
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Greenplum
for Big Data Analytics

A hands-on guide on how to execute an analytics
project from conceptualization to operationalization
using Greenplum

Sunila Gollapudi

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Greenplum for Big Data Analytics

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1171013

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-704-3

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sunila Gollapudi

Reviewers
Brian Feeny

Scott Kahler

Alan Koskelin

Tuomas Nevanranta

Acquisition Editor
Kevin Colaco

Commissioning Editor
Deepika Singh

Technical Editors
Kanhucharan Panda

Vivek Pillai

Project Coordinator
Amey Sawant

Proofreader
Bridget Braund

Indexer
Mariammal Chettiyar

Graphics
Valentina D'silva

Ronak Dhruv

Abhinash Sahu

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

In the last decade, we have seen the impact of exponential advances in technology on
the way we work, shop, communicate, and think. At the heart of this change is our
ability to collect and gain insights into data; and comments like "Data is the new oil"
or "we have a Data Revolution" only amplifies the importance of data in our lives.

Tim Berners-Lee, inventor of the World Wide Web said, "Data is a precious thing
and will last longer than the systems themselves." IBM recently stated that people
create a staggering 2.5 quintillion bytes of data every day (that's roughly equivalent
to over half a billion HD movie downloads). This information is generated from a
huge variety of sources including social media posts, digital pictures, videos, retail
transactions, and even the GPS tracking functions of mobile phones.

This data explosion has led to the term "Big Data" moving from an Industry
buzz word to practically a household term very rapidly. Harnessing "Big Data" to
extract insights is not an easy task; the potential rewards for finding these patterns
are huge, but it will require technologists and data scientists to work together to
solve these problems.

The book written by Sunila Gollapudi, Getting Started with Greenplum for Big Data
Analytics, has been carefully crafted to address the needs of both the technologists
and data scientists.

Sunila starts with providing excellent background to the Big Data problem and why
new thinking and skills are required. Along with a dive deep into advanced analytic
techniques, she brings out the difference in thinking between the "new" Big Data
science and the traditional "Business Intelligence", this is especially useful to help
understand and bridge the skill gap.

She moves on to discuss the computing side of the equation-handling scale, complexity
of data sets, and rapid response times. The key here is to eliminate the "noise" in
data early in the data science life cycle. Here, she talks about how to use one of the
industry's leading product platforms like Greenplum to build Big Data solutions with
an explanation on the need for a unified platform that can bring essential software
components (commercial/open source) together backed by a hardware/appliance.

www.allitebooks.com

http://www.allitebooks.org

She then puts the two together to get the desired result—how to get meaning out of
Big Data. In the process, she also brings out the capabilities of the R programming
language, which is mainly used in the area of statistical computing, graphics, and
advanced analytics.

Her easy-to-read practical style of writing with real examples shows her depth of
understanding of this subject. The book would be very useful for both data scientists
(who need to learn the computing side and technologies to understand) and also for
those who aspire to learn data science.

V. Laxmikanth
Managing Director

Broadridge Financial Solutions (India) Private Limited

www.broadridge.com

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sunila Gollapudi works as a Technology Architect for Broadridge Financial
Solutions Private Limited. She has over 13 years of experience in developing,
designing and architecting data-driven solutions with a focus on the banking
and financial services domain for around eight years. She drives Big Data and
data science practice for Broadridge. Her key roles have been Solutions Architect,
Technical leader, Big Data evangelist, and Mentor.

Sunila has a Master's degree in Computer Applications and her passion for
mathematics enthused her into data and analytics. She worked on Java, Distributed
Architecture, and was a SOA consultant and Integration Specialist before she
embarked on her data journey. She is a strong follower of open source technologies
and believes in the innovation that open source revolution brings.

She has been a speaker at various conferences and meetups on Java and Big Data.
Her current Big Data and data science specialties include Hadoop, Greenplum, R,
Weka, MADlib, advanced analytics, machine learning, and data integration tools
such as Pentaho and Informatica.

With a unique blend of technology and domain expertise, Sunila has been
instrumental in conceptualizing architectural patterns and providing reference
architecture for Big Data problems in the financial services domain.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

It was a pleasure to work with Packt Publishing on this project. Packt has been most
accommodating, extremely quick, and responsive to all requests.

I am deeply grateful to Broadridge for providing me the platform to explore and
build expertise in Big Data technologies. My greatest gratitude to Laxmikanth
V. (Managing Director, Broadridge) and Niladri Ray (Executive Vice President,
Broadridge) for all the trust, freedom, and confidence in me.

Thanks to my parents for having relentlessly encouraged me to explore any and
every subject that interested me.

Authors usually thank their spouses for their "patience and support" or words to
that effect. Unless one has lived through the actual experience, one cannot fully
comprehend how true this is. Over the last ten years, Kalyan has endured what must
have seemed like a nearly continuous stream of whining punctuated by occasional
outbursts of exhilaration and grandiosity—all of which before the background of the
self-absorbed attitude of a typical author. His patience and support were unfailing.

Last but not least, my love, my daughter, my angel, Nikita, who has been my
continuous drive. Without her being as accommodative as she was, this book
wouldn't have been possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Brian Feeny is a technologist/evangelist working with many Big Data technologies
such as analytics, visualization, data mining, machine learning, and statistics. He is a
graduate student in Software Engineering at Harvard University, primarily focused
on data science, where he gets to work on interesting data problems using some of
the latest methods and technology.

Brian works for Presidio Networked Solutions, where he helps businesses with their
Big Data challenges and helps them understand how to make best use of their data.

I would like to thank my wife, Scarlett, for her tolerance of my busy
schedule. I would like to thank Presidio, my employer, for investing
in in our Big Data practice. Lastly, I would like to thank EMC and
Pivotal for the excellent training and support they have given
Presidio and myself.

www.allitebooks.com

http://www.allitebooks.org

Scott Kahler started down the path in the mid 80s when he disconnected the
power LED on his Commodore 64. In this fashion he could run his handwritten
Dungeons and Dragons' random character generator, and his parents wouldn't
complain about the computer being on all night. Since that point of time, Scott Kahler
has been involved in technology and data.

His ability to get his hands on truly large datasets happened after the year 2000 failed
to end technology as we know it. Scott joined up with a bunch of talented people
to launch uclick.com (now gocomics.com) playing a role as a jack-of-all-trades:
Programmer, DBA, and System Administrator. It was there that he first dealt with
datasets that needed to be distributed to multiple nodes to be parsed and churned
on in a relatively quick amount of time. A decade later, he joined Adknowledge and
helped implement their Greenplum and Hadoop infrastructures taking roles as their
Big Data Architect and managing IT Operations. Scott, now works for Pivotal as a
field engineer spreading the gospel of next technology paradigm, scalable distributed
storage, and compute.

I would first and foremost like to thank my wife, Kate. She is the
primary reason I am able to do what I do. She provides strength
when I run into barriers and stability when life is hectic.

Alan Koskelin is a software developer living in the Madison, Wisconsin area. He
has worked in many industries including biotech, healthcare, and online retail. The
software, he develops, is often data-centric and his personal interests lean towards
ecological, environmental, and biological data.

Alan currently works for a nonprofit organization dedicated to improving reading
instruction in the primary grades.

Tuomas Nevanranta is a Business Intelligence professional in Helsinki, Finland.
He has an M.Sc. in Economics and Business Administration and a B.Sc. in Business
Information Technology. He is currently working in a Finnish company called Rongo.

Rongo is a leading Finnish Information Management consultancy company. Rongo
helps its customers to manage, refine, and utilize information in their businesses.
Rongo creates added value by offering market-leading Business Intelligence
solutions containing Big Data solutions, data warehousing, master data management,
reporting, and scorecards.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Big Data, Analytics, and Data Science Life Cycle 7

Enterprise data 7
Classification	 8
Features 10

Big Data 11
So, what is Big Data? 12
Multi-structured data 13

Data analytics 15
Data science 19

Data science life cycle 19
Phase 1 – state business problem 19
Phase 2 – set up data 20
Phase 3 – explore/transform data 20
Phase 4 – model 21
Phase 5 – publish insights 22
Phase 6 – measure effectiveness 22

References/Further reading 23
Summary 23

Chapter 2: Greenplum Unified Analytics Platform (UAP) 25
Big Data analytics – platform requirements 26
Greenplum Unified Analytics Platform (UAP) 28

Core components 29
Greenplum Database 29
Hadoop (HD) 30
Chorus 30
Command Center 30

Modules 31
Database modules 31
HD modules 32

Table of Contents

[ii]

Data Integration Accelerator (DIA) modules 32
Core architecture concepts 32

Data warehousing 32
Column-oriented databases 35
Parallel versus distributed computing/processing 36
Shared	nothing,	massive	parallel	processing	(MPP)	systems,	and	elastic	scalability	 38
Data loading patterns 41

Greenplum UAP components 45
Greenplum Database 45

The Greenplum Database physical architecture 46
The Greenplum high-availability architecture 49
High-speed data loading using external tables 50
External table types 51
Polymorphic data storage and historic data management 51
Data distribution 52

Hadoop (HD) 52
Hadoop Distributed File System (HDFS) 54
Hadoop MapReduce 55

Chorus 56
Greenplum Data Computing Appliance (DCA) 57
Greenplum Data Integration Accelerator (DIA) 58
References/Further reading 59
Summary 59

Chapter 3: Advanced Analytics – Paradigms,
Tools, and Techniques 61

Analytic paradigms 62
Descriptive analytics 62
Predictive analytics 63
Prescriptive analytics 64

Analytics classified 65
Classification	 65
Forecasting or prediction or regression 66
Clustering 67
Optimization	 68
Simulations	 68

Modeling methods 69
Decision trees 69
Association rules 73

The Apriori algorithm 75
Linear regression 77
Logistic	regression	 78
The	Naive	Bayesian	classifier	 79
K-means	clustering	 80

Table of Contents

[iii]

Text	analysis	 81
R programming 82
Weka 87
In-database analytics using MADlib 90
References/Further reading 91
Summary 91

Chapter 4: Implementing Analytics with Greenplum UAP 93
Data loading for Greenplum Database and HD 94

Greenplum data loading options 95
External tables 96
gpfdist 100
gpload 101

Hadoop (HD) data loading options 103
Sqoop 2 103
Greenplum BulkLoader for Hadoop 104

Using external ETL to load data into Greenplum 106
Extraction, Load, and Transformation (ELT) and Extraction,
Transformation,	Load,	and	Transformation	(ETLT)	 108
Greenplum	target	configuration	 108
Sourcing large volumes of data from Greenplum 109
Unsupported Greenplum data types 110
Push Down Optimization (PDO) 111

Greenplum table distribution and partitioning 111
Distribution 111

Data skew and performance 113
Optimizing the broadcast or redistribution motion for data co-location 114

Partitioning 114
Querying Greenplum Database and HD 116
Querying Greenplum Database 116

Analyzing and optimizing queries 117
Dynamic	Pipelining	in	Greenplum	 118
Querying HDFS 119

Hive 119
Pig 121

Data communication between Greenplum Database
and Hadoop (using external tables) 122

Data Computing Appliance (DCA) 123
Storage design, disk protection, and fault tolerance 125
Master	server	RAID	configurations	 125
Segment	server	RAID	configurations	 126

Monitoring DCA 127
Greenplum Database management 129
In-database analytics options (Greenplum-specific) 131

Window functions 132

Table of Contents

[iv]

The PARTITION BY clause 133
The ORDER BY clause 133
The OVER (ORDER BY…) clause 134
Creating, modifying, and dropping functions 134

User-defined	aggregates	 135
Using R with Greenplum 136

DBI Connector for R 136
PL/R 137

Using Weka with Greenplum 138
Using MADlib with Greenplum 139
Using Greenplum Chorus 141
Pivotal 142
References/Further Reading 143
Summary 143

Index 145

Preface
Big Data started off as a technology buzzword rapidly growing into the headline
agenda of several corporate strategies across industry verticals. With the amount
of structured and unstructured data available to organizations exploding, analysis
of these large data sets is increasingly becoming a key basis of competition,
productivity growth, and more importantly, product innovation.

Most technology approaches on Big Data appear to come across as linear deployments
of new technology stacks on top of their existing databases or data warehouse. Big
Data strategy is partly about solving the "computational" challenge that comes with
exponentially growing data, and more importantly about "uncovering the patterns"
and trends lying hidden in the heaps of data in these large data sets. Also, with
changing data storage and processing challenges, existing data warehousing and
business intelligence solutions need a face-lift, a requisite for new agile platforms
addressing all the aspects of Big Data has become inevitable. From loading/integrating
data to presenting analytical visualizations and reports, the new Big Data platforms
like Greenplum do it all. Very evidently, we now need to address this opportunity
with a combination of "art of data science" and "related tools/technologies".

This book is meant to serve as a practical, hands-on guide to learning and
implementing Big Data analytics using Greenplum and other related tools
and frameworks like Hadoop, R, MADlib, and Weka. Some key Big Data
architectural patterns are covered with detail on few relevant advanced analytics
techniques. includes required details to help onboard the readers to all the required
concepts, tools, and frameworks to implement a data analytics project.

Preface

[2]

R, Weka, MADlib, advanced SQL functions, and Windows functions are covered
for in-database analytics implementation. Infrastructure and hardware aspects of
Greenplum are covered along with some detail on the configurations and tuning.

Overall, from processing structured and unstructured data to presenting the results/
insights to key business stakeholders, this book introduces all the key aspects of the
technology and science.

Greenplum UAP is currently being repositioned by Pivotal. The
modules and components are being rebranded to include the "Pivotal"
tag and are being packaged under PivotalOne. Few of the VMware
products such as GemFire and SQLFire are being included in the
Pivotal Solution Suite along with RabbitMQ. Additionally, support/
integration with Complex Event Processing (CEP) for real-time
analytics is added. Hadoop (HD) distribution, now called Pivotal
HD, with new framework HAWQ has support for SQL-like querying
capabilities for Hadoop data (a framework similar to Impala from open
source distribution). However, the current features and capabilities of
the Greenplum UAP detailed in this book will still continue to exist.

What this book covers
Chapter 1, Big Data, Analytics, and Data Science Life Cycle, defines and introduces the
readers to the core aspects of Big Data and standard analytical techniques. It covers the
philosophy of data science with a detailed overview of standard life cycle and steps in
business context.

Chapter 2, Greenplum Unified Analytics Platform (UAP), elaborates the architecture and
application of Greenplum Unified Analytics Platform (UAP) in Big Data analytics'
context. It covers the appliance and the software part of the platform. Greenplum
UAP combines the capabilities to process structured and unstructured data with
a productivity engine and a social network engine that cans the barriers between
the data science teams. Tools and frameworks such as R, Weka, and MADlib that
integrate into the platform are elaborated.

Chapter 3, Advanced Analytics – Paradigms, Tools, and Techniques, introduces standard
analytic paradigms with a dive deep into some core data mining techniques such as
simulations, clustering, data mining, text analytics, decision trees, association rules,
linear and logistic regression, and so on. R programming, Weka, and in-database
analytics using MADlib are introduced in this chapter.

Preface

[3]

Chapter 4, Implementing Analytics with Greenplum UAP, covers the implementation
aspects of a data science project using Greenplum analytics platform. A detailed
guide to loading and unloading structured and unstructured data into Greenplum
and HD, along with the approach to integrate Informatica Power Center, R, Hadoop,
Weka, and MADlib with Greenplum is covered. A note on Chorus and other
Greenplum specific in-database analytic options are detailed.

What you need for this book
As a pre-requisite, this book assumes readers to have basic knowledge of distributed
and parallel computing, an understanding of core analytic techniques, and basic
exposure to programming.

In this book, readers will see a selective detailing on some implementation aspects of
data science project using Greenplum analytics platform (that includes Greenplum
Database, HD, in-database analytics utilities such as PL/XXX packages and
MADlib), R, and Weka.

Who this book is for
This book is meant for data scientists (or aspiring data scientists) and solution and
data architects who are looking for implementing analytic solutions for Big Data
using Greenplum integrated analytic platform. This book gives a right mix of detail
into technology, tools, framework, and the science part of the analytics.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Use runif to generate multiple random
numbers uniformly between two numbers."

A block of code is set as follows:

runif(1, 2, 3)
runif(10, 5.0, 7.5)

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "The
following screenshot shows an object browser window in Greenplum's pgAdminIII,
a client tool to manage database elements".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Big Data, Analytics, and Data
Science Life Cycle

Enterprise data has never been of such prominence as in the recent past. One of
the dominant challenges of today's major data influx in enterprises is establishing a
future-proof strategy focused on deriving meaningful insights tangibly contributing
to business growth.

This chapter introduces readers to the core aspects of Big Data, standard analytical
techniques, and data science as a practice in business context. In the chapters that
follow, these topics are further elaborated with a step-by-step implementation guide
to use Greenplum's Unified Analytics Platform (UAP).

The topics covered in this chapter are listed as follows:

• Enterprise data and its characteristics
• Context of Big Data—a definition and the paradigm shift
• Data formats such as structured, semi-structured, and unstructured data
• Data analysis, need, and overview of important analytical techniques

(statistical, predictive, mining, and so on)
• The philosophy of data science and its standard life cycle

Enterprise data
Before we take a deep dive into Big Data and analytics, let us understand the
important characteristics of enterprise data as a prerequisite.

Big Data, Analytics, and Data Science Life Cycle

[8]

Enterprise data signifies data in a perspective that is holistic to an enterprise. We are
talking about data that is centralized/integrated/federated, using diverse storage
strategy, from diverse sources (that are internal and/or external to the enterprise),
condensed and cleansed for quality, secure, and definitely scalable.

In short, enterprise data is the data that is seamlessly shared or available for
exploration where relevant information is used appropriately to gain competitive
advantage for an enterprise.

Data formats and access patterns are diverse which additionally drives some of the
need for various platforms. Any new strategic enterprise application development
should not assume the persistence requirements to be relational. For example, data
that is transactional in nature could be stored in a relational store and twitter feed
could be stored in NoSQL structure.

This would mean bringing in complexity that introduces learning new interfaces but
a benefit worth the performance gain.

It requires that an enterprise has the important data engineering aspects in place
to handle enterprise data effectively. The following list covers a few critical data
engineering aspects:

• Data architecture and design
• Database administration
• Data governance (that includes data life cycle management, compliance,

and security)

Classification
Enterprise data can be classified into the following categories:

• Transactional data: It is the data generated to handle day-to-day affairs
within an enterprise and reveals a snapshot of ongoing business processing.
It is used to control and run fundamental business tasks. This category
of data usually refers to a subset of data that is more recent and relevant.
This data requires a strong backup strategy and data loss is likely to entail
significant monetary impact and legal issues. Transactional data is owned
by Enterprise Transactional systems that are the actual source for the data as
well. This data is characterized by dynamicity. For example, order entry, new
account creation, payments, and so on.

Chapter 1

[9]

• Master and Reference data: Though we see Master data and Reference data
categorized under the same bucket, they are different in their own sense.
Reference data is all about the data that is usually outside the enterprise
and is Standards compliant and usually static in nature. On the other hand,
Master data is similar in definition with the only difference that it originates
from within the enterprise. Both Master and Reference data are referenced
by Transactional data and key to the operation of business. This data is
often non-transactional/static in nature and can be stored centralized or
duplicated. For example:
Reference data: country codes, PIN, branch codes, and so on
Master data: accounts, portfolio managers, departments, and so on

• Analytical data: Business data is analyzed and insights derived are presented
for decision making; data classified under this category usually is not owned
by the analyzing application. Transaction data from various transaction
processing systems is fed for analysis. This data is sliced and diced at various
levels to help problem solving, planning, and decision-support as it gives
multi-dimensional views of various business activities. It is usually larger in
volume and historic in nature when compared to transactional data.

In addition to the preceding categories, there are a few other important data
classifications. These classifications define the character data:

• Configuration data: This classification refers to the data that describes data
or defines the way data needs to be used. There can be many categories of
configuration data. For example, an application has many clients, and each
client needs to refer to a unique set of messaging configurations (let's say a
unique queue name) or information regarding how to format a report that
needs to be displayed for a particular user, and so on. This classification is
also referred to as metadata.

• Historic data: It refers to any data that is historic in nature. Typically gives
reference to facts at a given point in time. This data requires a robust archival
strategy as it is expected to be voluminous. At the same time, it would not
undergo any changes and is usually used as a reference for comparison.
Corrections/changes to historic data can happen only in the case of errors.
Examples can be, security price at a point in time, say January 20, 1996,
financial transactions of an account in the first quarter of the year, and so on.

Big Data, Analytics, and Data Science Life Cycle

[10]

• Transitional data: This is one of the most important data classifications
that refer to data that is intermediary and temporary in nature. This data
is usually generated to improve the data processing speed and could be
kept in memory that is evicted post its use. This data might not be available
for direct consumption. Example for this data classification can be an
intermediary computation data that is stored and is to be used in a bigger
scheme of data processing, like market value for each security to compute,
and rate of return on the overall value invested.

Features
In this section, we will understand the characteristic features of enterprise data. Each of
the listed characteristics describes a unique facet/behavior that would be elaborated in
the implementation perspective later in the Data Science life cycle section in this chapter.
Following are a few important characteristics of enterprise data:

• Included: Enterprise data is integrated and usually, but not mandatorily,
centralized to all applications within an enterprise. Data from various
sources and varied formats is either aggregated or federated for this purpose.
(Aggregation refers to physically combining data sets into a single structure
and location while federation is all about getting a centralized way to
access a variety of data sources to get the required data without physically
combining/merging the data.)

• Standards compliance: Data is represented/presented to the application in
context in a format that is either a standard to an enterprise/across enterprises.

• Secure: Data is securely accessible through authorization.

Chapter 1

[11]

• Scalable: In a context where data is integrated from various sources, the need
to support larger volumes becomes critical, and thus the scalability, both in
terms of storage and processing.

• Condensed/Cleansed/Consistent: Enterprise data can possibly be condensed
and cleansed to ensure data quality against a given set of data standards for
an enterprise.

• Varied sources and formats: Data is mostly combined from varied sources
and can continue to be stored in varied formats for optimized usage.

• Available: Enterprise data is always consistent with minimal data disparity
and available to all applications using it.

Big Data
One of the important aspects of enterprise data that we learned in the earlier section is
the data consolidation and sharing that requires unconstrained collection and access to
more data. Every time change is encountered in business, it is captured and recorded
as data. This data is usually in a raw form and unless processed cannot be of any value
to the business. Innovative analysis tools and software are now available that helps
convert this data into valuable information. Many cheap storage options are now
available and enterprises are encouraged to store more data and for a long time.

In this section, we will define the core aspects of Big Data, the paradigm shift and
attempt to define Big Data.

• A scale of terabytes, petabytes, exabytes, and higher is what the market
refers to in terms of volumes. Traditional database engines cannot scale to
handle these volumes. The following figure lists the orders of magnitude that
represents data volumes:

Big Data, Analytics, and Data Science Life Cycle

[12]

• Data formats generated and consumed may not be structured (for example,
relational data that can be normalized). This data is generated by large/
small scientific instruments, social networking sites, and so on. This can be
streaming data that is heterogeneous in nature and can be noisy (for example,
videos, mails, tweets, and so on). These formats are not supported by any of
the traditional datamarts, data store/data mining applications today.

Noisy data refers to the reduced degree of relevance of data in context.
It is the meaningless data that just adds to the need for higher storage
space and can adversely affect the result of data analysis. More noise in
data could mean more unnecessary/redundant/un-interpretable data.

• Traditionally, business/enterprise data used to be consumed in batches, in
specific windows and subject to processing. With the recent innovation in
advanced devices and the invasion of interconnect, data is now available
in real time and the need for processing insights in real time has become a
prime expectation.

• With all the above comes a need for processing efficiency. The processing
windows are getting shorter than ever. A simple parallel processing
framework like MapReduce has attempted to address this need.

In Big Data, handling volumes isn't a critical problem to solve; it is the
complexity involved in dealing with heterogeneous data that includes
a high degree of noise.

So, what is Big Data?
With all that we tried understanding previously; let's now define Big Data.

Big Data can be defined as an environment comprising of tools, processes, and
procedures that fosters discovery with data at its center. This discovery process
refers to our ability to derive business value from data and includes collecting,
manipulating, analyzing, and managing data.

We are talking about four discrete properties of data that require special tools,
processes, and procedures to handle:

• Increased volumes (to the degree of petabytes, and so on)
• Increased availability/accessibility of data (more real time)
• Increased formats (different types of data)
• Increased messiness (noisy)

Chapter 1

[13]

There is a paradigm shift seen as we now have technology to bring this all together
and analyze it.

Multi-structured data
In this section, we will discuss various data formats in the context of Big Data. Data
is categorized into three main data formats/types:

• Structured: Typically, data stored in a relational database can be categorized
as structured data. Data that is represented in a strict format is called
structured data. Structured data is organized in semantic chunks called
entities. These entities are grouped and relations can be defined. Each entity
has fixed features called attributes. These attributes have a fixed data type,
pre-defined length, constraints, default value definitions, and so on. One
important characteristic of structured data is that all entities of the same
group have the same attributes, format, length, and follow the same order.
Relational database management systems can hold this kind of data.

• Semi-structured: For some applications, data is collected in an ad-hoc
manner and how this data would be stored or processed is unknown at that
stage. Though the data has a structure, it sometimes doesn't comply with a
structure that the application is expecting it to be in. Here, different entities
can have different structures with no pre-defined structure. This kind of data
is defined to be semi-structured. For example, scientific data, bibliographic
data, and so on. Graph data structures can hold this kind of data. Some
characteristics of semi-structured data are listed as follows:

 ° Organized in semantic entities
 ° Similar entities are grouped together
 ° Entities in the same group may not have the same attributes
 ° Order of attributes isn't important
 ° There might be optional attributes

www.allitebooks.com

http://www.allitebooks.org

Big Data, Analytics, and Data Science Life Cycle

[14]

 ° Same attributes might have varying sizes
 ° Same attributes might be of varying type

• Unstructured: Unstructured data refers to the data that has no standard
structure and it could mean structure in its isolation. For example, videos,
images, documents emails, and so on. File-based storage systems support
storing this kind of data. Some key characteristics of unstructured data is
listed as follows:

 ° Data can be of any type
 ° Does not have any constraints or follow any rules
 ° It is very unpredictable
 ° Has no specific format or sequence

Data is often a mix of structured, semi-structured, and unstructured data.
Unstructured data usually works behind the scenes and eventually converts to
structured data.

Here are a few points for us to ponder:

• Data can be manifested in a structured way (for example, storing in a
relational format would mean structure), and there are structured ways of
expressing unstructured data, for example, text.

• Applications that process data need to understand the structure of data.
• The data that an application produces is usually in a structure that it alone

can most efficiently use, and here comes a need for transformation. These
transformations are usually complex and the risk of losing data as a part of
this process is high.

In the next section that introduces data analytics, we will apply the
multi-structured data requirements and take a deep dive on how data of
various formats can be processed.

What does it need for a platform to support multi-structured data in a unified way?
How native support for each varying structures can be provided, again in a unified
way, abstracting end user from the complexity while running analytical processing
over the data? The chapters that follow explain how Greenplum UAP can be used to
integrate and process data.

Chapter 1

[15]

Data analytics
To stay ahead of the times and take informed decisions, businesses now require
running analytics on data that is moved in on a real-time basis and this data
is usually multi-structured, characterized in the previous section. Value is in
identifying patterns to make intelligent decisions and in influencing decisions
if we could see the behavior patterns.

Classically, there are three major levels of management and decision making within
an organization: operational, tactical, and strategic. While these levels feed one
another, they are essentially distinct:

• Operational data: It deals with day-to- day operations. At this level decisions
are structured and are usually driven by rules.

• Tactical data: It deals with medium-term decisions and is semi-structured.
For example, did we meet our branch quota for new loans this week?

• Strategic data: It deals with long-term decisions and is more unstructured.
For example, should a bank lower its minimum balances to retain more
customers and acquire more new customers?

Decision making changes as one goes from level to level.

With increasing need for supporting various aspects of Big Data, as stated
previously, existing data warehousing and business intelligence tools are going
through transformation.

Big Data, Analytics, and Data Science Life Cycle

[16]

Big Data is not, of course, just about the rise in the amount of data we have, it is also
about the ability we now have to analyze these data sets. It is the development with
tools and technologies, including such things as Distributed Files Systems (DFS),
which deliver this ability.

High performance continues to be a critical success indicator for user implementations
in Data Warehousing (DW), Business Intelligence (BI), Data Integration (DI), and
analytics. Advanced analytics includes techniques such as predictive analytics, data
mining, statistics, and Natural Language Processing (NLP).

A few important drivers for analytics are listed as follows:

• Need to optimize business operations/processes
• Proactively identify business risks
• Predict new business opportunities
• Compliance to regulations

Big Data analytics is all about application of these advanced analytic techniques to
very large, diverse data sets that are often multi-structured in nature. Traditional
data warehousing tools do not support the unstructured data sources and the
expectations on the processing speeds for Big Data analytics. As a result, a new class
of Big Data technology has emerged and is being used in many Big Data analytics
environments. There are both open source and commercial offerings in the market
for this requirement.

The focus of this book will be Greenplum UAP that includes database (for structured
data requirements), HD/Hadoop (for unstructured data requirements), and Chorus (a
collaboration platform that can integrate with partner BI, analytics, and visualization
tools gluing the communication between the required stakeholders).

The following diagram depicts the evolution of analytics, very clearly, with the
increase in data volumes; a linear increase in sophistication of insights is sought.

Chapter 1

[17]

• Initially, it was always Reporting. Data was pre-processed and loaded in
batches, and an understanding of "what happened?" was gathered.

• Focus slowly shifted on to understanding "why did it happen?". This is with
the advent of increased ad-hoc data inclusion.

• At the next level, the focus has shifted to identifying "why will it happen?", a
focus more on prediction instead of pure analysis.

• With more ad-hoc data availability, the focus is shifted onto "what is
happening?" part of the business.

• Final focus is on "make it happen!" with the advent of real-time event access.

Big Data, Analytics, and Data Science Life Cycle

[18]

With this paradigm shift, the expectations from a new or modern data warehousing
system have changed and the following table lists the expected features:

Challenges Traditional
analytics
approach

New
analytics
approach

Scalability N Y
Ingest high volumes of data N Y
Data sampling Y N
Data variety support N Y
Parallel data and query
processing

N Y

Quicker access to information N Y
Faster data analysis (higher
GB/sec rate)

N Y

Accuracy in analytical models N Y

A few of the analytical techniques we will be further understanding in the following
chapters are:

• Descriptive analytics: Descriptive analytics provides detail on what has
happened, how many, how often, and where. In this technique, new insights
are developed using probability analysis, trending, and development of
association over data that is classified and categorized.

• Predictive analytics: Predictive modeling is used to understand causes
and relationships in data in order to predict valuable insights. It provides
information on what will happen, what could happen, and what actions can
be taken. Patterns are identified in the data using mathematical, statistical, or
visualization techniques. These patterns are applied on the new data sets to
predict the behavior.

• Prescriptive analytics: Prescriptive analytics helps derive a best possible
outcome by analyzing the possible outcomes. It includes Descriptive and
Predictive analytic techniques to be applied together. Probabilistic and
Stochastic methods such as Monte Carlo simulations and Bayesian models to
help analyze best course of action based on "what-if" analysis.

Chapter 1

[19]

Data science
Data analytics discussed in the previous section forms an important step in a data
science project. In this section, we will explore the philosophy of data science and the
standard life cycle of a data science project.

Data science is all about turning data into products. It is analytics and machine
learning put into action to draw inferences and insights out of data. Data science
is perceived to be an advanced step to business intelligence that considers all aspects
of Big Data.

Data science life cycle
The following diagrams shows the various stages of data science life cycle that
includes steps from data availability/loading to deriving and communicating data
insights until operationalizing the process.

Phase 1 – state business problem
This phase is all about discovering the current problem in hand. The problem
statement is analyzed and documented in this phase.

In this phase, we identify the key stakeholders and their interests, key pain points,
goals for the project and failure criteria, success criteria, and key risks involved.

Initial hypotheses needs to be formed with the help of domain experts/key
stakeholders; this would be the basis against which we would validate the available
data. There would be variations of hypotheses that we would need to come up with
as an initial step.

Big Data, Analytics, and Data Science Life Cycle

[20]

There would be a need to do a basic validation for the formed hypotheses and for
this we would need to do a preliminary data exploration. We will deal with data
exploration and process in the later chapters at length.

Phase 2 – set up data
This phase forms one of the crucial initial steps where we analyze various sources of
data, strategy to aggregate/integrate data and scope the kind of data required.

As a part of this initial step, we identify the kind of data we require to solve the
problem in context. We would need to consider lifespan of data, volumes, and type
of the data. Usually, there would be a need to have access to the raw data, so we
would need access to the base data as against the processed/aggregated data. One
of the important aspects of this phase is confirming the fact that the data required
for this phase is available. A detailed analysis would need to be done to identify
how much historic data would need to be extracted for running the tests against
the defined initial hypothesis. We would need to consider all the characteristics of
Big Data like volumes, varied data formats, data quality, and data influx speed. At
the end of this phase, the final data scope would be formed by seeking required
validations from domain experts.

Phase 3 – explore/transform data
The previous two phases define the analytic project scope that covers both business
and data requirements. Now it's time for data exploration or transformation. It is also
referred to as data preparation and of all the phases, this phase is the most iterative
and time-consuming one.

During data exploration, it is important to keep in mind that there should be no
interference with the ongoing organizational processes.

We start with gathering all kinds of data identified in phase 2 to solve the
problem defined in phase 1.This data can be either structured, semi-structured, or
unstructured, usually held in the raw formats as this allows trying various modeling
techniques and derive an optimal one.

While loading this data, we can use various techniques like ETL (Extract, Transform,
and Load), ELT (Extract, Load, and Transform), or ETLT (Extract, Load, Transform,
and Load).

• Extract, Transform, and Load: It is all about transforming data against a set
of business rules before loading it into a data sandbox for analysis.

Chapter 1

[21]

• Extract, Load, and Transform: In this case, the raw data is loaded into a
data sandbox and then transformed as a part of analysis. This option is more
relevant and recommended over ETL as a prior data transformation would
mean cleaning data upfront and can result in data condensation and loss.

• Extract, Transform, Load, and Transform: In this case, we would see two
levels of transformations:

 ° Level 1 transformation could include steps that involve reduction of
data noise (irrelevant data)

 ° Level 2 transformation is similar to what we understood in ELT

In both ELT and ETLT cases, we can gain the advantage of preserving the raw data.
One basic assumption for this process is that data would be voluminous and the
requirement for tools and processes would be defined on this assumption.

The idea is to have access to clean data in the database to analyze data in its original
form to explore the nuances in data. This phase requires domain experts and
database specialists. Tools like Hadoop can be leveraged. We will learn more on the
exploration/transformation techniques in the coming chapters.

Phase 4 – model
This phase has two important steps and can be highly iterative. The steps are:

• Model design
• Model execution

In the model designing step, we would identify the appropriate/suitable model
given a deep understanding of the requirement and data. This step involves
understanding the attributes of data and the relationships. We will consider the
inputs/data and then examine if these inputs correlate to the outcome we are trying
to predict or analyze. As we aim to capture the most relevant variables/predictors,
we would need to be vigilant for any data modeling or correlation problems. We can
choose to analyze data using any of the many analytical techniques such as logistic
regression, decision trees, neural networks, rule evolvers, and so on.

The next part of model design is the identification of the appropriate modeling
technique. The focus will be on what data we would be running in our models,
structured, unstructured, or hybrid.

As a part of building the environment for modeling, we would define data sets for
testing, training, and production. We would also define the best hardware/software
to run the tests such as parallel processing capabilities, and so on.

Big Data, Analytics, and Data Science Life Cycle

[22]

Important tools that can help building the models are R, PL/R, Weka, Revolution R
(a commercial option), MADlib, Alpine Miner, or SAS Enterprise Miner.

The second step of executing the model considers running the identified model
against the data sets to verify the relevance of the model as well as the outcome.
Based on the outcome, we would need further investigation on additional data
requirements and alternative approaches to solving the problem in context.

Phase 5 – publish insights
Now comes the important part of the life cycle, communicating/publishing the
key results/findings against the hypothesis defined in phase 1. We would consider
presenting the caveats, assumptions, and limitations of the results. The results are
summarized to be interpreted for a relevant target audience.

This phase requires identification of the right visualization techniques to best
communicate the results. These results are then validated by the domain experts in
the following phase.

Phase 6 – measure effectiveness
Measuring the effectiveness is all about validating if the project succeeded or failed.
We need to quantify the business value based on the results from model execution
and the visualizations.

An important outcome of this phase is the recommendations for future work.

In addition, this is the phase where you can underscore the business benefits of
the work, and begin making the case to eventually put the logic into a live
production environment.

As a result of this phase, we would have documented the key findings and major
insights as a result of the analysis. The artifact as a result of this phase will be the most
visible portion of the process to the outside stakeholders and sponsors, and hence
should clearly articulate the results, methodology, and business value of the findings.

Finally, engaging this whole process by implementing it on production data
completes the life cycle. The following steps include the engagement process:

1. Execute a pilot of the previous formulation.
2. Run assessment of the outcome for benefits.
3. Publish the artifacts/insights.
4. Execute the model on production data.
5. Define/apply a sustenance model.

Chapter 1

[23]

References/Further reading
• Data analytics life cycle blog by Steve Todd: http://www.

innovationexcellence.com/blog/tag/data-analytics-lifecycle/

• 3D Data Management: Controlling Data Volume, Velocity and Variety,Doug
Laney, Gartner

• Scaling Facebook to 500 Million Users and Beyond by Robert Johnson:
http://www.facebook.com/note.php?note_id=409881258919

Summary
In this chapter, we covered details on understanding enterprise data, its features and
categories. We then moved on to define Big Data with the core data definition from
enterprise data. We also looked at the paradigm shift that Big Data has brought in and
how the market is gearing up to use the technology advancements to handle the Big
Data challenges. We also saw how traditional approaches no longer fit the Big Data
context and new tools and techniques are being adopted. We also familiarized you
with data analytics techniques, their purpose, and a typical data science life cycle.

In the next chapter, we will learn about Greenplum UAP. We will take a deep
dive into the differentiating architectural patterns that make it suitable for
advanced and Big Data analytics. In terms of hardware as well as software, we
would be drilling into each of the modules and their relevance in the current context
on analytics in discussion.

www.allitebooks.com

http://www.allitebooks.org

Greenplum	Unified	Analytics	
Platform (UAP)

Now that we understand the context of data science and analytics, let us explore
requirements for a platform that helps implement analytics in an agile way. There
are many pieces to an analytics project that requires a unified or integrated platform
as opposed to a bunch of tools or frameworks.

This chapter elaborates on the architecture and application of Greenplum Unified
Analytics Platform (UAP) in Big Data analytics context. Greenplum UAP combines
the capabilities to process structured and unstructured data with a productivity engine
and a social network engine that cans the barriers between the data science teams.

The Greenplum UAP solution combines Greenplum Database (an MPP, shared
nothing, and analytics optimized relational database competing with data
warehousing solutions), HD (a Hadoop distribution with proprietary integration),
Greenplum Chorus (an analytics collaboration platform), Greenplum DCA (a flexible
appliance for hosting the Greenplum UAP), and administration tools for managing
and monitoring platform components. While this chapter introduces you to Unified
Analytics Platform, Chapter 4, Implementing Analytics with Greenplum UAP provides
detailed step-by-step guidance on how to use the components, and configure the
environment for implementation.

The topics covered in this chapter are listed as follows:

• Need for a unified or integrated platform for Big Data analytics
• Core concepts of analytical data architecture:

 ° Data warehousing, OLTP versus OLAP
 ° Column-oriented databases
 ° Parallel versus distributed processing/computing

Greenplum Unified Analytics Platform (UAP)

[26]

 ° Shared nothing data architecture and massive parallel processing
(MPP)

 ° Elastic scalability
 ° Data loading patterns: ETL versus ELT versus ETLT

• Greenplum UAP, composed of:

 ° Software/Framework:
Greenplum Database
HD (Hadoop)
Chorus
Integration with third-party tools

 ° Data Computing Appliance (DCA) modules: database modules, HD
modules, and Data Integration Accelerator (DIA) modules.

Greenplum UAP is currently being repositioned by Pivotal. The
modules and components are being rebranded to include the "Pivotal"
tag and are being packaged under PivotalOne. Few of the VMware
products such as GemFire and SQLFire are being included in the
Pivotal Solution Suite along with RabbitMQ. Additionally, support/
integration with CEP (Complex Event Processing) for real-time
analytics is added. Hadoop (HD) distribution, now called Pivotal
HD, with new framework HAWQ has support for SQL-like querying
capabilities for Hadoop data (a framework similar to Impala from open
source distribution). However, the current features and capabilities of
the Greenplum UAP detailed in this book will still continue to exist.

Big Data analytics – platform
requirements
Organizations are striving towards becoming more data driven and leverage data to
gain the competitive advantage. It is inevitable that any current business intelligence
infrastructure needs to be upgraded to include Big Data technologies and analytics
needs to be embedded into every core business process. The following diagram
depicts a matrix that connects requirements from low storage/cost to high storage/
cost information management systems and analytics applications.

Chapter 2

[27]

The following section lists all the capabilities that an integrated platform for Big
Data analytics should have:

• A data integration platform that can integrate data from any source, of
any type, and highly voluminous in nature. This includes efficient data
extraction, data cleansing, transformation, and loading capabilities.

• A data storage platform that can hold structured, unstructured, and semi-
structured data with a capability to slice and dice data to any degree,
discarding the format. In short, while we store data, we should be able to
use the best suited platform for a given data format (for example: structured
data to use relational store, semi-structured data to use NoSQL store, and
unstructured data to use a file store) and still be able to join data across
platforms to run analytics.

• Support for running standard analytics functions and standard analytical
tools on data that has characteristics described previously.

• Modular and elastically scalable hardware that wouldn't force changes to
architecture/design with growing needs to handle bigger data and more
complex processing requirements.

• A centralized management and monitoring system.
• Highly available and fault tolerant platform that can repair itself in times of

any hardware failure seamlessly.

Greenplum Unified Analytics Platform (UAP)

[28]

• Support for advanced visualizations to communicate insights in an
effective way.

• A collaboration platform that can help end users perform the functions of
loading, exploring, and visualizing data, and other workflow aspects as an
end-to-end process.

Greenplum Unified Analytics Platform
(UAP)
The following figure gives a one-shot view of all the architectural layers of
Greenplum Unified Analytics Platform that includes Greenplum, Hadoop, Chorus,
and interfaces to third-party tools:

Greenplum's Unified Analytics Platform integrates tools and frameworks that
address the preceding requirements and provides a non-monolithic approach to Big
Data analytics.

Chapter 2

[29]

Core components
The following figure depicts core software components of Greenplum UAP:

In this section, we will take a brief look at what each component is and take a deep
dive into their functions in the sections to follow.

Greenplum Database
Greenplum Database is a shared nothing, massively parallel processing solution
built to support next generation data warehousing and Big Data analytics processing.
It stores and analyzes voluminous structured data. It comes in a software-only
version that works on commodity servers (this being its unique selling point) and
additionally also is available as an appliance (DCA) that can take advantage of large
clusters of powerful servers, storage, and switches. GPDB (Greenplum Database)
comes with a parallel query optimizer that uses a cost-based algorithm to evaluate
and select optimal query plans. Its high-speed interconnection supports continuous
pipelining for data processing.

In its new distribution under Pivotal, Greenplum Database is called
Pivotal (Greenplum) Database.

Greenplum Unified Analytics Platform (UAP)

[30]

Hadoop (HD)
HD stands for Hadoop. This software is a commercially supported distribution of
Apache Hadoop. It includes HDFS (Hadoop Distributed File System), MapReduce,
and other ecosystem packages from Apache like HBase, Hive, Pig, Mahout, Sqoop,
Flume, YARN, and ZooKeeper.

Hadoop is known for its capabilities to handle storage and processing of large
volumes of unstructured data (volumes to the degree of petabytes) on commodity
servers with its robust underlying distributed file system HDFS, and its parallel
processing framework, MapReduce. It is also known for its fault-tolerant and high-
availability architecture.

Some of the new endeavors in Pivotal with Pivotal HD include
leveraging HD as an underlying storage for Greenplum Database
with a vision to have scalability further improved and an SQL
interface to query data from Hadoop (with HAWQ framework).

Chorus
Chorus provides a collaboration platform that helps stakeholders seamlessly access
and operate on data used for analytics. It is a social networking portal that helps
import, search, explore, visualize, and communicate insights both within and
external to the organization. This platform binds Greenplum Database, Hadoop, and
many other third-party tools for ETL, visualization, and analytics.

Command Center
Greenplum Command Center acts as a single console for all the components.
It provides a set of interactive dashboards that help monitor the health of the
application by collecting performance metrics. It shows data on the system/
hardware utilization and query performance collected at regular intervals.

Chapter 2

[31]

Modules
The figure below lists core modules under DCA that host UAP core components
discussed in the previous section.

Data Computing Appliance is an advanced hardware solution that is highly scalable.
It includes modules for architecturally-integrated database, computing, storage,
and network. It offers modular solution for structured data, unstructured data, and
partner applications for business intelligence and ETL services. Functionally, DCA
helps deliver fast and scalable data loading, data integration, or co-processing for Big
Data analytics.

More details on the hardware capacity will be covered in the next sections. The
preceding figure depicts Greenplum Unified Analytics Platform Data Computing
Appliance and its modules.

Database modules
Analytic database modules of DCA are known to provide infrastructure or hardware
to hold Greenplum Database software. There are two flavors of database modules,
standard and high capacity that vary on storage and processing capabilities.

Greenplum Unified Analytics Platform (UAP)

[32]

HD modules
These modules support traditional Hadoop processing that can operate
independently or be integrated with analytic database modules and other third-
party partner applications. Each of these modules includes storage, computation,
and interconnect. HD modules are available in two flavors too. One that is based on
storage and another that is more about compute and is mainly aimed at leveraging
Isilon or other off-cluster storage for the HDFS layer.

Data Integration Accelerator (DIA) modules
DIA modules host third-party partner applications for ETL (Extract, Transform,
and Load), BI (Business Intelligence), analytics (R, MADlib, SAS, and others), and
visualization (Tableau and others) solutions. By integrating third-party applications
with the DCA using DIA modules. The overall Total cost of ownership (TCO) is
minimized as we can leverage the 10 Gig network backplane shipped with
the appliance.

Core architecture concepts
This section explains some fundamental and architectural concepts underlying
Greenplum Unified Analytics Platform solution.

Greenplum Database is a shared nothing, massively parallel processing data
warehousing solution that helps handle petabyte scale data with ease. It is built on
an open source database, PostgreSQL. It can be physical or virtual, can run on any
kind of hardware, and there is a software only version of Greenplum that customers
can leverage. As we now understand the characteristics and concept of Big Data, let
us next explore the concept of data warehousing.

Data warehousing
This section introduces readers to the concept of data warehousing as well as the
basic elements used in building and implementing a data warehouse.

A data warehouse is a consolidation of information gathered about the enterprise.
It is a centralized or single point of data reference for enterprise data that usually
comes from multiple sources and facilitates ease of access for analysis.

Following are the characteristics of data in a data warehouse:

• Integrated, centralized, and unique: Irrespective of the various sources of data
in an enterprise, a data warehouse is responsible to hold a single copy of data.

Chapter 2

[33]

• Data definition/metadata: Data warehouse requires a unique data definition
supporting data aggregation process. This data now becomes a single version
of truth for the enterprise.

• Relevant and subject-oriented: Data relevance is identified by its timely
availability and historic data to be referenced against the time element. Also,
data usually has time dimension.

• Non-volatile: Data stored is usually in read-only formats.
• Security: Confidential data must be protected against unauthorized access.

The following figure depicts various components of data warehouse architecture:

www.allitebooks.com

http://www.allitebooks.org

Greenplum Unified Analytics Platform (UAP)

[34]

The following table summarizes the differences between typical OLTP (Online
Transaction Processing) and OLAP (Online Analytic Processing) data stores.
Greenplum Database is flexible and supports OLTP and OLAP structures.

OLTP databases OLAP databases
Online Transaction
Processing databases

Online Analytical Processing
databases

Definition Involves many short
online transactions
(INSERT, UPDATE,
and DELETE). Fast
query processing is
the core requirement
for these databases.
Maintaining data
integrity, concurrency,
and effectiveness
measured by number of
transactions per second
is a basic expectation.
Usually characterized
by high level of
normalization.

Involves relatively low volume
of transactions and complex
queries involving slicing and
dicing of data. Data stored is
usually aggregated, historical
in nature, and mostly stored
in multi-dimensional schemas
(usually star schema).

Data type Operational data. Integrated/consolidated/
aggregated data.

Source OLTP databases usually
are the actual sources of
data.

OLAP databases consolidate
data from various OLTP
databases.

Primary purpose Execution of day-to-day
business processes/tasks.

Serves decision support.

CUD Short, fast inserts and
updates initiated by
users.

Periodic long running jobs
refreshing the data.

Queries Usually works on smaller
volumes of data, executes
simpler queries.

Often complex queries
involving aggregations
and slicing and dicing on
multi-dimensional structure.

Throughput Usually very fast due to
relatively smaller data
volumes and quicker
running queries.

Usually run in batches and
in higher volumes; may take
several hours depending on
volumes.

Chapter 2

[35]

OLTP databases OLAP databases
Storage capacity Relatively small as

historical data is
archived.

Requires larger storage space
due to the volumes involved.

Schema design Highly normalized with
many tables.

Typically denormalized with
fewer tables; use of star and/
or snowflake schemas.

Backup and recovery Requires rigorous backup
religiously; operational
data is critical to run the
business; data loss is
likely to entail significant
monetary loss and legal
liability.

Instead of regular backups,
some environments may
consider simply reloading
the OLTP data as a recovery
method.

Column-oriented databases
Typically, all relational databases are row-oriented, each new row indicates a new
data set for the given table structure. Column-oriented data storage, like the name
indicates, stores data by its column rather than row. The primary difference lies in
the way the hard disk is accessed that results in efficiency. The following screenshot
depicts the difference between row- and column-oriented databases:

The drawback with the regular row-oriented RDBMS databases is that the number of
the rows in a table impacts on the performance of SQL query running on that table.
If we look at analytic query requirements, what is usually required is a column and
by employing a row-oriented storage, we end up accessing the whole row as the
column is locked in its place in a row. In other words, the level of granularity of I/O
operations is the record. There are a few techniques to overcome the full table scans,
one of which is indexing. But, as we all know, it comes with its own overhead.

Greenplum Unified Analytics Platform (UAP)

[36]

With column-oriented databases (also referred to as column stores), the data is
decomposed into respective columns and the granularity of I/O access is now the
column and this could mean significant gain in query efficiency.

These stores are used for read-intensive data that is large in volume. A high degree
of compression can be achieved here and in Greenplum, these tables are by default
append-only. In short, column stores can be used in conjunction with row stores as
they are complimentary. Whenever a write is required, it is moved into a row store
that is later compressed and synchronized or moved into a column store.

In the next sections, we will discuss polymorphic data storage capabilities of
Greenplum that helps combine the best of the two worlds in a seamless manner.

Parallel versus distributed computing/processing
Parallel systems have been there for a while now and the new paradigm that has
gained traction in the Big Data world is distributed systems. In this section, let us
explore how the parallel and distributed systems conceptually compare and contrast.

To understand parallel systems, we will use a simple taxonomy, Flynn's taxonomy
(1966). He classified parallel systems using two streams, data streams and instruction
streams. The following figure is a representation of Flynn's taxonomy:

• Single Instruction Single Data (SISD): This is a case of a single processor
with no parallelism in data or instructions. A single instruction is executed
on single data in a sequential manner. For example, uniprocessor.

• Multiple Instruction Single Data (MISD): In this, multiple instructions
operate on a single data stream; a typical example can be fault tolerance.

Chapter 2

[37]

• Single Instruction Multiple Data (SIMD): This is a case of natural
parallelism; a single instruction triggers operation on multiple data streams.

• Multiple Instructions Multiple Data (MIMD): A case where multiple
independent instructions operate on multiple and independent data streams.
Since the data streams are multiple, the memory can either be shared or
distributed. Distributed processing can be categorized here. The previous
figure depicts MIMD and a variation in a distributed context.

One of the critical requirements of parallel/distributed processing systems is high
availability and fault tolerance. There are several programming paradigms to
implement parallelism. The following list details the important ones:

• Master/workers model: Master is the driver where the work is held and
then disseminated to the workers. Greenplum Database and HD modules
implement this pattern. We will learn more about the architecture in the
following sections.

• Producer/consumer model: Here there is no owner who triggers
the work. Producer generates work items, consumer subscribes and
executes asynchronously.

Greenplum Unified Analytics Platform (UAP)

[38]

Shared nothing, massive parallel processing (MPP)
systems, and elastic scalability
Until now, our applications have been benchmarked for certain performance and
the core hardware and its architecture determined its readiness for further scalability
that came at a cost, be it in terms of changes to the design or hardware augmentation.
With growing data volumes, scalability and total cost of ownership is becoming a big
challenge and the need for elastic scalability has become prime.

This section compares shared disk, shared memory, and shared nothing data
architectures and introduces the concept of massive parallel processing.

Greenplum Database and HD components implement shared nothing data
architecture with master/worker paradigm demonstrating massive parallel
processing capabilities.

Shared disk data architecture
Have a look at the following figure which gives an idea about shared disk
data architecture:

Shared disk data architecture refers to an architecture where there is a data disk
that holds all the data and each node in the cluster accesses this data for processing.
Any data operations can be performed by any node at a given point in time and
in case two nodes attempt persisting/writing a tuple at the same time, to ensure
consistency, a disk-based lock or intended lock communication is passed on thus
affecting the performance. Further with increase in the number of nodes, contention
at the database level increases. These architectures are write limited as there is a
need to handle the locks across the nodes in the cluster. Even in case of the reads,
partitioning should be implemented effectively to avoid complete table scans.

Chapter 2

[39]

Shared memory data architecture
Have a look at the following figure which gives an idea about shared memory
data architecture:

In memory, data grids come under the shared memory data architecture category. In
this architecture paradigm, data is held in memory that is accessible to all the nodes
within the cluster. The major advantage with this architecture is that there would be
no disk I/O involved and data access is very quick. This advantage comes with an
additional need for loading and synchronizing data in memory with the underlying
data store. The memory layer seen in the following figure can be distributed and
local to the compute nodes or can exist as data node.

Shared nothing data architecture
Though an old paradigm, shared nothing data architecture is gaining traction in the
context of Big Data. Here the data is distributed across the nodes in the cluster and
every processor operates on the data local to itself. The location where data resides
is referred to as data node and where the processing logic resides is called compute
node. It can happen that both nodes, compute and data, are physically one. These
nodes within the cluster are connected using high-speed interconnects.

Greenplum Unified Analytics Platform (UAP)

[40]

The following figure depicts two aspects of the architecture, the one on the left
represents data and computes decoupled processes and the other to the right
represents data and computes processes co-located:

One of the most important aspects of shared nothing data architecture is the fact
that there will not be any contention or locks that would need to be addressed. Data
is distributed across the nodes within the cluster using a distribution plan that is
defined as a part of the schema definition. Additionally, for higher query efficiency,
partitioning can be done at the node level. Any requirement for a distributed lock
would bring in complexity and an efficient distribution and partitioning strategy
would be a key success factor.

Reads are usually the most efficient relative to shared disk databases. Again, the
efficiency is determined by the distribution policy, if a query needs to join data
across the nodes in the cluster, users would see a temporary redistribution step that
would bring required data elements together into another node before the query
result is returned.

Shared nothing data architecture thus supports massive parallel processing
capabilities. Some of the features of shared nothing data architecture are as follows:

• It can scale extremely well on general purpose systems
• It provides automatic parallelization in loading and querying any database
• It has optimized I/O and can scan and process nodes in parallel
• It supports linear scalability, also referred to as elastic scalability, by adding a

new node to the cluster, additional storage, and processing capability, both in
terms of load performance and query performance is gained

Chapter 2

[41]

Data loading patterns
From what we have learned about data warehousing, it is very evident that data
loading forms a major process. This process is responsible for pulling data from
various source systems and consolidating it into a warehouse.

The data loading function is beyond just extracting and loading data. It involves
data scrubbing, transformation, and cleansing processes that should be driven
using configurable business rules and requires a standard data definition/metadata
in place. In this section, we will explore various data loading patterns that can be
considered for implementing complex transformations (transformations that are
done on higher volumes of data and require frequent lookups of data references
from the underlying database).

There are three alternatives that can be considered for deciding on where the
transformation or data scrubbing logic should reside.

• Pattern 1, Extract, Transform, and Load (ETL): This is the case where the
transformations are done within the data integration tier and the final data is
pushed onto the target (database).

• Pattern 2, Extract, Load, and Transform (ELT): In this case the data is
loaded in an efficient manner onto the target (database) and the entire
transformation is done at the target.

Greenplum Unified Analytics Platform (UAP)

[42]

• Pattern 3, Extract, Transform, Load, and Transform (ETLT): This is a
combination of the previous two alternatives, where we choose to leverage
all the in-built transformation and scrubbing functions of Informatica and
go to the target for all complex transformations that might/might not involve
large volumes.

Most of the data integration tools in the market (including Informatica PowerCenter)
support a feature called Pushdown Optimization (PDO). The Pushdown
Optimization technique helps achieve optimal performance by load balancing the
processing across the servers. Let us take an example of transformation logic that
requires filtering of data based on a condition that requires to lookup data from the
database table with a large number of rows. Instead of loading data onto the data
integration tier and processing the filter logic, running an SQL query on the database
could prove to be optimal. This is the case where the transformation logic is pushed
down to be executed at the target database level rather than at the source. This is the
ELT case.

Before we examine the suitable data loading pattern, we would need to consider the
following points:

• Identify if data load throughput is a crucial requirement
• Estimate the current workload on the source and target platforms
• Measure the cost of hardware and software to add additional computing

resources to the target environment
• Guesstimate relative efficiency of performing a particular operation in the

source, target, or integration system

Chapter 2

[43]

The following table provides a comparative analysis of the proposed data
loading patterns:

ETL ELT ETLT
Full form Extract, Transform,

and Load.
Extract, Load, and
Transform.

Extract, Transform,
Load, and Transform.

Overview A traditional
technique for moving
and transforming
data in which an ETL
engine that is separate
from either the source
or target DBMS
performs the data
transformations.

This is a technique
for moving and
transforming data from
one location and format
to another instance and
format. In this style of
integration, the target
DBMS becomes the
transformation engine

In this technique
transformations are
partly done by the
ETL engine and partly
pushed to the target
DBMS.

Highlights • Heavy work of
transformation
is done within
ETL engine.

• Uses in-built
transformation
functions.

• Transformation
logic can be
configured
through GUI.

• Supported by
Informatica.

• Heavy work of
transformations
is handed over
to the DBMS
layer.

• Transformation
logic runs closer
to the data.

• Supported by
Informatica.

• Transformation
work is split
between the ETL
engine and the
DBMS.

• Facilitates
application.

• Supported by
Informatica.

www.allitebooks.com

http://www.allitebooks.org

Greenplum Unified Analytics Platform (UAP)

[44]

ETL ELT ETLT
Benefits • Easy GUI-based

configuration.
• Transformation

logic is
independent of
and outside the
database and is
reusable.

• Works very
well for
granular,
simple
function-
oriented
transformations
that do not
require any
database calls.

• Can run
on SMP
(Symmetric
Processing) or
MPP hardware.

• Leverages
RDBMS engine
hardware for
scalability.

• Keeps all data in
the RDBMS all
the time.

• Is parallelized
according to the
data set and disk
I/O is usually
optimized at
the engine
level for faster
throughput.

• Scales as long
as the hardware
and RDBMS
engine can
continue to scale.

• Can achieve
3x to 4x the
throughput
rates on the
appropriately
tuned MPP
RDBMS
platform.

• Can balance/
share the
workload with
the RDBMS.

Risks • Requires higher
processing
power on the
ETL side.

• Higher costs.
• Complex

transformations
that would
need reference
data would
slow down the
process.

• Transformation
logic is tied to
database.

• Transformations
that involve
smaller volume
and simple in
nature would
not gain much
benefit.

• Would still have
a part of the
transformation
logic within
database.

Chapter 2

[45]

Greenplum has external tables that support high-speed data loading
demonstrating data loading ELT pattern. gpload and gpfdist
utilities are leveraged to load data into the external tables.

Greenplum UAP components
In this section, we will take a deep dive into all the components and modules of
Greenplum UAP.

Greenplum Database
Greenplum Database is a collection of several PostgreSQL database instances acting
as one interconnected database using highly-tuned optimizer. It is an MPP shared
nothing database that involves more than one node to cooperate to execute one
operation. Every node has its own disk, memory, and operating system. Greenplum
uses this high-performance system architecture to distribute the load of large volume
of data warehouses and is able to use all of the system resources in parallel to process
a query.

Greenplum Unified Analytics Platform (UAP)

[46]

Greenplum Database is based on PostgreSQL 8.2.15 and is very similar with respect
to SQL support, features, configuration options, and so on (additionally, features
from PostsgreSQL 8.3 and 9.0 have been included). The internals of PostgreSQL
have been modified or supplemented to support the parallel structure of Greenplum
DB. The interconnect component enables communication between the distinct
PostgreSQL instances and makes the system behave as a single logical database.
Greenplum DB also includes features designed to optimize Postgres for BI and
DW such as external tables (parallel data loader), resource management, and query
optimization enhancements.

The Greenplum Database physical architecture
A Greenplum environment or cluster consists of master host, standby master,
segment nodes, and interconnect.

The master host is responsible for coordinating the query workload across the
segment hosts. The master does not store user data. Standby master is a warm
standby master. Segment host runs one or more segment instances. Basically,
each segment host runs its own GPDB. Segment hosts run in a shared nothing
environment with their own CPU, disk, and memory. Segments store data and are
responsible for executing queries in parallel. The interconnect between the segment
hosts is a high-speed bus or interconnect, pipelining data between the segment hosts.
More on each of the components is explained as follows:

• Master host:
 ° The master host is the entry point to the Greenplum Database system.

Users connect to the master and interact with the database as in the
case of any other DBMS.

 ° Internally runs a Postgres listener process (called Postgres)
responsible for getting users connected to the database sessions. By
default, this process runs on the port 5432 (daemon process).

 ° Master host holds all the system and admin utilities used for
administration tasks.

 ° Responsible for creating query plans and distributing the workload
across all segment nodes.

 ° Also responsible for final data aggregations sometimes.
 ° It holds the metadata and is never responsible for holding the

actual data.

Chapter 2

[47]

 ° The master may perform final processing for queries, for example,
aggregations, summations, orders, and sorts. The master does
not contain user data. It is also important to note that system and
database administration tasks are performed on the master host. The
parser checks syntax, semantics, and produces a parse tree for the
query optimizer.

The following figure shows master host and its core functions:

Master host core functions are listed as follows:

Consumption of the parse tree and production of the query plan
(query plan contains how the query is executed, for example, hash
join versus merge join)
Communication of the query plan to segments
Allocation of cluster resources required to perform the job and
accumulating/presenting final results

A query executor (worker process) is responsible for completing its
portion of work and communicating its intermediate results to the other
worker processes. For each slice of the query plan, there is at least one
worker process assigned. A worker process works on its assigned portion
of the query plan independently. During query execution, each segment
will have a number of worker processes working on the query in parallel.
Related worker processes across segments that are working on the same
portion of the query plan are referred to as gangs.

Greenplum Unified Analytics Platform (UAP)

[48]

• Standby master: The standby master is a warm standby server that is
activated when the master host is unavailable.

• Node or segment host: Node is the server that has the actual installation of
Greenplum Database (primary and mirror segments instances).

 ° Each segment holds a portion of data for each distributed table
and index.

 ° Every segment server can hold multiple segment instances
residing on it. By default, there would be one primary segment
and if mirroring is enabled, it would have one or more mirrors. By
definition, number of primary and mirror segments equal to the
number of physical cores.

 ° Segment servers are not directly accessed by users; all
communications with the segments are through the master. Another
way to connect is in utility mode (a rare case).

 ° Each segment instance has PostgreSQL segment listener process
(called Postgres). The port numbers are assigned for this process
during the segment initialization.

• Interconnect: As a portion of work is completed, tuples flow up the
query plan from one gang of processes to the next. This interprocess
communication between the segments are transmitted through the
interconnect. It is a standard Ethernet fabric using UDP protocol by default.
UDP provides better performance and scalability. Alternately, TCP can be
used by changing the gp_interconnect_type from GUC to TCP.

Pivotal added additional packet verification and checking which is
not performed by UDP so the reliability is equivalent to TCP.

Chapter 2

[49]

 ° Interconnect is the connection layer between individual database
instances, master, and segments. It is the glue that holds all of the
components together.

 ° It is responsible for moving data between the segments during query
execution.

 ° Usually configured as a private LAN; segment servers are not meant
to be visible outside the Greenplum array.

 ° Consists of Gigabit Ethernet network/fiber switch. (In DCA,
the interconnect is a 10Gig Ethernet switch. This is a standard
recommendation though there is support for other capacities switch.)

 ° Has gNet software installed.

• Client programs: Greenplum Database uses the same client interfaces as
PostgreSQL. The following clients are recommended for usage:

 ° psql: SQL editor shipped with PostgreSQL.
 ° pgAdmin3: Graphical user interface from PostgreSQL developers.
 ° ODBC drivers: Postgres ODBC driver psqlODBC.
 ° JDBC drivers: Postgres JDBC driver pgJDBC.
 ° Python: PyGreSQL is a famous python interface for Postgres.
 ° libpq: Native C application programming interfaces for Postgres.

These libraries are shipped with Greenplum Database.
 ° Perl DBI: Perl database interface API to connect Perl programs with

Greenplum Database.

There are new workbenches/tools in the market now; one of
the workbenches that is widely used is Aginity.

The Greenplum high-availability architecture
In addition to primary Greenplum system components, we can also optionally deploy
redundant components for high availability and avoiding single point of failure.

Greenplum Unified Analytics Platform (UAP)

[50]

The following components need to be implemented for data redundancy:

• Mirror segment instances: A mirror segment always resides on a different
host than its primary segment. Mirroring provides you with a replica of the
database contained in a segment. This may be useful in the event of disk/
hardware failure. The metadata regarding the replica is stored on the master
server in system catalog tables.

• Standby master host: For a fully redundant Greenplum Database system,
a mirror of the Greenplum master can be deployed. A backup Greenplum
master host serves as a warm standby in cases when the primary master host
becomes unavailable. The standby master host is synchronized periodically
and kept up-to-date using transaction replication log process that runs on the
standby master to keep te master host and standby in sync. In the event of
master host failure the standby master is activated and constructed using the
transaction logs.

• Dual interconnect switches: A highly available interconnect can be
achieved by deploying redundant network interfaces on all Greenplum
hosts and a dual Gigabit Ethernet. The default configuration is to have one
network interface per primary segment instance on a segment host (both the
interconnects are by default 10Gig in DCA).

High-speed data loading using external tables
Data loading into Greenplum Database can come through an ETL host connected
to the interconnect. gpfdist utility can be leveraged to connect to external ETL and
load data into segments simultaneously using the scatter-and-gather method. This
utility runs an internal HTTP light server. The query execution plan is to broadcast
to all segments, even if they do not contain data. The segments would then run the
query plan with appropriate data. This work is done in parallel.

External tables are used to access data external to the Greenplum Database. Large
amounts of data can be loaded or unloaded using external tables. Following formats
are supported by external tables:

• CSV (Comma Separated Values), regular file based (file://)
• Hadoop file system data (gphdfs://)
• Web based external sources with support for text data. (http://)

Chapter 2

[51]

External table types
Greenplum supports two kinds of external tables:

• Readable or read-only tables used for data loading.
• Writable or write-only tables used for data unloading. A writable external

table allows selecting rows from database tables and output the rows to files.

Polymorphic data storage and historic data
management
Polymorphic data storage is a unique and differentiating feature of Greenplum.
It facilitates configuring optimal storage, compression, and execution settings to
support row/column-oriented storage and retrieval. As a core requirement for a data
warehousing application, we would need to store and process large volumes of data
that can be historic in nature.

Partitions need not be the same size or orientation. They can be column or row
oriented. We can partition data based on a selected time frame.

The example shows a rolling management scheme, where three months of data is
maintained at a time. The scheme is as follows:

• Anything more than three months is moved to deep history (probably a
compressed (most likely) column-oriented store), as per the previous figure

• All in-between months are maintained at a second level of storage (a row-
oriented store)

The options can be compressed or uncompressed as well. This process is customizable
based on organizational needs and for the user, the data access would be seamless and
does not require user's intervention for managing the internals of the storage.

Greenplum Unified Analytics Platform (UAP)

[52]

Data distribution
Let us now understand how Greenplum stores data across various hosts and
segment instances.

All tables in Greenplum are distributed. This means a table is divided into non-
overlapping sets of rows or parts. Each part resides on a single database known as
a segment within the Greenplum Database system. The parts are distributed evenly
across all of the available segments using a sophisticated hashing algorithm.

Distribution is determined at the table creation time by selecting a distribution
key of one or more columns. The distribution key is usually the primary key or any
unique column.

In a distributed architecture of this sort, there can be data skew or computational
skew. It is important that we select a distribution key with unique values and high
cardinality; we should also ensure that it will not result in computational skew.

With respect to high cardinality, typically boolean keys, for example, True/False or
Y/N, are not suitable for a distribution key as they will be primarily distributed to
two segment instances. In an MPP environment overall response time for a query is
dependent on the completion time for all segment instances.

There are two types of distribution policies that help divide rows among the
available segments:

• Hash distribution: In this distribution technique, one or more table columns
are used as the distribution key. These columns are used by the hashing
algorithm to divide data among all of the segments. The key value is
hashed, or a random number is created. There are performance advantages
to choosing a hash policy whenever possible. The largest performance
advantages come into play when joining two tables that use the same
distribution key. In this case the system does not have to shuffle data
between nodes to do a join.

• Round robin distribution: When no distribution key is defined, this
algorithm is used. In this case, rows are sent to the segments as they come in.
This mechanism is usually used for smaller tables.

Hadoop (HD)
In order to handle the analytics for unstructured data, Greenplum UAP provides
a commercial version of Apache Hadoop. The HD distribution is integrated with
Greenplum Database and supports parallel analytics.

Chapter 2

[53]

Hadoop is a framework that allows for distributed processing of large unstructured
data sets across clusters of commodity servers. It can store a large amount of data
and process the large amount of data stored.

Hadoop is originally an open source Apache Project that is implemented in Java.

The following figure depicts two core components of Hadoop:

Following are a few important characteristics of Hadoop framework:

• Runs on commodity servers, with elastic scalability; the storage servers and
disks are not assumed to be highly available or reliable

• Uses replication strategy to address high availability and reliability
requirements

• Metadata driven design: Master server called NameNode holds the
metadata and the slave nodes called DataNode store data and can handle
data processing as well

• Focus here is mostly sequential access with single writes and limited or no
file locking features

• Comes with an in-built foolproof fault-tolerant and high-availability
architecture

www.allitebooks.com

http://www.allitebooks.org

Greenplum Unified Analytics Platform (UAP)

[54]

Hadoop Distributed File System (HDFS)
The figure below depicts HDFS architecture with the associated daemons:

HDFS architecture follows master-slave architecture paradigm. The master node is
referred to as NameNode and has the following functions:

• File system namespace management
• File name to list blocks and location mapping details maintenance
• Block allocation/replication management
• Checkpoints namespace and journals namespace changes for reliability
• Access control to namespace
• DataNodes are the salves with the following functions:

 ° Blocks storage using the underlying OS's files
 ° Access to the blocks is given to the clients directly from DataNodes
 ° Communication of status and health to the NameNode periodically
 ° Checks for block integrity periodically

Chapter 2

[55]

Hadoop MapReduce
Hadoop MapReduce function and flow is depicted in the following figure. There
are a series of functions that are executed within the MapReduce flow Mapper |
Combiner | Partitioner | Shuffle and Sort | Reducer. Few of the functions in the
flow can be implicit (have a default behavior, if not coded for).

Reducer Reducer Reducer

Y 7 Z 9X 5

a 1 5 b 1 7 c 2 9 8

Shuffle and Sort

A B C D E E

Partitioner Partitioner Partitioner Partitioner

Combiner Combiner Combiner Combiner

a 6 b 1 c 3 c 6 a 5 C 2 b 7 c 8

Mapper Mapper Mapper Mapper

a 1 b 1 c 9 a 5 c 2 b 7 c 8

γ δ ε ζ

Greenplum Unified Analytics Platform (UAP)

[56]

Hadoop enables the data scientists to create MapReduce jobs quickly and efficiently.
The screenshot below shows Greenplum Command Center with database and HD
modules installed.

Chorus
Chorus is a collaborative platform in Greenplum UAP that supports self-service
analytic infrastructure. With Chorus, organizations can extract data insights with
ease and communicate across stakeholders.

Chorus allows defining, publishing, and sharing new insights, and maintaining a live
library of insights.

Chapter 2

[57]

It provides integration with third party BI, ETL, and analytical tools. It facilitates
analytical workflows to effectively communicate results over time.

It provides interface to browse all the data sources, use in-built visualization tools to
derive insights, and share the data sets with the teams.

Greenplum Data Computing
Appliance (DCA)
Greenplum Data Computing Appliance (DCA) is a purpose-built, highly scalable
parallel data warehousing appliance. The DCA:

• Brings the processing power of MPP architecture
• Delivers fastest data loading capacity
• Provides flexible and linearly scalable infrastructure to support growing

business needs

There are two flavors of expandable rack configuration provided by DCA:

• Greenplum Database Standard Module
• Greenplum Database High Capacity Module provides increased storage with

no increase in footprint

The appliance approach is beneficial as it eases implementation with overall lower
total cost of ownership, ensures scalability, high availability, and fault tolerance.

Greenplum Unified Analytics Platform (UAP)

[58]

DCA UAP surpasses the previous release with more CPU cores, more RAM, more
spindles per rack. Hardware specific details are:

• Master, DIA, and HD compute servers are constructed on the E5-2660 CPU,
64 GB RAM, and 6 x 300 GB 10K SAS drives

• GPDB compute servers are constructed with the same processor and amount
of RAM as the masters, DIA, and HD compute servers, but include 24 x 300
GB 10K SAS drives

• GPDB standard servers use the same processor and memory configuration,
but with 24 x 900 GB 10K SAS drives

• HD servers have 12 x 3 TB 7K SATA drives

Attribute Master, DIA,
HD compute
server

GPDB
compute server

GPDB
standard server

HD server

CPU E5-2660 2, 1G,
95W

E5-2660 2, 1G,
95W

E5-2660 2, 1G,
95W

E5-2660 2, 1G
95W

DIMM 8 x 8 GB 8 x 8 GB 8 x 8 GB 8 x 8 GB
Drive capacity 6 x 300 GB 24 x 300 GB 24 x 900 GB 12 x 3 TB
Drive interface 10K SAS 10K SAS 10K SAS 7K SATA
Full rack
usable
capacity, TB,
uncompressed

1.8 TB raw each
server

41 124 188

Greenplum Data Integration Accelerator
(DIA)
Greenplum DIA is an open systems integrator that architecturally integrates all
the tools and frameworks within Greenplum. This module is optional and can be
integrated into DCA.

DIA has built-in support for external data sources. An external ETL is usually
integrated into this.

For example, Informatica PWX connector for Greenplum works directly within
DIA and can load large volumes of data into Greenplum using gpfdist via the
high-speed interconnect.

Chapter 2

[59]

References/Further reading
• Greenplum Database administration guide: http://media.gpadmin.me/wp-

content/uploads/2012/11/GPDBAGuide.pdf

• Greenplum Command Center guide: http://www.greenplumdba.com/
greenplum-command-center-features-and-references

• Getting started with Hadoop: http://hadoop.apache.org/docs/stable/
index.html

• Cloudera Hadoop tutorial: http://www.cloudera.com/content/cloudera-
content/cloudera-docs/HadoopTutorial/CDH4/Hadoop-Tutorial.html

• Hadoop MapReduce tutorial: http://hadoop.apache.org/docs/stable/
mapred_tutorial.html

Summary
In this chapter, we covered Greenplum UAP, its various components, and its
modules. We have also been introduced to some important architectural patterns
and concepts underlying Greenplum analytics platform. We have also seen how
Greenplum ensures high availability and facilitates fault tolerance.

In the next chapter, we shall learn advanced analytics techniques and associated
tools. An introduction to R, Weka, and MADlib libraries will be given with a detail
on how these integrate with Greenplum UAP.

Advanced Analytics –
Paradigms, Tools, and

Techniques
Welcome to the world of analytics!

In this chapter, we will learn and recap important analytic techniques or methods
that data scientists employ and practice as a part of a data science project
implementation. For each of the analytic techniques, we will set the context for its
application and detail the expected outcome. Additionally, we will learn how to
apply R, Weka, MADlib, and Hadoop frameworks and tools for analytics in general
as well as in the context of Greenplum.

The following topics are covered in this chapter:

• Introduction to standard analytic paradigms: descriptive, predictive, and
prescriptive analytics

• Dive deep into important analytical methods: simulations, clustering, data
mining, text analytics, decision trees, association rules, linear and logistic
regression, and so on

• Technology and tools:

 ° R programming
 ° Weka
 ° In-database analytics using MADlib

Advanced Analytics – Paradigms, Tools, and Techniques

[62]

Analytic paradigms
The following figure depicts the journey of data from being mere data to bringing
business insights for competitive advantage and various analytic paradigms driving
the transformation:

The purpose of analytics is to derive actionable insights from data, helping make
smarter decisions, and thus bringing in competitive advantage for an organization.
The approach we take to architect and design strategies to derive these insights
varies. It is very important that organizations have an optimal data warehouse /
business intelligence (BI) architecture in place that can efficiently ingest and analyze
large and diverse data sets.

Here are three paradigms of data analytics:

• Descriptive analytics
• Predictive analytics
• Prescriptive analytics

Descriptive analytics
Descriptive analytics is all about taking data and analyzing past actions for intuitions
to help identify an approach for the future. Historical data related to past failures or
success is collected and mined/processed for the actual reasoning behind a success
or failure.

Chapter 3

[63]

The variable that is measured is usually referred to as a dependent variable and
all other variables that determine its value or state are referred to as independent
variables. Every independent variable in data is analyzed to identify its relationship
with the dependent variable. For example, a customer buying or not buying a fitness
product is determined by factors such as BMI, demographic details, and age. Here,
buying or not buying of the fitness product is the dependent variable and all the
factors that determine this decision are the independent variables.

This analysis can be categorized as a post-mortem process and involves
collection of quantitative data, and usually provides hindsight that can be
used for future or predictions.

Descriptive models quantify dependencies and relationships in data in a way
that is often used to categorize prospects. Descriptive modeling techniques focus
on all aspects of the data as against a single outcome and simulate all possible
dependencies. Some descriptive models and statistics do make assumptions about
the data being measured. For example, the assumption that the data set is normally
distributed, or that the data set is linear.

An example outcome of descriptive models is categorizing customers by their
product preferences and age. Example methodologies for this categorization are
classification and clustering. We will learn more about it in the following sections. As
a next step to this categorization, descriptive models can help model a large number
of individual elements and help make predictions.

Predictive analytics
Predictive analytics is all about turning data into valuable and actionable information.
Predictive analytics employs all the attributes of data analyzed as a part of descriptive
analytics to conclude a probable future outcome, given a situation context.

Predictive analytics paradigm includes running a variety of statistical techniques to
analyze historical and current behavior to make predictions about future events.

Predictive models can identify and exploit specific customer patterns to determine
possible risks and opportunities, given a particular condition or context. The
following are the three important aspects of predictive analytics:

• Modeling
• Decision analysis
• Optimization and profiling

Advanced Analytics – Paradigms, Tools, and Techniques

[64]

Let us look at some examples where predictive analytics can be used:

• Customer relationship management systems: Using predictive analytic
techniques, we can analyze the entire customer data, identify patterns, and
predict their behavior.

• Product management and sales: For a company that offers multiple
products, we can use predictive analytics to analyze the spending patterns
of customers and identify cross sales or additional sales, thus paving way to
higher profitability. This is also referred to as cross-selling or up-selling.

It is important that a strong team of business or domain experts and data scientists
is formed who understands statistical modeling techniques and can apply these on
data to derive business insights. The problems that we are solving and the questions
we are answering are based on the needs of the business, which typically are not of
statisticians or data scientists.

Prescriptive analytics
Prescriptive analytics is a little beyond deriving data insights and can go to an
extent of suggesting options on probable decisions to be taken. It takes advantage
of the predictive analytics and applies, for example, machine learning techniques to
suggest the best suited action and presents the quantifiable business implications of
each possible decision and action.

While predictive analytics stops at anticipating what will happen and when it will
happen, prescriptive analytics goes a little beyond and additionally anticipates why
it will happen.

For every new occurrence of an event in business, prescriptive analytics takes
advantage of the new data and uses it to improve the accuracy or confidence of the
prediction and thus provide optimal decision alternatives.

Prescriptive analytics, like any other analytic approaches, operates on data that
can be structured or unstructured in nature. It includes application of business
rules and implied mathematical models that could include machine learning and
natural language processing techniques. Here are a few important examples where
prescriptive analytics is used for deriving business edge:

• Fluctuating gas prices can impact manufacturing costs of manufacturing
companies. Using prescriptive analytics, statistical modeling, and
mathematical trending, future gas prices can be predicted and decisions on
the course of action to tap the best gas price can be taken, thus helping lower
overall manufacturing costs.

Chapter 3

[65]

• Prescriptive analytics can be used in healthcare, helping hospitals to
strategically plan the growth by analyzing economic data, population
demographic trends, and population health trends.

Analytics classified
In this section, we will focus on learning all the popular analytical techniques
that come under one of the discussed paradigms: descriptive, predictive, and
prescriptive analytics.

• Classification
• Forecasting or prediction or regression
• Clustering
• Optimization
• Simulations

These analytic techniques can perform either of the two:

• Supervised analysis
• Unsupervised analysis

Supervised analysis is a case where the data is known to us. Client also defines a
specific goal for our analysis and in case of unsupervised analysis, the data might be
known to us, but we usually do not start with a definitive target in mind.

Classification
Classification is all about identifying a grouping technique for a given dataset in
such a way that depending on a value of the target attribute, the entire dataset can
be qualified to belong to a class. This is one of the techniques used in data mining to
identify the data behavior patterns.

Let's take an example, a marketing manager looking at his customer data wants to
identify if a given customer is helping him make profits and take a decision on if
it's worth spending effort and time on the customer demands. This is commonly
referred to as Total Lifetime Value (TLV).

Advanced Analytics – Paradigms, Tools, and Techniques

[66]

We have the data and we start by plotting on a graph as shown in the following figure
(the one on the left) not really worrying about what this plotting would mean. On the
y-axis, we have the total money spent (in multiples of hundreds of rupees) and on the
x-axis, we have the number of items purchased. As a next step, we categorize the data
on the graph into good and bad customers, for example. In the following graph, all the
customers who spend more than 800 rupees in a single purchase are categorized as
good customers (this is a hypothetical example or analysis).

From the next time onwards, the marketing manager can plot the new customers
on this graph and based on which side they fall, predicting whether the customer is
likely to be good or bad.

Note that classification need not always be binary (yes or no, male or female, good
or bad, and so on). Any number of classifications is feasible (poor, below average,
average, above average, or good) based on the problem definition. Also, note that in
regression what you are finding is a continuous value and in classification, it takes
only a few values.

This analytical procedure is referred to as supervised learning as the data on which
we operate is known to us and the expectation on what needs to be analyzed from
the data is defined.

Forecasting or prediction or regression
Forecasting or prediction is all about the way things would happen in future. This
information can be derived from past experience or knowledge. In this case, we can
have little data and through regression we end up defining the future. Forecasting
and prediction results are usually presented along with the degree of uncertainty.

Chapter 3

[67]

Let us take an example here. We have an agriculture scientist working on a new crop
that she developed. As a trial, this seed was planted at various altitudes and yield
was computed. Once we plot a graph between yield and altitude, the relationship
between both the parameters is identified and the capability on predicting the
yield at any other altitude is gained. You can observe that the data usually does not
perfectly fit a line, and once the line is fit and the equation is noted (of course along
with errors), we can get rid of the data. This technique is called regression.

Clustering
Most of the time, the data analyst is just given some data and is expected to unearth
interesting patterns that may help in deriving intelligence. The main difference
between this task and that of a classification is that, in the classification problem,
the business user specifies what he/she is looking for (a good customer or a bad
customer; a success or a failure, and so on).

Let us consider the same example as we did in the Classification section. In clustering,
the patterns to classify the customers are identified without any target in mind or
any prior classification. When running a classification given a specific model, the
results will always be the same, whereas with clustering, it may not be the same (for
example, depending on how the initial centroids are picked). An example modeling
method for clustering is K-means clustering. You may learn more on K-means in the
following section.

To summarize, clustering is a classification analysis, where we do not start with a
specific target in mind (good/bad; will buy/will not buy), and hence referred to as
unsupervised analysis.

Advanced Analytics – Paradigms, Tools, and Techniques

[68]

Optimization
Optimization, in simple terms, is a mechanism to make something better or define a
context for a solution that makes it the best.

Let us take an example of a production scenario. There are two machines that
produce the desired product; but one machine requires more energy with a high
speed in production and lower raw materials, while the other requires higher raw
materials and lesser energy to produce the same output within the same time. It is
important to understand the patterns in the output based on the variation in inputs;
a combination that gives highest profits would probably be the one, the production
manager would want to know. You, as an analyst, will identify the best possible
way to distribute the production between the machines that gives him the highest
profit. The below figure shows a point of highest profit when a graph was plotted for
various distribution options between the two machines, the goal of this technique is
to identify this point.

Simulations
In addition to all the techniques we defined until now, there might be situations
where the data in context itself has a lot of uncertainty. For example, a project
manager is given a task and she can estimate with her prior knowledge that the team
can perform the task in 2-4 hours.

Chapter 3

[69]

The cost of input material may vary between $100-150 and the number of employees
who come to work on any given day may be between six and nine. An analyst then
estimates how much time the project might take. Solving such problems requires
simulating a vast amount of alternatives.

Typically, in forecasting, classification, and unsupervised learning, we are given data
and we really do not know how the data is interconnected. There is no equation to
describe one variable as a function of others. In optimization, we have the relation
well defined and we also have access to data. In simulations, we do have a well-
defined relation. But, the input data itself is uncertain.

Essentially, data scientists combine one or more of the above techniques to solve
challenging problems.

• Web search and information extraction
• Drug design
• Predicting capital market behavior
• Understanding customer behavior
• Designing robots

Modeling methods
In the next few sections, we will cover the following important analytical methods
in detail:

• Decision trees (classification)
• Association rules (unsupervised learning)
• Linear and logistic regression
• Naive Bayesian classifier (classification)
• K-means clustering (unsupervised learning)
• Text analysis.

Decision trees
Decision trees are an example of classification technique. Here, we classify data in a
tree format using data features or attributes. Since decision trees depict the flows and
possible outcome for each flow, they are used in identifying the best strategy to reach
the goal.

Advanced Analytics – Paradigms, Tools, and Techniques

[70]

In decision trees, we start with testing an attribute and split the data based on
that attribute:

• We continue with the process.
• We can build multiple decision trees for the same problem.
• The efficiency and size of the tree is directly proportional to the attributes

chosen by us.
• We also need to have termination criteria:

 ° One obvious criterion is that all the records at the node belong to one
class and hence cannot be split.

 ° A significant majority of records belong to a single class (say, if 99
percent records are buyers, we are fine).

 ° The segment contains only one or a very small number of records.
 ° The improvement is not substantial enough to warrant making the

split. If we do not terminate at the right place, we might overfit the
data.

 ° We can read a decision tree as a rule. Each branch connects nodes
with "and" and multiple branches are connected by "or".

 ° It divides up the data on each branch point without losing any of the
data (the number of total records in a given parent node is equal to
the sum of the records contained in its two children).

 ° Most importantly, the outputs are simple rules and are extremely
easy to understand by the business users. You may also build some
intuitions about your customer base. For example, "Are customers
with different family sizes truly different?".

It turns out that we are collecting very similar records at each leaf. So, we can use
median or mean of the records at a leaf as the predictor value for all the new records
that obey similar conditions. Such trees are called regression trees.

Decision trees are robust to errors, both errors in classifications of the training
examples and errors in the attribute values that describe these examples. Decision
tree methods can be used even when some training examples have unknown values
(for example, if the age is known for only some of the training examples). Every
starting or terminating point in a decision tree is called a node and the connections
between nodes are branches.

Chapter 3

[71]

There are three types of nodes and two types of branches in decision trees of
data mining:

• Nodes:
 ° Decision node: A decision node is represented by a square and

represents a point in the tree where a decision needs to be taken.
 ° Event node: An event node represents a point where the choice of

option ends. Event nodes are represented by a circle.
 ° Terminal node: These nodes represent the final outcome for every

flow and this is where the tree ends.

• Branches:

 ° Decision branch: These branches are the connections that start from
a decision branch and connect to an event or decision or a terminal
node

 ° Event branch: These branches connect an event node to another
event or decision or terminal node

The following figure shows the standard decision tree representation using
relevant notations:

Advanced Analytics – Paradigms, Tools, and Techniques

[72]

In the image below, the decision tree representation helps analyze if a street shop
vendor should set up his stall outdoors or indoors depending on the weather
conditions. This decision tree is based on a prediction clause that has 50 percent
possibility for a sunny day, 15 percent possibility for rain, and 35 percent possibility
for a cloudy day. A rough estimation on what the vendor would earn in a day if he
has his stall outside versus inside is as shown. The overall earnings are computed to
be $102.5 for a stall outside versus $46 for a stall inside. It can be concluded that the
shopkeeper should have his stall outside and probably hope no rains for the day.

In decision trees, to identify the attributes that form an important part of decision
making, we calculate entropy, Gini index, information gain, and reduction in
variance (we will not deal with details on these techniques in this book).

There are two most popular techniques that help identify the most relevant attribute
in a given data set:

• CART (regression and classification tress): These trees are for binary
representation, which means every node can have a maximum of two
outcomes. Gini index is used for identification of the impacting attributes.

• C4.5: Decision trees that use this technique can have more than two outcomes
and thus multiple binary trees can be created. Due to the inherent complexity
involved, there are a few important pruning techniques like information gain
that helps in the most relevant attribute selection.

Chapter 3

[73]

Association rules
Association rules is a classification technique and is all about finding patterns that
occur frequently, defining associations, or correlations among sets of items. This
technique is applied in market basket analysis, cross-marketing, catalog design, and
so on. The following image depicts a rule and formulas for support, confidence, and
lift associated:

Let us now look at an example to understand how association rules technique works.

The following table presents a list of items that have been bought by the customers of
a supermarket (each line represents a single purchase by a customer):

Customer
Number

Items

1 Bread, Peanuts, Milk, Fruit, and Jam
2 Bread, Jam, Soda, Chips, Milk, and Fruit
3 Steak, Jam, Soda, Chips, and Bread
4 Jam, Soda, Peanuts, Milk, and Fruit
5 Jam, Soda, Chips, Milk, and Bread
6 Fruit, Soda, Chips, and Milk
7 Peanuts, Soda, Fruit, and Milk
8 Cheese, Peanuts, Yogurt, and Fruit

From a given transaction as above, we will now work to understand if an occurrence of
one item in the table is driven by the presence of any other item in the same transaction.

Advanced Analytics – Paradigms, Tools, and Techniques

[74]

Some of the associations that we can derive are:

• {Bread} => {Jam}

• (Soda} => {Chips}

• {Bread} => {Milk}

These denote implications of the form X => Y, where X and Y are itemsets.

Let us now get acquainted with some terminology used in the context of
association rules.

• Itemset: A collection of one or more items is called an itemset. An example
of an itemset from the preceding table is {Milk, Bread, Jam}.

 ° k-itemset is an itemset that has k items

• Support (s): Support is the fraction of transactions that contain an itemset.
For example:
s({Milk, Bread}) = 3/8

s({Chips, Soda}) = 4/8

• Support count (σ): Support count denotes the frequency of occurrence of
an itemset.
σ ({Milk, Bread}) = 3

σ ({Chips, Soda}) = 4

• Confidence (c): Confidence measures how often an itemset occurs in a
transaction that has another itemset.

c = σ ({Milk, Bread}) / σ ({Bread }) = 0.75

Let us take binary partitions of an itemset {Milk, Bread, Jam}. The following
lists the support and confidence for each of the association rule identified:

• {Bread, Jam} => {Milk} s= 0.4, c= 0.75

• {Milk, Jam} => {Bread} s= 0.4, c= 0.75

• {Bread} => {Milk, Jam} s= 0.4, c= 0.75

• {Jam} => {Bread,Milk} s= 0.4, c= 0.6

• (Milk}=> {Bread, Jam} s= 0.4, c= 0.5

Rules that have same itemset usually have same support, but can have
different confidence.

Chapter 3

[75]

The association rules technique follows a two-step approach:

1. Identify and generate frequent itemsets.
2. Generate high-confidence rules from frequent itemsets.

Identifying frequent itemsets can be computationally intensive. For a given number
of items, say n, we can gave itemsets. The following image depicts itemset
definition for five items.

One of the frequent itemset generation strategies is to reduce number of candidates
by pruning (using Apriori algorithm).

The Apriori algorithm
Apriori is one of the ancient and the most commonly used algorithms for association
rules. Apriori algorithm uses the notion of frequent itemset.

For example, if we define L as an itemset (L = {Bread, Jam}), we define our
support to be 50 percent (s = 50%).

If 50 percent of the transactions have the itemset L, we say L is a frequent itemset.

It is apparent that if 50 percent of itemsets have {Bread, Jam} in them, at least 50
percent of the transactions will have either {Bread} or {Jam} in them.

Advanced Analytics – Paradigms, Tools, and Techniques

[76]

Apriori algorithm principle is that a subset of frequent itemset also is frequent.

In Apriori approach, we often start bottom-up, we start with all the frequent itemsets
of size 1 (for example, Bread, Jam, Milk, and so on) first and determine the support.
Then we start pairing them. We find the support for, say {Bread, Jam} or {Jam,
Milk} or {Milk, Bread}.

The following figure shows an illustration of the pruning done as a result of an
Apriori algorithm:

The output of the Apriori is the rules with minimum support and confidence.

The following figure depicts Apriori pruning on the preceding example:

For more measures refer to http://michael.hahsler.net/research/
association_rules/measures.html.

Chapter 3

[77]

Linear regression
Regression techniques help fit an equation given in the dataset. The idea of fitting an
equation is to enable prediction for a variable in the equation driven by a change in any
other variable and understand any impact of a variable over the other. Here, for similar
decision trees, we would have dependent and independent attribute or variables.

Regression techniques thus can be used for prediction, estimation, modeling
relationships, or hypothesis testing. The following figure shows a standard
representation and the terminology used:

When we want to model a dependent variable Y as a function of three different
independent variables (X1, X2, and X3), we usually would not have enough data
to estimate the relationship or the function, and hence we start with an assumption
of linear dependency. Here, most of the effort is in studying variables that are
deterministically related to each other.

The following is a representation of linear probabilistic regression model:

Advanced Analytics – Paradigms, Tools, and Techniques

[78]

The limitations are:

• Linear regression does not handle the missing values well. It assumes that
each variable affects the outcome linearly and additively. So, if we have some
variables that affect the outcome nonlinearly and the relationships are not
actually additive, the model does not fit well.

• It is recommended to take the log of monetary amounts or any variable with
a wide dynamic range. It cannot handle variables that affect the outcome in a
discontinuous way.

• Also, when we have discrete drivers with a large number of distinct values
the model becomes complex and computationally inefficient.

Logistic regression
Logistic regression is the preferred method for many binary classification problems.
For example:

• True/false
• Approve/reject
• Buy/don't buy

Logistic regression is apt if we need the probability of an event against predicting
class variables. It is recommended that we try logistic regression in the first step for
all binary class problems. In a logical regression model, the outcome is determined
by a process like flipping a coin. The predictors that we know determine the process,
but the unknown determines the outcome here. Hence, we determine what change in
predictor changes the probability of the outcome.

Logistic regression is also called logit model. An example for logistic regression
model is analyzing the factors that influence winning or losing in an election for a
politician. The dependent variable would be binary, win, or lose and the predictor
variables of interest can be the amount of money and time spent on the campaign,
demographic conditions of the candidate, and so on.

In a logistic function, as the response variable is binary, there is a curved relationship
seen in the plotting and this is referred to as sigmoid. The following figure shows
four variants of sigmoid curves (we can observe that the value for y oscillates
between 0 and 1):

Chapter 3

[79]

The Naive Bayesian classifier
Often all of machine learning algorithms need to be modeled for supervised
learning tasks such as classification and prediction, or for unsupervised learning
tasks like clustering.

To understand the concept of Naive Bayes classification, let us start with an example:

The need here is to classify a new customer as "green" or "red" based on the analysis
done on the existing customers. Let us look at the existing plotting as shown in the
following figure:

Advanced Analytics – Paradigms, Tools, and Techniques

[80]

Since there are twice as many good customers (green) plotted as bad (ones in red), it
is reasonable to believe that a new customer who hasn't yet been evaluated is twice
as likely to be green rather than red. In the Bayesian analysis, this belief is known as
the prior probability. Prior probabilities are based on previous experience and in the
current example, the percentage of green and red plotted. As the word indicates, it is
often used to predict outcomes before they actually happen. Let us now assume there
is a total of 60 customers, with 40 of them classified as good and 20 of them as bad.
Our prior probabilities for class membership are:

• Prior probability of good customers: number of good customers (40) / total number of
customers (60)

• Prior probability of bad customers: number of bad customers (20) / total number of
customers (60)

Having formulated our prior probability, we are now ready to classify a new
customer (white circle in the following figure). We then calculate the number of
points in the circle belonging to each class label. From this we calculate the likelihood
of the new customer to be marked as good or bad.

K-means clustering
K-means clustering algorithm is considered one of the simplest unsupervised
learning techniques. As a first step, the given data is classified into a set of fixed k
clusters. Every cluster would have its own centroid placed carefully and away from
each other. As a next step, a unique point in a cluster is associated to the nearest
centroid. This exercise is done until all the points identified are exhausted.

Based on these associations, new centroids are identified. A repeat of the preceding
exercise is done until no changes or movements in the centroids are identified.
Finally, this algorithm aims at minimizing an objective function; in this case, a
squared error function.

This is more iterative and a nonhierarchical method for data classification.

Chapter 3

[81]

Text analysis
Text analysis is essentially the processing and representation of data that is in text
form for the purpose of analyzing and learning new models from it.

The main challenge in text analysis is the problem of high dimensionality. When
analyzing a document, every possible word in the document represents a dimension.

The other major challenge with text analysis is that the data is unstructured.

The process or the problem-solving tasks in text analysis is composed of three
important steps namely parsing, search/retrieval, and text mining.

Parsing is the process step that takes the unstructured or semi-structured document
and imposes a structure for the downstream analysis. Parsing is basically reading
the text which could be weblog, an RSS feed, an XML or HTML file, or a Word
document. Parsing decomposes what is read in, and renders it in a structure for the
subsequent steps.

Once parsing is done, the problem focuses on search and/or retrieval of specific
words or phrases or in finding a specific topic or an entity (a person or a corporation)
in a document or a corpus (body of knowledge). All text representation takes place
implicitly in the context of the corpus. All search and retrieval is something we are
used to performing with search engines such as Google. Most of the techniques used
in search and retrieval originated from the field of library science.

With the completion of these two steps, the output generated is a structured set of
tokens or a bunch of keywords that were searched, retrieved, and organized. The
third task is mining the text or understanding the content itself. Instead of treating
the text as a set of tokens or keywords, in this step we derive meaningful insights
into the data pertaining to the domain of knowledge, business process, or the
problem that we are trying to solve.

Many of the techniques that we mentioned in the previous sections such as
clustering and classification can be adapted to the text mining, with the proper
representation of the text. We could use K-means clustering or other methods to tie
the text into meaningful groups of subjects. Sentiment analysis and spam filtering are
examples of a classification tasks in text mining (recall that we listed spam filtering
as a prominent use case for Naïve Bayesian classifier). In addition to the traditional
statistical methods, natural language processing methods are also used in this phase.

Advanced Analytics – Paradigms, Tools, and Techniques

[82]

It should be noted that the list of tasks are not ordered. One generally starts with
the parsing, either with the intention of compiling them into a searchable corpus
or catalog (maybe after some analytical tasks such as tagging or categorization), or
specifically for the purpose of text mining. So it's not a process, it's a set of things that
go into the text analysis task. Or maybe a tree, where you start with parsing, and go
down to either search or to text mining

R programming
This section focuses on onboarding the readers to R programming. Details on
installation and sample programs are provided as a part of this section for reference.

R is a scripting language for statistical data analysis and exploration. It was
inspired by the statistical language S developed by AT&T. S later was sold to a
small firm, which added a GUI interface and named the result S-Plus. SAS and
MATLAB are other popular data analysis environments. It is a tool for data
manipulation that includes connecting to data sources and slicing and dicing data,
data modeling, and visualizations.

The use of R is increasing exponentially in the predictive analytics community.

Of course, the biggest attraction with R is that it is open source, fairly powerful
(comparable to the commercial packages), and is flexible (available on Windows,
Linux, and Mac).

Let us get started with installation. Windows users visit http://cran.rproject.
org/bin/windows/base/ and install the latest version.

Chapter 3

[83]

At its simplest, R can be used as a simple calculator shown as follows:

Advanced Analytics – Paradigms, Tools, and Techniques

[84]

R provides wonderful built-in help. The following figure shows data types that are
supported by R:

Have a look at the following example:

In quite a few simulations, we need to generate random numbers. R has a
comprehensive library of functions to do this. Use runif to generate multiple random
numbers uniformly between two numbers. Have a look at the following example:

runif(1, 2, 3)
runif(10, 5.0, 7.5)

Of course, every time you get a different number. The sample function generates an
integer random number between numbers:

sample(1:10, 5, replace=T)

Chapter 3

[85]

The first argument is a vector of valid numbers to generate (here, the numbers
are 1 to 10), the second argument indicates numbers to be returned, and the third
argument states that once a number is generated, R can still use that number in future
generations. So, a true there means you may see the same random number more than
once. The default is replace=F. In such cases, there will not be a repetition.

The most basic data type in R and is called a Vector.

The following commands show a set of interesting operations on vectors:

x=seq(1, 1000, by=2)
y=seq(2, 1000, by=2)
z=c(x,y)
length(z)
mean(x)
median(y)
sd(y)
max(x)
min(y)
sort(z)
summary(z)

The rep command is used for repeating values, shown as follows:

There are many other important data types in R like lists and data frames that are
used abundantly. This book just introduces to the concept of R programming. In the
next section, we will implement Monte Carlo simulations using R programming.

When there is a lot of randomness in the inputs, it is very difficult to compute output
precisely, even though the output-input relation is simple and well established. In
such a case:

1. Generate randomly one possible outcome with one possible set of inputs.
2. Repeat it large number of times.
3. Take the average or summary statistic.

Advanced Analytics – Paradigms, Tools, and Techniques

[86]

Let us work out a number of trivial and not so trivial problems to illustrate the
usefulness of the approach.

Let us start with computing the value of pi. While nobody computes pi using this
method, it gives a fairly good view of how the Monte Carlo method works.

If the radius of the circle in the preceding figure is r, the area of the quarter

circle = , and area of the square enclosing the circle is r2.

Imagine a thought experiment where you build this quarter circle and square on a
large canvas and you throw darts. If you throw sufficient darts, the ratio of darts that
fall within the circle are proportional to the area of the circle. Same is the case with
the square.

The r code is provided in the electronic format. The results are:

The following figure illustrates examples of a few visualization capabilities in R:

Chapter 3

[87]

Weka
Weka stands for Waikato Environment for Knowledge Analysis. It is a Java-based
tool for data mining and machine learning built by the University of Waikato. The
mining algorithms can directly be applied onto the data sets or can be run from the
Java code. It has tools for data preprocessing, regression, clustering, classification,
and many other techniques with a capability to visualize.

Visit http://www.cs.waikato.ac.nz/~ml/weka/index.html for more details.

Key features of Weka are listed below:

• 49 data preprocessing tools
• 76 classification/regression algorithms
• Eight clustering algorithms
• Three algorithms for finding association rules
• 15 attribute/subset evaluators and 10 search algorithms for feature selection

Advanced Analytics – Paradigms, Tools, and Techniques

[88]

The tool primarily has three user interfaces:

• Explorer
• Experimenter
• KnowledgeFlow

The following figure shows Knowledge Explorer user interface from where
navigation to various functions for preprocessing, classification, clustering,
association rules, and visualizations is available under different tabs.

Chapter 3

[89]

The following figure depicts a sample visualization that can be executed in Weka:

Advanced Analytics – Paradigms, Tools, and Techniques

[90]

In-database analytics using MADlib
MADlib is an open source library for in-database analytics. It is integrated with
Greenplum database and is known for highly efficient analytics. It was first reported
at VLDB 2009 in which MAD Skills: New Analysis Practices for Big Data was presented.
Read about it at http://db.cs.berkeley.edu/papers/vldb09-madskills.pdf.

The steps to install the latest version of MADlib are:

1. Visit http://MADlib.net.
2. Download the latest release.
3. Click on the MADlib Wiki link and follow the installation guide for

PostgreSQL or Greenplum.

Listed are the in-database analytic functions available natively in Greenplum and as
Madlib functions (MADlib functions in bold). This list keeps expanding with every
update and as the user community contributes to the MADlib.

Chapter 3

[91]

References/Further reading
• MADlib: www.madlib.net
• R tutorial: http://cran.r-project.org/doc/manuals/R-intro.html
• Weka documentation and tutorial: http://www.cs.waikato.ac.nz/ml/

weka/documentation.html

Summary
In this chapter, we have learnt key analytics paradigms: descriptive, predictive,
and prescriptive analytics. We have taken a dive deep into few key advanced
analytical methods.

The focus of this chapter has been to introduce to R programming, Weka, and in-
database analytics using MADlib. At the end of this chapter, readers should be
able to identify relevant tools that can be used in the context of analytic problem
statement. In the next chapter, an explanation on using these tools with Greenplum
is given with examples; and other advanced SQL techniques for in-database analytics
in the context of Greenplum will be detailed.

Implementing Analytics
with Greenplum UAP

In this chapter we will focus on actual implementation of the core tasks in data
science life cycle using Greenplum analytics platform. As a quick recap, let us
look at all that we covered until now. We have defined characteristics of Big Data,
requirements for the next generation analytics, and business intelligence platform.
We have also learnt about various phases of data science life cycle, and understood
all that Greenplum has to offer to address the analytics' requirements. We have
covered a little theory on some standard analytical methods and have had a quick
onboarding exercise for R, Weka, and MADlib frameworks. We now have analytics'
requirements and we also know where Greenplum product suite can be leveraged.

Let's now look at the implementation using Greenplum Products. We will also look
at integration between various components.

This chapter covers the following topics:

• Data loading
 ° Structured (into Greenplum)

Using Greenplum loading utilities in combination with
external tables
Using external ETL tool (like Informatica; we will cover using
Informatica's PWX Connector for Greenplum for high-speed
data loading)

 ° Unstructured data (into Hadoop)

Implementing Analytics with Greenplum UAP

[94]

• Using Greenplum data loaders to load data into Hadoop Distributed File
System (HDFS)

 ° Loading data from Hadoop (HDFS) into Greenplum

• Data unloading from Greenplum and Hadoop environments
• Querying and reporting data

 ° Querying Greenplum
 ° Querying Hadoop (HD)
 ° Querying Greenplum and Hadoop (combining structured and

unstructured data)

• Greenplum Data Computing Appliance (DCA) and monitoring
• Running analytic functions

 ° R and Weka with Greenplum
 ° Advanced SQL options on Greenplum for analytics (Windows

functions and aggregates)
 ° MADlib with Greenplum

• Using Chorus

Data loading for Greenplum Database
and HD
This section provides step-by-step instructions on all the approaches to load
structured data into Greenplum Database (ELT using external tables) and any
unstructured data into HD using proprietary utilities within Greenplum distribution.
Additionally, for Greenplum Database, we will also look at options to integrate with
an external ETL tool like Informatica PowerCenter using a specialized connecter
called PowerExchange(PWX) connector.

Chapter 4

[95]

Greenplum data loading options
Data can be loaded, transformed, and formatted in Greenplum using in-built
utilities and tools. There are the options that load data into Greenplum in parallel
or sequential form. The following are the different ways to load data into
Greenplum Database:

• INSERT: INSERT command is a standard SQL command that is used for
loading data into database tables in a row-by-row fashion. This option should
not be used for loading large columns. In this option, data is routed through
the master node and can prove to be a bottleneck in case of large volumes.
This command is commonly used in JDBC/ODBC-based communication.

 ° Syntax:
INSERT INTO <<table_name>> (<<column names list separated by
commas>>) VALUES (<<corresponding values>>);

 ° Example:

INSERT INTO employee (id, firstname, lastname) VALUES (001,
'John', 'Grisham');

• COPY: COPY command is one of the initial ways of loading data. It is not
parallelized, but is typically used in case of loading large volumes of data
and we can run multiple copy commands concurrently. It facilitates copying
data from STDIN or STDOUT using the connection between the master node
and the client. Given the fact that it can handle volumes and can be manually
run concurrently, it is much easier and quicker compared to the other options
discussed below.

 ° Example:

COPY employees FROM '/usr/home/historicemployees.dat' WITH
DELIMITER '|';

• External tables: External tables are unique to Greenplum and are typically
used for high-speed, parallel, and bulk loading. External tables access
file-based data using file:// or gpfdist:// protocols and dynamic
sources can be accessed via http:// protocol. More details on external
tables are covered in the next section.

• gpload: gpload is a wrapper utility for external tables that internally uses a
load specification in a YAML formatted control file. More details in gpload
utility are covered in a separate section below.

Implementing Analytics with Greenplum UAP

[96]

Before starting to detail available options of loading data for Greenplum Database,
let us take a dive deep into Greenplum's external tables. Greenplum has built-in ETL
capabilities and we can load and unload data using Greenplum's external tables. The
following figure depicts the data loading process that involves loading data via the
master node. Both INSERT and COPY commands follow this route.

External tables
External tables in Greenplum refer to those database tables that help Greenplum
Database access data from a source that is outside of the database. We can have
different external tables for different formats. Greenplum supports fast, parallel,
as well as nonparallel data loading and unloading. The external tables act as an
interfacing point to external data source and give an impression of a local data
source to the accessing function.

File-based data sources are supported by external tables. The following file formats
can be loaded onto external tables:

• Regular file-based source (supports Text, CSV, and XML data formats):
file:// or gpfdist:// protocol

Chapter 4

[97]

• Web-based file source (supports Text, CSV, OS commands, and scripts):
http:// protocol

• Hadoop-based file source (supports Text and custom/user-defined formats):
gphdfs:// protocol

Following is the syntax for the creation and deletion of readable and writable
external tables:

• To create a read-only external table:
CREATE EXTERNAL (WEB) TABLE LOCATION (<<file paths>>) |
 EXECUTE '<<query>>' FORMAT '<<Format name for example:
 'TEXT'>>' (DELIMITER, '<<name the delimiter>>');

• To create a writable external table:
CREATE WRITABLE EXTERNAL (WEB) TABLE LOCATION (<<file
 paths>>) | EXECUTE '<<query>>' FORMAT '<<Format name for
 example: 'TEXT'>>' (DELIMITER, '<<name the
 delimiter>>');

• To drop an external table:

DROP EXTERNAL (WEB) TABLE;

Following are the examples on using file:// and gphdfs:// protocol:

CREATE EXTERNAL TABLE test_load_file (id int, name text,
date date, description text)
LOCATION (
'file://filehost:6781/data/folder1/*',
'file://filehost:6781/data/folder2/*'
'file://filehost:6781/data/folder3/*.csv'
)
FORMAT 'CSV' (HEADER);

In the preceding example, data is loaded from three different file server locations;
also, as you can see, the wild card notation for each of the locations can be different.
Now, in case where the files are located on HDFS, the following notation needs to be
used (in the following example, the file is '|' delimited):

CREATE EXTERNAL TABLE test_load_file (id int, name text,
date date, description text)
LOCATION (
'gphdfs://hdfshost:8081/data/filename.txt'
) FORMAT 'TEXT' (DELIMITER '|');

Implementing Analytics with Greenplum UAP

[98]

For file-based loading, we can also leverage gpfdist protocol that provides best
performance. Details on gpfdist and its usage are covered in a separate section in
the later part of this chapter.

Some applications of external tables are as follows:

• Execute queries on external data
• Eliminate badly formatted rows using single row error isolation strategy
• Perform ETL load and data unloads

Greenplum Database has readable and writable external tables:

• Readable external tables: They are used for loading data and support basic
extraction, transformation, and loading (ETL) tasks for data warehousing.
Greenplum Database segment instances read external table data in parallel to
optimize large load operations. Data in these tables cannot be modified.

• Writable external tables: They are used for unloading data from Greenplum
Database. Writable external tables perform the following:

 ° Fetch data from database tables into writable external table
 ° Connect to another database or ETL to load data elsewhere
 ° Export data into files, named pipes, or trigger other executables
 ° Interpret output from Greenplum parallel MapReduce process
 ° Writable external tables allow only INSERT operations

Important points to consider while handling external tables in Greenplum are
as follows:

• When defining an external table, the table and the columns are named just
like any other table.

• Add WEB clause to define a WEB external table.
• We use one of the following protocols to access external table data sources. A

mix of protocols in the CREATE EXTERNAL TABLE statements is not allowed.
 ° gpfdist: It points to a directory on the file host or ETL host and loads

all external data files into Greenplum primary segments in parallel
 ° gpfdists: It provides a secure gpfdist
 ° file://: It is used to access external data files on a segment host that

the only super user (gpadmin) can access
 ° gphdfs: It points to files on the HDFS

Chapter 4

[99]

• The SEGMENT REJECT LIMIT clause is used to define criteria for single row
error handling. If we do not specify this clause, it would mean all or nothing,
a complete failure when the first failure is encountered.

• FORMAT is used to define the format (for example, TEXT or CSV).
• In case of DROP EXTERNAL (WEB) TABLE, only the table definition is dropped

and the source data is not disturbed.

Web external tables in Greenplum are used to handle dynamic data sources. Web
external tables can either be command-based or URL-based.

Command-based web external tables are the tables that get data based on the output
of a shell script or command. The command or script must reside on the hosts and
should be specified within the EXECUTE clause.

By default, the command is run on all segment hosts and in every segment instance.
We can control the number of segment instances we would like to have the
command run. The ON clause lists the hosts on which the command needs to be run.

An example is shown as follows:

CREATE EXTERNAL WEB TABLE test_output
(id int, name text)
EXECUTE '/tmp/load_scripts/get_test_data.sh' ON HOST
FORMAT 'TEXT' (DELIMITER '|');

URL-based web tables get data from the web tables using HTTP protocol.

The LOCATION clause is used to define the list of files on a web server using
http:// protocol. The web data files are expected to be accessible to the Greenplum
segment hosts.

There can be many URLs specified and the number of URLs correspond to the
number of URLs specified, and this corresponds to the number of segment instances
that work in parallel to access the web table.

The following is an example command to create a web external table from many URLs:

CREATE EXTERNAL WEB TABLE test_table (id int, name text, date
 date, description text)
LOCATION (
'http://abc.com/test1/file.csv',
'http://abc.com/test2/file.csv',
'http://abc.com/test3/file.csv'
)
FORMAT 'CSV' (HEADER);

The following sections will explain different ways of loading data into Greenplum.

Implementing Analytics with Greenplum UAP

[100]

gpfdist
The gpfdist protocol provides the best parallel performance. It is a utility in
Greenplum and can be easily installed. gpfdist is responsible for ensuring optimal
usage of segments while running reads for external table. This utility is run on the
server where the external files are located. It can be used similar to the file://
protocol shown in the preceding section to load the data into a regular external table
from a file source.

For example, the following command demonstrates loading data from text files that
are available on a remote server having gpfdist running on the ports 8081 and 8082
respectively:

CREATE EXTERNAL TABLE test_table (id int, name text, date date,
 description text) LOCATION ('gpfdist://localhost:8081/*.txt',
 'gpfdst://localhost1:8082/*.txt') FORMAT 'TEXT' (DELIMITER '|'
);

gpfdist can uncompress gzip and bzip2 files by default.

To maximize the performance of gpfdist, following are a few points we
should consider.

As the number of segments increases, overall parallel processing should be
maximized. We can look at splitting the large file into smaller chunks, typically
of similar size, and share them across all the gpfdist locations. Run gpfdist on
as many interfaces as possible (and be aware of bonded NICs and be sure to start
enough gpfdist to work them). Work should be distributed even across all these
resources. In an MPP shared nothing environment, load speed as much as the speed
of the slowest node. Any skew in the load file layout will cause the overall load to
bottleneck on that resource.

The gp_external_max_segments configuration controls maximum number of
segments each gpfdist serves. It gives a number that segments can access external
files in parallel. Default value for this parameter is 64. It is important that we keep an
even factor for gp_external_max_segments and number of gpfdist processes.

Chapter 4

[101]

gpfdist is installed in $GPHOME/bin on Greenplum master and segment
servers/hosts.

• Starting and stopping gpfdist:
 ° To start gpfdist:

$ gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &

For multiple gpfdist instances on the same ETL host (refer figure on
page 13), use a different base directory and port for each instance. For
example:

$ gpfdist -d /var/load_files1 -p 8081 -l /home/gpadmin/log1 &

$ gpfdist -d /var/load_files2 -p 8082 -l /home/gpadmin/log2 &

 ° To stop gpfdist when it is running in the background:

First find its process id:
$ ps –ef | grep gpfdist

Then kill the process, for example (where 3456 is the process ID in
this example):

$ kill xxxx

gpload
The gpload data loading utility is used to load data into Greenplum's external
table in parallel. gpload uses YAML formatted control file that has the following
commands/scripts to load data into the target database:

• Invoke the Greenplum parallel file server program (gpfdist)
• Create an external table definition based on the source data defined
• Load the source data into the target table in the database according to gpload

mode (insert, update, or merge)

It is important to note that with GPLOAD we have to deal with YAML, which is
not simple and requires skill. But, as it acts as a wrapper simplifying multiple
implementations into one, we can have parallel file-based external table setup with
configuration of the data format, external table definition, and gpfdist or gpfdists
setup in a single configuration file. It executes SQL against the external table. The
external temporary external table is dropped once the load gets completed.

Implementing Analytics with Greenplum UAP

[102]

For example, test.yml:

%YAML 1.1

//Greenplum database connection configurations
VERSION: 1.0.0.1
DATABASE: master
USER: master
PASSWORD: master
HOST: master
PORT: 5432
GPLOAD:
//Gpfdist configurations
 INPUT:
 - SOURCE:
 LOCAL_HOSTNAME:
 - master
 PORT: 8082
 FILE:
 - /home/ master /SAMPLE.csv
//External table configurations
 - COLUMNS:
 - column1: numeric
 - column2: text
 - FORMAT: csv
 - DELIMITER: ","
 - ESCAPE: '/'
 - NULL_AS: '/N'
 - QUOTE: '"'
 - ENCODING: 'utf8'
 - ERROR_LIMIT: 5
 - ERROR_TABLE: test.load_error
 OUTPUT:
 - TABLE: test.sample
 - MODE: INSERT
 PRELOAD:

The result is as shown:

[master@ master mdp]$ gpload -f test.yml

2013-08-03 14:52:19|INFO|gpload session started 2013-05-03 14:52:19

2013-08-03 14:52:19|INFO|started gpfdist -p 8082 -P 8083 -f
 "/home/master/SAMPLE.csv" -t 30

2013-08-03 14:52:19|INFO|running time: 0.25 seconds

2013-08-03 14:52:19|INFO|rows Inserted = 4

2013-08-03 14:52:19|INFO|rows Updated = 0

2013-08-03 14:52:19|INFO|data formatting errors = 0

2013-08-03 14:52:19|INFO|gpload succeeded

Chapter 4

[103]

The gpload program processes the control file document
in order and uses indentation to demarcate the hierarchy.
White spaces and tabs usage are restricted.

Hadoop (HD) data loading options
We will now look at ways to load data into Hadoop. To handle unstructured data
processing and analytics, Greenplum provides a commercial Hadoop distribution
with some proprietary integration pieces built to work with Greenplum Database,
Chorus, and Command Center.

Sqoop 2
In this section, we will explore an option for data loading and unloading
requirements for Hadoop with Sqoop API. Sqoop is a framework that ships with
Hadoop and forms a part of Hadoop ecosystem as listed in Chapter 2, Greenplum
Unified Analytics Platform (UAP). This section is not meant to be a tutorial for Sqoop,
but is intended to introduce the readers to this concept.

Data can be loaded independently into Hadoop using Sqoop API. As databases are
not vastly accessible by Hadoop, Apache Hadoop was added to Hadoop ecosystem
for efficiently transferring bulk data between Hadoop and structured databases.
Sqoop is used for loading or unloading data from database/data warehouse, and
NOSQL stores into HDFS. It comes with a connector-based architecture, where it
can support multiple plugins. Have a look at the following figure:

Implementing Analytics with Greenplum UAP

[104]

The following example demonstrates a sqoop command to import data from a data
store using JDBC connector into Hive tables (more on Hive is covered in the next
sections of this chapter).

sqoop import \
--connect jdbc:<<pjdbc connectors>> \
--username <<name>> \
--password <<password>> \
--table <<hive-table-name>> \
--hive-import

The advantage with Sqoop is that, it automatically creates the metadata for the Hive
table. In the case where the Hive table does not exist, it creates the same.

To learn more on Apache Sqoop refer http://sqoop.apache.org/docs/1.99.2/
BuildingSqoop2.html.

Greenplum BulkLoader for Hadoop
As a part of the HD distribution, Greenplum ships data loader components to help
bulk load large volumes of data into HDFS. This section again introduces readers to
bulk loader options in Greenplum for HD but is not intended to serve as a tutorial.

Greenplum Data Loader is a batch data-loading tool that leverages the GPHD
MapReduce framework. Greenplum Data Loader manages a cluster of machines
that support multijob/multiuser, parallel data loading, and optimizes disk/network
bandwidth for best possible throughput.

The following are the functions:

• Deployment of code
• Partitioning of data into chunks
• Splitting jobs into multiple tasks
• Scheduling the tasks, taking into account data locality, and network topology
• Handling any job failures

Greenplum Data Loader can dynamically scale the execution of data loading tasks to
maximize the system resource. It can linearly scale out to multiple disks or multiple
machines depending on the cluster setup.

Additionally, Greenplum Data Loader component supports a wide variety of
source data store/access protocols—HDFS, local FS (DAS), NFS, FTP, and HTTPS. It
internally uses master/slave architecture and can be managed through both CLI and
GUI.

Chapter 4

[105]

Bulk loader components are listed in the following table:

Component Summary
BulkLoader manager An administrative GUI for managing data

load processing. Provides REST interfaces to
integrate with any other external clients.

BulkLoader scheduler This is a job scheduling service to help
schedule loading jobs.

BulkLoader CLI This is a command-line interface to run
loading jobs.

The Greenplum Data Loader cluster copies data from the source data store to the
destination cluster. The cluster is composed of three types of logical nodes.

The three nodes are master node, slave node and BulkLoader CLI node.
Any existing MapReduce and HDFS deployment can be leveraged.

The following figure depicts various components in Hadoop HDFS and the
BulkLoader components.

Implementing Analytics with Greenplum UAP

[106]

Using external ETL to load data
into Greenplum
All the Greenplum utilities discussed earlier have some limitations in terms of what
data source formats they can support; and we have seen that they are typically the
file formats such as TXT, XML, CSV, and other custom formats.

As a further step to supporting any other data source formats, Greenplum can
be integrated with an external data integration tool such as Informatica, Pentaho,
Talend, and others. As a part of Data Integration Accelerator Module, Greenplum
provides integration end points with these ETL to facilitate high-speed parallel data
loading into the Greenplum Database. The following figure depicts the flow of how
an external ETL server can load data directly into the segment servers to achieve
high throughput.

Now, let us look at the case of integrating Informatica PowerCenter into Greenplum
Data Integration Accelerator (DIA).

Chapter 4

[107]

Informatica has PWX connectors for Greenplum that facilitate high-speed parallel
data loading. The Greenplum Database is designed to load large volumes of data
quickly with few jobs running in parallel. In order to take advantage of Greenplum's
capabilities, such large volume loads through Informatica should use PWX for
Greenplum. PWX for Greenplum utilizes the Greenplum load utilities gpload/
gpfdist that takes advantage of the database's massively parallel, shared nothing
architecture.

We can use Informatica PWX Connector for Greenplum with Greenplum DIA.
The segment servers of Greenplum connect directly to the external files served via
gpfdist. The load bypasses the master server in this case. Segment servers are then
loaded in parallel. The external tables point to the streamed files on the ETL host.

The loader utilities allow for loading of data to a single table. If a PowerCenter
mapping has multiple Greenplum targets, PWX for Greenplum starts a separate
loader instance for each target. Each loader instance will have a separate connection
to Greenplum. The total number of Greenplum connections used is the number
of Greenplum targets in the mapping multiplied by the number of partitions
configured in the session. For mappings with many targets and/or many partitions,
the number of Greenplum connections used may not be allowed by the database, or
may cause out of memory issues on the Greenplum segments. In that case consider
staging the data to a Greenplum staging table and using follow-on processing to load
from there to the target tables. Refer the following section on ETLT for more details
on this. Please refer to the Greenplum documentation for information on database
connections.

Following is the workflow between Informatica and Greenplum servers:

• PWX for Greenplum starts a gpload process providing it a configuration
file for the work to be done. It also creates a named pipe to pass data to
gpfdist.

• gpload kicks off a gpfdist process and gpfdist process provides data to
Greenplum segments.

• gpload communicates with Greenplum Database and sets up the load.
• The Greenplum master communicates with the Greenplum segment servers

and instructs them to connect back to the gpfdist process to start pulling
in data.

• The Greenplum segment servers connect with gpfdist and request the data.
• PWX for Greenplum writes data to the named pipe, gpfdist reads it from

the named pipe, and the Greenplum segment servers pull data in directly
from gpfdist.

Implementing Analytics with Greenplum UAP

[108]

The DIA servers, combined with the massively parallel processing databases in
the DCA, are perfectly configured to be used as nodes in a PowerCenter grid. The
scalability nature of the DIA allows you to add power and performance to your
Informatica grid when more performance is needed for your data integration
projects. In this case where Informatica is installed within DIA, the data load
leverages the high-speed interconnect to load data.

Extraction, Load, and Transformation (ELT)
and Extraction, Transformation, Load,
and Transformation (ETLT)
ELT and ETLT are highly performing approaches when working with Informatica
and Greenplum. Informatica can be used for complex parsing of source data and for
transformation that can be achieved without looking up large numbers of records
against large Greenplum tables. The data can be loaded to Greenplum staging tables
using PWX for Greenplum. Any remaining transformation logic in Greenplum can
be achieved in one of the following ways:

• Greenplum scripts
• Informatica push-down optimization
• Metadata driven Greenplum scripting

The connector can be integrated into Workflow Manager of PowerCenter as a
target writer.

Greenplum target configuration
Use the following target configuration for all PWX for Greenplum targets. This will
ensure that certain characters are escaped correctly, and prevent data loss and/or
code page conversion errors.

Format - CSV
Delimiter - |
Escape - \
Skip Escaping - Unchecked
Null As -\N
Quote - "
Encoding – WIN1252

Chapter 4

[109]

Sourcing large volumes of data from Greenplum
One way to communicate with Greenplum is to configure ODBC connection for
Greenplum in Informatica, and this can prove to be inefficient in case of large
volumes; another way is to use the File-based Writable External Table feature in
Greenplum. Details on using external tables are discussed earlier in this chapter.
Also, refer the Greenplum Admin Guide for more information on this feature.

The following steps are required to integrate Greenplum File-based Writable
External Tables and Informatica:

1. Using a shell script (perhaps executed from a command task), perform the
following steps:

1. Create an empty directory on the Informatica server, for example,
mkdir /path/to/new/dir.

2. Start gpfdist on an available port against that directory, for
example, gpfdist -d /path/to/new/dir -p 8081 -l /path/to/
log/dir/gpfdist.log.

3. Create a named pipe in the directory, for example, mkfifo /path/
to/new/dir/data.fifo.

2. Execute SQL commands against the Greenplum database (perhaps in simple
mappings using a SQLT):

1. First create a writable external table, for example, gpinfa.unload_
us_person (like gpinfa.us_person).

2. The location is gpfdist://<InformaticaServer>:8081/us_
person1.out.

3. The format is 'TEXT' (DELIMITER ',').
4. It is distributed by person_id.
5. Insert records from the table to be sourced into the writable external

table, for example, insert into gpinfa.unload_us_person select *
from gpinfa.us_person.

3. At this point Greenplum will start sending data to the gpfdist process on
the Informatica server, which in turn will write the data to the named pipe.
This process will be blocked and will not complete until another process
reads from the named pipe. At this point, the Informatica session can begin
reading the data from the named pipe and processing it as desired.

Implementing Analytics with Greenplum UAP

[110]

4. Once the session has been completed, the preceding insert statement will
complete. Additional SQL commands can be executed to drop the file-based
writable external table. Again this could perhaps be done using a mapping
that executes after the main load and uses a SQLT to execute the SQL, for
example, drop external table gpinfa.unload_us_person.

5. Final cleanup on the file system can be done using command tasks:

1. Delete the named pipe, for example, rm /path/to/new/dir/data.
fifo.

2. Stop gpfdist. There are many ways to do this, but an easy way is
to pass part or all of the command executed earlier to the pkill
command, for example, pkill -f -u <user> " gpfdist -d /path/to/
new/dir -p 8081 -l /path/to/log/dir/gpfdist.log "

3. Remove the directory that was created, e.g. rmdir /path/to/new/dir

Here is a PowerCenter workflow that illustrates how these steps could be
implemented in PowerCenter.

Unsupported Greenplum data types
PowerExchange for Greenplum does not support the following Greenplum data types:

• bigserial

• bytea

• line

• serial

• time with time zone

• timestamp with time zone

Chapter 4

[111]

When you import a Greenplum table that contains columns with unsupported data
types, the designer imports the columns. When you run a session, the results are
unpredictable, and can include session failures. The gpload utility also fails and logs
an error in the gpload log file.

Push Down Optimization (PDO)
In standard configuration all PowerCenter mapping logic gets implemented as
a PowerCenter process running on the EIP servers. In situations where data is
read from a database, some transformation logic is applied, and then the data is
loaded back to the same database, it can make more sense to have the database do
the transformation work internally. Informatica has a Push Down Optimization
(PDO) feature that enables this. PDO allows developers to build mapping logic in
the standard PowerCenter GUI development environment that is pushed to the
database as SQL at execution time. It gives the performance benefit of executing
in the database and the development and maintenance benefits of working in the
PowerCenter client.

For simple Greenplum to Greenplum data loads, consider using PDO over ODBC.
Note that not all PowerCenter logic can be pushed down to the database, so it will
be important to verify which business logic can be implemented successfully
through PDO. A limited number of transformations can be implemented using
PDO over ODBC.

Greenplum table distribution
and partitioning
In the following section, we will define table distribution in Greenplum context
and detail the other related aspects of distribution, like data skew.

Distribution
Greenplum is a massive parallel processing data store, and data is distributed across
segments as per the definition of the distribution strategy.

Every table in Greenplum has a data distribution method, the DISTRIBUTED BY
clause helps define the distribution strategy. We need to ensure that there is no
data skew introduced on any of the segment hosts as a result of the distribution
key defined.

Implementing Analytics with Greenplum UAP

[112]

There are two methods of distributing table data across segment hosts:

• Column oriented/Hash distribution: This is a distribution mechanism
that considers a column or a combination of columns to distribute data
across segments:
DISTRIBUTED BY (column name(s))

• Random distribution: In this distribution mechanism data would be
distributed across the segment servers in a round robin fashion. In this
approach there wouldn't be any data skew on the segments. For any table
that uses a random distribution, either redistribution or broadcast operation
will be required to perform a table join. There are performance implications
when performing a redistribution or broadcast of very large tables. Random
distribution should be used for small tables and when a Hash distribution
method is not feasible due to significant data skew:

DISTRIBUTED RANDOMLY

Distribution key can be modified at any point of time. In case the table has any unique
key, that key needs to be considered in the distributed key. User-defined data types
cannot be included into distributed key. Every table has a default distribution strategy
and we should not be using that as it may introduce skew. In Hash distributions, a lot
of care needs to be taken to ensure there is no data skew seen. The following are few
important considerations while defining Hash distribution keys:

• Use keys with unique values and high cardinality to distribute the data
evenly across all segment instances.

• Avoid Boolean keys like T/F, Y/N, or 1/0.
• With data skew problem solved, ensure there wouldn't be computational

skew. Let us take an example where the distribution key had a DATE column
and the data is always evenly distributed; and in case where there are
queries to get and process data for a particular month, it could happen that
a particular segment will end up serving all the requests, thus resulting in
computational skew.

Distribution key definition should depend on the data schema structure and
most common querying patterns. Commonly used joined tables should use same
data types for distribution keys. One important note that database designers
should consider is that, every time a query is fired that might involve joining data
between segment server, Greenplum would internally do a co-location exercise or
redistribution motion to respond to the query request, that would be destroyed post
communicating the results to the client.

Chapter 4

[113]

The co-location or redistribution motion is all about the process, where to perform
a local join matching rows must be located together on the same segment instance
and in absence of which a dynamic redistribution of the needed rows from one of
the tables to another segment instance will be performed. This might prove to be
expensive for the table with large volumes of data and might just work fine for
smaller tables.

In some cases a broadcast motion will be performed rather than a redistribute
motion. In a broadcast motion, every segment instance performs a broadcast or
sends its own individual rows to all other segment instances. This will result in
every segment instance having its own complete and local copy of the entire table.
A broadcast motion may not be as optimal as a redistribute motion. Therefore, the
optimizer typically selects a broadcast motion only for very small tables. A broadcast
motion is not acceptable for large tables.

Following is the syntax for defining distribution strategy for a table in Greenplum:

CREATE TABLE tablename (
column_name1 data_type NOT NULL,
column_name2 data_type NOT NULL,
Column_name3 data_type NOT NULL …)
[DISTRIBUTE BY (column_name)] à Hash algorithm
[DISTRIBUTED RANDOMLY] à Round-robin algorithm

Data skew and performance
In an MPP shared nothing environment, overall response time for a query is
measured by the completion time for all segments. If the data is skewed, the
segments with more data will have a longer completion time. The optimal goal
is that each segment should have a comparable number of rows and perform
approximately the same amount of processing. Have a look at the following figure:

Implementing Analytics with Greenplum UAP

[114]

Optimizing the broadcast or redistribution motion
for data co-location
A broadcast motion is usually not as optimal as a redistribute motion for very large
tables. The gp_segments_for_planner configuration should be used to optimize the
impact due to broadcast or redistribution operation.

By default, this configuration parameter takes value 0. gp_segments_for_planner
sets the number of primary segment instances for the planner to assume in its cost
and size estimates.

• If gp_segments_for_planner is set to 0, the value used is the actual number
of primary segments. This variable affects the planner's estimates of the
number of rows handled by each sending and receiving process in motion
operators.

• Increasing the number of primary segments will increase the cost of the
motion, hence favoring a redistribute motion over a broadcast motion.

• For example, setting gp_segments_for_planner = 100000 tells the planner
that there are 100,000 segments.

Partitioning
Table partitioning is used to logically divide large tables to improve performance and
facilitate data warehouse maintenance tasks. The primary goal of table partitioning is
to eliminate scanning partitions that contain data that is not needed to satisfy a query.
Consider table partitioning on large tables that can be divided into somewhat equal
parts based on a defining criterion and the defining criteria is used in query predicates
(WHERE clause). Following are the important features of table partitioning:

• Addresses the problem of supporting very large tables (such as fact tables) by
dividing them into smaller and more manageable pieces

• Improves query performance by scanning only the relevant data
• Supports easier data roll out for archiving
• Works with table inheritance and constraints
• Does not affect the physical distribution of the table data

Chapter 4

[115]

Partitioning can be range or list based. We can define a date range, numeric range, or
a list. The following is an example of range partitioning:

CREATE TABLE sales (id int, date date, amt decimal(10,2))
 DISTRIBUTED BY (id)
PARTITIONED BY RANGE (date)
(PARTITION Jan13 START (date '2013-01-01') INCLUSIVE,
PARTITION Feb13 START (date '2013-02-01') INCLUSIVE,
PARTITION Mar13 START (date '2013-03-01') INCLUSIVE,
…
PARTITION Dec13 START (date '2013-12-01') INCLUSIVE
END (date '2014-01-01') EXCLUSIVE);

The following is an example of list partitioning:

CREATE TABLE ranking (id int, rank int, gender char(1), count int)
 DISTRIBUTED BY (id)
PARTITIONED BY LIST (gender)
(PARTITION women VALUES ('F'),
PARTITION men VALUES ('M')
DEFAULT PARTITION other);

Partition elimination is a process in which irrelevant data is filtered out, thus
reducing table scans. This process can occur either as a part of the query plan or
during the query execution time.

The following is an example of dynamic partition elimination:

• Building partition table using list:
CREATE TABLE performance_quarter (LIKE another_table)
DISTRIBUTED BY (id)
PARTITION BY LIST (quartered)
(PARTITION first_quarter VALUES(1),
PARTITION second_quarter VALUES(2),
PARTITION third_quarter VALUES(3),
PARTITION fourth_quarter VALUES(4));

• Dynamic partition elimination while querying the fact:

SELECT * FORM performance_quarter, dimquarter WHERE
 dimquarter.description like 'Quarter1%' AND
 performance_quarter.id = dimquarter.quarterid

Implementing Analytics with Greenplum UAP

[116]

The primary goal of table partitioning is to eliminate scanning partitions that contain
data that is not needed to satisfy a query. Following are some important guidelines
to follow while defining table partitions:

• Partitioning should be used for very large tables, such as fact tables, to
improve query performance. For smaller tables, unless there is a significant
performance benefits that overweigh the administrative overhead, do not go
for partitioning.

• The partitioning strategy should facilitate dividing data into somewhat equal
parts based on a defining criteria and the defining criteria is used in query
predicates (WHERE clause). If the query access pattern (SELECT….WHERE) does
not match the partitioning definition, the benefit of partition elimination
cannot be maximized.

• When defining partitioning criteria, it is important to not have overlapping
ranges if using range partitioning, and to ensure list values are unique if
using list partitioning.

• Use the pg_partitions view to get information on the partition design.
• To partition an existing table, you must recreate and reload the table as a

partitioned table.

Querying Greenplum Database and HD
In the first section of this document, we have seen various options to load data (both
structured and unstructured) into Greenplum environment in a parallel mode. In this
section, we will focus on learning how to query data from Greenplum Database and
HD environments. Also, we will explore interfaces that help integrate data between
Greenplum Database and HD and leverage the benefit of holding one single copy of
the data.

Querying Greenplum Database
Greenplum Database is built over PostgreSQL and supports all standard SQL and
PL/SQL operations. Additionally, because of the distributed nature, there are few
new options that are built for scaled performance over the data cluster.

Let us now look at how Greenplum executes queries across data from all the
segments. Internally, it implements scatter/gather mechanism that is unique
to Greenplum.

Chapter 4

[117]

When working with Greenplum, we issue queries to the database similar to
any other database. In the context of Greenplum, the internal implementation
however varies:

• The master host receives, parses, and optimizes the query, creates a parallel
query plan, and dispatches the same plan to all the segments for execution.

• Each segment is responsible for executing local database operations on its
own set of data. The segments are scanned in parallel.

Once the query is executed, the results are returned to the master,
which in turn returns the results to the client. Optimal distribution
and partitioning strategy is key to the query performance.

Analyzing and optimizing queries

The ANALYZE function
It is very critical to get statistics to realize good query plans that would give good
results. The ANALYZE operation requires only a read lock on the table and can
possibly run in parallel.

For INSERT, UPDATE, DELETE, and CREATE INDEX operations, always run ANALYZE
after running the queries. We should use gp_autostats_on_change_threshold in
conjunction with gp_autostats_mode to auto analyze during these operations.

Following is the syntax for the ANALYZE command:

ANALYZE [table [(column [, ...])]]

ANALYZE by default analyzes all tables and all columns unless specified. The statistics
for the following scenarios would be useful:

• The JOIN condition
• The WHERE clause
• The SORT clause
• The GROUP BY or HAVING clause

Implementing Analytics with Greenplum UAP

[118]

The EXPLAIN function
The EXPLAIN function displays the query execution plan for the query. Every node
represents a single operation and it reads plans from bottom-up as each node
feeds rows into the nodes directly above it. The bottom nodes of a plan are usually
sequential table scan operations. The topmost plan nodes are usually the motion
nodes (redistribute, explicit redistribute, broadcast, or gather motions). These are the
operations responsible for moving rows between the segment instances during query
processing.

The EXPLAIN ANALYZE function is run on queries to identify any areas where the
query performance can be improved. This function always executes the query.

The following syntax should be used to run EXPLAIN ANALYZE; we would need to
use the EXPLAIN ANALYZE explicitly in a transaction:

BEGIN; EXPLAIN ANALYZE ...; ROLLBACK;

Dynamic Pipelining in Greenplum
Dynamic Pipelining framework enables parallel data flow both during distribution
and querying. Following are the key aspects of this feature:

• Combines high-speed UDP interconnect and a runtime execution
environment for big data workloads

• Data from upstream components in the dynamic pipeline are transmitted to
downstream components through UDP interconnect

• Enables queries to run without materializing intermediate contents to disk

The following figure explains the function of this feature:

Chapter 4

[119]

Querying HDFS
Hadoop ecosystem provides Pig and Hive frameworks to query data from HDFS.
In the latest versions of HD under Pivotal endeavor, HAWQ framework (SQL-like
querying interface for HD) is being released. We will not be covering HAWQ in
this book.

Let's take a quick look at what Pig and Hive frameworks are all about and
understand how HDFS data can be queried using some examples.

Hive
In this section, we will focus on understanding how to use Hive to access data stored
in HDFS. The following figure depicts Hive architecture.

Hive has the following dependencies to run successfully:

• Java 6
• Hadoop framework and Hadoop home directory configured

Hive internally runs in a MapReduce mode for efficiency. Hive is an SQL-like
interface that can query data on HDFS.

Implementing Analytics with Greenplum UAP

[120]

For example:

1. Passing CSV data onto HDFS using the following commands:
$ hadoop fs -mkdir input
$ hadoop fs -put /Users/Test/Data/Source/Books.csv input

2. Run Hive from command line to create a data structure around the
imported data:
$ hive
hive> CREATE TABLE IF NOT EXISTS BOOKSDATA
 > (ISBN STRING,
 > BookTitle STRING,
 > BookAuthor STRING,
 > YearOfPublication STRING,
 > Publisher STRING,
 > ImageURLS STRING,
 > ImageURLM STRING,
 > ImageURLL STRING)
 > COMMENT 'BX-Books Table'
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ';'
 > STORED AS TEXTFILE;
OK
Time taken: 0.086 seconds

3. Query data from the structure created above:
hive> LOAD DATA INPATH '/user/Test/data/source/Books.csv'
 OVERWRITE INTO TABLE BOOKSDATA ;
Loading data to table default.booksdata
Deleted hdfs://localhost:9000/user/hive/warehouse/bxdataset
OK
Time taken: 0.192 seconds

hive> select yearofpublication, count(booktitle) from
 booksdata group by yearofpublication;

4. Result of the preceding query:

Chapter 4

[121]

Pig
The purpose of Pig is similar to Hive with the only difference being that Hive is
more SQL-like interface and is usually used by developers who are familiar and
comfortable with SQL. For those from a non-SQL background, Pig is an option,
where developers can write Java code that runs as a MapReduce function to query
data on HDFS.

Pig supports many data types and developers can create custom functions in Java,
Python, and JavaScript. Its simple interface eases writing complex joins and other
functions.

Pig can be executed in local or MapReduce mode shown as follows:

$ pig -x local grunt>
OR
$ pig
 [main] INFO org.apache.pig.Main – Apache Pig version 0.10.0
 (r1328203) compiled Apr 19 2013, 22:54:12
 [main] INFO org.apache.pig.Main – Logging error messages to:
 /Users/test/pig_1351858332488.log
 [main] INFO
 org.apache.pig.backend.hadoop.executionengine.HExecutionEngine
 – Connecting to hadoop file system at: hdfs://localhost:9000
 main] INFO
 org.apache.pig.backend.hadoop.executionengine.HExecutionEngine
 – Connecting to map-reduce job tracker at: localhost:9001
 grunt>

For example:

grunt> CountByYear = FOREACH GroupByYear
>> GENERATE
 CONCAT((chararray)$0,CONCAT(':',(chararray)COUNT($1)));
2012-11-05 01:09:11,996 [main] WARN org.apache.pig.PigServer –
 Encountered Warning IMPLICIT_CAST_TO_DOUBLE 1 time(s).
grunt> STORE CountByYear >> INTO
 '/user/work/output/pig_output_bookx' USING PigStorage('t');

Implementing Analytics with Greenplum UAP

[122]

Data communication between Greenplum
Database and Hadoop (using external tables)
Greenplum supports exchanging HDFS data with Greenplum Database as external
tables, allowing for the reading from and writing to the HDFS directly from the
Greenplum Database, with the HDFS supporting full SQL syntax.

This combination leverages the full parallelism of the Greenplum Database and the
HDFS, utilizing the resource of all Greenplum segments when reading and writing
data with the HDFS.

Data is read into the Greenplum Database as an external table directly from the
HDFS DataNode, and it is written out from the Greenplum Database segment
servers to the HDFS. This relies on the HDFS to distribute data load evenly across the
DataNodes.

Following are the steps to read data from Hadoop HDFS into Greenplum Database:

1. Greenplum initiates read request from Greenplum with Hadoop NameNode
having access to the required file blocks.

2. Hadoop NameNode sends instruction to DataNode to provide file blocks to
Greenplum thus addressing the read request.

Following are the steps to write data to Hadoop HDFS from Greenplum Database:

1. Greenplum (client) initiates write request with Hadoop NameNode having
access to the required file blocks.

2. Hadoop NameNode sends instruction to DataNode to update the file blocks
into the file including the instruction for any data replication.

In the newer versions of UAP, there are new integration
frameworks being built, like HAWQ, that provide SQL-like
querying capabilities over HD and can query Greenplum
Database and HD combined to provide the client with a single
shot view on data across Greenplum Database and HD.

Chapter 4

[123]

Data Computing Appliance (DCA)
In Chapter 2, Greenplum Unified Analytics Platform (UAP), we were introduced to Data
Computing Appliance (DCA) of Greenplum, In this section we will take a dive deep
into the configuration options in DCA.

There are four important layers in DCA. The following table explains the functions
for each layer:

Layer Description
Compute Currently, the latest intel processor for excellent compute

node performance
Storage High-density RAID protected disks
Database Greenplum Database incorporating MPP
Network Dual 10Gig Ethernet switches for high-speed data

communication between nodes

The following table provides the hardware details on the DCA UAP edition
modules. Notably, now there are five modules to deploy from:

• Greenplum Database compute, four 2RU servers per module
• Greenplum Database standard, four 2RU servers per module
• GPHD, four 2RU servers per module
• GPHD—compute, two 1RU servers per module, and for computation only
• GP DIA, two 1RU servers per module

This may be changing with the next DCA release.

Implementing Analytics with Greenplum UAP

[124]

Module Figure Size Hardware

Greenplum
Database
Compute
Module

9TB Data
(uncompressed)

Four 2U servers per module,
each server contains:

• Two Sandy Bridge
sockets/16 cores

• 64 GB memory
• 24 x 300 GB SAS 10K

drives
Greenplum
Database
Standard
Module

27.5TB Data
(uncompressed)

Four 2U servers per module,
each server contains:

• Two sandy bridge
sockets/16 cores

• 64 GB memory
• 24 x 900 GB SAS 10K

drives
HD Module 36TB Data

(3 copies,
uncompressed)

Four 2U servers per module,
each server contains:

• Two sandy bridge
sockets/16 cores

• 64 GB memory
• 12 x 3 TB SATA 7.2K

drives
HD
Compute
Module

Compute-only Two 1U servers, each server
contains:

• Two sandy bridge
sockets/16 cores

• 64 GB memory
DIA
Module

2.7TB Data Two 1U servers, each server
contains:

• Two sandy bridge
sockets/16 cores

• 64 GB memory
• 6 x 300 GB SAS 10K

drives

Chapter 4

[125]

Storage design, disk protection, and fault
tolerance
In this section let us explore storage configurations used for master and segment
servers in Greenplum. They both use RAID 5 for redundancy and disk protection.

Master server RAID configurations
In DCA, each master server has six disks. They are laid out for RAID 5 (4+1)
configuration with one hot backup. This configuration helps with additional
fault tolerance on the master servers. The following table explains the RAID
configurations for Master server:

RAID group Physical disks Virtual disks Function File system Capacity
RAID group
1

5 Virtual disk 1 ROOT Ext3 48 GB

Virtual disk 2 SWAP SWAP 48 GB
Virtual disk 3 DATA XFS 2.09 TB

Hot spare 1 None Hot spare

The following figure depicts the master server RAID configurations as per the listing
in the preceding table:

Implementing Analytics with Greenplum UAP

[126]

Segment server RAID configurations
Each segment server in DCA has 12 disks that have two RAID groups of RAID 5
(5+1) attached. DCA maximizes the I/O performance by using the following RAID
controller policies:

• Disabled disk cache policy
• Write policy for write back
• Read policy for adaptive read ahead

The segment instances are equally spread across two file systems: /data1 and /data2.
The table below details the RAID configurations for the segment servers.

RAID group Physical disks Virtual disks Function File system Capacity
RAID group
1

6 Virtual disk 1 ROOT Ext3 48 GB

Virtual disk 2 DATA1 XFS 2.68 TB
RAID group
2

6 Virtual disk 1 ROOT Ext3 48 GB

Virtual disk 2 DATA2 XFS 2.68 TB

The next image demonstrates the RAID configurations for the segment servers and is
a depiction of the data in the table above.

Chapter 4

[127]

Monitoring DCA
Greenplum Command Center helps administrators and developers measure the
query and system performance metrics for DCA. It integrates HD, database, and
chorus components and provides a single shot view into the health of the system.

To monitor the performance of the appliance, there are performance agents that
run on the master and the segment servers. The agents collect performance data on
query execution and system utilization and send it to dedicated command center
database (gpperfmon) at regular intervals. This database is located on the master
server and contains three types of tables: now, history, and tail. Master agent polls
all segment agents for system metrics and other data at a configurable interval and
stores it in flat files and periodically commits the data to the database. Greenplum
Database installation includes setup scripts to install the Command Center database.
Now tables store data on current system metrics such as active queries, history tables
store data on historical metrics, and tail tables are for data in transition. Tail tables
are for internal use only. Now and tail data are stored as text files on the master host
file system and accessed by the Command Center database via external tables. The
history tables are regular database tables.

The following functions can be executed from the Command Center:

• Database administration: Ability to stop/start the database and ability to
recover/rebalance segments

• Interactive view of system metrics: Real-time and historic
(configurable by time)

• Database query monitoring: Ability to view, search, or cancel queries in
the system, and ability to view the query plan

• Database workload: Ability to configure resource queues and ability to
prioritize users

Implementing Analytics with Greenplum UAP

[128]

Have a look at the following screenshot:

Optionally, Command Center may be installed on a web server on the master host.
Command Center can be enabled or disabled using the gp_enable_gpperfmon
server configuration parameter. $MASTER_DATA_DIRECTORY/gpperfmon/conf/
gpperfmon.conf stores configuration parameters for the Command Center agents.
For configuration changes to take effect, the Pivotal DB must be restarted. For
additional information refer to the Pivotal Command Center Administrators guide.

The following commands can be used to start/stop Command Center:

$ gpcmdr --start [instance_name]
$ gpcmdr --stop [instance_name]

There are other utilities in Greenplum Database that help monitor the health of
Greenplum Database:

• gpstate: It displays information on which segments are down. It shows
master and segment configuration information (hosts, data directories, and
so on), the ports used by the system, and mapping of primary segments to
their corresponding mirror segments.

Chapter 4

[129]

• gpcheckperf: It helps identify hardware issues. This must have a trusted host
setup between the hosts involved in the performance test. It calls to gpssh
and gpscp, so these utilities must also be in our $PATH.

• gpcheckperf: It performs the following:

 ° Disk I/O test
 ° Memory bandwidth test (This utility uses the STREAM benchmark

program to measure sustainable memory bandwidth (in MB/s) and
network performance test (gpnetbench). This test is best used to
validate if the switch fabric can tolerate a full-matrix workload. For
additional information on gpstate and gpcheckperf refer to the
Greenplum Database Utility guide.)

gpcheckperf puts considerable strain on a system and
should not be used on an active, production system.

Greenplum Database management
In this section, we will learn about a few in-built tools that help perform some
Greenplum administration tasks as listed below:

• Starting and stopping Greenplum Database
• Adding new segment servers
• Loading data in parallel
• Parallel backup and restoring
• Managing recovery of failed segments, and so on

Implementing Analytics with Greenplum UAP

[130]

The following screenshot shows an object browser window in Greenplum's
pgAdminIII, a client tool to manage database elements:

The next screenshot shows the query builder view of pgAdminIII, developers can
use this interface to graphically build queries:

Chapter 4

[131]

The following interface helps monitor the master and segment server status:

In-database analytics options
(Greenplum-specific)
This section covers advanced SQL techniques for in-database analytics
within Greenplum.

The following techniques will be discussed in detail:

• Windows functions
• User-defined functions and aggregates

Implementing Analytics with Greenplum UAP

[132]

Window functions
Window functions are a new class of functions introduced in Greenplum. The
WINDOW clause is used to define a window that can be used in the OVER() expression
of a window function such as rank or avg. For information on OLAP extensions
and window functions refer to the Greenplum Database Reference guide. Window
functions allow application developers to more easily compose complex OLAP
queries using standard SQL commands. For example:

• Moving averages or sums can be calculated over various intervals.
• Aggregations and ranks can be reset as selected column values change.
• Complex ratios can be expressed in simple terms. Window functions can

only be used in the SELECT list, between the SELECT and FROM keywords
of a query.

Unlike aggregate functions, which return a result value for each group of rows,
window functions return a result value for every row, but that value is calculated
with respect to the rows in a particular window partition (grouping) or window
frame (row position within the window).

What classifies a function as a window function is the use of an OVER clause. The
OVER clause defines the window of data to which the function will be applied.

There are three characteristics of a window function:

• zPartitions (groupings): A window function calculates the results for a row
with respect to its partition

• Ordering of rows within a window partition: Some window functions such
as RANK require ordering

• Framing: For ordered result sets, you can define a window frame that
analyzes each row with respect to the rows directly above or below it

All window functions must have an OVER() clause. The window function specifies
the window of data to which the function applies it defines:

• Window partitions using the PARTITION BY clause
• Ordering within a window partition using the ORDER BY clause
• Framing within a window partition (ROWS/RANGE clauses)

Chapter 4

[133]

The PARTITION BY clause
The PARTITION BY clause performs the following functions:

• It can be used by all window functions. However, it is not a required clause.
Windows that do not use the PARTITION BY clause present the entire result
set as a single window partition.

• It organizes the result set into groupings based on the unique values of the
specified expression or column.

• It allows the function to be applied to each partition independently.

The ORDER BY clause
The ORDER BY clause is used to order the resulting data set based on an expression or
column. It is always allowed in windows functions and is required by some window
functions, including RANK. The ORDER BY clause specifies ordering within a window
partition.

The RANK function is a built-in function that calculates the rank of a row in an
ordered group of values. Rows with equal values for the ranking criteria receive the
same rank. The number of tied rows is added to the rank number to calculate the
next rank value. In this case, ranks may not be consecutive numbers.

A moving or rolling window defines a set of rows within a window partition. When
you define a window frame, the window function is computed with respect to the
contents of this moving frame, rather than against the fixed content of the entire
window partition. Window frames can be row-based, represented by the ROWS
clause, or value-based, represented by a RANGE clause.

When the window frame is row-based, you define the number of rows offset from
the current row. If the window frame is range-based, you define the bounds of the
window frame in terms of data values offset from the value in the current row.

If you specify only a starting row for the window, the current row is used as the last
row in the window.

Implementing Analytics with Greenplum UAP

[134]

The OVER (ORDER BY…) clause
Greenplum supports a variety of methods for developing functions, including:

• Query language support for functions developed in SQL
• Procedural language support for functions written in languages such as

PL/pgSQL (which is a subset of PL/SQL), PL/TcL, Perl, Python, and R (a
programming)

• Language for statistical computing and graphics
• Internal functions
• C-language functions

The data scientist may need to create a function that could be used in
the downstream analysis. Greenplum supports PL/pgSQL, PL/Perl,
and PL/Python out of the box. Other languages can be added with the
createlang utility.

Creating, modifying, and dropping functions
Functions that operate on tables must be created in the same schema. If you modify a
table, we must have access to a schema.

• Create a function with the CREATE FUNCTION command. You must have
CREATE access to the schema to create a function. A function can be created
with or without parameters.

• Replace an existing function with the CREATE OR REPLACE FUNCTION
command. This command either creates a function if one did not exist before,
or replaces an existing function. If you are replacing an existing function, you
must specify the same number of parameters and the same data types found
in the original function. If not, you are actually creating a new function.

• Change a function with the ALTER FUNCTION command. You must own the
function before you can modify it. If the function is to be created in another
schema, you must have CREATE privilege on that schema.

• Drop or remove a function with the DROP FUNCTION command. Because
you can have multiple functions with the same name but different number
of parameters and/or parameter types, you must include the appropriate
number of parameters and parameter types as part of the command. You
must also be the owner of the function to remove the function from the
schema.

Chapter 4

[135]

User-defined aggregates
User-defined aggregates perform a single table scan and it keeps state. A state is a
maximum of two numbers. In this example we create a user-defined aggregate that
returns a maximum of two numbers.

CREATE AGGREGATE defines a new aggregate function. Some basic and commonly
used aggregate functions such as count, min, max, sum, avg, and so on are already
provided in the Greenplum Database.

If one defines new types or needs an aggregate function not already provided, then
CREATE AGGREGATE can be used to provide the desired features.

An aggregate function is made from one, two, or three ordinary functions (mutually
exclusive): a state transition function sfunc, an optional preliminary segment-level
calculation function prefunc, and an optional final calculation function ffunc. These
are used as follows:

• sfunc(internal-state, next-data-values) ---> next-internal-
state

• prefunc(internal-state, internal-state) ---> next-internal-
state

• ffunc(internal-state) ---> aggregate-value

In the preceding example we only have the sfunc.

To test this aggregate, you can try the following code:

CREATE TABLE x(a INT);
INSERT INTO x VALUES (1),(2),(3);
SELECT scube(a) FROM x;
Correct answer for reference:
SELECT sum(a*a*a) FROM x;

Aggregate function description:

array_agg(any element) Concatenates any element into an array.
 Example: SELECT array_agg(anyelement ORDER BY anyelement) FROM
 table;
string_agg(text) Concatenates text into a string. Example: SELECT
 string_agg(text ORDER BY text) FROM table;
string_agg(text, delimiter) Concatenates text into a string
 delimited by delimiter.

For example, SELECT string_agg(text, ',' ORDER BY text) FROM table;

Implementing Analytics with Greenplum UAP

[136]

The columns in an ORDER BY clause are not necessarily the same as the aggregated
column, as shown in the following code that references a table named product with
columns store_id, product_name, and quantity:

SELECT store_id, array_agg(product_name ORDER BY quantity desc) FROM
product GROUP BY store_id;

There can only be one aggregated column. Multiple
columns can be specified in the ORDER BY clause.

Using R with Greenplum
In Chapter 3, Advanced Analytics – Paradigms, Tools, and Techniques, we were
introduced to R programming. R is a very powerful programming language that has
many built-in libraries for running statistical and analytical calculation or modeling.
In this section, we will learn how R functions can be integrated to work with data
in Greenplum. There are many ways in which we can run R on the data from
Greenplum and we will now discuss on the following two important approaches:

• R with standard DBI connector to Greenplum; in this case, R program
connects to Postgres/Greenplum database, loads data into R client

• PL/R—procedural language for SQL calls to R functions

DBI Connector for R
From R program, we can access Postgres or Greenplum in the following way:

//Database connector code
require(TSP)
require(fields)
require(RPostgreSQL)
drv <- dbDriver("PostgreSQL")
conn <- dbConnect(drv, user="postgres", dbname="pgissc")
sql.str <- "select id, st_x(location) as x, st_y(location) as y,
location from stands;"
waypts <- dbGetQuery(conn, sql.str)
dist.matrix <- rdist.earth(waypts[,2:3], R=3949.0)
rtsp <- TSP(dist.matrix)
soln <- solve_TSP(rtsp)
tour <- as.vector(soln)
dbDisconnect(conn)
dbUnloadDriver(drv)
print(paste("tour.dist=", attributes(soln)$tour_length))

Chapter 4

[137]

The output will be as follows:

[1] "tour.dist= 2804.58129355858"

PL/R
PL/R is a procedural language for R and is categorized under in-database processing
option for Greenplum.

Following are the general installation steps for setting up PL/R. This needs to be
done on every segment server.

tar -xzf plr-x.x.x.x.tar.gz
cd plr/
USE_PGXS=1 make
su -c "USE_PGXS=1 make install"
make installcheck

Following sample details the syntax for creating a PL/R function in Greenplum:

CREATE OR REPLACE FUNCTION func_name(arg-type1 [, arg-type2 ...])
RETURNS return-type AS $$
function body referencing arg1 [, arg2 ...]
$$ LANGUAGE ✬plr✬;
The above PL/R code is for an R function of the below syntax:func_name
<- function(arg1 [,arg2...]) {
function body referencing arg1 [,arg2 ...]
}

The following table represents the data type conversions between Postgres and R:

PostgreSQL Data Type R Data Type
int2, int4 Integer
int8, oat4, oat8, cash, numeric Numeric
Byte Object
Everything else Character
One-dimensional arrays Multi-element R vectors
Two-dimensional arrays R matrices
Three-dimensional arrays Three-dimensional R arrays
Composite types R data frames

Implementing Analytics with Greenplum UAP

[138]

The following code sample is an example for the PL/R version of the R code in the
above section (DBI connector for R):

CREATE OR REPLACE FUNCTION tsp_tour_length() RETURNS float8 AS
$$
require(TSP)
require(fields)
require(RPostgreSQL)
drv <- dbDriver("PostgreSQL")
conn <- dbConnect(drv, user="postgres", dbname="pgissc")
sql.str <- "select id, st_x(location) as x, st_y(location) as y,
location from stands;"
waypts <- dbGetQuery(conn, sql.str)
dist.matrix <- rdist.earth(waypts[,2:3], R=3949.0)
rtsp <- TSP(dist.matrix)
soln <- solve_TSP(rtsp)
dbDisconnect(conn)
dbUnloadDriver(drv)
return(attributes(soln)$tour_length)
$$
LANGUAGE ✬plr✬ STRICT;

SELECT tsp_tour_length();
tsp_tour_length

2804.58129355858
(1 row)

We can optionally auto load R functions in Postgres. There are special modules plr_
modules that contain the R functions.

Using Weka with Greenplum
As saw seen in Chapter 3, Advanced Analytics – Paradigms, Tools, and Techniques, Weka
is a Java-based analytics framework and an alternative to R. As it is a Java-based
analytics API, it can connect to any database that supports or has a JDBC driver.
Weka comes with a support to a wide range of database and in order to connect
to Greenplum, we would need to use the DatabaseUtils.props.postgresql
properties file and should be extracted to the HOME directory.

To connect to Postgres/Greenplum from Weka, configure the following properties in
the DatabaseUtils.props.postgresql properties file:

jdbcDriver = org.postgresql.Driver
jdbcURL= jdbc:postgresql://<<domain>>:<<port>>/<<dbName>>

Chapter 4

[139]

Weka has an API InstanceQuery that can be used in the following way to invoke a
Postgres function or stored procedure from the command line:

java InstanceQuery -Q "SELECT * FROM stored_procedure_name()" -U <user>
-P <password>

Using MADlib with Greenplum
MAD stands for Magnetic, Agile, and Deep; and lib denotes a library of scalable,
parallel, and advanced in-database functions. The following figure shows the
architecture of MADlib. The MADlib version used in the following example is v1.1:

Greenplum Database extensions for MADlib would need to be installed on the
segment servers on DCA.

$ pgxn install madlib

$ gppkg –i MADlib

The gppkg utility installs the MADlib extensions on all the Greenplum segment
servers in parallel.

MADlib based in-database analytics is benchmarkedagainst PL/R and is found to be
superior in terms of scalability and performance, and MADlib is a truly parallelized
process as compared to PL/R.

Let us now look at an example of MADlib function implementation for
linear regression.

Implementing Analytics with Greenplum UAP

[140]

As we have learned in Chapter 3, Advanced Analytics – Paradigms, Tools, and
Techniques, linear regression is a statistical technique that helps fit data into a linear
equation.

The MADlib prediction function that we would be using for this purpose is
as shown:

linregr_predict(
 coeficient,
 col_ind
)

Following are the steps to implement and run MADlib functions in Greenplum:

1. Create the dataset for running regression function:
CREATE TABLE items (id INT, tax INT, quantity INT, price INT,
 size INT);
COPY items FROM STDIN WITH DELIMITER '|';
 59 | 2 | 1 | 500 | 770
 105 | 3 | 2 | 850 | 1410
 2 | 3 | 1 | 225 | 1060
 87 | 2 | 2 | 900 | 1300
 132 | 3 | 2 | 1330 | 1500
 135 | 2 | 1 | 905 | 820
 279 | 3 | 2.5 | 2600 | 2130
 68 | 2 | 1 | 1425 | 1170
 184 | 3 | 2 | 1600 | 1500
 368 | 4 | 2 | 2400 | 2790
 166 | 3 | 1 | 870 | 1030
 162 | 3 | 2 | 1186 | 1250
 310 | 3 | 2 | 1400 | 1760
 207 | 2 | 3 | 1480 | 1550
 65 | 3 | 1.5 | 650 | 1450

2. Build a regression model:
-- one regression model
SELECT madlib.linregr_train(
 'items', 'items_lr', 'price', 'array[1, tax]');

-- different output models
SELECT madlib.linregr_train(
'items', 'items_lr_quantity', 'price', 'array[1, tax]',
 'quantity');

Chapter 4

[141]

3. Analyze the results:
SELECT * from items_lr;
SELECT * FROM items_lr_quantity;

4. Check the residues using prediction function for removing data noise.

SELECT items.*,
 madlib.linregr_predict(array[1,tax], m.coef) as
 predict, price -
 madlib.linregr_predict(array[1,tax], m.coef) as
 residual FROM items, items_lr quantity;

Refer http://doc.madlib.net/v1.1/index.html for more documentation on
functions and examples.

Using Greenplum Chorus
Greenplum Chorus can integrate with the multidimensional data visualization
tools from Tableau software. Chorus is capable of grabbing data from HDFS and
Greenplum Databases and throws out the data into Tableau workbooks for advanced
visualizations. It promotes real-time social collaboration and helps make projects
more transparent.

It provides an integrated development environment for analytics. It can integrate
with any third-party data and provide insights using visualization tools that can be
third-party as well.

In Chorus, we have two sets to data types to work with:

• Source dataset: Supports both internal and external data with native
connectivity to GPDB and flat files

• Sandbox dataset: Refers to the data generated as a result of running analytics

Chorus provides a single view GUI tool for exploring, aggregating, filtering,
and moving data to the sandboxes.

Implementing Analytics with Greenplum UAP

[142]

Chorus integrates with Tableau workspace for advanced visual data analysis.
The following screenshot demonstrates the usage of Tableau from Chorus GUI:

There is an open source version of Greenplum Chorus called OpenChorus.
Refer http://gopivotal.com/pivotal-products/pivotal-data-fabric/
pivotal-chorus for more details.

Pivotal
As mentioned in Chapter 2, Greenplum Unified Analytics Platform (UAP), since April
2013, with the formation of Pivotal in collaboration with EMC and VMware,
Greenplum UAP and data science product suite is being integrated with VMware's
Spring Source products like Gemfire, and the products are being repositioned under
the name of Pivotal. However, the current functions of the product will continue to
exist. The following table shows the corresponding product names in Pivotal. Pivotal
One product suite would now integrate.

Chapter 4

[143]

Greenplum product names Pivotal product names
Greenplum Database Pivotal Greenplum Database
Greenplum DCA Pivotal DCA
Greenplum UAP Pivotal UAP
Greenplum HD Pivotal HD
Greenplum Chorus Pivotal Chorus

Additionally, HAWQ framework for an integrated
SQL-based querying between HD and GP DB. Also,
In Memory Data Grid, Gemfire and SQLFire from the
VMware suite are being integrated into Pivotal One
solution.

References/Further reading
• Pivotal products: http://www.gopivotal.com/pivotal-products
• pgAdminIII Client: http://www.pgadmin.org/docs/dev/index.html
• Apache Pig tutorial: http://pig.apache.org/docs/r0.7.0/tutorial.html
• Apache Hive tutorial: https://cwiki.apache.org/confluence/display/

Hive/Tutorial

• Sqoop User guide: http://sqoop.apache.org/docs/1.4.0-incubating/
SqoopUserGuide.html

• MoreVRP for Greenplum: http://morevrp.com/products/morevrp-for-
pivotal-greenplum

Summary
In this chapter, we have explored various implementation aspects of Greenplum
UAP. We started with understanding data loading strategies for Greenplum and HD.
We have looked at loading data into Greenplum using internal utilities and functions
such as gpload and gpfdist and also using Informatica PowerExchange connector.
For HD, we have explored Hive and Greenplum bulk loader utility.

We moved on to take a dive deep into distribution and partitioning aspects of
Greenplum along with strategies for querying Greenplum and HD. We have looked
at various functions such as ANALYZE and EXPLAIN to optimize the queries and
interpretation of query plans. Finally, we have explored some in-database analytics
options with Greenplum (using Windows function, integrating MADlib, and using
PL/R). At the end of this chapter, readers should be fairly familiar with various
implementation aspects of Greenplum in conjunction with Hadoop for implementing
data storage and analytics for Big Data.

Index
A
ALTER FUNCTION command 134
analytical data 9
ANALYZE function 117
Apache Sqoop

URL 104
Apriori algorithm 75, 76
architecture, HDFS 54
architecture, UAP

about 32
column-oriented database 35, 36
data warehousing 32-35
distributed processing systems 36, 37
elastic scalability 38
massive parallel processing (MPP) systems

38
parallel processing systems 36, 37
shared nothing data architecture 38

association rules
about 73-75
Apriori algorithm 75, 76

attributes 13

B
Big Data

about 7, 11, 12
data formats 13, 14
properties 12

Big Data analytics
requisites 26-28

branches
decision branch 71
event branch 71

broadcast motion
optimizing 114

BulkLoader CLI 105
BulkLoader CLI node 105
BulkLoader manager 105
BulkLoader scheduler 105
Business Intelligence (BI) 16, 32
business problem

stating 19

C
C4.5 72
CART 72
CEP (Complex Event Processing) 26
Chorus

about 30, 56, 57
data types 141
using 141, 142

classification 65, 66
client programs

usage 49
clustering 67
column-oriented database 35, 36
column oriented distribution. See hash

distribution
column stores. See column-oriented

database
Command Center

about 30
functions, executing 127

components, UAP
about 29, 45
Chorus 30, 56, 57
Command Center 30

[146]

Greenplum Database 29, 45, 46
HD 30, 52, 53

Compute layer 123
Confidence 74
configuration data 9
COPY command 95
CREATE FUNCTION command 134
CSV (Comma Separated Values) 50

D
data

loading, techniques 20, 21
setting up 20
skewing 113
sourcing, from Greenplum 109, 110

data analytics
about 15, 16, 18
drivers 16
modeling methods 69
paradigms 62
techniques 18

data analytics, techniques 65
classification 65, 66
clustering 65, 67
descriptive analytics 18
forecasting 65-67
optimization 65, 68
prediction 65- 67
predictive analytics 18
regression 65-67
simulations 65, 68
specialized analytics 18
usage 69

Data Computing Appliance. See DCA
data distribution

about 52
hash distribution 52
round robin distribution 52

data exploration 20, 21
data formats, Big Data 13, 14

semi-structured 13
structured 13
unstructured 14

Data Integration Accelerator. See DIA
Data Integration (DI) 16

data loading
external tables, used 50
patterns 41-45

data loading, patterns
ELT 41
ETL 41
ETLT 42

data redundancy
components, implementing 50

data science 19
data science life cycle

about 19
business problem, stating 19
data exploration 20, 21
data, setting up 20
data transformation 20, 21
effectiveness, measuring 22
model, designing 21
model, executing 21, 22
publish insights 22

data streams 36
data transformation 20, 21
data warehouse

about 32
data, characteristics 32, 33

data warehousing 16, 32-35
Database layer 123
database modules 31
DBI Connector 136, 137
DCA

about 26, 57, 58, 94, 123
Compute layer 123
Database layer 123
DIA module 124
Greenplum Database Compute module 124
Greenplum Database Standard module 124
HD Compute module 124
HD module 124
layer 123
master server RAID configuration 125
module 123
monitoring 127-129
Network layer 123
segment server RAID configuration 126
Storage layer 123

decision branch 71
decision node 71

[147]

decision tree
about 69-72
branches 70
node 70

descriptive analytics 18, 62, 63
DIA 26, 58, 106
DIA module 32, 124
Distributed Files Systems (DFS) 16
distributed processing systems

about 36, 37
vs, parallel processing systems 36, 37

distribution key 52
DROP FUNCTION command 134
dual interconnect switches 50
Dynamic Pipelining

about 118
features 118

E
effectiveness, data science life cycle

measuring 22
elastic scalability 38
ELT

about 41, 108
vs, ETL and ETLT 43- 45

enterprise data
about 7, 8
classification 8
features 10, 11

enterprise data, classification
analytical data 9
configuration data 9
historic data 9
master data 9
reference data 9
transactional data 8
transitional data 10

ETL 32
about 41
vs, ELT and ETLT 43-45

ETLT
about 42, 108
vs, ETL and ELT 43-45

event branch 71
event node 71
EXECUTE clause 99

EXPLAIN function 118
external ETL

used, for loading data into Greenplum 106-
108

external tables 95
about 96-99
file formats 96
readable external tables 51, 98
used, for data loading 50
writable external tables 51, 98

Extraction, Load, and Transformation. See
ELT

Extraction, Transformation, Load, and
Transformation. See ETLT

Extract, Transform, and Load. See ETL

F
features, enterprise data 10, 11
file:// 98
Flume 30
forecasting 66, 67

G
Gini index 72
gpcheckperf utility 129
gpfdist 98
gpfdist utility 45, 50, 100, 101
gphdfs 98
gpload utility 45, 95, 101, 103
gppkg utility 139
gpstate utility 128
Greenplum

data loading, external ETL used 106-108
data, sourcing from 109, 110
external tables 51, 96- 99
gpfdist utility 100, 101
gpload utility 101, 102
high-availability architecture 49, 50
in-database analytics, options 132
MADlib, using with 139, 141
R, using with 136
table distribution 111-113
table partitioning 111, 114,-116
unsupported data types 110
Weka, using with 138

[148]

Greenplum BulkLoader
about 104, 105
component 105

Greenplum BulkLoader, component
BulkLoader CLI 105
BulkLoader manager 105
BulkLoader scheduler 105

Greenplum Database
about 29, 45, 46
data communication, with Hadoop 122
data distribution 52
data, loading 94
data loading, external tables used 50
data loading, options 95
Dynamic Pipelining 118
historic data management 51
physical architecture 46-49
polymorphic data storage 51
queries, analyzing 117
queries, optimizing 117
querying 116

Greenplum Database Compute module 124
Greenplum Database management 129-131
Greenplum Database Standard module 124
Greenplum Data Loader

about 104, 105
BulkLoader CLI node 105
 master node 105
slave node 105

Greenplum target
configuration 108

H
Hadoop. See HD
Hadoop Distributed File System. See HDFS
Hadoop MapReduce 55
hash distribution 52, 112
HBase 30
HD

about 30, 52, 53, 94
characteristics 53
data, loading 94
data communication, with Greenplum

Database 122

data loading, options 103
Greenplum BulkLoader 104, 105
querying 116
Sqoop 2 103, 104

HD Compute module 124
HDFS

about 30, 54, 94
architecture 54
Hive 119, 120
Pig 121
querying 119

HD module 32, 124
historic data 9
historic data management 51
Hive 30, 119, 120

I
in-database analytics

options 132
user-defined aggregates 135, 136
window function 132, 133

Informatica 106
INSERT command 95
installation, MADlib 90
instruction streams 36
interconnect 48
Itemset 74

J
JDBC drivers 49

K
K-means clustering 80

L
libpq 49
linear regression

about 77, 78
limitations 78

LOCATION clause 99
logistic regression 78
logit model. See logistic regression

[149]

M
MADlib

about 90
installing 90
URL 90
URL, for documentation 141
using, with Greenplum 139, 141

Mahout 30
massive parallel processing (MPP) systems

26, 38
master data 9
master host

about 46
functions 47

master node 105
functions 54

master server RAID configuration 125
mirror segment instance 50
model

designing 21, 22
executing 21, 22

modeling methods
about 69
association rules 69, 73-75
decision tree 69, 70, 72
K-means clustering 69, 80
linear regression 69, 77, 78
logistic regression 69, 78
Naive Bayesian classifier 69, 79, 80
text analysis 69, 81, 82

modules, UAP
about 31
database modules 31
DIA module 32
HD module 32

Multiple Instruction Single Data (MISD) 36
Multiple Instructions Multiple Data

(MIMD) 37

N
Naive Bayesian classifier 79, 80
Natural Language Processing (NLP) 16
Network layer 123
node

about 70
decision node 71

event node 71
terminal node 71

noisy data 12

O
ODBC drivers 49
OLAP database

about 34
vs, OLTP database 34

OLTP database
about 34
vs, OLAP database 34

OpenChorus
URL 142

operational data 15
optimization 68
ORDER BY clause 133
OVER clause 134

P
paradigms, data analytics 62

descriptive analytics 62, 63
predictive analytics 62-64
prescriptive analytics 62-65

parallel processing systems
about 36, 37
data streams 36
instruction streams 36
vs, distributed processing systems 36, 37

parsing 81
PARTITION BY clause 133
PDO 111, 42
Pentaho 106
Perl DBI 49
pgAdmin3 49
physical architecture, Greenplum Database

46-49
Pig 121, 122, 30
Pivotal 29, 142, 143
Pivotal Database 29
PL/R 137, 138
polymorphic data storage 51
PowerExchange connector. See PWX

connector
prediction 66, 67

[150]

predictive analytics
about 18, 62-64
aspects 63
used for 64

prescriptive analytics
about 62-65
used for 64, 65

psql 49
publish insights 22
Push Down Optimization. See PDO
PWX connector 94, 107
Python 49

Q
query executor 47

R
R

about 82-86
DBI Connector 136, 137
PL/R 137, 138
URL, for installation 82
using, with Greenplum 136

random distribution 112
RANGE clause 133
RANK function 133
readable external tables 98, 51
redistribute motion

optimizing 114
reference data 9
regression 66, 67
rep command 85
REPLACE FUNCTION command 134
round robin distribution 52
ROWS clause 133
runif function 84

S
sample function 84
Sandbox dataset 141
segment host 48
segment server RAID configuration 126
semi-structured data

about 13
characteristics 13

shared disk data architecture 38
shared memory data architecture 39
shared nothing data architecture

about 38-40
features 40

sigmoid 78
simulations 68
Single Instruction Multiple Data (SIMD) 37
Single Instruction Single Data (SISD) 36
slave node 105

functions 54
Source dataset 141
specialized analytics 18
Sqoop 30
Sqoop 2 103, 104
sqoop command 104
standby master 48
standby master host 50
Storage layer 123
strategic data 15
structured data 13
supervised analysis 65
Support 74
Support count 74
Symmetric Processing (SMP) 44

T
table distribution

about 111-113
broadcast motion, optimizing 114
data, skewing 113
Hash distribution 112
random distribution 112
redistribute motion, optimizing 114

table partitioning
about 111, 114-116
features 114
guidelines 116

tactical data 15
Talend 106
terminal node 71
text analysis 81, 82
Total cost of ownership (TCO) 32
Total Lifetime Value (TLV) 65
transactional data 8
transitional data 10

[151]

U
UAP

about 7, 25, 28
architecture 32
components 29, 45
modules 31

Unified Analytics Platform (UAP)
unstructured data

about 14
characteristics 14

unsupervised analysis 65
unsupported data types, Greenplum 110
user-defined aggregates 135, 136

V
Vector 85

W
Waikato Environment for Knowledge

Analysis (Weka)
Weka

about 87-89
features 87
URL 87
using, with Greenplum 138

window function
about 132, 133
characteristics 132
creating 134
dropping 134
modifying 134
ORDER BY clause 133
OVER clause 134
PARTITION BY clause 133

writable external tables 51, 98

Y
YARN 30

Z
ZooKeeper 30

Thank you for buying
Getting Started with Greenplum for Big Data

Analytics

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to aolve problems at
scale with Hadoop and related technologies

1. Solutions to common problems when working
in the Hadoop environment

2. Recipes for (un)loading data, analytics, and
troubleshooting

3. In depth code examples demonstrating various
analytic models, analytic solutions, and
common best practices

Microsoft SQL Server 2012 with
Hadoop
ISBN: 978-1-78217-798-2 Paperback: 96 pages

Integrate data between Apache Hadoop and SQL
Server 2012 and prove business intelligence on the
heterogeneous data

1. Integrate data from unstructured (Hadoop) and
structured (SQL Server 2012) sources

2. Configure and install connectors for a bi-
directional transfer of data

3. Full of illustrations, diagrams, and tips with
clear, step-by-step instructions and practical
examples

Please check www.PacktPub.com for information on our titles

Implementing Splunk: Big Data
Reporting and Development for
Operational Intelligence
ISBN: 978-1-84969-328-8 Paperback: 448 pages

Learn to transform your machine data into valuable
IT and business insights with this comprehensive and
practical tutorial

1. Learn to search, dashboard, configure, and
deploy Splunk on one machine or thousands

2. Start working with Splunk fast, with a tested set
of practical examples and useful advice

3. Step-by-step instructions and examples with a
comprehensive coverage for Splunk veterans
and newbies alike.

Scaling Big Data with Hadoop and
Solr
ISBN:978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient, high
performance enterprise search repositories for Big
Data using Hadoop and Solr

1. Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks

2. Learn from interesting, real-life use cases for
Big Data search along with sample code

3. Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Big Data, Analytics, and Data Science Life Cycle
	Enterprise data
	Classification
	Features

	Big Data
	So, what is Big Data?
	Multi-structured data

	Data analytics
	Data science
	Data science life cycle
	Phase 1 – state business problem
	Phase 2 – set up data
	Phase 3 – explore/transform data
	Phase 4 – model
	Phase 5 – publish insights
	Phase 6 – measure effectiveness

	References/Further reading
	Summary

	Chapter 2: Greenplum Unified Analytics Platform (UAP)
	Big Data analytics – platform requirements
	Greenplum Unified Analytics Platform (UAP)
	Core components
	Greenplum Database
	Hadoop (HD)
	Chorus
	Command Center

	Modules
	Database modules
	HD modules
	Data Integration Accelerator (DIA) modules

	Core architecture concepts
	Data warehousing
	Column-oriented databases
	Parallel versus distributed computing/processing
	Shared nothing, massive parallel processing (MPP) systems, and elastic scalability
	Data loading patterns

	Greenplum UAP components
	Greenplum Database
	The Greenplum Database physical architecture
	The Greenplum high-availability architecture
	High-speed data loading using external tables
	External table types
	Polymorphic data storage and historic data management
	Data distribution

	Hadoop (HD)
	Hadoop Distributed File System (HDFS)
	Hadoop MapReduce

	Chorus

	Greenplum Data Computing
Appliance (DCA)
	Greenplum Data Integration Accelerator (DIA)
	References/Further reading
	Summary

	Chapter 3: Advanced Analytics – Paradigms, Tools, and Techniques
	Analytic paradigms
	Descriptive analytics
	Predictive analytics
	Prescriptive analytics

	Analytics classified
	Classification
	Forecasting or prediction or regression
	Clustering
	Optimization
	Simulations

	Modeling methods
	Decision trees
	Association rules
	The Apriori algorithm

	Linear regression
	Logistic regression
	The Naive Bayesian classifier
	K-means clustering
	Text analysis

	R programming
	Weka
	In-database analytics using MADlib
	References/Further reading
	Summary

	Chapter 4: Implementing Analytics
with Greenplum UAP
	Data loading for Greenplum Database and HD
	Greenplum data loading options
	External tables
	gpfdist
	gpload

	Hadoop (HD) data loading options
	Sqoop 2
	Greenplum BulkLoader for Hadoop

	Using external ETL to load data
into Greenplum
	Extraction, Load, and Transformation (ELT)
and Extraction, Transformation, Load,
and Transformation (ETLT)
	Greenplum target configuration
	Sourcing large volumes of data from Greenplum
	Unsupported Greenplum data types
	Push Down Optimization (PDO)

	Greenplum table distribution
and partitioning
	Distribution
	Data skew and performance
	Optimizing the broadcast or redistribution motion for data co-location

	Partitioning
	Querying Greenplum Database and HD
	Querying Greenplum Database
	Analyzing and optimizing queries

	Dynamic Pipelining in Greenplum
	Querying HDFS
	Hive
	Pig

	Data communication between Greenplum Database and Hadoop (using external tables)

	Data Computation Appliance (DCA)
	Storage design, disk protection, and fault tolerance
	Master server RAID configurations
	Segment server RAID configurations

	Monitoring DCA

	Greenplum Database management
	In-database analytics options (Greenplum-specific)
	Window functions
	The PARTITION BY clause
	The ORDER BY clause
	The OVER (ORDER BY…) clause
	Creating, modifying, and dropping functions

	User-defined aggregates

	Using R with Greenplum
	DBI Connector for R
	PL/R

	Using Weka with Greenplum
	Using MADlib with Greenplum
	Using Greenplum Chorus
	Pivotal
	References/Further Reading
	Summary

	Index

