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Preface

A career in Computer Science is a commitment to a lifetime of learning. You will
not be taught every detail you will need in your career while you are a student. The
goal of a Computer Science education is to give you the tools you need so you can
teach yourself new languages, frameworks, and architectures as they come along.
The creativity encouraged by a lifetime of learning makes Computer Science one of
the most exciting fields today.

There are engineering and theoretical aspects to the field of Computer Science.
Theory often is a part of the development of new programming languages and tools
to make programmers more productive. Computer programming is the process of
building complex systems with those tools. Computer programmers are program
engineers and this process is sometimes called software engineering. No matter
what kind of job you end up doing, understanding the tools of Computer Science,
and specifically the programming languages you use, will help you become a better
programmer.

As programmers it is important that we be able to predict what our programs will
do. Predicting what a program will do is easier if you understand the way the
programming language works. Programs execute according to a computational
model. A model may be implemented in many different ways depending on the
targeted hardware architecture. While there are currently a number of popular
hardware architectures, most can be categorized into one of two main areas: reg-
ister-based central processing units and stack-based virtual machines. While these
two types of architectures are different in some ways, they also share a number of
characteristics when used as the target for programming languages. This text
develops a stack-based virtual machine based on the Python virtual machine called
CoCo.

Computer scientists differentiate programming languages based on three para-
digms or ways of thinking about programming: object-oriented/imperative pro-
gramming, functional programming, and logic programming. This text covers these
three paradigms while using each of them in the implementation of a non-trivial
programming language.
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It is expected that most readers of this text will have had some prior experience
with object-oriented languages. CoCo is implemented in C++, providing a chance
to learn C++ in some detail and see it used in a larger software project like the
CoCo implementation. The text proceeds in a bottom-up fashion by implementing
extensions to CoCo using C++. Then a full-featured functional language called
Small is implemented on top of the CoCo virtual machine. The Small language is a
subset of Standard ML. Standard ML is first introduced in this text and then used to
implement the Small subset of the Standard ML language, which really isn’t that
small afterall. Finally, late in the text a type inference system for Small is developed
and implemented in Prolog. Prolog is an example of a logic programming language.

The text is meant to be used interactively. You should read a section and as you
read it, do the practice exercises. Each of the exercises are meant to give you a goal
in reading a section of the text.

The text website http://www.cs.luther.edu/∼leekent/PL includes code and other
support files that may be downloaded. These include the CoCo virtual machine and
the MLComp compiler/type inference system.

I hope you enjoy reading the text and working through the exercises and practice
problems. Have fun with it and get creative!

vi Preface
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For Teachers

This book was written to fulfill two goals. The first is to introduce students to three
programming paradigms: object-oriented/imperative, functional, and logic pro-
gramming. To be ready for the content of this book students should have some
background in an imperative language, probably an object-oriented language like
Python, Java, or C++. They should have had an introductory course and a course in
Data Structures as a minimum. While the prepared student will have written
several programs, some of them fairly complex, most probably still struggle with
predicting exactly what their program will do. It is assumed that ideas like
polymorphism, recursion, and logical implication are relatively new to students
reading this book. The text assumes that students have little or no experience with
the functional and logic programming paradigms.

The Object-Oriented language presented in this book is C++. C++ has many
nuances that are worthy of several chapters, but because of the breadth of
information covered in this text many details of the language must be left out. To
thoroughly cover the whole language, students may be encouraged to pick up an
additional text focusing on just C++. However, significant topics of C++ are
presented in this text. Notably the pass by value and pass by reference mechanisms
in C++ create considerable complexity in the language. Polymorphism is another
interesting aspect of Object-Oriented languages that is studied in this text.

The text uses Standard ML as the functional language. ML has a polymorphic
type inference system to statically type programs of the language. In addition, the
type inference system of ML is formally proven sound and complete. This has some
implications in writing programs. While ML’s cryptic compiler error messages are
sometimes hard to understand at first, once a program compiles it will often work
correctly the first time. That is an amazing statement to make if your past experience
is in a dynamically typed language like Lisp, Scheme, Ruby, or Python.

The logic language used in this text is Prolog. While Prolog has traditionally
been an Artificial Intelligence language, it originated as a meta-language for
expressing other languages. The text concentrates on using Prolog to implement a
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type inference system. Students learn about logical implication and how a problem
they are familiar with can be re-expressed in a logic programming language.

The second goal of the text is to be interactive. This book is intended to be used
in and outside of class. It is my experience that we almost all learn more by doing
than by seeing. To that end, the text encourages teachers to actively teach. Each
chapter follows a pattern of presenting a topic followed by a practice exercise or
exercises that encourage students to try what they have just read. These exercises
can be used in class to help students check their understanding of a topic. Teachers
are encouraged to take the time to present a topic and then allow students time to
reflect and practice the concept just presented. In this way the text becomes a
lecture resource. Students get two things out of this. It forces them to be
interactively engaged in the lectures, not just passive observers. It also gives them
immediate feedback on key concepts to help them determine if they understand the
material or not. This encourages them to ask questions when they have difficulty
with an exercise. Tell students to bring the book to class along with a pencil and
paper. The practice exercises are easily identified.

The book presents several projects to reinforce topics outside the classroom.
Each chapter of the text suggests several nontrivial programming projects that
accompany the paradigm being covered to drive home the concepts covered in that
chapter. The projects and exercises described in this text have been tested in
practice and documentation and solutions are available upon request.

I have been fortunate to have good teachers throughout high school, college,
and graduate school. Good teachers are a valuable commodity and we need more
of them. Ken Slonneger was my advisor in graduate school and this book came
into being because of him. He inspired me to write a text that supports the same
teaching style he used in his classroom. I would also like to thank Dr. Eric Manley
of Drake University for working with me by trying the projects with his students
and for the valuable feedback he provided to me during the development of this
text. Thanks, Eric!

viii For Teachers
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1Introduction

This text on Programming Languages is intended to introduce you to new ways of
thinking about programming. Typically, computer science students start out learning
to program in an imperative model of programming where variables are created and
updated as a program executes. There are other ways to program. As you learn to
program in these new paradigms you will begin to understand that there are different
ways of thinking about problem solving. Each paradigm is useful in some contexts.
This book is notmeant to be a survey of lots of different languages. Rather, its purpose
is to introduce you to the three styles of programming languages by using them to im-
plement a non-trivial programming language. These three style of programming are:

• Imperative/Object-Oriented Programming with languages like Java, C++, Python,
and other languages you may have used before.

• Functional Programmingwith languages likeStandardML,Haskell, Lisp, Scheme,
and others.

• Logic Programming with Prolog.

The book provides an introduction to programming in assembly language, C++,
Standard ML, and Prolog. However, the programming language concepts covered
in this text apply to all languages in use today. The goal of the text is to help you
understand how to use the paradigms and models of computation these languages
represent to solve problems. The text elaborates on when these languages may be
appropriate for a problem by showing you how they can be used to implement a
programming language. Many of the problems solved while implementing a pro-
gramming language are similar to other problems in computer science. The text
elaborates on techniques for problem solving that you may be able to apply in the
future. You might be surprised by what you can do and how quickly a program can
come together given the right choice of language.

To begin you should know something about the history of computing, particularly
as it applies to the models of computation that have been used in implementing many
of the programming languages we use today. All of what we know in Computer
Science is built on the shoulders of those who came before us. To understand where
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2 1 Introduction

we are, we really should know something about where we came from in terms of
Computer Science. Many great people have been involved in the development of
programming languages and to learn even a little about who these people are is
really fascinating and worthy of an entire book in itself.

1.1 Historical Perspective

Much of what we attribute to Computer Science actually came from Mathematics.
Many mathematicians are programmers that have written their programs, or proofs
in the words of Mathematics, using mathematical notation. In the mid 1800s abstract
algebra and geometrywere hot topics of research amongmathematicians. In the early
1800s Niels Henrik Abel, a Norwegian mathematician, was interested in solving
a problem called the quintic equation. Eventually he developed a new branch of
mathematics called Group Theory with which he was able to prove there was no
general algebraic solution to the quintic equation. Considering the proof of this
required a new branch of mathematics, much of Abel’s work involved developing
the mathematical notation or language to describe his work. Unfortunately, Abel
died of tuberculosis at twenty six years old.

Sophus Lie (pronounced Lee), pictured in Fig. 1.1, was another Norwegian math-
ematician who lived from 1842–1899 [20]. He began where Abel’s research ended
and explored the connection of Abstract Algebra and Group Theory with Geometry.
From this work he developed a set of group theories, eventually named Lie Groups.
From this discovery he found ways of solving Ordinary Differential Equations by
exploiting properties of symmetry within the equations [8]. One Lie group, the E8
group was too complicated to map in Lie’s time. In fact, it wasn’t until 2007 that
the structure of the E8 group could be mapped because the solution produced sixty
times more data than the human genome project [1].

Fig. 1.1 Sophus Lie [21]
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While the techniques Lie and Abel discovered were hard for people to learn and
use at the time, today computer programs capable of symbolic manipulation use
Lie’s techniques to solve these and other equally complicated problems. And, the
solutions of these problems are very relevant in the world today. For example, the
work of Sophus Lie is used in the design of aircraft.

As mathematicians’ problem solving techniques became more sophisticated and
the problems theywere solving becamemore complex, theywere interested infinding
automated ways of solving these problems. Charles Babbage (1791–1871) saw the
need for a computer to do calculations that were too error-prone for humans to
perform. He designed a difference engine to compute mathematical tables when he
found that human computers weren’t very accurate [26]. However, his computer was
mechanical and couldn’t be built using engineering techniques known at that time.
In fact it wasn’t completed until 1990, but it worked just as he said it would over a
hundred years earlier.

Charles Babbage’s difference engine was an early attempt at automating a so-
lution to a problem, but others would follow of course. Alan Turing was a British
mathematician and one of the first computer scientists. He lived from 1912–1954. In
1936 hewrote a paper entitled, “OnComputable Numbers, with anApplication to the
Entscheidungsproblem” [23]. The Entscheidungsproblem, or decision problem, had
been proposed a decade earlier by a German mathematician named David Hilbert.
This problem asks: Can an algorithm be defined that decides if a statement given in
first order logic can be proved from a set of axioms and known truth values? The
problem was later generalized to the following question: Can we come up with a
general set of steps that given any algorithm and its data, will decide if it terminates?
In Alan Turing’s paper, he devised an abstract machine called the Turing Machine.
This Turing Machine was very general and simple. It consisted of a set of states and
a tape. The set of states were decided on by a programmer. The machine starts in
the start state as decided by the programmer. From that state it could read a symbol
from a tape. Based on the symbol it could write a symbol to the tape and move to
the left or right, while transitioning to another state. As the Turing machine ran, the
action that it took was dictated by the current state and the symbol on the tape. The
programmer got to decide how many states were a part of the machine, what each
state should do, and how to move from one state to another. In Turing’s paper he
proved that such a machine could be used to solve any computable function and that
the decision problem was not solvable by this machine. The more general statement
of this problem was named the Halting Problem. This was a very important result in
the field of theoretical Computer Science.

In 1939 John Atanasoff, at Iowa State University, designed what is arguably the
first computer, theABCorAtanasoff-BerryComputer [27]. CliffordBerrywas one of
his graduate students. The computer had no central processing unit, but it did perform
logical and other mathematical operations. Eckert and Mauchly, at the University of
Pennsylvania, were interested in building a computer during the second world war.
They were funded by the Department of Defense to build a machine to calculate
trajectory tables for launching shells from ships. The computer, called ENIAC for
Electronic Numerical Integrator and Computer, was unveiled in 1946, just after the
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war had ended. ENIAC was difficult to program since the program was written by
plugging cables into a switch, similar to an old telephone switchboard.

Around that same time a new computer, called EDVAC, was being designed. In
1945 John von Neumann proposed storing the computer programs on EDVAC in
memory along with the program data [25]. Alan Turing closely followed John von
Neumann’s paper by publishing a paper of his own in 1946 describing a more com-
plete design for stored-program computers [22]. To this day the computers we build
and use are stored-program computers. The architecture is called the von Neumann
architecture because of John von Neumann’s and Alan Turing’s contributions. While
Turing didn’t get the architecture named after him, he is famous in Computer Science
for other reasons like the Turing machine and the Halting problem.

In the early days of Computer Science, many programmers were interested in
writing tools that made it easier to program computers. Much of the programming
was based on the concept of a stored-programcomputer andmany early programming
languages were extensions of this model of computation. In the stored-program
model the program and data are stored in memory. The program manipulates data
based on some input. It then produces output.

Around 1958, Algol was created and the second revision of this language, called
Algol 60, was the first modern, structured, imperative programming language.While
the language was designed by a committee, a large part of the success of the project
was due to the contributions of John Backus pictured in Fig. 1.2. He described the
structure of the Algol language using a mathematical notation that would later be
called Backus-Naur Format or BNF. Very little has changed with the underlying
computer architecture over the years. Of course, there have been many changes in
the size, speed, and cost of computers! In addition, the languageswe use have become
even more structured over the years. But, the principles that Algol 60 introduced are
still in use today.

Recalling that most early computer scientists were mathematicians, it shouldn’t
be too surprising to learn that there were others that approached the problem of
programming differently.Much of the initial interest in computers was spurred by the

Fig. 1.2 John Backus [3]
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invention of the stored-program computer and many of the early languages reflected
this excitement. The imperative style was closely tied to the architecture of a stored
program computer. Data was read from an input device and the program acted on
that data by updating memory as the program executed. There was another approach
developing at the same time. Back in 1936, Alonzo Church, a U.S. mathematician
who lived from 1903–1995, was also interested in the decision problem proposed
by David Hilbert. To try to solve the problem he devised a language called the
lambda calculus, usually written as the λ-calculus. Using his very simple language
he was able to describe computation as symbol manipulation. Alan Turing was a
doctoral student of Church and while they independently came up with two ways to
prove that the decision problem was not solvable, they later proved their two models
of computation, Turing machines and the λ-calculus, were equivalent. Their work
eventually led to a very important result called the Church-Turing Thesis. Informally,
the thesis states that all computable problems can be solved by a Turing Machine or
the λ-calculus. The two models are equivalent in power.

Ideas from the λ-calculus led to the development of Lisp by John McCarthy,
pictured in Fig. 1.3. Theλ-calculus and Lispwere not designed based on the principle
of the stored-program computer. In contrast to Algol 60, the focus of these languages
was on functions and what could be computed using functions. Lisp was developed
around 1958, the same time that Algol 60 was being developed.

Logic is important both in Computer Science and Mathematics. Logicians were
also interested in solving problems in the early days of Computer Science. Many
problems in logic are expressed in the languages of propositional or predicate logic.
Of course, the development of logic goes all the way back to ancient Greece. Some
logicians of the 20th century were interested in understanding natural language and
they were looking for a way to use computers to solve at least some of the problems
related to processing natural language statements. The desire to use computers in
solving problems from logic led to the development of Prolog, a powerful program-
ming language based on predicate logic.

Fig. 1.3 John McCarthy [14]
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Practice 1.1 Find the answers to the following questions.

1. What are the origins of the three major computational models that early
computer scientists developed?

2. Who was Alan Turing and Alonzo Church and what were some of their
their contributions to Computer Science?

3. What idea did both John von Neumann and Alan Turing contribute to?
4. What notation did John Backus develop and what was one of its first uses?
5. What year did Alan Turing first propose the Turing machine and why?
6. What year did Alonzo Church first propose the λ-calculus and why?
7. Why are Eckert and Mauchly famous?
8. Why are the history of Mathematics and Computer Science so closely tied

together?

You can check your answer(s) in Section1.7.1.

1.2 Models of Computation

While there is some controversy about who originally came up with the concept of
a stored program computer, John von Neumann is generally given credit for the idea
of storing a program as a string of 0’s and 1’s in memory along with the data used by
the program. Von Neumann’s architecture had very little structure to it. It consisted
of several registers and memory. The Program Counter (PC) register kept track of
the next instruction to execute. There were other registers that could hold a value or
point to other values stored in memory. This model of computation was useful when
programs were small. However, without additional structure, anything but a small
program would quickly get hard to manage. This was what was driving the need for
better and newer programming languages. Programmers needed tools that let them
organize their code so they could focus on problem solving instead of the details of
the hardware.

1.2.1 The Imperative Model

As programs grew in size it was necessary to provide the means for applying addi-
tional structure to them. In the early days a function was often called a sub-routine.
Functions, procedures, and sub-routines were introduced by languages like Algol
60 so that programs could be decomposed into simpler sub-programs, providing
a way for programmers to organize their code. Terms like top-down or bottom-
up design were used to describe this process of subdividing programs into simpler

www.allitebooks.com
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Fig. 1.4 Imperative model

sub-programs. This process of subdividing programs was often called structured
programming, referring to the decomposition of programs into simpler, more man-
ageable pieces. Most modern languages provide the means to decompose problems
into simpler subproblems.We often refer to this structured approach as the imperative
model of programming.

To implement functions and function calls in the von Neumann architecture, it
was necessary to apply some organization to the data of a program. In the imperative
model, memory is divided into regions which hold the program and the data. The
data area is further subdivided into the static or global data area, the run-time stack,
and the heap as pictured in Fig. 1.4.

In the late 1970s and 1980s people like NiklausWirth and Bjarne Stroustrup were
interested in developing languages that supported an additional level of organization
called Object-Oriented Programming, often abbreviated OOP. Object-oriented pro-
gramming still uses the imperative model of programming. The addition of a means
to describe classes of objects gives programmers another way of organizing their
code into functions that are related to a particular type of object.

When a program executes it uses a special register called the stack pointer (SP)
to point to the top activation record on the run-time stack. The run-time stack
contains one activation record for each function or procedure invocation that is
currently unfinished in the program. The top activation record corresponds to the
current function invocation. When a function call is made an activation record is
pushed onto the run-time stack. When a function returns, the activation record
is popped by decrementing the stack pointer to point to the previous activation
record.

An activation record contains information about the currently executing function.
The local variables of the function are stored there. The program counter’s value
before the function call was made is stored there. This is often called the return
address. Other state information may also be stored there depending on the language
and the details of the underlying vonNeumann architecture. For instance, parameters
passed to the function may also be stored there.
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Static or global data refers to data and functions that are accessible globally in
the program. Global data and functions are defined throughout the program. Where
global data is stored depends on the implementation of the compiler or interpreter. It
might be part of the program code in some instances. In any case, this area is where
constants, global variables, and possibly built-in globally accessible functions are
stored.

The heap is an area for dynamic memory allocation. The word dynamic means
that it happens while the program is running. All data that is created at run-time is
located in the heap. The data in the heap has no names associated with the values
stored there. Instead, named variables called pointers or references point to the data
in the heap. In addition, data in the heap may contain pointers that point to other data
in the heap.

Like the original von Neumann architecture, the primary goal of the imperative
model is to get data as input, transform it via updates to memory, and then produce
output basedon this imperatively changeddata. The imperativemodel of computation
parallels the underlying von Neumann architecture and is used by many modern
languages. Some variation of this model is used by languages like Algol 60, C++,
C, Java, VB.net, Python, and many other languages.

Practice 1.2 Find the answers to the following questions.

1. What are the three divisions of data memory called?
2. When does an item in the heap get created?
3. What goes in an activation record?
4. When is an activation record created?
5. When is an activation record deleted?
6. What is the primary goal of imperative, object-oriented programming?

You can check your answer(s) in Section1.7.2.

1.2.2 The Functional Model

In the functional model the goal of a program is slightly different. This slight change
in theway themodel works has a big influence on how you program. In the functional
model of computation the focus is on function calls. Functions and parameter passing
are the primary means of accomplishing data transformation.

Data is generally not changed in the functional model. Instead, new values are
constructed from old values. A pure functional model wouldn’t allow any updates
to existing values. However, most functional languages allow limited updates to
memory in the imperative style.

The conceptual view presented in Fig. 1.4 is similar to the view in the functional
world. However, the difference between program and data is eliminated. A function
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is data like any other data element. Integers and functions are both first-class citizens
of the functional world.

The static data area is still present, but takes on aminor role in the functionalmodel.
The run-time stack becomes more important because most work is accomplished
by calling functions. Functional languages are much more careful about how they
allow programmers to access the heap and as a result, you really aren’t aware of
the heap when programming in a functional language. Data is certainly dynamically
allocated, but once data is created on the heap it is not modified in a pure functional
model. Impure models might allow some modification of storage but this is the
influence of imperative languages creeping into the functional model as a way to
deal with performance issues. The result is that you spend less time thinking about
the underlying architecture when programming in a functional language.

Examples of functional languages include Standard ML, which is covered in
this text. Lisp, Scheme, Haskell, Caml, and Scala are all examples of functional
languages. Functional languages may be pure, which means they do not support
variable updates like the imperative model. Scheme is a pure functional language.
Most functional languages are not pure. Standard ML and Lisp are examples of
impure functional languages. Scala is a recent functional language that also supports
object-oriented programming.

Practice 1.3 Answer the following questions.

1. What are some examples of functional languages?
2. What is the primary difference between the functional and imperativemod-

els?
3. Immutable data is data that cannot be changed once created. The presence

of immutable data simplifies the conceptual model of programming. Does
the imperative or functional model emphasize immutable data?

You can check your answer(s) in Section1.7.3.

1.2.3 The Logic Model

The logic model of computation, pictured in Fig. 1.5, is quite different from either the
imperative or functional model. In the logic model the programmer doesn’t actually
write a program at all. Instead, the programmer provides a database of facts or rules.
From this database, a single program tries to answer questions with a yes or no
answer. In the case of Prolog, the program acts in a predictable manner allowing
the programmer to provide the facts in an order that determines how the program
will work. The actual implementation of this conceptual view is accomplished by a
virtual machine, a technique for implementing languages that is covered later in this
text.
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Fig. 1.5 Logic model of computation

There is still the concept of a heap in Prolog. One can assert new rules and retract
rules as the program executes. To dynamically add rules or retract them there must
be an underlying heap. In fact, the run-time stack is there too. However, the run-time
stack and heap are so hidden in this view of the world that it is debatable whether
they should appear in the conceptual model at all.

Practice 1.4 Answer these questions on what you just read.

1. How many programs can you write in a logic programming language like
Prolog?

2. What does the programmer do when writing in Prolog?

You can check your answer(s) in Section1.7.4.

1.3 The Origins of a Few Programming Languages

This book explores language implementation using several small languages and
exercises that illustrate each of these models of computation. In addition, exercises
within the text will require implementation in four different languages: assembly
language, C++, StandardML, and Prolog. But where did these languages come from
and why are we interested in learning how to use them?

1.3.1 A Brief History of C++

C++ was designed by Bjarne Stroustrup, pictured in Fig. 1.6, between 1980 and
1985 while working at Bell Labs. C++ was designed as a superset of C which was
an immensely popular language in the seventies and eighties and still is today. In
C, the ++ operator is called the increment operator. It adds one to the variable that
precedes it. C++ was the next increment after C.
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Fig. 1.6 Bjarne Stroustrup [18]

In 1972, the Unix operating system was written in C, which was the reason the
language was created. Ken Thompson was working on the design of Unix with
Dennis Ritchie. It was their project that encouraged Ritchie to create the C language.
C was more structured than the assembly language most operating systems were
written in at the time and it was portable and could be compiled to efficient machine
code. Thompson and Ritchie wanted an operating system that was portable, small,
and well organized.

WhileCwas efficient, therewere other languages that had either been developed or
were being developed that encouraged a more structured approach to programming.
For several years there had been ideas around about how to write code in object-
oriented form. Simula, created byOle-JohanDahl andKristenNygaard around 1967,
was an early example of a language that supported Object-Oriented design and
Modula-2, created by Niklaus Wirth around 1978, was also taking advantage of
these ideas. Smalltalk, an interpreted language, was object-oriented and was also
developed in the mid 1970s and released in 1980.

In 1980 Bjarne Stroustrup began working on the design of C++ as a language that
would allow C programmers to keep their old code while allowing new code to be
written using these Object-Oriented concepts. In 1983 he named this new language
C++ and with much anticipation, in 1985 the language was released. About the same
time Dr. Stroustrup released a book called The C++ Programming Language [19],
which described the language. The language is still evolving. For instance, templates,
an important part of C++were first described by Stroustrup in 1988 [17] and it wasn’t
until 1998 that it was standardized asANSIC++. Today anANSI committee oversees
the continued development of C++. The latest C++ standard was released in 2011
as of this writing. The previous standard was released in 1998. C++ is a mature
language, but is still growing and evolving.

1.3.2 A Brief History of Python

Python was designed and implemented by Guido van Rossum, pictured in Fig. 1.7.
He started Python as a hobby project during the winter months of 1989.A more
complete history of this language is available on the web at http://python-history.
blogspot.com. Python is an object-oriented language like C++. Unlike C++, Python
is an interpreted language. Mr. van Rossum designed Python’s interpreter as a virtual

http://python-history.blogspot.com
http://python-history.blogspot.com
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Fig. 1.7 Guido van Rossum [24]

machine. Virtual machines have been around for some time including an operating
system for IBM mainframe computer called VM. Using a virtual machine when
implementing a programming language canmake the language and its programsmore
portable across platforms. Python runs onmany different platforms like Apple’sMac
OS X, Linux, and Microsoft Windows. Virtual machines can also provide services
that make language implementation easier.

Programmers world-wide have embraced Python and have developed many
libraries for Python andwrittenmany programs. Python has gained popularity among
developers because of its portability and the ability to provide libraries to others.
Guido van Rossum states in his history of Python, “A large complex system should
have multiple levels of extensibility. This maximizes the opportunities for users,
sophisticated or not, to help themselves.” Extensibility refers to the abililty to define
libraries of classes to solve problems from many different application areas. Python
is used in internet programming, server scripting, computer graphics, visualization,
Mathematics, Computer Science education, and many, many other application areas.

Mr. van Rossum continues, saying “In many ways, the design philosophy I used
when creating Python is probably one of the main reasons for its ultimate success.
Rather than striving for perfection, early adopters found that Python worked “well
enough” for their purposes.As the user-base grew, suggestions for improvementwere
gradually incorporated into the language.” Growing the user-base has been key to the
success of Python. As the number of programmers that know Python has increased so
has interest in improving the language. Python now has twomajor versions, Python 2
and Python 3. Python 3 is not backward compatible with Python 2. This break in
compatibility gave the Python developers an opportunity to make improvements in
the language. Chapters3 and 4 cover the implementation of the Python programming
language.

1.3.3 A Brief History of StandardML

Standard ML originated in 1986, but was the follow-on of ML which originated in
1973 [16]. Like many other languages, ML was implemented for a specific purpose.
The ML stands for Meta Language. Meta means above or about. So a metalanguage

http://dx.doi.org/10.1007/978-3-319-13314-0_3
http://dx.doi.org/10.1007/978-3-319-13314-0_4
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Fig. 1.8 Robin Milner [15]

is a language about language. In other words, a language used to describe a language.
ML was originally designed for a theorem proving system. The theorem prover was
called LCF, which stands for Logic for Computable Functions. The LCF theorem
prover was developed to check proofs constructed in a particular type of logic first
proposed by Dana Scott in 1969 and now called Scott Logic. Robin Milner, pictured
in Fig. 1.8, was the principal designer of the LCF system. Milner designed the first
version of LCF while at Stanford University. In 1973, Milner moved to Edinburgh
University and hired Lockwood Morris and Malcolm Newey, followed by Michael
Gordon and Christopher Wadsworth, as research associates to help him build a new
and better version called Edinburgh LCF [9].

For the Edinburgh version of LCF, Dr. Milner and his associates created the ML
programming language to allow proof commands in the new LCF system to be
extended and customized. ML was just one part of the LCF system. However, it
quickly became clear that ML could be useful as a general purpose programming
language. In 1990 Milner, together with Mads Tofte and Robert Harper, published
the first complete formal definition of the language; joined by David MacQueen,
they revised this standard to produce the Standard ML that exists today [16].

ML was influenced by Lisp, Algol, and the Pascal programming languages. In
fact, ML was originally implemented in Lisp. There are now two main versions of
ML: Moscow ML and Standard ML. Today, ML’s main use is in academia in the
research of programming languages. But, it has been used successfully in several
other types of applications including the implementation of the TCP/IP protocol
stack [4] and a web server as part of the Fox Project. A goal of the Fox Project was
the development of system software using advanced programming languages [10].

An important facet of ML is the strong type checking provided by the language.
The type inference system, commonly called Hindley-Milner type inference, sta-
tically checks the types of all expressions in the language. In addition, the type
checking system is polymorphic, meaning that it handles types that may contain
type variables. The polymorphic type checker is sound. It will never say a program
is typed correctly when it is not. Interestingly, the type checker has also been proven
complete, which means that all correctly typed programs will indeed pass the type
checker. No correctly typed program will be rejected by the type checker. We expect
soundness out of type checkers but completeness is much harder to prove and it has
been proven for Standard ML. Important ML features include:
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• ML is higher-order supporting functions as first-class values. Thismeans functions
may be passed as parameters to functions and returned as values from functions.

• The strong type checking means it is pretty infrequent that you need to debug your
code. What a great thing!

• Pattern-matching is used in the specification of functions in ML. Pattern-matching
is convenient for writing recursive functions.

• The exception handling system implemented byStandardMLhas been proven type
safe, meaning that the type system encompasses all possible paths of execution in
an ML program.

ML is a very good language to use in learning to implement other languages.
It includes tools for automatically generating parts of a language implementation
including components called a scanner and a parser which are introduced in Chap.6.
These tools, along with the polymorphic strong type checking provided by Standard
ML, make implementing a compiler or interpreter a much easier task. Much of the
work of implementing a program in Standard ML is spent in making sure all the
types in the program are correct. This strong type checking often means that once a
program is properly typed it will run the first time. This is quite a statement to make,
but nonetheless it is often true.

1.3.4 A Brief History of Prolog

Prolog was developed in 1972 by Alain Colmerauer with Philippe Roussel (Fig. 1.9).
Colmerauer and Roussel and their research group had been working on natural lan-
guage processing for the French language and were studying logic and automated
theorem proving [7] to answer simple questions in French. Their research led them
to invite Robert Kowalski, pictured in Fig. 1.10, who was working in the area of logic
programming and had devised an algorithm called SL-Resolution, to work with them
in the summer of 1971 [11, 28]. Colmerauer and Kowalski, while working together
in 1971, discovered a way formal grammars could be written as clauses in predicate
logic. Colmerauer soon devised a way that logic predicates could be used to express

Fig. 1.9 Alain Colmerauer [6]

http://dx.doi.org/10.1007/978-3-319-13314-0_6
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Fig. 1.10 Robert Kowalski [12]

grammars that would allow automated theorem provers to parse natural language
sentences efficiently. This is covered in some detail in Chap.7.

In the summer of 1972, Kowalski and Colmerauer worked together again and
Kowalski was able to describe the procedural interpretation of what are known as
Horn Clauses. Much of the debate at the time revolved around whether logic pro-
gramming should focus on procedural representations or declarative representations.
The work of Kowalski showed how logic programs could have a dual meaning, both
procedural and declarative.

Colmerauer and Roussel used this idea of logic programs being both declarative
and procedural to devise Prolog in the summer and fall of 1972. The first large
Prolog program, which implemented a question and answering system in the French
language, was written in 1972 as well.

Later, the Prolog language interpreter was rewritten at Edinburgh to compile
programs into DEC-10 machine code. This led to an abstract intermediate form
that is now known as the Warren Abstract Machine or WAM. WAM is a low-level
intermediate representation that is well-suited for representing Prolog programs.
The WAM virtual machine can be (and has been) implemented on a wide variety
of hardware. This means that Prolog implementations exist for most computing
platforms.

Practice 1.5 Answer the following questions.

1. Who invented C++? C? Standard ML? Prolog? Python?
2. What do Standard ML and Prolog’s histories have in common?
3. What do Prolog and Python have in common?
4. What language or languages is Standard ML based on?

You can check your answer(s) in Section1.7.5.

http://dx.doi.org/10.1007/978-3-319-13314-0_7


16 1 Introduction

1.4 Language Implementation

There are three ways that languages can be implemented.

• A language can be interpreted.
• A language can be compiled to a machine language.
• A language can be implemented by some combination of the first two methods.

Computers are only capable of executing machine language. Machine language is
the language of the Central Processing Unit (CPU) and is very simple. For instance,
typical instructions are fetch this value into the CPU, store this value into memory
from the CPU,add these two values together, and compare these two values and if they
are equal, jump here next. The goal of any programming language implementation
is to translate a source program into this simpler machine language so it can be
executed by the CPU. The overall process is pictured in Fig. 1.11.

Fig. 1.11 Language implementation

www.allitebooks.com
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All language implementations translate a source program to some intermediate
representation before translating the intermediate representation to machine lan-
guage. Exactly how these two translations are packaged varies significantly from
one programming language to the next, but luckily most language implementations
follow one of a few methodologies. The following sections will present some case
studies of different languages so you can see how this translation is accomplished
and packaged.

1.4.1 Compilation

The most direct method of translating a program to machine language is called
compilation.Theprocess is shown inFig. 1.12.Acompiler is a program that internally
is composed of several parts. The parser reads a source program and translates it
into an intermediate form called an abstract syntax tree (AST ). An AST is a tree-
like data structure that internally represents the source program. We’ll read about

Fig. 1.12 The compilation process
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abstract syntax trees in later chapters. The code generator then traverses the AST
and produces another intermediate form called an assembly language program. This
program is not machine language, but it is much closer. Finally, an assembler and
linker translate an assembly language program to machine language making the
program ready to execute.

This whole process is encapsulated by a tool called a compiler. In most instances,
the assembler and linker are separate from the compiler, but normally the com-
piler runs the assembler and linker automatically when a program is compiled so
as programmers we tend to think of a compiler compiling our programs and don’t
necessarily think about the assembly and link phases.

Programming in a compiled language is a three-step process.

• First, you write a source program.
• Then you compile the source program, producing an executable program.
• Then you run the executable program.

When you are done, you have a source program and an executable program that
represent the same computation, one in the source language, the other in machine
language. If youmake further changes to the source program, the source program and
the machine language program are not in sync. After making changes to the source
program you must remember to recompile before running the executable program
again.

Machine language is specific to a CPU architecture and operating system.
Compiling a source program on Linux means it will run on most Linux machines
with a similar CPU. However, you cannot take a Linux executable and put it on a
Microsoft Windows machine and expect it to run, even if the two computers have the
same CPU. The Linux and Windows operating systems each have their own format
for executable machine language programs. In addition, compiled programs use
operating system services for printing, reading input, and doing other Input/Output
(I/O) operations. These services are invoked differently between operating systems.
Languages like C++ hide these implementation details from you in the code gener-
ator, but the end result is that a program compiled for one operating system will not
work on another operating system without being recompiled.

C, C++, Pascal, Fortran, COBOL and many others are typically compiled lan-
guages. On the Linux operating system the C compiler is called gcc and the C++
compiler is called g++. The g in both names reflects the fact that both compilers
come out of the GNU project and the Free Software Foundation. Linux, gcc, and
g++ are freely available to anyone who wants to download them. The best way to
get these tools is to download a Linux distribution and install it on a computer. The
gcc and g++ compilers come standard with Linux.

There are implementations of C and C++ for many other platforms. The web site
http://gcc.gnu.org contains links to source code and to prebuilt binaries for the g++
compiler. You can also download C++ compilers from Apple and Microsoft. For
Mac OS X computers you can get C++ by downloading the XCode Developer Tools.
You can also install g++ and gcc for Mac OS X computers using a tool called brew.

http://gcc.gnu.org
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If you run Microsoft Windows you can install Visual C++ Express from Microsoft.
It is free for educational use.

1.4.2 Interpretation

An interpreter is a program that is written in some other language and compiled
into machine language. The interpreter itself is the machine language program. The
interpreter is written to read source programs from the interpreted language and in-
terpret them. For instance, Python is an interpreted language. The Python interpreter
is written in C and is compiled for a particular platform like Linux, Mac OS X, or
Microsoft Windows. To run a Python program, you must download and install the
Python interpreter that goes with your operating system and CPU.

When you run an interpreted source program, as depicted in Fig. 1.13, you are
actually running the interpreter. Your program is not running because your program
is never translated to machine language. The interpreter is the machine language

Fig. 1.13 The interpretation process
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program that executes all the programs you write in the interpreted language. The
source program you write controls the behavior of the interpreter program.

Programming in an interpreted language is a two step process.

• First you write a source program.
• Then you execute the source program with the interpreter.

Each time your program is executed it is translated into an AST by a part of
the interpreter called the parser. There may be an additional step that translates the
AST to some lower-level representation, often called bytecode. In an interpreter, this
lower-level representation is still internal to the interpreter program. Then a part of
the interpreter, often called a virtual machine, executes the byte code instructions.

Not every interpreter translates the AST to bytecode. Sometimes the interpreter
directly interprets the AST but it is often convenient to translate the source program’s
AST to some simpler representation before executing it.

Eliminating the compile step has a few implications.

• Since you have one less step in development you may be encouraged to run your
code more fequently during development. This is a generally a good thing and can
shorten the development cycle.

• Secondly, because you don’t have an executable version of your code, you don’t
have to manage the two versions. You only have a source code program to keep
track of.

• Finally, because the source code is not platform dependent, you can usually easily
move your program between platforms. The interpreter insulates your program
from platform dependencies.

Of course, source programs for compiled languages are generally platform
independent too. But, they must be recompiled to move the executable program
from one platform to another. The interpreter itself isn’t platform independent. There
must be a version of an interpreter for each platform/language combination. So there
is a Python interpreter for Linux, another for Microsoft Windows, and yet another
for Mac OS X. Thankfully, because the Python interpreter is written in C the same
Python interpreter program can be compiled (with some small differences) for each
platform.

There are many interpreted languages available including Python, Ruby, Standard
ML, Unix scripting languages like Bash and Csh, Prolog, and Lisp. The portability of
interpreted languages has made them very popular among programmers, especially
when writing code that needs to run across multiple platforms.

One huge problem that has driven research into interpreted languages is that
of heap memory management. Recall that the heap is the place where memory is
dynamically allocated. Large C and C++ programs are notorious for having memory
leaks. Every time a C++ programmer reserves some space on the heap he/she must
remember to free that space. If they don’t free the spacewhen they are donewith it the
space will never be available again while the program continues to execute. The heap
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is a big space, but if a program runs long enough and continues to allocate and not
free space, eventually the heapwill fill up and the programwill terminate abnormally.
In addition, even if the program doesn’t terminate abnormally, the performance of
the system will degrade as more and more time is spent managing the large heap
space.

Many interpreted languages don’t require programmers to free space on the heap.
Instead, there is a special task or thread that runs periodically as part of the interpreter
to check the heap for space that can be freed. This task is called the garbage collector.
Programmers can allocate space on the heap but don’t have to be worried about
freeing that space. For a garbage collector to work correctly space on the heap has to
be allocated and accessed in the right way. Many interpreted languages are designed
to insure that a garbage collector will work correctly.

The disadvantage of an interpreted language is in speed of execution. Interpreted
programs typically run slower than compiled programs. In a compiled program,
parsing and code generation happen once when the program is compiled. When
running an interpreted program, parsing and code generation happen each time the
program is executed. In addition, if an application has real-time dependencies then
having the garbage collector running at more or less random intervals may not be
desirable. As you’ll read in the next section some steps have been taken to reduce
the difference in execution time between compiled and interpreted languages.

1.4.3 Virtual Machines

The advantages of interpretation over compilation are pretty significant. It turns out
that one of the biggest advantages is the portability of programs. It’s nice to know
when you invest the time in writing a program that it will run the same on Linux,
Microsoft Windows, Mac OS X, or some other operating system. This portability
issue has driven a lot of research into making interpreted programs run as fast as
compiled languages.

As discussed earlier in this chapter, the concept of a virtual machine has been
around quite a while. A virtual machine is a program that provides insulation from
the actual hardware and operating system of a machine while supplying a consistent
implementation of a set of low-level instructions, often called bytecode. Figure1.14
shows how a virtual machine sits on top of the operating system/CPU to act as this
insulator.

There is no one specification for bytecode instructions. They are specific to the
virtual machine being defined. Python has a virtual machine buried within the inter-
preter. Prolog is another interpreter that uses a virtual machine as part of its imple-
mentation. Some languages, like Java have taken this idea a step further. Java has a
virtual machine that executes bytecode instructions as does Python. The creators of
Java separated the virtual machine from the compiler. Instead of storing the bytecode
instructions internally as in an interpreter, the Java compiler, called javac, compiles
a Java source code program to a bytecode file. This file is not machine language
so it cannot be executed directly on the hardware. It is a Java bytecode file which
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Fig. 1.14 Virtual machine implementation

is interpreted by the Java virtual machine, called java in the Java set of tools. Java
bytecode files all end with a .class extension. You may have noticed these files at
some point after compiling a Java program.

Programs written using a hybrid language like Java are compiled. However, the
compiled bytecode program is interpreted. Source programs in the language are not
interpreted directly. By adding this intermediate step the interpreter can be smaller
and faster than traditional interpreters. Very little parsing needs to happen to read
the program and executing the program is straightforward because each bytecode
instruction usually has a simple implementation.

Languages that fall into this virtual machine category include Java, ML, Python,
C#,Visual Basic .NET, JScript, and other .NETplatform languages.Youmight notice
that Standard ML and Python were included as examples of interpreted languages.
Both ML and Python include interactive interpreters as well as the ability to compile
and run low-level bytecode programs. Python bytecode files are named with a .pyc
extension. Standard ML compiled files are named with a -platform as the last part of
the compiled file name. In the case of Python and Standard ML the virtual machine
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is not a separate program. Both interpreters are written to recognize a bytecode file
and execute it just like a source program.

Java and the .NET programming environments do not include interactive inter-
preters. The only way to execute programs with these platforms is to compile the
program and then run the compiled program using the virtual machine. Programs
written for the .NET platform run under Microsoft Windows and in some cases
Linux. Microsoft submitted some of the .NET specifications to the ISO to allow
third party software companies to develop support for .NET on other platforms. In
theory all .NET programs are portable like Java, but so far implementations of the
.NET framework are not as generally available as Java. The Java platform has been
implemented and released on all major platforms. In fact, in November 2006 Sun, the
company that created Java, announced they were releasing the Java Virtual Machine
and related software under the GNU Public License to encourage further develop-
ment of the language and related tools. Since then the rights to Java have now been
purchased by Oracle where it continues to be supported.

Java and .NET language implementations maintain backwards compatibility of
their virtual machines. This means that a program compiled for an earlier version of
Java or .NETwill continue to run on newer implementations of the language’s virtual
machine. In contrast, Python’s virtual machine is regarded as an internal design issue
and does not maintain backwards compatibility. A .pyc file compiled for one version
of Python will not run on a newer version of Python. This distinction makes Python
more of an interpreted language, while Java and .NET languages are truly virtual
machine implementations.

Maintaining backwards compatibility of the virtual machine means that program-
mers can distribute application for Java and .NET implementations without releasing
their source code. .NET and Java applications can be distributed while maintain-
ing privacy of the source code. Since intellectual property is an important asset of
companies, the abililty to distribute programs in binary form is important. The de-
velopment of virtual machines made memory management and program portability
much easier in languages like Java, Standard ML, and the various .NET languages
while also providing a means for programmers to distribute programs in binary for-
mat so source code could be kept private.

1.5 Chapter Summary

The history of languages is fascinating and a lot more detail is available than was
covered in this chapter. There are many great resources on the web where you
can get more information. Use Google or Wikipedia and search for “History of
your_favorite_language” as a place to begin. However, be careful. You can’t believe
everything you read on the web and that includesWikipedia.While the web is a great
source, you should always research your topic enough to independently verify the
information you find there.
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While learning new languages and studying programming language implementa-
tion it becomes important to understandmodels of computation.Acompiler translates
a high-level programming language into a lower level computation. These low-level
computations are usually expressed in terms of machine language but not always.
More important than the actual low-level language is the model of computation.
Some models are based on register machines. Some models are based on stack
machines. Still other models may be based on something entirely different. Chapters
3 and 4 explore stack-based virtual machines in much more detail.

The next chapter provides the foundations for understanding how the syntax of
a language is formally defined by a grammar. Then Chap.3 introduces a Python
Virtual Machine implementation called CoCo. CoCo is an interpreter of Python
bytecode instructions. Chapter3 introduces assembly language programming using
CoCo, providing some insight into how programming languages are implemented.

Subsequent chapters in the book will again look at language implementation to
better understand the languages you are learning, their strengths and weaknesses.
While learning these languages you will also be implementing a compiler for a high
level functional language called Small which is a robust subset of StandardML. This
will give you even more insight into language implementation and knowledge of
how to use these languages to solve problems.

Finally, in the last two chapters of this text, you will learn about type checking
and type inference using Prolog, a language that is well-suited to logic problems like
type inference. Learning how to use Prolog and implement a type checker is a great
way to cap off a text on programming languages and language implementation.

A great way to summarize the rest of this text is to see it moving from very
prescriptive approaches to programming to very descriptive approaches to program-
ming. The word prescriptive means that you dwell on details, thinking very carefully
about the details of what you are writing. For instance, in a prescriptive approach
you might ask yourself, how do you set things up to invoke a particular type of
instruction?

Descriptive programming relies on your describing relationships between things.
Prolog is a descriptive programming language. In fact, this entire text moves from
very prescriptive programming to increasingly descriptive approaches. Read on to
begin that journey!

1.6 Review Questions

1. What are the three ways of thinking about programming, often called program-
ming paradigms?

2. Name at least one language for each of the three methods of programming
described in the previous question?

3. Name one person who had a great deal to do with the development of the im-
perative programming model. Name another who contributed to the functional
model. Finally, name a person who was responsible for the development of the
logic model of programming?

http://dx.doi.org/10.1007/978-3-319-13314-0_3
http://dx.doi.org/10.1007/978-3-319-13314-0_4
http://dx.doi.org/10.1007/978-3-319-13314-0_3
http://dx.doi.org/10.1007/978-3-319-13314-0_3
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4. What are the primary characteristics of each of the imperative, functional, and
logic models?

5. Who are the main people involved in each of the four languages this text covers:
C++, Python, Standard ML, and Prolog?

6. Where are the people you mentioned in the previous question today? What do
they do now?

7. Why is compiling a program preferred over interpreting a program?
8. Why is interpreting a program preferred over compiling a program?
9. What benefits do virtual machine languages have over interpreted languages?

10. What is a bytecode program? Name two languages that use bytecode in their
implementation.

1.7 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

1.7.1 Solution to Practice Problem 1.1

1. The origins of the three models are the Turing Machine, the λ-calculus, and
propositional and predicate logic.

2. Alan Turing as a Ph.D. student of Alonzo Church. Alan Turing developed the
Turing Machine and Alonzo Church developed the λ-calculus to answer prove
there were somethings that are not computable. They later proved the two
approaches were equivalent in their power to express computation.

3. Both von Neumann and Turing contributed to the idea of a stored-program com-
puter.

4. Backus developed BNF notation which was used in the development of Algol 60.
5. 1936 was a big year for Computer Science.
6. So was 1946. That was the year ENIAC was unveiled. Eckert and Mauchly

designed and built ENIAC.
7. The problems in Mathematics were growing complex enough that many

mathematicians were developing models and languages for expressing their
algorithms. This was one of the driving factors in the development of computers
and Computer Science as a discipline.

1.7.2 Solution to Practice Problem 1.2

1. The run-time stack, global memory, and the heap are the three divisions of data
memory.
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2. Data on the heap is created at run-time.
3. An activation record holds information like local variables, the program counter,

the stack pointer, and other state information necessary for a function invocation.
4. An activation record is created each time a function is called.
5. An activation record is deleted when a function returns.
6. The primary goal of imperative, object-oriented programming is to update mem-

ory by updating variables and/or objects as the program executes. The primary
operation is memory updates.

1.7.3 Solution to Practice Problem 1.3

1. Functional languages include Standard ML, Lisp, Haskell, and Scheme.
2. In the imperative model the primary operation revolves around updating memory

(the assignment statement). In the functional model the primary operation is
function application.

3. The functional model emphasizes immutable data. However, some imperative
languages have some immutable data as well. For instance, Java strings are im-
mutable.

1.7.4 Solution to Practice Problem 1.4

1. You never write a program in Prolog. You write a database of rules in Prolog that
tell the single Prolog program (depth first search) how to proceed.

2. The programmer provides a database of facts and predicates that tell Prolog
about a problem. In Prolog the programmer describes the problem instead of
programming the solution.

1.7.5 Solution to Practice Problem 1.5

1. C++ was invented by Bjourne Stroustrup. C was created by Dennis Ritchie. Stan-
dard ML was primarily designed by Robin Milner. Prolog was designed by Alain
Colmerauer and Philippe Roussel with the assistance of Robert Kowalski. Python
was created by Guido van Rossum.

2. StandardML and Prolog were both designed as languages for automated theorem
proving first. Then they became general purpose programming languages later.

3. Both Python and Prolog run on virtual machine implementations. Python’s virtual
machine is internal to the interpreter. Prolog’s virtual machine is called WAM
(Warren Abstract Machine).

4. Standard ML is influenced by Lisp, Pascal, and Algol.

www.allitebooks.com
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Once you’ve learned to program in one language, learning a similar programming
language isn’t all that hard. But, understanding just how to write in the new language
takes looking at examples or reading documentation to learn its details. In other
words, you need to know the mechanics of putting a program together in the new
language. Are the semicolons in the right places? Do you use begin…end or do
you use curly braces (i.e. { and }). Learning how a program is put together is called
learning the syntax of the language. Syntax refers to the words and symbols of a
language and how to write the symbols down in some meaningful order.

Semantics is the word that is used when deriving meaning from what is written.
The semantics of a program refers to what the program will do when it is executed.
Informally it is much easier to say what a program does than to describe the syntactic
structure of the program. However, syntax is a lot easier to formally describe than
semantics. In either case, if you are learning a new language, you need to learn
something about both the syntax and semantics of the language.

2.1 Terminology

Once again, the syntax of a programming language determines the well-formed or
grammatically correct programsof the language.Semantics describes howorwhether
such programs will execute.

• Syntax is how things look
• Semantics is how things work

Many questions we might like to ask about a program either relate to the syntax
of the language or to its semantics. It is not always clear which questions pertain to
syntax and which pertain to semantics. Some questions may concern semantic issues
that can be determined statically, meaning before the program is run. Other semantic
issues may be dynamic issues, meaning they can only be determined at run-time.
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The difference between static semantic issues and syntactic issues is sometimes a
difficult distinction to make.

The code

a=b+c;

is correct syntax in many languages. But is it a correct C++ statement?

1. Do b and c have values?
2. Have b and c been declared as a type that allows the + operation? Or, do the

values of b and c support the + operation?
3. Is a assignment compatible with the result of the expression b+c?
4. Does the assignment statement have the proper form?

There are lots of questions that need to be answered about this assignment state-
ment. Some questions could be answered sooner than others. When a C++ program
is compiled it is translated from C++ to machine language as described in the pre-
vious chapter. Questions 2 and 3 are issues that can be answered when the C++
program is compiled. However, the answer to the first question might not be known
until the C++ program executes in some cases. The answers to questions 2 and 3
can be answered at compile-time and are called static semantic issues. The answer
to question 1 is a dynamic issue and is probably not determinable until run-time. In
some circumstances, the answer to question 1 might also be a static semantic issue.
Question 4 is definitely a syntactic issue.

Unlike the dynamic semantic issues, the correct syntax of a program is statically
determinable. Said another way, determining a syntactically valid program can be
accomplished without running the program. The syntax of a programming language
is specified by a grammar. But before discussing grammars, the parts of a grammar
must be defined. A terminal or token is a symbol in the language.

• C++ and Python terminals: while, for, (, ;, 5, b
• Terminal types are keywords, operators, numbers, identifiers, etc.

A syntactic category or nonterminal is a set of phrases, or strings of tokens,
that will be defined in terms of symbols in the language (terminal and nonterminal
symbols).

• C++ nonterminals: 〈statement〉, 〈expression〉, 〈if-statement〉, etc.
• Syntactic categories define parts of a program like statements, expressions, decla-
rations, and so on.

A metalanguage is a higher-level language used to specify, discuss, describe, or
analyze another language. English is used as a metalanguage for describing pro-
gramming languages, but because of the ambiguities in English, more formal meta-
languages have been developed. The next section describes a formal metalanguage
for describing programming language syntax.
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2.2 Backus Naur Form (BNF)

Backus Naur Format (i.e. BNF) is a formal metalanguage for describing language
syntax. Theword formal is used to indicate thatBNF is unambiguous.UnlikeEnglish,
the BNF language is not open to our own interpretations. There is only one way to
read a BNF description.

BNF was used by John Backus to describe the syntax of Algol in 1963. In 1960,
John Backus and Peter Naur, a computer magazine writer, had just attended a confer-
ence on Algol. As they returned from the trip it became apparent that they had very
different views of what Algol would look like. As a result of this discussion, John
Backus worked on a method for describing the grammar of a language. Peter Naur
slightly modified it. The notation is called BNF, or Backus Naur Form or sometimes
Backus Normal Form. BNF consists of a set of rules that have this form:

<syntactic category> ::= a string of terminals and nonterminals

The symbol ::= can be read as is composed of and means the syntactic category
is the set of all items that correspond to the right hand side of the rule.

Multiple rules defining the same syntactic category may be abbreviated using the |
character which can be read as “or” and means set union. That is the entire language.
It’s not a very big metalanguage, but it is powerful.

2.2.1 BNF Examples

Here are a couple BNF examples from Java.

<primitive-type> ::= boolean
<primitive-type> ::= char

BNF syntax is often abbreviated when there are multiple similar rules like these
primitive type rules. Whether abbrieviated or not, the meaning is the same.

<primitive-type> ::= boolean | char | byte | short | int | long | float | ...
<argument-list> ::= <expression> | <argument-list> , <expression>
<selection-statement> ::=
if ( <expression> ) <statement> |
if ( <expression> ) <statement> else <statement> |
switch ( <expression> ) <block>

<method-declaration> ::=
<modifiers> <type-specifier> <method declarator> <throws-clause> <method-body> |
<modifiers> <type-specifier> <method-declarator> <method-body> |
<type-specifier> <method-declarator> <throws-clause> <method-body> |
<type-specifier> <method-declarator> <method-body>

This description can be described in English: The set of method declarations is
the union of the sets of method declarations that explicitly throw an exception with
those that don’t explicitly throw an exception with or without modifiers attached to
their definitions. The BNF is much easier to understand and is not ambiguous like
this English description.
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2.2.2 Extended BNF (EBNF)

Since a BNF description of the syntax of a programming language relies heavily on
recursion to provide lists of items, many definitions use these extensions:

1. item? or [item] means the item is optional.
2. item* or {item} means zero or more occurrences of an item are allowable.
3. item+ means one or more occurrences of an item are allowable.
4. Parentheses may be used for grouping.

2.3 Context-Free Grammars

ABNF is a way of describing the grammar of a language.Most interesting grammars
are context-free, meaning that the contents of any syntactic category in a sentence are
not dependent on the context in which it is used. A context-free grammar is defined
as a four tuple:

G = (N , T ,P,S)

where

• N is a set of symbols called nonterminals or syntactic categories.
• T is a set of symbols called terminals or tokens.
• P is a set of productions of the form n → α where n ∈ N and α ∈ {N ∪ T }∗.
• S ∈ N is a special nonterminal called the start symbol of the grammar.

Informally, a context-free grammar is a set of nonterminals and terminals. For
each nonterminal there are one or more productions with strings of zero or more
nonterminals and terminals on the right hand side as described in theBNFdescription.
There is one special nonterminal called the start symbol of the grammar.

2.3.1 The Infix Expression Grammar

A context-free grammar for infix expressions can be specified as G = (N , T ,P,E)

where

N = {E, T , F}
T = {identifier, number,+, −, ∗, /, (, )}
P is defined by the set of productions

E → E + T | E − T | T
T → T ∗ F | T / F | F
F → ( E ) | identifier | number
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2.4 Derivations

A sentence of a grammar is a string of tokens from the grammar. A sentence belongs
to the language of a grammar if it can be derived from the grammar. This process
is called constructing a derivation. A derivation is a sequence of sentential forms
that starts with the start symbol of the grammar and ends with the sentence you are
trying to derive. A sentential form is a string of terminals and nonterminals from
the grammar. In each step in the derivation, one nonterminal of a sentential form,
call it A, is replaced by a string of terminals and nonterminals, β, where A → β
is a production in the grammar. For a grammar, G, the language of G is the set of
sentences that can be derived from G and is usually written as L(G).

2.4.1 A Derivation

Here we prove that the expression (5 ∗ x) + y is a member of the language defined
by the grammar given in Sect. 2.3.1 by constructing a derivation for it. The derivation
begins with the start symbol of the grammar and ends with the sentence.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ (E) + T ⇒ (T) + T ⇒ (T ∗ F) + T

⇒ (F ∗ F) + T ⇒ (5 ∗ F) + T ⇒ (5 ∗ x) + T ⇒ (5 ∗ x) + F ⇒ (5 ∗ x) + y

Each step is a sentential form. The underlined nonterminal in each sentential
form is replaced by the right hand side of a production for that nonterminal. The
derivation proceeds from the start symbol, E, to the sentence (5 ∗ x)+y. This proves
that (5 ∗ x) + y is in the language L(G) as G is defined in Sect. 2.3.1.

Practice 2.1 Construct a derivation for the infix expression 4 + (a − b) ∗ x.
You can check your answer(s) in Section2.17.1.

2.4.2 Types of Derivations

A sentence of a grammar is valid if there exists at least one derivation for it using
the grammar. There are typically many different derivations for a particular sentence
of a grammar. However, there are two derivations that are of some interest to us in
understanding programming languages.

• Left-most derivation—Always replace the left-most nonterminal when going from
one sentential form to the next in a derivation.

• Right-most derivation—Always replace the right-most nonterminal when going
from one sentential form to the next in a derivation.
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The derivation of the sentence (5 ∗ x) + y in Sect. 2.4.1 is a left-most derivation.
A right-most derivation for the same sentence is:

E ⇒ E + T ⇒ E + F ⇒ E + y ⇒ T + y ⇒ F + y ⇒ (E) + y ⇒ (T) + y

⇒ (T ∗ F) + y ⇒ (T ∗ x) + y ⇒ (F ∗ x) + y ⇒ (5 ∗ x) + y

Practice 2.2 Construct a right-most derivation for the expression x ∗ y + z.
You can check your answer(s) in Section2.17.2.

2.4.3 Prefix Expressions

Infix expressions are expressions where the operator appears between the operands.
Another type of expression is called a prefix expression. In prefix expressions the
operator appears before the operands. The infix expression 4 + (a − b) ∗ x would
be written +4 ∗ −abx as a prefix expression. Prefix expressions are in some sense
simpler than infix expressions because we don’t have to worry about the precedence
of operators. The operator precedence is determined by the order of operations in
the expression. Because of this, parentheses are not needed in prefix expressions.

2.4.4 The Prefix Expression Grammar

A context-free grammar for prefix expressions can be specified as G = (N , T ,P,E)

where

N = {E}
T = {identifier, number,+, −, ∗, /}
P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E | identifier | number

Practice 2.3 Construct a left-most derivation for the prefix expression +4 ∗
−abx.

You can check your answer(s) in Section2.17.3.

2.5 Parse Trees

A grammar, G, can be used to build a tree representing a sentence of L(G), the
language of the grammar G. This kind of tree is called a parse tree. A parse tree is
anotherwayof representing a sentence of a given language.Aparse tree is constructed
with the start symbol of the grammar at the root of the tree. The children of each
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Fig. 2.1 A parse tree

node in the tree must appear on the right hand side of a production with the parent
on the left hand side of the same production.A program is syntactically valid if there
is a parse tree for it using the given grammar.

While there are typically many different derivations of a sentence in a language,
there is only one parse tree. This is true as long as the grammar is not ambiguous.
In fact that’s the definition of ambiguity in a grammar. A grammar is ambiguous if
and only if there is a sentence in the language of the grammar that has more than one
parse tree.

The parse tree for the sentence derived in Sect. 2.4.1 is depicted in Fig. 2.1. Notice
the similarities between the derivation and the parse tree.

Practice 2.4 What does the parse tree look like for the right-most derivation
of (5 ∗ x) + y?

You can check your answer(s) in Section2.17.4.

Practice 2.5 Construct a parse tree for the infix expression 4 + (a − b) ∗ x.
HINT: What has higher precedence, “+” or “∗”? The given grammar auto-

matically makes “∗” have higher precedence. Try it the other way and see
why!

You can check your answer(s) in Section2.17.5.

Practice 2.6 Construct a parse tree for the prefix expression +4 ∗ −abx.
You can check your answer(s) in Section2.17.6.
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Fig. 2.2 An AST

2.6 Abstract Syntax Trees

There is a lot of information in a parse tree that isn’t really needed to capture the
meaning of the program that it represents. An abstract syntax tree is like a parse tree
except that non-essential information is removed. More specifically,

• Nonterminal nodes in the tree are replaced by nodes that reflect the part of the
sentence they represent.

• Unit productions in the tree are collapsed.

For example, the parse tree from Fig. 2.1 can be represented by the abstract syntax
tree in Fig. 2.2. The abstract syntax tree eliminates all the unnecessary information
and leaves just what is essential for evaluating the expression. Abstract syntax trees,
often abbreviated ASTs, are used by compilers while generating code and may be
used by interpreters when running your program. Abstract syntax trees throw away
superfluous information and retain only what is essential to allow a compiler to
generate code or an interpreter to execute the program.

Practice 2.7 Construct an abstract syntax tree for the expression 4 +
(a − b) ∗ x.

You can check your answer(s) in Section2.17.7.

2.7 Lexical Analysis

The syntax ofmodern programming languages are definedvia grammars.Agrammar,
because it is awell-definedmathematical structure, canbeused to construct a program
called a parser. A language implementation, like a compiler or an interpreter, has
a parser that reads the program from the source file. The parser reads the tokens,
or terminals, of a program and uses the language’s grammar to check to see if the
stream of tokens form a syntactically valid program.

For a parser to do its job, it must be able to get the stream of tokens from the
source file. Forming tokens from the individual characters of a source file is the job
of another program often called a tokenizer, or scanner, or lexer. Lex is the Latin
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word for word. The words of a program are its tokens. In programming language
implementations a little liberty is taken with the definition of word. A word is any
terminal or token of a language. It turns out that the tokens of a language can be
described by another language called the language of regular expressions.

2.7.1 The Language of Regular Expressions

The languageof regular expression is definedbya context-free grammar.The context-
free grammar for regular expressions is RE = (N , T ,P,E) where

N = {E, T , K, F}
T = {character, ∗,+, · , (, )}
P is defined by the set of productions

E → E + T | T
T → T · K | K
K → F∗ | F
F → character | ( E )

The + operator is the choice operator, meaning either E or T, but not both. The
dot operator means that T is followed by K. The ∗ operator, called Kleene Star
for the mathematician that first defined it, means zero or more occurrences of F.
The grammar defines the precedence of these operators. Kleene star has the highest
precedence followed by the dot operator, followed by the choice operator. At its most
primitive level, a regular expression may be just a single character.

Frequently, a choice between many different characters may be abbreviated with
some sensible name. For instance, letter may be used to abbreviate A + B + · · · +
Z + a + b + · · · z anddigitmayabbreviate 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.
Usually these abbreviations are specified explicity before the regular expression is
given.

The tokens of the infix grammar are identifier, number, +, −, ∗, /, (, and ). For
brevities sake, assume that letter and digit have the usual definitions. We’ll also
put each operator character in single quotes so as not to confuse them with the
metalanguage. Then, these tokens might be defined by the regular expression

letter.letter* + digit.digit* + ‘+’ + ‘−‘ + ‘*’ + ‘/’ + ‘(‘ + ‘)’

From this regular expression specification a couple of things come to light. Iden-
tifiers must be at least one character long, but can be as long as we wish them to be.
Numbers are only non-negative integers in the infix expression language. Floating
point numbers cannot be specified in the language as the tokens are currently defined.

Practice 2.8 Define a regular expression so that negative and non-negative
integers can both be specified as tokens of the infix expression language.

You can check your answer(s) in Section2.17.8.
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2.7.2 Finite State Machines

A finite state machine is a mathematical model that accepts or rejects strings of
characters for some regular expression. A finite state machine is often called a finite
state automaton. Theword automaton is just anotherword formachine. Every regular
expression has at least one finite state machine and vice versa, every finite state
machine has at least one matching regular expression. In fact, there is an algorithm
that given any regular expression can be used to construct a finite state machine for it.

Formally a finite state automata is defined as follows.

M = (�, S, F, s0, δ) where� (pronounced sigma) is the input alphabet (the charac-
ters understood by the machine), S is a set of states, F is a subset of S usually
written as F ⊆ S, s0 is a special state called the start state, and δ (pronounced
delta) is a function that takes as input an alphabet symbol and a state and
returns a new state. This is usually written as δ : � × S → S.

A finite state machine has a current state which initially is the start state. The
machine starts in the start state and reads characters one at a time. As characters are
read, the finite state machine changes state. Each state has transitions to other states
based on the last character read. Each time the machine transitions to a new state,
another character is read from the stream of characters.

After reading all the characters of a token, if the current state is in the set of
final states, F, then the token is accepted by the finite state machine. Otherwise, it is
rejected. Finite state machines are typically represented graphically by drawing the
states, transitions, start state, and final states. States in a graphical representation are
depicted as nodes in a graph. The start state has an arrow going into it with nothing at
the back side of the arrow. The transitions are represented as arrows going from one
state to another and are labelled with the characters that trigger the given transition.
Finally, final or accepting states are denoted with a double circle.

Figure2.3 depicts a finite statemachine for the language of infix expression tokens.
The start state is 1. Each of states 2 through 9 are accepting states, denoted with a
double circle. State 2 accepts identifier tokens. State 3 accepts number tokens. States
4 to 9 accept operators and the parenthesis tokens. The finite state machine accepts
one token at a time. For each new token, the finite state machine starts over in state 1.

If, while reading a token, an unexpected character is read, then the streamof tokens
is rejected by the finite state machine as invalid. Only valid strings of characters are
accepted as tokens. Characters like spaces, tabs, and newline characters are not
recognized by the finite state machine. The finite state machine only responds with
yes the string of tokens is in the language accepted by the machine or no it is not.

www.allitebooks.com
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Fig. 2.3 A finite state machine

2.7.3 Lexer Generators

It is relatively easy to construct a lexer by writing a regular expression, drawing a
finite state machine, and then writing a program that mimics the finite state machine.
However, this process is largely the same for all programming languages so there
are tools that have been written to do this for us. Typically these tools are called
lexer generators. To use a lexer generator you must write regular expressions for the
tokens of the language and provide these to the lexer generator.

A lexer generator will generate a lexer program that internally uses a finite state
machine like the one pictured in Fig. 2.3, but instead of reporting yes or no, for each
token the lexer will return the string of characters, called the lexeme or word of
the token, along with a classification of the token. So, identifiers are categorized as
identifier tokens while ‘+’ is categorized as an add token.

The lex tool is an example of a lexical generator for the C language. If you are
writing an interpreter or compiler using C as the implementation language, then
you would use lex or a similar tool to generate your lexer. lex was a tool included
with the original Unix operating system. The Linux alternative is called flex. Java,
Python, Standard ML, and most programming languages have equivalent available
lexer generators.
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Fig. 2.4 Parser data flow

2.8 Parsing

Parsing is the process of detecting whether a given string of tokens is a valid
sentence of a grammar. Every time you compile a program or run a program in
an interpreter the program is first parsed using a parser. When a parser isn’t able to
parse a program the programmer is told there is a syntax error in the program. A
parser is a program that given a sentence, checks to see if the sentence is a member
of the language of the given grammar. A parser usually does more than just answer
yes or no. A parser frequently builds an abstract syntax tree representation of the
source program. There are two types of parsers that are commonly constructed.

• A top-down parser starts with the root of the parse tree.
• A bottom-up parser starts with the leaves of the parse tree.

Top-down and bottom-up parsers check to see if a sentence belongs to a gram-
mar by constructing a derivation for the sentence, using the grammar. A parser either
reports success (and possibly returns an abstract syntax tree) or reports failure (hope-
fully with a nice error message). The flow of data is pictured in Fig. 2.4.

2.9 Top-Down Parsers

Top-down parsers are generallywritten by hand. They are sometimes called recursive
descent parsers because they can be written as a set of mutually recursive functions.
A top-down parser performs a left-most derivation of the sentence (i.e. source
program).

A top-down parser operates by (possibly) looking at the next token in the source
file and deciding what to do based on the token and where it is in the derivation.
To operate correctly, a top-down parser must be designed using a special kind of
grammar called an LL(1) grammar. An LL(1) grammar is simply a grammar where
the next choice in a left-most derivation can be deterministically chosen based on the
current sentential form and the next token in the input. The first L refers to scanning
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the input from left to right. The second L signifies that while performing a left-most
derivation, there is only 1 symbol of lookahead that is needed to make the decision
about which production to choose next in the derivation.

2.9.1 An LL(1) Grammar

The grammar for prefix expressions is LL(1). Examine the prefix expression grammar
G = (N , T ,P,E) where

N = {E}
T = {identifier, number,+, −, ∗, /}
P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E | identifier | number

While constructing any derivation for a sentence of this language, the next pro-
duction chosen in a left-most derivation is going to be obvious because the next token
of the source file must match the first terminal in the chosen production.

2.9.2 A Non-LL(1) Grammar

Some grammars are not LL(1). The grammar for infix expressions is not LL(1).
Examine the infix expression grammar G = (N , T ,P,E) where

N = {E, T , F}
T = {identifier, number,+, −, ∗, /, (, )}
P is defined by the set of productions

E → E + T | E − T | T
T → T ∗ F | T / F | F
F → ( E ) | identifier | number

Consider the infix expression 5 ∗ 4. A left-most derivation of this expression
would be

E ⇒ T ⇒ T ∗ F ⇒ F ∗ F ⇒ 5 ∗ F ⇒ 5 ∗ 4

Consider looking at only the 5 in the expression. We have to choose whether to use
the production E → E + T or E → T . We are only allowed to look at the 5 (i.e.
we can’t look beyond the 5 to see the multiplication operator). Which production do
we choose? We can’t decide based on the 5. Therefore the grammar is not LL(1).

Just because this infix expression grammar is not LL(1) does not mean that infix
expressions cannot be parsed using a top-down parser. There are other infix expres-
sion grammars that are LL(1). In general, it is possible to transform any context-free
grammar into an LL(1) grammar. It is possible, but the resulting grammar is not
always easily understandable.
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The infix grammar given in Sect. 2.9.2 is left recursive. That is, it contains the
productionE → E + T and another similar production for terms in infix expressions.
These rules are left recursive. Left recursive rules are not allowed in LL(1) grammars.
A left recursive rule can be eliminated in a grammar through a straightforward
transformation of its production.

Common prefixes in the right hand side of two productions for the same nontermi-
nal are also not allowed in an LL(1) grammar. The infix grammar given in Sect. 2.9.2
does not contain any common prefixes. Common prefixes can be eliminated by
introducing a new nonterminal to the grammar, replacing all common prefixes with
the new nonterminal, and then defining one new production so the new nonterminal
is composed of the common prefix.

2.9.3 An LL(1) Infix Expression Grammar

The followinggrammar is anLL(1) grammar for infixexpressions.G = (N , T ,P,E)

where

N = {E, RestE, T , RestT , F}
T = {identifier, number,+, −, ∗, /, (, )}
P is defined by the set of productions

E → T RestE
RestE → + T RestE | − T RestE | ε
T → F RestT
RestT → ∗ F RestT | / F RestT | ε
F → ( E ) | identifier | number

In this grammar the ε (pronounced epsilon) is a special symbol that denotes an
empty production. An empty production is a production that does not consume any
tokens. Empty productions are sometimes convenient in recursive rules.

Once common prefixes and left recursive rules are eliminated from a context-free
grammar, the grammar will be LL(1). However, this transformation is not usually
performed because there are more convenient ways to build a parser, even for non-
LL(1) grammars.

Practice 2.9 Construct a left-most derivation for the infix expression 4 +
(a − b) ∗ x using the grammar in Sect. 2.9.3, proving that this infix expression
is in L(G) for the given grammar.

You can check your answer(s) in Section2.17.9.
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2.10 Bottom-Up Parsers

While the original infix expression language is not LL(1) it is LALR(1). In fact,
most grammars for programming languages are LALR(1). The LA stands for look
ahead with the 1 meaning just one symbol of look ahead. The LR refers to scanning
the input from left to right while constructing a right-most derivation. A bottom-
up parser constructs a right-most derivation of a source program in reverse. So, an
LALR(1) parser constructs a reverse right-most derivation of a program.

Building a bottom-up parser is a somewhat complex task involving the computa-
tion of item sets, look ahead sets, a finite state machine, and a stack. The finite state
machine and stack together are called a pushdown automaton. The construction of
the pushdown automaton and the look ahead sets are calculated from the grammar.
Bottom-up parsers are not usually written by hand. Instead, a parser generator is used
to generate the parser program from the grammar. A parser generator is a program
that is given a grammar and builds a parser for the language of the grammar by
constructing the pushdown automaton and lookahead sets needed to parse programs
in the language of the grammar.

The original parser generator forUnixwas called yacc, which stood for yet another
compiler compiler since it was a compiler for grammars that produced a parser for
a language. Since a parser is part of a compiler, yacc was a compiler compiler. The
Linux version of yacc is called Bison. Hopefully you see the pun that was used
in naming it Bison. The Bison parser generator generates a parser for compilers
implemented in C, C++, or Java. There are versions of yacc for other languages
as well. Standard ML has a version called ml-yacc for compilers implemented in
Standard ML. ML-yacc is introduced and used in Chap.6.

Parser generators like Bison produce what is called a bottom-up parser because
the right-most derivation is constructed in reverse. In other words, the derivation is
done from the bottom up. Usually, a bottom-up parser is going to return an AST
representing a successfully parsed source program. Figure2.5 depicts the dataflow
in an interpreter or compiler. The parser generator is given a grammar and runs once
to build the parser. The generated parser runs each time a source program is parsed.

Fig. 2.5 Parser generator data flow

http://dx.doi.org/10.1007/978-3-319-13314-0_6


42 2 Syntax

A bottom-up parser parses a program by constructing a reverse right-most deriva-
tion of the source code. As the reverse derivation proceeds the parser shifts tokens
from the input onto the stack of the pushdown automaton. Then at various points
in time it reduces by deciding, based on the look ahead sets, that a reduction is
necessary.

2.10.1 Parsing an Infix Expression

Consider the grammar for infix expressions as G = (N , T ,P,E) where

N = {E, T , F}
T = {identifier, number,+, −, ∗, /, (, )}
P is defined by the set of productions

(1) E → E + T
(2) E → T
(3) T → T * F
(4) T → F
(5) F → number
(6) F → ( E )

Now assume we are parsing the expression 5 ∗ 4+ 3. A right-most derivation for
this expression is as follows.

E ⇒ E + T ⇒ E + F ⇒ E + 3 ⇒ T + 3

⇒ T ∗ F + 3 ⇒ T ∗ 4 + 3 ⇒ F ∗ 4 + 3 ⇒ 5 ∗ 4 + 3

A bottom-up parser does a right-most derivation in reverse using a pushdown
automaton. It can be useful to look at the stack of the pushdown automaton as it
parses the expression as pictured in Fig. 2.6. In step A the parser is beginning. The
dot to the left of the 5 indicates the parser has not yet processed any tokens of the
source program and is looking at the 5. The stack is empty. From step A to step B
one token, the 5 is shifted onto the stack. From step B to C the parser looks at the
multiplication operator and realizes that a reduction using rule 5 of the grammar
must be performed. It is called a reduction because the production is employed in
reverse order. The reduction pops the right hand side of rule 5 from the stack and
replaces it with the nonterminal F. If you look at this derivation in reverse order, the
first step is to replace the number 5 with F.

The rest of the steps of parsing the source program follow the right-most derivation
either shifting tokens onto the stack or reducing using rules of the grammar. In step
O the entire source has been parsed, the stack is empty, and the source program is
accepted as a valid program. The actions taken while parsing include shifting and
reducing. These are the two main actions of any bottom-up parser. In fact, bottom-up
parsers are often called shift-reduce parsers.
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Fig. 2.6 A pushdown automaton stack
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Practice 2.10 For each step in Fig. 2.6, is there a shift or reduce operation
being performed? If it is a reduce operation, then what production is being
reduced? If it is a shift operation, what token is being shifted onto the stack?

You can check your answer(s) in Section2.17.10.

Practice 2.11 Consider the expression (6 + 5) ∗ 4. What are the contents of
the pushdown automaton’s stack as the expression is parsed using a bottom-up
parser? Show the stack after each shift and each reduce operation.

You can check your answer(s) in Section2.17.11.

2.11 Ambiguity in Grammars

A grammar is ambiguous if there exists more than one parse tree for a given sentence
of the language. In general, ambiguity in a grammar is a bad thing. However, some
ambiguity may be allowed by parser generators for LALR(1) languages.

A classic example of ambiguity in languages arises from nested if-then-else state-
ments. Consider the following Pascal statement:

if a<b then
if b<c then
writeln("a<c")

else
writeln("?")

Which if statement does the else go with? It’s not entirely clear. The BNF for an
if-then-else statement might look something like this.

<statement> ::= if <expression> then <statement> else <statement>
| if <expression> then <statement>
| writeln ( <expression> )

The recursive nature of this rule means that if-then-else statements can be arbir-
trarily nested. Because of this recursive definition, the else in this code is dangling.
That is, it is unclear if it goes with the first or second if statement.

When a bottom-up parser is generated using this grammar, the parser generator
will detect that there is an ambiguity in the grammar. The problem manifests itself
as a conflict between a shift and a reduce operation. The first rule says when looking
at an else keyword the parser should shift. The second rule says when the parser is
looking at an else it should reduce. To resolve this conflict there is generally a way
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to specify whether the generated parser should shift or reduce. The default action is
usually to shift and that is what makes the most sense in this case. By shifting, the
else would go with the nearest if statement. This is the normal behavior of parsers
when encountering this if-then-else ambiguity.

2.12 Other Forms of Grammars

As a computer programmer you will likely learn at least one new language and
probably a few during your career. New application areas frequently cause new
languages to be developed to make programming applications in that area more
convenient. Java, JavaScript, and ASP.NET are three languages that were created
because of the world wide web. Ruby and Perl are languages that have become
popular development languages for database and server side programming.Objective
C is another language made popular by the rise of iOS App programming for Apple
products. A recent trend in programming languages is to develop domain specific
languages for particular embedded platforms.

Programming language manuals contain some kind of reference that describes
the constructs of the language. Many of these reference manuals give the grammar
of the language using a variation of a context free grammar. Examples include CBL
(Cobol-like) grammars, syntax diagrams, and as we have already seen, BNF and
EBNF. All these syntax metalanguages share the same features as grammars. They
all have some way of defining parts of a program or syntactic categories and they all
have a means of defining a language through recursively defined productions. The
definitions, concepts, and examples provided in this chapter will help you understand
a language reference when the time comes to learn a new language.

2.13 Limitations of Syntactic Definitions

The concrete syntax for a language is almost always an incomplete description. Not
all syntactically valid strings of tokens should be regarded as valid programs. For
instance, consider the expression 5 + 4/0. Syntactically, this is a valid expression,
but of course cannot be evaluated since division by zero is undefined. This is a
semantic issue. The meaning of the expression is undefined because division by zero
is undefined. This is a semantic issue and semantics are not described by a syntactic
definition. All that a grammar can ensure is that the program is syntactically valid.

In fact, there is no BNF or EBNF grammar that generates only legal programs in
any programming language including C++, Java, and StandardML. ABNF grammar
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defines a context-free language: the left-hand side of each rules contains only one
syntactic category. It is replaced by one of its alternative definitions regardless of the
context in which it occurrs.

The set of programs in any interesting language is not context-free. For instance,
when the expression a + b is evaluated, are a and b type compatible and defined
over the + operator? This is a context sensitive issue that can’t be specified using a
context-free grammar. Context-sensitive features may be formally described as a set
of restrictions or context conditions. Context-sensitive issues deal mainly with dec-
larations of identifiers and type compatibility. Sometimes, context-sensitive issues
like this are said to be part of the static semantics of the language.

While a grammar describes how tokens are put together to form a valid program
the grammar does not specify the semantics of the language nor does it describe the
static semantics or context-sensitive characteritics of the language. Other means are
necessary to describe these language characteristics. Some methods, like type infer-
ence rules, are formally defined.Most semantic characteristics are defined informally
in some kind of English language description.

These are all context-sensitive issues.

• In an array declaration in C++, the array size must be a nonnegative value.
• Operands for the && operation must be boolean in Java.
• In a method definition, the return value must be compatible with the return type
in the method declaration.

• When a method is called, the actual parameters must match the formal parameter
types.

2.14 Chapter Summary

This chapter introduced you to programming language syntax and syntactic descrip-
tions. Reading and understanding syntactic descriptions is worthwhile since you will
undoubtedly come across new languages in your career as a computer scientist. There
is certainly more that can be said about the topic of programming language syntax.
Aho et al. [2] have written the widely recognized definitive book on compiler imple-
mentation which includes material on syntax definition and parser implementation.
There are many other good compiler references as well. The Chomsky hierarchy of
languages is also closely tied to grammars and regular expressions. Many books on
Discrete Structures in Computer Science introduce this topic and a few good books
explore the Chomsky hierarchy more deeply including an excellent text by Peter
Linz [13].

In the next chapter you put this knowledge of syntax definition to good use learning
a new language: the CoCo assembly language. CoCo is a virtual machine for inter-
preting Python bytecode instructions. Learning assembly language helps in having a
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better understanding of how higher level languages work and Chap.3 provides many
examples of Python programs and their corresponding CoCo assembly language
programs to show you how a higher level language is implemented.

2.15 Review Questions

1. What does the word syntax refer to? How does it differ from semantics?
2. What is a token?
3. What is a nonterminal?
4. What does BNF stand for? What is its purpose?
5. What kind of derivation does a top-down parser construct?
6. What is another name for a top-down parser?
7. What does the abstract syntax tree for 3 ∗ (4+5) look like for infix expressions?
8. What is the prefix equivalent of the infix expression 3 ∗ (4+ 5)? What does the

prefix expression’s abstract syntax tree look like?
9. What is the difference between lex and yacc?

10. Why aren’t all context-free grammars good for top-down parsing?
11. What kind of machine is needed to implement a bottom-up parser?
12. What is a context-sensitive issue in a language? Give an example in Java.
13. What do the terms shift and reduce apply to?

2.16 Exercises

1. Rewrite the BNF in Sect. 2.2.1 using EBNF.
2. Given the grammar in Sect. 2.3.1, derive the sentence 3 ∗ (4 + 5) using a right-

most derivation.
3. Draw a parse tree for the sentence 3 ∗ (4 + 5).
4. Describe how you might evaluate the abstract syntax tree of an expression to get

a result? Write out your algorithm in English that describes how this might be
done.

5. Write a regular expression to describe identifier tokens which must start with a
letter and then can be followed by any number of letters, digits, or underscores.

6. Draw a finite state machine that would accept identifier tokens as specified in the
previous exercise.

7. For the expression 3 ∗ (4+ 5) show the sequence of shift and reduce operations
using the grammar in Sect. 2.10.1. Be sure to say what is shifted and which rule
is being used to reduce at each step. See the solution to practice problem 2.11 for
the proper way to write the solution to this problem.

8. Construct a left-most derivation of 3 ∗ (4+ 5) using the grammar in Sect. 2.9.3.

http://dx.doi.org/10.1007/978-3-319-13314-0_3
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2.17 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

2.17.1 Solution to Practice Problem 2.1

This is a left-most derivation of the expression. There are other derivations that would
be correct as well.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ 4 + T ⇒ 4 + T ∗ F ⇒ 4 + F ∗ F

⇒ 4 + (E) ∗ F ⇒ 4 + (E − T) ∗ F ⇒ 4 + (T − T) ∗ F ⇒ 4 + (F − T) ∗ F

⇒ 4 + (a − T) ∗ F ⇒ 4 + (a − F) ∗ F ⇒ 4 + (a − b) ∗ F ⇒ 4 + (a − b) ∗ x

2.17.2 Solution to Practice Problem 2.2

This is a right-most derivation of the expression x ∗ y + z. There is only one correct
right-most derivation.

E ⇒ E + T ⇒ E + F ⇒ E + z ⇒ T + z ⇒ T ∗ F + z ⇒ T ∗ y + z ⇒ F ∗ y + z

⇒ x ∗ y + z

2.17.3 Solution to Practice Problem 2.3

This is a left-most derivation of the expression +4 ∗ −abx.

E ⇒ +EE ⇒ +4E ⇒ +4 ∗ EE ⇒ +4 ∗ −EEE ⇒ +4 ∗ −aEE ⇒ +4 ∗ −abE

⇒ +4 ∗ −abx

2.17.4 Solution to Practice Problem 2.4

Exactly like the parse tree for any other derivation of (5 ∗ x) + y. There is only one
parse tree for the expression given this grammar.
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2.17.5 Solution to Practice Problem 2.5
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2.17.6 Solution to Practice Problem 2.6

2.17.7 Solution to Practice Problem 2.7

2.17.8 Solution to Practice Problem 2.8

In order to define both negative and positive numbers, we can use the choice operator.

letter.letter* + digit.digit* + ‘−‘.digit.digit* ‘+’ + ‘−‘ + ‘*’ + ‘/’ + ‘(‘ + ‘)’
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2.17.9 Solution to Practice Problem 2.9

E ⇒ T RestE ⇒ F RestT RestE ⇒ 4 RestT RestE ⇒ 4 RestE ⇒ 4 + T RestE

⇒ 4 + F RestT RestE ⇒ 4 + (E) RestT RestE ⇒ 4 + (T RestE)RestT RestE

⇒ 4 + (F RestT RestE) RestT RestE ⇒ 4 + (a RestT RestE)RestT RestE

⇒ 4 + (a RestE) RestT RestE ⇒ 4 + (a − T RestE) RestT RestE

⇒ 4 + (a − F RestE) RestT RestE ⇒ 4 + (a − b RestE)

⇒ 4 + (a − b) RestT RestE ⇒ 4 + (a − b) ∗ F RestT RestE

⇒ 4 + (a − b) ∗ x RestT RestE ⇒ 4 + (a − b) ∗ x RestE ⇒ 4 + (a − b) ∗ x

2.17.10 Solution to Practice Problem 2.10

In the parsing of 5 ∗ 4 + 3 the following shift and reduce operations: step A initial
condition, step B shift, step C reduce by rule 5, step D reduce by rule 4, step E shift,
step F shift, step G reduce by rule 5, step H reduce by rule 3, step I reduce by rule
2, step J shift, step K shift, step L reduce by rule 5, step M reduce by rule 4, step N
reduce by rule 1, step O finished parsing with dot on right side and E on top of stack
so pop and complete with success.

2.17.11 Solution to Practice Problem 2.11

To complete this problem it is best to do a right-most derivation of (6 + 5) ∗ 4
first. Once that derivation is complete, you go through the derivation backwards. The
difference in each step of the derivation tells you whether you shift or reduce. Here
is the result.

E ⇒ T ⇒ T ∗ F ⇒ T ∗ 4 ⇒ F ∗ 4 ⇒ (E) ∗ 4 ⇒ (E + T) ∗ 4

⇒ (E + F) ∗ 4 ⇒ (E + 5) ∗ 4 ⇒ (T + 5) ∗ 4 ⇒ (F + 5) ∗ 4 ⇒ (6 + 5) ∗ 4

We get the following operations from this. Stack contents have the top on the right
up to the dot. Everything after the dot has not been read yet. We shift when we must
move through the tokens to get to the next place we are reducing. Each step in the
reverse derivation provides the reduce operations. Since there are seven tokens there
should be seven shift operations.

1. Initially: . ( 6 + 5 ) ∗ 4
2. Shift: ( . 6 + 5 ) ∗ 4
3. Shift: ( 6 . + 5 ) ∗ 4
4. Reduce by rule 5: ( F . + 5 ) ∗ 4
5. Reduce by rule 4: ( T . + 5 ) ∗ 4
6. Reduce by rule 2: ( E . + 5 ) ∗ 4
7. Shift: ( E + . 5 ) ∗ 4
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8. Shift: ( E + 5 . ) ∗ 4
9. Reduce by rule 5: ( E + F . ) ∗ 4

10. Reduce by rule 4: ( E + T . ) ∗ 4
11. Shift: ( E + T ) . ∗ 4
12. Reduce by rule 1: ( E ) . ∗ 4
13. Reduce by rule 6: F . ∗ 4
14. Reduce by rule 4: T . ∗ 4
15. Shift: T ∗ . 4
16. Shift: T ∗ 4 .

17. Reduce by rule 5: T ∗ F .

18. Reduce by rule 3: T .
19. Reduce by rule 2: E .
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Python is an object-oriented, interpreted language. Internally to the Python
interpreter, a Python program is converted to bytecode and interpreted using a virtual
machine. Most modern programming languages have support for high-level abstrac-
tions while the instructions of a virtual machine are closer to the machine language
instructions supported by hardware architectures, making the interpretation of byte-
code easier than interpretation of the original source program. The advantage of
virtual machine implementations results from dividing the mapping from high-level
abstractions to low-level machine instructions into two parts: high-level abstractions
to bytecode and bytecode to machine instructions.

While bytecode is a higher level abstraction thanmachine language, it is not greatly
so. As programmers, if we understand how the underlying machine executes our
programs, we better equip ourselves to make good choices about how we program.
Just as importantly, having an understanding of how programs are executed can help
us diagnose problems when things go wrong.

This chapter introduces assembly language programming in the bytecode lan-
guage of the Python virtual machine. The Python virtual machine is an internal
component of the Python interpreter and is not available to use directly. Instead,
a bytecode interpreter called CoCo has been developed that mimics a subset of the
behavior of the Python 3.2 virtual machine. Instead of writing bytecode files directly,
CoCo supports a Python virtual machine assembly language.

While learning assembly language, we’ll limit ourselves to a subset of Python.
CoCo supports boolean values, integers, strings, floats, tuples, and lists. It supports
functions definitions and function calls. It also supportsmost of the instructions of the
Python virtual machine including support for conditional execution, iteration, and
exception handling. It does not support importing modules or module level code.
CoCo differs from Python by requiring a main function where execution of a CoCo
assembled program begins.

To run an assembly language program itmust first be assembled, then it can be exe-
cuted. The CoCo virtual machine includes the assembler so assembly isn’t a separate
step. An assembly language programmerwrites a program in the CoCo assembly lan-
guage format, providing it toCoCo,which then assembles and interprets the program.
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The main difference between CoCo assembly language and bytecode is the
presence of labels in the assembly language format. Labels are the targets of instruc-
tions that change the normal sequence of execution of instructions. Instructions like
branch and jump instructions are much easier to decipher if it says “jump to loop1”
rather than “jump to address 63”. Of course, bytecode instructions are encoded as
numbers themselves, so the assembler translates “jump to loop1” to something like
“48 63” which of course would require a manual to decipher.

Learning to program in assembly isn’t all that hard once you learn how constructs
like while loops, for loops, if-then statements, function definitions, and function calls
are implemented in assembly language. String and list manipulation is another skill
that helps if you have examples to follow. A disassembler is a tool that will take a
machine language program and produce an assembly language version of it. Python
includes a module called dis that includes a disassembler. When you write a Python
program it is parsed and converted to bytecode when read by the interpreter. The dis
module disassembler produces an assembly language program from this bytecode.
CoCo includes its own disassembler which uses the Python dis module and produces
output suitable for the CoCo virtual machine.

The existence of the disassembler for CoCo means that learning assembly lan-
guage is as easy as writing a Python program and running it through the disassembler
to see how it is implemented in assembly language. Thatmeans you can discover how
Python is implemented while learning assembly language! Because Python’s virtual
machine is not guaranteed to bebackwards compatible, youmust usePython3.2when
disassembling programs so make sure that version 3.2 is installed on your system. To
test this you can try typing “python3.2” in a terminal window in your favorite operat-
ing system. If it says command not found, you likely don’t have Python 3.2 installed.
In that case you can download it from http://python.org. The rest of this chapter
introduces you to assembly language programming using the CoCo virtual machine.

You can get the CoCo virtual machine by going to http://cs.luther.edu/~leekent/
CoCo.Thedownload link provides binary executables forMicrosoftWindows,Apple
Mac OS X, and Linux operating systems. You can also get the source code from
Github and compile it yourself. There are instructions on the web page for down-
loading the source and compiling to build your own executable.

3.1 Overview of the CoCoVM

CoCo, like Python, is a virtual machine, or interpreter, for bytecode instructions.
CoCo is written in C++ using object-oriented principles and does not store its in-
structions in actual bytecode format. Instead, it reads an assembly language file and
assembles it building an internal representation of the program as a sequence of
functions each with their own sequence of bytecode instructions.

A CoCo program, like programs in other programming languages, utilizes a
run-time stack to store information about each function called while the program
is executing. Each function call in a CoCo program results in a new stack frame
object being created and pushed onto the run-time stack. When a function returns,

http://python.org
http://cs.luther.edu/~leekent/CoCo
http://cs.luther.edu/~leekent/CoCo
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its corresponding stack frame is popped from the run-time stack and discarded.
Figure3.1 depicts four active function calls. Function A called function B, which
called function C, which called function D before any of the functions returned. The
top of the stack is at the top of Fig. 3.1. Each stack frame contains all local variables
that are defined in the function. Each stack frame also contains two additional stacks,
an operand stack and a block stack.

Fig. 3.1 The CoCo virtual machine
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CoCo, like the Python virtual machine, is a stack based architecture. This means
that operands for instructions are pushed onto an operand stack. Virtual machine
instructions pop their operands from the operand stack, do their intended operation,
and push their results onto the operand stack.Most CPUs are not stack based. Instead
they have general purpose registers for holding intermediate results. Stack based
architectures manage the set of intermediate results as a stack rather than forcing the
programmer to keep track ofwhich registers holdwhich results. The stack abstraction
makes the life of an assembly language programmer a little easier. The operand
stack is used by the virtual machine to store all intermediate results of instruction
execution. This style of computation has been in use a long time, from Hewlett
Packard mainframe computers of the 1960s through the 1980s to calculators still
made by Hewlett Packard today. The Java Virtual Machine, or JVM, is another
example of a stack machine.

The other stack utilized by CoCo is a block stack. The block stack keeps track of
exit points for blocks of codewithin a CoCo function.When a loop is entered, the exit
address of the loop is pushed onto the block stack. The instructions of each function
are at zero-based offsets from the beginning of the function, so we can think of each
function having its own instruction address space starting at 0. By storing each loop’s
exit point address on the block stack, if a break instruction is executed inside a loop,
the exit point of the loop can be found and the execution of the break instruction will
jump to that address. Exception handlers also push the address of the handler onto
the block stack. If an exception occurs, execution jumps to the exception handler by
popping the address from the block stack. When a loop or try block is exited, the
corresponding block stack address is popped from the block stack.

A program counter, or PC, is responsible for holding the address of the next
instruction to be executed. The machine proceeds by fetching an instruction from
the code, incrementing the PC, and executing the fetched instruction. Execution
proceeds this way until a RETURN_VALUE instruction is executed or an exception
occurs. When a function call is executed, the current program counter is stored in
the stack frame until the called function returns, when the PC is restored to the next
instruction in the current stack frame. This is depicted in Fig. 3.1 with the arrows
from the stack frames to the code of their corresponding functions.

When an exception occurs, if no matching exception handler is found, execution
of the function terminates and control is passed to the previously called function
where the exception continues to propagate back until a matching exception handler
is found. If no matching handler is found, the complete traceback of the exception is
printed. If no exception occurs during the running of a program, execution terminates
when the main function executes the RETURN_VALUE instruction.

The specification for CoCo, including all instructions, global functions, and the
complete assembly language syntax supported by CoCo can be found in Chap.9.
The rest of this chapter examines various Python language constructs and the
corresponding assembly language that implement these constructs. CoCo assembly
language can be learned by examining Python code and learning how it is imple-
mented in assembly language. The rest of this chapter proceeds in this fashion.
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3.2 Getting Started

CoCo includes a disassembler that works with Python 3.2 to disassemble Python
programs into CoCo assembly language programs, providing a great way to learn
assembly language programming using the CoCo virtual machine. Consider the
following Python program that adds 5 and 6 together and prints the sum to the
screen.

1 from disassembler import *
2 def main():
3 x = 5
4 y = 6
5 z = x + y
6 print(z)
7 #main()
8 disassembler.disassemble(main)

Running this with python3.2 as follows produces this output.

1 MyComputer> python3.2 addtwo.py
2 Function: main/0
3 Constants: None, 5, 6
4 Locals: x, y, z
5 Globals: print
6 BEGIN
7 LOAD_CONST 1
8 STORE_FAST 0
9 LOAD_CONST 2

10 STORE_FAST 1
11 LOAD_FAST 0
12 LOAD_FAST 1
13 BINARY_ADD
14 STORE_FAST 2
15 LOAD_GLOBAL 0
16 LOAD_FAST 2
17 CALL_FUNCTION 1
18 POP_TOP
19 LOAD_CONST 0
20 RETURN_VALUE
21 END
22 MyComputer> python3.2 addtwo.py > addtwo.casm

The disassembler prints the assembly language program to standard output, which
is usually the screen. The second run of the addtwo.py program redirects the standard
output to a file called addtwo.casm. The casm is the extension chosen for CoCo
assembly language files and stands for CoCo Assembly. This CASM file holds all
the lines between the twoMyComputer prompts above. To run this program you can
invoke the CoCo virtual machine as shown here.
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1 MyComputer> coco addtwo.casm
2 Function: main/0
3 Constants: None, 5, 6
4 Locals: x, y, z
5 Globals: print
6 BEGIN
7 LOAD_CONST 1
8 STORE_FAST 0
9 LOAD_CONST 2

10 STORE_FAST 1
11 LOAD_FAST 0
12 LOAD_FAST 1
13 BINARY_ADD
14 STORE_FAST 2
15 LOAD_GLOBAL 0
16 LOAD_FAST 2
17 CALL_FUNCTION 1
18 POP_TOP
19 LOAD_CONST 0
20 RETURN_VALUE
21 END
22

23 11
24 MyComputer> coco addtwo.casm 2> /dev/null
25 11
26 MyComputer>

The first run invokes coco which assembles the program producing the assembled
output and then runs the program producing the 11 that appears below the assembled
output. The assembled output is printed to a stream called standard error which is
separate from the standard output stream where the 11 is printed. To only print the
exact output of the program, standard error can be redirected to /dev/null which is
an output device that simply throws away anything sent to it. The second run of coco
demonstrates how to throw away the standard error stream. Throwing away standard
error would also throw away any error output the program might produce so is not
recommended in most cases.

In this CoCo program there is one function called main. The assembly indicates
main has 0 formal parameters. Constants that are used in the code include None, 5,
and 6. There are three local variables in the function: x, y, and z. The global print
function is called and so is in the list of globals. Every function in CoCo has these
categories of identifiers and values within each defined function. Sometimes one or
more of these categories may be empty and can be omitted in that case.

The instructions follow the begin keyword and precede the end keyword. LOAD_
CONST loads the constant value at its index (zero based and 1 in this case) into
the constants onto the operand stack. CoCo is a stack machine and therefore all
operations are performed with operands pushed and popped from the operand stack.

The STORE_FAST instruction stores a value in the locals list, in this case at
offset 0, the location of x. LOAD_FAST does the opposite of STORE_FAST, push-
ing a value on the operand stack from the locals list of variables. BINARY_ADD
pops two operands from the stack and adds them together, pushing the result.
CALL_FUNCTION pops the number of arguments specified in the instruction (1 in
this case) and then pops the function from the stack. Finally, it calls the popped
function with the popped arguments. The result of the function call is left on the
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top of the operand stack. In the case of the print function, None is returned and left
on the stack. The POP_TOP instruction pops the None from the stack and discards
it only to have the main function push a None on the stack just before returning.
RETURN_VALUE pops the top argument from the operand stack and returns that
value to the calling function. Since main was the only function called, returning from
it ends the coco interpretation of the program.

To run this code, you must have the coco executable somewhere in your path.
Then you can execute the following code to try it out.

MyComputer> python3.2 addtwo.py > addtwo.casm
MyComputer> coco addtwo.casm

3.3 Input/Output

CoCo provides one built-in function to read input from the keyboard and several
functions for writing output to this screen or standard output. The following program
demonstrates getting input from the keyboard and printing to standard output.

1 import disassembler
2

3 def main():
4 name= input("Enter your name: ")
5 age = int(input("Enter your age: "))
6 print(name + ", a year from now you will be", age+1, "years old.")
7

8 #main()
9 disassembler.disassemble(main)

In the Python code in Sect. 3.3, the input function is called. Calling input requires
a string prompt and returns a string of the input that was entered. Calling the int
function on a string, as is done in the line that gets the age from the user, returns the
integer representation of the string’s value. Finally, the print function takes a random
number of arguments, converts each to a string using the __str__ magic method,
and prints each string separated by spaces. The first argument to print in the code of
Sect. 3.3 is the result of concatenating name and the string “, a year from now you
will be”. String concatenation was used because there shouldn’t be a space between
the name value and the comma.

The assembly language that implements the program in Sect. 3.3 is given in
Fig. 3.2. Notice that built-in functions like input, int, and print are declared under
the Globals list. The name and age variables are the locals.

Line 9 pushes the input function onto the operand stack. Line 10 pushes the string
prompt for input. Line 11 calls the input function with the one allowed argument
given to it. The 1 in line 11 is the number of arguments. When the input function
returns it leaves string entered by the user on the operand stack. Line 12 stores that
string in the name location in the locals.

Line 13 prepares to convert the next input to an integer by first pushing the int
function on the operand stack. Then line 14 loads the input function. Line 15 loads
the prompt like line 10 did previously. Line 16 calls the input function. The result
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Fig. 3.2 CoCo I/O

is immediately passed to the int function by calling it on line 17. The int function
leaves an integer on the top of the operand stack and line 18 stores that in the age
variable location.

The next part of the program prints the output. To prepare for calling the print
function, the arguments must be evaluated first, then print can be called. Line 19
pushes the print function onto the stack but does not call print. There are three
arguments to the print function. The first argument is the result of concatenating
two strings together. Line 20 pushes the name variable’s value on the stack. Line
21 pushes the string “, a year from now you will be” onto the stack. Line 22 calls
the __add__ magic method to concatenate the two strings. The BINARY_ADD
instruction pops two operands from the stack, calls the __add__ method on the first
object popped with the second object as the argument which is described in more
detail in Chap.9.

Lines 23–25 add together age and 1 to get the correct age value to pass to print.
Line 26 pushes the last string constant on the operand stack and line 27 finally calls
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the print function leaving None on the operand stack afterwards. Line 28 pops the
None value and immediately None is pushed back on the stack in line 29 because
the main function returns None in this case, which is returned in line 30, ending the
iotest.casm program’s execution.

A few important things to learn from this section:

• Getting input and producing output rely on the built-in functions input and print.
• Before a function can be called, itmust be pushed on the operand stack.All required
arguments to the function must also be pushed onto the stack on top of the function
to be called.

• Finally, when a function returns, it leaves its return value on the operand stack.

Practice 3.1 The code in Fig. 3.2 is a bit wasteful which often happens when
compiling a program written in a higher level language. Optimize the code in
Fig. 3.2 so it contains fewer instructions.

You can check your answer(s) in Section3.16.1.

3.4 If-Then-Else Statements

Programming languages must be able to execute code based on conditions, either
externally provided via input or computed from other values as the program exe-
cutes. If-then statements are one means of executing code conditionally. The code
provided here isolates just an if-then statement to show how it is implemented in
CoCo assembly.

1 import disassembler
2

3 def main():
4 x = 5
5 y = 6
6 if x > y:
7 z = x
8 else:
9 z = y

10

11 print(z)
12

13 disassembler.disassemble(main)

Disassembling this Python code results in the code in Fig. 3.3. There are new
instructions in Fig. 3.3 that haven’t been encountered until now, but just as impor-
tantly, there are labels in this code. A label provides a symbolic target to jump to
in the code. Labels, like label00 and label01, are defined by writing them before an
instruction and are terminated with a colon. A label to the right of an instruction is a
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Fig. 3.3 If-Then-Else assembly

target for that instruction. Labels are a convenience in all assembly languages. They
let assembly language programmers think of jumping to a target in a program, rather
than changing the contents of the PC register, which is what actually happens. When
a program is executed using CoCo the labels disappear because CoCo assembles the
code, replacing the labels with the actual PC target addresses. The CoCo code in
Fig. 3.4 shows the CoCo code after it has been assembled. The assembled code is
printed by coco when the program is executed.

The first instruction, the LOAD_CONST, is at offset 0 in the code. The instructions
of each function are at zero-based offsets from the beginning of the function, so we
can think of each function as having its own address space starting at zero. In the
code in Figs. 3.3 and 3.4 the line number of the first instruction is 6, so 6 can be
subtracted from the line numbers to determine any instruction’s address within the
function and 6 can be added to any target to determine the line number of the target
location. In Fig. 3.4 the target of line 13 is 11 which corresponds to line 17. Looking
at Fig. 3.3 this corresponds to the line where label00 is defined. Likewise, the target
of the JUMP_FORWARD instruction in Fig. 3.4 is label01 which is defined on line
19. Subtracting 6, we expect to see 13 as the target PC address in the assembled code
of Fig. 3.4.
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Fig. 3.4 Assembled code

Consulting the CoCo BNF in Chap.9, there can be multiple labels on one in-
struction. In addition, instruction addresses have nothing to do with which line they
are on. That only appears to be the case in Fig. 3.4 because the instructions are on
consecutive lines. But, adding blank lines to the programwould do nothing to change
the instruction addresses. So, we could have a program like this where one instruc-
tion has two labels. These three instructions would be at three addresses within the
program even though there are four lines in the code.

1 onelabel: LOAD_FAST 1
2 STORE_FAST 2
3 twolabel:
4 threelabel: LOAD_GLOBAL 0

Labels can be composed of any sequence of letters, digits, underscores, or the @
character, but must start with a letter, underscore, or the @ character. They can be
any number of characters long.

In Fig. 3.3, lines 6–11 load the two values to be compared on the stack. The
COMPARE_OP instruction on line 12 has an argument of 4. Consulting the COM-
PARE_OP instruction in Chap.9 reveals that a 4 corresponds to a greater than com-
parison. The comparison is done by calling the __gt__ magic method on the second
item from the top of the operand stack and passing it the top of the operand stack. The

http://dx.doi.org/10.1007/978-3-319-13314-0_9
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two operands are popped by the COMPARE_OP instruction and a boolean value,
either True or False, is pushed on the operand stack as the result.

The next instruction jumps to the target location if the value left on the operand
stack was False. Either way, the POP_JUMP_IF_FALSE instruction pops the top
value from the operand stack.

Take note of line 16 in Fig. 3.3. In assembly there is nothing like an if-then-
else statement. Line 15 is the end of the code that implements the then part of the
statement. Without line 16, CoCo would continue executing and would go right into
the else part of the statement. The JUMP_FORWARD instruction is necessary to
jump past the else part of the code if the then part was executed. Line 17 begins
the else code and line 18 is the last instruction of the if-then-else statement. The
label definition for label01 is still part of the if-then-else statement, but labels the
instruction immediately following the if-then-else statement.

Practice 3.2 Without touching the code that compares the two values, the
assembly in Fig. 3.4 can be optimized to remove at least three instructions.
Rewrite the code to remove at least three instructions from this code. With a
little more work, five instructions could be removed.

You can check your answer(s) in Section3.16.2.

3.4.1 If-Then Statements

Frequently if-then statements are written without an else clause. For instance, this
program prints x if x is greater than y. In either case y is printed.

import disassembler

def main():
x = 5
y = 6
if x > y:

print(x)

print(y)

disassembler.disassemble(main)

Disassembling this code produces the program in Fig. 3.5. The code is very similar
to the code presented in Fig. 3.3. Line 13 once again jumps past the then part of the
program. Lines 14–17 contain the then code. Interestingly, line 18 jumps forward to
line 19. Comparing this to the code in Fig. 3.3 where the jump forward jumps past the
else part, the same happens in Fig. 3.5 except that there is no else part of the statement.

Some assembly languages do not have an equivalent to POP_JUMP_IF_FALSE.
Instead, only an equivalent to POP_JUMP_IF_TRUE is available. In that case, the
opposite of the condition can be tested and the jump will be executed if the opposite
is true, skipping over the then part. For instance, if testing for greater than is the
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Fig. 3.5 If-Then assembly

intent of the code, less than or equal to can be tested to jump around the then part
of an if-then-else statement.

Whether testing the original condition or the opposite, clearly the JUMP_
FORWARD is not needed in the code in Fig. 3.5. As was seen in Practice3.1, the
Python compiler generated a wasteful instruction. It isn’t wrong to jump forward,
it’s just not needed. The convenience of writing in a language like Python far out-
weighs the inconvenience of writing in a language like CoCo assembly language, so
an extra instruction now and then is not that big a deal. In this case though, the Python
compiler could be written in such a way as to recognize when the extra instruction
is not needed.

Practice 3.3 Rewrite the code in Fig. 3.5 so it executes with the same result
usingPOP_JUMP_IF_TRUE instead of the jump if false instruction.Be sure to
optimize your code when you write it so there are no unnecessary instructions.

You can check your answer(s) in Section3.16.3.
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3.5 While Loops

Consider this code which computes the Fibonacci number for the value stored in the
variable f. The sequence of Fibonacci numbers are computed by adding the previous
two numbers in the sequence together to get the next number. The sequence consists
of 1, 1, 2, 3, 5, 8, 13, 21, and so on, the eighth element of the sequence being 21.

1 import disassembler
2

3 def main():
4 f = 8
5 i = 1
6 j = 1
7 n = 1
8 while n < f:
9 n = n + 1

10 tmp = j
11 j = j + i
12 i = tmp
13

14 print("Fibonacci("+str(n)+") is",i)
15

16 disassembler.disassemble(main)

The CoCo assembly for this program implements the while loop of the Python
program using JUMP_ABSOLUTE and POP_JUMP_IF_FALSE instructions. Prior
to the loop, the SETUP_LOOP instruction’s purpose is not readily apparent. In
Python a loopmay be exited using a break instruction.Using break inside a loop is not
a recommended programming style. A break is never needed. It is sometimes used as
a convenience. To handle the break instructionwhen it is executed theremust be some
knowledge about where the loop ends. In the code in Fig. 3.6 the first instruction after
the loop is on line 33,where label02 is defined.TheSETUP_LOOP instructionpushes
the address of that instruction on the block stack. If a break instruction is executed,
the block stack is popped and the PC is set to the popped instruction address.

Lines 15–18 of Fig. 3.6 implement the comparison of n < f similarly to the way if-
then-else comparisons are performed.Thefirst line of this code is labeledwith label00
because the end of the loop jumps back there to see if another iteration should be
performed. Awhile loop continues executing until the condition evaluates toFalse so
the POP_JUMP_IF_FALSE instruction jumps to label01 when the loop terminates.

The instruction at label01 labels the POP_BLOCK instruction. This instruction
is needed if the loop exits normally, not as the result of a break statement. The block
stack is popped, removing the loop exit point from it. When exiting as a result of
a break, execution jumps to the instruction at line 33, skipping the POP_BLOCK
instruction since the break statement already popped the block stack.

An important thing to notice is that a while loop and an if-then-else statement
are implemented using the same instructions. There is no special loop instruction
in assembly language. The overall flow of a while loop is a test before the body of
the loop corresponding to the while loop condition. If the loop condition is not met,
execution jumps to the next instruction after the loop. After the body of the loop a
jump returns execution to the while loop condition code to check if another iteration
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Fig. 3.6 While loop assembly
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of the body will be performed. This idiom, or pattern of instructions, is used to im-
plement loops and similar patterns are used for loops in other assembly languages
as well.

Practice 3.4 Write a short program that tests the use of the BREAK_LOOP
instruction. You don’t have to write a while loop to test this. Simply write some
code that uses a BREAK_LOOP and prints something to the screen to verify
that it worked.

You can check your answer(s) in Section3.16.4.

3.6 Exception Handling

Exceptionhandlingoccurs inPythonwithin a try-except statement. Statementswithin
the try block are executed and if an exception occurs execution jumps to the except
block of statements. If main were called on the Python program given here, any error
condition would send it to the except block which simply prints the exception in this
case. The except block is only executed if there is an error in the try block. Errors
that could occur in this program would be a conversion error for either of the two
floating point number conversions or a division by zero error. The code catches an
exception if a zero is entered for the second value.

1 import disassembler
2

3 def main():
4 try:
5 x = float(input("Enter a number: "))
6 y = float(input("Enter a number: "))
7 z = x / y
8 print(x,"/",y,"=",z)
9 except Exception as ex:

10 print(ex)
11

12 disassembler.disassemble(main)

Implementing exception handling in CoCo is similar in some ways to implement-
ing the BREAK_LOOP instruction. The difference is that the exception causes the
program to jump from one place to the next instead of the BREAK_LOOP instruc-
tion. Both exception handling and the break instruction make use of the block stack.
When a loop is entered, the SETUP_LOOP instruction pushes the exit point of the
loop onto the block stack; the exit point being an integer referring to the address of
the first instruction after the loop.

To distinguish between loop exit points and exception handling, the SETUP_
EXCEPT instruction pushes the negative of the except handler’s address (i.e.
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-1*address). So a negative number on the block stack refers to an exception han-
dler while a positive value refers to a loop exit point. In the code in Fig. 3.7 the
exception handler’s code begins at label00.

The try block code begins on line 7 with the SETUP_EXCEPT. This pushes
the handler’s address for label00 on the block stack which corresponds to a −27.
Execution proceeds by getting input from the user, converting the input to floats,
doing the division, and printing the result. The print completes on line 31 where
None, which is returned by print, is popped from the operand stack.

If execution makes it to the end of the try block, then no exception occurred and
line 32 pops the−27 from the block stack, ending the try block. Line 33 jumps past
the end of the except block.

If an exception occurs, three things are pushed onto the operand stack before any
handling of the exception occurs. The traceback is pushed first. The traceback is a
copy of the run-time stack containing each function call and the stored PC of all
pending functions including the current function’s stack frame and PC. Above the
traceback there are two copies of the exception object pushed on the operand stack
when an exception occurs.

If an exception occurs in the try block, CoCo consults the block stack and pops
values until a negative address is found corresponding to some except block.Multiple
try-except statements may be nested, so it is possible that the block stack will contain
more than one negative address. When a negative address is found, the PC is set to
its positive value causing execution to jump to the except block. In Fig. 3.7, that’s
line 34. The traceback and two copies of the exception are pushed onto the stack
prior to line 34 being executed.

Why are three objects pushed on the operand stack when an exception occurs?
Python’s RAISE_VARARGS instruction describes the contents of the operand stack
as TOS2 containing the traceback, TOS1 the parameter, and TOS the exception
object. In the CoCo implementation the parameter to an exception can be retrieved
by converting the exception to a string, so the object at TOS1 is simply the exception
again. For the sake of compatibility with the Python disassembler CoCo pushes three
operands pushed onto the operand stack when an exception is raised.

Exception handlers in Python may be written to match only certain types of ex-
ceptions. For instance, in Python a division by zero exception is different than a float
conversion error. The CoCo virtual machine currently only has one type of exception,
called Exception. It is possible to extend CoCo to support other types of exceptions,
but currently there is only one type of exception object that can be created. The argu-
ment to the exception object can be anything that is desired. The program in Fig. 3.7
is written to catch any type of exception, but it could be written to catch only a certain
type of exception. Line 34 duplicates the exception object on the top of the operand
stack. Line 35 loads a global Exception object onto the stack. The COMPARE_OP
10 instruction compares the exception using the exception match comparison which
calls the __excmatch__ magic method to see if there is a match between the thrown
exception and the specified pattern. If there is not a match, line 37 jumps to the end of
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Fig. 3.7 Exception handling assembly
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the except block. The END_FINALLY instruction on line 54 detects if the exception
was handled and if not, it re-throws the exception for some outer exception handling
block.

If the exception was a match, execution of the handler code commences as it does
on line 38 of the program. The top of the operand stack contains the extra exception
object so it is thrown away by line 38. Line 39 takes the remaining exception object
and makes the ex reference point to it. Line 40 pops the traceback from the operand
stack.

Should an exception occur while executing an exception handler, then CoComust
clean up from the exception. Line 41 executes the SETUP_FINALLY instruction to
push another block stack record to keep track of the end of the exception handler.
Lines 42–45 print the exception named ex in the code.

Line 46 pops the exit address that was pushed by the SETUP_FINALLY instruc-
tion. The POP_EXCEPT instruction on line 47 then pops the block stack address
for the exception handler exit address. Line 48 pushes a None on the operand stack.

Line 49 is either the next instruction executed or it is jumped to as a result of an
exception while executing the handler code for the previous exception. Either way,
the ex variable is made to refer to None. The DELETE_FAST instruction doesn’t
appear to do much in this code. It is generated by the disassembler, but appears to
delete None which doesn’t seem to need to be done.

The last instruction of the handler code, the END_FINALLY instruction checks
to see if the exception was handled. In this case, it was handled and the instruction
does nothing. If execution jumps to line 54 then the exception handler did not match
the raised exception and therefore the exception is re-raised. Line 55 wraps up by
setting up to return None from the main function.

Practice 3.5 Write a short program that tests creating an exception, raising
it, and printing the handled exception. Write this as a CoCo program without
using the disassembler.

You can check your answer(s) in Section3.16.5.

3.7 List Constants

Building a compound value like a list is not too hard. To build a list constant using
CoCo you push the elements of the list on the operand stack in the order you want
them to appear in the list. Then you call the BUILD_LIST instruction. The argument
to the instruction specifies the length of the list. This code builds a list and prints it
to the screen.
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Fig. 3.8 Assembly for building a list

1 import disassembler
2

3 def main():
4 lst = ["hello","world"]
5 print(lst)
6

7 disassembler.disassemble(main)

The assembly language program in Fig. 3.8 builds a list with two elements:
[‘hello’, ‘world’]. Lines 6 and 7 push the two strings on the operand stack. Line
8 pops the two operands from the stack, builds the list object, and pushes the result-
ing list on the operand stack. Python defines the __str__ magic method for built-in
type of value, which is called on the list on line 12.

If you run this program using the CoCo interpreter you will notice that [‘hello’,
‘world’] is not printed to the screen. Instead, [hello, world] is printed. This is because
currently the __str__ method is called on each element of the list to convert it to
a string for printing. This is not the correct method to call. Instead, the __repr__
magic method should be called which returns a printable representation of the value
retaining any type information. In the next chapter there will be an opportunity to
fix this.

3.8 Calling aMethod

Calling functions like print and input was relatively simple. Push the function name
followed by the arguments to the function on the operand stack. Then, call the
function with the CALL_FUNCTION instruction. But, how about methods? How



3.8 Calling a Method 73

Fig. 3.9 Assembly for calling a method

does a method like split get called on a string? Here is a program that demonstrates
how to call split in Python.

1 import disassembler
2

3 def main():
4 s = input("Enter list of integers:")
5 lst = s.split()
6

7 print(lst)
8

9 disassembler.disassemble(main)

Line 6 of the assembly language code in Fig. 3.9 prepares to call the input function
by loading the name input onto the operand stack. Line 7 loads the argument to
input, the prompt string. Line 8 calls the input function leaving the entered text on
the operand stack. Calling split is done similarly.

In this Python code the syntax of calling input and split is quite different. Python
sees the difference and uses the LOAD_ATTR instruction in the assembly language
instructions to get the split attribute of the object referred to by s. Line 10 loads the
object referred to by s on the stack. Then line 11 finds the split attribute of that object.
Each object in CoCo and Python contains a dictionary of all the object’s attributes.
This LOAD_ATTR instruction examines the dictionary and with the key found in the
globals list at the operands index. It then loads that attribute onto the operand stack.
The CALL_FUNCTION instruction then calls the method that was located with the
LOAD_ATTR instruction.
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The STORE_ATTR instruction stores an attribute in an object in much the same
way that an attribute is loaded. CoCo does not presently support the STORE_ATTR
instruction but could with relatively little effort. The ability to load and store object
attributes means that CoCo could be used to implement an object-oriented language.
This makes sense since Python is an object-oriented language.

Practice 3.6 Normally, if you want to add to numbers together in Python,
like 5 and 6, you write 5 + 6. This corresponds to using the BINARY_ADD
instruction in CoCo which in turn calls the magic method __add__ with the
method call 5.__add__(6). Write a short CoCo program where you add two
integers together without using the BINARY_ADD instruction. Print the result
to the screen.

You can check your answer(s) in Section3.16.6.

3.9 Iterating Over a List

Iterating through a sequence of any sort in CoCo requires an iterator. There are
iterator objects for every type of sequence: lists, tuples, strings, and other types of
sequences that have yet to be introduced. Here is a Python program that splits a string
into a list of strings and iterates over the list.

1 from disassembler import *
2

3 def main():
4 x = input("Enter a list: ")
5 lst = x.split()
6

7 for b in lst:
8 print(b)
9

10 disassemble(main)

Lines 6–8 of the assembly code in Fig. 3.10 gets an input string from the user,
leaving it on the operand stack. Line 9 stores this in the variable x. Lines 10–12 call
the split method on this string, leaving a list object on the top of the operand stack.
The list contains the list of space separated strings from the original string in x. Line
13 stores this list in the variable lst.

Line 14 sets up the exit point of a loop as was covered earlier in this chapter. Line
15 loads the lst variable onto the operand stack. The GET_ITER instruction creates
an iterator with the top of the operand stack. The lst is popped from the operand
stack during this instruction and the resulting iterator is pushed onto the stack.

An iterator has a __next__ magic method that is called by the FOR_ITER instruc-
tion. When FOR_ITER executes the iterator is popped from the stack, __next__ is
called on it, and the iterator and the next value from the sequence are pushed onto
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Fig. 3.10 List iteration assembly

the operand stack. The iterator is left below the next value in the sequence at TOS1.
When __next__ is called on the iterator and there are no more elements left in the
sequence, the PC is set to the label of the FOR_ITER instruction, ending the loop.

When the loop is finished the block stack is popped to clean up from the loop.
Line 25 loads the None on the stack before returning from the main function.

Practice 3.7 Write a CoCo program that gets a string from the user and iterates
over the characters of the string, printing them to the screen.

You can check your answer(s) in Section3.16.7.

3.10 Range Objects and Lazy Evaluation

Indexing into a sequence is another way to iterate in a program. When you index
into a list, you use a subscript to retrieve an element of the list. Generally, indices
are zero-based. So the first element of a sequence is at index 0, the second at index
1, and so on.
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There are two versions of Python in use today. Version 2, while older is still widely
used because there aremany Python programs that were written using it and there is a
cost to converting them to use Python 3. Python 3 was created so new features could
be added that might be incompatible with the older version. One difference was in
the range function. In Python 2, the range function generated a list of integers of the
specified size and values. This is inefficient because some ranges might consist of
millions of integers. A million integers takes up a lot of space in memory and takes
some time to generate. In addition, depending on how code is written, not all the
integers in a range may be needed. These problems are a result of eager evaluation of
the range function. Eager evaluation is when an entire sequence is generated before
any element of the sequence will actually be used. In Python 2 the entire list of
integers is created as soon as the range function is called even though the code can
only use one integer at a time.

Python 3 has dealt with the eager evaluation of the range function by defining a
range object that is lazily evaluated. Thismeans that when you call the range function
to generate a million integers, you don’t get any of them right away. Instead, you get
a range object. From the range object you can access an iterator. When __next__
is called on an iterator you get the next item in the sequence. When __next__ is
called on a range object iterator you get the next integer in the range’s sequence.
Lazy evaluation is when the next value in a sequence is generated only when it is
ready to be used and not before. This code creates a range object. The range object
is designed to provide lazy evaluation of integer sequences.

1 from disassembler import *
2

3 def main():
4 x = input("Enter list: ")
5 lst = x.split()
6

7 for i in range(len(lst)-1,-1,-1):
8 print(lst[i])
9

10 disassemble(main)

This Python code uses indices to iterate backwards through a list. In this case an
iterator over the range object yields a descending list of integers which are the indices
into the list of values entered by the user. If the use enters four space separated values,
then the range object will yield the sequence [3, 2, 1, 0]. The first argument to range
is the start value, the second is one past the stop value, and the third argument is the
increment. So the sequence in the Python code in Sect. 3.10 is a descending sequence
that goes down one integer at a time from the length of the list minus one to zero.

TheCoCo assembly code in Fig. 3.11 implements this same program. Lines 15–23
set up for calling the range function with the three integer values. Lines 15–20 call
the len function to get the length of the list and subtract one. Lines 21 and 22 put
two −1 values on the operand stack. Line 23 calls the range function which creates
and pushes a range object onto the operand stack as its result.
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Fig. 3.11 Range assembly

Line 24 creates an iterator for the range object. As described in the last section,
the FOR_ITER instruction calls the __next__ magic method on the iterator to get the
next integer in the range’s sequence. The lazy evaluation occurs because an iterator
keeps track of which integer is the next value in the sequence. Line 26 stores the next
integer in the variable i.

The BINARY_SUBSCR instruction is an instruction that has not been encountered
yet in this chapter. Line 28 loads the list called lst onto the operand stack. Line 29
loads the value of i onto the operand stack. TheBINARY_SUBSCR instruction indexes
into lst at position i and pushes the value found at that position onto the operand
stack. That value is printed by the print function call on line 31 of the program.
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Lazy evaluation is an important programming language concept. If you ever find
yourself writing code that must generate a predictable sequence of values you prob-
ably want to generate that sequence lazily. Iterators, like range iterators, are the
means by which we can lazily access a sequence of values and range objects define
a sequence of integers without eagerly generating all of them.

3.11 Functions and Closures

Up to this point in the chapter all the example programs have been defined in a
main function. CoCo supports the definition of multiple functions and even nested
functions. Here is a Python program that demonstrates how to write nested functions
in the Python programming language. The main function calls the function named
f which returns the function g nested inside the f function. The g function returns
x. This program demonstrates nested functions in CoCo along with how to build a
closure.

1 def main():
2 x = 10
3 def f(x):
4 def g():
5 return x
6 return g
7 print(f(3)())
8 #main()
9 disassembler.disassemble(main)

Notice the Python code in Sect. 3.11 calls the disassembler on the top-level func-
tion main. It is not called on f or g because they are nested inside main and the
disassembler automatically disassembles any nested functions of a disassembled
function.

The format of the corresponding CoCo program in Fig. 3.12 is worth noting as
well. The top level main function is defined along the left hand side. Indentation has
no effect on CoCo but visually you see that f is nested inside main. The function g
is nested inside f because it appears immediately after the first line of the definition
of f on line 3. The rest of the definition of f starts again on line 10 and extends to
line 21. The definition of g starts on line 3 and extends to line 9.

The number of arguments for each function is given by the integer after the slash.
The f/1 indicates that f expects one argument. The main and g functions expect zero
arguments. These values are used during a function call to verify that the function is
called with the required number of arguments.

Examine the Python code in Sect. 3.11 carefully. The main function calls the
function f which returns the function g. Notice that f returns g, it does not call g. In the
print statement of main the function f is called, passing 3 to the function that returns
g. The extra set of parens after the function call f (3) calls g. This is a valid Python
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Fig. 3.12 Nested functions assembly

program, but not a common one. The question is: What does the program print?
There are two possible choices it seems: either 10 or 3. Which seems more likely?

On the one hand, g is being called from themain function where x is equal to 10. If
the program printed 10, we would say that Python is a dynamically scoped language,
meaning that the function executes in the environment in which it is called. Since g is
called from main the value of x is 10 and in a dynamically scoped language 10 would
be printed. Theword dynamic is used because if gwere called in another environment
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it may return something completely different. We can only determine what g will
return by tracing the execution of the program to the point where g is called.

On the other hand, g was defined in the scope of an x whose value was 3. In that
case, the environment in which g executes is the environment provided by f. If 3
is printed then Python is a statically scoped language meaning that we need only
understand what the environment contained when g was defined, not when it was
called. In a statically scoped language this specific instance of g will return the same
value each and every time it is called, not matter where it is called in the program.
The value of x is determined when g is defined.

Dynamically scoped languages are rare. Lisp, when it was first defined, was dy-
namically scoped.McCarthy quickly corrected that andmadeLisp a statically scoped
language. It is interesting to note that Emacs Lisp is dynamically scoped. Python is
statically scoped as are most modern programming languages.

To execute functions in a statically scoped language, two pieces are needed when
a function may return another function. To execute g not only is the code for g re-
quired, but so also is the environment in which this instance of g was defined. A
closure is formed. A closure is the environment in which a function is defined and
the code for the function itself. This closure is what is called when the function g is
finally called in main.

Take a look at the CoCo code for this program in Fig. 3.12. Line 14 begins creating
a new closure object in the body of function f by loading the cell variable named x
onto the stack. A cell variable is an indirect reference to a value. Figure3.13 depicts
what is happening in the program just before the x is returned in the function g. A
variable in Python, like Java and many other languages, is actually a reference that
points to a value. Values exist on the heap and are created dynamically as the program
executes. When a variable is assigned to a new value, the variables reference is made
to point to a new value on the heap. The space for values on the heap that are no
longer needed is reclaimed by a garbage collector that frees space on the heap so
it can be re-used. In Fig. 3.13 there are three values on the heap, a 10, a 3, and one
other value called a cell in CoCo and the Python virtual machine.

Because the function g needs access to the variable x outside the function f, the
3 is indirectly referenced through a cell variable. The LOAD_CLOSURE instruction
pushes that cell variable onto the stack to be used in the closure. Since only one
value is needed from the environment, the next instruction on line 15 builds a tuple
of all the values needed from the environment. Line 16 loads the code for g onto the
stack. Line 17 forms the closure by popping the function and the environment from
the stack and building a closure object.

The variable x is a local variable for the function f. But, because x is referenced
in g and g is nested inside f, the variable x is also listed as a cell variable in f. A
cell variable is an indirect reference to a value. This means there is one extra step to
finding the value that x refers to. We must go through the cell to get to the 3.

The LOAD_DEREF instruction on line 7 is new. A LOAD_DEREF loads the
value that is referenced by the reference pointed to in the list of cellvars. So, this
instructions pushes the 3 onto the operand stack. Finally, line 35 calls the closure
consisting of the function and its data.
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Fig. 3.13 Execution of nested.casm

In the function g the freevars refer to the tuple of references in the closure that was
just called, so the first instruction, the LOAD_DEREF, loads the 3 onto the operand
stack. Figure3.13 depicts this state right before the RETURN_VALUE instruction is
executed.

To finish up the execution of this program a 3 is returned from the call to g and
its frame is popped from the run-time stack. Control returns to main where the 3 is
printed. After returning from main its frame is also popped from the run-time stack
which ends the program.

Practice 3.8 The program in Fig. 3.12 would work just fine without the cell.
The variable x could refer directly to the 3 in both the f and g functions without
any ramifications. Yet, a cell variable is needed in some circumstances. Can
you come up with an example where a cell variable is absolutely needed?

You can check your answer(s) in Section3.16.8.
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3.12 Recursion

Functions in CoCo can call themselves. A function that calls itself is a recursive func-
tion. Recursive functions are studied in some detail in Chap.5 of this text. Learning
to write recursive functions well is not hard if you follow some basic rules. The
mechanics of writing a recursive function include providing a base case that comes
first in the function. Then, the solution to the problem you are solving must be solved
by calling the same function on some smaller piece of data while using that result to
construct a solution to the bigger problem.

Consider the factorial definition. Factorial of zero, written 0!, is defined to be
1. This is the base case. For integer n greater than 0, n! = n*(n−1)!. This is a
recursive definition because factorial is defined in terms of itself. It is called on
something smaller, meaning n−1 which is closer to the base case, and the result is
used in computing n!. Here is a Python program that computes 5!.

1 import disassembler
2

3 def factorial(n):
4 if n==0:
5 return 1
6

7 return n*factorial(n-1)
8

9 def main():
10 print(factorial(5))
11

12 disassembler.disassemble(factorial)
13 disassembler.disassemble(main)

The CoCo implementation of this program is given in Fig. 3.14. The program
begins in main by loading 5 on the operand stack and calling the factorial function.
The result is printed to the screen with the print function.

Calling factorial jumps to the first instruction of the function where n is loaded
onto the operand stack, which in this case is 5. Lines 7–8 compare n to 0 and if the two
values are equal, 1 is returned. Notice that the RETURN_VALUE instruction appears
in the middle of the factorial function in this case. A return instruction doesn’t have
to appear at the end of a function. It can appear anywhere it makes sense and in this
case, it makes sense to return from the base case as soon as soon as possible.

The code from label00 forward is the recursive case since otherwise we would
have returned already. The code subtracts one from n and calls factorial with that
new, smaller value. Notice that the recursive function call is identical to any other
function call. Finally, after the function call the result of the call is on the operand
stack and it is multiplied by n to get n! which is returned.

Because this is a recursive function, the preceding two paragraphs are repeated
5 more times, each time reducing n by 1. The program continues to count down
until 1 is returned for the factorial of 0. At its deepest, there are 7 stack frames on
the run-time stack for this program: one for the main function, and six more for the

http://dx.doi.org/10.1007/978-3-319-13314-0_5
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Fig. 3.14 Execution of fact.casm

recursive factorial function calls. The run-time stack grows to 7 stack frames deep
when the base case is executed and then shrinks again as the recursion unwinds.
Finally, when the program returns to main, 120 is printed to the screen.

Practice 3.9 Draw a picture of the run-time stack just before the instruction
on line 11 of Fig. 3.14 is executed. Use Fig. 3.13 as a guide to how you draw
this picture. Be sure to include the code, the values of n, and the PC values.

You can check your answer(s) in Section3.16.9.
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3.13 Chapter Summary

An understanding of assembly language is key to learning how higher level pro-
gramming languages work. This chapter introduced assembly language program-
ming through a series of examples, drawing parallels between Python and Python
virtual machine or CoCo instructions. The use of a disassembler was key to gaining
this insight and is a great tool to be able to use with any platform.

Most of the key constructs of programming languages were presented as both
Python programs and CoCo programs. The obvious omission was in the area of
object-oriented programming and class definitions. Python is an object-oriented lan-
guage but the disassembler does not currently support disassembling object-oriented
Python programs. This would be a great project if someone were interested in ex-
tending the disassembler.

The assembly language covered in this chapter comes up again in Chaps. 4 and 6.
Chapter4 covers the implementation of the CoCo virtual machine and Chap.6
implements a high-level functional language compiler that produces CoCo assembly
language programs.

CoCo is an assembler/virtual machine for Python virtual machine instructions.
Of course, there are other assembly languages. MIPS is a CPU architecture that has
wide support for writing assembly language programs including a MIPS simulator
calledSPIM. In fact, assemblers are available for prettymuch anyhardware/operating
system combination in use today. Intel/Linux, Intel/Windows, Intel/Mac OS X all
support assembly language programming. The Java Virtual Machine can be pro-
grammed with the instructions of the JVM using a java assembler called Jasmin.
Assembly language is the fundamental language that all higher level programming
languages use in their implementations.

3.14 Review Questions

1. How do the Python virtual machine and CoCo differ? Name three differences
between the two implementations.

2. What is a disassembler?
3. What is an assembler?
4. What is a stack frame? Where are they stored? What goes inside a stack frame?
5. What is the purpose of the block stack and where is it stored?
6. What is the purpose of the Program Counter?
7. Name an instruction that is responsible for creating a list object and describe

how it works.
8. Describe the execution of the STORE_FAST and LOAD_FAST instructions.
9. How can CoCo read a line of input from the keyboard?

http://dx.doi.org/10.1007/978-3-319-13314-0_4
http://dx.doi.org/10.1007/978-3-319-13314-0_6
http://dx.doi.org/10.1007/978-3-319-13314-0_4
http://dx.doi.org/10.1007/978-3-319-13314-0_6
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10. What is the difference between adisassembledPythonprogramand an assembled
CoCo program? Provide a short example and point out the differences.

11. When a Python while loop is implemented in CoCo, what is the last instruction
of the loop and what is its purpose?

12. What do exception handling and loops have in common in the CoCo implemen-
tation?

13. What is lazy evaluation and why is it important to Python and CoCo?
14. What is a closure and why are closures needed?

3.15 Exercises

1. Consulting the CoCo assembly language program in the solution to Practice
Problem 3.2, provide the contents of the operand stack after each instruction is
executed.

2. Write a CoCo program which reads an integer from the user and then creates a
list of all the even numbers from 0 up to and including that integer. The program
should conclude printing the list to the screen. Test your program with CoCo to
be sure it works.

3. Add some exception handling to the previous exercise to print “You didn’t enter
an integer!” if the user fails to enter an integer in their program.

4. Using a range object, write a CoCo program that computes the sum of the first n
integers where the non-negative n is read from the user.

5. Write a recursive CoCo program that adds up the first n numbers where n is
read from the user. Remember, there must be a base case that comes first in this
function and the recursive case must be called on something smaller which is
used in computing the solution to the whole problem.

3.16 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

3.16.1 Solution to Practice Problem 3.1

The assembly code in Fig. 3.2 blindly pops the None at the end and then pushes
None again before returning from main. This can be eliminated resulting in two
fewer instructions. This would also mean that None is not needed in the constants,
but this was not eliminated below.
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Function: main/0
Constants: None,

"Enter your name: ", "Enter your age: ",
", a year from now you will be",
1, "years old."

Locals: name, age
Globals: input, int, print
BEGIN

LOAD_GLOBAL 0
LOAD_CONST 1
CALL_FUNCTION 1
STORE_FAST 0
LOAD_GLOBAL 1
LOAD_GLOBAL 0
LOAD_CONST 2
CALL_FUNCTION 1
CALL_FUNCTION 1
STORE_FAST 1
LOAD_GLOBAL 2
LOAD_FAST 0
LOAD_CONST 3
BINARY_ADD
LOAD_FAST 1
LOAD_CONST 4
BINARY_ADD
LOAD_CONST 5
CALL_FUNCTION 3
RETURN_VALUE

END

3.16.2 Solution to Practice Problem 3.2

As in Practice3.1 thePOP_TOP and LOAD_CONST from the end can be eliminated.
In the if-then-else code both the then part and the else part execute exactly the same
STORE_FAST instruction. That can be moved after the if-then-else code and written
just once, resulting in one less instruction and three less overall. Furthermore, if we
move the LOAD_GLOBAL for the call to print before the if-then-else statement, we
can avoid storing the maximum value in z at all and just leave the result on the top
of the operand stack: either x or y. By leaving the bigger of x or y on the top of the
stack, the call to print will print the correct value. This eliminates five instructions
from the original code.

Function: main/0
Constants: None, 5, 6
Locals: x, y
Globals: print
BEGIN

LOAD_CONST 1
STORE_FAST 0
LOAD_CONST 2
STORE_FAST 1
LOAD_GLOBAL 0
LOAD_FAST 0
LOAD_FAST 1
COMPARE_OP 4
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POP_JUMP_IF_FALSE label00
LOAD_FAST 0
JUMP_FORWARD label01

label00: LOAD_FAST 1
label01: CALL_FUNCTION 1

RETURN_VALUE
END

It is worth noting that the code above is exactly the disassembled code from this
Python program.

import disassembler%

def main():
x = 5
y = 6
print(x if x > y else y)

disassembler.disassemble(main)

When main is called, this code prints the result of a conditional expression. The
if-then-else expression inside the print statement is different than an if-then-else state-
ment. An if-then-else statement updates a variable or has some other side-effect. An
if-then-else expression, or conditional expression as it is called in Python documen-
tation, yields a value: either the then value or the else value. In the assembly language
code we see that the yielded value is passed to the print function as its argument.

3.16.3 Solution to Practice Problem 3.3

Function: main/0
Constants: None, 5, 6
Locals: x, y
Globals: print
BEGIN

LOAD_CONST 1
STORE_FAST 0
LOAD_CONST 2
STORE_FAST 1
LOAD_FAST 0
LOAD_FAST 1
COMPARE_OP 1
POP_JUMP_IF_TRUE label00
LOAD_GLOBAL 0
LOAD_FAST 0
CALL_FUNCTION 1
POP_TOP

label00: LOAD_GLOBAL 0
LOAD_FAST 1
CALL_FUNCTION 1
RETURN_VALUE

END
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3.16.4 Solution to Practice Problem 3.4

The following code behaves differently if the BREAK_LOOP instruction is removed
from the program.

Function: main/0
Constants: None, 7, 6
Locals: x, y
Globals: print
BEGIN

SETUP_LOOP label01
LOAD_CONST 1
STORE_FAST 0
LOAD_CONST 2
STORE_FAST 1
LOAD_FAST 0
LOAD_FAST 1
COMPARE_OP 1
POP_JUMP_IF_TRUE label00
BREAK_LOOP
LOAD_GLOBAL 0
LOAD_FAST 0
CALL_FUNCTION 1
POP_TOP

label00: POP_BLOCK
label01: LOAD_GLOBAL 0

LOAD_FAST 1
CALL_FUNCTION 1
RETURN_VALUE

END

3.16.5 Solution to Practice Problem 3.5

This is the hello world program with exception handling used to raise and catch
an exception. This solution does not include code for finally handling in case an
exception happened while handling the exception. It also assumes the exception will
match when thrown since CoCo only supports one type of exception.

Function: main/0
Constants: None, "Hello World!"
Locals: ex
Globals: Exception, print
BEGIN

SETUP_EXCEPT label00
LOAD_GLOBAL 0
LOAD_CONST 1
CALL_FUNCTION 1
RAISE_VARARGS 1
POP_BLOCK
JUMP_FORWARD label01

label00: LOAD_GLOBAL 1
ROT_TWO
CALL_FUNCTION 1
POP_TOP
POP_EXCEPT

label01: LOAD_CONST 0
RETURN_VALUE

END
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3.16.6 Solution to Practice Problem 3.6

This program adds 5 and 6 together using the __add__ magic method associated
with integer objects. First 5 is loaded onto the operand stack. Then LOAD_ATTR
is used to load the __add__ of the 5 object onto the stack. This is the func-
tion. The argument to __add__ is loaded next which is the 6. The 6 is loaded
by the LOAD_CONST instruction. Then __add__ is called with one argument.
The 11 is left on the operand stack after the function call. It is stored in x, the
print is loaded, x is loaded onto the operand stack, and print is called to print the
value. Since print leaves None on the stack, that value is returned from the main
function.

Function: main/0
Constants: None, 5, 6
Locals: x
Globals: _ _add_ _, print
BEGIN

LOAD_CONST 1
LOAD_ATTR 0
LOAD_CONST 2
CALL_FUNCTION 1
STORE_FAST 0
LOAD_GLOBAL 1
LOAD_FAST 0
CALL_FUNCTION 1
RETURN_VALUE

END

3.16.7 Solution to Practice Problem 3.7

Function: main/0
Constants: None, "Enter a string: "
Locals: x, a
Globals: input, print
BEGIN

LOAD_GLOBAL 0
LOAD_CONST 1
CALL_FUNCTION 1
STORE_FAST 0
SETUP_LOOP label02
LOAD_FAST 0
GET_ITER

label00: FOR_ITER label01
STORE_FAST 1
LOAD_GLOBAL 1
LOAD_FAST 1
CALL_FUNCTION 1
POP_TOP
JUMP_ABSOLUTE label00

label01: POP_BLOCK
label02: LOAD_CONST 0

RETURN_VALUE
END
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3.16.8 Solution to Practice Problem 3.8

A cell variable is needed if an inner function makes a modification to a variable that
is located in the outer function. Consider the CoCo program below. Without the cell
the program below would print 10 to the screen and with the cell it prints 11. Why is
that? Draw the run-time stack both ways to see what happens with and without the
cell variable.

Function: f/1
Function: g/1
Constants: None, 1
Locals: y
FreeVars: x
BEGIN

LOAD_DEREF 0
LOAD_CONST 1
BINARY_ADD
STORE_DEREF 0
LOAD_DEREF 0
LOAD_FAST 0
BINARY_ADD
RETURN_VALUE

END
Constants: None, code(g)
Locals: x, g
CellVars: x
BEGIN

LOAD_CLOSURE 0
BUILD_TUPLE 1
LOAD_CONST 1
MAKE_CLOSURE 0
STORE_FAST 1
LOAD_FAST 1
LOAD_DEREF 0
CALL_FUNCTION 1
LOAD_DEREF 0
BINARY_ADD
RETURN_VALUE

END
Function: main/0
Constants: None, 3
Globals: print, f
BEGIN

LOAD_GLOBAL 0
LOAD_GLOBAL 1
LOAD_CONST 1
CALL_FUNCTION 1
CALL_FUNCTION 1
POP_TOP
LOAD_CONST 0
RETURN_VALUE

END

Interestingly, this program cannot be written in Python. The closest Python equiv-
alent of this program is given below. However, it is not the equivalent of the program
written above. In fact, the program below won’t even execute. There is an error on
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the line x = x +1. The problem is that as soon as Python sees x = in the function g,
it decides there is another x that is a local variable in g. But, then x = x + 1 results
in an error because x in g has not yet been assigned a value.

def f(x):
def g(y):

x = x + 1
return x + y

return g(x) + x

def main():
print(f(3))

main()

Fig. 3.15 Execution of fact.casm
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3.16.9 Solution to Practice Problem 3.9

Acouple things to notice in Fig. 3.15. The run-time stack contains one stack frame for
every function call to factorial. Each of the stack frames, except the one for the main
function, point at the factorial code. While there is only one copy of each function’s
code, there may be multiple stack frames executing the code. This happens when a
function is recursive. There also multiple n values, one for each stack frame. Again
this is expected in a recursive function.
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Where to begin? C++ is used for end-user application programming in applications
requiring high levels of performance like databasemanagement systems and graphics
systems. It is also used in systems programming for operating systems development
for IBM business computers, Linux, Mac OS X, and Microsoft Windows. C or C++
is used as the implementation language for many virtual machines including the
Java Virtual Machine, Python, and as it turns out CoCo. C++ is used in massively
parallel programs that solve problems by dividing work between many processors
using libraries like Message Passing Interface (MPI).

Why is C++ so popular? C++ is an object-oriented, imperative programming
language that supports static type checking, separate compilation, low-level pro-
gramming that can get right down to the hardware level, high-level abstraction with
classes, generics in the form of templates, inheritance, and polymorphism. C++ gives
the programmer the ultimate control over his or her environment allowing the cre-
ation of objects in either the run-time stack or on the heap. C++ is a flexible language
that can be used in many different ways.

With much power comes great responsibility as the saying goes. To use C++
correctly you need to understand how the code you write gets executed including
the model that is used for executing C++ programs. It is said that if you learn to
program in C++ you can program in any language. That statement should probably
be amended just a bit: If you learn to program well in C++ then you can learn to
program well in any language.Understanding the computational model used by C++
goes a long ways towards becoming a great C++ programmer. That’s probably the
best place to start, with the model used by C++ programs as they execute.

This chapter will first introduce the computational model used by C++ programs.
The mechanics of writing, compiling, and linking a C++ program will be covered as
well as other topics. Some example code in this chapter will be drawn from the CoCo
implementation where many of these concepts have been put into practice. This ap-
proach to learning has two purposes. Learning theCoCo implementationwill provide
a purpose to learning C++. The second purpose is to give you a better understanding
of a virtual machine implementation by studying how it is implemented.

© Springer International Publishing Switzerland 2014
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The ideas behind object-oriented programming date back to the 1970s and earlier.
In the late 70s Modula-2 was one of the first object based languages. However,
Modula-2 lacked some of the features of more current object-oriented languages,
such as inheritance.

As mentioned in chapter one, Bjarne Stroustrup was developing C++ during the
early 80s. He designed the language to be backward compatible with C so there were
some decisions already made for him like the need for separate compilation and the
presence of a macro processor. C++ is one of the most widely used object-oriented
languages today and continues to evolve. A standards committee now oversees C++
with regular revisions to the language like the C++11 revision which came out in
2011. There is continuing work on the language with more revisions due in 2014
and 2017.

Using C/C++ for a programming project does not come without some risks. A
significant problem, perhaps the most persistent problem over time, with C/C++ pro-
grams are memory leaks. C/C++ programmers must be disciplined in their allocation
and deallocation of memory. It is common that programs that run for a long time
will have a memory leak that has to be tracked down, which is a difficult task. In
many languages a garbage collector takes care of freeing memory that is no longer
needed by a program. A garbage collector cannot safely be included as part of C
and C++ programs. Both C and C++ are designed to give the programmer maximum
control. This means that more responsibility is left to the programmer and as a result
programmers need to be very disciplined when using C/C++.

Languages like Java and Python provide garbage collection as part of the underly-
ingmodel of computation. They can do this because these languages are careful about
how pointers are exposed to the programmer. In fact pointers are called references in
these languages to distinguish them from pointers in languages like C and C++. The
trade-off is that these languages take some control away from the programmer. Java,
Python, and many languages that provide garbage college require a virtual machine
to execute their programs and the virtual machine takes care of managing and freeing
unused memory.

Garbage collection can impact the run-time performance of a system. Languages
like Java and Python aren’t as well-suited to real-time applications where timing is
critical. In these languages garbage collection can occur at any time. Usually, running
of a program is not time critical and the time taken for garbage collection is not
noticed. The advantages of garbage collection typically far outweigh the possibility
of memory leaks, but not in timing critical applications.

The existence of a run-time system that supports garbage collection, like the Java
and Python virtual machines, means that those programs have less access to the
underlying hardware of the machine. To safely free unused memory any garbage
collection system must restrict the use of pointers in programs and as a result pro-
grams written in languages like Java and Python have less access to the details of the
hardware platform. Again, this is not usually a problem for most programs, but there
are instances where direct hardware access is important. Programs like operating
systems are typically not written in Python or Java. To avoid any misconceptions,
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Android applications are written in Java, but the Android operating system itself is
based on the Linux kernel which is implemented in C.

In some applications or operating systems more than one language may be used
in its implementation. C or C++ may be used for timing critical or hardware specific
pieces while some other language like Java may be used for less critical parts. Most
higher-level languages have some facility for communicatingwith parts of a program
written in other languages like C or C++. For Java this is called JNI which stands
for Java Native Interface. JNI is necessary so that things that can’t be accomplished
at all, or at least easily written in Java, can be written in C or some other language,
and called from the Java program.

To summarize, C and C++ have many uses including operating system develop-
ment, timing critical software, and detailed hardware access. Learning to program
in C++ well will take you a long ways towards being a great programmer in any
language. This chapter won’t teach you everything you need to know to become
a great C++ programmer. That could be and is the topic of many books. But this
chapter will introduce you to many of the important concepts and skills you’ll need
to become a great C++ programmer.

4.1 C++ Development Fundamentals

Before beginning to write programs it will be helpful to discuss the application
development process using C++. C++ programs must be compiled before you can
run the them. Python programs are interpreted so they do not need to be compiled
before you execute them. Java programs are compiled to Java bytecode and the
bytecode is run on an interpreter called the Java Virtual Machine. C++ programs
are compiled into the machine language of the CPU that will execute them. The
operating system of the computer where a C++ program runs is responsible for
loading the executable program and getting it ready to run but otherwise a compiled
C++ program runs directly on the CPU of the machine for which it was compiled.

Figure4.1 depicts the compilation process for C++ programs. It looks daunting
at first. But everything in the green box is actually accomplished using one com-
pile command. Figure4.2 contains the classic hello world program. The following
sections use this as a first example of compiling and running a C++ program.

4.1.1 TheMacro Processor

The first line of the program in Fig. 4.2 is called a macro processor directive. The
macro processor is a part of the C++ compiler that is responsible for pulling other
files into the source program and sometimes for some simple editing of a source file
to get it ready to be compiled. In this program the macro processor includes another
file or library called iostream. The iostream file is called a header file because it
defines functions and variables that exist in some other library or code on the system
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Fig. 4.1 C++ compile

Fig. 4.2 hello.cpp
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where it is compiled. Header files define the interfaces to these other libraries or
code. When a header file is enclosed in angle braces, a less than/greater than pair, it
is a system provided header file. We’ll see later that you can write your own header
files as well.

4.1.2 Namespaces

Line 2 of the program in Fig. 4.2 opens up the std, short for standard, namespace
in the program. If you are familiar with Python or Java, the first two lines of this
C++ program are like importing a module in Python or a package in Java. When
importing a module in Python the programmer writes something like this.

from iostream import * # merges the namespace with the current module
import iostream # preserves the namespace while importing the module

In Java the programmer would write this import statement.

import java.iostream.cout

The Python equivalent of a namespace is a module. Python modules can be im-
ported in one of two ways, preserving the namespace or merging it with the existing
namespace. In Java packages are the equivalent of a namespace and selected classes
and objects can be imported from a package. Namespaces are important in C++, as
they are in Python and Java, because without them there would be many potential
name conflicts between header files that would create compile errors and prevent
programs from compiling that were otherwise fine. If we didn’t want to open the std
namespace we could rewrite the program as shown in Fig. 4.3.

4.1.3 Defining theMain Function

Lines 3–5 of the hello world program in Fig. 4.2 define the main function. Every
C++ program must have one main function, and only one. The main function should
return an integer and it is given an integer and an array of character arrays which
are the command-line arguments. The command-line arguments are elaborated on
in more detail in the section on arrays and pointers later in this chapter.

Fig. 4.3 Namespace std
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4.1.4 I/O Streams

Line 4 of the program in Fig. 4.2 prints Hello World to the screen. To be a little more
precise, cout represents what is called a stream in C++. You can think of a C++
stream like a real stream with water in it. You can place things in the stream and
they will be carried downstream. To place something in a C++ stream you use the
� operator. Writing

cout << "Hello World";

places the string “HelloWorld” into the cout stream. This expression returns the cout
stream. This means that multiple � operators can be chained together. Line 4 is like
writing

(cout << "Hello World") << endl;

There are three streams automatically associated with any C++ program. Actually,
these three streams are associated with any program, whether C++, Python, Java, or
other language. In C++, the first stream is called cout and by default it writes to the
screen. The cerr stream also writes to the screen by default. The cin stream reads
from the keyboard by default. In each of these cases these streams can be redirected
to read or write to different locations, but this is not a C++ issue. You can search on
the web for information about redirecting standard output, standard error, or standard
input if you are interested in learning more about redirection.

4.1.5 Compiling a C++ Program

To run the helloworld program itmust first be compiled. Figure4.1 shows the process
of compiling a C++ program like the one that appears in Fig. 4.2. First, the macro
processor reads the iostream header file and combines it with the rest of the source
file. That text is sent to the compiler which parses the program and generatesmachine
language code using an assembler. The machine language code is then linked with
the iostream library to produce the executable code. Thankfully, this whole process
is encapsulated in one command.

Executing the g++commandcompiles the programas shown inFig. 4.4.Bydefault
g++ produces a program called a.out. To execute the program you type a.out and the
operating system will load and run it. The default a.out can be renamed or a different
name can be provided on the compile command.

Fig. 4.4 Compiling hello.cpp
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Fig. 4.5 Include debug and name

The -g option in Fig. 4.5 tells g++ to include debugging information in the pro-
gram. The -o tells g++ to name the executable program hello instead of a.out.

To compile a C++ program you must have a C++ compiler installed on your
system. The g++ compiler used in Fig. 4.4 is the GNU C++ compiler. This compiler
is available for Mac OS X, Linux, and Microsoft Windows. You might also want an
IDE (Integrated Development Environment). Netbeans was used as an IDE in the
development of CoCo and works well. You can also use a simple editor to write
C++ programs. Debugging C++ is accomplished with gdb, the GNU debugger. This
debugger is a command-line debugger with a lot of power. Various front-ends have
been written for gdb that make it a bit easier to use including ddd, the Data Display
Debugger, and Netbeans has implemented a front-end to the debugger as well.

4.2 Overview of the CoCoVirtual Machine

CoCo is written in C++. It is a large project consisting of 38 source files, 38 header
files, and around 5,000 lines of code. Don’t be intimidated, a lot of the code is repet-
itive. With such a large program, structuring it correctly is of the utmost importance.
The CoCo virtual machine is an interpreter of bytecode instructions. Like other in-
terpreters the implementation is divided into some logical components: the scanner,
parser, and virtual machine. Internally, there is an important data structure that holds
the representation of the program. This internal representation is called an Abstract
Syntax Tree. Refer back to Chap.2 if you have forgotten about ASTs.

The Scanner reads characters from the CoCo source file and creates C++ objects
called tokens. The last chapter had many examples of CASM files. Tokens from the
CASM file in Fig. 4.6 include a Function keyword, a colon, an main identifier, a
slash, an integer 0, another keyword Constants, another colon, a None keyword, and
so on. These tokens are returned one at a time to the parser when the parser requests
another token.

The Parser reads the tokens one at a time from the scanner and uses them while
parsing the source file according to the grammar for CoCo given in Chap.9. The
grammar given there is LL(1) so the parser is implemented as a recursive descent
parser. Each non-terminal of the grammar is a function in the parser. The right hand
sides of rules for each nonterminal defines the body of each function in the parser.
There will be more on this later in the chapter. The result of parsing the source file
is an Abstract Syntax Tree, or AST. This AST is an internal representation of the
program to be interpreted.

http://dx.doi.org/10.1007/978-3-319-13314-0_2
http://dx.doi.org/10.1007/978-3-319-13314-0_9
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Fig. 4.6 CoCo

The CoCo bytecode interpreter is the part of the program, given the AST, that in-
terprets the byte code instructions of each function. As the instructions are executed,
the virtual machine interacts with I/O devices like the keyboard and the screen. Byte-
code interpretation is the responsibility of several parts of the CoCo implementation
as you will read later. The last part of this chapter has a detailed explanation of the
implementation of the CoCo virtual machine.
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4.3 Building a Large Project

Compiling thirty eight modules by hand and linking them all together to get a pro-
gram to test would be a tedious time-consuming job that would make working on
large projects unbearable. Of course, computers are good at tedious jobs and soft-
ware developers are never more motivated than when writing tools to make their
lives easier. C++ is designed from the ground up for large projects and separate
compilation, provided by C++, and the make facility provide a means for quickly
compiling programs without a lot of work.

4.3.1 Separate Compilation

Like many modern languages, C++ is organized so that modules may be separately
compiled. Without separate compilation, when a project gets extremely large a small
change can cause a recompile that could take hours to complete. It is extremely
desirable to recompile only those modules of a project that have been changed while
leaving the rest of the compiled code untouched.

Each piece of a C++ project is stored in a separate file or module. This has benefits
beyondmaking compiles take less time. Breaking a large project intomodules allows
multiple programmers to work on different files at the same time. It also helps to
isolate logically different parts of a program. TheCoCo virtualmachine’s 38modules
all contain one logical piece of the larger metaphorical puzzle fitting together nicely
to provide the virtual machine’s implementation.

Each module can be compiled separately. For instance, the PyObject.cpp module
can be compiled as follows using the C++ compiler.

g++ -g -c -std=c++0x PyObject.cpp

This command is similar to the commands given in Fig. 4.5 except for the use of
two new options. The -c option tells the compiler to keep the object file after com-
pilation finishes. Object files have a .o extension. So this command would produce a
file called PyObject.o. The -std=c++0x option tells the compiler to include C++11
extensions. This option is only needed for the GNU C++ compiler called g++.

When eachmodule has been compiled, then theymaybe linked together to produce
an executable program. That is done with the compiler again using.

g++ -o coco -std=c++0x main.o PyObject.o PyInt.o ...

To completely compile the CoCo project the following compile commands may
be issued.

g++ -g -c -std=c++0x *.cpp
g++ -g -o coco -std=c++0x *.o

The first line above invokes g++ on each source module. The second links all the
object files together to produce the coco program. On a very fast Macbook Pro laptop
the first command took in the neighborhood of 25s to execute. The second command
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is almost instantaneous. In 1985, 25 s compiles would have been very acceptable.
Not by today’s standards. As testing progresses on a program like CoCo you want
to compile and test frequently. Waiting 25s for each compile would be taxing on
your concentration when you might compile 30 times or more during one session of
testing.

Separate compilation means that not all C++ source files are affected by a change.
In fact, only a small number of files are generally affected by a change in the program,
perhaps even one source file. It is not necessary to recompile every source file when
only one changed. We can recompile the affected modules and then do the second
step of relinking to get an updated copy of the executable program. Keeping track of
whichmodules have changed becomes our next challenge. Thankfully this is handled
by the make facility.

4.3.2 TheMake Facility

A file system is the software and format that controls how files are stored on the hard
disk of a computer. All operating systems have their own file systems and sometimes
support multiple file systems. Microsoft Windows supports NTFS and Fat32 among
others. Linux support ext2, ext3, reiserfs, and others. Mac OS X supports several file
systems including HFS+. Every one of these file systems store attributes of every
file including the date and time the file was last modified.

Make is a program that can be used to compile programs that are composed of
modules and utilize separate compilation. The idea is simple. Every time a module
is compiled it produces an object file. For instance, when PyObject.cpp is compiled,
the C++ compiler writes a file called PyObject.o. For each of these files the date
and time when it was last modified or created is stored with the file. After a compile
the date on PyObject.cpp is older than the date on PyObject.o. When a programmer
changes PyObject.cpp, its date will be newer than PyObject.o’s date.

Make uses this simple observation along with make rules to execute the compile
commands necessary to make PyObject.o’s date newer than PyObject.cpp’s date.
Here is a make rule for PyObject.cpp.

PyObject.o: PyObject.cpp PyObect.h
g++ -g -c -std=c++0x PyObject.cpp

This rule says that PyObject.o must be newer than PyObject.cpp and PyObject.h.
If either of these two files are newer then make will execute the command on the
next line, which must be indented under the first line.

To link everything together the first rule would be something like this.

coco: main.o PyObject.o PyInt.o PyType.o ....
g++ -o coco -std=c++0x main.o PyObject.o PyInt.o PyType.o ....

All 38 object files would be listed here. This says that the date on coco, the
executable program, must be newer than the date on all its object files.

All these rules are placed in a file called Makefile in the same directory as the C++
source files. When make is invoked it will look for a file named Makefile. By keeping
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track of the dates, only the source files that have been updated will get recompiled
and the coco executable will get recreated by linking together all the object files.

Writing a good Makefile is sometimes difficult and almost always error prone, so
often there is a rule in the makefile called clean. Executing make clean will erase
all object files so you can get a fresh compile. There are also tools like autoreconf
that will generate a Makefile automatically with just a few inputs. Take a look at
the rebuild script in the CoCo distribution to see how this might be used. To use
autoreconf you must have the automake tools installed on your system. But if you
do, you can execute

./rebuild

./configure
make

to build the entire CoCoVirtualMachine.Without the automake tools you should still
be able to execute the configure andmake commands to build CoCo.Having provided
an introduction to the development process using C++ and an overview of CoCo, the
rest of the chapter will dive into more specifics of C++ and the implementation of
CoCo.

4.4 Static Type Checking

C++ is a statically typed language. This means that the C++ compiler can stati-
cally (i.e. without running your program) determine if the operations performed in
a program are between variables of the correct type. This is unlike Python where
type checking occurs at run-time. Python is a dynamically typed language. Java is a
statically typed language like C++.

Static type checking is a good thing because it catches potential errors in code
without having to worry about executing every potential path in the code. Good
testing will execute every path anyway, but with static type checking any errors
discovered while testing will be for reasons other than the wrong types of operands
being used.

However, strong type checking requires that the programmer specify the types of
all variables. This isn’t necessary in Python. If you want to use a variable in Python
you just write x = and x becomes a reference to a new value. In C++ there is some
extra work to declare the variable before it is first assigned a value.

In addition, C++ is more flexible than Java or Python. In Python every variable
is a reference to a value stored on the heap. The heap is a portion of memory where
data is dynamically allocated, meaning allocated at run-time. Every programming
language implementation has a heap including C++. In Java, all objects are stored
on the heap while variables of built-in type like int and double may be stored in the
run-time stack or on the heap inside some object.

In C++ variables and objects may be stored either on the run-time stack or in
the heap. This is emphasized because this is a very important difference between
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C++ and Python or Java. It has implications in how objects are created, how values
are assigned, when values are returned from functions, and how values are passed to
functions. In fact, when Java was designed the creators of Java decided not to support
that same amount of flexibility because it make C++ a more complicated language
to use and understand.

The main thing to remember is that a variable or object can exist in either the
run-time stack or on the heap. When you learn how to tell the difference and the
implications of where an object or variable is stored, you’ll be on your way to
becoming a great C++ programmer.

4.5 DeclaringVariables

To declare a variable in C++ the type is written first, followed by a variable name
(Fig. 4.7).

int x;

This declares a variable called x with type int on the run-time stack. This is similar
to Java if you are familiar with Java.

int* y = new int;

A variable that is allocated on the heap must have a pointer to it from someplace
else. The data is allocated on the heap if the keyword new is used when creating it.
However, the pointer that points to it may reside in the run-time stack. If a function
is passed an argument the keyword new might not appear in the function, but tracing
back to where the argument was first declared will tell you whether it was heap
allocated or not.

This declares a pointer called y on the run-time stack that points to a value of type
int on the heap. Pointers always have a type of value that they point to. Figure4.8 is a
program that allocates an int called x and a pointer to an int called y on the run-time

Fig. 4.7 Variable declaration
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Fig. 4.8 Ints and pointers

stack. The variable x holds the actual integer. The variable y points to a value on the
heap.

There are two uses of the asterisk in the code of Fig. 4.8.When an asterisk appears
in the declaration of a variable, like line 6, it means the variable is a pointer. When
an asterisk appears in an expression, like line 9 and 11, it means that C++ should
first follow the pointer to the memory it points to. The memory it points to had better
be valid or the result will be unpredictable.

The main.cpp file of CoCo in Fig. 4.9 contains several variable declarations in
addition to those in Fig. 4.8.

Fig. 4.9 main.cpp
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Practice 4.1 Which of the variables declared in Fig. 4.9 appear in the run-time
stack. Which of these variables point to values on the heap?

You can check your answer(s) in Section 4.31.1.

4.6 Pointers and Arrays

A pointer is a pointer to a type of variable. For instance there are int pointers, char
pointers, and pointers to objects of some type. It is also possible to declare a pointer
that can point at anything in C and C++. This is called a void pointer. However, it
is unlikely any experienced programmer would ever use a void pointer. When we
declare pointers, we want them to point to a type of value someplace in memory.

Pointers can point to values in either the heap or the run-time stack. In the last
section we saw how to declare a pointer and initialize it to a value in the heap.
Figure4.10 has code to initialize a pointer to a value in the run-time stack.

The ampersand character is the address of operator in C++. To get the address
of a variable you can precede it with an ampersand. The code in Fig. 4.10 makes y
point to the space for the variable x. When the third line executes, y is dereferenced,
yielding the space for x, and incremented.When the fourth line executes, 6 is printed.

When using the address of operator you have to be knowledgeable about what you
are doing. Using & improperly may provide you with the address of some memory
that eventually is not yours to modify anymore or even worse, may contain invalid
data at some point in the future.

An array is a list of values of a given type. Arrays are declared using square
brackets (i.e. [ ]). Like all other variables, arrays may be declared in either the run-
time stack or on the heap. Figure4.11 contains a program that declares two arrays
and does a few array operations (Fig. 4.12).

This program declares three pointers. The first pointer s, is actually a constant
pointer to an array of characters in the run-time stack. A constant pointer means that
we cannot change the address to which s points. The second pointer t, is a pointer to
an array of characters on the heap. The third pointer u, points to a character in the
string pointed to by t.

Fig. 4.10 Stack address
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Fig. 4.11 Array operations

The program in Fig. 4.11 prints hello world four times on separate lines. Taking
a look at the first while loop, it terminates when it encounters a character with the
value 0. Character arrays in C++ are null-terminated. When the string was initialized
on line 6 there were 12 characters allocated for the character array pointed to by s.
The character array pointed to by t has 15 characters. The call to strcpy on line 9
copies the characters of s into t. This means there is a null-terminator at character 12
of t as well. The second while loop traverses t’s character array. The null-terminator
character is a 0 but can be represented as the character constant ‘0’ as it was on
line 17.

The last while loop uses a pointer u, to traverse the character array. Initially set
to point to the same thing t points to, u is incremented to successively point to each
character of the string. When incrementing a pointer in C++, the pointer increments
by the size of the type of value to which it points. Character values are typically
one byte, so incrementing a char pointer means it increments by 1. If u were an int
pointer 4 would be added to it each time each time it was incremented.

Often misunderstood, the formal parameters of main consist of an integer and an
array of pointers to character arrays. Consider the main function for the CoCo virtual
machine given in Fig. 4.13.
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Fig. 4.12 Character arrays

The first argument to the main function is a count of the number of command-line
arguments. If coco is invoked as

coco -v myprog.casm

then argc is 3. There are two command-line arguments, but the name of the program
is always the first argument, making 3 total. The second argument, argv is an array
of character arrays. So in Fig. 4.13 argv[0] is a null-terminated “coco”, argv[1] is
“-v”, and argv[2] is “myprog.casm”.

Since arrays variables are constant pointers, you may at some point, see the argu-
ments to the main function declared this way.

int main(int argc, char** argv) {
...

Declaring argv either way has almost exactly the same effect. The difference is
only that you could reassign the second argv to a new value. When declared as an
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Fig. 4.13 Command-line arguments

array it is a constant and cannot be reassigned. Reassigning argv would not be useful
either way it was declared and whether declared the first or second way, argv would
still be accessed the same way as done in Fig. 4.13.

You cannot copy arrays using the assignment operator = in C and C++. Since
strings like “hello world” are character arrays, you cannot copy them using the
assignment operator. If on line 9 of the program in Fig. 4.11 we had written t = s we
would have made t point to the same thing that s pointed to. While the code would
continue to work, the program would have a memory leak and t and s would both
point to the same string. There are utility functions like strcpy that help programmers
make copies of strings. Both the first and second argument of strcpy must point to
valid memory. The null-terminated string in the second argument is copied to the
first argument’s space by the strcpy function.

You also cannot compare arrays for equality using == in C++. Since strings like
“helloworld” are character arrays, they cannot be compared using== either. Instead,
the utility function strcmp is available. It returns 0 if the two strings are equal.

Since 0 is the value for false in C, you can write the code in Fig. 4.14 to compare
two character arrays for equality in C or C++. The not operator (i.e. !) is used to say
if not strcmp. Since it returns false if the two strings are equal, not strmp yields true
if the two strings are equal.

Because of the inconvenience of working with character arrays, and to provide a
more object-oriented means of working with strings, a string class was developed
for C++ that deals with many of the character array issues presented in this section.
For instance, you can use == to compare to string objects for equality and you can
use = to copy a string.

Fig. 4.14 strcmp function
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4.7 Writing Functions

Functions in C and C++ are written much the same way as Java static functions.
The return type is written before a function name and its formal parameter names.
Each formal parameter must have a specified type. In the code of Fig. 4.15 the main
function returns an int and is given an int and an array of character arrays representing
the command-line arguments. Python is not a statically typed language so function
return types are not declared when writing in Python. C and C++ static type checking
forces progammers to bemore explicit in their declaration of variables and functions.

Unlike Java, in C and C++ functions must be declared in a module above where
they are called. When scanning from top to the bottom of a module, its declaration
must appear above the function call. Consider a program where function A is called
from the main function as in Fig. 4.15.

For this code to compile correctly, A is defined above main. Said another way, A
cannot call the main function in this code because when A is compiled, main has not
yet been seen. For static type checking to work, the type of A must be known before
it can be called.

This order dependence on functions leads to an interesting problem. Consider the
program outline given in Fig. 4.16. The call from main to A will compile because
A is defined above main. The call from B to A will compile as well. However, the
call from A from B will not compile. Of course, this is only an outline of a program.
Writing exactly this program would be non-sensical. However, there are moments
where a function is called that calls the function that called it. A program like this
will not work without a little extra help. The designers of C encountered this type

Fig. 4.15 Function declarations

Fig. 4.16 Mutually recursive
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of issue and solved it by creating what is called a function prototype and allowing
what is often called a forward declaration. A function prototype is a declaration of a
function, without its body. In C andC++, as long as a function prototype occurs above
the function call, it will compile correctly. Figure4.17 contains the same program
outline again with a function prototype for B.

The prototype for B consists of just the function name, return type, and argument
types. The names of formal parameters are not needed, nor is the body of the function
allowed. A prototype says that a function with this name and signature will be
implemented eventually. The signature of a function is the type, number, and order
of its arguments along with its return type.

In passing it is interesting to note that many C++ compilers have been lax on
the signature of the main function. This is a legacy issue from some of the first C
compilers. At various times C compilers have allowed main to be declared as shown
in Fig. 4.18. The return type of int should always be declared because every process
in Unix (and Posix) systems has an exit status and the integer returned from main
is that exit status value. However, most of the time that exit status value is ignored
and as you can see from previous examples in this chapter, no value is returned from
main. The argc and argv arguments are always provided to C and C++ programs.
However, the main function may choose to ignore them as well and hence they don’t
have to be declared. So, while C and C++ programs perform static type checking
on function calls, they don’t enforce a standard signature on the main function. The
GNU g++ compiler does require an int to be returned frommain, but that is the extent
of the type checking performed on the main function by g++.

Fig. 4.17 Function prototypes

Fig. 4.18 Signatures of main
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4.8 Parameter Passing and ReturnValues

Every function definition includes the name of the function, the function’s return
type, and the type of each formal parameter name. The formal parameter names are
the names associated with the arguments that will be passed to the function. When
you call a function you provide arguments, when the function is executed the formal
parameter names are the names that are used to refer to the arguments.

Every parameter in C is passed by value. This is true in Python and Java as well.
Pass by value means that a copy of the argument is given to the function where it is
given the formal parameter name.

Consider the example in Fig. 4.19. Here we can see pass by value in action. We
reassign the value of x in the add function to be the sum of x and y. But, this
does not affect the value of a in the main function. The value of a remains 5 in the
printed output. This is because the value of a is passed to the function add, not a itself.
Arguments are passed by value, meaning a copy of the value is passed to the function.

Pass by value means that the called function, add in this example, cannot make
changes to the original value because it only has a copy of the value, not the space
where the original value was stored. The original value of a has its space in the stack
frame associated with the main function. The value of x is stored in the stack frame
associated with the add function.

Of course int is only one type of value. Other types of values may be passed to
functions. For instance, character array pointers can be passed to functions. Consider
the program in Fig. 4.20. In this program the character array msg is passed to the
printit function where the formal parameter msg is incremented to the end of the
string. This program prints “hello world” twice to the screen. This means that the
printit function has no effect on the original msg pointer. The msg argument is passed
by value to the printit function, making a copy of the original value. The original
value is not affected.

Fig. 4.19 Pass by value
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Fig. 4.20 Passing arrays

Now consider the program in Fig. 4.21 that uses another function to return a
message. This program compiles correctly, although with g++ issuing a warning
during the compile.

MyComputer> g++ test3.cpp

test3.cpp:15:9: warning: address of stack memory associated with local variable ’msg’ returned...

return msg;
ˆ˜˜

1 warning generated.

The reason for the warning is depicted in Fig. 4.22. When the program starts by
calling getMsg on line 15, execution jumps to line 11. At this point in time there
are two activation records on the run-time stack; one for the main frame and one for

Fig. 4.21 A poorly written program
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Fig. 4.22 Bad return value

the getMsg frame. The getMsg function returns a pointer into its own stack frame.
This is a bad idea since after returning from the getMsg function the stack frame is
popped from the run-time stack.

The way the run-time stack works, there is nothing really popped from the run-
time stack. The top of the stack is decremented, but the memory for the stack frame
remains where it was. Next, line 16 calls the printit function, which pushes a frame
onto the run-time stack, right over the top of the getMsg frame. We can’t show the
new frame on top of the old frame in the picture, so they are drawn side by side in
Fig. 4.22, but imagine the printit stack frame right on top of the old frame for the
getMsg function call. Now, when the string is printed on line 7 who knows what will
print? The memory is corrupted and depending on the compiler and the operating
system pretty much anything could print. On a Macbook Pro, after compiling with
the GNU C++ compiler, four blank lines printed when this program was executed.

Even though returning a pointer to data in the current stack frame is a bad idea,
there are still good uses for pointers in function calls. As mentioned earlier, pass by
value means that an argument is copied when it is passed to a function. If, however,
we want to make changes to the original value of the argument, we can pass a pointer
to the argument instead of the argument itself. A classic example is a function that
swaps the values of two variables. With pass by value we cannot swap the original
two variables by passing their values to a function. Then we’ll only swap the copies
of the values.

The program in Fig. 4.23 passes the addresses of a and b to swap. The swap
function gets a copy of the addresses of a and b, not a copy of their values. So, when
x is dereferenced (i.e. when we write *x), we get the value of the original a variable
and likewise with b and y. The swap function swaps the original two values. Note that
x and y point to values that are in the frame for main. Is this a good idea? It is OK this
time because the stack frame for main remains on the stack and is not overwritten
while executing the swap function’s code. When the program is executed the value
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Fig. 4.23 Pointer swap

of 7 is printed followed by the 6. No warnings are generated while compiling this
code.

Notice in this program that the and was used to get the addresses of both a and b.
The ampersand was not needed when calling printit and with msg as the argument in
either of the previous examples. The difference is because msg is an array and a and
b are integers. As mentioned earlier in this chapter, arrays are really implemented as
a constant pointer to an array, so when an array is passed to a function, the function
is already being provided with the address of the array.

Practice 4.2 Earlier in the chapter the function strcpy was introduced in
Fig. 4.14. The strcpy(target,source) function copies all the characters in source
to target. Write the function strcpy and write a little code to test it.

You can check your answer(s) in Section 4.31.2.

4.9 C++ References

The previous section described how C supports pass by value as the only means of
passing parameters. If a pointer is passed as an argument then the value it points to
can be modified, as is the case in the swap function. Around the time that C++ was
being developed programming language designers were developing another means
of passing parameters called pass by reference. Bjarne Stroustrup included pass by
reference in C++. Pass by reference is not a part of C. In the previous implementation
of the swap function,when swapwas called the, the call had to bewritten as swap(&x,
&y). This means that the programmer calling the function has to remember that this
function is given a pointer to two integers and therefore the function swap needs to be
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provided with the address of two ints. Requiring the programmer who is calling the
function to remember a detail of the swap function’s implementation is not ideal. It
is desirable to leave implementation details to the programmer writing the function,
not the programmer calling the function. In the programming industry it is frequently
the case these are not the same people and may even work for a company at different
times or they may not even work for the same company.

The capability to make a change to the original variable in a function call is
certainly needed in a programming language and pass by reference is the way to
accomplish this in C++. To declare a reference parameter the & is used once more.
This time, not in an expression, but in a variable declaration.

In Fig. 4.24 the swap program appears with reference parameters. The two &
characters move from the function call to the formal parameter declarations. When
using a reference parameter there is no need to dereference the reference explicity
using an asterisk (i.e. *) or any other character. Dereferencing the reference is done
implicitly when an assignment is performed.

References in C++ are different than references in Java and Python. In Java and
Python every parameter is passed by value, including references. References can be
copied and if a change is made to the copy, the original value is unchanged. For
instance, the swap function given in Fig. 4.24 will not work in Java even if using
the Integer type as the type of the two formal parameters. But the Integer Java type
is always passed by reference. Assigning x = y in Java will result in the copy of
x pointing to a different value, but not the original integer variable in main. The
same is true in Python. This function cannot exist in Python in the same way it is
implemented in C++.

References in C++ cannot be changed once they have been initialized. Initial-
ization is a special term in C++ and refers to certain points in a program where
initialization can be performed. This is the difference between C++ and Python and
Java. Python and Java references can be set to point to a value at any time after

Fig. 4.24 Reference swap
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declaration. C++ references can only be set to point to an object when they are first
initialized. Typically declaration of a variable and initialization have to be done at
the same time in C++. There are just a few ways to initialize a reference in C++.

• A reference may be initialized in a variable declaration.
int& x = 6;

• A reference may be initialized during a function call like the swap function of
Fig. 4.24 where a variable argument is passed to the function’s formal reference
parameter.

• A reference may be initialized when a value is returned by reference from a
function.

Examining the code in Fig. 4.24 it should be clear the C++ references reduce
a lot of the extra syntax of dereferencing pointers. In some sense references and
pointers in C++ share the same purpose, allowing code to modify original variables.
If comparing C++ to Java and Python then C++ pointers are like Java and Python
references while C++ references are a more restrictive but syntactically cleaner ref-
erence implementation for C++.

4.10 Const in C++

One criticism of pass by value is that it is inefficient. Passing by value means copying
the original value and sometimes that value may be large. For example, if the original
value is a complex data structure like a C++ object of some type. That is why arrays
are not copied when passed as arguments. It was an efficiency decision to pass arrays
by copying the pointer that points to the array, but not the array itself.

Passing arguments by reference is more efficient since no copy is made, much
like passing a pointer does not copy the value the pointer points to. However, pass
by value means the original value is also protected from unintentionally changing
the original value.

It would be nice to combine the best of both worlds and as a result, constant
reference parameters are a part of C++. A constant reference formal parameter is
declared the same way a reference parameter is declared except the keyword const
is added before the declaration. It doesn’t make much sense to pass an integer by
constant reference, but the example code in Fig. 4.25 will help illustrate the syntax.

With x and y as constant references, the code in Fig. 4.25 will not compile be-
cause line 5 tries to modify x. Changing this program to the code in Fig. 4.26 fixes
that problem. The program in Fig. 4.26 will compile and produces 11 as its output.
Constant reference parameters don’t make sense for integers, but they do for larger
objects which will be covered soon in this chapter.

Constants can appear in C and C++ programs as well. A variable declared to
be const cannot be changed once it is initialized. Constants make our code more
readable and easier to maintain should constant values change at some future time.
Later in this chapter we’ll revisit const again.
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Fig. 4.25 Constant references first try

Fig. 4.26 Constant references

4.11 Header Files

C and C++ support separate compilation as described earlier in this chapter. Function
implementations with similar purposes or argument types are frequently grouped
together into amodule and used by othermodules. Thesemodules are linked together
to form the final executable program.

Functions cannot be called until they are declared as we discovered earlier as
well. However, each module does not get a copy of all functions. Only one copy
of a function’s implementation exists within any program. But because C and C++
programs are statically typed, at least the function prototype must appear in each
module as modules are separately compiled.
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Header files exists so function prototypesmaybe included into eachmodule before
they are compiled. A header file, sometimes called an include, is a file that contains
function prototypes and other declarations. In this way, prototypes and declarations
are written once in the header file and included in whichever modules needs the
include.

Consider the example code in Figs. 4.27, 4.28, and 4.29. This program requires
separate compilation to compile the program previously given in Fig. 4.19.

This program is divided into twomodules, a test.cpp containing the main function
and an intfunctions.cpp containing the function to add two integers together. The
header file in Fig. 4.29 ties the twomodules together by sharing the function prototype
for add between them.

There are a few of things to make note of. The two modules are named with .cpp
extensions and contain the source code for the two functions. The header file has a .h
extension. The header file is included in the twomodules by writing macro processor
directives that include cause the header file to be combinedwith the source file before
it is sent to the compiler. In the header file the #ifndef macro processor directive is
very important. It asks the macro processor if intfunctions_h is already defined. If it
is not defined as a macro processor variable (it does not need a value, it just must be
defined), then the next line defines it. This use of #ifndef and #define make sure that
an include file is included at most one time per module. This is necessary for two
reasons. The first is to prevent the include from accidentally being included two or
more times. Doing so could cause variables or declarations to occur more than once
causing a compile error. The other important reason is to prevent a circular reference
to includes causing the macro processor to get into an infinite include recursion.

Fig. 4.27 test.cpp

Fig. 4.28 intfunctions.cpp
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Fig. 4.29 intfunctions.h

Fig. 4.30 Separate compilation

While this simple example doesn’t fully show why this might happen, it can and
will happen if this idiom, or way of writing header files, is not followed. All C++
programmers use this idiom when writing header files.

To compile this code the compile commands in Fig. 4.30 must be executed. The
first line compiles the intfunctions.cpp module producing an intfunctions.o object
file. An object file is a binary machine instruction file but is not executable by itself.
The -c option causes the compiler to create the object file and skip the linking
phase. The second line compiles the module with the main function in it, creat-
ing the test.o object file. The third line uses the compiler to perform the linking
stage to link together the object files, producing the executable test program which
can then be run as it is on the fourth line. As described earlier in this chapter,
make files normally handle issuing the compile commands for the separate modules.
Header files provide a means to share the declarations of functions and class decla-
rations between modules.

4.12 OOP Using C++

C++ is an object-oriented programming language. It provides static type checking,
dynamic memory allocation, inheritance, polymorphism, operator overloading, and
like any good OOP language it provides a collection of classes that provide many
of the basic data structures and input/output services. The language also provides
the ultimate flexibility in declaring objects, allowing objects to be created on either
the heap or the run-time stack. This is unlike Python or Java where objects can only
be dynamically created on the heap. Allowing object creation on the stack means
that C++ includes support for the assignment and copying of one object to another.
The sections that follow introduce important concepts of C++ programming. Then
details of the CoCo implementation are presented where many of these concepts are
put to use.
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4.13 Pre-defined C++ Classes

C++ provides a number of pre-defined classes for building data structures and han-
dling input/output operations. In fact, many libraries are available for C++ for many
application areas. The web site http://cplusplus.com is an excellent reference for
C++ libraries. This section provides you with an introduction to using a few of these
class. As you read the following sections you may notice that the header files for
many of the built-in C++ libraries do not end with a .h extension.

The string, ostream, istream, tuple, and bitset classes are all standard C++ classes
that are used frequently in programs. Many more are available as well. Consulting
the reference on http://cplusplus.com is an excellent way to find available classes
and learn from example code provided on the site.

4.13.1 The String Class

Character arrays are the only built-in support for strings in the C programming
language. Character arrays, while supported by a variety of functions, are not very
flexible and programming with them can be error-prone. C++ includes a class called
string that can be used in its place. C++ strings support concatenation, subscripting,
finding the size of a string, and many other methods. To use strings in C++ you
include the string header file.

Related to strings are a couple of useful classes called string streams. The classes
istringstream and ostringstream are located in the sstream header file and can be used
to convert objects from string and to string. Figure4.31 is a self contained example
demonstrating how to extract an integer from a string.

Line 10 of the code in Fig. 4.31 creates an input string streamover s. Line 11 sets up
the new stream to raise an exception if reading from it fails. Line 12 reads the integer
from the string stream and line 13 prints out the value after adding 1 to it, just to
demonstrate it is an integer. Exception handling will be covered later in this chapter.
The ostringstream class will create an output string stream so conversions can be
performed in the opposite direction. Code like this can be found in the PyStr.cpp
module of the CoCo project.

4.13.2 Stream Classes

The previous section introduced the istringstream and ostringstream classes. There
are other handy stream classes including ifstream which defines an input stream over
a file. The ofstream is an output stream for writing to a file. Of course C++ programs
start with three pre-created streams as mentioned earlier in this chapter: cin, cout,
and cerr.

http://cplusplus.com/reference
http://cplusplus.com/reference
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Fig. 4.31 String streams

4.14 The Standard Template Library

Generics are an important part of object-oriented languages. Generics let program-
mers re-use classes, especially classes that are designed as data structures like maps
and vectors. A map is a data structure mapping keys to values. The type of the keys
and values can be anything. So, a generic map class provides the ability to map any
type of keys to any type of values. In Python a map is called a dictionary. In Java it is
called a HashMap. In C++ there are several kinds of map classes. The standard map
class is not implemented as a hash table. It guarantees O(log n) insert and lookup
time. A hash table guarantees an amortized complexity of O(1) insert and lookup.
The unordered_map of C++11 is implemented as a hash table. Before C++11 this
class was not included with C++.

Python, since it is dynamically typed, does not need generics. Generics are only
needed for statically typed languages like Java and C++. In C++ generics are called
templates. A template is a parameterized class. The parameter to the class is a type
or types. Standard template containers in C++ include unordered_map, map, vector,
list, queue, stack, deque, set, and array among others.

4.14.1 TheVector Template

A vector is like an array, but it is implemented as a class supporting operations like
getting the number of items in the vector. Vectors can also grow and shrink dynam-
ically. Vectors still support many of the array operations like indexing. Figure4.32
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Fig. 4.32 Vector code

contains an example of an excerpt of code declaring and using a vector. In this code
you can see this is a vector of PyCode pointers. The < and > delimit the type para-
meter to a template. So a vector is a vector of some type of value. Code like this can
be found in the PyParser.cpp module of the CoCo project.

4.14.2 The Unordered_mapTemplate

As described earlier in this chapter, a map maps keys to values. A map is used like an
array where the subscript into the array is a key and the value is the value at the key
location in themap. Figure4.33 contains an excerpt of code creating amap. Thismap
maps strings to PyObject pointers. The map template takes two types as parameters,
the key type and the value type. This code can be found in the main.cpp module of
the CoCo project.

Fig. 4.33 Unordered map code
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4.15 Operator Overloading

C++ provides operator overloading to programmers. Operator overloading is also
provided by Python through the use of what are called magic methods. In C++
certain operators may be used as function names. C++ operators are generally infix
or postfix operators. There are many operators including �, �, +, −, *, /, %, +=,
−=, /=, *=, ++, −, ==, !=, <, >, >=, <=, !, &&, ||, the comma, and a few bit
operation operators. The complete list can be found at http://cplusplus.com.

C++ uses parametric polymorphism to decide which operator function to call.
The name of the function is determined by the operator being overloaded. Which
function definition is called depends on the type of the parameters. This is what is
meant by parametric polymorphism. If + is written between two ints, then the int +
function is called. The code in Fig. 4.34 overloads the � operator given an ostream
reference on the left and a PyObject reference on the right. This method calls the
� on the same ostream providing a string to it instead. The � for ostreams and
strings is predefined so it can be used to implement this overloaded operator. With
this function definition, any PyObject can be sent to an output stream. This code can
be found in the module PyObject.cpp and the prototype for it is found in PyObject.h
in the CoCo project.

4.16 Classes and Objects

C++, being anobject-oriented programming language, has themeans to define classes
and instances of classes or objects. To create an object there must be a class defined
of its type. The class provides the definition of what goes in the object. An object
is an area of memory that contains data and possibly pointers to methods that can
operate on the object’s data.

Like functions, classes are prototyped in a header file. The implementation of the
class’ methods are placed in a module. By convention, there is typically one header
file per class definition and one module per class implementation. For instance, the
PyObject class of the CoCo project is defined in PyObject.h and implemented in
PyObject.cpp. Figure4.35 contains the PyObject.h header file.

Line 10 of the code in Fig. 4.35 is a forward declaration of the PyType class. It is
there to say that PyType will be defined later, but for at least the compiler knows it
will be defined as a class later.

Fig. 4.34 Operator overloading

http://cplusplus.com/reference
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Fig. 4.35 PyObject.h

Line 12 begins the PyObject class declaration. As in Java there is public, private,
and protected parts to a class definition. Methods meant to be called by users of
the class are placed in the public section. The private section (not present in this
class declaration) is only for use by the class’ implementation. The protected section
is for use by the class’ implementation or by any subclass. As you can see from
the class declaration the method declarations consist only of a prototype and not
any implementation. The object data in the protected section defines the types and
names of all values in the objects of this class. This data is sometimes called instance
variables or member data.

The extern directive that appears on line 31 simply says there is a boolean value
that is defined somewhere in the program that should be accessible by all modules
that include PyObject.h.

Figure4.36 contains a subset of the implementation of the PyObject class. Lines
9–12 are the PyObject constructor which is called anytime a PyObject is created.
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Fig. 4.36 PyObject.cpp

Lines 13–14 define a destructor. Both of constructors and destructors are discussed
later in the chapter in more detail.

Each method or constructor is prefaced by the name of the class. The PyObject::
in the code of Fig. 4.36 is the namespace specifier. Each class specifies its own
namespace and prefacing the method implementation with the namespace specifier
associates the method implementation with the class definition.

In method implementations C++ defines a this pointer that points to the current
object. In Java the current object pointer is a this reference and in Python it is the self
reference. Unlike Java or Python which use a period, the arrow (i.e. −>) is used to
dereference object pointers in C++ including, but not limited to, the this pointer.
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4.17 Inheritance

There are two purposes for inheritance. Inheritance can be used to establish an is-a
relationship between a subclass and a base class. Any PyInt object is-a PyObject
because the PyInt class inherits from the PyObject class.

The other reason for inheritance is code re-use. Methods defined in the base class
may work for derived classes as well while other methods may be redefined for the
derived subclasses. Programmers get to pick and choose how the subclass should
behave, in some cases choosing to use the base class implementation and in other
cases redefining behavior.

Figure4.37 contains the header file for the PyInt class which inherits from the
PyObject class. The PyInt class uses public inheritance to inherit from PyObject on
line 8. There are two constructors specified on lines 10 and 11. Every class must
provide its own constructors whether it inherits from another or not. The destructor
is present again which is described later in the chapter. In the protected section are
additional values and methods that were not implemented in the base class.

Figure4.38 contains a subset of the implementation of the PyInt class. By inherit-
ing from PyObject, PyInt objects get everything defined in PyObject and everything
defined in PyInt. The instance variables of PyObject are available to PyInt because
they are protected and as mentioned earlier that means subclasses may access the
instance variables of PyObject.

4.18 Constructors and Initilization Lists

Every class must have a constructor. A constructor is called when an object is created
to initialize instance variables of the object being created. Every class must have at
least one constructor and may have as many is desired. The correct constructor is
chosen based on the types of arguments passed to the constructor. Constructors are
not inherited so even if a base class defines a constructor, derived classes must also
define their own constructors.

Consider the code in Fig. 4.39. Five objects are created. The first two lines create
a PyObject called po and qo in the run-time stack. Both call the default constructor
of PyObject to initialize its contents. Line 3 creates a PyObject on the heap, again
calling the default constructor. The PyInt class has no default constructor. To create
a PyInt object, line 4 provides an integer to the constructor. The PyInt created on line
5 is created on the heap. Line 6 creates a PyInt on the run-time stack calling what is
called the copy constructor. A copy constructor is used in situations where a copy
needs to be made of an object. Line 6 of the code in Fig. 4.39 illustrates one time a
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Fig. 4.37 PyInt.h

copy constructor is called. Two other times a copy constructor gets called are when
a function is passed an object by value or when an object is returned by value from
a function.

When are copy constructors necessary?Always! However, C++ provides a default
copy constructor for every class that just bit-wise copies the original object. The
PyObject class does define a copy constructor, but there is one anyway. So when
must a class explicitly define a copy constructor? Well, when a bit-wise copy of an
object won’t suffice. This happens in cases where an object is pointing at mutable
data. If a copy ismadewith the default copy constructor, then two objects are pointing
at the same mutable data. In that case, the class needs to define a copy constructor.
The PyInt class does not need a copy constructor, but one is defined anyway. It turns
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Fig. 4.38 PyInt.cpp
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Fig. 4.39 Object construction

out that CoCo doesn’t need any copy constructors except possible in the stack class
template that is discussed a little later in the chapter.

When a constructor is implemented in C++ an initialization list will be executed
first, before any of the body of the constructor is evaluated. The PyInt class uses an
initialization list in its constructor. Line 12 of Fig. 4.38 is where the constructor for
the PyInt class starts. On line 12 the initialization list begins after the colon. A list of
initializations, separated by commas, can appear after the colon. Each initialization
is an instance variable, followed by a left paren, then a value, and a right paren.When
using inheritance, the first initialization should be a call to the base class constructor
to initialize the base class’ part of the object. Every PyInt is a PyObject. That means
we should first initialize the PyObject part of the PyInt object. Then we go on to
construct the rest of the object with lines 13–16, including the omitted lines. These
initialization lists will chain together when there is an inheritance tree. For instance,
Fig. 4.40 shows the PyType constructor which calls the PyCallable constructor. In
turn the PyCallable class inherits from PyObject and calls the PyObject constructor
in its initialization list.

Lines 18–19 in Fig. 4.38 contain the copy constructor code for the PyInt class
declared in Fig. 4.37. Line 18 calls the PyInt constructor in its initialization list. This
is important because lines 14–16 (and the omitted lines) add methods to the PyInt
method dictionary. Without the call to the constructor in the copy constructor the
dictionary would not get initialized.

Fig. 4.40 PyType constructor
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4.19 Polymorphism

The word poly is Latin for many and morph means to change from one form to an-
other. So, polymorphism means to have many forms. In object-oriented languages,
polymorphism means that when calling a function or method, the right method or
function gets called. In the section on operator overloading we encountered para-
metric polymorphism meaning polymorphism based on the types of arguments to a
function.

Themethods of PyObject are available for the PyInt class exceptwhen overridden.
There are some overridden methods in PyInt like toString for instance. We say that
PyInt overrides the toString implementation. What that means exactly depends on
the how the method is declared.

Consider the code in Fig. 4.41. What happens when this code is executed? Is “6”
printed or does “PyObject()” print? A PyInt object is created, but a pointer of type
PyObject* points to the object. So when toString is called, which one gets executed?

The answer depends on if the toStringmethod is virtual or not. If the method is not
declared to be virtual, then the code in Fig. 4.41 calls the PyObject toString method
and “PyObject()” is returned. By declaring the method to be virtual, polymorphism
works and the “6” is returned from the PyInt toString method.

In C++ you get to decide if polymorphism should work or not. For polymorphism
to work there is one extra lookup of a virtual function table in the object. So the
object is consulted first to find the correct method to call. Even though the pointer is
of type PyObject*, the object is a PyInt and therefore the virtual function table for
PyInt is consulted to find the PyInt toString method.

If you consult Fig. 4.37, the PyInt.h header file, you won’t see any mention of the
toString method being virtual. If you look in Fig. 4.35 you will see that the toString
method is declared to be virtual there. Once a method is declared virtual in a base
class, it is always virtual in all derived classes so it isn’t necessary to declare toString
to be virtual in the PyInt.h header file. This is because once a method is added to
the virtual function table, it cannot be removed without changing all the offsets of
virtual function pointers within the virtual function table.

In Java all methods are virtual because it is very rare that you wouldn’t want
polymorphism to work. In Python polymorphism always works because Python is
not a statically typed language. Lookup of all methods is a run-time issue. In fact,
because of this, the only reason for inheritance in Python is for code re-use. It was
mentioned earlier in this chapter there were two purposes for inheritance: code re-
use and establishing an is-a relationship. This is actually only true in statically typed
languages. Python, being dynamically typed has no need for inheritance to establish
an is-a relationship. This is because polymorphism alreadyworks in Python by virtue
of all methods being looked up as they are called.

Fig. 4.41 Polymorphism
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4.20 Abstract Classes

The purpose of using inheritance is code re-use and creating an is-a relationship
between classes. Code re-use can sometimes occur between similar classes if a class
hierarchy is built. Sometimes the is-a relationship can be useful when polymorphism
is put to use (see the previous section). In the CoCo implementation the PyObject
class is the base class of many of the other classes. However, a subset of those classes
represent objects that can be called. In Python the int type is called when we write
int(“6”). In the CoCo implementation this means that the PyType class should be
callable. But, not every object is callable. It makes no sense to “call” a 6 for instance.

To implement the concept of calling an object in CoCo a class called PyCallable
was created. The PyCallable class has a method named _ _call_ _ that can be invoked
inC++ to implement a call inCoCo.ThePyType class and several other classes inherit
from PyCallable to get this _ _call_ _ method definition.

Neither Python or CoCo have any idea what a PyCallable object is and one should
never be created. The class was created solely for code re-use to add the method
_ _call_ _ as amagicmethod to the classes that inherit from it.We say that PyCallable
is anabstract base class.Abstract classes are notmeant to be used for creating objects.
They are there solely for code re-use and the is-a relationship that they provide. The
primary purpose of an abstract base class is to provide polymorphic behavior or
code re-use to a subset of classes in a class hierarchy. If a programmer tried to create
a PyCallable object, C++ would not be able to compile the code.

Consider the code in Fig. 4.42. Lines 13–14 initialize the _ _call_ _ method to 0.
There is no implementation of this method in PyCallable.cpp. Initializing themethod
prototype to 0 tells C++ that this is an abstract class and prevents any instances from
being created.

Fig. 4.42 PyCallable.h
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Fig. 4.43 Three constructors

The code re-use provided by this type hierarchy is evident in the constructors
of PyType, PyCallable, and PyObject shown in Fig. 4.43. The PyObject constructor
adds the str and type magic methods for all objects. The PyCallable constructor
first calls the PyObject constructor in its initialization list, then adds the call magic
method for the callable subset of classes. Finally, the PyType constructor calls the
PyCallable constructor in its initialization list. This initialization lists cause the three
constructors to be chained together when creating PyType objects. Classes other than
PyType are callable as well and their constructors chain together in a similar fashion.

4.21 MemoryManagement

When using languages like Python and Java all objects are created on the heap and
a garbage collector reclaims unused space on the heap when objects are no longer
reachable from any reference. C++ programs have no garbage collector, although
somehavewritten libraries to do someconservative garbage collection. Since garbage
collection is not built into C++, the language supports explicitly deleting objects from
the heap.When the program terminates the entire heap is deleted so you don’t have to
reboot the computer to reclaim heap space. Each running program has its own heap
space. Memory management only comes into play when long running or memory
hungry programs don’t manage the heap well. In that case a program may terminate
abnormally when the program tries to allocate another object on the heap and no
heap space is left.

To delete an object from the heap you call the delete function on a pointer that is
pointing to space on the heap. Figure4.44 has an example of deleting an object on
the heap. Line 13 deletes the args vector.

Things get a little more interesting when deleting an object that points to other
objects that are on the heap. Consider the PyParser header file in Fig. 4.46. The
instance variable in is a pointer to a PyScanner. Figure4.45 contains the constructor
for the PyParser class.
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Fig. 4.44 The CALL_FUNCTION instruction

Fig. 4.45 Excerpt of PyParser.cpp

The constructor in Fig. 4.45 creates a PyScanner object on the heap and makes the
in instance variable point to it. Now, if the PyParser is later deleted, which it isn’t but
pretend that it is, then the PyScanner object’s space would be orphaned on the heap.
Since the pointer to the PyScanner would be lost, the space would not be reclaimed
until the program terminated. C++ provides what are called destructors just for this
memory management purpose. When an object is deleted its destructor is called.
When that object contains pointers to other values on the heap it is crucial that its
destructor delete those other heap allocated objects as well. When delete is called
on a PyParser object, just before it is deleted, its destructor is called. The destructor
appears on lines 6–11 of Fig. 4.45. A destructor looks like a default constructor with
a tilde (i.e. ~) just before the name. This code calls delete on the PyScanner object.
In this way, calls to destructors will cascade if necessary to delete all nested objects.
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Fig. 4.46 PyParser.h

It is always a good idea to use exception handling when deleting a nested object in
case it fails for some reason. Since it is just clean up code, if an exception occurs itmay
have been deleted by some other means. In that case there is no sense in terminating
the whole program. Just ignore it and go on. Exception handling is discussed in more
detail in Sect. 4.24.

4.22 Writing Templates

Generic classes, or just generics, are now a part of Java. Python, because it is dynam-
ically typed, has always supported generics. C++ has supported the same concept
for a long time. In C++ they are called templates. Templates and generics are nec-
essary in statically typed languages to support code re-use when it is impractical or
impossible to do via an inheritance hierarchy. Java has an inheritance hierarchy for
all classes because every class inherits from Object either directly or indirectly. C++
has no such hierarchy making templates all that more important. Without a built-in
hierarchy of classes, generic classes like maps and sets would not be possible in C++
without templates.
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Fig. 4.47 The printMap function

The standard template library includes many container classes. In addition, pro-
grammers can define their own templates. There are a couple different types of
templates: classes and functions. A template class definition is a little different from
a class definition in two regards. The template is parameterized by a type and a
template definition goes in a header file, including all the code.

CoCo has two template definitions, one for a stack and one for a function called
printMap. The printMap function is included in PyUtil.h and its definition is given
in Fig. 4.47. A template definition begins with the keyword template followed by the
types to be provided when the template is instantiated. Then, the rest of the function
is written using the template’s type formal parameter names as needed. To call a
templatized function you must provide the types on the function call. Line 10 of
Fig. 4.47 demonstrates how to call the printMap template function on a string to int
map called target.

CoCo also implements a stack template which is used as the operand stack in the
virtual machine. The entire implementation can be found in PyStack.h. The PyStack
class definition begins on line 8 of Fig. 4.48. This stack is implemented as a linked
list of stack elements. The class is parameterized by T, the type of values pushed and
popped from the stack.

To implement the stack as a linked list, the nodes in the link list need a class
definition too. The node definition is provided on lines 1–7 and is called _ _PyStack-
Element to try to avoid name clashes with other variables. Again, the element class
is a template.

Each method of the template class must also be defined and the rest of Fig. 4.48
contains a subset of the method definitions. The constructor initializes the linked
list pointer to NULL on line 23. Push takes care of creating an element, placing the
pushed data in the element, and adding the element to the beginning of the linked list.

The pop method handles popping the first available element from the linked list,
retrieving its data, and returning the data. The reason for line 44 may not be imme-
diately obvious. Read on to see why it is needed.

PyStack objects are a linked list of elements. When a PyStack is deleted from
the heap, it must delete all the elements that are pushed on the linked list. When the
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Fig. 4.48 PyStack template
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stack is destructed, on lines 25–31, the destructor calls delete on tos which is the first
element in the linked list. This in turn calls the destructor of the top stack element,
which is on lines 32–38. When a stack element with a non-null next pointer is found,
delete is in turn called on it. This sets up a chain reaction of deletes. Said another
way, deleting the first element of the linked list results in a recursive traversal of the
entire list of stack elements.

In the pop method, when one element is popped from the stack, its element should
also be deleted, but not the entire linked list. That is the purpose of line 44. Setting
the next pointer to NULL prevents the recursive delete traversal of the entire list,
which of course pop should not perform.

Templates or generics are necessary in statically typed languages when there is
no one inheritance hierarchy provided. While Java has a built-in inheritance hierar-
chy, generics were added to the language because without them programmers were
responsible for casting from Object to the specific type contained in each structure.
For instance consider a Stack class of Object in Java. If we pushed a PyInt onto such
a stack, when popping we would have to cast from Object back to PyObject (not the
Java Object class, but PyObject) to make use of it in a Java implementation of CoCo.
This was an inconvenience for programmers and as a result generics were added to
Java 5 in 2004, about 10years after Java was first released.

4.23 C++ Error Handling

Sometimes unexpected things happen in programs. Exceptions or errors occur and
many programming languages provide a means of dealing with these. In addition to
handling unexpected errors, this same mechanism can sometimes be put to use in
the implementation of expected behavior in a program.

In C++ there are two types of errors that can occur. Exceptions can be thrown
and signals can occur. An exception is a C++ concept. A signal is an error in a C
program. C++ can handle both. The following two sections describe how both are
used and dealt with in a program.

4.24 Exception Handling

C++ can throw exceptions and catch them as in many languages. Sometimes excep-
tions are thrown in code not written by us but code we use. For instance, indexing
beyond the end of a vector. Other times we may wish to throw an exception. In C++
literally any type of value can be thrown.

Figure4.49 shows how an object called a PyException is thrown. This code was
taken from the PyRange.cpp module. When indexOf is called beyond the end of a
range object, CoCo throws a PyException object with a value of stop iteration as
shown in Fig. 4.49.
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Fig. 4.49 Throwing an exception

Exceptions that are thrown can be caught and this exception is caught in
PyFrame.cpp in the FOR_ITER instruction. The code for this appears in Fig. 4.50.
To catch an exception it must be thrown in a try block or in some code called from
a try block. Then the type of value caught in the catch must match the type of value
thrown.

Figures4.49 and 4.50 demonstrate how exception handling can be used to imple-
ment iteration within the CoCo interpreter. When the end of an iteration is reached, a
stop iteration exception is thrown and when caught it signals the end of the iteration.

Fig. 4.50 Catching an exception
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Exception handling is a means of handling conditions with a program, whether
planned or unplanned. C++ programs can throw and/or catch exceptions as needed.
However some problems, like division by zero errors, do not surface as exceptions.
They are signaled instead which is the topic of the next section.

4.25 Signals

The C version of exception handling is signal handling. C programs can generate
signals, but it is more common to put a signal handler in place to handle signals
generated by the operating system. Figure4.51 contains an excerpt of the code from
main.cpp where a signal handler is implemented and is installed in main.

There are several types of signals and the code in Fig. 4.51 is written to catch
all of the signals defined in the C standard. The constant signal types are defined
in an include called signal.h. When a signal is generated the program immediately
jumps to the signal handler passing it the signal value that was generated. The signal
handler usually is written to report some type of error and then terminates. The signal
handler presented in Fig. 4.51 does that. It prints a traceback of the program and then
terminates.

4.26 CoCo Components

Earlier in this chapter several small parts of the CoCo virtual machine were intro-
duced. This section of the chapter covers the design and implementation of CoCo.
There are two major components to CoCo as shown in Fig. 4.52; the parser which
reads the source program, and the bytecode interpreter which executes the program.
This section of the text provides details about how these components are implemented
along with a description of the execution model used by the bytecode interpreter.

CoCo starts by creating a parser, which in turn creates a scanner, to read and parse
the input file. Each function description found in a CASM program corresponds to a
PyCode object created internally in CoCo. The list of PyCode objects is passed off
to the bytecode interpreter which begins by creating a PyFunction object for each
top-level function. Any nested functions are initially ignored.

When a PyFunction object is called by the bytecode interpreter, a PyFrame object
is created. Each call of a function results in a frame being created. The instruc-
tion interpreter is contained within a method called execute in the PyFrame object.
Executing a frame has the same effect as pushing the frame onto the run-time stack.
When execute returns, it effectively pops the frame from the run-time stack. In this
way, the C++ run-time stack is the run-time stack for the bytecode interpreter. The
rest of this chapter dives into a bit more detail about each of these components and
how bytecode interpretation works.
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Fig. 4.51 Signal handling

4.26.1 The CoCo Scanner

The grammar for CASM files is given in Chap.9. This grammar is LL(1) and there-
fore is easily used to implement a top-down or recursive descent parser. Chapter2
introduced top-down parsing. This chapter examines an actual C++ implementation
of a top-down or recursive descent parser.

When the parser is constructed, it first creates a scanner to read the tokens of
the language. The PyScanner object is written as a finite state machine which runs

http://dx.doi.org/10.1007/978-3-319-13314-0_9
http://dx.doi.org/10.1007/978-3-319-13314-0_2
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Fig. 4.52 The CoCo virtual machine

when the getToken method is called on the scanner. Figure4.53 contains the class
declaration for the scanner. The putBackToken method is capable of putting back one
token which is used by the parser when it has to look ahead one token to determine
its next action.

The scanner reads from a stream, which in the case of CoCo is a input file stream.
The scanner also keeps track of its position within the file so each token can carry
along the position where it was found in the input file.

The scanner is an implementation of a finite state machine. The graph for the
machine is provided in Fig. 4.54. The start state is 0 as shown in the figure. There
are several things to take note of in the finite state machine. First, identifiers are
recognized by state 1 and are limited to letters and digits where the first character is a
letter. Underscore characters and @ characters are considered letters by the scanner
so tokens like @x_1 are recognized as identifiers by CoCo even though that is an
illegal identifier in Python.

State 2 recognizes integers. State 5 recognizes floating point numbers which must
have a decimal point. Floating point notation is not accepted by CoCo.
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Fig. 4.53 PyScanner.h

Fig. 4.54 The CoCo scanner FSM

States 6 and 7 cheat a little bit in recognizing strings. They keep reading until
a single or double quote is found to end the string. However, strings cannot have a
quote or double quote in them as they are defined. For instance, the string ‘how’s it
going?’ is not allowed because there is no escape character implemented in CoCo
and the second quote would end the string.

The entire implementation of the finite state machine can be found in PyScan-
ner.cpp with an excerpt of the code appearing in Fig. 4.55.
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Fig. 4.55 PyScanner.cpp
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The input stream contains a method to put back the last character which is used
by the scanner code towards the end of the finite state machine loop, which is not
shown here. The last character must be put back because when a token is returned
because the last character is not a part of that token. Consider state 1 for example.
The finite state machine remains in state 1 as long as the character is still a letter
or a digit. When it is neither, the foundOne variable is set to true, terminating the
loop. But, that last character may be part of the next token and so is put back before
returning.

Just before getToken returns a token, the token to be returned is saved. This is used
by the putBackToken method. If the last token is put back then needToken is simply
set to false. When getToken is called, lines 14–16 check to see if needToken is false
and if so return the token that was put back by the putBackToken method. By saving
the token before it is returned the last token is always remembered in case it needs
to be returned again.

4.26.2 The CoCo Parser

The tokens of aCASMfile are read by the parser and parsed according to the grammar
rules in Chap.9. Each BNF non-terminal corresponds to one function in the parser.
The parser returns an abstract syntax tree representing the CASM program. In this
implementation, the abstract syntax tree is a vector of PyCode objects. Figure4.56
contains the class declaration for the parser.

Each method of the parser corresponds to a non-terminal of the grammar. The
implementation of each method is determined by the right hand sides of its rules.
The entire parser implementation is in PyParser.cpp. Figure4.57 contains an excerpt
of this code.

Examining the rules for FunctionList, FunDef, and ConstPart shed some light on
the implementations of the methods in Fig. 4.57.

<FunctionList> ::= <FunDef> <FunctionList> | <null>

<FunDef> ::= Function colon Identifier slash Integer <FunctionList> <ConstPart> <LocalsPart>

<FreeVarsPart> <CellVarsPart> <GlobalsPart> <BodyPart>

<ConstPart> ::= <null> | Constants colon <ValueList>

Starting with the FunctionList non-terminal, its rules say that either it is empty
(i.e. <null>) or it is a FunDef followed by a FunctionList. How do we know which
rule to follow? The answer can be found by looking ahead one token. If we examine
the FunDef rule, it must start with the keyword Function and that should be the next
token to be read in the FunctionList implementation. To determine what to do we
get the next token in line 2 of Fig. 4.57, put it back right away, and check to see if it
was a Function keyword. If it was, then the first rule is executed by calling FunDef
followed by FunctionList. If Function is not the next token, then we return the vector
passed to the method.

Why is a vector of PyCode pointers passed to the FunctionList method? This
vector is the abstract syntax tree “so far”, as it has been read up to this point in

http://dx.doi.org/10.1007/978-3-319-13314-0_9
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Fig. 4.56 PyParser.h

the parser. The FunctionList method adds to that vector if it finds another function
definition.

The FunDef method has only one rule to follow. It is responsible for building a
PyCode object to return to the FunctionList method. When FunDef is called, we
have already checked that the first token is the keyword Function so lines 13–14
could be omitted. The rest of the method gets tokens, checks them to see if they
are the expected tokens, and calls other methods of the parser to read the rest of the
function definition.

Lines 28–30 demonstrate how a string can be converted to an integer. Line 29
guarantees an exceptionwill be generated if the number does not convert successfully.
Line 30 does the actual conversion. The istringstream class is defined in the sstream
header file and is provided by C++. It is an input stream over a string and is very
useful in converting from strings to other types of values.

The ConstPart method has two rules to follow, like the FunctionList method.
Again, it must get a token to determine which rule to follow. If the next token is
not Constants, then the empty rule is used and the ConstPart method returns an
empty vector. Otherwise, it returns a vector of the constants used in the function.
Each constant string is used to build a PyObject value for that constant. The vector
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Fig. 4.57 PyParser.cpp
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of nestedFunctions is passed to the ConstPart method because a nested function
is itself a constant value stored in a PyCode object. When a constant like code(g)
appears in the list of constants it tells the parser to look up the code for it in the list
of nested functions passed to the ConstPart method.

The code excerpt in Fig. 4.57 demonstrates that the functions of the parser are
straightforward implementations of the rules in the grammar. Once in a while a
lookahead token is needed to determine which rule to follow, but otherwise the parser
gets tokens when required and calls other nonterminal methods when indicated by
the rule. The trickiest part of writing the parser is probably determining what should
be returned. This is dictated by the information that is required in the abstract syntax
tree which is determined by the intended use of the information in the source file.

4.26.3 The Assembler

Before CoCo can execute the code in a function, all labels must be converted to target
addresses in the instructions. Labelsmake no sense to the bytecode interpreter. Labels
are a convenience for programmers. The assembly phase looks for labels and replaces
any instruction jump label with the address to which it corresponds. For instance,
consider CoCo program in Fig. 4.58. The label00 identifies the instruction at offset
11 in the main function. The label01 maps to offset 18 and label02 maps to offset
19. The instructions on line 14, 17, and 23 need to get the offset, not the label, of
their intended targets. This is the job of the assembler.

The assembler is actually simple enough it is part of the parser code when the
body part of a function is parsed. There are two parts to it utilizing an unordered_map
to remember and then update the target addresses in the code.

The code for the assembler is contained in two of the parser methods, the La-
beledInstruction method and the BodyPart method. The grammar rules surrounding
this code are provided here.

<BodyPart> ::= BEGIN <InstructionList> END
<InstructionList> ::= <null> | <LabeledInstruction> <InstructionList>
<LabeledInstruction> ::= Identifier colon <LabeledInstruction> |

<Instruction> | <OpInstruction>
<Instruction> ::= STOP_CODE | NOP | POP_TOP | ROT_TWO | ROT_THREE | ...

The code for LabeledInstruction adds each discovered label to a map from labels
to integer offsets. Lines 30–36 of Fig. 4.59 do this when they discover an instruction
contains a label. If it does, then line 32 adds the label to the map making it point to
the offset, called index in the code.

Target locations are updated in the body of the function on lines 11–19 of Fig. 4.59.
If an instruction is found that uses a label as its target, the instruction is deleted and
a new instruction with identical opcode is created with the actual target address of
the instruction. Since instructions is a pointer to a vector, it is first dereferenced
using *instructions and then subscripted as in (*instructions)[i] when a location in
the vector is updated.
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Fig. 4.58 listiter.casm

4.26.4 ByteCode Objects

A PyByteCode object is created for each instruction found in a CASM function. The
class definition, given in Fig. 4.60, indicates there are three instance variables; the
opcode, operand, and label. Instructions either have a target label (before assembly)
or a target address in the operand field (after assembly) but not both at the same time.
Many instructions use the operand field for a value other than the target address.

Referring back to Fig. 4.58 each instruction between the BEGIN and END repre-
sents one PyByteCode object created by the parser.

The methods of this class are simple. Perhaps the most interesting part is the use
of an enum in header file. An enum is short for enumeration and represents a type
that can take on one of many constant values. The constant values start with 0 and
increment sequentially so STOP_CODE is a constant of the value 0, NOP represents
1, and so on.

C++ has continued to evolve and there is a relatively new standard called C++11,
which is short for the 2011 standard C++ revision. This revision to C++ creates
strongly typed enums. Prior to C++11 if a variable were declared of type PyOpCode
then either 0 or STOP_CODE could be used to assign the variable the value associated
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Fig. 4.59 Assembling a program

with STOP_CODE. C++11 strongly types enums so that STOP_CODE can be used
in an enum value assignment but 0 cannot. However, internally STOP_CODE is still
an integer and can be cast to an integer if desired.

Internally to the PyByteCode.cpp module two statically allocated maps and one
statically allocated array help in checking each instruction that is read by the parser.
The code in Fig. 4.61 appears at the top level (i.e. outside any functions) in the Py-
ByteCode.cppmodule. The three variablesOpCodeMap,ArgMap, and opcodeNames
are statically initialized and available to all code implemented in the module. Op-
CodeMap is used when an opcode name is found in a CASM file. It serves to verify
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Fig. 4.60 PyByteCode.h

it is a valid instruction and to provide a translation to its enumerated value. ArgMap
provides a count of the number of operands, either 0 or 1, allowed for the instruction.
Finally, the opcodeNames array serves to provide ameans to gomap from the opcode
value back to a string representing the instruction. Since STOP_CODE is really a
0, then opcodeNames[STOP_CODE] would yield the string “STOP_CODE”. Stat-
ically allocated variables can sometimes be useful when a constant map or array is
needed in a program.

4.26.5 Function Objects

The parser creates a PyCode object for each function found in a CASM file. A
PyFunction object contains a PyCode object and not much else. PyFunction objects
are created when a PyCode object is in scope. Closures were first introduced in
Chap.3. A closure is the code and environment in which a function is executed. The
environment refers to free variables referenced inside a function. A free variable
refers to a variable from the environment. Referring back to Fig. 3.12, the function g
refers to the value of x which is free in g because it is not assigned a value in g. The
value of x comes from the environment in which it is called. It comes from a call to
the function f.

http://dx.doi.org/10.1007/978-3-319-13314-0_3
http://dx.doi.org/10.1007/978-3-319-13314-0_3
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Fig. 4.61 Static initialization

A PyFunction object consists of its corresponding PyCode object and the envi-
ronment in which it executes. Every PyFunction object represents a closure in CoCo.
In the CoCo implementation, all top-level functions have no environment so the en-
vironment is null. Otherwise, the closure is formed by matching the free variables
of a PyCode object with the environment in which it is called.

In Fig. 4.62 the environment is passed to the PyFunction constructor on line 2.
The environment is a tuple of cell variables, one for each free variable. See Chap.3
for a description of cell variables or consult the Purcell class. Lines 6–8 go through
the free variables of the function and assign each of them to their corresponding cell
variable in the environment tuple, preparing the function for being called.

While aPyCodeobject cannot be calledbecause it has no environment, PyFunction
objects have a method called _ _call_ _. This is the magic method that is called when
the object, in this case a function, is called. The _ _call_ _ method creates a PyFrame

http://dx.doi.org/10.1007/978-3-319-13314-0_3
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Fig. 4.62 PyFunction.cpp

object, passing along the arguments to the function. The globals, constants, and
cellvars are used by the frame as the bytecode contained the code object is executed.
Line 18 of the code shows the execute method being called on the frame object. The
execute method returns the result of executing the function which is always a pointer
to a PyObject.

4.26.6 Frame Objects

The frame constructor (not shown here) sets up the local variable space, creating
any required cell variables when created. The block stack and operand stack are
also created when the frame is initialized. See chapter three for a description of the
purpose of these two stacks.

The primary purpose of a frame object is to execute code. Figure4.63 contains
an excerpt of the execute method. This code is run when a function is called. The
program counter, or PC is initialized to the 0 offset. Recall from Chap.3 the PC
always contains the address of the next instruction to be executed. Each function has
its own instruction address space starting at 0. Line 5 pushes a copy of the frame
onto a frame stack. This is used by signal processing which is discussed in more
detail later in this chapter. The rest of the execute method is a large while loop with
a switch statement inside. Each case of the switch handles one CASM instruction.

http://dx.doi.org/10.1007/978-3-319-13314-0_3
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Fig. 4.63 PyFrame.cpp

Operands are pushed and popped from the operand stack as detailed in the CoCo
instruction reference in Chap.9. For instance, the BINARY_SUBTRACT instruction
pops two operands from the operand stack and pushes its result.

http://dx.doi.org/10.1007/978-3-319-13314-0_9
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4.26.7 Exceptions andTracebacks

The execute method for PyFrame exits by one of two methods. Either the
RETURN_VALUE instruction is executed, or an exception occurs that is not han-
dled within this function. If an exception occurs, execution jumps to line 15 of the
code in Fig. 4.63. All thrown exceptions are PyException pointers, so the catch will
catch it. The block stack is popped until the address of an exception handling block
is found. Exception handling addresses are denoted by a negative value. The offset
in the code is the inverse of this negative value.

If an exception handler was found in the CoCo function’s code, the exception is
pushed onto the stack. Lines 34–36 seem a little strange until you remember that
CoCo maintains compatibility with Python 3.2 and disassembled Python code ex-
pects there to be three operands pushed onto the stack when an exception handler
begins executing. Line 38 causes execution to jump to the first instruction of the
exception handler. The CoCo exception handler also assumes there is another ex-
ception handling block pushed on the blockStack. This is not needed by CoCo, but
to maintain compatibility line 40 pushes an entry onto the block stack.

If no exception handler is found then line 43 adds the current frame to the excep-
tion’s traceback. The traceback is a list of all the PyFrame objects that are popped
until an exception handler is found. If no exception handler is found, control returns
to the main function where the traceback is printed.

There is one other way the execute method can terminate. It can terminate due
to a signal. C signals were discussed earlier in this chapter. When a signal is caught
execution jumps to the signal handler in main. The main module has a stack called
callStack that maintains a stack of all currently executing PyFrame objects. Line 5
of the code in Fig. 4.63 pushes a copy of the frame on the callStack before execution
begins. Bbefore a return instruction is executed the callStack is popped. If a signal
occurs all frame objects will be left on the callStack and the signal handler can then
print a traceback to provide details about which instruction was executing when the
signal occurred. In this way CoCo handles any kind of signal or exception that may
be thrown or signaled as a result of executing a CoCo program.

4.26.8 CallingMagic Methods

Python is an object-oriented language with no type hierarchy. However, the CoCo
implementation of Python’s virtualmachinemakes use of inheritance to reuse code in
the implementation and to create is-a relationships between the objects manipulated
by CoCo. That type hierarchy is provided in Fig. 4.68. The PyObject class is the class
from which all other CoCo virtual machine objects inherit.

Through inheritance every PyObject contains a dictionary called dict that maps
method names to method pointers. In Python, when a method is called the method
name is looked up in a dictionary or map and the code is located for the call. CoCo
mirrors this implementation. Python is actually written in C, not C++, so this method
lookup is necessary inC to emulate the object-oriented behavior of Python. InCoCo’s
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Fig. 4.64 PyObject.h

implementation it is necessary as well because method names are provided by the
assembly language programmer and are not looked up until the code executes. This
emulates the kind of dynamic run-time type checking that Python provides.

Figure4.64 contains twomethods that are defined on every type of value in CoCo.
Any object can be converted to a string and all objects have a typewithin the hierarchy
that can be retrieved.Notice that both_ _str_ _ and_ _type_ _have the same signature.
Every CoCo object implements methods with this signature and only this signature.
The _ _str_ _ and _ _type_ _ methods are calledmagicmethods by Python developers
because they get called automatically by certain operators. For instance, converting
a PyObject to a string calls the _ _str_ _ magic method to get a string representation
of the object. Calling type on an object results in calling the _ _type_ _ to get an
object’s type.

Magic methods are the operations that can be performed on objects within the
CoCo type hierarchy. The _ _str_ _ and _ _type_ _methods are added to the dictionary
of magic methods for all objects by the PyObject constructor. Figures4.65 and 4.66
show the magic methods that are supported by the PyObject and PyInt classes.
Subclasses of PyObject may add to the map of supported operations. For instance,
the PyInt object’s constructor adds a whole host of supported magic methods.

Each of these dictionary additions has a corresponding method that implements
the given operation. Because these methods are virtual, subclasses of PyObject auto-
matically get the PyObject version of _ _str_ _ and _ _type_ _ if they don’t implement

Fig. 4.65 PyObject’s constructor
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Fig. 4.66 PyInt’s constructor

Fig. 4.67 PyObject’s callMethod

their own. Otherwise, they automatically pick up the subclass implementation due
to polymorphism. The callMethod method of PyObject is responsible for calling all
magic methods. The code for callMethod is given a magic method name and the
arguments to pass on to the magic method.

The method name, called just name in the code in Fig. 4.67, is searched for in the
dictionary. If it is not found, an exception is thrown. Otherwise, mbr is made to point
at the code of the magic method. Line 9 calls this member function or method on
the object, returning whatever is returned from the call to the caller. The use of the
dictionary maps names, strings provided to CoCo, to the methods of objects within
CoCo. If the object does not have a magic method defined, the callMethod code
gracefully handles this by throwing an exception which will result in a traceback
being printed of the offending CALL_FUNCTION instruction.

4.26.9 The CoCoType Hierarchy

The diagram in Fig. 4.68 depicts most of the CoCo type hierarchy. The
PyIterators bubble in the figure actually represents all iterator classes including
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Fig. 4.68 CoCo type hierarchy

PyFunListIterator, PyListIterator, PyRangeIterator, PyStrIterator and PyTupleIter-
ator. The PyBuiltIns bubble represents PyBuiltInConcat, PyBuiltInFPrint, PyBuil-
tInInput, PyBuiltInIter, PyBuiltInLen, PyBuiltInPrint and PyBuiltInTPrint.

The classes PyFunList, PyFunListIterator, PyBuiltInFPrint, and PyBuiltInTPrint
are for objects that were added by CoCo and are not part of the standard Python
implementation. They will be covered in more detail in Chap.6.

Every type of object in Fig. 4.68 has an associated type. The type objects are
created in the main module. For instance, there is an instance of PyType called int
that is the type of all PyInt objects. This applies for all other types of objects within
the CoCo type system. What is the type of the int type you might ask? Well, its type.
All types within CoCo are of type type. Then what is the type of type you might
ask? It is type. The type of type is type. This is the way it works in Python as well as
shown here.

http://dx.doi.org/10.1007/978-3-319-13314-0_6
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Fig. 4.69 PyType _ _call_ _ method

MyComputer> python3.2
Python 3.2 (r32:88452, Feb 20 2011, 10:19:59)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more ...
>>> type(int)
<class ’type’>
>>> type(type(int))
<class ’type’>
>>>

The PyCallable class exists because it adds the magic method called _ _call_ _
to all subclasses of this class. The _ _call_ _ method means that the object itself can
be called. Any PyType object is an example of an object that can be called. When
int is called for instance, the _ _call_ _ method of int is invoked. Calling int(“6”)
for instance, calls the _ _call_ _ of the int type. In turn, the PyType _ _call_ _
method looks for a magic method on the string “6” called _ _int_ _ to call so the
string can be responsible for converting itself to an integer. The code for PyType’s _
_call_ _method is given in Fig. 4.69. PyType inherits from PyCallable, making types
callable in CoCo for type conversions. Almost all types have the same behavior for
the _ _call_ _ method given in Fig. 4.69.

Two types, theException type and the range type require special handling. Calling
Exception in Python results in creating a new exception, not converting the argument
to an exception. Likewise, calling range in Python does not convert its arguments
to a range. Rather, it creates a new PyRange object. The _ _call_ _ method of the
PyRangeType class is provided in Fig. 4.70.

4.27 Implementing Dictionaries

Python implements a type called dict, short for dictionary, which is a map from keys
to values. Dictionary objects are implemented as a hash table with O(1) get and
set methods. A dictionary is created by using the braces around an optional list of
key/value pairs. Line 2 of Fig. 4.71 shows an empty dictionary being created. Items
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Fig. 4.70 PyRangeType _ _call_ _ method
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Fig. 4.71 dicttest.py

are put in the dictionary using subscript notation. The key is the subscript and the
value is the assigned value at the key’s location. Line 3–5 provide an example of
storing key/value pairs in a dictionary. Line 11 uses subscript notation to look for a
value corresponding to a key.

Dictionaries differ from lists because the subscript can be almost any type of value.
Dictionaries are not limited to integer subscripts like lists. There are two requirements
of a dictionary key. The key must be hashable. Hashing refers to deriving an integer
from a value, as close to unique as possible. The hash value does not have to be
unique, but if the same hash value is always used for all keys, then the dictionary will
not have O(1) get and set methods. The other requirement of keys in a dictionary is
an equality test. There must be a way of determining if two keys are equal.

The dict datatype is not included in the CoCo implementation. This section de-
scribes the steps to add dictionary objects to the CoCo virtual machine. To work
through this section you must have access to a machine that can compile the CoCo
virtual machine code and the compiler must support the C++11 standard. If you have
already been able to compile the code then your compiler supports C++11 since it is
needed by other code in the virtual machine. When you have completed the steps in
this section the disassembled code from Fig. 4.71 will execute on CoCo producing
output similar to that of Python.



162 4 C++

4.27.1 Two New Classes

Two new classes are required to support dictionaries; the PyDict class and the Py-
DictIterarator class. The PyDict class resembles the PyList class in some ways. The
PyDict class must be declared and implemented, requiring a header file, PyDict.h,
and the implementation of the class in PyDict.cpp. An excerpt of the PyDict.h header
file is given in Fig. 4.72.

There are several methods to be implemented to support dictionaries. The
_ _getitem_ _ method is given a key in the args vector and returns the correponding
value. The _ _setitem_ _ maps a key to a value. The key is at index 0 in args and the
value is at args[1]. The _ _len_ _ method returns the size of the map. All of these
methods use the unordered_map called map and the methods of an unordered_map
are used in the implementation of the PyDict class.

Fig. 4.72 PyDict.h
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The declaration of the map instance variable may be the most important piece
of information in this implemenation. An unordered_map is part of the standard
template library in C++11. The parameters to the template are as follows.

unordered_map<key_type,value_type,hash_function_type,equals_function_type>

Adictionary inCoComaps PyObjects to PyObjectswhich are provided as pointers
to PyObjects. Each PyObject to be used as a key in the dictionary must be hashable.
Since C++ would have no idea how to create a unique (or almost unique) hash value
for a PyObject pointer, it is up to the programmer to provide his or her own. That’s
the purpose of the PyHash class. The PyHash class overrides the () operator, the
function call operator. Overriding it means the class is callable. This means the class
becomes something called a functor. A functor is a callable type. This is useful to the
unordered_map implementation because by calling the PyHash class, and passing it a
key PyObject pointer, the overloaded operator will provide a good hashing function.
How does it do this? By leaving the hash function up to the key object itself. The
implementation of the PyHash class is provided in Fig. 4.73.

Figure4.73 shows that themagicmethod _ _hash_ _ is called on the key argument.
This delegates the hashing function to the object being hashed. The const_cast in
Fig. 4.73 deserves a little explanation. The unordered_map template requires the hash
function to be a const functionwith a const argument. Thismeans the functionwill not
change the key at all and does not modify the hashing function either. Being const
means that the body of the function cannot call anything that even might change
the key argument. The callMethod function is not declared to be const because
sometimes it calls methods that could mutate the object it is called it. Consider
calling _ _setitem_ _ for instance on an object. It changes the object in some way
and therefore is not const.

In this particular instance, the _ _hash_ _magicmethodwill not change the object.
Calling _ _hash_ _ is const. So it is safe to cast away the constness of key so that
a non-const method can be called. That’s the purpose of the const_cast expression.
const_cast is a template and must be provided the type to cast away constness from.
Once const_cast is applied to the key the callMethod method can be called. Be careful
with this though. Casting away constness from a function that modifies a const value
has undefined results.

With this implementation of the PyHash function each type of object can deter-
mine its own hashing function by implementing the _ _hash_ _ magic method. For

Fig. 4.73 The PyHash implementation
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Fig. 4.74 The PyStr hash function

instance, the PyStr class might use the built-in C++ string hashing function as shown
in Fig. 4.74.

Many of the classes provided with C++ have hashing functions defined for them
already. The PyStr class can use the string hashing function by instantiating a function
template as a variable called hash_string, which is itself the string hashing function.
That hash_string function can be called in the _ _hash_ _ magic method of PyStr to
hash the string. Any type of object that could be used for a key in a dictionary must
implement the _ _hash_ _ method.

The unordered_map needs to determine if two keys are equal as part of the hash
table implementation. The unordered_map needs to know if the key it is looking
up matches one that it finds in the hash table. Again, this can’t be determined in a
reliable way by C++. If left to C++, the unordered map would check the two pointers
to see if they were equal or not, meaning the same pointer. Of course they would be
equal in that case, but other objects are equal as well. Instead, we can provide our
own equality test for the unordered_map. The implementation of the PyKeysEqual
class provides this equality test given in Fig. 4.75.

Again, the implementation in Fig. 4.75 delegates the equality test to the object in
question. The _ _eq_ _ magic method is called on the key to see if it matches the key
in the hash table.

Various methods of the PyDict class must be implemented and some of them
require iteration over the map instance variable. Consider the toString method for
instance in Fig. 4.76.

The code in the toString method of Fig. 4.76 declares an iterator called it to iterate
over the map. Two methods can be used to position the iterator. The begin method
positions the iterator at the first key/value pair of the map. The end method positions
the iterator just after the last pair.

Fig. 4.75 The PyKeysEqual implementation
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Fig. 4.76 The PyDict toString and _ _iter_ _ methods

The second method in Fig. 4.76 shows how an iterator is created over a dictionary.
PyDictIterator objects are created by passing the map to them to set up an iterator at
the beginning of the map. An understanding of the iterator code in Fig. 4.76 will aid
in the implementations of the keys and values methods as well as the PyDictIterator
class.

A lot can be learned by examining other iterator classes in CoCo. Of particular
interest may be the PyFunListIterator class. It does some of the same things that the
PyDictIterator should do as well.

4.27.2 Two NewTypes

In addition to the new classes, two new types must also be defined. The main module
contains a function called initTypes. The dict and dict_keyiterator types should be
added as two new types to this function. To do this, two new values for the PyTypeID
enum in PyType.h must also be defined; the PyDictType and PyDictKeyIteratorType
values. This is a relatively simple addition to the code, but must be tied together with
the implementations of the PyDict and PyDictIterator classes.
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Fig. 4.77 Initializing a dictionary

4.27.3 Two New Instructions

Finally, after disassembling the code in Fig. 4.71 one new instruction appears, the
BUILD_MAP instruction. This instruction creates an empty dictionary and pushes it
onto the operand stack.

Disassembling the code inFig. 4.77yields oneother instruction.TheSTORE_MAP
instruction expects three operands on the stack. The TOS element is a key, the TOS1
element is a value and the TOS2 element is a dictionary. The STORE_MAP instruc-
tion stores the key/value pair in the dictionary and leaves the dictionary on top of the
operand stack when it is completes.

4.28 Chapter Summary

C++ is a rich object-oriented languagewith great power available to programmers.As
mentioned in the beginning, with great power comes responsibility. C++ programs
must be written in an organized, disciplined way. This chapter has covered many
important aspects of C++ programming including how to organize and compile a
C++ project. Here is a list of important C++ concepts that were covered in this
chapter. C++ concepts covered in the chapter include …

• the macro processor, include files, and namespaces.
• I/O streams and their use in input and output and converting from strings to other
types.

• debugging C++ programs.
• separate compilation and the make facility.
• static type checking, how that makes programmingmore verbose, and how it helps
to reduce the time spent debugging.

• object creation on both the heap and the run-time stack.
• pointers and references in C++ and how they are used in programs.
• arrays and pointers and their similarities and differences in C++.
• functions and function prototypes.
• parameter passing in C++, especially pass by value and pass by reference.
• constness in C++ and why it is important.
• why header or include files are used for separate compilation.
• useof the standard template library including strings, vectors, andunordered_maps.
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• new C++ standards like C++11 and how to compile for these new C++ standards.
• operator overloading, inheritance, and polymorphism including parametric poly-
morphism.

• constructors, initialization lists, and their importance to inheritance.
• destructors and when they are necessary.
• how to write a template and of course how to use a template.
• exception handling and how to throw and catch exceptions in C++.
• signals, how they differ from exceptions, and how they are handled.

In addition, the CoCo implementation presented in this chapter has many im-
portant concepts applying to the study of programming languages and language
implementation. Programming language concepts covered in this chapter include…

• the implementation of scanner to tokenize a source program.
• implementing a top-down or recursive descent parser.
• organization of executable code into PyCode, PyFunction, and PyFrame objects.
• closures and how they relate to the CoCo implementation.
• tracebacks and how they are generated and can be used to debug code.
• the implementation of magic method calls in Python and CoCo.
• the CoCo type hierarchy.
• the dictionary implementation’s use of the unordered_map template.
• the use of two functors in the definition of the unordered_map datatype.

In spite of the length of this chapter, it only scratches the surface of what can be
accomplished in C++. There are many, many advanced application frameworks that
could be covered includingGUI programming,MPI parallel programming, computer
graphics using the OpenGL library, and many other application areas. However,
the chapter does provide a good introduction to the language and how to use it
solve interesting problems. Readers of this chapter should come away with a good
introduction to C++ programming that can be applied to future projects.

4.29 Review Questions

1. What is the number one problem that C/C++ programs must deal with? Why is
this not a problem for Java and Python programs?

2. How does the C++ compiler distinguish between macro processor statements
and C/C++ statements?

3. What is a namespace in C++? What is comparable to a namespace in Java? In
Python?

4. What is the default executable name for a compiled C++ program?
5. What is separate compilation and why is it important?
6. What does the make program do for programmers and how does it work?
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7. What does static type checking mean? Does C++ have it? Does Python have it?
Does Java have it?

8. Why would you never want to return a pointer into the run-time stack from a
function call?

9. What is a function prototype? Provide an example with only the essential parts.
10. What are the arguments given to main and what is returned from main in a C++

program?
11. How do references parameters differ from pointer parameters in C++ when

calling a function?
12. Why are constant references important in C++?
13. What is a template? How do you declare a vector in C++?
14. How do you append to the end of a vector in C++?
15. When operators are overloaded in C++, how does C++ find the right operator to

call? What is the term that describes this capability?
16. When implementing a class in C++ two filesmust bewritten.What is the purpose

of each file?
17. What are the two purposes of inheritance?
18. What is an initialization list? Why is it important to classes that use inheritance?
19. What is polymorphism? When are two times it is put to use in C++?
20. What is a destructor and when is it necessary to write one?
21. When writing a template, how does it start and why?
22. What is the difference between a signal and an exception in C++?
23. The CoCo scanner is based on a finite state machine. How is the finite state

machine implemented? What are the major constructs used by a finite state
machine?

24. Does the CoCo parser run bottom-up or top-down?
25. In CoCo how are a PyCode object and a PyFunction object related?
26. What is a traceback and why is it important?
27. What is the type(6) in CoCo and Python? How about the type(type(6))? How

about the type(type(type(6)))? Why isn’t it interesting to go any further?
28. Why would it be necessary to cast away constness in a function?
29. What is a functor and how do you create one in C++?
30. Hash values must be non-negative integral values. If you had to come up with a

hash function for PyInt, how might you write it? Write a hash function imple-
mentation for the PyInt class for your answer to this question.

4.30 Exercises

1. Alter the finite state machine of PyScanner.cpp to allow strings to include the
escape character. Any character following the backslash, or escape character,
in a string should be allowed. This project can be implemented by altering the
PyScanner.cpp class to allow the escape character to appear within a string. Hint:
Two extra states will be needed to implement this code. Note that CoCo will
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already allow pretty much any character, including tabs and newline characters,
to be included in a string constant. The only characters that pose problems are
single and double quotes. The escape character should not be included in the
constant string, only the character that follows the escape character.

2. Implement true division and floor division for floats in CoCo.Write a test program
to thoroughly test these new operations supported by floats. The test program and
the source code are both required for the solution to this problem. You may use
the disassembler to help generate your test program.

3. Alter the CoCo grammar to allow each line of a function’s code to be either a
CoCo instruction or a source code line. Any source code line should be preceeded
by a pound sign, a line number, and a colon followed by the text of the source
code line. A source code line would reflect a line from a source language other
than CoCo which was compiled to the CoCo assembly language. Then, when an
uncaught exception occurs in the CoCo program, the traceback should be printed
along with the source code line that caused the exception. This is a challenging
exercise and requires changes to the scanner, parser, internal storage of PyCode
objects, and traceback handling.

4. Add a dictionary object type to CoCo by following the description at the end of
this chapter. This project requires significant programming and there are pieces in
the last part of the chapter that are left out. However, the provided code samples
along with other similar code in the CoCo project provides enough details to
be able to complete it. When done, the successful project will be able to run
the disassembled code from Figs. 4.71 and 4.77. The output should appear to
be identical to the output produced by running the Python programs. However,
the order of keys may be different since dictionaries are implemented with an
unordered_map datatype.

5. Empty type calls produce empty results in Python but not in CoCo. For instance,
when int() is called in Python, the object 0 is created. In CoCo this produces an
error. Use Python to determine what should happen for all the empty type calls
that CoCo supports. Then modify CoCo so it will behave in a similar fashion.

6. When a list of strings is printed in Python it appears as something like [‘hello’,
‘world’]. However, when that same disassembled program is run in CoCo
it prints as [hello, world]. This is because Python distinguishes between call-
ing _ _str_ _ and calling _ _repr_ _. When a list is printed, the list is converted
to a string. However, the elements of the list are converted to their string repre-
sentation by Python, using the _ _repr_ _ magic method. Add _ _repr_ _ to all
object types in CoCo and modify toString methods so lists print correctly as in
Python. If you have completed the previous exercise, then the output from the
disassembled code in Fig. 4.77 can also be corrected by completing this exercise.

7. ModifyCoCo to allow instructions likeLOAD_FAST x in addition toLOAD_FAST
0. Currently, theLOAD_FASTandSTORE_FAST instructions insist on an integer
operand. If an identifier operand were provided then the identifier must exist
in the sequence of LOCALS. If it does not, the parser should signal an error.
Internally, the LOAD_FAST and STORE_FAST instructions should not change.
The conversion from identifier to integer should happen in the parser. Convert
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the LOAD_GLOBAL, and LOAD_ATTR instructions to allow either an identifier
or integer operand in the same manner. Do not try to modify the LOAD_CONST
instruction since it would be impossible to distinguish between indices and values
for constants.

This project is not too hard to implement. Labels are already converted to
offsets in the parser in theBodyPart method. That code has to bemodified slightly
to handle identifiers for things other than labels. The identifiers for the load and
store instructions can be converted to integer operands in the FunDef function.

8. Currently the assembler has three different load instructions including
LOAD_FAST, LOAD_GLOBAL, and LOAD_DEREF that all use indices into dif-
ferent lists as operands. Define a new pseudo LOAD instruction that lets you
specify an identifier for a value to load. For instance LOAD x would result in
scanning the LOCALS list for x. If x were found in the first position of the locals
list, then the LOAD x would be changed to a LOAD_FAST 0 instruction. Other-
wise, if x was not in the list of locals, then the GLOBALS would be scanned next
and if x were found there a LOAD_GLOBAL instruction would replace the LOAD
pseudo instruction. If x was not found in the globals, then the cellvars could be
scanned and finally the freevars. Create a STORE pseudo instruction as well for
the STORE_FAST and STORE_DEREF instructions.

Do not try to implement the pseudo instructions for any of the other load
or store instructions. For instance, it would be impossible to know whether a
LOAD referred to a LOAD_DEREF or a LOAD_CLOSURE if you tried to include
LOAD_CLOSURE in your pseudo instruction.

4.31 Solutions to Practice Problems

These are solutions to the practice problem s. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

4.31.1 Solution to Practice Problem4.1

All of the variables are declared in the main frame on the run-time stack. Any
variable that is declared inside main resides in its stack frame. The variables that
point to values on the run-time stack include all those that have the keyword new
in their initialization line. This is in, scan, parser, and args. The variables filename,
code, result, and ex might also point to values on the heap, but you can’t tell by
looking at just this code. You would have to look at what each of the function calls
returned or where the filename variable was initialized. In fact, all but filename do
point to values on the heap.

The variables indent, globals, and foundMain definitely do not point to values on
the heap since they are not pointers.



4.31 Solutions to Practice Problems 171

4.31.2 Solution to Practice Problem4.2

Here is the code. Notice when strcpy is called, no & is needed. This is because arrays
are already pointers to the array data. The strcpy function written here increments
the pointers. Array notation could be used as well to copy the array contents. Also
notice that in main the variable t must be declared to be bigger or the same size as s
or an exception could occur.

#include <iostream>
using namespace std;

void strcpy(char* target, char* source) {
while (*source!=0) {
*target = *source;
target++;
source++;

}
}
int main(int argc, char* argv[]) {

char s[] = "hello world!";
char t[20];
strcpy(t,s);
cout << t << endl;

}
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Chapter3 introduced assembly language which was a very prescriptive language.
Certain operands had to be on the operand stack before an instruction could be
executed. These details had to be dealt with even though the programmer was trying
to solve a bigger problem than how to execute the next instruction. This was dealt
with be learning some patterns of assembly language instructions that could be used
to solve bigger problems like implementing a loop. Of course, even writing a loop
is more prescriptive than trying to say compute the sum of some list of integers.

Chapter4 moved on to C++ where programming was less prescriptive. Most pro-
grammers learn to program imperatively first. Object-oriented languages are imper-
ative languages where objects are created and the states of objects are updated as
program execution proceeds. Thinking about maintaining and updating the states of
objects is a lot less prescriptive than thinking about which instruction to execute next.

This chapter introduces functional programming. Functional languages, like Stan-
dardML, obviously concentrate more heavily onwriting and calling functions. How-
ever, the term functional programming doesn’t say what functional programming
languages lack. Specifically, pure functional languages lack assignment statements
and iteration. Iteration relates to the ability to iterate or repeat code as in a loop of
some sort. It is impossible in a pure functional language to declare a variable that gets
updated as your program executes! If you think about it, if there are no variables, then
there isn’t any reason for a looping construct in the language. Iteration and variables
go hand in hand. But, how do you get any work done without variables? The primary
mode of programming in a functional language is through recursion.

Functional languages also contain a feature that other languages don’t. They al-
low functions to be passed to functions as parameters. We say that these functions
are higher-order. Higher-order functions take other functions as parameters and use
them. There are many useful higher order functions that are derived from common
patterns of computation. Particular instances of these patterns commonly have one
small difference between them. If that small difference is left as a function to be
defined later, we have one function that requires another function to complete its im-
plementation. Higher-order functions may be customized by providing some of their
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Fig. 5.1 Commutativity

functionality later. In some ways this is the functional equivalent of what inheritance
or interfaces provide us in object-oriented languages.

These two features, lack of variables and higher-order functions, drastically
change the way in which you think about programming. Programming recursively
takes some time to get used to, but in the end it is a very nice way to program.
Programming recursively is more declarative than prescriptive.

Writing imperative programs is prescriptive. When programming declaratively
we can focus on what we want to say about a problem instead of exactly how to
solve a problem.

But why would we want to get rid of variables in a programming language? The
problem is that variables oftenmake it hard to reason about our programs. Functional
languages are more mathematical in nature and have certain rules like commutativity
and associativity that they follow. Rules like associativity and commutativity can
make it easier to reason about our programs.

Practice 5.1 Is addition commutative in C++, Pascal, Java, or Python? Will
write(a+b) always produce the same value as write(b+a)? Consider the Pascal
program in Fig. 5.1. What does this program produce? What would it produce
if the statement were write(b+a())?

You can check your answer(s) in Section5.26.1.

5.1 ImperativeVersus Functional Programming

You are probably familiar with at least one imperative language. Languages like
C, C++, Java, Python, and Ruby are considered imperative languages because the
fundamental construct is the assignment statement. In each of these languages we
declare variables and assign them values, updating those variables as a program’s
execution progresses.
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Imperative languages are heavily influenced by the von Neumann architecture of
computers that includes a store and an program counter; the computation model has
control structures that iterate over instructions that make incremental modifications
of memory. Assignment of values to variables, for loops, and while loops are all
part of imperative languages. The principal operation is the assignment of values
to variables. Programs are statement oriented, and they carry out algorithms with
statement level sequential control. In other words, computing is done by side-effects.

Sometimes problems with imperative programs stem from these side-effects. It is
difficult to reason about a program that relies on side-effects. If we wish to reuse the
code of an imperative program then wemust be sure that the same conditions are true
before the reused code executes since imperative code relies on a certain machine
state. As programmers we sometimes forget which preconditions are required and
what postconditions result from executing a segment of code. That can lead to bugs
in our programs.

Functional languages are based on the mathematical concept of a function and do
not reflect the underlying von Neumann architecture. These languages are concerned
with data objects and values instead of variables. The principal operation is function
application.

Functions are treated as first-class objects that may be stored in data structures,
passed as parameters, and returned as function results. Primitive functions are gen-
erally supplied with the language implementation. Functional languages allow new
functions to be defined by the programmer. Functional program execution consists
of the evaluation of an expression, and sequential control is replaced by recursion.

There is no assignment statement. Values are communicated primarily through
the use of parameters and return values. Without variables, loop statements don’t
have a purpose and so they also don’t exist in pure functional languages.

Pure functional languages have no side-effects other than possibly reading some
input from the user. Scheme is a pure functional language. In general, functional
languages avoid or at least isolate code with side-effects. Even input and output op-
erations in functional languages do not update the state of variables within a program.

What is amazing is that it has been proven that exactly the same things can be
computed with functional languages as can be computed with imperative languages.
This is known because a Turing machine, the theoretical basis for imperative pro-
gramming and the design of the computer, have been proven equivalent in power to
the Lambda Calculus, the basis for all functional programming languages.

You might be surprised by the number and types of languages that support func-
tional programming. Of course, Standard ML was designed as a functional language
from the ground up, but languages like C++ and Python also support functional
programming. While both C++ and Python are also object-oriented imperative lan-
guages, they both support functional programming as well. Functional programming
does not depend so much on the language, but how you use the language. The rest
of this chapter will introduce the functional style of programming. It all started with
the lambda calculus, which is briefly considered next.
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5.2 The Lambda Calculus

All functional programming languages are derived either directly or indirectly from
the work of Alonzo Church and Stephen Kleene. The lambda calculus was defined
by Church and Kleene in the 1930s, before computers existed. At the time, mathe-
maticians were interested in formally expressing computation in some written form
other than English or other informal language. The lambda calculus was designed as
a way of expressing those things that can be computed. It is a very small, functional
programming language. In the lambda calculus, a function is a mapping from the
elements of a domain to the elements of a codomain given by a rule. Consider the
function cube(x) = x3. What is the value of the identifier cube in the definition
cube(x) = x3? Can this function be defined without giving it a name?

λx.x3 defines the function that maps each x in the domain to x3. We can say that
this definition or lambda abstraction, λx.x3, is the value bound to the identifier cube.
We say that x3 is the body of the lambda abstraction. Every lambda abstraction in
lambda notation is a function of one identifier. However, lambda expressions may
contain more than one identifier.

The expression y2 + x can be expressed as a lambda abstraction in one of two
ways:

λx.λy.y2 + x

λy.λx.y2 + x

In the first lambda abstraction the x is the first parameter to be supplied to the
expression. In the second lambda abstraction the y is the parameter to get a value
first. In either case, the abstraction is often abbreviated by throwing out the extra λ.
In abbreviated form the two abstractions would become λxy.y2 + x and λyx.y2 + x.

5.2.1 Normal Form

To say the lambda calculus, or any language, has a normal form means that each
expression that can be reduced has a simplest form. It means that we can reduce
more complex expressions to simpler expressions in some mechanical way. The
lambda calculus exhibits a property called confluence.

Confluence means that one or more reduction strategies (or intermixing them)
always leads to the same normal form of an expression, assuming the expression can
be reduced by the reduction strategy. This property of confluence was proven in the
Church-Rosser theorem.

Function application (i.e. calling a function) in lambda notation is written with
a lambda abstraction followed by the value to call the abstraction with. Such a
combination is called a redex.

To call λx.x3 with the value 2 for x we would write

(λx.x3)2

This combination of lambda abstraction and value is called a redex.
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Fig. 5.2 Normal order reduction

A redex is a lambda expression thatmaybe reduced.Typically a lambda expression
contains several redexes that may be chosen to be reduced. Function application is
left-associative meaning that if more than one redex is available at the same level of
parenthetical nesting, the left-most redexmust be reduced first. If the left-most outer-
most redex is always chosen for reduction first, the order of reduction is called normal
order reduction.When a redex is reduced by applying the lambda calculus equivalent
of function application it is called a β-reduction (pronounced beta-reduction).

The normal order reduction of (λxyz.xz(yz))(λx.x)(λxy.x) is given in Fig. 5.2. The
redex to be β-reduced at each step is underlined.

Practice 5.2 Another reduction strategy is called applicative order reduction.
Using this strategy, the left-most inner-most redex is always reduced first. Use
this strategy to reduce the expression in Fig. 5.2. Be sure to parenthesize your
expression first so you are sure that you left-associate redexes.

You can check your answer(s) in Section5.26.2.

In Practice Problem5.2 you should have reduced the lambda expression to the
same reduced lambda expression derived from the normal order reduction in Fig. 5.2.
If you didn’t, you did something wrong. If you want more experience with reducing
lambda expressions you may wish to consult a lambda expression interpreter. One
excellent interpreter was written by Peter Sestoft and is available on the web. It
is located at http://www.itu.dk/people/sestoft/lamreduce/. Be sure to read his help
page to get familiar with the syntax required for entering lambda expressions in his
interpreter. Also be aware that his interpreter does not understand math symbols like
+. Instead, you can use a p to represent addition if needed. Sestoft’s lambda calculus
interpreter is for the pure lambda calculus without knowledge of Mathematics or any
other language.

5.2.2 Problems with Applicative Order Reduction

Sometimes, applicative order reduction can lead to problems. For instance, consider
the expression (λx.y)((λx.xx)(λx.xx)).

http://www.itu.dk/people/sestoft/lamreduce/
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Practice 5.3 Reduce the expression (λx.y)((λx.xx)(λx.xx)) with both normal
order and applicative order reduction. Don’t spend too much time on this!

You can check your answer(s) in Section5.26.3.

This practice problem showswhy the definition of confluence includes the phrase,
assuming the expression can be reduced by the reduction strategy. Applicative order
may not always result in the expression being reduced. No fear, if that happens we are
free to use normal order reduction for a while since intermixing reduction strategies
will not affect whether we arrive at the normal form for the expression or not.

5.3 Getting Started with StandardML

Standard ML (or just SML) is a functional language based on Lisp which in turn is
based on the lambda calculus. Important ML features are listed below.

• SML is higher-order supporting functions as first-class values.
• It is strongly typed like Pascal, but more powerful since it supports polymorphic
type checking. With this strong type checking it is pretty infrequent that you need
to debug your code!! What a great thing!!!

• Exception handling is built into Standard ML. It provides a safe environment for
code development and execution. This means there are no traditional pointers in
ML. Pointers are handled like references in Java.

• Since there are no traditional pointers, garbage collection is implemented in the
ML system.

• Pattern-matching is provided for conveniently writing recursive functions.
• There are built-in advanced data structures like lists and recursive data structures.
• A library of commonly used functions and data structures is available called the

Basis Library.

There are several implementations of Standard ML. Standard ML of New Jersey and
Moscow ML are the most complete and certainly the most popular. There is also
a SML.NET implementation that targets the Microsoft.NET run-time library and
can be integrated with other .NET languages. There is an MLj implementation that
targets the Java Virtual Machine. Poly/ML is another implementation that includes
support for Windows programming. While many implementations exist, they all
support the same definition of SML. If you write a Standard ML program that runs
in one environment, it’ll run on any other implementation as long as you are not
using platform specific functions.

SMLhas been successfully used on a variety of large programming projects. It was
used to implement the entire TCP protocol on the FOX Project at Carnegie Mellon.
It has been used to implement server side scripting on web servers. It was originally
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designed as a language to write theorem provers and has been used extensively in
this area. It has been used in hardware design and verification. It has also been used
in programming languages research.

The rest of this chapter introduces SML. By the end of the chapter you should
understand andbe able to usemanyof the important features of the language. This text
is based on the StandardML of New Jersey implementation. You can download SML
of New Jersey from smlnj.org. SML of New Jersey is available for most platforms
so you should be able to find an implementation for your needs.

Once you’ve installed SML you can open a terminal window and start the in-
terpreter. Typing sml at the command-line will start the interactive mode of the
interpreter. Typing ctl-d will terminate the interpreter. You can type expressions and
programs directly in at the interpreter’s prompt or you can type them in a file and
use that file within SML. To do this you type the word use as follows:

Standard ML of New Jersey v110.59
- use "myfile.txt";

SML will take whatever you have typed in the file and evaluate it just as if you
had typed it directly into the interpreter.

The examples and practice problems in this chapter introduce SML. The following
sections introduce important aspects of SML and ready the reader to write more
complicated programs in the next chapter.

5.4 Expressions, Types, Structures, and Functions

Functional programming focuses on the evaluation of expressions. In SML you can
evaluate expressions right in the intepreter. When evaluating an expression you will
notice that type information is displayed along with the result of the expression
evaluation. The dialog below contains some interactive expression evaluations in the
SML interpreter.

In SML the identifier it is bound to the result of the last successfully evaluated
expression. This is convenient if youwant to use the result in a subsequent expression.
The last expression result can be referred to as it in the subsequent, interactively
entered expression.

The interaction presented in Fig. 5.3 contains a negative one written as ~1 in SML.
While a little unconventional, ~ is the unary negation operator in SML, distinguishing
it from the binary subtraction operator.

SML has a very rigorous type system. In fact, the type system for SML has been
proved sound. That means that any correctly typed program is guaranteed to be free
of type errors. SML is statically typed like C++ and Java. That means that all type
errors are detected at compile-time* and not at run-time. Robin Milner proved this
for Standard ML. ML is the only widely distributed language whose type system has
been formally defined and proven type correct.



180 5 Standard ML

Fig. 5.3 Interpreter interaction

While being formally defined and rigorous, the type system of ML is remarkably
flexible. It is polymorphic. We’ll see what this means for us soon. Many of the types
in ML are also implicitly expressed. In C++ and Java the type of every variable and
function must be declared. You may notice in Fig. 5.3 that the programmer never
entered any types for the expressions given there. In most cases Standard ML’s type
system frees the programmer from having to specify types in a program since they
are mostly determined automatically.

Youmay have also noticed that there is a type error in Fig. 5.3. ML is polymorphic
but it is also strongly typed. Since 5 is an integer in SML and 3.0 is a real, the two
cannot be multiplied together. If you should have the need to multiply an integer and
a real it can be done, but you must explicitly convert one of the types. The intepreter
interaction below show some code to multiply an integer and a real, producing a real
number.

- Real.fromInt(5) * 3.0;
val it = 15.0 : real
-

The integer 5 is converted to 5.0 by calling a function called fromInt in the structure
called Real. A Structure in SML is a grouping of functions and types. A structure is
like a module in Python or an include in C++. There are several structures that make
up the Basis Library for Standard ML. The basis library is available in SML when
the interpreter is started. The structures in the basis library include Bool, Int, Real,
Char, String, and List. Chapter10 or the website http://standardml.org/Basis contain
descriptions of many of these structures.

A function in SML takes one ormore arguments and returns a value. The signature
of a function is the type of the function. In other words, a function’s type is its
signature. The signature of the function fromInt in the Real structure is

val fromInt : int -> real

http://dx.doi.org/10.1007/978-3-319-13314-0_10
http://standardml.org/Basis
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This signature indicates that fromInt takes an int as an argument and returns a
real. From the name of the function, and the fact that it is part of the Real structure,
we can ascertain that it creates a real number from an int.

The type on the left side of the arrow (i.e. the ->) is the type of the arguments
given to the function. The type on the right side of the arrow is the type of the value
returned by the function. The fromInt function takes an int as an argument and returns
a real.

Practice 5.4 Write expressions that compute the values described below. Con-
sult the basis library in Chap.10 as needed.

1. Divide the integer bound to x by 6.
2. Multiply the integer x and the real number y giving the closest integer as

the result.
3. Divide the real number 6.3 into the real number bound to x.
4. Compute the remainder of dividing integer x by integer y.

You can check your answer(s) in Section5.26.4.

5.5 Recursive Functions

Recursion is the way to get things done in a functional language. Recursion happens
when a function calls itself. Because of the principle of referential transparency a
function must never call itself with the same arguments. If it were to do that, then
the function would do exactly what it did the last time, call itself with the same
arguments, which would then…. Well, you get the picture!

To spare ourselves from this problem we insist on two things happening. First,
every recursive function must have a base case. A base case is a simple subproblem
that we are trying to solve that doesn’t require recursion. We must write some code
that checks for the simple problem and simply returns the answer in that case.

The second rule of recursive functions requires them to call themselves on some
simpler or smaller subproblem. In some way each recursive call should take a step
toward the base case of the problem. If each recursive call advances toward the base
case then by the mathematical principle of induction we can conclude the function
will work for all values on which the function is defined! The trick is not to think
about this too hard. The recursive case is often referred to as the inductive case.

Writing functional programs is much more declarative than the prescriptive pro-
gramming of assembly and imperative programming in languages like C++, Python,
and Java.What this statement is really saying is that whenwriting recursive functions
we think much less about how it works and more about the structure of the data. This
leads to a few simple steps that can be applied to writing any recursive function.
Memorize these steps and practice them and you can write any recursive function.

http://dx.doi.org/10.1007/978-3-319-13314-0_10
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1. Decide what the function is named, what arguments are passed to it, and what the
function should return.

2. At least one of the arguments must get smaller each time. Most of the time it is
only one argument getting smaller. Decide which one that will be.

3. Write the function declaration, declaring the name, arguments types, and return
type if necessary.

4. Write a base case for the argument that you decided will get smaller. Pick the
smallest, simplest value that could be passed to the function and just return the
result for that base case.

5. The next step is the crucial step. You don’t write the next statement from left to
right. You write from the inside out at this point.

6. Make a recursive call to the function with a smaller value. For instance, if it is a
list you decided will get smaller, call the function with the tail of the list. If an
integer is the argument getting smaller, call the functionwith the integer argument
minus 1. Call the function with the required arguments and in particular with a
smaller value for the argument you decided would get smaller at each step.

7. Now, here’s a leap of faith. That call you made in the last step worked! It returned
the result that you expected for the arguments it was given. Use that result in
building the result for the original arguments passed to the function. At this step
it may be helpful to try a concrete example. Assume the recursive call worked on
the concrete example. What do you have to do with that result to get the result
you wanted for the initial call? Write code that uses the result in building the final
result for your concrete example. By considering a concrete example it will help
you see what computation is required to get your final result.

8. That’s it! Your function is complete and it will work if you stuck to these guide-
lines.

To define a function in SML we write the keyword fun followed by a function
name, parameters, an equal sign, and the body of the function. The syntax is quite
similar to defining functions in other languages. The main difference is the body of
the function. Instead of being a sequence of statements with variable assignment, the
body of the function will be an expression.

One important expression in SML is the if-then-else expression. This is not an if-
then-else statement. Instead, it’s an if-then-else expression.An if-then-else expression
gives one of two values and those values must be type compatible. The easiest way
to understand if-then-else expressions is to see one in practice.

The Babylonian method of computing square root of a number, x, is to start with
an arbitrary number as a guess. If guess2 = x we are done. If not, then let the next
guess be (guess + x/guess)/2.0. To write this as a recursive function we must find
a base case and be certain that our successive guesses will approach the base case.
Since the Babylonian method of finding a square root is a well-known algorithm, we
can be assured it will converge on the square root. The base case has to be written
so that when we get close enough, we will be done. Let’s let the close enough factor
be one millionth of the original number.
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Fig. 5.4 Square root

The SML code in Fig. 5.4 implements this function. Looking at the code there are
two things to observe. The base case comes first. If the guess is within one millionth
of the right value then the function returns the guess as the square root. The other
observation is the recursive call brings us closer to the solution.

Practice 5.5 n! is called the factorial of n. It is defined recursively as 0! = 1
and n! = n ∗ (n − 1)!. Write this as a recursive function in SML.

You can check your answer(s) in Section5.26.5.

Practice 5.6 TheFibonacci sequence is a sequence of numbers 0, 1, 1, 2, 3, 5, 8,
13,…Subsequent numbers in the sequence are derived by adding the previous
two numbers in the sequence together. This leads to a recursive definition of the
Fibonacci sequence. What is the recursive definition of Fibonacci’s sequence?
HINT: The first number in the sequence can be thought of as the zeroeth
element, then the first element is next and so on. So, fib(0) = 0. After arriving
at the definition, write a recursive SML function to find the (nth) element of
the sequence.

You can check your answer(s) in Section5.26.6.

5.6 Characters, Strings, and Lists

SML has separate types for characters and strings. A character literal begins with a
pound sign (i.e. #). The character is then surrounded by double quotes. So, the first
character in the alphabet is represented as #“a” in SML. There are several functions
available in the Char structure for testing and converting characters. The signature
of the functions in the Char structure is given in Chap.10.

Strings in SML are not simply sequences of characters as they are in some lan-
guages. A string in SML is its own primitive type. There are functions for converting
between strings and characters of course. You can consult Chap.10 for a list of those
functions. A string literal is text surrounded by double quotes. The backslash char-
acter (i.e. \) is an escape character in strings. This means to include a double quote

http://dx.doi.org/10.1007/978-3-319-13314-0_10
http://dx.doi.org/10.1007/978-3-319-13314-0_10
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in a string you can write ” as part of the string. A \n is the newline character in a
string and \t is the tab character as they are in many languages.

Perhaps the most powerful data structure in SML is the list. A list is polymorphic
meaning that there are many list types in SML. However, the list functions all work
on any type of list. Since it is impossible to determine all the types in SML (because
programmers may define their own types), a list’s type is parameterized by a type
variable. A list’s type is written as ‘a list. When the type of the list is known, the
type variable ‘a is replaced by the type it represents. So, a list of integers has type int
list. You may have figured this out already, but lists in SML must be homogeneous.
This means all the elements of a list must have the same type. This is not like
some languages, but there is a good reason for this restriction. Requiring lists to
be homogeneous makes static checking of the types in SML possible and the type
checker sound and complete.

A list is constructed in one of several ways. First, an empty list is represented as
nil or by the empty list (i.e. []). A list may be represented as a literal by putting a left
bracket and a right bracket around the list contents, as in [1,4,9,16]. A list may also
be constructed using the list constructor which is written ::, and pronounced cons.
In the functional language Lisp the same list construction operator is written cons
so it is called the cons operator by many functional programmers. The cons operator
takes an element on the left side of it and a list on the right side and constructs a
new list of its two arguments. A list may be constructed by concatenating two lists
together. List concatenation is represented with the @ symbol. The following are all
valid list constructions in SML.

• [1,4,9,16]
• 1::[4,9,16,25]
• #“a”::#“b”::[#“c”]
• 1::2::3::nil
• [“hello”,“how”]@[“are”,“you”]

The third example works because the :: constructor is right-associative. So the
right-most constructor is applied first, then the one to its left, and so on. The signatures
of the list constructor and some list functions are given in Fig. 5.5.

Fig. 5.5 Function signatures
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Practice 5.7The following are NOT valid list constructions in SML.Why not?
Can you fix them?

• #“a”::[“beautiful day”]
• “hi”::“there”
• [“how”,“are”]::“you”
• [1,2.0,3.5,4.2]
• 2@[3,4]
• []::3

You can check your answer(s) in Section5.26.7.

You can select elements from a list using the hd and tl functions. The hd (pro-
nounced head) of a list is the first element of the list. The tl is the tail or all the rest
of the elements of the list. Calling the hd or tl functions on the empty list will result
in an error. Using these two functions and recursion it is possible to access each
element of a list. The code in Fig. 5.6 illustrates a function called implode that takes
a list of characters as an argument and returns a string comprised of those characters.
So, implode([#“H”,#“e”,#“l”,#“l”,#“o”]) would yield “Hello”.

When writing a recursive function the trick is to not think too hard about how
it works. Think of the base case or cases and the recursive cases separately. So, in
Fig. 5.6 the base case is when the list is empty (since a list is the parameter). When
the list is empty, the string the function should return should also be empty.

The recursive case is when when the list is not empty. In that case, there is at least
one element in the list. If that is true then we can call hd to get the first element and
tl to get the rest of the list. The head of the list is a character and must be converted
to a string. The rest of the list is converted to a string by calling some function that
will convert a list to a string. This function is called implode! We can just assume it
will work. That is the nature of recursion. The trick, if there is one, is to trust that
recursion will work. Later, we will explore exactly why we can trust recursion.

Practice 5.8 Write a function called explode that will take a string as an argu-
ment and return a list of characters in the string. So, explode(“hi”) would yield
[#“h”,#“i”]. HINT: How do you get the first character of a string?

You can check your answer(s) in Section5.26.8.

Fig. 5.6 The implode function
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Fig. 5.7 Two list functions

The code in Fig. 5.7 contains a couple more examples of list functions. The length
function counts the number of elements in a list. It must be a list because the tl
function is used. The append function appends two lists by taking each element from
the first list and consing it onto the result of appending the rest of the first list to the
second list.

Practice 5.9 Use the append function to write reverse. The reverse function
reverses the elements of a list. Its signature is

reverse = fn: ’a list -> ’a list

You can check your answer(s) in Section5.26.9.

5.7 PatternMatching

Frequently, recursive functions rely on several recursive and several base cases. SML
includes a nice facility for handling these different cases in a recursive definition by
allowing pattern matching of the arguments to a function. Pattern matching works
with literal values like 0, the empty string, and the empty list. Generally, you can
use pattern matching if you would normally use equality to compare values. Real
numbers are not equality types. The real type only approximates real numbers. The
code in Fig. 5.4 shows how two real numbers are compared for equality.

You can also use constructors in patterns. So the list constructor ::works in patterns
as well. Functions like the append function (i.e. the infix@) and string concatenation
(i.e. ^) don’t work in patterns. These functions are not constructors of values and
cannot be efficiently or deterministically matched to patterns of arguments.

Append can be written using pattern-matching as shown in Fig. 5.8. The extra
parens around the recursive call to append are needed because the :: constructor has
higher precedence than function application.
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Fig. 5.8 Pattern matching

Practice 5.10 Rewrite reverse using pattern-matching.

You can check your answer(s) in Section5.26.10.

5.8 Tuples

A tuple type is a cross product of types. A two-tuple is a cross product of two types,
a three-tuple is a cross product of three types, and so on. (5,6) is a two-tuple of int *
int. The three tuple (5,6,“hi”) is of type int * int * string.

You might have noticed the signature of some of the functions in this chapter. For
instance, consider the signature of the append function. Its signature is

val append : ’a list * ’a list -> ’a list

This indicates it’s a function that takes as its argument an ‘a list * ‘a list tuple.
In fact, every function takes a single argument and returns a single value. The sole
argument might be a tuple of one or more values, but every function takes a single
argument as a parameter. The return value of a function may also be a tuple.

In many other languages we think of writing function application as the function
followed by a left paren, followed by comma separated arguments, followed by a
right paren. In Standard ML (and most functional languages) function application is
written as a function name followed by the value to which the function is applied.
This is just like function application in the lambda calculus. So, we can think of
calling a function with zero or more values, but in reality every function in ML is
passed on argument, which may be a tuple. In Standard ML rather than writing

append([1,2],[3])

it is more appropriate to write

append ([1,2],[3])

because function application is a function name followed by the value to which it
will be applied. In this case append is applied to a tuple of ‘a list * ‘a list.
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5.9 Let Expressions and Scope

Let expressions are simply syntax for binding a value to an identifier to later be
used in an expression. They are useful when you want to document your code by
assigning a meaningful name to a value. They can also be useful when you need the
same value more than once in a function definition. Rather than calling a function
twice to get the same value, you can call it once and bind the value to an identifier.
Then the identifier can be used as many times as the value is needed. This is more
efficient than calling a function multiple times with the same arguments.

Consider a function that computes the sum of the first n integers as shown in
Fig. 5.9. Let expressions define identifiers that are local to functions. The identifier
called sum in Fig. 5.9 is not visible outside the sumupto function definition.We say the
scope of sum is the body of the let expression (i.e. the expression given between the in
and end keywords). Let expressions allow us to declare identifiers with limited scope.

Limiting scope is an important aspect of any language. Function definitions also
limit scope in SML and most languages. The formal parameters of a function defin-
ition are not visible beyond the body of the function.

Binding values to identifiers should not be confused with variable assignment.
A binding of a value to an identifier is a one time operation. The identifier’s value
cannot be updated like a variable. A Practice problem will help to illustrate this.

Practice 5.11 What is the value of x at the various numbered points within the
following expression? Be careful, it’s not what you think it might be if you are
relying on your imperative understanding of code.

let val x = 10
in

(* 1. Value of x here? *)
let val x = x+1
in

(* 2. Value of x here? *)
x

end;
(* 3. Value of x here? *)
x

end

You can check your answer(s) in Section5.26.11.

Fig. 5.9 Let expression
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Bindings are not the same as variables. Bindings are made once and only once and
cannot be updated. Variables are meant to be updated as code progresses. Bindings
are an association between a value and an identifier that is not updated.

SML and many modern languages use static or lexical scope rules. This means
you can determine the scope of a variable by looking at the structure of the program
without considering its execution. The word lexical refers to the written word and
lexical or static scope refers to determining scope by looking at how the code is
written and not the execution of the code. Originally, LISP used dynamic scope
rules. To determine dynamic scope you must look at the bindings that were active
when the code being executed was called. The difference between dynamic and
static scope can be seen when functions may be nested in a language and may also
be passed as parameters or returned as function results.

The difference between dynamic and static scope can be observed in the program
in Fig. 5.10. In this program the function a, when called, declares a local binding of
x to 1 and returns the function b. When c, the result of calling a, is called it returns
a 1, the value of x in the environment where b was defined, not a 2. This result is
what most people expect to happen. It is static or lexical scope. The correct value
of x does not depend on the value of x when it was called, but the value where the
function b was written.

While static scope is used by many programming languages including Standard
ML, Python, Lisp, and Scheme, it is not used by all languages. The Emacs version of
Lisp uses dynamic scope and if the equivalent Lisp program for the code in Fig. 5.10
is evaluated in Emacs Lisp it will return a value of 2.

It is actually harder to implement static scope than dynamic scope. In dynamically
scoped languages when a function is returned as a value the return value can include
a pointer to the code of the function. When the function b from Fig. 5.10 is executed
in a dynamically scoped language, it simply looks in the current environment for
the value of x. To implement static scope, more than a pointer to the code is needed.
A pointer to the current environment is needed which contains the binding of x to
the value at the time the function was defined. This is needed so when the function
b is evaluated, the right x binding can be found. The combination of a pointer to a
function’s code and its environment is called a closure. Closures are used to represent

Fig. 5.10 Scope
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function values in statically scoped languages where functions may be returned as
results and nested functions may be defined. Chapters3 and4 introduced closures
and Fig. 5.10 provides an example in Standard ML showing why they are necesssary
for statically scoped languages.

5.10 Datatypes

The word datatype is often loosely used in computer science. In ML, a datatype is a
special kind of type. A datatype is a tagged structure that can be recursively defined.
This type is powerful in that you can define enumerated types with it and you can
define recursive data structures like lists and trees.

Datatypes are user-defined types and are generally recursively defined. There are
infinitely many datatypes in Standard ML. Defining a datatype is like creating a
class in C++ without any methods and only public data. In C/C++ we can create an
enumerated type by writing the declaration found in Fig. 5.11. This defines a type
called TokenType of eleven values: identifier is 0, keyword is 1, number is 2, etc.
You can declare a variable of this type as follows.

TokenType t = keyword;

However, until C++11 there was nothing preventing you from executing the state-
ment

t = 1; //this is the keyword value.

In this example, even though t is of type TokenType, it could be assigned an integer
with compilers prior to C++11. This is because the TokenType type was just another
name for the integer type in C++ prior the C++11. Assigning t to 1 didn’t bother C++
in the least. In fact, assigning t to 99 wouldn’t bother C++ either prior to C++11.
In Standard ML, and now in C++, we can’t use integers and datatypes (or enums)
interchangeably.

- datatype TokenType = Identifier | Keyword | Number |
Add | Sub | Times | Divide | LParen | RParen | EOF |
Unrecognized;

datatype TokenType = Identifier | Keyword | Number | …
- val x = Keyword;
x = Keyword : TokenType

Fig. 5.11 C++ enum type

http://dx.doi.org/10.1007/978-3-319-13314-0_3
http://dx.doi.org/10.1007/978-3-319-13314-0_4
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Datatypes allow programmers to define their own types. Normally, a datatype
includes other information. Datatypes are used to represent structured data of some
sort. By adding the keyword of, a datatype value can include a tuple of other types as
part of its definition. A datatype can represent any kind of recursive data structure.
That includes lists, trees, and other structures that are related to lists and trees. In
Fig. 5.12 we have a tree definition with a mix of unary and binary nodes.

Datatypes allow a programmer to write a recursive function that can traverse the
data given to it. Functions can use pattern matching to handle each case in a datatype
with a pattern match in the function.

In the datatype given in Fig. 5.12 the add’ value can be thought of as a node in
an AST that has two children, each of which are ASTs. The datatype is recursive
because it is defined in terms of itself. The code in Fig. 5.12 is the entire definition of
abstract syntax trees for expressions in a calculator language. Store nodes in the tree
store their value in the one memory location of the calculator. Recall nodes recall
the memory location of the calculator. The negate’ node represents unary negation
of the value we get when evaluating its child. So ~6 is a valid expression if we let
the tilde sign represent unary negation as it does in Standard ML.

The abstract syntax tree for ~6S + R is drawn graphically in Fig. 5.13. The value
add’(store’(negate’(integer’(6))), recall’) is the SML way of representing the AST
shown in Fig. 5.13. A function can be written to evaluate such an abstract syntax tree
based on the patterns in a value like this and this is done later in the chapter.

Fig. 5.12 An AST datatype

Fig. 5.13 An AST in SML
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You can use patternmatching on datatypes. For instance, to evaluate an expression
tree you can write a recursive function using pattern-matching. Each pattern that is
matched in such a function corresponds to processing one node in the tree. Each
subtree can be processed by a recursive call to the same function. In Fig. 5.14, the
parameter min is the value of the memory before evaluating the given node in the
abstract syntax tree. The value mout is the value of memory after evaluating the node
in the abstract syntax tree.

This example code in Fig. 5.14 illustrates how to use pattern-matching with
datatypes and patterns in a let construct. This is one way to write the evaluate func-
tion to evaluate the abstract syntax trees defined in Fig. 5.12. mout1 is the value of
memory after evaluating e1. This is passed to evaluating e2 as the value of the mem-
ory before evaluating e2. The value of memory after evaluating e2 is the value of
memory after evaluating the sum/difference of the two expressions. This pattern of
passing the memory through the evaluation of the tree is called single-threading the
memory in the computation.

Practice 5.12 Define a datatype for integer lists. A list is constructed of a head
and a tail. Sometimes this constructor is called cons. The empty list is also a
list and is usually called nil. However, in this practice problem, to distinguish
from the built-in nil you could call it nil’.

You can check your answer(s) in Section5.26.12.

Practice 5.13 Write a function called maxIntList that returns the maximum
integer found in one of the lists you just defined in Practice Problem5.12. You
can consult Chap.10 for help with finding the max of two integers.

You can check your answer(s) in Section5.26.13.

Fig. 5.14 Pattern matching function results

http://dx.doi.org/10.1007/978-3-319-13314-0_10
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5.11 Parameter Passing in StandardML

The types of data in Standard ML include integers, reals, characters, strings, tuples,
lists, and the user-defined datatypes presented in the last section. If you look at these
types in this chapter and in Chap.10 you may notice that there are no functions that
modify the existing data. The substring function defined on strings returns a new
string. In fact most functions on the types of data available in Standard ML return a
new value without mutating the arguments passed to them. Not all data in Standard
ML is immutable, but most of it is.

There is one type of data that ismutable in StandardML.A reference is a reference
to a value of a determined type. Referencesmay bemutated to enable the programmer
to program using the imperative style of programming. References are discussed in
more detail later in this chapter. The array type in Standard ML is a list of references
so by arrays are generally considered mutable data types as well, but only because
arrays are lists of references.

The absence of mutable data, except for references, has some impact on the imple-
mentation of the language. Values are passed by reference in StandardML. However,
the only time that matters is when a reference is passed as a parameter or one of the
few mutable types of objects is passed to a function. Otherwise, the immutability
of all data means that how data is passed to a function is irrelevant. This is nice for
programmers as they don’t have to be concerned about which functions mutate data
and which construct new data values. For most practical purposes, there is only one
operation that mutates data, the assignment operator (i.e. :=) and the only data it can
mutate is a reference. In addition, because most data is immutable and passed by
reference, parameters are passed efficiently in ML like constant references of C++.

5.12 Efficiency of Recursion

Once you get used to it, writing recursive functions isn’t too hard. In fact, it can be eas-
ier than writing iterative solutions. But, just because you find a recursive solution to a
problem, doesn’t mean it’s an effficient solution to a problem. Consider the Fibonacci
numbers. The recursive definition leads to a very straightforward recursive solution.
However, as it turns out, the simple recursive solution is anything but efficient. In
fact, given the definition in Fig. 5.15, fib(42) took 6s to compute on a 2.66GHz
MacBook Pro with 8GB of RAM. Fib(43) took a third longer, jumping to 9 s.

Fig. 5.15 The fib function

http://dx.doi.org/10.1007/978-3-319-13314-0_10
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Fig. 5.16 Calls to calculate fib(5)

The Fibonacci numbers can be computed with the function definition given in
Fig. 5.15. This is a very inefficient way of calculating the Fibonacci numbers. The
number of calls to fib increases exponentially with the size of n. This can be seen by
looking at a tree of the calls to fib as in Fig. 5.16. The number of calls required to
calculate fib(5) is 15. If we were to enumerate the calls required to calculate fib(6) it
would be everything in the fib(5) call tree plus the number of nodes in the fib(4) call
tree, 15 + 9 = 25. The number of calls grows exponentially.

Practice 5.14 One way of proving that the fib function in Fig. 5.15 is exponen-
tial is to show that the number of calls for fib(n) is bounded by two exponential
functions. In other words, there is an exponential function of n that will always
return less than the number of calls required to compute fib(n) and there is
another exponential function that always returns greater than the number of
required calls to compute fib(n) for some choice of starting n and all values
greater than it. If the number of calls to compute fib(n) lies in between then the
fib function must have exponential complexity. Find two exponential functions
of the form cm that bound the number of calls required to compute fib(n).

You can check your answer(s) in Section5.26.14.

From this analysis you have probably noticed that there is a lot of the same work
being done over and over again. It may be possible to eliminate a lot of this work
if we are smarter about the way we write the Fibonacci function. In fact it is. The
key to this efficient version of fib is to recognize that we can get the next value
in the sequence by adding together the previous two values. If we just carry along
two values, the current and the next value in the sequence, we can compute each
Fibonacci number with just one call. The code in Fig. 5.17 demonstrates how to do
this. With the new function, computation of fib(43) is instantaneous.
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Fig. 5.17 An efficient fib function

Using a helper function may lead to a better implementation in some situations.
In the case of the fib function, the fibhelper function turns an exponentially complex
function into a linear time function. The code in Fig. 5.17 uses a helper function
that is private to the fib function because we don’t want other programmers to call
the fibhelper function directly. It is meant to be used by the fib function. We also
wouldn’t want to have to remember how to call the fibhelper function each time we
called it. By hiding it in the fib function we can expose the same interface we had
with the original implementation, but implement a much more efficient function.

The helper function uses a pattern called an accumulator pattern. The helper
function makes use of an accumulator to reduce the amount of work that is done.
Thework is reduced because the function keeps track of the last two values computed
by the helper function to aid in computing the next number.

Practice 5.15 Consider the reverse function from Practice Problem5.10. The
append function is called n times, where n is the length of the list. How many
cons operations happen each time append is called? What is the overall com-
plexity of the reverse function?

You can check your answer(s) in Section5.26.15.

5.13 Tail Recursion

One criticism of functional programming centers on the heavy use of recursion that is
seen by some critics as overly inefficient. The problem is related to the use of caches
in modern processors. Depending on the block size of an instruction cache, the code
surrounding the currently executing codemay be readily available in the cache. How-
ever, when the instruction stream is interrupted by a call to a function, even the same
function, the cache may not contain the correct instructions. Retrieving instructions
from memory is much slower than finding them in the cache. However, cache sizes
continue to increase and even imperative languages like C++ and Java encourage
many calls to small functions or methods given their object-oriented nature. So, the
argument in favor of fewer function calls has certainly diminished in recent years.
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Fig. 5.18 Factorial

It is still the case that a function call takes longer than executing a simple loop.
When a function call ismade, extra instructions are executed to create a newactivation
record. In addition, in pipelined processors the pipeline is disrupted by function calls.
Standard ML of New Jersey, Scheme, and some other functional languages have a
mechanism where they optimize certain recursive functions by reducing the storage
on the run-time stack and eliminating calls. In certain cases, recursive calls can
be automatically transformed to code that can be executed using jump or branch
instructions. For this optimization to be possible, the recursive function must be tail
recursive. A tail recursive function is a function where the very last operation of the
function is the recursive call to itself.

The factorial function is presented in Fig. 5.18. Is factorial tail recursive? The
answer is no. Tail recursion happens when the very last thing done in a recursive
function is a call to itself. The last thing done in Fig. 5.18 is the multiplication.

When factorial 6 is invoked, activation records are needed for seven invocations
of the function, namely factorial 6 through factorial 0. Without each of these stack
frames, the local values of n, n=6 through n=0,will be lost so that themultiplication
at the end can not be carried out correctly.

At its deepest level of recursion all the information in the expression,

(6 ∗ (5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ (factorial0)))))))

is stored in the run-time execution stack.

Practice 5.16 Show the run-time execution stack at the point that factorial 0
is executing when the original call was factorial 6.

You can check your answer(s) in Section5.26.16.

The factorial function can be written to be tail recursive. The solution is to use a
technique similar to the fib function improvement made in Fig. 5.17. An accumulator
is added to the function definition. An accumulator is an extra parameter that can
be used to accumulate a value, much the way you would accumulate a value in
a loop. The accumulator value is initially given the identity of the operation used
to accumulate the value. In Fig. 5.19 the operation is multiplication. The identity
provided as the initial value is 1.

The function presented in Fig. 5.19 is the tail recursive version of the factorial
function. The tail recursive function is the tailfac helper function. Note that although
tailfac is recursive, there is no need to save it’s local environment when it calls itself
since no computation remains after the call. The result of the recursive call is simply
passed on as the result of the current function call. A function is tail recursive if its
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Fig. 5.19 Tail recursive factorial

recursive call is the last action that occurs during any particular invocation of the
function.

Practice 5.17 Use the accumulator pattern to devise a more efficient reverse
function. The append function is not used in the efficient reverse function.
HINT:What arewe trying to accumulate?What is the identity of that operation?

You can check your answer(s) in Section5.26.17.

5.14 Currying

A binary function, for example,+ or @, takes both of its arguments at the same time.
a+ bwill evaluate both a and b so that values can be passed to the addition operation.
There can be an advantage in having a binary function take its arguments one at a
time. Such a function is called curried after Haskell Curry. ML functions take their
parameters one at a time because all functions take exactly one argument. A curried
function takes one argument as well. However, that function of one parameter may
in turn return a function that takes a single argument. This is probably best illustrated
with an example. Here is a function that takes a pair of arguments as its input via a
single tuple.

- fun plus(a:int,b) = a+b;
val plus = fn : int * int -> int

The function plus takes one argument that just happens to be a tuple. Calling the
function means providing it a single tuple.

- plus (5,8);
val it = 13 : int

ML functions can be defined with what looks like more than one parameter:

- fun cplus (a:int) b = a+b;
val cplus = fn : int -> (int -> int )

Observe the signature of the function cplus. It appears to take two arguments, but
takes them one at a time. Actually, cplus takes only one argument. The cplus function
returns a function that takes the second argument. The second function has no name.
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- cplus 5 8;
val it = 13 : int

Function application is left associative. The parens below show the order of op-
erations.

- (cplus 5) 8;
val it = 13 : int

The result of (cplus 5) is a function that adds 5 to its argument.

- cplus 5;
val it = fn : int -> int

We can give this function a name.

- val add5 = cplus 5;
val add5 = fn : int -> int
- add5 8;
val it = 13 : int

The add5 function adds 5 to whatever might be passed to it.

Practice 5.18 Write a function that given an uncurried function of two argu-
ments will return a curried form of the function so that it takes its arguments
one at a time.

Write a function that given a curried function that takes two arguments one
at a time will return an uncurried version of the given function.

You can check your answer(s) in Section5.26.18.

Curried functions allow partial evaluation, a very interesting topic in functional
languages, but beyond the scope of this text. It should be noted that Standard ML
of New Jersey uses curried functions extensively in its implementation. Chapter10
contains many functions whose signatures reflect that they are curried.

5.15 Anonymous Functions

The beginning of this chapter describes the lambda calculus. In that section we
learned that functions can be characterized as first class objects. Functions can be
represented by a lambda abstraction and don’t have to be assigned a name. This is
also true in SML. Functions in SML don’t need names. The anonymous function
λxy.y2 + x can be represented in ML as

fn x => fn y => y*y + x;

The anonymous function can be applied to a value in the same way a named
function is applied to a value. Function application is always the function first,
followed by the value.

http://dx.doi.org/10.1007/978-3-319-13314-0_10
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- (fn x => fn y => y*y + x) 3 4;
val it = 19 : int

We can define a function by binding a lambda abstraction to an identifier:

- val f = fn x => fn y => y*y + x;
val f = fn: int -> int -> int
- f 3 4;
val it = 19 : int

This mechanism provides an alternative form for defining functions as long as
they are not recursive; in a val declaration, the identifier being defined is not visible
in the expression on the right side of the arrow. For recursive definitions a val rec
expression is required. To define a recursive function using the anonymous function
form you must use val rec to declare it.

- val rec fac = fn n => if n=0 then 1 else n*fac(n-1);
val fac = fn: int -> int
- fac 7;
val it = 5040:int

This val rec definition of a function is the way all functions are defined in SML.
The functional form used when the keyword fun is used to define a function is
translated into val rec form. The fun form of function definition is called syntactic
sugar. Syntactic sugar refers to another way ofwriting something that gets treated the
sameway in either case. Usually sugared forms are the nicerway to write something.

5.16 Higher-Order Functions

The unique feature of functional languages is that functions are treated as first-class
objects with the same rights as other objects, namely to be stored in data structures,
to be passed as a parameter, and to be returned as function results. Functions can be
bound to identifiers using the keywords fun, val, and val rec and may also be stored
in structures. These are examples of functions being treated as values.

- val fnlist = [fn (n) => 2*n, abs, ˜, fn (n) => n*n];
val fnlist = [fn,fn,fn,fn] : (int -> int) list

Notice each of these functions takes an int and returns an int. AnML function can
be defined to apply each of these functions to a number. The construction function
applies a list of functions to a value.

- fun construction nil n = nil
| construction (h::t) n = (h n)::(construction t n);

val construction = fn : (’a -> ’b) list -> ’a -> ’b list
- construction [op +, op *, fn (x,y) => x - y] (4,5);
val it = [9,20,˜1] : int list

Construction is based on a functional form found in FP, an early functional pro-
gramming language developed by JohnBackus. It illustrates the possibility of passing
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functions as arguments. Since functions are first-class objects in ML, they may be
stored in any sort of structure. It is possible to imagine an application for a stack of
functions or even a tree of functions.

A function is called higher-order if it takes a function as a parameter or returns a
function as its result. Higher-order functions are sometimes called functional forms
since they allow the construction of new functions from already defined functions.

The usefulness of functional programming comes from the use of functional forms
that allow the development of complex functions fromsimple functions using abstract
patterns. The construction function is one of these abstract patterns of computation.
These functional forms, or patterns of computation, appear over and over again in
programs. Programmers have recognized these patterns and have abstracted out the
details to arrive at several commonly used higher-order functions. The next sections
introduce several of these higher-order functions.

5.16.1 Composition

Composing two functions is a naturally higher-order operation that youhave probably
used in algrebra. Have you ever written something like f(g(x))? This operation can
be expressed in ML. In fact, ML has a built-in operator called o which represents
composition. This example code demonstrates how composition can be written and
used.

- fun compose f g x = f (g x);
val compose = fn : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b
- fun add1 n = n+1;
val add1 = fn : int -> int
- fun sqr n:int = n*n;
val sqr = fn : int -> int
- val incsqr = compose add1 sqr;
val incsqr = fn : int -> int
- val sqrinc = compose sqr add1;
val sqrinc = fn : int -> int

Observe that these two functions, incsqr and sqrinc, are defined without the use
of parameters.

- incsqr 5;
val it = 26 : int
- sqrinc 5;
val it = 36 : int

ML has a predefined infix function o that composes functions. Note that o is
uncurried.

- op o;
val it = fn : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b
- val incsqr = add1 o sqr;
val incsqr = fn : int -> int
- incsqr 5;
val it = 26 : int
- val sqrinc = op o(sqr,add1);
val sqrinc = fn : int -> int
- sqrinc 5;
val it = 36 : int
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5.16.2 Map

In SML, applying a function to every element in a list is calledmap and is predefined.
It takes a unary function and a list as arguments and applies the function to each
element of the list returning the list of results.

- map;
val it = fn : (’a -> ’b) -> ’a list -> ’b list
- map add1 [1,2,3];
val it = [2,3,4] : int list
- map (fn n => n*n - 1) [1,2,3,4,5];
val it = [0,3,8,15,24] : int list
- map (fn ls => "a"::ls) [["a","b"],["c"],["d","e","f"]];
val it = [["a","a","b"],["a","c"],["a","d","e","f"]] :

string list list
- map real [1,2,3,4,5];
val it = [1.0,2.0,3.0,4.0,5.0] : real list

The map function is predefined in the List structure, but is provided in Fig. 5.20
for your reference.

Practice 5.19 Describe the behavior (signatures and output) of these functions:

• map (map add1)
• (map map)

Invoking (map map) causes the type inference system of SML to report

stdIn:12.27-13.7 Warning: type vars not generalized
because of value restriction are instantiated to
dummy types (X1,X2,...)

This warning message is OK. It is telling you that to complete the type
inference for this expression, SMLhad to instantiate a type variable to a dummy
variable. When more type information is available, SML would not need to do
this. The warning message only applies to the specific case where you created
a function by invoking (map map). In the presence of more information the
type inference system will interpret the type correctly without any dummy
variables.

You can check your answer(s) in Section5.26.19.

Fig. 5.20 The map function
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5.16.3 Reduce or Foldright

Higher-order functions are developed by abstracting common patterns from pro-
grams. For example, consider the functions that find the sum or the product of a list
of integers. In this pattern the results of the previous invocation of the function are
used in a binary operation with the next value to be used in the computation.

In other words, to add up a list of values you start with either the first or last
element of the list and then add it together with the value next to it. Then you add
the result of that computation to the next value in the list and so on. When we start
with the end of the list and work our way backwards through the list the operation is
sometimes called foldr (i.e. foldright) or reduce.

- fun sum nil = 0
| sum ((h:int)::t) = h + sum t;

val sum = fn : int list -> int
- sum [1,2,3,4,5];
val it = 15 : int

- fun product nil = 1
| product ((h:int)::t) = h * product t;

val product = fn : int list -> int
- product [1,2,3,4,5];
val it = 120 : int

Each of these functions has the same pattern. If we abstract the common pattern
as a higher-order function we arrive at a common higher-order function called foldr.
foldr is an abbreviation for foldright. The foldr function keeps applying its function
to the result and the next item in the list.

- fun foldr f init nil = init
| foldr f init (h::t) = f(h, foldr f init t);

val foldr = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
- foldr op + 0 [1,2,3,4,5];
val it = 15 : int
- foldr op * 1 [1,2,3,4,5];
val it = 120 : int

Now sum and product can be defined in terms of reduce.

- val sumlist = List.foldr (op +) 0;
val sumlist = fn : int list -> int
- val mullist = List.foldr op * 1;
val mullist = fn : int list -> int
- sumlist [1,2,3,4,5];
val it = 15 : int
- mullist [1,2,3,4,5];
val it = 120 : int

SML includes two predefined functions that reduce a list, foldr and foldl which
stands for foldleft. They behave slightly differently.

- List.foldr;
val it = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
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- List.foldl;
val it = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
- fun abdiff (m,n:int) = abs(m-n);
val abdiff = fn : int * int -> int
- foldr abdiff 0 [1,2,3,4,5];
val it = 1 : int
- foldl abdiff 0 [1,2,3,4,5];
val it = 3 : int

Practice 5.20 How does foldl differ from foldr? Determine the difference by
looking at the example code in this section. Then, describe the result of these
functions invocations.

• foldr op :: nil ls
• foldr op @ nil ls

You can check your answer(s) in Section5.26.20.

5.16.4 Filter

Apredicate function is a function that takes a value and returns true or false depending
on the value. By passing a predicate function, it is possible to filter in only those
elements from a list that satisfy the predicate. This is a commonly used higher-order
function called filter. If we had to write filter ourselves, this is how it would be
written. This example also shows how it might be used.

- fun filter bfun nil = nil
| filter bfun (h::t) = if bfun h then h::filter bfun t

else filter bfun t;

val it = fn : (’a -> bool) -> ’a list -> ’a list
- even;
val it = fn : int -> bool
- filter even [1,2,3,4,5,6];
val it = [2,4,6] : int list
- filter (fn n => n > 3) [1,2,3,4,5,6];
val it = [4,5,6] : int list

Practice 5.21 Use filter to select numbers from a list that are

• divisible by 7
• greater than 10 or equal to zero

You can check your answer(s) in Section5.26.21.
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5.17 Continuation Passing Style

Continuation Passing Style (or CPS) is a way of writing functional programs where
control is made explicit. In other words, the continuation represents the remaining
work to be done. This style of writing code is interesting because the style is used in
the SML compiler. To understand cps it’s best to look at an example. Let’s consider
the len function for computing the length of a list.

- fun len nil = 0
| len (h::t) = 1+(len t);

val len = fn : ’a list -> int

To transform this to cps form we represent the rest of the computation explicitly
as a parameter called k. In this way, whenever we need the continuation of the
calculation, we can just write the identifier k. Here’s the cps form of len and an
example of calling it.

- fun cpslen nil k = k 0
| cpslen (h::t) k = cpslen t (fn v => (k (1 + v)));

val cpslen = fn : ’a list -> (int -> ’b) -> ’b
- cpslen [1,2,3] (fn v => v);
val it = 3 : int

Practice 5.22 Trace the execution of cpslen to see how it works and how the
continuation is used.

You can check your answer(s) in Section5.26.22.

Notice that the recursive call to cpslen is the last thing that is done. This function is
tail recursive.However, tail recursion elimination cannot be applied because the func-
tion returns a function and recursively calls itself with a function as a parameter. CPS
is still important because it can be optimized by a compiler. In addition, since control
flow is explicit (passed around as k), function calls can be implemented with jumps
and many of the jumps can be eliminated if the code is organized in the right way.

Eliminating calls and jumps is important since calls have the effect of interrupting
pipelines inRISCprocessors. Since functional languagesmake lots of calls, one of the
criticisms of functional languages is that they were inefficient. With the optimization
of CPS functions, functional languages get closer to being as efficient as imperative
languages. In addition, as cache sizes and processor speeds increase the performance
difference becomes less and less of an issue.

Practice 5.23 Write a function called depth that prints the longest path in a
binary tree. First create the datatype for a binary tree. You can use the Int.max
function in your solution, which returns the maximum of two integers.

First write a non-cps depth function, then write a cps cpsdepth function.
You can check your answer(s) in Section5.26.23.
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5.18 Input and Output

SML contains a TextIO structure as part of the basis library. The signature of the
functions in the TextIO structure is given in Chap.10. It is possible to read and write
strings to streams using this library of functions. The usual standard input, standard
output, and standard error streams are predefined. Here is an example of reading a
string from the keyboard. Explode is used on the string to show the vector type is
really the string type. It also shows how to print something to a stream.

- val s = TextIO.input(TextIO.stdIn);
hi there
val s = "hi there\n" : vector
- explode(s);
val it = [#"h",#"i",#" ",#"t",#"h",#"e",

#"r",#"e",#"\n"] : char list
- TextIO.output(TextIO.stdOut,sˆ"How are you!\n");
hi there
How are you!
- val it = () : unit

Since streams can be directed to files, the screen, or across the network, there
really isn’t much more to input and output in SML. Of course if you are opening
your own stream it should be closed when you are done with it. Program termination
will also close any open streams.

There are some TextIO functions that may or may not return a value. In these
cases an option is returned. An option is a value that is either NONE or SOME value.
An option is SML’s way of dealing with functions that may or may not succeed.
Functions must always return a value or end with an exception. To prevent the
exception handling mechanism from being used for input operations that may or
may not succeed, this idea of an option was created. Options fit nicely into the strong
typing that SML provides. The input1 function of the TextIO structure reads exactly
one character from the input and returns an option as a result. The reason it returns
an option and not the character directly is because the stream might not be ready
for reading. The valOf function can be used to get the value of an option that is not
NONE.

- val u = TextIO.input1(TextIO.stdIn);
hi there
val u = SOME #"h" : elem option
=
= ˆC
Interrupt
- u;
val it = SOME #"h" : elem option
- val v = valOf(u);
val v = #"h" : elem

http://dx.doi.org/10.1007/978-3-319-13314-0_10
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5.19 Programming with Side-Effects

Standard ML is not a pure functional language. It is possible to write programs
with side effects, such as reading from and writing to streams. To write imperative
programs the language should support sequential execution, variables, and possibly
loops. All three of these features are available in SML. The following sections show
you how to use each of these features.

5.19.1 Variables in StandardML

There is only one kind of variable in Standard ML. Variables are called references.
It is interesting to note that you cannot update an integer, real, string, or many other
types of values in SML. All these values are immutable. They cannot be changed
once created. That is a nice feature of a language because then you don’t have to
worry about the distinction between a reference to a value and the value itself. Array
objects are mutable because they contain a list of references.

A reference in Standard ML is typed. It is either a reference to an int, or a string,
or some other type of data. References can be mutated. So a reference can be updated
to point to a new value as your program executes. Declaring and using a reference
variable is shown in this example code. In SML a variable is declared by creating a
reference to a value of a particular type.

- val x = ref 0;
val x = ref 0 : int ref

The exclamation point is used to refer to the value to which a reference points.
This is called the dereference operator. It is the similar to the star (i.e. *) in C++.

- !x;
val it = 0 : int
- x := !x + 1;
val it = () : unit
- !x;
val it = 1 : int

The assignment operator (i.e. :=) operator updates the reference variable to point
to a new value. The result of assignment is the empty tuple which has a special type
called unit. Imperative programming in SMLwill often result in the unit type. Unlike
ordinary identifiers you can bind to values using a let val id = Expr in Expr end, a
reference can truly be updated to point to a new value.

It should be noted that references in Standard ML are typed. When a reference
is created it can only point to a value of the same type it was originally created to
refer to. This is unlike references in Python, but is similar to references in Java. A
reference refers to a particular type of data.
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Fig. 5.21 Sequential execution

5.19.2 Sequential Execution

If a program is going to assign variables new values or read from and write to
streams it must be able to execute statements or expressions sequentially. There are
two ways to write a sequence of expressions in SML. When you write a let val id =
Expr in Expr end expression, theExpr in between the in and end may be a sequence of
expressions. A sequence of expressions is semicolon separated. The code in Fig. 5.21
demonstrates how to write a sequence of expressions.

Evaluating this expression produces the following output.

The new value of x is 1
val it = 1 : int

In Fig. 5.21 semicolons separate the expressions in the sequence. Notice that
semicolons don’t terminate each line as in C++ or Java. Semicolons in SML are
expression separators, not statement terminators. The last expression in a sequence
of expressions is the value of the expression. All previously computed values in the
sequential expression are thrown away. The !x is the last expression in the sequence
in Fig. 5.21 so 1 is yielded as the value of the expression.

There are times when you may wish to evaluate a sequence of expressions in
the absence of a let expression. In that case the sequence of expressions may be
surrounded by parens. A left paren can start a sequence of expressions terminated
by a right paren. The sequence of expressions is semicolon separated in either case.
Here is some code that prints the value of x to the screen and then returns x+1.

(TextIO.output(TextIO.stdOut,"The value of x is " ˆ
Int.toString(x);
x+1)

5.19.3 Iteration

Strictly speaking, variables and iteration are not needed in a functional language.
Parameters can be passed in place of variable declarations. Recursion can be used in
place of iteration. However, there are times when an iterative function might make
more sense. For instance, when reading from a stream it might be more efficient to
read the stream in a loop, especially when the stream might be large. A recursive
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function could overflow the stack in that case unless the recursive function were tail
recursive and could be optimized to remove the recursive call.

A while loop in SML is written as while Expr do Expr. As is usual with while
loops, the first Expr must evaluate to a boolean value. If it evaluates to true then the
second Expr is evaluated. This process is repeated until the first Expr returns false.

5.20 Exception Handling

An exception occurs in SMLwhen a condition occurs that requires special handling.
If no special handling is defined for the condition the program terminates. As with
most modern languages, SML has facilities for handling these exceptions and for
raising user-defined exceptions. Consider the maxIntList function you wrote in
Practice Problem5.13. You probably had to figure out what to do if an empty list
was passed to the function. One way to handle this is to raise an exception.

exception emptyList;

fun maxIntList [] = raise emptyList
| maxIntList (h::t) = Int.max(h,maxIntList t) handle

emptyList => h

Invoking the maxIntList on an empty list can be handled using an exception
handling expression. The handle clause uses pattern matching to match the right
exception handler. To handle any exception the pattern _ can be used. The underscore
matches anything.Multiple exceptions can be handled by using the vertical bar (i.e. |)
between the handlers.

5.21 Encapsulation in ML

ML provides two language constructs that enable programmers to define new
datatypes and hide their implementation details. The first of these language con-
structs we’ll look at is the signature. The other construct is the structure.

5.21.1 Signatures

A signature is a means for specifying a set of related functions and types without
providing any implementation details. This is analogous to an interface in Java or
a template in C++. Consider the datatype consisting of a set of elements. A set is a
group of elements with no duplicate values. Sets are very important in many areas of
Computer Science and Mathematics. Set theory is an entire branch of mathematics.
If we wanted to define a set in ML we could write a signature for it as follows.
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Fig. 5.22 The set signature

The signature of a group of set functions and a set datatype is provided in Fig. 5.22.
Notice this datatype is parameterized by a type variable so this could be a signature
for a set of anything. You’ll also notice that while the type parameter is ′a there are
type variables named ′′awithin the signature. This is because some of these functions
rely on the equals operator. In ML the equals operator is polymorphic and cannot be
instantiated to a type. When this signature is used in practice the ′a and ′′a types will
be correctly instantiated to the same type.

Before a signature can be used, each of these functions must be implemented in
a structure that implements the signature. This encapsulation allows a programmer
to write code that uses these set functions without regards to their implementation.
An implementation must be provided before the program can be run. However, if a
better implementation comes along later it can be substituted without changing any
of the code that uses the set signature.

5.21.2 Implementing a Signature

To implement a signature we can use the struct construct that we’ve seen before. In
this case it is done as follows. A partial implementation of the SetSig signature is
provided in Fig. 5.23.

Of course, the entire implementation of all the set functions in the signature is
required. Some of these functions are left as an exercise.
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Fig. 5.23 A set structure

Practice 5.24

1. Write the card function. Cardinality of a set is the size of the set.
2. Write the intersect function. Intersection of two sets are just those

elements that the two sets have in common. Sets do not contain
duplicate elements.

You can check your answer(s) in Section5.26.24.

5.22 Type Inference

Perhaps Standard ML’s strongest point is the formally proven soundness of its type
inference system. ML’s type inference system is guaranteed to prevent any run-time
type errors from occurring in a program. This turns out to prevent many run-time
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errors from occurring in your programs. Projects like the Fox Project have shown
that ML can be used to produce highly reliable large software systems.

The origins of type inference include Haskell Curry and Robert Feys who in 1958
devised a type inference algorithm for the simply typed lambda calculus. In 1969
Roger Hindley worked on extending this type inference algorithm. In 1978 Robin
Milner independently from Hindley devised a similar type inference system proving
its soundness. In 1985 Luis Damas proved Milner’s algorithm was complete and
extended it to support polymorphic references. This algorithm is called the Hindley-
Milner type inference algorithm or the Milner-Damas algorithm. The type inference
system is based on a very powerful concept called unification.

Unification is the process of using type inference rules to bind type variables to
values. The type inference rules look like this.

IfThen

ε � e1 : bool ε � e2 : α ε � e3 : α

ε � if e1 then e2 else e3 : α

This rule says that for an if-then expression to be correctly typed, the type of the
first expression must be a bool and the types of the second and third expression must
be unifiable. If those preconditions hold, then the type of the if-then expression is
given by the type of either of the second two expressions (since they are the same).
Unification happens when α is written twice in the rule above. The ε is the presence
of type information that is used when determining the types of the three expressions
and is called the type environment.

Here are two examples that suggest how the type inference mechanism works. In
this example we determine the type of the following function.

fun f(nil,nil) = nil
| f(x::xs,y::ys) = (x,y)::f(xs,ys);

The function f takes one parameter, a pair.

f: ’a * ’b -> ’c

From the nature of the argument patterns, we conclude that the three unknown
types must be lists.

f: (’p list) * (’s list) -> ’t list

The function imposes no constraints on the domain lists, but the codomain list
must be a list of pairs because of the cons operation (x,y)::. We know x:’p and y:’s.
Therefore ‘t=’p *’s.

f: ’p list * ’s list -> (’p * ’s) list

where ‘p and ‘s are any ML types. In this example the type of the function g is
inferred.

fun g h x = if null x then nil
else

if h (hd x) then g h (tl x)
else (hd x)::g h (tl x);



212 5 Standard ML

The function g takes two parameters, one at a time.

g: ’a -> ’b -> ’c

The second parameter, x, must serve as an argument to null, hd, and tl; it must be
a list.

g: ’a -> (’s list) -> ’c

The first parameter, h, must be a function since it is applied to hd x, and its domain
type must agree with the type of elements in the list. In addition, h must produce a
boolean result because of its use in the conditional expression.

g: (’s -> bool) -> (’s list) -> ’c

The result of the function must be a list since the base case returns nil. The result
list is constructed by the code (hd x)::g h (tl x), which adds items of type ‘s to the
resulting list.

Therefore, the type of g must be:

g: (’s -> bool) -> ’s list -> s list

Chapter8 explores type inference inmuchmore detail.A type checker for Standard
ML is developed using Prolog, a programming language ideally suited to problems
involving unification.

5.23 Building a Prefix Caclculator Interpreter

The datatype definition in Fig. 5.12 provided an abstract syntax tree definition for a
calculator languagewith onememory location. A related prefix calculator expression
language is relatively easy to define and from that we can build an interpreter of prefix
calculator expressions. Prefix expressions are comprised of an operator first followed
by an expression or expressions. The prefix calculator expression language is defined
by this LL(1) grammar.

G = (N , T ,P,E) where

N = {E}
T = {S, R, number, , +, −, ∗, /}
P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E |∼ E | S E | R | number

Theonly non-terminal in this grammar isE. TheS is the store operatorwhich stores
the expression that follows it in the memory location. The R is the recall operator.
The tilde (i.e. ~) is the unary negation operator. To implement an interpreter for this
language we must first parse the expression and build an abstract syntax tree. Then

http://dx.doi.org/10.1007/978-3-319-13314-0_8
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Fig. 5.24 The prefix calc interpreter run function

the abstract syntax tree can be evaluated. The entire process can be encapsulated in
a run function.

The run function that provides the overall design of the prefix calculator interpreter
is provided in Fig. 5.24.

A number of things should be explained about this code. Line 7 flushes standard
output. Without it the prompt does not print before the program starts waiting for
input. Line 8 gets a line of input from the user. It is returned as a string option so on
line 9 the valOf function is applied to get the string or raise an Option exception if
NONE had been returned.

Line 9 calls the tokens function. All the tokens must be separated by spaces or
tabs for the program to read the tokens correct. Here is an example of running this
code.

- run();
Please enter a prefix calculator expression: + * S ˜ 6 R 5
The answer is: 41
val it = () : unit

Line 10 calls the parser to parse the list of tokens. In this case, the list of tokens
is passed to the parsing function. The parser returns a tuple with the AST as the first
item of the tuple and the rest of the tokens as the second result. After parsing, line
9 checks to see that there are no more tokens left after parsing. If there are, then the
eofExceptioni is raised.
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Line 11 calls the evaluator function eval to interpret the AST. The eval function
returns the result of evaluating the tree. Line 16 prints the result to the screen.

There are two handled exceptions. If the eofException is thrown then the expres-
sion did not parse correctly. If the Option exception is thrown there was a bad token
in the input. Note that only integers are allowed for numbers in this implementation.
This was decided by the AST definition in Fig. 5.12.

5.23.1 The Prefix Calc Parser

Parsing the expression is easy thanks to the LL(1) grammar for prefix calculator
expressions. The E function is defined using pattern-matching in Fig. 5.25. Each
time a token is consumed it is simply omitted from the remaining list of tokens. The
tokens are single-threaded through the function. This just means the left over tokens
are always passed on to the next piece to be parsed and the remaining tokens are
always returned along with the AST when the E function returns.

The parser doesn’t do any evaluation of the data. It simply works on building an
AST for the expression. The evaluation of the AST comes later, by the evaluator.

Notice in line 39 that the valOf function is used on the result of the Int.fromString
function. If the string being converted is not a valid value, the valOf will raise the
Option exception terminating the run function with an appropriate error message.

Line 43 of Fig. 5.25 handles getting to the end of the input (i.e. the list of tokens)
earlier than is expected. If the parser reaches this case the original expression was
mal-formed and throwing the eofException is the appropriate response.

5.23.2 The AST Evaluator

To complete implementation of the prefix calculator the AST needs to be evaluated.
The eval function presented in Fig. 5.26 provides this evaluation function. Line 1
declares a memory reference that is imperatively updated with the value stored in
the calculator’s memory.

Lines 2–9 provide the traditional binary operations of addition, subtraction, mul-
tiplication, and division. Because this calculator is only an integer calculator, the
integer division div is used. Unary negation occurs on lines 10 and 11.

Line 12 stores a value in the memory of the calculator by first evaluating the sub-
tree and then storing the value before returning it. Line 18 is responsible for recalling
the value by returning the dereferenced memory location.

5.23.3 Imperative Programming Observations

There are a couple of Standard ML syntax issues that are good to recognize at
this point. In Fig. 5.24, line 6 begins with a left paren. The left paren can be used
to construct a tuple in Standard ML, but it is also used to begin a sequence of
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Fig. 5.25 The parser

expressions. The last right paren on line 23 ends the sequence. Expressions are
separated by semicolons in a sequence of expressions. This occurs on line 15 of
Fig. 5.24. No semicolon appears after the expression on line 16 because semicolons
only separate expressions, they do not terminate them. On line 15 the else clause has
a unit (i.e. ()) as its result. This is because the type generated by raising an exception
is a unit, and the then and else clause return types must match.
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Fig. 5.26 The evaluator

5.24 Chapter Summary

This chapter introduced functional programming. For many this is a new way of
thinking about programming. Recursion is the main pattern used in computing when
writing in a functional programming style. Higher-order functions are an important
part of functional programming. Certain patterns appear often in functional programs
and these patterns have been implemented as some common higher-order functions
like map, filter, foldr, and others.

An important thing to learn from this chapter is that functional programming is
more declarative and less prescriptive than programming in an imperative language
like C++. Standard ML is a good functional programming language but other lan-
guages like C++ and Python support functional programming as well.

Standard ML has a strong type checker that has been proven sound and complete.
That means that while more time is spent removing type errors from programs,
much less time is spent debugging StandardML programs. Experiments like the Fox
Project at Carnegie Mellon have shown this is true for large software systems written
in Standard ML as well.

Muchmore can be learned about StandardML and the next chapter not only looks
at some StandardML tools for language implementation, but it also describes the im-
plementation of a compiler that translates StandardML to CoCo assembly language.

Jeffrey Ullman’s book on functional programming in Standard ML is a very
good introduction and reference for Standard ML. It is more thorough than the
topics provided in this text and contains many topics not covered here including
discussion of arrays, functors, and sharings along with a few of the Basis structures.
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The topics presented here and in the next chapter give you a good introduction to
the ideas and concepts associated with functional programming. Ullman’s book and
on-line tutorials and manual pages are another great resource for learning functional
programming.

5.25 Exercises

In the exercises below you are encouraged to write other functions that may help you
in your solutions. You might have better luck with some of the harder ones if you
solve a simpler problem first that can be used in the solution to the harder problem.

You may wish to put your solutions to these problems in a file and then

- use "thefile";

in SML. This will make writing the solutions easier. You can try the solutions out by
placing tests right within the same file. You should always comment any code you
write. Comments in SML are preceded with a (* and terminated with a *).

1. Reduce (λz.z + z)((λx.λy.x + y) 4 3) by normal order and applicative order
reduction strategies. Show the steps.

2. How does the SML interpreter respond to evaluating each of the following ex-
pressions? Evaluate each of these expression inML and recordwhat the response
of the ML interpreter is.

(a) 8 div 3;
(b) 8 mod 3;
(c) “hi”^“there”;
(d) 8 mod 3 = 8 div 3 orelse 4 div 0 = 4;
(e) 8 mod 3 = 8 div 3 andalso 4 div 0 = 4;

3. Describe the behavior of the orelse operator in exercise 2 bywriting an equivalent
if then expression. Youmay use nested if expressions. Be sure to try your solution
to see you get the same result.

4. Describe the behavior of the andalso operator in exercise 2 by writing an
equivalent if then expression. Again you can use nested if expressions.

5. Write an expression that converts a character to a string.
6. Write an expression that converts a real number to the next lower integer.
7. Write an expression that converts a character to an integer.
8. Write an expression that converts an integer to a character.
9. What is the signature of the following functions? Give the signature and an

example of using each function.
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(a) hd
(b) tl
(c) explode
(d) concat
(e) :: - This is an infix operator. Use the prefix form of op :: to get the signature.

10. The greatest common divisor of two numbers, x and y, can be defined recursively.
If y is zero then x is the greatest common divisor. Otherwise, the greatest common
divisor of x and y is equal to the greatest common divisor of y and the remainder
x divided by y. Write a recursive function called gcd to determine the greatest
common divisor of x and y.

11. Write a recursive function called allCaps that given a string returns a capitalized
version of the string.

12. Write a recursive function called firstCaps that given a list of strings, returns a
list where the first letter of each of the original strings is capitalized.

13. Using pattern matching, write a recursive function called swap that swaps every
pair of elements in a list. So, if [1,2,3,4,5] is given to the function it returns
[2,1,4,3,5].

14. Using pattern matching, write a function called rotate that rotates a list by n
elements. So, rotate(3,[1,2,3,4,5]) would return [4,5,1,2,3].

15. Use pattern matching to write a recursive function called delete that deletes the
nth letter from a string. So, delete(3,“Hi there”) returns “Hi here”. HINT: This
might be easier to do if it were a list.

16. Again, using pattern matching write a recursive function called intpow that com-
putes xn. It should do so with O(log n) complexity.

17. Rewrite the rotate function of exercise 14 calling it rotate2 to use a helper
function so as to guarantee O(n) complexity where n is the number of positions
to rotate.

18. Rewrite exercise 14’s rotate(n,lst) function calling it rotate3 to guarantee that
less than l rotations are done where l is the length of the list. However, the
outcome of rotate should be the same as if you rotated n times. For instance,
calling the function as rotate3(6,[1,2,3,4,5]) should return [2,3,4,5,1] with less
than 5 recursive calls to rotate3.

19. Rewrite the delete function from exercise 15 calling it delete2 so that it is curried.
20. Write a function called delete5 that always deletes the fifth character of a string.
21. Use a higher-order function to find all those elements of a list of integers that

are even.
22. Use a higher-order function to find all those strings that begin with a lower case

letter.
23. Use a higher-order function to write the function allCaps from exercise 11.
24. Write a function called find(s,file) that prints the lines from the file named file

that contain the string s. You can print the lines to TextIO.stdOut. The file should
exist and should be in the current directory.

25. Write a higher-order function called transform that applies the same function to
all elements of a list transforming it to the new values. However, if an exception
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occurs when transforming an element of the list, the original value in the given
list should be used. For instance,

- transform (fn x => 15 div x) [1,3,0,5]
val it = [15,5,0,3] : int list

26. The natural numbers can be defined as the set of terms constructed from 0 and
the succ(n) where n is a natural number. Write a datatype called Natural that
can be used to construct natural numbers like this. Use the capital letter O for
your zero value so as not to be confused with the integer 0 in SML.

27. Write a convert(x) function that given a natural number like that defined in
exercise 26 returns the integer equivalent of that value.

28. Define a function called add(x,y) that given x and y, two natural numbers as
described in exercise 26, returns a natural number that represents the sum of x
and y. For example,

- add(succ(succ(O)),succ(O))
val it = succ(succ(succ(O))) : Natural

You may NOT use convert or any form of it in your solution.
29. Define a function called mul(x,y) that given x and y, two natural numbers as

described in exercise 26, returns a natural that represents the product of x and y.
You may NOT use convert or any form of it in your solution.

30. Using the add function in exercise 28, write a new function hadd that uses the
higher order function called foldr to add together a list of natural numbers.

31. The prefix calculator intpreter presented at the end of this chapter can be im-
plemented a little more concisely by having the parser not only parse the prefix
expression, but also evaluate the expression at the same time. If this is to be
done, the parser ends up returning a unit because the parser does not need to
return an AST since the expression has already been evaluated. This means the
definition of the AST is no longer needed. Rewrite the prefix calculator code
presented at the end of this chapter to combine the parse and eval functions.
Remove any unneeded code from your implementation but be sure to cover all
the error conditions as the version presented in this chapter.

32. Alter the prefix expression calculator to accept either integers or floating point
numbers as input. The result should always be a float in this implementation.

33. Add an input operator to the prefix calculator. In this version, expressions like
+ S I 5 when evaluated would prompt the user to enter a value when the I
was encountered. This expression, when evaluated, would cause the program to
respond as follows.

Please enter a prefix calculator expression: + S I 5
? 4
The answer is: 9

34. The prefix calculator intrepeter presented in this chapter can be transformed into
a prefix calculator compiler by having the program write a file called a.casm
with a CoCo program that when run evaluates the compiled prefix calculator
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expression. Alter the code at the end of this chapter to create a prefix caclulator
compiler. Running the compiler should work like this.

% sml
- use "prefixcalc.sml";
- run();
Please enter a prefix calculator expression: + S 6 5
- <ctrl-d>
% coco a.casm
The answer is: 11

35. For an extra hard project, combine the previous two exercises into one prefix
calc compiler whose programs when run can gather input from the user to be
used in the calculation.

36. Rewrite the prefix calculator project to single thread thememory location through
the eval function as shown in pattern Completing this project removes the im-
peratively updated memory location from the code and replaces it with a single-
threaded argument to the eval function.

5.26 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

5.26.1 Solution to Practice Problem5.1

Addition is not commutative in Pascal or Java. The problem is that a function call,
which may be one or both of the operands to the addition operator, could have a
side-effect. In that case, the functions must be called in order. If no order is specified
within expression evaluation then you can’t even reliably write codewith side-effects
within an expression.

Here’s another example of the problem with side-effects within code. In the code
below, it was observed that when the code was compiled with one C++ compiler
it printed 1,2 while with another compiler it printed 1,1. In this case, the language
definition is the problem. The C++ language definition doesn’t say what should
happen in this case. The decision is left to the compiler writer.

int x = 1;
cout << x++ << x << endl;

The practice problem writes 17 as written. If the expression were b+a() then 15
would be written.
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5.26.2 Solution to Practice Problem5.2

With either normal order or applicative order function application is still left-
associative. There is no choice for the initial redex.

(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ (λyz.z(yz))(λxy.x)
⇒ λz.z((λxy.x)z)
⇒ λz.z(λy.z)�

5.26.3 Solution to Practice Problem5.3

Normal Order Reduction

(λx.y)((λx.xx)(λx.xx))
⇒ y

Applicative Order Reduction

(λx.y)((λx.xx)(λx.xx))
⇒ (λx.y)((λx.xx)(λx.xx))
⇒ (λx.y)((λx.xx)(λx.xx))
⇒ (λx.y)((λx.xx)(λx.xx)) …
You get the idea.

5.26.4 Solution to Practice Problem5.4

x div 6
Real.round(Real.fromInt(x) * y)
x / 6.3
x mod y

5.26.5 Solution to Practice Problem5.5

fun factorial(n) = if n=0 then 1 else n*factorial(n-1)

5.26.6 Solution to Practice Problem5.6

The recursive definition is fib(0)=0, fib(1)=1, fib(n) = fib(n−1) + fib(n−2). The
recursive function is:

fun fib(n) = if n = 0 then 1 else
if n = 1 then 1 else
fib(n-1) + fib(n-2)
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5.26.7 Solution to Practice Problem5.7

The solutions below are example solutions only. Others exist. However, the problem
with each invalid list is not debatable.

1. You cannot cons a character onto a string list. “a”::[“beautiful day”]
2. You cannot cons two strings. The second operand must be a list. “hi”::[“there”]
3. The element comes first in a cons operation and the list second. “you”::

[“how”,“are”]
4. Lists are homogeneous. Reals and integers can’t be in a list together.

[1.0,2.0,3.5,4.2]
5. Append is between two lists.2::[3,4] or [2]@[3,4]
6. Cons works with an element and a list, not a list and an element. 3::[]

5.26.8 Solutions to Practice Problem5.8

fun explode(s) =
if s = "" then []
else String.sub(s,0)::

(explode(String.substring(s,1,String.size(s)-1)))

5.26.9 Solution to Practice Problem5.9

fun reverse(L) =
if null L then []
else append(reverse(tl(L)),[hd(L)])

5.26.10 Solution to Practice Problem5.10

fun reverse([]) = []
| reverse(h::t) = reverse(t)@[h]

5.26.11 Solution to Practice Problem5.11

let val x = 10
in

(* 1. Value of x = 10 *)
let val x = x+1
in

(* 2. Value of x = 11 (hidden x still is 10) *)
x

end;
(* 3. Value of x = 10 (hidden x is visible again) *)
x

end
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5.26.12 Solution to Practice Problem5.12

datatype intlist = nil’ | cons of int * intlist;

5.26.13 Solution to Practice Problem5.13

fun maxIntList nil’ = valOf(Int.minInt)
| maxIntList (cons(x,xs)) = Int.max(x,maxIntList xs)

or

fun maxIntList (cons(x,nil’)) = x
| maxIntList (cons(x,xs)) = Int.max(x,maxIntList xs)

The second solution will cause a pattern match nonexhaustive warning. That
should be avoided, but is OK in this case. The second solution will raise a pattern
match exception if an empty list is given to the function. See the section on exception
handling for a better solution to this problem.

5.26.14 Solution to Practice Problem5.14

The first step in the solution is to determine the number of calls required for values
of n. Consulting Fig. 5.16 shows us that the number of calls are 1, 1, 3, 5, 9, 15, 25,
etc. The next number in the sequence can be found by adding together two previous
plus one more for the initial call.

The solution is that for n ≥ 3 the function 1.5n bounds the number of calls on
the lower side while 2n bounds it on the upper side. Therefore, the number of calls
increases exponentially.

5.26.15 Solution to Practice Problem5.15

The cons operation is called n times where n is the length of the first list when
append is called. When reverse is called it calls append with n − 1 elements in the
first list the first time. The first recursive call to reverse calls append with n − 2
elements in the first list. The second recursive call to reverse calls append with n − 3
elements in the first list. If we add up n − 1 + n − 2 + n − 3 + · · · we end up with∑n−1

i=1 i = ((n − 1)n)/2. Multiplying this out leads to an n2 term and the overall
complexity of reverse is O(n2).

5.26.16 Solution to Practice Problem5.16

See Fig. 5.27.
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Fig. 5.27 The run-time stack when factorial(6) is called at its deepest point

5.26.17 Solution to Practice Problem5.17

This solution uses the accumulator pattern and a helper function to implement a
linear time reverse.

fun reverse(L) =
let fun helprev (nil, acc) = acc

| helprev (h::t, acc) = helprev(t,h::acc)
in

helprev(L,[])
end

5.26.18 Solution to Practice Problem5.18

This solution is surprisingly hard to figure out. In the first, f is certainly an uncurried
function (look at how it is applied). The second requires f to be curried.

- fun curry f x y = f(x,y)
val curry = fn : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

- fun uncurry f (x,y) = f x y
val uncurry = fn : (’a -> ’b -> ’c) -> ’a * ’b -> ’c
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5.26.19 Solution to Practice Problem5.19

The first takes a list of lists of integers and adds one to each integer of each list in
the list of lists.

The second function takes a list of functions that all take the same type argument,
say a’. The function returns a list of functions that all take an a’ list argument. The
example below might help. The list of functions that is returned by (map map) is
suitable to be used as an argument to the construction function discussed earlier in
the chapter.

- map (map add1);
val it = fn : int list list -> int list list

(map map);
stdIn:63.16-64.10 Warning: type vars not generalized because
of value restriction are instantiated to dummy types
(X1,X2,…)
val it = fn : (?.X1 -> ?.X2) list ->

(?.X1 list -> ?.X2 list) list
- fun double x = 2 * x;
val double = fn : int -> int
- val flist = (map map) [add1,double];
val flist = [fn,fn] : (int list -> int list) list
- construction flist [1,2,3];
val it = [[2,3,4],[2,4,6]] : int list list

5.26.20 Solution to Practice Problem5.20

foldl is left-associative and foldr is right-associative.

- foldr op :: nil [1,2,3];
val it = [1,2,3] : int list
- foldr op @ nil [[1],[2,3],[4,5]];
val it = [1,2,3,4,5] : int list

5.26.21 Solution to Practice Problem5.21

- List.filter (fn x => x mod 7 = 0) [2,3,7,14,21,25,28];
val it = [7,14,21,28] : int list
- List.filter (fn x => x > 10 orelse x = 0)

[10, 11, 0, 5, 16, 8];
val it = [11,0,16] : int list
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5.26.22 Solution to Practice Problem5.22

cpslen [1,2,3] (fn v => v)
= cpslen [2,3] (fn w => ((fn v => v) (1 + w)))
= cpslen [3]

(fn x => ((fn w => ((fn v => v) (1 + w)))(1 + x)))
= cpslen []

(fn y => ((fn x => ((fn w => ((fn v => v)
(1 + w)))(1 + x)))(1 + y)))

= (fn y => ((fn x => ((fn w => ((fn v => v)
(1 + w)))(1 + x)))(1 + y))) 0

= (fn x => ((fn w => ((fn v => v) (1 + w)))(1 + x))) 1
= (fn w => ((fn v => v) (1 + w))) 2
= (fn v => v) 3
= 3

5.26.23 Solution to Practice Problem5.23

datatype bintree = termnode of int
| binnode of int * bintree * bintree;

val tree = (binnode(5,binnode(3,termnode(4),binnode(8,
termnode(5),termnode(4))), termnode(4)));

fun depth (termnode _) = 0
| depth (binnode(_,t1,t2)) = Int.max(depth(t1),depth(t2))+1

fun cpsdepth (termnode _) k = k 0
| cpsdepth (binnode(_,t1,t2)) k =

Int.max(cpsdepth t1 (fn v => (k (1 + v))),
cpsdepth t2 (fn v => (k (1 + v))))

5.26.24 Solution to Practice Problem5.24

fun card (Set L) = List.length L;

fun intersect (Set L1) S2 =
Set ((List.filter (fn x => member x S2) L1))
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The ML in the name Standard ML stands for meta-language. SML was designed as
a language for describing languages when it was used as part of the Logic for Com-
putable Functions (LCF) system [9]. Two tools were designed to work with Standard
ML for language implementation, ML-lex and ML-yacc. The pattern matching, ease
of defining recursive datatypes, the functional nature of the language along with
these two tools make Standard ML an excellent language choice for implementing
interpreters and compilers. This chapter introduces these two tools through a case
study involving the development of a compiler for a subset of the Standard ML lan-
guage called the Small language. Over the years the Small language has grown into
a pretty robust subset of Standard ML.

Depicted in Fig. 6.1 are all the relevant pieces in constructing and using themlcomp
compiler which can be downloaded from http://github.com/kentdlee/mlcomp.
Compiling an SML program begins by scanning the source file for tokens. The
scanner is called by the parser to get each of the tokens from the SML source file.
The parser, a bottom-up parser, performs a reverse right-most derivation of the source
program forming an abstract syntax tree along the way.When the AST is returned by
the parser, the compiler calls the code generator to evaluate the tree and produce the
target code, in this case CoCo assembly language. In this chapter the scanner and the
parser won’t have to be written by hand. ML-lex and ML-yacc are used to generate
these parts of the compiler from specifications that are provided to these tools.

Two commonly used terms in compiler construction are the front end and the
back end. The front end, referring to the scanner and the parser, reads the tokens
and builds an AST of a program. The back end generates the code given the AST
representation of the program.ML-lex andML-yacc are used to generate the front end
from two specifications, provided by the compiler writer. The back end is written by
the compiler writer to generate the code given an AST of the program. In Fig. 6.1 the
light green objects are the parts of the compiler provided by the compiler writer. The
dark green box represents the SML program provided by the user of the compiler, the
SML programmer who is compiling his or her code. Summarizing, the files written
by the compiler writer include the following.

© Springer International Publishing Switzerland 2014
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Fig. 6.1 Structure of MLComp

• The tokens of the language are defined in a file called mlcomp.lex.
• The datatype for the AST is defined in a file called mlast.sml.
• The grammar of the language is defined in a file called mlcomp.grm. This file also
contains a mapping from productions in the grammar to nodes in an AST. The
parser reads tokens and builds an AST of the expression being compiled.

• The code generator is defined in a file called mlcomp.sml.

The next sections introduce ML-lex, ML-yacc, and code generation. The rest of
this chapter explores parts of the compiler that are already completed and other
possible enhancements to the language. Building and using this compiler requires
installation of Standard ML and the ML-yacc and ML-lex tools.

Don’t be intimidated! The suggested enhancements to the language are accom-
panied by test programs that use these enhancements. By attempting to compile one
of these tests you will be pointed at the location in the compiler where new code
is required. Adding that code will lead you to another location within the compiler,
and so on. The compiler is designed so that it will tell you where enhancements
are needed when you attempt to compile a test that is not currently supported. By
repeatedly attempting to build the compiler and compile a new test, you will be given
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a hands-on tour of the compiler. That, along with the descriptions in this chapter of
how the compiler currently works will teach you about compiler construction for a
non-trivial language!Good luck.With a little work youwill learn a lot about compiler
construction and implementing a functional programming language!

6.1 ML-lex

ML-lex is a scanner generator. ML-lex generates a function that can be used to get
tokens from the input. It is based on a similar tool called lex that generates scanners
for C programs. The input to the two tools is similar but not exactly the same. The
input to ML-lex is a file consisting of three sections, where each section is separated
by %%. The format of an ML-lex input file is:

User declarations
%%
ML-lex definitions
%%
Token Rules

The user declarations include any ML code that will assist you in defining the
tokens. Typically, a variable is used to keep track of the line of input being read. There
might also be some functions for converting strings to other values like integers. An
error function that handles bad tokens is a common function for this section to get
the scanner and the parser to work together.

TheML-lex definitions follow the user declarations. Sets of characters are declared
in this section. In addition a functor must be declared. A functor is a module that
takes a structure as a parameter and returns a new structure as a result. A functor is
used by ML-lex and ML-yacc to create the scanner.

The last section of an ML-lex definition is composed of a set of rules that define
the tokens of the language. Each rule has the form:

reg_exp => (return_value);

The reg_exp is a regular expression. The language of regular expressions can be
used to define tokens. Every regular expression can be expressed as a finite state
machine. Finite state machines can be used to recognize tokens. The set of reg_exp
is eventually translated into a finite statemachine that can be used to recognize tokens
in the language. When a string of characters is recognized as a token, its matching
return value is constructed from the rules and that value is returned by the scanner to
the parser. Figures6.2, 6.3 and 6.4 contain the three parts of the lexer specification
given to ML-lex for the mlcomp compiler. The file is called mlcomp.lex.

In Fig. 6.2 lines 1–19 make up the first part of the ML-lex specification, the user
declarations. The pos type must be defined and is used to define the position within
the source program where a token is found. In this case, the position is the line on
which it is found. Later a variable called pos is also initialized to 1 for the first line
of the source program.
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Fig. 6.2 mlcomp.lex part one

Fig. 6.3 mlcomp.lex part two

A structure called Tokens is used to contain information about the tokens returned
byML-lex. The Tokens.svalue is the actual string representing the characters of each
token. Line 3 just equates a type called svalue to the Tokens.svalue. Line 4 does the
same for the type token. Those two type names are used in line 6 where lexresult is
declared. This lexresult is required to be defined in the user declarations section of
ML-lex.

The error function is used later in the lexer specification. The eof function is used
to return the EOF token and is called automatically by the lexer when it reaches the
end of file. The countnewlines function is also used later in the lexer specification
when skipping over whitespace likes spaces, tabs, and newline characters.
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Fig. 6.4 mlcomp.lex part three
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The ML-lex declarations begins with declaring a functor in Fig. 6.3. The functor
is required by the parser. A functor is a parameterized type in Standard ML and
this functor is expected by the parser and is parameterized by the Tokens structure.
Declaring the functor in this way is required to get the parser generated by ML-yacc
to talk to the scanner generated by ML-lex.

The alpha declaration declares a class of characters called alpha that consists of
letters a to z in lower and upper case. The alphanumeric characters include letters,
digits, underscores, and the period character. The digit declaration defines the class
of digits as being 0 to 9. The ws stands for whitespace. It defines blanks and tabs as
whitespace. The dquote class is for double quote and squote for single quote. The
^ means not so anycharbutquote is exactly as it reads. The period represents any
character whatsoever. The actual period character must be escaped by preceding it
with a backslash.

Finally, the rules define all the tokens in the third part of the lexer definition in
Fig. 6.4. Thefirst rule discards comments in the source file. It says that comments look
like (* any text *). Unfortunately, this is a complex regular to start the rule definitions
with. It is first because the rules will be matched in order of their definition. It begins
by saying look for a left paren followed by an asterisk. Then the next part of the
regular expression is one of two possibilities.

• A character which is not an asterisk or it is a carriage return (i.e. the \r) or a newline
(i.e. the \n).

• A string of characters which is some number of asterisks followed by a either not
an asterisk or a right paren or a carriage return or a newline.

Those two preceding bullets may repeat zero or more times (the Kleene star
that appears near the end of the regular expression says this). Finally, the whole
regular expression ends by saying that the comment ends with one or more asterisks
followed by a right paren. The action to take in this case is to call the countnewlines
function to count any new line characters in the comment to update the pos variable
accordingly. Finally, calling lex at the end of the action causes the lexer to get the next
token, effectively ignoring the comment so the parser never sees it. The next regular
expression skips newlines that are not in a comment. The third regular expression
skips blanks and tabs that might appear in the program.

The next several rules define short simple tokens like infix operators. The token
is defined within the Tokens structure and each rule returns a particular token value,
defined in the parser. Every token value carries with it two integers. In this case, the
line number is provided for both values. Tokens that consist of more than one or two
characters should not be defined in this way since the length of each token string
makes the number of states grow exponentially. The remaining rules define tokens
that can’t be explicitly given along with the keywords that are defined like identifiers
in the language.

Line 54 defines positive and negative numbers. The ? indicates 0 or 1 occurrence
of the negation symbol. This is followed by 1 or more digits, followed by a possible
period and other digits. Line 55 defines character constants in Standard ML like
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#“a” for instance. Escape characters like the newline character, “n”, are not currently
supported by could be. Line 56 defines string tokens which start with a double quote
followed by zero or more of any character but double quote followed by a double
quote. Lines 57–82 recognize identifiers and keywords. Defining one rule to handle
all these different tokens with an if-else-if expression reduces the final number of
states in the scanner. If each keyword were handled by a separate rule the number
of states in the scanner would explode. Finally, line 83 handles any other character
that might be found in the source file by writing an error message to the screen and
skipping over it.

The scanner generated by ML-lex returns each token described in Fig. 6.4 with
the line number in the source programwhere it was found. In some cases, the lexeme,
the actual string of characters making up the token, is also returned. The lexeme is
returned for tokens where the token type is not enough information. For instance, Int,
String, Char, and Id tokens all need to carry along the lexeme, the yytext, because
that information is needed by the parser. From a definition like the mlcomp.lex file
shown in Figs. 6.2, 6.3, and 6.4 the ML-lex tool has enough information to generate
a scanner for the tokens of the language.

Practice 6.1 Given the ML-lex specification in Figs. 6.2, 6.3, and 6.4, what
more would have to be added to allow expressions like this to be correctly
tokenized by the scanner? What new tokens would have to be recognized?
How would you modify the specification to accept these tokens?

case x of
1 => "hello"

| 2 => "how"
| 3 => "are"
| 4 => "you"

You can check your answer(s) in Section6.15.1.

6.2 The Small AST Definition

The parser reads tokens and builds an abstract syntax tree of a source program.
Figure6.5 contains the abstract syntax definition for the Small language. In SML,
the abstract syntax definition is given by an SML datatype. Each type of node in the
tree is tagged with its type. Some nodes in the tree include the subtrees such as the
infixexp node. The datatype can consist of multiple types which may all be mutually
recursive. For the multiple types to be mutually recursive, the keyword and is used
to separate the datatype definitions.

The Small subset of Standard ML is primarily composed of expressions. The exp
datatype describes trees representing expressions in the language. An expression is
either an integer, character, boolean value, identifier, list constant, tuple constant,
function application, infix expression, a sequence of expressions, a let declaration, a
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Fig. 6.5 mlast.sml

raised exception, an exception handler, an if then expression, a while do expression,
or a function definition.

A function definition and an exception handler contain a list of matches. A match
is composed of a pattern and an expression as in 4 => “you” for instance. The
allowed patterns are described by the pat datatype and include integers, characters,
strings, boolean values, identifiers, the underscore pattern (called wildcardpat in the
AST definition), tuples, lists, and a special as pattern which lets the programmer
specify an identifier as a pattern as in z as (x,y). This would match a pattern where x
and y match the elements of a tuple and z matches the entire tuple.
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A let expression binds identifiers to values and the dec datatype defines binding
declarations. In Standard ML it is possible to bind the identifiers in a pattern to an
expression. The bindvalrec represents a recursive bindingwhich is needed in the case
of recursive function definitions. The funmatch is used in a function which is defined
with a series of pattern matching cases. The funmatches comes into play when a
series of mutually recursive function definitions are being defined, somewhat like
the mutually recursive AST datatype definition given in Fig. 6.5.

Practice 6.2 How would you modify the abstract syntax so expressions like
this could be represented?

case x of
1 => "hello"

| 2 => "how"
| 3 => "are"
| 4 => "you"

You can check your answer(s) in Section6.15.2.

6.3 UsingML-yacc

ML-yacc is a parser generator. The name stands for Yet Another Compiler Compiler
(i.e. yacc). Yacc is a tool that generates parsers for compilers written in C or C++.
ML-yacc is the SML version of this tool. ML-yacc is a little different than yacc
but provides mostly the same functionality. ML-yacc’s input format is similar to
ML-lex’s input format. An ML-yacc specification consists of three parts.

User declarations
%%
ML-yacc definitions
%%
Rules

The user declarations include providing the AST definition and any functions,
variables, or exceptions that might be useful while parsing the input. Figures6.6,
6.7, 6.8, and 6.9 contains the parser specification for the Small language.

The user declarations of the parser are on lines 1–42 of Fig. 6.6. This part of
the parser contains useful utility functions much like the user declaration section of
ML-lex. The abstract syntax definition is opened in the parser. This is similar to the
using namespace std in C++. Lines 2–8 define a function that can return a unique
integer which is needed in some code in the parser. Line 10–33 define a function and
two exceptions that are used in defining curried functions. This is covered in detail
later in the chapter. Lines 34–42 convert a list of (name, pattern, expression) tuples
to a tuple of (name, list) where the list is a list of (pattern, expression) pairs. It also
checks that all names in the original tuples were for the same function.
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Fig. 6.6 mlcomp.grm part one

The ML-yacc definitions start on line 43 if Fig. 6.7. They include a name to prefix
functions in the scanner with, in this case mlcomp. The verbose helps in debugging.
The eop, or end of parse, says that EOF is the last token returned. This helps in
terminating the parser. The pos type is redeclared in Fig. 6.7 for use with the scanner.

The nodefault tells the parser not to insert tokens it thinks might have been left
out. This helps in finding syntax errors earlier than they would be otherwise. If this
were omitted the parser would insert a token when it is reasonably sure the program
being parsed is missing a token. The pure declarations says that the parser has no
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Fig. 6.7 mlcomp.grm part two

side-effects. It simply builds a tree and returns it. This means that ML-yacc can undo
certain parsing operations if it needs to without fear of a side-effect not being undone.

Most importantly the terminals and nonterminals of the language are declared in
theML-yacc declarations. Those tokens that carry along their lexeme are declared as
a token of something. For instance, Int of stringwhere the string is a string containing
the token’s number. The nonterminals include all the nonterm defined identifiers and
represent the syntactic categories of the grammar.

There are just a few more declarations in the ML-yacc definitions section. The
grammar rules, given in the next section, have some ambiguity in them. Specifically,
some of the operators have ambiguous precedence. The associativity and precedence
rules are defined on lines 62–66 with those operators with lowest precedence coming
first and higher precedence operators later. So SetEqual has the lowest precedence
and is right associative. The Plus, Minus, Append, Equals, and NotEqual operator
tokens have the next lowest precedence and are all left associative. These precedence
rules simplify the writing of the grammar while diambiguating it.

Lines 68–142 of Figs. 6.8 and 6.9 make up the Rules section and define the gram-
mar for Small. Each production of the grammar is given on the left of the AST it
returns when matched. Consider a Small program like this:

4 * x + 5

Whenmatching the rule on line 74 of the grammar specification the 4*x willmatch
the expression on the left side of the Plus token. The AST that results from parsing
4*x is named Exp1 by ML-yacc. Remember, the parser is a bottom-up parser so the
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Fig. 6.8 mlcomp.grm part three

4*x has already been parsed. The 5 on the right side of the Plus has also been parsed
when this rule is matched. The 5 is referred to as Exp2 by ML-yacc. The rule on line
74 says when this rule is matched to return an AST of infixexp(“+”,Exp1,Exp2). The
full AST for this expression, and the value returned for this example, would be

infixexp(“+”, infixexp(“*”, int(“4”), id(“x”)),int(“5”))

To the right of each production is a value that is returned when that production
is matched during parsing. In most cases, this is a straight-forward construction of
an AST. In a few cases a list is returned instead as in the MatchExp nonterminal or
the PatternSeq nonterminal. In a couple of cases, the uncurryIt or makeMatchList
functions are called which in turn generate an AST node to be returned. In the end,
the parser returns a description of the source program as an abstract syntax tree.



6.3 Using ML-yacc 239

Fig. 6.9 mlcomp.grm part four

Practice 6.3 What modifications would be required in the mlcomp.grm spec-
ification to parse expressions like this?

case x of
1 => "hello"

| 2 => "how"
| 3 => "are"
| 4 => "you"

You can check your answer(s) in Section6.15.3.
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6.4 Compiling and Running the Compiler

Code generation is essential to any compiler. The code generator translates the ab-
stract syntax tree into a language that may either be executed directly or interpreted
by some low-level interpreter like the CoCo Virtual Machine. For this text, the ml-
comp compiler generates CoCo assembly language. The code generator for mlcomp
is in the file named mlcomp.sml. The entire file is too big to include here. The re-
mainder of this chapter will examine code generation in parts. First, consider code
generation for the addition of two integers.

Adding 5 and 4 in the Small language is written as shown in Fig. 6.10. Adding 5
and 4 in CoCo can be written as shown in the code of Fig. 6.11. The compiler for the
Small language is given a source file as shown in Fig. 6.10 and parses it to produce
an abstract syntax tree as shown in Fig. 6.12. The abstract syntax tree is passed to
the code generator. It is the job of the code generator, given the abstract syntax tree
shown in Fig. 6.12, to generate code similar to that of Fig. 6.11.

The codegen function of mlcomp.sml is responsible for generating code. To gen-
erate code for the AST shown in Fig. 6.12 the two patterns shown in Fig. 6.13 are
needed. When the infixexp code generation is called, it recursively calls code gen-
eration on the two subtrees. The subtrees in this example are the two int nodes in
the AST, resulting in calling the code generator on int(i). When code is generated
for int(“5”), line 2 looks up the index of the “5” in the constants which is a list of
the function’s constants much like it appears on line 2 of Fig. 6.11. Line 4 of the
code generator then writes the LOAD_CONST instruction to the file. The recursive
call of codegen on line 8 of Fig. 6.13 similarly calls the int codegen to generate the
other LOAD_CONST instruction. Finally, line 10 of the code in Fig. 6.13 generates
the BINARY_ADD instruction.

Every CoCo program must contain code like lines 1–3 of Fig. 6.11. Likewise,
lines 7–10 are needed to finish up the main function of every CoCo program. Lines

Fig. 6.10 SML addition

Fig. 6.11 CoCo addition
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Fig. 6.12 Addition AST

Fig. 6.13 Addition code generation

1–3 are often referred to as the prolog of a compiled program and lines 7–10 are
commonly referred to as the epilog of the program. The prolog and epilog code is
generated by the code that calls the code generator.

The compiler startswhen the run function is called in the code of Fig. 6.15. The run
function is written with two arguments so it can be exported. Exporting a function in
StandardML causes the SML interpreter to export it and all dependent functions into
an executable program that can be started from the command-line. The run function
is like the main function in C or C++ program. The arguments to run include the
list of command-line arguments to the program. The first item in that list is the first
command-line argument. In this case that is the filename of the source program. The
argument a to the run function is the name of the SML interpreter used to run the
program.

The run function then calls the compile function passing it the filename. Line 2
calls the parser to parse it which returns the AST. Two output files are opened and
the termFile is written by the writeTerm function. This is covered in more detail in
Chap.8.

Lines 7–13 create various bindings of identifiers to locations or functions within
the CoCo virtual machine. Lines 15–20 check for any unbound identifiers in the
program which are not allowed. Lines 21–32 are responsible for writing the prolog
and generating any code for functions that are defined within the program. The
codegen function is called on line 33. The epilog is written by lines 34–38.

The run function is invoked via the bash script mlcomp in Fig. 6.14. The script is
invoked as mlcomp test0.sml for instance. The test0.sml command-line argument is
$1 in the code. Line 4 checks to see if a non-empty filenamewas provided. If not, then
lines 5–6 prompt for and get a filename from the user. Line 13 invokes the exported

http://dx.doi.org/10.1007/978-3-319-13314-0_8
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Fig. 6.14 The mlcomp script

run function by loading the compiled image file mlcompimage. The compiler writes
a file called a.casm which was opened for output on line 3 of Fig. 6.15. Then the
CoCo virtual machine is invoked on the target program on line 15 of the script in
Fig. 6.14. The mlcomp script both compiles and runs the intended SML program.

The Bash script of Fig. 6.16, found in Makefile.gen, runs Standard ML’s compiler
manager. It does this by starting sml and then executing the function CM.make on
the file sources.cm. The exportFn function creates the binary image executable that
is started on line 13 of Fig. 6.14. The target image is created by Standard ML’s
compiler manager. This is a tool provided with Standard ML much like the make
utility for Unix except better because Standard ML’s compiler manager figures out
all dependencies by itself, without the need for a Makefile.

The sources.cm file is needed to indicatewhich files to include in the project. Lines
2–3 include the ML-yacc tool (which in turn include ML-lex), the basis library, and
some utility code to help with debugging. The last four lines are the compiler source
code for the mlcomp compiler. From this simple specification, the Standard ML
Compiler Manager will run ML-lex and ML-yacc if needed and recompile only the
parts of the project that have changed, just asmake does for Unix. Tomake compiling
the compiler even easier a Makefile is part of the project which simply invokes the
Makefile.gen script (Fig. 6.17).

To compile and run the mlcomp compiler simply type

make
mlcomp test0.sml

in the mlcomp directory to compile the compiler and run the first test, test0.sml. If
all succeeds there will be no errors printed and the program will print nothing to
the screen, although other output will be printed like the AST and the compiled and
assembled source program.
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Fig. 6.15 MLComp run function

The remainder of this chapterwill cover parts of the code generator that are already
implemented and worth taking a look at. It will also cover parts of the compiler that
are not yet implemented and suggest how they can be implemented. After working
through this chapter you will have a working compiler for the Small language.
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Fig. 6.16 Makefile.gen

Fig. 6.17 sources.cm

6.5 Function Calls

Running test0.sml is not very satisfying because no output is printed. Calling a
function like println will print the output to the screen. The Small language includes
a number of functions that can be called for input and output operations. Small differs
some from StandardML in this regard and println is one of those differences. Adding
a println to test0.sml results in println 5 + 4, the contents of a file called test1.sml in
the mlcomp distribution file found on Github. Parsing the program results in the AST

apply(id("println"),infixexp("+",int("5"),int("4")))

Code generation for this program yields the program in Fig. 6.18. The code con-
tains two additional instructions, the LOAD_GLOBAL and the CALL_FUNCTION
instructions. The code generator is called for two additional AST nodes as well,
the id node and the apply node. Each of these two calls to codegen are provided in
Fig. 6.19. The ellipses (i.e. ...) indicate abbreviated code. The mlcomp.sml file can
be consulted for the full details.

When codegen is called a list of globals and globalBindings are provided to each
call to codegen. The globals list can be seen in Fig. 6.18 on lines 3 and 4. The env
in Fig. 6.19 is a list of bindings including a binding of the Small println function
to a built-in function in CoCo called print which does the same thing in the target
language. The env list contains the tuple (“println”, “print”). Initially env and glob-
alBindings are the same list (see line initial call to codegen in the mlcomp.sml file).

When codegen is called for the apply in the AST, it immediately calls codegen
on the id(“println”). This results in calling the load function which searches all
the different bindings to find the binding for println. It finds this in the env list,
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Fig. 6.18 test1.sml CoCo code

Fig. 6.19 Code generation for function calls

finds the corresponding print CoCo function, and looks up print in the list of globals
generating theLOAD_GLOBAL 0 since it finds print in the first position in the globals
list. The load function was written because the type of load necessary depends on
where the identifier is found.

The call to codegen for apply first calls codegen to load the print function onto the
stack. Then addition code is generated by the call to codegen on line 5 of Fig. 6.19.
Finally, the apply codegen call generates the CALL_FUNCTION instruction. There
is only one argument passed to any function in the Small language so the 1 is hard-
coded.

Calling a function is relatively easy as shown in this example. Maintaining and
understanding all the bindings is the trickier part, but further examples will serve to
make this clearer as well. The next example takes a look at user-defined bindings.
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6.6 Let Expressions

Let expressions provide a means for a value or function to be bound to a value.
Consider the code in Fig. 6.20 that binds x to 5. This SML program is compiled into
the CoCo program of Fig. 6.21. From the source program, this AST is built.

letdec(bindval(idpat("x"),int("5")),
[apply(id("println"),id("x"))])

The AST has the new binding first, followed by the sequence of expressions
between the in and end keywords. In this case there is one expression in the body
of the let expression. Examining the code in Fig. 6.21 there are two new instructions
on lines 7 and 8. These two lines take care of storing the 5 in a local variable called
x@0. The 0 refers to the scope level of the variable is added to the variable name
to be sure that variable names in CoCo are unique. Line 10 has the LOAD_FAST
instruction, another new instruction in the program. The LOAD_FAST loads from
the list of locals. We have seen the call to the load function in Fig. 6.19 that loads
this value from the locals.

The Small program contains the binding of x to 5. When compiling this code,
the x is bound to a location in the locals called x@0 which contains the 5. The
let expression must create this binding to make the x visible in the body of the let
expression. It does this in the code in Fig. 6.22 by calling the function decgen which

Fig. 6.20 test2.sml

Fig. 6.21 test2.sml CoCo code
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Fig. 6.22 Let expression code generation

generates the code for storing the value in the local location and also creates a new
binding (“x”,“x@0”). This new binding is added to the env environment bindings.
When the load function is called in the body of the let expression, the x@0 will be
found in the list of locals.

Building the list of locals for the main function is handled by line 12 in Fig. 6.15.
The locals is computed in part from the bindings computed by the localBindings
function. The localBindings function traverses the body of a function looking at all
identifiers found in the code. If an identifier is free in the body of a function, it is
added to the freeVars returned by the localBindings function. If the identifier is bound
to a value or inner function, the bindings is returned in the newbindings. If the code
passed to the localBindings function contains nested functions, then the freeVars of
those nested functions must be cellVars in the current function because a closure
will be necessary when the inner function is called. The localBindings function finds
those identifiers that must be bound to cellVars and returns them as well.

For the code in Fig.6.20, the newbindings of Fig. 6.22 consist of [(“x”,“x@0”)]
and these bindings are added to the environment env when the code for the body
of the let declaration is generated. The list of the locals already is set to [“x@0”]
so when the load function is called to load the value of x, the combination of the
environment env and the locals results in the correct index being found to generate
the STORE_FAST and LOAD_FAST instructions.

With Standard ML it is possible to define more than one value in a let expression.
Consider the program in Fig. 6.23. This program has two bindings created in one
let expression. However, the program is not the program compiled by the mlcomp
compiler. The parser transforms this program into a program like the one given in
Fig. 6.25. The ability to write a program like Fig. 6.23 is called syntactic sugar. It is
certainly nicer to write programs like that in Fig. 6.23 rather than being limited to
one binding per let expression all the time. However, the Small abstract syntax does

Fig. 6.23 test10.sml
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Fig. 6.24 The folded let

Fig. 6.25 Unsweetened

not include support for multiple bindings. That’s what is meant by syntactic sugar.
When a programming language feature like let expressions of multiple bindings
is implemented in terms of some other simpler but less desirable form it is called
syntactic sugar. The mlcomp compiler handles multiple bindings by using a foldr
call to fold those multiple bindings into multiple nested let expressions. Figure6.24
contains the code in the parser that forms this folded let.

6.7 Unary Negation

It turns out that unary negation is not implemented correctly in the mlcomp compiler.
Presently, it is possible to print a negative 5. However, the program in Fig. 6.26 should
compile and run, but instead the scanner deletes the ~ as a bad token and a 5 is printed
to the screen instead. This is not the behavior of Standard ML. The tilde serves as a
unary negation operator in Standard ML. To fix this, several changes are necessary.
Starting with the scanner, the tilde must be recognized as its own token. To do this,
the tilde is removed from the Int token and added as its own token in the mlcomp.lex
file.

{tilde} => (Tokens.Negate(!pos,!pos));
{digit}+ => (Tokens.Int(yytext,!pos,!pos));

Adding the token in the parser specification is next. So the tokens are now defined
as follows in mlcomp.grm

%term EOF
| Negate
| ...

Thenwedefine the precedenceof theNegate token inmlcomp.grm.Unarynegation
has very high precedence and is right-associative.

%right ListCons Negate
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Fig. 6.26 test3.sml

The last bit in the mlcomp.grm is to write a production that uses the Negate token.
To negate an expression we just write an expression as possibly being negated as in
this bit of code.

| Negate Exp (negate(Exp))

Writing this production requires a new node definition for the AST in mlast.sml.
A negate node in an AST is another kind of expression. Unary negation can be
represented by defining another expression for negate as follows.

| negate of exp

Finally, to finish the correct implementation of unary negation, the code generator
module must be modified. The mlcomp.sml file must be edited in a few spots to
add support for unary negation. The infixexp expression is an AST node like the
negate node. Searching for infixexp in the mlcomp.sml file helps determine where
the changesmust bemade inmlcomp.sml. The first change is in the nameOf function.

| nameOf(infixexp(operator,e1,e2)) = operator
| nameOf(negate(e)) = "˜"

The next match is found inside the constants function where this code must be
added.

| con(infixexp(operator,t1,t2)) = (con t1) @ (con t2)
| con(negate(e)) = "0" :: (con e)

This code adds a zero to the list of constants. This is because to implement unary
negation the generated code will subtract the value from zero. The bindingsOf func-
tion is the next location where infixexp appears in the mlcomp.sml file. The code to
write here looks like this.

| bindingsOf(infixexp(operator,exp1,exp2),bindings,scope) =
(bindingsOf(exp1,bindings,scope); bindingsOf(exp2,bindings,scope))

| bindingsOf(negate(exp),bindings,scope) = bindingsOf(exp,bindings,scope)

The bindingsOf function is looking for any new bindings introduced by the new
unary negation expression. There are no new bindings created by Unary negation so
it just calls the bindingsOf function on its sub-expression. The codegen function is
the next place where infixexp is found and the following code is added to generate
code for unary negation.
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| codegen(negate(t),outFile,indent,consts,...) =
let val _ = codegen(int("0"),outFile,indent,consts,...)

val _ = codegen(t,outFile,indent,consts,...)
in

TextIO.output(outFile,indentˆ"BINARY_SUBTRACT\n")
end

In the codegen function a “fake” int(“0”) node is created to get a zero loaded
onto the stack. Then the value for the sub-expression is loaded onto the stack and the
BINARY_SUBTRACT instruction causes the unary negation to be computed. Both
the nestedfuns and the makeFunctions function need a line for unary negation added
as well. In both cases the code is identical and looks like this:

| functions(infixexp(operator,exp1,exp2)) = (functions exp1;functions exp2)
| functions(negate(exp)) = functions exp

The nestedfuns code is looking for any nested functions within the expression.
Unary negation is not a nested function so the code just calls the check by calling
the functions function on the sub-expression. The makeFunctions function generates
some code for any nested functions to have CoCo create the closure or function
objects for any nested functions. Finally, the writeTerm function must be modified.
While not needed by the compiler, the writeTerm function is useful when reading
Chap.8. Here is the code for writing a unary negation term.

| writeExp(indent,negate(exp)) =
(print("negate(");
writeExp(indent,exp);
print(")"))

The final result of these changes is code as it appears in Fig. 6.27. The value of
~x is computed by subtracting from 0. The new code consists of lines 8 and 10 in the
CoCo code in Fig. 6.27.

Fig. 6.27 test3.sml CoCo code

http://dx.doi.org/10.1007/978-3-319-13314-0_8
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6.8 If-Then-Else Expressions

Comparing two values in SML is as simple as writing x < y. In CoCo it involves
pushing two values on the operand stack and calling the COMPARE_OP instruction.
When comparing values in an if-then-else expression the result of the comparison
will be used to jump to one label or another. Consider the Small program in Fig. 6.28.
Again, this code differs a bit fromStandardML. The input function is unique to Small
as are the print and println functions. The input function returns a string of input
from the user. The print function prints without a newline character. The println
prints with a newline at the end of the line.

Compiling the code in Fig. 6.28 should result in the CoCo code in Fig. 6.29.
However, code generation for if-then-else expressions is not currently implemented.
The abstract syntax tree for the program in Fig. 6.28 includes a node for the if-then-
else expression like this.

ifthen(infixexp(">",id("x"),id("y")),id("x"),id("y"))

TheAST definition for this program is already in themlast.sml file and the scanner
and parser are already able to parse if-then-else expressions. Generating code for this
AST involves some of the same changes that were needed to add unary negation to
the code generator. Those steps can be followed to add all the necessary code to
handle if-then-else expressions in the code generator. By attempting to compile the
code in Fig. 6.28 you will discover places in the compiler where code is missing. The
compiler is written to report where code is missing. Attempt to compile test4.sml,
see where the problem is, fix it, and repeat as many times as is necessary.

Implementing the codegen code is the hardest part of adding support for if-then-
else expressions, but it’s not too hard. The AST expression above has three sub-
expressions: the greater than comparison, the id(“x”), and the id(“y”). Code genera-
tion is already done for identifiers so the id nodes for x and y are already handled.
Generating code for the if-then-else expression involves generating the code for the
comparison and then jumping to one place or another depending on the result of the
comparison.

The if-then-else generated code begins on line 26 of Fig. 6.29 with the comparison
code. Calling codegen on the infix expression generates the code on lines 26–28. Line
29 begins some of the code for the if-then-else expression. Line 29 begins by jumping

Fig. 6.28 test4.sml
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Fig. 6.29 test4.sml CoCo code

to L0 if the condition is false. The label L0 labels the else clause of the expression.
Line 30 is the code generated for the id(“x”) which is the then expression. Line 31
is generated by the if-then-else again to jump past the code in the else expression.
Line 34 is the last bit of code generated by the if-then-else expression.

There are two labels needed by the code generator. The nextLabel function in
mlcomp.sml is designed just for that purpose. Calling it will return a unique label
that can be used in the code. Code generation for if-then-else expressions calls this
function twice. In summary, there are several actions that must occur to generate
code for if-then-else expressions.
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• Two labels need to be created.
• The comparison code is generated.
• ThePOP_JUMP_IF_FALSE instruction is written alongwith the else clause label.
• The then clause code is generated.
• A jump to jump past the else clause code is written.
• The else clause label is written.
• The else clause code is generated.
• The final label is written to the file.

Successfully completing this code will get if-then-else expressions compiling
correctly and test4.sml will run printing the maximum of two numbers entered at the
keyboard.

6.9 Short-Circuit Logic

Short-circuit logic is a common feature of programming languages. If you have
two boolean expressions, E1 and E2, and you want to know if both are true or
false there are situations where it is not necessary to test both the conditions. For
instance, when testing E1 and E2 if E1 is false, there is no reason to evaluate E2.
Likewise, if evaluating E1 or E2 if E1 is true there is no reason to evaluate E2. This
logic is called short-circuit logic and is commonly used by and and or operators in
programming languages. C++ uses this logic in its && and // operators. In Standard
ML the operators are called andalso and orelse to indicate their short-circuit nature.

Neither the andalso or orelse operators are implemented in the mlcomp compiler.
Support can be added pretty easily by following many of the steps in adding unary
negation to the language. These steps include:

• Add two tokens forandalso andorelse to the scanner.Both are keywords and should
be added to the keywords section of the scanner specification in mlcomp.lex.

• Add the tokens to the grammar specification inmlcomp.grm and define their prece-
dence. Both operators have the same precedence which is at the same level as
addition. They are also both left-associative.

• Add two productions to the grammar so the expressions can be parsed. The pro-
ductions should return AST nodes as described next.

• Implement the code generation for these operators.

A correctly generated AST for this code will both include infixexp nodes like this.

infixexp("orelse",id("x"),
infixexp("div",id("y"),int("0")))

infixexp("andalso",id("y"),
infixexp("*",id("x"),int("5")))

The code for line 4 of Fig. 6.30 starts on line 14 of Fig. 6.31. The println function
is loaded first. This is already implemented of course. Line 15 begins the code
generation for the orelse operator. For the expression E1 orelse E2 the code for E1 is
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Fig. 6.30 test5.sml

Fig. 6.31 test5.sml CoCo code
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generated first, followed by DUP_TOP, POP_JUMP_IF_TRUE, and the POP_TOP
instructions. The idea is if the first value is true, leave it on the stack and skip
evaluating E2. However, if the value of E1 is false, pop its value, and leave the value
of E2 on the stack after executing the code for E1 orelse E2.

A label is needed as the target for the jump instruction. The nextLabel function
returns a unique label as was described in Sect. 6.8 on compiling if-then-else expres-
sions.

The code for andalso appearing on lines 26–33 of Fig. 6.31 is analogous to the
orelse code jumping if the first value is false and evaluating E2 if E1 is true.

The program in Fig. 6.30 is of some interest because it is not a valid Small program,
yet the mlcomp compiler will generate code and it is possible to run the program
on the CoCo virtual machine. Since the short-circuit logic prevents the badly typed
expressions from being evaluated, the error is never encountered. Chapter8 will
explore how the program in Fig. 6.30 fails to pass typechecking by looking at how
the Standard ML type inference algorithm is implemented.

The difference between Python and Standard ML is that Python will allow a
program like this to run as long as no run-time error occurs and Standard ML will
complain that it doesn’t pass type checking and will abort. Is the type inference of
Standard ML better than the dynamic type checking of Python? Type inference
catches many errors in logic. Debugging most Standard ML programs is trivial
compared to debugging Python programs. However, passing the type checker is
often more difficult and often requires tedious type conversion code. Standard ML is
a bit better in that regard given its polymorphic type inference algorithm. In general,
research like the Fox project at Carnegie Mellon has shown that large software
systems benefit enormously from strong type checking by reducing the time it takes
to test code.

The tradeoff is in convenience vs safety while writing code and the amount of time
spent testing and debugging after the code is written. Standard ML is somewhat less
convenient for writing, but debugging costs are negligible. Python ismore convenient
to write but in a large software system you might pay for it later. Other factors in
language selection include appropriateness for the task at hand, whether similar
code has already been written in a particular language, the existence of libraries
providing APIs, and the availability of tools like compilers, interpreters, and IDEs
(i.e. Integrated Development Environments). All these factors must be weighed to
decide what language is most appropriate for a project.

6.10 Defining Functions

Function definitions in Standard ML may appear literally anywhere within the pro-
gram. Functions are first class values and may appear anywhere a declaration may
appear. In addition, anonymous functions may appear anywhere an expression may
appear in an SML program. Not so in CoCo. In the CoCo virtual machine function
definitions may be provided at the top level, outside any other functions, or may be
nested inside another function but must be written immediately after the Function

http://dx.doi.org/10.1007/978-3-319-13314-0_8
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statement of their outer function. In addition, in CoCo all functions must be named.
There are no anonymous functions.

The nestedfuns function traverses an AST for an SML expression looking for
any function definitions. If it finds one it generates the code for the nested function
immediately. Consider the compile function of the mlcomp.sml module.

TextIO.output(outFile,"Function: main/0\n");
nestedfuns(ast,outFile," ",globals,[],globalBindings,0);

This code prints theFunction statement for themain function. Then it immediately
called the nestedfuns function to look for any nested functions and generate their code
before continuing with the code generation for the main function. Again, this is the
order required by the CoCo virtual machine. When a nested function definition is
found in the AST, the nestedfun function is called to generate the code for it. There is
too much code to include here, but the nestedfun function gathers information about
the constants, locals, cell variables, and bindings of the inner function before calling
codegen to generate the body of it. Of course, it also looks for any nested functions
inside it before continuing.

When an anonymous function is found it must be assigned a name since that is
required by the CoCo virtual machine. Naming anonymous functions occurs in the
parser in the production for anonymous functions.

| Fn MatchExp (func(nextIdNum(),MatchExp))

In this code the nextIdNum function returns a unique integer. In the code generator
this unique integer is used to form a name for the anonymous function of anon@i
where i is the unique integer assigned by the parser.

Function definitions are always defined for functions of exactly one argument.
Pattern matching may be used in matching the argument as it is in Standard ML. The
parameter of the function is matched to each pattern in the function definition. Con-
sider the code in Fig. 6.32. There are two patterns in the function definition, a number
pattern, and an identifier pattern, which always matches. The patMatch function in
mlcomp.sml takes care of generating code to match the argument to the pattern.

For the number pattern, the code on lines 12–14 of Fig. 6.33 checks to see if the
number matches. If not, the code jumps to the end of its case. There is no code to
check the identifier pattern matching because it always matches.

Take note of the code on lines 28–32 of Fig. 6.33. Each time the patmatch code is
called it is passed the label of the next pattern to jump to if the current pattern does
not match. In this case, the last pattern always matches, but if it hadn’t the codemight

Fig. 6.32 test6.sml
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Fig. 6.33 test6.sml CoCo code

have jumped to L1. In that case, since all the patterns are exhausted at that point, an
exception would be raised by the code. In this particular function, lines 28–32 are
an example of dead code. The code will never be reached and could be removed.

The patmatch function matches patterns for nil, numbers, true or false, strings,
identifiers, the :: cons operator (i.e. a non-empty list pattern), and tuples. The tuple
pattern in turn matches each element of the tuple pattern to the elements of the tuple
argument by calling patmatch.

6.10.1 Curried Functions

It was said earlier that all functions are functions of one argument in Small (and in
StandardMLaswell) and it’s true. Curried functions are another example of syntactic
sugar. A curried function appears to be a function of more than one argument where
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Fig. 6.34 test7.sml

the arguments can be provided one at a time. The truth is that a curried function is
transformed into a series of anonymous functions, each of one argument. Consider
the program in Fig. 6.34. The append function is written in curried form. appendOne
is a function of one argument.When the program is run they both do exactly the same
thing appending two lists together. Calling append and appendOne look identical.
That’s because the two functions are identical. Function application is left associative
so each function is applied to its first, and only, argument which returns a function
that is applied to its second argument.

The mlcomp parser reduces curried functions like append to a function of one
argument with one anonymous function for each of the curried arguments. This is
done via a rather complex function that gathers each of the different pattern matches
of a curried function and rewrites the code so that each pattern match is a pattern
match of exactly one argument returning a function that takes the next argument.
This function is called uncurryIt and is given in Fig. 6.35.

6.10.2 Mutually Recursive Functions

Functions in Small and SML are often recursive. Sometimes, functions may be
mutually recursive as is the case in Fig. 6.36. The function f calls g and vice versa.
In C++, to write two functions like this, a forward declaration is required using the
function prototype for at least g. In StandardML, the use of the and keyword between
the two function definitions indicates that they are mutually recursive functions. The
AST for this program is specified like this:

letdec(funmatches([funmatch("f",f’s body),funmatch("g",g’s body)]))

When a funmatches AST node is encountered, the bindings of all the functions in
the funmatches list are passed to the code generation of each function. This is seen
in the nestedfuns function when matching a declaration for a funmatch as shown in
Fig. 6.37.
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Fig. 6.35 The uncurryIt function

Fig. 6.36 test11.sml

Fig. 6.37 Mutually recursive function declarations

In this code the list of all function names is gathered in nameList and then passed
to each recursive call of nestedfun after taking out the name of the function on which
nestedfun is being called. Mutually recursive functions are more common than you
might think. Look for uses of and in the mlcomp.sml file to see when it is needed in
the implementation of the compiler.
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6.11 ReferenceVariables

Adding variables to the Small language turns out to be almost trivial. Examining
Fig. 6.38 the new code involves the ref keyword, the exclamation point used as
the dereference operator, and the := operator (pronounced set equal). The scanner
includes support for the dereference and the set equal operators. The ref will be
recognized as an identifier, which turns out to be just fine.

The grammar specification in mlcomp.grm already has support for both the deref-
erence and set equal operators. The productions for the two are of some interest.
In Fig. 6.39 the set equal production demands that an identifier be on the left hand
side. A variable cannot be an expression. If the reference variable is to point to a
new value, the left hand side must name the reference variable. Yet, the AST is an
infixexp by creating an expression node from the identifier using id(Id). The deref-
erence production is even more interesting creating a fake function application node
with a ! identifier. No production is needed for the ref keyword addition because the
grammar already parses this as function application of the ref function to the value 0.

Code generation for variables is handled by a series of special cases. The decBind-
ingsOf function must be modified because binding for a variable is different than
the binding for a regular identifier. The code in Fig. 6.40 must be placed before the
pattern for regular identifiers.

The code in Fig. 6.40 binds the variable name to a unique identifier in the CoCo
program and it adds the variable name to the list of identifiers that will be associated
with cell variables. A cell variable is a reference and variables are references in
Standard ML.

The dereference operator must be handled as a special case in the bindingsOf
function. Normally an identifier is looked up to see if it is bound or free in a function.
The parser generatedAST for the dereference operatormakes it look like an identifier
inFig. 6.39. Tohandle this, the following code is a special case andmust appear before
the normal look up of identifiers in the bindingsOf function.

Fig. 6.38 test8.sml

Fig. 6.39 Set equal and deref operators
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Fig. 6.40 Reference variable bindings

Fig. 6.41 Variable code generation

| bindingsOf(id("!"),bindings,scope) = ()

Finally, code generation must be done for the ref declaration, the dereference
operator, and the set equal operator. The ref code generation is another special case
and must be done before normal function application. What is interesting is that all
the work of code generation was actually done by the decBindingsOf function when
the variable was added to the cell variables list. In lines 1–2 of Fig. 6.41, the code
for a ref expression is identical to the code for a non-reference expression because
the store function will find the variable in the cell variables and then generate the
appropriate store instruction.

Lines 3–4 generate the code for dereferencing a variable. Indirectly, this calls
load which will automatically generate the appropriate load instruction because the
decBindingsOf function placed the variable in the list of cell variables. Finally,
the code for the set equal operator is pretty straightforward. The LOAD_CONST
instruction is needed because every expression in Standard ML has a result and at
the end of the assignment statement the result is popped from the stack. The result of
assignment is unit which translates to the None value in the CoCo virtual machine.

When a binding to an identifier is used in an inner function, the identifier must be
bound to a cell variable so a closure can be constructed when the inner function is
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Fig. 6.42 test9.sml

called. Reference variables are also bound to cell variables so they can be updated.
Having two different sorts of bindings both map to the same implementation leads
to some interesting possibilities in the code. Consider the program in Fig. 6.42. This
program is not a legal Small program. The binding of x to 0 is a constant binding. It
should not be possible to update the contents of the variable. However, the assignment
statement on line 2 works because x is used in the inner function f and therefore is
assigned to a cell variable.

The code in Fig. 6.42 is an example of when type checking is needed to prevent
an illegal program from executing. The program is incorrect. The programmer made
a mistake and would like to know about this mistake. Yet CoCo doesn’t care and
neither does the mlcomp compiler. A typechecker should flag this as an error and
terminate the code generator before any program is generated. This example, and
the need for type checking, will be studied in more detail in Chap.8.

6.12 Chapter Summary

The goal of the chapter was to provide an introduction to language features by
studying the implementation of the Small language. Those wishing to learn more
about compiler construction may want to consult a full text on the subject. For
instance Aho et al. dragon book [2]. There are many other good texts on compiler
writing as well.

The case study in this chapter illustrated several features of programming lan-
guages. The implementation of functions in block structured languages is perhaps
the most difficult of the concepts presented. Important concepts and skills presented
in this chapter include the scope of bindings and how bindings are created, mutually
recursive functions, reference variables, code generation for several language fea-
tures, how to extend a language, how to use ML-lex and ML-yacc, syntactic sugar
and its uses in the Small language, and short-circuit logic. Exception handling was
not covered in this chapter and is a part of the mlcomp compiler.

As the need for embedded systems grows sowill the demand for newprogramming
languages targeting those platforms. The demands of a fast-paced work environment
have also spurred interest in programming language design and development. This

http://dx.doi.org/10.1007/978-3-319-13314-0_8
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is an exciting time for experts in programming languages and this text only scratches
the surface of a vast and exciting area of study.

6.13 Review Questions

1. The language of regular expressions can be used to define the tokens of a lan-
guage. Give an example for a regular expression from the chapter and indicate
what kind of tokens it represents.

2. What does ML-lex do? What input does it require? What does it produce?
3. Why do keywords have to be recognized by an if-else-if statement in the ML-

lex definition? Why couldn’t each keyword just be recognized like other fixed
tokens in a language?

4. How is an abstract syntax tree declared in ML?
5. Using the grammar specification for Small, what is the AST of the following

expression?

fun abs(x) = if x > 0 then x else ˜1*x

6. How does the load function of the code generator decide which load instruction
to generate?

7. In the code generation for function calls in Fig. 6.19, what is the purpose of the
two recursive calls to codegen?

8. Which function in the code generator is responsible for returning the new bind-
ings created by a let expression?

9. What does it mean for the Small language to support short-circuit logic? What
happens in the code generation?

10. In Fig. 6.37 what do nameList and adjustedBindings refer to for the program
given in Fig. 6.36? Give the actual contents of the three lists? Why three lists?

6.14 Exercises

1. Modify the compiler to support unary negation as described in this chapter. Upon
completion test3.sml should compile and run correctly.

2. Add >=, <=, and <> (not equal) operators to the Small language. Provide all the
pieces in all the files so programs using these operators can be compiled. Write
a Small program that demonstrates that this functionality works.

3. Add support for if-then-else expressions to the Small compiler as described in
this chapter. Follow the instructions of the chapter and be sure to test your imple-
mentation using test4.sml.

4. Implement short-circuit logic as described in this chapter for the andalso and the
orelse operators.
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5. Follow the step in this chapter to add support for compiling expressions with
variables. Then, implement a while do loop for the mlcomp compiler. A while
loop is written while Exp1 do Exp2. The Exp1 expression is evaluated first to see
if it yields true. If it does, then Exp2 is evaluated. This repeats until Exp2 returns
false. Remember your job is to generate code for a while loop, not execute it. Use
examples like adding if-then-else to help you determine where the changes need
to be made to add support for while do loops. Successfully writing this code will
result in successfully compiling and running test12.sml.

6. Add support for case expressions in the mlcomp Small compiler. The concrete
syntax of a case statement is

Expression : ...
| Case Exp Of MatchExp (caseof(Exp,MatchExp))

while the abstract syntax of a case expression is given here.

caseof of exp * match list

Follow an example like adding support for unary negation to see what all is
required to support the case expression in CoCo. Write a program to test the
use of the case expression in your code. There is currently no support for case
expressions in the mlcomp compiler. This project will require you to add support
to all facets of the compiler including the scanner, parser, and code generator.
When you have successfully implemented the code to parse and compile case
expressions, you will be able to compile this program which is test15.sml in the
mlcomp distribution.

1 let val x = 4
2 in
3 println
4 case x of
5 1 => "hello"
6 | 2 => "how"
7 | 3 => "are"
8 | 4 => "you"
9 end

The generated code for this program is given below. The program, when run, will
print you to the screen.

1 Function: main/0
2 Constants: None, ’Match Not Found’, 0, 1, "hello", 2, "how", 3, "are", 4, "you"
3 Locals: x@0
4 Globals: print, fprint, input, int, len, type, Exception, funlist, concat
5 BEGIN
6 LOAD_CONST 9 # Here the 6 is stored in x.
7 STORE_FAST 0
8 LOAD_GLOBAL 0 # This is the println pushed onto stack.
9 LOAD_FAST 0 # x is loaded onto stack.

10 DUP_TOP # Case expression code where x’s value is duplicated.
11 LOAD_CONST 3 # This is a pattern match for the first pattern.
12 COMPARE_OP 2
13 POP_JUMP_IF_FALSE L1
14 POP_TOP # Case expression code to pop x from stack
15 LOAD_CONST 4 # This is the expression for the first match.
16 JUMP_FORWARD L0 # Case expression code to jump to end of case.
17 L1: # Case expression code for label for end of first pattern.
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18 DUP_TOP # Case expression code where x’s value is duplicated.
19 LOAD_CONST 5 # This is a pattern match for the second pattern.
20 COMPARE_OP 2
21 POP_JUMP_IF_FALSE L2
22 POP_TOP # Case expression code to pop x from stack
23 LOAD_CONST 6 # This is the expression for the second match.
24 JUMP_FORWARD L0 # Case expression code to jump to end of case.
25 L2: # Case expression code for label for end of second pattern.
26 DUP_TOP # Case expression code where x’s value is duplicated.
27 LOAD_CONST 7 # This is a pattern match for the third pattern.
28 COMPARE_OP 2
29 POP_JUMP_IF_FALSE L3
30 POP_TOP # Case expression code to pop x from stack
31 LOAD_CONST 8 # This is the expression for the third match.
32 JUMP_FORWARD L0 # Case expression code to jump to end of case.
33 L3: # Case expression code for label for end of third pattern.
34 DUP_TOP # Case expression code where x’s value is duplicated.
35 LOAD_CONST 9 # This is a pattern match for the fourth pattern.
36 COMPARE_OP 2
37 POP_JUMP_IF_FALSE L4
38 POP_TOP # Case expression code to pop x from stack
39 LOAD_CONST 10 # This is the expression for the fourth match.
40 JUMP_FORWARD L0 # Case expression code to jump to end of case.
41 L4: # Case expression code for label for end of fourth pattern.
42 L0: # This is the end of case expression label.
43 CALL_FUNCTION 1 # print the result which was left on the stack
44 POP_TOP # Pop the None left by println
45 LOAD_CONST 0 # Push a None to return
46 RETURN_VALUE # Return the None
47 END

7. The following program does not compile correctly using the mlcomp compiler
and type inference system. However, it is a valid Standard ML program. Modify
the mlcomp compiler to correctly compile this program.

let val [(x,y,z)] = [("hello",1,true)] in println x end

8. Currently, the abstract syntax andparser ofSmall includes support for thewildcard
pattern in pattern matching, but the code generator does not support it. Add
support for wildcard patterns, write a test program, and test the compiler and
code generation.

9. Currently, the abstract syntax and parser of Small includes support for the as
pattern in patternmatching, but the codegenerator does not support it.Add support
for as patterns, write a test program, and test the compiler and code generation.
The as pattern comes up when you write a pattern like L as h::t which assigns L
as a pattern that represents the same value as the compound pattern of h::t.

6.15 Solutions to Practice Problems

These are solutions to the practice problem s. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

6.15.1 Solution to Practice Problem 6.1

The keywords case and of must be added to the scanner specification in mlcomp.lex.
All the other tokens are already available in the scanner.
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6.15.2 Solution to Practice Problem 6.2

You need to add a new AST node type.

| caseof of exp * match list

6.15.3 Solution to Practice Problem 6.3

The grammar changes required for case expressions are as follows.

Expression : ...
| Case Exp Of MatchExp (caseof(Exp,MatchExp))
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Imperative programming languages reflect the architecture of the underlying von
Neumann stored program computer: Programs update memory locations under the
control of instructions. Execution is (for the most part) sequential. Sequential execu-
tion is governed by a program counter. Imperative programs are prescriptive. They
dictate precisely how a result is to be computed bymeans of a sequence of statements
to be performed by the computer. Consider this program using the Small language
developed in Chap.6.

What do we want to know about the program in Fig. 7.1? Are we concerned with
a detailed description of what happens when the computer runs this? Do we want to
know what the PC is set to when the program finishes? Are we interested in what is
in memory location 13 after the second iteration of the loop? These questions are not
ones that need to be answered. They don’t tell us anything about what the program
does.

Instead, if we want to understand the program we want to be able to describe the
relationship between the input and the output. The output is the remainder after di-
viding the first input value by the second input. If this is what we are really concerned
about then why not program by describing relationships rather than prescribing a set
of steps. In Logic Programming the programmer describes the logical structure of a
problem rather than prescribing how a computer is to go about solving it. Languages
for Logic Programming are called:

• Descriptive languages: Programs are expressed as known facts and logical rela-
tionships about a problem. Programmers assert the existence of the desired result
and a logic interpreter then uses the computer to find the desired result by making
inferences to prove its existence.

• Nonprocedural languages: The programmer states only what is to be accom-
plished and leaves it to the interpreter to determine how it is to be accomplished.

• Relational languages: Desired results are expressed as relations or predicates
instead of as functions. Rather than define a function for calculating a square root,
the programmer defines a relation, say sqrt(x, y), that is true exactly when y2 = x.
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Fig. 7.1 A small sample

While there are many application specific logic programming languages, there
is one language that stands out as a general purpose logic programming language.
Prolog is the language that is most commonly associated with logic programming.
The model of computation for Prolog is not based on the Von Neumann architecture.
It’s based on the mechanism in logic called unification. Unification is the process
where variables are unified to terms.

This text has explored a variety of languages from the CoCo assembly language,
to C++, to Standard ML, and now Prolog. These languages reflect a continuum from
prescriptive languages to descriptive languages.

• Assembly language is a very prescriptive language, meaning that you must think
in terms of the particular machine and solve problems accordingly. Programmers
must think in terms of the vonNeumannmachine stored program computer model.

• C++ is a high-level language and hence allows you to think in a more descriptive
way about a problem. However, the underlying computational model is still the
von Neumann machine.

• Standard ML is a high-level language too, but allows the programmer to think in a
mathematical way about a problem. This language gets away from the traditional
von Neumann model in some ways.

• Prolog takes the descriptive component of languages further and lets programmers
write programs based solely on describing relationships.

Prolog was developed in 1972. Alain Colmerauer, Phillipe Roussel, and Robert
Kowalski were key players in the development of the Prolog language. It is a sur-
prisingly small language with a lot of power. The Prolog interpreter operates by
doing a depth first search of the search space while unifying terms to try to come
to a conclusion about a question that the programmer poses to the interpreter. The
programmer describes facts and relationships and then asks questions.

This simplemodel of programming has been used in awide variety of applications
including automated writing of real estate advertisements, an application that writes
legal documents in multiple languages, another that analyzes social networks, and a
landfill management expert system. This is only a sampling of the many, many appli-
cations that have been written using this simple but powerful programming model.
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7.1 Getting Started with Prolog

If you don’t already have a Prolog interpreter, you will want to download one and
install it. There are many versions of Prolog available. Some are free and some are
not. The standard free implementation is available at http://www.swi-prolog.org.
There are binary distributions available for Microsoft Windows, Mac OS X, and
Linux, so there should be something to suit your needs.

Unlike SML, there is no way to write a program interactively with Prolog. Instead,
you write a text file, sometimes called a database, containing a list of facts and
predicates. Then you start the Prolog interpreter, consult the file, and ask yes or no
questions that the Prolog interpreter tries to prove are true.

To start the Prolog interpreter you type either pl or swipl depending on your
installation of SWI Prolog. To exit the interpreter type a ctl-d. A Prolog program is
a database of facts and predicates that can be used to establish further relationships
among those facts. A predicate is a function that returns true or false. Prolog programs
describe relationships. A simple example is a database of facts about several people
in an extended family and the relationships between them as shown in Fig. 7.2.
Questions we might ask:

1. Is Gary’s father Sophus?
2. Who are Kent’s fathers?
3. For who is Lars a father?

These questions can all be answered by Prolog given the database in Fig. 7.2.

Fig. 7.2 The family tree

http://www.swi-prolog.org
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7.2 Fundamentals

Prolog programs (databases) are composed of facts. Facts describe relationships
between terms. Simple terms include numbers and atoms. Atoms are symbols like
sophus that represent an object in our universe of discourse. Atoms MUST start
with a small letter. Numbers start with a digit and include both integers and real
numbers. Real numbers are written in scientific notation. For instance, 3.14159e0 or
just 3.14159 when the exponent is zero.

A predicate is a function that returns true or false. Predicates are defined in Prolog
by recording a fact or facts about them. For instance, Fig. 7.2 establishes the fact that
Johan was the parent of Sophus. parent is a predicate representing a true fact about
the relationship of johan and sophus.

Frequently terms include variables in predicate definitions to establish relation-
ships between groups of objects. A variable starts with a capital letter. Variables
are used to establish relationships between classes of objects. For instance, to be a
father means that you must be a parent of someone and be male. In Fig. 7.2 the father
predicate is defined by writing

father(X,Y):-parent(X,Y), male(X).

which means X is the father of Y if X is the parent of Y and X is male. The symbol
:- is read as if and the comma in the predicate definition is read as and. So X is a
father of Y if X is a parent of Y and X is male.

Practice 7.1 What are the terms in Fig. 7.2? What is the difference be-
tween an atom and a variable? Give examples of terms, atoms, and variables
from Fig. 7.2.

You can check your answer(s) in Section7.17.1.

Toprogram inProlog the programmerfirstwrites a database like the one inFig. 7.2.
Then the programmer consults the database so the Prolog interpreter can internally
record the facts that arewritten there.Once the database has been consulted, questions
can be asked about the database. Questions asked of Prolog are limited to yes or no
questions that are posed in terms of the predicates in the database. A question posed
to Prolog is sometimes called a query. To discover if Johan is the father of Sophus
you start Prolog using pl or swipl, then consult the database, and pose the query.

% swipl
?- consult(’family.prolog’).
?- father(johan,sophus).
Yes
?-

Queries may also contain variables. If wewant to find out who the father of sophus
is we can ask that of Prolog by replacing the father position in the predicate with a
variable.When using a variable in a query Prolog will answer yes or no. If the answer
is yes, Prolog will tell us what the value of the variable was when the answer was
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yes. If there is more than one way for the answer to be yes then typing a semicolon
will tell Prolog to look for other values where the query is true.

?- father(X, sophus).
X = johan
Yes
?- parent(X,kent).
X = gary ;
X = gerry ;
No
?-

The final No is Prolog telling us there are no other ways for parent(X,kent) to be
true.

7.3 The Prolog Program

Prolog performs unification to search for a solution. Unification is simply a list of
substitutions of terms for variables. A query of the database is matched with its
predicate definition in the database. Terms in the query are matched when a suitable
pattern is found among the parameters of a predicate in the database. If the matched
predicate is dependent on other predicates being true, then those queries are posed
to the Prolog interpreter. This process continues until either Prolog finds that no
substitution will satisfy the query or it finds a suitable substitution.

Prolog uses depth first search with backtracking to search for a valid substitution.
In its search for truth it will unify variables to terms. Once a valid substitution is found
it will report the substitution andwait for input. In Sect. 7.2 the interpreter reports that
X = gary is a substitution that makes parent(X,kent) true. Prolog waits until either
return is pressed or a semicolon is entered. When the semicolon is entered, Prolog
undoes the last successful substitution it made and continues searching for another
substitution that will satisfy the query. In Sect. 7.2 Prolog reports that X = gerry will
satisfy the query as well. Pressing semicolon one more time undoes the X = gerry
substitution, Prolog continues its depth first search looking for another substitution,
finds none, and reports No indicating that the search has exhausted all possible
substitutions.

Unification finds a substitution of terms for variables or variables for terms. Uni-
fication is a symmetric operation. It doesn’t work in only one direction. This means
(among other things) that Prolog predicates can run backwards and forwards. For
instance, if you want to know who Kent’s dad is you can ask that as easily as who
is Gary the father of. In the following example we find out that gary is the father of
kent. We also find out who gary is the father of.

?- father(X,kent).
X = gary ;
No
?- father(gary,X).
X = kent ;
X = stephen ;
X = anne ;
No
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Practice 7.2 Write predicates that define the following relationships.

1. brother
2. sister
3. grandparent
4. grandchild

Depending on how you wrote grandparent and grandchild there might be
something to note about these two predicates. Do you see a pattern? Why?

You can check your answer(s) in Section7.17.2.

7.4 Lists

Prolog supports lists as a data structure. A list is constructed the same as in ML. A
list may be empty which is written as [] in Prolog. A non-empty list is constructed
from an element and a list. The construction of a list with head, H, and tail, T, is
written as [H | T]. So, [1, 2, 3] can also be written as [1 | [2 | [3 | []]]]. The list [a | []] is
equivalent to writing [a]. Unlike ML, lists in Prolog do not need to be homogeneous.
So [1, hi, 4.3] is a valid Prolog list.

By virtue of the fact that Prolog’s algorithm is depth first search combined with
unification, Prolog naturally does pattern matching. Not only does [H | T] work to
construct a list, it also works to match a list with a variable. Append can be written
as a relationship between three lists. The result of appending the first two lists is
the third argument to the append predicate. The first fact below says appending the
empty list to the front of Y is just Y. The second fact says that appending a list whose
first element is H to the front of L2 results in [H|T3] when appending T1 and L2
results in T3.

append([],Y,Y).
append([H|T1], L2, [H|T3]) :- append(T1,L2,T3).

Try out append both backwards and forwards! The definition of append can be
used to define a predicate called sublist as follows:

sublist(X,Y) :- append(_,X,L), append(L,_,Y).

Stated in English this says that X is a sublist of Y if you can append something on
the front of X to get L and something else on the end of L to get Y. The underscore
is used in predicate definitions for values we don’t care about.

To prove that sublist([1],[1,2]) is true we can use the definition of sublist and
append to find a substitution for which the predicate holds. Figure7.3 provides a
proof that [1] is a sublist of [1,2].
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Fig. 7.3 A unification tree

Practice 7.3 What is the complexity of the append predicate? Howmany steps
does it take to append two lists?

You can check your answer(s) in Section7.17.3.

Practice 7.4 Write the reverse predicate for lists in Prolog using the append
predicate. What is the complexity of this reverse predicate?

You can check your answer(s) in Section7.17.4.

7.5 The Accumulator Pattern

The slow version of reverse from Practice Problem 7.4 can be improved upon. The
accumulator pattern can be applied to Prolog as it was in SML. Looking back at
the Solution to Practice Problem 5.17, the ML solution can be rewritten to apply to
Prolog aswell. In theML version an accumulator argument was added to the function
that allowed the helprev helper function to accumulate the reversed list without the
use of append.

http://dx.doi.org/10.1007/978-3-319-13314-0_5
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fun reverse(L) =
let fun helprev (nil, acc) = acc

| helprev (h::t, acc) = helprev(t,h::acc)
in

helprev(L,[])
end

Unlike SML, Prolog does not have any facility for defining local functions with
limited scope. If using helper predicates in a Prolog program the user and/or pro-
grammer must be trusted to invoke the correct predicates in the correct way.

Applying what we learned from the ML version of reverse to Prolog results in
a helprev predicate with an extra argument as well. In many ways this is the same
function rewritten in Prolog syntax. The only trick is to remember that you don’twrite
functions in Prolog. Instead, you write predicates. Predicates are just like functions
with an extra parameter. The extra parameter establishes the relationship between
the input and the output.

Sometimes in Prolog it is useful to think of input and output parameters. For
instance, with append defined as a predicate it might be useful to think of the first two
parameters as input values and the third as the return value. While as a programmer
it might sometimes be useful to think this way, this is not how Prolog works. As was
shown in Sect. 7.4, append works both backwards and forwards. But, thinking about
the problem in this way may help identifying a base case or cases. When the base
cases are identified, the problem may be easier to solve.

Practice 7.5 Write the reverse predicate using a helper predicate to make a
linear time reverse using the accumulator pattern.

You can check your answer(s) in Section7.17.5.

7.6 Built-In Predicates

Prolog offers a few built in predicates. The relational operators (<,>,<=, >=,
and =) all work on numbers and are written in infix form. Notice that not equals is
written as \= in Prolog.

To check that a predicate doesn’t hold, the not predicate is provided. Preceding
any predicate with not insists the predicate returns false. For instance, not(5 > 6)
returns true because 5 > 6 returns false.

The atom predicate returns true if the argument is an atom. So atom(sophus) is true
but atom(5) is not. The number predicate returns true if the argument is a number.
So number(5) is true but number(sophus) is not.
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7.7 Unification and Arithmetic

The Prolog interpreter does a depth first search of the search space while unifying
variables to terms. The primary operation that Prolog carries out is unification. Uni-
fication can be represented explicitly in a Prolog program by using the equals (i.e.=)
operator. When equals is used, Prolog attempts to unify the terms that appear on each
side of the operator. If they can be unified, Prolog reports yes and continues unifying
other terms to try to find a substitution that satisfies the query. If no substitution is
possible, Prolog will report no.

Youmight have caught yourself wanting to write something likeX = Y in some of
the practice problem s. This is normal, but is the sign of a novice Prolog programmer.
Writing X = Y in a predicate definition is never necessary. Instead, everywhere Y
appears in the predicate, write X instead.

Unification has one other little nuance that most new Prolog programmers miss.
There is no point in unifying a variable to a term if that variable is used only once in
a predicate definition. Unification is all about describing relationships. Unification
doesn’t meanmuch when a variable is not used in more than one place in a definition.
In terms of imperative programming it’s kind of like storing a value in a variable and
then never using the variable. What’s the point? Prolog warns us when we do this by
saying

Singleton variables: [X]

If this happens, look for a variable called X (or whatever the variable name is) that
is used only once in a predicate definition and replace it with an underscore (i.e. _).
An underscore indicates the result of unification in that position of a predicate isn’t
needed by the current computation. Prolog warns you of singleton variables because
they are a sign that there may be an error in a predicate definition. If an extra variable
exists in a predicate definition it may never be instantiated. If that is the case, the
predicatewill always fail to find a valid substitution.While singleton variables should
be removed from predicate definitions, the message is only a warning and does not
mean that the predicate is wrong.

The use of equality for unification and not for assignment statements probably
seems a little odd to most imperative programmers. The equals operator is not the
assignment operator in Prolog. It is unification. Assignment and unification are dif-
ferent concepts. Writing X = 6∗5 in Prolog means that the variable Xmust be equal
to the term 6∗5, not 30. The equals operator doesn’t do arithmetic in Prolog. Instead,
a special Prolog operator called is is used. To compute 6 ∗ 5 and assign the result to
the variable X the Prolog programmer writes X is 6 ∗ 5 as part of a predicate. Using
the is operator succeeds when the variable on the left is unbound and the expres-
sion on the right doesn’t cause an exception when computed. All values on the right
side of the is predicate must be known for the operation to complete successfully.
Arithmetic can only be satisfied in one direction, from left to right. This means that
predicates involving arithmetic can only be used in one direction, unlike the append
predicate and other predicates that don’t involve arithmetic.
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Practice 7.6 Write a length predicate that computes the length of a list.
You can check your answer(s) in Section7.17.6.

7.8 Input and Output

Prolog programs can read from standard input and write to standard output. Reading
input is a side-effect so it can only be satisfied once. Once read, it is impossible
to unread something. The most basic predicates for getting input are get_char(X)
which instantiates X to the next character in the input (whatever it is) and get(X)
which instantiates X to the next non-whitespace character. The get_char predicate
instantiates X to the character that was read. The get predicate instantiates X to the
ASCII code of the next character.

There is also a predicate called read(X)which reads the next term from the input.
When X is uninstantiated, the next term is read from the input and X is instantiated
with its value. If X is already instantiated, the next term is read from the input and
Prolog attempts to unify the two terms.

As a convenience, there are certain libraries that alsomay be providedwith Prolog.
The readln predicate may be used to read an entire line of terms from the keyboard,
instantiating a variable to the list that was read. The readln predicate has several
arguments to control how the terms are read, but typically it can be used by writing
readln(L, _, _, _, lowercase).

? - readln(L,_,_,_,lowercase).

Reading input from the keyboard, no matter which predicate is used, causes
Prolog to prompt for the input by printing a |: to the screen. If the readln predi-
cate is invoked as shown above, entering the text below will instantiate L to the list
as shown.

|: + 5 S R
L = [+, 5, s, r] ;
No
?-

The print(X) predicate will print a term to the screen in Prolog. The value of its
argument must be instantiated to print it. Print always succeeds even if the argument
is an uninstantiated variable. However, printing an uninstantiated variable results in
the name of the variable being printed which is probably not what the programmer
wants.When a query is made in Prolog, each variable is given a unique name to avoid
name collisions with other predicates the query may be dependent on. Prolog assigns
these unique names and they start with an underscore character. If an uninstantiated
variable is printed, you will see it’s Prolog assigned unique name.

?- print(X).
_G180
X = _G180 ;
No
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The print predicate is satisfied by unifying the variable with the name of Prolog’s
internal unique variable name which is almost certainly not what was intended. The
print predicate should never be invoked with an uninstantiated variable.

7.9 Structures

Prolog terms include numbers, atoms, variables and one other important type of
term called a structure. A structure in Prolog is like a datatype in SML. Structures
are recursive data structures that are used to model structured data. Computer scien-
tists typically call this kind of structured data a tree because they model recursive,
hierarchical data. A structure is written by writing a string of characters preceding
a tuple of some number of elements. Consider implementing a lookup predicate for
a binary search tree in Prolog. A tree may be defined recursively as either nil or a
btnode(Val, Left,Right) where Val is the value stored at the node and Left and Right
represent the left and right binary search trees. The recursive definition of a binary
search tree says that all values in the left subtree must be less than Val and all values
in the right subtree must be greater than Val. For this example, let’s assume that
binary search trees don’t have duplicate values stored in them.

A typical binary search tree structure might look something like the term below
and corresponds to the tree shown graphically in Fig. 7.4.

btnode(5,
btnode(3,
btnode(2, nil, nil),
btnode(4, nil, nil)),

btnode(8,
btnode(7, nil, nil),
btnode(9, nil,
btnode(10, nil, nil))))

Items may be inserted into and deleted from a binary search tree. Since Prolog
programmers write predicates, the code to insert into and delete from a binary search

Fig. 7.4 Search tree



278 7 Prolog

tree must reflect the before and after picture. Because a binary search tree is recur-
sively defined, each part of the definition will be part of a corresponding case for
the insert and delete predicates. So, inserting into a search tree involves the value to
insert, the tree before it was inserted, and the tree after it was inserted. Similarly, a
delete predicate involves the same three arguments.

Looking up a value in a binary search tree results in a true or false response, which
is the definition of a predicate. Writing a lookup predicate requires the value and the
search tree in which to look for the value.

Practice 7.7 Write a lookup predicate that looks up a value in a binary search
tree like the kind defined in this section.

You can check your answer(s) in Section7.17.7.

7.10 Parsing in Prolog

As mentioned earlier in the text, Prolog originated out of Colmerauer’s interest in
using logic to express grammar rules and to formalize the parsing of natural language
sentences. Kowalski and Comerauer solved this problem together and Colmerauer
figured out how to encode the grammar as predicates so sentences could be parsed
efficiently. The next sections describe the implementation of parsing Colmerauer
devised in 1972. Consider the following context-free grammar for English sentences.

Sentence ::= Subject Predicate.
Subject ::= Determiner Noun
Predicate ::= Verb | Verb Subject
Determiner ::= a | the
Noun ::= professor | home | group
Verb ::= walked | discovered | jailed

Given a sequence of tokens like “the professor discovered a group.”, Chap.2
showed that a parse tree can be used to demonstrate that a string is a sentence in the
language and at the same time displays its syntactic structure.

Practice 7.8 Construct the parse tree for “the professor discovered a group.”
using the grammar in this section.

You can check your answer(s) in Section7.17.8.

Prolog is especially well suited to parse sentences like the one in Practice
Problem6.8. The language has built in support for writing grammars and will auto-
matically generate a parser given the grammar of a language. How Prolog does this
is not intuitively obvious. The grammar is taken through a series of transformations
that produce the parser. The next few pages present these transformations to provide
insight into how Prolog generates parsers.

http://dx.doi.org/10.1007/978-3-319-13314-0_2
http://dx.doi.org/10.1007/978-3-319-13314-0_6
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Parsing in Prolog requires the source program, or sentence, be scanned as in
the parser implementations presented in Chaps. 2 and 3. The readln predicate will
suffice to read a sentence from the keyboard and scan the tokens in it. Using the
readln predicate to read the sentence, “the professor discovered a group.”, produces
the list [the, professor, discovered, a, group,‘.’].

A Prolog parser is a top-down or recursive-descent parser. Because the constructed
parser is top-down, the grammar must be LL(1). There cannot be any left-recursive
productions in the grammar. Also, because Prolog uses backtracking, there cannot
be any productions in the grammar with common prefixes. If there are any common
prefixes, left factorization must be performed. Fortunately, the grammar presented
in this section is already LL(1).

The Prolog parser will take the list of tokens and produce a Prolog structure.
The structure is the Prolog representation of the abstract syntax tree of the sentence.
For instance, the sentence, “the professor discovered a group.”, when parsed by
Prolog, yields the term sen(sub(det(the), noun(professor)), pred(verb(discovered),
sub(det(a), noun(group)))).

The logic programming approach to analyzing a sentence in a grammar can be
viewed in terms of a graph whose edges are labeled by the tokens or terminals in the
language. Figure7.6 contains a graph representation of a sentence. Two terminals
are contiguous in the original string if they share a common node in the graph.

A sequence of contiguous labels constitutes a nonterminal if the sequence corre-
sponds to the right-hand side of a production rule in the grammar. The contiguous
sequence may then be labeled with the nonterminal. In Fig. 7.5 three nonterminals
are identified. To facilitate the representation of graphs like Fig. 7.6 in Prolog the
nodes of the graph are given labels. Positive integers are convenient labels to use as
shown in Fig. 7.7.

The graph for the sentence can be represented in Prolog by entering the following
facts. These predicates reflect the end points of their corresponding labeled edge in
the graph.

Fig. 7.5 Sentence structure

Fig. 7.6 A sentence graph

Fig. 7.7 A labeled sentence graph

http://dx.doi.org/10.1007/978-3-319-13314-0_2
http://dx.doi.org/10.1007/978-3-319-13314-0_3
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the(1,2).
professor(2,3).
discovered(3,4).
a(4,5).
group(5,6).
period(6,7).

Using the labeled graph in Fig. 7.7, nonterminals in the grammar can be repre-
sented by predicates. For instance, the subject of a sentence can be represented by a
subject predicate. The subject(K, L) predicate means that the path from node K to
node L can be interpreted as an instance of the subject nonterminal.

For example, subject(4,6) should return true because edge (4,5) is labeled by a
determiner “a” and edge (5,6) is labeled by the noun “group”. To define a sentence
predicate theremust exist a determiner and a noun. The rule for the sentence predicate
is

subject(K,L) :- determiner(K,M), noun(M,L).

The common variable M insure the determiner immediately precedes the noun.

Practice 7.9 Construct the predicates for the rest of the grammar.
You can check your answer(s) in Section7.17.9.

The syntactic correctness of the sentence, “the professor discovered a group.” can
be determined by either of the following queries

?- sentence(1,7).
yes
? - sentence(X,Y).
X = 1
Y = 7

The sentence is recognized by the parserwhen the paths in the graph corresponding
to the nonterminals in the grammar are verified. If eventually a path for the sentence
nonterminal is found then the sentence is valid. The paths in the graph of the sentence
are shown in Fig. 7.8. Note the similarity of the structure exhibited by the paths in
the graph with the tree of the sentence. If you use your imagination a bit you can see
the parse tree upside down (or right-side up for your non-programming friends).

7.10.1 Difference Lists

There are a couple of problems with the development of the parser above. First,
entering the sentence as facts like the(1,2) and professor(2,3) is impractical and
awkward. There would have to be some preprocessing on the list to get it in the
correct format to be parsed. While this could be done, a better solution exists. The
other problem concerns what the parser does. So far the parser only recognizes a
syntactically valid sentence and does not produce a representation of the abstract
syntax tree for the sentence.
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Fig. 7.8 An upside down parse tree

Labeling the nodes of the graph above with integers was an arbitrary decision.
The only requirement of labeling nodes in the graph requires that it be obvious when
two nodes in the graph are connected. Both problems above can be solved by letting
sublists of the sentence label the graph instead of labeling the nodes with integers.
These sublists are called difference lists. A difference list represents the part of the
sentence that is left to be parsed. The difference between two adjacent nodes is the
termwhich labels the intervening edge. The difference list representation of the graph
is shown in Fig. 7.9. Using difference lists, two nodes are connected if their difference
lists differ by only one element. This connection relationship can be expressed as a
Prolog predicate.

This is the connect predicate and the grammar rewritten to use the connect
predicate.

c([H|T],H,T).

The c (i.e. connect) predicate says that the node labeled [H|T ] is connected to the
node labeled T and the edge connecting the two nodes is labeled H. This predicate
can be used for the terminals in the grammar in place of the facts given above.

determiner(K,L) :- c(K,a,L).
determiner(K,L):- c(K,the,L).

noun(K,L) :- c(K,professor,L).
noun(K,L) :- c(K,home,L).
noun(K,L) :- c(K,group,L).

verb(K,L) :- c(K,walked,L).
verb(K,L) :- c(K,discovered,L).
verb(K,L) :- c(K,jailed,L).

Fig. 7.9 Difference lists
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The graph need not be explicitly created when this representation is employed.
The syntactic correctness of the sentence, “the professor discovered a group.” can
be recognized by the following query.

?- sentence([the,professor,discovered,a,group,’.’], [ ]).
yes

The parsing succeeds because the node labeled with [the, professor, discov-
ered, a, group, ‘.’] can be joined to the node labeled with [] via the intermedi-
ate nodes involved in the recursive descent parse of the sentence. Because Prolog
predicates work backwards as well as forward, it is just as easy to explore all the
sentences of this grammar by posing this query to the Prolog interpreter.

?- sentence(S,[ ]).

This reveals that there are 126 different sentences defined by the grammar. Some
of the sentences are pretty non-sensical like “the group discovered a group.”. Some
of the sentences like “the group jailed the professor.” have some truth to them.
Sophus Lie used to walk to many of the places he visited partly because he liked
to walk and partly because he had little money at the time. He also liked to draw
sketches of the countryside when hiking. He was jailed in France when France and
Germany were at war because the French thought he was a German spy. It was
understandable since he was walking through the countryside talking to himself in
Norwegian (which the French thought might be German). When they stopped to
question him, they found his notebook full of Mathematical formulas and sketchings
of the French countryside. He spent a month in prison until they let him go. While
in prison he read and worked on his research in Geometry. Of his prison stay he
later commented, “I think that a Mathematician is comparatively well suited to be
in Prison.” [20]. Other mathematicians may not agree with his assessment of the
mathematical personality.

Some care must be taken when asking for all sentences of a grammar. If the
grammar contained a recursive rule, say

Subject ::= Determiner Noun | Determiner Noun Subject

then the language would allow infinitely many sentences, and the sentence generator
will get stuck with ever lengthening subject phrases.

7.11 Prolog Grammar Rules

Most implementations of Prolog have a preprocessor which translates grammar
rules into Prolog predicates that implement a parser of the language defined by
the grammar. The grammar of the English language example takes the following
form as a logic grammar in Prolog.

sentence --> subject, predicate,[’.’].
subject --> determiner, noun.
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predicate --> verb, subject.
determiner --> [a].
determiner --> [the].
noun --> [professor]; [home]; [group].
verb --> [walked]; [discovered]; [jailed].

Note that terminal symbols appear inside brackets exactly as they look in the
source text. Since they are Prolog atoms, tokens starting with characters other than
lower case letters must be placed within apostrophes. The Prolog interpreter auto-
matically translates these grammar rules into normal Prolog predicates identical to
those defining the grammar presented in the previous section.

7.12 Building an AST

The grammar given above is transformed by a preprocessor to generate a Prolog
parser. However, in its given form the parser will only answer yes or no, indicating
the sentence is valid or invalid. Programmers also want an abstract syntax tree if the
sentence is valid. The problem of producing an abstract syntax tree as a sentence is
parsed can be handled by using parameters in the logic grammar rules.

Predicates defined using Prolog grammar rules may have arguments in addition
to the implicit ones created by the preprocessor. These additional arguments are
inserted by the translator to precede the implicit arguments. The grammar rule

sentence(sen(N,P)) --> subject(N), predicate(P), [’.’].

will be translated into the Prolog rule

sentence(sen(N,P),K,L) :- subject(N,K,M),
predicate(P,M,R),c(R,’.’,L).

A query with a variable representing a tree produces that tree as its answer.

?- sentence(Tree, [the,professor,discovered,a,group,’.’],[]).
Tree = sen(sub(det(the),noun(professor)),

pred(verb(discovered),sub(det(a),noun(group))))

Practice 7.10 Write a grammar for the subset of English sentences presented
in this text to parse sentences like the one above. Include parameters to build
abstract syntax trees like the one above.

You can check your answer(s) in Section7.17.10.

Writing an interpreter or compiler in Prolog is relatively simple given the grammar
for the language. Once the AST has been generated for an expression in the language
the back end of the interpreter or compiler proceeds much like it does in other
languages.
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7.13 Attribute Grammars

Programming language syntax is specified by formal methods like grammars. Se-
mantics, or the meaning of a computer program, are much harder to define. The
study of formal methods of specifying the meaning, or semantics, of a program is a
difficult but rewarding area of Computer Science. In Chap.6 a compiler for the Small
language was developed. Mapping the Small language into the language of CoCo is
a way of defining the semantics of Small. Mappings like this are sometimes called
Small Step Operational Semantics meaning that the Small language was defined in
terms of the smaller steps in the CoCo language. Of course, the CoCo language’s
semantics should also be formally defined in that case.

Another form of semantic definition is anAttribute Grammar. Attribute grammars
are not ideal for larger languages, even languages as big as the Small language would
be difficult and tedious to describe with an attribute grammar. But, a language like
the prefix calculator language is perfect for an attribute grammar definition.

The prefix calculator expression language was first presented in Chap.5. The
contents of the memory location after evaluating an expression is not specified by
the grammar of the language. In fact, the purpose of any of the operators is not
made explicit in the grammar. Even though we know that ∗ stands for multiplication,
there is nothing in the grammar itself that insists this be the case. Other means are
necessary to convey that meaning. One such method of conveying the semantics of
a language is called an attribute grammar. An attribute grammar adds attributes to
each node of an abstract syntax tree for sentences in the language.

The attributes tell us how a program would be evaluated in terms of its abstract
syntax tree. In other words, an attribute grammar provides a mapping of the syntax of
a program into a set of attributes that describe the semantics of the program. Consider
the prefix calculator grammar

G = (N , T ,P,E) where

N = E
T = S,R, number, ,+,−, ∗, /
P is defined by the set of productions
E → + E E | − E E | ∗ E E | / E E |∼ E | S E | R | number

Recall the grammar represents prefix expressions because the operation is written
before its arguments. So, +5 ∗ 64 results in 29 when evaluated. Notice that when
written in prefix notation, the expression S 5 stores 5 in the memory location. S is a
prefix operator.

The prog node in the abstract syntax definition in Fig. 7.10 was added to assist in
the definition of the attribute grammar. This abstract syntax can be used in Prolog
but does not need to be defined as a datatype as it would in Standard ML.

http://dx.doi.org/10.1007/978-3-319-13314-0_6
http://dx.doi.org/10.1007/978-3-319-13314-0_5
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Fig. 7.10 AST definition

An attribute grammar attaches assignment statements for the attributes to each
node in the abstract syntax tree. To distinguish between parts of the abstract syntax
tree, let AST0 denote the AST on the left hand side of a production and ASTi where
i > 0 represent an AST on the right hand side of the production. The attribute gram-
mar for the calculator language is given in Fig. 7.12. Semantics rules are attached
to each of the nodes in the AST definition. These rules govern the assignment of
the attributes in the AST. The numbers to the left of each rule are there simply to
number the rules and are not part of the attribute grammar. By deriving an AST for
a sentence and then applying the semantic rules the tree is decorated with attributes
that describe the meaning of the sentence, or program, in the language.

Fig. 7.11 Annotated AST for + S 4 R
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Fig. 7.12 Attribute grammar

The attribute grammar given in Fig. 7.12 can be used to convey the meaning
of evaluating an expression like + S 4 R. Figure7.11 depicts the annotated AST
according to the attribute grammar given in Fig. 7.12.

Practice 7.11 Justify the annotation of the tree given in Fig. 7.11 by stating
which rule was used in assigning each of the attributes annotating the tree.

You can check your answer(s) in Section7.17.11.
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7.13.1 SynthesizedVersus Inherited

Attributes in an attribute grammar come in two flavors. Some attributes are inherited
which means they are derived from values that are above or to the left in the AST.
Some attributes are synthesized meaning they are derived from values that are below
or to the right in the tree. The val attribute is a synthesized attribute in the attribute
grammar presented in Fig. 7.12.

Practice 7.12 Is themin attribute synthesized or inherited? Is themout attribute
synthesized or inherited?

You can check your answer(s) in Section7.17.12.

Attribute grammars work great for small languages. When a language is larger,
the number of attributes can grow exponentially, resulting in a very large annotated
tree. In addition, attribute grammars don’t deal well with things like control flow
and values that aren’t determined until run-time. There are many aspects of pro-
gramming languages that are difficult to assign as attributes in an AST. Typically,
attribute grammars work well for small interpreted languages with little or no un-
known information.

7.14 Chapter Summary

This chapter provided an introduction to programming in Prolog. List manipulation
and building and traversing complex recursive terms are important skills in becoming
an experienced Prolog programmer. Grammars and recursive-descent parsing are
natural topics relating to Prolog. Building top-down parsers in Prolog is easy with
the grammar extension provided in the Prolog language.

In addition, the chapter introduced a couple of formal semantic methods for de-
scribing programming languages. Small step operational semantics is one method
where a language is defined in terms of smaller steps in a simpler well-defined
language. Attribute grammars is another method of assigning meaning to programs.

There are several good books on Prolog programming. The Prolog presented in
this chapter is enough to get a flavor of the language and a good start programming
in the language. Things left out of the discussion include the cut operator and some
nuances of how unification is done (i.e. the difference between = and ==). Reading
from and writing to files was also left out. The definitive book for more information
is Clocksin and Mellish [5]. This book lacks exercises but contains many examples
and is a good reference once you understand something about how to program in
Prolog (which I hope you do once you’ve read the chapter and worked through the
problems).



288 7 Prolog

7.15 Review Questions

1. What is a termmade up of in Prolog? Give examples of both simple and complex
terms.

2. What is a predicate in Prolog?
3. In Standard ML you can pattern match a list using (h::t). How do you pattern

match a list in Prolog?
4. According to the definition of append, which are the input and the output para-

meters to the predicate?
5. How do you get more possible answers for a question posed to Prolog?
6. In the expression X = 6 ∗ 5 + 4 why doesn’t X equal 34 when evaluated in

Prolog? What does X equal? What would you write to get X equal to 34?
7. Provide the calls to lookup to look up 7 in the binary tree in Fig. 7.4. Be sure to

write down the whole term that is passed to lookup each time. You can consult
the answer to Practice Problem 7.5 to see the definition of the lookup predicate.

8. What symbol is used in place of the :− when writing a grammar in Prolog?
9. What is a synthesized attribute?

10. What is an inherited attribute?

7.16 Exercises

In these early exercises you should work with the relative database presented at the
beginning of this chapter.

1. Write a rule (i.e. predicate) that describes the relationship of a sibling. Then
write a query to find out if Anne and Stephen are siblings. Then ask if Stephen
and Michael are siblings. What is Prolog’s response?

2. Write a rule that describes the relationship of a brother. Then write a query to
find the brothers of sophusw. What is Prolog’s response?

3. Write a rule that describes the relationship of a niece. Then write a query to find
all nieces in the database. What is Prolog’s response?

4. Write a predicate that describes the relationship of cousins.
5. Write a predicate that describes the ancestor relationship.
6. Write a predicate called odd that returns true if a list has an odd number of

elements.
7. Write a predicate that checks to see if a list is a palindrome.
8. Show the substitution required to prove that sublist([a,b],[c,a,b]) is true. Use the

definition in Fig. 7.3 and use the same method of proving it’s true.
9. Write a predicate that computes the factorial of a number.

10. Write a predicate that computes the nth fibonacci number in exponential time
complexity.

11. Write a predicate that computes the nth fibonacci number in linear time
complexity.
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12. Write a predicate that returns true if a third list is the result of zipping two others
together. For instance,

zipped([1,2,3],[a,b,c],[pair(1,a),pair(2,b),pair(3,c)])

should return true since zipping [1,2,3] and [a,b,c] would yield the list of pairs
given above.

13. Write a predicate that counts the number of times a specific atom appears in a
list.

14. Write a predicate that returns true if a list is three copies of the same sublist. For
instance, the predicate should return true if called as

threecopies([a, b, c, a, b, c, a, b, c]).

It should also return true if it were called like

threecopies([a,b,c,d,a,b,c,d,a,b,c,d]).

15. Implement insert, lookup, and delete on a binary search tree. The structure of a
binary search tree was discussed in this chapter. Your main run predicate should
be this:

buildtree(T) :- readln(L,_,_,_,lowercase), processlist(L,nil,T).

run :- print(’Please enter integers to build a tree: ’), buildtree(T),
print(’Here is the tree:’), print(T), print(’\n’),
print(’Now enter integers to delete: ’), readln(L,_,_,_,lowercase),
delListFromTree(L,T,DT), print(DT).

The run predicate calls the buildTree predicate to build the binary search tree
from the list read by the readline. If 5 8 2 10 is entered at the keyboard, L would
be the list containing those numbers. To complete this project there should be at
least three predicates: insert, lookup, and delFromTree.
The lookup predicate was a practice problem and the solution is provided if you
need it. The insert predicate is somewhat like the lookup predicate except that
a new node is constructed when you reach a leaf. Deleting a node is similar
to looking it up except that if it is found, the tree is altered to delete the node.
Deleting a node from a binary search tree has three cases.

(a) The node to delete is a leaf node. If this is the case, then deleting it is simple
because you just return an empty tree. In Fig. 7.4 this occurs when 2, 4, 7,
or 10 is deleted.

(b) The node to delete has one child. If this is the case, then the result of deleting
the node is the subtree under the deleted node. In Fig. 7.4, if the 9 is deleted,
then the 10 is just moved up to replace the 9 in the tree.

(c) The node to delete has two children. If this is the case, then you have to
do two things. First, find the left-most value from the right subtree. Then,
delete the left-most value from the right subtree and return a new tree with
the left-most value of the right subtree at its root. Consider deleting 5 from
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the tree in Fig. 7.4. The left-most value of the right subtree is 7. To delete 5
we put the 7 at the root of the tree and then delete 7 from the right subtree.

To make this project easy, write it incrementally. Print the results as you go
so you can see what works and what doesn’t. The print predicate will print its
argument while the nl predicate will print a newline. Don’t start by writing the
entire run predicate right away. Write one piece at a time, test it, and then move
on to the next piece.

16. Implement a calculator prefix expression interpreter in Prolog as described in
the section on attribute grammars in this chapter. The interpreter will read an
expression from the keyboard and print its result. The interpreter should start
with a calc predicate. Here is the calc predicate to get you started.

calc :- readln(L,_,_,_,lowercase), preprocess(L,PreL), print(PreL), nl,
expr(Tree,PreL,[]), print(Tree), nl, interpret(Tree,0,_,Val),
print(Val), nl.

The program reads a list of tokens from the keyboard. The preprocess predicate
should take the list of values and add num tags to any number it finds in the list.
This makes writing the grammar a lot easier. Any number like 6 in L should
be replaced by num((6) in the list PreL. The expr predicate represents the start
symbol of your grammar. Finally, the interpret predicate is the attribute grammar
evaluation of the AST represented by Tree.

To make this project easy, write it incrementally. Print the results as you go so
you can see what works and what doesn’t. The print predicate will print its argument
while the nl predicate will print a newline. Don’t write the entire calc predicate right
away. Write one piece, test it, and then move on to the next piece.

7.17 Solutions to Practice Problems

These are solutions to the practice problem s. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

7.17.1 Solution to Practice Problem7.1

Terms include atoms and variables. Atoms include sophus, fred, sophusw, kent,
johan, mads, etc. Atoms start with a lowercase letter. Variables start with a capital
letter and include X and Y from the example.
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7.17.2 Solution to Practice Problem7.2

1. brother(X, Y) :- father(Z,X), father(Z,Y),male(X).
2. sister(X, Y) :- father(Z,X), father(Z,Y), female(X).
3. grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
4. grandchild(X, Y) :- grandparent(Y ,X).

Grandparent and grandchild relationships are just the inverse of each other.

7.17.3 Solution to Practice Problem7.3

The complexity of append is O(n) in the length of the first list.

7.17.4 Solution to Practice Problem7.4

reverse([],[]).
reverse([H|T],L) :- reverse(T,RT), append(RT,[H],L).

This predicate has O(n2) complexity since append is called n times and append is
O(n) complexity.

7.17.5 Solution to Practice Problem7.5

reverseHelp([],Acc,Acc).
reverseHelp([H|T], Acc, L) :- reverseHelp(T,[H|Acc],L).
reverse(L,R):-reverseHelp(L,[],R).

7.17.6 Solution to Practice Problem7.6

len([],0).
len([_|T],N) :- len(T,M), N is M + 1.

7.17.7 Solution to Practice Problem7.7

lookup(X,btnode(X,_,_)).
lookup(X,btnode(Val,Left,_)) :- X < Val, lookup(X,Left).
lookup(X,btnode(Val,_,Right)) :- X > Val, lookup(X,Right).
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Fig. 7.13 The sentence structure for “the professor discovered a group.”

7.17.8 Solution to Practice Problem7.8

See Fig. 7.13.

7.17.9 Solution to Practice Problem7.9

sentence(K,L) :- subject(K,M), predicate(M,N), period(N,L).
subject(K,L) :- determiner(K,M), noun(M,L).
predicate(K,L) :- verb(K,M), subject(M,L).
determiner(K,L) :- a(K,L); the(K,L).
verb(K,L) :- discovered(K,L); jailed(K,L); walked(K,L).
noun(K,L) :- professor(K,L); group(K,L); home(K,L).

7.17.10 Solution to Practice Problem7.10

sentence(sen(N,P)) --> subject(N), predicate(P), [’.’].
subject(sub(D,N)) --> determiner(D), noun(N).
predicate(pred(V,S)) --> verb(V), subject(S).
determiner(det(the)) --> [the].
determiner(det(a)) --> [a].
noun(noun(professor)) --> [professor].
noun(noun(home)) --> [home].
noun(noun(group)) --> [group].
verb(verb(walked)) --> [walked].
verb(verb(discovered)) --> [discovered].
verb(verb(jailed)) --> [jailed].
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Fig. 7.14 Decorated tree for the prefix expression + S 4 R

7.17.11 Solution to Practice Problem7.11

See Fig. 7.14.

7.17.12 Solution to Practice Problem 7.12

The val attribute is synthesized. The min value is inherited. The mout value is
synthesized.
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Many language implementations, like C++ and Java, check the types of values and
operations to be sure each operation is supported for the types of its operands. An
important feature of Standard ML is the type inference system which is some-
what like the type checkers of C++ and Java, but a bit more powerful. A type
checker checks the types written by the programmer to be sure each type dec-
laration is consistent with the operations being performed, values being passed
to functions, and the values being returned. Compilers for Java and C++ even
infer the types of some expressions when polymorphic operators are used. For
instance, the addition operator has multiple result types depending on the types
of its operands.

The type inference system of Standard ML distinguishes itself from other type
inference systems by inferring almost all the types of an SML program, rather
than requiring the programmer to declare the types of variables. The SML type
inference system infers the types of values in its programs by using type infor-
mation about constant values and the types supported by its built-in operators or
functions. Many of the functions in Standard ML are polymorphic allowing more
than one type of argument to be passed to them. The type inference system of
Standard ML is able to handle this polymorphism. Robin Milner, Roger Hind-
ley, and Luis Damas all contributed to this powerful polymorphic type inference
system.

This chapter develops a polymorphic type inference system for the Small lan-
guage using Prolog as the implementation language. A typical way to describe type
inference is with type inference rules. Each of the type inference rules associated
with the Small language is presented along with some of the type inference rule
implementations. Not all code is provided since some problems are left as exercises
for the reader, but the Prolog examples in this chapter come from a working type
inference system for the Small subset of Standard ML.
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8.1 Why Static Type Inference?

To motivate our discussion, consider the program found in Fig. 8.1. This is a valid
Small program and when compiled to CoCo and run it prints 1 to the screen. Contrast
that to the program in Fig. 8.2, which is not a valid Small program or Standard ML
program. It is missing the dereference operator in the expressions referring to x.
This program should not execute. Executing such a program would, at best, have
unpredictable results. With the target language as the CoCo virtual machine the
program actually does run and produces 1 as its output, which is even worse than it
not running at all. Any change in the compiler could end up breaking this program
when at one time it seemed to compile and run successfully.

8.1.1 Exception Program

Here is another example. This question was posted on stackoverflow.com. The ques-
tion posed was,

When executing the code [from Fig. 8.3] in SML I get:

stdIn:216.8-216.12 Error: operator and operand don’t agree [literal]
operator domain: real
operand: int
in expression:

z 3

That’s fine—I understand that the line z(3); causes an error, since z throws int
instead of real. But my problem is with the line x(3.0); , why doesn’t it cause an error?

The answer is that the program in Fig. 8.3 never executes in Standard ML because
it is not correctly typed. Since it is not correctly typed, the type inference system
finds the type error, not with the first sequentially evaluated expression, but with the

Fig. 8.1 test8.sml

Fig. 8.2 test13.sml
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Fig. 8.3 Exception program

function application of z to 3. Without static type checking before the program runs,
the Small language that we developed in Chap.6 would try to execute this program
and would encounter an error when evaluating x(3.0). We need type inference to
prevent this from happening. Preventing an incorrectly typed program from running
catches many unintended errors that might only be caught at run-time otherwise. The
type checker helps us find errors that might otherwise go undetected until the code
path gets executed.

8.1.2 A Bad Function Call

One more example helps to illustrate the need for type inference. Consider the pro-
gram in Fig. 8.4. This program is incorrect because it is missing a semicolon between
the two println expressions. However, in the absence of type inference it starts run-
ning and produces a run-time error stating that None is not a callable object. The
first call to println looks like a curried function call of println x println “Done”. The
result of println x is None. That appears to Small to be a function that should be
passed the next argument, println. Hence we get the “None is not callable” run-time
error message from the CoCo virtual machine when the correct error message should
come from type inference on this program to say that the println function application
does not match its signature.

Fig. 8.4 A bad function call

http://dx.doi.org/10.1007/978-3-319-13314-0_6
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It would be much better to report to the programmer that the programs in Sect. 8.1
are invalid and do not pass the type inference system. It is dangerous for a program
to execute that has undefined results because while an implementation detail like the
CoCo Virtual Machine’s use of cell variables may allow a program to execute with
the correct output, the implementation of the virtual machine or even a completely
different target architecture could then cause a once working program to suddenly
stop working. As programmers we rely on the tools we use to produce correct code
and to guarantee that once debugged the behavior of a program won’t suddenly
change due to external factors like a compiler change.

8.2 Type Inference Rules

A type inference system is defined in terms of type inference rules. The collection
of these rules define a type inference system. Each type inference system defines its
own set of rules. Type inference rules follow a pattern of necessary conditions, or
premises, and a logical conclusion. The rules are written in this form.

RuleName
Premise1, Premise2, ..., Premisen

Conclusion

The way to read this is to say that if each of the premises hold in some model,
then the conclusion holds as well in that model. An inference system contains a
collection of inference rules. Normally each rule in an inference system is given a
name so it can be referred to in proofs. The collection of inference rules can be used
in contructing a proof. In this case a proof of an expression’s type.

All the type inference rules for the Small language are provided in the sections
in this chapter. Some of the type inference rules will contain braces surrounding
sytantic elements of the language (i.e. { and }). These braces are used to indicate
zero or more occurrences of syntactic elements.

Much of the Prolog implementation of this type inference system is provided as
well, although some pieces of it are left as exercises for the reader.

8.3 Using Prolog

The Small language and grammar is sufficiently complex that writing a top-down
parser for it would be difficult. Since Prolog’s grammar support creates a top-down
parser from a grammar, it is not powerful enough to parse programs in the Small
language. So, the program is not parsed by Prolog. Instead, the mlcomp compiler
writes a file called a.term which is a Prolog term representing the abstract syntax of
the source program. This AST is read by the Prolog type inference system. Consider
the program in Fig. 8.1. The AST Prolog term for this program is shown in Fig. 8.5.
In most cases, even if the compiler has not been extended to generate the correct
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Fig. 8.5 test8.sml AST

code for a program, the compiler will still write a correct Prolog term. If compiling
a new extension to the language the writeTerm function in mlcomp.sml may have to
be extended to support the new extension.

The code in Fig. 8.6 starts the type checker. The run predicate reads the abstract
syntax tree for the program from the file called a.term. The print prints it back to
the screen just for visual confirmation. The catch is a Prolog predicate that provides
exception handling. The first argument to catch is a predicate to satisfy. If an excep-
tion occurs while attempting to satisfy the predicate the error is unifiedwithE and the
errorOut predicate is called which prints one of three messages depending on the
error.

If no error occurs, the variable Type will hold the type returned by the Small
program. The printType predicate prints the type in Standard ML format and returns

Fig. 8.6 The type checker run predicate
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a list of any type variables it finds. Thewarning predicate warns of any uninstantiated
type variables found in the type.

The cut operator (i.e. !) stops Prolog from backtracking. Normally, if a point is
reached where Prolog cannot satisfy a predicate, it will undo the last unification and
look for another way to satisfy the original query. The type inference system has
side-effects, like printing error messages, and the type inference is deterministic in
its choices. There is only one way to satisfy predicates in the type inference system:
by finding the type of the program. To prevent backtracking the cut operator can
be used. Technically, the cut operator is not needed because different cases of a
predicate should all be logically mutually exclusive. However, it is sometimes more
convenient to use the cut. When Prolog comes across a cut operator, the search space
is pruned. The predicate in which the cut is found may not be satisfied by any other
choices in that predicate. In the warning predicate, once one of the patterns matches
(from the top down), the warning predicate cannot be satisfied by any other warning
definition. As a Standard ML programmer this is appealing because it leads to the
same kind of pattern matching used in Standard ML programs.

So, a term like the one in Fig. 8.5 is read as theAST by the type checker and passed
to the predicate called typeCheckProgram that does the type inference of the Small
program. The AST description is given in Standard ML form in Fig. 8.7. Prolog
does not require datatypes be declared so there is no explicit declaration of the AST
datatype in the typechecker. Nevertheless, the datatype is coded into the expected val-
ues of AST nodes in the type checker predicates. The Prolog AST format is nearly an
exact copy from the Standard MLAST definition except that boolval in the Standard
ML implementation is called bool in the Prolog version, the infixexp in the Standard
ML AST is replaced with an apply in the type checker, and the raise AST node is
replacedwith an apply. See thewriteExp function for infix expressions inmlcomp.sml
for the details of the conversion from infixexp to apply and raise to apply. The imple-
mentation of the type checker follows from the definition of the abstract syntax.

The Standard ML types used in the Small language include the types in Fig. 8.8.
These types include the usual boolean, integer, and string types. The exn type is the
type of exceptions. The tuple type is a tuple of some aggregation of other types. Lists
must be homogeneous meaning they are a list of some one type of value. The type
fn(A,B) is the type of all functions. Every function takes one argument, which may be
a tuple, and returns one value. The ref types are the reference types and are defined
by the type of value to which they point. Type variables are denoted by the typevar
type. The string in a typevar is the name of the type variable. The type checker assigns
variable names as a, b, c, d, etc. The type checker is strict in typeerror, meaning once
an expression results in a type error all other expressions that interact with it also
result in typeerror.

The job of the type checker is to map a program in the syntax of Fig. 8.7 into its
type as defined in Fig. 8.8. Type inference rules provide the mapping instructions.
The rest of this chapter explores type inference for the simplest nodes first, working
up to more complex language constructs.
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Fig. 8.7 AST description

Fig. 8.8 Small types
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8.4 TheType Environment

Functions inStandardMLare typedby their signature as seen inChap.5. For instance,
the Int.fromString function has a signature of

fn : str → int

The environment of the type checker provides information about the signature
of built-in functions and operators in the language. The environment is referred to
as epsilon (i.e. ε), the type environment, or just the environment. More generally,
the environment provides a mapping of identifiers to types which can be consulted
during type checking as needed.

Some functions are polymorphic and therefore type variables are necessary to
describe their type. For instance, the print function has a type of

fn : α → ()

Theα represents a typevariable in the signature of theprint function.The existence
of type variables makes it possible for functions in the Standard ML type inference
system to be polymorphic.

In Prolog the environment is created by the typecheckProgram predicate which
passes it to the typecheckExp predicate. Figure8.9 provides the type environment
given to the typecheckExp predicate.

There are a number of functions and operators provided in the environment. The
function type begins with fn. All type variables are named typevar and the unit type

Fig. 8.9 The type environment

http://dx.doi.org/10.1007/978-3-319-13314-0_5
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is denoted as tuple([ ]) in the type checker. The environment is represented as follows
in the type inference rules.

ε = [Exception �→ α → exn, raise �→ exn → α, and also

�→ bool × bool → bool, ...]
The environment is a list of bindings of identifiers to types. The environment is

always searched from left to right to find a binding as needed by type inference
rules. The symbol �→ is pronounced maps to. For instance, Exception maps to a
polymorphic type from alpha to exn.

8.5 Integers, Strings, and Boolean Constants

The types of integer, string, and boolean constant values are determined by the scan-
ner when read in mlcomp. Determining their types then is just a matter of matching
their scanned type to a type in the type checker. So we write the following statements
about the types of simple constant values. In each case, there are no premises thatmust
be satisfied.When we see a boolean constant we can immediately determine its type.

BoolCon

ε � bool(v) : bool

IntCon

ε � int(v) : int

StringCon

ε � str(v) : str

To keep things simpler in the type inference algorithm we’ll limit our discussion
to integers for all numbers. Each type inference rule will be named in bold and its
definition will be indented underneath it as seen here. In Prolog constant types are
given a type by the typecheckExp predicate as shown in Fig. 8.10. The environment
is the first argument to the typecheckExp predicate and is a don’t care value in this
case since the environment is not needed to determine the type of a constant. The
AST argument is the second argument to the predicate. The third argument is the
type of the expression.

Consider the expression 5. This is mapped into the term int(5) by the mlcomp
compiler. Passing int(5) to the type checker matches the predicate in Fig. 8.10 and
returns int for its type. The type is printed by the type checker. Output from the type
checker looks like this.

Typechecking is commencing...
Here is the AST
int(5)
val it : int
The program passed the typechecker.
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Fig. 8.10 Constant type inference

8.6 List andTuple Constants

The type of a list is derived from its constituent type. Lists are homogeneous in Small
as they are in Standard ML, meaning that all elements must have the same type. The
type of a tuple is derived from its constituent types. For example consider this list
and tuple.

[6, 5, 4] : int list
("hi", true, 6) : str ∗ bool ∗ int

In the abstract syntax, list and tuple constants are written as lists of values. For
instance, written in Prolog syntax, to typecheck the two values above, typecheckExp
is implemented as follows.

typecheckExp(Env,listcon(L),listOf(T)) :- typecheckList(Env,L,T).
typecheckExp(Env,tuple(L),tuple(T)) :- typecheckTuple(Env,L,T).

Typechecking the list and tuple constants above returns these type values.

listOf(int)
tuple([str,bool,int])

Note the type value of listOf here. list is a built-in predicate in Prolog and
should not be used. Here is the type inference rule that describes the type of lists in
Small.

ListCon
∀i 1 ≤ i ≤ n, n ≥ 0

ε � ei : α

ε � [e1, e2, . . . , en] : α list

The List type inference rule can be read as follows: If in the type environment
the types of all elements of a list are found to be α, then the type of the list constant
of these values is α list in the same type environment. In the vacuous condition,
where n=0, there are no premises with the type of the list being polymorphically
α list.

For tuples the type inference rule is somewhat similar. The × in the rule below
is the cross product symbol and is the symbol that corresponds to * printed by the
StandardML type checker. The writing of this cross product forms the type for tuples
of n elements.
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TupleCon

∀ 1 ≤ i ≤ n, n ≥ 0

ε � ei : αi

ε � (e1, e2, . . . , en) : ×n
i=1αi

In the vacuous condition of n=0 in the TupleCon rule the type is the empty
Cartesian product which is denoted as the unit type in Standard ML. In other words,
the empty tuple has type unit in Standard ML.

Consider type checking the expression [1,2,3,4]. The type checker provides output
as shown below. Typechecking the list constant calls typecheckList as shown earlier
in this section. The typecheckList predicate proceeds through the list of elements
making sure all the types match, resulting in the type you see below.

Typechecking is commencing...
Here is the AST
listcon([int(1),int(2),int(3),int(4)])
val it : int list
The program passed the typechecker.

8.7 Identifiers

When a program uses an identifier the type of the identifier must be looked up in
the type environment. Lookup in the environment is denoted as ε[id �→ α] which
says that in the type environment find id and its associated type alpha. The rule
below indicates the type of an identifier is its type in the environment. In the Prolog
implementation a find predicate is written to look up an identifier in an environment
to find its type. Here is the identifier type inference rule.

Identifier

ε[id �→ α] � id : α

The code in Fig. 8.11 provides the details of the find predicate implementation in
Prolog. There is also an exists predicate that is satisfied if an environment contains a
binding. The member predicate is a built-in predicate in Prolog. Normally in a proof
this lookup will be implied when an identifier is looked up in the bindings and this
step will be omitted. Consider the expression containing just the name of a function,
as in println. Type checking this expression will reveal the type of println, which is
not a Standard ML function but is in the Small language.

Typechecking is commencing...
Here is the AST
id(println)
val it : ’a -> unit
The program passed the typechecker.

The type checker sees the identifier and looks in the environment, finding the
println identifier and yielding its type.
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Fig. 8.11 Environment lookup predicates

8.8 Function Application

Function application in Small and Standard ML occurs when two expressions are
written next to each other as in the expression

println 6

for instance. In the Prolog AST this appears as apply(id(‘println’),int(‘6’)). Function
application is the act of calling a function. The type of println is α → unit. The
println function is being applied to an integer. We need a type inference rule that
formally defines a legal function application.

Before the function application type inference rule can be written one more oper-
ator is needed which may be a bit difficult to understand at first. Small and Stan-
dard ML support polymorphic type checking. When a type contains type variables
the type variables place restrictions on the kinds of values to which the type may
be instantiated. For instance, the println function has type α → unit which says
that the function println is polymorphic taking arguments of any type. The type is
defined with the type variable α, but just when is println polymorphic? The answer
is every time println is called. One application of println can be given an inte-
ger, while the next application could be given a tuple of an integer and a boolean
value. In each case the α type variable is instantiated to a type, an integer in the
first case and a tuple in the second. Type inference rules need a way of creating
instances of polymorphic types. In this way, one instance of the polymorphic type
α → unit can be instantiated as int → unit while the next can be instantiated as
int × bool → unit.

In type inference rules this instantiation operator is written as inst. It is given a
type and returns an instance of that type where all type variables are replaced by
fresh, unbound instances of variables. In the type inference rule below the result type
of function application is the specialization of the instantiated result type given the
type of the argument passed to the function application.
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FunApp

ε � e1 : α → β, α′ → β ′ : inst(α → β), ε � e2 : α′

ε � e1e2 : β ′

The Prolog implementation of instantiation will shed some light on instantiation.
In Prolog, all type variables are written as typevar(id) where id is typically some
letter from a to z, but could be any identifier. This corresponds to the way type
variables appear in Standard ML’s type inference system when types like fn:’a ->’a
are printed. In the Prolog implementation of the typechecker the function type fn:’a
->’a is written as fn(typevar(a),typevar(a)). Making an instance of a type like this
creates a type that can be unified with other types in Prolog. An instance of this type
would be written as fn(A,A). In this Prolog term the variable A is unbound since it is
not unified with any other term. The Prolog term fn(A,A) is an instance of the type
fn(typevar(a),typevar(a)). Instantiation is performed by the inst predicate shown in
Fig. 8.12.

On line 17 of Fig. 8.12 the inst operator calls the instanceOf predicate with an
empty environment. The instanceOf predicate recursively traverses the type, chang-
ing all occurrences of type variables to Prolog variables. The environment keeps track
of the mapping of type variables to Prolog variables so if a type variable appears
more than once in a type it is replaced by the same Prolog variable as is evident with
the example of the polymorphic type of function f in the preceding paragraph. Line
11 insures the same Prolog variable is used when the type variable is found in the
environment. Line 12 creates a new Prolog variable when the type variable is not
found in the environment.

Fig. 8.12 The instantiation operator
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Fig. 8.13 Function application type inference

Line 4 of Fig. 8.12 uses the var predicate which returns true if A is an unbound
Prolog variable. This clause is important because if instanceOf is called with an
uninstantiated variable already, then it will unify with anything it is matched to, like
the function type in line 6 for instance. Line 4 insures that an unbound variable stays
unbound. Line 5 uses the simple predicate which just means that A is a simple term
like int, or bool. It is not complex, meaning there are no subterms that are a part of
this term. A complex termwould be a type like tuple([typevar(a),typevar(a)]). Line 5
handles all the simple types by just returning them. Simple types are not polymorphic.

Type inference for function application in Prolog utilizes Prolog exception han-
dling as shown in Fig. 8.13. If a function call is not correct due to a type error, the
instantiation predicate in Fig. 8.12 will throw a type error exception. In that case it
would be nice to know there was an error with a function call. The error is caught in
this code and a message is printed.

8.8.1 Instantiation

When an instance of a type is created with free variables, the Prolog variables only
stay free as long as the instantiated type is not unified with any other types. Once
that instance of a type is unified some or all of the free variables will be bound. In
this way, when an instance of a type is created, it moves towards being a type with
no free variables as type inference proceeds. If unification is not possible due to a
type error, then that condition is recognized and the resulting type is the special type
typeerror which is handled in the Prolog implementation by throwing an exception.

Several of the rules below use instantiation so that unification of types is possible.
When an instance of a type is the result of a type inference rule, all free variables
have been unified with bound values producing a valid type except in the cases of
type errors in the original program. Consider the invocation of println 6 and how we
would arrive at a type. The following instance of the FunApp rules shows how it is
proved to be a valid function application.

ε � println : α → unit, int → unit : inst(α → unit), ε � 6 : int

ε � println 6 : unit
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8.9 Let Expressions

Binding identifiers to values is the job of let expressions in Standard ML and Small.
Let expressions create bindings between identifiers and values through the use of pat-
terns. Identifiers can be bound to one or more function definitions in a let expression
because functions are values too in Small and Standard ML. A little new notation
must be introduced to write type inference rules for let expressions.

Let expression build new environments. To properly define type inference for
the newly created environment, environments must be considered values in the type
checker. A declaration produces an environment mapping one or more identifiers to
their types. To combine two environments a new overlay operator is defined. One
environment can then be used to partially overlay another environment. Consider
two environments ε1 and ε2. To combine the first with the second environment the
overlay ⊕ operator is defined as demonstrated here.

ε1 = [x �→ α → β, y �→ int, z �→ α × β]
ε2 = [u �→ α × β → β, y �→ bool]

ε2 ⊕ ε1 = [u �→ α × β → β, y �→ bool] ⊕ [x �→ α → β, y �→ int, z �→ α × β]
= [u �→ α × β → β, y �→ bool, x �→ α → β, y �→ int, z �→ α × β]

Since environments are always searched from left to right, the result of the overlay
operator is the concatenation of the two environments. In this example the result is
that y is mapped to bool in the new environment ε2 ⊕ ε1. In Prolog, environments
are represented as lists of bindings just as described here. The overlay operator is
simply the append predicate in Prolog. Recalling that the find predicate searches an
environment from left to right the result of appending two lists is the overlay of the
bindings in the second list. One more bit of notation is needed. When a declaration
creates a new environment it will be written using a double right arrow as follows.

ε � dec ⇒ εdec

This indicates that the declaration builds a new environment εdec that will be used
later in the type inference rule. Now we are ready to define the let expression type
inference rule.

Let

ε � dec ⇒ εdec, εdec ⊕ ε � esequence : β

ε � let dec in esequence end : β

The dec declaration in the rule above can be one of two types of declarations in
Small: either a val declaration or a series of fun declarations. The type inference for
these two types of declarations is provided in the rules below. The expression e in
the rule above is a sequence of expressions. The type inference rule for sequential
execution is provided in a later section of this chapter.
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ValDec

pat : α ⇒ εpat, ε � e : α

ε � val pat = e ⇒ εpat

In the ValDec rule there are pattern declarations. The type inference rules for
pattern declarations are provided in the next section of the chapter. Each pattern
declaration provides an environment mapping identifiers in the pattern to their asso-
ciated types. The next section provides the type inference rules for pattern matching
along with the environments yielded by each type of pattern.

ValRecDec

[id : α] ⊕ ε � e : α

ε � val rec id = e ⇒ [id : α]

A ValRecDec is used when an identifier is bound to an anonymous function that
calls itself recursively. Anonymous functions don’t normally call themselves. In this
one instance, the anonymous function can through the use of a recursive binding.
The binding in this case binds the identifier to the type of the function in the body
of the function.

FunDecs

∀i 1 ≤ i ≤ n, ∀j 1 < j ≤ n, n ≥ 1,

[id1 �→ α1 → β1 {, idj �→ αj → βj}] ⊕ ε � idi matchesi : αi → βi

ε � fun id1 matches1 {and idj matchesj} ⇒ [id1 �→ close(α1 → β1) {, idj �→ close(αj → βj)}]

In the rule above the braces (i.e. { and }) are EBNF and represent zero or more
occurrences as necessary. Since j must be greater than 1, if n=1 then no occurrences
of the parts written inside braces are necessary. This rule introduces matches. The
type inference for matches appears right after the section on patterns.

A FunDecs is a series of mutually recursive function definitions. See mlcomp.sml
for examples where the keyword and is used between function definitions. The rule
above starts with the premise that each function in the FunDecs has a type α → β.
The rulemakes an instance of the function type and places it in the environment given
the matches. The matches are the list of pattern matches for one function definition.
This is done because all recursive function calls to functions in the FunDecs must
have consistent types. As the type inference rules are satisfied the instance of the
type is bound to type values. If these premises are met, the conclusion produces a
new environment with each function bound to its type.

The newly built environment that results from the FunDecs rule contains a type
function called close. This type function is important. Closing a type means that any
free type variables (i.e. Prolog type variables) are instantiated to typevar type vari-
ables. This is needed because otherwise the first application of a function with free
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type variables would instantiate them to the types of that particular function appli-
cation. This would not be a problem if functions were not polymorphic. However,
functions in Standard ML often have polymorphic types. The close type function is
needed to support polymorphic type inference. The close function is the inverse of
the inst type function.

8.10 Patterns

Patterns are used in ValDec declarations and in matches which are discussed in the
next section. When a pattern is used, it produces bindings of one or more identifiers
to types. Constant values can be used as patterns as in the IntPat, BoolPat, StrPat,
NilPat, and UnitPat rules. Patterns like this don’t produce any bindings because
identifiers are not part of these patterns.

IntPat

integer_constant : int ⇒ [ ]
BoolPat

true : bool ⇒ [ ]
false : bool ⇒ [ ]

StrPat

string_constant : str ⇒ [ ]
NilPat

nil : α list ⇒ [ ]
ConsPat

pat1 : α ⇒ εpat1 , pat2 : α list ⇒ εpat2

pat1 :: pat2 : α list ⇒ εpat1 + εpat2

TuplePat
∀i 1 ≤ i ≤ n, n ≥ 0

pati : αi ⇒ εpati

(pat1, pat2, ..., patn) : ×n
i=1αi ⇒ ∑n

i=1 εpati

ListPat
∀i 1 ≤ i ≤ n, n ≥ 0

pati : α ⇒ εpati

[pat1, pat2, ..., patn] : α list ⇒ ∑n
i=1 εpati
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The ConsPat, TuplePat, and ListPat rules may contain other patterns. Each of
them employ the disjoint union operator to build new environments from their sub-
environments. Disjoint union is used because duplicate identifiers are not allowed
in patterns. The + and

∑
symbols are used to denote the disjoint union of sets of

patterns.
TheTuplePat rule forms the cross product typeof all its constituent types and forms

the environment that results from all the sub-pattern environments being overlayed
on one another. In the vacuous case, when n=0, the TuplePat rule derives the unit
pattern (i.e. the empty tuple) and yields an empty environment.

The vacuous case of the ListPat rule, when n=0, provides an alternative form of
specifying the empty list. Both nil and [] represent the empty list in Standard ML
with polymorphic type α list.

IdPat

id : α ⇒ [id �→ α]
Most patterns boil down to creating bindings of identifiers to values. The IdPat

type inference rule yields a new binding environment, binding the identifier to its
type. Consider the program in Fig. 8.14. Typechecking this program results in the
following output.

letdec(
bindval(infixpat(::,tuplepat([idpat(x),idpat(y)]),idpat(L)),

listcon([tuple([int(1),int(2)]),tuple([int(3),int(4)])])),
[apply(id(println),id(x))])

val (x,y)::L : (int * int) list
val it : unit
The program passed the typechecker.

The type inference rules specify how the type checker works. To see this in action a
proof is possible using the type inference rules. Each step in the proof is justified by a
type inference rule written to the right side of the rule’s use. To reach the conclusion
(1) of the type checker, premises (2) and (3) must hold.

(2)ε � val (x, y) :: L = [(1, 2), (3, 4)] ⇒ εdec (3)εdec ⊕ ε � println x : unit

(1)ε � let val (x, y) :: L = [(1, 2), (3, 4)] in println x end : unit
(Let)

εdec = [x �→ int, y �→ int, L �→ int ∗ int list]
To prove (2):

(4)(x, y) :: L : int × int list ⇒ εdec (5)ε � [(1, 2), (3, 4)] : int × int list

(2)ε � val (x, y) :: L = [(1, 2), (3, 4)] ⇒ εdec
(ValDec)

Fig. 8.14 Pattern matching
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To prove (4):

(6)(x, y) : int × int ⇒ [x �→ int, y �→ int] (7)L : int × int list ⇒ [L �→ int × int list]
(4)(x, y) :: L : int × int list ⇒ εdec

(ConsPat)

To prove (6):

(8)x : int ⇒ [x �→ int] (9)y : int ⇒ [y �→ int]
(6)(x, y) : int × int ⇒ [x �→ int, y �→ int] (TuplePat)

Premises (7), (8), and (9) are true by virtue of the IdPat inference rule. Consider-
ing (5):

(10)ε � (1, 2) : int × int (11)ε � (3, 4) : int × int

(5)ε � [(1, 2), (3, 4)] : int × int list
(ListCon)

Considering (10) and a similar argument for (11):

(12)ε � 1 : int (13)ε � 2 : int

(10)ε � (1, 2) : int × int
(TupleCon)

Both (12) and (13) are true by the IntCon rule. A similar argument holds for (11).
The proof nears completion by proving (3):

(14)εdec ⊕ ε � println : α → unit int → unit : inst(α → unit) (15)εdec ⊕ ε � x : int

(3)εdec ⊕ ε � println x : unit
(FunApp)

Both (14) and (15) are true by the Identifier rule concluding the proof of the type cor-
rectness of this program. The sequence rule was glossed over in this proof. Sequence
type checking appears later in the chapter.

Practice 8.1 Prove that the program in Fig. 8.15 is correctly typed. The
abstract syntax for this program is provided here.

letdec(bindval(idpat(’x’),int(’5’)),
[letdec(bindval(idpat(’y’),int(’6’)),

[apply(id(’println’),apply(id(’+’),tuple([id(’x’),id(’y’)])))])
]).

You can check your answer(s) in Section8.19.1.

Fig. 8.15 test10.sml
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Practice 8.2Minimally,whatmust the type environment contain to correctly
type check the program in Fig. 8.15.

You can check your answer(s) in Section8.19.2.

8.11 Matches

Matches
There are two alternatives to the Matches rule differing only in the syntax of the

match.

∀i 1 ≤ i ≤ n,∀j 1 < j ≤ n, n ≥ 1

ε � id : α → β, pati : α ⇒ εpati , εpati ⊕ ε � ei : β

ε � id pat1 = e1{| id patj = ej} : α → β

or

∀i 1 ≤ i ≤ n,∀j 1 < j ≤ n, n ≥ 1

ε � id : α → β, pati : α ⇒ εpati , εpati ⊕ ε � ei : β

ε � id pat1 => e1{| patj => ej} : α → β

The Matches type inference rule handles one or more matches in a function def-
inition or other matches occurrence. A match has an identifier (i.e. the name of the
function), a pattern, and an expression. Each match takes an argument and returns
a value. The argument and pattern must be of type α and the type of the expression
must be of type β. In addition, the bindings created by the pattern are part of the
environment when the type of the expression is inferred.

Consider the program in Fig. 8.16. This is an example of a program with multi-
ple function declarations separated by the keyword and, thus allowing them to be
mutually exclusive, which they are. The first function, f has two matches, which the
Matches rule handles. The abstract syntax for this program includes two funmatches,
one for each function f and g.

Fig. 8.16 test11.sml
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letdec(
funmatches(
[funmatch(f,

[match(tuplepat([intpat(0),idpat(y)]),id(y)),
match(tuplepat([idpat(x),idpat(y)]),apply(id(g),

tuple([id(x),apply(id(*),tuple([id(x),id(y)]))])))]),
funmatch(g,
[match(tuplepat([idpat(x),idpat(y)]),

apply(id(f),tuple([apply(id(-),tuple([id(x),int(1)])),id(y)])))])]),
[apply(id(println),apply(id(f),tuple([int(10),int(5)])))])

Consulting the AST for the program the two matches for f each include a pattern
and the expression after the equals sign. The first expression is the y that is returned
for the first match of f. The second match of f returns g(x,x*y).

8.12 Anonymous Functions

AnonFun [id �→ α → β] ⊕ ε � id matches : α → β

ε � fn id matches : α → β

An anonymous function is given a name by the parser before a Prolog term is
created. Names are needed for code generation. The type checker uses the name
only to provide consistency in the way the Matches type inference rule is satisfied.
However, the identifier is not used by the type inference rule because an anonymous
function never calls itself recursively except in the case of a val rec binding, where
a different identifier is present to be bound to the function. Consider the anonymous
function defined in Fig. 8.17. The abstract syntax for this program is as shown here.

func(anon@0,[match(idpat(x),apply(id(+),tuple([id(x),int(1)])))])

Notice that the compiler has assigned a name to this function. The name anon@0 is
neededby the codegenerator and also by theMatches rule above (only to syntactically
match the rule though), but is not used during type inference. Applying this program
to the AnonFun rule we get this instance.

[anon@0 �→ int → int] ⊕ ε � anon@0 x => x + 1 : int → int

ε � fn anon@0 x => x + 1 : int → int

Fig. 8.17 Anonymous function
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In this instance it doesn’t appear much has changed. The fn has dropped in the
premise. The premise is now an instance of the Matches rule which can then be
applied to further reduce the proof.

Practice 8.3 Provide a complete proof that the program in Fig. 8.17 is
correctly typed.

You can check your answer(s) in Section8.19.3.

8.13 Sequential Execution

Sequence
∀i 1 ≤ i ≤ n,∀j 1 < j ≤ n, n ≥ 1

ε � ei : αi

ε � e1{; ej} : αn

Sequential execution of expressions results in the last value of the sequence. All
other values are discarded. So, the type of a sequence is the type of the last expression
evaluated. In the degenerative case, where n = 1, the type of the sequence is the type
of the only expression in the sequence.

8.14 If-Then andWhile-Do

If-Then expressions and While-Do expressions have type restrictions on the types
of values they can process. The type inference rules provided here describe those
restrictions. The IfThen type inference rule was first presented in Chap.5.

IfThen

ε � e1 : bool, ε � e2 : α, ε � e3 : α

ε � if e1 then e2 else e3 : α

WhileDo

ε � e1 : bool, ε � e2 : α

ε � while e1 do e2 : α

While reporting yes it type checked correctly and here is your type, or no it did
not type check correctly is what Prolog would do by default, that isn’t really enough
information to determine where in a program the type checker failed. As the type

http://dx.doi.org/10.1007/978-3-319-13314-0_5
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Fig. 8.18 If-Then type inference

checker proceeds, certain error messages can be printed. For instance, consider the
code for type checking If-Then expressions in Prolog.

Thefirst rule inFig. 8.18 is theProlog implementationof the If-Then type inference
rule. If the first rule works the cut operator insures that no backtracking will occur to
match it another way. If the first rule is not satisfied, then an error message is printed
and an exception is thrown to terminate the type checker.

Strictly speaking, an exception does not need to be thrown in the code of Fig. 8.18.
The result of the If-Then failure could be the special type typeerror. The type infer-
ence algorithm is said to by strict in typeerror which means that once a type results
in typeerror all types in which it takes part must also result in typeerror. However,
this still leads to the whole program failing type inference and throwing an exception
is a quick and dirty way to terminate the type inference algorithm.

8.15 Exception Handling

Handler

ε � e : α, [handle@ �→ exn → α] ⊕ ε � handle@ matches : exn → α

ε � e handle matches : α

An exception handler is a polymorphic function as far as the type inference system
is concerned,mapping from type exn to the typeof the expression.Both the expression
and its exception handler must have the same result type according to this definition.
To implement the handler like a function the identifier handle@ is bound to the type
of the handler.
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8.16 Chapter Summary

This is a shorter but denser chapter than some in the text. Type inference is difficult
at best to demonstrate on paper. Section8.10 carries out a complete proof of type
correctness as one example from beginning to end of type inference. The type infer-
ence system implemented here relies heavily on the unification of Prolog variables
to terms. Perhaps the best way to understand this code is to extend it. Implementing
type inference rules demands an understanding of how Prolog works. Examining
already written type inference rules can help as well.

In spite of it being a challenging topic, inference and unification are two very
powerful techniques available to computer programmers through the use of Prolog.
Unification provides the means to work both backwards and forwards or anywhere
in between as was pointed out with the append predicate in the last chapter. In terms
of type inference, one important aspect is being able to assign a type to an expression
before you know what its type is. By assigning a Prolog variable that will be unified
to an actual type later, the type inference can be written very declaratively, like the
inference rules themselves, without regard to exactly the order that information is
known. That’s the power of Prolog. The unification algorithm makes declarative
programming in Prolog possible.

Type checking, without type inference, is effective and simpler to implement but
costs the programmer more in having to explicitly declare types of each variable.
Being explicit about types is not always a bad thing. Even the SML compiler needs
a little help sometimes by declaring the type of a function parameter. Regardless of
the language, every type checker engages in some type inference. Standard ML’s
type inference system differs from other language implementations by the extent to
which types are inferred.

8.17 Review Questions

1. What appears above and below the line in a type inference rule?
2. Why don’t infix operators appear in the abstract syntax of programs handled by

the type checker?
3. What does typevar represent in Fig. 8.8?
4. What does typeerror represent in Fig. 8.8?
5. What does the type of the list [(“hello”,1,true)] look like as a Prolog term?
6. What is the type environment?
7. Give an example of the use of the overlay operator.
8. What pattern(s) are used in this let expression?

let val (x,y,z) = ("hello",1,true) in println x end

What is the pattern as a Prolog term?
9. Give an example where the Sequence rule might be used to infer a type.

10. Give a short example of where the Handler rule might be used to infer a type.
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8.18 Exercises

1. The following program does not compile correctly or typecheck correctly using
the mlcomp compiler and type inference system. However, it is a valid Standard
ML program. Modify both the mlcomp compiler and type checker to correctly
compile and infer its type. This program is included in the compiler project as
test20.sml.

let val [(x,y,z)] = [("hello",1,true)] in println x end

Output from the type checker should appear as follows.

Typechecking is commencing...
Here is the AST
letdec(bindval(listpat([tuplepat([idpat(x),idpat(y),idpat(z)])]),

listcon([tuple([str("hello"),int(1),bool(true)])])),
[apply(id(println),id(x))])

val [(x,y,z)] : (str * int * bool) list
val it : unit
The program passed the typechecker.

2. Implement the Prolog type predicates to get the following program to type check
successully. This program is test14.sml in the mlcomp compiler project. This
will involve writing type checking predicates for matching, boolean patterns,
integer patterns, and sequential execution.

let fun f(true,x) = (println(x); g(x-1))
| f(false,x) = g(x-1)

and g 0 = ()
| g x = f(true,x)

in
g(10)

end

Output from the type checker should appear as follows.

Typechecking is commencing...

Here is the AST

letdec(funmatches([funmatch(f,[match(tuplepat([boolpat(true),idpat(x)]),

expsequence([apply(id(println),id(x)),apply(id(g),apply(id(-),
tuple([id(x),int(1)])))])),match(tuplepat([boolpat(false),idpat(x)]),

apply(id(g),apply(id(-),tuple([id(x),int(1)]))))]),funmatch(g,[match(intpat(0),
tuple([])),match(idpat(x),apply(id(f),tuple([bool(true),id(x)])))])]),

[apply(id(g),int(10))])
val f = fn : bool * int -> unit

val g = fn : int -> unit

val it : unit

The program passed the typechecker.

3. Implement enough of the type checker to get test12.sml to type check correctly.
This will mean writing the WhileDo inference rule as a Prolog predicate, imple-
menting theMatch rule’s predicate called typecheckMatch, and the type inference
predicate for sequential execution named typecheckSequence as defined in the
Sequence rule. The code for test12.sml is given here for reference.
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let val zero = 0
fun fib n =
let val i = ref zero

val current = ref 0
val next = ref 1
val tmp = ref 0

in
while !i < n do (

tmp := !next + !current;
current := !next;
next := !tmp;
i := !i + 1

);
!current

end
val x = Int.fromString(input("Please enter an integer: "))
val r = fib(x)

in
print "Fib(";
print x;
print ") is ";
println r

end

Output from the type checker should appear as follows.

Typechecking is commencing...

Here is the AST

letdec(bindval(idpat(zero),int(0)),[letdec(funmatches([funmatch(fib,

[match(idpat(n),letdec(bindval(idpat(i),apply(id(ref),id(zero))),

[letdec(bindval(idpat(current),apply(id(ref),int(0))),

[letdec(bindval(idpat(next),apply(id(ref),int(1))),

[letdec(bindval(idpat(tmp),apply(id(ref),int(0))),

[whiledo(apply(id(<),tuple([apply(id(!),id(i)),id(n)])),

expsequence([apply(id(:=),tuple([id(tmp),apply(id(+),tuple([apply(id(!),id(next)),

apply(id(!),id(current))]))])),apply(id(:=),tuple([id(current),apply(id(!),

id(next))])),apply(id(:=),tuple([id(next),apply(id(!),id(tmp))])),apply(id(:=),

tuple([id(i),apply(id(+),tuple([apply(id(!),id(i)),int(1)]))]))])),apply(id(!),

id(current))])])])]))])]),[letdec(bindval(idpat(x),apply(id(Int.fromString),

apply(id(input),str("Please enter an integer: ")))),

[letdec(bindval(idpat(r),apply(id(fib),id(x))),[apply(id(print),str("Fib(")),

apply(id(print),id(x)),apply(id(print),str(") is ")),apply(id(println),id(r))])])])])

val zero : int

val i : int ref

val current : int ref

val next : int ref

val tmp : int ref

val fib = fn : int -> int

val x : int

val r : int

val it : unit

The program passed the typechecker.

4. Add support to the type checker to correctly infer the types of case expressions
in Small. The following program should type check correctly once this project
is completed. This test is in test15.sml in the mlcomp compiler project. This will
involve writing code to correctly type check matches according to the Match
rule. If case statments are not yet implemented in the compiler, support must
be added to the compiler to parse case expressions, build an AST for them, and
write their AST to the a.term file.
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let val x = 4
in

println
case x of

1 => "hello"
| 2 => "how"
| 3 => "are"
| 4 => "you"

end

Output from the type checker should appear as follows.

Typechecking is commencing...
Here is the AST
letdec(bindval(idpat(x),int(6)),[apply(id(println),caseof(id(x),

[match(intpat(1),str("hello")),match(intpat(2),str("how")),
match(intpat(3),str("are")),match(intpat(4),str("you"))]))])

val x : int
val it : unit
The program passed the typechecker.

5. Add support to the type checker to correctly infer the types for test7.sml. The
code is provided below for reference. Support will need to be added to infer the
types of anonymous functions defined in the rule AnonFun, matching defined in
the rule Matches, and the ConsPat rule.

let fun append nil L = L
| append (h::t) L = h :: (append t L)

fun appendOne x = (fn nil => (fn L => L)
| h::t => (fn L => h :: (appendOne t L))) x

in
println(append [1,2,3] [4]);
println(appendOne [1,2,3] [4])

end

Output from the type checker should appear as follows.

Typechecking is commencing...

Here is the AST

letdec(funmatches([funmatch(append,[match(idpat(v0),func(anon@3,

[match(idpat(v1),apply(func(anon@2,[match(tuplepat([idpat(nil),idpat(L)]),id(L)),

match(tuplepat([infixpat(::,idpat(h),idpat(t)),idpat(L)]),apply(id(::),

tuple([id(h),apply(apply(id(append),id(t)),id(L))])))]),

tuple([id(v0),id(v1)])))]))])]),[letdec(funmatches([funmatch(appendOne,

[match(idpat(x),apply(func(anon@6,[match(idpat(nil),func(anon@4,

[match(idpat(L),id(L))])),match(infixpat(::,idpat(h),idpat(t)),

func(anon@5,[match(idpat(L),apply(id(::),tuple([id(h),apply(apply(id(appendOne),id(t)),

id(L))])))]))]),id(x)))])]),[apply(id(println),apply(apply(id(append),

listcon([int(1),int(2),int(3)])),listcon([int(4)]))),apply(id(println),

apply(apply(id(appendOne),listcon([int(1),int(2),int(3)])),listcon([int(4)])))])])

val append = fn : ’a list -> ’a list -> ’a list

val appendOne = fn : ’a list -> ’a list -> ’a list

val it : unit

The program passed the typechecker.

6. Add support for type inference for recursive bindings. The following program,
saved as test19.sml in the Small compiler project, is a valid program with a
recursive binding. It will type check correctly if the ValRecDec type inference
rule is implemented. Write the code to get this program to pass the type checker
as a valid program.
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let val rec f = (fn 0 => 1
| x => x * (f (x-1)))

in
println(f 5)

end

Output from the type checker should appear as follows.

Typechecking is commencing...

Here is the AST

letdec(bindvalrec(idpat(f),func(anon@0,[match(intpat(0),int(1)),match(idpat(x),

apply(id(*),tuple([id(x),apply(id(f),apply(id(-),tuple([id(x),int(1)])))])))])),

[apply(id(println),apply(id(f),int(5)))])

val f = fn : int -> int

val it : unit

The program passed the typechecker.

7. Currently the type checker allows duplicate identifiers in compound patterns
like listPat and tuplePat. Standard ML does not allow duplicate identifiers in
patterns. The type checker uses the append predicate to combine pattern binding
environments. This is not good enough. Find the locations in the type checker
where pattern environments are incorrectly appended and rewrite this code to
enforce that all identifierswithin a patternmust be unique. If not, you should print
an error message like “Error: duplicate variable in pattern(s): x” to indicate the
problem and typechecking should end with an error.

8. Currently, the abstract syntax and parser of Small includes support for the wild-
card pattern in pattern matching, but the type checker does not support it. Add
support for wildcard patterns, write a test program, and test the compiler and
type checker. Be sure to write a type inference rule for wildcard patterns first.

9. Currently, the abstract syntax and parser of Small includes support for the as
pattern in patternmatching, but the type checker does not support it. Add support
for as patterns, write a test program, and test the compiler and type checker. The
as pattern comes up when you write a pattern like L as h::t which assigns L as a
pattern that represents the same value as the compound pattern of h::t. Be sure
to write a type inference rule for as patterns first.

8.19 Solutions to Practice Problems

8.19.1 Solution to Practice Problem 8.1

Proving this requires a proof like was done in the chapter. Rules involved include
Let, ValDec, IdPat, TupleCon, and FunApp. Technically, the Sequence rule is also
required, but only in the degenerative case (i.e. when n = 1).
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8.19.2 Solution to Practice Problem 8.2

Minimally the environmentmust containprintlnbound to a function typeofα → unit
and the + function bound to a function type of int × int → int.

8.19.3 Solution to Practice Problem 8.3

The AnonFun rule is applied first which requires the Matches rule be applied. The
Matches rule requires the use of the IdPat rule and the FunApp rule. Finally, the
IntCon rule is needed to complete the proof.



9AppendixA: TheCoCoVirtual
Machine Specification

CoCo is a virtual machine which includes a built-in assembler. CoCo executes
assembly language programs by first processing the assembly language program
and then executing it. The processing of the assembly language program is called
assembling. The assembly language supported by CoCo is defined by a BNF gram-
mar. The grammar specifies howCoCo assembly language programs are constructed.

The grammar for the CoCo virtual machine assembly language is provided in
Fig. 9.1. In the BNF any use of <null> refers to an empty production in the grammar.
An empty production means that the syntactic category may not contain any tokens.

According to the BNF in Fig. 9.1 a CoCo program is a sequence of function def-
initions. Each function definition has several parts including a sequence of CoCo
virtual machine instructions like LOAD_CONST, STORE_FAST, and many oth-
ers. The complete specification of instructions supported by CoCo is provided at
http://cs.luther.edu/~leekent/CoCo in this appendix. The complete syntax of the
language is given in Fig. 9.1. There are just a few things to note in the BNF.

• Instructions may have as many labels defined on them as necessary. The definition
of labeled instruction is recursive.

• The use of <null> indicates an empty production. For instance, a FunctionList may
be empty meaning that there might not be a function list in a function definition.
In this case that simply means a function might or might not have some nested
functions.

• Of course, the ... indicates there are more Unary and Binary mnemonics that are
not listed in the BNF. The complete list of instructions and descriptions of each of
them are given in this appendix.

• The CoCo language is not line oriented. This BNF completely describes the lan-
guage which has no line requirements. However, formatting a program like the
disassembler will help in the clarity of written programs.

CoCo supports the types given in Fig. 9.2.

© Springer International Publishing Switzerland 2014
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Fig. 9.1 The BNF for the CoCo assembly language

9.1 CoCoMagic and Attr Methods

One of the powerful features of the Python language comes from methods being
looked up on objects at run-time. This means that new types of objects can easily
be added to the language because the virtual machine instructions presented in this
appendix will polymorphically call the proper methods since lookup happens at run-
time. In support of this, CoCo, like Python, has what have traditionally been called
magicmethods. Thesemethods typically begin and endwith two underscores.Magic
methods are used by instructions as needed. For instance, the __add__magicmethod
is used by the BINARY_ADD instruction.

CoCo includes support for all themagicmethods that are defined byPython.While
support is there for the whole list, not all magic methods are implemented on each
type of object. The magic methods that are supported are controlled by the type of
the object.When amagic method is called, the magic method is first looked up on the
type and if it is supported, the call is made. Otherwise, an IllegalOperationException
is raised. The use of magic methods is illustrated in the descriptions of the CoCo
instructions in this appendix.

The possible magic methods include the following: __cmp__, __eq__, __ne__,
__lt__, __gt__, __le__, __ge__, __pos__, __neg__, __abs__, __invert__,
__round__, __floor__, __ceil__, __trunc__, __add__, __sub__, __mul__,
__floordiv__, __div__, __truediv__, __mod__, __divmod__, __pow__,
__lshift__, __rshift__, __and__, __or__, __xor__, __radd__, __rsub__,
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Fig. 9.2 CoCo supported types

__rmul__, __rfloordiv__, __rdiv__, __rtruediv__, __rmod__, __rdivmod__,
__rpow__, __rlshift__, __rand__, __ror__, __rxor__, __iadd__, __isub__,
__imul__, __ifloordiv__, __idiv__, __itruediv__, __imod__, __ipow__,
__ilshift__, __iand__, __ior__, __ixor__, __int__, __long__, __float__,
__bool__, __cmplex__, __oct__, __hex__, __index__, __coerce__, __str__,
__list__, __funlist__, __repr__, __unicode__, __format__, __hash__,
__nonzero__, __dir__, __sizeof__, __getattr__, __setattr__, __delattr__,
looseness-1__getattribute__, __len__, __getitem__, __setitem__, __delitem__,
__reversed__, __contains__, __missing__, __instancecheck__, __subclasscheck
__, __call__, __copy__, __deepcopy__, __iter__, __next__, __type__,
__excmatch__.

The last two magic methods are specific to CoCo. The __type__ magic method
is called when the type function is called on an object. The __excmatch__ magic
method is called when matching an exception in an exception handler.
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In addition, some objects have additional methods defined on them that are
accessed like traditional method calls on objects. For instance, str objects have a
split method that can be called to split a string on separator characters. The list of attr
methods defined in CoCo are split, append, head, tail, and concat. The head and tail
methods are not found in Python but are defined in CoCo to support funlist objects
which are defined to have a head and a tail.

9.2 Global Built-In Functions

CoCo supports the following globally available built-in functions. These functions
are not associated with any one type. When they are called, they polymorphically
handle the arguments passed to them in their own manner as described.

print is a built-in function that prints a variable number of arguments to standard
output, followed by a newline character, and returns None, just as print does in
Python. The objects passed to print are printed by calling the __str__ magic
method on each of them and appending their strings with an extra space between
each pair of objects.

fprint prints exactly one argument. This is a built-in function that is specific
to CoCo and is not part of the standard Python language. It prints its argument
by calling the __str__ magic method on the object to convert it to a string.
This function returns itself, which can be useful when chaining together fprint
expressions.

tprint prints exactly one argument, which may be a tuple, and returns None. tprint
can be thought of as tuple print, because if a tuple is provided, the contents of the
tuple are printed, separated by spaces, just as print does. However, tprint takes only
one argument which may be a tuple. print takes a variable number of arguments.
tprint is specific to CoCo and is not part of the standard Python language. The
values of the tuple are converted to strings using the __str__ magic method on
each object. None is returned by tprint.

input is a built-in function that prints its prompt to standard output and returns
one line of input as a string, just as input does in Python.

iter is a built-in function that constructs and returns an iterator over the object that
is passed to it, just as Python’s iter function works. This is implemented by calling
the __iter__ magic method on the object.

len is a built-in function that returns the length of the sequence that is passed to it.
It does this by calling the __len__ magic method on the object given to it.

concat is built-in function that returns a string representation of the elements of
its sequence concatenated together. The concat function in turn calls the concat
method on the object that is passed to it.
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int, float, str, funlist, type, and bool are all calls to types. When the type is called,
the corresponding magic method of __int__, __float__, __str__, __funlist__,
__type__, or __bool__ is called on the object that is passed to it. In this way, the
object itself is in charge of how it is converted to the specified type.

range is a call to the range type that constructs a range object over the specified
range. As in Python, the range function has 1, 2, or 3 arguments passed to it,
representing the start, stop, and increment of the range of integer values. The start
and increment values are optional.

Exception is a call to the exception type that constructs and returns an exception
object that may be raised or thrown and caught by an exception handler.

9.3 Virtual Machine Instructions

This is a subset of the full Python 3.2 instruction set with the addition of a few extra
instructions and a couple of minor differences.

In the instructions in this appendix, TOS refers to the top element on the operand
stack. TOS1 refers to the element second from the top of the operand stack. TOS2,
and so on are similarly defined.

CoCo instructions each take up exactly one location of space. The Python Virtual
Machine uses one or more bytes for each instruction and therefore some instructions
are composed of multiple bytes. CoCo does not store its instructions as bytes and
therefore each instruction takes exactly one locationwithin the CoCo virtualmachine
interpreter.

The Python Virtual machine defines some branching instructions as absolute
jumps and other as relative jumps, that being relative to the current PC. CoCo dif-
fers from the Python Virtual Machine in this regard. In the instructions any jump or
branch is to an absolute location. Generally, the target of a branch or jump will be
specified using a label. If labels are used for all branch and jump targets then this
difference will only be noticable when looking at the assembled program.When read
by the CoCo assembler, the labels are converted to target locations which are always
absolute addresses.

9.4 Arithmetic Instructions

BINARY_ADD

Implements TOS=TOS1+ TOS by making the call TOS1.__add__(TOS).

BINARY_SUBTRACT

Implements TOS = TOS1 − TOS by making the call TOS1.__sub__(TOS).
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BINARY_MULTIPLY

Implements TOS = TOS1 ∗ TOS by making the call TOS1.__mul__(TOS).

BINARY_FLOOR_DIVIDE

Implements TOS = TOS1 // TOS by making the call TOS1.__floordiv__(TOS).

BINARY_TRUE_DIVIDE

Implements TOS = TOS1 / TOS by making the call TOS1.__truediv__(TOS).

INPLACE_ADD

Implements in-place TOS = TOS1 + TOS. Exactly the same as BINARY_ADD
by making the call TOS1.__add__(TOS).

9.5 Load and Store Instructions

LOAD_CONST(consti)

Argument consti is a zero-based integer. Pushes Constants[consti] onto the stack.

LOAD_GLOBAL(namei)

Argument namei is a zero-based integer. Loads the Globals[namei] onto the stack.

LOAD_FAST(namei)

Argument namei is a zero-based integer. Pushes a reference to Locals[namei] onto
the stack.

STORE_FAST(namei)

Argument namei is a zero-based integer. Stores TOS into the Locals[namei].

DELETE_FAST(namei)

This instruction does nothing in CoCo which varies from the Python implemen-
tation. The purpose of this instruction seems to be implementation dependent. In
the Python Virtual Machine it performs cleanup after an exception has occurred.
The handling of exceptions is different in CoCo so this instruction exists to make
it work with the disassembler, but it is ignored.

BINARY_SUBSCR

Implements TOS=TOS1[TOS]. This instruction provides indexing into a list,
tuple, or other object that supports subscripting. This is implemented as TOS1.
__getitem__(TOS).
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STORE_SUBSCR

Implements TOS1[TOS]=TOS2. This instruction provides indexing into a list or
other object that supports subscripting and is mutable. This instruction is imple-
mented by calling TOS1.__setitem(TOS,TOS2).

LOAD_CLOSURE(i)

Pushes a reference to the cell contained in slot i of the cell and free variable
storage. The name of the variable is CellVars[i] if i is less than the length of
CellVars. Otherwise it is FreeVars[i-len(CellVars)].

LOAD_DEREF(i)

Loads the cell contained in slot i of the cell and free variable storage. Pushes a
reference to the object the cell contains on the stack.

STORE_DEREF(i)

Stores TOS into the cell contained in slot i of the cell and free variable storage.

LOAD_ATTR(namei)

Replaces TOSwith getattr(TOS,Globals[namei]). An attribute is usually amethod
associated with some object.

9.6 List andTuple Instructions

BUILD_TUPLE(count)

Creates a tuple consuming count items from the stack, and pushes the resulting
tuple onto the stack.

SELECT_TUPLE(count)

Pushes the contents of the tuple with count elements onto the operand stack. The
count must match the tuple’s size or an illegal operation exception will be thrown.
The elments of the tuple are pushed so the left-most element is left on the top of the
stack.This instruction is not part of thePythonVirtualMachine. It isCoCo specific.

BUILD_LIST(count)

Works as BUILD_TUPLE, but creates a list.

BUILD_FUNLIST

Works as BUILD_TUPLE, but creates a list.

SELECT_FUNLIST

This instruction pushes the head and the tail (which is a funlist) onto the operand
stack. The head of the list is left on the top of the operand stack. The tail is below
it on the stack. This instruction is CoCo specific.
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CONS_FUNLIST

Pops two elements from the operand stack. TOS should be a funlist and TOS-1
should be an element. The instruction create a new funlist from the two pieces
with TOS-1 the head and TOS the tail of the new list. It pushes this new list onto
the operand stack. This instruction is CoCo specific.

9.7 Stack Manipulation Instructions

POP_TOP

Removes the top-of-stack (TOS) item.

ROT_TWO

Swaps the two top-most stack items.

DUP_TOP

Duplicates the reference on top of the stack.

9.8 Conditional and Iterative Execution Instructions

GET_ITER

Implements TOS= iter(TOS).

BREAK_LOOP

Terminates a loop due to a break statement.

POP_BLOCK

Removes one block from the block stack. Per frame, there is a stack of blocks,
denoting nested loops, try statements, and such.

POP_EXCEPT

Removes one block from the block stack. The popped block must be an exception
handler block, as implicitly created when entering an except handler. In addition
to popping extraneous values from the frame stack, the last three popped values
are used to restore the exception state.

END_FINALLY

Terminates a finally clause. The interpreter recalls whether the exception has to
be re-raised, or whether the function returns, and continues with the outer-next
block.
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Table 9.1 Comparison Operators

Opname Comparison operation

0 TOS1 < TOS as TOS1.__lt__(TOS)

1 TOS1 <= TOS as TOS1.__le__(TOS)

2 TOS1 = TOS as TOS1.__eq__(TOS)

3 TOS1 != TOS as TOS1.__ne__(TOS)

4 TOS1 > TOS as TOS1.__gt__(TOS)

5 TOS1 >= TOS as TOS1.__ge__(TOS)

6 TOS1 contains TOS as TOS1.__contains__(TOS)

7 TOS1 not in TOS as TOS1.__notin__(TOS)

8 TOS1 is TOS as TOS1.is_(TOS)

9 TOS1 is not TOS as TOS1.is_not(TOS)

10 exception TOS1 matches TOS as TOS1.__excmatch__(TOS)

COMPARE_OP(opname)

Performs a Boolean operation. Both TOS1 and TOS are popped from the stack
and the boolean result is left on the operand stack after the execution of this
instruction. opname is an integer corresponding to the following comparisons.
Table9.1 contains the values corresponding to opname along with the magic
method call that implements each comparison.

JUMP_FORWARD(target)

Sets the Program Counter (PC) to target.

POP_JUMP_IF_TRUE(target)

If TOS is true, sets the bytecode counter to target. TOS is popped.

POP_JUMP_IF_FALSE(target)

If TOS is false, sets the bytecode counter to target. TOS is popped.

JUMP_ABSOLUTE(target)

Set bytecode counter to target.

FOR_ITER(target)

TOS is an iterator. Call its __next__() method. If this yields a new value, push it
on the stack (leaving the iterator below it). If the iterator indicates it is exhausted
TOS is popped, and the PC is set to target.

SETUP_LOOP(target)

Pushes a block for a loop onto the block stack. The block spans from the current
instruction to target.
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SETUP_EXCEPT(target)

Pushes a try block from a try-except clause onto the block stack. Target points to
the first except block.

SETUP_FINALLY(target)

Pushes a try block from a try-except clause onto the block stack. Target points to
the finally block.

RAISE_VARARGS(argc)

This instruction varies from the Python version slightly. In CoCo the argc must
be one. This is because exceptions in CoCo automatically contain the traceback
which is not necessarily the case in the Python Virtual Machine. The argument
on the stack should be an exception. The exception is thrown by this instruction.

9.9 Function Execution Instructions

RETURN_VALUE

Returns with TOS to the caller of the function.

CALL_FUNCTION(argc)

Calls a function. The argc indicates the number of positional parameters, the high
byte the number of keyword parameters. On the stack, the opcode finds the key-
word parameters first. For each keyword argument, the value is on top of the key.
Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call
is on the stack. Pops all function arguments, and the function itself off the stack,
and pushes the return value.

MAKE_FUNCTION(argc)

Pushes a new function object on the stack. TOS is the code associated with the
function. The function object is defined to have argc default parameters, which
are found below TOS.

MAKE_CLOSURE(argc)

Creates a new function object, sets its closure, and pushes it on the stack. TOS
is the code associated with the function, TOS1 the tuple containing cells for the
closure’s free variables. The function also has argc default parameters, which are
found below the cells.
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Basis Library

Following is a subset of the Standard ML Basis Library. The Basis Library is
covered inmore detail at http://www.standardml.org/Basis. Documentation for these
structures is found in this chapter.

• Bool
• Int
• Real
• Char
• String
• List
• Array
• TextIO

Other structures exist on the Basis website. The descriptions provided here may be
helpful as well. Each function, along with its signature, is provided for each of the
structures listed in this chapter.

10.1 The Bool Structure

This is the signature of the functions Bool structure. In addition to the not operator,
SML defines the andalso and orelse operators which implement shortcircuit logic.
More information can be found at http://www.standardml.org/Basis/bool.html.

datatype bool = false | true

The bool datatype is either false or true.

val not : bool -> bool

not true = false, not false = true.

© Springer International Publishing Switzerland 2014
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val toString : bool -> string

Converts a true/false value to a string for printing or other purposes.

val fromString : string -> bool option

Converts from a string to a bool. An option is either NONE or SOME val. If the
string cannot be converted to a bool (i.e. it does not contain true or false), then NONE
is returned. Otherwise SOME true or SOME false is returned. Pattern-matching can
be used to determine the return value.

val scan : (char,’a) StringCvt.reader -> (bool,’a) StringCvt.reader

This behaves like fromString except that the remaining character stream is returned
along with the value if a bool is found in the stream.

10.2 The Int Structure

Implementing the INTEGER signature, the Int structure contains the int type. Integer
precision is platform dependent. Normally 32-bit or 64-bit precision is available
dependingon the platform.More information canbe found at http://www.standardml.
org/Basis/integer.html.

type int

The type of integers.

val precision : Int31.int option

An option indicating the precision of integers. For instance, SOME 31 indicating
32-bit integers from −231 to 231 − 1. If the value is NONE it indicates arbitrary
precision.

val minInt : int option

val maxInt : int option

Minimum and maximum integer values given the precision available. NONE if
integers have arbitrary precision.

val toLarge : int -> IntInf.int

val fromLarge : IntInf.int -> int

Conversion functions from and to large integers.

val toInt : int -> Int31.int

val fromInt : Int31.int -> int

Conversion functions from and to 32-bit integers. Depending on implementation
these may be identity functions.

http://www.standardml.org/Basis/integer.html
http://www.standardml.org/Basis/integer.html
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val ~ : int -> int

Unary negation. ~6 is a negative 6.

val + : int * int -> int

val - : int * int -> int

val * : int * int -> int

val div : int * int -> int

val mod : int * int -> int

Typical integer operations. Note that div and mod are infix operators returning
the integer division and remainder respectively. For instance, 6 div 4 = 1 and 6 mod
4 = 2. These operations are infix operators.

val quot : int * int -> int

val rem : int * int -> int

These two operations reflect that most hardware implementations of integer
division behave differently than the mathematical definition used by div and mod
for negative integers. Consider the following.

- val x = ˜6;
val x = ˜6 : int
- x mod 4;
val it = 2 : int
- x div 4;
val it = ˜2 : int
- Int.quot(x,4);
val it = ˜1 : int
- Int.rem(x,4);
val it = ˜2 : int

This shows that mod and div factor −6 as −2 ∗ 4 + 2 while quot and rem
factor −6 as −1 ∗ 4 +−2. The mathematical definition of mod always results in
a positive remainder. However, computer hardware often calculates using quot and
rem semantics possibly resulting in faster calculations.

val min : int * int -> int

val max : int * int -> int

Maximum and minimum functions of two integers. Returns the max or min value
of the pair of integers.

val abs : int -> int

Returns the absolute value.

val sign : int -> Int31.int

Returns either 1 or −1 depending on the sign of the integer.
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val sameSign : int * int -> bool

True or false depending on the two integers.

val > : int * int -> bool

val >= : int * int -> bool

val <: int * int -> bool

val <= : int * int -.> bool

Relational operators for the ordering of integers. These operators are infix
operators.

val compare : int * int -> order

Returns one of the order values of GREATER, LESS, or EQUAL depending on
the integers.

val toString : int -> string

val fromString : string -> int option

val scan : StringCvt.radix-> (char,’a) StringCvt.reader -> (int,’a) StringCvt.
reader

val fmt : StringCvt.radix -> int -> string

Conversion functions for integer to string and streams. See the Bool structure
for descriptions. The StringCvt.radix may be one of StringCvt.BIN, StringCvt.OCT,
StringCvt.DEC, or StringCvt.HEX for conversion to/from their respective bases.

10.3 The Real Structure

Real numbers in Standard ML, and any other programming language, are approxi-
mations for Real numbers in Mathematics. They are always precisely the same. The
Real numbers of StandardML conform to the underlying architecture’s implementa-
tion of double precision floating point numbers. Typically, this standard is attributed
to the IEEE. More information on Standard ML Reals can be found at http://www.
standardml.org/Basis/real.html.

type real

The type of Real numbers. Type real are approximations of Real numbers.

val pi : real

val e : real

Constant values for convenience for pi and e. e is the base of natural log values,
ln e = 1.

http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/real.html
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val Math.sqrt : real -> real

The square root of a non-negative real yields a real. For negative numbers it yields
nan which stands for Not A Number.

val Math.sin : real -> real

val Math.cos : real -> real

val Math.tan : real -> real

val Math.asin : real -> real

val Math.acos : real -> real

val Math.atan : real -> real

val Math.atan2 : real * real -> real

Various trigonometric functions.

val Math.exp : real -> real

This raises e to the specified power.

val Math.pow : real * real -> real

Raises the first argument to the power specified by the second argument.

val Math.ln : real -> real

val Math.log10 : real -> real

Natural and log base 10 functions.

val Math.sinh : real -> real

val Math.cosh : real -> real

val Math.tanh : real -> real

Hyperbolic functions.

val radix : int

The base used in the floating point representation, either 2 or 10.

val precision : int

The number of digits in the mantissa in the base specified by radix.

val maxFinite : real

val minPos : real

val minNormalPos : real

val posInf : real
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val negInf : real

Various constant values.

val + : real * real -> real

val - : real * real -> real

val * : real * real -> real

val / : real * real -> real

Normal binary operations. These operators are infix operators.

val *+ : real * real * real -> real

val *- : real * real * real -> real

Multiply by a factor and add a term as in ∗+(6.0,5.0,3.0) which yields 33.0.

val ~ : real -> real

Unary negation.

val abs : real -> real

Absolute value.

val min : real * real -> real

val max : real * real -> real

Binary max and min.

val sign : real -> int

Returns −1 or 1 depending on the sign.

val signBit : real -> bool

True if negative and false otherwise.

val sameSign : real * real -> bool

True if both have same sign.

val copySign : real * real -> real

The result is the first argument with the sign of the second argument.

val compare : real * real -> order

val compareReal : real * real -> IEEEReal.real_order

Returns GREATER, LESS, or EQUAL depending on how the first argument com-
pares to the second. The compareReal has slightly different semantics for unordered
real numbers (i.e. nan) returning IEEEReal.UNORDERED in those cases.
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val < : real * real -> bool

val <= : real * real -> bool

val > : real * real -> bool

val >= : real * real -> bool

val == : real * real -> bool

val != : real * real -> bool

val ?= : real * real -> bool

Binary relational operators. These are infix operators.

val unordered : real * real -> bool

Returns true if one is nan.

val isFinite : real -> bool

val isNan : real -> bool

val isNormal : real -> bool

Tests for real values.

val class : real -> IEEEReal.float_class

Returns the IEEE class to which the real belongs.

val fmt : StringCvt.realfmt -> real -> string

val toString : real -> string

val fromString : string -> real option

val scan : (char,’a) StringCvt.reader -> (real,’a) StringCvt.reader

Various real to string or stream conversion functions. See int or bool for details
on these functions.

val toManExp : real -> {exp:int, man:real}

val fromManExp : {exp:int, man:real} -> real

val split : real -> {frac:real, whole:real}

val realMod : real -> real

val rem : real * real -> real

Mantissa, exponent and fractional part functions.

val checkFloat : real -> real

Determines if it is a proper real number (not nan or inf ). If it is proper, it returns
the argument, otherwise an exception is raised.
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val floor : real -> int

val ceil : real -> int

val trunc : real -> int

val round : real -> int

val realFloor : real -> real

val realCeil : real -> real

val realTrunc : real -> real

val realRound : real -> real

Various truncation and rounding functions.

val toInt : IEEEReal.rounding_mode -> real -> int

val toLargeInt : IEEEReal.rounding_mode -> real -> IntInf.int

val fromInt : int -> real

val fromLargeInt : IntInf.int -> real

val toLarge : real -> Real64.real

val fromLarge : IEEEReal.rounding_mode -> Real64.real -> real

val toDecimal : real -> IEEEReal.decimal_approx

val fromDecimal : IEEEReal.decimal_approx -> real

Numeric conversion functions.

10.4 The Char Structure

The following functions are part of the Char structure for the char type. The char
type is separate from the string type, covered in the next section. More information
can be found at http://www.standardml.org/Basis/char.html.

type char

The character type.

val chr : int -> char

val ord : char -> int

Conversion from and to ASCII values.

val minChar : char

val maxChar : char

http://www.standardml.org/Basis/char.html
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val maxOrd : int

Various constants.

val pred : char -> char

val succ : char -> char

Moves through ASCII values.

val < : char * char -> bool

val <= : char * char -> bool

val > : char * char -> bool

val >= : char * char -> bool

Infix relational operators.

val compare : char * char -> order

See other compare functions for a description of the order type.

val scan : (char,’a) StringCvt.reader -> (char,’a) StringCvt.reader

val fromString : String.string -> char option

val toString : char -> String.string

val fromCString : String.string -> char option

val toCString : char -> String.string

Various conversion functions to and from strings.

val contains : string -> char -> bool

val notContains : string -> char -> bool

String search functions.

val isLower : char -> bool

val isUpper : char -> bool

val isDigit : char -> bool

val isAlpha : char -> bool

val isHexDigit : char -> bool

val isAlphaNum : char -> bool

val isPrint : char -> bool

val isSpace : char -> bool

val isPunct : char -> bool

val isGraph : char -> bool



344 10 Appendix B: The Standard ML Basis Library

val isCntrl : char -> bool

val isAscii : char -> bool

Character test functions.

val toUpper : char -> char

val toLower : char -> char

Upper and lowercase conversion functions.

10.5 The String Structure

This is the String structure providing functions that operate on strings. Strings are
not the same as characters. A string can be exploded into a list of characters, but
strings are separate objects from character values. More information can be found at
http://www.standardml.org/Basis/string.html.

type string

Character sequences fall under the string type in Standard ML. However, strings
are NOT lists of characters. There are functions given here to explode and implode
a string to and from a list of characters.

val maxSize : int

Maximum string size.

val size : string -> int

Current size of a string.

val sub : string * int -> char

String subscript operator.

val str : char -> string

Convert char to string.

val extract : string * int * int option -> string

val substring : string * int * int -> string

Acouple of substring operations. Extract’s third argument is either SOME x where
x is the ending lcoation+1 for the substring, or NONE to have extract extend to the
the end of the string.

val ^ : string * string -> string

Binary string concatenation.

http://www.standardml.org/Basis/string.html
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val concat : string list -> string

N-ary string concatenation.

val concatWith : string -> string list -> string

A variation on the other two concatenation operations.

val implode : char list -> string

val explode : string -> char list

Conversion to/from a list of characters to a string. These are useful when writing
recursive string functions.

val map : (char -> char) -> string -> string

This is a higher order function that applies a character to character function to
each character of a string and returns the string of collected results.

val translate : (char -> string) -> string -> string

Same as map above, but applies a character to string function to each character
returning the string of collected strings.

val tokens : (char -> bool) -> string -> string list

val fields : (char -> bool) -> string -> string list

These two functions return tokens from a string. The char to bool function defines
the delimiters of tokens. In otherwords thefirst argument is a function that returns true
when white space is encountered. The tokens function always returns a non-empty
token, the fields function may return empty tokens.

val isPrefix : string -> string -> bool

val isSubstring : string -> string -> bool

val isSuffix : string -> string -> bool

These are substring detecting functions.

val compare : string * string -> order

Returns one of GREATER, LESS, or EQUAL depending on the two values being
compared.

val collate : (char * char -> order) -> string * string -> order

Compares two strings lexicographically according to the provided character
ordering.

val < : string * string -> bool

val <= : string * string -> bool

val > : string * string -> bool
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val >= : string * string -> bool

Four infix, normal lexicographical comparisons.

val toString : string -> String.string

Replaces non-printing characters with SML escape character sequences.

val scan : (char,’a) StringCvt.reader -> (string,’a) StringCvt.reader

val fromString : String.string -> string option

val toCString : string -> String.string

val fromCString : String.string -> string option

Various string conversion functions and stream reading functions.

10.6 The List Structure

This is the List structure for the list polymorphic datatype in SML.More information
can be found at http://www.standardml.org/Basis/list.html.

datatype ‘a list = :: of ‘a * ‘a list | nil

A list is formed from an element and a list. It is a recursive data structure with
O(n) access to any element of the list. This should not be confused with an array that
provides O(1) element access. The : : is called cons and stands for list construction
or constructor. It forms a list from an element, e, and a list, lst as in e::lst. The nil
keyword is used to represent an empty list. Writing [] is equivalent to nil in Standard
ML. Lists in Standard ML must be homogenous, containing all the same type of
elements.

exception Empty

Raised as necessary by various functions should an empty list be used as an
argument. Not raised unless necessary.

val null : ‘a list -> bool

Returns true if the given list is empty.

val hd : ‘a list -> ‘a

val tl : ‘a list -> ‘a list

hd e::lst returns e while tl e::lst returns lst. hd is short for head of the list and tl
is short for tail of the list.

val last : ‘a list -> ‘a

Returns the last element of the given list. Raise Empty if given an empty list.

http://www.standardml.org/Basis/list.html
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val getItem : ‘a list -> (‘a * ‘a list) option

Returns SOME of the head and tail of a list or NONE if the list is empty. Calling
getItem (e::lst) returns SOME (e,lst).

val nth : ‘a list * int -> ‘a

Returns the nth item of the list (zero based) and raise Subscript if the list is too
short.

val take : ‘a list * int -> ‘a list

Returns the first i elements of a list given a list and i. Raises Subscript if the list
is too short.

val drop : ‘a list * int -> ‘a list

Returns the rest of a list after the first i elements. Raises Subscript if the list is too
short.

val length : ‘a list -> int

Returns the length of a list.

val rev : ‘a list -> ‘a list Returns the reverse of a list.

val @ : ‘a list * ‘a list -> ‘a list

This is list concatenation, not to be confused with :: which is list construction.
This is an infix operator. So [1,2,3]@[4,5,6] is legal and so is 1::[2,3,4,5,6] which
both yield the same result.

val concat : ‘a list list -> ‘a list

This takes a list of lists of all the same element and concatenates each of the lists
together returning one big list of all the elements.

val revAppend : ‘a list * ‘a list -> ‘a list

Reverses the first list and appends it to the second.

val app : (‘a -> unit) -> ‘a list -> unit

This function applies the first argument, a function with a side-effect, to each
element of a list. The unit type is another name for the empty tuple (i.e. ()) which is
the return type of many functions that have side-effects.

val map : (‘a -> ‘b) -> ‘a list -> ‘b list

The map function applies a function to each element of a list, building a new list
of all the results.

val mapPartial : (‘a -> ‘b option) -> ‘a list -> ‘b list

This is like map except that if NONE is returned by the function, it is omitted
from the resulting list. Only values of SOME val are included in the final result.



348 10 Appendix B: The Standard ML Basis Library

val find : (‘a -> bool) -> ‘a list -> ‘a option

Given a predicate function and a list, the find function returns either SOME val for
the found value or NONE indicating the predicate did not return true for any element
of the list.

val filter : (‘a -> bool) -> ‘a list -> ‘a list

This function returns a new list of all elements of the list that satisfy the provided
predicate function.

val partition : (‘a -> bool) -> ‘a list -> ‘a list * ‘a list

This function returns a tuple where the first list consists of all elements that satisfy
the predicate function and the second is comprised of the elements that did not satisfy
the predicate.

val foldr : (‘a * ‘b -> ‘b) -> ‘b -> ‘a list -> ‘b

This function applies a provided function to each element and an initial value,
folding all the results into one finals result. This function is called foldr because it is
right-associative. Here is an example of calling foldr.

- foldr (op -) 0 [1,2,3,4];
val it = ˜2 : int

The use of op - in the example transforms the infix - operator to a prefix function.
The example computed (1 - (2 - (3 - (4 - 0)))). If the list is empty then the initial
value, the second argument, is returned.

val foldl : (‘a * ‘b -> ‘b) -> ‘b -> ‘a list -> ‘b

This function is the left-associative analog of foldr meaning that the initial value
is applied along with the first element of the list and that result applied along with
the second element of the list and so on. For example,

- foldl (op -) 0 [1,2,3,4];
val it = 2 : int

The example computed (4 - (3 - (2 - (1 - 0)))). If the list is empty, then the initial
value, the second argument, is returned.

val exists : (‘a -> bool) -> ‘a list -> bool

Given a predicate function, exists returns true if the predicate function evaluates
to true for at least one element of the list.

val all : (‘a -> bool) -> ‘a list -> bool

Given a predicate function, all returns true if the predicate function evaluates to
true for all elements of the list.

val tabulate : int * (int -> ‘a) -> ‘a list

Builds a list of n elements. The n is the first argument to tabulate. The each element
is generated by passing one of 0 to n−1 to the second argument, a function. Raises
Size if there are less than n elements in the list.
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- List.tabulate(5,fn x => x + 1);
val it = [1,2,3,4,5] : int list

val collate : (‘a * ‘a -> order) -> ‘a list * ‘a list -> order

This performs a lexicographical comparison of two lists according to the provided
ordering function for each element of the lists. Returns one of LESS, GREATER, or
EQUAL.

10.7 The Array Structure

Arrays aremutable sequences that provideO(1) lookup and assignment complexities.
Lists are immutable and provide O(n) lookup time. Lists are immutable so item
assignment is not possible in a list. Since arrays are mutable, many of the functions
on arrays return unit the type of () which is used as the return type of mutating
functions in StandardML.More information can be found at http://www.standardml.
org/Basis/array.html.

type ‘a array

Arrays must be homogeneous in Standard ML, comprised of all the same type of
elements.

val maxLen : int

Maximum size of an array.

val array : int * ‘a -> ‘a array

Build an array with size n, the first argument, and all elements initialized to the
value of a, the second argument.

val fromList : ‘a list -> ‘a array

Build an array from a list.

val tabulate : int * (int -> ‘a) -> ‘a array

See List.tabulate.

val length : ‘a array -> int

The length of an array.

val sub : ‘a array * int -> ‘a

The O(1) element retrieval operation not provided by lists in Standard ML.

val update : ‘a array * int * ‘a -> unit

The array element assignment operation, a O(1) mutating operation.

http://www.standardml.org/Basis/array.html
http://www.standardml.org/Basis/array.html
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val vector : ‘a array -> ‘a vector

Builds a vector from an array.

val copy : {di:int, dst:’a array, src:’a array} -> unit

val copyVec : {di:int, dst:’a array, src:’a vector} -> unit

Copy utility functions.

val appi : (int * ‘a -> unit) -> ‘a array -> unit

val app : (‘a -> unit) -> ‘a array -> unit

Applies a function to an array. The first supplies the function with i provided as the
first argument where i is the index of the element. The second applies the function to
each element of the vector without knowledge of its location. The function applied
would have some side-effect.

val modifyi : (int * ‘a -> ‘a) -> ‘a array -> unit

val modify : (‘a -> ‘a) -> ‘a array -> unit

Applies a function to an array. The first supplies the function with i provided as the
first argument where i is the index of the element. The second applies the function to
each element of the vector without knowledge of its location. The function applied
results in a value that replaces the value in the array at the same location.

val foldli : (int * ‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

val foldri : (int * ‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

val foldl : (‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

val foldr : (‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b]

The fold equivalents (see List.fold functions) for arrays. The foldli and foldri
functions provide the index of the value in addition to the value at each element of
the array.

val findi : (int * ‘a -> bool) -> ‘a array -> (int * ‘a) option

val find : (‘a -> bool) -> ‘a array -> ‘a option

val exists : (‘a -> bool) -> ‘a array -> bool

val all : (‘a -> bool) -> ‘a array -> bool

val collate : (‘a * ‘a -> order) -> ‘a array * ‘a array -> order

All similar to List functions. See the List equivalents for explanations.
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10.8 TheTextIO Structure

This is a subset of the entire TextIO structure. Detailed descriptions of all functions
can be found on the Basis Library website at http://www.standardml.org/Basis/text-
io.html.

type instream

type outstream

Standard ML supports stream operations for both input and output streams.

val input : instream -> vector

val input1 : instream -> elem option

val inputN : instream * int -> vector

val inputAll : instream -> vector

These are blocking input functions. The input returns an empty vector if the input
stream is closed, otherwise returning one or more items in the stream. The input1
reads just one element from the stream and returns NONE if the input stream is
closed. The inputN returns at most n items. The inputAll returns everything up to the
end of stream.

val canInput : instream * int -> int option

val lookahead : instream -> elem option

These two functions look at the state of the stream. They are useful in making
input decisions.

val closeIn : instream -> unit

val endOfStream : instream -> bool

The closeIn function closes a stream and endOfStream closes the given stream.

val output : outstream * vector -> unit

val output1 : outstream * elem -> unit

Writes all elements of a vector and one element, respectively, to a stream.

val flushOut : outstream -> unit

val closeOut : outstream -> unit

Before input is read, it may be necessary to flush output if a prompt is printed
for instance. Otherwise, the prompt may not appear on the screen. The closeOut
function closes an output stream.

val inputLine : instream -> string option

Reads an input line and returns either SOME line or NONE.

http://www.standardml.org/Basis/text-io.html
http://www.standardml.org/Basis/text-io.html


352 10 Appendix B: The Standard ML Basis Library

val outputSubstr : outstream * substring -> unit

Writes a substring.

val openIn : string -> instream

Opens an input stream for reading. The argument is a filename.

val openString : string -> instream

Opens a string stream for reading.

val openOut : string -> outstream

Opens an output stream for writing. The argument is a filename.

val openAppend : string -> outstream

Opens an output stream for writing. The argument is a filename. If the file exists,
the data written will be appended to the end of the file.

val stdIn : instream

val stdOut : outstream

val stdErr : outstream

These are the names of the default input, output, and error streams supplied with
every program. They are precreated objects.

val print : string -> unit

Prints to standard output the given string.

val scanStream : ((elem,StreamIO.instream) StringCvt.reader -> instream ->
‘a option

Uses a stream and converts it to an imperative stream where conversions can be
done while reading input. See the Basis Library (http://www.standardml.org/Basis/
text-io.html#SIG:TEXT_IO.scanStream:VAL) for a more complete description of
how this works.

http://www.standardml.org/Basis/text-io.html#SIG:TEXT_IO.scanStream:VAL
http://www.standardml.org/Basis/text-io.html#SIG:TEXT_IO.scanStream:VAL
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