
www.allitebooks.com

http://www.allitebooks.org


Getting Started with  
BizTalk Services

Create powerful integration solutions for the cloud using 
the extensible Windows Azure BizTalk Services

Karthik Bharathy

Jon Fancey

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Getting Started with BizTalk Services

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either expressed or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1200314

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-78217-740-1

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org


Credits

Authors
Karthik Bharathy

Jon Fancey

Reviewers
Steef-Jan Wiggers

Kevin Smith

Tomas Restrepo

Daniel Bullington

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Shaon Basu

Technical Editors
Kunal Anil Gaikwad

Pramod Kumavat

Venu Manthena

Mukul Pawar

Siddhi Rane

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Karuna Narayanan

Adithi Shetty

Project Coordinator
Aboli Ambardekar

Proofreader
Simran Bhogal

Paul Hindle

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org


Foreword

The cloud moves fast.

Welcome to Windows Azure BizTalk Services, a key part of Microsoft's cloud 
integration vision. With BizTalk Services, customers can connect their businesses 
through process automation and integrate the Web with their existing backend 
systems on premises; all from a flexible and scalable rock-solid platform managed 
using industry-leading tools.

With integration, it's not a cloud or on-premises decision, it's both. This book 
provides you with a great introduction to BizTalk Services, a fantastic new cloud 
service from Microsoft designed to help you get started quickly and productively 
in the shortest time possible. Jon and Karthik have done a great job in making 
the material easy to grasp for newcomers to the Microsoft stack as well as those 
experienced in BizTalk Server looking to start using BizTalk Services.

I really liked Karthik's and Jon's writing style and found this book an excellent 
introduction to BizTalk Services. Unlike other books, this doesn't attempt to be a 
huge reference full of extraneous details. Instead, it offers a relatively quick and 
concise read that details how to use the most important features. The result is a very 
approachable book that provides a great way to learn BizTalk Services and how to 
immediately take advantage of it.

Hold on and enjoy the ride!

Scott Guthrie

Corporate Vice President, Windows Azure, Microsoft Corporation

March 2014

www.allitebooks.com

http://www.allitebooks.org


Foreword

Karthik and I have worked together for over two years on Windows Azure BizTalk 
Services. It is a pleasure for me to introduce this book on Windows Azure BizTalk 
Services on behalf of Karthik and Jon.

BizTalk has been a leader in the integration space for many years now and is used  
by a majority of the world's largest companies for their mission-critical-systems 
integration. As cloud computing changes how enterprises run their business, it  
is important to bring this product to the cloud as a part of Windows Azure  
Platform. We started building Windows Azure BizTalk Services for cloud-to-cloud 
and cloud-to-on-premises integration scenarios, targeting both enterprise and SMB 
customers. This new "built from ground up for cloud" service will harness all the 
power of cloud and yet make it simple to use.

In the world of modern applications and services, there is a need for IT admins and 
developers to comprehensively understand a technology such as BizTalk Services 
and apply it in their own IT ecosystem. This book precisely fills this need. This book 
showcases many practical, real-world scenarios and provides detailed hands-on 
walkthroughs of cloud integration to allow the reader to quickly understand the 
material presented.

I invite you to join the integration journey with Karthik and Jon as they uncover the 
capabilities of BizTalk Services in a lucid, approachable manner. I hope you will 
enjoy the book as much as I did and that it helps you to leverage BizTalk Services 
more effectively in your organization.

Vivek Dalvi

Principal Group Program Manager, BizTalk Product Group

March 2014

www.allitebooks.com

http://www.allitebooks.org


About the Authors

Karthik Bharathy is a Lead Program Manager in the BizTalk product group with 
nearly a decade of software experience. He has been with the product group since 
the days when BizTalk Services started off as a set of ideas on the drawing board. 
He has also shipped releases of BizTalk Server, SQL Server, and Visual Studio. In his 
current role, he oversees the B2B platform experience across industry verticals. He has 
presented at several Microsoft conferences, including BizTalk Summit US and Europe, 
TechEd EMEA and US, TechReady US, MVP Summit US, and TechDays India.
His passion for computers started at the age of 12 when he coded BASIC on the ZX 
Spectrum. He graduated from Bangalore University in Computer Science summa 
cum laude and also holds a management degree from the Indian School of Business. 
In his spare time, he is usually travelling and is a major foodie.

To all the members of the BizTalk family—the product group, CSS, 
DPE, CAT, Marketing, UE, and UX—thank you for building this 
awesome integration product called BizTalk. I truly appreciate the 
complexity of the middleware breathing BizTalk every day! I would 
like to thank Vivek Dalvi, Sandeep Prabhu, Shridhar Diwan, and 
Rajesh Ramamirtham for the discussions and support while writing 
this book. 
 
I would like to thank the MVP community for their discussions 
on BizTalk. I learned a lot from you guys and I respect the level of 
commitment you inspire towards the product. I would like to thank 
Steef-Jan Wiggers, Richard Seroter, Michael Stephenson, Sarvana 
Kumar, Sandro Pereira, Kent Weare, Mick Badran, Rick Garibay, 
Stephen Thomas, Bill Chestnut, Sam Vanhoutte, Dwight Goins, Ben 
Cline, and Mikael Hakansson for their constant feedback on BizTalk. 
 
Special thanks to Scott Guthrie for agreeing to write the foreword of 
this book, and thanks to our Content Development Editor Shaon Basu 
and Project Coordinator Aboli Ambardekar, whose reminders and 
feedback kept us on our toes and helped us land the book on time. 
 
Above all, I would like to thank my wife, Thulasi and my parents who 
supported and encouraged me throughout this journey.

www.allitebooks.com

http://www.allitebooks.org


Jon Fancey is an integration veteran who has worked on the Microsoft stack for 
over 20 years. He is a nine-time Microsoft Integration MVP and has worked closely 
with both the BizTalk Server and Host Integration Server product groups for nearly 
a decade. He has presented at many major conferences including TechEd, DevWeek, 
and the 2014 London BizTalk Summit. He has also written numerous articles and 
whitepapers for MSDN on BizTalk, SharePoint, and other topics.

Jon co-founded Affinus, a UK-based Microsoft partner, with Kevin B. Smith, 
formerly from the BizTalk product group, shipping the first three versions of 
the BizTalk product. Affinus works closely with large enterprise customers on 
interesting integration challenges, helping them move to the cloud.

Jon lives in West Sussex, UK, with his wife Fiona and two children, Ben and Tom, 
and their dog, Dilly.

I would like to thank the following for their help and assistance: 
Kevin Smith, Tomas Restrepo, and Steef-Jan Wiggers for tirelessly 
reviewing every word of this book, especially Steef-Jan who turned it 
round in a weekend on very tight deadlines. You all made it a better 
book, and I am very grateful for that. I'd also like to thank other 
members of the Affinus family, Daniel Probert and Simon Poulter, 
who've put up with me discussing this project for a very long time 
and guided my thinking along the way. 
 
A special thanks goes to Scott and Vivek for agreeing to write 
forewords for us, your support on this project has been very much 
appreciated. And of course thanks to everyone at Packt for their 
support and encouragement, and deadline management! 
 
Finally, I'd like to thank my family for giving me the time and space 
to write my first book; I know it's tough sometimes and without your 
encouragement and support this project wouldn't have been possible.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Steef-Jan Wiggers has over 15 years of experience as a technical lead developer, 
application architect, and consultant, specializing in custom applications, enterprise 
application integration (BizTalk), web services, and Windows Azure. He is very 
active in the BizTalk community (http://social.technet.microsoft.com/
wiki/contents/articles/7141.user-page-steef-jan-wiggers-microsoft-
biztalk-server-consultant-and-mvp.aspx) as a blogger, Wiki author/editor, 
forums writer, and public speaker in the Netherlands and Europe. For these efforts, 
Microsoft has recognized him as a Microsoft MVP for the past four years. On his 
personal blog (http://soa-thoughts.blogspot.com/) and BizTalk Administrators 
blog (http://www.biztalkadminsblogging.com/), he shares his knowledge about 
SOA, Azure (Service Bus), BizTalk Services, and BizTalk.

In addition to consulting, he is also an author and has been a technical reviewer  
for Packt Publishing. He has written the book BizTalk Server 2010 Cookbook,  
Packt Publishing, and has technically reviewed the following books:

• Microsoft BizTalk Server 2010 Patterns by Dan Rosanova
• (MCTS): Microsoft BizTalk Server 2010 (70-595) Certification Guide by Johan 

Hedberg, Morten la Cour, and Kent Weare

Windows Azure BizTalk Services is a new service in Azure and a 
promising technology for integration (EAI) and B2B in the cloud. 
This book provides readers with background information and 
hands-on experience working with BizTalk Services. I would like to 
thank the authors Jon Fancey and Karthik Bharathy, both of whom I 
know personally, for giving me the opportunity to review this book. 
They have done an excellent job writing it.

www.allitebooks.com

http://www.allitebooks.org


Kevin Smith is a co-founder of Affinus, a UK-based Microsoft partner and 
previously worked in the BizTalk Server product group for six years delivering 
BizTalk Server 2000, 2002, and the seminal third release 2004, which created the 
much-praised BizTalk architecture that the current product is based on. Kevin works 
on hard .NET problems for customers and specializes in the investment banking 
industry. His primary interests lie in UX design and machine learning.

Tomas Restrepo has been writing software for over 10 years, starting with C/C++ 
and eventually moving to the .NET platform. He currently spends most of his time 
helping other developers solve complex problems and troubleshooting application 
performance and scalability issues.

Daniel Bullington is a technology architect, manager, and strategist with 
industrial experience in financial services, healthcare, management consulting, 
and Software as a Service (SaaS), working for several well-known Fortune 500 and 
Fortune 50 companies. His focus has been on large-scale web/mobile, SOA/EAI, 
DW/BI, and cloud solutions. Daniel drives continuous improvement and operational 
excellence (including an intelligent level of process, metrics/KPIs, and so on) to spur 
meaningful IT organizational change and an enhanced value proposition through 
positive business outcomes.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to  
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on 
Twitter, or the Packt Enterprise Facebook page.



Table of Contents
Preface 1
Chapter 1: Hello BizTalk Services 7

Background 8
Business drivers 9
Technical drivers 10
Core scenarios 10
Concepts 11
Life cycle and architecture 12
Personas and tools 15

Developer 15
IT Pro 15
Partner Administrator 16

Deployment considerations 16
Provisioning BizTalk Services 17

Certificates and ACS 17
Storage requirements 17
The BizTalk Services create wizard 18
BizTalk portal registration 19

Creating your first BizTalk Services solution 20
Scenario description 20
Prerequisites 20
Realizing the solution 21

Creating a BizTalk Services project 21
Creating the Order schema 21
Creating the BizTalk Services solution 24

Verifying the solution 27
Summary 28



Table of Contents

[ ii ]

Chapter 2: Messages and Transforms 29
The problem 29
The mapper 30
The map designer 30
Schema 31
An example 31
Mapping operations 33
Testing 44
Configuring a bridge 47
Putting it all together 48
More on mapping 49
Dealing with failure 52
Summary 53

Chapter 3: Bridges 55
Pipeline processing 56
Message processing 56
Messaging 58
Enrichment 59
Lookups 63
Routing 68
Trying it out 69
Brokered messaging 74
Summary 74

Chapter 4: Enterprise Application Integration 75
Enterprise application integration scenarios 75
EAI in BizTalk Services 76

Sources 76
Bridges and the VETER pattern 77
Destinations 78
Attributes of bridges 78

Hybrid connectivity 79
The BizTalk Adapter Service 79
The BAS architecture 80
BAS installation and configuration 82
Consuming BAS with bridges 83

Custom code in EAI 83
Message inspectors 84

Tracking 85
Scenario walk-through 86

Prerequisites 86



Table of Contents

[ iii ]

Solution 86
Creating a schema 86
Creating custom code 87
Configuring the bridge 88
Deploying the bridge 89
Sending messages 90

Viewing tracking data 90
Summary 90

Chapter 5: Business-to-business Integration 91
Basic concepts of B2B 91
Common interaction models 93

Direct enterprise integration 93
Service provider integration 93

Industry standards and protocols 93
Concepts in BizTalk Services B2B 94

EDI message structure 95
Partners and agreements 96
Property promotion 97
Batching 99

Selection criteria 100
Release criteria 100

Tracking and archiving 101
Non-repudiation 102

Extensibility 102
Scenario walk-through 103

Ecosystem players 103
Provisioning BizTalk Services 103
Configuring partners – Fabrikam, Northwind, and Contoso 103
Configuring the AS2 agreement between Fabrikam and Contoso 104
Configuring the X12 agreement between Northwind and Contoso 106
Sending messages 109
Viewing tracking data 110

Summary 110
Chapter 6: API 111

REST 112
Calling the API 112
Back up and restore 117
Using PowerShell 123
Summary 126



Table of Contents

[ iv ]

Chapter 7: Tracking and Troubleshooting 127
Messages and errors 127
Data for troubleshooting 129

Tracking 129
Traces and logfiles 131
Performance counters 132

Troubleshooting sources and destinations 134
Troubleshooting schemas and transforms 136
Troubleshooting bridges 138
Troubleshooting agreements 138
Troubleshooting hybrid connectivity 139
Summary 140

Chapter 8: Moving to BizTalk Services 141
Moving from BizTalk Server 142

Maps 142
Pipelines 146
Schema 147
Adapters 147
Trading Partner Management (TPM) 147
EDIFACT support 153
Business Rules Engine (BRE) 153
Orchestration 154

When not to move 155
The future 155
Summary 156

Index 157



Preface
It all started about a year ago and BizTalk Services was soon to go for preview 
in a few months. We were all excited to break new ground in the era of cloud 
middleware. We must tell you one of the benefits of being in the product group  
(or being an MVP) is that you get early access to bits long before they hit the 
market. Working on those bits, we thought to ourselves, "Wouldn't it be nice for our 
customers to have a guide to build effective solutions with this service?" This book 
on BizTalk Services was envisioned not necessarily to spoil the fun by adding every 
little detail, but to cover enough to understand the architecture, the key components, 
and help you explore.

This book is written for beginners, and knowledge of BizTalk Server is neither 
assumed nor expected. It is also the first book on the topic, and we'll cover all the 
important features including EAI, B2B, and hybrid deployments in detail—all with 
code samples and walkthroughs. If you are an EAI user, you can start with Chapter 
1, Hello BizTalk Services and then continue with Chapter 2, Messages and Transforms, 
Chapter 3, Bridges, and Chapter 4, Enterprise Application Integration. On the other hand, 
a B2B developer or architect can follow Chapter 1, Hello BizTalk Services, Chapter 2, 
Messages and Transforms, and Chapter 5, Business-to-business Integration. If you're 
interested in the APIs underpinning the services, troubleshooting your solutions, 
or how to move to BizTalk Services, then Chapter 6, API, Chapter 7, Tracking and 
Troubleshooting, and Chapter 8, Moving to BizTalk Services will guide you.



Preface

[ 2 ]

What this book covers
Chapter 1, Hello BizTalk Services, introduces BizTalk Services, its architecture, and how 
to create an instance of the service and deploy solutions.

Chapter 2, Messages and Transforms, explains message processing and how to 
transform messages to different formats. Also, it explains how to use mapping 
operations to aggregate data, perform reference data lookups, and use custom  
code in transformations.

Chapter 3, Bridges, gives a detailed look at bridges and explains how to enrich 
messages and route messages to different endpoints.

Chapter 4, Enterprise Application Integration, explains sources and destinations and 
how to connect BizTalk Services to enterprise applications and systems on-premises 
from the cloud.

Chapter 5, Business-to-business Integration, discusses B2B integration using industry 
standard protocols such as EDIFACT, X12, and AS2. It also discusses how to create 
partners and agreements in BizTalk Services to connect with trading partners and 
how to utilize message batching and archiving.

Chapter 6, API, discusses a rich API underpinning BizTalk Services. Also, it explains 
what it can do and how to use it in different contexts, including REST, PowerShell, 
and custom code.

Chapter 7, Tracking and Troubleshooting, discusses how messages are tracked in 
BizTalk Services and how to find and resolve problems when they occur using the 
tools BizTalk Services provides.

Chapter 8, Moving to BizTalk Services, explains how to move from BizTalk Server to 
BizTalk Services, the differences between the two products, and future plans.

What you need for this book
To follow along with the code samples and solutions provided in the book, you will 
need the following pre requisites:

• Internet access
• One of the following operating systems: Windows 7 Service Pack 1, Windows 

8, Windows 8.1, Windows Server 2008 R2 SP1, Windows Server 2012, or 
Windows Server 2012 R2

• Internet Explorer 9 or Internet Explorer 10



Preface

[ 3 ]

• Visual Studio 2012
• Windows Azure BizTalk Services SDK

Please visit http://msdn.microsoft.com/en-us/library/windowsazure/
hh689760.aspx

• A Windows Azure subscription and instance of Windows Azure  
BizTalk Services
To create a BizTalk Service instance, please visit  
http://www.windowsazure.com/en-us/pricing/free-trial/

Who this book is for
This book is for software developers, IT pros, architects, and technical managers who 
wish to understand BizTalk Services, what it can do, and how to use it to integrate 
services, on-premises applications, and businesses together.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Let's tackle the ShippingAddress node."

A block of code is set as follows:

public string CreateAddress (string Number, string Street, string  
City, string State, string Country)
{
  return Number + " " +
    Street + "," +
    City + "," +
    State + "," +
    Country;
}

Any command-line input or output is written as follows:

select-azuresubscription –SubscriptionName "Test"



Preface

[ 4 ]

New terms and important words are shown in bold. Words that you see on the 
screen, in menus, or dialog boxes for example, appear in the text like this: "Click  
on Add to create the map and add it to the solution."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.



Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org




Hello BizTalk Services
As companies build and extend their IT information assets, there is a need to 
integrate applications to exchange data. While a point-to-point application 
integration using custom code is possible, it does not address large-scale application 
integrations without duplication of data and the complexity of managing such 
an integration. BizTalk is a de facto choice for message-based integration for on-
premises systems and for services on Azure for both applications and businesses.

In this book, we're going to introduce you to BizTalk Services, Microsoft's new 
integration middleware hosted on Windows Azure. This book assumes that you 
already understand the need for integration and the many benefits of using specialist 
integration software as opposed to building custom point-to-point integration 
solutions. We will look at why cloud-hosted integration services are so compelling 
and the scenarios in which these services make most sense. Prior knowledge of 
BizTalk Server is not expected, though it will help you to quickly understand 
certain topics within the book. We will assume you are a professional developer, 
an architect, or a solution designer familiar with the challenges of integrating 
heterogeneous systems and applications. The book also assumes familiarity of the 
Microsoft developer toolset, specifically .NET, Visual Studio, and SQL.

In this chapter, we will start to answer some fundamental questions around 
what BizTalk Services is and how it can help you to build integration solutions. 
Specifically, the following topics will be discussed:

• The business and technical drivers for BizTalk Services on Azure
• Concepts and architecture of BizTalk Services
• Using BizTalk Services to realize a simple purchase order scenario



Hello BizTalk Services

[ 8 ]

Background
First though, some background is necessary. At the Professional Developers 
Conference (PDC) 2008, Microsoft unveiled Windows Azure—a new operating 
system designed for the cloud. Over the subsequent years, Windows Azure has 
become Microsoft's de facto cloud platform covering services, media, websites, 
mobile applications, and more. While BizTalk Server has been an established 
product for over ten years (and eight releases), cloud adoption has been driving 
connected systems across different services and Line-of-Business applications. To 
meet the growing demand for cloud-based integration, the Microsoft BizTalk team 
released the first version of BizTalk Services, named Service Bus EAI and EDI Labs 
Community Technology Preview (CTP) on December 17, 2011. The goal was for 
customers to be able to sign up in a shared environment and set up simple XML/EDI 
flows without worrying about installation and maintenance. The capabilities were 
rich enough to enable simple point-to-point integration scenarios; on April 9th of the 
following year, the CTP was refreshed, incorporating feedback from customers by 
providing additional capabilities.

The CTP environment was hosted on a publicly shared service, and therefore had 
restrictions on running users' custom code. Integration is rarely straightforward, 
and the ability for developers to write custom code and deploy it as part of 
their integration solutions was a key requirement. Customers had also needed 
guarantees around performance and Service Level Agreements (SLAs). Hosting user 
assemblies as part of the cloud services became a reality by switching to per tenant 
deployment. Thus, the cloud offering known as BizTalk Services was born on June 
3, 2013. Like many Azure services, BizTalk Services is expected to be updated at a 
regular cadence. The latest update as of this writing was on February 20, 2014. This 
technology is opening up new integration possibilities; with Microsoft's on-going 
investments, it will be on par with the capabilities of its on-premises cousin, BizTalk 
Server, in the near future.



Chapter 1

[ 9 ]

Business drivers
There are many tangible benefits of building solutions on Azure today. A few of these 
include the ability to scale up/down the platform based on predictable or dynamic 
shifts in application load and throughput requirements without worrying about the 
hardware procurement time and setup, the ability to pay as you go with expense 
incurred as an Operational Expenditure (OpEx) instead of a Capital Expenditure 
(CapEx), and the increase in reach for certain integration scenarios.

Specific to integration on Azure, there are four factors that drive adoption:

• Focus on business operations, not IT: There are business benefits in terms 
of reduced cost by leveraging platforms running under economy of scale, 
making it cheaper for customers to obtain them with higher quality of 
services. The need of the hour is to simplify IT deployment and management 
and focus on business services instead of configuring software or hardware.

• Simplicity of managing externally facing services: Enterprises typically offer 
services across geographic and organizational boundaries. Many of these 
services require making changes to the corporate firewall to allow or deny the 
applications. This process is an IT nightmare for many organizations. With 
Azure integration services such as B2B, which inherently require external 
communication, all this could be moved to the cloud and the necessary access 
and control policies could then be centralized for all internal services. This 
also enables self-service configuration changes to the application, thereby 
dramatically improving responsiveness to business changes.

• Greenfield cloud applications: The proliferation of mobile devices, such 
as smartphones and tablets as well as Point-of-Sale (POS) systems, has 
given rise to services that are inherently cloud based. Think of a POS that 
transmits daily transaction logs to its backend Line-of-Business systems or an 
RFID service that transmits information about each item in a shopping cart 
purchased in a retail store to an inventory application. As new services are 
being rolled out, organizations want to be able to develop and deploy these 
services with shorter time-to-market using Azure.

• Another factor to consider for the cloud is to leverage existing on-premises 
investments. Businesses have invested in a variety of on-premises systems, 
including traditional ERP as well as legacy mainframes and other bespoke 
systems that literally run the business.



Hello BizTalk Services

[ 10 ]

Technical drivers
The primary technical goal for BizTalk Services is to reduce the impedance mismatch 
between source and destination systems that are exchanging information. Such 
impedance can be at different levels:

• Transport protocol impedance: The source might send messages over one 
transport (say FTP) and the destination may only accept messages over  
another transport (say POP3). It could also be the case that messages are  
sent from one LOB to another, for example, one end is sending messages 
from the Sales Force adapter while the other end is accepting messages via 
the SAP adapter. BizTalk Services provides the notion of adapters to resolve 
this impedance.

• Application protocol impedance: The source might send EDIFACT messages 
while the destination may only accept messages in XML. BizTalk Services 
provides native support to protocols such as X12, EDIFACT, and flat files to 
resolve this impedance.

• Format impedance: The source might send messages in one XML format 
while the destination may only accept messages in another XML format. 
BizTalk Services provides transforms to resolve this impedance.

• Timing impedance: The source can send messages any time of the day, but 
the destination only accepts messages between 4 and 7 P.M. The source can 
send messages twice as fast as the destination can process them.

• Size impedance: The source can send messages of any size, but the 
destination can accept messages of 1 MB at most.

BizTalk Services provides connectivity to Service Bus, batching and debatching to 
resolve the last two impedances.

Core scenarios
The aforementioned drivers have resulted in three core scenarios for BizTalk Services:

• Enterprise Application Integration: These are primarily messaging scenarios 
with flat file or XML-based data that are between two or more applications, 
atleast one of which is running in the cloud. A good example would be a 
travel portal connected to the ticketing systems of multiple airlines.



Chapter 1

[ 11 ]

• Business-to-Business Integration: These are messaging scenarios  
with structured flat file/XML between two organizations. An example  
would be an IT company procuring hardware from vendors such as HP,  
Dell, or Lenovo.

• Connectivity with Hybrid Applications: These are messaging scenarios 
between Azure and on-premises applications. An example here would be 
connecting a Salesforce application to a SAP application running in your 
internal IT environment.

We will look at these scenarios in detail in separate chapters of this book.

Concepts
The following figure illustrates a basic integration flow from an FTP source to  
a LOB destination. BizTalk Services, represented by the middle box, is a sequence  
of processing steps.

FTP

EDI XML1 XML2
Idoc
XML

BizTalk ServicesProcess as messages
are available

Delivery between
4pm-7pm

Workstation

Role of BizTalk Services

BizTalk Services introduces several key concepts to facilitate building integration 
solutions on Azure:

• Bridge: A bridge is a unit of processing in BizTalk Services that can address 
impedance mismatch. It contains three units: one or more source locations 
(for example, FTP) to read messages from, a pipeline to process the message, 
and one or more destinations (for example, Queue) to write the processed 
messages. The pipeline is divided into distinct processing units called stages, 
each with its own function (for example, a stage in a pipeline can validate a 
message against a schema). A series of stages represents the bridge pattern 
or bridge template. Out of the-box, BizTalk Services v1 ships with three 
templates: XML, EDI, and AS2.



Hello BizTalk Services

[ 12 ]

• Adapter: An adapter is the transport medium that can send messages  
(to a destination) or receive messages (from a source) and pass them to the 
pipeline in a bridge; for example, Line-of-Business adapters such as SAP and 
Oracle EBS or transport adapters such as FTP and SFTP.

• Transform: A transform converts a message from one format into another, 
aiding structural conversion. Transforms contain operations that can perform 
commonly used transformations like string operations, loop constructs, list 
operations, and arithmetic and logical expressions.

• Application protocol: A protocol defines the message format and processing 
semantics such as the requirement to send and correlate acknowledgements 
of messages.

• Route: A route defines the destination endpoint where the message will be 
sent based on the specified criteria. The route criteria are evaluated based on 
SQL-92 expression syntax.

• Batching: The aggregation of messages based on selection criteria is termed 
batching. The release (sending) of a batch is governed by size, count, or time, 
or a combination of these parameters.

• Promoted properties: Promoted properties are name-value pairs, where 
the name is user-defined and the value is derived from the message header, 
message body, or from the context within the bridge. Promoted properties 
are commonly used in batching and routing to specify their criteria.

• Artifact: An artifact is anything that aids in the processing of the message in 
the bridge. XML schemas, maps, custom assemblies, and certificates are the 
artifacts used in XML and EDI bridges. In BizTalk Services, each artifact is 
stored in the artifact store and is addressable by a unique URL.

Life cycle and architecture
Unlike most other Azure services deployments, BizTalk Services provisions 
dedicated resources for storage and compute instances that are isolated across 
tenants. This means that no two deployments have anything in common between 
them. The advantage is that you can write any custom code and be assured that you 
cannot impact the performance or availability of other deployments. This dedicated 
deployment also offers isolation of data at the storage level, thus increasing the 
privacy of data and SLA of the service.



Chapter 1

[ 13 ]

Broadly categorizing, there are three steps to go through before you can have an 
active usable deployment. The first is to provision the service using standard Azure 
tools, including the Azure portal to create the service; the second is to deploy the 
necessary artifacts and configuration outlined in the BizTalk Services concepts section 
using Visual Studio and the BizTalk Services portal; and the third is sending or 
receiving the messages.

The architecture of BizTalk Services contains three key components:

• Provisioning services: This is a set of Microsoft services that manage the 
lifecycle of a BizTalk Services deployment as well as monitor its health. It 
also includes components to bill the end user based on usage of BizTalk 
Services. The management interface to the service is exposed via the Red 
Dog Front End (RDFE) public API. The Azure Management Portal or 
PowerShell scripts from the user go via the RDFE API. Using the service, 
you can scale up/down your deployment as well as back up and restore 
deployment across datacenters.

Red Dog was the original codename for Azure, with the "FE" being the 
publicly accessible frontend that users directly interact with either via 
the Azure portal or service management APIs.

• Per tenant BizTalk Services: This is the per tenant deployment that is 
created in the user's Azure subscription. A BizTalk Services deployment is 
identified by the deployment name and is accessible using the URL secured 
by the Access Control Service (ACS). All artifacts such as bridges and 
schemas are added into the deployment with a URL which is a sub-path of 
the deployment URL. For example, a bridge is added under <deployment 
URL>/default/<bridgeName>. Here default is the namespace name where 
the artifacts are grouped into.



Hello BizTalk Services

[ 14 ]

• Per tenant dependencies: These dependencies are the Azure services 
required for tracking, troubleshooting, and security. For example, BizTalk 
Services provides a tracking store, which is an Azure SQL database where 
the processing status of messages, along with related properties, are stored 
as the messages pass through a bridge. The information from the tracking 
store is shown in the BizTalk Services portal tracking view. Archiving 
and monitoring is stored in Azure storage blobs and tables. Archived 
messages are stored in blob containers based on the date of the archive. 
The storage also contains the Azure table WADLogsTable, where tracing 
information for a bridge can be obtained. Finally, Access Control Service 
regulates access to all endpoints in the deployment. During deployment 
creation, the provisioning service uses the Management Service credentials 
to programmatically access ACS to create a relying party for the BizTalk 
Services deployment, add rule groups for Send, Listen, and Manage claims, 
and create the service identity with the necessary passwords for directly 
talking to ACS for deployment of the artifacts. The interaction between these 
components is illustrated in the following figure:

Azure
Management

Portal

PowerShell

RDFE Provisioning
Service

BizTalk
Services

Deployment

Per Tenant
Deployment

Deployment
DependanciesProvisioning

Visual Studio BizTalk
Services Portal

Deploy
AgreementDeploy Bridge

ACS

Archiving

Tracking

Block diagram of BizTalk Services shared and per tenant services



Chapter 1

[ 15 ]

Personas and tools
BizTalk Services provides different user experiences for different personas to 
facilitate an optimized, task-based approach. The principal personas are:

Persona Description Primary Tools

Developer

Someone who creates integration 
solutions and artifacts, such as 
transforms and schemas

Visual Studio

IT Pro

Someone who manages the 
environment, including tasks 
such as deployment, setup, and 
configuration

Azure Portal and 
dashboard

Partner Administrator

Someone who sets up and manages 
trading partners

Trading partner/
BizTalk portal

Developer
A developer will typically focus on creating solutions using Visual Studio. BizTalk 
Services VS 2012 project templates are provided to enable rapid creation of both EAI 
and EDI solutions. These provide a graphical work surface on which to create and 
configure bridges to facilitate communication between an enterprise and its trading 
partners. Additionally, sophisticated tools are provided, including a graphical 
mapping interface and schema editors.

IT Pro
The Windows Azure Platform Management Portal provides access to create the 
BizTalk Services deployment and management tasks as well as at-a-glance status 
information providing details on the overall health of all deployments and accounts. 
In addition to services deployment, the Windows Azure Platform Management 
Portal provides an interface for provisioning Azure SQL databases, mobile services, 
Service Bus entities, and so on.

www.allitebooks.com

http://www.allitebooks.org


Hello BizTalk Services

[ 16 ]

Partner Administrator
The Partner Administrator persona uses the BizTalk Services portal for a number of 
management functions such as the creation and administration of trading partners, 
configuration of agreements including required transformations, routing and 
acknowledgements, tracking of messages, and exception processing.

The BizTalk Services portal enables the creation of trading partners and agreements 
between them. This enables the setting up and management of the protocols used to 
exchange data (for example, X12 and AS2) and the message formats to use together 
with transformation and routing capabilities. In this way, trading partners can be 
onboarded and configured quickly and easily by non-IT personnel without the use of 
developer tools such as Visual Studio, all through the web-based portal.

In addition, the management portal also provides the ability to set and view tracking 
data on message flows, including both contextual details (sender, message type, and 
so on) as well as the message bodies themselves. The ability to archive and export 
message data is also provided as part of the service.

Additionally, RESTful APIs are implemented to provide full fidelity with the portal, 
enabling activities to be scripted and deployment to be automated. Additionally, 
integration with customer systems and tools such as SharePoint for tracking data, 
visualization, or on-premises storage is also possible using this API.

Deployment considerations
You will need to consider the BizTalk Services edition required for your production 
use as well as the environment for test and/or staging purposes. This depends on 
decision points such as:

• Expected message load on the target system
• Capabilities that are required now versus 6 months down the line
• IT requirements around compliance, security, and DR

The list of capabilities across different editions is outlined in the Windows Azure 
documentation page at http://www.windowsazure.com/en-us/documentation/
articles/biztalk-editions-feature-chart.



Chapter 1

[ 17 ]

Note on BizTalk Services editions and signup
BizTalk Services is currently available in four editions: Developer, 
Basic, Standard, and Premium, each with varying capabilities and 
prices. You can sign up for BizTalk Services from the Azure portal. 
The Developer SKU contains all features needed to try and evaluate 
without worrying about production readiness. We use the Developer 
edition for all examples in this book.

Provisioning BizTalk Services
BizTalk Services deployment can be created using the Windows Azure Management 
Portal or using PowerShell. We will use the former in this example.

Certificates and ACS
Certificates are required for communication using SSL, and Access Control Service 
is used to secure the endpoints of the BizTalk Services deployment. First, you need 
to know whether you need a custom domain for the BizTalk Services deployment. 
In the case of test or developer deployments, the answer is mostly no. A BizTalk 
Services deployment will autogenerate a self-signed certificate with an expiry of close 
to 5 years. The ACS required for deployment will also be autocreated. Certificate 
and Access Control Service details are required for sending messages to bridges and 
agreements and can be retrieved from the Dashboard page post deployment.

Storage requirements
You need to create an Azure SQL database for tracking data. It is recommended to 
use the Business edition with the appropriate size; for test purposes, you can start 
with the 1 GB Web edition. You also need to pass the storage account credentials to 
archive message data. It is recommended that you create a new Azure SQL database 
and Storage account for use with BizTalk Services only.



Hello BizTalk Services

[ 18 ]

The BizTalk Services create wizard
Now that we have the security and storage details figured out, let us create  
a BizTalk Services deployment from the Azure Management Portal:

1. From the Management portal, navigate to New | App Services | BizTalk 
Service | Custom Create.

2. Enter a unique name for the deployment, keeping the following  
values—EDITION: Developer, REGION: East US, TRACKING 
DATABASE: Create a new SQL Database instance.

3. In the next page, retain the default database name, choose the SQL server, 
and enter the server login name and password.

As of writing this book, there can be six SQL server 
instances per Azure subscription.

4. In the next page, choose the storage account for archiving and  
monitoring information.

5. Deploy the solution.

The BizTalk Services create wizard from Windows Azure Management Portal



Chapter 1

[ 19 ]

The deployment takes roughly 30 minutes to complete. After completion, you will 
see the status of the deployment as Active. Navigate to the deployment dashboard 
page; click on CONNECTION INFORMATION and note down the ACS credentials 
and download the deployment SSL certificate. The SSL certificate needs to be 
installed on the client machine where the Visual Studio SDK will be used.

BizTalk portal registration
We have one step remaining, and that is to configure the BizTalk Services 
Management portal to view agreements, bridges, and their tracking data.  
For this, perform the following steps:

1. Click on Manage from the Dashboard screen.
2. This will launch <mydeployment>.portal.biztalk.windows.net, where 

the BizTalk Portal is hosted.
3. Some of the fields, such as the user's live ID and deployment name, will be  

auto-populated.
4. Enter the ACS Issuer name and ACS Issuer secret noted in the previous  

step and click on Register.

BizTalk Services Portal registration



Hello BizTalk Services

[ 20 ]

Creating your first BizTalk Services 
solution
Let us put things into action and use the deployment created earlier to address a 
real-world multichannel sales scenario.

Scenario description
A trader, Northwind, manages an e-commerce website for online customer 
purchases. They also receive bulk orders from event firms and corporates for their 
goods. Northwind needs to develop a solution to validate an order and route the 
request to the right inventory location for delivery of the goods. The incoming 
request is an XML file with the order details. The request from event firms and 
corporates is over FTP, while e-commerce website requests are over HTTP. Post 
processing of the order, if the customer location is inside the US, then the request are 
forwarded to a relay service at a US address. For all other locations, the order needs 
to go to the central site and is sent to a Service Bus Queue at IntlAddress with the 
location as a promoted property.

Prerequisites
Before we start, we need to set up the client machine to connect to the deployment 
created earlier by performing the following steps:

1. Install the certificate downloaded from the deployment on your client box to 
the trusted root store. This authenticates any SSL traffic that is between your 
client and the integration solution on Azure.

2. Download and install the BizTalk Services SDK (https://go.microsoft.
com/fwLink/?LinkID=313230) so the developer project experience lights up 
in Visual Studio 2012.

3. Download the BizTalk Services EAI tools' Message Sender and Message 
Receiver samples from the MSDN Code Gallery available at  
http://code.msdn.microsoft.com/windowsazure.



Chapter 1

[ 21 ]

Realizing the solution
We will break down the implementation details into defining the incoming format 
and creating the bridge, including transports to process incoming messages and the 
creation of the target endpoints, relay, and Service Bus Queue.

Creating a BizTalk Services project
You can create a new BizTalk Services project in Visual Studio 2012.

BizTalk Services project in Visual Studio

Creating the Order schema
From within your project, right-click on the project name, click on Add | New Item, 
and add a new Flat File Schema.

Add Flat File Schema into BizTalk Services project



Hello BizTalk Services

[ 22 ]

Add the following nodes to the schema so that the structure looks as follows:

Flat File Schema structure

For each of the records in the XSD file, make sure that the delimiters are  
added correctly:

<b:recordInfo structure="delimited" child_delimiter_type="char" child_
delimiter="," child_order="postfix" preserve_delimiter_for_empty_
data="true" suppress_trailing_delimiters="false" sequence_number="4" 
/>



Chapter 1

[ 23 ]

You can validate the schema by running it with an instance file. The Validate 
Instance command is available by right-clicking on the created schema file in the 
Solution Explorer. Add the following flat file and XML instances in two separate 
files, use the Validate Instance command, and verify that the schema validates those 
instances. For each command run, ensure that the schema properties window has the 
right Validate Instance Input Type (XML in this case):

OrderId|PaymentType|OrderDate|Code,Qty,Price,|Name,Email,Phone,|Recipi
ent,Number,Street,City,State,Country,Pincode,|

<ns0:Order xmlns:ns0="http://BizTalkServicesOrderSample.OrderFF">
  <OrderId>MyOrder</OrderId>
  <PaymentType>CreditCard</PaymentType>
  <OrderDate>09-08-2013 22:50:00</OrderDate>
  <Product>
    <Code>100</Code>
    <Qty>1</Qty>
    <Price>500</Price>
  </Product>
  <Customer>
    <Name>Karthik</Name>
    <Email>user@hotmail.com</Email>
    <Phone>1-111-1111</Phone>
  </Customer>
  <ShippingAddress>
    <Recipient>Jon</Recipient>
    <Number>Building 1</Number>
    <Street>One Redmond Way</Street>
    <City>Redmond</City>
    <State>Washington</State>
    <Country>US</Country>
    <Pincode>98052</Pincode>
  </ShippingAddress>
</ns0:Order>

Downloading the example code
You can download the example code files for all 
Packt books you have purchased from your account 
at http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
files e-mailed directly to you.



Hello BizTalk Services

[ 24 ]

Creating the BizTalk Services solution
Open the bridge configuration surface (usually the MessageFlowItinerary.bcs 
file). The Visual Studio Toolbox should show the following entities:

Visual Studio Toolbox for BizTalk Services project

Use the VS toolbox to drag-and-drop FTP Source, Xml One-Way Bridge, One-Way 
Relay Endpoint, and Queue and connect them using the Connector, as shown in the 
following figure:



Chapter 1

[ 25 ]

Bridge message flow in BizTalk Services project

Configure the following in the message flow:

1. Select the FTP server and configure the address, username, and  
password correctly.

2. Double-click on the bridge to open the Xml One-Way Bridge configuration:
 ° In the Message Types block, add the OrderFF.xsd instance  

created earlier.

Bridge configuration

www.allitebooks.com

http://www.allitebooks.org


Hello BizTalk Services

[ 26 ]

 ° In the first Enrich stage, add an XPath Type property reading from 
/*[local-name()='Order' and namespace-uri()='http://
BizTalkServicesOrderSample.OrderFF']/*[local-
name()='ShippingAddress' and namespace-uri()='']/*[local-
name()='Country' and namespace-uri()=''] and writing to the 
location as a string. The XPath value can be obtained by opening the 
schema in VS, clicking on the relevant record, and copying the XPath 
value from the record properties window.

Promote property configuration in the Enrich stage of the bridge

3. In the parent MessageFlowitinerary.bcs view, click on the route link from 
OrderProcessingBridge to USAddressRelay and set the filter condition as 
location='US'; for the other link, set the location to US.



Chapter 1

[ 27 ]

Route properties for the message flow

4. Edit the Queue .config file under MessageFlowitinerary.bcs and  
update the <tokenProvider> and the <endpoint> details with the Service 
Bus information.

5. Edit the Relay Service .config file under MessageFlowitinerary.bcs and 
update the <endpoint> details with the Service Bus relay information.

6. Build and deploy the solution.
7. If the deployment was successful, point your browser to 

https://<yourdeployment>/default/OrderProcessingBridge; you 
should see a 401 HTTP Error code stating a manage claim is required for  
this operation.

Verifying the solution
We need to test sending two kinds of messages: one from the corporates and the 
other coming from the website:

• Load the MessageReceiver sample in VS and build the solution. From the 
output bin folder, run the following in a command prompt window:
MessageReceiver.exe ServiceBusNS owner issuerkey USAddressRelay 
OneWayRelay

Here, ServiceBusNS is the namespace where the relay is running and 
MyRelayTestSvc1 is the endpoint information configured in the bridge 
configuration.



Hello BizTalk Services

[ 28 ]

• Load another MessageReceiver in a new command window.
MessageReceiver.exe ServiceBusNS owner issuerkey IntlAddressQueue 
Queue

Here, ServiceBusNS is the namespace where the Queue has been  
precreated and IntlAddressQueue is the endpoint information configured 
with the bridge.

• Load the MessageSender sample in VS and build the solution. 
<yourdeployment> is the URL where BizTalk Services was  
provisioned earlier.
MessageSender.exe BizTalkSvcACS owner issuerkey 
https://<yourdeployment>/default/OrderProcessingBridge instance.
xml application/xml

Here, BizTalkSvcACS is the namespace of the BizTalk Service deployment 
ACS, owner and issuerkey are the ACS credentials of that namespace, and 
instance.xml is the OrderFF.xsd instance in XML format.

• The output is observed in the MessageReceiver of the relay.
• Edit instance.xml with location=EU and run the MessageSender command 

again. This time the output will be observed in the MessageReceiver of  
the Queue.

• Drop a flat file in FTP with location=US and observe the output in the relay 
service window.

• Drop a flat file in FTP with location=EU and observe the output in the 
message receive queue.

Northwind can now process both flat files and XML orders from either HTTP or FTP 
endpoints. You can delete the bridge from the BizTalk Services portal Bridge view or 
by using PowerShell.

Summary
In this chapter, we have introduced the basics of BizTalk Services and the concepts, 
architecture, personas, and tools available to build an integration solution. We also 
exercised all the concepts learned through a simple order processing scenario with 
BizTalk Services and Service Bus relay and queues. The example can be further 
extended to include transforms, routing to other bridges like EDI, custom code, and 
so on. In the next chapter, we'll look at some of the BizTalk Services capabilities in 
more detail.



Messages and Transforms
In Chapter 1, Hello BizTalk Services, we discussed the basics of BizTalk Services 
and the central concept of a bridge providing the vehicle for receiving and sending 
data via endpoint adapters (sources and destinations) through its built-in pipeline. 
In this chapter, we'll discuss messaging aspects, focusing on one particular aspect 
of messaging: transformation, or mapping. One of the most common aspects of 
integration is the need to turn one message format into another; what we referred 
to as structural impedance in Chapter 1, Hello BizTalk Services. It's the bread and 
butter of any integrator's toolbox, and BizTalk Services provides a brand new, 
modern mapping engine with graphical tooling to build sophisticated and 
powerful transforms. In this chapter, we'll look at BizTalk Service's mapping and 
transformation capabilities in detail and the flexibility it provides. To summarize, 
this chapter will cover the following:

• Why transformation and mapping is important
• Mapping capabilities in BizTalk Services
• Creating your first map
• Understanding mapping operations

The problem
BizTalk Services' job is to let you connect this to that. What this and that actually are 
may not always be clear, well defined, or standardized into some internationally 
recognized protocol. A mapping capability is therefore crucial—a way to convert this 
into that. On many occasions, mapping requirements may be complex; the need to 
fundamentally change the shape or structure of a message, for example, or the need 
to replace data values from the source message with something that makes sense to 
the receiver. We can break this down into two classes of problems: one that needs to 
address the structure of a message, transformation; and one that needs to address its 
content, transcoding or translating it. The two types of mapping, transformation and 
translation, are both possible with BizTalk Services, as we'll see in this chapter.



Messages and Transforms

[ 30 ]

The mapper
So far, we're being deliberately vague, and with good reason. Often, mapping 
requirements are not well known and change as more is discovered about the nuances 
of the messaging formats involved and their variations. It often surprises people 
familiar with dealing with XML-based messages that describing their validity simply 
in terms of schema by using XML Schema Definition (http://www.w3.org/XML/
Schema) can turn out to be more complicated than it first appears. This is unfortunately 
sometimes to do with the different productions or instances of XML messages that can 
be created or produced by a single schema, often unintentionally. XSD is sometimes 
not precise enough, and integration is therefore often messy, requiring good tools to 
make things fit, while the purity of standards and specifications doesn't go far enough 
to avoid ambiguity in implementation. This is a theme we'll come back to many times 
during this book: to be successful, any integration technology must be flexible to bend 
to the problem at hand, to fit into that, to not be changed, to adapt, to transform, and 
to integrate. Mapping is one tool in the box, and is a very important one to meet these 
requirements. As such, it deserves a chapter all to itself.

The map designer
Take a look at the following screenshot. This shows the new graphical mapping 
designer that is accessible from Visual Studio 2012. For those familiar with BizTalk 
Server, don't be fooled. While it may have a similar look and feel to the BizTalk 
Server mapper, this tool has significant differences; the overriding design aesthetic 
was to make common mapping tasks as simple as possible, and as such, the mapper 
has undergone a significant overhaul.

Graphical mapping designer



Chapter 2

[ 31 ]

Schema
However, we're getting ahead of ourselves. In order to map one message format or 
structure to another, to translate its contents for example, we first need to understand 
the messages themselves. Fundamental to this is schema.
BizTalk Services differentiates between two types of messages: XML and non-XML. 
All XML message formats are expressed using XSD, and all non-XML message 
formats are expressed using XSD. So, XSD is important! The purpose of this book 
is not to provide a primer in XSD; we'll refer to other references if you need some 
background on the technologies we mention. Instead, we'll provide just enough to 
show how BizTalk Services uses such technologies so that the less familiar can still 
understand what is going on.

Now, you're probably wondering how any message formats you can think up can be 
defined in XSD. Let's look at an example.

An example
Let's expand on the example we looked at in Chapter 1, Hello BizTalk Services. If you 
recall, this example received a file via SFTP and routed it to a Service Bus endpoint. 
Now we'll add a map to the solution. The map will transform the incoming message 
into a different format expected by the recipient. However, as noted previously, if 
we're to turn one message format into another, we need to define the schema of the 
target message first in order for us to be able to map to it.

To do this, right-click on the project, navigate to Add | New Item, select Schema 
from the list of items, and provide the name OrderUS.xsd. Click on Add to create  
the schema and add it to the solution.

The schema designer will now be open. As you did in Chapter 1, Hello BizTalk Services, 
add nodes to the schema to build it up, as shown in the following screenshot:

Changing the Order schema



Messages and Transforms

[ 32 ]

Now, right-click on the project and navigate to Add | New Item. Select Map from 
the list of items and provide the name FFtoUS.trfm. Click on Add to create the map 
and add it to the solution.

The map designer will now open; the first task is to set the schemas. As a map's job is 
to convert one format to another, a minimum of two schemas are required: the input 
and the output.

Click on the Open Source Schema link, expand the tree, select OrderFF.xsd, and 
click on OK. Now click on the Open Destination Schema link, select the OrderUS.
xsd schema, and click on OK.

The designer will now look like the following screenshot:

Selecting schema with the designer

Now we need to map one format to another. We do this by connecting the nodes 
together, usually working from left to right.



Chapter 2

[ 33 ]

Join the OrderId node on the left-hand side to the OrderNumber node on the  
right-hand side by clicking and holding the left mouse button while dragging  
across to the right-hand side and releasing the button when the pointer is over  
the target field.

Now notice that the customer information is different in the target schema and 
the source; only the element names are different, but the structure is the same. The 
mapper provides a shortcut for mapping fields quickly to avoid having to connect 
them one by one. To do this, click and hold the left mouse button down on the parent 
Customer node in the left-hand side source schema and drag across to the target's 
CustomerDetails node. The context menu shown in the next screenshot will pop 
up. Here, we are presented with a number of options as shown in the following 
screenshot. Select Link by Structure and notice that all the nodes are connected 
together automatically even though their names differ. This is because this option 
connects fields in the order they appear, regardless of the node names, and is useful 
when the structure of both schemas is the same. You can use the same approach for 
mapping where the field names match too (Link by Name) or select Simple Link 
which will simply connect the top-level nodes together. This technique is very useful 
when mapping a large number of fields.

Linking options

Mapping operations
We can proceed like this for as many nodes as we like, connecting them individually 
or in groups. However, we often need to do more than just map one node's value 
to another. For this, we can turn to mapping operations. For those acquainted with 
BizTalk Server, you will be familiar with functoids; the concept is similar in BizTalk 
Services. However, despite the similarities, there are many differences in how they 
are realized. One of the primary goals of the product group is to simplify common 
tasks, such as looping, which were often difficult or time consuming to achieve 
previously. This is where we will now focus our attention.



Messages and Transforms

[ 34 ]

BizTalk Services provides a total of 37 mapping operations that are functionally 
grouped into categories in the toolbox. There isn't room here to cover every mapping 
operation, so we'll focus on some of the most useful. For a complete reference, check 
the MSDN documentation at http://msdn.microsoft.com/en-us/library/
windowsazure/hh689870.aspx. The idea is that all mapping operations are 
configured and connected in the same way; so, once you've learnt the operations 
available, it becomes a straightforward case of using a combination of them to get the 
mapping job done. The mapping operation categories are listed in the following table:

Category Purpose
String operations Manipulate node values as strings such as 

concatenation, trimming, and substring operations
Loop operations Operations to loop round repeating nodes in source
Expressions Arithmetic and logical expressions to perform 

calculations or decisions
List operations Processing for lists of items that can be created from 

node content in a conditional way for further processing
Cumulative operations Operations to accumulate values such as sums, counts, 

and averages
Date and time 
operations

Manipulate date and time values

Miscellaneous 
operations

Various operations for retrieving context properties, 
formatting numbers, and incorporating C# in your maps

A very common type of transformation is flattening. This is where a number of 
repeating items (usually a list) needs to be consolidated (or flattened) into a single 
value, often with some calculation applied (for example, a summation). BizTalk 
Services provides several mapping operations to achieve this in a straightforward way.

Take a look at the following XML and you can see that the <Product> element 
repeats, that is, there can be more than one product specified. Let's say we want to 
calculate the sum of all the product prices (Price) multiplied by the quantity (Qty) 
ordered to work out the total value of the order:

<ns0:Order xmlns:ns0="http://BizTalkServicesOrderSample.OrderFF">
  <OrderId>OrderId_0</OrderId>
  <PaymentType>PaymentType_0</PaymentType>
  <OrderDate>OrderDate_0</OrderDate>
  <Products>
    <Product>



Chapter 2

[ 35 ]

      <Code>Code_0</Code>
      <Qty>Qty_0</Qty>
      <Price>Price_0</Price>
    </Product>
    <Product>
      <Code>Code_0</Code>
      <Qty>Qty_0</Qty>
      <Price>Price_0</Price>
    </Product>
    <Product>
      <Code>Code_0</Code>
      <Qty>Qty_0</Qty>
      <Price>Price_0</Price>
    </Product>
  </Products>
  <Customer>
    <Name>Name_0</Name>
    <Email>Email_0</Email>
    <Phone>Phone_0</Phone>
  </Customer>
  <ShippingAddress>
    <Recipient>Recipient_0</Recipient>
    <Number>Number_0</Number>
    <Street>Street_0</Street>
    <City>City_0</City>
    <State>State_0</State>
    <Country>Country_0</Country>
    <Postcode>Postcode_0</Postcode>
  </ShippingAddress>
</ns0:Order>

The final result, the total value of the order, then needs to be mapped to a single  
field in the target schema. We can use mapping operations to easily achieve this.  
The key to using mapping operations successfully is to break down the requirements 
and select the most appropriate mapping operations to achieve the goal. As my 
explanation has already hinted at, there are several parts to this problem. The first of 
these is to realize that we need to keep a running total of each of the Qty * Price 
field calculations—one for each Product element. Let's deal with that first.

BizTalk Services provides a set of list-based mapping operations that allow the 
creation of a temporary list to store items and manipulate the items in the list.

www.allitebooks.com

http://www.allitebooks.org


Messages and Transforms

[ 36 ]

First drag a Create List mapping operation onto the design surface. Perhaps the first 
obvious change to a BizTalk Server developer is that mapping operations in BizTalk 
Services provide nesting. This is the key to simplifying complex tasks as this nesting 
behavior provides a natural way to group and organize the mapping task required.

The Create List operation will be used to hold the temporary results from our 
calculations. We will push each product's total to the list and then calculate the 
sum of these list item values later. Double-click on Create List to configure it. In the 
dialog, type a Member Name, say total, and select Number from the dropdown for 
the Member Type, as shown in the following screenshot. This is a variable that will 
be used to store the value of our calculations. Click on OK to close the dialog.

Configuring the Create List operation

The next step is to loop round all the Product elements. To do this, drag a ForEach 
mapping operation and drop it inside the Create List operation. Notice how we can 
place additional operations inside this operation too. This is where we'll put the 
calculation of each line item's total.



Chapter 2

[ 37 ]

Now wire up the Product node in the left-hand schema to the ForEach operation. 
This tells the operation to loop round each Product node within Products.

Drag an Arithmetic Expression operation across to the designer and drop it in the 
ForEach operation. Now wire up the Qty and Price fields to this operation. These 
will be our input parameters; the nodes from the input message we want to use 
the data from. Taking each node in turn, drag a connection onto the Arithmetic 
Expression operation on the canvas. Now double-click on the new Arithmetic 
Expression to configure it. Here we can specify a calculation based on the fields 
that are connected to the operation, in this case Qty and Price. Enter the expression 
shown in the following screenshot:

Configuring the Arithmetic Expression operation



Messages and Transforms

[ 38 ]

We now need to store this result; to do this, we'll add it to the outer list operation. 
Drag an Add Item to List operation and drop it to the right of the Arithmetic 
Expression operation, within the ForEach operation. Then, connect the Arithmetic 
Expression operation to the Add Item to List operation by dragging a line from 
one to the other. Double-click on the Add Item to List operation to configure it. 
The dialog should be pre-populated already, so we can just click on OK to save the 
settings. The map should now look as shown in the following screenshot:

Partially-completed map



Chapter 2

[ 39 ]

OK, the first part of the task is done; we are calculating the total value for each 
product. We now need to add these totals together to obtain the grand total for the 
order. This is very straightforward. Drag a Select Entries mapping operation and 
drop it to the right of the Create List operation. Connect the Create List operation to 
Select Entries. Double-click on Select Entries to open it, check the Selected checkbox 
next to total, and click on OK as shown in the following screenshot. Here, we are 
specifying what variables we want to extract from the list we've created. As we only 
have one in this case, the choice is easy.

Configuration of the Select Entries operation



Messages and Transforms

[ 40 ]

Finally, drag a Cumulative Sum operation and drop it to the right of the Select 
Entries operation. Connect the Select Entries operation to the Cumulative Sum 
operation. Now connect the Cumulative Sum operation to the TotalValue field 
in the target schema. Double-click on the Cumulative Sum operation you just 
added and enter item.total in the expression textbox, as shown in the following 
screenshot. Here, we are specifying our total variable from the list entries passed 
from the Select Entries operation:

Configuration of the Cumulative Sum operation



Chapter 2

[ 41 ]

The completed map should look the same as the following screenshot:

Map with looping and calculated node

We're nearly there with our map. Let's tackle the ShippingAddress node. Notice that 
there are more fields on the left-hand side than the right. We're therefore going to 
consolidate these by concatenating some of them. There are a few ways to do this; we 
could use the String Concatenate mapping operation, for example, that can take any 
number of inputs and produce a concatenated single string as output.

However, let's look at something a little more interesting. When there isn't an 
operation that meets your need, you can turn to the CSharp Scripting operation. 
As its name implies, this operation allows you to include C# in its configuration, 
giving you the full power of the .NET framework to be able to implement whatever 
mapping functionality you need.

Drag a CSharp Scripting operation to the mapping design surface and drop it 
somewhere below the Create List operation. Connect the Number, Street, City, 
State, and Country nodes to it. As you've probably realized by now, this is the way 
operations can work on specific data items, and the same is true for the scripting 
operation. By connecting these items to it, they become available to the scripts we 
write. Double-click on the CSharp Scripting operation to open its configuration.



Messages and Transforms

[ 42 ]

In the dialog, notice that there is a Script Text multiline textbox. Here, we can define 
a function in C# that will take the nodes as input parameters and return a value. In 
this simple case, you can see from the next screenshot that I am just concatenating 
the input parameters with some formatting and returning the result back to the map. 
Enter the following code to do the same:

public string CreateAddress (string Number, string Street, string 
City, string State, string Country)
{
   return Number + " " +
          Street + "," +
          City + "," +
          State + "," +
          Country;
}

Note that the names of the input nodes to the scripting operation must match the 
argument names in the code. If the names differ, the map won't compile. Once we've 
saved this by clicking on OK, we can connect the operation to the target schema's 
Address node.

 

Using C# with mapping



Chapter 2

[ 43 ]

There are only a few fields left to map now. Simply connect Recipient to FullName 
and PostCode to Zip. The final operation we'll look at to complete this map is 
the DateTime Reformat operation. Drag this onto the design surface above the 
Create List operation. Connect the OrderDate node from both schemas to this 
operation, then double-click on the DateTime Reformat operation to configure it. 
This operation is useful when dealing with date formatting requirements that differ 
between sender and receiver. The nice thing about this operation is that it doesn't 
only support a fixed set of date and time formats, but you can enter your own as 
well. For the Input Format field, enter d/M/yyyy in the Format field. Note that this 
is not one of the provided options in the dropdown, so you'll need to enter it in the 
textbox, as shown in the following screenshot. Also, make sure that the letter M is 
capitalized, as is shown. Then, select M/d/yyyy for the Output Format field. This 
will interpret the input date in day/month/year format, for example, 2/9/2013, and 
change to month/day/year format for the output, for example, 9/2/2013.

Formatting dates



Messages and Transforms

[ 44 ]

The map is now complete. It should look similar to the following screenshot:

The completed map

Testing
Phew! This may seem quite complex, but it's really quite simple once you break it 
down. The next step is to test the map and see if it looks like it's producing the right 
results. Testing is built right into Visual Studio, so there's no need to compile and 
deploy the solution to Windows Azure in order to see if it works. This is important as 
creating anything other than trivial maps is a very iterative process. It's made easier by 
building up the functionality in the map gradually and examining the test results along 
the way. This way, any mistakes are much more obvious and easily corrected.



Chapter 2

[ 45 ]

To test a map, we need some input. This is most easily generated in Visual Studio 
itself. Right-click on the OrderFF.xsd schema in the Solution Explorer window and 
select Generate Instance. Open the file that's created and edit the values to match the 
one shown in the following code (don't forget, you can just download the source for 
this example from the website):

<ns0:Order xmlns:ns0="http://BizTalkServicesOrderSample.OrderFF">
  <OrderId>123</OrderId>
  <PaymentType>ACCOUNT</PaymentType>
  <OrderDate>2/9/2013</OrderDate>
  <Products>
    <Product>
      <Code>AB12</Code>
      <Qty>4</Qty>
      <Price>1.50</Price>
    </Product>
    <Product>
      <Code>AC01</Code>
      <Qty>2</Qty>
      <Price>3.99</Price>
    </Product>
    <Product>
      <Code>DE4</Code>
      <Qty>10</Qty>
      <Price>12.25</Price>
    </Product>
  </Products>
  <Customer>
    <Name>John Doe</Name>
    <Email>john.doe@contoso.com</Email>
    <Phone>425-123456</Phone>
  </Customer>
  <ShippingAddress>
    <Recipient>Jane Smith</Recipient>
    <Number>1</Number>
    <Street>East Street</Street>
    <City>New York</City>
    <State>New York</State>
    <Country>USA</Country>
    <Postcode>NY12345</Postcode>
  </ShippingAddress>
</ns0:Order>

www.allitebooks.com

http://www.allitebooks.org


Messages and Transforms

[ 46 ]

The Generate Instance action creates an XML-format message by default—which 
is what you need for the map itself. However, this schema is a flat file schema, and 
if we want to generate a message to pass into the bridge, we need to generate a 
message in this format. In the schema properties, there is a property called Generate 
Instance Output Type that can be set to Native instead of XML. When Native is 
selected, the schema will create a test message according to its type, flat file or XML. 
The following screenshot shows the results of setting this to Native when compared 
with the OrderFF.xsd schema:

Generate Instance: Native

Once we have a test message, we can assign it to the map to try it. Click on the 
FFtoUS.trfm map in the Solution Explorer window; in the Properties window, 
enter the path to the file in the Test Map Input File property. Now right-click on the 
map and select Test Map. With any luck, you should see something similar to the 
following snippet in the output window. This means that the map execution worked!

Test Map succeeded.
Output is written to the file 'C:\Users\Jon\AppData\Local\Temp\
tmp3817.xml'.

Open the file from the File menu by navigating to Open | File and browsing to the 
to the file location in the preceding output (in this case: C:\Users\Jon\AppData\
Local\Temp\tmp3817.xml). If you did everything right, it should look the same as 
the following XML code:

<?xml version="1.0" encoding="utf-8"?>
<ns1:USOrder xmlns:ns0="http://BizTalkServicesOrderSample.OrderFF" 
xmlns:ns1="http://BizTalkServicesOrderSample.OrderUS">
  <OrderNumber>123</OrderNumber>
  <OrderDate>9/2/2013</OrderDate>
  <OrderValue>136.48</OrderValue>
  <CustomerDetails FullName="John Doe" EmailAddress="john.doe@contoso.
com" Telephone="425-123456">
  </CustomerDetails>
  <ShippingDetails FullName="Jane Smith" Address="1 East Street,New 
York,New York,USA" Zip="NY12345" />
</ns1:USOrder>

Notice how different this XML document is from the one you used as input and you 
can hopefully start to appreciate the power of the BizTalk Services mapper.



Chapter 2

[ 47 ]

Configuring a bridge
A map is no good on its own though. We need to be able to use it in an integration 
solution. It should hopefully come as no surprise that the way we do this is by 
configuring a bridge. The next screenshot shows part of the bridge configuration. 
This configuration represents the pipeline of processing that can be configured. 
There are multiple stages to this pipeline, as mentioned in Chapter 1, Hello BizTalk 
Services. In the middle of the pipeline, there is a Transform stage; it is here that we 
can specify a map to execute.

Configuring a bridge with a map

Double-click on the MessageFlowItinerary.bcs file in the Solution Explorer 
window to open it. In the designer, open the OrderProcessing bridge  
configuration by double-clicking on it. Click on the Transform stage and look at 
the Properties window. Here, we can choose a map by clicking on the ellipsis (…) 
next to the Maps property to open up the configured maps. This will show us all the 
maps the solution contains.



Messages and Transforms

[ 48 ]

We can select the map that we created earlier by checking the Selected checkbox  
next to it, as shown in the following screenshot. Clicking on OK will return to the 
bridge configuration, which should now show the selected map, FFtoUS, in the 
Transform stage.

Select map dialog

Putting it all together
The solution is now ready. Build and deploy as before, and once deployed, point 
your browser to https://<yourdeployment>/default/OrderProcessingBridge 
and you should see a 401 HTTP error code stating that a manage claim is required 
for this operation.



Chapter 2

[ 49 ]

Now you will use two tools provided as a part of the BizTalk Services SDK. These 
are MessageSender and MessagerReceiver which you can download from the 
following links. These tools allow you to send messages to and receive messages 
from the bridge you created:

• http://code.msdn.microsoft.com/windowsazure/Windows-Azure-
BizTalk-EAI-e01a5b64

• http://code.msdn.microsoft.com/windowsazure/Windows-Azure-
BizTalk-EAI-af9bc99f

Unzip both solutions and open the MessageReceiver sample in Visual Studio 2012 
and build it. Run it from the command prompt by typing the following and pressing 
the Enter key.

<path>MessageReceiver.exe ServiceBusNS owner <issuerkey> USAddressRelay  
OneWayRelay

In the preceding command, <path> is the path to the exe from the build output 
of Visual Studio, ServiceBusNS is the namespace where the relay is running and 
USAddressRelay is the endpoint information configured in the bridge configuration. 
Note that you will also need to replace the <issuerkey> value with your own 
subscription details.

Now open the MessageSender sample (downloaded from the previous link) in 
Visual Studio 2012 and build it. Run it as shown in the following code to send a 
message to the bridge:

<path>MessageSender.exe BizTalkSvcACS owner issuerkey  
https://<yourdeployment>/default/OrderProcessingBridge instance.xml  
application/xml

In the preceding code, BizTalkSvcACS is the ACS namespace of the BizTalk Service 
deployment. As before, owner and issuerkey are the ACS credentials of that 
namespace, and instance.xml is the OrderFF.xsd instance in XML format.

Ensure that output is observed in the MessageReceiver sample of the relay.  
Examine the output message and notice how the map has transformed it.

More on mapping
We've covered a lot of ground so far, but there is much more to mapping in BizTalk 
Services besides the other 27 operations we've not used here. There are two other 
groups of operations that deserve some discussion.



Messages and Transforms

[ 50 ]

The first of these is the Get Context Property mapping operation. This provides an 
often-asked-for feature in BizTalk Server—the ability to retrieve properties from the 
message context and include them in a map. The way this works is by configuring it, 
specifying the property name to retrieve it, and then connecting it to a target node; 
no input nodes are required. We haven't covered context properties in detail yet, 
but for now, remember that they are a set of name/value pairs that hold contextual 
information about the current message flow; for example, the transport details  
(for example, a filename) of the message received, or even properties of the message 
itself that have been extracted. If you're wondering how you can test this from  
within Visual Studio as we did earlier, the team has thought of this too. A property, 
Context Property Test Data, is provided on the map and allows you to specify the 
test name/value properties to execute the map with. The dialog is shown in the 
following screenshot. The ability to use context properties in BizTalk Services maps 
is a very welcome addition. This dialog can also be shown when the map is tested to 
change the values used.

Select map dialog



Chapter 2

[ 51 ]

The second area of improvement is in expression operations. For example, an  
If-Then-Else Expression operation is provided. This greatly simplifies the common 
requirement of testing a condition; if it evaluates to true, one path is taken, otherwise 
another. In BizTalk Server, this was complex to achieve, requiring a lot of functoids. 
This highlights the effort that the product group has put in here to simplify common 
tasks, as I mentioned at the beginning of this chapter. The same goes for other logical 
operations such as the Logical Expression. Here, an expression can be provided that 
evaluates to true or false. Again, for those familiar with BizTalk Server, this operation 
replaces a large number of functoids with just one that is simple to configure and use.

One issue that was starting to become obvious, referring to the map in the earlier 
screenshot, is complexity. The mapper provides the concept of pages to allow the 
splitting up of operations and links on different pages. You can add a new page by 
right-clicking on the area next to the tab at the bottom of the designer, as shown in 
the following screenshot:

Working with pages

Splitting the map up into different pages is a trade-off between readability and 
complexity. Ideally, you would see as much detail as is clearly readable in a single 
page to avoid having to jump between different pages all the time. With complex 
maps that perhaps have thousands of links and operations, this isn't possible; adding 
pages can greatly reduce complexity and improve clarity, especially for those left to 
maintain the solution.

One final point is that, as you may have already noticed, the new BizTalk Services 
mapper is not based on the Extensible Stylesheet Language and XSLT (as the BizTalk 
Server one was). However, it is still possible to include XSLT (1.0 only) in a map, 
which is useful when you have an existing transformation in XSLT that you wish to 
reuse. The XSLT property is accessed by clicking on the designer grid and opening the 
XSLT property in the Properties window. On the subject of reuse, another useful tool 
provided with BizTalk Services is the BizTalk Server map converter. This will convert 
a BizTalk Server .btm map file to the BizTalk Services mapping format, saving time 
when you have existing maps that you wish to reuse and avoiding the need to start 
from scratch. Because of the differences in functionality between the two, it cannot 
perform a 100 percent conversion, but is a great time-saver nevertheless.



Messages and Transforms

[ 52 ]

Dealing with failure
One very important point a developer must consider is how to deal with failures that 
occur. In integration solutions, failure is particularly important as it can be hard to 
isolate and diagnose. On a map, it is possible to configure what action to take should 
a particular operation fail, usually due to bad data provided to it. The Settings 
button at the top of the designer displays the dialog, as shown in the following 
screenshot, when clicked.

Here, each operation (or group of operations in some cases) can be set to either Fail 
Map on an error occurrence or continue and output a null value. This is very useful; 
we'll look at error handling in much more detail in a later chapter.

Setting runtime properties



Chapter 2

[ 53 ]

Summary
In this chapter, we have looked at the mapping features of BizTalk Services. You've 
seen how to create maps, use many of the powerful operations provided, and 
test them. While we haven't been able to cover every operation, many are self-
explanatory and easy to understand; after all, the whole point of the mapper is to 
make the job of format and content conversion easier. We urge you to experiment on 
your own and see what you can come up with.

In the next chapter, we'll look at the different types of bridges BizTalk Services 
provides, starting with EDI.





Bridges
In Chapter 2, Messages and Transforms, we covered a fundamental aspect of integration 
and transformation. But transformation is just one of the capabilities that bridges in 
BizTalk Services provide. In this chapter, we will take a closer look at bridges and the 
following features:

• Pipeline stages
• Validating, enriching, and formatting messages
• Lookup data
• Message routing and filters
• BizTalk Services Explorer

A bridge is actually a Windows Workflow Foundation (WF4) behind the scenes. 
While you cannot create your own bridge definitions, three templates are provided 
for you:

Type Description
XML One-Way Caller sends XML-based messages to the bridge and 

expects no response
XML Request-Reply Caller sends XML-based messages and waits for response 

message
Pass-Through Caller sends message in any format (XML or non-XML) in 

a one-way pattern

These templates provide some standard processing steps that you can use to act on 
or affect messages as they are processed. These steps form a pipeline of processing, 
with each step following the previous one sequentially. Each step also acts on the 
state of the message and its context from the previous step as well. There are also 
opportunities for you to add your own custom pipeline processing as we'll see later 
in this chapter.

www.allitebooks.com

http://www.allitebooks.org


Bridges

[ 56 ]

It is worth remembering that bridges are inherently stateless—there is nothing durably 
persisted during bridge processing. If a bridge fails during processing, the message 
could be lost, and so care must be taken to avoid this situation. We'll come back to this 
in much more detail later in this book in Chapter 7, Tracking and Troubleshooting.

Pipeline processing
Within a bridge's pipeline, there are the following steps:

Stage Direction Purpose
Message Type Receive Match schema to incoming message
Decode Receive Convert incoming message to XML based on 

schema
Validate Receive Determine if message is valid according to the 

schema
Enrich Receive Create properties from message or context 

content
Transform Receive/Send Map the message to another message schema 

format
Enrich Send Create properties from the message or context 

content
Encode Send Get the message ready for transmission

Of course, for two-way and pass-through bridges, things are a little different, as you 
would expect. For two-way bridges, there are no Decode and Encode stages, and 
pass-through bridges only have a single stage, Enrich.

Message processing
As BizTalk Services hosted in the cloud exposes default HTTP endpoints to the 
bridges that you publish, this means that it is possible to submit messages to a  
bridge by simply posting them to the endpoint and, with the request/reply bridge, 
receive a response.



Chapter 3

[ 57 ]

Of course, BizTalk Services provides many more message sources and destinations 
such as FTP, Service Bus queues and topics, and also line of business systems such as 
SAP that are covered in detail in Chapter 4, Enterprise Application Integration. The full 
list is provided in the following table:

Transport Source Destination Description
FTP Yes Yes File Transfer Protocol support
SFTP Yes Yes Secure File Transfer Protocol
Service Bus 
Queue

Yes Yes Receive and send messages to/
from queues

Service Bus 
Topic

Yes Yes Receive and send messages to/
from topics

HTTP(S) Yes Yes Bridges are exposed as HTTPS 
endpoints by default on the 
namespace you create the service 
under. BizTalk Services also 
supports HTTP as a destination 
by allowing the calling of web 
services.

Azure Blob 
Storage

No Yes Send a message to Azure Blob 
Storage

Relay No Yes The Service Bus relay is used 
with BizTalk Adapter Services to 
connect to the following line of 
business systems:

•	 SQL Server
•	 Oracle DB
•	 Oracle eBusiness 

Suite
•	 mySAP
•	 Siebel

This is covered in detail in 
Chapter 4, Enterprise Application 
Integration.



Bridges

[ 58 ]

Messaging
With XML bridges, there are two stages that are used to identify received messages 
and determine what to do with those that are not expected. In order to know what's 
not expected, the Message Types section of the bridge allows the specification of 
message schemas. Any number of schemas can be configured under the Message 
Type Picker dialog box as shown in the following screenshot:

Message Types

The first stage in an XML bridge is Decode. This is only applicable for flat files, 
that is, messages that are not received as XML and have a flat file schema specified 
(more on flat file schemas in Chapter 4, Enterprise Application Integration). While 
processing flat files in an XML bridge may sound strange, the purpose of the bridge 
is to normalize the message into an XML format as this is what allows uniformity 
of processing useful features such as transformation and enrichment. In this way, 
data in any format, for example JSON, can be received and processed. There is 
nothing to configure in the Decode stage; instead, it takes its configuration from 
the provided message types and applies the matching flat file schema to create an 
XML representation of the file. The match is made based on the schemas selected 
in the Message Type Picker dialog box as shown in the preceding figure. Only one 
message type can be chosen.



Chapter 3

[ 59 ]

After the Decode stage, the message is validated against the schemas provided. The 
only configurable property here is the Boolean setting Report Warnings As Errors. 
This defaults to false, meaning that unrecognized or invalid messages are still 
processed through the rest of the bridge. Setting this property to true will throw an 
error in the bridge and the message will not be processed. The caller (if the caller is 
using HTTP) will receive an HTTP 500 status code response. This general "Server 
Error" response is generally returned with a response detailing the problem and 
providing a tracking ID that can be used to diagnose the cause. Fault diagnosis and 
troubleshooting is covered in more detail in Chapter 7, Tracking and Troubleshooting. If 
FTP is the configured source, then the file is left on the FTP server and the bridge will 
be retried up to three times after waiting a number of minutes (which extends over 
the number of retries). This behavior is not currently configurable in WABS.

Enrichment
Enrichment occurs at two points in the bridge: pre and post transformation. The 
enrichment stages provide the opportunity to write to message properties that 
can be used in either transformation (in the first Enrich stage) or in routing (post 
transformation). Message properties are simply name/value pairs that are moved 
through the bridge with the message itself and can be created in the Enrich stages.

There are several sources of data available when writing to a message property, and 
these are listed in the following table:

Source type Purpose
Soap Access SOAP properties of the message such as the Action
Http Access HTTP headers sent by the caller
Lookup Look up a value in a Windows Azure SQL database
Xpath Look up a value using an XPath expression in the message
Ftp Access FTP properties such as filename if source is FTP
Sftp Access SFTP properties if source is SFTP
System Provides access to the system properties such as the date/time a 

message was received
Brokered Access Service Bus properties if source or destination is queue/topic 

based



Bridges

[ 60 ]

Using message properties allows bridge processing to be influenced and controlled 
in two primary ways:

• Through transformation: The message received from the caller can be 
transformed into a different format that is required by the final receiver. 
Message properties can be accessed.

• Through routing: We'll look at this in detail in a moment. Message 
properties can be used to direct a message to a particular destination.

Let's look at a couple of examples. In the following figure, we have a bridge with 
two destination Service Bus queues configured, Europe and Americas. Assume that 
we would like to create a property that holds the value of a field in the incoming 
message that contains the name of the country the message is from. The routing 
bridge pattern is shown in the following screenshot:

Routing bridge pattern



Chapter 3

[ 61 ]

The incoming message looks like the following XML:

<ns0:Order xmlns:ns0="http://BizTalkServicesOrderSample.Order">
  <OrderId>123</OrderId>
  <PaymentType>ACCOUNT</PaymentType>
  <OrderDate>2/9/2013</OrderDate>
  <Products>
    <Product>
      <Code>AB12</Code>
      <Qty>4</Qty>
      <Price>1.50</Price>
    </Product>
    <Product>
      <Code>AC01</Code>
      <Qty>2</Qty>
      <Price>3.99</Price>
    </Product>
    <Product>
      <Code>DE4</Code>
      <Qty>10</Qty>
      <Price>12.25</Price>
    </Product>
  </Products>
  <Customer>
    <Name>John Doe</Name>
    <Email>john.doe@contoso.com</Email>
    <Phone>425-123456</Phone>
  </Customer>
  <ShippingAddress>
    <Recipient>Jane Smith</Recipient>
    <Number>1</Number>
    <Street>East Street</Street>
    <City>New York</City>
    <State>New York</State>
    <Country>UK</Country>
    <Postcode>NY12345</Postcode>
  </ShippingAddress>
</ns0:Order>



Bridges

[ 62 ]

We can create an XPath property against this message as follows:

1. Click on the first Enrich stage in the designer.
2. In the Properties window, double-click on the Property Definitions 

collection ellipsis.
3. In the Property Definitions dialog box, click on Add.
4. Select a type of XPath.
5. Enter the following expression in the Identifier field:

/*[local-name()='Order' and namespace- 
  uri()='http://BizTalkServicesOrderSample.Order']/*[local- 
  name()='ShippingAddress' and namespace-uri()='']/*[local- 
  name()='Country' and namespace-uri()='']

To easily get the XPath of an item from an XML schema, open the .xsd 
file in the Schema editor, select the item you want, and then look in 
the Properties window. The Instance XPath property will contain the 
XPath expression required to extract it at runtime.

6. Specify the message type of the Order instance.
7. Enter MappedCountry in the Property Name field.
8. Select string for the Data Type field.
9. Click on OK.

The Property Definitions dialog box should now look like the following screenshot. 
At runtime, when messages are received by the bridge, the Enrich stage will extract 
the field from the message using the specified XPath and store the country value in 
the message property.



Chapter 3

[ 63 ]

Property Definitions

Lookups
Another usage of message properties is with transformation. Here, a common 
requirement is transcoding, where one value needs to be replaced with or mapped to 
another value. Code tables can be used for this purpose, and we can use the lookup 
capabilities of BizTalk Services to do this and then feed the values into a transform to 
replace the value in the message.

Some preparation is needed to set things up. If you recall, when you provision a 
new Windows Azure BizTalk Services instance, you can choose to create a new SQL 
Azure database to hold the various tables needed by the service. We can also create 
a table in this database to hold the transcoding data for the lookups. To create a table 
and add data to it, run the following script against the database:

CREATE TABLE [dbo].[CountryMap](
  [CountryName] [nvarchar](100),
  [ISOCountry] [int] NULL
  CONSTRAINT [PK_CountryName] PRIMARY KEY CLUSTERED
  (
    [CountryName] ASC
  ) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,  
    IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =  
    ON)
)
GO
INSERT INTO [dbo].[CountryMap] (CountryName, ISOCountry) 
  VALUES('USA',844),('UK',826),('CANADA',124)



Bridges

[ 64 ]

The easiest way to do this is to go to the Azure Management Portal at  
http://manage.windowsazure.com and click on the SQL Databases tab.  
The database created for your BizTalk Services instance will be named with  
the service name you provided, appended with the _db extension. Click on this 
database and then click on Manage. A new window (or tab) will open in the  
browser as shown in the following screenshot. In this window, you can select  
New Query, paste in the preceding SQL code, and click on Run to create the table 
and populate it with some data.

Windows Azure SQL query editor

As shown in the dialog box of Property Definitions, we can configure the Enrich 
stage in the bridge as before by performing the following steps:

1. Open the Property Definitions dialog box on the first Enrich stage.
2. Select Lookup for the Type field.
3. Click on the dropdown list for the Identifier field and click on  

Configure New….



Chapter 3

[ 65 ]

4. The dialog box will be displayed; complete it as shown in the  
following screenshot:

Provider configuration

To get the Connection String value, log back into the Azure 
Management Portal, click on the SQL Databases tab as you did 
earlier, and click on the WABS database that was created when 
you provisioned your service. Click on Dashboard and then click 
on Show Connection Strings. Copy the value in the ADO.NET 
textbox into this field.

5. Click on OK to close the dialog box.
6. For the Lookup property, select MappedCountry—this is the context 

property that was created by the XPath earlier and is used as input to  
the lookup.

7. Enter MappedCountry in the Property Name field.
8. Select string in the Data Type dropdown.



Bridges

[ 66 ]

9. Check the values as shown in the following screenshot:

Edit Property dialog box

10. Click on OK to create the property.
11. Finally, click on OK to close the Property Definitions dialog box.

Now, when a message is received, the country name in the message is looked 
up in the database and the ISO country code will be returned and stored in the 
MappedCountry property. To finish off, we need to add a transformation to update 
the message itself with the following steps:

1. Right-click on the project and select Add | New Item….
2. Select Map in the templates dialog box and provide a map name of 

CountryNameToCountryCode.trfm.
3. Click on OK to create the map.
4. In the open map, click on the Open Source Schema link. Select the PO.XSD 

schema (from Chapter 2, Messages and Transforms).
5. Do the same for the Open Destination Schema link.
6. In the functoids toolbox, drag-and-drop a Get Context Property functoid to 

the designer (it's located in the Misc Operations section).
7. Double-click on the functoid on the map to configure it.
8. In the Property Name field, enter MappedCountry.
9. Click on OK to close the dialog box.



Chapter 3

[ 67 ]

10. Hold down the Shift key and click and hold the left mouse button on the 
Order node in the left-hand side schema. While still holding the left mouse 
button and the Shift key, drag across to the Order node in the right-hand side 
schema to connect them. In the pop up that is shown, select Link by Name. 
Recall from Chapter 2, Messages and Transforms, that this action will map every 
field from the source to the destination.

11. Finally, you need to delete the link between the Country nodes on the left 
and right as you are now looking up this value in the functoid.

12. The map should now look like the following screenshot.

There are some limits in the bridge configuration user interface (UI) 
that can make changing configuration difficult. It is worth remembering 
that the bridge is simply an XML configuration file with associated 
configuration files for each source and destination present on the bridge.
For example, there is no way through the UI to change the database details 
for an existing lookup added in an Enrich stage. To do this, though, you 
simply need to open the LookupProviderConfigurations.xml 
file and edit the connection details. It is also important to notice that the 
username and password details for the connection are actually stored in 
this file, and it should therefore be treated with some care.

The country-code map



Bridges

[ 68 ]

13. The last step needed is to associate the map with the bridge. Double-click  
on the bridge file to open it (the MessageFlowItinerary.bcs file in the 
Solution Explorer).

14. Double-click on the SimpleBridge component.
15. Scroll down to the Transform stage and click on the XMLTransform box.
16. In the Properties window, click on the elipsis (…) next to the Maps property.
17. The map you just created should be shown in the dialog box; just check the 

Selected column to enable it.
18. Click on OK.

Routing
Now let's look at another common scenario for messaging—routing. Here, a message 
needs to be delivered to one of a number of potential endpoints depending on some 
criteria. That criteria could be based on the property of the message (such as where 
it came from) or a property in the message (a data item such as country). Such 
content-based routing is easily achievable with BizTalk Services, as we'll see.

It should be noted that a message cannot be sent to more than one endpoint. This is 
something BizTalk Server is capable of, but currently BizTalk Services is not. Instead, 
BizTalk Services allows you to choose between destinations based on the routing 
rules you configure.

Look at the design in the Routing bridge pattern figure of the Enrichment section again. 
Notice that there are two possible destinations. We will now configure the message 
flow itinerary to route the message to the Americas destination if the Country 
property is USA; otherwise, we'll route to Europe. To do this, we need to perform the 
following steps:

1. Click on the arrow connecting the bridge to the Americas destination.
2. In the Properties window, click on the Filter Condition property.
3. Enter MappedCountry = '844' or MappedCountry = '124'.
4. Now click on the arrow connecting to the Europe destination.
5. In the Properties window, click on the Filter Condition property.
6. Enter MappedCountry = '826'.



Chapter 3

[ 69 ]

You can change the order in which the routes are evaluated by clicking on the bridge, 
and in the Properties window, click on the ellipsis (…) next to the Route Ordering 
Table property. A dialog box, as in the following screenshot, will be shown:

Changing the route order

By using the up and down arrows, the evaluation order can be changed so that  
you can ensure that the first matching condition you want is where the message  
will be routed to.

Trying it out
As the bridge sends messages to one of the two Service Bus queues, you need to 
create these first in the Azure Management Portal. Create two queues, one called 
europe and the other americas. The connection information for these queues 
then needs to be set on each of the queue destinations on the bridge. The Runtime 
Address property for each takes the following form:

sb://<your namespace>.servicebus.windows.net/Europe

The Authentication property also needs to be configured. The Token Provider type 
should be set to Shared Secret and the Issuer Secret set to the ACS Key for your 
Service Bus namespace.



Bridges

[ 70 ]

You're now ready to deploy the solution. Do this in the normal way, and  
once deployed, you will have an HTTPS endpoint deployed to which you can  
post messages.

To send a message into the deployed bridge, you can use the BizTalk Service 
Explorer, which provides a number of useful features for managing and testing your 
solutions. It is an extension to Visual Studio and can be set up as follows:

1. Launch Visual Studio 2012, and in the Tools menu, select Extensions  
and Updates….

2. Click on the Online link in the top-left corner, and in the search box, enter 
biztalk service explorer as shown in the following screenshot:

Installing BizTalk Service Explorer

3. Click on the Download button, which will download an MSI file.  
Double-click on it to install and relaunch Visual Studio.

4. On the View menu, select Server Explorer.
5. The Server Explorer window will have a new node, Windows Azure 

BizTalk Services; right-click on it and select Add BizTalk Service… as 
shown in the following screenshot:



Chapter 3

[ 71 ]

Adding a BizTalk Service instance

6. In the dialog box that appears, enter the details of your service instance as 
shown in the following screenshot, replacing the details with your values as 
appropriate, and click on OK:

Configuring the Explorer



Bridges

[ 72 ]

7. Now that you have the Explorer set up, expand the Bridges node  
and right-click on the bridge you just deployed and click on Send  
Test Message….

8. In the dialog box that appears, paste the test message from the start of this 
chapter as shown in the following screenshot and click on the Send button:

Testing a bridge

When you do this, remember that depending on the value you set Country to in the 
input message, you can direct messages to either the Europe or the Americas queue, 
as shown in the Routing bridge pattern figure of the Enrichment section, by using the 
values UK, USA, or CANADA.



Chapter 3

[ 73 ]

To view the contents of a queue, you can use the Service Bus Explorer application 
that you can download from http://code.msdn.microsoft.com/windowsazure/
Service-Bus-Explorer-f2abca5a. The following screenshot shows the Europe 
destination queue containing the message we just posted into the bridge. Notice the 
Country node in the message contains the value 826 from the SQL lookup table, 
replacing the value UK that was in the original message.

Viewing a message in the queue

Try changing the test message country to one that is not in the lookup table to see 
what happens. If you enter a country that does not exist, the lookup will fail. You will 
actually get a 500 HTTP response code back with a SOAP fault error message Lookup 
returned no results. Now try changing the value of UK in the lookup table to, say, 
123. What will happen now is that the route will fail as there is no match to either 
destination. You will get back the same HTTP 500 code, but this time with a SOAP 
fault of No Filter matched for the message. Have fun experimenting on your own!



Bridges

[ 74 ]

Brokered messaging
If you refer back to the table in the Enrichment section, you may have been  
intrigued by the Brokered property type. Messages that flow through bridges 
received from Service Bus are based on the Service Bus BrokeredMessage type 
(see http://msdn.microsoft.com/en-us/library/microsoft.servicebus.
messaging.brokeredmessage.aspx for more details). This class provides a 
number of properties that are exposed in BizTalk Services such as CorrelationId, 
MessageId, and SessionId. What is really interesting about this is that when you are 
using the Service Bus Queue or Topic destination, properties you create in the bridge 
(any property, not just brokered properties) or properties set on received messages 
when Service Bus is the source are not just accessible inside the bridge, but outside of 
it as well. This is very useful for passing state from BizTalk Services to a downstream 
application consuming messages from a queue as that application will be able to see 
the properties you set in the bridge.

Note that though this is only applicable for Service Bus sources and destinations, if 
you were to chain one bridge to another, for example, you would not be able to pass 
these properties because chaining actually makes calls over HTTP and thus loses the 
context. Instead, if you wish to pass properties between bridges and from a bridge 
to another application, you must write the properties to the message header (in the 
case of HTTP) in order to preserve them. However, if you are chaining via Service 
Bus, then properties set in the first sending bridge will be accessible in the second 
receiving bridge.

Summary
In this chapter, we have taken a closer look at the fundamental construct of Windows 
Azure BizTalk Services—the bridge. We've seen how bridges can be configured to 
perform a range of integration activities and how to perform content and context-based 
routing. While we have looked at most of what bridges can do, in the next chapter, 
we'll revisit bridges and look at how to perform custom logic on the stages in a bridge 
using message inspectors. We'll then look at how to track and record the message 
properties you create (tracking) and how to batch messages together for sending.



Enterprise Application 
Integration

A middleware system or service that enables applications to connect to each 
other to exchange data is known as Enterprise Application Integration or EAI. In 
BizTalk Services, EAI is oriented towards a developer persona and Visual Studio 
is the primary tool for development and deployment of services. Integration 
between applications is possible using a bridge for messaging. We will explore the 
e-commerce example from the first chapter in more detail as we look at the concepts.

Specifically, in this chapter, we will focus on the following topics:

• Understanding EAI capabilities in Azure
• Understanding bridges, sources, and destinations
• Understanding custom code using message inspectors
• Understanding hybrid connectivity

Enterprise application integration 
scenarios
Consider the following scenarios:

• Contoso is a movie ticketing company and sells tickets through Point-Of-Sale 
terminals across different cities. They wish to consolidate their end-of-day sales 
data from the terminals to their SAP Line-of-Business system. In the absence of 
any form of middleware, the POS data needs to be collected manually and the 
data has to be merged and converted to a format matching the target system. 
Using EAI, the entire process can be automated and set up in a matter of 
minutes with BizTalk Services.



Enterprise Application Integration

[ 76 ]

• Fabrikam is a software vendor and uses Salesforce to manage their  
customer pipeline and sales orders. All approved orders from Salesforce 
need to be managed centrally in their ERP system like Oracle, which resides 
on-premises. Using hybrid connectivity all connections to Oracle on-premises 
can be managed using BizTalk Adapter Services.

• Northwind is an online retailer who manages an e-commerce website for 
customer purchases. They also receive bulk orders from event firms and 
corporates for their goods. Northwind needs to develop a solution to  
validate orders and also route requests to the right inventory location for 
delivery of the goods. Using EAI in BizTalk Services, they develop a common 
solution to process purchase orders from consumers over XML as well as 
purchase orders in EDI from event firms.

Each of these scenarios can be modelled as an EAI solution on BizTalk Services. 
The incoming requests (ticketing sales, sales orders, and invoices) can be XML or 
flat file messages and need to be transformed into a target Line of Business format 
and routed to the on-premises systems. If the destination is on-premises, then relay 
endpoints are set up using hybrid connectivity.

EAI in BizTalk Services
Let's look at each of the concepts in more detail and understand their capabilities.

Sources
Sources receive a message from an external application. BizTalk Services v1  
supports five common out-of-the-box sources: SFTP, FTP, HTTP, Service Bus 
Queue, and Service Bus Subscription. By default, the bridge exposes the HTTPs 
endpoint secured by the Access Control service. The various sources of bridges are 
shown in the following screenshot:

Sources of bridges



Chapter 4

[ 77 ]

Bridges and the VETER pattern
Bridges are composed of sources, pipelines, and destinations. Pipelines connect two 
messaging systems and are composed of a series of stages to process the messages 
flowing from source to destination. The stages perform decoding, validation, 
enrichment, transformation, and routing of the messages. Each stage can be enabled 
or disabled for deployment from the Visual Studio properties pane. The set of stages 
are fixed, and out of the box, BizTalk Services v1 enables the VETER pattern. This is 
shown in the following screenshot:

Bridges with VETER pattern



Enterprise Application Integration

[ 78 ]

The following are the stages of the VETER pattern:

Stage Description
Validate (V) Validate the incoming message against the schema
Enrich (E) Enrich the message with properties promoted from the 

message header, body, or lookup (see Chapter 3, Bridges)
Transform (T) Map the message from one format to another (see Chapter 2, 

Messages and Transforms)
Enrich (E) Enrich the new message post transform
Route (R) Route to one of the target destinations
Decode For flat file processing, decode the message

Destinations
Destinations are where messages are is submitted to after pipeline processing.  
In bridges, the route to a destination is based on the SQL-92 expression syntax.  
A message will be sent to only one destination whose route rule evaluates to true. 
The route stage is also explained in Chapter 2, Messages and Transforms. The various 
destinations are shown in the following screenshot:

Destinations with bridges

Attributes of bridges
Here are some interesting attributes of bridges:

• State: Pipelines as part of bridges are stateless, that is, at no point during the 
processing is the message persisted. If there is a crash or restart of the system 
while messages are inflight, the message would have to be resubmitted for 
processing. This also means message processing is synchronous.



Chapter 4

[ 79 ]

• Error handling: If an error occurs during message processing, a fault is 
thrown back to the sender of the message to take action. As there is no 
separate suspend endpoint in EAI bridges, error must be handled at the 
client side.

• One-way/Two-way: Bridges support both one-way and two-way 
communication. In the case of one-way communication, only the HTTP  
codes are passed back to the sender of the message. However, in the case of 
two-way communication, a response message can be sent back. Two-way 
bridges in BizTalk Services support the VETER pattern on the request side 
and ETER on the response side. The message on the response side is assumed 
to be valid since this is coming from the target Line-of-Business system or 
service. Note that a pass-through-bridge is a special case of a one-way bridge 
that has only the E-R of the VETER pattern.

• Message formats: Messages can be sent in plain old XML, SOAP, and flat 
file formats. Flat file messages can only be used with one-way bridges. Other 
formats such as JSON may be added in future, but those different formats 
need custom code to normalize the data to XML before processing. We will 
discuss custom code later in this chapter.

• Chaining: Multiple bridges can be chained by adding one bridge as the 
destination of another bridge. This may be used to centralize the processing 
of messages through a single bridge. For example, multiple bridges may 
pump messages from different sources all connecting to a single bridge that 
routes to an on-premises endpoint. Also, selectively disabling stages can 
enable newer messaging patterns. For example, ETEVR can be achieved by 
chaining two VETER bridges.

Hybrid connectivity
Organizations that have made IT investments in ERPs and services on premises may 
not transition all of their IT assets to the cloud. There is a need to connect to those 
services and resources using hybrid connectivity from the cloud.

The BizTalk Adapter Service
The BizTalk Adapter Service (BAS) is a service which enables an application 
running on-premises to receive data from the cloud. The on-premises applications 
such as ERPs and BizTalk Server can be exposed outside of the corporate network 
using Service Bus relays for hybrid connectivity. The Service Bus Relay service on 
Azure acts as an intermediary where a client and an on-premises service can connect 
with each other. The client in this case is the BizTalk Services' bridge and the service 
running on-premises is the BizTalk Adapter Service talking to an ERP. Once the 
BizTalk Adapter Service and the bridge authenticate with the Service Bus Relay 
service, all messages from the bridge are forwarded to the BizTalk Adapter Service.



Enterprise Application Integration

[ 80 ]

The BAS architecture
The overall BAS architecture is shown in the following figure:

Windows Azure

SOAP Action:

TableOp/Insert/dbo/Table1

Cloud

On-Premises

LOB

LOB Target

LOB Relay

BizTalk Adapter Service

BizTalk Adapter Pack

BizTalk Services Bridge

Service Bus Relay

BAS Configuration

Incoming message

Relayed message

Management Service

Power
Shell

Visual
Studio

The BizTalk Adapter Service architecture

The BizTalk Adapter Service runs on the client machine and is hosted in IIS to 
handle management operations such as start/stop of endpoints as well as runtime 
operations to route messages from the cloud to the on-premises systems. There is  
one management service along with one or more runtime services that can be 
managed using the management service. The meta-data of the relay configurations 
is stored in the storage account of the BizTalk Services deployment specified during 
installation. The BizTalk Adapter Service relies on the BizTalk Adapter pack to 
connect to Line-of-Business (LOB) systems such as Oracle DB, Oracle EBS, SAP, 
Siebel, and SQL Server.



Chapter 4

[ 81 ]

Management operations are exposed through Visual Studio Server Explorer or 
through PowerShell cmdlets, both of which talk to the BAService, the application 
hosting the ManagementService.svc service in IIS on the on-premises machine 
where BizTalk Adapter Service is installed.

Runtime operations are managed as per the Service Bus Relay by creating new 
applications in IIS hosting RuntimeService.svc. Each LOB can create a new relay or 
use an existing relay configured for another LOB. When there are more than one LOB 
per relay, the sub-paths in the runtime address beyond the relay URL help direct the 
calls to the right adapter.

When the LOB relay is created, based on user configuration a new or existing 
application is used in IIS as the service host. The generated WSDL contains the 
message to be relayed as well as the operation action. Operations such as INSERT, 
UPDATE, DELETE, and SELECT are passed as part of the SOAPAction header in the 
following format: TableOp/{Operation}/schema/Tablename. The exact SOAP 
Action string can be determined from the relay configuration's properties window  
in Visual Studio.

Every message passing via the relay needs to authenticate with the LOB. 
Authentication credentials are passed using one of the following four ways:

• Username and password preconfigured and stored in the BAS store
• Active Directory domain credentials
• SOAP header containing credentials of the LOB
• WS-Security credentials



Enterprise Application Integration

[ 82 ]

BAS installation and configuration
BAS installation is part of the BizTalk Services SDK setup. During setup, the  
URL of the BizTalk Services deployment needs to be entered. This is added to 
web.config under C:\Program Files\Microsoft BizTalk Adapter Service\
BAService. In Visual Studio Server Explorer, the on-premises management service 
URL along with the ACS credentials of the deployment need to be entered. Hybrid 
connectivity can now be set up for each of the following LOBs using a wizard-driven 
interface as shown:

BizTalk Adapter Service configuration in Visual Studio Server Explorer

For example, setting up the relay connectivity with on-premises SQL Server Express 
running on localhost with DemoDB as the database involves the following steps:

1. In the Server Explorer BAS view, right-click on LOB Types | SQL and 
choose Add SQL Target.

2. In the pop-up wizard, read the instructions and click on Next.
3. Enter values for the server name, instance, and catalog (say localhost, 

SQLExpress, and DemoDB, respectively). Use Windows authentication or the 
username and password as configured and click on Next.

4. Navigate to Tables (or Views) is exposed via relay, choose the table, and 
select Insert as the operation. Click on Properties to see the WSDL generated. 
Click on Next.

5. Configure the Runtime security type when the message passes via relay. 
These are the four options we mentioned earlier. Enter the credentials and 
click on Next.



Chapter 4

[ 83 ]

6. In Specify the LOB Relay URL, choose Create a new LOB relay and enter 
the Service Bus credentials. Enter any name for LOB relay path and LOB 
relay subpath. Click on Next.

7. Click on Create to complete the creation of the relay and the BAS endpoint.

Once the relay has been successfully set up, each connection will appear under the 
corresponding LOB Type.

Consuming BAS with bridges
Create a new BizTalk Services project or open an existing one. There are three parts 
to using the BAS configuration with a bridge:

1. From the Server Explorer, we can now right-click on the relay connection 
configured earlier and choose Add Schemas to Project. The relevant schemas 
to send and receive the target LOB are added in the project. These can be 
used for mapping and validation purposes within the bridge.

2. Drag-and-drop the connection from the Server Explorer into the Bridge 
design surface. This will create the necessary icon to add a destination 
connection from the bridge.

3. Click on the relay connection and navigate to the Operations field in Visual 
Studio properties window. Expand the view and note down the values to the 
right of each of the index [0], [1]. Each of these are the SOAP Action values. 
To add this value, go the Route Action in VS properties and launch the Route 
Actions window. Click on Add and in the Edit Route Action pop up, enter 
Expression as the soap action value copied earlier. Choose Type as Soap and 
Identifier as Action. Click on OK to accept the changes.

Custom code in EAI
Now that we understand hybrid connectivity, let's look at one more functionality of 
bridges, which is to support custom code. Not all capabilities will be available out 
of the box from BizTalk Services. Customization enables developers to plug in new 
functionality that augments the existing message flow. For example, we can choose 
to convert an incoming invoice XML to a user-readable PDF format as well as archive 
the same for legal reasons.

Customization in a bridge is possible at the stage level, route configuration, or in 
transforms. Transforms and its customization were covered in Chapter 2, Messages 
and Transforms. In this section, we will look at bridge customization.



Enterprise Application Integration

[ 84 ]

Message inspectors
Message inspectors are custom code hooks for every entry or exit of a stage in a 
bridge. Custom code must implement the IMessageInspector interface:

public interface IMessageInspector
{
Task Execute(IMessage message, IMessageInspectorContext context);
}

Message inspectors are implemented using the Task programming model in the 
.NET4 Task Parallel Library. Traces in custom code can be emitted using the ITracer 
interface in the IMessageInspectorContext interface.

public interface ITracer
{
void TraceEvent(TraceEventType eventType, string format,  
  params object[] args);
}

The following are key points to remember when developing custom code:
• User code is expected to be resilient, but in some cases, it could 

throw an exception. In this case, this is treated as a stage level 
failure and the corresponding track record is generated.

• User code in the VS project must have references to Microsoft.
BizTalk.Services.dll from C:\Program Files (x86)\
Microsoft Visual Studio 11.0\Common7\ide\
Extensions.

• User code assemblies must be added as reference in the BizTalk 
Services project with Copy Local set to true.

• Whenever the user code assemblies are deployed in BizTalk 
Services, the service must be restarted as the DLLs need to be 
reloaded in the .NET AppDomain. The restart option is available in 
the VS deploy and in the PS cmdlet.

• Artifacts of the bridge such as the schema or map are not accessible 
within the user code.

• Properties can be defined and promoted in the custom code. 
In code, they must be string property with C# attribute 
PipelinePropertyAttribute set with the Name attribute.  
This attribute is set in the VS Property Configuration in the 
Message Inspector configuration window as seen in the Custom code 
configuration with bridges figure in the Configuring the bridge section.



Chapter 4

[ 85 ]

Tracking
Tracking helps in storing interesting properties of a message in the tracking store. 
The tracking store is an Azure SQL database configured during BizTalk Services 
provisioning time. All message properties are stored in the PipelineTrackRecords 
and SourceTrackRecords tables. Tracking for troubleshooting is detailed in Chapter 
7, Tracking and Troubleshooting.

To enable tracking at the EAI bridge, select the bridge in VS and choose Track 
Properties from the properties window. The tracked properties can be seen in the 
BizTalk Services portal's Tracking view.

Configure tracking properties with bridges



Enterprise Application Integration

[ 86 ]

Scenario walk-through
Let's revisit the EAI scenario with the following changes.

Northwind is an online retailer who manages an e-commerce website for customer 
purchases. Instead of processing orders, let's say they now receive invoices from 
their suppliers for the goods sold. For readability and regulatory reasons, they need 
to store this in PDF format in an on-premises system.

It is assumed that the BizTalk Services SDK has been installed and 
Visual Studio shows the following projects:

• BizTalk Service project: Create/Deploy bridges, schemas, 
and maps

• BizTalk Service artifacts project: Create/Deploy schemas, 
and maps

Prerequisites
Northwind creates a new BizTalk Services deployment. See Chapter 1, Hello BizTalk 
Services on creating a BizTalk Services deployment and registering the BizTalk portal. 
We are going to use the PDFTemplate utility from pdftemplate.codeplex.com  
to generate PDF-formatted invoice messages. The utility is available under the 
GPLv2 license.

Solution
The solution would take the invoice XML and generate the PDF in a blob store.  
To get started, let's first create the schema, add the code to generate the PDF, and 
finally plug that logic into the bridge configuration.

Creating a schema
Create a sample schema for use with the incoming message. The sample used in this 
flow is provided along with this chapter. Perform the following steps:

1. Using the Visual Studio schema editor, create a simple schema called 
InvoiceSchema.xsd for the invoice.

2. From the Visual Studio command prompt, run the following command to 
generate InvoiceSchema.cs for this xsd:
xsd InvoiceSchema.xsd /classes

3. We will load this InvoiceSchema.cs file in the next step.



Chapter 4

[ 87 ]

Creating custom code
Let's now add the custom code to generate the PDF for the invoice we just created:

1. Create a C# class library project and add a reference to Microsoft.BizTalk.
Services.dll and the PDF dependencies.

2. Implement a class for the IMessageInspector interface. In the example, we 
have extracted the message body to the Order message object as follows:
string bodystr = GetMessageBody(message);
Order order = DeserializeMessageToOrder(bodystr);

3. PDFGenerator describes the layout of the PDF structure in layout.xml as 
required by the codeplex tool. The XML itself is passed within the custom 
code DLL as an embedded resource and must be extracted before use as 
shown in the following code snippet:
Stream stream = System.Reflection.Assembly.GetExecutingAssembly().
GetManifestResourceStream("layout.xml");
byte[] bytes = new byte[(int)stream.Length];
stream.Read(bytes, 0, bytes.Length);
File.WriteAllBytes(System.IO.Path.GetTempPath(), bytes);

4. Fill in the header, body, loop, and footer data of the PDF file using the data 
from the Order object. Use the PDFGenerator using the information shown in 
the following code snippet:
PDFTemplateItextSharp pdfgen = new PDFTemplateItextSharp(xmlToPdfT
emplateFilePath);
pdfgen.Draw(GetHeaderData(order), GetLoopData(order), 
GetBodyData(), GetFooterData());

5. Write the PDF data back as a new message shown in the following  
code snippet:
message.Data = new System.IO.MemoryStream(pdfdata);
message.ContentType =  
  new System.Net.Mime.ContentType("text/plain");

6. Sign the assembly output from the project. Note that all the DLL 
dependencies are needed to be signed.



Enterprise Application Integration

[ 88 ]

Configuring the bridge
Perform the following steps to configure the bridge:

1. Add a BizTalk Services project to the same solution and add references to the 
signed custom code.

2. Add a bridge, in this case, a Pass-Through bridge, and call it  
Invoice2PDF. Also add the route for the message to a Windows Azure  
blob destination. Let's call the blob storage PDFArchiveBlobs as shown  
in the following figure:

Invoice2PDF bridge sample in BizTalk Services project

3. In the bridge properties, fill the required fields. For the bridge, add the 
BizTalk Services Runtime Address and Routing Table values. For the  
blob, add the Shared Access Signature URL. Click on the bridge, and  
from the properties window, open Track Properties on the bridge window  
to enable tracking.

4. Get the full qualified assembly name of this custom code. If this is  
specified incorrectly, you will get an error during deployment. You can  
use the GetAssemblyQualifiedTypeName sample in MSDN Code Gallery, 
http://code.msdn.microsoft.com/windowsazure/Windows-Azure-
BizTalk-EAI-56915d1c/view/SourceCode, or alternatively, run sn -T on 
the DLL to determine the public key and determine the full qualified name.  
It should look something like this:
PDFGenerator.PDFGeneratorUtil, PDFGenerator,  
  Version=1.0.0.0, Culture=neutral,  
  PublicKeyToken=xxxxxxxxxx



Chapter 4

[ 89 ]

5. Double-click on the pass-through bridge and click on the Enrich stage. From 
the properties window, click on On-Exit Message Inspector and add the full 
qualified name in the Specify Custom Code Inspector pop-up window, as 
shown in the following screenshot:

Custom code configuration with bridges

Deploying the bridge
We can now deploy the bridge to the BizTalk Services deployment with the 
following steps:

1. Launch VS and select the Deploy command from the Build menu and enter 
the BizTalk Service deployment details.

2. If the project is being deployed more than once, you need to check the 
Refresh Service after deploy checkbox so that the updated custom code 
DLLs are picked-up.



Enterprise Application Integration

[ 90 ]

The VS output block will be similar to the one shown as follows:

VS output for bridge deployment

Sending messages
Use the Message Sender tool from MSDN Code Gallery samples for BizTalk  
Services to send messages to the bridge, or you can also download the BizTalk 
Services Explorer plugin for VS Server Explorer. This allows you to explore the 
deployment and also send test messages.

Once the messages are sent successfully, go to the container with the SAS URL and 
save the blob locally. Rename the file to a .PDF extension and you should be able to 
view the archived PDFs.

Viewing tracking data
Click on the Tracking view in the navigation bar of the BizTalk Services portal to see 
the status of message flow on the bridge. It's also possible to view this information 
from the BizTalk Service Explorer in VS on a per-bridge basis.

Summary
In this chapter, we started with the basic concepts of EAI on Azure, notably bridges, 
sources, destinations, hybrid connectivity, and custom code. We walked through a 
simple scenario in BizTalk Services generating PDF invoices and archiving in a blob 
store. It is possible to encounter an error while using custom code in bridges. We will 
cover aspects of troubleshooting in Chapter 7, Tracking and Troubleshooting.

In the next chapter, we will look at another key scenario supported in BizTalk 
Services—integrating across businesses using B2B capabilities.



Business-to-business 
Integration

A transaction between two companies in a buyer-seller relationship is  
business-to-business (B2B) as opposed to a B2C relationship between a company  
and its consumer. In the context of integration, B2B is about two organizations 
agreeing on a set of well-defined transactions for the exchange of business 
information. The B2B process starts off with a business negotiation or an agreement, 
which further translates into the technical details at the message flow level.

In this chapter, we will focus on the following topics:

• Understanding B2B integration in the context of Azure
• Understanding the capabilities of the service with partner, agreement, 

batching, and tracking
• Walkthrough of a real-world B2B scenario using BizTalk Services on Azure

Basic concepts of B2B
Consider a retailer, Contoso, who wishes to procure stock from a supplier, 
Northwind. From a technology standpoint, the message flow between Contoso and 
Northwind can be explained using the following flow:

• Contoso and Northwind agree to enter into a business relationship (usually 
over phone/e-mail/meetings). The legal teams draft the memorandum of 
understanding (MoU) between the partners.

• The partners exchange information on how one would receive/send 
payments, including cheque and bank details.



Business-to-business Integration

[ 92 ]

• Both partners enter a setup phase where each of their IT departments 
configures the B2B system to enable the exchange of electronic data 
interchange (EDI).

• Both partners exchange sample test messages to validate the configuration, 
and after sufficient testing, they agree to move ahead with production.

• In production, the following steps are carried out:
 ° Contoso raises a purchase order from their Dynamics AX ERP system 

and sends it to Northwind
 ° Northwind receives the order and acknowledges that they have 

received the order
 ° Northwind processes the order and looks up the inventory in their 

SAP ERP to determine whether they can service the request
 ° If the order can be serviced, Northwind send the goods to a third-party 

logistics company (3PL) who handles the shipment of goods
 ° Northwind replies with the shipment details to Contoso
 ° Contoso can optionally acknowledge the receipt of the shipment notice
 ° Northwind sends an invoice to Contoso for the cost of goods sold

• Contoso sends payment to Northwind based on the financial terms  
agreed upon.

The preceding flow can be visually represented as follows:

Shipping Notice

PO

Bank

Ack

InvoiceAck
Contoso

3PL
Northwind-3PL B2B Transactions

Contoso-Bank B2B Transactions

Contoso-Northwind B2B Transactions

Warehouse

Shipping

Order

Dynamic

ERP

Northwind SAP ERP

Inventory



Chapter 5

[ 93 ]

Each of the arrows in the preceding diagram represents a set of messages exchanged 
between Contoso and Northwind. Each message type is identified by a document 
name or transaction set (for example, PO/X12 850) and has a defined format based on 
the protocol used. The protocol, in addition to the structure of the message, governs 
the set of messages exchanged back and forth. In the preceding example, we can write 
the first transaction as "Contoso raises an EDI X12 purchase order (850) to Northwind". 
Here, X12 is the EDI format and 850 is the purchase order message type.

Common interaction models
There are two common ways to integrate trading partners for B2B. They are  
listed as follows.

Direct enterprise integration
In this model, both trading partner organizations have in-house IT and can 
directly transact EDI messages. There are systems in place to send and receive EDI 
transactions over point-to-point protocols without any mediator or middleman.

Service provider integration
In this model, one of the trading partners is a small-to-medium business player 
who cannot afford in-house IT. In order to facilitate EDI interactions, there is a 
middleman, or the EDI service provider, who acts as a liaison between the two 
partners. The service provider talks about EDI to a trading partner on one end and 
transacts non-EDI (such as XLS/XML) with the other trading partner. The service 
provider charges a fee based on transaction size/volume or the complexity of the 
protocols used.

Value Added Networks (VANs) are specialized networks offering end-to-end  
B2B services in a service provider integration. VANs manage the hosting of servers 
and software to process EDI traffic and usually charge based on message volume. 
They could specialize solutions for a particular vertical or offer generic message 
processing services.

Industry standards and protocols
Various organizations define protocols for different industry verticals. Each protocol 
governs the set of messages exchanged, the acknowledgements transferred, and the 
error behavior between trading partners.



Business-to-business Integration

[ 94 ]

The following are some of the most common protocols and their standards 
organization supported in BizTalk today:

Standards 
body

Website Protocol Industries

ANSI ASC 
X12

http://www.x12.org/ X12 In the US: 
manufacturing, retail, 
government, and 
transportation

  HIPAA Healthcare, insurance
UN/
CEFACT

http://www.unece.org/
cefact/edifact

http://www.gefeg.com/jswg/

UN/ 
EDIFACT

In Europe: 
manufacturing, retail, 
government, and 
transportation

SWIFT http://www.swift.com SWIFT Financial transactions 
for treasury, trade, and 
banking

RosettaNet http://www.rosettanet.org/ RosettaNet Supply chain
OAGi http://www.oagi.org CIDX Horizontal framework 

for several verticals
PIDX http://www.pidx.org/ PIDX Oil and Natural Gas
HL7 http://www.hl7.org/ HL7 Healthcare

X12 is heavily used in the US, while EDIFACT is more popular in Europe and  
Asian countries. Both these protocols are supported in BizTalk Services today.  
The remaining protocols are available in BizTalk Server.

Concepts in BizTalk Services B2B
B2B in BizTalk Services is all about processing EDI and non-EDI messages between 
trading partners. It is meant to make B2B integration simple, powerful, and flexible 
using Azure. B2B, by its nature of protocols, formats, and transport, tends to be 
complex in configuration; with Azure, service configuration of an agreement between 
partners is simple. It's easy to extend the service and connect with other technologies 
such as SharePoint and mobile services to build a rich and powerful solution.

The top-level concepts in B2B/EDI include the following:

• EDI message structure
• Partners and agreements
• Property promotion in EDI



Chapter 5

[ 95 ]

• Batching
• Tracking and archiving
• Extensibility and object model API

EDI message structure
EDI messages (either X12 or EDIFACT) have a nested structure, compartmentalizing 
transactions for ease of understanding by the receiver. Every structure has a header 
and trailer to identify the start and end of the nested structure. The following 
outlines the nesting structure:

• Interchange: This is the outermost envelope with a header and trailer. It 
identifies the sender and receiver of the message as well as the date/time 
when the message was sent. In the case of X12, the ISA and IEA are the 
header and trailer respectively; in EDIFACT, the UNB and UNZ form the 
header and trailer.

• Group: A group segment in an interchange is a set of transactions clubbed 
together by their function. A group starts with a header (GS in X12 and UNG 
in EDIFACT) and ends with a trailer (GE in X12 and UNE in EDIFACT). Unlike 
X12, groups are optional in EDIFACT; but when groups are present, they must 
contain all transactions of the same type (for example, all purchase orders).

• Transaction set: A transaction set in a group is the message of a given  
type (for example, a purchase order message) with segments detailing 
transactions such as item quantity or price. A transaction set starts with a 
header (ST in X12 and UNH in EDIFACT) and ends with a trailer (SE in X12 
and UNT in EDIFACT).

The following table illustrates the X12 and EDIFACT headers and trailers:

X12 header and trailer EDIFACT header and trailer
ISA Interchange Control Header
GS Functional Group Header
ST Transaction Set Header
SE Transaction Set Trailer
GE Functional Group Trailer
IEA Interchange Control Trailer

UNA Optional Advice
UNB Interchange Control Header
UNG Functional Group Header
UNH Message Header
UNT Message Trailer
UNE Functional Group Trailer
UNZ Interchange Control Trailer



Business-to-business Integration

[ 96 ]

Partners and agreements
The following are the key concepts used with agreements:

• Partner: A partner is an organization with which a trading relationship 
is established. Each partner has one or more business units referred to as 
business profiles. Every business profile has an identifier (for example, 
a DUNS ID or phone number) that is unique and added to each message 
exchanged between the partners.

• Agreement: An agreement represents the technical settings of message 
exchange between partners. An agreement is established between two 
business profiles of partners. The agreement is composed of send settings 
(send of Contoso, receive of Northwind) and receive settings (receive of 
Contoso and send of Northwind) in the trading partner relationship.  
An agreement refers to a protocol such as AS2, X12, EDIFACT, and so  
on, based on messaging requirements. An agreement also identifies the 
schemas and requirements around tracking and batching. Deployment of  
the agreement results in two bridge deployments and, therefore, endpoints  
in Azure that can receive EDI messages and send XML and vice versa.  
The agreement definition in the BizTalk Portal has the following:

 ° Transport: This is the send side or the receive side transport of  
the bridges.

 ° Protocol: This is the EDI protocol under use in the bridge.
 ° Transform: These are the maps used while a message is processed  

in the bridge.
 ° Route: This is the target destination where the bridge will route  

the message to the recipient of the message.
 ° Inbound URI: This is the address of the send side bridge which 

receives messages to be sent to the destination partner.
 ° Suspend endpoint: This is the endpoint which would process  

the message if there are errors in the processing of the EDI message.  
This endpoint can be used to build repair-resubmit scenarios.

• Partnership: At least one agreement between partners constitutes a 
partnership between the partners. The concept of partnership is exposed  
only through the trading partner management API.

• Agreement template: An agreement template is a unit of re-use where 
commonly repeated settings can be captured as a template and applied 
while defining an agreement for rapid configuration. An agreement template 
is associated with a profile. Each template definition identifies the hosted 
partner in the definition to determine the direction of settings to be applied 
while creating an agreement.



Chapter 5

[ 97 ]

• AS2 agreement: AS2 agreement refers to the AS2 transport settings agreed 
between two partners adhering to the RFC 4130 standard. In a nutshell, AS2 
allows messages and acknowledgements to be transmitted in compressed, 
signed, or encrypted form over HTTP or HTTPS. Signing and encryption is 
supported using certificates. AS2 is not specific to the payload and can be 
used for both B2B flat files and EAI XML messages.

If the endpoints of one partner, say Partner A, require HTTPS for AS2 
traffic, then Partner A's deployment certificate needs to be added to the 
"Trusted People" certificate store of Partner B. Alternately, if the AS2 
messaging from Partner A is to an HTTPS endpoint of Partner B, then 
Partner B's public certificate needs to be added to the certificate store of 
Partner A's deployment. Both these certificates need to be uploaded to 
the BizTalk Services deployment certificate store using PSCmdlet loaded 
from BizTalk Services Tools. Here is the sample code to add the certificate 
using PowerShell:

PS C:\>Import-Module 'C:\Program Files\Windows Azure 
BizTalk Services Tools\Microsoft.BizTalk.Services.
PowerShell.dll'
PS C:\>Add-AzureBizTalkArtifactCertificate –
AcsNamespace myAcs –IssuerName owner –IssuerKey 
193194218484a= -FilePath D:\sample.cer –ArtifactPath /
sample.cer –certificateStore TrustedPeople

If self-signed certificates are generated by using makecert.exe, ensure 
that you pass the –pe and –key exchange parameters to the command to 
make the certificate exportable and usable for encryption purposes.

• X12 and EDIFACT agreement: Both X12 and EDIFACT are supported on 
BizTalk Services. The choice of the agreement is available through a combobox 
selection during agreement creation. For each application protocol, the 
agreement settings consist of a series of schema selection, acknowledgement 
configuration, control number configuration, batching, character sets and 
separators configuration, and configuration of message validation.

Property promotion
Certain properties in the EDI envelopes we discussed earlier are autopromoted and 
are available for use in routing and tracking scenarios. They can also be used to 
determine the agreement endpoints programmatically.



Business-to-business Integration

[ 98 ]

Listed in the following tables are the promoted properties in EDI and AS2:

Property Location Description

Message Type X12 Receive Numeric value identifies type of 
message, for example, 850 PO, 810 
Invoice

AgreementName X12 Receive Name of the agreement

ISA 5-8
ISA 9, 10, 12, 15

X12 Receive X12 ISA envelopes

GS01-08 X12 Receive X12 GS envelopes
ST01 X12 Receive X12 transaction set message type
ST03 X12 Receive X12 transaction set version
AS2-To, AS2-Version,  
Mime-Version, AS2-From
Content-ID, Content-Type, 
Content-Transfer-Encoding
Disposition-Notification-To, 
Disposition-Notification-
Options
Content-Description,  
Content-Disposition,  
Receipt-Delivery-Option

AS2 Send/Receive AS2 header properties

SystemRequestID X12 Send, X12 
Receive, AS2 
Receive

ID to track the message flow in the 
bridge

MessageReceivedTime X12 Send, X12 
Receive, AS2 
Receive

Date and time of incoming message

SourceType X12 Send, X12 
Receive, AS2 
Receive

FTP, HTTP, or AS2 per 
configuration

SourceName X12 Send, X12 
Receive, AS2 
Receive

The name configured for source; 
this is an autogenerated name in 
EDI agreements

AgreementID X12 Send, X12 
Receive, AS2 
Receive

Agreement ID as displayed in the 
agreements list view in the BizTalk 
portal

UNA_Segment EDIFACT Receive UNA Segment with characters as 
separators and indicators



Chapter 5

[ 99 ]

Property Location Description

UNB_Segment EDIFACT Receive Interchange header segment
UNB2_1 EDIFACT Receive Sender Identification
UNB2_2 EDIFACT Receive Sender Code qualifier
UNB2_3 EDIFACT Receive Sender Reverse Routing address
UNB3_1 EDIFACT Receive Receiver Identification
UNB3_2 EDIFACT Receive Receiver Code qualifier
UNB11 EDIFACT Receive Test indicator
UNG_Segment EDIFACT Receive Functional group header segment
UNG1 EDIFACT Receive Functional group identifier
UNG2_1 EDIFACT Receive Group Application Sender Identifier
UNG3_1 EDIFACT Receive Group Application Receiver 

Identifier
UNH2_1 EDIFACT Receive Message type identifier
UNH2_2 EDIFACT Receive Message type version number
UNH2_3 EDIFACT Receive Message type release number

AS2 Send is sending the message to the  partner; hence, the 
properties are not usable directly. In the case of X12 Send, we can 
route the message to a blob store or Service Bus queue and base 
our action on the properties promoted.

Batching
Batching is a concept where messages are accumulated based on selection criteria 
and released once the desired event known as the release criteria is met. Customers 
use batching of messages to aggregate messages for reasons of cost, compatibility, 
and convenience. In the early days of VAN, messages were charged on size and 
customers were optimized by sending batches of messages. An example of this is 
airlines charging the same for all containers, whether they contain 2000 kg or 5000 
kg. It makes sense for freight forwarders to batch requests from multiple shipments 
into a single container to save costs. Few mainframe systems of trading partners 
cannot accept messages more than 250 KB. It is important to break messages such as 
these to sizes less than or equal to 250 KB before sending them to the target system.



Business-to-business Integration

[ 100 ]

As part of BizTalk Services B2B, customers can configure and manage a batch in an 
agreement's send side configuration (debatching is already part of the system as the 
interchange format is implicitly known). An agreement can contain zero or more 
batch definitions. Every batch has a state—it can be enabled, disabled, or in error. 
Batches are enabled when the corresponding agreement is deployed or the start 
command is used explicitly. When batches are stopped, messages in the batch are 
flushed out. Each batch definition contains the selection and the release criteria.

Selection criteria
The selection criteria are used to select a message for batching. In BizTalk Services, 
customers can promote properties and use them in expressions to select the message 
to be added to one or more batches. If the property of an incoming batch matches 
more than one definition, then the message is copied to these many batches.

Release criteria
The release criteria determine when the batch should be released. One of the 
following can be used as release criteria:

Release criteria Description
Size The maximum size of the message 

(excluding interchange and groups) in 
bytes with UTF-8 encoding

Count The number of transaction sets in a 
batched message

Schedule The configuration of the occurrence and 
recurrence values to release messages 
periodically

Timeout Inter-message idle timeout when a batch 
needs to be released

Interchange size and schedule Either size or based on schedule
Interchange size and timeout Either size or configured timeout
Message count and schedule Either count or based on schedule
Message count and timeout Either count or configured timeout 
Interchange size and message 
count

Either size or count



Chapter 5

[ 101 ]

Messages from a batch are released when either the release criteria are met or the batch 
has been stopped from the BizTalk portal. If the release criteria are met but no messages 
are in the batch, a null message is not sent to the send endpoint. If the send endpoint is 
not available when the batch releases a message, the message is passed to the suspend 
endpoint. In the worst case, if the suspend endpoint is also down in spite of retries, the 
set of unbatched transaction sets are held in the system and released to the suspend 
endpoint the next time it becomes available. Also, note that for an agreement to be 
deleted, the batches defined in the agreement must not have any messages.

Tracking and archiving
Tracking helps in storing interesting properties in a message and archiving messages 
in stores. Both tracking and archiving are settings enabled as part of an agreement 
configuration. In the case of B2B, the system and user-promoted properties are 
tracked and written to the Azure SQL Tracking database. In addition to messages, 
the system tracks properties with which a message can be correlated with its 
acknowledgement. This would let users know if an X12 has received a technical or 
a functional acknowledgement and if an AS2 message has received its MDN NACK 
or ACK message. Tracking identifies the list of batches that are active with the list 
of messages currently held in the batch. It also identifies the history of batches that 
were dispatched on the send side.

Archiving is supported in the following cases for X12 and AS2 as illustrated in the 
following diagram:

• Just before sending a message
• Immediately after receiving a message

Points marked are the archival points in EDI

AS2 receive message

AS2 receive MDN

AS2 send message

AS2 send MDN

AS2 send MDN

X12 receive message

AS2 Receive

AS2 Send

X12 Receive

X12 Send

X12 send message

X12 Functional Ack (997)



Business-to-business Integration

[ 102 ]

Archiving is configured in the General Settings section in the agreement. The 
messages can be accessed from the BizTalk portal's tracking view option by clicking 
on the relevant message entry and choosing Details. From the message info pop-up 
view, you can select the entity to download and click on the Download option.

Non-repudiation
Non-repudiation of Receipt (NRR) is supported in AS2 using both tracking and 
archiving. NRR is required in dispute settlement scenarios where, for example, a 
supplier may not process a PO or claim not to have received the order or the  
payment. NRR ensures that the AS2 message is stored and the incoming Message 
Integrity Check (MIC) value or hashcode is validated against the MIC of the stored 
AS2 message. This validates that the other partner has indeed received and processed 
the message. If the NRR option is turned on and if the tracking or archiving fails, 
then the message processing also fails (unlike in cases without NRR, where message 
processing can continue even if there are tracking errors). To enable NRR, check the 
Enable NRR option in the General Settings page of the AS2 agreement, as shown in 
the following screenshot:

Extensibility
Extensibility in B2B is possible by using the public API for Trading Partner 
Management Object Model (TPM OM). We will cover TPM OM as part of the 
overall extensibility in BizTalk Services using API.



Chapter 5

[ 103 ]

Scenario walk-through
Let us revisit the scenario we began with in this chapter; we will add a service 
provider to illustrate the concepts. A service provider, as we know, is an expert in 
EDI and will act as a middleman to help suppliers connect to large retailers. In this 
example, Contoso, a large retailer, wishes to procure stock from supplier Northwind. 
Since Northwind is not aware of EDI, they approach a service provider, Fabrikam, to 
help them connect with the retailer Contoso.

Ecosystem players
There are three players in our example. Contoso is a large retailer, Northwind is the 
supplier connecting to Contoso, and finally, Fabrikam is the EDI service provider 
providing EDI services to Northwind.

Provisioning BizTalk Services
Fabrikam creates a new BizTalk Services deployment. See Chapter 1, Hello BizTalk 
Services, on creating BizTalk Services deployment and registering the BizTalk  
Services portal.

Fabrikam adds Northwind's admin e-mail ID as a registered user in the BizTalk 
Services portal Settings page. This allows Northwind users to log in to the same  
view as that of Fabrikam.

Configuring partners – Fabrikam, Northwind, 
and Contoso
We need to configure the trading partners and the agreement in BizTalk Services. 
The following steps need to be carried out by Fabrikam to add partners:

1. Once signed in, click on the PARTNERS page and then the Add button.
2. Enter the Partner name as Northwind.
3. Enter First name, Last Name, Email ID, and Phone details, if required.
4. Click on Save.
5. Repeat the above steps for Contoso and Fabrikam as partner names.
6. Click on each partner, navigate to the default profile, and upload the 

certificate for AS2 signing and encryption.



Business-to-business Integration

[ 104 ]

The creation of a new partner is shown in the following screenshot:

Configuring the AS2 agreement between 
Fabrikam and Contoso
Once the partners are created, we need to add agreements. The following steps need 
to be carried out to add the AS2 agreement between Fabrikam and Contoso:

1. Click on AGREEMENTS in the left navigation bar.
2. Click on the AS2 tab.
3. Click on Add.
4. In the New Agreement (AS2) page, fill the agreement name as Fabrikam-

Contoso agreement and add a description.



Chapter 5

[ 105 ]

5. Select Hosted Partner as Fabrikam and Guest Partner as Contoso . Here, 
Hosted Partner is the partner who owns the bridge in BizTalk Services. In 
this case, Fabrikam owns the BizTalk Services deployment, and hence is the 
host partner.

6. Enter AS2 Identity of Fabrikam as fabrikam and for Contoso as contoso.
7. Enable tracking and archiving; the latter is available for Premium SKUs.
8. Click on Continue.
9. The page is now renamed to Fabrikam-Contoso agreement and you are on 

the Receive Settings page.
10. Following are the steps to configure Receive Settings:

 ° Under Inbound URL, set URL Suffix to endpoint1 and note down 
the complete URL. This is where Fabrikam would receive messages 
from Contoso.

 ° Under Protocol, open Message and choose Messages should 
be signed or Messages should be encrypted if applicable. Note 
that both these options require you to add a certificate in the 
profiles pages of Contoso and Fabrikam for this purpose. Also, set 
Acknowledgement and select Send MDN if required.

11. Click on Send Settings:
 ° The Inbound URL is where Fabrikam would send messages to reach 

Contoso. The <Agreement ID> in the URL would be filled in after 
the agreement is deployed. The inbound refers to the endpoint where 
messages need to be delivered from the Fabrikam system in order to 
be sent to Contoso over AS2.

 ° Under Protocol, similar to Send Settings, configure signing and 
encryption options if required. Also, set Acknowledgement and select 
Request MDN (you can leave the other two checkboxes unchecked).

 ° Under Transport, enter the URL of the Contoso endpoint. You can 
create a BizTalk Server or BizTalk Services setup which can mock 
the other end of the partner, or simply leave the URL to the default 
http://www.microsoft.com. Note that the prefix http is required.



Business-to-business Integration

[ 106 ]

12. Click on Deploy. You should see the following message in the portal:

Configuring the X12 agreement between 
Northwind and Contoso
Similar to the AS2 agreement, we now need to configure the X12 agreement between 
Northwind and Contoso. The following steps need to be carried out:

1. Click on AGREEMENTS in the left navigation bar.
2. Click on EDI this time; the (0) indicates there are no X12 or  

EDIFACT agreements.
3. Click on Add.
4. In the New Agreement option, choose the protocol as X12 and fill the 

agreement name as Northwind-Contoso agreement, and also add a 
description. You can also create an EDIFACT agreement. The next set  
of steps configure the specific X12 settings.



Chapter 5

[ 107 ]

5. Select Hosted Partner as Northwind and Guest Partner as Contoso. Here, 
Hosted Partner is the partner who directly/indirectly owns the bridge in 
BizTalk Services.

6. Select Qualifier as ZZ - Mutually Defined (X12) and enter the value for 
Northwind as northwind and for Contoso as contoso.

7. Enable tracking and archiving on both sides; the latter is available for 
Premium SKUs.

8. Click on Continue.
9. The page is now renamed to Fabrikam-Contoso agreement and you are on 

Receive Settings.
10. The following are the steps to configure Receive Settings:

 ° Under Transport, choose Transport type as AS2 and AS2 Agreement 
as Fabrikam-Contoso agreement. This means all messages from 
the X12 agreement will be received from the AS2 channel configured 
earlier. In future, Fabrikam can create multiple such X12 agreements 
and reuse the same AS2 agreement to connect with the retailer 
Contoso. This is possible as only the X12 configuration changes 
across suppliers while the Fabrikam connectivity to Contoso is 
mostly constant.

 ° Under Protocol, select TA1 expected and 997 expected. Assuming 
you have downloaded the B2B schemas from the BizTalk Services 
download page, click on Upload and add X12_00401_810.xsd and 
X12_00401_850.xsd one after the other. They will be listed post 
upload, as shown in the following screenshot:

11. Leave the Transform settings as they are for now.



Business-to-business Integration

[ 108 ]

12. Under Route, click on Add to add the success route rule:
 ° Enter the rule name as default.
 ° Click on Advanced Settings and enter 1=1 in the expression window. 

This means we will route all successful messages to this endpoint.
 ° Select Transport type as Azure Service Bus.
 ° Select Route destination type as BasicHttpRelay. Add the 

BasicHttpRelay URL, issuer name, and issuer key. This is the URL 
where the BasicHttpRelay service will be listening for successful 
messages routed from this agreement.

 ° Click on Save.

13. Add the Message Suspension Settings. The suspend settings refer to the 
target URL if messages fail to successfully reach Northwind. We can configure 
Azure Service Bus with Queue, Topic, or Relay. Queues and Topics need to be 
pre created with Shared Access Signature or Issuer Name and Secret:

 ° Select Transport type as Azure Service Bus.
 ° Select Route destination type as BasicHttpRelay. Add the 

BasicHttpRelay URL, issuer name, and issuer key. This is the URL 
where the BasicHttpRelay service will be listening for failed messages 
from this agreement.

 ° Click on Save.

14. Click on Send Settings:
 ° Under Inbound URL, note the Endpoint value—the <Agreement-ID> 

in the URL will be updated after the agreement is deployed. We will 
return to this view later.

 ° Leave the Transform settings on the send side as the are for now.
 ° Under Batching, you can configure to send a batch of messages 

instead of a single message.
 ° Click on Add Batch, enter batch of 3 messages as the name, and 

add a description. Click on Next.
 ° In Batch criteria, choose Use advanced definitions and enter 1=1 in 

the textbox. This implies all messages will be batches. Click on Next.
 ° In Batch release criteria, choose MessageCountBased and enter 3 as 

the value of Count.
 ° Click on Next, and finally, Save.
 ° You don't have to click on Start Batch; the batch will be started 

automatically once the agreement is deployed.



Chapter 5

[ 109 ]

15. Under Protocol, select TA1 expected and 997 expected. Also, click on  
the + symbol under the Schemas section and choose the existing 
X12_00401_810.xsd option from the Schema dropdown. This should already 
be listed if the same was uploaded in the previous Receive Settings section.

16. Under Transport, fill both the Transport Settings and Message Suspension 
Settings. Under Transport, choose Transport type as AS2 and AS2 
Agreement as Fabrikam-Contoso agreement. This means all messages from 
the X12 agreement will be sent to the AS2 channel configured earlier.

17. Add the Message Suspension Settings. The suspend settings refer to the 
target URL if messages fail to reach Contoso. We can configure Azure Service 
Bus with Queue, Topic, or Relay. Queues and Topics need to be precreated 
with Shared Access Signature or Issuer Name and Secret. In this case, we 
configure a service running with BasicHttpRelay binding:

 ° Select Transport type as Azure Service Bus.
 ° Select Route destination type as BasicHttpRelay.
 ° Add the BasicHttpRelay URL, issuer name, and issuer key. This 

is the URL where the BasicHttpRelay service will be listening for 
messages which could not be sent to Contoso.

18. Click on Deploy:

 ° A success message, The agreement between Northwind and 
Contoso was successfully deployed should be shown. If not, 
check for errors and click on Deploy again.

 ° Navigate to the agreement's Send Settings page and note  
down the Inbound URL value. This will be used to send messages  
to the agreement.

Sending messages
Web Sender is a tool available in MSDN Code Gallery for BizTalk Services' samples. 
It can be used to send messages to AS2 receive endpoints. Since in this example  
the AS2 is tied to X12 endpoints, all messages sent to AS2 receive should be routed 
to the success endpoint of X12 receive (the Azure Service Bus relay endpoint in this 
case). Message Receiver is a tool in MSDN Code Gallery to receive messages on  
relay endpoints; it needs to listen on the configured address in the X12 agreement 
route address.



Business-to-business Integration

[ 110 ]

Use Web Sender from MSDN Code Gallery to test the AS2 message with sample 
850. You can generate an instance of the Purchase Order EDI 850 using Visual Studio 
Generate Instance command from the BizTalk Services project.

You can download the Message Receiver C# sample at the following link:
http://code.msdn.microsoft.com/Windows-Azure-BizTalk-
EAI-e01a5b64

You can download the Web Sender C# sample at the following link:
http://code.msdn.microsoft.com/Windows-Azure-BizTalk-
a0d12dca

Viewing tracking data
Click on the TRACKING view in the navigation bar to see the status of message 
flow on the agreement.

Summary
In this chapter, we started with the basic concepts around B2B and its relevance in 
the context of Azure. We introduced key concepts of B2B on Azure, notably partners, 
agreements, templates, batching, tracking, and archiving. We also walked through 
a simple agreement configuration for AS2 and X12 in BizTalk Services. Trading 
partners can also be managed using API—this is covered in detail in the extensibility 
chapter later.



API
So far, we've only looked at the graphical tools to interact with Windows Azure 
BizTalk Services (WABS). These have included Visual Studio for creating and 
deploying solutions as well as the BizTalk Services Portal (and Azure Management 
Portal) for management and monitoring of the deployed solutions. Underlying 
all these tools though is a REST-based API that allows easy integration with 
scripting tools as well as your own processes to facilitate automated actions such as 
deployment, testing, and management.

In this chapter, we'll look at the WABS API and how to interact with it using:

• RESTful web services
• PowerShell
• Custom code

While there are three methods in which the API can be used (portal, REST services, 
and PowerShell), each serves a different need, and although there is an overlap, there 
are also differences in functionality. The portal has been explored elsewhere in this 
book and provides an easy-to-access dashboard for system administrators. PowerShell 
is a familiar tool for IT pros that is useful for scripting system interactions such as 
deployments. Using the REST API directly is useful for building your own tools and 
capabilities on top of WABS or for interacting with WABS from another application.  
By the end of this chapter, you'll have a good understanding of the WABS API and 
how you can leverage it to your advantage in your own organization.



API

[ 112 ]

REST
First, let's take a quick look at the grounding of the provided API. All functions 
available in Visual Studio and in the management portal are also available in the 
API. In fact, the API actually provides more capabilities than these tools do, as we'll 
see. This shouldn't be too much of a surprise as it is often the case—the API usually 
comes first and the tools later. It's therefore a good idea to understand what the 
API can do. Underpinning this API is a set of web services accessible using HTTP. 
WABS uses RESTful services for this. REST is not a standard or protocol, but an 
architectural style that enables simple HTTP-based integration. It doesn't need the 
overhead of SOAP or frameworks such as Microsoft's WCF. In fact, you can often use 
just your web browser to make requests or query for information. REST is based on a 
set of standard HTTP verbs that specify the type of request. WABS uses the following 
HTTP verbs in its API:

Verb Purpose
PUT Create a new artifact or update an existing one
GET Retrieve artifact(s)
DELETE Remove an artifact from WABS
POST Update an artifact or service status

WABS REST API verbs

As you can see, the full set of CRUD (create, read, update, and delete) operations are 
supported in this way, which provides a great deal of flexibility as it facilitates cross-
platform access and easy integration with third-party tools.

Calling the API
Let's start by looking at a simple REST call to the BizTalk Services API. In this 
example, we'll query the BizTalk Services instances deployed for a given Azure 
subscription. We are going to see how you can execute this request using a  
very useful tool called Fiddler. You can download Fiddler for free from  
http://fiddler2.com/.

In order to execute these API calls against Azure, a mutual certificate exchange 
process is required in order for each party to authenticate one another. When your 
machine makes a request to the Windows Azure management endpoint, Azure 
returns the configured certificate and in return your client machine sends Azure its 
certificate to validate. Once complete, Azure executes the request and returns an 
acknowledgement. In order for this to work, we first need to create a client certificate 
and then upload it to Azure.



Chapter 6

[ 113 ]

There are two options here. You can use a certificate you create yourself, which is 
known as a self-signed certificate. Such a certificate is useful for testing but would 
not be appropriate for the production usage. In this case, you would purchase a 
certificate from a signing authority and use that. The reason for this is that certificates 
are about trust, not just between the two parties (your machine/organization and 
Azure), but with the signing authority as well. When a party receives a certificate, it 
can check its validity with the signing authority. This also allows, for example, the 
ability for a signing authority to revoke a certificate if it has been compromised.

For our purposes though, a self-signed certificate will do just fine. To create a 
certificate, open a command prompt and enter the following command:

makecert -sky exchange -r -n "CN=wabstest" -pe -a sha1 -len 2048 -ss  
My "%HOMEPATH%\documents\wabstest.cer"

This command will create a self-signed certificate and install it in your machine's 
certificate store under your logged on account. With this done, we need to associate 
it with our Azure subscription where we have provisioned BizTalk Services:

1. Open the Windows Azure Management Portal at  
http://manage.windowsazure.com.

2. In the left-hand margin, click on Settings (it's the last one in the list).
3. Under Settings, click on the Management Certificates tab and then click  

on Upload.
4. Browse to the certificate file you created in the command window earlier—it 

will be located by default under c:\users\<youraccount>\documents.
5. Click on the tick button to associate your certificate with the  

management service.

Upload management certificate



API

[ 114 ]

Now that we've done this, we can make a call using the Request Composer feature of 
Fiddler to query the WABS services deployment. To set up the certificate in Fiddler, 
we need to perform a few steps first before making the request:

1. Open Fiddler.
2. On the Rules menu, select Customize Rules….
3. In the CustomRules.js file, which opens in Notepad, find the 

OnBeforeRequest function.
4. Add the following at the top of this function, replacing <username> with 

your username:
if (oSession.HostnameIs("management.core.windows.net")) {
   oSession["https-Client-Certificate"] = "C:\\Users\\<username>\\
Documents\\wabstest.cer";
}

5. Save the file and close Notepad.

What this will do is send the client certificate to the service whenever the Azure 
management URL is accessed. For the next step, you will need your Azure 
subscription ID. To get this, go back to the Azure Management Portal, and 
under Settings | Subscriptions, you will see a list of your subscriptions in the 
Subscription column and the required subscription IDs in the SubscriptionID 
column, as shown in the following screenshot:

Obtaining the subscription ID



Chapter 6

[ 115 ]

Now, we can make the request as follows:

1. Click on the Composer tab.
2. Ensure the verb next to the URL is set to GET.
3. Enter the following URL in the box, replacing <SubscriptionID> with  

your own:
https://management.core.windows.net/<SubscriptionID>/
cloudservices

4. Add the header provided here in the Request Headers area:
x-ms-version:2010-10-28

This HTTP header specifies the service version we want and is mandatory. 
Currently, there is only one version, but over time the service may change,  
and this will allow you to call a particular version of it.
Your Fiddler request should look like the following screenshot:

Retrieving a list of cloud services

5. Click on the Execute button.



API

[ 116 ]

If all went as planned, you should now see the results of the call in the Fiddler 
window as shown in the following screenshot. What you are looking at is a list, in 
XML format, of all the BizTalk Services instances provisioned for the subscription 
you passed in as the argument. If you were to call this API programmatically, you 
could read through the XML and pull out particular properties for each instance 
and perhaps stop or restart them all. I've blurred out the subscription IDs and other 
details for obvious reasons.

 

Retrieving a list of cloud services

With the results of this call, we can now retrieve the details of a single WABS 
instance with the following URL. Here, the cloud service name returned by the 
previous call is passed into the Get Cloud Service call:

https://management.core.windows.net/<SubscriptionID>/cloudservices/<C
loudServiceName>



Chapter 6

[ 117 ]

The request and response are shown in the following screenshot:

Retrieving a single BizTalk Services instance

Back up and restore
Now that we've looked at a simple example of what the WABS API can do, let's 
look at some of the more interesting capabilities. An essential aspect of enterprise 
development is the ability to move artifacts between environments. Commonly, 
an organization or team will have a development, testing, user acceptance, and 
production environment (and multiple instances of each). This DTAP (dev, test, 
user, and prod) setup is perfectly possible with BizTalk Services by creating multiple 
service instances and provisioning them as required. Then, each can be used as 
desired to manage the overall integration estate.



API

[ 118 ]

Backing up a BizTalk Services instance is not just useful to move content between 
environments, but can also be used to keep a set of backups or snapshots of a 
particular environment for disaster recovery or to restore to a particular point in 
time. It is also possible to restore an instance to a different version of the service, 
provided that the service type is at least the same or higher. For example, a Basic 
subscription can be restored to not just another Basic sub, but to Standard or 
Premium as well. Downgrading however, is not possible, and nor is backing up a 
Developer instance of the service.

This feature now has (as of the February 2014 service update) out of the box tooling 
via the Windows Azure Management Portal as shown in the following screenshot 
in the CONFIGURE tab. While the portal UI now allows you to back up a service 
instance and even create a new BizTalk Services instance from a backup, using 
the API programmatically is very useful. The API provides the ability to move or 
"promote" a set of artifacts from one instance (say Test) to another (for example, 
User Acceptance) programmatically. In this section, we'll look at how to achieve this 
capability with the REST API by writing some .NET code to do it. As you'll see, this 
is very easy and straightforward to perform.

Back up BizTalk Service Instance with the Management Portal



Chapter 6

[ 119 ]

Before trying this out, I should point out that this capability provides a similar copy 
of the service instance. It's quite possible (even likely) that some of your settings or 
configuration is environment specific. For example, if your bridges send messages 
to Service Bus queues, it is unlikely that you would use the same queues for test as 
production. Therefore, while being able to back up one environment and restore to 
another is certainly very useful, you also need to think about using the REST API to 
apply configuration changes on top of a restored service instance.

Open Visual Studio and create a new console application. Call it BackupService. In 
the static Main method, add the following code to replace the empty Main method:

static void Main()
  {
    Task t = new Task(Run);
    t.Start();
    Console.ReadLine();
  }

Now add the Run method as shown in the next code snippet. This code formats  
the required URL to make the backup API call. For this, three pieces of information 
are required.

Firstly, you'll need your Windows Azure subscription ID; this is the same ID as 
discussed earlier, and you can obtain it as before through the Windows Azure portal 
in the Upload management certificate screenshot in the Calling the API section. You'll 
also need the service name. This is the value in the Name field as shown previously, 
and you can obtain yours by making that API call in Fiddler as we saw. The final 
piece of data you need is the resource name of the BizTalk Services instance. This 
is the name you gave your WABS instance when you created it. It can be obtained 
either through the Azure portal, by clicking the BizTalk Services link, or again by 
using Fiddler as shown in the previous screenshot. The name you need is under the 
Resources/Resource/Name element. Replace the three placeholders in the code 
with your service values as shown in the following code:

static void Run()
{
  string subscriptionId = "<SubscriptionID>";
  string operationName = "cloudservices";
  string serviceName = "<servicename>";
  string resourceName = "<resourcename>";
  Uri requestUri = new Uri("https://management.core.windows.net/"
                                    + subscriptionId
                                    + "/cloudservices/" 
                                    + serviceName



API

[ 120 ]

                                    + "/resources/biztalkservices/~/
biztalk/"
                                    + resourceName
                                    + "/?comp=backup");
MakeRequest(requestUri);
}

Now, add the following two assembly references that contain the necessary types to 
make the request to the service endpoint:

System.Net.Http
System.net.Http.Request

Add the following method directly underneath the previously added code. This 
will set up the call to the Backup REST API, and to do this, it needs your certificate. 
As discussed earlier, the management API calls authenticate services using mutual 
certificates, and therefore we need to pass our certificate. However, as the rule that 
we added to Fiddler earlier sends the client certificate with each request made to the 
management URL, we don't need to send the certificate in the code—you just need to 
ensure that Fiddler is still running (the code is provided to add the certificate later if 
you want to run it without Fiddler). This simplifies things quite a bit.

static async void MakeRequest(Uri requestUri) {
   string payload =
"{\"BackupName\":\"<backupname>\",\"BackupStoreConnectionString\":\"Ac
countName=<storageaccountname>;AccountKey=<storageaccountkey>;DefaultE
ndpointsProtocol=https\"}";
        
   HttpContent content = new StringContent(payload);
   content.Headers.ContentType.MediaType = "application/json";
   content.Headers.Add("x-ms-version", "2010-10-28");
   using (var client = new HttpClient())
   {
      var response = await client.PostAsync(requestUri, content);
      response.EnsureSuccessStatusCode();
      Console.WriteLine("Backup started");
   }
}



Chapter 6

[ 121 ]

You need to replace the <storageaccountname> and <storageaccountkey> 
values in the preceding code with your own storage account details. To obtain your 
AccountName and AccountKey values, do the following:

1. Go to the Azure Management Portal.
2. Click on the Storage icon in the left-hand navigation bar.
3. In the list of storage accounts, select the one that has the same name as the 

one created by your BizTalk Services instance.
4. Click on the Manage Access Keys button at the bottom of the page.
5. Copy and paste the Storage Account Name and Primary Access Key fields 

into the preceding code.

You can actually use any storage account you like in step 3, or even create a new one. 
The account is used to store the backed-up WABS instance. The third placeholder in 
the code is <backupname>. This is the label to use for backup, and it is good practice 
to name this something meaningful, such as with the date the backup was made.  
The label you use must start with a letter or a digit, can only contain digits, dashes 
(-), or lowercase letters, and can be between 3 and 63 characters long. Dashes must 
not be consecutive.

The format of the data posted to the service is JSON (JavaScript Object Notation), 
and this is simply a string containing the storage account details and backup name. 
The PostAsync call will invoke the API and wait for a response. If successful, the 
service will return an OK response HTTP code 200. This API is asynchronous 
because the service backup can take up to an hour to complete. In response, we get 
a tracking identifier that allows you to check the status of the backup operation. The 
API provides a polling query for this that allows you to make a call passing your 
returned identifier (a GUID) and retrieve the results of the operation at any point. In 
this way, you can ensure that the backup was successfully completed.

Now that the code is complete, hit F5 to build and run it. If successful, the console 
application should just open and close down a few seconds later. You might want 
to put a couple of breakpoints in the code and run it to see if it's working. I've 
also omitted any exception handling code for brevity. If it fails to call the API, an 
exception will be thrown. In such a case, run the debugger so you can determine 
what the problem is.

Of course, there is also a reciprocal Restore API call that allows you to restore a 
previously backed up instance to any other BizTalk Service instance.



API

[ 122 ]

As I mentioned previously, you need to keep Fiddler running for this example as 
Fiddler is supplying the necessary certificate. If you want to run without Fiddler, just 
add the following code at the start of the MakeRequest method, replacing the <your 
thumbprint> placeholder with your own certificate's thumbprint as displayed in the 
Azure Management Portal:

var certHandler = new WebRequestHandler();
string certThumbprint = "<your thumbprint>";
X509Store certStore = new X509Store(StoreName.My,     
                                    StoreLocation.CurrentUser);
certStore.Open(OpenFlags.ReadOnly);
X509Certificate2Collection certCollection = certStore.Certificates.
Find(X509FindType.FindByThumbprint, certThumbprint, false);
certStore.Close();
X509Certificate2 certificate = certCollection[0];
certHandler.ClientCertificates.Add(certificate);You also need to 
change the using statement as shown below to pass in the certificate 
from:
using (var client = new HttpClient())
To:
using (var client = new HttpClient(certHandler))

The preceding code retrieves your certificate from your local machine's certificate 
store. You therefore need to ensure it is stored already. To do this, double-click on 
your certificate, and in the wizard that appears, do the following:

1. Accept any security warnings first.
2. Click on the Install Certificate button.
3. For the Store Location option, select Local Machine.
4. Accept any warning that appears.
5. Select Place all certificates in the following store.
6. Click on the Browse button.
7. Select Personal and click on OK.
8. Click on Next and then Finish.
9. You should see a message confirming successful installation.
10. Close the dialog.



Chapter 6

[ 123 ]

Using PowerShell
So far, we've seen two different ways to utilize the API provided by BizTalk Services, 
directly making HTTP requests in Fiddler and by writing code to make the calls 
to it programmatically. Now we'll look at an even easier way, using Windows 
PowerShell. Windows PowerShell is a command-line tool aimed at administrators 
that provides a consistent way to perform tasks across many Microsoft products (and 
third-party ones). With PowerShell, it is possible to automate common actions and 
create sophisticated scripts that perform configuration and administration of BizTalk 
Services environments and Azure in general.

BizTalk Services provides a set of PowerShell cmdlets that can call the complete set 
of APIs provided. Cmdlets are units of functionality that are executed in PowerShell, 
and BizTalk Services provides a cmdlet for each API call available.

To be absolutely correct, BizTalk Services actually provides two sets of cmdlets.  
The first is installed when you download and install the BizTalk Services SDK while 
the second needs to be downloaded. The first allows control over the artifacts in a 
provisioned BizTalk Services instance while the second allows control over BizTalk 
Services as a whole—including creating new BizTalk Services instances. As the 
second set is associated with the APIs we've already been looking at, we'll start 
there. This second set is provided as source code and can be downloaded from the 
following link:

http://code.msdn.microsoft.com/windowsazure/Windows-Azure-BizTalk-
91e1bdf3

As it is the source code, it needs to be opened and compiled in Visual Studio. 
We should also note that this is a sample and not officially supported code from 
Microsoft. Once the source code is built, open PowerShell on Windows 8/Server 
2012 by clicking on the Start button and typing PowerShell (on Windows 8 or 2012). 
You should see Windows Azure PowerShell appear in the list of results. Click on it to 
launch it. If you don't see Windows Azure PowerShell, make sure you have installed 
it and you have at least Version 0.6.19 installed.

In the PowerShell command window, enter the following command to load  
the cmdlets:

import-module  
  <pathtosource>/Microsoft.WindowsAzure.Management.BizTalkService.dll



API

[ 124 ]

In order to use the cmdlets, the subscription context must first be set. Do this by 
entering the following code in the command window:

$sub = '<subscription ID>'

$thumbprint = '<certificate thumbprint>'

$cert = Get-Item cert:\\LocalMachine\My\$thumbprint

Set-AzureSubscription -SubscriptionName "Test" -SubscriptionId $sub 
-Certificate $cert

select-azuresubscription –SubscriptionName "Test"

You should now know how to obtain the value for <subscription ID> that needs to 
be substituted. For <certificate thumbprint>, if you followed the steps earlier to 
generate and upload a certificate, you need to replace this value with the thumbprint 
of your own certificate. To find this, go to the Azure portal and click on Settings in 
the left-hand navigation bar. On the Settings page, click on Management Certificates 
and then cut and paste the value for the thumbprint column for the certificate you 
uploaded earlier.

I've used the value of Test in the previous code to name the subscription. This can 
be any label you like. It is only used to name the subscription during the PowerShell 
session. Now, as soon as this is done, all cmdlets will be executed in the context of 
the particular subscription.

As an example of how to use the cmdlets, let's look at one of the API calls we made 
earlier. In the command window, type the following command, substituting the 
name of your BizTalk Service instance for <service name>:

Get-AzureBizTalkService -resourcename <service name>

You should see a response in the command window similar to the one in the 
following screenshot:



Chapter 6

[ 125 ]

Get BizTalk Service cmdlet

Using the API doesn't stop at just being able to query the service. We can also create 
a brand new BizTalk Services instance or delete an existing one. It is also possible to 
suspend or resume a particular service instance if required. To create a new instance, 
the New-AzureBizTalkService cmdlet is provided. This takes the following form:

New-AzureBizTalkService -ResourceName MyNewBizTalk -Location "West 
Europe" –ConfigurationFile "c: \ create_new.xml"

Apart from the name of the instance and what data center to create it in, the main 
parameter is actually a file. The download for the source code actually contains a 
couple of example files that you can adapt for this purpose. The file you provide 
contains all the details that you would normally specify when creating a new service 
via the Azure portal; for example, the database to use, the certificate to protect the 
service with, the type of service—developer, premium, among others—and the ACS 
settings. Given what you know after reading this book, you should find editing the 
provided sample files with your settings quite straightforward. Once done, you can 
automate the creation of services to your heart's content!

OK, so far we've covered the management aspects of the BizTalk Services API. But 
as mentioned earlier, there is also another set of PowerShell cmdlets that are used to 
manipulate artifacts and settings in a BizTalk Services instance. This set of cmdlets is 
already installed if you have the BizTalk Services SDK installed, which by default is 
located under C:\Program Files\Windows Azure BizTalk Services Tools.



API

[ 126 ]

To load the cmdlets, type the following command in the PowerShell window:

import-module "C:\Program Files\Windows Azure BizTalk Services Tools\
Microsoft.BizTalk.Services.Powershell.dll"

This PowerShell module provides features that are not available in the UI of BizTalk 
Services via the portal. One example is the ability to start and stop a bridge. When 
a new bridge is deployed, it is active by default, but there are times when you may 
wish to stop a bridge from receiving messages. This can be achieved with the Stop-
AzureBizTalkBridgeSource cmdlet as follows:

Stop-AzureBizTalkBridgeSource –AcsNamespace <namespace> –IssuerName owner 
–IssuerKey <key> –BridgePath MyBridge

This will stop all sources available on the bridge MyBridge, but it's also possible to 
stop a particular source by providing the SourceName parameter. This is very useful 
when you need to perform maintenance that requires some or all of the sources 
to be temporarily stopped. To restart a bridge/source, the corresponding Start-
AzureBizTalkBridgeSource cmdlet is used with the same parameters.

The remaining cmdlets concern adding and removing artifacts such as  
bridges, schemas, certificates, and assemblies to a BizTalk Service. Visual Studio  
uses these API calls during deployment and their primary usage outside of this is  
to automate and manage deployments. For the full list of cmdlets, visit  
http://msdn.microsoft.com/en-us/library/windowsazure/dn232360.aspx.

Summary
In this chapter, we have looked at the API underpinning BizTalk Services. We've seen 
how to leverage the API from the humble web browser and how to use PowerShell 
cmdlets and write our own code to invoke it. We've looked at the different types of 
APIs, capabilities, and the cmdlets that wrap all of them, and hopefully you've seen 
how you can make use of the capabilities of the BizTalk Services API to create, manage, 
maintain, and more importantly, automate your BizTalk Services instances. In the next 
chapter, we will look at troubleshooting your integration solutions and how to use the 
tracking capabilities of WABS.



Tracking and Troubleshooting
In the last few chapters, we looked at the artifacts used in building a BizTalk Services 
solution. By now, you must be wondering how to track the message flow or, still 
better, how to troubleshoot if things didn't go as expected. In this chapter, we will 
look at the tools and common patterns to troubleshoot issues in BizTalk Services.

Specifically, we will focus on troubleshooting the following topics:

• Sources and destinations
• Schemas and transforms
• EAI bridges with custom code
• B2B agreements
• Hybrid connectivity

Messages and errors
First, let's quickly summarize the basics. Bridges are message channels that don't 
persist messages. This means any failure in the message processing will be returned 
as an HTTP error to the caller in the case of EAI bridges, and the message will be 
pushed to the suspend endpoint in the case of B2B bridges. The suspend endpoint 
is important in the case of B2B as the error in configuration or message structure 
cannot be sent back to the business partner, but is meant for consumption by the IT 
operator. This means in both EAI and B2B scenarios, all retries and resubmissions of 
messages post failures have to be done outside the bridge.



Tracking and Troubleshooting

[ 128 ]

Errors can occur in any of the following three scenarios:

• Errors during deployment time: This scenario includes all the errors 
associated with provisioning of the BizTalk Service deployment. In most 
cases, the error is self-explanatory and is shown in the Windows Azure 
Management Portal or sent back via the RDFE API. It is important to note 
that a BizTalk Service deployment name is unique. Custom domain merely 
serves to wrap a DNS name around the BizTalk Service deployment URL. 
The certificate of the domain needs to be uploaded in the Trusted Root 
Certification Authorities certificate store on the machine accessing the 
deployment. The storage and the Azure SQL Database used for tracking  
and archiving cannot be reused or deleted while the deployment is active.

• Errors during design time: This scenario includes all the errors during 
adding/updating/deleting a bridge, deploying a VS project, or adding/
updating/deleting an agreement from the BizTalk Services Portal. These 
errors surface in the Output window or the Error List window in Visual 
Studio for the EAI scenarios and in the status bar of the BizTalk Services 
Portal for the B2B scenarios, respectively.

• Errors during runtime: This scenario includes all the errors during the actual 
flow of messages between two applications or partners. This scenario can be 
further broken down into four subcategories:

 ° Errors when the message is sent to an endpoint external to BizTalk 
Services is faulty.

 ° Errors when the message is expected to be received from an endpoint 
external to BizTalk Services is faulty.

 ° Errors when the message is malformed and does not conform to the 
schemas configured in the bridge.

 ° Errors when components such as the bridge, transform, source, or 
hybrid destination in BizTalk Services do not function as expected. 
This usually classifies a bug in the product.

We will focus on runtime errors and the first three subcategories in particular. If tracking 
is enabled, tracking records are logged in the Windows Azure SQL Database. Tracking 
enables us to store interesting properties related to the message—from the header, 
body, or through lookup from another data source. Archiving persists the message data 
in a raw form in the case of EDI scenarios. For the EAI scenarios, archiving is possible 
by adding custom code as outlined in Chapter 4, Enterprise Application Integration. Data 
written into the Tracking and Archiving stores is carried out on a best effort basis, that is, 
if there is an error during the write operation to these stores, tracking and archiving will 
be skipped and message processing will continue in the bridge. The exception to this 
case is when the archiving of the AS2 messages is enabled with the Enable NRR option 
turned on in the AS2 agreement General Settings page. In these cases, the message 
processing fails if tracking/archiving cannot be completed successfully.



Chapter 7

[ 129 ]

Data for troubleshooting
In this section, we'll explore the different kinds of data available to  
troubleshoot issues.

Tracking
Every message that flows through the bridge is associated with a promoted property 
known as the Request ID, which is a GUID value on each incoming message. If the 
message is split into submessages, each submessage gets its own tracking ID, which 
is also a GUID. If the Request ID is the same as the tracking ID, the message flows 
without debatching. The bridge endpoint URI and timestamp should point to the 
bridge and timing of the message. Tracking can be enabled from the bridge properties 
in VS and from an agreement's General Settings page in the BizTalk Services Portal.

The BizTalk Services Portal exposes the tracking data in a user-friendly way. There 
are three tabs that reflect the messages processed in the deployment. They are 
explained as follows:

• MESSAGES: This tab contains all the messages from sources, bridges, and 
agreements with errors or information-type entries. Each tracking entry details 
the message's incoming URL, its Request ID and tracking ID, whether the 
processing was an error or a success, the stage where the track record was 
emitted, and the date and time when it occurred. Use this view for tracking all 
the EAI and B2B messages passing through bridges and agreements. 

• PROTOCOL: This tab lists the track records for B2B interactions. The view is 
also categorized into the EDI and AS2 protocol levels. EDI calls out a message 
status for X12 and EDIFACT records with sender, receiver, message type (such 
as PO), acknowledgments such as technical acknowledgment and functional 
acknowledgment, Request ID, ID of the interchanged envelope to correlate 
with the track records of batching, and the date and time when this record 
was written. The AS2 records contain similar information, except that the 
acknowledgment reflects the Message Disposition Notification (MDN) status. 
Use this view to track all the B2B protocol stage-specific tracking entries.

• BATCHING: Finally, the BATCHING tab tracks the list of ongoing and 
completed batches along with the individual message information. The view 
tracks the batch name, the agreement for which the batch is configured, and 
the sender and receiver of the batching transaction. The entry also shows 
the size, count, and time when the transaction was received using which the 
customer can relate to the expected release criteria of the batch. Use this view 
to track all the messages in a batch.



Tracking and Troubleshooting

[ 130 ]

Each of the tabs also has a Search option, which can help filter the result by date 
range, message type, status, sender, or receiver.

Without searching for any option, the search option displays all 
the track records sorted by the latest date. This can also be used to 
refresh the page during testing.

The Tracking view is shown in the following screenshot:

 Tracking view in the BizTalk Services Portal

In some cases, it is required that you access the data directly from the Azure SQL 
Database tables. A common use case might be to build a notification system based 
on tracking events. The Azure SQL Database tracking tables used in tracking are as 
follows (note that none of these tables are supported or documented from Microsoft 
for issuing direct T-SQL queries):



Chapter 7

[ 131 ]

Table Data
[dbo].[PipelineTrackRecords] Bridges tracking records
[dbo].[SourceTrackRecords] Sources tracking records
[dbo].[EndpointAddressMap] Stores the URL of a bridge or a source and 

maps the address to the Pipeline and Source 
track records using a foreign key reference, 
EndpointAddressID

[dbo].[TrackRecordMessageProperties] Name and value pair of promoted 
properties of the message

[dbo].AS2*, [dbo].Batch*, [dbo].Functional*, 
[dbo].Interchange*, [dbo].TransactionSet* 
records 

EDI tracking records for AS2, MDN, 
batching, Interchange, Group, Transaction 
set records, and functional or technical 
acknowledgments

Traces and logfiles
Besides tracking, trace statements are also recorded in the Azure tables as a message 
flows through a bridge. Traces are useful to look for exceptions when the time period 
of the message failure is known. The information from tracing can supplement the 
tracking information from the BizTalk Services Portal. These traces are similar to the 
Event Trace Log (ETL) traces, except that the BizTalk Services traces are text based 
and stored in the Azure tables.

For each deployment, traces are logged on the Azure table named WADLogsTable 
created in the storage account specified while provisioning the BizTalk 
Services deployment. You can use a tool such as Azure Storage Explorer from 
azurestorageexplorer.codeplex.com or one of the commercial tools such as 
CloudBerry to connect to that Azure storage account and view the data in the table.

The following three fields in WADLogsTable are interesting:

• Timestamp: The date and time when the traces were logged.
• Message: Information, exception, or error message with a component or 

activity information.
• Level: Trace level varying among Fatal (1), Errors (2), Warnings (3), and 

Informational (4). The errors in level 2 are accompanied by the exception 
stack trace.



Tracking and Troubleshooting

[ 132 ]

Traces are extremely useful when troubleshooting custom code configured with 
bridges. As there can be hundreds of entries in a few minutes, you can filter the data 
in the table using one of the following commands in the Azure Storage Explorer tool:

• Timestamp gt datetime'2013-12-07T16:00:00'

• Level = 2

Note that the spacing as well as the casing is important in filtering the data.

In the case of the BizTalk Adapter Service, logfiles can be written by adding log 
interceptors in the service .config file. To troubleshoot the hybrid connectivity 
runtime, edit web.config in C:\Program Files\Microsoft BizTalk Adapter 
Service\BAServiceRuntime. The exact entries that must be added to generate 
logfiles are outlined in the Troubleshooting hybrid connectivity section.

Performance counters
You can use performance counters to assess the health of the system. Performance 
counters pertaining to the BizTalk Services deployment are stored in the storage 
account of the deployment and can be viewed from the Azure Management Portal's 
MONITOR tab as shown in the following screenshot:

Performance counters in monitoring view of Azure Management Portal



Chapter 7

[ 133 ]

The following performance counters are available for each deployment:

Performance counter name Unit Description
CPU Usage % Average CPU usage of all instances 

servicing the runtime messages
Failures at Source count Count of messages that failed in the 

sources
Failures in Process count Count of messages that failed during 

pipeline processing
Messages in Process count Count of messages currently in 

process by the deployment
Messages Processed count Count of messages successfully 

processed by the deployment
Messages Received count Count of messages received by the 

pipelines
Messages Sent count Count of messages sent or routed 

from each pipeline
Processing Latency milliseconds Average time taken to process a 

message from the validate stage to 
route for one-way bridges

Round Trip Latency milliseconds Average time taken to process a 
message round trip in two-way 
bridges

These counters can be useful to make configuration changes to the deployment. 
For example, if Messages Received is trending higher and this correlates with an 
increase in Failures in Process and a corresponding increase in Processing Latency, 
then the system may not be scaling up with the incoming rate. The IT administrator 
could plan scaling the deployment and look for changes in the performance counters.



Tracking and Troubleshooting

[ 134 ]

Troubleshooting sources and 
destinations
Sources can be one of the following: HTTP, FTP(s), SFTP, or Service Bus Queue and 
Topic. If the source endpoint is HTTP, it is common to see HTTP error codes on the 
client side sending the message, as shown in the following table:

Error scenario HTTP error code Description
Message to a nonexistent 
endpoint or wrong URL

400, 500 Bad Request, Internal Server Error, or 
Namespace cannot be resolved

Endpoint with malformed 
message headers

401 Authentication failed or Unauthorized 
request

Endpoint with malformed 
message body

500 Internal Server Error; see tracking or 
trace entries for more information

Destination endpoint down 500 Internal Server Error
Destination with incorrect 
credentials

500 Internal Server Error

Bridge destination is 
configured for HTTP relay but 
receiver is listening on HTTPS

500 Internal Server Error

In the case of FTP as source, if there are errors during the processing or at the 
destination, the message will not be deleted from the source. The polling interval 
would increase and the system would autoretry the submission of the message.

The following screenshots show the increase in the NewPollInterval field as seen in 
the PORTAL TRACKING view for the source name, Poll Error. Note that the poll 
interval increases by 1.5 times the current poll value for each new iteration. The  
next set of poll intervals would be around 227, 341, 512, and 768 seconds.



Chapter 7

[ 135 ]

Tracking entries indicating exponential poll over an FTP source

Some error scenarios while using FTP are as shown in the following table:

Error scenario HTTP error code Description
Wrong FTP URL or incorrect 
username or password

503 Failed to connect to FTP server  
and/or not logged in

Redeploy FTP while the 
existing service is active

400 One or more resources are in the 
started state; you can stop the source 
using PSCmdlet



Tracking and Troubleshooting

[ 136 ]

You can fix the issue based on the error message and use PSCmdlet  
Stop-AzureBizTalkBridgeSource and Start-AzureBizTalkBridgeSource to  
stop and start the source respectively. The following screenshot shows the execution 
of Get-AzureBizTalkBridgeSource to check the status of a source endpoint:

Getting source status using PSCmdlet

Troubleshooting schemas and 
transforms
Issues in schemas surface when a message fails validation against a schema. If the 
validation fails, say due to extra tags, then a tracking record is added for the XML 
validation stage, thus reporting an error.

If the tracking entry indicates a schema validation error, the easiest way to test the 
schema is to generate a test message. For EAI/B2B schemas, Visual Studio provides 
a handy utility to generate an instance of the schema. After the schema is added to 
the project, right-click on the schema and choose Generate Instance of the file. From 
the Properties window of the schema, you can generate an instance in native (for flat 
file) or the XML format, as shown in the following screenshot:



Chapter 7

[ 137 ]

Generating an instance of a schema from Visual Studio

Similar to schemas, transforms can generate erroneous output due to incorrect 
mapping, or one of the functoids can fault against a particular input. Transforms 
also support testing with sample data in Visual Studio. Maps can be tested by right-
clicking on the map and choosing Test Map, as shown in the following screenshot. 
Any errors during testing are indicated as transform runtime exceptions in the VS 
Error List window. If there are no errors, the output from the transform is indicated 
in the Output tab. If there are errors after the map is deployed during runtime, error 
tracking records with xmlTransform can be seen in the Tracking view.

Test Map functionality from Visual Studio



Tracking and Troubleshooting

[ 138 ]

Troubleshooting bridges
Earlier, we saw how to troubleshoot two stages of bridges, namely the schema 
validation stage and the transform stage. While using custom code inside a bridge, 
things can get difficult if the message processing runs into errors. It is recommended 
that you use IMessageInspectorContext.Tracer to log the System.Diagnostics.
TraceEventType error as part of the custom code. These statements would be 
surfaced in the WADLogsTable mentioned earlier.

Troubleshooting agreements
Agreements can either be a transport-level agreement, such as AS2, or a  
protocol-level agreement, such as X12 or EDIFACT. In B2B scenarios with X12 and 
EDIFACT agreements, it can happen that the transport status returned to the client 
sending the message is an HTTP 200 OK, but the message landed in the suspend 
endpoint. This can happen if there are protocol-level errors. Such errors would be 
indicated by the acknowledgment message.

Some sample scenarios are shown in the following table:

Configuration Scenario Outcome
AS2 standalone receive with 
sync MDN

Incorrect configuration, for 
example, certificate incorrect

HTTP 400 with error MDN 

AS2 standalone receive with 
async MDN

Incorrect configuration, for 
example, certificate incorrect

HTTP 200 OK for async 
and MDN with error

AS2 standalone send Incorrect configuration, for 
example, certificate incorrect

HTTP 500, AS2 Message 
Sender Activity error

X12 or EDIFACT standalone 
receive

Identities mismatch in the 
incoming message

HTTP 200 for a client may 
indicate success, but see 
the Tracking view if the 
message has ended up in 
the suspend destination 
with the error, NACK, to 
be sent back if configured

X12 or EDIFACT standalone 
send

Schema not found HTTP 200 for a client may 
indicate success, but see 
the Tracking view if the 
message has ended up in 
the suspend destination 
with the error, NACK, to 
be sent back if configured



Chapter 7

[ 139 ]

Troubleshooting hybrid connectivity
Finally, we wrap up our discussion by looking at troubleshooting hybrid 
connectivity. Primarily, this involves looking at the BizTalk Adapter Service,  
which was introduced in Chapter 4, Enterprise Application Integration.

To troubleshoot the hybrid connectivity runtime, add the following snippet to 
web.config in C:\Program Files\Microsoft BizTalk Adapter Service\
BAServiceRuntime with administrator access:

<system.diagnostics>
  <sources>
    <source name=  
      "Microsoft.ApplicationServer.Integration.BAService.Runtime"  
      switchValue="All">
<!-- Use Critical, Error, Warning, Verbose, All,  
  Information to adjust the log level -->
      <listeners>
        <add name="BAServiceRuntimeTrace" />
      </listeners>
    </source>
  </sources>
  <trace autoflush="true" />
    <sharedListeners>
      <add name="BAServiceRuntimeTrace" type=  
        "System.Diagnostics.XmlWriterTraceListener"  
        initializeData= "C:\logs\RuntimeTraceFile.xml" />
    </sharedListeners>
</system.diagnostics>
...
<system.serviceModel>
...
  <diagnostics>
    <messageLogging
      logEntireMessage="true"
      logMalformedMessages="true"
      logMessagesAtServiceLevel="true"
      logMessagesAtTransportLevel="true"
      maxMessagesToLog="3000"
      maxSizeOfMessageToLog="2000"/>
  </diagnostics>
</system.serviceModel>
</configuration>

The listener configures the traces to be output to an XML file in the user's folder 
specified in the configuration. Post messaging, we can look at the trace log file to 
check for errors with the Line of Business access or service configuration issues.



Tracking and Troubleshooting

[ 140 ]

Summary
In this chapter, we have looked at the ways to collect data to troubleshoot BizTalk 
Services. This helps in maintaining the health of the service. We also looked at the error 
scenarios of the key components in BizTalk Services and ways to troubleshoot them.

Troubleshooting is as much an art as it is a science and usually involves a methodical 
approach to identify and fix a problem. In the next and final chapter, we will look at 
migration and also capabilities that could be added in the Integration platform.



Moving to BizTalk Services
In this final chapter, we will discuss how to move to BizTalk Services. All through 
this book, we've looked at the new features of BizTalk Services and what they  
enable, but the likelihood is that you'll be wanting to move existing solutions to 
BizTalk Services. As you're reading this book, we'll make a further assumption that 
you want to know more about moving BizTalk Server solutions on-premises to 
BizTalk Services.

In this chapter, we'll look at the following topics:

• What's available to help move BizTalk Server solutions to BizTalk Services
• How to deal with differences between the products
• Future plans for BizTalk Services

By the end of this chapter, you should have a good understanding of how to tackle 
moving the existing BizTalk Server solutions to BizTalk Services and what is planned 
in the evolution of BizTalk Services to make this even easier.



Moving to BizTalk Services

[ 142 ]

Moving from BizTalk Server
BizTalk Server consists of a number of architectural components, only some of which 
have parity in BizTalk Services. These are listed in the following table, which shows 
the comparison of BizTalk Server and BizTalk Services:

BizTalk Server BizTalk Services
Map Transform
Pipeline Bridge
Business Rules Engine No equivalent / custom coding needed
Business Activity Monitoring No equivalent / custom coding needed
Orchestration Workflow outside of service
Adapters Bridge sources and destinations
Schema Schema
Tracking Tracking
Trading Partner Management Trading Partner Management

As you can see from the preceding table, there are a number of functional differences 
between BizTalk Services v1.0 and BizTalk Server. This is to be expected, as BizTalk 
Server is an established, mature product that was first shipped in 2000; it has 
received numerous updates over time. BizTalk Services, on the other hand, was GA'd 
(released for general availability) on November 21, 2013. However, all is certainly not 
lost, as there are several ways to mitigate the effort of moving from one to the other. 
In the following sections, we'll look at the different types of artifacts in a BizTalk 
Server solution and how to migrate to BizTalk Services.

Maps
Chapter 2, Messages and Transforms, covered mapping in detail and mentioned a tool 
we'll look at more closely here. First though, let's answer the question of whether you 
even need a tool.

BizTalk Server provides the ability to run custom Extensible Stylesheet Language 
Transformations (XSLT)—just provide the path to an XSLT template file and the 
map contents are ignored. Maps written in this way do not need the conversion 
tool as you can simply take the XSLT and configure it in the same way in a BizTalk 
Services transform.



Chapter 8

[ 143 ]

The functional equivalent of maps in BizTalk are transforms in BizTalk Services, as 
you have already seen. The implementation of these technologies is, however, very 
different, and it is not possible to execute BizTalk Server maps in BizTalk Services. 

Microsoft has released a conversion tool that takes a BizTalk map, a .btm file, as the 
input, and outputs a BizTalk Services transform file, .trfm. Let's see how this works.

In Chapter 2, Messages and Transforms, we looked at a BizTalk Services transform and 
the source and target schemas for it. Here, we'll revisit these schemas and look at the 
equivalent original BizTalk Server map. This is shown in the following screenshot:

A BizTalk Server map



Moving to BizTalk Services

[ 144 ]

The conversion tool is part of the BizTalk Services SDK available at http://www.
microsoft.com/en-us/download/details.aspx?id=39087. Select the Tools.
zip download and unzip it on your local machine. This is a command-line-driven 
tool, so here, I'll open a command window as shown in the following screenshot. 
The executable takes only two parameters: the path to the BizTalk .btm file and the 
output .trfm file (which is actually optional).

The BizTalk map conversion tool

The resultant BizTalk Services transform is shown in the following screenshot. 
Running this yields exactly the same output as the transform we created in Chapter 2, 
Messages and Transforms.

A converted map



Chapter 8

[ 145 ]

As you've just seen, the conversion tool is a useful way to reuse existing maps in 
BizTalk Services. It is often the case that a large investment has been made in BizTalk 
maps, and this tool allows them to be converted with minimal effort in many cases. 
However, the tool is not without a few limitations that will require some rework to 
the resultant transforms.

One fix that may be required to the generated transform if it won't load correctly 
is to change the ID values in the file as it can sometimes emit duplicates. When 
you attempt to open the map in Visual Studio, you may see the error shown in the 
following screenshot:

The mapping error message

This should be a simple case of finding the ID that is flagged as a duplicate when you 
try and open the transform and substituting its value with a new, unique one. If the 
ID refers to a script, there will be at least two places where the duplicate ID will need 
to be changed. An example is shown in the following code where the contents of the 
Value tag contain a duplicate ID. Changing this to a unique value, for example, 14, 
will fix this in the sample accompanying this chapter.

<a1:KeyValueOfstringanyType>
   <a1:Key>Id</a1:Key>
   <a1:Value i:type="xs:int">13</a1:Value>
</a1:KeyValueOfstringanyType>

Generally, if the tool cannot convert the map, it will convert as much as it can and 
substitute functoids that cannot be converted with an arithmetic expression functoid 
in the transform. This will be empty and therefore won't compile to indicate that you 
need to review it. If a functoid conversion is not possible, the equivalent functoid in 
the transform will have no inputs to it, again to indicate that something has not been 
converted. A full list of current limitations is provided in the ReadMe.txt file in the 
same location as the tool itself.

The tool emits a logfile indicating the steps it took to convert the map. The Log.txt 
file will be written to the folder in which the tool was run in the command line.



Moving to BizTalk Services

[ 146 ]

Pipelines
Pipelines in BizTalk Server are used to process data between adapters and the 
MessageBox. This requirement is now provided by bridges in BizTalk Services. 
We've covered bridges in detail elsewhere in this book (Chapter 3, Bridges and  
Chapter 4, Enterprise Application Integration). You should find that usage of bridges 
and the ability to deploy custom code in them provides most of the functionality you 
would encounter with the pipelines and custom pipeline components. The BizTalk 
Services standard bridge stages match quite closely to those of BizTalk Server, as 
illustrated in the following table:

BizTalk Server stage BizTalk Services stage
Receive: Decode Enrich (1)
Receive: Disassemble Message Type / Enrich (2)
Receive: Validate Validate
Receive: ResolveParty N/A
Send: Pre-assemble Enrich (1)
Send: Assemble Enrich (2)
Send: Encode Send Reply
Receive and Send: Port maps Transform stage

If the stages in the preceding table seem a little arbitrary, it's because they are. Just 
as in BizTalk Server it was perfectly possible to do everything in a single stage 
(depending on which stage it is of course), so is the case with BizTalk Services. 
While BizTalk Services doesn't have the concept of pipeline components, it provides 
enough stage placeholders for your own code and, of course, provides many of 
the things out of the box for which you'd have traditionally written a custom 
pipeline component anyway, such as property promotion. Even though BizTalk 
Server provides four receive pipeline stages, and in fact, pipeline stages are actually 
configurable (you can define your own), no one really has ever bothered with that 
and nearly all solutions just use the decode and validate stages (if that). The send 
pipeline is even less important, but again, BizTalk Services provides a similar mirror 
image of stages in which you are able to perform work with the messages flowing 
through should you need to.

All this being said, it should be clear that if you encounter a solution that has custom 
pipeline components, you have some work to do, that is, to try and convert to 
BizTalk Services.



Chapter 8

[ 147 ]

Schema
Schema support is largely the same in BizTalk Services, and generally, you should 
not encounter too many issues moving your schemas between the two. There are 
some notable exceptions such as the ability to pass multiple schemas into BizTalk 
Server maps, which is currently not possible with BizTalk Services, but generally, 
schemas can be reused in a straightforward manner.

Adapters
BizTalk Services shares the same concept of adapters, albeit with a much smaller 
set. Additionally, BizTalk Services provides two approaches to integration: sources 
and destinations for a bridge as well as the BizTalk Adapter Service, which uses the 
Service Bus relay to pass messages to an Internet Information Services (IIS)-hosted 
Line of Business (LOB) adapter (actually, the same LOB adapters BizTalk ships with). 
Therefore, if the adapters your BizTalk Server solution needs are represented in the 
BizTalk Services set, the conversion is straightforward. However, there are hundreds of 
adapters available for BizTalk Server and a dozen or so for BizTalk Services, so clearly, 
there are some gaps. Some just won't make sense for a cloud-hosted platform (for 
example, the much-loved File adapter), but for others, this could present a problem.

Microsoft recognizes this potential issue and will, of course, seek to introduce new 
sources and destinations over time based on customer feedback. Microsoft is also 
planning to open up the architecture to provide an adapter SDK to enable you (or 
third parties) to build your own, thus offering another solution. Therefore, over time, 
this problem is likely to diminish.

Trading Partner Management (TPM)
BizTalk Server uses TPM to define and manage EDI trading partners. Organizations 
that use BizTalk's EDI capabilities will likely have hundreds or even thousands of 
trading partners set up in BizTalk and will want a way to migrate these partners to 
BizTalk Services if they wish to adopt it.

BizTalk Services takes the same approach to partner management as BizTalk, and 
changes made in BizTalk Server 2010 to the TPM model and schema were adopted 
in BizTalk Services. What this means is that the two are actually very similar and 
migration can be accomplished in a couple of ways.

For existing BizTalk Server users, the TPM Data Migration Tool is provided by 
Microsoft. This is included in the same Tools.zip download as the map conversion 
tool discussed earlier, and it is capable of migrating the TPM data from either 
BizTalk Server 2010 or 2013.



Moving to BizTalk Services

[ 148 ]

The BizTalk Server management console is shown in the following screenshot.  
Here, you can see two parties and an agreement that we want to migrate to  
BizTalk Services.

The BizTalk Server management console

To launch it, double-click on TPMMigration.exe and the application will appear as 
shown in the following screenshot:

The TPM Data Migration Tool



Chapter 8

[ 149 ]

The tool takes the SQL Server machine name for where the BizTalk Server 
management database resides and the ACS connection details for BizTalk  
Services as the input. It then displays the available partners to migrate as  
shown in the following screenshot:

Selecting partners to migrate

Here, I've picked the two partners from the BizTalk Server management console. 
Clicking on Next then displays the agreements. I only have one, shown in the 
following screenshot, which is between the two parties, so selecting this and  
clicking on Next will start the process of moving the partners and agreements to 
BizTalk Services:

Selecting agreements



Moving to BizTalk Services

[ 150 ]

Once the partners and agreements have been created in BizTalk Services, a Summary 
page details the work completed, as shown in the following screenshot:

The migration summary

Now, looking in the BizTalk Services portal, we can see that the partners and 
agreement have been created, as shown in the following screenshot:

The BizTalk Services portal

The tool should be able to migrate all the parties and agreements you have set up in 
BizTalk Server. The one limitation the tool has is that it won't move the certificates 
that you use to secure the conversations between your organization and the trading 
partners. These need to be migrated manually.



Chapter 8

[ 151 ]

The TPM Data Migration Tool is useful when moving from BizTalk Server 2010/2013 
to BizTalk Services. However, another option exists if you need to move from a 
different product or an earlier version of BizTalk Server. This option is also a useful 
approach if you want to programmatically create trading partners perhaps, from a 
custom application or via integration with another product. This approach uses the 
TPM API. In fact, the migration tool leverages this API as well to do its jobs.

Previously, the API that TPM used was not documented, and as such, customers 
were not supported if they wished to create trading partners in BizTalk 
programmatically. This is no longer the case. Microsoft has now published the API 
on MSDN, thus allowing customers to leverage it in a supported way.

The BizTalk Services TPM API is documented at the following location:

http://msdn.microsoft.com/en-us/library/windowsazure/dn232369.aspx

In order to call the TPM API, an OAuth WRAP token is necessary for authentication. 
This token is simply a string consisting of the following pieces of information:

• User name: owner
• Password: Issuer Key from ACS
• BizTalk Services endpoint name: https://<yourservice>.biztalk.

windows.net/

The process of calling the API is made up of two steps. First, POST a WRAP request 
and receive a WRAP token, which is then passed in on subsequent requests. The 
API is REST-based just like the other APIs we looked at in Chapter 6, API. It is harder 
(although not impossible) to invoke them in Fiddler (or the browser) because of the 
OAuth requirement (as opposed to mutual certificate authentication). Therefore, let's 
look at the code necessary to retrieve a list of partners as an example.

The following code will call Azure with the WRAP request and obtain a token:

string nameSpace = "<your WABS  namespace>"; // WABS namespace
string defaultIssuer = "owner"; // WABS issuer - usually "owner"
string defaultKey = "<your WABS key>"; // WABS issuer key
string serviceName = "gettingstartedwabs";
string address = string.Format((IFormatProvider)CultureInfo.
InvariantCulture, "https://{0}.{1}/{2}/",
nameSpace, "accesscontrol.windows.net", "WRAPv0.9");
string payload = string.Format((IFormatProvider) CultureInfo.
InvariantCulture,



Moving to BizTalk Services

[ 152 ]

"wrap_name={0}&wrap_password={1}&wrap_scope={2}", defaultIssuer,
                Uri.EscapeDataString(defaultKey),
                Uri.EscapeDataString("http://" + serviceName + 
".biztalk.windows.net/default/$PartnerManagement/Partners"));
            HttpContent content = new StringContent(payload);
            content.Headers.ContentType.MediaType = "application/x-
www-form-urlencoded";
using (var client = new HttpClient())
{
   // get WRAP token
   var response = await client.PostAsync(address, content);
   response.EnsureSuccessStatusCode();
   string token = await response.Content.ReadAsStringAsync();
   token = Uri.UnescapeDataString(token.Split('&')[0]);
}

This is quite straightforward. There are four pieces of information required. To 
obtain the ACS details for your BizTalk Services instance, go to the Azure portal, 
click on BizTalk Services in the left margin, select your instance, and click on 
Connection Information. You will find the namespace, issuer, and key here to 
substitute in the preceding code. The service name is the name you gave the BizTalk 
Services instance when you created it and will be the title displayed on the Azure 
portal dashboard.

This information is concatenated and sent to ACS. It validates and returns an 
authentication token—a string that can be used on subsequent calls.

The following piece of code (which should be placed just inside the preceding 
closing curly brace of the using statement) will pass in the token with the request 
and receive a list of partners in the specified BizTalk Services instance:

// get partner list
client.DefaultRequestHeaders.Add("x-ms-version", "1.0");
client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderV
alue("WRAP", "access_token=\"" + token.Substring(18) + "\"");
response = await client.GetAsync("https://" + serviceName + ".biztalk.
windows.net/default/$PartnerManagement/Partners");
// write out partner list
Console.WriteLine("Partners:");
System.Xml.XmlDocument doc = new XmlDocument();
doc.LoadXml(await response.Content.ReadAsStringAsync());
foreach (XmlElement node in doc.SelectNodes("//*[local-
name()='feed']//*[local-name()='entry']//*[local-
name()='content']//*[local-name()='properties']//*[local-
name()='Name']"))
{
   Console.WriteLine(node.InnerText);
}
Console.ReadLine(); // wait



Chapter 8

[ 153 ]

The preceding code performs an HTTP GET request on your BizTalk Services 
instance endpoint, appending the operation ($PartnerManagement/Partners) and 
passing the token. The response is an XML document containing all the partners set 
up in the BizTalk Services instance. To try this out, create a console application in 
Visual Studio and paste the code in the Main method, replacing the values marked in 
the code with your own service details. The resulting output from the partner import 
performed earlier is shown in the following screenshot:

List of partners

There is much more that can be done with the API, such as creating partners and 
updating or deleting them. However, the approach is always the same, so feel free  
to explore on your own and see what you can do!

EDIFACT support
BizTalk Services first shipped with support for X12 and AS/2. As of the February 
2014 service update, EDIFACT support is now also provided and will be particularly 
welcome for European customers.

Business Rules Engine (BRE)
Now we come to a few areas that are more problematic. BizTalk Server has  
provided a Business Rules Engine and editor since 2004, and as such, it is used in 
many BizTalk Server solutions. There is no equivalent in BizTalk Services currently.

Microsoft is planning to provide a rules engine as part of BizTalk Services at some 
point, but there is no timeline for it yet. The intention is to provide parity with 
BizTalk Server and improved tooling, and both of these developments will make 
moving from Server to Services easier when introduced.



Moving to BizTalk Services

[ 154 ]

In the meantime, one option is to convert BizTalk BRE rules to code. There are a 
number of solutions available that are able to convert BizTalk rules to Windows 
Workflow rules, and Windows Workflow rules are defined in code. Windows 
Workflow is also a part of the .NET framework, so there is no license cost in using it. 
Therefore, it is possible to run the code somewhere in the BizTalk Services solution, 
for example, in a bridge or transform. Of course, this is trivializing the problem 
slightly as BRE rules can access databases and other resources, so it may involve 
significantly more work than simple conversion. However, it is an option depending 
on what the rules are doing.

Orchestration
Probably the biggest challenge in moving BizTalk Server solutions to BizTalk Services 
is orchestration. Currently, there is no silver-bullet, automatic, or zero-effort way to 
convert or migrate orchestrations to BizTalk Services. There are some options though.

Microsoft plans to introduce workflow to BizTalk Services, and this will certainly 
help fill the gap. It means that orchestrations can be recoded to workflows and keep 
a similar architecture.

First, remember that a bridge is actually a workflow. This means that bridges already 
offer some capabilities that orchestrations may have been used for earlier, such as 
message enrichment and routing (which is a large percentage), and as such, it may 
already be possible to migrate orchestration-based solutions.

In the intervening period though, an alternative solution may have to be found. 
One solution is to use a workflow hosted in Azure, for example, in a worker role 
cloud service. BizTalk Services could invoke the cloud service by passing a message 
or data, and the service would run the workflow and return the results. This does 
change the architecture somewhat though as typically, the orchestration is in 
control—it may wait for a set interval or for specific responses from other systems 
and typically, an orchestration is used as the driver for a business process. It is worth 
remembering that bridges can be chained, so this style of process definition can be 
mimicked with BizTalk Services, where messages are processed, decisions are taken 
on routing (to more bridges), and so on. However, such a solution is likely to become 
complex and is best avoided.

It is perhaps unfortunate then that an overuse of orchestration in BizTalk Server has 
always been prevalent. Orchestration was seen as the "aha" moment in early BizTalk 
when acronyms such as Business Process Management (BPM) were in vogue. It's 
unfortunate because orchestration has often been used when it is not necessary, and 
a simpler solution could have been created without it. While education over time has 
helped somewhat, there is still a large body of complex orchestration-centric BizTalk 
Server applications. If we face this scenario, migration to BizTalk Services today will 
be challenging.



Chapter 8

[ 155 ]

When not to move
Before closing, its worth pointing out that BizTalk Services is not meant to replace 
BizTalk Server. While there are certainly many similarities in the capabilities offered 
(and more on the way), there are different reasons for using each. Here are some of 
the reasons you should continue using BizTalk Server on-premises:

• All of your connectivity points (applications, services, and so on) are  
on-premises

• A large investment in BizTalk Server-specific solutions—as this would be likely 
to require a complete rewrite, therefore, outweighing some of the benefits

• Usage of capabilities that are not in BizTalk Services or will not fit the cloud 
model, for example, File and MQ Series adapters

• Cloud is not the right solution because for example, security and/or regulatory 
restrictions, data classifications, or local laws may preclude sending such data 
over the public Internet or prevent storage of data off-premises

The future
Microsoft has committed to continuing investments in BizTalk Server and a strong 
roadmap for BizTalk Services. The following are the key announced developments 
coming for both products:

• BizTalk Server will ship a major release every alternate year
• A platform update release of BizTalk Server will ship every other year 

starting with BizTalk Server 2013 R2 this year
• The following additions are planned for BizTalk Services with a target of a 

quarterly release cadence:

 ° Workflow integration
 ° Rules engine integration
 ° Business Activity Monitoring
 ° Adapter extensibility/SDK
 ° Custom code improvements in bridges
 ° Integration with Windows Azure Active Directory (WAAD)
 ° Business Process Modelling Notation (BPMN) support
 ° Windows Azure store for third-party components
 ° Scheduled backups



Moving to BizTalk Services

[ 156 ]

Summary
In this chapter, we've looked at strategies and approaches for moving from BizTalk 
Server to BizTalk Services and some of the features that will be added to BizTalk 
Services that will make this easier. We tried to cover all the main building blocks 
of the BizTalk Server architecture and their equivalents (or alternatives) in BizTalk 
Services. As you've seen, while there is a significant overlap of functionality, it will 
take time for the BizTalk Services feature set to mature to the same level. The future 
for BizTalk Services is bright, and a fundamental tenet of Microsoft's cloud-first 
vision is to deliver frequent updates and enhancements in a way that simply isn't 
possible with shrink-wrapped on-premises products. Therefore, one can expect 
Microsoft to become even more customer focused and be able to action feedback and 
feature requests quicker than previously possible, all of which will enable Microsoft 
to help you move your existing solutions to the cloud.



Index
A
ACS, BizTalk Services  17
adapter  12
adapters, BizTalk Server  147
Add button  103
adoption factors  9
AgreementID property  98
agreements

about  96
troubleshooting  138

API
calling  112-116

application protocol  12
archiving

about  102
NRR  102

artifact  12
AS2 agreement

configuring, between Fabrikam and  
Contoso  104, 105

Azure Management Portal
BizTalk Services deployment,  

creating from  18, 19
URL  64

B
B2B  91-93
B2B, trading partners

direct enterprise integration  93
service provider integration  93

BAS
about  79
configuring  82
consuming, with bridges  83
installing  82

BAS architecture  80, 81
batching

about  99
release criteria  100, 101
selection criteria  100

BizTalk Adapter Service. See  BAS
BizTalk Portal

Inbound URI  96
protocol  96
route  96
suspend endpoint  96
transform  96
transport  96

BizTalk portal registration  19
BizTalk Server

adapters  147
Business Rules Engine (BRE)  153
EDIFACT support  153
maps  142-145
orchestrations  154
pipelines  146
roadmap for  155
schema  147
Trading Partner Management  

(TPM)  147-153
BizTalk Services

adapter  12
application protocol  12
architecture  13
artifact  12
backing up  117-122
bridge  11
business drivers  9
core scenarios  10
history  8



[ 158 ]

integration solutions, building  
on Azure  11, 12

life cycle  13
performance counters  133
per tenant dependencies  14
per tenant deployment  13
provisioning  17
provisioning service  13
registering  103
restoring  117-122
route  12
technical drivers  10
transform  12

BizTalk Services B2B
about  94
agreement  96
EDI message structure  95
extensibility  102
partner  96
property promotion  97
system properties  98

BizTalk Services project
creating  21

BizTalk Services, provisioning
ACS  17
BizTalk portal registration  19
certificates  17
storage requirements  17

BizTalk Services SDK
URL  20, 144

BizTalk Services solution
BizTalk Services project, creating  21
creating  20-27
Order schema, creating  21, 22
prerequisites  20
verifying  27, 28

bridge
about  11, 55
attributes  78, 79
configuring  47, 88, 89
deploying  89
enrichment  59-62
lookup  63-68
message processing  56, 57
messaging  58, 59
Pass-Through template  55
pipelines  77

sources  77
troubleshooting  138
XML One-Way template  55
XML Request-Reply template  55

brokered messaging  74
business drivers, BizTalk Services  9
business profiles  96
Business Rules Engine (BRE), BizTalk 

Server  153

C
certificates, BizTalk Services  17
CIDX

URL  94
cmdlets

URL  126
Contoso

and Fabrikam, configuring AS2 agreement 
between  104, 105

and Northwind, configuring X12 agreement 
between  106-109

configuring  103
core scenarios, BizTalk Services  10
cumulative operation  34
custom code, EAI

creating  87
message inspectors  84

D
data

tracking  129-131
data, troubleshooting

data, tracking  129-131
logfiles  131, 132
performance counters  132, 133
traces  131, 132

date and time operation  34
decode  78
Deploy command  89
deployment considerations  16
deployment time, errors  128
design time, errors  128
destinations  78

troubleshooting  134, 135
developer persona  15
direct enterprise integration  93



[ 159 ]

E
EAI

about  75, 76
bridge, configuring  88, 89
bridge, deploying  89
custom code  83
custom code, creating  87
messages, sending  90
prerequisites  86
schema, creating  86

EAI, BizTalk Services
bridges  77
destinations  78
sources  76
VETER pattern  77

ecosystem players  103
EDIFACT header and trailer  95
EDIFACT support, BizTalk Server  153
EDI message structure

group segment  95
interchange  95
transaction set  95

Enrich (E)  78
enrichment  59-62
Enterprise Application Integration. See  EAI
errors

deployment time  128
design time  128
runtime  128

Event Trace Log (ETL)  131
example

map, adding  31- 33
Execute button  115
expressions  34
extensibility  102
Extensible Stylesheet Language  

Transformations (XSLT)  142

F
Fabrikam

and Contoso, configuring AS2 agreement 
between  104, 105

configuring  103
failure

dealing with  52

Fiddler
URL  112

functoids  33

G
Get Context Property mapping operation  50
graphical mapping designer  30
group segment  95

H
HL7

URL  94
hybrid connectivity

BAS  79
BAS architecture  80, 81
BAS, configuring  82
BAS, consuming with bridges  83
BAS, installing  82
troubleshooting  139

I
Inbound URI  96
interchange  95
IT Pro persona  15

J
JSON (JavaScript Object Notation)  121

L
list operation  34
logfiles, troubleshooting  131, 132
lookup  63-68
loop operation  34

M
Main method  119
MakeRequest method  122
Manage Access Keys button  121
map

testing  44-46
mapper  30
mapping

about  49-51



[ 160 ]

problem  29
mapping operation

about  33-43
cumulative operation  34
date and time operation  34
expressions  34
list operation  34
loop operation  34
miscellaneous operation  34
String operation  34
URL  34

maps, BizTalk Server  142-145
Maps property  47
Message Disposition Notification (MDN)  129
message inspectors  84
message processing  56, 57
MessageReceivedTime property  98
MessageReceiver  109, 110
MessageReceiver C# sample

URL  110
MessageReceiver sample

building  49
messages

sending  90
messaging  58, 59
miscellaneous operation  34
MSDN Code Gallery

URL  88

N
Non-repudiation of Receipt. See  NRR
Northwind

and Contoso, configuring X12 agreement 
between  106-109

configuring  103
NRR  102

O
OnBeforeRequest function  114
orchestrations, BizTalk Server  154
Order schema

creating  21, 22

P
partner  96

Partner administrator persona  15, 16
Pass-Through template  55
PDFTemplate utility

URL  86
performance counters  132, 133
personas

developer persona  15
IT Pro persona  15
Partner administrator persona  15, 16

per tenant dependencies  14
per tenant BizTalk Services  13
pipelines  77
pipelines, BizTalk Server  146
PowerShell

using  123-126
Professional Developers Conference (PDC)  8
property promotion  97
protocols

about  96
CIDX  94
HIPAA  94
PIDX  94
RosettaNet  94
SWIFT  94
UN/ EDIFACT  94
X12  94

provisioning services  13

R
Receive Settings

configuring  107
Red Dog Front End (RDFE)  13
release criteria  100, 101
REST  112
RosettaNet

URL  94
route  12, 96
Route (R)  78
routing  68, 69
Run method  119
runtime, errors  128

S
schema

creating  86
troubleshooting  136, 137



[ 161 ]

schema, BizTalk Server  147
schema, BizTalk Services  31
selection criteria  100
Send button  72
Service Bus BrokeredMessage type

URL  74
Service Bus explorer application

URL  73
service provider integration  93
Services deployment

creating, from Azure  
Management Portal  18, 19

Settings button  52
SourceName parameter  126
SourceName property  98
sources  

about  76
troubleshooting  134, 135

SourceType property  98
storage requirements, BizTalk Services  17
String operation  34
suspend endpoint  96
SWIFT

URL  94
system properties  98
SystemRequestID property  98

T
technical drivers, BizTalk Services  10
Test Map Input File property  46
traces, troubleshooting  131, 132
tracking

about  85, 101, 102
NRR  102

tracking data
viewing  90, 110

Trading Partner Management Object Model 
(TPM OM)  102

Trading Partner Management (TPM),  
BizTalk Server  147-153

transaction set  95
transforms

about  12, 96
troubleshooting  136, 137

Transform (T)  78
transport  96

U
UN/ EDIFACT

URL  94
user interface (UI)  67

V
Validate Instance command  23
Validate (V)  78
Value Added Networks (VANs)  93
VETER pattern  77
VETER pattern, stages

decode  78
Enrich (E)  78
Route (R)  78
Transform (T)  78
Validate (V)  78

W
WADLogsTable  131
WebSender  109, 110
Web Sender C# sample

URL  110
Windows Azure BizTalk Services  

(WABS)  111
Windows Azure documentation

URL  16
Windows Azure Management Portal

URL  113
Windows Workflow Foundation (WF4)  55

X
X12

URL  94
X12 agreement

configuring, between Northwind and 
 Contoso  106-109

X12 header and trailer  95
XML One-Way template  55
XML Request-Reply template  55
XML Schema Definition

URL  30





 

Thank you for buying  
Getting Started with BizTalk Services

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to 
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to 
books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Microsoft BizTalk ESB Toolkit 2.1
ISBN: 978-1-84968-864-2             Paperback: 130 pages

Discover innovative ways to solve your mission-
critical integration problems with the ESB Toolkit

1. A comprehensive guide to implementing 
quality integration solutions.

2. Instructs you about the best practices for the 
ESB and also advises you on what not to do 
with this tool.

3. A sneak view of what's new in the ESB  
Toolkit 2.2.

(MCTS) Microsoft BizTalk 
Server (70-595) Certification and 
Assessment Guide Second Edition
ISBN: 978-1-78217-210-9             Paperback: 570 pages

Including Microsoft Partner Network Technical 
Competency Assessment for Application Integration 
(BizTalk Server 2013) and Windows Azure BizTalk 
Services coverage

1. Features a comprehensive set of test questions 
and answers that will prepare you for the  
actual tests.

2. The layout and content of the book matches the 
structure of the exam closely, which maximizes 
your study time and helps you focus on 
learning areas where you need improvement.

Please check www.PacktPub.com for information on our titles



Pentaho Data Integration 
Beginner's Guide Second Edition
ISBN: 978-1-78216-504-0             Paperback: 502 pages

Get up and running with the Pentaho Data Integration 
tool using this hands-on, easy-to-read guide

1. Manipulate your data by exploring, 
transforming, validating, and integrating it.

2. Learn to migrate data between applications.

3. Explore several features of Pentaho Data 
Integration 5.0.

4. Connect to any database engine, explore the 
databases, and perform all kind of operations  
on databases.

Getting Started with Oracle 
WebLogic Server 12c: 
Developer's Guide
ISBN: 978-1-84968-696-9            Paperback: 374  pages

Understand Java EE 6, JDK 7, and Oracle WebLogic 
Server 12c concepts by creating a fully-featured 
application with this step-by-step handbook

1. Create a complete Java EE 6 application 
leveraging WebLogic features like JMS, SOAP 
and RESTful Web Services.

2. Learn how to use Oracle WebLogic Server's key 
components and features.

3. Step-by-step instructions with screenshots  
and code samples to help understand and 
apply concepts.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hello BizTalk Services
	Background
	BizTalk Services business drivers
	BizTalk Services technical drivers
	Core scenarios
	BizTalk Services concepts
	BizTalk Services life cycle and architecture
	Personas and tools
	Developer
	IT Pro
	Partner Administrator

	Deployment considerations
	Provisioning BizTalk Services
	Certificates and ACS
	Storage requirements
	The BizTalk Services create wizard
	BizTalk portal registration

	Creating your first BizTalk Services solution
	Scenario description
	Prerequisites
	Realizing the solution
	Creating a BizTalk Services project
	Creating the Order schema
	Creating the BizTalk Services solution


	Verifying the solution
	Summary

	Chapter 2: Messages and Transforms
	The problem
	The mapper
	The map designer
	Schema
	An example
	Mapping operations
	Testing
	Configuring a bridge
	Putting it all together
	More on mapping
	Dealing with failure
	Summary

	Chapter 3: Bridges
	Pipeline processing
	Message processing
	Messaging
	Enrichment
	Lookups
	Routing
	Trying it out
	Brokered messaging
	Summary

	Chapter 4: Enterprise Application Integration
	Enterprise application integration scenarios
	EAI in BizTalk Services
	Sources
	Bridges and the VETER pattern
	Destinations
	Attributes of bridges

	Hybrid connectivity
	The BizTalk Adapter Service
	The BAS architecture
	BAS installation and configuration
	Consuming BAS with bridges

	Custom code in EAI
	Message inspectors

	Tracking
	Scenario walk-through
	Prerequisites
	Solution
	Creating a schema
	Creating custom code
	Configuring the bridge
	Deploying the bridge
	Sending messages

	Viewing tracking data

	Summary

	Chapter 5: Business-to-business Integration
	Basic concepts of B2B
	Common interaction models
	Direct enterprise integration
	Service provider integration

	Industry standards and protocols
	Concepts in BizTalk Services B2B
	EDI message structure
	Partners and agreements
	Property promotion
	Batching
	Selection criteria
	Release criteria

	Tracking and archiving
	Non-repudiation

	Extensibility

	Scenario walk-through
	Ecosystem players
	Fabrikam-registered BizTalk Services
	Configuring partners – Fabrikam, Northwind, and Contoso
	Configuring the AS2 agreement between Fabrikam and Contoso
	Configuring the X12 agreement between Northwind and Contoso
	Sending messages
	Viewing tracking data

	Summary

	Chapter 6: API
	REST
	Calling the API
	Back up and restore
	Using PowerShell
	Summary

	Chapter 7: Tracking and Troubleshooting
	Messages and errors
	Troubleshooting data
	Tracking
	Traces and logfiles
	Performance counters

	Troubleshooting sources and destinations
	Troubleshooting schemas and transforms
	Troubleshooting bridges
	Troubleshooting agreements
	Troubleshooting hybrid connectivity
	Summary

	Chapter 8: Moving to BizTalk Services
	Moving from BizTalk Server
	Maps
	Pipelines
	Schema
	Adapters
	Trading Partner Management (TPM)
	EDIFACT support
	Business Rules Engine (BRE)
	Orchestration

	When not to move
	The future
	Summary

	Index



