.

trigger AccountTrigger on Account (after insert) {
 Contact[] cs = [SELECT Id FROM Contact WHERE AccountId =
 Trigger.new[0].id];
 …
}

Some recommended reading on this topic:

•	 Trigger and bulk request best practices: http://www.salesforce.com/us/
developer/docs/apexcode/Content/apex_triggers_bestpract.htm

•	 Using maps and sets in bulk triggers: http://www.salesforce.com/us/
developer/docs/apexcode/Content/apex_triggers_bulk_idioms.
htm#trigger_map_sets

Multiple triggers on an sObject
It's quite easy to end up creating multiple trigger files (on various DML events) on
the same sObject. This practice is still manageable if the DML events are different,
that is, no two trigger files are on the same event. But it could be difficult to handle
optimizations, ordering of events and flow, if events are the same, that is, three
triggers on Account's before insert event.

Having a single trigger file per sObject is good practice, because:

•	 SOQL queries and DML on the same or related events can be executed at
once, for example, if all three after update Account triggers are loading
related Contacts, this could be easily done in one SOQL query, if a single
Trigger file is used.

•	 If there are multiple triggers on same event, there is no guarantee in which
order these events will fire. Using a single trigger file gives good flow control.

•	 It avoids recursion on triggers.

For the same cause, various trigger templates are suggested to keep a single trigger
file across the same sObject; here are the references:

•	 Gokubi's template: http://gokubi.com/archives/two-interesting-
ways-to-architect-apex-triggers

•	 Mike Leach's template: http://www.embracingthecloud.
com/2010/07/08/ASimpleTriggerTemplateForSalesforce.aspx

•	 My template based on the builder pattern: http://www.tgerm.
com/2012/01/salesforce-apex-trigger-template.html

Writing Better Apex Code

[154]

Handling XML in Apex
There are a few options available in Apex for XML handling. The following table
discusses all of these options. You need to make choices based on the pros/cons listed
for each. Please note that these options are available in two flavors, System and
Apex classes. System classes are provided by Apex runtime and not written in
Apex language.

Option Details Pros Cons
XMLStreamReader
and
XMLStreamWriter

System classes based on
Java StAX is the oldest
available XML parsing
option. More details are
available at http://
www.salesforce.
com/us/developer/
docs/apexcode/
Content/apex_
classes_xml_
XmlStream.htm.

Good for handling
large XML files as
it's a token-based
streaming parser, so
it consumes a lesser
heap in parsing big
XMLs.

Too many lines
of complex code
is required for
parsing an XML.

XmlDom This is an Apex DOM-
based XML library
developed by the Force.
com team. This library
is a wrapper on top
of the XMLStream
classes. More details are
available at http://
developer.force.
com/projectpage?
id=a0630000002ahp
5AAA.

Gives a simple
DOM interface to
complex Apex XML
Stream API.

As it is written
in Apex, it
consumes too
many script
statements if
you are parsing
moderately big
XML.
This library is
deprecated now,
so it's highly
recommended
to use the Dom.
Document class
discussed next.

Chapter 7

[135]

Option Details Pros Cons
DOM classes These are the

system classes that
provide native DOM
functionality via two
core classes, Dom.
Document and Dom.
XmlNode. More
details are available
at http://www.
salesforce.com/
us/developer/
docs/apexcode/
Content/apex_
classes_xml_dom.
htm.

The best XML
handling library
available so far in
Apex.
It gives a simple
DOM access to both
read/write XML.

This library is
a little different
from other DOM
libraries such as
the W3C DOM
model, so you
might find it a
little difficult to
learn and use.
More details
are available
at http://
www.tgerm.
com/2010/02/
apex-dom-
document-
xmlnode-bad-
design.html.

Fast XML DOM These are the Apex
classes that wrap the
system DOM classes to
expose a well known
W3C DOM model.
More details are
available at http://
developer.force.
com/projectpage?i
d=a06300000062Z2
kAAE.

Ensures that the
developer is quickly
productive via his
existing knowledge
of W3C DOM
parsing APIs such
as getElementsBy
TagName().
This library
also simplifies
the namespace
handling in XML.

None as of now,
getting good
community
feedback on Fast
XML DOM.

Writing Better Apex Code

[156]

Handling JSON in Apex
The options available in Apex for JSON handling are listed in the following table:

Option Details Pros Cons
JSONObject This is an open source

Apex class that was the
only option to handle
JSON until Apex came
with the native system
classes described later
in this chapter. More
details are available
at http://code.
google.com/p/
apex-library/
source/browse/
trunk/JSONObject/
src/classes/
JSONObject.cls.

This was the only
option to parse JSON
a few releases back.

Consumes lot of
script statements,
plus has some
stability issues. It's
deprecated now,
because Apex has
a native system
class named JSON
for this.

JSON This is a system class
that provides an API for
easy JSON generation
and parsing. More
details are available
at http://www.
salesforce.com/us/
developer/docs/
apexcode/Content/
apex_methods_
system_json.htm.

This is the best API
to use for JSON
handling, gives
support for direct
serialization/
deserialization of
Apex types.
It supports handling
loosely-typed or
untyped JSON with
the Summer '12
release.

None as of now.

Packaging considerations with Apex
These considerations apply when you are uploading a managed-released package.
This form of packaging locks many items and this locking is irreversible in nature.
Here is a list of considerable items:

•	 global: Use this keyword very rarely, as once a class or method is marked
global, its visibility can't be reduced to public or lesser in next releases.

Chapter 7

[135]

•	 Interface and Virtual/Abstract classes: Here is what the Apex developer
guide says:

You cannot add a method to an interface or an abstract method to
a class after the interface or class has been uploaded in a Managed
- Released package version. If the class in the Managed - Released
package is virtual, the method that you can add to it must also be
virtual and must have an implementation.

•	 final: This keyword can be pulled off, but can't be added to the
global classes.

For more details and a better understanding about Apex and considerations in
managed packages, please read the Developing Apex in Managed Packages article
available at http://www.salesforce.com/us/developer/docs/apexcode/
Content/apex_manpkgs_dev.htm.

API version
Each Apex class has an API version, which relates to the Force.com release features
available. For example, if you want to use Winter '13 features, the API version should
be at least 26. The following screenshot shows one way to check the API version
(go to Setup | Develop | Classes).

Writing Better Apex Code

[158]

Changing API versions
If you want to change the API version, you can do that in a couple of ways available
to edit the version settings of a class.

Editing a class in your browser
This applies if you have opened an Apex class for editing in your browser via Setup
| Develop | Apex Classes. Click on the picklist under the Version column for the
required change.

Editing a class in Force.com IDE (Eclipse)
Changing the Apex class version is equally easy in Eclipse; just notice the Metadata
tab beneath the opened class. Then you can change the <apiVersion> tag value to
the desired API version and save.

Chapter 7

[135]

Important tips
If you are creating new Apex classes, it's highly recommended that you
use the latest available API version. This will enable all the latest Force.
com features in your Apex class.
If you are editing an old or existing Apex class, changing the Apex
version, that is, upgrading the version, might be risky. Make sure you
do a proper testing after such changes. One case study is available at
http://www.tgerm.com/2012/02/apex-integer-decimal-
tostring-issue.html.

Apex testing tips
This could be a vast topic for discussion, so the focus will be on key APIs and tricks
to keep an eye on writing better test cases.

Isolating test data from org data
This means creating your own test data without relying on the presence of any
records in the org. This helps to keep your test cases portable across orgs. With API
version 24.0, pre-existing data in the org is not available to the test case. This includes
all the records from standard, custom objects, and custom settings. However, in
extremely odd situations this behavior can be turned on at both class and method
level by using the @isTest notation. All you need to do is demarcate the test class
or method with the IsTest(SeeAllData=true) annotation. For more details please
visit http://www.salesforce.com/us/developer/docs/apexcode/Content/
apex_testing_data_access.htm.

Testing with various profiles
By default, Apex runs in system mode, that is, the permissions and record sharing
of the current user are not taken into account. Your application might have a couple
of profiles with different data visibility, sharing, and CRUD/FLS behavior; it's
recommended that the test case simulates this via System.runAs(). This method
lets you run the test with security settings and permissions of a given use. For more
details please visit http://www.salesforce.com/us/developer/docs/apexcode/
Content/apex_testing_tools_runas.htm.

Writing Better Apex Code

[160]

Letting your class know about the test context
Sometimes, it's important for Apex (trigger, batch, or Controller) code to know if
it's executing normally or in test mode. This is especially important because some
operations are not permitted in test mode, such as web service callouts. To handle
such situations one can use the Test.isRunningTest() API for giving test cases
mock data. More about this is explained at http://www.salesforce.com/us/
developer/docs/apexcode/Content/apex_classes_restful_http_testing.htm.

Apex REST web services
Apex comes with simple annotations such as @RestResource, @HttpPost,
and @HttpGet, to expose any class as a RESTful web service. Here are some
important considerations:

•	 A general rule of thumb is that the with sharing keyword should be used
when declaring web service classes. In exceptional conditions, without
sharing can be used for bypassing the security (sharing rules, and so on),
but this should be done under extreme conditions, as doing this would
breach security.

•	 Use Force.com ESAPI or Apex Describe Information to enforce the CRUD/
FLS settings in Apex REST. They are again not enforced by default.

•	 Make good use of the RestContext class, it gives you handle to both
inbound RestRequest and outbound RestResponseobjects.

API versioning with REST web services
We love Force.com API versioning and how they maintain backward compatibility
in previous versions. We could easily achieve the same in Apex; let's say this is our
first release of the REST service and Apex class:

@RestResource(urlMapping='/CoolestApexService/v1/*')
global with sharing class CoolestApexService
{
…
}

Chapter 7

[135]

Now let's say in v2 of the API, there are significant changes in the Apex code and thus
API. We don't want to break any client code depending on v1 of the API. We could
easily achieve this by creating a copy of the preceding Apex class and doing major
changes in the copy and maintaining the backward compatibility. For example:

@RestResource(urlMapping='/CoolestApexService/v2/*')
global with sharing class CoolestApexServiceV2
{
…
}

Please note that we renamed the class and rest annotation's URL mapping.

Knowing the limits
It's important at certain times to know the limits available in a given context. Here
context means execution context; it could be different in the Visualforce page
controller, trigger, anonymous blocks, and test cases. For example, the heap size
limit is usually 6 MB, but in case of e-mail services it becomes 36 MB.

Apart from the total limits available, Apex runtime gives details of the limits
consumed so far in the execution. One can use the Limits system class to know
total and consumed limits on various factors such as:

•	 Script statements
•	 Heap size
•	 Number of SOQL queries

This Limits API could be used to fail gracefully under certain situations, that is,
to show a clean error message instead of the Salesforce crash screen. Here is some
example code that shows how to use Limits API to know available SOQL calls:

// Prints 100.
System.debug('Available Queries : ' + (Limits.getLimitQueries() -
Limits.getQueries()));
// Consume 1 Query limit out of typical quota of 100
Contact[] contacts = [Select Id from Contact];
// Consume 1 more Query limit out of typical quota of 100
Account[] accounts = [Select Id from Account];
// Prints 98 now.
System.debug('Available Queries : ' + (Limits.getLimitQueries() -
Limits.getQueries()));

Writing Better Apex Code

[162]

To know more about the Limits system class and its methods, please refer to the
Apex document available at http://www.salesforce.com/us/developer/docs/
apexcode/Content/apex_methods_system_limits.htm.

The next section explains about debugging the limits in more detail.

Tracking resource (limit) usage
It's always good practice to know and keep an eye on how much of the quota of
various platform resources/limits are consumed by the Apex code. Just like any
other language such as Java, to track resource usage, one needs to check the debug
logs. If you have never used debug logs before, it's recommended to go through the
following articles first:

•	 Understanding the Debug Log: http://www.salesforce.com/us/developer/
docs/apexcode/Content/apex_debugging_debug_log.htm

•	 Setting Debug Log Filters: http://www.salesforce.com/us/developer/
docs/apexcode/Content/code_setting_debug_log_levels.htm

Debug logs can be checked at a couple of locations, which are discussed in the
following sections.

Using Debug Logs in the Setup area
You can enable logging for a given user by navigating to Your Name | Setup |
Monitoring | Debug Logs. Click on the New button and enable logging for a
given user. The following screenshot indicates logging enabled for a user named
Abhinav Gupta.

Once the logging is enabled, all code executions (controller, trigger, batch, future,
and so on) can be seen in the Debug Logs grid. Please refer to the following
screenshot for more details:

Chapter 7

[135]

To get into details of resource usage, one can click on the View link on any log
record. In the log details, the last section shows the cumulative usage for various
platform resources, as indicated in the following screenshot:

Any resource usage approaching near limits is a good hint to tune
the application before production crashes. It's advised to do the
required refactoring or clean up in time, to keep a decent margin
for resource limits.

For more details, please refer to the Viewing Debug Logs article from Salesforce docs.
This article is available at http://www.salesforce.com/us/developer/docs/
apexcode/Content/code_viewing_log_details.htm.

Writing Better Apex Code

[164]

Using the logging features of the Developer Console
Similar to the preceding debugging, one can use the Developer Console for
the same thing. The following screenshot shows what logs can look like in the
Developer Console:

To learn more about using the Developer Console for watching debug logs,
please check the complete guide available at http://www.salesforce.com/us/
developer/docs/apexcode/Content/apex_debugging_system_log_console.htm.

Chapter 7

[135]

Summary
This chapter covered a range of Apex tips and tricks starting from language basics
to pretty advanced topics. A lot of emphasis was given on core concepts and basics
such as file nomenclature, trigger, SOQL, and DML, which are mostly mistaken by
developers. Tips about XML and JSON parsing will help you do integrations faster
with the best selection of APIs. Security, governor limits, and testing is always
something ignored. Following the tips about these issues will for sure make your life
easier during AppExchange listing or production deployments. Lastly, debugging
is something we all need to do sooner or later. Tips to debug via various resources
makes sure all popular ways are covered.

In the next chapter about Visualforce, you will learn how to design Visualforce
pages correctly with emphasis on key concepts such as re-using the native platform
look and feel, security, and how to speed up page performance (view-state), and
AJAX calls.

Writing Better
Visualforce Code

Visualforce (VF) is the Force.com way to create custom screens. Developers from
.NET and JEE (specially JSF) backgrounds will find a lot of similarity in custom tags,
view states, and post backs. Just like Apex, it's important to understand that the
VF pages execute in a multitenant environment. Thus, no one owns the server and
can write pages that take minutes to process synchronous jobs. There is always a
governor watching the resource consumption by page, and show can be stopped if
the VF page consumes beyond the limits.

This chapter covers tips and tricks around key Visualforce areas such as:

•	 Differentiating facts about Visualforce architecture
•	 How to re-use the native look and feel in pages
•	 Avoiding too much copy/paste and reusing code
•	 Limiting view states
•	 Writing flexible pages via FieldSets
•	 Speeding up the Ajax calls
•	 Making the most out of global variables
•	 Avoiding common mistakes in JavaScript remoting
•	 Taking care of security in Visualforce pages
•	 Miscellaneous tips about charts, dynamic VF components, PDF rendering,

and so on

Writing Better Visualforce Code

[168]

Knowing the Visualforce architecture
In general, it's a good idea to first understand the VF architecture and order of
execution before starting the coding. Having that foundation laid correctly is
important. Here are few links for more information:

•	 Visualforce architecture: http://www.salesforce.com/us/developer/
docs/pages/Content/pages_intro_architecture.htm

•	 Order of execution in a Visualforce page: http://www.salesforce.com/
us/developer/docs/pages/Content/pages_controller_lifecycle.htm

With VF development, the most important piece of information to understand is
caching behavior and session management, which is not similar to other languages/
platforms such as Java, .NET, and PHP, and so on.

Let's compare this to how things work in Java (J2EE/JEE):

•	 Caching class/page definitions: Java servers cache all the class definitions
in memory (RAM/Heap). Usually, on first request if the JSP page is not
compiled/cached, it will be translated to a Java class definition and will be
cached in Heap. On the next request for the page, the cached copy in heap
will do the rendering.

•	 Session management: Java servers offer a variety of ways of session
management and full control to alter it. Developers can tweak or replace a
server's session management with their own as well. For example, bypassing
cookies, using hidden fields, URL rewriting, and so on.

•	 Session storage: Developers can cache some data in a request-bound global
variable, such as Session or HttpSession, and access it as required on
every request.

Things work very differently in the Force.com platform, because each server is
multitenant in nature and classes/pages of multiple customers/orgs live on the
same server. Here are the differences:

•	 Caching class/page definitions: Because of the platform's multitenant
nature, keeping definitions in memory is not possible. Compiled class/page
definitions are stored in the database (metadata repository). To serve a page
request, the compiled definitions are loaded into the memory for rendering
the page.

•	 Session management: The platform takes care of session management and
developers don't need to worry about it. As the platform complies with
industry-leading security standards, and to protect customer data, Salesforce
doesn't lets you tweak/replace the session management at all.

Chapter 8

[169]

•	 Session storage: Again, because of the multitenant nature, there is no global
variable such as Session available to developers, so any request-bound
caching of data is not possible. Visualforce uses a scalable stateless mechanism
called ViewState, which typically stores required request data for a flow.

Reusing the platform's native look
and feel
There is a very basic and important UX (User Experience) aspect to consider while
creating VF pages. I've seen developers going super fancy in styling, but that doesn't
help on this platform; end users of VF pages are mostly the existing Salesforce
customers (99 percent of the time). So it becomes unintuitive and a training issue if
the VF page is not similar to the native look and feel.

An exception to this would be pages for public sites/portals, because end users
are not the Salesforce customers, for example, developing a shopping portal on
Force.com sites.

Most of the VF tags/components inherit the platform styling. Here are some tips and
tricks about using key components to make your VF page look more like native pages.

Starting the page design with native headers
The <apex:sectionHeader> component is mostly ignored by many Force.com
developers. But it is the first step to start with a native look and feel. It adds a
header section, which has the page title and subtitle. The following example shows
how adding this tag starts your page with a native look and feel for the Case
standard object:

<apex:pagestandardController="Case">
<apex:sectionHeader title="Cases" subtitle="De-dupe cases"/>
<apex:pageBlock title="Select cases">
<!-- Your code goes here -->
</apex:pageBlock>
</apex:page>

The following screenshots show the VF page with the native cases tab styling:

•	 Native cases tab:

Writing Better Visualforce Code

[170]

•	 Custom VF page:

Native detail sections/forms
Various components such as <apex:pageBlock>, <apex:pageBlockSection>,
<apex:pageBlockTable>, and <apex:inputField> can help you in quickly laying
out native looking detail sections. In most of the pages, these would be a second
building block after the <apex:sectionHeader> component.

Here is how a native detail screen for New Case looks:

Getting a similar look and feel in VF is easy, for example, refer to the following code
snippet that creates a New Case screen in VF with a few lines of VF code:

<apex:pagestandardController="Case">
<apex:sectionHeader title="Cases" subtitle="New Custom Case Screen"/>
 <apex:form>
 <apex:pageBlock title="Create New Case" mode="edit">
 <apex:pageBlockSection title="Case Basic Info">
 <apex:inputField value="{!Case.AccountId}"/>
 <apex:inputField value="{!Case.Status}"/>
 <apex:inputField value="{!Case.ContactId}"/>
 <apex:inputField value="{!Case.priority}"/>
 <apex:inputField value="{!Case.Origin}"/>
 </apex:pageBlockSection>
 <apex:pageBlockSection title="Other Case section">

Chapter 8

[169]

 <!-- Add more fields here -->
 </apex:pageBlockSection>
 <apex:pageBlockButtons>
 <apex:commandButton value="Save" action="{!save}"/>
 <apex:commandButton value="Cancel" action="{!cancel}"/>
 </apex:pageBlockButtons>
 </apex:pageBlock>
 </apex:form>
</apex:page>

The preceding code snippet generates a New Custom Case Screen in VF, which is
very similar in the look and feel to the preceding native one.

Using the columns attribute in the <apex:pageBlockSection>
component helps change the layout from default two-column to a
higher or lower value.

Styling tables to look like native grids
Similarly, components such as <apex:pageBlockTable> can be used to get grids/
tables with the native look and feel. The best part is that this component works well
with sObjects, so it automatically gets column headers as subject field labels (without
any extra code), for example:

<apex:pageBlockTable value="{!account.Contacts}" var="con">
 <apex:column value="{!con.name}"/>
 <apex:column value="{!con.Title}"/>
 <apex:column value="{!con.Email}"/>
 <apex:column value="{!con.phone}"/>
</apex:pageBlockTable>

Writing Better Visualforce Code

[172]

The preceding code gets the list of contacts of the accounts from the controller. Each
element is stored in the con variable. The fields of contacts can then be accessed by
the syntax {!con.fieldName}. Each contact is printed in a single row. On running,
it renders a native looking grid as shown in the following screenshot:

Printing messages in a native style
It's pretty simple to show messages of information, warning, or error type in VF
with a native look and feel. Developers can print messages directly in a page using
the <apex:pageMessage/> tag. The following screenshot shows a native looking
informative message printed via VF code:

The following single line of code gets you the preceding message:

<apex:pageMessage summary="Your job is queued for processing, email
notification would be sent on completion" severity="info" strength="3"
/>

If required, messages can be added via Apex and shown on the VF page as follows:

•	 Controller:
public void onValidate() {
 if (event.Registeration_Deadline__c < System.now()){
 ApexPages.addMessage(new
 ApexPages.Message(ApexPages.Severity.ERROR,
 'Registration for this event is closed now.'));
 }
 ...
}

•	 VF page: Needs to have the <apex:pageMessages/> component re-rendered

Chapter 8

[169]

Always re-render the <apex:pageMessages> component on almost all
VF AJAX calls. Doing this helps many times in trapping both user- and
platform-generated messages gracefully.
Try using various severity levels in both Apex and Visualforce
depending on situations such as Confirm, Error, Fatal, Info,
and Warning.

Native (standard) versus custom controllers/
extensions
Standard controllers provide a rich set of platform functionalities to developers. They
come in two flavors, standard controllers and standard list controllers. The former is
good for working with single records and the latter works with a list of records. On a
high level, they provide the following key functionalities:

•	 Security regarding the user's FLS (field-level security) and other permissions
is taken care of automatically.

•	 The standard controller provides easy access to object fields, including
parent and child relationships, without writing any code to query them.
The standard controller detects the fields used in the page and queries them
transparently. You can learn more about this at http://www.salesforce.
com/us/developer/docs/pages/Content/pages_controller_std_
access_data.htm.

•	 Standard CRUD actions (such as save, quick save, edit, delete) and list actions
with pagination (next, previous, first, last) are available. Links from the Apex
Developer's Guide gives a complete idea about the available methods:

°° http://www.salesforce.com/us/developer/docs/apexcode/
Content/apex_pages_standardcontroller.htm

°° http://www.salesforce.com/us/developer/docs/apexcode/
Content/apex_pages_standardsetcontroller.htm

It's a general rule of thumb to make the most out of standard controllers whenever
possible. Here are a few code snippets from the VF Developer's Guide that show
standard controller features:

•	 http://www.salesforce.com/us/developer/docs/pages/Content/
pages_controller_sosc_pagination.htm

•	 http://www.salesforce.com/us/developer/docs/pages/Content/
pages_controller_sosc_edit_data.htm

Writing Better Visualforce Code

[174]

Apart from all the preceding features, sometimes it's required to go custom in some
situations, such as:

•	 A complex page that performs DML on multiple object types simultaneously,
for example, a page to create an account and multiple associated contacts in
one go (a click on the Save button)

•	 Web service callouts are required during the page flow
•	 You need to send e-mails via Apex

Even in the preceding scenarios, Force.com developers should make the first attempt
to get the solution by using custom controller extensions, because extensions retain
most of the standard goodness and add new as required on top of it. For example,
the following code snippet shows how stock price can be queried by using an
extension, while retaining the native goodness:

<apex:pagestandardController="Account" extensions="DynamicBindingExt">
 <apex:pageMessage summary="Stock price for {!Account.Name} is
 {!stockPrice}" severity="info" strength="3" />
 <apex:detail subject="{!account.id}" />
</apex:page>

public with sharing class DynamicBindingExt {
 public Decimal stockPrice{get;set;}
 public DynamicBindingExt(ApexPages.StandardController controller) {
 Account acc = (Account)controller.getRecord();
 String recordName = acc.Name;
 // stockPrice = result from HTTP callout based on account name
 }
}

So, the key takeaway from here is, avoid resorting to a custom
controller unless really required. It doesn't mean custom controllers
are not good for any use, but the key is to use standard platform
goodness as much as one can.

Reusing VF code
Code re-use on VF is important, especially in medium and large projects, where
multiple developers might try to reinvent the wheel either by:

•	 Writing the same markup and logic again and again
•	 Copy-pasting the VF code across different pages

Chapter 8

[169]

This practice creates a maintenance nightmare in the long run for sure. The good
news is that the platform offers a couple of components that make code re-use easy.

Including other VF pages
The <apex:include> component offers the simplest form of code re-use, where an
existing VF page is inserted into another.

For code snippets and more details, please visit http://www.salesforce.com/us/
developer/docs/pages/Content/pages_compref_include.htm.

This component is good for simple code re-use requirements only.

Defining templates or page layouts
The <apex:composition> component offers a sophisticated template-based
approach for page content. It's particularly very useful when a couple of pages need
to follow a common layout pattern, which includes a common header, sidebar, and
footer with a variable body. The following diagram shows one sample layout:

This component is best used in the Salesforce sites, where all the public
pages need to adhere to a common layout. On creating/enabling sites in
your org, the platform-generated pages such as SiteTemplate.page,
give a good idea about the best use of this component.

Writing Better Visualforce Code

[176]

For code snippets and more details, please visit http://www.salesforce.com/us/
developer/docs/pages/Content/pages_compref_composition.htm.

Defining your own components
Similar to standard components, developers can define their own components by
using the <apex:component> tag. These components are not just a flat piece of code
for inclusion, such as the <apex:include> tag, a component can be super dynamic
and customizable to suit various inclusion scenarios. Here are some key features of
components:

•	 They can have their own controllers, with the ability to query sObjects, make
HTTP callouts, and make DML calls

•	 They can take attributes from the container page to customize behavior
and appearance

For code snippets and more details, please visit http://www.salesforce.com/us/
developer/docs/pages/Content/pages_compref_component.htm.

Limiting view states
As HTTP is a stateless protocol, all the state of page travels back and forth via a
string called ViewState. It essentially keeps the following items:

•	 All non-transient attribute data associated with controllers/extensions
•	 Object graph that is reachable from a non-transient attribute in

controllers/extensions
•	 Page's component structure and the associated state having values applied to

those components
•	 Trivial data for VF runtime housekeeping

It's highly recommended that you know how to minimize view states, for the
following two reasons:

•	 VF runtime imposes a limit of 135 KB on view states (as of Winter '13 release)
and an exception is thrown if this limit is breached

•	 Bigger view states hurt the performance of Visualforce, because more data is
travelling and processing over the wire

Here are some tips to minimize the view state.

Chapter 8

[169]

Use the view state inspector
Apart from the other tips to minimize view state, it's always good to use the view
state inspector, in case the page is performing slowly or hitting the limits. To enable
the view state inspector, go to Setup | Personal Setup | My Personal Information
| Personal Information | Edit (button). Here make sure that Show View State in
Development Mode is checked, as indicated in the following screenshot:

Using static when possible
Declare constants and variables using static variables in the controller, as static
variables are not part of the view state. The good part about static is they are
restored back to their original value on every request.

Here are some examples for using static in different ways to save the view state:

public with sharing class CustomContactController {
 // declared constant
 static final String RECORD_TYPE_NAME = 'My_Rec_Type';
 // one can do direct queries
 public static final Account [] accounts =
 [Select Id, Name from AccountWhere BillingCity like
 :ApexPages.currentPage().getParameters().get('billcity')];

 // getter setter for VF access are possible, logic to populate it
 in static block
 public static final Contact[] contacts {get;set;}

 static {
 // any complex processing can be done in static block
 // please note this block will be executed on every page refresh
 and ajax request
 String reqdPhone =
 ApexPages.currentPage().getParameters().get('phone');
 if (reqdPhone != '' && reqdPhone != null) {
 contacts = [Select Id, Name from Contact
 Where Phone like :reqdPhone];
 }
 }
}

Writing Better Visualforce Code

[178]

Learn more about static variables at http://www.tgerm.com/2010/09/
visualforce-apex-static-instance.html.

Trimming the view state by using transient
variables
The transient keyword marks the instance variables, which shouldn't be transferred
as part of the serialization process. Here is a precise definition of the serialization
process from wikipedia (http://en.wikipedia.org/wiki/Serialization):

Serialization is a process of converting a data structure or object state into a format
that can be stored (for example, in a file or memory buffer, or transmitted across a
network connection link)

This serialization can happen at a couple of locations in Apex or VF code,
for example:

•	 View state, which serializes the controller/extension information to hidden
HTML form fields

•	 Apex REST calls, where instance-level attributes are serialized/de-serialized
from the JSON or XML string, learn more about this at http://www.
salesforce.com/us/developer/docs/apexcode/Content/
apex_rest_methods.htm

•	 Other classes that are serializable, such as the Batchable or
Schedulable interface

Here is an example of limiting the view state, the following code snippet marks the
User list as transient as that info is required as read-only for once on the VF page:

public class CaseCustomController {
 public List<Case> casesToReassign {get;set;}
 /*
 marking this collection as transient, as we don't need the
 collection back on form submit or post back.
 */

 public transient List<User> availableSupportReps {get;set;}

}

Identifying a transient variable
To identify attributes as transient in a class, controller, or extension, check if
certain attributes:

Chapter 8

[169]

•	 Are only required at the time of page rendering, for example, a read-only list
of records

•	 Are not submitted back during post backs (AJAX calls)
•	 Can be restored on post backs using other view state information such as

record IDs

Avoid multiple forms
It is a recommended practice to avoid creating multiple HTML forms using the
<apex:form> tags, as this ends up repeating the hidden view state variable for each
form. The real problem starts on post backs, when all view states across all forms are
submitted back to servers. For example:

<!-- Using multiple forms -->
<apex:page controller="CustomAccountController">

 <!-- form 1 -->
 <apex:form>
 <apex:inputText value="{!accountName}"
 <!-- Other account fields for search -->
 <apex:commandButton action="{!searchAccounts}" value=
 "Search Accounts"/>
 </apex:form>

 <!-- form 2 -->
 <apex:form>
 <apex:inputField value="{!acc.Name}" />
 <!-- More inputfields for Account -->
 <apex:commandButton action="{!quickCreateAccount}" value=
 "Quick Create Account"/>
 </apex:form>

</apex:page>

The solution to this problem is to remove multiple forms and demarcate them with
action regions, as shown in the following code snippet:

<!-- Using action regions -->
<apex:page controller="CustomAccountController">

 <!-- single form -->
 <apex:form>
 <apex:actionRegion>
 <apex:inputText value="{!accountName}"

Writing Better Visualforce Code

[180]

 <!-- Other account fields for search -->
 <apex:commandButton action="{!searchAccounts}" value=
 "Search Accounts"/>
 </apex:actionRegion>

 <apex:actionRegion>
 <apex:inputField value="{!acc.Name}" />
 <!-- More inputfields for Account -->
 <apex:commandButton action="{!quickCreateAccount}" value=
 "Quick Create Account"/>
 </apex:actionRegion>
 </apex:form>

</apex:page>

But with the Summer '12 release, the Single View State feature is GA. So even if you
create multiple forms, they will share the single view state. So the problem is solved,
but using action region is still a best practice to follow under such scenarios.

Query-required fields only
SOQL queries should fetch only those fields/columns which are required in business
logic or presentation on page. For example, here is a VF page to show an editable
grid of accounts with two columns, Name and Description:

<apex:pageBlockTable value="{!accounts}" var="acc">
 <apex:columnheaderValue="Name">
 <apex:inputField value="{!acc.Name}"/>
 </apex:column>
 <apex:columnheaderValue="Description">
 <apex:inputField value="{!acc.Description}"/>
 </apex:column>
</apex:pageBlockTable>

Controller for the same is doing all correct, but fetching too many columns that are
not required such as phone, fax, and shipping detail fields, and so on.

public with sharing class TooMuchInfoController {
 public Account[] accounts {get;set;}
 public TooMuchInfoController() {
 accounts = [SELECT Name, Phone, Site, Description, Fax,
 ShippingCity, ShippingCountry, ShippingState, ShippingStreet,
 ShippingPostalCode FROM Account LIMIT 10];
 }
}

Chapter 8

[169]

Doing this ends up in a bigger view state, which can be easily checked using the
view state inspector, as indicated in the following screenshot:

More tips and tricks on the view state
For learning more about the view state and how to minimize it, go through the
excellent article from the Developer Force wiki at http://wiki.developerforce.
com/page/An_Introduction_to_Visualforce_View_State.

Flexible pages using field sets
Customers often require the flexibility to change/add fields in VF pages, just like
page layouts. This is possible to a certain extent with field sets, which are basically
a set of fields decided by the point and click configurations. This becomes especially
important when you are developing AppExchange apps, and depending on standard
objects. In most cases, customers have their own custom fields created on standard
objects, which they want to be visible/editable on the app's VF pages as well.

To know how to create field sets, please visit https://ap1.salesforce.com/help/
doc/en/fields_editing_field_sets.htm.

To learn how to use field sets in Apex and VF code, please visit
http://www.salesforce.com/us/developer/docs/pages/Content/
pages_dynamic_vf_field_sets.htm.

Writing Better Visualforce Code

[182]

Field sets offer the capability of marking certain fields as required
via point and click. Apex or VF code can read this configuration for
required actions.

<apex:repeat value="{!$ObjectType.Contact.FieldSets.
auditform}" var="f">
 <apex:inputField value=
 "{!Contact[f]}" required="{!f.required}"/>
</apex:repeat>

Speeding up Ajax calls
Ajax adds fun and responsiveness to any web page, but the fun goes away if the Ajax
call takes a while to complete. This section shares some key tips so that developers
can boost Ajax performance in their Visualforce pages.

Using the immediate attribute
This attribute is available on all VF- and Ajax-capable components such as
<actionFunction>, <actionPoller>, <actionSupport>, <commandLink>, and
<commandButton>. This attribute is by default set to false, which means all
validation rules must be processed before an AJAX call. Sometimes, it's not necessary
to care about doing any validations, such as:

•	 Clicking on the Cancel or Reset buttons, which wipes almost all forms of data
•	 Clicking on the Delete button on the record grid, which just takes the ID of

the record to be deleted in <apex:param> and refreshes the grid

A huge performance boost can be achieved if the immediate attribute is set to true
under the preceding scenarios.

Re-rendering required components only
New developers sometimes ignore the reRender attribute, which is available in all
VF- and AJAX-capable components. This attribute tells us which sections/components
of page should be refreshed from new information available after an AJAX call.
Leaving this attribute refreshes the complete page, which for sure takes more time.

<apex:pageMessages id="messages"/>
<!-- … other markup and components -->
 <apex:pageBlockSection id="contactFields">
 <apex:repeat value="{!$ObjectType.Contact.FieldSets.auditform}"
 var="f">

Chapter 8

[169]

 <apex:inputField value="{!Contact[f]}"
 required="{!f.required}"/>
 </apex:repeat>
 </apex:pageBlockSection>
<!-- Re-render only the contactFields and messages sesion -->
<apex:commandButton value="Save" action="{!save}"
reRender="contactFields, messages"/>

Using the reRender attribute also safeguards you from some VF
bugs. Components such as <apex:commandButton/> don't pick
the <apex:param/> inputs correctly, if the reRender attribute
is not specified. For more details, please visit http://success.
salesforce.com/ideaView?id=08730000000YcV8AAK.

Demarcating using action regions
AJAX is about partial page refreshes, but sometimes it's good to control the number
of components and amount of data being processed with every AJAX request.
<apex:actionRegion> helps in demarcating that boundary so that a limited number
of components participate in various processing steps. This not only speeds up the
AJAX performance, but also helps in some cases where an AJAX call has to bypass
some validations.

To learn more about the action region, please check the articles available at:

•	 http://www.salesforce.com/us/developer/docs/pages/Content/
pages_compref_actionRegion.htm

•	 http://www.tgerm.com/2010/09/visualforce-actionregion-deep-
dive.html

Global variables and functions
Though this topic is mentioned in the Appendices section of the VF Developer's
Guide, it is very important to understand as a developer.

Both global variables and functions are used via the following expression syntax:

{!$VAR or Function}

Consider the examples discussed in this section.

The $Action global variable can be used to link to a new account page:
<apex:outputLink value="{!URLFOR($Action.Account.New)}">
 Create New Account
</apex:outputLink>

Writing Better Visualforce Code

[184]

For a multilingual app using custom labels, we can refer to those labels in a page,
for example, a custom label named error_msg_invoice could be accessed in a page
as follows:

{!$Label.error_msg_invoice }

A safe hyperlink to another VF page named AccountCreationWizard can be created
as follows:

<apex:outputLink value="{!$Page.AccountCreationWizard }">
 Start Account Creation
</apex:outputLink>

To access field labels in a page, one can use $ObjectType as follows:

{!$ObjectType.Account.Fields.Name.Label}

The current time can be printed using the NOW() function:

Current Time: {!NOW()}

For a complete reference of global variables and functions, please visit http://www.
salesforce.com/us/developer/docs/pages/Content/pages_variables.htm.

JavaScript remoting
JavaScript remoting offers super fast AJAX calls to methods in Apex controllers via
JavaScript. If you don't know about JavaScript remoting, here is a recommended
prerequisite reading: http://www.salesforce.com/us/developer/docs/pages/
Content/pages_js_remoting.htm

Here are a few key implementation tips to consider while using JS remoting.

Public versus global – using the right
access modifier
During the initial launch of JS remoting, it was mandatory to make Apex controllers
global, but with recent releases, this limitation is pulled off, and Apex controllers
can be public as well. It's strongly recommended to keep minimal global Apex
code in org, specially when developing apps for managed packages, because global
classes/methods are not maintenance friendly and can't be renamed or pulled off in
newer releases.

Chapter 8

[169]

Making the most out of the method arguments
and return types
JavaScript remoting supports both primitive and complex types in both arguments
and return values. This opens possibilities to serialize sophisticated information back
and forth in the form of JSON between page and controller.

Here is a quoted text from the official guide:

Your method can take Apex primitives, collections, typed and generic sObjects, and
user-defined Apex classes and interfaces as arguments. Generic sObjects must have
an ID or sobjectType value to identify actual type. Interface parameters must have
an apexType to identify actual type.

Your method can return Apex primitives, sObjects, collections, user-defined Apex
classes and enums, SaveResult, UpsertResult, DeleteResult, SelectOption, or
PageReference.

Handling namespace prefixes in managed
packages
There are two approaches to call remote Apex controllers via JS remoting.

Approach 1
Refer to the following code snippet:

[namespace.]controller.method([parameters...,] callbackFunction,
[configuration]);

// namespace :abhinav
// controller :GoogleChartsController
// method :loadOpps
// parameter: accountName = document.getElementById('acctSearch').
value;
abhinav.GoogleChartsController.loadOpps(accountName,
function(result, event){
alert('Total Records:' + result.length);
 }, {escape:true});

This approach should be used when working in an unmanaged environment, that is,
without namespace prefixes. A good example of that would be pages developed as
part of org customization done in sandboxes for one Salesforce org.

Writing Better Visualforce Code

[186]

Approach 2
Refer to the following code snippet:

Visualforce.remoting.Manager.invokeAction('fully_qualified_remote_
action', invocation_parameters);
// fully qualified remote action: GoogleChartsController
// invocation parameter: accountName = document.
getElementById('acctSearch').value;
Visualforce.remoting.Manager.invokeAction(
 '{!$RemoteAction.GoogleChartsController.loadOpps}',
accountName,
function(result, event){
alert('Total Records:' + result.length);
 },
 {escape: true}
);

This approach works well in all scenarios as it resolves namespaces correctly if
working across both managed and unmanaged.

Taking care of security compliance
in pages
When working with Apex and Visualforce it's pretty easy to go wrong and breach
security. If you are developing/listing an app on AppExchange, the security review
process makes sure your app complies with the guidelines. But it's good to take care
of security, if you're doing Force.com customization for a single org.

For all Force.com developers, this security guideline is a highly recommended
reading: http://wiki.developerforce.com/page/Secure_Coding_Guideline

Encode/escape
It's mostly safe to encode/escape the stuff getting printed on a page. Most of the
Visualforce components, such as <apex:outputField>, <apex:outputText>, and
so on take care of escaping by default. But in a few cases, it's good to encode the text
server side, for example, the following code prints account ID on a page:

/apex/MyPage?Id={!$CurrentPage.parameters.Id}

It will break in case user has passed an attack string in ID, as shown in the following
code line:

/apex/MyPage?Id=<script>alert('XSS');</script>

Chapter 8

[169]

The simple fix to such situations is to use one of the various encoding functions
such as JSENCODE, HTMLENCODE, JSINHTMLENCODE, and URLENCODE depending on
the situation. The preceding code could be fixed by using the following snippet:

/apex/MyPage?Id={!JSENCODE($CurrentPage.parameters.Id)}

To learn more about the escaping function, please check these links:

•	 http://www.salesforce.com/us/developer/docs/pages/Content/
pages_variables_functions.htm

•	 http://wiki.developerforce.com/page/Secure_Coding_Cross_Site_
Scripting#Apex_and_Visualforce_Applications

Enforcing CRUD and FLS
The Object (CRUD) and field-level security (FLS) settings come from profiles.
It's used to restrict access on object types and individual fields based on different
profiles' permissions.

In most scenarios, the platform and VF runtime will transparently take care of
CRUD/FLS enforcements transparently, for example:

•	 Merge fields, that is, {!object.field}, are checked for required permissions
during page rendering

•	 Tags such as <apex:inputField> and <apex:outputField> work based
on the preceding merge field concept, the inputField tag doesn't render
or renders as read-only, and the outputField tag doesn't print on
missing permissions

Apart from this, developers need to take care of security in various scenarios, where
they are bypassing native features, for example:

•	 Copying object field values in the controller attributes or methods, and
later printing them on the VF page:
<apex:page controller="CustomContactController">
 <apex:outputText value="{!FullName}" />
</apex:page>

public with sharing class CustomContactController {
 public String getFullName() {
 Contact con = [SELECT FirstName, LastName
 FROM Contact
 WHERE Id =:contactId];
 returncon.FirstName + ' ' + con.LastName;
 }
}

Writing Better Visualforce Code

[188]

The preceding code snippet can be fixed either in Apex or VF code. Both
approaches are shown as follows (please opt for one of them only):

°° Fixed VF page:
<apex:page controller="CustomContactController">
 <apex:outputText value="{!FullName}"rendered="
 {!AND($ObjectType.Contact.fields.FirstName.Accessible,
 $ObjectType.Contact.fields.LastName.Accessible)}"/>
</apex:page>

°° Fixed controller:

public with sharing class CustomContactController {
public String getFullName() {
 if
 (!Schema.sObjectType.Contact.fields.
 FirstName.isAccessible()
 ||
 !Schema.sObjectType.Contact.fields.LastName.
isAccessible()
){
 /*
 either return blank or throw an error here,
 based on biz requirements
 */
 return '';
 }

 Contact con = [SELECT FirstName, LastName
 FROM Contact
 WHERE Id =:contactId];
 returncon.FirstName + ' ' + con.LastName;
 }
}

•	 Custom DML operations and access in other components such as related
lists. The following code snippet checks whether the Contact object is
accessible via the current profile:

<apex:relatedList list="Contacts" rendered="{!$ObjectType.Contact.
accessible}"/>

Chapter 8

[169]

If the preceding check is missing in the relatedList component, it would
crash the page for the following error in case the profile lacks the permission:

Similarly, if custom DML is performed via command buttons, checks can be
added as follows:

<apex:commandButton value="Update" rendered="{!$ObjectType.
Account.Updateable}" action="{!customAccountUpdate}"/>

Learn more about enforcing CRUD/FLS in VF and Apex at:

•	 http://wiki.developerforce.com/page/Enforcing_CRUD_and_FLS

•	 http://wiki.developerforce.com/page/Testing_CRUD_and_FLS_
Enforcement

Miscellaneous tips
As the name suggests, this section has tips associated with miscellaneous areas, such
as querying data, rendering pages as PDF or via dynamic components, or using
native charts.

Querying a million rows
By default, an Apex code can only query up to 50,000 rows. This might look limiting
in some situations. To overcome this, you can use the readOnly attribute on the
<apex:page /> component. This attribute boosts the row limit to 1 million rows, but
it restricts the page's ability to do any DML operations. Still, this makes sense as you
can use this attribute in pages which are generating read-only fancy reports, charts,
and so on.

Writing Better Visualforce Code

[190]

Rendering a page as a PDF
VF runtime gives the option to render a page as a PDF by setting renderAs to pdf in
the Apex page tag, as follows:

<apex:pagerenderAs="pdf" />

Here are some links to a bunch of good tricks for printing sophisticated pages,
such as adding page numbers or images in footers, controlling the styling of PDFs,
and so on:

•	 Creating professional PDF documents with CSS and Visualforce:
http://wiki.developerforce.com/page/Creating_Professional_PDF_
Documents_with_CSS_and_Visualforce

•	 Header and footer tweaks: http://forceguru.blogspot.in/2010/12/
header-footer-in-pdf.html

Dynamic VF components
Sometimes some complex component structure can't be drawn out directly, using
Visualforce code, that is, some components of a page need to be programmatically
crafted out of some logic in Apex, which can't be achieved anyway in VF code.
In those situations, it's a good idea to use dynamic Visualforce components. For
example, the Apex code to create apex:outputText would be as follows:

Component.Apex.OutputTextopText opText = new Component.Apex.
OutputText();
opText.value = account.BillingCity; // Billing City based on
previously loaded Account record

Similarly Apex equivalents are available for almost all VF components. A very
good example of a realistic situation to created related lists is available in the VF
Developer's Guide at http://www.salesforce.com/us/developer/docs/pages/
Content/pages_dynamic_vf_components_sample.htm.

Charts
When it comes to presenting information as charts in Visualforce, one can either use
third-party APIs such as Google Charts or native Visualforce charting, which is GA
in the Winter '13 release. Unless the client is inclined towards a third-party charting
solution, it's recommended to use Visualforce charting, because:

•	 You need to make sure the license and terms of use are compatible with your
app's business model.

Chapter 8

[169]

•	 You might need to pay an extra cost and be bound to usage and load
limitations imposed by the third-party API. No extra cost has to be paid to
use Visualforce charting.

•	 Your app's pages can be down or crash during maintenance windows of
third-party servers. Visualforce charting complies with platform maintenance
windows, so the app as a whole performs well.

•	 Mostly least plumbing code is required to connect Visualforce charting with
your app, this code snippet illustrates the simplicity to draw a chart without
any complex code:
<apex:pagestandardController="Opportunity" recordSetVar="opps">
 <apex:chart data="{!opps}" width="600" height="400">
 <apex:axis type="Category" position="left" fields=
 "Name" title="Opportunities"/>
 <apex:axis type="Numeric" position=
 "bottom" fields="Amount" title="Amount"/>
 <apex:barSeries orientation="horizontal" axis=
 "bottom" xField="Name" yField="Amount"/>
 </apex:chart>
</apex:page>

Summary
This chapter took you through various Visualforce areas, with a variety of tips and
tricks starting from understanding the VF architecture, getting the native look and
feel in your pages, and making good use of the available global variables. Code
re-use is very important in almost all projects. This chapter covered tips to best
re-use the code via various possible approaches. Big emphasis was given on
improving page performance. We started with tricks about minimizing the view
state, and then advanced to speeding up the Ajax calls and tuning JavaScript
remoting to avoid common pitfalls. Security is something that is often ignored,
but this chapter shares some good tips to help you write secure pages. Lastly,
miscellaneous tips were shared about a variety of topics such as charting, dynamic
VF components, and PDF rendering.

Index
Symbols
$Action global variable 184
$ObjectType 184
<apex:composition> component 175

A
account, standard objects 53
Action Plans app 41
Ajax calls, speeding up

action regions, used for demarcating 183
immediate attribute used 182
required components, re-rendering 182, 183

analytic snapshots
about 93
source reports, tips on 94
target objects, tips on 94
tips 93

Apex
CRUD/FLS, URL 189

Apex (advanced)
about 133, 138
Apex Describe Information, decoding 148
API version 157
API version, changing 158
CRUD, enforcing 139
DML operations 145
dynamic SOQL 144, 145
FLS, enforcing 139
JSON, handling 156
limits API 161
packaging, considerations 156
resource (limit) usage, tracking 162
REST web services 160

security data access, with sharing in
classes 139

SOQL queries, performance improving 140
testing, tips 159
triggers 152
XML, handling 154, 155

Apex SOAP 148
Apex, testing

test context 160
test data, isolating from org data 159
tips 159
with various profiles 159

Apex Test Runner view, Force.com IDE 35
API version, Apex

about 157
changing 158
class in browser, editing 158
class in Force.com IDE (Eclipse),

editing 158
AppExchange

about 37
Action Plans app 41
Appirio Contact Sync for Salesforce and

Google Apps app 39
Chatter Usage Dashboards app 43
CloudConverter for Force.com app 41
CMSForce 2 app 42
CVM Supplier Central Enterprise

Edition app 43
CVM Supplier Locator app 44
Draggin' Role app 40
DupeCatcher 38
FinancialForce Accounting for

Salesforce app 43
Find Nearby app 40
FormFactory quotes and invoices app 43

[194]

Implementation Cloud app 42
 Informatica Cloud Data Loader app 41
Mass Edit + Mass Update + Mass

Delete app 42
Milestones PM 38
Opportunity Planning Wall app 41
Professional Services Automation (PSA) for

Salesforce app 43
Project and Issue Management app 41
Ribbit for Salesforce 39
Salesforce Adoption Dashboards (2011) 40
Salesforce CRM dashboards 39
Salesforce, for Twitter and Facebook (v4) 39
S-Docs app 42
SnapShot Change And Release

Management 39
Survey Force 40

AppExchange Dashboard Pack app 40
Appirio Contact Sync for Salesforce and

Google Apps app 39
Application lifecycle management

about 111
development and testing, isolating 113
enterprise applications, developing 115
production development 112
project development, with integration 114
project development, with staging 114
project development, with UAT 114
sandbox, developing with 112, 113

as a service (aaS) 10
As of.... field 92
attachments

uploading, data loader used 28

B
btch_BulkRecordCleaner class 135
build.xml file 37

C
campaign, standard objects 56
case, standard objects 60
change process

for production, establishing 109
changes

manual migration 108
tracking 109, 110

change sets 110
charts 191
charts, reports

considerations 85
charts, VF 190
Chatter Usage Dashboards app 43
Closed Revenue 92
cloud computing

about 9, 10
Infrastructure as a service (IaaS) 11
Platform as a service (PaaS) 12
Software as a service (SaaS) 12

CloudConverter for Force.com app 41
CMSForce 2 app 42
code files, Apex

correct nomenclature, using 134-136
code share 118
components, VF code

defining 176
configuration-only sandbox 20, 101
contacts, standard objects 54
CreatedById 48
CreatedDate 48
create, read, update, and delete. See

CRUD, Apex
CRUD, Apex

enforcing 139
URL 140

CSV (comma-separated values) file 123
CSV (comma-separated values) format 84
customers 98
custom objects

about 53, 61
custom tabs, tips 63
data, analyzing 61
design approach 61
implementation, steps 62
object, relationships 62
object relationships, tips 63
page layouts, tips 64
tips 63
user interface 62

CVM Supplier Central Enterprise Edition
app 43

CVM Supplier Locator app 44

[195]

D
dashboards

about 86
data refresh 92, 93
filters 92
running user concept 87
working with 88, 90

data
about 67
importing, strategies 24

database
features 49
Field History Tracking field 50
formulas field 49
labels and help field 49
notes and attachments field 50
security field 50
triggers field 49
validation rules field 49

Database as a service 16
Database.DMLOptions instance 146
data export

data loader, using 27
data import

about 29
data, preparing 25
data sources, identifying 24
test import, analyzing 26
testing 25
undoing 30

data integration
third-party tools for 30, 32

data loader
about 23
data importing, strategies 24
data sources, identifying 24
using 24
using, for data export 27
using, for uploading attachments 28

Data Loader
about 123
DeveloperForce wiki page, URL 124
for Windows 123
user guide, URL 124

DE. See Developer Edition

Debug Log
URL 162
using, in setup area 162, 163

Debug Log Filters
setting, URL 162

deploy() option 37
Describe Information, Apex

associated fields, info retrieving 148, 149
class, instantiating dynamically 150, 151
decoding 148
sObject records based on field names,

accessing 150
sObject records based on field names,

updating 150
sObject records based on records,

accessing 150
sObject records based on records,

updating 150
sObjects, info retrieving 148, 149
SobjectType, getting from ID 150

destinations 117
developer console

about 120
browser based 119
logging, features 164
URL 120

Developer Edition
about 103
development, considerations 105
individual versus partner Developer

Edition 104
partner developer edition 20
regular developer edition 20
uses 104

developer.force.com
about 130
URL 131
uses 130

DeveloperForce wiki page
URL 124

developer sandbox 21, 101
Development as a service

about 18
code share 18
development sandbox 18
Force.com Metadata API 18

[196]

IDE (Integrated Development
Environment) 18

development environments
about 20, 99
considerations 105
developer edition 20
sandbox 20
selecting 104, 105

development scenarios 106, 107
DML operations, Apex

error, handling 147
extra DML options 146
monitoring 145
rollbacks, controlling 145
transaction commits, controlling 145

DMLOptions 146
DOM classes option 155
Do not save encrypted pages to disk

option 84
Draggin' Role app 40
DupeCatcher app 38
dynamic reports 86
dynamic SQL, Apex

about 144
errors and security, monitoring 144
variable binding, in SOQL 144

Dynamic VF components 190

E
EC2 11
Eclipse

based, Force.com IDE 118
installing, URL for 119

Elastic Cloud Computing. See EC2
Enhanced Reports tab 74, 88, 89
enums, Apex

used, for improving constants 137
environment

about 98
changes between environments,

migrating 107, 108
changes, manual migration 108
characteristics 98
development environment 99
production environment 99

Execute Anonymous view,
Force.com IDE 34

External ID 23

F
Fast XML DOM option 155
Field Filter (Filter Criteria) 80
Field History Tracking field 50
field sets

used, for flexible pages 181
field types

about 46
basic non-relational field types 46
database, features 49, 50
identity fields 48
name field 48
relational field types 47
system fields 48

filtering
filter criteria entering, tips 80
filter logic, tips for 81
on reports 79, 80

Filter Logic 80
FinancialForce Accounting for

Salesforce app 43
Find Nearby app 40
FLS, Apex

enforcing 139
URL 140

FLS (field-level security) 173
Force.com

about 13, 129
features 13
metadata 14
multitenancy 13
Sublime Text plugin 120, 121

Force.com Excel Connector 31, 124
Force.com Explorer 123
Force.com IDE

about 32
Apex Test Runner view 35
deploying 35
Eclipse based 118
Execute Anonymous view 34
Force.com perspective 33

[197]

installation, URL 32, 119
problems view 34
schema explorer 35
URL 119

Force.com IDE (Eclipse)
class, editing in 158, 159

Force.com Integrated Development
Environment. See Force.com IDE

Force.com Metadata API 18
Force.com migration tool

about 36, 125
online guide, URL for 125

Force.com perspective 33
Force.com Security Code Scanner

about 126
code scanning, URL for 127
issues, identified 126

Force.com stack
about 15
Database as a service 16
development as a service 18
Force.com AppExchange 18
Infrastructure as a service (IaaS) 15
Integration as a service 16, 17
Logic as a service 17
user interface as a service 17

Force.com Utility Belt
about 127
features 128
installing, in Google Chrome 128

forecast, standard objects 58
FormFactory quotes and invoices app 43
formulas field 49
full copy sandbox 20
full sandbox 102

G
Get It Now button 38
Github 118
Github.com 130
global variables and functions 183
Gokubis template

URL 153
governor limits 19

H
heap dumps 119
hierarchical relationship 47

I
IaaS 11, 15
IDE

about 18, 118
selecting 118

identity fields 48
immediate attribute

using 182
Implementation Cloud app 42
Import My Contacts operation 23
import wizard

about 28
data import, notes 29
for organizations records 29
for records you own 29
using 29

independent software vendor. See ISVs
index-based queries, Apex

executing 142
Informatica Cloud Data Loader app 41
Infrastructure as a service. See IaaS
Integrated Development

Environment. See IDE
Integration as a service 16, 17
ISVs 98

J
JavaScript remoting

about 184
namespace prefixes, handling in managed

packages 185, 186
public versus global 184

joined report 72
JSON, Apex

handling 156
JSONObject option 156
JSON option 156

[198]

L
labels and help field 49
language basics, Apex code

about 134
code files, correct nomenclature

using 134, 136
constants, declaring 137
loops. simplifying 137
script statements, reducing 138
static keyword, features 136

LastModifiedById 48
LastModifiedDate 48
lead, standard objects 55
limits, Apex

about 161
debug logs, using in setup area 162, 163
Developer Console, logging features 164
resource (limit) usage, tracking 162

Logic as a service 17
lookup fields

adding 70, 71
loops, Apex

simplifying 137

M
Mac OS

LexiLoader 124
LexiLoader for 124

many-to-many relationships 52, 53
Mass Edit + Mass Update + Mass

Delete app 42
master-detail relationships 47, 51
matrix report 72
metadata 14
Metadata API 111
metadata migration

about 110
change sets, best practices 110, 111
change sets, used 110
metadata files, migrating 111

migration
about 107, 108
change process for production,

establishing 108
changes, manual migration 108

Mike leach's
URL 153

Milestones PM app 38
multiple forms

avoiding 179
multitenancy 13
My template based on builder pattern

URL 153

N
name field 48
non-relational field types

about 46
Auto Number 46
checkbox 46
currency 46
Data or Date Time 46
Email, Phone, and URL 46
formula 47
Geolocation 47
Number 46
Picklist or Multi Select Picklist 46
Text (Encrypted) 47
Text or Text Area 46

notes and attachments field 50
NOW() function 184

O
object relationships

selecting 70
tips 63

objects
about 53
custom objects 53
standard objects 53

open source projects
code share 118
Github 118

Opportunity Planning Wall app 41
organization (org) 19
outputField tag 187

P
PaaS 12
packaging, Apex

[199]

considerations 156, 157
page_ContactMergeExtension class 135
page layouts, VF code

defining 175
page_OppLoadController class 135
Partner Developer Edition

about 20
uses 104

Partner Test Edition
using 106

Platform as a service. See PaaS
price books object, standard objects 60
problems view, Force.com IDE 34
production development 112
production environments 20, 99
product object, standard objects 59
Professional Services Automation (PSA) for

Salesforce app 43
Project and Issue Management app 41
public

versus global 184

Q
queries 131, 132
query-required fields only 140
Quick Reference Topics interface 128
quote, standard objects 58

R
readOnly attribute 189
record types 64, 65
regular developer edition 20
relational field types

hierarchical relationship 47
lookup relationship 47
master-detail relationship 47

relationships
about 50
changing 50
converting 50
limits 50
many-to-many relationships 52
master-detail relationships 51
self relationships 51

reports
about 71
charts 85
creating 73-75
dynamic reports 86
exporting 84
filtering on 79, 80
organizing 72
printing 84
results, subtotaling 79
running 82, 83
scheduling 83
types 68

reports, creating
about 74-76
conditional highlighting, using 78
custom summary formulas, building 77
reports, bucketing in 78

report, types
about 68
defining 69, 70
joined report 72
lookup fields, adding 71
matrix report 72
object relationships, selecting 70
summary report 72
tabular report 71

reRender attribute 183
REST web services, Apex

about 160
API versioning with 160

retrieve() option 37
Ribbit for Salesforce app 39
Row Limit 80
running user concept, dashboards 87
Run Report button 82

S
SaaS 12
Salesforce

analytics 67
tools pages, URL 118

Salesforce Adoption Dashboards (2011)
app 40

Salesforce.com
data loader, using 24

[200]

Salesforce CRM dashboards app 39
Salesforce environments

about 19
development environments 20
production environments 20

Salesforce for Twitter and Facebook
(v4) app 39

Salesforce Object Query Language.
See SOQL

Salesforce web services
URL 124

Salesforce Workbench. See workbench
sandbox

about 99
cloud-based software development 100
configuration-only sandbox 101
creating, tips 103
developer sandbox 101
full sandbox 102
refreshing, tips 103
traditional development 100
uses 102, 106

sandbox, developments environments
configuration-only sandbox 20
developer sandbox 21
full copy sandbox 20

schd_NightlyAccountSync class 135
Schema Browsers

Force.com Explorer 123
Schema Builder 122, 123
SoqlXplorer 123

Schema Builder
about 122
accessing, steps for 123

scripts, Apex
statements, reducing 138

S-Docs app 42
security field 50
selective queries, Apex

executing 142
serialization 178
smart totaling 79
SnapShot Change And Release

Management app 39
Sobject.addError() method 147
sObjects

about 148, 149

field names based, accessing 150
field names based, updating 150
records based, accessing 150
records based, updating 150
SobjectType, getting from ID 150

Software as a service. See SaaS
SOQL 133
SOQL queries, Apex

fixing 143
index-based queries, executing 142
multiple SOQLs, combining to avoid

governor limits 142
query-required fields only 140
selective queries, executing 142
SOQL, using for loops 141
writing 140

SoqlXplorer 123
Source Code Control System (SCCS) 109
source objects

tips on 94
stackoverflow.com 132
standard objects

about 53
account 53
campaign 56
case 60
contacts 54, 55
forecasts 58
lead 55, 56
opportunity 57
price books object 60
product object 59
quote 58

standard report types 73
static, Apex

about 136
features 136
URL 136

Streaming API topic
adding, via workbench 126

Sublime Text plugin
features 121
URL 120

summary report 72
Survey Force app 40
system fields

about 48

[201]

CreatedById 48
CreatedDate 48
LastModifiedById 48
LastModifiedDate 48
SystemModStamp 48

SystemModStamp 48
System.QueryException 143
System.runAs() method 159

T
tabular report 71
target objects

tips on 94
templates, VF code

defining 175
territory management 54
testing environments

about 105
Partner Test Edition, using 106

Test.isRunningTest() API 160
third-party tools

for data integration 30, 31
Tool for Oracle Application Developers

(TOAD) 117
toolkits 129
tools

about 117
for developers 118
from Salesforce, URL 118

transient variable
identifying 179

Trapdoor (Mac OS only)
about 128, 129
URL 129

trgr_ContactDuplicateCheck class 135
trgr_OpportunityAmountValidator

class 135
triggers, Apex

about 147, 152
execution order 152
multiple triggers, on sObject 153
writing, to handle bulk data 152

triggers field 49
troubleshooting 131, 132
twitter.com 132

U
UAT 98
user acceptance testing. See UAT
user guide

URL 124
User interface as a service 17
UX (User Experience) 169

V
validation rules field 49
VBA (Visual Basic for Applications) 124
VF

about 17, 167
architecture 168
CRUD/FLS, URL 189
in Force.com platform 168
in Java (J2EE/JEE) 168

VF code
components, defining 176
other VF Pages, including 175
page layouts, defining 175
reusing 174
serialization 178
templates, defining 175

VF Developer Guide
URL 173

VF, native style
look and feel, reusing 169
messages, printing in 172
native detail, forms 170, 171
native detail, sections 170, 171
page design, starting with native

headers 169
tables, styling 171
versus custom controllers 173
versus custom extensions 173

VF pages
CRUD, enforcing 187, 189
encode/escape 187
execution order, URL 168
field-level security (FLS), enforcing 187
field sets, used for adding fields 181
field sets, used for changing fields 181
including 175
security 186

[202]

view state
inspector, using 177
limiting 176
multiple forms, avoiding 179
query-required fields only 180
static, using as per needs 177, 178
tips and tricks, URL 181
transient variable, identifying 178
trimming, transient variables used 178

View Team Dashboards 87
Visualforce. See VF
Visualforce architecture

URL 168

W
Windows

Data Loader for 123
without sharing keyword 139
with sharing keyword 139
workbench

about 125
used, for adding Streaming API topic 126

ws_ContactService class 135

X
XML, Apex

handling 154, 155
XmlDom option 154
XMLStreamReader option 154
XMLStreamWriter option 154

Thank you for buying
Force.com Tips and Tricks

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Force.com Developer
Certification Handbook (DEV401)
ISBN: 978-1-84968-348-7 Paperback: 280 pages

A comprehensive handbook to guide Force.com
developers through important fundamentals and
prepare them for the DEV401 exam

1.	 Simple and to-the-point examples that can be
tried out in your developer org

2.	 A practical book for professionals who want to
take the DEV 401 Certification exam

3.	 Sample questions for every topic in an exam
pattern to help you prepare better, and tips to
get things started

Salesforce CRM: The Definitive
Admin Handbook
ISBN: 978-1-84968-306-7 Paperback: 376 pages

A comprehensive, power-packed guide for all
Salesforce Administrators covering everything from
setup and confi guration, to the customization of
Salesforce CRM

1.	 Get to grips with tips, tricks, best-practice
administration principles, and critical design
considerations for setting up and customizing
Salesforce CRM with this book and e-book

2.	 Master the mechanisms for controlling access to,
and the quality of, data and information sharing

3.	 Take advantage of the only guide with real-
world business scenarios for Salesforce CRM

Please check www.PacktPub.com for information on our titles

Oracle Enterprise Manager Cloud
Control 12c: Managing Data
Center Chaos
ISBN: 978-1-84968-478-1 Paperback: 394 pages

Get to grips with the latest innovative techniques for
managing data center chaos including performance
tuning, security compliance, patching, and more

1.	 Learn about the tremendous capabilities of the
latest powerhouse version of Oracle Enterprise
Manager 12c Cloud Control

2.	 Take a deep dive into crucial topics including
Provisioning and Patch Automation,
Performance Management and Exadata
Database Machine Management

3.	 Take advantage of the author’s experience as an
Oracle Certified Master in this real world guide
including enterprise examples and case studies

Microsoft Azure: Enterprise
Application Development
ISBN: 978-1-84968-098-1 Paperback: 248 pages

Straight talking advice on how to design and build
enterprise applications for the cloud

1.	 Build scalable enterprise applications using
Microsoft Azure

2.	 The perfect fast-paced case study for
developers and architects wanting to enhance
core business processes

3.	 Packed with examples to illustrate concepts

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning to Fly with Force.com
	What is cloud computing?
	Infrastructure as a service (IaaS)
	Platform as a service (PaaS)
	Software as a service (SaaS)

	What is Force.com?
	What empowers Force.com?
	Multitenancy
	Metadata

	Understanding the Force.com stack
	Infrastructure as a service
	Database as a service
	Integration as a service
	Logic as a service
	User interface as a service
	Development as a service
	Force.com AppExchange

	Introduction to governor limits

	Salesforce environments
	Summary

	Chapter 2: Admin Tools
	Data Loader
	When to use Data Loader
	Strategy to import data
	Identifying data sources
	Data preparation
	Testing the data import
	Analyzing the test import
	Final data import
	Validating the import

	Using Data Loader for data export
	Using Data Loader for uploading attachments

	The Import wizard
	When to use the Import wizard
	Notes on data import
	Undoing data import

	Third-party tools for data integration
	Force.com Integrated Development Environment (IDE)
	IDE communication
	Force.com perspective
	Problems view
	Execute Anonymous view
	Apex Test Runner view
	Schema explorer
	Deployment

	Force.com Migration Tool
	AppExchange–cloud application marketplace
	DupeCatcher – real-time deduplication
	Milestones PM – project and task management
	Salesforce CRM dashboards
	Salesforce for Twitter and Facebook (v4)
	Appirio Contact Sync for Salesforce and Google Apps
	Ribbit for Salesforce
	SnapShot Change And Release Management
	Salesforce Adoption Dashboards (2011)
	Survey Force
	Draggin' Role
	Find Nearby – Accounts, Contacts,
Leads – Managed, PE/EE/UE/DE
	AppExchange Dashboard Pack
	Action Plans – v3 – Unmanaged – EE, UE,
and DE
	Project and Issue Management
	CloudConverter for Force.com
	Opportunity Planning Wall
	Data Loader – Salesforce integration
	Mass Edit + Mass Update + Mass Delete
	Implementation Cloud – project
management app
	S-Docs – free document generator (PDF, Word, Excel)
	CMSForce 2
	FormFactory quotes and invoices
	Chatter Usage Dashboards – Force.com Labs
	FinancialForce Accounting for Salesforce
	Professional Services Automation – PSA for Salesforce
	CVM Supplier Central Enterprise Edition
	CVM Supplier Locator

	Summary

	Chapter 3: Making Best Use of Salesforce Objects
	Understanding the field types
	Basic non-relational field types
	Relational field types
	Identity fields
	System fields
	The Name field
	Additional database features

	Considerations for relationships
	Types of objects
	Standard objects
	Account
	Contact
	Lead
	Campaign
	Opportunity
	Forecast
	Quote
	Product and price book
	Case

	Custom objects
	Design approach
	Implementation steps
	Tips

	Record types
	Summary

	Chapter 4: Understanding Analytics
	Report types
	Tips and considerations for report types
	Defining report types
	Choosing object relationships
	Adding lookup fields

	Reports
	Organizing reports
	Working with reports
	Creating reports
	Subtotaling the report results
	Running reports
	Scheduling a report
	Printing and exporting reports

	Report charts
	Combination charts

	Dynamic reports

	Dashboards
	Working with dashboards
	Dashboard filters
	Dashboard data refresh

	Analytic snapshots
	Tips for analytic snapshots
	Tips on target objects

	Summary

	Chapter 5: Setting Up Development Environments
	Building apps on Salesforce
	What is an environment?
	Production environment
	Development environments
	Sandbox orgs
	Configuration-only sandbox
	Developer sandbox
	Full sandbox
	Typical uses of sandboxes
	Tips for creating or refreshing a sandbox

	Developer Edition orgs
	Individual versus partner DE
	When to use individual DE org
	When to use partner DE org

	Tips and best practices
	Choosing a development environment
	Development considerations

	Testing environments
	When to use a Partner Test Edition org
	When to use a sandbox org

	Various development scenarios
	Scenario 1
	Scenario 2
	Scenario 3

	Migrating changes between environments
	Migrating changes manually
	Establishing a change process for production org
	Tracking changes

	Metadata migration
	Migration using change sets
	Migrating metadata files

	Application lifecycle management
	Production development
	Developing with sandbox
	Isolating development and testing
	Multiple project development with integration, UAT, and staging
	Developing enterprise applications

	Summary

	Chapter 6: Tools and Destinations that Every Force.com Developer Should Know
	Tools for developers and admins
	Choosing the right IDE
	Force.com IDE based on Eclipse
	Developer console based on your browser
	Sublime Text plugin for Force.com

	Exploring objects, fields, and relationships using Schema Browsers
	Schema Builder
	Force.com Explorer
	SoqlXplorer

	Data Loaders
	Data Loader for Windows
	Force.com Excel Connector
	LexiLoader for Mac OS

	Utility tools and apps for productivity boost
	Force.com migration tool
	Salesforce Workbench
	Force.com Security Code Scanner
	Force.com Utility Belt
	Trapdoor (Mac OS only)

	Toolkits and libraries

	Destinations
	developer.force.com
	Open source goodness
	Queries and troubleshooting

	Summary

	Chapter 7: Writing Better Apex Code
	Understanding the language basics
	Using the correct nomenclature for code files
	Language constructs
	Finding what's different with static keywords
	Simplifying the loops
	Making constants better with enums
	Reducing script statements

	Advanced Apex
	Security data access via the with sharing keyword in classes
	Enforcing CRUD and FLS
	Writing better SOQL queries
	Query-required fields only
	Using SOQL for loops
	Executing selective and index-based queries
	Combining multiple SOQLs to avoid governor limits
	Fixing SOQL that returns a single record
	Making the most out of dynamic SOQL

	Taking control on DML operations
	Controlling transaction commits and rollbacks
	Fine-tuning with extra DML options
	Error handling during DML operations

	Decoding the Apex Describe Information
	Getting info about sObjects and associated fields
	Accessing/updating the sObject records based on field names
	Getting SobjectType from ID
	Instantiating classes dynamically

	Writing better triggers
	Understanding the order of execution for triggers
	Writing triggers to handle bulk data
	Multiple triggers on an sObject

	Handling XML in Apex
	Handling JSON in Apex
	Packaging considerations with Apex
	API version
	Changing API versions

	Apex testing tips
	Isolating test data from org data
	Testing with various profiles
	Letting your class know about the test context

	Apex REST web services
	API versioning with REST web services

	Knowing the limits
	Tracking resource (limit) usage

	Summary

	Chapter 8: Writing Better Visualforce Code
	Knowing the Visualforce architecture
	Reusing the platform's native look
and feel
	Starting the page design with native headers
	Native detail sections/forms
	Styling tables to look like native grids
	Printing messages in a native style
	Native (standard) versus custom controllers/extensions

	Reusing VF code
	Including other VF pages
	Defining templates or page layouts
	Defining your own components

	Limiting view states
	Use the view state inspector
	Using static when possible

	Trimming the view state by using transient variables
	Identifying a transient variable

	Avoid multiple forms
	Query-required fields only
	More tips and tricks on the view state

	Flexible pages using field sets
	Speeding up Ajax calls
	Using the immediate attribute
	Re-rendering required components only
	Demarcating using action regions

	Global variables and functions
	JavaScript remoting
	Public versus global – using the right access modifier
	Making the most out of the method arguments and return types
	Handling namespace prefixes in managed packages
	Approach 1
	Approach 2

	Taking care of security compliance in pages
	Encode/escape
	Enforcing CRUD and FLS

	Miscellaneous tips
	Querying a million rows
	Rendering a page as a PDF
	Dynamic VF components
	Charts

	Summary

	Index

