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Introduction
Cloudera	Impala	is	an	open	source	project	that	opens	up	the	Apache	Hadoop	software
stack	to	a	wide	audience	of	database	analysts,	users,	and	developers.	The	Impala
massively	parallel	processing	(MPP)	engine	makes	SQL	queries	of	Hadoop	data	simple
enough	to	be	accessible	to	analysts	familiar	with	SQL	and	to	users	of	business	intelligence
tools,	and	it’s	fast	enough	to	be	used	for	interactive	exploration	and	experimentation.

From	the	ground	up,	the	Impala	software	is	written	for	high	performance	of	SQL	queries
distributed	across	clusters	of	connected	machines.
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Who	Is	This	Book	For?
This	book	is	intended	for	a	broad	audience	of	users	from	a	variety	of	database,	data
warehousing,	or	Big	Data	backgrounds.	It	assumes	that	you’re	experienced	enough	with
SQL	not	to	need	explanations	for	familiar	statements	such	as	CREATE	TABLE,	SELECT,
INSERT,	and	their	major	clauses.	Linux	experience	is	a	plus.	Experience	with	the	Apache
Hadoop	software	stack	is	useful	but	not	required.

This	book	points	out	instances	where	some	aspect	of	Impala	architecture	or	usage	might
be	new	to	people	who	are	experienced	with	databases	but	not	the	Apache	Hadoop
software	stack.

The	SQL	examples	in	this	book	start	from	a	simple	base	for	easy	comprehension,	then
build	toward	best	practices	that	demonstrate	high	performance	and	scalability.
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Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.	This	style	is
also	used	to	emphasize	the	names	of	SQL	statements	within	paragraphs.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP

This	element	signifies	a	tip	or	suggestion.

NOTE

This	element	signifies	a	general	note.

WARNING

This	element	indicates	a	warning	or	caution.
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Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/oreillymedia/get-started-impala.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Getting	Started	with	Impala	by	John	Russell
(O’Reilly).	Copyright	2015	Cloudera,	Inc.,	978-1-491-90577-7.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.
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Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both	book	and	video	form	from	the
world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.
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How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/get-started-impala.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia
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Chapter	1.	Why	Impala?
The	Apache	Hadoop	ecosystem	is	very	data-centric,	making	it	a	natural	fit	for	database
developers	with	SQL	experience.	Much	application	development	work	for	Hadoop
consists	of	writing	programs	to	copy,	convert	or	reorganize,	and	analyze	data	files.	A	lot	of
effort	goes	into	finding	ways	to	do	these	things	reliably,	on	a	large	scale,	and	in	parallel
across	clusters	of	networked	machines.	Impala	focuses	on	making	these	activities	fast	and
easy,	without	requiring	you	to	have	a	PhD	in	distributed	computing,	learn	a	lot	of	new
APIs,	or	write	a	complete	program	when	your	intent	can	be	conveyed	with	a	single	SQL
statement.



Impala’s	Place	in	the	Big	Data	Ecosystem
The	Cloudera	Impala	project	arrives	in	the	Big	Data	world	at	just	the	right	moment.	Data
volume	is	growing	fast,	outstripping	what	can	be	realistically	stored	or	processed	on	a
single	server.	The	Hadoop	software	stack	is	opening	that	field	up	to	a	larger	audience	of
users	and	developers.

Impala	brings	a	high	degree	of	flexibility	to	the	familiar	database	ETL	process.	You	can
query	data	that	you	already	have	in	various	standard	Hadoop	file	formats	(see	File
Formats).	You	can	access	the	same	data	with	a	combination	of	Impala	and	other	Hadoop
components	such	as	Apache	Hive,	Apache	Pig,	and	Cloudera	Search	without	duplicating
or	converting	the	data.	When	query	speed	is	critical,	the	Parquet	columnar	file	format
makes	it	simple	to	reorganize	data	for	maximum	performance	of	data	warehouse-style
queries.

Traditionally,	Big	Data	processing	has	resembled	batch	jobs	from	the	mainframe	era
where	unexpected	or	tough	questions	required	running	jobs	overnight	or	all	weekend.	The
goal	of	Impala	is	to	express	even	complicated	queries	directly	with	familiar	SQL	syntax,
running	fast	enough	that	you	can	get	an	answer	to	an	unexpected	question	in	seconds	or	at
most	a	few	minutes.	We	refer	to	this	human-scale	type	of	responsiveness	as	“interactive.”

For	users	and	business	intelligence	tools	that	speak	SQL,	Impala	brings	a	more	effective
development	model	than	writing	a	new	Java	program	to	handle	each	new	kind	of	analysis.
Although	the	SQL	language	has	a	long	history	in	the	computer	industry,	with	the
combination	of	Big	Data	and	Impala,	it	is	once	again	cool.

Now	you	can	write	sophisticated	analysis	queries	using	natural	expressive	notation,	the
same	way	Perl	mongers	do	with	text-processing	scripts.	You	can	interactively	traverse
large	data	sets	and	data	structures,	like	a	Pythonista	inside	the	Python	shell.	You	can	avoid
memorizing	verbose	specialized	APIs;	SQL	is	like	a	RISC	instruction	set	that	focuses	on	a
standard	set	of	powerful	commands.	When	you	do	need	access	to	API	libraries	for
capabilities	such	as	visualization	and	graphing,	you	can	access	Impala	data	from	programs
written	in	languages	such	as	C++,	Java,	and	Python	through	the	standard	JDBC	and
ODBC	protocols.

You	can	also	take	advantage	of	business	tools	that	use	SQL	behind	the	scenes	but	don’t
require	you	to	code	SQL	directly.	For	example,	you	can	use	traditional	business
intelligence	tools	such	as	IBM	Cognos,	SAP	Business	Objects,	and	MicroStrategy,	as	well
as	the	new	generation	of	data	discovery	tools	such	as	Tableau.



Flexibility	for	Your	Big	Data	Workflow
Impala	integrates	with	existing	Hadoop	components,	security,	metadata,	storage
management,	and	file	formats.	You	keep	the	flexibility	you	already	have	with	these
Hadoop	strong	points	and	add	capabilities	that	make	SQL	queries	much	easier	and	faster
than	before.

With	SQL,	you	can	turn	complicated	analysis	programs	into	simple,	straightforward
queries.	To	help	answer	questions	and	solve	problems,	you	can	enlist	a	wide	audience	of
analysts	who	already	know	SQL	or	the	standard	business	intelligence	tools	built	on	top	of
SQL.	They	know	how	to	use	SQL	or	BI	tools	to	analyze	large	data	sets	and	how	to	quickly
get	accurate	answers	for	many	kinds	of	business	questions	and	“what	if”	scenarios.	They
know	how	to	design	data	structures	and	abstractions	that	let	you	perform	this	kind	of
analysis	both	for	common	use	cases	and	unique,	unplanned	scenarios.

The	filtering,	calculating,	sorting,	and	formatting	capabilities	of	SQL	let	you	delegate
those	operations	to	the	Impala	query	engine,	rather	than	generating	a	large	volume	of	raw
results	and	coding	client-side	logic	to	organize	the	final	results	for	presentation.

Impala	embodies	the	Big	Data	philosophy	that	large	data	sets	should	be	just	as	easy	and
economical	to	work	with	as	small	ones.	Large	volumes	of	data	can	be	imported
instantaneously,	without	any	changes	to	the	underlying	data	files.	You	have	the	flexibility
to	query	data	in	its	raw	original	form,	or	convert	frequently	queried	data	to	a	more
compact,	optimized	form.	Either	way,	you	don’t	need	to	guess	which	data	is	worth	saving;
you	preserve	the	original	values,	rather	than	condensing	the	data	and	keeping	only	the
summarized	form.	There	is	no	required	step	to	reorganize	the	data	and	impose	rigid
structure,	such	as	you	might	find	in	a	traditional	data	warehouse	environment.

The	data	files	that	Impala	works	with	are	all	in	open,	documented,	interoperable	formats.
(Some	are	even	human-readable.)	If	you	want	to	use	Impala	alongside	other	Hadoop
components,	you	can	do	that	without	copying	or	converting	the	data.	When	you	work	with
future	generations	of	data-processing	software,	you	can	keep	using	the	original	data	files
rather	than	being	faced	with	a	difficult	migration.



High-Performance	Analytics
The	Impala	architecture	provides	such	a	speed	boost	to	SQL	queries	on	Hadoop	data	that
it	will	change	the	way	you	work.	Whether	you	currently	use	MapReduce	jobs	or	even
other	SQL-on-Hadoop	technologies	such	as	Hive,	the	fast	turnaround	for	Impala	queries
opens	up	whole	new	categories	of	problems	that	you	can	solve.	Instead	of	treating	Hadoop
data	analysis	as	a	batch	process	that	requires	extensive	planning	and	scheduling,	you	can
get	results	any	time	you	want	them.	Instead	of	doing	a	mental	context	switch	as	you	wait
for	each	query	to	finish,	run	a	query,	and	immediately	evaluate	the	results	and	fine-tune	it.
This	rapid	iteration	helps	you	zero	in	on	the	best	solution	without	disrupting	your
workflow.	Instead	of	trying	to	shrink	your	data	down	to	a	representative	subset,	you	can
analyze	everything	you	have,	producing	the	most	accurate	answers	and	discovering	new
trends	and	correlations.

Perhaps	you	have	had	the	experience	of	using	software	or	a	slow	computer	where	after
every	command	or	operation,	you	waited	so	long	that	you	had	to	take	a	coffee	break	or
switch	to	another	task.	Then	when	you	switched	to	faster	software	or	upgraded	to	a	faster
computer,	the	system	became	so	responsive	that	it	lifted	your	mood,	reengaged	your
intellect,	and	sparked	creative	new	ideas.	This	is	the	type	of	reaction	Impala	aims	to
inspire	in	Hadoop	users.



Exploratory	Business	Intelligence
Previously,	if	you	were	writing	queries	for	business	intelligence,	the	data	typically	had
already	been	condensed	to	a	manageable	volume	of	high-value	information,	and	gone
through	a	complicated	extract-transform-load	(ETL)	cycle	to	be	loaded	into	a	database
system.

With	Impala,	this	procedure	is	shortened.	The	data	arrives	in	Hadoop	after	fewer	steps,
and	Impala	is	ready	to	query	it	immediately.	The	high-capacity,	high-speed	storage	of	a
Hadoop	cluster	lets	you	bring	in	all	the	data,	not	just	the	subset	that	you	think	is	the	most
valuable.	Because	Impala	can	query	the	raw	data	files,	you	can	skip	the	time-consuming
stages	of	loading	and	reorganizing	data	that	you	might	have	encountered	with	older
database	systems.

This	fast	end-to-end	process	opens	up	new	possibilities	for	analytic	queries.	You	can	use
techniques	such	as	exploratory	data	analysis	and	data	discovery.	With	earlier	generations
of	software,	you	were	unlikely	to	do	these	kinds	of	operations:	either	because	it	was	too
expensive	to	store	all	the	data	in	your	data	warehouse	or	too	time-consuming	to	load	and
convert	it	all	into	a	usable	form.

You	might	receive	raw	data	in	simple	formats	such	as	delimited	text	files.	Text	files	are
bulky	and	not	particularly	efficient	to	query,	but	these	aren’t	critical	aspects	for
exploratory	business	intelligence	(BI).	The	queries	you	run	against	such	data	are	intended
to	determine	what	new	insights	you	can	gather	by	analyzing	a	comprehensive	set	of	data.
You	might	spot	trends,	identify	interesting	subsets,	and	learn	how	to	design	a	schema	that
matches	well	with	the	underlying	structure	of	the	data.	Exploratory	BI	typically	involves
ad	hoc	queries:	ones	that	are	made	up	on	the	spot	and	then	fine-tuned	over	several
iterations.	To	tease	out	answers	to	questions	such	as	“Are	there	any…?”,	“What	is	the
most…?”,	and	so	on,	the	queries	often	involve	aggregation	functions	such	as	MAX(),
MIN(),	COUNT(),	and	AVG().

Once	you	know	the	queries	you	want	to	run	on	a	regular	basis,	you	can	optimize	your	data
and	your	schema	to	be	as	efficient	as	possible.	For	data	you	intend	to	intensively	analyze,
expect	to	graduate	from	text	or	other	unoptimized	file	formats,	and	convert	the	data	to	a
compressed	columnar	file	format	—	namely	the	Parquet	format.	(If	you	are	an
experienced	Hadoop	shop,	you	might	already	be	using	Parquet	format	in	your	data
pipeline.	In	that	case,	enjoy	the	extra	query	speed	during	the	exploratory	BI	phase,	and
skip	any	subsequent	data	conversion	steps.)

http://en.wikipedia.org/wiki/Exploratory_data_analysis
http://en.wikipedia.org/wiki/Data_discovery




Chapter	2.	Getting	Up	and	Running	with
Impala
Depending	on	your	level	of	expertise	with	Apache	Hadoop,	and	how	much	Hadoop
infrastructure	you	already	have,	you	can	follow	different	paths	to	try	out	Impala.

NOTE

Some	examples	in	this	book	use	syntax,	functions,	and	other	features	that	were	introduced	in	Impala	1.4,	which	is
available	both	on	Cloudera’s	CDH	5.1	and	CDH	4	Hadoop	distributions.



Installation
Cloudera	Live	Demo

The	easiest	way,	with	no	installation	required,	is	to	use	the	Cloudera	Live	demo	(with
optional	sign-up).	Using	the	Impala	Query	Editor	through	the	Hue	web	interface,	you
can	explore	a	few	sample	tables	from	the	TPC-DS	benchmark	suite,	enter	SQL	code	to
run	queries,	and	even	create	your	own	tables	and	load	data	into	them.

Cloudera	QuickStart	VM

If	you	are	from	a	database	background	and	a	Hadoop	novice,	the	Cloudera	QuickStart
VM	lets	you	try	out	the	basic	Impala	features	straight	out	of	the	box.	This	single-node
VM	configuration	is	suitable	to	become	familiar	with	the	main	Impala	features.	(For
performance	or	scalability	testing,	you	would	graduate	from	this	single-user,	single-
machine	mode,	and	typically	install	the	full	CDH	distribution	using	Cloudera	Manager
on	a	cluster	of	real	machines	or	high-capacity	VMs.)	You	run	the	QuickStart	VM	in
VMWare,	KVM,	or	VirtualBox,	start	the	Impala	service	through	the	Cloudera	Manager
web	interface,	and	then	interact	with	Impala	through	the	impala-shell	interpreter	or
the	ODBC	and	JDBC	interfaces.

Cloudera	Manager	and	CDH	5

For	more	serious	testing	or	large-scale	deployment,	you	can	download	and	install	the
Cloudera	Impala	software	as	part	of	the	CDH	5	distribution,	and	use	it	in	a	real	cluster
environment.	You	can	freely	install	the	software	either	through	standalone	packages	or
by	using	the	Cloudera	Manager	parcel	feature,	which	enables	easier	upgrades.	You
install	the	Impala	server	on	each	data	node	and	designate	one	node	(typically	the	same
as	the	Hadoop	namenode)	to	also	run	the	Impala	StateStore	daemon.	The	simplest	way
to	get	up	and	running	is	through	the	Cloudera	Manager	application,	where	you	can
bootstrap	the	whole	process	of	setting	up	a	Hadoop	cluster	with	Impala	just	by
specifying	a	list	of	hostnames	for	the	cluster.

Manual	installation

Manual	installation	is	probably	the	least	common	method.	Because	this	installation
procedure	must	be	applied	to	every	data	node	in	the	cluster,	it	is	most	suitable	for	those
familiar	with	managing	distributed	software,	such	as	through	Puppet	or	Chef.

Building	from	source

If	you	want	to	understand	how	Impala	works	at	a	deep	level,	you	can	get	the	Impala
source	code	from	GitHub	and	build	it	yourself.	Working	with	the	C++	and	Java	source
of	Impala	is	a	lot	of	fun,	and	you	will	learn	a	lot	about	distributed	computing,	but	it	is
beyond	the	scope	of	this	book,	which	is	targeted	towards	SQL	developers	and	business
analysts.

No	matter	how	you	get	started	with	Impala,	you	can	join	the	open	source	project
discussion	through	the	newer	discussion	forum	or	the	original	mailing	list.	See	the	full	list
of	community	resources	on	the	dedicated	Impala	website.
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Connecting	to	Impala
Whichever	way	you	install	Impala,	at	the	end	of	the	process	you	start	some	Impala-related
daemons	(impalad,	catalogd,	and	statestored)	on	every	data	node	in	the	cluster.	The
Cloudera	Manager	installation	path	bundles	these	daemons	together	as	an	Impala	service
that	you	can	start	and	stop	as	a	single	unit.

The	most	convenient	and	flexible	way	to	access	Impala,	and	the	one	this	book	focuses	on,
is	through	the	interactive	impala-shell	interpreter.	In	a	development	environment,	before
enabling	all	the	industrial-grade	security	features,	all	you	need	to	know	is	the	hostname	of
any	of	the	servers	in	the	cluster	where	Impala	is	running.	Impala’s	query	engine	is	fully
decentralized;	you	can	connect	to	any	data	node,	issue	queries,	and	the	work	is
automatically	distributed	across	the	cluster.

impala-shell	defaults	to	connecting	to	localhost,	which	is	convenient	if	you’re	running
in	a	single-node	VM,	or	you	have	a	login	on	one	of	these	data	nodes	in	the	cluster.	To
connect	to	a	remote	server,	specify	the	-i	option.	If	the	port	is	different	from	the	default	of
21000,	specify	both	host	and	port	in	the	argument	to	the	-i	option.

The	following	examples	show	how	you	can	connect	to	an	Impala	server	running	on	the
same	machine	where	you	are	logged	in:

$	ssh	impala_coder@host07.dev_test_cluster.example.com

$	impala-shell

[localhost:21000]	>	show	databases;

Or	connect	to	an	Impala	server	on	a	remote	system:
$	ssh	my_login@personal_linux_server.example.com

$	impala-shell	-i	host12.dev_test_cluster.example.com

[host12.dev_test_cluster.example.com:21000]	>	show	tables;

Or	connect	to	a	remote	system	where	Impala	is	listening	on	a	nondefault	port:
$	impala-shell	-i	host33.dev_test_cluster.example.com:27000

[host33.dev_test_cluster.example.com:27000]	>	create	table	foo	(x	int);

This	initial	phase,	where	you	can	connect	from	anywhere,	is	for	early	development
experiments	only.	Until	you	set	up	security	features	such	as	SSL,	authorization,	and
authentication,	anyone	else	can	connect	to	your	Impala	instance,	possibly	messing	up	your
work	or	slowing	down	performance.	Setting	up	security	requires	putting	on	your
administrator	hat	or	enlisting	the	assistance	of	your	network	administrator,	and	thus	is
beyond	the	scope	of	this	book.	Consult	the	Impala	security	documentation.

http://bit.ly/impala-security


Your	First	Impala	Queries
To	ease	you	through	the	learning	phase,	here	are	some	queries	you	can	try.	In	addition	to
demonstrating	some	of	Impala’s	standard	SQL	syntax,	these	queries	confirm	whether	your
installation	and	configuration	were	successful.

To	get	your	feet	wet	with	the	basic	elements	of	Impala	query	syntax	such	as	the
underlying	data	types	and	expressions,	you	can	run	queries	without	any	table	or	WHERE
clause	at	all:

SELECT	1;

SELECT	2+2;

SELECT	SUBSTR('Hello	world',1,5);

SELECT	CAST(99.5	AS	INT);

SELECT	CONCAT('aaa',"bbb",'ccc');

SELECT	2	>	1;

SELECT	NOW()	+	INTERVAL	3	WEEKS;

Queries	like	this	are	useful	for	experimenting	with	arithmetic	expressions,	data	type
conversions,	and	built-in	functions.	You	will	see	more	examples	of	this	technique	in
Tutorial:	Queries	Without	a	Table.

Because	Impala	does	not	have	any	built-in	tables,	running	queries	against	real	data
requires	a	little	more	preparation.	In	the	following	example,	we’ll	use	the	INSERT…	VALUES
statement	to	create	a	couple	of	“toy”	tables.	(For	scalability	reasons,	the	VALUES	clause	is
not	really	suitable	when	working	with	data	of	any	significant	volume,	so	expect	to	use
INSERT…	SELECT	instead	in	real	production	environments.)

--	Set	up	a	table	to	look	up	names	based	on	abbreviations.

CREATE	TABLE	canada_regions	(name	STRING,	abbr	STRING);

—Set	up	a	potentially	large	table—with	data	values	we	will	use	to	answer	questions.

CREATE	TABLE	canada_facts

		(id	STRING,	sq_mi	INT,	population	INT);

—The	INSERT	statement	either	appends	to	existing	data	in—a	table	via	INSERT	INTO,	or	replaces	the	

data	entirely—via	INSERT	OVERWRITE.

INSERT	INTO	canada_regions	VALUES

		("Newfoundland	and	Labrador"	,"NL"),

		("Prince	Edward	Island","PE"),

		("New	Brunswick","NB"),	("Nova	Scotia","NS"),

		("Quebec","PQ"),	("Ontario","ON"),

		("Manitoba","MB"),	("Saskatchewan","SK"),	("Alberta","AB"),

		("British	Columbia","BC"),	("Yukon","YT"),

		("Northwest	Territories","NT"),	("Nunavut","NU");

INSERT	OVERWRITE	canada_facts	VALUES	("NL",156453,514536),

		("PE",2190,140204),	("NB",28150,751171),	("NS",21345,921727),

		("PQ",595391,8054756),	("ON",415598,13505900),

		("MB",250950,1208268),	("SK",251700,1033381),

		("AB",255541,3645257),	("BC",364764,4400057),

		("YT",186272,33897),	("NT",519734,41462),	("NU",78715,31906);

—We	can	query	a	single	table,	multiple	tables	via	joins,—or	build	new	queries	on	top	of	views.

SELECT	name	AS	"Region	Name"	FROM	canada_regions

		WHERE	abbr	LIKE	'N%';

+---------------------------+

|	region	name															|

+---------------------------+

|	Newfoundland	and	Labrador	|

|	New	Brunswick													|

|	Nova	Scotia															|

|	Northwest	Territories					|

|	Nunavut																			|

+---------------------------+

—This	join	query	gets	the	population	figure	from	one	table—and	the	full	name	from	another.

SELECT	canada_regions.name,	canada_facts.population

		FROM	canada_facts	JOIN	canada_regions

		ON	(canada_regions.abbr	=	canada_facts.id)



		ORDER	BY	population	DESC;

+---------------------------+------------+

|	name																						|	population	|

+---------------------------+------------+

|	Ontario																			|	13505900			|

|	Quebec																				|	8054756				|

|	British	Columbia										|	4400057				|

|	Alberta																			|	3645257				|

|	Manitoba																		|	1208268				|

|	Saskatchewan														|	1033381				|

|	Nova	Scotia															|	921727					|

|	New	Brunswick													|	751171					|

|	Newfoundland	and	Labrador	|	514536					|

|	Prince	Edward	Island						|	140204					|

|	Northwest	Territories					|	41462						|

|	Yukon																					|	33897						|

|	Nunavut																			|	31906						|

+---------------------------+------------+

—A	view	is	an	alias	for	a	longer	query,	and	takes	no	time	or—storage	to	set	up.—Querying	a	view	

avoids	repeating	clauses	over	and	over,—allowing	you	to	build	complex	queries	that	are	still	

readable.

CREATE	VIEW	atlantic_provinces	AS	SELECT	*	FROM	canada_facts

		WHERE	id	IN	('NL','PE','NB','NS');

CREATE	VIEW	maritime_provinces	AS	SELECT	*	FROM	canada_facts

		WHERE	id	IN	('PE','NB','NS');

CREATE	VIEW	prairie_provinces	AS	SELECT	*	FROM	canada_facts

		WHERE	id	IN	('MB','SK','AB');

—Selecting	from	a	view	lets	us	compose	a	series	of—filters	and	functions.

SELECT	SUM(population)	AS	"Total	Population"

		FROM	atlantic_provinces;

+------------------+

|	total	population	|

+------------------+

|	2327638										|

+------------------+

SELECT	AVG(sq_mi)	AS	"Area	(Square	Miles)"

		FROM	prairie_provinces;

+---------------------+

|	area	(square	miles)	|

+---------------------+

|	252730.3333333333			|

+---------------------+

For	more	examples	of	tables	and	queries,	starting	from	simple	scenarios	and	working	up	to
partitioned	multigigabyte	tables,	see	Chapter	5.

NOTE

As	mentioned	previously,	INSERT…	VALUES	is	not	a	scalable	way	of	bringing	big	volumes	of	data	into	Impala,	and	the
data	it	produces	is	not	organized	for	efficient	querying.	In	fact,	most	of	the	large-scale	data	you	work	with	will
probably	originate	outside	of	Impala,	then	be	brought	in	by	LOAD	DATA	statements,	and	copied	and	transformed	from
table	to	table	by	INSERT…	SELECT	statements	operating	on	millions	or	billions	of	rows	at	a	time.	For	examples	of	these
techniques,	see	Getting	Data	into	an	Impala	Table.





Chapter	3.	Impala	for	the	Database
Developer
As	a	database	developer	who	knows	SQL,	you	are	in	an	ideal	position	to	jump	in	and	start
using	Impala	right	away.

This	section	covers	some	of	the	background	information	and	coding	techniques	that	help
you	start	down	the	path	to	high	performance	and	scalability,	as	you	graduate	from
dedicated	development	and	test	environments	to	huge	data	sets	on	production	clusters
running	under	heavy	load.

When	you	come	to	Impala	from	a	background	with	a	traditional	relational	database
product,	you	find	the	same	familiar	SQL	query	language	and	DDL	statements.	Data
warehouse	experts	will	already	be	familiar	with	the	notion	of	partitioning.	If	you	have
only	dealt	with	smaller	OLTP-style	(online	transaction	processing)	databases,	the
emphasis	on	large	data	volumes	will	expand	your	horizons.

NOTE

You	might	find	that	a	certain	SQL	idiom	is	not	yet	supported	in	Impala,	or	your	favorite	built-in	function	from
database	system	XYZ	is	not	available	yet.	If	so,	don’t	be	discouraged.	You	can	often	work	around	these	with	a	simple
query	change.	Because	Impala	is	often	used	in	organizations	that	already	have	substantial	database	infrastructure,
prioritize	which	kinds	of	workloads	you	can	try	out	with	Impala	in	the	short	term.	You	might	find	that	you	can	save
many	hours	in	your	data	pipeline	or	queries,	even	when	only	using	Impala	in	a	few	places.	Impala	roadmap	items	are
regularly	introduced,	so	check	the	New	Features	page	often.

http://bit.ly/impala-roadmap
http://bit.ly/impala-new


The	SQL	Language
The	great	thing	about	coming	to	Impala	with	relational	database	experience	is	that	the
query	language	is	completely	familiar:	it’s	just	SQL!	(See	the	Impala	SQL	Language
Reference	for	all	the	supported	statements	and	functions.)	The	SELECT	syntax	works	like
you’re	used	to,	with	joins,	views,	relational	operators,	aggregate	functions,	ORDER	BY	and
GROUP	BY,	casts,	column	aliases,	built-in	functions,	and	so	on.

The	original	core	column	data	types	are	STRING	for	all	string	and	character	data;	INT	and
its	cousins	such	as	TINYINT	and	BIGINT	for	integers;	FLOAT	and	DOUBLE	for	floating-point
values;	TIMESTAMP	for	all	date-	and	time-related	values;	and	BOOLEAN	for	true/false
conditions.	The	Impala	1.4	release	introduced	DECIMAL	for	high-precision	floating-point
values	(especially	currency).

The	CREATE	TABLE	and	INSERT	statements	incorporate	some	of	the	format	clauses	that	you
might	expect	to	be	part	of	a	separate	data-loading	utility,	because	Impala	is	all	about	the
shortest	path	to	ingest	and	analyze	data.

The	EXPLAIN	statement	provides	a	logical	overview	of	statement	execution.	Instead	of
showing	how	a	query	uses	indexes,	the	Impala	EXPLAIN	output	illustrates	how	parts	of	the
query	are	distributed	among	the	nodes	in	a	cluster,	and	how	intermediate	results	are
combined	at	the	end	to	produce	the	final	result	set.

Standard	SQL
Impala	implements	SQL-92	standard	features	for	queries,	with	some	enhancements	from
later	SQL	standards.

Limited	DML
Because	Hadoop	Distributed	File	System	(HDFS)	is	optimized	for	bulk	insert	and	append
operations,	Impala	currently	doesn’t	have	OLTP-style	Data	Manipulation	Language
(DML)	operations	such	as	DELETE	or	UPDATE.	It	also	does	not	have	indexes,	constraints,	or
foreign	keys;	data	warehousing	experts	traditionally	minimize	their	reliance	on	these
relational	features	because	they	involve	performance	overhead	that	can	be	too	much	when
dealing	with	large	amounts	of	data.

If	you	have	new	raw	data	files,	you	use	LOAD	DATA	to	move	them	into	an	Impala	table
directory.	If	you	have	data	in	one	table	that	you	want	to	copy	into	another	table,	optionally
filtering,	transforming,	and	converting	in	the	process,	you	use	an	INSERT…	SELECT
statement.	If	there	is	something	not	satisfactory	about	some	set	of	data,	you	replace	entire
tables	or	partitions	with	an	INSERT	OVERWRITE	statement.

No	Transactions
The	typical	OLTP	example	of	depositing	to	a	bank	account	and	withdrawing	at	the	same
time	is	not	really	appropriate	for	a	data	warehousing	context.	That’s	only	one	row!	Impala
is	intended	to	analyze	what	happens	across	millions	or	billions	of	banking	operations,
ticket	purchases,	web	page	visits,	and	so	on.

Impala	only	appends	or	replaces;	it	never	actually	updates	existing	data.	In	write
operations,	Impala	deals	not	with	one	row	at	a	time,	but	millions	of	rows	through

http://bit.ly/impala-sql-lang-ref


statements	such	as	LOAD	DATA	and	INSERT…	SELECT.	Even	on	a	transactional	DBMS,	this
volume	of	new	data	can	be	impractical	to	roll	back.

Rather	than	deleting	arbitrary	rows	with	a	DELETE	statement,	you	delete	large	groups	of
related	rows	at	once,	either	through	DROP	TABLE	or	ALTER	TABLE…	DROP	PARTITION.	If	you
make	a	mistake,	the	original	files	are	still	recoverable	from	the	HDFS	trashcan.

Operations	performed	directly	in	Impala	work	like	the	“autocommit”	settings	available	on
some	database	systems.	All	Impala	nodes	in	the	cluster	are	notified	about	new	data	from	a
LOAD	DATA	or	INSERT	statement,	or	DDL	operations	such	as	CREATE	TABLE	and	DROP
TABLE.

Remember	that	Impala	has	the	flexibility	to	operate	on	data	produced	by	external
programs	and	pipelines	too.	When	new	files	are	deposited	in	an	Impala	table	directory	by
some	non-Impala	command,	the	Impala	REFRESH	table_name	statement	acts	much	like	a
traditional	COMMIT	statement,	causing	Impala	to	re-evaluate	the	data	in	that	table	at	the
current	moment.

Numbers
Early	releases	of	Impala	included	binary-style	numeric	types:	8-bit,	16-bit,	32-bit,	and	64-
bit	integer	types,	and	32-bit	and	64-bit	IEEE-754-style	floating-point	types.	These	types
are	well-suited	to	the	kinds	of	scientific	processing	and	numerical	analysis	done	by	many
of	the	Impala	early	adopters.	The	following	example	shows	queries	with	the	basic	integer
and	floating-point	types.

--	STORE_ID	is	a	SMALLINT,	a	32-bit	integer	that	holds	up	to	32,767.

SELECT	DISTINCT(store_id)	FROM	sales_data;—DEGREES	is	a	DOUBLE,	a	floating-point	number	from	a	

sensor.

SELECT	cos(degrees)	FROM	telemetry_data;

Impala	1.4	adds	support	for	the	DECIMAL	data	type,	which	represents	base	10	values	with
varying	numbers	of	significant	digits.	This	type	is	well-suited	for	currency	calculations,
opening	up	Impala	for	a	range	of	use	cases	with	financial	data.	You	can	also	use	it	to	hold
integer	values	with	a	larger	range	than	the	INT	or	even	BIGINT	types.

This	example	shows	how	with	a	DECIMAL	value	(in	this	case,	three	digits	after	the	decimal
point	and	nine	digits	total	precision),	you	get	back	exactly	the	value	you	started	with.	For
some	fractional	values,	FLOAT	and	DOUBLE	are	very	close	but	cannot	represent	them
precisely.	The	extra	predictability	and	accuracy	during	mathematical	operations	makes
DECIMAL	convenient	for	columns	used	with	GROUP	BY,	comparisons	to	literal	values,
summing	large	numbers	of	values,	and	other	cases	where	the	inexact	fractional
representation	of	FLOAT	and	DOUBLE	could	cause	problems.

CREATE	TABLE	dec_vs_float	(dec	DECIMAL(9,3),	flt	FLOAT,	dbl	DOUBLE);

INSERT	INTO	dec_vs_float	VALUES	(98.6,cast(98.6	AS	FLOAT),98.6);

SELECT	*	FROM	dec_vs_float;

+--------+-------------------+-------------------+

|	dec				|	flt															|	dbl															|

+--------+-------------------+-------------------+

|	98.600	|	98.59999847412109	|	98.59999999999999	|

+--------+-------------------+-------------------+



NOTE

In	this	example,	the	DEC	column	can	represent	the	value	98.600	exactly,	but	we	didn’t	define	enough	fractional	digits
to	precisely	represent	98.6001	or	98.5999.	The	3	in	the	DECIMAL(9,3)	declaration	means	the	column	only	stores	3
digits	after	the	decimal	point.	Therefore,	with	DECIMAL	values,	you	decide	in	advance	how	many	overall	digits	and
fractional	digits	are	required	to	represent	all	the	relevant	values.

Recent	Additions
Impala’s	SQL	functionality	grows	with	each	release.	Here	are	some	of	the	high	points
from	the	Impala	1.4	(July	2014)	release.	Because	this	book	was	finalized	well	in	advance
of	the	Impala	2.0	release,	the	first	edition	doesn’t	include	examples	of	those	new	features.
Always	check	the	Impala	new	features	documentation	page	to	see	what	SQL
enhancements	(along	with	other	kinds	of	features)	were	added	recently.

Early	Impala	releases	required	intermediate	results	for	ORDER	BY	queries	to	fit	in	memory.
In	terms	of	syntax,	all	ORDER	BY	queries	had	to	also	include	a	LIMIT	clause	to	cap	the	size
of	the	result	set.	Impala	1.4	lifts	this	restriction,	saving	intermediate	sort	results	to	a	disk
scratch	area	when	necessary.

The	DECIMAL	data	type,	introduced	in	Impala	1.4,	lets	Impala	represent	currency	data	with
the	kind	of	accuracy	and	rounding	characteristics	that	are	ideal	for	financial	analysis.	See
Numbers	for	more	on	the	DECIMAL	type.

Each	release	of	Impala	includes	additional	built-in	functions,	particularly	for	math	and
date/time	operations.	Impala	1.4	introduced	EXTRACT()	and	TRUNC()	for	date/time	values,
and	STDDEV()	and	VARIANCE()	for	statistical	processing.

http://bit.ly/impala-new-feat


Big	Data	Considerations
The	guidelines	throughout	this	book	typically	apply	to	use	cases	that	involve	Big	Data.
But	how	big	is	Big,	and	what	are	the	implications	for	your	workflow,	database	schema,
and	SQL	code?

Billions	and	Billions	of	Rows
Although	Impala	can	work	with	data	of	any	volume,	its	performance	and	scalability	shine
when	the	data	is	large	enough	that	you	can’t	produce,	manipulate,	and	analyze	it	in
reasonable	time	on	a	single	server.	Therefore,	after	you	do	your	initial	experiments	to
learn	how	all	the	pieces	fit	together,	you	very	quickly	scale	up	to	working	with	tables
containing	billions	of	rows	and	gigabytes,	terabytes,	or	even	larger	of	total	volume.	The
queries	that	you	tinker	with	might	involve	data	sets	bigger	than	you	ever	used	before.

You	might	have	to	rethink	your	benchmarking	techniques	if	you’re	used	to	using	smaller
volumes,	meaning	millions	of	rows	or	a	few	tens	of	gigabytes.	You’ll	start	relying	on	the
results	of	analytic	queries	because	the	scale	will	be	bigger	than	you	can	grasp	through
your	intuition.	You’ll	become	used	to	adding	a	LIMIT	clause	to	many	exploratory	queries
to	prevent	unexpected	huge	result	sets.

TERMINOLOGY	TIP

In	this	book,	when	I	refer	to	“a	billion”	of	anything,	I	mean	the	US	billion:	one	thousand	million.	109.	100	Indian
crore.	When	talking	about	gigabytes,	I	am	referring	to	the	disk	or	network	gigabyte	(a	round	number	of	one	billion
bytes)	rather	than	the	memory	gigabytes	(230	bytes,	also	sometimes	called	a	gibibyte).

The	main	exception	to	this	rule	is	for	Parquet	files,	where	the	data	is	buffered	in	memory	up	to	one	gibibyte	and	then
that	same	amount	is	written	to	disk.

For	problems	that	do	not	tax	the	capabilities	of	a	single	machine,	many	alternative
techniques	offer	about	the	same	performance.	After	all,	if	all	you	want	to	do	is	sort	or
search	through	a	few	files,	you	can	do	that	plenty	fast	with	Perl	scripts	or	Unix	commands
such	as	grep.	The	Big	Data	issues	come	into	play	when	the	files	are	too	large	to	fit	on	a
single	machine,	when	you	want	to	run	hundreds	of	such	operations	concurrently,	or	when
an	operation	that	takes	only	a	few	seconds	for	megabytes	of	data	takes	hours	or	even	days
when	the	data	volume	is	scaled	up	to	gigabytes	or	petabytes.

You	can	learn	the	basics	of	Impala	SQL	and	confirm	that	all	the	prerequisite	software	is
configured	correctly	using	tiny	data	sets,	as	in	most	examples	in	Chapters	1-4.	That’s	what
we	call	a	canary	test,	to	make	sure	all	the	pieces	of	the	system	are	hooked	up	properly.

To	start	exploring	scenarios	involving	performance	testing,	scalability,	and	multinode
cluster	configurations,	you	typically	use	much,	much	larger	data	sets.	Later	on,	in	Tutorial:
The	Journey	of	a	Billion	Rows,	we’ll	generate	a	billion	rows	of	synthetic	data.	Then	when
the	raw	data	is	in	Impala,	we’ll	experiment	with	different	combinations	of	file	formats,
compression	codecs,	and	partitioning	schemes.	We’ll	even	try	some	join	queries	involving
a	million	billion	combinations.

Don’t	put	too	much	faith	in	performance	results	that	involve	only	a	few	megabytes	or
gigabytes	of	data.	Only	when	you	blow	past	the	data	volume	that	a	single	server	could
reasonably	handle,	or	saturate	the	I/O	channels	of	your	storage	array,	can	you	fully



appreciate	the	performance	increase	of	Impala	over	competing	solutions	and	the	effects	of
the	various	tuning	techniques.	To	really	be	sure,	do	trials	using	volumes	of	data	similar	to
your	real-world	system.
If	today	your	data	volume	is	not	at	this	level,	next	year	it	might	be.	Don’t	wait	until	your
storage	is	almost	full	(or	even	half	full)	to	set	up	a	big	pool	of	HDFS	storage	on	cheap
commodity	hardware.	Whether	or	not	your	organization	has	already	adopted	the	Apache
Hadoop	software	stack,	experimenting	with	Cloudera	Impala	is	a	valuable	exercise	to
future-proof	your	enterprise.

HDFS	Block	Size
Because	an	HDFS	data	block	contains	up	to	128	MB	by	default,	you	can	think	of	any	table
less	than	128	MB	as	small	(tiny,	even).	That	data	could	be	represented	in	a	single	data
block,	which	would	be	processed	by	a	single	core	on	a	single	server,	with	no	parallel
execution	at	all.	In	a	partitioned	table,	the	data	for	each	partition	is	physically	split	up.
Therefore,	a	table	partition	of	less	than	128	MB	is	in	the	same	situation	with	limited
opportunity	for	parallel	execution.	It’s	true	that	the	128	MB	block	might	be	split	into
several	smaller	files	that	are	processed	in	parallel.	Still,	with	such	small	amounts	of	data,
it’s	hardly	worth	the	overhead	to	send	the	work	to	different	servers	across	the	cluster.

Parquet	Files:	The	Biggest	Blocks	of	All
When	it	comes	to	Parquet	files,	Impala	writes	data	files	with	a	default	block	size	of	1	GB.
This	design	choice	means	that	Impala	is	perfectly	happy	to	process	tables	or	even
partitions	with	many,	many	gigabytes.	For	example,	if	you	have	a	100-node	cluster	with
16	cores	per	node,	Impala	could	potentially	process	1.6	TB	of	Parquet	data	in	parallel,	if
nothing	else	were	running	on	the	cluster.	Larger	data	volumes	would	only	require	a	little
waiting	for	the	initial	set	of	data	blocks	to	be	processed.

Because	many	organizations	do	not	have	those	kinds	of	data	volumes,	you	can	decrease
the	block	size	before	inserting	data	into	a	Parquet	table.	This	technique	creates	a	greater
number	of	smaller	files.	You	still	want	to	avoid	an	overabundance	of	tiny	files,	but	you
might	find	a	sweet	spot	at	256	MB,	128	MB,	64	MB,	or	even	a	little	smaller	for	the
Parquet	block	size.	The	key	is	to	have	enough	data	files	to	keep	the	nodes	of	the	cluster
busy,	without	those	files	being	so	small	that	the	overhead	of	parallelizing	the	query
swamps	the	performance	benefit	of	parallel	execution.
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How	Impala	Is	Like	a	Data	Warehouse
With	Impala,	you	can	unlearn	some	notions	from	the	RDBMS	world.	Long-time	data
warehousing	users	might	already	be	in	the	right	mindset,	because	some	of	the	traditional
database	best	practices	naturally	fall	by	the	wayside	as	data	volumes	grow	and	raw	query
speed	becomes	the	main	consideration.	With	Impala,	you	will	do	less	planning	for
normalization,	skip	the	time	and	effort	that	goes	into	designing	and	creating	indexes,	and
worry	less	about	full-table	scans.

Impala,	as	with	many	other	parts	of	the	Hadoop	software	stack,	is	optimized	for	fast	bulk
read	and	data	load	operations.	Many	data	warehouse-style	queries	involve	either	reading
all	the	data	(“What	is	the	highest	number	of	different	visitors	our	website	ever	had	in	one
day?”)	or	reading	some	large	set	of	values	organized	by	criteria	such	as	time	(“What	were
the	total	sales	for	the	company	in	the	fourth	quarter	of	last	year?”).	Impala	divides	up	the
work	of	reading	large	data	files	across	the	nodes	of	a	cluster.	Impala	also	does	away	with
the	performance	and	disk	space	overhead	of	creating	and	maintaining	indexes,	instead
taking	advantage	of	the	multimegabyte	HDFS	block	size	to	read	and	process	high	volumes
of	data	in	parallel	across	multiple	networked	servers.	As	soon	as	you	load	the	data,	it’s
ready	to	be	queried.	Impala	can	run	efficient	ad	hoc	queries	against	any	columns,	not	just
preplanned	queries	using	a	small	set	of	indexed	columns.

In	a	traditional	database,	normalizing	the	data	and	setting	up	primary	key/foreign	key
relationships	can	be	time-consuming	for	large	data	volumes.	That	is	why	data	warehouses
(and	also	Impala)	are	more	tolerant	of	denormalized	data,	with	values	that	are	duplicated
and	possibly	stored	in	raw	string	form	rather	than	condensed	to	numeric	IDs.	The	Impala
query	engine	works	very	well	for	data	warehouse-style	input	data	by	doing	bulk	reads	and
distributing	the	work	among	nodes	in	a	cluster.	Impala	can	even	automatically	condense
bulky,	raw	data	into	a	data-warehouse-friendly	layout	as	part	of	a	conversion	to	the
Parquet	file	format.

When	executing	a	query	involves	sending	requests	to	several	servers	in	a	cluster,	Impala
minimizes	total	resource	consumption	(disk	I/O,	network	traffic,	and	so	on)	by	making
each	server	do	as	much	local	processing	as	possible	before	sending	back	the	results.
Impala	queries	typically	work	on	data	files	in	the	multimegabyte	or	gigabyte	range,
whereas	a	server	can	read	through	large	blocks	of	data	very	quickly.	Impala	does	as	much
filtering	and	computation	as	possible	on	the	server	that	reads	the	data,	to	reduce	overall
network	traffic	and	resource	usage	on	the	other	nodes	in	the	cluster.	Thus,	Impala	can	very
efficiently	perform	full	table	scans	of	large	tables,	the	kinds	of	queries	that	are	common	in
analytical	workloads.

Impala	makes	use	of	partitioning,	another	familiar	notion	from	the	data	warehouse	world.
Partitioning	is	one	of	the	major	optimization	techniques	you’ll	employ	to	reduce	disk	I/O
and	maximize	the	scalability	of	Impala	queries.	Partitioned	tables	physically	divide	the
data	based	on	one	or	more	criteria,	typically	by	date	or	geographic	region,	so	that	queries
can	filter	out	irrelevant	data	and	skip	the	corresponding	data	files	entirely.	Although
Impala	can	quite	happily	read	and	process	huge	volumes	of	data,	your	query	will	be	that
much	faster	and	more	scalable	if	a	query	for	a	single	month	only	reads	one-twelfth	of	the
data	for	that	year,	or	if	a	query	for	a	single	US	state	only	reads	one-fiftieth	of	the	data	for



the	entire	country.	Partitioning	typically	does	not	impose	much	overhead	on	the	data
loading	phase;	the	partitioning	scheme	usually	matches	the	way	data	files	are	already
divided,	such	as	when	you	load	a	group	of	new	data	files	each	day.	In	Working	with
Partitioned	Tables,	we’ll	see	some	examples	of	partitioned	tables	and	queries.



Physical	and	Logical	Data	Layouts
When	you’re	thinking	in	SQL,	you’re	primarily	concerned	with	the	logical	level.	Your
data	is	divided	into	tables,	which	have	columns,	and	each	column	has	a	data	type.	Views
let	you	impose	a	different	logical	arrangement	without	changing	the	actual	tables	and
columns.	Built-in	functions	and	user-defined	functions	help	to	hide	implementation	details
for	complicated	comparisons	and	computations.

Impala	does	not	enforce	constraints	such	as	unique	columns,	NOT	NULL	constraints,	or
foreign	keys.	You	validate	those	aspects	earlier	in	the	data	pipeline.

The	physical	aspects	come	into	play	for	performance.	When	you	have	a	day’s	worth	of
data	to	ingest,	can	you	finish	all	the	necessary	file	operations	before	the	next	day’s	data	is
ready?	That	question	depends	on	whether	you	need	to	copy,	reorganize,	or	convert	the	data
files.	When	you	run	queries,	how	much	data	is	read	from	disk,	how	much	memory	is
required,	and	how	fast	do	the	responses	come	back?	The	answer	depends	on	physical
aspects	such	as	file	format	and	partitioning.

The	HDFS	Storage	Model
Data	stored	in	Impala	is	stored	in	HDFS,	a	distributed	filesystem	mounted	on	one	or	more
Linux	servers.	When	a	file	is	stored	in	HDFS,	the	underlying	filesystem	takes	care	of
making	it	available	across	the	cluster.	Each	data	block	within	the	file	is	automatically
replicated	to	some	number	of	hosts	(typically	at	least	three),	so	that	all	the	data	is	still
retrievable	if	one	or	two	machines	experience	a	hardware,	software,	or	network	problem.
And	when	a	block	needs	to	be	read	and	processed,	that	work	can	be	farmed	out	to	any	of
the	servers	that	hold	a	copy	of	that	block.

HDFS	data	blocks	are	much,	much	larger	than	you	might	have	encountered	on	previous
systems.	The	HDFS	block	size	is	typically	in	the	tens	of	megabytes	—	often	128	MB	or
64	MB.	This	size	is	more	like	what	you	see	with	data	warehouse	software	or	dedicated
analytic	hardware	appliances.	HDFS	avoids	the	issue	of	wasteful	writes	by	being	an
append-only	filesystem.	By	reducing	the	number	of	possible	operations,	it	focuses	on
doing	a	few	things	well:	speed,	reliability,	and	low	cost.
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Distributed	Queries
Distributed	queries	are	the	heart	and	soul	of	Impala.	Once	upon	a	time,	you	needed	a
doctorate	in	parallel	computing	to	even	be	able	to	think	about	doing	such	esoteric,	obscure
operations.	Now,	with	Impala	running	on	Hadoop,	you	just	need…a	laptop!	And	ideally,
also	an	IT	department	with	a	cluster	of	Linux	servers	running	Cloudera	Distribution	with
Hadoop	(CDH).	But	in	a	pinch,	a	single	laptop	with	a	VM	will	work	for	development	and
prototyping.

When	an	Impala	query	runs	on	a	Hadoop	cluster,	Impala	breaks	down	the	work	into
multiple	stages	and	automatically	sends	the	appropriate	requests	to	the	nodes	in	the
cluster.	This	automatic	division	of	labor	is	why	Impala	is	so	well-suited	to	Big	Data	use
cases.	Queries	that	would	strain	the	capacity	of	a	single	machine	are	a	snap	to	run	when
the	work	can	be	divided	between	4,	10,	100,	or	more	machines.	There	is	some	overhead	to
dividing	up	the	work	and	scheduling	it	across	so	many	machines,	which	is	why	it	is
important	to	organize	your	schema	for	efficient	query	processing,	and	to	help	Impala
estimate	how	much	work	is	involved	for	a	particular	query.

The	execution	steps	for	each	distributed	query	go	something	like	this	(greatly	simplified):

1.	 Node	#1,	core	#1:	Read	this	portion	of	that	gigantic	data	file.	I	know	you	have	the
relevant	data	block	on	your	local	storage	device.

2.	 Node	#1,	core	#2:	Read	a	different	portion	of	the	same	file.	Each	request	like	this
goes	to	a	node	that	has	one	of	the	replicated	copies	of	the	particular	block.	The
multicore	aspect	means	that	each	server	can	potentially	process	4,	8,	16,	or	more
data	blocks	in	parallel.

3.	 Node	#2,	core	#1:	Read	this	entire	small	data	file.	It	is	small	enough	to	fit	in	a	single
HDFS	block,	so	you’ll	process	the	whole	thing.

4.	 Repeat	for	all	the	data	nodes	in	the	cluster	and	cores	on	each	node,	up	to	the	number
of	disks	available	for	each	node.	Keep	going	until	all	relevant	HDFS	blocks	have
been	processed.

5.	 Only	columns	X,	Y,	and	Z	are	needed	to	process	the	query	and	produce	the	result	set.
Each	node:	Ignore	the	data	from	all	other	columns.	(With	Parquet	format,	this
ignored	data	never	gets	read	at	all.)	This	operation	is	known	as	projection.

6.	 Each	node:	As	you	read	the	data	file,	ignore	all	the	rows	that	don’t	match	the	WHERE
clause.	This	is	a	filtering	operation;	the	conditions	in	the	WHERE	clause	are	referred	to
as	predicates.

7.	 Each	node:	Now	take	the	more	manageable	amount	of	data	that	remains	and	do
summing,	sorting,	grouping,	function	calls,	or	other	manipulation	on	it.

8.	 Go	through	these	steps	for	all	the	relevant	data	files	in	the	table	until	all	the	needed
data	has	been	read	and	each	core	on	each	node	has	its	own	portion	of	the	result	set.

9.	 Condense	the	result	set	even	more	if	the	query	has	a	LIMIT	clause.	Each	node:
Assume	you	are	the	one	that	found	all	the	“top	N”	results,	and	send	back	a	result	set
with	only	N	rows.

10.	 Now	if	there	is	a	JOIN	or	a	UNION	clause,	each	node	transmits	the	intermediate	results
where	necessary	to	other	nodes	that	perform	cross-checking,	duplicate	elimination,
and	so	on.	Repeat	for	all	join	and	union	clauses.

11.	 When	all	of	the	intermediate	results	are	ready	for	all	stages	of	the	query,	do	as	much



consolidation	as	possible	on	the	remote	nodes,	and	then	send	final	or	almost-final
results	back	to	whichever	node	initiated	the	query	in	the	first	place.	This	coordinator
node	does	any	necessary	final	sorting,	grouping,	and	aggregating.	For	example,	the
final	determinations	such	as	“top	10	visitors”	can	only	be	made	when	all	the
intermediate	results	can	be	compared	against	each	other.

All	of	this	parallel	processing	has	implications	for	the	nature	of	the	results:

Any	write	operations	potentially	produce	multiple	output	files,	with	each	node	sending
back	its	own	contribution	as	a	separate	file.
Which	data	is	processed	by	which	node	is	not	fixed	ahead	of	time.	Thus,	there’s	some
degree	of	performance	variation	on	consecutive	queries.
You	cannot	rely	on	the	results	on	disk	being	returned	in	a	particular	order	by
subsequent	queries.	The	work	might	be	spread	out	differently	among	the	nodes,	or
intermediate	results	might	be	returned	in	a	different	order	depending	on	how	fast	each
node	finishes	its	part.
The	planning	phase	for	each	query	tries	to	resolve	as	many	unknowns	as	possible
before	distributing	the	work	across	the	cluster.	Impala	turns	expressions	into	constants
wherever	possible	rather	than	re-evaluating	them	on	each	node.	When	you	call	a	time-
related	function	such	as	NOW(),	that	moment	in	time	is	captured	at	the	start	of	the	query,
and	the	same	value	is	used	on	all	the	nodes.	It	is	not	re-evaluated	at	the	exact	moment
that	each	node	starts	working.

The	time	needed	to	transmit	final	results	back	to	the	coordinator	node	is	proportional	to
the	size	of	the	result	set.	Thus,	Impala	queries	typically	avoid	SELECT	*	for	wide	tables,
and	typically	include	multiple	WHERE	clauses,	a	LIMIT	clause,	or	aggregate	functions	to
condense	the	results	to	a	relatively	small	volume	and	minimize	network	overhead.



Normalized	and	Denormalized	Data
One	of	the	great	debates	in	the	database	world	is	about	normalization	and
denormalization.

Normalization	means	splitting	columns	into	separate	tables,	and	referring	to	the	original
column	values	through	unique	IDs,	instead	of	repeating	long	strings	such	as	a	city	name.
This	is	a	very	popular	technique	in	OLTP	systems,	where	rarely	updated	data	is	separated
out	to	speed	up	updates	to	reservation,	sales,	or	similar	fast-changing	information.	It	is
also	used	in	data	warehousing	systems	(under	names	like	star	schema	and	snowflake
schema)	where	queries	on	big	tables	can	do	their	initial	work	using	the	compact	IDs,	and
only	retrieve	the	bulky	string	data	at	the	final	stage	(say,	after	you’ve	decided	which
customers	should	receive	an	advertisement,	and	now	you	need	to	get	their	addresses).

Denormalization	is	when	the	pendulum	swings	the	other	way,	and	you	find	that	for
convenience	or	performance	it’s	better	to	have	fewer	tables	with	more	columns.	Perhaps
you	receive	data	all	bundled	together	in	a	format	that	would	take	too	long	to	reorganize.
Or	you’re	recording	events	in	real	time,	and	it’s	easier	to	store	a	value	like	the	browser
“user	agent”	string	verbatim	rather	than	figuring	out	that	this	is	browser	number	such-and-
such	and	storing	the	corresponding	ID	number.	This	technique	is	mainly	used	in	data
warehouse	systems.

Impala	can	work	just	fine	in	either	paradigm.	When	data	is	normalized,	join	queries	cross-
reference	data	from	multiple	tables,	with	Impala	automatically	deducing	the	most	efficient
way	to	parallelize	the	work	across	the	cluster.	(See	Deep	Dive:	Joins	and	the	Role	of
Statistics	for	a	demonstration	of	how	to	optimize	your	join	queries.)	With	the	Parquet	file
format,	you	can	use	normalized	or	denormalized	data.	Parquet	uses	a	column-oriented
layout,	which	avoids	the	performance	overhead	normally	associated	with	wide	tables
(those	with	many	columns).	The	compression	and	encoding	of	Parquet	data	minimizes
storage	overhead	for	repeated	values.



File	Formats
You	can	use	different	file	formats	for	Impala	data	files,	similar	to	the	notion	of	storage
engines	or	special	kinds	of	tables	in	other	database	systems.	Some	file	formats	are	more
convenient	to	produce,	such	as	human-readable	text.	Others	are	more	compact	because	of
compression,	or	faster	for	data-warehouse-style	queries	because	of	column-oriented
layout.	The	key	advantage	for	Impala	is	that	each	file	format	is	open,	documented,	and	can
be	written	and	read	by	multiple	Hadoop	components,	rather	than	being	a	“black	box”
where	the	data	can	only	be	accessed	by	custom-built	software.	So	you	can	pick	the	best
tool	for	each	job:	collecting	data	(typically	with	Sqoop	and	Flume),	transforming	it	as	it
moves	through	the	data	pipeline	(typically	with	Pig	or	Hive),	and	analyzing	it	with	SQL
queries	(Impala,	naturally)	or	programs	written	for	frameworks	such	as	MapReduce	or
Spark.

For	this	book,	I’ll	focus	on	the	two	file	formats	that	are	polar	opposites:	text	(most
convenient	and	flexible)	and	Parquet	(most	compact	and	query-optimized).	The	other
formats	that	Impala	supports	(Avro,	RCFile,	and	SequenceFile)	are	ones	you	might	be
familiar	with	if	your	organization	is	already	using	Hadoop.	But	they	are	not	optimized	for
the	kinds	of	analytic	queries	that	you	do	with	Impala.	If	you’re	using	Impala	to	produce
data	intended	for	use	with	analytic	queries,	use	Parquet	format	for	best	results.

Text	File	Format
I’m	always	of	two	minds	when	talking	about	text	format.	It’s	the	most	familiar	and
convenient	for	beginners.	It’s	the	default	file	format	for	CREATE	TABLE	commands.	It’s
very	flexible,	with	a	choice	of	delimiter	characters.	If	you	download	freely	available	data
sets,	such	as	from	a	government	agency,	the	data	is	probably	in	some	sort	of	text	format.
You	can	create	textual	data	files	with	a	simple	Unix	command,	or	a	Perl	or	Python	script
on	any	computer	whether	or	not	it’s	running	Hadoop.	You	can	fix	format	errors	with	any
text	editor.	For	small	volumes	of	data,	you	can	even	do	your	own	searches,	sorts,	and	so
on	with	simple	Unix	commands	like	grep,	awk,	and	sort.	Within	Impala,	you	can	change
your	mind	at	any	time	about	whether	a	column	is	a	STRING,	INT,	TINYINT,	BIGINT,	and	so
on.	One	minute	you’re	summing	numbers,	the	next	you’re	doing	SUBSTR()	calls	to	check
for	leading	zeros	in	a	string,	as	illustrated	in	Numbers	Versus	Strings.

And	yet,	it’s	also	the	bulkiest	format,	thus	the	least	efficient	for	serious	Big	Data
applications.	The	number	1234567	takes	up	7	bytes	on	disk;	–1234567	takes	up	8	bytes;	–
1234.567	takes	up	9	bytes.	The	current	date	and	time,	such	as	2014-07-09
15:31:01.409820000,	takes	up	29	bytes.	When	you’re	dealing	with	billions	of	rows,	each
unnecessary	character	represents	gigabytes	of	wasted	space	on	disk,	and	a	proportional
amount	of	wasted	I/O,	wasted	memory,	and	wasted	CPU	cycles	during	queries.

Therefore,	I’m	going	to	advise	again	and	again	to	prefer	Parquet	tables	over	text	tables
wherever	practical.	The	column-oriented	layout	and	compact	storage	format,	with
compression	added	on	top,	make	Parquet	the	obvious	choice	when	you	are	dealing	with
Big-Data-scale	volume.



PRO	TIP

It’s	easy	to	fall	into	the	habit	of	using	minimal	CREATE	TABLE	statements,	which	default	to	using	text	format.	Always
stay	conscious	of	the	file	format	of	each	new	table	by	including	a	STORED	AS	clause.	Even	when	you	intentionally
create	a	text	table,	include	the	clause	STORED	AS	TEXTFILE.	This	clause	goes	after	any	ROW	FORMAT	clause	that	defines
the	separator	and	escape	character.

These	examples	demonstrate	creating	tables	for	text	data	files.	Depending	on	the	format	of
the	input	data,	we	specify	different	delimiter	characters	with	the	rather	lengthy	ROW
FORMAT	clause.	STORED	AS	TEXTFILE	is	optional	because	that	is	the	default	format	for
CREATE	TABLE.	The	default	separator	character	is	hex	01	(ASCII	Ctrl-A),	a	character
you’re	unlikely	to	find	or	enter	by	accident	in	textual	data.

CREATE	TABLE	text_default_separator

		(c1	STRING,	c2	STRING,	c3	STRING);

CREATE	TABLE	text_including_stored_as_clause

		(c1	STRING,	c2	STRING,	c3	STRING)	STORED	AS	TEXTFILE;

CREATE	TABLE	csv	(c1	STRING,	c2	STRING,	c3	STRING)

		ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	","	STORED	AS	TEXTFILE;

CREATE	TABLE	tsv	(c1	STRING,	c2	STRING,	c3	STRING)

		ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	"\t"	STORED	AS	TEXTFILE;

CREATE	TABLE	psv	(c1	STRING,	c2	STRING,	c3	STRING)

		ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	"|"	STORED	AS	TEXTFILE;

Parquet	File	Format
The	Parquet	file	format,	which	originated	from	collaboration	between	Twitter	and
Cloudera,	is	optimized	for	data-warehouse-style	queries.	Let’s	explore	what	that	means
and	how	it	affects	you	as	a	developer.

Parquet	is	a	binary	file	format.	Numeric	values	are	represented	with	consistent	sizes,
packed	into	a	small	number	of	bytes	(either	4	or	8)	depending	on	the	range	of	the	type.
TIMESTAMP	values	are	also	represented	in	relatively	few	bytes.	BOOLEAN	values	are	packed
into	a	single	bit,	rather	than	the	strings	true	and	false	as	in	a	text	table.	So	all	else	being
equal,	a	Parquet	file	is	smaller	than	the	equivalent	text	file.

But	Parquet	has	other	tricks	up	its	sleeve.	If	the	same	value	is	repeated	over	and	over,
Parquet	uses	run-length	encoding	to	condense	that	sequence	down	to	two	values:	the	value
that’s	repeated,	and	how	many	times	it’s	repeated.	If	a	column	has	a	modest	number	of
different	values,	up	to	16K,	Parquet	uses	dictionary	encoding	for	that	column:	it	makes	up
numeric	IDs	for	the	values	and	stores	those	IDs	in	the	data	file	along	with	one	copy	of	the
values,	rather	than	repeating	the	values	over	and	over.	This	automatically	provides	space
reduction	if	you	put	denormalized	data	straight	into	Parquet.	For	example,	if	a	data	file
contains	a	million	rows,	and	each	has	one	column	with	a	state	name	such	as	California
or	Mississippi,	the	data	file	is	essentially	the	same	whether	you	convert	those	strings	to
state	#1,	#2,	and	so	on	and	store	the	numbers,	or	if	you	let	Parquet’s	dictionary	encoding
come	up	with	the	numeric	IDs	behind	the	scenes.	The	limit	of	16K	distinct	values	applies
to	each	data	file,	so	if	your	address	table	has	more	than	16K	city	names,	but	the	table	is
partitioned	by	state	so	that	the	California	cities	are	in	one	data	file	and	the	Mississippi
cities	are	in	a	different	data	file,	each	data	file	could	still	use	dictionary	encoding	for	the
CITY	column.

See	Tutorial:	The	Journey	of	a	Billion	Rows	for	a	demonstration	of	how	much	space	you



can	save	with	Parquet	format	when	all	the	compression	and	encoding	techniques	are
combined.

Parquet	is	a	column-oriented	format.	This	means	that	the	data	for	all	values	in	a	column
are	arranged	physically	adjacent	to	each	other	on	disk.	This	technique	speeds	up	certain
kinds	of	queries	that	do	not	need	to	examine	or	retrieve	all	the	columns,	but	do	need	to
examine	all	or	most	of	the	values	from	particular	columns:

--	The	query	can	read	all	the	values	of	a	column	without	having	to—read	(and	ignore)	the	values	of	

the	other	columns	in	each	row.

SELECT	c3	FROM	t1;

—Analytic	queries	are	always	counting,	summing,	averaging	and	so	on—columns	for	sales	figures,	web	

site	visitors,	sensor	readings,	and	so	on.—Those	computations	are	nice	and	fast	when	no	

unnecessary	data	is	read.—In	this	example,	the	query	only	needs	to	read	C1	and	C5,	skipping	all—

other	columns.

SELECT	count(DISTINCT	c1),	sum(c1),	max(c1),	min(c1),	avg(c1)

		FROM	t1	WHERE	c5	=	0;

—Here	we	cross-reference	columns	from	two	different	tables,	along—with	an	ID	column	that	is	common	

to	both.	Again,	the	query	only	reads—values	from	the	exact	columns	that	are	needed,	making	join	

queries—practical	for	tables	in	the	terabyte	and	petabyte	range.

SELECT	attr01,	attr15,	attr37,	name,	email	FROM

		visitor_details	JOIN	contact_info	USING	(visitor_id)

		WHERE	year_joined	BETWEEN	2005	AND	2010;

Column-oriented	data	is	a	popular	feature	in	specialized	data	warehouse	systems.	For
Impala,	the	column-oriented	file	format	is	just	a	small	piece	of	the	value	proposition.	The
file	format	itself	is	open,	so	you	can	always	get	data	in	or	out	of	it.	Parquet	files	are
readable	and	writable	by	many	Hadoop	components,	so	you	can	set	up	an	ETL	pipeline	to
use	Parquet	all	the	way	through	rather	than	starting	in	one	format	and	converting	to
another	at	the	end.

People	commonly	assume	that	the	Parquet	column-oriented	format	means	each	column	is
stored	in	a	different	data	file.	Not	so!	Each	Parquet	data	file	contains	all	the	columns	for	a
group	of	rows,	but	the	values	from	each	column	are	laid	out	next	to	each	other	within	that
file.	When	Impala	needs	to	read	all	the	values	from	a	particular	Parquet	column,	it	seeks	to
a	designated	spot	in	the	file	and	reads	forward	from	there.	The	performance	benefits	of
Parquet	increase	as	you	add	more	columns;	for	example,	with	100	columns,	a	query	only
needs	to	read	roughly	1%	of	each	data	file	for	each	column	referenced	in	the	query.

Getting	File	Format	Information
The	SHOW	TABLE	STATS	statement	provides	the	basic	information	about	the	file	format	of
the	table,	and	each	individual	partition	where	appropriate:

[localhost:21000]	>	show	table	stats	csv;

+-------+--------+------+--------------+--------+

|	#Rows	|	#Files	|	Size	|	Bytes	Cached	|	Format	|

+-------+--------+------+--------------+--------+

|	-1				|	1						|	58B		|	NOT	CACHED			|	TEXT			|

+-------+--------+------+--------------+--------+

The	DESCRIBE	FORMATTED	statement	dumps	a	lot	of	information	about	each	table,
including	any	delimiter	and	escape	characters	specified	for	text	tables:

[localhost:21000]	>	describe	formatted	csv;

...

|	Storage	Desc	Params:	|	NULL																		|	NULL	|

|																						|	field.delim											|	,				|

|																						|	serialization.format		|	,				|

+----------------------+-----------------------+------+

Switching	File	Formats



Your	preferred	file	format	might	change	over	time,	after	you	conduct	benchmarking
experiments,	or	because	of	changes	earlier	in	your	ETL	pipeline.	Impala	preserves	the
flexibility	to	change	a	table’s	file	format	at	any	time:	simply	replace	the	data	with	a	new
set	of	data	files	and	run	an	ALTER	TABLE…	SET	FILEFORMAT	statement.	Or,	for	a	partitioned
table,	you	can	leave	older	partitions	in	the	previous	file	format,	and	use	the	new	file
format	only	for	newer	partitions.

This	example	demonstrates	how	to	clone	the	structure	of	an	existing	table,	switch	the	file
format	of	the	new	table,	and	then	copy	data	from	the	old	to	the	new	table.	The	data	is
converted	to	the	new	format	during	the	copy	operation.

CREATE	TABLE	t2	LIKE	t1;—Copy	the	data,	preserving	the	original	file	format.

INSERT	INTO	t2	SELECT	*	FROM	t1;

ALTER	TABLE	t2	SET	FILEFORMAT	=	PARQUET;—Now	reload	the	data,	this	time	converting	to	Parquet.

INSERT	OVERWRITE	t2	SELECT	*	FROM	t1;

The	following	example	demonstrates	how	a	partitioned	table	could	start	off	with	one	file
format,	but	newly	added	partitions	are	switched	to	a	different	file	format.	Queries	that
access	more	than	one	partition	automatically	accommodate	the	file	format	for	each
partition.

CREATE	TABLE	t3	(c1	INT,	c2	STRING,	c3	TIMESTAMP)

		PARTITIONED	BY	(state	STRING,	city	STRING);

ALTER	TABLE	t3	ADD	PARTITION

		(state	=	'CA',	city	=	'San	Francisco');—Load	some	text	data	into	this	partition…

ALTER	TABLE	t3	ADD	PARTITION

		(state	=	'CA',	city	=	'Palo	Alto');—Load	some	text	data	into	this	partition…

ALTER	TABLE	t3	ADD	PARTITION

		(state	=	'CA',	city	=	'Berkeley');

ALTER	TABLE	t3	PARTITION

		(state	=	'CA',	city	=	'Berkeley')

		SET	FILEFORMAT	=	PARQUET;—Load	some	Parquet	data	into	this	partition…
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Aggregation
Aggregation	is	a	general	term	meaning	to	take	many	small	items	and	combine	them	into
fewer	larger	ones.	In	the	Impala	context,	aggregation	is	generally	a	positive	thing.	It
comes	up	in	several	different	contexts:	you	aggregate	table	data	through	aggregation
functions	and	GROUP	BY	clauses;	you	deal	with	cluster	resources	such	as	memory	and	disk
capacity	by	considering	the	total	(aggregate)	capacity,	not	the	capacity	of	a	single
machine;	and	for	performance	reasons,	sometimes	you	aggregate	small	files	into	larger
ones.

When	Impala	queries	are	distributed	to	run	across	all	the	data	nodes	in	a	Hadoop	cluster,
in	effect,	the	cluster	acts	like	a	single	giant	computer.	For	example,	on	a	100-node	cluster,
the	memory	and	CPU	power	available	for	the	query	are	100	times	as	much	as	on	a	single
server.	We	refer	to	this	capacity	using	terms	such	as	aggregate	memory.	That	is	why	when
you	see	that	a	resource-intensive	workload	requires	many	gigabytes	of	memory,	that	is	not
cause	for	alarm	if	you	have	a	reasonably	sized	cluster	of	reasonably	powerful	servers.

For	information	about	the	memory	consequences	of	aggregation	queries,	see	Optimizing
Memory	Usage.

For	discussion	of	aggregating	(or	coalescing)	small	files,	see	Anti-Pattern:	A	Million	Little
Pieces.





Chapter	4.	Common	Developer	Tasks	for
Impala
Here	are	the	special	Impala	aspects	of	some	standard	operations	familiar	to	database
developers.



Getting	Data	into	an	Impala	Table
Because	Impala’s	feature	set	is	oriented	toward	high-performance	queries,	much	of	the
data	you	work	with	in	Impala	will	originate	from	some	other	source,	and	Impala	takes
over	near	the	end	of	the	extract-transform-load	(ETL)	pipeline.

To	get	data	into	an	Impala	table,	you	can	point	Impala	at	data	files	in	an	arbitrary	HDFS
location;	move	data	files	from	somewhere	in	HDFS	into	an	Impala-managed	directory;	or
copy	data	from	one	Impala	table	to	another.	Impala	can	query	the	original	raw	data	files,
without	requiring	any	conversion	or	reorganization.	Impala	can	also	assist	with	converting
and	reorganizing	data	when	those	changes	are	helpful	for	query	performance.

As	a	developer,	you	might	be	setting	up	all	parts	of	a	data	pipeline,	or	you	might	work
with	files	that	already	exist.	Either	way,	the	last	few	steps	in	the	pipeline	are	the	most
important	ones	from	the	Impala	perspective.	You	want	the	data	files	to	go	into	a	well-
understood	and	predictable	location	in	HDFS,	and	then	Impala	can	work	with	them.

NOTE

See	Chapter	5	for	some	demonstrations	of	ways	to	construct	and	load	data	for	your	own	testing.	You	can	do	basic
functional	testing	with	trivial	amounts	of	data.	For	performance	and	scalability	testing,	you’ll	need	many	gigabytes
worth.

The	following	sections	are	roughly	in	order	from	the	easiest	techniques	to	the	most
complex.	Once	you	have	an	ETL	pipeline	set	up	or	a	substantial	amount	of	data	loaded
into	Impala,	you	can	explore	all	the	different	techniques	and	settle	on	one	or	two	ingestion
methods	that	work	the	best	for	you.

INSERT	Statement
The	INSERT…	SELECT	statement	is	very	simple	to	use,	but	requires	you	to	have	some
existing	data	in	an	Impala	table.	You	issue	an	INSERT…	SELECT	statement	to	copy	data
from	one	table	to	another.	You	can	convert	the	data	to	a	different	file	format	in	the
destination	table,	filter	the	data	using	WHERE	clauses,	and	transform	values	using	operators
and	built-in	functions.	With	this	technique,	you	can	improve	query	efficiency	by
reorganizing	the	data	in	various	ways;	you’ll	see	examples	in	following	sections.

The	INSERT	statement	can	add	data	to	an	existing	table	with	the	INSERT	INTO	table_name
syntax,	or	replace	the	entire	contents	of	a	table	or	partition	with	the	INSERT	OVERWRITE
table_name	syntax.	Because	Impala	does	not	currently	have	UPDATE	or	DELETE	statements,
overwriting	a	table	is	how	you	make	a	change	to	existing	data.

FOR	FIRST-TIME	USERS	ONLY

As	you’ll	see	in	Chapter	5,	you	can	issue	an	INSERT…	VALUES	statement	to	create	new	data	from	literals	and	function
return	values.	You	can	insert	multiple	rows	through	a	single	statement	by	including	multiple	tuples	after	the	VALUES
clause.	We	recommend	against	relying	on	this	technique	for	production	data,	because	it	really	only	applies	to	very
small	volumes	of	data.	Each	INSERT	statement	produces	a	new	tiny	data	file,	which	is	a	very	inefficient	layout	for
Impala	queries	against	HDFS	data.	On	the	other	hand,	if	you’re	entirely	new	to	Hadoop,	this	is	a	simple	way	to	get
started	and	experiment	with	SQL	syntax	and	various	table	layouts,	data	types,	and	file	formats.	You	should	expect	to
outgrow	the	INSERT…	VALUES	syntax	relatively	quickly.	You	might	graduate	from	tables	with	a	few	dozen	rows
straight	to	billions	of	rows	when	you	start	working	with	real	data.	Make	sure	to	clean	up	any	unneeded	tables	full	of
small	files	after	finishing	with	INSERT…	VALUES	experiments.



LOAD	DATA	Statement
If	you	have	data	files	somewhere	in	HDFS	already,	you	can	issue	a	LOAD	DATA	statement
to	move	data	files	in	HDFS	into	the	Impala	data	directory	for	a	table.

Specify	the	HDFS	path	of	a	single	file	or	a	directory	full	of	files.	Impala	moves	the	files
out	of	their	original	location,	to	a	directory	under	Impala’s	control.	You	don’t	need	to
know	the	destination	directory;	that	aspect	is	managed	by	Impala.	The	Impala	table	or
partition	must	already	exist.

The	files	are	not	changed	in	any	way	by	the	LOAD	DATA	operation.	They	keep	the	same
names,	contents,	and	they	all	reside	in	the	same	destination	directory.

This	technique	is	most	useful	when	you	already	have	some	sort	of	ETL	pipeline	that	puts
data	files	in	a	central	HDFS	location,	and	when	Impala	is	the	main	consumer	for	the	data.
For	example,	you	might	use	this	technique	if	the	final	stage	of	your	ETL	process	converts
raw	data	files	to	query-optimized	Parquet	files.	Leave	the	original	data	files	where	they
are,	and	use	LOAD	DATA	to	move	the	corresponding	Parquet	files	into	the	Impala	directory
structure	for	querying.

If	you	drop	the	table,	the	files	are	removed	from	HDFS.	(The	removed	files	are	stored
temporarily	in	the	HDFS	trashcan	before	being	permanently	deleted,	so	you	can	still
recover	them	for	some	time	after	the	DROP	TABLE.)

External	Tables
The	CREATE	EXTERNAL	TABLE	statement	acts	almost	as	a	symbolic	link,	pointing	Impala	to
a	directory	full	of	HDFS	files.	This	is	a	handy	technique	to	avoid	copying	data	when	other
Hadoop	components	are	already	using	the	data	files.

The	statement	begins	with	CREATE	EXTERNAL	TABLE	statement	and	ends	with	the	LOCATION
_hdfs_path_	clause.	The	data	files	are	not	moved	or	changed	at	all.	Thus,	this	operation	is
very	quick,	regardless	of	the	size	of	the	underlying	data.

The	files	can	still	be	added	to	or	replaced	by	Hadoop	components	outside	of	Impala.
(Issue	a	REFRESH	table_name	statement	afterward	if	so.)

If	you	subsequently	drop	the	table,	the	files	are	left	untouched.

TIP

This	is	a	good	technique	to	use	if	you	have	a	robust	system	for	managing	incoming	data	in	HDFS.	For	example,	you
might	put	the	files	in	a	central,	well-known	location	to	analyze	the	same	data	files	through	multiple	SQL	engines,
NoSQL	engines,	or	Hadoop	components.

Figuring	Out	Where	Impala	Data	Resides
All	the	techniques	up	to	this	point	work	without	requiring	you	to	specify	any	Impala-
specific	HDFS	paths.	Subsequent	techniques	require	that	you	know	the	actual	destination
path	in	HDFS,	based	on	the	directory	structure	of	tables	managed	by	Impala.	Here	are
techniques	you	can	use	to	understand	the	overall	Impala	data	directory	structure,	and	to
find	the	HDFS	location	of	any	Impala	table	or	partition:

Use	the	DESCRIBE	FORMATTED	statement	in	impala-shell	to	figure	out	the	HDFS	path



corresponding	to	any	Impala	table.	The	path	is	shown	in	the	Location:	attribute.
If	some	of	your	data	resides	outside	the	Impala	table	directories,	you	might	use	Linux
commands	such	as	hdfs	dfs	-ls	path	to	browse	around	the	HDFS	directory	structure
to	find	the	paths	to	specify	for	the	LOAD	DATA	statement.
Partitioned	tables	consist	of	multiple	levels	of	directories,	one	level	for	each	partition
key	column.	To	see	that	structure	at	a	glance,	use	hdfs	dfs	-du	hdfs_path	to	see	the
directory	structure	of	all	the	partitions.

Manually	Loading	Data	Files	into	HDFS
When	your	data	files	originate	on	your	local	Unix	system,	you	can	use	Hadoop	utilities	to
copy	those	files	to	specific	locations	within	HDFS.	The	commands	start	with	either	hdfs
dfs	or	hadoop	fs,	followed	by	arguments	such	as	-put,	-ls,	-du,	and	others
corresponding	to	familiar	Unix	utilities.	The	difference	between	hdfs	dfs	and	hadoop	fs
is	too	subtle	to	matter	for	the	examples	in	this	book,	so	I	typically	use	hdfs	dfs.

If	you	are	not	already	familiar	with	the	HDFS	directory	structure,	first	learn	how	to	check
the	HDFS	path	corresponding	to	an	Impala	table	or	partition	(Figuring	Out	Where	Impala
Data	Resides).	See	the	tutorial	using	a	billion	rows	of	sample	data	(Tutorial:	The	Journey
of	a	Billion	Rows)	for	an	example	of	this	process.

When	Parquet	files	come	into	HDFS	for	the	first	time,	or	are	copied	from	one	HDFS
location	to	another,	make	sure	to	preserve	the	original	block	size.	Rather	than	hdfs	dfs	-
put,	use	the	Linux	command	hadoop	distcp	-pb	as	follows:

hadoop	distcp	-pb	local_source_file	hdfs_destination_path

Hive
If	you’re	already	using	batch-oriented	SQL-on-Hadoop	technology	through	the	Apache
Hive	component,	you	can	reuse	Hive	tables	and	their	data	directly	in	Impala	without	any
time-consuming	loading	or	conversion	step.	(This	cross-compatibility	applies	to	Hive
tables	that	use	Impala-compatible	types	for	all	columns.)	Because	Impala	and	Hive	tables
are	interchangeable,	after	data	is	loaded	through	Hive,	you	can	query	it	through	Impala.
This	technique	is	for	organizations	that	already	have	a	Hadoop	data	pipeline	set	up.	The
steps	are:

1.	 Do	any	CREATE	TABLE	statements	either	in	Impala	or	through	the	Hive	shell.
2.	 Do	long-running	INSERT	statements	through	the	Hive	shell.	Hive	is	well-suited	for

batch	data	transfer	jobs	that	take	many	hours	or	even	days.
3.	 In	impala-shell,	issue	a	one-time	INVALIDATE	METADATA	table_name	statement	to

make	Impala	aware	of	a	table	created	through	Hive.
4.	 In	impala-shell,	issue	a	REFRESH	table_name	statement	any	time	data	is	added	to	or

removed	from	a	table	through	Hive	or	manual	HDFS	operations.

Sqoop
If	you	have	data	in	another	database	system,	such	as	an	OLTP	system	or	a	data	warehouse
with	limited	capacity,	you	can	bring	it	into	Impala	for	large-scale	analytics	using	Apache
Sqoop.

The	commands	you	run	are	sqoop-import	or	sqoop-import-all-tables.	You	specify
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user	credentials	and	a	JDBC-style	URL	to	connect	to	the	database	system.	Specify	the
options	--null-string	'\\N'	and	--null-non-string	'\\N'	to	translate	NULL	values	to
the	notation	that	Impala	expects.	(Due	to	the	handling	of	escape	sequences	in	the	Linux
shell,	you	typically	have	to	specify	the	argument	with	double	backslashes,	'\\N'.)

The	output	is	in	the	form	of	text,	Avro,	or	SequenceFile	data	files.	The	Sqoop	commands
can	also	create	the	relevant	SQL	tables,	and	load	those	data	files	into	the	tables	in	HDFS.

If	you	create	tables	and	load	the	data	through	Sqoop,	afterward	you	issue	INVALIDATE
METADATA	and/or	REFRESH	statements	in	Impala,	the	same	as	when	you	do	those	operations
through	Hive.

For	general	information	about	the	Sqoop	commands,	see	the	Sqoop	documentation.	For
tutorial-style	instructions,	see	the	Apache	Sqoop	Cookbook	by	Ting	and	Cecho	(O’Reilly);
recipes	2.5	and	2.10	are	especially	helpful	for	using	Sqoop	with	Impala.

Kite
The	Kite	SDK	includes	a	command-line	interface	that	can	go	directly	from	a	text-based
CSV	file	into	a	Parquet	or	Avro	table	in	HDFS.	After	creating	the	table	and	loading	the
data	through	Kite,	you	issue	INVALIDATE	METADATA	and/or	REFRESH	statements	in	Impala,
the	same	as	when	you	do	those	operations	through	Hive.

For	instructions	to	download	and	use	the	Kite	command-line	interface,	see	the	Kite
documentation.

http://sqoop.apache.org/docs/1.4.4/SqoopUserGuide.html
http://shop.oreilly.com/product/0636920029519.do
http://kitesdk.org/docs/current/guide


Porting	SQL	Code	to	Impala
For	the	most	part,	standard	SQL	that	you	bring	over	to	Impala	should	run	unchanged.	The
following	aspects	might	require	changes	in	the	SQL	code:

Impala	might	not	have	every	data	type	found	on	other	database	systems,	or	the	name
might	be	different.	For	example,	Impala	uses	STRING	as	the	type	where	other	systems
would	use	VARCHAR	or	CHAR.
DDL	statements	have	a	number	of	Impala-specific	or	Hadoop-themed	clauses.	Expect
to	make	changes	to	all	your	CREATE	TABLE	and	ALTER	TABLE	statements.
Because	Impala	has	limited	DML	statements	(for	example,	no	UPDATE	or	DELETE),	and
no	transactional	statements	(such	as	COMMIT	or	ROLLBACK),	you	might	need	to	remove
some	statements	from	your	code	entirely.	Most	changes	to	data	are	performed	by
INSERT	INTO	or	INSERT	OVERWRITE	statements	in	Impala.
Queries	use	standard	SQL-92	syntax.	Some	specific	features	are	not	supported,	or	are
supported	starting	in	a	particular	Impala	release:

Every	vendor	has	its	own	set	of	built-in	functions.	Impala	supports	a	broad	set	of
string,	numeric,	and	date/time	functions,	but	you’ll	need	to	cross-check	against	the
ones	used	in	your	own	code.
Impala	is	a	little	stricter	than	you	might	be	used	to	in	terms	of	casting	and	implicit
conversions	between	types,	in	order	to	avoid	unexpected	loss	of	precision.	Be	ready	to
add	some	CAST()	calls	when	working	with	expressions	or	columns	of	different	types.
See	Recent	Additions	to	see	the	latest	enhancements	to	SQL	portability.

See	the	Impala	documentation	for	more	on	the	subject	of	porting,	including	the	most
recent	feature	support.

http://bit.ly/porting-sql-impala


Using	Impala	from	a	JDBC	or	ODBC	Application
Although	this	book	mainly	emphasizes	how	the	SQL	language	in	Impala	frees	developers
from	having	to	write	Java	or	other	non-SQL	programs	for	data	processing,	this	section
explains	how	to	interface	Java,	C,	PHP,	and	other	kinds	of	applications	with	Impala
through	the	standard	JDBC	interface.	Driving	Impala	through	these	interfaces	lets	you
operate	the	main	program	and	display	results	on	a	non-Linux	system	such	as	a	Mac	OS	X
or	Windows	machine,	or	even	a	web	page.

The	best	use	case	for	this	technique	is	in	query-intensive	applications.	Data	loading	and
ETL	are	relatively	straightforward	in	SQL	or	in	separate	applications	running	directly	on
the	server.	Although	it	might	be	tempting	to	use	the	INSERT…	VALUES	syntax	from	JDBC
or	ODBC,	remember	that	inserting	rows	one	or	a	few	at	a	time	results	in	a	very	inefficient
file	layout	for	Impala	(many	small	files)	when	it	comes	time	to	run	queries.

Along	the	same	lines,	look	for	opportunities	to	run	heavy-duty	queries	on	large	amounts	of
data	through	Impala.	Although	you	can	run	simple	“point	queries”	that	look	up	a	single
row	through	Impala,	that	technique	is	really	only	efficient	when	the	underlying	data	is
pulled	from	tables	stored	in	HBase,	not	HDFS.	You	typically	write	an	Impala	application
to	churn	through	huge	quantities	of	sales,	web	traffic,	bioscience,	or	similar	data	and
render	the	results	in	graphs.	Or	you	might	have	a	web	page	that	runs	a	query	through	PHP
to	retrieve	a	chunk	of	personalized	information	to	display	for	a	visitor.	You	would
probably	not	use	Impala	as	the	backend	for	a	web	page	that	ran	50	queries	to	pull
individual	page	elements	out	of	a	SQL	table.

Make	sure	to	always	close	query	handles	when	finished.	Because	Impala	runs	queries
against	such	big	tables,	there	is	often	a	significant	amount	of	memory	tied	up	during	a
query,	which	is	important	to	release.	Likewise,	features	like	admission	control	and	YARN
resource	management	can	limit	the	number	of	queries	that	run	concurrently;	if	“zombie”
queries	hang	around	due	to	unclosed	query	handles	in	applications,	the	system	can	stop
accepting	new	queries.

NOTE

I	refer	you	to	the	official	documentation	and	download	sources	for	JDBC	and	ODBC	driver	information,	because	the
details	change	periodically	as	new	drivers	are	released.

JDBC
From	Java,	you	can	connect	using	the	standard	Hadoop	JDBC	driver	(known	as	the	Hive
JDBC	driver),	and	interface	with	Impala	queries	and	result	sets	using	standard	JDBC	API
calls.	See	the	Impala	JDBC	documentation	for	details,	such	as	the	class	name	and	the
connection	string	for	your	particular	security	configuration.

ODBC
From	C,	C++,	PHP,	or	other	languages	that	support	an	ODBC	interface,	you	can	connect
using	a	special	Impala	ODBC	driver	and	go	through	standard	ODBC	API	calls.	See	the
Impala	ODBC	documentation	for	details.

From	Python,	you	can	use	the	pyodbc	package	to	issue	SQL	statements	and	get	back	the
results	as	native	Python	data	structures.

http://bit.ly/impala-jdbc
http://bit.ly/impala-odbc
https://code.google.com/p/pyodbc


Using	Impala	with	a	Scripting	Language
You	can	write	a	Python,	Perl,	Bash,	or	other	kind	of	script	that	uses	the	features	of	those
languages	without	delving	into	any	database-specific	APIs.	You	can	use	a	script	to
produce	or	manipulate	input	data	for	Impala,	and	to	drive	the	impala-shell	interpreter	to
run	SQL	statements	(primarily	queries)	and	save	or	process	the	results.

NOTE

For	serious	application	development,	you	can	access	database-centric	APIs	from	a	variety	of	scripting	languages.	See
discussions	of	the	impyla	package	for	Python	(The	impyla	Package	for	Python	Scripting),	and	JDBC	and	ODBC
connectivity	options	(Using	Impala	from	a	JDBC	or	ODBC	Application)	usable	from	many	different	languages.

Running	Impala	SQL	Statements	from	Scripts
To	execute	SQL	statements	without	any	additional	software	prerequisites	or	API	layers,
run	the	impala-shell	command	with	some	command-line	options.	Specify	the	-q	option
to	run	a	single	SQL	statement,	or	the	-f	option	to	process	a	file	full	of	SQL	statements.
Typically,	you	also	use	the	-B	option	to	suppress	the	ASCII	art	boxes	around	query	results,
which	makes	the	textual	output	easier	to	consume.

Variable	Substitution
The	impala-shell	interpreter	doesn’t	currently	have	a	built-in	way	to	do	variable
substitution.	The	typical	way	to	substitute	variables	is	to	embed	the	SQL	statements	in	a
shell	script,	like	so:

#!/bin/bash

export	DB_NAME=tpc

export	TABLE_NAME=customer_address

export	CRITERIA=Oakland

export	CUTOFF=20

impala-shell	-d	$DB_NAME	<<EOF

select	*	from	$DB_NAME.$TABLE_NAME	where	ca_city	=	'$CRITERIA'	limit	$CUTOFF;

EOF

...more	shell	code…

For	more	about	the	impala-shell	options	to	control	output	format,	see	Tutorial:	Verbose
and	Quiet	impala-shell	Output.

Saving	Query	Results
The	-o	filename	option	of	the	impala-shell	command	saves	the	output	in	a	file.	You
typically	use	-o	in	combination	with	-q	or	-f	to	run	a	single	query	or	a	file	of	SQL
commands,	then	exit.	To	make	the	output	easier	to	parse,	also	use	the	-B	option	to
suppress	the	ASCII	art	boxes	around	query	results,	and	optionally	the	--
output_delimiter=character	option	to	format	the	output	with	a	comma,	pipe,	or	some
other	character	as	the	separator.

The	-o	option	saves	the	impala-shell	output	in	the	local	filesystem.	To	save	results	in
HDFS,	you	put	the	result	rows	into	an	Impala	table	using	SQL	syntax	such	as	CREATE
TABLE	AS	SELECT	or	INSERT…	SELECT.	You	can	set	up	the	table	with	the	desired
characteristics	of	file	format	(STORED	AS	clause),	separator	character	for	text	files	(ROW
FORMAT	clause),	and	HDFS	path	for	the	output	files	(LOCATION	clause).

www.allitebooks.com

http://www.allitebooks.org


The	impyla	Package	for	Python	Scripting
The	many	scientific	libraries	available	for	Python	make	it	a	popular	choice	for	data
scientists	to	code	in.	The	impyla	package	(still	under	development)	acts	as	a	bridge
between	the	Python	database	API	and	the	protocol	that	Impala	supports	for	its	JDBC	and
ODBC	drivers.	The	Python	programs	use	the	Python	DB	API	2.0,	from	the	PEP-249
specification.

For	example,	here	is	a	script	that	issues	a	SHOW	TABLES	statement	to	get	a	list	of	tables	in
the	DEFAULT	database,	then	DESCRIBE	statements	to	get	details	about	the	structure	of	each
table,	and	then	issues	queries	to	get	the	number	of	rows	in	each	table.	The	result	sets	come
back	as	lists	of	tuples.	Substitute	your	own	hostname	here,	but	keep	the	same	port,	21050,
where	Impala	listens	for	JDBC	requests.	You	can	run	scripts	like	this	on	all	kinds	of
systems	—	not	only	on	Linux	machines	with	Hadoop	installed;	this	particular	script	was
executed	on	Mac	OS	X.

from	impala.dbapi	import	connect

conn	=	connect(host='a1730.abcde.example.com',	port=21050)

try:

		cur	=	conn.cursor()

		try:

				cur.execute('show	tables	in	default')

				tables_in_default_db	=	cur.fetchall()

				print	tables_in_default_db

				for	table	in	tables_in_default_db:

						print	"Table:	"	+	table[0]

						try:

								cur.execute('describe	`%s`'	%	(table[0]))

								table_layout	=	cur.fetchall()

								for	row	in	table_layout:

										print	"Column:	"	+	row[0]	+	",	type:	"	+	row[1]	+	",	comment:	"	+	row[2]

						except:

								print	"Error	describing	table	"	+	table[0]

						cur.execute('select	count(*)	from	`%s`'	%	(table[0]))

						result	=	cur.fetchall()

						count	=	str(result[0][0])

						print	"Rows	=	"	+	count

		except:

				print	"Error	getting	list	of	tables."

		cur.close()

except:

		print	"Error	establishing	connection	to	Impala."

In	addition	to	writing	Python	programs	that	call	into	Impala,	you	can	write	simple	UDFs
in	Python	through	impyla,	ship	the	resulting	binaries	from	a	development	machine	to	your
Impala	cluster,	and	the	functions	from	Impala	queries.	To	use	this	capability,	you	need
certain	other	software	prerequisites	on	the	development	machine	(for	example,	LLVM)
and	should	be	familiar	with	the	data	types	used	in	C++	UDFs	for	Impala.

See	the	impyla	introduction	blog	post	and	the	impyla	Github	repo	for	details	and
examples.	impyla	also	includes	some	features	that	integrate	with	the	pandas	analytical
package	for	Python.

http://blog.cloudera.com/blog/2014/04/a-new-python-client-for-impala
https://github.com/cloudera/impyla
https://pypi.python.org/pypi/pandas/0.13.1


Optimizing	Impala	Performance
If	you	come	from	a	traditional	database	background,	you	might	have	engraved	in	your
mind	the	notion	that	indexes	are	crucial	for	query	speed.	If	your	experience	extends	to
data	warehousing	environments,	you	might	be	comfortable	with	the	idea	of	doing	away
with	indexes,	because	it’s	often	more	efficient	when	doing	heavy	duty	analysis	to	just	scan
the	entire	table	or	certain	partitions.

Impala	embraces	this	data	warehousing	approach	of	avoiding	indexes	by	not	having	any
indexes	at	all.	After	all,	data	files	can	be	added	to	HDFS	at	any	time	by	components	other
than	Impala.	Index	maintenance	would	be	very	expensive.	The	HDFS	storage	subsystem
is	optimized	for	fast	reads	of	big	chunks	of	data.	So	the	types	of	queries	that	can	be
expensive	in	a	traditional	database	system	are	standard	operating	procedure	for	Impala,	as
long	as	you	follow	the	best	practices	for	performance.

Having	said	that,	the	laws	of	physics	still	apply,	and	if	there	is	a	way	for	a	query	to	read,
evaluate,	and	transmit	less	data	overall,	of	course	the	query	will	be	proportionally	faster	as
a	result.	With	Impala,	the	biggest	I/O	savings	come	from	using	partitioned	tables	and
choosing	the	most	appropriate	file	format.	The	most	complex	and	resource-intensive
queries	tend	to	involve	join	operations,	and	the	critical	factor	there	is	to	collect	statistics
(using	the	COMPUTE	STATS	statement)	for	all	the	tables	involved	in	the	join.

The	following	sections	give	some	guidelines	for	optimizing	performance	and	scalability
for	queries	and	overall	memory	usage.	For	those	who	prefer	to	learn	by	doing,	later
sections	show	examples	and	tutorials	for	file	formats	(Tutorial:	The	Journey	of	a	Billion
Rows),	partitioned	tables	(Making	a	Partitioned	Table),	and	join	queries	and	table	statistics
(Deep	Dive:	Joins	and	the	Role	of	Statistics).

Optimizing	Query	Performance
The	most	resource-intensive	and	performance-critical	Impala	queries	tend	to	be	joins:
pulling	together	related	data	from	multiple	tables.	For	all	tables	involved	in	join	queries,
issue	a	COMPUTE	STATS	statement	after	loading	initial	data	into	a	table,	or	adding	new	data
that	changes	the	table	size	by	30%	or	more.

When	a	table	has	a	column	or	set	of	columns	that’s	almost	always	used	for	filtering,	such
as	date	or	geographic	region,	consider	partitioning	that	table	by	that	column	or	columns.
Partitioning	allows	queries	to	analyze	the	rows	containing	specific	values	of	the	partition
key	columns,	and	avoid	reading	partitions	with	irrelevant	data.

At	the	end	of	your	ETL	process,	you	want	the	data	to	be	in	a	file	format	that	is	efficient	for
data-warehouse-style	queries.	In	practice,	Parquet	format	is	the	most	efficient	for	Impala.
Other	binary	formats	such	as	Avro	are	also	more	efficient	than	delimited	text	files.

See	Tutorial:	The	Journey	of	a	Billion	Rows	for	a	sequence	of	examples	that	explores	all
these	aspects	of	query	tuning.	For	more	background	information,	see	the	related
discussions	of	joins	and	statistics	(Deep	Dive:	Joins	and	the	Role	of	Statistics),	file
formats	(File	Formats)	including	Parquet	(Parquet	Files:	The	Biggest	Blocks	of	All),	and
partitioning	(Working	with	Partitioned	Tables).

Optimizing	Memory	Usage



This	section	provides	guidelines	and	strategies	for	keeping	memory	use	low.	Efficient	use
of	memory	is	important	for	overall	performance,	and	also	for	scalability	in	a	highly
concurrent	production	setup.

For	many	kinds	of	straightforward	queries,	Impala	uses	a	modest	and	predictable	amount
of	memory,	regardless	of	the	size	of	the	table.	As	intermediate	results	become	available
from	different	nodes	in	the	cluster,	the	data	is	sent	back	to	the	coordinator	node	rather	than
being	buffered	in	memory.	For	example,	SELECT	column_list	FROM	table	or	SELECT
column_list	FROM	table	WHERE	conditions	both	read	data	from	disk	using	modestly
sized	read	buffers,	regardless	of	the	volume	of	data	or	the	HDFS	block	size.

Certain	kinds	of	clauses	increase	the	memory	requirement.	For	example,	ORDER	BY
involves	sorting	intermediate	results	on	remote	nodes.	(Although	in	Impala	1.4	and	later,
the	maximum	memory	used	by	ORDER	BY	is	lower	than	in	previous	releases,	and	very	large
sort	operations	write	to	a	work	area	on	disk	to	keep	memory	usage	under	control.)	GROUP
BY	involves	building	in-memory	data	structures	to	keep	track	of	the	intermediate	result	for
each	group.	UNION	and	DISTINCT	also	build	in-memory	data	structures	to	prune	duplicate
values.

The	size	of	the	additional	work	memory	does	depend	on	the	amount	and	types	of	data	in
the	table.	Luckily,	you	don’t	need	all	this	memory	on	any	single	machine,	but	rather
spread	across	all	the	data	nodes	of	the	cluster.

Calls	to	aggregation	functions	such	as	MAX(),	AVG(),	and	SUM()	reduce	the	size	of	the
overall	data.	The	working	memory	for	those	functions	themselves	is	proportional	to	the
number	of	groups	in	the	GROUP	BY	clause.	For	example,	computing	SUM()	for	an	entire
table	involves	very	little	memory	because	only	a	single	variable	is	needed	to	hold	the
intermediate	sum.	Using	SUM()	in	a	query	with	GROUP	BY	year	involves	one	intermediate
variable	corresponding	to	each	year,	presumably	not	many	different	values.	A	query
calling	an	aggregate	function	with	GROUP	BY	unique_column	could	have	millions	or
billions	of	different	groups,	where	the	time	and	memory	to	compute	all	the	different
aggregate	values	could	be	substantial.

The	UNION	operator	does	more	work	than	the	UNION	ALL	operator,	because	UNION	collects
the	values	from	both	sides	of	the	query	and	then	eliminates	duplicates.	Therefore,	if	you
know	there	will	be	no	duplicate	values,	or	there	is	no	harm	in	having	duplicates,	use	UNION
ALL	instead	of	UNION.

The	LIMIT	clause	puts	a	cap	on	the	number	of	results,	allowing	the	nodes	performing	the
distributed	query	to	skip	unnecessary	processing.	If	you	know	you	need	a	maximum	of	N
results,	include	a	LIMIT	N	clause	so	that	Impala	can	return	the	results	faster.

A	GROUP	BY	clause	involving	a	STRING	column	is	much	less	efficient	than	with	a	numeric
column.	This	is	one	of	the	cases	where	it	makes	sense	to	normalize	data,	replacing	long	or
repeated	string	values	with	numeric	IDs.

Although	INT	is	the	most	familiar	integer	type,	if	you	are	dealing	with	values	that	fit	into
smaller	ranges	(such	as	1–12	for	month	and	1–31	for	day),	specifying	the	“smallest”
appropriate	integer	type	means	the	hash	tables,	intermediate	result	sets,	and	so	on	will	use
1/2,	1/4,	or	1/8	as	much	memory	for	the	data	from	those	columns.	Use	the	other	integer
types	(TINYINT,	SMALLINT,	and	BIGINT)	when	appropriate	based	on	the	range	of	values.



You	can	also	do	away	with	separate	time-based	fields	in	favor	of	a	single	TIMESTAMP
column.	The	EXTRACT()	function	lets	you	pull	out	the	individual	fields	when	you	need
them.

Although	most	of	the	Impala	memory	considerations	revolve	around	queries,	inserting
into	a	Parquet	table	(especially	a	partitioned	Parquet	table)	can	also	use	substantial
memory.	Up	to	1	GB	of	Parquet	data	is	buffered	in	memory	before	being	written	to	disk.
With	a	partitioned	Parquet	table,	there	could	be	1	GB	of	memory	used	for	each	partition
being	inserted	into,	multiplied	by	the	number	of	nodes	in	the	cluster,	multiplied	again	by
the	number	of	cores	on	each	node.

Use	one	of	the	following	techniques	to	minimize	memory	use	when	writing	to	Parquet
tables:

Impala	can	determine	when	an	INSERT…	SELECT	into	a	partitioned	table	is	especially
memory-intensive	and	redistribute	the	work	to	avoid	excessive	memory	usage.	For	this
optimization	to	be	effective,	you	must	issue	a	COMPUTE	STATS	statement	for	the	source
table	where	the	data	is	being	copied	from,	so	that	Impala	can	make	a	correct	estimate
of	the	volume	and	distribution	of	data	being	inserted.
If	statistics	are	not	available	for	the	source	table,	or	the	automatic	memory	estimate	is
inaccurate,	you	can	force	lower	memory	usage	for	the	INSERT	statement	by	including
the	[SHUFFLE]	hint	immediately	before	the	SELECT	keyword	in	the	INSERT…	SELECT
statement.
Running	a	separate	INSERT	statement	for	each	partition	minimizes	the	number	of
memory	buffers	allocated	at	any	one	time.	In	the	INSERT	statement,	include	a	clause
PARTITION(col1=val1,col2=val2,	…)	to	specify	constant	values	for	all	the	partition
key	columns.

Working	with	Partitioned	Tables
In	Impala,	as	in	large-scale	data	warehouse	systems,	the	primary	way	for	a	schema
designer	to	speed	up	queries	is	to	create	partitioned	tables.	The	data	is	physically	divided
based	on	all	the	different	values	in	one	column	or	a	set	of	columns,	known	as	the	partition
key	columns.	Partitioning	acts	like	indexes,	instead	of	looking	up	one	row	at	a	time	from
widely	scattered	items,	the	rows	with	identical	partition	keys	are	physically	grouped
together.	Impala	uses	the	fast	bulk	I/O	capabilities	of	HDFS	to	read	all	the	data	stored	in
particular	partitions,	based	on	references	to	the	partition	key	columns	in	WHERE	or	join
clauses.

With	Impala,	partitioning	is	ready	to	go	out	of	the	box	with	no	setup	required.	It’s
expected	that	practically	every	user	will	employ	partitioning	for	their	tables	that	truly
qualify	as	Big	Data.

Frequently	tested	columns	like	YEAR,	COUNTRY,	and	so	on	make	good	partition	keys.	For
example,	if	you	partition	on	a	YEAR	column,	all	the	data	for	a	particular	year	can	be
physically	placed	together	on	disk.	Queries	with	clauses	such	as	WHERE	YEAR	=	1987	or
WHERE	YEAR	BETWEEN	2006	AND	2009	can	zero	in	almost	instantly	on	the	data	to	read,	and
then	read	that	data	very	efficiently	because	all	the	rows	are	located	adjacent	to	each	other
in	a	few	large	files.



Partitioning	is	great	for	reducing	the	overall	amount	of	data	to	read,	which	in	turn	reduces
the	CPU	cycles	to	test	column	values	and	the	memory	to	hold	intermediate	results.	All
these	reductions	flow	straight	through	to	the	bottom	line:	faster	query	performance.	If	you
have	100	years	worth	of	historical	data,	and	you	want	to	analyze	only	the	data	for	1	year,
you	can	do	that	100	times	as	fast	with	a	partitioned	table	as	with	an	unpartitioned	one	(all
else	being	equal).

This	section	provides	some	general	guidelines.	For	demonstrations	of	some	of	these
techniques,	see	Making	a	Partitioned	Table.

Finding	the	Ideal	Granularity
Now	that	I	have	told	you	how	partitioning	makes	your	queries	faster,	let’s	look	at	some
design	aspects	for	partitioning	in	Impala	(or	Hadoop	in	general).	Sometimes,	taking	an
existing	partitioned	table	from	a	data	warehouse	and	reusing	the	schema	as-is	isn’t	optimal
for	Impala.

Remember,	Hadoop’s	HDFS	filesystem	does	best	with	a	relatively	small	number	of	big
files.	(By	big,	we	mean	in	the	range	of	128	MB	to	1	GB;	ideally,	nothing	smaller	than	64
MB.)	If	you	partition	on	columns	that	are	so	fine-grained	that	each	partition	has	very	little
data,	the	bulk	I/O	and	parallel	processing	of	Hadoop	mostly	goes	to	waste.	Thus,	often
you’ll	find	that	an	existing	partitioning	scheme	needs	to	be	reduced	by	one	level	to	put
sufficient	data	in	each	partition.

For	example,	if	a	table	was	partitioned	by	year,	month,	and	day	in	pre-Hadoop	days,	you
might	get	more	efficient	queries	by	partitioning	only	for	year	and	month	in	Impala.	Or	if
you	have	an	older	table	partitioned	by	city	and	state,	maybe	a	more	efficient	layout	for
Impala	is	only	partitioned	by	state	(or	even	by	region).	From	the	Hadoop	point	of	view,
it’s	not	much	different	to	read	a	40	MB	partition	than	it	is	to	read	a	20	MB	one,	and
reading	only	5	MB	is	unlikely	to	see	much	advantage	from	Hadoop	strengths	like	parallel
execution.	This	is	especially	true	if	you	frequently	run	reports	that	hit	many	different
partitions,	such	as	when	you	partition	down	to	the	day	but	then	run	reports	for	an	entire
month	or	a	full	year.

Inserting	into	Partitioned	Tables
When	you	insert	into	a	partitioned	table,	again	Impala	parallelizes	that	operation.	If	the
data	has	to	be	split	up	across	many	different	partitions,	that	means	many	data	files	being
written	to	simultaneously,	which	can	exceed	limits	on	things	like	HDFS	file	descriptors.
When	you	insert	into	Parquet	tables,	each	data	file	being	written	requires	a	memory	buffer
equal	to	the	Parquet	block	size,	which	by	default	is	1	GB	for	Impala.	Thus,	what	seems
like	a	relatively	innocuous	operation	(copy	10	years	of	data	into	a	table	partitioned	by
year,	month,	and	day)	can	take	a	long	time	or	even	fail,	despite	a	low	overall	volume	of
information.	Here	again,	it’s	better	to	work	with	big	chunks	of	information	at	once.	Impala
INSERT	syntax	lets	you	work	with	one	partition	at	a	time:

CREATE	TABLE	raw_data

		(year	SMALLINT,	month	TINYINT,	c1	STRING,	c2	INT,	c3	BOOLEAN);—Load	some	data	into	this	

unpartitioned	table…

CREATE	TABLE	partitioned_table	(c1	STRING,	c2	INT,	c3	BOOLEAN)

		PARTITIONED	BY	(year	SMALLINT,	month	TINYINT);—Copy	data	into	the	partitioned	table,	one	

partition	at	a	time.



INSERT	INTO	partitioned_table	PARTITION	(year=2000,	month=1)

		SELECT	c1,	c2,	c3	FROM	raw_data	WHERE	year=2000	AND	month=1;

INSERT	INTO	partitioned_table	PARTITION	(year=2000,	month=2)

		SELECT	c1,	c2,	c3	FROM	raw_data	WHERE	year=2000	AND	month=2;

...

It’s	easy	to	write	a	query	that	generates	a	set	of	INSERT	statements	like	this	by	finding	all
the	distinct	values	for	the	partition	key	columns.	Then	you	can	run	the	resulting	statements
in	a	SQL	script.	For	example:

SELECT	DISTINCT

		concat('insert	into	partitioned_table	partition	(year=',

				cast(year	as	string),',	month=',cast(month	as	string),

				')	select	c1,	c2,	c3	from	raw_data	where	year=',

				cast(year	as	string),'	and	month=',cast(month	as	string),';')	AS	command

		FROM	raw_data;

+---------------------------------------------------------------------...

|	command																																																													...

+---------------------------------------------------------------------...

|	insert	into	partitioned_table	partition	(year=2000,	month=1)	select…

|	insert	into	partitioned_table	partition	(year=2000,	month=2)	select…

|	insert	into	partitioned_table	partition	(year=2000,	month=3)	select…

...

PRO	TIP

When	you	run	Impala	queries	to	generate	other	SQL	statements,	start	impala-shell	with	the	-B	option.	That	option
suppresses	the	ASCII	boxes	around	query	results,	making	the	output	easier	to	redirect	or	copy	and	paste	into	a	script
file.	See	Tutorial:	Verbose	and	Quiet	impala-shell	Output	for	examples.

Adding	and	Loading	New	Partitions
One	of	the	convenient	aspects	of	Impala	partitioned	tables	is	that	the	partitions	are	just
HDFS	directories,	where	you	can	put	data	files	without	going	through	any	file	conversion
or	even	Impala	INSERT	statements.	In	this	example,	you	create	the	partitions	individually
and	use	the	LOAD	DATA	statement	or	some	mechanism	outside	Impala	to	ingest	the	data.

--	Set	up	empty	partitions.

ALTER	TABLE	partitioned_table	ADD	PARTITION	(year=2010,	month=1);

ALTER	TABLE	partitioned_table	ADD	PARTITION	(year=2010,	month=2);

...

ALTER	TABLE	partitioned_table	ADD	PARTITION	(year=2014,	month=1);

ALTER	TABLE	partitioned_table	ADD	PARTITION	(year=2014,	month=2);

...

—Move	data	that	already	exists	in	HDFS	into	appropriate	partition	directories.

LOAD	DATA	INPATH	'/user/warehouse/this_year/january'	INTO	partitioned_table

		PARTITION	(year=2014,	month=1);

LOAD	DATA	INPATH	'/user/warehouse/this_year/february'	INTO	partitioned_table

		PARTITION	(year=2014,	month=2);

—Or	tell	Impala	to	look	for	specific	partitions	in	specific	HDFS	directories.

ALTER	TABLE	partitioned_table	PARTITION	(year=2014,	month=3)

		SET	LOCATION	'/user/warehouse/this_year/march';

—If	the	files	are	not	already	in	HDFS,	shell	out	to	an	external	command—that	does	'hdfs	dfs	-put'	

or	similar.

!	load_projected_data_for_2020.sh—Make	Impala	aware	of	the	files	that	were	added	by	non-SQL	means.

REFRESH	partitioned_table;

See	Anti-Pattern:	A	Million	Little	Pieces	for	some	other	tricks	you	can	use	to	avoid
fragmentation	and	excessive	memory	use	when	inserting	into	partitioned	Parquet	tables.



Writing	User-Defined	Functions
If	you	have	exotic	algorithms	or	high-performance	computations	coded	in	C+\+	but	you
want	users	to	go	through	a	familiar	SQL	interface	rather	than	you	writing	a	whole	C++
application,	you	can	encapsulate	the	special	code	in	a	user-defined	function	(UDF),	and
call	that	function	from	SQL	in	the	same	way	as	a	built-in	Impala	function.

For	best	performance,	write	any	UDFs	in	C++;	UDFs	can	also	use	a	Java	interface,	but	the
option	is	primarily	for	reusing	existing	UDFs	written	for	Hive.

Scalar	UDFs	produce	a	value	for	each	input	row,	and	are	primarily	for	convenience	and
readability;	you	can	bundle	complex	string	processing	or	arithmetic	operations	into	a
single	function	call,	possibly	more	efficient	than	building	the	same	logic	with	a	sequence
of	expressions	within	the	query.

User-defined	aggregate	functions	(UDAFs)	are	more	complex.	They	return	one	or	many
values	based	on	groups	of	related	values	from	a	table.	If	your	analytic	software	relies	on
“secret	sauce”	algorithms	that	give	you	a	competitive	edge,	you	would	likely	implement
those	as	UDAFs	for	Impala.	(Because	UDAFs	build	up	their	results	over	potentially
millions	or	billions	of	calls	to	the	same	function,	your	pointer	arithmetic	and	memory
allocation	need	to	be	thoroughly	debugged	before	executing	the	code	inside	Impala.)

Coding	UDFs	and	UDAFs	is	beyond	the	scope	of	this	book.	For	instructions	for	C++	and
Java	UDFs,	see	the	Impala	documentation.	For	header	files,	build	environment,	and	code
examples,	see	the	Impala	UDF	developer	GitHub	repository.

You	can	also	write	simple	UDFs	in	Python,	using	the	impyla	Python	package	(The	impyla
Package	for	Python	Scripting).

http://bit.ly/impala-udfs
https://github.com/cloudera/impala/tree/master/be/src/udf_samples


Collaborating	with	Your	Administrators
Although	you	can	do	a	substantial	amount	of	coding	and	testing	in	a	purely	development
environment,	at	some	point	you	will	probably	interact	in	some	way	with	production
systems	where	security	policies	and	resource	allocations	are	controlled	by	administrators.
You	might	hand	off	queries,	scripts,	or	JDBC	applications	to	be	run	in	a	production
environment.	You	might	connect	directly	to	a	production	system	to	run	ad	hoc	queries.	Or
you	might	be	in	a	devops	role	where	you	share	both	development	and	administration
responsibilities.

Although	the	details	of	Impala	administration	are	outside	the	scope	of	this	book,	here	are
some	tips	to	help	set	expectations	and	smooth	communications	between	you	as	a
developer	and	the	administrators	in	your	organization.

It	is	common	for	database	vendors	to	suggest	allocating	a	high	percentage	of	physical
memory,	often	80%	or	more,	for	exclusive	use	of	database	software.	Impala	also	benefits
from	having	access	to	large	amounts	of	physical	memory	for	processing	intermediate
results	from	clauses	like	joins,	ORDER	BY,	and	GROUP	BY.	On	a	development	system,	you
might	be	spoiled	by	having	exclusive	access	to	all	memory	for	all	machines.	Practice
running	all	your	SQL	with	memory	limits	that	reflect	how	much	RAM	will	be	available	to
Impala	in	the	production	environment.	Receiving	“out	of	memory”	errors	typically	means
that	you	are	missing	statistics	that	help	Impala	to	plan	and	distribute	the	work	for	the	most
resource-intensive	queries,	or	that	you	should	take	other	tuning	steps	to	help	the	queries
execute	using	less	RAM.

Designing	for	Security
In	a	development	environment,	you	might	have	wide-open	access	to	all	the	data.	In	a
production	environment,	access	is	likely	controlled	at	the	database,	table,	and	even	column
level	by	the	Sentry	authorization	system.	Make	life	easier	for	administrators	by	grouping
related	tables	logically	into	databases	so	that	users	can	be	granted	privileges	on	all	the
tables	in	a	database	at	once.	Use	consistent	naming	conventions	for	tables	and	columns	to
make	it	easier	for	an	administrator	to	define	views	that	access	subsets	of	columns
corresponding	to	the	data	that	can	be	accessed	by	different	classes	of	users.	(For	bonus
points,	create	such	views	up	front	as	part	of	your	schema	design	process.)	For	example,	in
a	healthcare	organization,	a	table	might	contain	some	data	that	is	only	available	to	doctors,
a	different	subset	of	information	that	is	available	to	lab	technicians,	and	yet	another	subset
of	information	that	is	available	to	health	insurance	providers.	Find	out	up	front	if	your
organization	has	already	defined	classes	of	users	like	these.

Understanding	Resource	Management
In	addition	to	using	these	categories	for	security	purposes,	an	administrator	might	use
YARN	and	Impala’s	admission	control	feature	to	provide	different	proportions	of	cluster
resources	to	different	groups	of	users.	The	resource	allocation	policies	help	prioritize	and
schedule	the	work	across	different	Hadoop	components	on	a	busy	cluster,	ensuring	that
everybody	stays	within	their	defined	limits	for	overall	RAM	and	CPU	usage,	and	in
Impala’s	case,	the	number	of	queries	allowed	to	execute	concurrently.	Thus,	be	prepared
to	discuss	whether	queries	for	different	types	of	users	are	more	frequent,	or	more	memory-



and	CPU-intensive	than	others	to	help	administrators	set	up	the	resource	allocation
policies	for	a	busy	cluster.	Understand	the	memory	usage	of	particular	queries	and	how
that	memory	usage	varies	depending	on	the	amount	of	data,	because	the	production
environment	might	have	larger	data	volume	than	the	development	and	test	environment.

Helping	to	Plan	for	Performance	(Stats,	HDFS	Caching)
No	matter	how	well	you	design	your	schema	and	how	efficient	you	make	your	queries,
when	your	code	goes	into	production,	it	might	perform	differently	than	in	your	dev/test
environment.	The	cluster	will	likely	be	running	other	workloads	at	the	same	time	—	both
Impala	queries	and	non-Impala	jobs.	The	volume	of	data	in	your	tables	might	go	up	as
new	data	arrives,	or	go	down	as	older	partitions	are	dropped.

Two	important	features	to	help	your	code	perform	well	in	an	ever-changing	environment
are	the	COMPUTE	STATS	statement	and	HDFS	caching.

The	COMPUTE	STATS	statement	gathers	metadata	that	lets	Impala	optimize	resource-
intensive	queries	and	insert	operations,	particularly	join	queries	and	INSERTs,	into
partitioned	Parquet	tables.	The	administrator	might	need	to	run	COMPUTE	STATS
periodically	whenever	data	volume	in	a	table	changes	by	a	substantial	amount.	(Use	30%
as	a	guideline,	and	then	do	your	own	testing	to	see	how	the	explain	plans	for	your	join
queries	change	depending	on	data	volumes	and	the	presence	or	absence	of	statistics.)
Practice	automating	this	step	in	any	data-loading	scripts	you	create.	Communicate	to	your
administrator	all	the	tables	involved	in	join	queries,	which	are	the	most	important	ones
when	it	comes	to	keeping	the	statistics	up-to-date.

HDFS	caching	helps	reduce	I/O	and	memory-to-memory	copying	by	keeping	specified
tables	and	partitions	entirely	in	a	special	memory	cache	area.	(The	size	of	this	cache	does
not	count	against	the	memory	limits	you	can	set	for	Impala.)	The	data	is	cached
persistently,	rather	than	being	evicted	each	time	new	data	is	read.	Therefore,	it	is	suitable
for	frequently	queried	lookup	tables,	or	tables	and	partitions	that	are	being	intensively
queried	during	a	particular	timeframe.	The	administrator	sets	the	size	of	the	HDFS	cache
and	divides	it	into	cache	pools	with	different	characteristics	for	use	by	different	classes	of
applications.	Again,	practice	with	this	feature	in	your	dev/test	environment,	and	be
prepared	to	discuss	with	your	administrator	which	tables	and	partitions	are	most	valuable
to	cache,	and	which	cache	pool	they	should	go	into.	(The	caching	information	can	be	set
up	with	the	initial	CREATE	TABLE	statements,	or	applied	later	through	ALTER	TABLE
statements.)	The	major	benefit	of	this	feature	is	scalability	in	a	high-concurrency
environment,	so	don’t	be	discouraged	if	you	don’t	see	a	big	performance	difference	in	a
single-user	test	environment.

Understanding	Cluster	Topology
As	a	developer,	you	might	work	with	a	different	cluster	setup	than	is	actually	used	in
production.	Here	are	some	things	to	watch	out	for,	to	understand	the	performance	and
scalability	implications	as	your	application	moves	from	a	dev/test	setup	into	production:

For	basic	functional	testing,	you	might	use	a	single-node	setup,	perhaps	running	inside
a	virtual	machine.	You	can	check	SQL	compatibility,	try	out	built-in	functions,	check
data	type	compatibility	and	experiment	with	CAST(),	see	that	your	custom	UDFs	work



correctly,	and	so	on.	(Perhaps	with	relatively	small	data	volume,	just	to	check
correctness.)
To	see	what	happens	with	distributed	queries,	you	could	use	a	relatively	small	cluster,
such	as	two	or	four	nodes.	This	allows	you	to	see	some	performance	and	scalability
benefits	from	parallelizing	the	queries.	On	a	dev/test	cluster,	the	name	node	is	probably
on	the	same	host	as	one	of	the	data	nodes,	which	is	not	a	problem	when	the	cluster	is
running	under	a	light	workload.
For	production,	you’ll	probably	have	a	separate	host	for	the	name	node,	and	a
substantial	number	of	data	nodes.	Here,	the	chances	of	a	node	failing	are	greater.	(In
this	case,	rerun	any	queries	that	were	in	flight.)	Or	one	node	might	experience	a
performance	issue,	dragging	down	the	response	time	of	queries.	(This	type	of	problem
is	best	detected	with	monitoring	software	such	as	Cloudera	Manager.)	Also,	this	is	the
time	to	double-check	the	guideline	about	installing	Impala	on	all	the	data	nodes	in	the
cluster	(to	avoid	I/O	slowdown	due	to	remote	reads)	and	only	on	the	data	nodes	(to
avoid	using	up	memory	and	CPU	unnecessarily	on	the	name	node,	which	has	a	lot	of
work	to	do	on	a	busy	cluster).

Always	Close	Your	Queries
Because	Impala	queries	can	be	resource-intensive,	production	deployments	typically	use
strategies	such	as	resource	management	and	admission	control	to	cap	the	number	of
concurrent	queries	at	a	level	the	cluster	can	comfortably	accommodate.	This	is	a	constraint
you	might	not	face	in	a	development	environment.	In	an	application	that	submits	queries
through	an	interface	such	as	JDBC,	ODBC,	HiveServer2,	or	Beeswax,	make	sure	that	all
queries	are	closed	when	finished.	Address	this	aspect	in	all	execution	paths	and	error
handling.	Otherwise,	your	application	could	leave	“zombie”	unclosed	queries	that	fill	up
the	available	execution	slots	and	prevent	other	queries	from	running.	If	this	happens,
expect	a	call	from	your	administrator.

www.allitebooks.com

http://www.allitebooks.org




Chapter	5.	Tutorials	and	Deep	Dives
The	following	sections	cover	aspects	of	Impala	that	deserve	a	closer	look.	Brief	examples
illustrate	interesting	features	for	new	users.	More	complex	topics	are	covered	by	tutorials
or	deep	dives	into	the	inner	workings.



Tutorial:	From	Unix	Data	File	to	Impala	Table
Here	is	what	your	first	Unix	command-line	session	might	look	like	when	you’re	using
Impala.	This	example	from	a	Bash	shell	session	creates	a	couple	of	text	files	(which	could
be	named	anything),	copies	those	files	into	the	HDFS	filesystem,	and	points	an	Impala
table	at	the	data	so	that	it	can	be	queried	through	SQL.	The	exact	HDFS	paths	might	differ
based	on	your	HDFS	configuration	and	Linux	users.

$	cat	>csv.txt

1,red,apple,4

2,orange,orange,4

3,yellow,banana,3

4,green,apple,4

^D

$	cat	>more_csv.txt

5,blue,bubblegum,0.5

6,indigo,blackberry,0.2

7,violet,edible	flower,0.01

8,white,scoop	of	vanilla	ice	cream,3

9,black,licorice	stick,0.2

^D

$	hadoop	fs	-mkdir	/user/hive/staging

$	hadoop	fs	-put	csv.txt	/user/hive/staging

$	hadoop	fs	-put	more_csv.txt	/user/hive/staging

NOTE

Sometimes	the	user	you	are	logged	in	as	does	not	have	permission	to	manipulate	HDFS	files.	In	that	case,	issue	the
commands	with	the	permissions	of	the	hdfs	user,	using	the	form:

sudo	-u	hdfs	hadoop	fs	arguments

Now	that	the	data	files	are	in	the	HDFS	filesystem,	let’s	go	into	the	Impala	shell	and	start
working	with	them.	(Some	of	the	prompts	and	output	are	abbreviated	here	for	easier
reading	by	first-time	users.)	This	example	creates	a	new	database,	in	case	this	experiment
turns	into	a	project	with	a	whole	set	of	related	tables.	Then	we	create	a	table	inside	this
database,	move	the	data	files	into	the	table,	and	run	some	queries.

$	impala-shell

>	create	database	food_colors;

>	use	food_colors;

>	create	table	food_data

				(id	int,	color	string,	food	string,	weight	float)

				row	format	delimited	fields	terminated	by	',';

>—Here's	where	we	move	the	data	files	from	an	arbitrary

	—HDFS	location	to	under	Impala	control.

>	load	data	inpath	'/user/hive/staging'	into	table	food_data;

Query	finished,	fetching	results…

+----------------------------------------------------------+

|	summary																																																		|

+----------------------------------------------------------+

|	Loaded	2	file(s).	Total	files	in	destination	location:	2	|

+----------------------------------------------------------+

>	select	food,	color	as	"Possible	Color"	from	food_data	where

				food	=	'apple';

Query	finished,	fetching	results…

+-------+----------------+

|	food		|	possible	color	|

+-------+----------------+

|	apple	|	red												|

|	apple	|	green										|

+-------+----------------+

Returned	2	row(s)	in	0.66s

>	select	food	as	"Top	5	Heaviest	Foods",	weight

				from	food_data

				order	by	weight	desc	limit	5;

Query	finished,	fetching	results…

+----------------------------+----------------------+



|	top	5	heaviest	foods							|	weight															|

+----------------------------+----------------------+

|	orange																					|	4																				|

|	apple																						|	4																				|

|	apple																						|	4																				|

|	scoop	of	vanilla	ice	cream	|	3																				|

|	banana																					|	3																				|

+----------------------------+----------------------+

Returned	5	row(s)	in	0.49s

>	quit;

Back	in	the	Unix	shell,	see	how	the	CREATE	DATABASE	and	CREATE	TABLE	statements
created	some	new	directories	and	how	the	LOAD	DATA	statement	moved	the	original	data
files	into	an	Impala-managed	directory:

$	hadoop	fs	-ls	-R	/user/hive/warehouse/food_colors.db

drwxrwxrwt			-	impala	hive										0	2013-08-29	16:14	/user/h

ive/warehouse/food_colors.db/food_data

-rw-rw-rw-			3	hdfs			hive									66	2013-08-29	16:12	/user/h

ive/warehouse/food_colors.db/food_data/csv.txt

-rw-rw-rw-			3	hdfs			hive								139	2013-08-29	16:12	/user/h

ive/warehouse/food_colors.db/food_data/more_csv.txt

In	one	easy	step,	you’ve	gone	from	a	collection	of	human-readable	text	files	to	a	SQL
table	that	you	can	query	using	standard,	widely	known	syntax.	The	data	is	automatically
replicated	and	distributed	across	a	cluster	of	networked	machines	by	virtue	of	being	put
into	an	HDFS	directory.

These	same	basic	techniques	scale	up	to	enormous	tables	with	billions	of	rows.	By	that
point,	you	would	likely	be	using	a	more	compact	and	efficient	data	format	than	plain	text
files,	and	you	might	include	a	partitioning	clause	in	the	CREATE	TABLE	statement	to	split
up	the	data	files	by	date	or	category.	Don’t	worry,	you	can	easily	upgrade	your	Impala
tables	and	rearrange	the	data	as	you	learn	the	more	advanced	Impala	features.	In	fact,
that’s	the	subject	of	a	later	tutorial:	Tutorial:	The	Journey	of	a	Billion	Rows.



Tutorial:	Queries	Without	a	Table
To	understand	how	Impala	works	at	the	extreme	ends	of	the	spectrum,	let’s	consider	for	a
moment	the	least	intensive	queries	we	could	run.	Impala	does	not	have	a	built-in	trivial
table	like	the	DUAL	table	in	Oracle.	Instead,	to	get	back	a	single-row	result	of	an
expression,	you	construct	a	query	with	all	constant	expressions	or	function	calls	in	the
SELECT	list,	and	leave	off	the	FROM	clause.	Here	are	sample	queries	for	you	to	run	in	the
impala-shell	interpreter;	see	if	you	can	predict	the	results:

SELECT	1;

SELECT	"hello	world";

SELECT	2+2;

SELECT	10	>	5;

SELECT	now();

You	can	use	this	very	valuable	table-less	SELECT	technique	for	experimenting	with	the
detailed	semantics	of	Impala	functions,	data	types	and	casting,	NULL	handling,	and	all
kinds	of	expressions.

These	examples	illustrate	numeric	expressions	and	arithmetic:
SELECT	1	+	0.5;

SELECT	1	/	3;

SELECT	1e6,	1.5e6;

SELECT	30000	BETWEEN	min_smallint()	AND	max_smallint();

+-------------------------------------------------+

|	30000	between	min_smallint()	and	max_smallint()	|

+-------------------------------------------------+

|	true																																												|

+-------------------------------------------------+

NOTE

The	results	of	those	floating-point	expressions	are	more	precise	in	Impala	1.4	and	later	than	in	previous	releases,	due
to	the	introduction	of	the	DECIMAL	type.

These	examples	illustrate	type	conversions:
SELECT	cast(1e6	AS	string);

SELECT	cast(true	AS	string);

SELECT	cast(99.44	AS	int);

These	examples	illustrate	what	happens	when	NULL	is	used	in	various	contexts:
SELECT	1	+	NULL,	1	=	NULL,	1	>	NULL,	NULL	=	NULL,	NULL	IS	NULL;

SELECT	cast(NULL	AS	STRING),	cast(NULL	AS	BIGINT),	cast(NULL	AS	BOOLEAN);

These	examples	illustrate	string	literals	and	string	functions:
SELECT	'hello\nworld';

SELECT	"abc\t012345\txyz";

SELECT	concat('hello',NULL);

SELECT	substr('hello',-2,2);

These	examples	illustrate	regular	expression	comparisons	and	functions:
SELECT	'abc123xyz'	REGEXP	'[[:digit:]]{3}';

+-------------------------------------+

|	'abc123xyz'	regexp	'[[:digit:]]{3}'	|

+-------------------------------------+

|	true																																|

+-------------------------------------+

SELECT	regexp_extract('>>>abc<<<','.*([a-z]+)',1);

+----------------------------------------------+

|	regexp_extract('>>>abc<<<',	'.*([a-z]+)',	1)	|

+----------------------------------------------+

|	abc																																										|



+----------------------------------------------+

SELECT	regexp_replace('123456','(2|4|6)','x');

+------------------------------------------+

|	regexp_replace('123456',	'(2|4|6)',	'x')	|

+------------------------------------------+

|	1x3x5x																																			|

+------------------------------------------+

This	example	illustrates	date/time	expressions,	functions,	and	arithmetic:
SELECT	now()	+	INTERVAL	3	DAYS	+	INTERVAL	5	HOURS;

+--------------------------------------------+

|	now()	+	interval	3	days	+	interval	5	hours	|

+--------------------------------------------+

|	2014-08-03	16:48:44.201018000														|

+--------------------------------------------+

These	types	of	queries	can	help	you	construct	or	debug	the	individual	pieces	of	a
complicated	query.	For	example,	you	typically	run	a	simple	test	to	confirm	that	you	have
the	right	regex	notation,	function	arguments,	format	strings,	and	so	on,	before	applying	a
regular	expression	or	date	calculation	to	billions	of	rows.

Queries	with	no	FROM	clause	are	not	subject	to	the	limits	imposed	by	the	admission	control
feature	on	the	number	of	concurrent	queries;	they	are	not	parallelized	and	distributed
across	multiple	cluster	nodes.	Instead,	all	work	is	done	on	the	coordinator	node.	In	terms
of	resource	management,	Impala	still	allocates	a	default	amount	of	memory	(several
megabytes)	for	each	such	query,	because	even	a	query	without	a	table	might	evaluate
some	enormously	complicated	expression	or	call	a	complex	user-defined	function.



Tutorial:	The	Journey	of	a	Billion	Rows
Now	that	we’ve	seen	how	you	can	try	out	basic	SQL	features	with	no	table	or	a	tiny	table,
let’s	get	serious.	In	the	Big	Data	field,	there’s	little	point	experimenting	with	thousands	or
even	millions	of	rows.	That	volume	of	data	is	effectively	the	same	as	the	smallest	tables
you	could	construct,	so	you	don’t	really	learn	much	about	distributed	queries	or	Impala
performance.

Let’s	set	up	a	table	with	a	billion	rows	and	see	what	we	can	learn.	With	a	billion	rows,	by
definition	we’ll	be	working	with	gigabytes	of	data.	Any	inefficiency	or	wasted	storage	will
be	easy	to	spot.	Any	query	that	processes	those	gigabytes	in	only	a	few	seconds	will	be
cause	for	celebration.

Generating	a	Billion	Rows	of	CSV	Data
First,	let’s	generate	a	billion	rows	of	general-purpose	data.	I	intentionally	chose	an	old-
school	technique,	a	simple	Python	script	generating	a	single	big	file,	to	illustrate	how
Impala	bridges	the	world	of	traditional	Unix	and	databases,	and	the	new	Hadoop	world	of
Big	Data	and	distributed	parallel	computing.

#!	/usr/bin/python

"""

multicols.py:	Generate	an	arbitrary	number	of	rows	with	random	values.

"""

import	sys

from	random	import	*

#	---

#	Load	a	list	of	the	biggest	US	cities	(289	of	them),

#	to	pick	a	random	city/state	combination	for	an	address.

usa_cities	=	[]

def	load_cities():

		global	usa_cities

		lines	=	[line.rstrip()	for	line	in	open("usa_cities.lst").readlines()]

		usa_cities	=	[line.split(",")	for	line	in	lines]

def	random_city():

		if	usa_cities	==	[]:

				load_cities()

		which	=	randint(0,len(usa_cities)-1)

		return	usa_cities[which]

if	__name__	==	'__main__':

#	Produce	text	format	data	with	different	kinds	of	separators.

		possible_separators	=	{	"pipe":	"|",	"comma":	",",	"csv":	",",

				"ctrl-a":	"\x01",	"hash":	"#",	"bang":	"!",	"tab":	"\t",

				"tsv":	"\t"	}

#	Accept	number	of	rows	to	generate	as	command-line	argument.

		try:

				count	=	int(sys.argv[1])

		except:

				count	=	1

#	For	random	numeric	values,	define	upper	bound	as	another	command-line	argument.

#	By	default,	values	are	0-99999.

		try:

				upper	=	int(sys.argv[2])

		except:

				upper	=	99999

#	Accept	mnemonic	for	separator	characters	as	command-line	argument.



		try:

				sep_arg	=	sys.argv[3]

				sep	=	possible_separators[sep_arg]

		except:

#				If	no	separator	is	specified,	fall	back	to	the	Impala	default.

				sep	=	"\x01"

#	Generate	requested	number	of	rows	of	data.

		for	i	in	xrange(count):

#	Column	1	is	a	sequential	integer,	starting	from	1.

				c1	=	str(i+1)

#	Column	2	is	a	random	integer,	from	0	to	the	specified	upper	bound.

#	10%	of	the	time,	we	substitute	a	NULL	value	instead	of	a	number.

				chance	=	randint(1,10)	%	10;

				if	chance	==	0:

						c2	=	r"\N"

				else:

						c2	=	str(randint(0,upper))

#	Column	3	is	another	random	integer,	but	formatted	with	leading

#	zeroes	to	exactly	6	characters.

				c3	=	str(randint(0,upper)).zfill(6)

#	Column	4	is	a	random	string,	from	4-22	characters.

#	It	is	an	initial	capital	letter,	followed	by	3	sequences	of	repeating	letters.

#	1%	of	the	time,	we	substitute	a	NULL	value	instead	of	a	string.

				chance	=	randint(1,100)	%	100;

				if	chance	==	0:

						c4	=	r"\N"

				else:

						cap	=	chr(randint(65,90))

						string1	=	chr(randint(97,122))	*	randint(1,7)

						string2	=	chr(randint(97,122))	*	randint(1,7)

						string3	=	chr(randint(97,122))	*	randint(1,7)

						c4	=	cap	+	string1	+	string2	+	string3

#	Column	5	is	a	random	Boolean	value.

#	It's	true	2/3	of	the	time,	false	1/3	of	the	time.

				bool	=	randint(0,2)

				if	bool	==	0:

						c5	=	"false"

				else:

						c5	=	"true"

#	We	figure	out	a	random	city	and	state	to	use	for	a	location	field.

				(city,state)	=	random_city()

				c6	=	city

				c7	=	state

#	Concatenate	all	the	fields	and	print.

				row	=	(c1	+	sep	+	c2	+	sep	+	c3	+	sep	+	c4	+

						sep	+	c5	+	sep	+	c6	+	sep	+	c7)

				print	row

Impala	is	flexible	in	terms	of	the	sequence	of	operations.	You	can	prepare	the	data	first
and	even	bring	it	into	HDFS,	and	then	construct	a	database	table	that	matches	the	structure
of	the	data.	Or	you	can	use	the	traditional	sequence	of	creating	the	table	first	and	then
preparing	the	data	based	on	the	table	schema.	For	this	exercise,	we’ll	prepare	the	data	on
the	local	filesystem,	then	set	up	the	database	table	in	Impala,	and	then	move	the	data	into
the	expected	location	in	HDFS.

First	we	run	the	script	to	produce	the	random	data.	On	my	Linux	server,	this	takes	an	hour
or	more.	(This	is	a	good	illustration	of	why	it’s	so	attractive	to	parallelize	operations
involving	so	much	data.)

$	python	multicols.py	1000000000	99999	comma	>billion_rows.csv

Within	the	impala-shell	interpreter,	we	create	a	table,	which	will	contain	a	billion	rows



after	the	data	files	go	into	HDFS.	The	attributes	of	the	table	(file	format,	and	separator
character	for	text	format)	match	what	we	used	in	the	raw	data	files.

$	impala-shell	-i	localhost

[localhost:21000]	>	create	database	oreilly;

[localhost:21000]	>	use	oreilly;

[localhost:21000]	>	create	table	sample_data

																		>	(id	bigint,	val	int,	zerofill	string,	name	string,

																		>	assertion	boolean,	city	string,	state	string)

																		>	row	format	delimited	fields	terminated	by	",";

[localhost:21000]	>	desc	sample_data;

+-----------+---------+---------+

|	name						|	type				|	comment	|

+-----------+---------+---------+

|	id								|	bigint		|									|

|	val							|	int					|									|

|	zerofill		|	string		|									|

|	name						|	string		|									|

|	assertion	|	boolean	|									|

|	city						|	string		|									|

|	state					|	string		|									|

+-----------+---------+---------+

Now	we	need	to	get	the	data	into	the	right	location	in	HDFS.	To	figure	out	where	the	data
should	go,	we	use	the	DESCRIBE	FORMATTED	statement:

[localhost:21000]	>	describe	formatted	sample_data;

...

|	#	Detailed	Table	Information	|	NULL

|	Database:																				|	oreilly

|	Owner:																							|	jrussell

|	CreateTime:																		|	Fri	Jul	18	16:25:06	PDT	2014

|	LastAccessTime:														|	UNKNOWN

|	Protect	Mode:																|	None

|	Retention:																			|	0

|	Location:																				|	hdfs://a1730.abcde.example.com:8020	

|																														|	/user/impala/warehouse/oreilly.db/

|																														|	sample_data

|	Table	Type:																		|	MANAGED_TABLE…

The	Location:	attribute	represents	the	HDFS	path	to	the	table	data.	When	using	it	with
Hadoop	commands,	you	can	include	the	hdfs://host:port	prefix	or	leave	it	out	and
specify	it	as	a	/user/whoever/...	path.

Armed	with	this	knowledge,	we	can	run	Linux	utilities	(or	various	kinds	of	Hadoop	jobs)
that	deposit	data	in	the	appropriate	HDFS	directory.	In	this	example,	we	do	that	from
inside	impala-shell	using	the	!	command,	which	invokes	an	arbitrary	Linux	command.

[localhost:21000]	>	!hdfs	dfs	-put	billion_rows.csv

																		>	'/user/impala/warehouse/oreilly.db/sample_data';

Impala	needs	a	reminder,	in	the	form	of	a	REFRESH	statement,	whenever	data	files	are
added	or	changed	outside	of	Impala	SQL	statements	such	as	CREATE	TABLE	AS	SELECT	or
INSERT.	At	that	point,	we	can	query	the	table	and	see	that	the	billion	rows	have	arrived:

[localhost:21000]	>	refresh	sample_data;

[localhost:21000]	>	select	count(*)	from	sample_data;

+------------+

|	count(*)			|

+------------+

|	1000000000	|

+------------+

Returned	1	row(s)	in	45.31s

Now	we’ve	got	a	billion	rows	to	play	with,	using	all	the	familiar	SQL	techniques.	Let’s	try
some	simple	queries	that	we	know	will	produce	small	result	sets:

[localhost:21000]	>	select	max(name)	from	sample_data;



+------------------------+

|	max(name)														|

+------------------------+

|	Zzzzzzzzzzzzzzzzzzzzzz	|

+------------------------+

Returned	1	row(s)	in	50.73s

[localhost:21000]	>	select	min(name)	as	first_in_alpha_order,	assertion

																		>	from	sample_data	group	by	assertion;

+----------------------+-----------+

|	first_in_alpha_order	|	assertion	|

+----------------------+-----------+

|	Aaaa																	|	true						|

|	Aaaa																	|	false					|

+----------------------+-----------+

Returned	2	row(s)	in	37.35s

[localhost:21000]	>	select	avg(val),	min(name),	max(name)	from	sample_data

																		>	where	name	between	'A'	and	'D';

+-------------------+-----------+------------------------+

|	avg(val)										|	min(name)	|	max(name)														|

+-------------------+-----------+------------------------+

|	49992.47281834851	|	Aaaa						|	Czzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	12.77s

[localhost:21000]	>	select	count(name)	as	num_names,	assertion

																		>	from	sample_data	group	by	assertion;

+-----------+-----------+

|	num_names	|	assertion	|

+-----------+-----------+

|	660023128	|	true						|

|	329974394	|	false					|

+-----------+-----------+

Returned	2	row(s)	in	45.61s

What’s	behind	the	scenes	with	these	billion	rows?	We	started	with	one	big	CSV	file	and
we	put	it	straight	into	the	Hadoop	filesystem.	The	SHOW	TABLE	STATS	statement	displays
the	physical	characteristics	of	the	table:

[localhost:21000]	>	show	table	stats	sample_data;

+-------+--------+---------+--------------+--------+

|	#Rows	|	#Files	|	Size				|	Bytes	Cached	|	Format	|

+-------+--------+---------+--------------+--------+

|	-1				|	1						|	56.72GB	|	NOT	CACHED			|	TEXT			|	

+-------+--------+---------+--------------+--------+

Returned	1	row(s)	in	0.01s

That	single	big	file	is	still	there	in	HDFS,	all	56.72	gigabytes.

The	whole	big	file	is	being	read	every	time	we	do	a	query,	which	explains	why	the	queries
all	take	several	seconds	or	more.

At	this	point,	let	your	inquisitive	hacker	imagination	run	free.	If	there	is	some	way	to
reduce	the	data	size	by	several	gigabytes,	would	that	translate	into	seconds	shaved	off
each	of	these	queries?	Yes,	it	would.	How	about	if	we	could	arrange	the	data	so	it	didn’t
have	to	be	entirely	read	for	each	query?	Yes,	that	would	speed	up	the	queries
proportionally:	read	1/10th	as	much	data,	take	roughly	1/10th	as	much	time	as	the	original
query.
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HOW	A	TABLE	WORKS	WHEN	IT’S	ONE	BIG	FILE

Are	we	losing	out	on	parallelism	by	having	just	one	file?	Not	really,	because	it’s	so	big:

HDFS	internally	divides	the	data	up	into	blocks,	128	MB	each	by	default.
Each	block	is	replicated	to	some	number	of	hosts	in	our	cluster;	by	default	3.
For	each	query,	each	128	MB	block	is	processed	by	one	of	our	4	nodes.	Which	node	processes	a	given	block?
That’s	not	entirely	predictable,	but	anyway	it’s	one	of	the	3	nodes	that	can	read	the	block	off	their	local	disk,
rather	than	asking	for	it	to	be	sent	across	the	network	from	a	node	that	does	have	it.	So	all	4	of	our	nodes	are	kept
busy	by	these	queries,	and	the	queries	can	finish	in	approximately	1/4	of	the	time	it	would	take	if	we	did	them	on
a	single	machine.

Normalizing	the	Original	Data
How	are	we	going	to	shrink	the	data?	First,	let’s	do	a	bit	of	normalization.	The	CITY	and
STATE	fields	only	have	289	values	total,	representing	the	largest	cities	in	the	USA.	We
could	move	repeated	strings	such	as	“California”	and	“Mississippi”	out	of	the	data	file	and
replace	them	with	small	integers.

[localhost:21000]	>	select	avg(length(city))	+	avg(length(state))

																		>	from	sample_data;

+----------------------------------------+

|	avg(length(city))	+	avg(length(state))	|

+----------------------------------------+

|	17.190299006																											|	

+----------------------------------------+

Returned	1	row(s)	in	15.18s

[localhost:21000]	>	quit;

The	average	combined	length	of	the	CITY	and	STATE	fields	is	about	17	characters.

We’ll	replace	those	with	a	single	number,	between	1	and	3	digits.	So	we	could	expect	to
save	roughly	15–16	gigabytes	of	disk	space,	by	replacing	18	characters	(CITY	and	STATE
plus	comma	delimiter)	with	2–3	digit	numbers.

After	we	get	the	data	into	Impala,	we	can	use	SQL	skills	to	slice	and	dice	it	in	all	sorts	of
ways.	Let’s	set	up	a	tiny	lookup	table	with	all	the	city	and	state	data,	and	then	make	a	new
table	with	the	original	data	in	normalized	form.	Before	transforming	the	data,	we’ll	use	a
view	to	double-check	the	correctness	of	the	join	query	that	pulls	out	the	normalized
values.

Recall	that	we	started	with	a	simple	list	of	CITY,STATE	values	in	usa_cities.lst.	To	use
this	data	as	a	lookup	table,	we	need	a	file	with	numeric	IDs.	That’s	easy	to	prepare	with
basic	Unix	commands:	just	take	the	output	of	cat	-n,	trim	off	leading	spaces,	and	turn	the
tab	after	the	line	number	into	our	separator	character	(comma).

$	cat	-n	usa_cities.lst	|	sed	-e	's/\t/,/'	|	sed	-e	's/^	*//'	|	tee	usa_cities.csv

Now	we	pick	up	back	in	the	impala-shell	interpreter,	inside	the	oreilly	database	where
we’re	running	these	experiments.	Again,	we	load	the	data	file	into	the	right	HDFS
directory,	finding	the	location	with	DESCRIBE	FORMATTED	and	running	the	hdfs	command
from	inside	impala-shell:

$	impala-shell	-i	localhost	-d	oreilly

[localhost:21000]	>	describe	formatted	usa_cities;

...

|	Location:	|	hdfs://a1730.abcde.example.com:8020/user/impala/warehouse

|											|	/oreilly.db/usa_cities…

[localhost:21000]	>	!hdfs	dfs	-put	usa_cities.csv

																		>	'/user/impala/warehouse/oreilly.db/usa_cities';



[localhost:21000]	>	refresh	usa_cities;

[localhost:21000]	>	select	count(*)	from	usa_cities;

+----------+

|	count(*)	|

+----------+

|	289						|

+----------+

[localhost:21000]	>	show	table	stats	usa_cities;

+-------+--------+--------+--------------+--------+

|	#Rows	|	#Files	|	Size			|	Bytes	Cached	|	Format	|

+-------+--------+--------+--------------+--------+

|	-1				|	1						|	6.44KB	|	NOT	CACHED			|	TEXT			|

+-------+--------+--------+--------------+--------+

Returned	1	row(s)	in	0.01s

[localhost:21000]	>	select	*	from	usa_cities	limit	5;

+----+--------------+--------------+

|	id	|	city									|	state								|

+----+--------------+--------------+

|	1		|	New	York					|	New	York					|

|	2		|	Los	Angeles		|	California			|

|	3		|	Chicago						|	Illinois					|

|	4		|	Houston						|	Texas								|

|	5		|	Philadelphia	|	Pennsylvania	|

+----+--------------+--------------+

Before	doing	any	resource-intensive	operation	like	reorganizing	the	original	56	GB	table,	I
always	double-check	the	logic	first	using	a	view,	which	helps	to	avoid	typing	long	queries
over	and	over.	Let’s	make	sure	that	the	CITY	and	STATE	data	from	the	original	table	match
up	with	the	values	from	the	new	lookup	table:

[localhost:21000]	>	create	view	normalized_view	as

																		>	select	one.id,	one.val,	one.zerofill,	one.name,

																		>			one.assertion,	two.id	as	location_id

																		>	from	sample_data	one	join	usa_cities	two	

																		>	on	(one.city	=	two.city	and	one.state	=	two.state);

[localhost:21000]	>	select	one.id,	one.location_id,

																		>			two.id,	two.city,	two.state	

																		>	from	normalized_view	one	join	usa_cities	two

																		>	on	(one.location_id	=	two.id)

																		>	limit	5;

+----------+-------------+-----+-----------+------------+

|	id							|	location_id	|	id		|	city						|	state						|

+----------+-------------+-----+-----------+------------+

|	15840253	|	216									|	216	|	Denton				|	Texas						|

|	15840254	|	110									|	110	|	Fontana			|	California	|

|	15840255	|	250									|	250	|	Gresham			|	Oregon					|

|	15840256	|	200									|	200	|	Waco						|	Texas						|

|	15840257	|	165									|	165	|	Escondido	|	California	|

+----------+-------------+-----+-----------+------------+

Returned	5	row(s)	in	0.42s

[localhost:21000]	>	select	id,	city,	state	from	sample_data	

																		>	where	id	in	(15840253,	15840254,	15840255,	15840256,	15840257);

+----------+-----------+------------+

|	id							|	city						|	state						|

+----------+-----------+------------+

|	15840253	|	Denton				|	Texas						|

|	15840254	|	Fontana			|	California	|

|	15840255	|	Gresham			|	Oregon					|

|	15840256	|	Waco						|	Texas						|

|	15840257	|	Escondido	|	California	|

+----------+-----------+------------+

Returned	5	row(s)	in	5.27s

The	view	gets	some	columns	from	the	original	SAMPLE_DATA	table,	but	retrieves	CITY
and	STATE	from	the	small	USA_CITIES	lookup	table.

The	join	query	pulls	CITY	and	STATE	from	the	small	lookup	table	by	way	of	the	view.



The	final	query	confirms	that	the	results	are	the	same	when	CITY	and	STATE	come	from
the	original	SAMPLE_DATA	table.

Now	we’re	satisfied	that	the	join	query	in	the	view	pulls	out	the	correct	combination	of
CITY,	STATE,	and	ID	values	from	the	lookup	table.	So	let’s	create	a	version	of	our	billion-
row	table	that	matches	the	layout	of	the	view,	with	the	CITY	and	STATE	columns	replaced
by	a	single	numeric	LOCATION_ID:

[localhost:21000]	>	create	table	normalized_text

																		>	row	format	delimited	fields	terminated	by	","

																		>	as	select	*	from	normalized_view;

+----------------------------+

|	summary																				|

+----------------------------+

|	Inserted	1000000000	row(s)	|

+----------------------------+

Returned	1	row(s)	in	422.06s

[localhost:21000]	>	select	*	from	normalized_text	limit	5;

+-----------+-------+----------+------------------+-----------+-------------+

|	id								|	val			|	zerofill	|	name													|	assertion	|	location_id	|

+-----------+-------+----------+------------------+-----------+-------------+

|	921623839	|	95546	|	001301			|	Pwwwwwbbe								|	false					|	217									|

|	921623840	|	38224	|	018053			|	Clldddddddll					|	true						|	127									|

|	921623841	|	73153	|	032797			|	Csssijjjjjj						|	true						|	124									|

|	921623842	|	35567	|	094193			|	Uhhhhhrrrrrrvvv		|	false					|	115									|

|	921623843	|	4694		|	051840			|	Uccccqqqqqbbbbbb	|	true						|	138									|

+-----------+-------+----------+------------------+-----------+-------------+

[localhost:21000]	>	show	table	stats	normalized_text;

+-------+--------+---------+--------------+--------+

|	#Rows	|	#Files	|	Size				|	Bytes	Cached	|	Format	|

+-------+--------+---------+--------------+--------+

|	-1				|	4						|	42.22GB	|	NOT	CACHED			|	TEXT			|	

+-------+--------+---------+--------------+--------+

As	predicted,	we	saved	about	14.5	GB	in	our	original	table,	by	creating	a	lookup	table
that’s	less	than	7	KB.	(From	the	perspective	of	the	IT	group,	we’ve	really	saved	43.5
GB	in	total,	because	each	unnecessary	data	block	gets	replicated	across	3	nodes.)

When	we	do	join	queries	to	display	the	original	city	and	state	names	in	reports,	that	is	a
perfect	illustration	of	the	“broadcast”	join	technique:	the	lookup	table	that’s	only	a	few	KB
will	be	transmitted	to	each	node	and	cross-referenced	against	the	data	from	the	big	table	as
that	larger	data	set	is	read	from	local	disk	storage.

Q&A

How	come	when	we	asked	for	5	rows	with	the	LIMIT	5	clause,	we	didn’t	always	get	the	first	5	rows	from	the	table?
Some	of	those	queries	returned	rows	with	IDs	in	the	range	of	15	million	or	even	921	million.

Remember	that	as	the	experiment	progressed,	the	new	tables	we	created	had	progressively	more	and	more	data	files:
first	4,	then	64.	Each	of	our	4	nodes	was	working	on	a	subset	of	data,	and	whichever	node	came	up	with	its	5	rows
first,	those	are	the	rows	we	saw.	Even	when	there	was	just	a	single	56	GB	file,	our	4	nodes	were	working	in	parallel
on	the	individual	128	MB	data	blocks	carved	out	of	the	original	file,	and	the	arbitrary	rows	we	asked	for	could	come
back	from	any	of	those	blocks.

Whenever	you	expect	rows	to	be	returned	in	a	particular	order,	include	an	ORDER	BY	clause	in	the	outermost	block	of
a	query,	or	in	the	query	that	references	the	view.	The	SQL	standard	does	not	guarantee	sorted	results	from	an	ORDER
BY	in	a	subquery	or	a	view	definition.

Converting	to	Parquet	Format



We’ve	just	saved	several	gigabytes	of	disk	space	and	earned	the	gratitude	of	the	IT
department.	Shall	we	stop	there?	No,	we’re	on	a	roll	now!

When	you	read	the	official	Impala	documentation,	you’ll	see	guidelines	saying	to	use	the
Parquet	file	format	for	all	your	sizeable	tables.	This	file	format	uses	some	clever	tricks	to
shrink	the	overall	size	of	the	data	and	reduce	I/O	during	queries.	Let’s	give	that	a	try:

[localhost:21000]	>	create	table	normalized_parquet	stored	as	parquet	

																		>	as	select	*	from	normalized_text;

+----------------------------+

|	summary																				|

+----------------------------+

|	Inserted	1000000000	row(s)	|

+----------------------------+

Returned	1	row(s)	in	183.63s

[localhost:21000]	>	select	count(*)	from	normalized_parquet;

+------------+

|	count(*)			|

+------------+

|	1000000000	|

+------------+

Returned	1	row(s)	in	2.63s

[localhost:21000]	>	show	table	stats	normalized_parquet;

+-------+--------+---------+--------------+---------+

|	#Rows	|	#Files	|	Size				|	Bytes	Cached	|	Format		|

+-------+--------+---------+--------------+---------+

|	-1				|	64					|	23.34GB	|	NOT	CACHED			|	PARQUET	|	

+-------+--------+---------+--------------+---------+

Returned	1	row(s)	in	0.01s

As	you	gain	more	experience	with	Impala	queries	and	performance	tuning,	you	will
start	to	get	a	warm,	fuzzy	feeling	when	you	see	the	STORED	AS	PARQUET	clause	in
CREATE	TABLE	statements.

Wow,	we	just	reduced	the	size	of	the	table	again	—	by	almost	20	more	gigabytes	this
time.	(Again,	the	3x	replication	factor	means	we	saved	another	60	GB	in	total	across	the
cluster).

The	ultimate	goal	is	for	queries	to	be	faster,	so	let’s	see	how	the	various	tables	we
constructed	perform	with	the	same	queries.	We’ll	run	identical	queries	on	the	original	56
GB	text	table,	the	42	GB	normalized	text	table,	and	finally	the	23	GB	normalized	Parquet
table,	expecting	each	to	be	faster	than	the	preceding	one:

[localhost:21000]	>	select	max(name)	from	sample_data;	

+------------------------+

|	max(name)	|

+------------------------+

|	Zzzzzzzzzzzzzzzzzzzzzz	|

+------------------------+

Returned	1	row(s)	in	50.73s	

[localhost:21000]	>	select	max(name)	from	normalized_text;	

+------------------------+

|	max(name)	|

+------------------------+

|	Zzzzzzzzzzzzzzzzzzzzzz	|

+------------------------+

Returned	1	row(s)	in	24.15s	

[localhost:21000]	>	select	max(name)	from	normalized_parquet;	

+------------------------+

|	max(name)	|

+------------------------+

|	Zzzzzzzzzzzzzzzzzzzzzz	|



+------------------------+

Returned	1	row(s)	in	20.19s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)	from	sample_data	

>	where	name	between	'A'	and	'D';

+-------------------+-----------+------------------------+

|	avg(val)	|	min(name)	|	max(name)	|

+-------------------+-----------+------------------------+

|	49992.47281834851	|	Aaaa	|	Czzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	26.36s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)	from	normalized_text	

>	where	name	between	'A'	and	'D';

+-------------------+-----------+------------------------+

|	avg(val)	|	min(name)	|	max(name)	|

+-------------------+-----------+------------------------+

|	49992.47281834851	|	Aaaa	|	Czzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	21.17s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)	from	normalized_parquet	

>	where	name	between	'A'	and	'D';

+-------------------+-----------+------------------------+

|	avg(val)	|	min(name)	|	max(name)	|

+-------------------+-----------+------------------------+

|	49992.47281834851	|	Aaaa	|	Czzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	12.11s	

The	SAMPLE_DATA	is	the	biggest	table,	in	text	format	with	redundant	string	data.	The
queries	for	this	table	are	the	slowest.

The	NORMALIZED_TEXT	table	is	somewhat	smaller,	still	in	text	format.	The	queries	for
this	table	are	somewhat	faster	because	of	its	smaller	size,	resulting	in	less	I/O.

The	NORMALIZED_PARQUET	table	is	the	smallest.	The	queries	for	this	table	are	the	fastest,
because	the	overall	data	is	smaller	still,	and	Parquet	reduces	I/O	even	more	by	reading
only	the	columns	needed	by	the	query.

FUN	FACT

As	I	ran	and	reran	these	queries	in	my	test	environment,	the	times	jumped	up	and	down	a	bit,	because	sometimes	the
Linux	servers	had	cached	some	of	the	data	after	reading	it	the	first	time.	There	again,	having	the	data	in	the	most
compact	format	possible	increases	the	chance	that	the	data	will	still	be	cached	later,	instead	of	being	evicted	by
reading	data	that’s	bulkier	than	necessary.

As	a	final	experiment	with	file	formats,	let’s	see	what	happens	if	we	convert	the	original
56	GB	table	directly	to	Parquet	without	the	normalization	step.	Because	we	are	not
eliminating	the	redundant	string	data,	we	can	predict	that	the	overall	size	will	be
somewhere	between	the	original	56	GB	and	the	23.34	GB	of	the	NORMALIZED_PARQUET
table:

localhost:21000]	>	create	table	denormalized_parquet	stored	as	parquet	as

																	>	select	*	from	sample_data;

+----------------------------+

|	summary																				|

+----------------------------+

|	Inserted	1000000000	row(s)	|

+----------------------------+

Returned	1	row(s)	in	225.69s

[localhost:21000]	>	show	table	stats	denormalized_parquet;



+-------+--------+---------+--------------+---------+

|	#Rows	|	#Files	|	Size				|	Bytes	Cached	|	Format		|

+-------+--------+---------+--------------+---------+

|	-1				|	64					|	24.04GB	|	NOT	CACHED			|	PARQUET	|	

+-------+--------+---------+--------------+---------+

Returned	1	row(s)	in	0.01s

The	NORMALIZED_PARQUET	table	was	23.34	GB,	while	the	DENORMALIZED_PARQUET	table
is	only	a	little	bigger	at	24.04	GB.

Why	isn’t	there	a	bigger	size	difference	like	there	was	in	text	format?	When	the	data	was
converted	to	Parquet,	it	was	compacted	(encoded)	in	multiple	ways	before	the	final
compression	step.	One	trick	Parquet	uses	is	to	take	columns	with	up	to	16K	of	different
values,	and	internally	de-duplicate	them,	substituting	numeric	indexes	instead	of	repeated
strings.	(That	technique	is	known	as	dictionary	encoding.)	In	a	sense,	Parquet	did	the	same
kind	of	normalization	in	the	original	data	file,	rather	than	making	a	separate	lookup	table.
Ideally,	you	would	still	normalize	such	columns	and	use	join	queries	to	look	up	the
original	values,	but	either	way,	with	minimal	effort	you	can	get	substantial	space	savings.

Making	a	Partitioned	Table
At	this	point,	the	Parquet	file	format	is	doing	a	lot	of	the	heavy	lifting	to	reduce	the	time
for	each	query	by	reducing	the	overall	I/O	to	read	the	data.	If	a	column	is	not	referenced	in
the	query,	Parquet	lets	the	query	avoid	reading	that	column	entirely,	as	opposed	to	text
format.	For	example,	in	the	SAMPLE_DATA	and	NORMALIZED_TEXT	tables	we’ve	been	using,
each	query	reads	6	GB	of	data	for	the	ZEROFILL	column	whether	or	not	that	column	is
used	at	all.	And	the	compressed	and	encoded	form	of	the	column	values	means	much	less
data	is	read	even	for	columns	that	are	needed.

Partitioning	the	table	lets	us	use	our	domain	knowledge	of	the	data	and	corresponding
queries	to	reduce	the	I/O	even	further.	If	you	have	not	already	read	the	guidelines	for
partitioned	tables	in	Working	with	Partitioned	Tables,	familiarize	yourself	with	those	tips
before	tackling	any	real-world	projects	with	partitioning.

In	this	thought	experiment,	let’s	decide	that	our	most	common	queries	will	target	a	subset
of	users	based	on	the	first	letter	of	their	names.	All	else	being	equal,	we	could	analyze	the
data	for	the	A	users,	D	users,	or	X	users	in	about	1/26th	of	the	time	it	would	take	to	process
all	users	together.	In	real	life,	you	commonly	partition	on	date-related	fields	so	that	you
can	analyze	a	certain	time	period,	or	on	location-related	fields	so	that	you	can	analyze
different	geographic	regions.

Again,	because	we	are	going	to	reorganize	several	gigabytes	of	data,	let’s	first	make	a
view	that	matches	the	columns	of	our	partitioned	table,	with	a	new	INITIAL	column	that
represents	the	first	letter	of	the	name:

[localhost:21000]	>	desc	normalized_parquet;

+-------------+----------+---------+

|	name								|	type					|	comment	|

+-------------+----------+---------+

|	id										|	bigint			|									|

|	val									|	int						|									|

|	zerofill				|	string			|									|

|	name								|	string			|									|

|	assertion			|	boolean		|									|

|	location_id	|	smallint	|									|

+-------------+----------+---------+



Returned	6	row(s)	in	0.01s

[localhost:21000]	>	create	view	partitioned_normalized_view	as

																		>	select	id,	val,	zerofill,	name,	assertion,	location_id,

																		>	substr(name,1,1)	as	initial	

																		>	from	normalized_parquet;

Returned	0	row(s)	in	2.89s

[localhost:21000]	>	select	id,	name,	initial

																		>	from	partitioned_normalized_view	limit	5;

+-----------+----------------------+---------+

|	id								|	name																	|	initial	|

+-----------+----------------------+---------+

|	663027574	|	Ckkvvvvvvvmmmmmmm				|	C							|

|	663027575	|	Fkkkkkkkwwwwwwwyyyyy	|	F							|

|	663027576	|	Orrrrrrrfmmmmm							|	O							|

|	663027577	|	Peeevvvvvvvvvv							|	P							|

|	663027578	|	Dmmmmhhhs												|	D							|

+-----------+----------------------+---------+

Returned	5	row(s)	in	4.65s

For	partition	key	columns,	we	would	normally	use	the	verbatim	column	values	from	the
original	data	where	appropriate.	In	this	case,	however,	we	make	a	new	partition	key
column	by	running	a	function	on	the	original	values.

After	we’re	satisfied	that	the	new	INITIAL	column	has	the	right	values,	we	create	a
partitioned	table	using	the	PARTITIONED	BY	clause,	and	copy	the	data	into	it	from	the
unpartitioned	table:

[localhost:21000]	>	create	table	partitioned_normalized_parquet

																		>	(id	bigint,	val	int,	zerofill	string,	name	string,

																		>	assertion	boolean,	location_id	smallint)

																		>	partitioned	by	(initial	string)	stored	as	parquet;	

Returned	0	row(s)	in	1.81s

[localhost:21000]	>	insert	into	partitioned_normalized_parquet	partition(initial)

																		>	select	*	from	partitioned_normalized_view;	

Inserted	1000000000	rows	in	619.28s

The	INITIAL	column	is	referenced	by	the	PARTITIONED	BY	clause,	not	in	the	regular
column	list.

The	SELECT	*	portion	of	the	INSERT	statement	requires	that	the	regular	columns	come
first,	then	any	partition	key	columns	last.	This	is	another	reason	we	use	a	view	—	to
specify	the	columns	in	the	most	convenient	order	for	the	INSERT	statement.

Now	let’s	examine	how	the	data	is	broken	down	within	the	partitioned	table:
[localhost:21000]	>	show	table	stats	partitioned_normalized_parquet;

+---------+-------+--------+----------+--------------+---------+

|	initial	|	#Rows	|	#Files	|	Size					|	Bytes	Cached	|	Format		|

+---------+-------+--------+----------+--------------+---------+

|	A							|	-1				|	3						|	871.79MB	|	NOT	CACHED			|	PARQUET	|	

|	B							|	-1				|	3						|	871.72MB	|	NOT	CACHED			|	PARQUET	|

|	C							|	-1				|	3						|	871.40MB	|	NOT	CACHED			|	PARQUET	|

|	D							|	-1				|	3						|	871.64MB	|	NOT	CACHED			|	PARQUET	|

|	E							|	-1				|	3						|	871.54MB	|	NOT	CACHED			|	PARQUET	|

|	F							|	-1				|	3						|	871.11MB	|	NOT	CACHED			|	PARQUET	|

|	G							|	-1				|	3						|	871.29MB	|	NOT	CACHED			|	PARQUET	|

|	H							|	-1				|	3						|	871.42MB	|	NOT	CACHED			|	PARQUET	|

|	K							|	-1				|	3						|	871.42MB	|	NOT	CACHED			|	PARQUET	|

|	L							|	-1				|	3						|	871.31MB	|	NOT	CACHED			|	PARQUET	|

|	M							|	-1				|	3						|	871.38MB	|	NOT	CACHED			|	PARQUET	|

|	N							|	-1				|	3						|	871.25MB	|	NOT	CACHED			|	PARQUET	|

|	O							|	-1				|	3						|	871.14MB	|	NOT	CACHED			|	PARQUET	|

|	P							|	-1				|	3						|	871.44MB	|	NOT	CACHED			|	PARQUET	|



|	Q							|	-1				|	3						|	871.55MB	|	NOT	CACHED			|	PARQUET	|

|	R							|	-1				|	3						|	871.30MB	|	NOT	CACHED			|	PARQUET	|

|	S							|	-1				|	3						|	871.50MB	|	NOT	CACHED			|	PARQUET	|

|	T							|	-1				|	3						|	871.65MB	|	NOT	CACHED			|	PARQUET	|

|	Y							|	-1				|	3						|	871.57MB	|	NOT	CACHED			|	PARQUET	|

|	Z							|	-1				|	3						|	871.54MB	|	NOT	CACHED			|	PARQUET	|

|	NULL				|	-1				|	1						|	147.30MB	|	NOT	CACHED			|	PARQUET	|	

|	I							|	-1				|	3						|	871.44MB	|	NOT	CACHED			|	PARQUET	|

|	J							|	-1				|	3						|	871.32MB	|	NOT	CACHED			|	PARQUET	|

|	U							|	-1				|	3						|	871.36MB	|	NOT	CACHED			|	PARQUET	|

|	V							|	-1				|	3						|	871.39MB	|	NOT	CACHED			|	PARQUET	|

|	W							|	-1				|	3						|	871.79MB	|	NOT	CACHED			|	PARQUET	|

|	X							|	-1				|	3						|	871.95MB	|	NOT	CACHED			|	PARQUET	|

|	Total			|	-1				|	79					|	22.27GB		|	0B											|									|

+---------+-------+--------+----------+--------------+---------+

Returned	28	row(s)	in	0.04s

Each	partition	has	less	than	1	GB	of	data.

The	NULL	partition	is	a	reminder	that	our	original	data-generating	script	included	some
NULL	values	in	the	NAME	column,	which	carried	over	to	the	INITIAL	column	we’re	using
as	the	partition	key.	This	is	something	to	check	for	during	validation	and	cleansing
operations,	to	make	sure	that	some	rows	do	not	become	“orphaned”	by	having	null
partition	keys	that	never	get	matched	by	the	WHERE	clauses	in	your	queries.

Now	when	we	run	queries	that	target	just	one	or	a	few	partitions,	the	query	reads	3	files
totalling	less	than	1	GB	for	each	partition	that	is	processed.

Partitioned	tables	are	best	for	queries	that	access	a	small	proportion	of	the	total	partitions.
[localhost:21000]	>	select	avg(val),	min(name),	max(name)

																		>	from	normalized_parquet	where	substr(name,1,1)	=		'Q';

+-------------------+-----------+------------------------+

|	avg(val)										|	min(name)	|	max(name)														|

+-------------------+-----------+------------------------+

|	50001.94660836487	|	Qaaa						|	Qzzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	5.74s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)

																		>	from	partitioned_normalized_parquet	where	initial	=		'Q';

+-------------------+-----------+------------------------+

|	avg(val)										|	min(name)	|	max(name)														|

+-------------------+-----------+------------------------+

|	50001.94660836487	|	Qaaa						|	Qzzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	4.75s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)

																		>	from	normalized_parquet

																		>	where	substr(name,1,1)	between	'A'	and	'C';

+------------------+-----------+------------------------+

|	avg(val)									|	min(name)	|	max(name)														|

+------------------+-----------+------------------------+

|	49994.3356542968	|	Aaaa						|	Czzzzzzzzzzzzzzzzzzzzz	|

+------------------+-----------+------------------------+

Returned	1	row(s)	in	11.65s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)

																		>	from	partitioned_normalized_parquet

																		>	where	initial	between	'A'	and	'C';

+-------------------+-----------+------------------------+

|	avg(val)										|	min(name)	|	max(name)														|

+-------------------+-----------+------------------------+

|	49992.47281834851	|	Aaaa						|	Czzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	8.91s	



This	query	scans	the	whole	table	and	analyzes	the	rows	where	the	NAME	column	starts
with	a	particular	letter.

An	equivalent	query	that	touches	one	partition	in	the	partitioned	table	is	a	little	bit
faster.	It’s	not	26	times	faster	though,	due	to	the	arithmetic	having	to	do	with	block
sizes,	number	of	files,	number	of	hosts	in	the	cluster,	and	number	of	cores	per	host.
Some	of	the	resources	across	the	cluster	might	sit	idle	during	a	particular	query	because
there	is	just	not	enough	data	to	require	getting	all	hosts	and	cores	involved.	Here	we	are
with	a	billion-row	table,	and	still	there	is	not	enough	data	to	really	demonstrate	all	the
potential	performance	benefits.	On	the	other	hand,	the	fact	that	there	is	still	idle
capacity	is	good	news	for	scalability:	the	cluster	could	run	many	other	concurrent
queries	without	maxing	out	the	available	CPUs	or	storage	devices.

This	query	against	the	unpartitioned	table	reads	all	the	data	and	analyzes	all	rows	where
the	NAME	field	starts	with	one	of	three	different	letters.

An	equivalent	query	that	touches	three	partitions	in	the	partitioned	table	is	again	a	little
bit	faster.	The	speedup	is	more	noticeable	as	the	volume	of	data	in	the	table	increases,
and	as	the	number	of	partitions	increases.

Let’s	see	what	happens	with	a	query	that	scans	the	entire	table:
[localhost:21000]	>	select	avg(val),	min(name),	max(name)

																		>	from	partitioned_normalized_parquet;

+-------------------+-----------+------------------------+

|	avg(val)										|	min(name)	|	max(name)														|

+-------------------+-----------+------------------------+

|	49998.04368627915	|	Aaaa						|	Zzzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	69.29s	

[localhost:21000]	>	select	avg(val),	min(name),	max(name)

																		>	from	normalized_parquet;

+-------------------+-----------+------------------------+

|	avg(val)										|	min(name)	|	max(name)														|

+-------------------+-----------+------------------------+

|	49998.04368627915	|	Aaaa						|	Zzzzzzzzzzzzzzzzzzzzzz	|

+-------------------+-----------+------------------------+

Returned	1	row(s)	in	68.26s	

For	a	query	that	does	a	full-table	scan,	the	partitioned	table	is	actually	a	little	slower
than	the	unpartitioned	one.	Having	to	process	all	the	different	data	files	from	the
partition	directories	adds	a	bit	of	overhead.	That’s	why	it’s	important	to	partition	on	the
columns	that	you	actually	use	for	filtering	in	your	most	important	and	most	frequent
queries.

Next	Steps
At	this	point,	we’ve	done	a	reasonable	job	of	optimizing	single-table	queries	for	our
billion	rows	of	sample	data.	From	here,	there	are	two	other	kinds	of	scenarios	to	explore:

If	you	know	that	certain	tables	or	partitions	will	be	queried	intensively,	you	can	enable
HDFS	caching	to	ensure	they	are	held	in	memory.	To	use	this	feature	in	production	and



to	understand	the	performance	and	scalability	aspects	typically	requires	coordinating
with	your	system	administrator	(see	Helping	to	Plan	for	Performance	(Stats,	HDFS
Caching)).
Going	farther	with	normalization	or	cross-referencing	different	kinds	of	data	sets
means	doing	a	lot	of	join	queries.	Join	queries	have	their	own	set	of	performance
considerations,	as	shown	in	the	next	section,	.



Deep	Dive:	Joins	and	the	Role	of	Statistics
When	dealing	with	large	and	ever-growing	tables,	Impala	can	better	optimize	complex
queries	(especially	join	queries)	the	more	it	knows	about	the	characteristics	of	the	data,
both	at	the	table	level	and	the	column	level.	The	Impala	SQL	statement	to	collect	such
information	is	COMPUTE	STATS.	Run	this	statement	after	loading	substantial	new	data	into	a
table.

Creating	a	Million-Row	Table	to	Join	With
First,	we	create	a	table	with	the	same	structure	as	our	original	billion-row	table	(Tutorial:
The	Journey	of	a	Billion	Rows).	We	will	take	a	sample	of	a	million	rows	from	our	billion
rows	of	data,	then	do	joins	between	the	big	table	and	the	small	table:

[localhost:21000]	>	create	table	stats_demo	like	sample_data;

[localhost:21000]	>	show	table	stats	stats_demo;

+-------+--------+------+--------------+--------+

|	#Rows	|	#Files	|	Size	|	Bytes	Cached	|	Format	|

+-------+--------+------+--------------+--------+

|	-1				|	0						|	0B			|	NOT	CACHED			|	TEXT			|

+-------+--------+------+--------------+--------+

[localhost:21000]	>	show	column	stats	stats_demo;

+-----------+---------+------------------+--------+----------+----------+

|	Column				|	Type				|	#Distinct	Values	|	#Nulls	|	Max	Size	|	Avg	Size	|

+-----------+---------+------------------+--------+----------+----------+

|	id								|	BIGINT		|	-1															|	-1					|	8								|	8								|	

|	val							|	INT					|	-1															|	-1					|	4								|	4								|

|	zerofill		|	STRING		|	-1															|	-1					|	-1							|	-1							|	

|	name						|	STRING		|	-1															|	-1					|	-1							|	-1							|

|	assertion	|	BOOLEAN	|	-1															|	-1					|	1								|	1								|

|	city						|	STRING		|	-1															|	-1					|	-1							|	-1							|

|	state					|	STRING		|	-1															|	-1					|	-1							|	-1							|

+-----------+---------+------------------+--------+----------+----------+

Initially,	Impala	knows	basic	physical	properties	based	on	the	data	files	and	the	schema,
such	as	the	total	data	size	and	the	sizes	of	numeric	columns,	which	never	vary	in	length.

The	-1	numbers	indicate	properties	where	Impala	does	not	know	the	values.	The
unknown	values	are	most	prominent	for	STRING	columns,	with	values	that	vary	in	size.

Loading	Data	and	Computing	Stats
In	the	following	example,	we	load	a	million	rows	into	the	table	and	collect	statistics	for
the	data.	To	help	Impala	choose	a	good	query	plan	for	a	join	involving	this	table,	it’s
important	to	know	the	characteristics	of	the	various	columns.

[localhost:21000]	>	insert	into	stats_demo	select	*	from	sample_data	limit	1000000;

[localhost:21000]	>	compute	stats	stats_demo;

+-----------------------------------------+

|	summary																																	|

+-----------------------------------------+

|	Updated	1	partition(s)	and	7	column(s).	|

+-----------------------------------------+

[localhost:21000]	>	show	table	stats	stats_demo;

+---------+--------+---------+--------------+--------+

|	#Rows			|	#Files	|	Size				|	Bytes	Cached	|	Format	|

+---------+--------+---------+--------------+--------+

|	1000000	|	1						|	57.33MB	|	NOT	CACHED			|	TEXT			|

+---------+--------+---------+--------------+--------+

[localhost:21000]	>	show	column	stats	stats_demo;

+-----------+---------+------------------+--------+----------+-------------+

|	Column				|	Type				|	#Distinct	Vals	|	#Nulls	|	Max	Size	|	Avg	Size						|



+-----------+---------+----------------+--------+----------+---------------+

|	id								|	BIGINT		|	1023244								|	-1					|	8								|	8													|	

|	val							|	INT					|	139017									|	-1					|	4								|	4													|

|	zerofill		|	STRING		|	101761									|	-1					|	6								|	6													|

|	name						|	STRING		|	1005653								|	-1					|	22							|	13.0006999969	|	 	

|	assertion	|	BOOLEAN	|	2														|	-1					|	1								|	1													|

|	city						|	STRING		|	282												|	-1					|	16							|	8.78960037231	|	

|	state					|	STRING		|	46													|	-1					|	20							|	8.40079975128	|	

+-----------+---------+----------------+--------+----------+---------------+

Currently,	the	number	of	nulls	is	not	counted	because	the	planner	doesn’t	use	this
information.

The	ID	and	NAME	columns	contain	essentially	unique	values.	The	NAME	field	tends	to	be
longer	than	the	CITY	and	STATE	fields.

The	number	of	distinct	values	is	estimated	rather	than	counted	precisely,	because	the
planner	only	needs	a	rough	estimate	to	judge	whether	one	approach	is	faster	than
another.	For	example,	the	estimate	for	the	NAME	column	is	slightly	higher	than	the	actual
number	of	rows	in	the	table.	Impala	automatically	adjusts	the	estimate	downward	in
such	a	case.

The	CITY	and	STATE	columns	have	very	few	distinct	values.

Reviewing	the	EXPLAIN	Plan
In	a	join	query	involving	tables	of	different	sizes,	Impala	automatically	determines	the
following:

Which	tables	to	read	from	local	storage	devices	on	the	data	nodes.
Which	tables	are	small	enough	to	send	in	their	entirety	to	each	node.
Which	tables	to	split	up	and	transmit	smaller	pieces	to	different	nodes.
The	optimal	order	of	these	operations,	to	minimize	data	transmission	and	the	size	of	the
intermediate	result	sets	from	each	stage	of	join	processing.

You	can	see	the	results	by	looking	at	the	EXPLAIN	plan	for	a	query,	without	the	need	to
actually	run	it:

[localhost:21000]	>	explain	select	count(*)	from	sample_data	join	stats_demo

																		>	using	(id)	where	substr(sample_data.name,1,1)	=	'G';

+--------------------------------------------------------------------+

|	Explain	String																																																					|

+--------------------------------------------------------------------+

|	Estimated	Per-Host	Requirements:	Memory=5.75GB	VCores=2												|

|	WARNING:	The	following	tables	are	missing	relevant	table											|

|										and/or	column	statistics.																																	|	

|	oreilly.sample_data																																																|

|																																																																				|

|	06:AGGREGATE	[MERGE	FINALIZE]																																						|

|	|		output:	sum(count(*))																																											|

|	|																																																																		|

|	05:EXCHANGE	[UNPARTITIONED]																																								|

|	|																																																																		|

|	03:AGGREGATE																																																							|

|	|		output:	count(*)																																																|

|	|																																																																		|

|	02:HASH	JOIN	[INNER	JOIN,	BROADCAST]																															|

|	|		hash	predicates:	oreilly.stats_demo.id	=	oreilly.sample_data.id	|



|	|																																																																		|

|	|--04:EXCHANGE	[BROADCAST]																																									|

|	|		|																																																															|

|	|		00:SCAN	HDFS	[oreilly.sample_data]																														|	

|	|					partitions=1/1	size=56.72GB																																		|

|	|					predicates:	substr(sample_data.name,	1,	1)	=	'G'													|

|	|																																																																		|

|	01:SCAN	HDFS	[oreilly.stats_demo]																																		|	

|				partitions=1/1	size=57.33MB																																					|

+--------------------------------------------------------------------+

Wait	a	second.	That	warning	at	the	top	of	the	plan	output	reminds	us	that	although	we
just	ran	COMPUTE	STATS	for	our	new	table,	we	neglected	to	do	it	for	our	oldest	(and
biggest)	table.

When	Impala	reports	that	it	is	going	to	“scan	HDFS”	for	the	SAMPLE_DATA	table	and
then	“broadcast”	the	result,	that	is	an	expensive	network	operation:	it	sends	the	results
from	scanning	SAMPLE_DATA	and	extracting	the	G	names	to	each	node	to	compare	and
contrast	against	the	STATS_DEMO	table.	That’s	about	1/26th	of	56.72	GB	(about	2.2	GB)
being	sent	to	each	of	four	nodes.	It’s	preferable	to	see	a	small	amount	of	data	being
broadcast.	Maybe	we	can	reduce	the	amount	of	network	I/O.

To	understand	the	flow	of	the	query,	you	read	from	bottom	to	top.	(After	checking	any
warnings	at	the	top.)	For	a	join	query,	you	prefer	to	see	the	biggest	table	listed	at	the
bottom,	then	the	smallest,	second	smallest,	third	smallest,	and	so	on.

When	Impala	sees	a	table	with	no	statistics	used	in	a	join	query	(like	SAMPLE_DATA	in	this
case),	it	treats	the	table	like	it	is	zero-sized,	as	if	it	is	no	problem	to	send	over	the	network.
That	is	clearly	wrong	in	this	case,	where	SAMPLE_DATA	is	bigger	and	has	more	different
values	in	both	the	ID	and	NAME	columns	referenced	in	the	query.

Let’s	collect	statistics	for	the	big	(billion-row)	SAMPLE_DATA	table,	too,	and	then	try	again:
[localhost:21000]	>	compute	stats	sample_data;	

+-----------------------------------------+

|	summary																																	|

+-----------------------------------------+

|	Updated	1	partition(s)	and	7	column(s).	|

+-----------------------------------------+

[localhost:21000]	>	show	table	stats	sample_data;

+------------+--------+---------+--------------+--------+

|	#Rows						|	#Files	|	Size				|	Bytes	Cached	|	Format	|

+------------+--------+---------+--------------+--------+

|	1000000000	|	1						|	56.72GB	|	NOT	CACHED			|	TEXT			|	

+------------+--------+---------+--------------+--------+

[localhost:21000]	>	show	column	stats	sample_data;

+-----------+---------+----------------+--------+----------+---------------+

|	Column				|	Type				|	#Distinct	Vals	|	#Nulls	|	Max	Size	|	Avg	Size						|

+-----------+---------+----------------+--------+----------+---------------+

|	id								|	BIGINT		|	183861280						|	0						|	8								|	8													|

|	val							|	INT					|	139017									|	0						|	4								|	4													|

|	zerofill		|	STRING		|	101761									|	0						|	6								|	6													|

|	name						|	STRING		|	145636240						|	0						|	22							|	13.0002002716	|	

|	assertion	|	BOOLEAN	|	2														|	0						|	1								|	1													|

|	city						|	STRING		|	282												|	0						|	16							|	8.78890037536	|

|	state					|	STRING		|	46													|	0						|	20							|	8.40139961242	|

+-----------+---------+----------------+--------+----------+---------------+



The	COMPUTE	STATS	statement	is	the	key	to	improving	the	efficiency	of	join	queries.
Now	we’ve	run	it	for	all	tables	involved	in	the	join.

The	key	item	of	information	for	the	table	stats	is	the	number	of	rows.

In	the	column	stats,	Impala	estimates	the	number	of	distinct	values	for	each	column	and
examines	STRING	columns	to	find	the	maximum	and	average	length.
[localhost:21000]	>	explain	select	count(*)	from	sample_data	join	stats_demo

																		>	using	(id)	where	substr(sample_data.name,1,1)	=	'G';

+--------------------------------------------------------------------+

|	Explain	String																																																					|

+--------------------------------------------------------------------+

|	Estimated	Per-Host	Requirements:	Memory=3.77GB	VCores=2												|

|																																																																				|

|	06:AGGREGATE	[MERGE	FINALIZE]																																						|

|	|		output:	sum(count(*))																																											|

|	|																																																																		|

|	05:EXCHANGE	[UNPARTITIONED]																																								|

|	|																																																																		|

|	03:AGGREGATE																																																							|

|	|		output:	count(*)																																																|

|	|																																																																		|

|	02:HASH	JOIN	[INNER	JOIN,	BROADCAST]																															|

|	|		hash	predicates:	oreilly.sample_data.id	=	oreilly.stats_demo.id	|

|	|																																																																		|

|	|--04:EXCHANGE	[BROADCAST]																																									|

|	|		|																																																															|

|	|		01:SCAN	HDFS	[oreilly.stats_demo]																															|	

|	|					partitions=1/1	size=57.33MB																																		|

|	|																																																																		|

|	00:SCAN	HDFS	[oreilly.sample_data]																																	|	

|				partitions=1/1	size=56.72GB																																					|

|				predicates:	substr(sample_data.name,	1,	1)	=	'G'																|	

+--------------------------------------------------------------------+

This	time,	the	smaller	STATS_DEMO	table	is	broadcast	in	its	entirety	to	all	the	four	nodes.
Instead	of	sending	about	2.2	GB	across	the	network	to	each	node	as	in	the	previous
query,	we’re	only	sending	about	57.33	MB,	which	is	the	size	of	the	smaller	table.	We’ve
just	improved	the	efficiency	of	our	query	by	a	factor	of	about	38,	without	actually
running	either	the	slow	or	the	fast	version.	That’s	much	better!

The	data	that’s	broadcasted	is	cross-checked	against	the	big	SAMPLE_DATA	table.	Each	of
our	four	nodes	will	read	1/4	of	this	table	from	local	storage.	For	join	queries,	we	always
want	to	see	the	biggest	table	at	the	bottom	of	the	plan,	meaning	that	the	data	from	that
table	is	read	locally	rather	than	being	sent	over	the	network.

We	know	that	most	of	the	56.72	GB	will	be	ignored	and	not	need	to	be	cross-checked
against	the	other	table,	because	it	will	not	match	the	predicate	that	checks	for	the	first
letter	'G'.	Impala	does	not	yet	account	for	that	aspect	in	the	plan	numbers.	We’ll
improve	on	that	as	we	progress	to	using	partitioned	tables.

Trying	a	Real	Query
Just	for	kicks,	let’s	try	this	query	out	in	real	life:

[localhost:21000]	>	select	count(*)	from	sample_data	join	stats_demo



																		>	using	(id)	where	substr(sample_data.name,1,1)	=	'G';

+----------+

|	count(*)	|

+----------+

|	37763				|

+----------+

Returned	1	row(s)	in	13.35s

By	joining	a	table	of	a	billion	rows	with	a	table	of	a	million	rows,	we	checked	a	million
billion	possible	combinations.	The	results	came	back	so	fast,	there	was	hardly	enough	time
to	play	one	move	in	Words	with	Friends™.	(All	timing	numbers	in	this	book	are	from	a
small	cluster	of	modest	capacity;	I	expect	you	to	be	able	to	beat	them	without	much
trouble.)

Remember	that	we	demonstrated	earlier	that	text	tables	are	bulkier	than	they	need	to	be,
and	we	could	trim	things	down	and	speed	things	up	by	converting	to	Parquet,	doing	some
normalization,	and	introducing	partitioning.	Let’s	try	again	with	the	more	efficient	tables
we	set	up	using	that	same	data.	(We	don’t	expect	the	count	returned	by	the	query	to	be
exactly	the	same,	because	we’re	taking	a	random	sample	of	a	million	rows	to	copy	into	the
new	table.)

[localhost:21000]	>	create	table	stats_demo_parquet

																		>			like	partitioned_normalized_parquet;	

Returned	0	row(s)	in	1.14s

[localhost:21000]	>	insert	into	stats_demo_parquet	partition	(initial)

																		>	[shuffle]	select	*	from	partitioned_normalized_parquet	

																		>	limit	1000000;

Inserted	1000000	rows	in	39.72s

The	CREATE	TABLE	LIKE	statement	preserves	the	file	format	of	the	original	table,	so	we
know	the	new	one	will	use	Parquet	format	also.

We	use	the	[SHUFFLE]	hint	technique	to	avoid	having	each	of	the	four	nodes	try	to
allocate	27	GB-sized	buffers	to	write	separate	data	files	for	all	the	partition	values.	The
“shuffle”	operation	takes	a	little	longer,	but	avoids	potential	out-of-memory	conditions.
This	is	the	default	Impala	uses	when	a	table	has	no	statistics,	so	strictly	speaking,	it	is
only	necessary	if	Impala	chooses	the	wrong	execution	plan	for	some	reason,	such	as
out-of-date	statistics.

Again,	we	make	sure	to	run	the	COMPUTE	STATS	statement	for	all	the	tables	involved	in	the
join	query,	after	loading	the	data.	In	earlier	examples	with	tables	like
PARTITIONED_NORMALIZED_PARQUET,	we	saw	a	little	under	1	GB	of	data	in	each	partition.
In	the	smaller	table	containing	a	random	sample	of	the	data,	each	partition	contains
substantially	less	data.

[localhost:21000]	>	compute	stats	partitioned_normalized_parquet;

+------------------------------------------+

|	summary																																		|

+------------------------------------------+

|	Updated	26	partition(s)	and	6	column(s).	|

+------------------------------------------+

Returned	1	row(s)	in	54.24s

[localhost:21000]	>	compute	stats	stats_demo_parquet;

+------------------------------------------+

|	summary																																		|

+------------------------------------------+

|	Updated	26	partition(s)	and	6	column(s).	|

+------------------------------------------+



Returned	1	row(s)	in	4.86s

[localhost:21000]	>	show	table	stats	stats_demo_parquet;

+---------+---------+--------+----------+--------------+---------+

|	initial	|	#Rows			|	#Files	|	Size					|	Bytes	Cached	|	Format		|

+---------+---------+--------+----------+--------------+---------+

|	A							|	89088			|	1						|	2.34MB			|	NOT	CACHED			|	PARQUET	|

|	B							|	46080			|	1						|	1.31MB			|	NOT	CACHED			|	PARQUET	|

|	C							|	219136		|	1						|	5.28MB			|	NOT	CACHED			|	PARQUET	|

|	D							|	63488			|	1						|	1.77MB			|	NOT	CACHED			|	PARQUET	|

|	E							|	49152			|	1						|	1.39MB			|	NOT	CACHED			|	PARQUET	|

|	F							|	32768			|	1						|	960.64KB	|	NOT	CACHED			|	PARQUET	|

|	G							|	11264			|	1						|	336.67KB	|	NOT	CACHED			|	PARQUET	|

...

|	W							|	16384			|	1						|	484.57KB	|	NOT	CACHED			|	PARQUET	|

|	X							|	51200			|	1						|	1.45MB			|	NOT	CACHED			|	PARQUET	|

|	NULL				|	-1						|	1						|	181.73KB	|	NOT	CACHED			|	PARQUET	|

|	Y							|	82944			|	1						|	2.21MB			|	NOT	CACHED			|	PARQUET	|

|	Z							|	27648			|	1						|	816.00KB	|	NOT	CACHED			|	PARQUET	|

|	Total			|	1000000	|	27					|	26.99MB		|	0B											|									|

+---------+---------+--------+----------+--------------+---------+

Returned	28	row(s)	in	0.02s

Now	we	go	through	the	same	exercise	as	before,	running	an	EXPLAIN	statement	and
examining	the	amount	of	data	expected	to	be	read	from	disk	and	transmitted	across	the
network:

[localhost:21000]	>	explain	select	count(*)	from	partitioned_normalized_parquet

																		>	join	stats_demo_parquet	using	(id)

																		>	where

																		>	substr(partitioned_normalized_parquet.name,1,1)	=	'G';	

+-------------------------------------------------------------------------+

|	Explain	String																																																										|

+-------------------------------------------------------------------------+

|	Estimated	Per-Host	Requirements:	Memory=194.31MB	VCores=2															|

|																																																																									|

|	06:AGGREGATE	[MERGE	FINALIZE]																																											|

|	|		output:	sum(count(*))																																																|

|	|																																																																							|

|	05:EXCHANGE	[UNPARTITIONED]																																													|

|	|																																																																							|

|	03:AGGREGATE																																																												|

|	|		output:	count(*)																																																					|

|	|																																																																							|

|	02:HASH	JOIN	[INNER	JOIN,	BROADCAST]																																				|

|	|		hash	predicates:	oreilly.partitioned_normalized_parquet.id	=									|

|	|				oreilly.stats_demo_parquet.id																																						|

|	|																																																																							|

|	|--04:EXCHANGE	[BROADCAST]																																														|

|	|		|																																																																				|

|	|		01:SCAN	HDFS	[oreilly.stats_demo_parquet]																												|

|	|					partitions=27/27	size=26.99MB																																					|	

|	|																																																																							|

|	00:SCAN	HDFS	[oreilly.partitioned_normalized_parquet]																			|

|				partitions=27/27	size=22.27GB																																								|	

|				predicates:	substr(partitioned_normalized_parquet.name,	1,	1)	=	'G'		|	

+-------------------------------------------------------------------------+

Returned	21	row(s)	in	0.03s

Those	“scan”	figures	at	the	bottom	are	looking	better	than	with	the	text	tables.

The	query	does	a	naive	translation	of	the	original	query	with	the	SUBSTR()	call.

We’re	going	to	transmit	(“broadcast”)	26.99	MB	across	the	network	to	each	node.



We’re	going	to	read	22.27	GB	from	disk.	This	is	the	I/O-intensive	part	of	this	query,
which	occurs	on	the	nodes	that	hold	data	blocks	from	the	biggest	table.	Because	we
usually	read	these	plans	bottom	to	top,	this	is	the	first	figure	to	consider	in	evaluating	if
the	query	is	executing	the	way	we	want	it	to.

Calling	a	function	in	the	WHERE	clause	is	not	always	a	smart	move,	because	that	function
can	be	called	so	many	times.	Now	that	the	first	letter	is	available	in	a	column,	maybe	it
would	be	more	efficient	to	refer	to	the	INITIAL	column.

The	following	example	improves	the	query	for	the	partitioned	table	by	testing	the	first
letter	directly,	referencing	the	INITIAL	column	instead	of	calling	SUBSTR().	The	more	we
can	refer	to	the	partition	key	columns,	the	better	Impala	can	ignore	all	the	irrelevant
partitions.

[localhost:21000]	>	explain	select	count(*)	from	partitioned_normalized_parquet

																		>	join	stats_demo_parquet	using	(id)																		

																		>	where	partitioned_normalized_parquet.initial	=	'G';	

+-----------------------------------------------------------------+

|	Explain	String																																																		|

+-----------------------------------------------------------------+

|	Estimated	Per-Host	Requirements:	Memory=106.31MB	VCores=2							|

|																																																																	|

|	06:AGGREGATE	[MERGE	FINALIZE]																																			|

|	|		output:	sum(count(*))																																								|

|	|																																																															|

|	05:EXCHANGE	[UNPARTITIONED]																																					|

|	|																																																															|

|	03:AGGREGATE																																																				|

|	|		output:	count(*)																																													|

|	|																																																															|

|	02:HASH	JOIN	[INNER	JOIN,	BROADCAST]																												|

|	|		hash	predicates:	oreilly.partitioned_normalized_parquet.id	=	|

|	|				oreilly.stats_demo_parquet.id																														|

|	|																																																															|

|	|--04:EXCHANGE	[BROADCAST]																																						|

|	|		|																																																												|

|	|		01:SCAN	HDFS	[oreilly.stats_demo_parquet]																				|

|	|					partitions=27/27	size=26.99MB																													|

|	|																																																															|

|	00:SCAN	HDFS	[oreilly.partitioned_normalized_parquet]											|

|				partitions=1/27	size=871.29MB																																|	

+-----------------------------------------------------------------+

Returned	20	row(s)	in	0.02s

Our	join	clause	is	USING(id)	because	all	the	corresponding	rows	have	matching	ID
values.

By	replacing	the	SUBSTR()	call	with	a	reference	to	the	partition	key	column,	we	really
chopped	down	how	much	data	has	to	be	read	from	disk	in	the	first	phase:	now	it’s	less
than	1	GB	instead	of	22.27	GB.

We	happen	to	know	(although	Impala	doesn’t	know)	that	rows	with	the	same	ID	value	will
also	have	the	same	INITIAL	value.	Let’s	add	INITIAL	to	the	USING	clause	and	see	if	that
helps.

[localhost:21000]	>	explain	select	count(*)	from	partitioned_normalized_parquet

																		>	join	stats_demo_parquet	using	(id,initial)	

																		>	where	partitioned_normalized_parquet.initial	=	'G';	

+-----------------------------------------------------------------+

|	Explain	String																																																		|

+-----------------------------------------------------------------+



|	Estimated	Per-Host	Requirements:	Memory=98.27MB	VCores=2								|

|																																																																	|

|	06:AGGREGATE	[MERGE	FINALIZE]																																			|

|	|		output:	sum(count(*))																																								|

|	|																																																															|

|	05:EXCHANGE	[UNPARTITIONED]																																					|

|	|																																																															|

|	03:AGGREGATE																																																				|

|	|		output:	count(*)																																													|

|	|																																																															|

|	02:HASH	JOIN	[INNER	JOIN,	BROADCAST]																												|

|	|		hash	predicates:	oreilly.partitioned_normalized_parquet.id	=	|

|	|					oreilly.stats_demo_parquet.id,																												|

|	|					oreilly.partitioned_normalized_parquet.initial	=										|

|	|					oreilly.stats_demo_parquet.initial																								|

|	|																																																															|

|	|--04:EXCHANGE	[BROADCAST]																																						|

|	|		|																																																												|

|	|		01:SCAN	HDFS	[oreilly.stats_demo_parquet]																				|

|	|					partitions=1/27	size=336.67KB																													|	

|	|																																																															|

|	00:SCAN	HDFS	[oreilly.partitioned_normalized_parquet]											|

|				partitions=1/27	size=871.29MB																																|

+-----------------------------------------------------------------+

Returned	20	row(s)	in	0.02s

Now	the	USING	clause	references	two	columns	that	must	both	match	in	both	tables.

Now	instead	of	transmitting	26.99	MB	(the	entire	smaller	table)	across	the	network,
we’re	transmitting	336.67	KB,	the	size	of	the	G	partition	in	the	smaller	table.

This	looks	really	promising.	We’ve	gone	from	transmitting	gigabytes	across	the	network
for	each	query,	to	under	a	megabyte.	Again,	even	as	we	iterated	through	several	variations
of	the	query,	we	didn’t	have	to	actually	try	them	and	run	the	risk	of	executing	a	really
slow,	resource-intensive	one.

The	Story	So	Far
Just	to	recap,	we	took	the	following	optimization	steps,	starting	from	our	original	bulky
text	table:

1.	 Converted	the	data	to	Parquet	file	format.
2.	 Normalized	the	data	to	reduce	redundancy.
3.	 Partitioned	the	data	to	quickly	locate	ranges	of	values.
4.	 Computed	the	stats	for	both	tables	involved	in	the	join	query.
5.	 Referenced	the	partition	key	columns	wherever	practical	in	the	query	itself,

especially	in	the	join	and	WHERE	clauses.
6.	 Used	EXPLAIN	to	get	an	idea	of	the	efficiency	of	possible	queries	as	we	iterated

through	several	alternatives.

Final	Join	Query	with	1B	x	1M	Rows
Now	let’s	see	how	the	query	performs	in	real	life	after	going	through	several	iterations	of
fine-tuning	it	and	checking	the	EXPLAIN	plan:

[localhost:21000]	>	select	count(*)	from	partitioned_normalized_parquet

																		>	join	stats_demo_parquet	using	(id,initial)

																		>	where	partitioned_normalized_parquet.initial	=	'G';

+----------+

|	count(*)	|

+----------+



|	11264				|

+----------+

Returned	1	row(s)	in	1.87s

That’s	a	million	billion	potential	combinations	being	evaluated	in	less	than	2	seconds,	on	a
4-node	cluster	with	modest	hardware	specs.	(For	example,	these	nodes	have	48	GB	of
memory	each,	which	is	much	less	than	in	a	typical	Impala	cluster.)



Anti-Pattern:	A	Million	Little	Pieces
One	common	anti-pattern	to	avoid	is	what’s	known	as	the	“many	small	files”	problem.
Hadoop,	HDFS,	and	Impala	are	all	optimized	to	work	with	multimegabyte	files.	Ingesting
data	that	was	not	originally	organized	for	Hadoop	can	result	in	a	profusion	of	tiny	data
files,	leading	to	suboptimal	performance	even	though	the	volume	of	data	being	read	is
small.	The	overhead	of	distributing	a	parallel	query	across	a	cluster	isn’t	worthwhile	if	the
data	is	fragmented	into	a	few	kilobytes	or	even	a	few	megabytes	per	file.

The	techniques	you	want	to	avoid	are:

Running	a	sequence	of	INSERT…	VALUES	statements,	especially	with	a	single	item	in	the
VALUES	clause.	If	you	need	to	build	up	a	data	file	line	by	line,	use	a	technique	outside	of
Impala	such	as	running	Sqoop	or	Flume,	or	writing	your	own	data-generation	program
(possibly	running	it	as	a	MapReduce	job).
Partitioning	down	to	the	most	granular	level	possible,	so	that	the	table	contains
thousands	or	tens	of	thousands	of	partitions,	and	each	partition	has	only	a	tiny	amount
of	data.	Sometimes,	Impala	tables	do	best	with	one	less	level	of	partitioning	than	you
might	be	used	to,	such	as	year	and	month	rather	than	year,	month,	and	day.
Inserting	into	a	table	with	lots	of	partitions,	using	a	dynamic	INSERT…	SELECT
statement.	The	dynamic	form	of	this	statement	divides	the	data	among	multiple
partitions	at	runtime,	based	on	values	in	the	SELECT	query.	The	INSERT	goes	faster	if
you	specify	the	partition	key	values	as	constants	and	operate	on	one	partition	at	a	time.

Ways	to	avoid	or	recover	from	this	kind	of	problem	include:

If	you	create	a	lookup	table	with	a	predictable	set	of	hardcoded	values,	do	it	with	a
single	VALUES	clause:

INSERT	INTO	canada_regions	VALUES

		("Newfoundland	and	Labrador"	,"NL"),

		("Prince	Edward	Island","PE"),

		("New	Brunswick","NB"),	("Nova	Scotia","NS"),

		("Quebec","PQ"),	("Ontario","ON"),

		("Manitoba","MB"),	("Saskatchewan","SK"),	("Alberta","AB"),

		("British	Columbia","BC"),	("YT","Yukon"),

		("Northwest	Territories","NT"),	("Nunavut","NU");

This	technique	generates	a	single	data	file;	although	it’s	still	tiny	in	comparison	to	the
128	MB	block	size	in	HDFS,	it’s	more	efficient	than	a	dozen	separate	data	files
containing	one	row	each!
If	you	have	a	table	with	an	inefficient	file	layout,	coalesce	the	data	by	copying	the
entire	contents	to	a	different	table	with	an	INSERT…	SELECT	operation.	The	output	data
files	will	be	reorganized	based	on	the	number	of	nodes	in	your	cluster	and	the	number
of	cores	per	node.
When	loading	into	a	partitioned	table,	where	practical,	insert	the	data	one	partition	at	a
time:
INSERT	INTO	sales_data	PARTITION	(year=2014,	month=07)

		SELECT	customer,	product,	amount,	purchase_date	FROM	raw_data

		WHERE	year	=	2014	AND	month	=	07;

You	can	minimize	disruption	from	coalescing	data	into	a	new	table	by	pointing	all	your
reporting	queries	at	a	view	and	switching	the	table	that’s	accessed	by	the	view:



CREATE	VIEW	production_report	AS	SELECT…	FROM	original_table	WHERE…;

INSERT	INTO	optimized_table	SELECT	*	FROM	original_table;

COMPUTE	STATS	optimized_table;

ALTER	VIEW	production_report	AS	SELECT…	FROM	optimized_table	WHERE…;

This	way,	all	your	query-intensive	applications	can	refer	to	a	consistent	name,	even	if
you	reorganize	the	data	behind	the	scenes.	The	new	table	could	use	the	Parquet	file
format,	partitioning,	or	more	compact	data	types	than	the	original.
When	inserting	into	a	partitioned	table,	have	accurate	table	and	column	statistics	on	the
table	holding	the	original	data.	Use	the	SHOW	TABLE	STATS	and	SHOW	COLUMN	STATS	to
check	if	the	stats	are	present	and	accurate	(particularly	the	“number	of	rows”	figure	in
the	table	statistics).	Use	the	COMPUTE	STATS	statement	to	collect	the	statistics	if	that
information	is	missing	or	substantially	different	from	the	current	contents	of	the	source
table.
When	doing	an	insert	operation	across	multiple	partitions	in	a	Parquet	table,	consider
using	the	[SHUFFLE]	hint	on	the	INSERT…	SELECT	statement.	This	hint	makes	the
INSERT	statement	take	longer,	but	reduces	the	number	of	output	files	generated.	This
technique	can	both	avoid	the	“many	small	files”	problem,	and	reduce	the	memory
usage	during	the	INSERT	statement.	(In	the	latest	releases,	Impala	applies	the
[SHUFFLE]	hint	automatically	if	necessary,	so	this	tip	mainly	applies	to	older	Impala
instances.)
INSERT	INTO	partitioned_parquet_table	PARTITION	(year,	month,	region)

		[SHUFFLE]	SELECT	c1,	c2,	c3,	year,	month,	region	FROM	new_batch_of_raw_data;



Tutorial:	Across	the	Fourth	Dimension
One	challenge	in	every	programming	language,	operating	system,	or	storage	format	is
how	to	represent	and	manipulate	date-based	and	time-based	values.	Let’s	look	at	how	this
works	in	Impala.

TIMESTAMP	Data	Type
In	Impala,	the	one-stop	shop	for	any	temporal	value	is	the	TIMESTAMP	data	type.	It	can
represent	a	date,	a	time,	or	both.	It	is	stored	in	a	consistent	numeric	format,	relative	to	the
Coordinated	Universal	Time	(UTC)	time	zone	to	avoid	issues	with	time	zone	translation.
You	can	use	TIMESTAMP	as	the	data	type	for	a	table	column,	and	pass	or	return	values	of
that	type	using	various	built-in	functions.

It	has	been	traditional	in	Hadoop	to	represent	date	and	time	values	as	strings,	and	convert
to	a	binary	representation	behind	the	scenes.	Impala	prefers	to	make	TIMESTAMP	a	first-
class	data	type;	thus,	some	date-	and	time-related	functions	carried	over	from	Hive	have
both	STRING	and	TIMESTAMP	variants	in	Impala.

Format	Strings	for	Dates	and	Times
Impala	recognizes	strings	with	the	format	YYYY-MM-DD	HH:MM:SS.sssssssss	and	can
automatically	convert	those	to	TIMESTAMP	values.	A	date	or	a	time	is	allowed	by	itself,	and
the	fractional	second	portion	is	optional	for	time	values.	To	turn	a	string	in	some	other
format	into	a	TIMESTAMP	requires	a	two-step	process:	convert	to	an	integer	value	with	the
unix_timestamp()	function,	which	takes	a	string	format	argument;	then	convert	that
integer	back	into	a	TIMESTAMP.

The	following	example	shows	how	a	string	2014-12-01	in	the	standard	notation	can	be
directly	converted	to	a	TIMESTAMP,	while	the	string	2014/12/01	requires	converting	to	an
integer	and	then	back	to	a	TIMESTAMP:

[localhost:21000]	>	select	cast('2014-12-01'	as	timestamp);

+---------------------------------+

|	cast('2014-12-01'	as	timestamp)	|

+---------------------------------+

|	2014-12-01	00:00:00													|

+---------------------------------+

[localhost:21000]	>	select	unix_timestamp('2014/12/01','yyyy/MM/dd');

+--------------------------------------------+

|	unix_timestamp('2014/12/01',	'yyyy/mm/dd')	|

+--------------------------------------------+

|	1417392000																																	|

+--------------------------------------------+

[localhost:21000]	>	select	from_unixtime(

																		>			unix_timestamp('2014/12/01','yyyy/MM/dd')

																		>	);

+-----------------------------------------------------------+

|	from_unixtime(unix_timestamp('2014/12/01',	'yyyy/mm/dd'))	|

+-----------------------------------------------------------+

|	2014-12-01	00:00:00																																							|

+-----------------------------------------------------------+

[localhost:21000]	>	select	from_unixtime(

																		>			unix_timestamp('12/01/2014','MM/dd/yyyy')

																		>	);

+-----------------------------------------------------------+

|	from_unixtime(unix_timestamp('12/01/2014',	'mm/dd/yyyy'))	|

+-----------------------------------------------------------+

|	2014-12-01	00:00:00																																							|

+-----------------------------------------------------------+



Working	with	Individual	Date	and	Time	Fields
Sometimes	it’s	convenient	to	have	access	to	the	individual	date	and	time	fields.	For
example,	if	your	table	is	partitioned	by	year	and	month,	you	can’t	just	designate	a
TIMESTAMP	value	as	the	partition	key,	because	then	there	would	be	a	different	partition	for
every	hour,	minute,	second,	and	even	microsecond.	The	table	needs	separate	YEAR	and
MONTH	columns,	even	if	it	also	preserves	the	full	date	and	time	information	as	a	TIMESTAMP
column.

The	way	to	get	the	separate	fields	is	through	the	EXTRACT()	function	(new	in	Impala	1.4).
It’s	important	to	keep	these	values	as	integer	types	—	ideally,	the	smallest	applicable	ones
such	as	TINYINT	for	anything	up	to	127,	and	SMALLINT	for	anything	up	to	32767	—	so	they
can	be	represented	compactly	in	memory.	That’s	another	reason	to	avoid	storing	dates	as
strings,	even	though	it	might	be	convenient	to	represent	months	by	their	names,	or	days
with	leading	zeros.	It’s	easy	to	overlook	this	optimization	tip,	because	you	might	not
notice	any	storage	savings	on	disk	if	you	use	text	data	files	(where	string	and	numeric
values	consume	equal	space)	or	partitioned	tables	(where	the	partition	key	columns	are
used	as	directory	names,	so	string	and	numeric	values	are	represented	the	same	way).	The
storage	and	performance	benefits	become	apparent	when	billions	or	trillions	of	these
values	are	being	compared,	stored	in	hash	tables	in	memory,	or	transmitted	across	the
network	between	different	machines	in	the	cluster.

This	example	shows	how	you	can	pull	out	each	individual	field	from	a	TIMESTAMP	value.
We	make	a	tiny	lookup	table	with	the	symbolic	names	of	all	of	the	fields	for	easy
reference	later:

CREATE	TABLE	UNITS	(granularity	TINYINT,	unit	STRING);

INSERT	INTO	units	VALUES	(1,'year'),(2,'month'),(3,'day'),(4,'hour'),

		(5,'minute'),(6,'second'),(7,'millisecond');

—Get	each	date	and	time	field	from	a	single	TIMESTAMP	value.

SELECT	unit,	extract(now(),	unit)	FROM	units	ORDER	BY	granularity;

+-------------+----------------------+

|	unit								|	extract(now(),	unit)	|

+-------------+----------------------+

|	year								|	2014																	|

|	month							|	7																				|

|	day									|	9																				|

|	hour								|	13																			|

|	minute						|	26																			|

|	second						|	52																			|

|	millisecond	|	608																		|

+-------------+----------------------+

Date	and	Time	Arithmetic
The	TRUNC()	function	truncates	a	TIMESTAMP	value	down	to	the	next	lower	year,	week,
day,	quarter,	and	so	on.	This	is	a	very	useful	technique	for	condensing	a	large	number	of
date	and	time	values	down	to	a	predictable	number	of	combinations,	either	for	doing
GROUP	BY	queries	or	using	the	truncated	values	as	partition	key	columns.

INTERVAL	expressions	let	you	add	and	subtract	specific	date	and	time	increments	to
TIMESTAMP	values.	Any	time	you	need	to	calculate	a	delta	value	(such	as	when	an	online
auction	ends),	you	can	compute	the	appropriate	TIMESTAMP	by	adding	or	subtracting	some
number	of	days,	weeks,	months,	hours,	and	so	on.	You	can	chain	a	series	of	INTERVAL
additions	and	subtractions	to	create	a	very	precise	delta	value.

For	example,	you	might	strip	off	the	time	portion	of	a	TIMESTAMP	value	so	that	you	were



left	with	just	the	date.	Then	you	could	add	an	INTERVAL	expression	to	add	back	a	specific
time.	Or	you	could	use	other	kinds	of	INTERVAL	addition	or	subtraction	to	create	specific
dates	and	times	for	reminders,	deadlines,	or	other	relative	kinds	of	temporal	values.

—Get	just	the	current	date,	no	time.

[localhost:21000]	>	select	trunc(now(),	'DD')

																		>	as	"first	thing	this	morning";

+--------------------------+

|	first	thing	this	morning	|

+--------------------------+

|	2014-07-09	00:00:00						|

+--------------------------+

[localhost:21000]	>	select	trunc(now(),	'DD')	+	interval	8	hours

																		>	as	"8	AM	this	morning";

+---------------------+

|	8	am	this	morning			|

+---------------------+

|	2014-07-09	08:00:00	|

+---------------------+

[localhost:21000]	>	select	now()	+	interval	2	weeks

																		>	as	"2	weeks	from	right	now";

+-------------------------------+

|	2	weeks	from	right	now								|

+-------------------------------+

|	2014-07-23	15:11:01.526788000	|

+-------------------------------+

[localhost:21000]	>	select	trunc(now(),	'DD')	-	interval	2	days	+	interval	15	hours

																		>	as	"3	PM,	the	day	before	yesterday";

+--------------------------------+

|	3	pm,	the	day	before	yesterday	|

+--------------------------------+

|	2014-07-07	15:00:00												|

+--------------------------------+

NOTE

Always	double-check	the	unit	argument	when	using	the	TRUNC()	function,	because	the	argument	values	and	some	of
their	meanings	differ	from	the	arguments	to	EXTRACT().	In	particular,	the	'DAY'	argument	to	TRUNC()	truncates	to	the
first	day	of	the	week,	while	DD	truncates	to	the	current	day.

Let’s	Solve	the	Y2K	Problem
Whenever	I	look	at	a	new	technology	for	storing	and	manipulating	data,	I	ask	myself
whether	that	technology	makes	it	more	or	less	likely	to	run	into	Y2K-style	problems.	The
Y2K	problem	arose	because	people	designed	data	processing	applications	under	the
assumption	that	year	values	could	be	stored	as	2	digits,	with	an	implicit	base	year	of	1900.
This	issue	became	critical	in	the	year	2000,	when	the	2-digit	years	could	no	longer	be	used
for	date	arithmetic.	I	judge	software	systems	based	on	how	easy	it	is	to	correct	such
problems	if	developers	make	assumptions	that	later	turn	out	to	be	wrong.	This	kind	of
flexibility	is	one	of	the	key	strengths	of	the	Hadoop	software	stack.

The	root	of	the	Y2K	problem	was	a	desire	to	save	money	on	expensive	disk	storage	by
saving	two	bytes	per	date	field.	Could	such	cost	considerations	still	occur	today?	Hmm,	if
there	are	a	billion	rows,	each	extra	byte	represents	another	gigabyte	of	storage.	Imagine	a
big	web	property	with	hundreds	of	millions	of	customers,	and	for	each	of	those	customers,
you	have	to	record	a	birthday,	date	joined,	date	of	last	visit,	and	so	on.	Two	bytes	per	date
field	per	customer	adds	up	to	a	substantial	number	of	gigabytes.	Although	everyone	now
knows	not	to	leave	the	century	out	of	year	values,	developers	might	still	cut	corners	in
their	schema	design	for	cost	reasons,	and	those	bad	decisions	might	come	back	to	bite



them	later.

As	a	thought	experiment,	let’s	construct	a	scenario	with	some	Y2K-style	bad	data,	and	see
how	we	could	solve	it	in	Impala.

NOTE

This	is	a	simplified	example,	not	a	comprehensive	treatment	of	the	subject.	Your	mileage	may	vary.	No	warranty
express	or	implied.

We	start	off	with	a	data	file	constructed	way	back	in	the	20th	century,	with	some	names
and	birth	dates	in	MM-DD-YY	format,	and	whether	the	person	is	still	living:

$	cat	>20th_century.dat

John	Smith,06-04-52,false

Jane	Doe,03-22-76,true

^D

In	the	pre-Hadoop	days,	the	original	code	parsed	the	birth	date	values	as	2-digit	or	2-
character	values,	and	filled	in	the	19	prefix	whenever	it	needed	to	print	any	reports	or	do
any	arithmetic	for	the	birth	dates.	Now,	the	company	(which	has	a	minimum	age	limit	of
14)	is	just	starting	to	sign	up	its	first	customers	born	in	the	21st	century.	The	new	data	file
uses	4-digit	years:

$	cat	>2014_new_customers.dat

Adam	Millennial,01-01-2000,true

Maria	Sanchez,03-29-2001,true

^D

With	Impala,	there	are	several	ways	to	solve	this	problem.	Let’s	look	at	ways	to	make	use
of	our	SQL	expertise	(as	opposed	to	just	editing	the	original	text	data	files):

CREATE	TABLE	inconsistent_data	(name	STRING,	birthdate	STRING,	living	BOOLEAN)

		ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	",";

...	Use	'hdfs	dfs	-put'	command	to	move	data	files	into	appropriate	Hadoop…	directories	as	

demonstrated	in	earlier	examples.

—Make	Impala	aware	of	the	newly	added	data	files.

REFRESH	inconsistent_data;

SELECT	*	FROM	inconsistent_data;

+-----------------+------------+--------+

|	name												|	birthdate		|	living	|

+-----------------+------------+--------+

|	Adam	Millennial	|	01-01-2000	|	true			|

|	Maria	Sanchez			|	03-29-2001	|	true			|

|	John	Smith						|	06-04-52			|	false		|

|	Jane	Doe								|	03-22-76			|	true			|

+-----------------+------------+--------+

At	this	point,	we	have	a	mixture	of	good	and	bad	date	values	represented	as	strings.	We’ll
construct	some	expressions	to	parse	out	the	different	month,	day,	and	year	portions.	As	we
build	a	set	of	useful	queries	to	transform	the	original	values	through	a	series	of	steps,	we’ll
save	each	query	as	a	view	to	keep	each	query	readable	and	avoid	a	single	monster	query.

CREATE	VIEW	customer_data_separate_fields	AS

		SELECT

			name,

			regexp_extract(birthdate,'([[:digit:]]+)-([[:digit:]]+)-([[:digit:]]+)',	1)	month,

			regexp_extract(birthdate,'([[:digit:]]+)-([[:digit:]]+)-([[:digit:]]+)',	2)	day,

			regexp_extract(birthdate,'([[:digit:]]+)-([[:digit:]]+)-([[:digit:]]+)',	3)	year,

			living

		FROM	inconsistent_data;

SELECT	*	FROM	customer_data_separate_fields;

+-----------------+-------+-----+------+--------+

|	name												|	month	|	day	|	year	|	living	|

+-----------------+-------+-----+------+--------+

|	Adam	Millennial	|	01				|	01		|	2000	|	true			|

|	Maria	Sanchez			|	03				|	29		|	2001	|	true			|



|	John	Smith						|	06				|	04		|	52			|	false		|

|	Jane	Doe								|	03				|	22		|	76			|	true			|

+-----------------+-------+-----+------+--------+

The	next	step	is	to	convert	the	separated-out	fields	to	integer	types	instead	of	strings.	Then
we	can	do	arithmetic	on	the	dates.

CREATE	VIEW	customer_data_int_fields	AS

		SELECT	name,	cast(month	AS	TINYINT)	month,

				cast(day	AS	TINYINT)	day,

				cast(year	AS	SMALLINT)	year,

				living

				FROM	customer_data_separate_fields;

Last,	we	identify	the	year	values	that	were	originally	given	as	2	digits,	and	convert	those
to	4-digit	values	from	the	20th	century.	Any	NULL	values	are	passed	through	unchanged.
Any	year	greater	than	2	digits	is	passed	through	unchanged.	(For	simplicity,	let’s	stipulate
that	this	company	does	not	have	any	customers	born	in	the	1800s	or	earlier.)

CREATE	VIEW	customer_data_full_years	AS

		SELECT	name,	month,	day,

				CASE

						WHEN	year	IS	NULL	THEN	NULL

						WHEN	year	<	100	THEN	year	+	1900

						ELSE	year

				END

				AS	year,

				living

		FROM	customer_data_int_fields;

Here	we	made	a	logical	arrangement	of	the	data	that	is	more	flexible	and	easier	to	extend
and	analyze.	Even	without	changing	the	underlying	data	files,	we	accounted	for	2-digit
and	4-digit	year	values;	we	split	up	the	original	3-part	strings	into	separate	fields;	and	we
made	the	year,	month,	and	day	values	into	integers	so	that	we	could	do	arithmetic	on
them.

We	can	query	the	views	to	analyze	the	data	in	its	cleaned	up	and	reorganized	form.	Here
we	use	a	LIMIT	clause	to	cap	the	number	of	rows	returned,	in	case	the	back	office	loaded
millions	more	rows	in	the	meantime:

—Doublecheck	that	the	data	is	OK.

SELECT	*	FROM	customer_data_full_years	LIMIT	100;

+-----------------+-------+-----+------+--------+

|	name												|	month	|	day	|	year	|	living	|

+-----------------+-------+-----+------+--------+

|	John	Smith						|	6					|	4			|	1952	|	false		|

|	Jane	Doe								|	3					|	22		|	1976	|	true			|

|	Adam	Millennial	|	1					|	1			|	2000	|	true			|

|	Maria	Sanchez			|	3					|	29		|	2001	|	true			|

+-----------------+-------+-----+------+--------+

After	running	more	queries	to	double-check	that	the	data	is	entirely	clean,	we	could	make
the	new	improved	schema	permanent	and	convert	all	the	existing	data	files	to	a	compact
binary	format.	As	we	see	in	other	examples	using	the	Parquet	format,	the	savings	from	this
compression	step	are	likely	much	greater	than	could	be	obtained	by	shortchanging	the	year
values.

CREATE	TABLE	modernized_customer_data

		STORED	AS	PARQUET

		AS	SELECT	*	FROM	customer_data_full_years;

More	Fun	with	Dates
The	Impala	TIMESTAMP	data	type	has	a	range	that	starts	on	January	1,	1400	AD.	Thus,	for
anything	before	that	date,	you	would	store	separate	integer	fields	for	the	year,	month,	day,



and	any	time-related	fields,	rather	than	a	single	TIMESTAMP	value	that	includes	both	date
and	time.

Applying	the	principle	of	using	the	smallest	practical	integer	type,	that	means	MONTH	and
DAY	could	always	be	TINYINT	columns,	and	YEAR	would	depend	on	the	time	scale
involved.	Historians	could	use	SMALLINT	for	their	YEAR	column	to	record	years	back	to	–
32768	BC.	Paleontologists	could	use	INT	to	date	fossils	back	to	–2147483648	BC.	And
cosmologists	could	use	BIGINT	to	chart	time	from	the	Big	Bang	to	the	future	Big	Crunch
or	heat	death	of	the	universe.

PRO	TIP

The	examples	for	schema	evolution	(Tutorial:	When	Schemas	Evolve)	show	ways	to	deal	with	data	where	it	is	not
immediately	clear	whether	the	existing	values	fit	into	the	range	for	a	particular	integer	type.



Tutorial:	Verbose	and	Quiet	impala-shell	Output
In	this	book,	I	switch	between	verbose	output	in	impala-shell	when	I	need	to	show
timing	information	for	queries,	or	quiet	mode	for	demonstrating	features	unrelated	to
performance.	By	default,	an	impala-shell	session	looks	like	this:

$	impala-shell	-i	localhost	-d	oreilly

...

[localhost:21000]	>	create	table	foo	(x	int);

Query:	create	table	foo	(x	int);	

Returned	0	row(s)	in	1.13s	

[localhost:21000]	>	select	x	from	foo;

Query:	select	x	from	foo;

Returned	0	row(s)	in	0.19s

The	way	the	statement	is	echoed	back	as	a	single	line	lets	you	copy	and	paste	it,	which
is	most	useful	for	multiline	statements	that	are	hard	to	capture	due	to	the	continuation
prompts.

The	time	measurement	is	useful	when	you’re	comparing	the	performance	of	different
query	techniques	and	table	structures,	logging	the	output	of	a	sequence	of	statements,	or
running	the	same	statements	multiple	times	to	check	if	performance	is	consistent	across
runs.

A	“quiet”	session	looks	like	this,	without	the	query	echoed	back	or	the	elapsed	time	for	the
query:

$	impala-shell	-i	localhost	-d	oreilly	--quiet

[localhost:21000]	>	create	table	bar	(s	string);

[localhost:21000]	>	select	s	from	bar;

This	more	compact	form	lets	you	see	what’s	happening	without	all	the	extra	informational
messages.

The	-B	option	produces	an	even	more	compact	output	style,	with	no	ASCII	boxes	around
the	query	results.	You	can	think	of	-B	as	the	“benchmark”	option,	because	if	all	you	want
to	do	is	get	the	results	as	fast	as	possible,	suppressing	the	boxes	lets	impala-shell	display
the	results	much	faster.	The	-B	option	is	often	used	in	combination	with	-q	(run	a	single
query)	or	-f	(run	all	the	statements	in	a	file),	for	benchmarking,	setup	scripts,	or	any	kinds
of	automated	jobs.

This	example	runs	a	single	SHOW	TABLES	statement	and	then	massages	the	results	to
produce	a	set	of	DROP	TABLE	statements,	which	are	then	stored	in	a	.sql	script	file:

$	impala-shell	-B	--quiet	-q	'show	tables	in	oreilly'	|	\

		sed	-e	's/^/drop	table	/'	|	sed	-e	's/$/;/'	|	\

		tee	drop_all_tables.sql

drop	table	bar;

drop	table	billion_numbers;

drop	table	billion_numbers_compacted;

...

This	example	runs	a	sequence	of	statements	from	an	input	file.	Here	we	leave	out	the	--
quiet	option	because	we	are	interested	in	the	output	showing	the	original	query,	and	the
time	taken.	We	include	the	-d	option	to	specify	the	database	where	all	the	queries	should
run,	so	that	we	do	not	need	to	use	fully	qualified	table	names.

$	impala-shell	-d	oreilly	-B	-f	benchmark.sql



...some	startup	banner	messages…

Query:	use	oreilly

Query:	select	count(*)	from	canada_facts

13

Returned	1	row(s)	in	0.21s

Query:	select	count(*)	from	canada_regions

13

Returned	1	row(s)	in	0.19s

Query:	select	count(*)	from	usa_cities

289

Returned	1	row(s)	in	0.19s



Tutorial:	When	Schemas	Evolve
One	of	the	tenets	of	Hadoop	is	“schema	on	read,”	meaning	that	you’re	not	required	to	do
extensive	planning	up	front	about	how	your	data	is	laid	out,	and	you’re	not	penalized	if
you	later	need	to	change	or	fine-tune	your	original	decisions.	Historically,	this	principle
has	clashed	with	the	traditional	SQL	model	where	a	CREATE	TABLE	statement	defines	a
precise	layout	for	a	table,	and	data	is	reorganized	to	match	this	layout	during	the	load
phase.	Impala	bridges	these	philosophies	in	clever	ways:

Impala	lets	you	define	a	schema	for	data	files	that	you	already	have	and	immediately
begin	querying	that	data	with	no	change	to	the	underlying	raw	files.
Impala	does	not	require	any	length	constraints	for	strings.	No	more	trying	to	predict
how	much	room	to	allow	for	the	longest	possible	name,	address,	phone	number,
product	ID,	and	so	on.
In	the	simplest	kind	of	data	file	(using	text	format),	fields	can	be	flexibly	interpreted	as
strings,	numbers,	timestamps,	or	other	kinds	of	values.
Impala	allows	data	files	to	have	more	or	fewer	columns	than	the	corresponding	table.	It
ignores	extra	fields	in	the	data	file,	and	returns	NULL	if	fields	are	missing	from	the	data
file.	You	can	rewrite	the	table	definition	to	have	more	or	fewer	columns	and	mix	and
match	data	files	with	the	old	and	new	column	definitions.
You	can	redefine	a	table	to	have	more	columns,	fewer	columns,	or	different	data	types
at	any	time.	The	data	files	are	not	changed	in	any	way.
In	a	partitioned	table,	if	newer	data	arrives	in	a	different	file	format,	you	can	change	the
definition	of	the	table	only	for	certain	partitions,	rather	than	going	back	and
reformatting	or	converting	all	the	old	data.
Impala	can	query	data	files	stored	outside	its	standard	data	repository.	You	could	even
point	multiple	tables	(with	different	column	definitions)	at	the	same	set	of	data	files	—
for	example,	to	treat	a	certain	value	as	a	string	for	some	queries	and	a	number	for	other
queries.

The	benefits	of	this	approach	include	more	flexibility,	less	time	and	effort	spent	converting
data	into	a	rigid	format,	and	less	resistance	to	the	notion	of	fine-tuning	the	schema	as
needs	change	and	you	gain	more	experience.	For	example,	if	a	counter	exceeds	the
maximum	value	for	an	INT,	you	can	promote	it	to	a	BIGINT	with	minimal	hassle.	If	you
originally	stored	postal	codes	or	credit	card	numbers	as	integers	and	later	received	data
values	containing	dashes	or	spaces,	you	could	switch	those	columns	to	strings	without
reformatting	the	original	data.

For	example,	the	SAMPLE_DATA	table	used	in	several	earlier	examples	has	a	column	named
ZEROFILL	containing	6-digit	integer	values,	including	leading	zeros	where	needed	so	that
every	value	really	has	6	characters.	That	field	could	be	used	to	represent	an	encoded	value
where	each	digit	or	group	of	digits	has	some	meaning,	as	with	a	credit	card	or	telephone
number.	Treating	that	column	as	a	STRING	data	type	makes	it	easier	to	do	SUBSTR()	calls	to
pull	out	the	first	3	digits,	last	4	digits,	or	search	and	replace	to	get	rid	of	optional
punctuation	characters,	in	the	case	of	a	phone	number.	Other	times,	it	might	be	preferable
to	treat	that	column	as	a	number,	for	example,	to	construct	the	next	sequential	value.	Or
what	seems	like	a	small	range	of	values	might	later	turn	out	to	be	a	larger	one,	so	you
might	initially	treat	it	as	a	SMALLINT	but	then	later	change	the	column	type	to	INT	or



BIGINT.

Regardless	of	how	the	column	is	defined,	you	can	always	use	CAST()	to	convert	its	values
to	a	different	type	during	a	query.	What	is	the	“best”	type	is	a	question	of	convenience,
query	readability,	and	efficiency.	(Remember,	your	queries	will	likely	process	millions	or
billions	of	rows,	so	any	unnecessary	type	conversions	can	add	considerable	overhead.)
And	when	you	convert	to	a	binary	file	format	such	as	Parquet	or	Avro,	numbers	can	be
stored	more	compactly	than	strings,	potentially	saving	gigabytes	of	disk	space	for	each
byte	you	can	remove	from	all	the	rows.

Impala	lets	you	try	out	all	these	representations	to	see	which	one	works	best	in	practice.
When	the	data	is	in	a	relatively	unstructured	file	format,	such	as	a	delimited	text	file,	you
can	make	unlimited	changes	to	the	types	and	names	of	columns.	Farther	along	the	data
pipeline,	when	the	data	files	are	in	a	structured	format	such	as	Parquet	or	Avro,	the	table
schema	is	embedded	in	each	data	file	and	the	changes	you	can	make	are	more	limited.	For
example,	with	Parquet	you	can	change	a	column’s	type	between	TINYINT,	SMALLINT,	and
INT,	but	not	between	other	types	such	as	STRING	or	TIMESTAMP.

You	could	also	discover	that	some	fields	supplied	in	the	data	aren’t	really	needed	and	so
remove	them	from	the	table	definition,	or	that	new	fields	are	useful	and	so	add	those	to	the
table	definition	and	any	new	data	files.	These	techniques	work	in	all	file	formats,	but
apply	only	to	the	last	columns	in	the	table,	so	define	any	optional	or	less-important
columns	last.

Numbers	Versus	Strings
In	the	following	example,	we	first	treat	the	ZEROFILL	column	as	a	string	(its	original
definition)	to	find	values	starting	with	0123:

SELECT	zerofill	FROM	sample_data

		WHERE	zerofill	LIKE	'0123%'	LIMIT	5;

+----------+

|	zerofill	|

+----------+

|	012330			|

|	012372			|

|	012350			|

|	012301			|

|	012327			|

+----------+

Returned	5	row(s)	in	0.57s

Next,	we	change	the	ZEROFILL	column	to	a	number,	finding	examples	of	even	values,
doing	some	arithmetic	with	the	values,	and	ignoring	the	leading	zeros:

ALTER	TABLE	sample_data

		CHANGE	zerofill	zerofill	INT;

SELECT	zerofill	AS	even,	zerofill+1	AS	odd

		FROM	sample_data

		WHERE	zerofill	%	2	=	0	LIMIT	5;

+----------+--------+

|	even					|	odd				|

+----------+--------+

|	3838					|	3839			|

|	97464				|	97465		|

|	87046				|	87047		|

|	12158				|	12159		|

|	55478				|	55479		|

+----------+--------+

Returned	5	row(s)	in	0.31s

Finally,	we	change	ZEROFILL	back	to	a	string	for	some	regular	expression	matching,	to



find	values	containing	a	sequence	of	three	1	digits.

TIP

The	CHANGE	clause	repeats	the	name	ZEROFILL	twice	because	it	also	sets	a	new	name	for	the	column;	when	changing
only	the	data	type,	specify	the	same	name	again.

ALTER	TABLE	sample_data

		CHANGE	zerofill	zerofill	STRING;

SELECT	zerofill	FROM	sample_data

		WHERE	zerofill	REGEXP	'1{3}'	LIMIT	5;

+----------+

|	zerofill	|

+----------+

|	081116			|

|	031110			|

|	091118			|

|	011138			|

|	061110			|

+----------+

Returned	5	row(s)	in	0.56s

Dealing	with	Out-of-Range	Integers
If	your	table	has	values	that	are	out	of	range	for	the	specified	integer	type,	they	will	be
returned	as	the	maximum	value	for	the	type.	Thus,	if	you	see	numbers	that	bump	up
against	the	top	of	the	range,	you	might	need	a	bigger	type	for	that	column.	Here	is	how
you	might	deal	with	integer	values	where	you	do	not	know	in	advance	whether	their	range
will	fit	into	the	column	type	for	an	existing	table.

Setup:	Construct	a	table	with	some	values	that	do	not	“fit”	into	the	type	of	an	integer
column.

The	column	X	starts	off	as	a	TINYINT,	which	can	only	hold	a	very	limited	range	of
values	(–128	to	127).

CREATE	TABLE	unknown_range	(x	BIGINT);

INSERT	INTO	unknown_range	VALUES	(-50000),	(-4000),	(0),	(75),	(33000);

ALTER	TABLE	unknown_range	CHANGE	x	x	TINYINT;

Problem:	We	don’t	know	if	the	–128	and	127	values	are	real,	or	signify	out-of-range
numbers.

We	call	the	MIN_TINYINT()	and	MAX_TINYINT()	functions,	and	later	the	equivalents	for
other	types,	so	that	we	don’t	have	to	remember	the	exact	ranges.

SELECT	x	FROM	unknown_range	LIMIT	10;

+------+

|	x				|

+------+

|	-128	|

|	-128	|

|	0				|

|	75			|

|	127		|

+------+

SELECT	count(x)	AS	"Suspicious	values"	FROM	unknown_range

		WHERE	x	IN	(min_tinyint(),	max_tinyint());

+-------------------+

|	suspicious	values	|

+-------------------+

|	3																	|

+-------------------+

Solution:	Increase	the	size	of	the	column	and	check	against	the	allowed	range,	until	there
are	no	more	suspicious	values.



ALTER	TABLE	unknown_range	CHANGE	x	x	SMALLINT;

SELECT	x	FROM	unknown_range	LIMIT	10;

+--------+

|	x						|

+--------+

|	-32768	|

|	-4000		|

|	0						|

|	75					|

|	32767		|

+--------+

SELECT	count(x)	AS	"Suspicious	values"	FROM	unknown_range

		WHERE	x	IN	(min_smallint(),	max_smallint());

+-------------------+

|	suspicious	values	|

+-------------------+

|	2																	|

+-------------------+

ALTER	TABLE	unknown_range	CHANGE	x	x	INT;

SELECT	x	FROM	unknown_range;

+--------+

|	x						|

+--------+

|	-50000	|

|	-4000		|

|	0						|

|	75					|

|	33000		|

+--------+

SELECT	count(x)	AS	"Suspicious	values"	FROM	unknown_range

		WHERE	x	IN	(min_smallint(),	max_smallint());

+-------------------+

|	suspicious	values	|

+-------------------+

|	0																	|

+-------------------+

At	this	point,	you	know	the	column	is	a	large	enough	type	to	hold	all	the	existing	values
without	being	larger	than	necessary	and	wasting	space	on	disk	and	in	memory.

Just	as	a	refresher,	here	are	the	ranges	for	the	different	integer	types:
[localhost:21000]	>	select	min_bigint(),	max_bigint();

+----------------------+---------------------+

|	min_bigint()									|	max_bigint()								|

+----------------------+---------------------+

|	-9223372036854775808	|	9223372036854775807	|

+----------------------+---------------------+

[localhost:21000]	>	select	min_int(),	max_int();

+-------------+------------+

|	min_int()			|	max_int()		|

+-------------+------------+

|	-2147483648	|	2147483647	|

+-------------+------------+

[localhost:21000]	>	select	min_smallint(),	max_smallint();

+----------------+----------------+

|	min_smallint()	|	max_smallint()	|

+----------------+----------------+

|	-32768									|	32767										|

+----------------+----------------+

[localhost:21000]	>	select	min_tinyint(),	max_tinyint();

+---------------+---------------+

|	min_tinyint()	|	max_tinyint()	|

+---------------+---------------+

|	-128										|	127											|

+---------------+---------------+

If	you	need	a	larger	integer	than	MAX_BIGINT(),	you	can	define	a	DECIMAL(n).	The
maximum	value	for	n	is	38,	which	can	hold	up	to	999999…	(9	repeated	38	times).



Tutorial:	Levels	of	Abstraction
SQL	shares	some	of	the	convenience	of	functional	programming	languages,	where	the	end
result	is	built	from	multiple	layers,	each	performing	some	easily	understood
transformation.	Whatever	result	you	get	from	a	query,	you	can	enhance	the	results	further
by	running	individual	columns	through	an	additional	function,	or	layering	another	query
on	top	by	using	a	WITH	clause	or	a	subquery,	or	pushing	down	the	complexity	by	turning
the	query	into	a	view.

String	Formatting
In	this	example,	we	received	some	string	data	that	is	not	in	the	optimal	format.	It	is	in	all
lowercase,	and	it	has	double	quotes	around	the	values,	which	is	not	appropriate	for	Impala
text	data.	We	run	the	string	columns	through	a	regular	expression	function	to	remove
leading	and	trailing	quotation	marks.	Then	we	run	the	result	through	another	formatting
function	to	capitalize	the	first	letter.	After	finding	the	right	combination	of	functions	to
achieve	the	desired	output,	we	embed	the	details	in	a	view,	which	hides	the	complexity	of
the	function	calls	and	makes	subsequent	queries	more	readable.

SELECT	*	FROM	bad_format;

+------------+-----------+

|	first_name	|	last_name	|

+------------+-----------+

|	"john"					|	"smith"			|

|	"jane"					|	"doe"					|

+------------+-----------+

SELECT	regexp_replace(first_name,'(^"|"$)','')	AS	first_name

		FROM	bad_format;

+------------+

|	first_name	|

+------------+

|	john							|

|	jane							|

+------------+

SELECT	initcap(regexp_replace(first_name,'(^"|"$)',''))	AS	first_name

		FROM	bad_format;

+------------+

|	first_name	|

+------------+

|	John							|

|	Jane							|

+------------+

CREATE	VIEW	good_format	AS

		SELECT	initcap(regexp_replace(first_name,'(^"|"$)',''))	AS	first_name,

				initcap(regexp_replace(last_name,'(^"|"$)',''))	AS	last_name

		FROM	bad_format;

SELECT	*	FROM	good_format;

+------------+-----------+

|	first_name	|	last_name	|

+------------+-----------+

|	John							|	Smith					|

|	Jane							|	Doe							|

+------------+-----------+

Temperature	Conversion
This	example	uses	a	subquery	in	the	WITH	clause	to	evaluate	a	temperature	conversion
formula	and	then	runs	calculations	on	the	converted	values.	This	is	a	handy	technique	to
avoid	repeating	complicated	expressions	multiple	times.	Because	the	WITH	clause	does	not
create	any	permanent	object,	you	avoid	cluttering	the	namespace	with	new	tables	or	views.



WITH	celsius_temps	AS

		(SELECT	(degrees_f	-	32)	*	5	/	9	AS	degrees_c	FROM	fahrenheit_temps)

SELECT	min(degrees_c),	max(degrees_c),	avg(degrees_c)	FROM	celsius_temps;

This	example	encodes	the	Fahrenheit-to-Celsius	conversion	formula	in	a	view,	then	filters
the	converted	data	by	querying	the	view,	referring	only	to	the	Celsius	values.

CREATE	VIEW	celsius_temps	AS	SELECT	(degrees_f	-	32)	*	5	/	9	AS	degrees_c,

		year,	month,	day,	location	FROM	fahrenheit_temps;

SELECT	max(degrees_c),	min(degrees_c)	FROM	celsius_temps

		WHERE	year	=	1999	AND	degrees_c	BETWEEN	-40	and	40;

This	example	builds	another	view	on	top	of	the	first	one,	to	take	a	numeric	value	and	do
some	string	formatting	to	make	it	suitable	for	use	in	a	report.	The	final	query	doesn’t	need
to	know	anything	about	the	original	Fahrenheit	values	or	the	raw	numbers	used	in	the
report.

CREATE	VIEW	celsius_pretty_printed	AS

		SELECT	concat(cast(degrees_c	as	string),"	degrees	Celsius")	AS	degrees_c,

		year,	month,	day,	location	FROM	celsius_temps;

SELECT	degrees_c,	year,	month,	day	location	FROM	celsius_pretty_printed

		WHERE	year	=	1998	ORDER	BY	year,	month,	day;



Colophon
The	animal	on	the	cover	of	Getting	Started	with	Impala	is	an	impala	(Aepyceros
melampus).	This	is	a	medium-sized	antelope	native	to	the	continent	of	Africa,	which	lives
in	savanna	and	brushland	habitats.	They	are	herbivores,	and	spend	their	days	in	herds
grazing	on	grass	and	other	vegetation.

Male	impalas	are	the	only	sex	with	horns,	which	curve	in	an	S	shape	rather	like	the	lyre
(an	instrument	of	ancient	Greece).	These	horns	are	used	to	fight	other	males	during
breeding	season	and	to	protect	territory.	Males	are	also	noticeably	larger	and	heavier	than
females:	30–36	inches	tall	at	the	shoulder	and	120–160	pounds,	versus	the	females’
average	of	28–33	inches	and	90–120	pounds.	All	impalas	have	brown	coats,	black	stripes
on	their	rear	legs,	and	a	white	tail	with	a	black	stripe	running	down	its	length.

Impalas	live	in	three	kinds	of	social	groups	during	the	rainy	season	when	mating	occurs:
bachelor	herds	of	nonterritorial	and	young	males,	herds	of	territorial	males	with	breeding
females,	and	herds	of	females	with	their	young.	Young	male	impalas	remain	in	the	latter
kind	of	group	until	they	are	about	four	years	old,	when	they	reach	sexual	maturity	and
establish	their	own	territory.	In	the	dry	season,	these	groups	often	intermingle.

Impalas	are	very	fast	runners,	which	is	their	main	defense	against	natural	predators	such	as
lions,	cheetahs,	crocodiles,	and	hyenas.	They	can	also	leap	nearly	10	feet	in	the	air,	which
serves	as	a	tactic	to	confuse	or	startle	predators.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Wood’s	Animate	Creation.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com
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