
www.allitebooks.com

http://www.allitebooks.org

Getting Started with SOQL

Revolutionize the use of simple query strings
to make them more efficient using SOQL

Magulan D

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with SOQL

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1090414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-735-2

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Magulan D

Reviewers
Satheesh Kumar A

Carlos Ernesto Descalzi

David W. Grigsby

Lisha Murthy

Vinayendra Nataraja

Acquisition Editors
Joanne Fitzpatrick

Antony Lowe

Content Development Editor
Nadeem N. Bagban

Technical Editor
Novina Kewalramani

Copy Editors
Dipti Kapadia

Aditya Nair

Stuti Srivastava

Project Coordinator
Harshal Ved

Proofreader
Maria Gould

Indexer
Hemangini Bari

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Magulan D is a Salesforce.com administrator and developer. He started his career
as a PHP developer and also worked as a Siebel CRM developer. During his career
as a PHP developer, he created many sites.

Magulan is also a blogger, posting many useful tutorials relating to Salesforce.com
development and administration works. Often these are workarounds for problems
or issues that people usually face in their development. He has been working as
a Salesforce.com developer since 2011.

First and foremost, I would like to thank Packt Publishing for giving
me the opportunity to write this book. I would like to thank Joanne
and Harshal for their continuous support in publishing this book.

I would like to thank Satheesh Kumar for his continuous effort in
reviewing the book in spite of his busy schedule. He supported and
encouraged me throughout my writing.

I would like to thank my wife Gowripriya for her support and
motivation. She helped me a lot in my writing. She motivated me
to write this book. Her reviews and comments helped me complete
my writing. It was a long and difficult journey for her. I dedicate this
book to her.

I would like to express my gratitude to all the people in Packt
Publishing who supported me in publishing this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Satheesh Kumar A is a 24-year-old software professional from India. After
completing his degree in Engineering, Satheesh selected his profession as a software
developer with one of the most reputed IT service providers in India. Satheesh
started his career as a Force.com developer, and he is now comfortable with all the
forms of application development and administration in Force.com.

Carlos Ernesto Descalzi is a system developer with 15 years of experience,
working mostly in different Java technologies, from JEE to Swing, JNI, developing
from web applications to distributed and embedded systems.

Carlos is currently working with the G&L Group, and has been since 2007.
He has been working as a Force.com developer for the last year. He worked
as a JEE developer until then.

Other past companies where he has worked include the following:

• An independent consultant (2006-2007) as a JEE developer
• Snoop Consulting (2005-2006) as a JEE developer
• Idea Factory Software (2004-2005) as a JEE developer
• NEC Argentina (2001-2004) as a developer of biometric and security

systems using embedded technologies

Special thanks to my wife Dalila.

www.allitebooks.com

http://www.allitebooks.org

David W. Grigsby is currently focused on the integration of the Software as
a Service (SaaS) application between on-premise and cloud applications using
DocuSign to extend Salesforce, Google, and others to streamline virtual offices and
remote personnel and increase the revenue production and marketing reach using
new media technologies such as LinkedIn, Facebook, and Twitter.

His experience in development ranges from embedded devices, which generally use
C++ and assembly language, to PCs that use the major PC languages and .NET. He
has worked in the object-oriented development space since Visual C++ with MFC
and Visual Foxpro 3.0 have been in the market. Microsoft Visual Studio and the
.NET framework are continued extensions of this experience.

In all, he brings more than 30 years of business experience in broad systems,
development, and whatever project he has been involved with.

His specialties are development languages, Microsoft Visual Studio, .NET, SQL,
Consulting, Program Manager, Microsoft ISV, Microsoft Partner, Embedded Devices,
instrumentation and debugging, architecture design for enterprise environments,
Novell CNE, and Microsoft MCSE.

He loves his family and friends, the outdoors, art and music, learning new
technologies, and pushing the envelope.

His past employers include Grigsby Consulting LLC, Microsoft, and DocuSign.

He has worked on the following books:

• How to send a DocuSignTM envelope via REST in 10 minutes: A developer lab from
Grigsby Consulting LLC's Integration Cookbook Volume 2 [Kindle Edition]

• How to login to DocuSignTM via REST in 10 minutes: A developer lab from Grigsby
Consulting LLC's Integration Cookbook Volume 2 [Kindle Edition]

• How to login to SalesforceTM via SOAP in 10 minutes: A developer lab from Grigsby
Consulting LLC's Integration Cookbook Volume 2 [Kindle Edition]

• How to get a DocuSignTM template via SOAP in 10 minutes: A developer lab from
Grigsby Consulting LLC's Integration Cookbook Volume 2 [Kindle Edition]

www.allitebooks.com

http://www.allitebooks.org

Vinayendra Nataraja is a developer and an information security enthusiast. He
has worked on Salesforce as a developer for almost 3 years. He is a member of the
Information System Security Association. Vinayendra is a passionate, self-driven
individual who has won awards and accolades for his work. In his spare time, he
finds security bugs and has won bug bounties for this. He is known as the "Bug
Hunter" among his friends.

Vinayendra started his career as an application developer at Akamai Technologies,
India. He then interned at Salesforce, USA in the summer of 2013 as a Tools and
Automation Intern. He is currently working with Northeastern University as
a Salesforce developer. He will be joining Salesforce.com as a Product Security
Engineer this summer.

Vinayendra is currently pursuing a Master of Science degree in Information
Assurance at Northeastern University, Boston, USA. He completed his
undergraduate degree in Computer Science from Rashtreeya Vidyalaya College
of Engineering, Bangalore, India.

Reviewing this book was a great experience. I would like to thank
the author and the publisher for presenting this opportunity to
me. This book is a gift to developers who have just started learning
Salesforce, as it provides a solid foundation with concepts explained
in a simple language.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to SOQL 5

What is SOQL? 5
Purpose of SOQL 8
SOQL syntax 9
Writing your first SOQL statement 13
Summary 24

Chapter 2: Basic SOQL Statements 25
The alias notation 25
The WHERE clause 27
The comparison operators 29

The equals operator 30
The not equals operator 30
The less than or equal to operator 32
The less than operator 32
The greater than or equal to operator 33
The greater than operator 34
The LIKE operator 36

The IN operator 37
The NOT IN operator 37

The logical operators 39
The AND operator 39
The OR operator 39

The ORDER BY clause 41
The INCLUDES and EXCLUDES operators 43
Summary 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Advanced SOQL Statements 45
Relationship queries 45
Filtering multiselect picklist values 50

The INCLUDES operator 50
The EXCLUDES operator 52

The escape sequences 53
The date formats 54
The date literals 54
Querying with the date fields 57
Sorting in both the ascending and descending orders 58
Using the GROUP BY ROLLUP clause 59
Using the FOR REFERENCE clause 60
Using the FOR VIEW clause 60
Using the GROUP BY CUBE clause 61
Using the OFFSET clause 62
Summary 63

Chapter 4: Functions in SOQL 65
Using the toLabel() method 65
Using the GROUP BY clause 67
Using the COUNT() method 68
Using the COUNT(Field_Name) method 69
Using the COUNT_DISTINCT() method 70
Using the MIN() method 71
Using the MAX() method 72
Using the SUM() method 73
Using the HAVING clause 74
Summary 75

Chapter 5: Limitations and Best Practices 77
Standards to be followed in SOQL 77
Best practices 78
Limitations in objects 79
Other limitations 80

Governor limits 80
Understanding the limitations of the ORDER BY query 81
Understanding the limitations of the toLabel() query 81
Understanding the limitations of the COUNT() query 82
Understanding the limitations of the OFFSET clause 82
Limitations of the relationship queries 82
Notes and Attachments limitations 83

Summary 83

Table of Contents

[iii]

Chapter 6: Tools with Installation Guidelines 85
Using the Force.com Explorer software 85

Installing Force.com Explorer 85
Workbench 89
Dataloader.io 93
The Apex Data Loader tool 97

Downloading Data Loader without the Salesforce.com login 100
Summary 104

Appendix: Review Questions 105
Index 111

Preface
SOQL plays a vital role in the development of Salesforce.com and administration
tasks. As a developer or as an administrator in Salesforce.com, we write many SOQL
statements to fetch and validate the data present in the objects. If we know all the
features in SOQL, we can easily write optimized SOQL statements to filter the data
and fetch the required data from the object.

The sample queries used in this book will help you to understand the SOQL features
easily. In the first few chapters, the sample queries are intended for beginners and
for developers or administrators who are new to Salesforce.com. In the rest of the
chapters, the sample queries are intended for Salesforce.com experts. So, in the first
part, simple queries are used, and in the next part, complex queries are used for
an easier understanding of the SOQL features. Real-time examples are used as
sample queries. These examples include querying data from a single object as
well as querying data from multiple objects in a single query.

This book also addresses the standards and guidelines to be followed when writing
SOQL statements. The standards and guidelines discussed in this book will help you
to write SOQL statements without hitting any limitation set by Salesforce.com and
to avoid unwanted data fetched through the queries.

The last chapter provides the installation procedures to be followed to install the
software needed to execute SOQL statements. These software help us to get the
real-time data from the objects for viewing. They also help you to execute the
sample queries used in this book in each and every chapter simultaneously.

The most interesting part is the knowledge check at the end of each chapter. The
knowledge check is a kind of assessment that grabs our attention and concentration
and helps us to recollect the topics learnt in that chapter. It is also helpful for
Salesforce.com certification preparation.

Preface

[2]

What this book covers
Chapter 1, Introduction to SOQL, shows what SOQL is and its purpose. While
discussing its purpose, we will see where exactly we should use SOQL statements
in Salesforce.com development and administration.

Chapter 2, Basic SOQL Statements, shows how to write basic SOQL statements in
Salesforce.com. We will start with simple alias notation. We will try out many
examples to differentiate objects using alias notation.

Chapter 3, Advanced SOQL Statements, shows how to query records from more
than one object using relationship queries. The steps to get the relationship name
among objects will also be provided.

Chapter 4, Functions in SOQL, shows all the functions that are available
in SOQL. It discusses about the methods for translating the field values using
toLabel(), which will be very useful when we want to translate the values and
show them in a report.

Chapter 5, Limitations and Best Practices, shows the standards to be followed when
writing SOQL statements. The best practice explained here allows us to retrieve the
required records by filtering well. As a developer or as an administrator, we should
follow these standards and best practices.

Chapter 6, Tools with Installation Guidelines, shows a few tools that are available to
execute SOQL statements. The installation guidelines will also be discussed with
step-by-step instructions.

What you need for this book
A basic knowledge in Salesforce.com CRM is a prerequisite to follow the examples
in this book. A basic knowledge of SQL is an added advantage.

Who this book is for
This book is intended for Salesforce.com developers and administrators. Developers
and administrators with a basic knowledge of Salesforce.com will find the material in
this book accessible without additional preparation. Salesforce.com developers and
administrators will find all the features that are available for writing SOQL statements.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Filtering a multiselect picklist field using the INCLUDES and EXCLUDES operators
will be discussed in detail."

Any command-line input or output is written as follows:

SELECT Id, Name FROM Account

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Objects link displays all the custom objects available in our organization."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Introduction to SOQL
You will be introduced to SOQL in this chapter. This chapter will also discuss the
API names of standard objects, custom objects, standard fields, and custom fields.
These API names are used while querying using SOQL statements. This chapter
explains when and where we use SOQL statements in Salesforce.

SOQL syntax will give us more information, such as reserved keywords in SOQL,
how to write SOQL statements, and so on. We will get started by writing our first
SOQL statement in this chapter.

What is SOQL?
Salesforce Object Query Language (SOQL) is used to build queries for fetching data
in the Force.com platform. Just as we write a query in Structured Query Language
(SQL) with some columns and a table, here, in SOQL, we write a query with some
fields and an object. However, SOQL does not support all the features of SQL. For
example, the * character in the SELECT statement denotes all columns in a table in
SQL, but it cannot be used in the SELECT statement in SOQL. So, to retrieve all fields
in SOQL, we have to mention all the fields separated by commas.

SOQL is case insensitive. For ease of use, we suggest you to maintain SOQL keywords
in uppercase and fields in initial case (first letter in uppercase and the rest in
lowercase). Throughout this book, all SOQL keywords will be written in uppercase
and object names, field lists, conditions, and so on will be written in lowercase.

SOQL is very easy to understand if you have prior knowledge in SQL. As mentioned
earlier, however, it does not support all the features available in SQL. If we think
of tables as objects and columns as fields in Salesforce, writing SOQL becomes
easier. Salesforce has standard objects (objects defined by Salesforce) and custom
objects (objects defined by the user). The custom object ends with __c for
identification purposes.

Introduction to SOQL

[6]

Good knowledge of SOQL helps us to optimize our code. If we are looking for data
from different objects, SOQL helps us a lot in accomplishing that. Instead of writing
complex code to achieve this, an administrator or developer with vast knowledge of
SOQL may easily accomplish these kinds of tasks. The functions available in SOQL
reduce our workload and save time.

The sample queries used in this book are real-time examples with step-by-step
explanations. Beginners will gain confidence as we go ahead. Administrators and
developers can also get ideas on how to optimize their code for faster execution of
queries. An administrator can easily build any kind of complex report in an Excel
file by extracting data from the objects using SOQL and delivering it to the clients
in a timely manner if he or she has good knowledge of SOQL. SOQL eases the
tasks of administrators, who are always looking for data.

A developer also faces many situations where they may have to write SOQL
queries in Apex programming. If the developer has wide knowledge of SOQL,
they can easily accomplish their task without reiterating again and again to
form data for manipulation.

Make use of the tools available at Salesforce.com to execute the query instantly to
clarify any doubts that arise. Salesforce provides tools, and third-party tools are also
available. Steps with installation procedures and guidelines are available in Chapter
6, Tools with Installation Guidelines. The Developer Console can also be used for the
easier and instant execution of queries.

To use SOQL, we need to know the API name of the objects. To know the API
names of the standard objects in Salesforce, visit the following reference link
provided by Salesforce:

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_
objects_list.htm

Since custom objects are user-defined objects, information about these objects will
not be available under Customize in the Force.com setup.

The API names of custom objects always end with __C.

The steps to get the API name of the custom objects change from environment to
environment. In my organization, it is Setup | Build | Create | Objects, as shown
in the following screenshot. We can view an object's API name on selecting it.

Chapter 1

[7]

The Objects link displays all the custom objects available in our organization,
as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Introduction to SOQL

[8]

The Employee link redirects us to the Employee object custom definition, as shown
in the following screenshot:

The SELECT statement is used to retrieve data from objects. Relationships must
exist among objects in case we want to retrieve data from two or more objects.

It is not possible to write a single SOQL query to fetch records from
two objects without any relationship among the two objects in
Salesforce.

Relationship queries (queries for fetching records from more than one object) will
be discussed in Chapter 2, Basic SOQL Queries.

Purpose of SOQL
The main purpose of SOQL is to fetch data from Salesforce objects. SOQL can be
used in the following places:

• The queryString parameter in the query() call
• Apex statements
• Visualforce controllers and the getter methods
• The schema explorer of the Force.com IDE

Chapter 1

[9]

SOQL syntax
Similar to SQL, SOQL also makes use of the SELECT statement to fetch data. Let us
explore the following SOQL syntax:

SELECT fields

FROM Object

WHERE Condition

Ordering LIMIT

FOR VIEW Or FOR REFERENCE

OFFSET

UPDATE VIEWSTAT

The preceding query is explained as follows:

• fields: This denotes the API names of the fields of an object
• Object: This denotes the custom or standard object
• Condition: This is used for filtering records (optional)
• Ordering: This is used for ordering the result (optional)
• Limit: This is used for limiting the number of fetched records (optional)
• FOR VIEW: This updates LastViewedDate for fetched records (optional)
• FOR REFERENCE: This updates LastReferencedDate for fetched records

(optional)
• OFFSET: This denotes the starting row for fetching (optional)
• UPDATE VIEWSTAT: This updates the articles' view statistics for fetched

records (optional)

SELECT, fieldList, FROM, and Object are required. The others are optional in
SOQL.

We should use the API names of the fields in the SELECT statement. We should not
use the labels of the fields. The API names are available in the object definition. For
Standard Fields, the Field Name column refers to the API name, and for Custom
Fields, the API Name column refers to the API name.

To get the API names of standard objects in Salesforce, navigate to Setup | Build |
Customize | Object | Fields.

Introduction to SOQL

[10]

In the Force.com setup, we can get all the information related to
standard objects in Salesforce by navigating to Build | Customize.

Let us see how to get the API names of the Account object fields. To get the API
names of the Account object fields, navigate to Setup | Build | Customize |
Accounts | Fields as shown in the following screenshot. The Standard object fields
are present under Customize and custom objects are present under Create | Objects
in Salesforce.

In the Account Standard Fields section, the Field Name column refers to the API
name of the standard fields, as shown in the following screenshot:

Chapter 1

[11]

In the Account Custom Fields & Relationships section, the API Name column
denotes the API name of the fields, as shown in the following screenshot:

To get the API names of custom objects in Salesforce, navigate to Setup | Build |
Create | Objects, as shown in the following screenshot, and select the object:

Introduction to SOQL

[12]

This Objects link displays all the custom objects available in our organization,
as shown in the following screenshot:

The Field Name column in the Standard Fields section denotes the API names
of the fields, as shown in the following screenshot:

Chapter 1

[13]

The API Name column in the Custom Fields & Relationships section denotes
the API names of the fields, as shown in the following screenshot:

Writing your first SOQL statement
Before getting started with writing our first SOQL statement, we have to install
a software to execute our queries. Salesforce offers a couple of tools to write and
execute SOQL queries instantly. Salesforce also supports other third-party tools to
write and execute queries. Let us write a simple SOQL query to fetch the IDs and
names of accounts from the Account object.

Account is a standard object in Salesforce. We use the Account
object to store information about our customers and partners with
whom we do business.

A sample query is given as follows:

SELECT Id, Name FROM Account

Introduction to SOQL

[14]

Refer to the following screenshot:

Here, Id and Name are standard fields of the Account object.

Custom objects and custom fields always end with __c in Salesforce.

Let us see another example of how to fetch custom fields in standard objects. Refer
to the following screenshot:

Chapter 1

[15]

Here, Id and Name are standard fields and Active__c and CustomerPriority__c
are custom fields.

A sample query is given as follows:

SELECT Id, Name, Active__c, CustomerPriority__c FROM Account

In the preceding example, we saw how to retrieve records from Account (standard
object). Let us write a simple SOQL query to fetch records from a custom object. In
this example, let us make use of a custom object, Employee__c, which has custom
fields such as Employee_Name__c, State__c, City__c, and so on.

Introduction to SOQL

[16]

A sample query is given as follows:

SELECT Name, Employee_Name__c, State__c, City__c FROM Employee__c

Refer to the following screenshot:

Here, Employee__c is a custom object; Name is a standard field; and Employee_
Name__c, State__c, and City__c are custom fields.

Each and every object in Salesforce has system fields. System fields are read-only
fields. The following is a list of system fields:

• Id

• IsDeleted

• CreatedById

• CreatedDate

Chapter 1

[17]

• LastModifiedById

• LastModifiedDate

• SystemModstamp

All system fields are not editable. Only a few system fields are
editable. To get edit access to system fields, we have to contact
Salesforce support.

The following table describes field names:

Field Name Description

Id It is a unique identifier of the record.

IsDeleted
It is used to check if the record is in the Recycle Bin. If
IsDeleted is true, the record is in the Recycle Bin,
otherwise the record is not soft deleted.

CreatedById It is the ID of the user who created the record.

CreatedDate It is the date and time this record was created.

LastModifiedById It is the ID of the user who last modified it.

LastModifiedDate It is the date and time this record was last modified by a user.

SystemModstamp It is the date and time when this record was last modified by a
user or by an automated process (such as a trigger).

Let us see a sample SOQL query to fetch the system fields:

SELECT Id, Name, CreatedDate, LastModifiedDate FROM Account

www.allitebooks.com

http://www.allitebooks.org

Introduction to SOQL

[18]

Refer to the following screenshot:

Here, CreatedDate and LastModifiedDate are system fields.

Let us see another example to fetch FirstName and LastName from the User object.

The User object is also another standard object in Salesforce.
The User object stores all the information about the users in the
organization. The IsActive field is used to check whether the
user is active or inactive.

A sample query is given as follows:

SELECT FirstName, LastName FROM User

Chapter 1

[19]

Refer to the following screenshot:

Let us see another example to fetch Name and StageName from the Opportunity
object.

Opportunity is an important standard object in the Sales
application in Salesforce. Opportunity is a potential
revenue-generating event.

A sample query is given as follows:

SELECT Name, StageName FROM Opportunity

Introduction to SOQL

[20]

Refer to the following screenshot:

Let us see another example to fetch Name and Status from the Lead object.

Lead is also a standard object in Salesforce. Lead is used to store
information about an organization or individual persons who are
interested in our product. A Lead can be converted into a single
Account, multiple Contacts, and multiple Opportunities objects.

A sample query is given as follows:

SELECT Name, Status FROM Lead

Chapter 1

[21]

Refer to the following screenshot:

Let us see another example to fetch Id and Name from the Product object. The API
name of the Product object is Product2.

The Product2 object stores all the information about the products
available in our organization.

A sample query is given as follows:

SELECT Id, Name FROM Product2

Introduction to SOQL

[22]

Refer to the following screenshot:

Let us see another example to fetch Id and Name from the Price Book object.
The API name of the Price Book object is Pricebook2.

Pricebook2 is another standard object in Salesforce. In the
Pricebook2 object, we use stored information on the different
prices of products.

A sample query is given as follows:

SELECT Id, Name FROM Pricebook2

Chapter 1

[23]

Refer to the following screenshot:

Let us see another example to fetch ProductCode, Product2Id, Name, and
UseStandardPrice from the Price Book Entry object. The API name of
the Price Book Entry object in Salesforce is PricebookEntry.

PricebookEntry is another Salesforce standard object. We store
the list price of the product under the Pricebook2 object in the
Pricebookentry object.

A sample query is given as follows:

SELECT ProductCode, Product2Id, Name, UseStandardPrice FROM
PricebookEntry

Introduction to SOQL

[24]

Refer to the following screenshot:

Summary
In this chapter, we learned what SOQL is and got to know its purpose. While
discussing the purpose, we saw where exactly we use SOQL statements in
Salesforce development and administration.

We discussed the fetching of the API name of the custom object with detailed
descriptions and steps. Moreover, we saw the steps for fetching API names of the
standard and the custom fields. The usage of system fields and querying system
fields, with a description of each system field, was provided in a table.

Basic syntax of SOQL statements with all reserved keywords was discussed. We
also saw some examples for fetching records using the SOQL queries from standard
objects and custom objects. Finally, methods to find the difference between custom
objects and standard objects and custom fields and standard fields were introduced.

Basic SOQL Statements
This chapter will teach us the usage of the alias notation, logical operators, comparison
operators, the IN operator, the NOT IN operator, the INCLUDES operator, and the
EXCLUDES operator while building SOQL queries. The different types of operators
available are mainly used for filtering the records retrieved via the SOQL query.

The WHERE clause usage for filtering the records will also be explained. We will also
learn how to sort the retrieved records while querying using the ORDER BY clause. By
using the ORDER BY clause, we will be sorting our fetched records in both ascending
and descending order.

The alias notation
SOQL supports the alias notation. The alias notation in SOQL is usually used to
distinguish different objects used in a single SOQL.

The name used for the alias notation is very important. The SOQL reserved
keywords that cannot be used as alias names are AND, ASC, DESC, EXCLUDES, FIRST,
FROM, GROUP, HAVING, IN, INCLUDES, LAST, LIKE, LIMIT, NOT, NULL, NULLS, OR, SELECT,
WHERE, and WITH. Naming should be done in a way that denotes the object, which
will help us when we write some complex SOQL statements.

Let us see a simple example to understand the usage of the alias notation in SOQL.

A sample query is given as follows:

SELECT Acct.Id, Acct.Name FROM Account Acct

Basic SOQL Statements

[26]

In the preceding example, Acct is the alias notation for the Account object. We can
directly fetch Id and Name of the Account object without using the alias notation
as well. This query is just for understanding the usage of the alias notation. Further
examples will be concerned more with objects in querying. We will get a clear picture
about the usage of the alias notation in this chapter. The following screenshot shows
the output of the SOQL execution:

Chapter 2

[27]

So far, we are aware of using the alias notation in SOQL statements in Salesforce.
com. With the help of the preceding example, we have queried records using the
SOQL query from only one object. Let's see some complex examples to understand
how the alias notation in SOQL statements work to distinguish different objects
used in SOQL statements.

A sample query is given as follows:

SELECT FirstName, LastName FROM Contact Con, Con.Account Acct WHERE Acct.
Name = 'Infallible'

In the preceding example, Acct is the alias notation for the Account object and Con is
the alias notation for the Contact object. The alias notation will be very helpful to us
while writing the SOQL queries for querying the records from multiple objects. Since
many fields are common in all the objects, this alias notation helps us to distinguish
among the objects used in the query. The following screenshot is the output of the
SOQL execution:

The WHERE clause
The WHERE clause in SOQL is mainly used to filter retrieved data. The WHERE clause in
SOQL is also called the condition expression. Whenever we want to filter our records
from the objects using SOQL, we have to make use of the WHERE clause. The WHERE
clause will retrieve the records that match the criterion or criteria. Followed by the
WHERE clause, we can use the comparison operators, logical operators, IN operator, NOT
IN operator, INCLUDES operator, EXCLUDES operator, and so on. We have the privilege
of using a combination of these operators to filter correctly in a SOQL statement.

www.allitebooks.com

http://www.allitebooks.org

Basic SOQL Statements

[28]

Let us see an example showing the usage of the WHERE clause. A sample query is
given as follows:

SELECT FirstName, LastName FROM Contact WHERE FirstName != null

In the preceding example, the SOQL query will return all the Contact records where
FirstName of the contacts is not null. The following screenshot is the output of the
SOQL execution:

Chapter 2

[29]

In the preceding example, we saw how to filter the null value records using the
WHERE clause. In the same example, if we used the equals operator instead of the not
equals operator, we would have retrieved records where the FirstName object of the
contacts is null. With a small change, the query results differently. So, make sure to
write your queries accurately. Let us see another example. A sample query is given
as follows:

SELECT FirstName, LastName FROM Contact WHERE LastName = 'Bond'

In the preceding example, the SOQL query will return all the contacts where
LastName is Bond. The preceding example with the condition LastName = 'BOND'
will also produce the same result set since the SOQL string comparison is case
insensitive. The following screenshot is the output of the SOQL execution:

The comparison operators
Comparison operators are used in SOQL to compare a value with another value to
return true or false. While using comparison operators, we should be very careful
with data types. We should not compare number values with strings. We have to
make sure we are comparing the values with proper data to avoid warnings and
errors in SOQL.

Let us see the comparison operators that can be used in SOQL:

Operator Description
= Equals
!= Not equals
< Less than

Basic SOQL Statements

[30]

Operator Description
<= Less than or equal to
> Greater than
>= Greater than or equal to
LIKE Like

Let's see some examples of these comparison operators in SOQL.

The equals operator
Using the equals operator, we can retrieve records that match the given criteria.
The equals operator checks whether the values of two operands are equal. If the
value is equal, the condition becomes true. We can make use of the equals
operator if we know which value we have to compare with.

A sample query is given as follows:

SELECT FirstName, LastName FROM Contact WHERE LastName = 'Bond'

The preceding query will retrieve all the contacts where the last name of the
contact is Bond. The following screenshot is the output of the SOQL execution:

The not equals operator
Using the not equals operator, we can retrieve records that do not match the given
criteria. The not equals operator checks whether the values of two operands are
equal. If the value is not equal, the condition becomes true. We can make use of
the not equals operator to retrieve accurate data if we know the exact value that
should not be included.

Chapter 2

[31]

A sample query is given as follows:

SELECT FirstName, LastName FROM Contact WHERE LastName != 'Bond'

The preceding query will retrieve all the contacts where the last name of the contacts
is not Bond. The following screenshot is the output of the SOQL execution:

Basic SOQL Statements

[32]

The less than or equal to operator
Using the less than or equal to operator, we can retrieve records that are less than or
equal to the given limit. The less than or equal to operator is used to check whether
the value of the left operand is less than or equal to the value of the right operand.
If yes, the condition becomes true. The record that matches the given limit will also
be included in the result.

A sample query is given as follows:

SELECT Name, Amount FROM Opportunity WHERE Amount <= 1000

The preceding query will retrieve all Opportunity instances where Amount is less
than or equal to 1000. If the Amount object is exactly equal to 1000, those Opportunity
instances are also included in the result. The following screenshot is the output of the
SOQL execution:

If we want to avoid this, we have to use the less than operator instead of the less than
or equal to operator. We should be very careful when choosing the operator. If we
select the wrong operator, we will get incorrect results.

The less than operator
Using the less than operator, we can retrieve records that are less than the given limit.
The less than operator is used to check whether the value of the left operand is less
than the value of the right operand. If yes, the condition becomes true. The less than
operator does not include records that match the given limit, unlike the less than or
equal to operator. In the less than operator, the limit is not included in the result.
But in the case of the less than or equal to operator, the limit is included in the result.

Chapter 2

[33]

A sample query is given as follows:

SELECT Name, Amount FROM Opportunity WHERE Amount < 10000

The preceding query will retrieve all Opportunity instances where Amount is less
than 10000. The following screenshot is the output of the SOQL execution:

The Opportunity instances where Amount is exactly equal to 10000 are not included
in the result. If we want to include this, we have to make use of the less than or equal
to operator instead of the less than operator.

We need to ensure our symbol for the operator is correct, or else we will get incorrect
results. If we are not careful, we may get the wrong set of data in our results. We
have to check whether the symbol used is correct. A table with the list of operators
and descriptions will help us a lot to avoid incorrect data while retrieving.

The greater than or equal to operator
Using the greater than or equal to operator, we can retrieve the records that are
greater than or equal to the given limit. The greater than or equal to operator is used
to check whether the value of the left operand is greater than or equal to the value of
the right operand. If yes, the condition becomes true. The limit is also included in
the result.

A sample query is given as follows:

SELECT Name, Amount FROM Opportunity WHERE Amount >= 1000

Basic SOQL Statements

[34]

The preceding query will retrieve all the Opportunity instances where Amount is
greater than or equal to 1000. The Opportunity instances where the Amount object
is exactly equal to 1000 are also included in the result. If we don't want to include
those, we have to use the greater than operator instead. The choice of operator makes
a big difference in the retrieved records count. The following screenshot is the output
of the SOQL execution:

The greater than operator
Using the greater than operator, we can retrieve records that are greater than the given
limit. The greater than operator is used to check whether the value of the left operand
is greater than the value of the right operand. If yes, the condition becomes true.

Chapter 2

[35]

A sample query is given as follows:

SELECT Name, Amount FROM Opportunity WHERE Amount > 1000

The preceding query will retrieve all the Opportunity instances where Amount is
greater than 1000. The following screenshot is the output of the SOQL execution:

The Opportunity instances where the Amount object is exactly equal to 1000 are not
included in the results. If we want to include 1000 in our results, we have to use the
greater than or equal to operator instead.

Basic SOQL Statements

[36]

The LIKE operator
Using the LIKE operator, we can retrieve records that match the substring provided.
The LIKE operator is mainly used to compare a value to all similar values using
wildcard characters. The LIKE operator is also called the pattern matching filtering
technique. Any record that matches the pattern alone will be retrieved, which
improves the filtering.

A sample query is given as follows:

SELECT Name, Amount FROM Opportunity WHERE Name LIKE 'Test%'

The preceding query will retrieve all the Opportunity instances where the name
starts with Test. The following screenshot is the output of the SOQL execution:

The Opportunity instances whose names end with Test will not be included in
the results. If we also want to include names ending with Test, we have to use
another percentage symbol to the left so that it will be '%Test%'. When we do this,
any Opportunity instance with Name that includes Test will also be included in
the result. We have to use _ instead of % if we want to just match it with a single
character to its left or right. The LIKE operator is very useful if we are unsure about
the exact value with which we have to match. While using the LIKE operator, make
sure you have entered the correct matching pattern. For example, the '%Test%'
matching pattern will not be as efficient as 'Test%' due to the way indexes work
and may take a longer time to retrieve the result set of a large object.

Chapter 2

[37]

The IN operator
The IN operator is used to specify multiple values in the WHERE clause for matching
and filtering records. The SOQL query will fetch records that match the values
specified. The IN operator is mainly used to compare a value to a list of values that
have been specified, and it retrieves the records if it matches the values specified in
the list. The IN operator is used if you want to compare a value with multiple values
to ensure the retrieved records are accurate.

A sample query is given as follows:

SELECT FirstName, LastName FROM Contact WHERE FirstName IN ('Rose',
'Sean', 'Jack', 'Test')

The preceding query will return all contacts where the first name matches the values
specified. Here, the values inside the brackets are case insensitive for the IN operator.
The following screenshot is the output of the SOQL execution:

The NOT IN operator
The NOT IN operator is used to specify multiple values in the WHERE clause for
unmatching and filtering records. The SOQL will fetch records that do not match
the values specified. The NOT IN operator is mainly used to compare a value to a
list of values that have been specified, and it retrieves the records if it does not
match the values specified in the list.

www.allitebooks.com

http://www.allitebooks.org

Basic SOQL Statements

[38]

The NOT IN operator works in an opposite manner to the IN operator. It retrieves
records that do not match the values specified, whereas the IN operator retrieves
records that match the values specified.

A sample query is given as follows:

SELECT FirstName, LastName FROM Contact WHERE FirstName NOT IN ('Rose',
'Sean', 'Jack', 'Test')

The preceding query will return all the contacts where the first name does not match
the values specified. The following screenshot is the output of the SOQL execution:

The result does not contain records that match the specified values.

Chapter 2

[39]

The logical operators
The concept behind logical operators is simple and easy. Logical operators are
mainly used to check multiple conditions in a single SOQL statement. Logical
operators are connectors for connecting one or more conditions inside a single
SOQL statement. It combines the conditions so that we can filter our records to
be retrieved very accurately. Logical operator will return either true or false.

The two logical operators available in SOQL are the following:

• AND

• OR

The AND operator
Using the AND operator, we can retrieve records that satisfy all the conditions
specified. If a record matches the first condition and does not match the second
condition, the record will not be retrieved. For example, say the condition states that
the city parameter should be equal to Chennai and the postal code parameter
should not be null; if a record's city parameter is Chennai and postal code is null,
the record will not be retrieved.

The OR operator
Using the OR operator, we can retrieve records that satisfy any one of the conditions
specified. If a record matches the first condition and does not match the second
condition, the record will be retrieved and vice versa. For example, say the condition
states that the city parameter should be equal to Chennai or Bangalore and if a
record's city parameter is Mysore for a record, the record will not be retrieved.
However, if the city parameter is Chennai for a record, that record will be included
in the results.

The use of AND and OR together is allowed in SOQL to filter our records to avoid
unwanted ones in our result. The use of AND and OR together helps us in many ways
to fetch our required records for manipulation.

A sample query for the AND operator is as follows:

SELECT Name, Amount FROM Opportunity WHERE Amount > 1000 AND Amount <
100000

Basic SOQL Statements

[40]

The preceding query will retrieve opportunities where Amount is greater than 1000
and less than 100000. The following screenshot is the output of the SOQL execution:

The Opportunity instances where amount is 1000 are not included in the result.
If we want to include this, we have to use the greater than or equal to operator
instead of the greater than operator.

Chapter 2

[41]

A sample query for the OR operator is given as follows:

SELECT Name, Amount FROM Opportunity WHERE Name = 'Infallible' OR Name =
'Infallible Techie'

The preceding query will retrieve all the Opportunity instances where Name is
Infallible or Infallible Techie. The following screenshot is the output of
the SOQL execution:

The ORDER BY clause
The ORDER BY clause in SOQL is used to sort the records retrieved in the ascending
or descending order.

An ascending order sample query is given as follows:

SELECT Name, Amount FROM Opportunity ORDER BY Name ASC

Basic SOQL Statements

[42]

The preceding query will retrieve all the Opportunity instances arranged in
the ascending order of the name. The following screenshot is the output of the
SOQL execution:

A descending order sample query is given as follows:

SELECT Name, Amount FROM Opportunity ORDER BY Name DESC

The preceding query will retrieve all the Opportunity instances arranged in
the descending order of the name. The following screenshot is the output of
the SOQL execution:

Chapter 2

[43]

Here, ASC means ascending order and DESC
means descending order. By default, it will
always be ascending order.

The INCLUDES and EXCLUDES operators
The INCLUDES and EXCLUDES operators are mainly used for filtering the multipick
list field in Salesforce.com. The standard way to filter multipick list field values in
SOQL is using the INCLUDES and EXCLUDES operators. These operators are discussed
in detail in Chapter 3, Advanced SOQL Statements with Examples.

Basic SOQL Statements

[44]

Summary
In this chapter, we saw how to write basic SOQL statements in Salesforce.com. We
started with a simple alias notation. We tried many examples to differentiate objects
using alias notation.

Later, we saw the logical operators, comparison operators, the IN operator, and
the NOT IN operator. The logical operators AND and OR were explained in detail.
The comparison operators, =, !=, <, >, <=, >=, and LIKE, were also explained in
detail. We learned where, when, and the ways in which these operators can be
used in our SOQL statements in Salesforce.com.

We also covered how to sort retrieved records, and this was explained with
sample queries using the ORDER BY clause.

Advanced SOQL Statements
In the previous chapter, we saw the basic SOQL statements that deal with one object
in a SOQL statement. This chapter gives more information on how to write advanced
SOQL statements. This chapter deals with querying the records for one or more
objects in a single SOQL statement. In this case, there should be some relationship
among the objects. In Salesforce.com, we cannot query the records from two or more
objects if they don't have a relationship between them. The relationships that are
available in Salesforce.com are lookup relationship and master-detail relationship.

Filtering a multiselect picklist field using the INCLUDES and EXCLUDES operators will
be discussed in detail. In Chapter 2, Basic SOQL Statements, only the definition was
given for the INCLUDES and EXCLUDES operators.

The grouping of records with more than one field using GROUP BY ROLLUP and
GROUP BY CUBE will be explained here with examples. Sorting the records in both
the ascending and descending orders together in a SOQL statement will also be
further discussed.

Relationship queries
Relationship queries are mainly used to query the records from one or more objects in
a single SOQL statement in Salesforce.com. As discussed earlier, we cannot query the
records from more than one object without having a relationship between the objects.

Let us see an example for relationship queries with standard objects to query the
records. The relationship between Account and Contact is a lookup. Account is the
parent object, and Contact is the child object. Account can have multiple Contacts.

A sample query is given as follows:

SELECT Id, Name, (SELECT Id, Name FROM Contacts) FROM Account

Advanced SOQL Statements

[46]

The preceding query will retrieve all the accounts and their associated Contacts.
The following screenshot shows the output of the SOQL execution:

Let us see another example for relationship queries with custom objects to query
the records. The relationship between Employee and Hobby is a master-detail
relationship. Employee is the parent object, and Hobby is the child object. Employee
can have multiple Hobbies.

A sample query is given as follows:

SELECT Employee_Name__c, (SELECT Id, Name FROM Hobbies__r) FROM
Employee__c

Chapter 3

[47]

The preceding query will retrieve all the names of the employees and their associated
Hobbies. The following screenshot shows the output of the SOQL execution:

To find out the name of the relationship, go to the objects' definition and select the
relationship field. The Child Relationship Name option gives us the relationship
name. The __r symbol should be added along with the child relationship name
to query in the case of custom relationships. For standard relationships, we should
not add __r. The following steps will help us to get the relationship name for
relationship queries:

www.allitebooks.com

http://www.allitebooks.org

Advanced SOQL Statements

[48]

1. Navigate to Setup | Build | Create | Objects as shown in the following
screenshot:

2. Select the child object. In our example, Hobby is our child object as shown in
the following screenshot:

Chapter 3

[49]

3. Select the relationship field:

4. The Child Relationship Name option denotes the relationship name. We
have to add __r to the child relationship name when querying the records
using SOQL. In the case of a standard relationship, we need not add __r
when we query the records using SOQL.

A custom relationship in Salesforce.com always ends with __r. But a
standard relationship, which exists between the standard Salesforce.
com objects, does not end with __r.

Advanced SOQL Statements

[50]

Filtering multiselect picklist values
The INCLUDES and EXCLUDES operators are used to filter the multiselect picklist field.
The multiselect picklist field in Salesforce allows the user to select more than one
value from the list of values provided.

Let us see a few examples of filtering the multiselect picklist values. Skills__c is
a multiselect picklist field.

The INCLUDES operator
The INCLUDES operator is used to retrieve the records that contain any one of the
specified values.

A sample query is given as follows:

SELECT Employee_Name__c, Skills__c FROM Employee__c WHERE Skills__c
INCLUDES ('C', 'C#')

The preceding query will fetch the names of all the employees whose Skills match
either with C or C#. The following screenshot is the output of the SOQL execution:

Let us see an example for including a null value.

Chapter 3

[51]

A sample query is given as follows:

SELECT Employee_Name__c, Skills__c FROM Employee__c WHERE Skills__c
EXCLUDES ('C', 'C#', '')

The preceding query will fetch the names of all employees whose Skills match
either with C or C# and null. The following screenshot shows the output of the
SOQL execution:

Advanced SOQL Statements

[52]

The EXCLUDES operator
The EXCLUDES operator is used to retrieve the records that do not contain any one
of the specified values.

A sample query is given as follows:

SELECT Employee_Name__c, Skills__c FROM Employee__c WHERE Skills__c
EXCLUDES ('C', 'C#')

The preceding query will fetch the names of all employees whose Skills do
not match either with C or C#. The following screenshot shows the output of
the SOQL execution:

Let us see an example for excluding the null value.

Chapter 3

[53]

A sample query is given as follows:

SELECT Employee_Name__c, Skills__c FROM Employee__c WHERE Skills__c
EXCLUDES ('C', 'C#', '')

The preceding query will fetch the names of all the employees whose Skills
do not match either with C or C# and null. The following screenshot shows the
output of the SOQL execution:

The escape sequences
An escape character is a character that invokes an alternative interpretation of the
subsequent characters in a character sequence. The following table shows the list
of escape sequences that can be used in the SOQL statements:

Advanced SOQL Statements

[54]

Sequence name Description

\n or \N New line

\r or \R Carriage return

\t or \T Tab

\f or \F Form feed

\b or \B Bell

\" One double-quote character

\' One single-quote character

\\ Backslash

The LIKE operator expression:
_

Matches a single underscore
character (_)

The LIKE operator expression:
\%

Matches a single percentage
sign character (%)

The date formats
When querying the records using the date field or the date and time field in the
SOQL statement, the date formats should be followed. The following table shows
the list of date formats that can be used in the SOQL statements:

Format Examples

YYYY-MM-DD 1999-01-01

YYYY-MM-DDThh:mm:ss+hh:mm 1999-01-01T23:01:01+01:00

YYYY-MM-DDThh:mm:ss-hh:mm 1999-01-01T23:01:01-08:00
YYYY-MM-DDThh:mm:ssZ 1999-01-01T23:01:01Z

The date literals
When querying the records using the date field in the SOQL statement, the date
literals can be used. The following table shows the list of date literals that can be
used in the SOQL statements:

Chapter 3

[55]

Date literal Sample query

YESTERDAY
SELECT Id FROM Employee__c WHERE Joining_
Date__c = YESTERDAY

TODAY
SELECT Id FROM Employee__c WHERE Joining_
Date__c > TODAY

TOMORROW
SELECT Id FROM Employee__c WHERE Joining
Date__c = TOMORROW

LAST_WEEK
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_WEEK

THIS_WEEK
SELECT Id FROM Employee__c WHERE Joining_
Date__c < THIS_WEEK

NEXT_WEEK
SELECT Id FROM Employee__c WHERE Joining_
Date__c = NEXT_WEEK

LAST_MONTH
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_MONTH

THIS_MONTH
SELECT Id FROM Employee__c WHERE Joining_
Date__c < THIS_MONTH

NEXT_MONTH
SELECT Id FROM Employee__c WHERE Joining_
Date__c = NEXT_MONTH

LAST_90_DAYS
SELECT Id FROM Employee__c WHERE Joining_
Date__c = LAST_90_DAYS

NEXT_90_DAYS
SELECT Id FROM Employee__c WHERE Joining_
Date__c > NEXT_90_DAYS

LAST_N_DAYS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c = LAST_N_DAYS:365

NEXT_N_DAYS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c > NEXT_N_DAYS:15

THIS_QUARTER
SELECT Id FROM Employee__c WHERE Joining_
Date__c = THIS_QUARTER

LAST_QUARTER
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_QUARTER

NEXT_QUARTER
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_QUARTER

Advanced SOQL Statements

[56]

Date literal Sample query

NEXT_N_QUARTERS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_N_QUARTERS:2

LAST_N_QUARTERS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_N_QUARTERS:2

THIS_YEAR
SELECT Id FROM Employee__c WHERE Joining_
Date__c = THIS_YEAR

LAST_YEAR
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_YEAR

NEXT_YEAR
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_YEAR

NEXT_N_YEARS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_N_YEARS:5

LAST_N_YEARS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_N_YEARS:5

THIS_FISCAL_QUARTER
SELECT Id FROM Employee__c WHERE Joining_
Date__c = THIS_FISCAL_QUARTER

LAST_FISCAL_QUARTER
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_FISCAL_QUARTER

NEXT_FISCAL_QUARTER
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_FISCAL_QUARTER

NEXT_N_FISCAL_QUARTERS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_N_FISCAL_QUARTERS:6

LAST_N_FISCAL_QUARTERS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_N_FISCAL_QUARTERS:6

THIS_FISCAL_YEAR
SELECT Id FROM Employee__c WHERE Joining_
Date__c = THIS_FISCAL_YEAR

Chapter 3

[57]

Date literal Sample query

LAST_FISCAL_YEAR
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_FISCAL_YEAR

NEXT_FISCAL_YEAR
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_FISCAL_YEAR

NEXT_N_FISCAL_YEARS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c < NEXT_N_FISCAL_YEARS:3

LAST_N_FISCAL_YEARS:n
SELECT Id FROM Employee__c WHERE Joining_
Date__c > LAST_N_FISCAL_YEARS:3

Querying with the date fields
Let us see an example for querying with the date field using one of the date literals
we just covered.

A sample query is given as follows:

SELECT Employee_Name__c, Joining_Date__c FROM Employee__c WHERE Joining_
Date__c < LAST_MONTH

The preceding query will fetch the names of all the employees whose joining
date values are less than the values for the current date last month. The following
screenshot shows the output of the SOQL execution:

www.allitebooks.com

http://www.allitebooks.org

Advanced SOQL Statements

[58]

Sorting in both the ascending and
descending orders
Sometimes, we may get a chance to sort the records when we fetch these using the
SOQL statements based on two fields, one field in the ascending order and another
field in the descending order. The following sample query will help us to achieve
this easily:

SELECT Name, Industry FROM Account ORDER By Name ASC, Industry DESC

Using the preceding SOQL query, the accounts will first be sorted by Name in the
ascending order and then by Industry in the descending order. The following
screenshot shows the output of the SOQL execution:

Chapter 3

[59]

First, the records are arranged in the ascending order of the account's Name, and then
it is sorted by Industry in the descending order.

Using the GROUP BY ROLLUP clause
The GROUP BY ROLLUP clause is used to add subtotals for aggregated data in query
results. A query with a GROUP BY ROLLUP clause returns the same aggregated data
as an equivalent query with a GROUP BY clause. It also returns multiple levels of
subtotal rows. You can include up to three fields in a comma-separated list in a
GROUP BY ROLLUP clause.

A sample query is given as follows:

SELECT City__c, State__c, COUNT(Employee_Name__c) Counts FROM Employee__c
GROUP BY ROLLUP(City__c, State__c)

The following screenshot shows the output of the SOQL execution:

Advanced SOQL Statements

[60]

In the previous example, we saw both the statewise and citywise count. This GROUP
BY ROLLUP clause will be very useful to us when we get a chance to work with the
Visualforce charting feature.

Using the FOR REFERENCE clause
The FOR REFERENCE clause is used to find the date/time when a record has been
referenced. The LastReferencedDate field is updated for any retrieved records.
The FOR REFERENCE clause is used to track the date/time when a record has been
referenced last while executing a SOQL query.

A sample query is given as follows:

SELECT City__c, State__c, LastReferencedDate FROM Employee__c FOR
REFERENCE

When we execute the preceding query for the first time, it shows the last reference
date of the record in the LastReferencedDate column. However, for the second
time, all the records will show the same date and time (the date and time when we
executed the query for the first time) for LastReferencedDate.

Using the FOR VIEW clause
The FOR VIEW clause is used to find the date when a record has been last viewed.
The LastViewedDate field is updated for any retrieved records. The FOR VIEW
clause is used to track the date when the record was viewed last while executing
a SOQL query.

A sample query is given as follows:

SELECT City__c, State__c, LastViewedDate FROM Employee__c FOR VIEW

When we execute the preceding query for the first time, it shows the last viewed date
of the record in the LastViewedDate column. However, for the second time, all the
records will show the same date and time (the date and time when we executed the
query for the first time) for LastViewedDate.

Chapter 3

[61]

Using the GROUP BY CUBE clause
The GROUP BY CUBE clause is used to add subtotals for every possible combination of
the grouped field in the query results. The GROUP BY CUBE clause can be used with
aggregate functions such as SUM() and COUNT(fieldName). A SOQL query with a
GROUP BY CUBE clause retrieves the same aggregated records as an equivalent query
with a GROUP BY clause. It also retrieves additional subtotal rows for each combination
of fields specified in the comma-separated grouping list as well as the grand total.

A sample query is given as follows:

SELECT City__c, State__c, GROUPING(City__c) CityGroup, GROUPING(State__c)
StateGroup, COUNT(Id) IdCount FROM Employee__c GROUP BY CUBE(City__c,
State__c)

The following screenshot shows the output of the SOQL execution:

Advanced SOQL Statements

[62]

Using the OFFSET clause
The OFFSET clause is used to specify the starting row number from which the
records will be fetched. The OFFSET clause will be very useful when we implement
pagination in the Visualforce page. The OFFSET clause along with LIMIT is very
useful in retrieving a subset of the records. The OFFSET usage in SOQL has many
limitations and restrictions. The limitation and guidelines for using OFFSET will be
discussed in detail in Chapter 5, Limitations and Best Practices.

A sample query is given as follows:

SELECT Name FROM Account OFFSET 100

The preceding query will fetch all the accounts starting from the row number 101.
The first 100 records will not be fetched.

Let us see an example for OFFSET along with LIMIT.

A sample query is given as follows:

SELECT Name FROM Account OFFSET 100 LIMIT 50

The preceding query will fetch all the accounts starting from row number 101 to
150. Only these 50 records will be fetched. The OFFSET clause along with LIMIT
helps to create the pagination concept in the Visualforce page very easily. The
offset calculation is done on the server side. So, we have to be very careful when
implementing pagination since it fetches fresh data for each query call.

Salesforce.com recommends that we use the ORDER BY clause whenever we use
OFFSET. Using the ORDER BY clause along with OFFSET ensures that the ordering
of the result set is consistent.

Chapter 3

[63]

Summary
In this chapter, we saw how to query the records from more than one object using
the relationship queries. The steps to get the relationship name among objects were
also provided. Querying the records using both standard relationship and custom
relationship was also discussed.

Filtering multiselect picklist field values using the INCLUDES and EXCLUDES operators
was explained. The grouping of records using GROUP BY ROLLUP and GROUP BY
CUBE were also discussed.

To find the last viewed date of the record and to find the last referenced date of
the record using FOR VIEW and FOR REFERENCE, respectively, were also explained.
We also discussed pagination in the Visualforce page using OFFSET and LIMIT.

The next chapter deals with the functions that are available in SOQL. The functions
help us to reuse the commands instead of writing conditions again and again.

Functions in SOQL
SOQL has many built-in functions to perform manipulations using the retrieved
data. This chapter deals with the usage of functions in SOQL. We will learn how
these functions of SOQL reduce and avoid the usage of long SOQL statements.
It is mainly used to simplify complex SOQL statements. These functions can just
be called to perform repeated tasks.

Summarizing the records using the GROUP BY clause will also be explained with
real-time examples. We will also explain all the aggregated functions and discuss
how to filter the aggregated values using the HAVING clause.

Using the toLabel() method
The toLabel() method is used to convert the results of a particular field into the
user's language. All organizations can use toLabel(). The toLabel() method is
of great help to an organization whose Translation Workbench is enabled.

The toLabel() method is used to get the translated values. The translation will
be done on the user's locale who is querying the records.

There are many limitations of using toLabel(). These limitations are discussed
in detail in Chapter 5, Limitations and Best Practices. Keep these limitations while
in mind using toLabel().

The Translation Workbench is used to specify all the languages
in which the configurations performed in your organization can
be translated.

A sample query is given as follows:

SELECT Name, toLabel(Industry) FROM Account

Functions in SOQL

[66]

The preceding query retrieves all the records from the Account object whose
Industry field values will be displayed in the querying user's locale. The following
screenshot shows us the output of the SOQL execution:

The output of the query shows us the Name and Industry column in the querying
user's locale. If the Industry values were in different languages, we would have
been able to see those values in the current user's locale. Organizations that have
the Translation Workbench enabled can effectively make use of this feature.

Chapter 4

[67]

Using the GROUP BY clause
So far, all the queries that we saw were used to retrieve the records that match the
WHERE conditions. We can also summarize our records using the GROUP BY clause.

The GROUP BY clause is used to group the set of records by the values specified in
the field. The GROUP BY clause will gather all of the records that contain data in the
specified fields together and will allow aggregate functions to be performed on one
or more fields.

The GROUP BY clause is used along with the aggregate functions to group the
retrieved records using one or more fields. We can use a GROUP BY clause without
an aggregated function to query all the distinct values, including the null values
for an object. In order to avoid null values, COUNT_DISTINCT() is used. The COUNT_
DISTINCT() usage is further discussed later.

The aggregate functions available in SOQL are as follows:

• COUNT()

• COUNT(FIELD_NAME)

• COUNT_DISTINCT()

• SUM()

• MIN()

• MAX()

The preceding six aggregate functions are used along with the GROUP BY clause in
SOQL to fetch our required statistical data from the objects. These aggregate functions
are very useful when the requirements need summarized or grouped values.

Let's see a sample query with the COUNT(FIELD_NAME) aggregate function. All the
aggregate functions are discussed in detail with examples.

A sample query is given as follows:

SELECT City__c, Count(Employee_Name__c) FROM Employee__c GROUP BY City__c

Functions in SOQL

[68]

The preceding query is used to find the number of employees in each and every city.
It also fetches the number of records and shows us the count of employees whose
City column value is null or blank. The following screenshot shows us the output of
the preceding query execution:

Using the COUNT() method
The COUNT() method is used to find the total number of records that match the
specified condition. The COUNT () method is also used to find the total number of
records in an object. It is used to find the number of elements of a finite set of objects.

A sample query is given as follows:

SELECT COUNT() FROM Employee__c WHERE State__c = 'Tamilnadu'

Chapter 4

[69]

Using the COUNT(Field_Name) method
The Count(Field_Name) method is used to find the total number of records of a
particular value in the specified field. If we use Count(Field_Name), it finds the total
for each and every value of that field name. For example, if we use Count(City__c),
it will return the total number of records for each city.

The syntax of the query is given as follows:

SELECT COUNT(FIELD_NAME) FROM Object_API_Name

A sample query is given as follows:

SELECT City__c, Count(Employee_Name__c) FROM Employee__c GROUP BY City__c

The following screenshot shows us the output of the preceding query execution:

Functions in SOQL

[70]

A sample query is given as follows:

SELECT Count(Id) TotalRecords FROM Employee__c

The preceding query is used to find the total number of records in an object.
The following screenshot shows us the output of the preceding query execution:

The output shows us that the total number of records in the Employee object is 26.
The total number of records in any object will be very useful when we create charts
using the Visualforce charting.

Using the COUNT_DISTINCT() method
The Count_DISTINCT() method in SOQL is used to find the number of distinct
non-null field values as mentioned in the query criteria. The COUNT_DISTINCT()
method ignores the null values and returns the non-null values while querying.

The syntax of the query is given as follows:

SELECT COUNT_DISTINCT (FIELD_NAME) FROM Object_API_Name

A sample query is given as follows:

SELECT COUNT_DISTINCT(City__c) TotalCities FROM Employee__c

Chapter 4

[71]

The preceding query is used to find the number of distinct cities the employees
belong to. The following screenshot shows us the output of the preceding
query execution:

The output shows us that there are five unique or distinct cities that the employees
belong to.

Using the MIN() method
The MIN() method in SOQL is used to return the minimum or smallest value of
the mentioned field. The MIN(x) method is used to return the minimum value
of the x field.

The syntax of the query is given as follows:

SELECT MIN (FIELD_NAME) FROM Object_API_Name

A sample query is given as follows:

SELECT MIN(Age__c) MinAge, City__c FROM Employee__c GROUP BY City__c

Functions in SOQL

[72]

The preceding query is used to find the minimum age of an employee in each
and every city. It will not show us the values of employees if their City values
are blank or null. The following screenshot shows us the output of the preceding
query execution:

The output shows us the minimum age of an employee in a city.

Using the MAX() method
The MAX() method in SOQL is used to return the maximum or the largest value of
the mentioned field. The MAX(x) method is used to return the maximum value of
the x field.

The syntax of the query is given as follows:

SELECT MAX (FIELD_NAME) FROM Object_API_Name

A sample query is given as follows:

SELECT MAX(Age__c) MaxAge, City__c FROM Employee__c GROUP BY City__c

Chapter 4

[73]

The preceding query is used to find the maximum age of an employee in each
and every city. The following screenshot shows us the output of the preceding
query execution:

The output shows us the minimum age of an employee in a city.

Using the SUM() method
The SUM() method is used to find the total of the specified numeric field. The
numeric fields available in Salesforce.com are Currency, Percent, and Number.
The SUM() method is used to add a sequence of numeric fields. The result of SUM()
is their sum or total.

The syntax of the query is given as follows:

SELECT SUM (FIELD_NAME) FROM Object_API_Name

A sample query is given as follows:

SELECT SUM(Age__c) MaxAge, City__c FROM Employee__c GROUP BY City__c

Functions in SOQL

[74]

The preceding query returns the total age of employees in each and every city.
The following screenshot shows us the output of the preceding query execution:

Using the HAVING clause
The HAVING clause is very similar to the WHERE clause. However, the only difference
between the HAVING and WHERE clause is that the HAVING clause is used only with
the aggregate functions.

The HAVING clause is used to specify the search condition in the GROUP BY clause
or the aggregate functions. The HAVING clause limits the grouped records returned
by a SOQL statement. However, the WHERE clause limits the records returned by
a SOQL statement.

A HAVING clause in SOQL is used to specify that the SOQL SELECT statement should
only return the records whose aggregate values meet the specified conditions.

A sample query is given as follows:

SELECT City__c, COUNT(Employee_Name__c) FROM Employee__c GROUP BY City__c
HAVING COUNT(City__c) >= 1

Chapter 4

[75]

The following screenshot shows us the output of the preceding query execution:

The output of the SOQL execution shows us the number of employees in each
and every city whose number of records in each and every city is greater than one.
This condition ignores all the employees whose City is null. It also ignores the
employees if the number of employees in a city is less than or equal to one.

Summary
In this chapter, we learned about all the functions that are available in SOQL.
We discussed the method to translate the field values using toLabel(), which will
be very useful when we want to translate the values and show them in a report.

Grouping or summarizing the records with aggregate functions was also
discussed. The six aggregate functions were discussed with the syntax and
real-time examples. We also discussed the situations in which we have to
use the HAVING and WHERE clauses.

Limitations and Best
Practices

In this chapter, we will take a look at the standards and best practices to be
followed by an administrator or a developer while writing SOQL statements during
development and administration tasks. We will also cover the limitations that should
be considered while writing the SOQL statements.

Salesforce has set many limitations as all the Apex code runs on the Apex engine. Apex
is an object-oriented programming language that allows the Salesforce developers
to execute flow and transaction control statements on the Force.com platform. So,
whenever we write the SOQL statements, we should make sure that we do not hit the
limitations set by Salesforce. All the limitations will be explained in detail.

We will also discuss in detail the limitations in OFFSET, toLabel(), COUNT(), and
ORDER BY in the SOQL statements and the limitations in writing the relationship
queries will.

Standards to be followed in SOQL
Let's take a look the standards to be followed in SOQL.

If we want avoid the number of records fetched from an object, we have to use the
LIMIT option. The LIMIT option limits the number of records that were fetched and
avoids the limits in Salesforce.

We have seen the reserved keywords in SOQL in Chapter 1, Introduction to SOQL. In
order to differentiate between the reserved keywords in a SQOL query, always write
the reserved keywords in uppercase so that it will be easy for us to identify them.
Write SELECT, FROM, WHERE, HAVING, IN, and so on in uppercase.

Limitations and Best Practices

[78]

If we want to use a single quote inside our SOQL statement, we will have to use a
backslash followed by a single quote. This is called as an escape sequence. We are
allowed to use the escape sequences in SOQL as shown in the following table:

Sequence Description

\n or \N New line

\t or \T Tab

\b or \B Bell

\r or \R Carriage return

\f or \F Form feed

\" One double-quote character

\\ Backslash

\' One single-quote character

A sample query is given as follows:

SELECT Id, Industry FROM Account WHERE Name LIKE 'Infallible Techie\'s
Company'

Best practices
We can use SOQL in the following situations:

• When we know the object in which we have our required data
• When we want to fetch data from multiple objects with a lookup

or master-detail relationship
• When we want to have the data set in a sorted manner
• When we want to summarize the data
• When we want to limit our data while retrieving it

Chapter 5

[79]

For indexing, the following fields can be used in SOQL:

• Id can be used as the primary key.
• Lookup or master-detail relationship fields can be used as the foreign key.
• The custom fields can be used as the external IDs. An external ID in Salesorce

is used as unique record identifiers from a system outside of Salesforce.
When you select this option, the import wizard will detect existing records
in Salesforce that have the same external ID. Note that this operation is not
case-sensitive. For example, ABC will be matched with abc.

Here, Id is the record ID that is autogenerated whenever a new record is
created. The record ID of Salesforce represents a unique record within a
Salesforce instance. There are two versions of every record ID in Salesforce.
They are as follows:

 ° A 15-digit case-sensitive version, which is referenced in the
user interface

 ° An 18-digit case-insensitive version, which is referenced through
the API

Fields that can't be indexed in SOQL are as follows:

• Multiselect picklists
• The Currency fields in a multicurrency organization
• The long text fields
• Some formula fields
• The binary fields (fields of the type blob, file, or encrypted text)

Limitations in objects
An object represents database tables that contain your organization's information.
Objects in Salesforce are mainly used to store records. There are two types of objects
in Salesforce: standard objects and custom objects. Salesforce-defined objects are the
standard objects, and the objects created by a user in an organization are the custom
objects. While writing the SOQL statements to fetch records from the objects shown
in the following table, we have to check the limits set by Salesforce:

Limitations and Best Practices

[80]

Object Limits in SOQL
ContentDocumentLink In the ContentDocumentLink

object, a SOQL query must
filter on one of the Id,
ContentDocumentId, or
LinkedEntityId objects.

NewsFeed In the NewsFeed object, the SOQL
ORDER BY clause on the fields using
relationships is not available.

KnowledgeArticleVersion The archived article versions are
stored in the articletype_kav
object. To query the archived article
versions, specify the article Id and
setsLatestVersion='0'.

UserRecordAccess In the UserRecordAccess object,
the maximum number of records
that can be queried is 200.

UserProfileFeed In the UserProfileFeed object,
the SOQL ORDER BY clause on
the fields using relationships is
not available.
A query must include WITH
UserId = {userId].

Other limitations
The following sections cover the limitations in the objects, apart from those
mentioned in the preceding section.

Governor limits
As Apex runs in a multitenant environment, the Apex runtime engine strictly
enforces a number of limits to ensure that the runaway Apex doesn't monopolize
the shared resources. If some Apex code ever exceeds a limit, the associated
governor issues a runtime exception that cannot be handled. The governor limits
in the following table are subject to change, so use the following link to get the
latest information:

http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_
gov_limits.htm

Chapter 5

[81]

Query usage Limitation

The total number of SOQL queries issued 100

The total number of SOQL queries issued for the Apex batch and
future methods 200

The total number of records retrieved by the SOQL queries 50,000

The total number of records retrieved by Database.
getQueryLocator

10,000

If a SOQL query runs for more than 120 seconds, the request can be canceled
by Salesforce.

Understanding the limitations of the ORDER
BY query
The limitations of the ORDER BY query are as follows:

• The data types that are not supported in ORDER BY are reference, multiselect
picklists, and long text area.

• We can use ORDER BY with the optional LIMIT option in a SELECT statement.
• We are limited to using 32 fields in an ORDER BY SOQL query. If we exceed

this limit, malformed query fault information is returned.

Understanding the limitations of the toLabel()
query
The limitations of the toLabel() query are as follows:

• The toLabel() method cannot be used along with ORDER BY in a SOQL
• We cannot use toLabel() in the WHERE clause for the division or currency

ISO code picklists

Limitations and Best Practices

[82]

Understanding the limitations of the COUNT()
query
The limitations of the COUNT query are as follows:

• The COUNT() query cannot be used with other elements in the SELECT list.
• We cannot use COUNT() with an ORDER BY clause. The option for this is

COUNT(fieldname).
• We cannot use COUNT() with a GROUP BY clause for the API Version 19.0

and higher. The option for this is COUNT(fieldName).

Understanding the limitations of the OFFSET
clause
The limitations of the OFFSET clause are as follows:

• The maximum OFFSET limit is 2,000 rows. If we set an OFFSET limit higher
than 2,000, we will get the result in a NUMBER_OUTSIDE_VALID_RANGE error.

• The OFFSET clause is mainly focused to be used in a top-level query, and it is
not allowed in most of the subqueries.

• The OFFSET clause is allowed in the SOQL that is used in SOAP API,
REST API, and Apex. It's not allowed in SOQL used within bulk API or
streaming API.

Limitations of the relationship queries
The limitations of the relationship queries are as follows:

• Objects should have a relationship between them to write relationship
queries. We cannot write relationship queries if the objects don't have
any relationship between them.

• We cannot write more than 35 child-to-parent relationships in a
SOQL statement.

• We cannot write more than 20 parent-to-child relationships in a
SOQL statement.

• In each specified relationship between objects, no more than five levels
can be specified in a child-to-parent relationship.

Chapter 5

[83]

• In each specified relationship among objects, only one level of a
parent-to-child relationship can be specified in a query.

• For custom relationships, __r should be mandatorily added at the
end of the relationship name.

Notes and Attachments limitations
The limitations of the Notes and Attachments objects are as follows:

• The Notes and Attachments objects cannot be filtered with the help of the
content or body. It can be filtered only with Name, CreatedDate, and so on.

• The Notes and Attachments objects are not supported in the subquery.

Summary
In this chapter, we saw the standards to be followed while writing the SOQL
statements. The best practices explained in this chapter allow us to retrieve the
required records by properly filtering the data. As a developer or an administrator,
we should follow these standards and best practices.

Whenever we write SOQL statements to fetch the data, we should be very careful
about the limitations. The different limitations with the objects are to be considered
while writing the SOQL statements to fetch data from the objects. The other limitations
with OFFSET, ORDER BY, COUNT(), toLabel(), and governor limits should also be
considered while writing the SOQL statements with these functions.

In the next chapter, we are going to take a look at the recommended installation
guidelines to be followed while installing the tools for the SOQL statement execution.
These tools will help us execute all the queries that we have discussed so far.

Tools with Installation
Guidelines

We need some tools in order to execute SOQL statements. This chapter deals with
the installation guidelines of some of the tools that are available. This chapter
covers some basic tips that we can use during the installation of tools. It provides
everything you need to complete the installation, from initial setup to the final
SOQL execution. The chapter focuses on tools software and covers all recommended
guidelines to be followed.

Using the Force.com Explorer software
Using the Force.com Explorer software, we can build and test our SOQL queries.
It also allows us to export the queried data in the Comma Separated Value (CSV)
format. It's an AIR application. So, you need to install Adobe AIR before installing it.
The Force.com Explorer software is mainly used for a smaller set of records. It cannot
be used for bulk operations. For bulk operations, Apex Data Loader is the best tool.

We can edit and delete records using the Force.com Explorer software.

Installing Force.com Explorer
The steps to install the Force.com Explorer software are as follows:

1. Go to http://wiki.developerforce.com/page/ForceExplorer.

Tools with Installation Guidelines

[86]

2. Install Adobe Air first and then Force.com Explorer. Without installing
Adobe AIR, we will not be able to open the Force.com Explorer AIR file,
as shown in the following screenshot:

3. Open the Force.com Explorer window using the shortcut menu on the
desktop or from the Start menu.

4. Enter your Username, Password, and Security Token (in case you are
accessing from outside IP ranges).

Chapter 6

[87]

5. Select an Environment (Production or Sandbox) option in Advanced
Options as shown in the following screenshot:

6. Click on the Login button.
7. Build your query and click on the Query button to view the result as shown

in the following screenshot:

Tools with Installation Guidelines

[88]

The Force.com Explorer also lists the static resources used in our Salesforce.com
organization.

To update the record using Force.com Explorer, perform the following steps:

1. Log in to Force.com Explorer.
2. Query some records.
3. Double-click on the value to edit it. It will be highlighted as shown

in the following screenshot:

4. Enter the new value and press Enter; you will get the Save and
Cancel options.

5. Click on Save to update the new value entered into our organization.

Chapter 6

[89]

6. You will get an alert message showing whether the record has been saved
successfully. Click on OK to resume. Refer to the following screenshot:

Workbench
Workbench is a simple web-based tool that is very useful for Salesforce
administrators and developers to interact with Salesforce organizations via the
Force.com APIs. Workbench allows us to execute Salesforce Object Search
Language (SOSL). Unlike SOQL, which can only query one object at a time and
multiple objects only if they have a relationship, SOSL enables you to search text,
e-mail, and phone fields for multiple objects simultaneously.

Tools with Installation Guidelines

[90]

To get started with Workbench, perform the following steps:

1. Go to https://workbench.developerforce.com/login.php.
2. Select an Environment option, API Version, check the I agree to the terms

of service checkbox, and click on the Login with Salesforce button as shown
in the following screenshot:

3. Enter your username and password and click on the Log in to Salesforce
button as shown in the following screenshot:

4. Click on the Allow button as shown in the following screenshot:

Chapter 6

[91]

5. Enter your query and click on the Query button, as shown in the following
screenshot, to view the result:

Tools with Installation Guidelines

[92]

Parent-child relationship queries are not supported in Workbench before setting
them first. Perform the following steps to enable parent-child relationship queries
in Workbench:

1. Navigate to the Settings tab of Workbench as shown in the following
screenshot:

2. In Query & Search Options, check the Allows SOQL Parent Relationship
Queries checkbox and click on Apply Settings as shown in the following
screenshot:

3. Now we will be able to access the parent relationship queries.

Chapter 6

[93]

Dataloader.io
Use Dataloader.io to import, export, and delete data from Salesforce. Everything
is online in Data Loader. There will be no software hassle if we use Dataloader.
io. A browser and an Internet connection are more than enough to use this feature
provided by a third party. It is not a Salesforce tool.

To use Dataloader.io, perform the following steps:

1. Go to https://dataloader.io/.
2. Click on the Login with Salesforce button.
3. Select an Environment option and click on the Login button as shown

in the following screenshot:

Tools with Installation Guidelines

[94]

4. Enter your username and password and click on the Log in to Salesforce
button as shown in the following screenshot:

5. Select Export under New Task as shown in the following screenshot:

6. Select Object and click on the Next button as shown in the following
screenshot:

Chapter 6

[95]

7. Select the fields and build your SOQL query; click on the Verify button
to verify your query and then click on the Next button as shown in the
following screenshot:

Tools with Installation Guidelines

[96]

8. Schedule or run the query to be exported. Refer to the following screenshot:

9. After execution, it shows the successfully extracted records. Refer to the
following screenshot:

10. We can open this file at any time by logging in to Dataloader.io. Refer
to the following screenshot:

Chapter 6

[97]

The Apex Data Loader tool
The Data Loader tool is used to export, update, insert, and delete records. It's mainly
used for bulk operations.

The operations that can be performed using Apex Data Loader are as follows:

• Insert: On using this operation, we can insert new records into our
Salesforce organization.

• Update: On using this operation, we can update existing records in our
Salesforce organization.

• Upsert: On using this operation, we can insert new records into our
Salesforce organization and update existing records in our Salesforce
organization; in other words, Upsert is a combination of Insert and Update.

Tools with Installation Guidelines

[98]

The Upsert operation makes use of the Object record's primary key
(Salesforce's record ID) or the external ID, if specified, to determine
whether new records should be created; otherwise, we will have to update
the existing records . The following conditions explain when the Upsert
operation creates a new record or updates the existing record:

 ° If the key is not matched, a new record is created
 ° If the key is matched once, the existing record is updated
 ° If the key is matched multiple times, an error is generated

and the object record is neither inserted nor updated

• Delete: On using the Delete operation, we can delete existing records
from our Salesforce organization. The deleted records will be available
in the Recycle Bin for 15 days.

• Hard Delete: On using the Hard Delete operation, we can delete existing
records from our Salesforce organization permanently. The deleted records
will not be available in the Recycle Bin. The Bulk API Hard Delete checkbox
should be enabled, as shown in the following screenshot, in the user profile
for permanently deleting records:

• Export: On using this operation, we can extract data from our
Salesforce organization.

• Export All: On using this operation, we can extract data from our
Salesforce organization. The extracted data contains the records from
the Recycle Bin too, that is, soft-deleted records will be extracted.

The system requirements for installing Apex Data Loader are as follows:

• Microsoft Windows 7 or Windows XP
• 120 MB free disk space
• 256 MB available memory
• Java JRE 1.6 or later (Windows 7 or Windows XP)

Chapter 6

[99]

• Sun JVM 1.6 or later (Windows 7 or Windows XP)
• Administrator privileges on the machine

To download the data loader, navigate to Administer | Data Management | Data
Loader as shown in the following screenshot:

Tools with Installation Guidelines

[100]

Click on the Download the Data Loader link as shown in the following screenshot
to download Apex Data Loader:

Downloading Data Loader without the
Salesforce.com login
Perform the following steps to download the Data Loader setup without a Salesforce.
com login:

1. Go to http://www.cloudsuccess.com/resource-centre/apex-data-
loader-archive/.

2. Select the latest version to download. Refer to the following screenshot:

Chapter 6

[101]

The steps for installation are as follows:

1. Double-click on the downloaded file to launch the installation wizard.
2. Click on the Next button.
3. Accept the license agreement and click on the Next button.
4. Accept the default installation directory or click on Change… to choose

another directory. Click on the Next button.
5. Click on the Install button.
6. Click on the Finish button.

To start using Apex Data Loader, perform the following steps:

1. Install Apex Data Loader.
2. Open Apex Data Loader.
3. Click on the Export button as shown in the following screenshot:

Tools with Installation Guidelines

[102]

4. Enter your username, password, and security token (in case you are
accessing outside the IP ranges). Click on the Login button. Once login is
successfully completed, click on the Next button as shown in the following
screenshot:

5. Select an object and click on the Next button.
6. Build your query to fetch the required data. We can filter the records to

be fetched using the filter logic available.
7. Click on the Next button.

Chapter 6

[103]

8. Click on the Finish button to extract the data as shown in the following
screenshot:

9. The exported data will be in CSV format. We can use Excel to open the
extracted file.

10. It also has a built-in CSV format file viewer to view the extracted records.

Tools with Installation Guidelines

[104]

Summary
In this chapter, we came to know about many applications that are available for
querying records from Salesforce objects using SOQL. The step-by-step installation
guide helps avoid problems during installation. These are free versions of software
and a few other software options are provided by Salesforce.com for free. These
recommended guidelines help practitioners to install the software by choosing the
appropriate setups. These software are also used for data migration from legacy
systems to Salesforce.

The Data Loader software can also be used for extracting or performing DML
operations on bulk data. The Force.com Explorer software gives us an option to
perform the DML operation on a single record at a time. This software is mainly
used for handling lesser amounts of data. The Dataloader.io tool allows us to save
and export data for future reference, and it also allows us to schedule export jobs.

Review Questions
This appendix lists the review questions of all the chapters, which will help us to
recap all the chapters.

Chapter 1
The following set of questions has multiple options. Choose the number that
corresponds with your answer:

Q1. SOQL stands for …

1. Structure Object Query Language
2. Salesforce Object Query Language
3. Both 1 and 2
4. None of the above

Q2. Using Order By, which of the following options are true (select two)?

1. Arrange in ascending order
2. Arrange in descending order
3. Descending order is the default
4. Order By is not supported

Q3. Custom objects always end with __r.

1. True
2. False

Review Questions

[106]

Q4. API names of the fields should be used in SOQL instead of the label of the field.

1. True
2. False

The answers for the preceding review questions are as follows:

Q1 – 2

Q2 – 1 and 2

Q3 – 2

Q4 – 1

Chapter 2
Q1. The Alias notation in SOQL changes the label name of the field.

1. True
2. False

Q2. Select the comparison operators (select two).

1. AND

2. OR

3. >

4. =

Q3. The INCLUDES and EXCLUDES operators are used for filtering…

1. Multiselect picklists
2. Lookup
3. Master-detail
4. Many-to-many

The answers for the preceding review questions are as follows:

Q1 – 2

Q2 – 3 and 4

Q3 – 1

Appendix

[107]

Chapter 3
Q1. Which operators are used to filter the multiselect picklist field in Salesforce.com?

1. INCLUDES

2. EXCLUDES

3. Both
4. None

Q2. It is possible to sort records in both ascending and descending order together in
a SOQL query.

1. True
2. False

Q3. FOR VIEW is used to update…

1. LastReferencedDate

2. LastViewedDate

3. LastModifiedDate

4. LastCreatedDate

Q4. FOR REFERENCE is used to update…

1. LastReferencedDate

2. LastViewedDate

3. LastModifiedDate

4. LastCreatedDate

The answers for the preceding review questions are as follows:

Q1 – 3

Q2 – 1

Q3 – 2

Q4 – 1

Review Questions

[108]

Chapter 4
Q1. Which method in SOQL returns the number of distinct non-null field values?

1. COUNT_DISTINCT()

2. MIN()

3. MAX()

4. COUNT()

Q2. Which method in SOQL returns the maximum value of a field?

1. COUNT_DISTINCT()

2. MIN()

3. MAX()

4. COUNT()

Q3. Which method in SOQL returns the minimum value of a field?

1. COUNT_DISTINCT()

2. MIN()

3. MAX()

4. COUNT()

Q4. Which method in SOQL returns the total value of a field?

1. SUM()

2. MIN()

3. MAX()

4. COUNT()

Q5. Which method in SOQL returns the total number of records in an object?

1. COUNT()

2. MIN()

3. MAX()

4. COUNT()

Appendix

[109]

The answers for the preceding review questions are as follows:

Q1 – 1

Q2 – 3

Q3 – 2

Q4 – 1

Q5 – 1

Index
A
advanced SOQL statements

about 45
date fields, querying with 57
date formats 54
date literals 54
escape sequences 53
FOR REFERENCE clause 60
FOR VIEW clause 60
GROUP BY CUBE clause 61
GROUP BY ROLLUP clause 59, 60
lookup relationship 45
master-detail relationship 45
multiselect picklist values, filtering 50
OFFSET clause 62
relationship queries 45, 46

alias notation
about 25
usage 25, 27

AND operator
using 39

Apex Data Loader tool
about 97
downloading 99, 100
downloading, without Salesforce.com

login 100
installing 101
operations 97
starting 101-103
system requisites 98

B
basic SOQL statements

alias notation 25-27

comparison operators 29
EXCLUDES operator 43
INCLUDES operator 43
IN operator 37
logical operators 39
ORDER BY clause 41
WHERE clause 27, 28

C
comparison operators

about 29
equals operator 30
greater than operator 34
greater than or equal to operator 33
less than operator 32
less than or equal to operator 32
LIKE operator 36
not equals operator 30

COUNT_DISTINCT() method
about 70
using 70, 71

COUNT(Field_Name) method
using 69, 70

COUNT() method
about 68
using 68

COUNT() query
limitations 82

D
Dataloader.io

about 93
using 93-96

date fields
querying with 57

[112]

date formats 54
date literals 54

E
equals operator

using 30
escape sequences 53
EXCLUDES operator 43, 52, 53

F
Force.com Explorer software

about 85
installing 85-89
using 85

FOR REFERENCE clause
using 60

FOR VIEW clause
using 60

functions, SOQL. See SOQL functions

G
greater than operator

using 34, 35
greater than or equal to operator

using 33, 34
GROUP BY clause

about 67
using 67, 68

GROUP BY CUBE clause
using 61

GROUP BY ROLLUP clause
using 59, 60

H
HAVING clause

using 74, 75

I
INCLUDES operator 43, 50, 51
IN operator

NOT IN operator 37
using 37

L
less than operator

using 32, 33
less than or equal to operator

using 32
LIKE operator

using 36
limitations, SOQL

COUNT() query 82
Governor limits 80
Notes and Attachments objects 83
OFFSET clause 82
ORDER BY query 81
relationship queries 82
toLabel() query 81

logical operators
about 39
AND operator 39
OR operator 39, 40

M
MAX() method

about 72
using 72, 73

MIN() method
about 71, 72
using 71

multiselect picklist values
EXCLUDES operator 52
filtering 50
INCLUDES operator 50, 51

N
not equals operator

using 30
Notes and Attachments objects

limitations 83
NOT IN operator

about 37
using 37

O
objects

limitations 79

[113]

OFFSET clause
limitations 82
using 62

operations, Apex Data Loader
delete 98
export 98
export all 98
hard delete 98
insert 97
update 97
upsert 97

ORDER BY clause
using 41, 42

ORDER BY query
limitations 81

OR operator
using 39-41

R
relationship queries

about 45-47
Child Relationship Name option 47-49
limitations 82

review questions 105

S
Salesforce Object Query Language. See

SOQL
Salesforce Object Search Language (SOSL)

89
SOQL

about 5, 6
best practices 78, 79
limitations 80
limitations, in objects 79
purpose 8
standards 77, 78
syntax 9-12
using 6-8

SOQL functions
about 65
COUNT_DISTINCT() method 70
COUNT(Field_Name) method 69
COUNT() method 68

GROUP BY clause 67
HAVING clause 74, 75
MAX() method 72
MIN() method 71
SUM() method 73
toLabel() method 65

SOQL statement
writing 13-23

Structured Query Language (SQL) 5
SUM() method

using 73

T
toLabel() method

about 65
using 65, 66

toLabel() query
limitations 81

W
WHERE clause

about 27
usage 28, 29

Workbench
about 89
installing 89-92

Thank you for buying
Getting Started with SOQL

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft SQL Server 2012 with
Hadoop
ISBN: 978-1-78217-798-2 Paperback: 96 pages

Integrate data between Apache Hadoop and SQL
Server 2012 and provide business intelligence on the
heterogeneous data

1. Integrate data from unstructured (Hadoop)
and structured (SQL Server 2012) sources.

2. Configure and install connectors for a
bi-directional transfer of data.

3. Full of illustrations, diagrams, and tips with
clear, step-by-step instructions and practical
examples.

Instant Microsoft SQL Server
Analysis Services 2012
Dimensions and Cube
ISBN: 978-1-84968-872-7 Paperback: 72 pages

Learn how to build dimensions and cubes in a SQL
Server 2012 development environment

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Create your own SQL Server development
environment.

3. Full of practical tutorials on cube design and
development.

4. Learn how to efficiently administrate and
manage your SQL Server instance.

Please check www.PacktPub.com for information on our titles

Microsoft SQL Server 2012
Security Cookbook
ISBN: 978-1-84968-588-7 Paperback: 322 pages

Over 70 practical, focused recipes to bullet-proof your
SQL Server database and protect it from hackers and
security threats

1. Practical, focused recipes for securing your SQL
Server database.

2. Master the latest techniques for data and
code encryption, user authentication and
authorization, protection against brute force
attacks, denial-of-service attacks, and SQL
Injection, and more.

3. A learn-by-example recipe-based approach
that focuses on key concepts to provide the
foundation to solve real world problems.

Getting Started with NoSQL
ISBN: 978-1-84969-498-8 Paperback: 142 pages

Take a deep dive into NoSQL, the technologies, the
products on the market and RDBMS using scenario-
driver case studies

1. First hand, detailed information about NoSQL
technology.

2. Learn the differences between NoSQL and
RDBMS and where each is useful.

3. Understand the various data models for
NoSQL.

4. Compare and contrast some of the popular
NoSQL databases on the market.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to SOQL
	What is SOQL?
	Purpose of SOQL
	SOQL syntax
	Writing your first SOQL statement
	Summary

	Chapter 2: Basic SOQL Statements
	The alias notation
	The WHERE clause
	The comparison operators
	The equals operator
	The not equals operator
	The less than or equal to operator
	The less than operator
	The greater than or equal to operator
	The greater than operator
	The LIKE operator

	The IN operator
	The NOT IN Operator

	The logical operators
	The AND operator
	The OR operator

	The ORDER BY clause
	The INCLUDES and EXCLUDES operators
	Summary

	Chapter 3: Advanced SOQL Statements
	Relationship queries
	Filtering multiselect picklist values
	The INCLUDES operator
	The EXCLUDES operator

	The escape sequences
	The date formats
	The date literals
	Querying with the date fields
	Sorting in both the ascending and descending orders
	Using the GROUP BY ROLLUP clause
	Using the FOR REFERENCE clause
	Using the FOR VIEW clause
	Using the GROUP BY CUBE clause
	Using the OFFSET clause
	Summary

	Chapter 4: Functions in SOQL
	Using the toLabel() method
	Using the GROUP BY clause
	Using the COUNT() method
	Using the COUNT(Field_Name) method
	Using the COUNT_DISTINCT() method
	Using the MIN() method
	Using the MAX() method
	Using the SUM() method
	Using the HAVING clause
	Summary

	Chapter 5: Limitations and Best Practices
	Standards to be followed in SOQL
	Best practices
	Limitations in objects
	Other limitations
	Governor limits
	Understanding the limitations of the ORDER BY query
	Understanding the limitations of the toLabel() query
	Understanding the limitations of the COUNT() query
	Understanding the limitations of the OFFSET clause
	Limitations of the relationship queries
	Notes and Attachments limitations

	Summary

	Chapter 6: Tools with Installation Guidelines
	Using the Force.com Explorer software
	Installing Force.com Explorer

	Workbench
	Dataloader.io
	The Apex Data Loader tool
	Downloading Data Loader without the Salesforce.com login

	Summary

	Appendix: Review Questions
	Index

