
www.allitebooks.com

http://www.allitebooks.org

fl ast.indd 01:51:1:PM 05/08/2014 Page xii

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 07:22:0:PM 05/07/2014 Page i

Jordan Tigani
Siddartha Naidu

Google® BigQuery
Analytics

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 07:22:0:PM 05/07/2014 Page ii

Google® BigQuery Analytics

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-82482-5

ISBN: 978-1-118-82487-0 (ebk)

ISBN: 978-1-118-82479-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or

108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-

rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)

748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including

without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought.

Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or

Web site is referred to in this work as a citation and/or a potential source of further information does not mean that

the author or the publisher endorses the information the organization or website may provide or recommendations

it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-

peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014931958

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or

its affi liates, in the United States and other countries, and may not be used without written permission. Google is a

registered trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley &

Sons, Inc. is not associated with any product or vendor mentioned in this book.

Proofreader
Nancy Carrasco

Technical Proofreader
Bruce Chhay

Indexer
Robert Swanson

Cover Design and Image
Wiley

Executive Editor
Robert Elliott

Project Editors
Tom Dinse

Kevin Kent

Technical Editor
Jeremy Condit

Production Editor
Christine Mugnolo

Copy Editor
San Dee Phillips

Manager of Content
Development and Assembly
Mary Beth Wakefi eld

Director of Community
Marketing
David Mayhew

Marketing Manager
Lorna Mein

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

iii

ffi rs.indd 07:22:0:PM 05/07/2014 Page iii

Jordan Tigani has more than 15 years of professional software development

experience, the last 4 of which have been spent building BigQuery. Prior to join-

ing Google, Jordan worked at a number of star-crossed startups. The startup

experience made him realize that you don’t need to be a big company to have Big

Data. Other past jobs have been in Microsoft Research and the Windows kernel

team. When not writing code, Jordan is usually either running or playing soc-

cer. He lives in Seattle with his wife, Tegan, where they both can walk to work.

Siddartha Naidu joined Google after fi nishing his doctorate degree in Physics.

At Google he has worked on Ad targeting, newspaper digitization, and for the

past 4 years on building BigQuery. Most of his work at Google has revolved

around data; analyzing it, modeling it, and manipulating large amounts of it.

When he is not working on SQL recipes, he enjoys inventing and trying the

kitchen variety. He currently lives in Seattle with his wife, Nitya, and son,

Vivaan, who are the subjects of his kitchen experiments, and when they are not

traveling, they are planning where to travel to next.

About the Authors

www.allitebooks.com

http://www.allitebooks.org

iv

ffi rs.indd 07:22:0:PM 05/07/2014 Page iv

Jeremy Condit is one of the founding engineers of the BigQuery project at Google,

where he has contributed to the design and implementation of BigQuery's API,

query engine, and client tools. Prior to joining Google in 2010, he was a researcher

in computer science, focusing on programming languages and operating sys-

tems, and he has published and presented his research in a number of ACM and

Usenix conferences. Jeremy has a bachelor's degree in computer science from

Harvard and a Ph.D. in computer science from U.C. Berkeley.

About the Technical Editor

About the Technical Proofreader

Bruce Chhay is an engineer on the Google BigQuery team. Previously he was

at Microsoft, working on large-scale data analytics such as Windows error

reporting and Windows usage telemetry. He also spent time as co-founder of

a startup. He has a BE in computer engineering and MBA from the University

of Washington.

www.allitebooks.com

http://www.allitebooks.org

v

ffi rs.indd 07:22:0:PM 05/07/2014 Page v

Acknowledgments

First, we would like to thank the Dremel and BigQuery teams for building and

running a service worth writing about. The last four years since the offsite at

Barry’s house, where we decided we weren’t going to build what management

suggested but were going to build BigQuery instead, have been an exciting time.

More generally, thanks to the Google tech infrastructure group that is home

to many amazing people and projects. These are the type of people who say,

“Only a petabyte?” and don’t mean it ironically. It is always a pleasure to come

to work.

There were a number of people who made this book possible: Robert Elliot,

who approached us about writing the book and conveniently didn’t mention

how much work would be involved; and Kevin Kent, Tom Dinse, and others

from Wiley who helped shepherd us through the process.

A very special thank you to our tech editor and colleague Jeremy Condit who

showed us he can review a book just as carefully as he reviews code. Readers

should thank him as well, because the book has been much improved by his

suggestions.

Other well-deserved thanks go to Bruce Chhay, another BigQuery team

member, who volunteered on short notice to handle the fi nal edit. Jing Jing

Long, one of the inventors of Dremel, read portions of the book to make sure

our descriptions at least came close to matching his implementation. Craig Citro

provided moral support with the Python programming language.

And we’d like to thank the BigQuery users, whose feedback, suggestions,

and even complaints have made BigQuery a better product.

 — The Authors

www.allitebooks.com

http://www.allitebooks.org

vi Acknowledgments

ffi rs.indd 07:22:0:PM 05/07/2014 Page vi

It has been a great experience working on this project with Siddartha; he’s one

of the best engineers I’ve worked with, and his technical judgment has formed

the backbone of this book. I’d like to thank my parents, who helped inspire the

Shakespeare examples, and my wife, Tegan, who inspires me in innumerable

other ways. Tegan also lent us her editing skills, improving clarity and making

sure I didn’t make too many embarrassing mistakes. Finally, I’d like to thank

the Google Cafe staff, who provided much of the raw material for this book.

 — Jordan Tigani

When I was getting started on this project, I was excited to have Jordan as

my collaborator. In retrospect, it would have been impossible without him. His

productivity can be a bit daunting, but it comes in handy when you need to slack

off. I would like to thank my wife, Nitya, for helping me take on this project

in addition to my day job. She had to work hard at keeping Vivaan occupied,

who otherwise was my excuse for procrastinating. Lastly, I want to thank my

parents for their tireless encouragement.

 — Siddartha Naidu

www.allitebooks.com

http://www.allitebooks.org

vii

ftoc.indd 07:52:57:AM 05/10/2014 Page vii

Introduction xiii

Part I BigQuery Fundamentals C H A P T E R 1

Chapter 1 The Story of Big Data at Google 3

Big Data Stack 1.0 4
Big Data Stack 2.0 (and Beyond) 5
Open Source Stack 7
Google Cloud Platform 8

Cloud Processing 9

Cloud Storage 9

Cloud Analytics 9

Problem Statement 10
What Is Big Data? 10

Why Big Data? 10

Why Do You Need New Ways to Process Big Data? 11

How Can You Read a Terabyte in a Second? 12

What about MapReduce? 12

How Can You Ask Questions of Your Big Data and Quickly

Get Answers? 13

Summary 13

Chapter 2 BigQuery Fundamentals 15

What Is BigQuery? 15
SQL Queries over Big Data 16

Cloud Storage System 21

Distributed Cloud Computing 23

Analytics as a Service (AaaS?) 26

What BigQuery Isn’t 29

BigQuery Technology Stack 31

Contents

www.allitebooks.com

http://www.allitebooks.org

viii Contents

ftoc.indd 07:52:57:AM 05/10/2014 Page viii

Google Cloud Platform 34

BigQuery Service History 37

BigQuery Sensors Application 39
Sensor Client Android App 40

BigQuery Sensors AppEngine App 41

Running Ad-Hoc Queries 42

Summary 43

Chapter 3 Getting Started with BigQuery 45

Creating a Project 45
Google APIs Console 46

Free Tier Limitations and Billing 49

Running Your First Query 51
Loading Data 54

Using the Command-Line Client 57
Install and Setup 58

Using the Client 60

Service Account Access 62

Setting Up Google Cloud Storage 64
Development Environment 66

Python Libraries 66

Java Libraries 67

Additional Tools 67

Summary 68

Chapter 4 Understanding the BigQuery Object Model 69

Projects 70
Project Names 70

Project Billing 72

Project Access Control 72

Projects and AppEngine 73

BigQuery Data 73
Naming in BigQuery 73

Schemas 75

Tables 76

Datasets 77

Jobs 78
Job Components 78

BigQuery Billing and Quotas 85
Storage Costs 85

Processing Costs 86

Query RPCs 87

TableData.insertAll() RPCs 87

Data Model for End-to-End Application 87
Project 87

Datasets 88

Tables 89

Summary 91

www.allitebooks.com

http://www.allitebooks.org

 Contents ix

ftoc.indd 07:52:57:AM 05/10/2014 Page ix

Part II Basic BigQuery 93

Chapter 5 Talking to the BigQuery API 95

Introduction to Google APIs 95
Authenticating API Access 96

RESTful Web Services for the SOAP-Less Masses 105

Discovering Google APIs 112

Common Operations 113

BigQuery REST Collections 122
Projects 123

Datasets 126

Tables 132

TableData 139

Jobs 144

BigQuery API Tour 151

Error Handling in BigQuery 154

Summary 158

Chapter 6 Loading Data 159

Bulk Loads 160
Moving Bytes 163

Destination Table 170

Data Formats 174

Errors 182

Limits and Quotas 186

Streaming Inserts 188
Summary 193

Chapter 7 Running Queries 195

BigQuery Query API 196
Query API Methods 196

Query API Features 208

Query Billing and Quotas 213

BigQuery Query Language 221
BigQuery SQL in Five Queries 222

Differences from Standard SQL 232

Summary 236

Chapter 8 Putting It Together 237

A Quick Tour 238
Mobile Client 242

Monitoring Service 243

Log Collection Service 252
Log Trampoline 253

Dashboard 260
Data Caching 261

Data Transformation 265

Web Client 269

Summary 272

x Contents

ftoc.indd 07:52:57:AM 05/10/2014 Page x

Part III Advanced BigQuery 273

Chapter 9 Understanding Query Execution 275

Background 276
Storage Architecture 277

Colossus File System (CFS) 277

ColumnIO 278

Durability and Availability 281

Query Processing 282
Dremel Serving Trees 283

Architecture Comparisons 295
Relational Databases 295

MapReduce 298

Summary 303

Chapter 10 Advanced Queries 305

Advanced SQL 306
Subqueries 307

Combining Tables: Implicit UNION and JOIN 310

Analytic and Windowing Functions 315

BigQuery SQL Extensions 318
The EACH Keyword 318

Data Sampling 320

Repeated Fields 324

Query Errors 334
Result Too Large 334

Resources Exceeded 337

Recipes 338
Pivot 339

Cohort Analysis 340

Parallel Lists 343

Exact Count Distinct 344

Trailing Averages 346

Finding Concurrency 347

Summary 348

Chapter 11 Managing Data Stored in BigQuery 349

Query Caching 349
Result Caching 350
Table Snapshots 354
AppEngine Datastore Integration 358

Simple Kind 359

Mixing Types 366

Final Thoughts 368

Metatables and Table Sharding 368
Time Travel 368

Selecting Tables 374

Summary 378

 Contents xi

ftoc.indd 07:52:57:AM 05/10/2014 Page xi

Part IV BigQuery Applications 381

Chapter 12 External Data Processing 383

Getting Data Out of BigQuery 384
Extract Jobs 384

TableData.list() 396

AppEngine MapReduce 405
Sequential Solution 407

Basic AppEngine MapReduce 409

BigQuery Integration 412

Using BigQuery with Hadoop 418

Querying BigQuery from a Spreadsheet 419
BigQuery Queries in Google Spreadsheets (Apps Script) 419

BigQuery Queries in Microsoft Excel 429

Summary 433

Chapter 13 Using BigQuery from Third-Party Tools 435

BigQuery Adapters 436
Simba ODBC Connector 436

JDBC Connection Options 444

Client-Side Encryption with Encrypted BigQuery 445

Scientifi c Data Processing Tools in BigQuery 452
BigQuery from R 452

Python Pandas and BigQuery 461

Visualizing Data in BigQuery 467
Visualizing Your BigQuery Data with Tableau 467

Visualizing Your BigQuery Data with BIME 473

Other Data Visualization Options 477

Summary 478

Chapter 14 Querying Google Data Sources 479

Google Analytics 480
Setting Up BigQuery Access 480

Table Schema 481

Querying the Tables 483

Google AdSense 485
Table Structure 486

Leveraging BigQuery 490

Google Cloud Storage 491
Summary 494

Index 495

fl ast.indd 01:51:1:PM 05/08/2014 Page xii

xiii

fl ast.indd 01:51:1:PM 05/08/2014 Page xiii

If you want to get the most out of any tool, whether it is a database or a rotary

power drill, it is important to know how it works. This lets you develop an

intuition about how you can use the tool effectively. The goal of this book is to

help you develop an intuition about BigQuery, which can enable you to make

your own decisions about when BigQuery is the right tool for the job, how you

can improve your query effi ciency, and how you can apply BigQuery in unan-

ticipated situations.

It is also important to have good examples that you can incorporate into your

code. This book provides source code to help you start using BigQuery in your

applications and query examples that can help you solve complex problems in

SQL. In addition, we show you how to write code to get your data in, how to

query and visualize that data, and how to get it out again.

The target audience for this book is a data scientist who wants to analyze

data with BigQuery, a developer who wants to integrate BigQuery into their

data pipelines, or someone who is trying to determine whether BigQuery is the

right tool to use. Each type of reader might want something different from the

book; the “How to Read This Book” section provides guidelines for a custom

path through the chapters.

Overview of the Book and Technology

Both of us, Siddartha Naidu and Jordan Tigani, have been part of the BigQuery

team since a group of Google engineers sat around a dining room table to brain-

storm what kind of product to build. Siddartha, along with another engineer,

built the original prototype that he demonstrated in 2010 at Google I/O, Google’s

Introduction

xiv Introduction

fl ast.indd 01:51:1:PM 05/08/2014 Page xiv

annual developer conference. Two years later, also at Google I/O, Jordan was

on hand to announce public availability.

In the intervening time, we have both been active contributors to the design

and implementation of the BigQuery service. The system has grown consider-

ably, both in the number of users as well as what it can do. We’ve also helped

support the product via mailing lists and the BigQuery area on StackOverfl ow.

We’ve paid close attention to how the product was used, the kinds of problems

that people had, and the interesting applications they found for the technology.

Along the way we built up a collection of cool things you can do using BigQuery:

different techniques, ways of querying, and methods of working around limita-

tions. These tricks and best practices are in this book.

This book doesn’t attempt to replace the online documentation. Instead, it is

a good format to dive deeper into the service and address different audiences,

particularly those familiar with traditional data warehousing products. In addi-

tion, this book gives you a sense of how BigQuery works and answers some of

the “whys” behind the design.

Although BigQuery, as a product, moves quickly, we’ve written the book

with changes (expected and otherwise) in mind. A new version of BigQuery is

released every week or so, and each one fi xes bugs, adds features, or improves

scalability and performance. By the time you read this book, BigQuery may

have undergone signifi cant evolution.

The BigQuery team works hard at making sure all changes to BigQuery will

be backward compatible. When new functionality is introduced that confl icts

with existing behavior, the policy is to ensure the old version continues to work

for at least 12 months. The code and examples in this book should continue to

work for a considerable amount of time. Both code and SQL queries that were

written to interact with BigQuery at the public launch in 2012 still work today.

Even though the BigQuery service maintains backward compatibility, the best

way to achieve a particular result sometimes changes as new features become

available. We have chosen to document in this book core concepts that are useful

independent of details that might change over time. When in doubt, consult the

offi cial documentation at https://developers.google.com/bigquery.

Moreover, this book describes integration with other technologies, such as

R, Microsoft Excel, and Tableau. Although each of these technologies is also

evolving, we’ve tried to include things that will likely continue to work for the

foreseeable future. For instance, Chapter 13, “Using BigQuery from Third-Party

Tools,” describes using BigQuery via an ODBC connection. Although each

version of Microsoft Windows may change the user interface slightly around

setting up an ODBC connection, ODBC is a stable technology that will still

work years down the road.

https://developers.google.com/bigquery

 Introduction xv

fl ast.indd 01:51:1:PM 05/08/2014 Page xv

How This Book Is Organized

This book is divided into four sections:

 ■ BigQuery Fundamentals (Chapters 1 through 4): Walks you through

how to start with BigQuery and describes the basic abstractions used by

the service. If you’re familiar with BigQuery, you might want to just skim

this section; although, it might be helpful to read it to make sure you have

a fi rm grounding in the primary concepts.

 ■ Basic BigQuery (Chapters 5 through 8): Shows how to use the API at a

raw HTTP level and via the higher-level clients, as well as how to write

SQL queries. This section culminates with an AppEngine app that ties

the various pieces of the API together and shows how they are useful in

a real-world scenario.

 ■ Advanced BigQuery (Chapters 9 through 11): Goes into detail about

how BigQuery works, gives advanced query tricks and recipes, and gives

advice on data management strategies. This section can help you under-

stand why a query that seems like it should work might return an error,

and can help you create queries that can be diffi cult to express in SQL.

 ■ BigQuery Applications (Chapters 12 through 14): Shows how to tie

BigQuery in with other systems. For instance, this section shows how

to visualize your data with Tableau, how to query BigQuery tables from

Microsoft Excel, and how to query your Google Analytics data.

How to Read This Book

You can, of course, read this book straight through from cover to cover. However,

depending on your goals, you may want to skip some sections without losing

much context. For example, if you are a data analyst trying to learn how to write

better BigQuery queries, you may not be as interested in the HTTP API as a

developer who wants to mirror a production database to BigQuery. Following

are a couple of suggested paths though the book for different user profi les.

Data Scientist

A data scientist is a user who doesn’t care about the details of the HTTP API but

wants to get the most out of queries. Their primary interaction with BigQuery

xvi Introduction

fl ast.indd 01:51:1:PM 05/08/2014 Page xvi

will be through SQL and the various BigQuery tools provided by Google. The

data scientist can follow this chapter progression:

 ■ Chapters 1–4 (fundamentals): For anyone not familiar with BigQuery,

these chapters describe what BigQuery is and how to start using it. Chapter

4, “Understanding the BigQuery Object Model,” is important because the

fundamental abstractions in BigQuery differ slightly from other relational

database systems.

 ■ Chapter 7, “Running Queries”: You may want to skim the API portion,

but you probably shouldn’t skip it completely because it describes what

is possible via the API. (And all the API features should be available in

the web UI or in the bq command-line client.) Some table management

operations that you may expect to be in SQL (such as creating a tempo-

rary table) are done via the API in BigQuery. This chapter also discusses

how BigQuery SQL is different from standard SQL and walks through a

number of BigQuery queries.

 ■ Chapter 9, “Understanding Query Execution”: This chapter describes

the architecture of the systems that underlie BigQuery. If you want to

write good queries and understand why query X is faster than query Y,

this chapter is important. Most users of relational databases develop an

intuition about how to write effi cient queries, and because BigQuery uses

a different fundamental architecture, some of these previous intuitions

could get you in trouble. This chapter can help you develop similar intu-

ition about the types of queries that can run well in BigQuery.

 ■ Chapter 10, “Advanced Queries”: This chapter shows some queries that

you might not think of writing and provides advanced query recipes. You

may want to refer back to this chapter when you run into data modeling

or query problems.

 ■ Chapter 11, “Managing Data Stored in BigQuery”: You might want to

skip or skim this chapter, but the portions on how to partition your data

or how to make use of the query cache may be useful.

 ■ Chapter 12, “External Data Processing”: The second half of this chap-

ter, which describes running queries from Microsoft Excel and Google

Spreadsheets, will likely be interesting if your organization uses a lot of

spreadsheets.

 ■ Chapter 13, “Using BigQuery from Third-Party Tools”: You should read

this chapter if you’re interested in data visualization, client-side encryp-

tion, R, or using BigQuery via ODBC.

 ■ Chapter 14, “Querying Google Data Sources”: If you have data from a

Google project (AdSense, Google Analytics, or DoubleClick) that you want

to query, this is the chapter for you.

 Introduction xvii

fl ast.indd 01:51:1:PM 05/08/2014 Page xvii

Software Developer

If you’re a developer who wants to integrate BigQuery with your data pipelines

or create a dashboard using BigQuery, you might be most interested in the fol-

lowing chapters:

 ■ Chapters 1–4 (fundamentals): If you’re going to use the API, carefully

read Chapter 4, “Understanding the BigQuery Object Model.” You need to

understand the BigQuery object model, the difference between a Dataset

and a Table, and what kinds of things you can do with Jobs.

 ■ Chapter 5, “Talking to the BigQuery API”: This chapter gives an overview

of the HTTP API that you’ll use if you write code to talk to BigQuery.

 ■ Chapter 6, “Loading Data”: If you want to get your data into BigQuery,

read this chapter.

 ■ Chapter 7, “Running Queries”: This chapter discusses the BigQuery query

language and the query API. You’ll likely want to be familiar with how

to run queries via the API as well as the various query options.

 ■ Chapter 8, “Putting It Together”: This chapter walks you through an

end-to-end AppEngine application that uses BigQuery for logging, dash-

boarding, and ad-hoc querying. If you write code that uses BigQuery, the

online resources for this chapter will be particularly interesting because

you may cut and paste a lot of the code that is provided.

 ■ Chapter 11, “Managing Data Stored in BigQuery”: This may be interesting

because it gives best practices for how to partition your data effectively,

and gives tips and tricks for reducing the cost of using BigQuery.

 ■ Chapter 12, “External Data Processing”: If you want to process your data

outside of BigQuery, this chapter will be useful. Maybe you want to run

Hadoop over your BigQuery data, or you want to download your tables

locally to process them on-premise.

 ■ Chapter 13, “Using BigQuery from Third-Party Tools”: There are a

number of third-party tools that can make it easier for you to integrate

with BigQuery. For example, if you already use ODBC to connect to a

database source, the Simba ODBC driver for BigQuery may allow you to

run queries without having to write any additional code.

Technology Evaluator

Maybe you’re considering using BigQuery and would like to compare it against

other options such as Amazon.com’s Redshift or Cloudera Impala. Or maybe

you’re just curious about the architecture. If you’re reading this book because

xviii Introduction

fl ast.indd 01:51:1:PM 05/08/2014 Page xviii

you’re interested in what the technology can do and how it works, consider the

following chapters:

 ■ Chapter 2, “Big Query Fundamentals”: This chapter is a good introduc-

tion to BigQuery and what it can do. It also describes what BigQuery does

not do and gives some comparisons to other technologies.

 ■ Chapter 4, “Understanding the BigQuery Object Model”: This chapter

will be worth skimming, even if you’re interested only in how BigQuery

works. Other chapters reference it heavily and assume that you know the

difference between a Table and a Dataset.

 ■ Chapters 5–8 (BigQuery API): These chapters may be worth skimming,

if to see only what BigQuery can do and what the code to use for various

features would look like.

 ■ Chapter 9, “Understanding Query Execution”: This chapter has archi-

tectural comparisons to other Big Data frameworks such as Hadoop.

It describes how BigQuery works, including the Dremel architecture,

Colossus, and the other building blocks that BigQuery uses to provide a

comprehensive service.

 ■ Chapter 12, “External Data Processing”: This chapter describes a number

of ways to interact with BigQuery; it will be interesting if you want to

fi gure out how to integrate with your existing systems.

 ■ Chapter 13, “Using BigQuery from Third-Party Tools”: This chapter

gives a survey of visualization, connection, and other types of tools that

are built on top of BigQuery.

 ■ Chapter 14, “Querying Google Data Sources”: If you use other Google

services, such as AdSense or Double Click, this chapter is worth skim-

ming to see how you can access the data you already have within Google

via BigQuery.

Tools You Need

If you’re an analyst or someone who just wants to use BigQuery directly

out-of-the-box (that is, without writing code to interact with it), the only thing

you need is a web browser (and perhaps a credit card if your queries exceed

the free monthly quota).

If you’re a developer who wants to integrate BigQuery into your processes,

either by streaming logs into BigQuery, writing dashboards on top of the ser-

vice, or writing custom Hadoop pipelines that use BigQuery data, you need

www.allitebooks.com

http://www.allitebooks.org

 Introduction xix

fl ast.indd 01:51:1:PM 05/08/2014 Page xix

a bit more. You should have Python installed, at least version 2.7, and should

know either Python or another similar language such as Ruby fairly well. The

examples in the book are mostly in Python for two reasons: The fi rst is that it is

the language that is most commonly used to access BigQuery. The other is that

Python is fairly compact (unlike Java) and readable (unlike Perl), so it is easy to

see what the important pieces are without a lot of extra boilerplate.

Some chapters have code in other languages where either the code is suf-

fi ciently different from the Python code or there is a more natural language

to use. For example, Chapter 12, “External Data Processing,” uses App Script

to demonstrate how to run BigQuery queries from Google Spreadsheets, and

Chapter 13, “Using BigQuery from Third-Party Tools,” has examples in R and

C#. For these sections you will likely need other development environments. For

Java code you’ll want the JDK, for C# code you’ll likely want Microsoft Visual

Studio, and for R you’ll want R studio.

For the most part, we assume that you’ve already installed these applications,

but for some more specialized environments, such as R, we provide download

and installation information. Even if you’re not an experienced user of these

other languages, you can still follow along with the examples.

If you’re not already a BigQuery user, you need to set up a Google Cloud

Project. Chapter 3, “Getting Started with BigQuery,” walks you through that

process. If you intend to use BigQuery heavily, you may need to provide a credit

card, but there is a free tier of usage that may suffi ce for fi guring out whether

BigQuery meets your needs.

Chapter 8, “Putting It Together,” builds both an Android App to stream data

into BigQuery from device sensors and an AppEngine App. You can use the

Android App as-is, but if you want to tweak it, you need the Android devel-

opment tools. Chapter 8 goes into more detail about what you need. For the

AppEngine portions you need to create your own AppEngine app. Again, the

installation information is provided in Chapter 8.

Supplemental Materials and Information

The companion website to this book is hosted at http://www.wiley.com/go/

googlebigquery. The site contains information about downloading source code

and fi nding sample data used throughout the book. There is also an AppEngine

app at http://bigquery-sensors.appspot.com, the same one that is built in

Chapter 8. It contains links to the BigQuery Sensor dashboard and Android

app downloads.

All the code used in the book is hosted at code.google.com at https://code

.google.com/p/bigquery-e2e/source/browse/. There are two top-level directories:

http://www.wiley.com/go/googlebigquery
http://bigquery-sensors.appspot.com
https://code.google.com/p/bigquery-e2e/source/browse/

xx Introduction

fl ast.indd 01:51:1:PM 05/08/2014 Page xx

samples and sensors. The former contains the code snippets used in the

book, arranged by chapter. The latter directory contains code for the Sensors

AppEngine and Android apps.

You can navigate to that link and browse through the code, or if you have

Git or Subversion installed, you can check out the code to try it on your local

machine. Chapter 3 has directions to help you get started. We will update the

code periodically to fi x bugs or match current best practices. If you fi nd a bug,

you can report it at the project issue tracker (https://code.google.com/p/

bigquery-e2e/issues/list).

If you run into trouble using BigQuery, there are online resources that you

can use to get help or report issues with the service. The offi cial BigQuery pub-

lic documentation is at https://developers.google.com/bigquery; the docs

there should be the most up to date. If you have questions or concerns, there is

an active StackOverfl ow community populated by BigQuery developers and

users at http://stackoverflow.com/questions/tagged/google-bigquery.

In addition, if you fi nd BigQuery bugs or want to submit a feature request,

you can use the public BigQuery issue tracker: https://code.google.com/p/

google-bigquery/issues/list.

https://code.google.com/p/bigquery-e2e/issues/list
https://code.google.com/p/bigquery-e2e/issues/list
https://developers.google.com/bigquery
http://stackoverflow.com/questions/tagged/google-bigquery
https://code.google.com/p/google-bigquery/issues/list

c01.indd 06:35:5:PM 05/02/2014 Page 1

Par t

I
BigQuery Fundamentals

In This Part

Chapter 1: The Story of Big Data at Google

Chapter 2: BigQuery Fundamentals

Chapter 3: Getting Started with BigQuery

Chapter 4: Understanding the BigQuery Object Model

c01.indd 06:35:5:PM 05/02/2014 Page 2

3

c01.indd 06:35:5:PM 05/02/2014 Page 3

Since its founding in 1998, Google has grown by multiple orders of magnitude

in several different dimensions—how many queries it handles, the size of the

search index, the amount of user data it stores, the number of services it pro-

vides, and the number of users who rely on those services. From a hardware

perspective, the Google Search engine has gone from a server sitting under a

desk in a lab at Stanford to hundreds of thousands of servers located in dozens

of datacenters around the world.

The traditional approach to scaling (outside of Google) has been to scale the

hardware up as the demands on it grow. Instead of running your database on a

small blade server, run it on a Big Iron machine with 64 processors and a terabyte

of RAM. Instead of relying on inexpensive disks, the traditional scaling path

moves critical data to costly network-attached storage (NAS).

There are some problems with the scale-up approach, however:

 ■ Scaled-up machines are expensive. If you need one that has twice the

processing power, it might cost you fi ve times as much.

 ■ Scaled-up machines are single points of failure. You might need to get

more than one expensive server in case of a catastrophic problem, and

each one usually ends up being built with so many backup and redundant

pieces that you’re paying for a lot more hardware than you actually need.

C H A P T E R

1

The Story of Big Data at Google

4 Part I ■ BigQuery Fundamentals

c01.indd 06:35:5:PM 05/02/2014 Page 4

 ■ Scale up has limits. At some point, you lose the ability to add more

processors or RAM; you’ve bought the most expensive and fastest machine

that is made (or that you can afford), and it still might not be fast enough.

 ■ Scale up doesn’t protect you against software failures. If you have a Big

Iron server that has a kernel bug, that machine will crash just as easily

(and as hard) as your Windows laptop.

Google, from an early point in time, rejected scale-up architectures. It didn’t,

however, do this because it saw the limitations more clearly or because it was

smarter than everyone else. It rejected scale-up because it was trying to save

money. If the hardware vendor quotes you $1 million for the server you need,

you could buy 200 $5,000 machines instead. Google engineers thought, “Surely

there is a way we could put those 200 servers to work so that the next time

we need to increase the size, we just need to buy a few more cheap machines,

rather than upgrade to the $5 million server.” Their solution was to scale out,

rather than scale up.

Big Data Stack 1.0

Between 2000 and 2004, armed with a few principles, Google laid the founda-

tion for its Big Data strategy:

 ■ Anything can fail, at any time, so write your software expecting unreli-

able hardware. At most companies, when a database server crashes, it is a

serious event. If a network switch dies, it will probably cause downtime.

By running in an environment in which individual components fail often,

you paradoxically end up with a much more stable system because your

software is designed to handle those failures. You can quantify your risk

beyond blindly quoting statistics, such as mean time between failures

(MTBFs) or service-level agreements (SLAs).

 ■ Use only commodity, off-the-shelf components. This has a number of

advantages: You don’t get locked into a particular vendor’s feature set;

you can always fi nd replacements; and you don’t experience big price

discontinuities when you upgrade to the “bigger” version.

 ■ The cost for twice the amount of capacity should not be considerably

more than the cost for twice the amount of hardware. This means the

software must be built to scale out, rather than up. However, this also

imposes limits on the types of operations that you can do. For instance,

if you scale out your database, it may be diffi cult to do a JOIN operation,

since you’d need to join data together that lives on different machines.

 Chapter 1 ■ The Story of Big Data at Google 5

c01.indd 06:35:5:PM 05/02/2014 Page 5

 ■ “A foolish consistency is the hobgoblin of little minds.” If you abandon the

“C” (consistency) in ACID database operations, it becomes much easier

to parallelize operations. This has a cost, however; loss of consistency

means that programmers have to handle cases in which reading data

they just wrote might return a stale (inconsistent) copy. This means you

need smart programmers.

These principles, along with a cost-saving necessity, inspired new computation

architectures. Over a short period of time, Google produced three technologies

that inspired the Big Data revolution:

 ■ Google File System (GFS): A distributed, cluster-based fi lesystem. GFS

assumes that any disk can fail, so data is stored in multiple locations,

which means that data is still available even when a disk that it was

stored on crashes.

 ■ MapReduce: A computing paradigm that divides problems into easily

parallelizable pieces and orchestrates running them across a cluster of

machines.

 ■ Bigtable: A forerunner of the NoSQL database, Bigtable enables structured

storage to scale out to multiple servers. Bigtable is also replicated, so failure

of any particular tablet server doesn’t cause data loss.

What’s more, Google published papers on these technologies, which enabled

others to emulate them outside of Google. Doug Cutting and other open source

contributors integrated the concepts into a tool called Hadoop. Although Hadoop

is considered to be primarily a MapReduce implementation, it also incorporates

GFS and BigTable clones, which are called HDFS and HBase, respectively.

Armed with these three technologies, Google replaced nearly all the off-the-

shelf software usually used to run a business. It didn’t need (with a couple of

exceptions) a traditional SQL database; it didn’t need an e-mail server because

its Gmail service was built on top of these technologies.

Big Data Stack 2.0 (and Beyond)

The three technologies—GFS, MapReduce, and Bigtable—made it possible for

Google to scale out its infrastructure. However, they didn’t make it easy. Over

the next few years, a number of problems emerged:

 ■ MapReduce is hard. It can be diffi cult to set up and diffi cult to decom-

pose your problem into Map and Reduce phases. If you need multiple

MapReduce rounds (which is common for many real-world problems),

6 Part I ■ BigQuery Fundamentals

c01.indd 06:35:5:PM 05/02/2014 Page 6

you face the issue of how to deal with state in between phases and how

to deal with partial failures without having to restart the whole thing.

 ■ MapReduce can be slow. If you want to ask questions of your data, you

have to wait minutes or hours to get the answers. Moreover, you have to

write custom C++ or Java code each time you want to change the ques-

tion that you’re asking.

 ■ GFS, while improving durability of the data (since it is replicated

multiple times) can suffer from reduced availability, since the metadata

server is a single point of failure.

 ■ Bigtable has problems in a multidatacenter environment. Most services

run in multiple locations; Bigtable replication between datacenters is only

eventually consistent (meaning that data that gets written out will show

up everywhere, but not immediately). Individual services spend a lot of

redundant effort babysitting the replication process.

 ■ Programmers (even Google programmers) have a really diffi cult time

dealing with eventual consistency. This same problem occurred when

Intel engineers tried improving CPU performance by relaxing the memory

model to be eventually consistent; it caused lots of subtle bugs because the

hardware stopped working the way people’s mental model of it operated.

Over the next several years, Google built a number of additional infrastructure

components that refi ned the ideas from the 1.0 stack:

 ■ Colossus: A distributed filesystem that works around many of the

limitations in GFS. Unlike many of the other technologies used at Google,

Colossus’ architecture hasn’t been publicly disclosed in research papers.

 ■ Megastore: A geographically replicated, consistent NoSQL-type datastore.

Megastore uses the Paxos algorithm to ensure consistent reads and writes.

This means that if you write data in one datacenter, it is immediately

available in all other datacenters.

 ■ Spanner: A globally replicated datastore that can handle data locality

constraints, like “This data is allowed to reside only in European datacen-

ters.” Spanner managed to solve the problem of global time ordering in

a geographically distributed system by using atomic clocks to guarantee

synchronization to within a known bound.

 ■ FlumeJava: A system that allows you to write idiomatic Java code that

runs over collections of Big Data. Flume operations get compiled and

optimized to run as a series of MapReduce operations. This solves the

 Chapter 1 ■ The Story of Big Data at Google 7

c01.indd 06:35:5:PM 05/02/2014 Page 7

ease of setup, ease of writing, and ease of handling multiple MapReduce

problems previously mentioned.

 ■ Dremel: A distributed SQL query engine that can perform complex queries

over data stored on Colossus, GFS, or elsewhere.

The version 2.0 stack, built piecemeal on top of the version 1.0 stack (Megastore

is built on top of Bigtable, for instance), addresses many of the drawbacks of

the previous version. For instance, Megastore allows services to write from any

datacenter and know that other readers will read the most up-to-date version.

Spanner, in many ways, is a successor to Megastore, which adds automatic

planet-scale replication and data provenance protection.

On the data processing side, batch processing and interactive analyses were

separated into two tools based on usage models: Flume and Dremel. Flume

enables users to easily chain together MapReduces and provides a simpler

programming model to perform batch operations over Big Data. Dremel, on the

other hand, makes it easy to ask questions about Big Data because you can now

run a SQL query over terabytes of data and get results back in a few seconds.

Dremel is the query engine that powers BigQuery; Its architecture is discussed

in detail in Chapter 9, “Understanding Query Execution.”

An interesting consequence of the version 2.0 stack is that it explicitly rejects

the notion that in order to use Big Data you need to solve your problems in

fundamentally different ways than you’re used to. While MapReduce required

you to think about your computation in terms of Map and Reduce phases,

FlumeJava allows you to write code that looks like you are operating over nor-

mal Java collections. Bigtable replication required abandoning consistent writes,

but Megastore adds a consistent coordination layer on top. And while Bigtable

had improved scalability by disallowing queries, Dremel retrofi ts a traditional

SQL query interface onto Big Data structured storage.

There are still rough edges around many of the Big Data 2.0 technologies:

things that you expect to be able to do but can’t, things that are slow but seem

like they should be fast, and cases where they hold onto awkward abstractions.

However, as time goes on, the trend seems to be towards smoothing those rough

edges and making operation over Big Data as seamless as over smaller data.

Open Source Stack

Many of the technologies at Google have been publicly described in research

papers, which were picked up by the Open Source community and re-implemented

as open source versions. When the open source Big Data options were in their

8 Part I ■ BigQuery Fundamentals

c01.indd 06:35:5:PM 05/02/2014 Page 8

infancy, they more or less followed Google’s lead. Hadoop was designed to be

very similar to the architecture described in the MapReduce paper, and the

Hadoop subprojects HDFS and HBase are close to GFS and BigTable.

However, as the value of scale-out systems began to increase (and as problems

with traditional scale-up solutions became more apparent), the Open Source

Big Data stack diverged signifi cantly. A lot of effort has been put into making

Hadoop faster; people use technologies such as Hive and Pig to query their data;

and numerous NoSQL datastores have sprung up, such as CouchDB, MongoDB,

Cassandra, and others.

On the interactive query front, there are a number of open source options:

 ■ Cloudera’s Impala is an open source parallel execution engine similar

to Dremel. It allows you to query data inside HDFS and Hive without

extracting it.

 ■ Amazon.com’s Redshift is a fork of PostgreSQL which has been modifi ed

to scale out across multiple machines. Unlike Impala, Redshift is a hosted

service, so it is managed in the cloud by Amazon.com.

 ■ Drill is an Apache incubator project that aims to be for Dremel what

Hadoop was for MapReduce; Drill fi lls in the gaps of the Dremel paper

to provide a similar open source version.

 ■ Facebook’s Presto is a distributed SQL query engine that is similar to Impala.

The days when Google held the clear advantage in innovation in the Big Data

space are over. Now, we’re in an exciting time of robust competition among

different Big Data tools, technologies, and abstractions.

Google Cloud Platform

Google has released many of its internal infrastructure components to the public

under the aegis of the Google Cloud Platform. Google’s public cloud consists of

a number of components, providing a complete Big Data ecosystem. It is likely

that in the coming months and years there will be additional entries, so just

because a tool or service isn’t mentioned here doesn’t mean that it doesn’t exist.

Chapter 2, “BigQuery Fundamentals,” goes into more detail about the individual

components, but this is a quick survey of the offerings. You can divide the cloud

offerings into three portions: processing, storage, and analytics.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ The Story of Big Data at Google 9

c01.indd 06:35:5:PM 05/02/2014 Page 9

Cloud Processing

The cloud processing components enable you to run arbitrary computations

over your data:

 ■ Google Compute Engine (GCE): The base of Google’s Cloud Platform,

GCE is infrastructure-as-a-service, plain and simple. If you have

software you just want to run in the cloud on a Linux virtual machine,

GCE enables you to do so. GCE also can do live migration of your service

so that when the datacenter it is running is turned down for maintenance,

your service won’t notice a hiccup.

 ■ AppEngine: AppEngine is a higher-level service than GCE. You don’t

need to worry about OS images or networking confi gurations. You just

write the code you actually want running in your service and deploy it;

AppEngine handles the rest.

Cloud Storage

These cloud storage components enable you to store your own data in Google’s

cloud:

 ■ Google Cloud Storage (GCS): GCS enables you to store arbitrary data in

the cloud. It has two APIs: one that is compatible with Amazon.com’s S3

and another REST API that is similar to other Google APIs.

 ■ DataStore: A NoSQL key-value store. DataStore is usually used from

AppEngine, but its REST API enables you to store and look up data from

anywhere.

 ■ BigQuery (Storage API): BigQuery enables you to store structured rows

and columns of data. You can ingest data directly through the REST API,

or you can import data from GCS.

Cloud Analytics

Google’s cloud analytics services enable you to extract meaning from your data:

 ■ Cloud SQL: A hosted MySQL instance in the cloud

 ■ Prediction API: Enables you to train machine learning models and apply

them to your data

10 Part I ■ BigQuery Fundamentals

c01.indd 06:35:5:PM 05/02/2014 Page 10

 ■ Cloud Hadoop: Packages Hadoop and makes it easy to run on Google

Compute Engine

 ■ BigQuery: Enables you to run SQL statements over your structured data

If you fi nd that something is missing from Google’s Cloud Platform, you always

have the option of running your favorite open source software stack on Google

Compute Engine. For example, the Google Cloud Hadoop package is one way

of running Hadoop, but if you want to run a different version of Hadoop than

is supported, you can always run Hadoop directly; Google’s Hadoop package

uses only publicly available interfaces.

Problem Statement

Before we go on to talk about BigQuery, here’s a bit of background information

about the problems that BigQuery was developed to solve.

What Is Big Data?

There are a lot of different defi nitions from experts about what it means to have

Big Data; many of these defi nitions conceal a boast like, “Only a petabyte? I’ve

forgotten how to count that low!” This book uses the term Big Data to mean more

data than you can process sequentially in the amount of time you’re willing to

spend waiting for it. Put another way, Big Data just means more data than you

can easily handle using traditional tools such as relational databases without

spending a lot of money on specialized hardware.

This defi nition is deliberately fuzzy; to put some numbers behind it, we’ll say a

hundred million rows of structured data or a hundred gigabytes of unstructured

data. You can fi t data of that size on a commodity disk and even use MySQL on

it. However, dealing with data that size isn’t going to be pleasant. If you need to

write a tool to clean the data, you’re going to spend hours running it, and you

need be careful about memory usage, and so on. And as the data size gets big-

ger, the amount of pain you’ll experience doing simple things such as backing

it up or changing the schema will get exponentially worse.

Why Big Data?

Many people are surprised at how easy it is to acquire Big Data; they assume

that you need to be a giant company like Wal-Mart or IBM for Big Data to be

relevant. However, Big Data is easy to accumulate. Following are some of the

ways to get Big Data without being a Fortune 500 company:

 Chapter 1 ■ The Story of Big Data at Google 11

c01.indd 06:35:5:PM 05/02/2014 Page 11

 ■ Over time: If you produce a million records a day, that might not be “Big

Data.” But in 3 years, you’ll have a billion records; at some point you may

fi nd that you either need to throw out old data or fi gure out a new way

to process the data that you have.

 ■ Viral scaling: On the Internet, no one knows you’re a small company.

If your website becomes popular, you can get a million users overnight.

If you track 10 actions from a million users a day, you’re talking about a

billion actions a quarter. Can you mine that data well enough to be able

to improve your service and get to the 10 million user mark?

 ■ Projected growth: Okay, maybe you have only small data now, but

after you sign customer X, you’ll instantly end up increasing by another

2 orders of magnitude. You need to plan for that growth now to make

sure you can handle it.

 ■ Architectural limitations: If you need to do intense computation over

your data, the threshold for “Big Data” can get smaller. For example, if

you need to run an unsupervised clustering algorithm over your data, you

may fi nd that even a few million data points become diffi cult to handle

without sampling.

Why Do You Need New Ways to Process Big Data?

A typical hard disk can read on the order of 100 MB per second. If you want

to ask questions of your data and your data is in the terabyte range, you either

need thousands of disks or you are going to spend a lot of time waiting.

As anyone who has spent time tuning a relational database can attest, there

is a lot of black magic involved in getting queries to run quickly on your-

favorite-database. You may need to add indexes, stripe data across disks, put the

transaction log on its own spindle, and so on. However, as your data grows,

at some point it gets harder and harder to make your queries perform well. In

addition, the more work you do, the more you end up specializing the schema

for the type of questions you typically ask of your data.

What if you want to ask a question you’ve never asked before? If you are

relying on a heavily tuned schema, or if you’re running different queries than

the database was tuned for, you may not get answers in a reasonable amount of

time or without bogging down your production database. In these cases, your

options are limited; you either need to run an extremely slow query (that may

degrade performance for your entire database), or you could export the data

and process it in an external system like Hadoop.

Often, to get queries to run quickly, people sample their data—they keep

only 10 percent of user impressions, for example. But what happens if you want

12 Part I ■ BigQuery Fundamentals

c01.indd 06:35:5:PM 05/02/2014 Page 12

to explore the data in a way that requires access to all the impressions? Maybe

you want to compute the number of distinct users that visited your site—if you

drop 90 percent of your data, you can’t just multiply the remaining users by 10 to

get the number of distinct users in the original dataset. This point is somewhat

subtle, but if you drop 90 percent of your data, you might still have records

representing 99 percent of your users, or you might have records representing

only 5 percent of your users; you can’t tell unless you use a more sophisticated

way to fi lter your data.

How Can You Read a Terabyte in a Second?

If you want to ask interactive questions of your Big Data, you must process

all your data within a few seconds. That means you need to read hundreds of

gigabytes per second—and ideally more.

Following are three ways that you can achieve this type of data rate:

 1. Skip a lot of the data. This is a good option if you know in advance the

types of questions you’re going to ask. You can pre-aggregate the data or

create indexes on the columns that you need to access. However, if you

want to ask different questions, or ask them in a different way, you may

not be able to avoid reading everything.

 2. Buy some really expensive hardware. For a few million dollars or so, you

can get a machine onsite that will come with its own dedicated support

person that can let you query over your terabytes of data.

 3. Run in parallel. Instead of reading from one disk, read from thousands

of disks. Instead of one database server, read from hundreds.

If you use custom hardware (solution #2) and you want it to go faster, you need

to buy an even bigger data warehouse server (and hope you can sell the old one).

And if you rely on skipping data (solution #1) to give you performance, the only

way to go faster is to be smarter about what data you skip (which doesn’t scale).

BigQuery, and most Big Data tools, take approach #3. Although it may sound

expensive to have thousands of disks and servers, the advantage is that you get

exactly what you pay for; that is, if you need to run twice as fast, you can buy

twice as many disks. If you use BigQuery, you don’t need to buy your own disks;

you get a chance to buy small slices of time on a massive amount of hardware.

What about MapReduce?

A large proportion of the Big Data hype has been directed toward MapReduce

and Hadoop, its Open Source incarnation. Hadoop is a fantastic tool that enables

you to break up your analysis problem into pieces that run in parallel. The

Hadoop File System (HDFS) can enable you to read in parallel from a lot of disks,

 Chapter 1 ■ The Story of Big Data at Google 13

c01.indd 06:35:5:PM 05/02/2014 Page 13

which allows you to perform operations over Big Data orders of magnitude

more quickly than if you had to read that data sequentially.

However, Hadoop specifi cally and MapReduce in general have some archi-

tectural drawbacks that make them unsuited for interactive-style analyses. That

is, if you want to ask questions of your data using MapReduce, you’re probably

going to want to get a cup of coffee (or go out to lunch) while you wait. Interactive

analyses should give you answers before you get bored or forget why you

were asking in the fi rst place. Newer systems, such as Cloudera’s Impala, allow

interactive queries over your Hadoop data, but they do so by abandoning the

MapReduce paradigm. Chapter 9 discusses the architecture in more detail and

shows why MapReduce is better suited to batch workloads than interactive ones.

How Can You Ask Questions of Your Big Data and Quickly
Get Answers?

Google BigQuery is a tool that enables you to run SQL queries over your Big

Data. It fans out query requests to thousands of servers, reads from tens or

hundreds of thousands of disks at once, and can return answers to complex

questions within seconds. This book describes how BigQuery can achieve such

good performance and how you can use it to run queries on your own data.

Summary

This chapter briefl y documented the history of Google’s Big Data systems and

provided a survey of scale-out technologies, both at Google and elsewhere.

It set the stage for BigQuery by describing an unfulfi lled Big Data analytics

niche. This chapter deliberately didn’t mention BigQuery very much, however;

Chapter 2 should answer all your questions about what BigQuery is and what

it can do.

15

c02.indd 03:16:26:PM 05/09/2014 Page 15

This chapter introduces you to BigQuery, describing what it can do, when to

use it, when not to use it, and even a bit about why it is so fast. Because you may

be evaluating whether BigQuery is the right tool for you, this chapter spends a

bit of time comparing it to other systems and other architectures. It discusses

the performance and types of workloads best-suited to BigQuery, and also how

BigQuery fi ts with other offerings in the Google Cloud Platform.

This chapter concludes with an introduction to an AppEngine and Android

App that is used as the basis of many of the examples throughout the book. This

sample app demonstrates several ways that BigQuery can be integrated into an

application—from log collection and analyses to dashboard development and

correlation of multiple data streams.

What Is BigQuery?

BigQuery, like many tools, started with a problem. Google engineers were hav-

ing a hard time keeping up with the growth of their data. The number of Gmail

users is in the hundreds of millions; by 2012, there were more than 100 billion

Google searches done every month. Trying to make sense of all this data was

a time-consuming and frustrating experience.

Google is hugely a data-driven company. Decisions ranging from café menus

to interview strategies to marketing campaigns are made by analyzing data.

C H A P T E R

2

BigQuery Fundamentals

16 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 16

If you have a great idea but you don’t have data to back it up, you’re going to

have a hard time convincing anyone to implement your suggestion. However,

if you have data on your side that says people click more ads with a particu-

lar shade of blue background, your shade of blue will likely become the new

offi cial standard.

As Google grew exponentially, the amount of data available also grew

exponentially. Despite spending a lot of money on hardware and software for

relational databases, it was often diffi cult to ask simple questions of the data.

Despite having invented MapReduce to help analyze large datasets, it was still

diffi cult to get answers interactively, without waiting minutes or hours for a

long batch job to complete.

The data problem led to the development of an internal tool called Dremel,

which enabled Google employees to run extremely fast SQL queries on large

datasets. According to Armando Fox, a professor of computer science at the

University of California at Berkley, “If you told me beforehand what Dremel

claims to do, I wouldn’t have believed you could build it.” Dremel has become

extremely popular at Google; Google engineers use it millions of times a day

for tasks ranging from building sales dashboards to datacenter temperature

analyses to computing employees’ percentile rank of how long they’ve worked

at the company.

In 2012, at Google I/O, Google publicly launched BigQuery, which allowed

users outside of Google to take advantage of the power and performance of

Dremel. Since then, BigQuery has expanded to become not just a query engine

but a hosted, managed cloud-based structured storage provider. The following

sections describe the main aspects of BigQuery.

SQL Queries over Big Data

The primary function of BigQuery is to enable interactive analytic queries over

Big Data. Although Big Data is a fuzzy term, in practice it just means “data

that is big enough that you have to worry about how big it is.” Sometimes the

data might be small now, but you anticipate it growing by orders of magnitude

later. Sometimes the data might be only a few megabytes, but your algorithms

to process it don’t scale well. Or sometimes you have a million hard drives full

of customer data in a basement.

BigQuery tries to tackle Big Data problems by attempting to be scale-invariant.

That is, whether you have a hundred rows in your table or a hundred billion,

the mechanism to work with them should be the same. Although some variance

in execution time is expected between running a query over a megabyte and

running the same query over a terabyte, the latter shouldn’t be a million times

slower than the former. If you start using BigQuery when you are receiving

1,000 customer records a day, you won’t hit a brick wall when you scale up to

1 billion customer records a day.

 Chapter 2 ■ BigQuery Fundamentals 17

c02.indd 03:16:26:PM 05/09/2014 Page 17

BigQuery SQL

The lingua franca for data analyses is the SQL query language. Other systems,

such as Hadoop, enable you to write code in your favorite language to perform

analytics, but these languages make it diffi cult to interactively ask questions of

your data. If you have to write a Java program to query your data, you’ll end

up spending a lot of time compiling, debugging, and uploading your program,

rather than fi guring out what data you need.

Despite being somewhat intimidating at fi rst, SQL is also easy to use for

nonprogrammers. Many software engineers are surprised when someone

from marketing comes up with a sophisticated query to fi gure out why sales

are slumping. However, it is actually quite common for non- or semi- technical

people to be SQL wizards.

Oddly enough, the ones who often have the most diffi culty with SQL are the

programmers themselves. SQL is a declarative language; that is, you declare

what results you want, and it is up to the software to fi gure out how to get

those results. For programmers, this reverses the natural order; we’re used to

telling the computer exactly what we want it to do so that it gives us the results

that we want. SQL leaves the method of execution up to the underlying query

engine. This turns out to be advantageous for BigQuery because it allows the

Dremel query engine to perform the analysis in a different way from traditional

relational databases.

It can be surprising that a model we often have trouble understanding would

be accessible to people in other disciplines. But after seeing sales, marketing,

and even pointy-haired managers wielding RIGHT OUTER JOINs, we grudgingly

have to admit that people who aren’t programmers are still quite intelligent.

BigQuery uses an admittedly nonstandard dialect of SQL. Speaking for all

the engineers who currently work on or ever have worked on BigQuery or

Dremel, if we could go back and change one thing, it probably would be to

stick to something closer to standard SQL. If there was one prediction we could

make about a breaking change in the future, it would be that BigQuery would

deprecate some of the nonstandard quirks, such as a comma for table union, in

favor of more standard SQL. That said, if such a change was made, there would

be lots of advance warning, and the old dialect would continue to work for a

long time after the new dialect was released.

How Fast Is BigQuery?

One of the main limitations of database query performance is the sequential

nature of most query execution. Although most databases can make use of

multiple processors, they often use their available parallelism to run multiple

queries at once, rather than taking advantage of multiple processors for a single

query. That said, even if they did parallelize single query execution, the database

18 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 18

would still be limited by disk I/O speeds—if your data is stored on a single

disk, reading the disk from multiple places in parallel may actually be slower

than reading it sequentially.

The SQL query language is highly parallelizable, however, as long as you have

a way to take advantage of it. The Dremel query engine created a way to paral-

lelize SQL execution across thousands of machines. Chapter 9, “Understanding

Query Execution,” describes in detail how it works, but the central principle

is that it is a scale-out solution. If you want your queries to run faster, you can

throw more machines at the problem. This is a contrast to a traditional scale-up

architecture, where when you want more performance, you buy fancier hardware.

When run in the Google infrastructure, the Dremel architecture scales nearly

linearly to tens of thousands of processor cores and hundreds of thousands of

disks. The performance goal of the system was to process a terabyte of data in

a second; although peak performance numbers have not been published, those

goals have been met and exceeded.

Of course, this doesn’t mean that you’ll automatically see performance in that

range; the Dremel clusters used by BigQuery are tuned for serving multiple

queries at once rather than single queries at peak speed. A rough estimate for

performance you can expect is on the order of 50 GB per second for a simple

query. More complex queries—JOINs, complex regular expressions, and so

on—will be somewhat slower. That said, 95 percent of all queries in the public

BigQuery clusters fi nish in less than 5 seconds. However, unless you reserve

capacity, you may fi nd that performance fl uctuates signifi cantly due to load on

the system.

BIGQUERY RESERVED CAPACITY

BigQuery off ers the ability to reserve processing capacity in a dedicated virtual cluster

in units of 5 GB processed per second. This might sound strange, since we just said

that the rough goal is to process 50 GB per second for on-demand. Does that mean

reserved capacity charges you more for less performance?

There are a couple of things to note with respect to reservations:

 ■ Reserved capacity gives you the ability to run queries that preempt other users,

up to your capacity limit.

 ■ Reserved capacity gives you the optional ability to ‘burst’ over your capacity

rate. This means your queries can use the pool of on-demand resources in addi-

tion to reserved resources.

 ■ On-demand (non-reserved) capacity is best-eff ort only. Performance may vary

signifi cantly from day to day, even from query to query, based on load of the

overall system. Reservations give you the ability to be fi rst in line for resources

and to expect more stable performance.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ BigQuery Fundamentals 19

c02.indd 03:16:26:PM 05/09/2014 Page 19

Query performance should continue to scale sublinearly (that is, if you double

the size, it will take less than double the time) up to at least 500 GB of data

processed in the query. So if you have a 100 MB table that takes 3 seconds to

query and you increase the size a thousand times to 100 GB, it might take only

5 seconds to query. Increasing the size of the table will allow BigQuery to use

more hardware to run the query.

There is a limit to the number of execution nodes that will be assigned to

any one query, however. Based on current cluster sizing, that limit comes at

approximately one-half a terabyte of data processed. If you start with a 1 TB table

that you can query in 20 seconds and double it to 2 TB, your queries will now

likely take 40 seconds. Note that the relevant size here just includes the fi elds

that are touched. If you have 100 fi elds but just read one of them, the effective

size is just the size of that single fi eld.

There isn’t actually a hard maximum table size you can process in BigQuery,

other than saying that after a certain point, querying the tables may take longer

than you’re willing to wait. Multiterabyte queries are fairly common; multi-

petabyte queries are not.

Performance Benchmarks

Google doesn’t publish benchmarks against BigQuery because when a company

publishes its own benchmarks, people have a tendency to not believe them. In

addition, if Google published performance numbers, it could be construed as a

promise that users will see similar numbers. Because there seemed to be a lack

of available performance information, we decided to run a simple benchmark

of our own. Figure 2.1 shows a graph of how query execution time varies with

the number of rows processed in a table for two different queries.

Figure 2.1: Query execution time versus table size

20 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 20

The benchmark used a real dataset: daily page views for Wikipedia in 2011.

Each run of the benchmark used a sampled set of rows from the underlying

dataset and increased by roughly an order of magnitude in size. The smallest

table was 1,192 rows; the largest was more than 10 billion rows. The tables are

in a publicly available dataset: bigquery-samples:wikipedia_benchmark. You

should be able to reproduce similar results on your own (although you should

note that several of the tables are large, and it can be easy to run up a serious

bill by querying them).

The lower line on the chart corresponds to timings for a simple query that

does a regular expression over the title fi eld, groups by the language fi eld, and

sorts by the number of views. Here is the query that was used (where <size>

ranged from 1k to 10B):

SELECT language, SUM(views) AS views
FROM [bigquery-samples:wikipedia-benchmark<size>]
WHERE REGEXP_MATCH(title, "G.*o.*o.*g")
GROUP BY language
ORDER BY views DESC

We used a reasonably complex query because we didn’t want it to be some-

thing that could be done with a simple fi lter or index, and we wanted to make

sure the query engine wouldn’t be able to use any tricks to skip data.

From the chart, you can see that each order of magnitude increase in the table

size roughly corresponds to an additional 1 second of query time (the x-axis is

plotted in log scale). The fi nal point on the right corresponds to a 10 billion-row

table (10,677,046,566 rows, to be exact). Querying this table scans almost one-half

a terabyte of data (446 GB).

This query would be extremely slow on a relational database; there isn’t

a way to precompute the regular expression results, so a relational database

would have to do a table scan. In BigQuery, the query over the largest table took

less than 8 seconds, on average, to read half a terabyte and perform 10 billion

regular expressions.

We mentioned that there is a size after which you’ll start seeing linear per-

formance. To show this, we added another table, this one with more than 100

billion rows, and re-ran the same query. This query processed 4.4 TB and took

69 seconds on average, which is about ten times as long as the query with one

tenth the data took. While we didn’t go further than the 100 billion row table

in our tests, there are a number of customers who routinely query over tens or

hundreds of terabytes at a time.

You should not assume that all queries will run this quickly, however. JOIN

queries or queries that produce a lot of results may run much more slowly. Some

queries will run out of memory; others may hit other limits in the system. For

example, in order to test JOIN performance, we ran the following self-join against

the same tables from the previous query:

SELECT wiki1.year, wiki1.month, wiki1.day, sum(wiki2.max_views)
FROM [bigquery-samples:wikipedia-benchmark<size>] as wiki1

 Chapter 2 ■ BigQuery Fundamentals 21

c02.indd 03:16:26:PM 05/09/2014 Page 21

JOIN EACH (
 SELECT title, MAX(views) as max_views
 FROM [bigquery-samples:wikipedia-benchmark<size>]
 GROUP EACH BY title
) AS wiki2
ON wiki1.title = wiki2.title
GROUP EACH BY wiki1.year, wiki1.month, wiki1.day

The timing of these queries can be seen as the Self Join line in Figure 2.1.

They take longer than the simple queries, but still increase slowly until about

100 million rows. Increasing from 100 million to a billion rows takes about

double the time—still faster than linear but a signifi cant slowdown. You can

see, however, that the line ends at the 1 billion row point; this is because the

query against the larger 10 billion row table failed with an Insuffi cient Resources

error. Chapter 9 gives much more information about which queries will work

well, which won’t, and why. That chapter also provides some pointers for what

to do when you hit errors like this one.

Cloud Storage System

In addition to being a way to run queries over your data, BigQuery is also a place

to store your structured data in the cloud. Although this aspect of BigQuery grew

out of necessity—if your data didn’t live in Google’s cloud then, you couldn’t

query it—it has grown into a signifi cant and useful subsystem.

Your data is replicated to multiple geographically distinct locations for improved

availability and durability. If a Google datacenter in Atlanta gets shut down

because of a hurricane, that shouldn’t cause a hiccup in your ability to access your

data. Data is also replicated within a cluster, so your data should be virtually

immune to data loss due to hardware failure. Of course, the BigQuery service

may not have perfect uptime, and if your data is important, you should make

sure it is backed up. You can back up your tables by exporting them to Google

Cloud Storage for safekeeping, or you can run a table copy job in BigQuery to

save a snapshot.

Data Ingestion

Data used in BigQuery must be loaded into the system before it can be queried.

The load process transforms your data into a format that is optimized for querying

and stores it in locations in physical proximity to the Dremel compute clusters.

There are three ways to get your data into BigQuery: streaming, direct upload,

and through Google Cloud Storage. The most reliable and predictable is likely

the latter. If your data is already in Google Cloud Storage, the load step is merely

a transfer between two systems already within Google’s cloud, so ingestion is

very fast.

22 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 22

Direct upload can be an easier route if you don’t want to go through Google

Cloud Storage, because you can follow a standard resumable-upload HTTP

protocol. Streaming is the easiest method; you can post individual rows, which

will be available for query immediately. That said, for large load operations, or

cases in which you want all your data to be available atomically, streaming may

not be the best mechanism. For more information about how to get data into

BigQuery, Chapter 6, “Loading Data,” describes the various options in detail.

Structured Data Storage

BigQuery is a system that stores and operates on structured data; that is, data

that follows a rigid schema. A spreadsheet is an example of structured data, as

is a database table. An HTML document, even though it may have predictable

fi elds, is unstructured. If your data doesn’t have a schema, or can’t be coerced

to a schema, there may be other tools that are better-suited for your use case.

BigQuery schemas describe the columns, or fi elds, of the structured data.

Each fi eld has a name and a data type that indicates the kind of data that can

be stored in the fi eld. Those data types can be either primitive or record types.

Primitive types are basic types that store a single value—a string, a fl oating-

point number, an integer, or a boolean fl ag.

A record type, however, is a collection of other fi elds. For the most part, a

record is just a way of grouping your fi elds together. For example, if you store

location as latitude and longitude, you could have a location record with two

fi elds: lat and long. Fields can also be repeated, which means that they can

store more than one value.

These last two features—record types and repeated fi elds—distinguish

BigQuery from most relational databases, which can store only fl at rows. Records

and repeated fi elds enable you to store the data in a more natural way than you

might in a relational database. For example, if your table contains customer

orders, you might want to store an entire order as a single record, even though

there were multiple items in the order. This makes it easier to perform analysis of

the orders without having to fl atten the data or normalize it into multiple tables.

Collections of rows of data following a single schema are organized into

tables. These tables are similar to tables in a typical relational database but

have some restrictions. The only way to modify BigQuery tables is to append

to them or rewrite them—there is no way to update individual rows. BigQuery

also doesn’t support table modifi cation queries, like ALTER TABLE, DROP TABLE,

or UPDATE TABLE.

Collections of tables with similar access restrictions are organized into datasets.
Many relational database systems allow you to have multiple database catalogs.

 Chapter 2 ■ BigQuery Fundamentals 23

c02.indd 03:16:26:PM 05/09/2014 Page 23

For instance, if you have a MySQL database with your fi nancial data you might

want that to be a separate catalog from your user data.

These catalogs map quite well to a BigQuery dataset. Datasets can be shared

with other users and groups. Collections of datasets owned by a single user or

organization are organized into projects. Projects are a Google Cloud Platform

concept that indicates a single billing entity with a team of users in various

roles. Chapter 4, “Understanding the BigQuery Object Model,” discusses these

abstractions in much more detail.

Distributed Cloud Computing

Google has a lot of hardware in their datacenters. A number of people have

tried to fi gure out just how many machines Google has by taking into account

things like global PC sales and maximum power capacity of various known

Google datacenters. It is a large number. Very few, if any, organizations can

match the scale and, as importantly, the organization of Google’s datacenters.

Google’s Cloud Platform allows people outside of Google to take advantage of

this scale and manageability.

Harnessing the Power of Google’s Cloud

When you run your queries via BigQuery, you put a giant cluster of machines

to work for you. Although the BigQuery clusters represent only a small frac-

tion of Google’s global fl eet, each query cluster is measured in the thousands

of cores. When BigQuery needs to grow, there are plenty of resources that can

be harnessed to meet the demand.

If you want to, you could probably fi gure out the size of one of BigQuery’s

compute clusters by carefully controlling the size of data being scanned in

your queries. The number of processor cores involved is in the thousands, the

number of disks in the hundreds of thousands. Most organizations don’t have

the budget to build at that kind of scale just to run some queries over their data.

The benefi ts of the Google cloud go beyond the amount of hardware that is

used, however. A massive datacenter is useless unless you can keep it running.

If you have a cluster of 100,000 disks, some reasonable number of those disks

is going to fail every day. If you have thousands of servers, some of the power

supplies are going to die every day. Even if you have highly reliable software

running on those servers, some of them are going to crash every day.

To keep a datacenter up and running requires a lot of expertise and know-

how. How do you maximize the life of a disk? How do you know exactly which

parts are failing? How do you know which crashes are due to hardware failures

and which to software? Moreover, you need software that is written to handle

24 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 24

failures at any time and in any combination. Running in Google’s cloud means

that Google worries about these things so that you don’t have to.

There is another key factor to the performance of Google’s cloud that some of

the early adopters of Google Compute Engine have started to notice: It has an

extremely fast network. Parallel computation requires a lot of coordination and

aggregation, and if you spend all your time moving the data around, it doesn’t

matter how fast your algorithms are or how much hardware you have. The details

of how Google achieves these network speeds are shrouded in secrecy, but the

super-fast machine-to-machine transfer rates are key to making BigQuery fast.

Cloud Data Warehousing

Most companies are accustomed to storing their data on-premise or in leased

datacenters on hardware that they own or rent. Fault tolerance is usually handled

by adding redundancy within a machine, such as extra power supplies, RAID

disk controllers, and ECC memory. All these things add to the cost of the machine

but don’t actually distance you from the consequences of a hardware failure. If

a disk goes bad, someone has to go to the datacenter, fi nd the rack with the bad

disk, and swap it out for a new one.

Cloud data warehousing offers the promise of relieving you of the responsibil-

ity of caring about whether RAID-5 is good enough, whether your tape backups

are running frequently enough, or whether a natural disaster might take you

offl ine completely. Cloud data warehouses, whether Google’s or a competitor’s,

offer fault-tolerance, geographic distribution, and automated backups.

Ever since Google made the decision to go with exclusively scale-out architec-

tures, it has focused on making its software accustomed to handling frequent

hardware failures. There are stories about Google teams that run mission-

critical components, who don’t even bother to free memory—the amount of

bugs and performance problems associated with memory management is too

high. Instead, they just let the process run out of memory and crash, at which

time it will get automatically restarted. Because the software has been designed

to not only handle but also expect that type of failure, a large class of errors is

virtually eliminated.

For the user of Google’s cloud, this means that the underlying infrastruc-

ture pieces are extraordinarily failure-resistant and fault-tolerant. Your data

is replicated to several disks within a datacenter and then replicated again to

multiple datacenters. Failure of a disk, a switch, a load balancer, or a rack won’t

be noticeable to anyone except a datacenter technician. The only kind of hard-

ware failure that would escalate to the BigQuery operations engineers would be

if someone hit the big red off button in a datacenter or if somebody took out a

fi ber backbone with a backhoe. This type of failure still wouldn’t take BigQuery

 Chapter 2 ■ BigQuery Fundamentals 25

c02.indd 03:16:26:PM 05/09/2014 Page 25

down, however, since BigQuery runs in multiple geographically distributed

datacenters and will fail over automatically.

Of course, this is where we have to remind you that all software is fallible.

Just because your data is replicated nine ways doesn’t mean that it is completely

immune to loss. A buggy software release could cause data to be inadvertently

deleted from all nine of those disks. If you have critical data, make sure to

back it up.

Many organizations are understandably reluctant to move their data into the

cloud. It can be diffi cult to have your data in a place where you don’t control

it. If there is data loss, or an outage, all you can do is take your business else-

where—there is no one except support staff to yell at and little you can do to

prevent the problem from happening in the future.

That said, the specialized knowledge and operational overhead required to

run your own hardware is large and gets only larger. The advantages of scale

that Google or Amazon has only get bigger as they get better at managing their

datacenters and improving their data warehousing techniques. It seems likely

that the days when most companies run their own IT hardware are numbered.

Multitenancy and Parallel Execution

When you run a query on MySQL that takes one second, you get to occupy a

single processor core for one second. If you have eight processors, you can run

eight queries at once. Amazon Redshift lets you run a single query in parallel,

but on a fi xed number of cores that are all yours for the entire time you are

renting the Redshift instance.

BigQuery operates on a fundamentally different model; your query will run

on thousands of cores in parallel. If you have eight queries, those may all run on

a thousand cores in parallel. The query engine will time-slice the operations and

make progress on some queries while others are waiting for disk or network I/O.

All queries perform a mix of I/O and processing; waiting for I/O would mean

that the processor would sit idle. The Dremel engine underlying BigQuery can

maximize the throughput of the system by pipelining queries so that as some

queries are waiting for I/O operations, other queries will use the processor.

By allowing your queries to run on all the hardware in a compute cluster, you

can see performance far beyond what you otherwise could see unless you were

willing to pay for a dedicated similarly sized cluster. There just isn’t another way

you can process hundreds of gigabytes per second without a massive amount

of hardware. If you want to build it yourself, it would cost millions of dollars to

build and maintain. (Licenses for on-premise solutions like Netezza generally

run in the seven fi gures.)

26 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 26

If you did buy and build your own compute cluster so that you could get

BigQuery-like performance, you probably wouldn’t be able to run it at capac-

ity—it would probably get much less usage overnight and on the weekends for

example. If you could run it at capacity, you’d likely have times of day when

demand outstripped supply, and then you’d be sacrifi cing performance.

Keeping a giant compute cluster around in order to run a few queries once in

a while seems wasteful. One of the key concepts of the BigQuery query engine

is multitenancy. That is, multiple queries from multiple different users are all

running at once. By multiplexing usage across multiple customers, who are all on

different schedules and with different data usage patterns, BigQuery can keep

its hardware running at a high-level of utilization. Also, BigQuery can easily

grow and shrink its capacity by taking advantage of extra resources within a

datacenter (that is, from other Google services), or by spinning up new clusters

in other datacenters.

Analytics as a Service (AaaS?)

There are a lot of acronyms in Cloud Computing, from IaaS (Infrastructure as

a Service) to PaaS (Platform as a Service). BigQuery, if you were going to give

it a similar acronym, could be called Analytics as a Service (AaaS). We’re not

particularly excited about this moniker catching on, but as a description, it is

quite apt.

BigQuery is a service that you use to perform your analytics tasks. It operates

at a higher level than most other Big Data analytics offerings. For example, tools

such as Impala and Presto require you to manage your own virtual hardware

and your own data. Even Amazon Redshift, although it is hosted, requires you

to manage a database instance.

Global Data Namespace

One advantage to performing your analytics in the cloud is that it becomes easy

to share data without moving it around. All BigQuery tables sit in the same

namespace. This may seem like a minor detail, but it is actually extremely useful.

Every table in BigQuery can be joined against every other table in BigQuery, as

long as the user running the query has access to both tables. This means that

if someone publishes a table with weather data, you can join that weather table

against your sales data to determine how the weather affects your sales. There

are a number of public datasets that have things like fi nancial information and

GitHub commit history. Researchers can mine these sources or combine the

data with their own for new insight.

Any dataset can be shared with any user just by making an API call or using

the UI to edit the access control settings. If you want someone in a different

continent to run queries against your data, you don’t have to ship it to them or

 Chapter 2 ■ BigQuery Fundamentals 27

c02.indd 03:16:26:PM 05/09/2014 Page 27

let them log into your servers. You just share the dataset with them, and they

can run queries against the data directly. You have the option of requiring them

to pay the BigQuery bill for any queries they run (just add them to the Access

Control List) or allowing them to run queries that are billed to you (add them

to your project). These concepts will be clearer in later chapters, but we bring

them up now to whet your appetite.

Web UI

BigQuery provides a web UI at https://bigquery.cloud.google.com. This

interface allows you to perform most of the operations in the API: Browse

available tables, read their schema and data, share datasets with other users,

load data, and export it to Google Cloud Storage. It also allows you to create

and edit queries.

Although it may seem like an afterthought to have a web UI for a database,

it means that anyone can use it from any web browser—there is no need to

download any client side software or install anything. Many users will perform

all the tasks they need directly from the web interface. Figure 2.2 shows the

BigQuery web UI.

Figure 2.2: BigQuery web interface

https://bigquery.cloud.google.com

28 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 28

HTTP API

Whether they realize it or not, users interact with BigQuery by sending HTTP

requests—the same type of HTTP requests they use when browsing the web

or fi lling out a web form. The BigQuery developer documentation describes

the particular format of these requests and where they need to be sent. There

are client-side tools that make it easier to interact with the service, but if you’re

happier using the raw HTTP operations, that is an available option. BigQuery’s

API follows a REST model, meaning that the interface is designed for humans

to understand, not just computers. REST means a lot more, too, but we’ll get

into that in Chapter 5, “Talking to the BigQuery API.”

The nice thing about using standard HTTP is that it is, well, a standard. If your

company has fi rewalls that limit the kinds of network traffi c that can be sent,

HTTP will pass right through. The response codes that are sent are standard,

the headers are standard, and various operations have a standard interpretation.

This should make it easier to learn the API and develop an intuition about how

it should work. It also makes it easier to debug when something is going wrong.

An HTTP 404 is always Not Found, so you can handle a 404 from BigQuery the

same way you do from another HTTP API, like Google Cloud Storage.

Asynchronous Job Execution

The last important piece of BigQuery is the asynchronous job manager. Everything

that BigQuery does on your behalf that might take time, might run into errors, or

might cost a variable amount of money, runs in the context of a job. All queries

that you run are jobs, for example.

Most other query frameworks force you into a synchronous model, where

you start the query and wait for the response, which contains the query results.

When running queries synchronously, if you hit a network error or the request

times out, you have to retry the query from scratch.

BigQuery jobs are asynchronous; that is, you start a job and then check on

the progress of the job until it is done. All jobs have a unique name, either pro-

vided by the user or generated by BigQuery. This name can be used both to

determine the status of the job and to read the results. Moreover, because you

have a name for the job, you don’t have to read all the results in one request;

you can request one page at a time. Paging through results is important because

BigQuery queries can return terabytes of data.

Although asynchronous interfaces can be slightly more diffi cult to use,

they can be much more fl exible and resistant to errors. For instance, if you use

AppEngine, all requests must complete within 60 seconds or AppEngine kills

them. If you used a synchronous model, you would have no way of running a

query that took longer than AppEngine allowed. When running asynchronously,

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ BigQuery Fundamentals 29

c02.indd 03:16:26:PM 05/09/2014 Page 29

however, you can start the query and then poll until it is done, which can all

be done in shorter requests that don’t bump up against AppEngine time limits.

What BigQuery Isn’t

We think that BigQuery is an extremely versatile and useful tool. Like any

tool, however, there are some jobs where it is a better fi t than others. And then

there are some jobs where it is no help at all. BigQuery is not a replacement for

health insurance, nor should you consult it for legal advice. If that comes as a

surprise, we should probably also tell you that BigQuery is not likely to provide

psychiatric services either.

We often hear from customers evaluating BigQuery for projects that BigQuery

isn’t well suited for. Although we don’t like telling people not to use BigQuery,

we’d rather have customers who are happy because it meets their needs rather

than disappointed because it doesn’t support their workloads.

That said, sometimes with a bit of elbow grease and duct tape, BigQuery can

work well in cases for which at fi rst glance it didn’t appear to be the best solu-

tion. We also have had a number of these types of customers who have slightly

idiosyncratic usage. By working closely with them, we have helped evolve

BigQuery to meet their needs more naturally.

Neither OLTP nor OLAP

While BigQuery performs updates transactionally, it is still a far cry from what

you’d consider an Online Transaction Processing (OLTP) system. OLTP systems

usually handle simple queries and have high rates of updates. BigQuery sup-

ports only append and truncate operations, so the types of row-level updates

required in an OLTP system are not directly supported. In some cases, however,

you can simulate row-level updates by making your queries more complex.

BigQuery is closer to Online Analytics Processing (OLAP), supporting many of

the same types of use cases as an OLAP system. BigQuery’s nested and repeated

fi elds can approximate the data cubes in OLAP but allow querying via a more

familiar SQL dialect rather than MDX. In a bit of trivia, Mosha Pasumansky,

the inventor of the MDX query language, works on the Dremel query engine

underlying BigQuery.

Neither Relational nor NoSQL

BigQuery is not a good replacement for a relational database. You shouldn’t

use BigQuery to store your list of customers or use it for your order-processing

pipeline. Relational databases need to update individual rows and often need

to perform subsecond queries. The Dremel query engine used by BigQuery

30 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 30

actually can run queries in much less than 1 second, but to make sure the system

has enough capacity for all users, the number of concurrent queries that can be

done by a single user is generally throttled.

So if BigQuery isn’t a relational database, it must be NoSQL, right? BigQuery

uses a dialect of the SQL language to query data, so it can’t actually be called

NoSQL, either. NoSQL refers to a group of semi-structured storage technolo-

gies designed to scale better than relational databases but which in exchange

are awkward or impossible to query. BigQuery makes different trade-offs than

NoSQL and goes in the opposite direction. To improve scaling, rather than

making it more diffi cult to query, BigQuery makes it more diffi cult to update.

In exchange, however, BigQuery can query over much larger datasets than

traditional SQL databases.

Not Even MapReduce

One of the questions that we heard most often when we released BigQuery

was, “So, does BigQuery use MapReduce under the hood?” The open source

implementation of MapReduce—Hadoop—has become increasingly popular in

helping people perform computation over their Big Data. People are understand-

ably interested in the similarities between the two technologies.

BigQuery doesn’t use MapReduce, however. MapReduce is fundamentally a

batch-oriented technology. In other words, it is designed for long-running batch

jobs and not interactive ones. The particular differences and reasons behind the

different performance profi les are somewhat technical—they are discussed in

much more detail in Chapter 9.

Although MapReduce is usually going to be at least an order of magnitude

slower than BigQuery, it does have a more fl exible architecture. That is, there

are a number of things that are diffi cult to compute in SQL, but MapReduce

gives you the option of writing whatever code you want in whatever language

you choose to perform your computation. Although we don’t usually comment

about unreleased features, we can make a prediction that the expressiveness

of computations that you can perform in BigQuery will increase substantially

in the near future.

Not Open Source

One of the criticisms of BigQuery that we’ve seen in the press and in blogs is

that it isn’t open source. If Google was serious about open systems, the thinking

goes, surely it would want to contribute the source code back to the community.

However, open sourcing would both be harder and less useful than you would

imagine. There are a lot of internal closed-source systems that would be diffi cult

to separate from the query engine.

 Chapter 2 ■ BigQuery Fundamentals 31

c02.indd 03:16:26:PM 05/09/2014 Page 31

For example, if there was no discovery service that told BigQuery when

machines were offl ine, it wouldn’t rapidly adjust the serving tree topology.

If there was no massive distributed fi lesystem, running a query over a large

dataset would likely be slower than on a traditional relational database system.

Although there certainly would be ways of partitioning the system so that

it could work with HDFS or other open source tools, this would be a large

undertaking. The Google technology stack, for better or worse, is specialized,

and it would be a huge undertaking to separate out the technology-independent

portions of it.

Even if BigQuery (or the Dremel query engine) was open source, you’d still

need a place to run it. Dremel is most useful when run on hundreds or thou-

sands of machines. A large portion of the value of BigQuery is in providing

a slice of a huge managed compute cluster. While you could run this on your

own hardware or in another vendor’s cloud, it would be expensive and have

considerable service-management overhead.

We hope that in the future we will be able to open source portions of the

system as Google’s Cloud Platform releases more of the building blocks used

by Google’s internal systems to the outside world. In the meantime, users who

want an open source alternative should consider the Apache Drill open source

Dremel project, which aims to be compatible with BigQuery’s SQL dialect and API.

BigQuery Technology Stack

Google has an extremely comprehensive and impressive set of internal infra-

structure tools, many of which, such as Spanner, Megastore, and GFS, have

been disclosed in research papers. Some of these tools, such as Bigtable and

GFS, have open source versions. Users often wonder how BigQuery relates to

these technologies: Are BigQuery tables Bigtables, for example? Is user data

stored in GFS?

This section attempts to answer, at a high level, how BigQuery relates to

the Google infrastructure stack. Chapter 9 goes into more detail about the

architecture; if you’re interested in how these systems work, you may want to

skip ahead. If Chapter 9 isn’t enough detail for you, it provides references to

the research papers that Google has published on the underlying technologies.

Metadata Storage

BigQuery stores data about your tables (although not the data itself) in Megastore:

a consistent, transactional, globally replicated datastore. Megastore is Google’s

version of a NoSQL database that supports transactional reading, writing, and

updating of entities, but complex queries are impossible. Most other NoSQL

offerings lack either strong consistency or transactions. Megastore uses Paxos

32 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 32

to ensure strong consistency and has transactional update semantics (although

the transactions have more limits than a traditional relational database).

Google infrastructure projects are layered, sometimes to an absurd degree.

Each layer adds something that the lower layer doesn’t have. Megastore is built

on top of Bigtable and adds transactions and consistent replication. Bigtable

has the disadvantage of just being available in one datacenter. If that datacenter

goes down due to a natural disaster or becomes unreachable because someone

cuts a fi ber optic cable with a backhoe, the data is essentially unavailable until

the problem is repaired. Megastore replicates data synchronously to multiple

datacenters so that the data is always available.

Megastore usage is widespread throughout Google products. Cloud Datastore

is a thin layer on top of Megastore that allows schema-less and semi-structured

tables. It is likely that BigQuery metadata operations will move to Spanner

at some point, which is the next-generation globally replicated transactional

data store. When and if that move happens, it will be transparent to users of

BigQuery. The only visible change will likely be additional data locality options

that would be enabled by Spanner.

Table Storage

BigQuery table data is stored in Colossus. So far, Google has been secretive

about the details of Colossus, other than to say that it is a successor to the

Google File System (GFS). At a high level, Colossus is a distributed fi lesystem

that stores data on an enormous number of disks and makes the data available

over a network. Data within a Colossus cell is replicated, providing durabil-

ity in the event of disk failures. BigQuery also replicates your data to multiple

Colossus cells, which preserves the ability to access your data in the event that

a datacenter goes down.

The most important feature of Colossus as it relates to BigQuery is the ability

to read data in parallel. Because Colossus stores data on many different disks,

you can read the data much faster than you could read from a single disk by

reading from multiple different locations at once.

Not all your data is stored in Colossus, however. Data that is streamed into

BigQuery is temporarily stored in Bigtable. Small tables may be stored inline in

Megastore along with the metadata. And, of course, a number of other storage

systems at Google may be in use now or in the future to store your table data.

Although this may sound cryptic or vague, the bottom line is you shouldn’t

make any assumptions about where or how your data will be stored. You can,

however, assume that Google will continue to invest in storage systems that

improve reliability, durability, and performance.

As important as the “where” of data storage is the “how.” BigQuery uses a

proprietary columnar storage format called ColumnIO. ColumnIO is tuned to

 Chapter 2 ■ BigQuery Fundamentals 33

c02.indd 03:16:26:PM 05/09/2014 Page 33

the usage patterns for BigQuery, and allows you to read just the columns that

are needed to execute a query. This not only improves performance, but it also

is what allows BigQuery to charge just for access to columns that get referenced

in a query.

Networking

As more people move to scale-out architectures for Big Data, they realize that

network connections between machines become a big bottleneck. This mostly

follows from common sense—when moving from a single machine to multiple

machines, the effective bandwidth you have available to get to your data ends

up going down by a couple of orders of magnitude. Even in a Non-Uniform

Memory Access (NUMA) machine, memory in another node is much cheaper to

access than data that resides on another machine in the network. If you invest

more heavily in the network components that carry data from one machine to

another, you can more closely replicate the single-machine performance in a

clustered network environment.

In a large network cluster, however, it is harder to ensure that you have a fast

network path between all combinations of machines. Many Big Data suites, such

as Hadoop, allow you to tune the way they run to take into account network

topology and physical distance between machines. If two machines share the

same physical rack, for instance, the bandwidth between them is likely to be

much higher than if they are in opposite sides of the datacenter.

Google guards the details of its datacenter hardware extremely closely.

That said, from public benchmarks that people have run on Google Compute

Engine, it is clear that one of the main distinguishing factors in the Google

cloud is the extraordinarily fast network. It also is clear that the network is

much less sensitive to physical locality than you might expect. These super-

fast internal connections enable BigQuery to execute multiterabyte queries

in seconds.

The connections between datacenters are as impressive as the connections

within the datacenter. Google bought up a lot of unused fi ber-optic cable around

the world and uses it to move data between datacenters. For users of BigQuery,

this allows your data to be replicated to different geographical regions extremely

quickly so that your data will be available even in the event of a natural disaster

or large-scale power outage.

Query Computation

We mentioned that BigQuery’s query computation engine does not use MapReduce.

And it clearly isn’t a relational database…. So how does it work? The computa-

tion engine is Dremel, a parallel, distributed, column-oriented query engine

34 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 34

that Google has used internally since 2006. The principal innovation is the

tree-structured architecture that allows queries to be processed in parallel in

the leaves but aggregates results at the higher levels of the tree. The tree archi-

tecture also enables multiple queries to run at once within the tree, which lets

different users share the same hardware. Chapter 9 discusses Dremel and how

it works in considerable detail.

Google Cloud Platform

BigQuery is one component of Google’s Cloud Platform. The other principal

products are Compute Engine, AppEngine, Cloud Storage, Cloud SQL, and Cloud

Datastore. It can be confusing, at fi rst, to fi gure out what all of these products

are, how they fi t together, and when to use one versus another. This section

walks through the Google Cloud Platform offerings and describes how they

work with BigQuery or when you might want to use them instead of BigQuery.

Figure 2.3 shows the relationship between BigQuery and various Google Cloud

Platform offerings. The ones that are not listed are services that do not have any

direct connection to BigQuery (such as Google Prediction API).

Compute
Engine

BigQuery
BigQuery Load/
Extract jobs

AppEngine MapReduce/
Datastore Backup Load

Hadoop
Connector Cloud StorageAppEngine

Figure 2.3: Google Cloud Platform and BigQuery

Google Compute Engine (GCE)

Google Compute Engine is the solution for people who want to control all aspects

of the software stack. You get a standard Linux virtual machine running in

Google’s cloud. You can install anything you’d like on that machine and run

it however you choose. You pay for the amount of virtual hardware you need

and the amount of data transferred out of the system.

Because you can run any software you like on virtually any number of

machines, you can run other Big Data analysis and transformation suites. This

can be complementary to BigQuery. For example, you can use the BigQuery

Hadoop connector to read your BigQuery tables, process them with Hadoop,

and write them back to BigQuery. This is a popular option for customers who

want to perform transformations on their data that are diffi cult or impossible

to do in BigQuery SQL. This is also a good way to do Extract Transform and

 Chapter 2 ■ BigQuery Fundamentals 35

c02.indd 03:16:26:PM 05/09/2014 Page 35

Load (ETL) operations to translate source data into a format that can be easily

ingested by BigQuery.

If you prefer, of course, you could run Impala, Presto, or Apache Drill on your

Google Compute Engine instances. We believe that there are performance and

manageability advantages to BigQuery. However, alternatives do exist, even

within the Google cloud. If you choose to use a non-Google cloud, the most

comparable alternative is Amazon EC2.

Chapter 12, “External Data Processing,” briefl y describes using Google Compute

Engine to run Hadoop over BigQuery data. The same example would likely

work well in Amazon’s cloud; although, the performance might suffer because

the data has to cross the public Internet.

Google Cloud Storage (GCS)

As mentioned, BigQuery is a structured storage system, which is great if your

data is organized into rows and columns. Google Cloud Storage, however, is

unstructured storage. That is, it can be used to store any data—from backups

of your photos to websites to gene sequences. Google Cloud Storage is directly

API-compatible with the Amazon S3 storage service, but it also has a number

of additional features that are only available in GCS.

GCS can also be used to get data in and out of BigQuery. If you have data

in GCS in any format that BigQuery understands (currently CSV and newline-

delimited JSON), you can import it directly into BigQuery. Likewise, you can

also export BigQuery tables to GCS. Exporting can be useful if you want to

back up your data, or you want to use it elsewhere. (For example, you want to

download it into a local database.) Several examples in this book use Google

Cloud Storage to get data in and out of BigQuery.

AppEngine

Google AppEngine was the fi rst piece of the Google Cloud Platform to be released.

AppEngine is a fully managed web app hosting environment; with very little

code you can build a standalone website or back end for a mobile application.

AppEngine has its own structured data storage mechanisms such as Cloud

Datastore and Cloud SQL. Many AppEngine users log data to BigQuery for

analytics and reporting. The BigQuery End-to-End application that is a com-

panion to this book is an AppEngine app that stores data in Cloud Datastore but

analyzes data with BigQuery. Chapter 8, “Putting It Together” walks through

the code for this app in detail.

AppEngine is often called Platform-as-a-Service because it abstracts away so

many of the details about where the software is running. Users write their own

code, but they don’t have to worry about actual hardware or operating system

infrastructure. AppEngine takes care of scaling its service, spinning up new

instances as demand increases.

36 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 36

Cloud Datastore

Cloud Datastore is a NoSQL data store; you can think of it as key value stor-

age. Although it does have some support for queries and indexes, it is not well

suited to ad-hoc queries over your data. It is, however, fast for point lookups and

indexed queries, and it scales virtually infi nitely. Cloud Datastore is backed by

Google’s Megastore distributed consistent storage system.

If you want to run analytics queries over your Cloud Datastore storage, you

can export it to BigQuery. Chapter 11, “Managing Data Stored in BigQuery,”

shows one way of exporting AppEngine data automatically, whereas Chapter

12 shows another mechanism you can use if you want to transform the data in

the process. A number of BigQuery customers store their data both in BigQuery

and Datastore by writing simultaneously to both locations. Although this seems

like unnecessary duplication, it allows for both fast point-lookups (via Datastore)

and fast ad hoc queries (via BigQuery).

Cloud SQL

Google Cloud SQL is a cloud-hosted MySQL database. The query language is

MySQL, and the performance characteristics are similar to MySQL. However,

running it in Google’s storage infrastructure helps it scale better than a stock

MySQL instance.

Cloud SQL is extremely helpful if you’re migrating an existing application

to Google’s cloud. If your application is currently using a relational database

(like MySQL or PostgreSQL), it might be diffi cult to switch to using a NoSQL

store like Cloud Datastore. Cloud SQL allows you to run the same SQL queries

you’re used to but within Google’s managed cloud.

Although it has a familiar interface, Cloud SQL has many of the scaling limi-

tations of MySQL, and if you have a large amount of data you might consider

using Cloud Datastore and/or BigQuery instead. Table 2.1 has a comparison of

the features between BigQuery and Cloud SQL to help you decide which one

is better for your application.

Table 2.1: A Comparison between BigQuery, Cloud SQL, and Cloud Datastore

FEATURE BIGQUERY CLOUD DATASTORE CLOUD SQL

Data scale Unlimited Unlimited < 10 GB

Supports ad-hoc queries Yes No Yes

Supports fast data

lookups

No Yes Yes

Can be used as a Hadoop

source or sink

Yes No No

 Chapter 2 ■ BigQuery Fundamentals 37

c02.indd 03:16:26:PM 05/09/2014 Page 37

FEATURE BIGQUERY CLOUD DATASTORE CLOUD SQL

Replicated across geo-

graphical areas

Yes Yes Yes

Choice of datacenter

locations (EU and US)

No No Yes

Supports row-level

updates

No (Append- only) Yes Yes

Built-in historical

snapshots

7 days of history No No

Query UI Yes Yes (but not full SQL) No

Visualization via Tableau Yes No Yes

BigQuery Service History

BigQuery releases a new update every week. Usually, the changes are small:

bug fi xes, minor features, and other incremental changes. The rationale behind

this frequent release cycle is that it allows problems to be caught early, allows

major features to be phased in, and gives trusted testers the ability to try out

new functionality before it is released to the public.

This constant stream of updates is one advantage of a managed service like

BigQuery versus running the analytics software yourself; bug fi xes get applied

automatically, and the system gets faster and more fully featured over time. In

addition, Google constantly upgrades its hardware and improves its infrastruc-

ture components; this will translate into faster queries and larger scale.

Version History

About once a quarter BigQuery launches a new version with new functionality.

The history of BigQuery major releases follows:

 ■ May 2010: BigQuery prototype launched to Trusted testers at Google

I/O. At this point, BigQuery provided only a synchronous interface for

querying data stored in Google Cloud Storage.

 ■ May 2012: Version 1.0. BigQuery launched to the public at Google I/O

2012. This release included the current HTTP API. This release had asyn-

chronous query and job execution and included the principal abstractions

of Project, Dataset, and Tables.

 ■ June 2012: Billing added. After this, users actually had to pay to use

BigQuery.

 ■ August 2012: Version 1.1. Batch queries added along with a Microsoft

Excel connector.

38 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 38

 ■ October 2012: Version 1.2 Imports via JSON added as well as from

AppEngine Datastore backups. Querying and manipulation of nested

and repeated fi elds also added.

 ■ March 2013: Version 1.3. Added the ability to join two large tables and

removed limits on distinct elements for GROUP BY operations. Timestamp

data type also added.

 ■ June 2013: Version 1.4. Support for large query results. Also analytic and

windowing functions added.

 ■ September 2013: Version 1.5. Streaming ingestion added to the API. Table

decorators also released.

 ■ March 2014: Version 1.6. Table views, table wildcards, and partitioned

export were all added. Streaming ingestion limits were raised by two

orders of magnitude. A number of query improvements such as support

for multi-JOIN were also made.

We mention this history to show the rapid evolution of the BigQuery service.

Although queries and API calls that were written for BigQuery version 1.0 would

still work today, many of the limitations of the service have been removed. For

example, BigQuery used to support only JOIN operations where one of the tables

was smaller than 8 MB. Now, BigQuery can join tables of virtually any size.

Table 2.2 summarizes the expanded functionality.

In addition, quota sizes have been raised considerably over time. When

launched, BigQuery supported only 2 concurrent queries, and 100 load jobs

per day that could import only 50 GB at a time. Now, BigQuery supports up to

20 concurrent queries per project, and 1,000 load jobs per table per day. Each

load job can import up to 1 TB. If you’re using the streaming interface to add

data, you can insert up to 100,000 rows per second per table.

Table 2.2: Removing Limits

LIMITATION

DATE

CHANGED DESCRIPTION

JOIN operations required one

table to be smaller than 8 MB.

March 2013 Now, JOINs of virtually any size can be

used via the EACH keyword.

GROUP BY operations that

resulted in more than a few mil-

lion distinct results could cause

out-of-resources errors.

March 2013 GROUP BY operations of virtually any

size supported via the EACH keyword.

Query results required to be

smaller than 128 MB.

June 2013 The allowLargeResults fl ag was added

to allow results of virtually any size to

be returned.

Streaming inserts limited to 1000

rows per second.

March 2014 Limits were raised to 100,000 rows per

second, per table.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ BigQuery Fundamentals 39

c02.indd 03:16:26:PM 05/09/2014 Page 39

Future Predictions

By the time you read this, some of the exciting new features that the BigQuery

team is working on now will be released. Google has a policy of not speculating

about new features before they happen. That said, we want to give you a couple

of hints about what you might expect from BigQuery in the future. Rather than

reveal particular features, we’ll just describe what kinds of things are important

to us and that we’ll be working on improving.

 ■ Reliability and predictability: BigQuery should be just as reliable as your

local database instance. It also should be predictable—if a query runs in

2 seconds today, it shouldn’t take 5 seconds tomorrow.

 ■ Reducing limitations: There are cases now in which BigQuery gives

out-of-resources errors or runs into size limitations. We’d like to get rid

of these; when you run a query, it should just work, no matter how big

the data is or what you’ve requested.

 ■ Getting closer to standard SQL: There are a couple of nonstandard SQLisms

that can be frustrating for new users. We’d like to make BigQuerySQL

look more like SQL-92 or standard SQL that you’re familiar with. This

also means we’d like to stop requiring the usage of size hints like EACH.

 ■ Interaction with code that isn’t SQL: Right now, if you want to run an

algorithm that is diffi cult to express in SQL, you’ve got to export your data

out of BigQuery, transform it, and import it back. We’d like to remove

steps from this process.

 ■ Features requested by users: The BigQuery team monitors the

google-bigquery tag on StackOverflow.com. Feel free to chime in there

if you have feature requests. There is also an external bug tracker that

can be used to report bugs and feature requests at https://code.google

.com/p/google-bigquery/issues/list. Alternately, if you have a sup-

port arrangement with Google Cloud Support; you can let your support

representative know your pain points. Customer feedback helps decide

priorities for new features and the direction of the product.

BigQuery Sensors Application

To illustrate the different ways that BigQuery can be used in a web application,

we have built a BigQuery Sensors sample app that accompanies this book. The

application is described in detail in Chapter 8, but examples are used through-

out the book, so we’ll describe it briefl y here. This application shows BigQuery

in use to solve real problems; hopefully this can inspire you to come up with

ways that it can be used in your own applications.

https://code.google.com/p/google-bigquery/issues/list

40 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 40

The code for the application is also open source, hosted on code.google.

com. If you are interested, you can download the code or browse it online to see

how it works. Even better, because the code has been released into the public

domain you can take it and extend it however you choose. Although the sample

application doesn’t exercise the full range of BigQuery features, it does include

some advanced usage features and shortcuts that might not be obvious from

just reading the documentation.

There are two parts to the sample application: the data collection mechanism

and the reporting site. In a real application, you’d also have a site that does

something more interesting, but for our purposes, the collection and report-

ing are the only parts we care about. BigQuery is a service for analyzing data;

clearly we need to collect some data. Although we could use a publicly available

data source, it is more representative of BigQuery customers to have the data

generated within the application.

The data collection piece is an Android app that monitors sensors on Android

devices and logs them to BigQuery tables. The app runs in the background

and reports status like running applications, acceleration, and coarse-grained

location. The reporting piece is a dashboard where you can visualize this data

and monitor how the site is used. The dashboard is updated in real time; as con-

nected Android devices log new data, that data will be available for immediate

querying. In addition, because the tables that are written are normal BigQuery

tables, they can be accessed via the BigQuery web UI to perform ad-hoc queries

over the data.

Chapter 8 shows how to build the app, how to use it, and how it works. This

section merely introduces the app and what it does. Many of the examples in

the book reference concepts from the app or use the schema from the data col-

lection tables, so it helps to have a good understanding of what the app does

and what data is collected. The code for the website and the Android app (along

with all the other code used in the book) can be browsed or downloaded from

https://code.google.com/p/bigquery-e2e/.

Sensor Client Android App

Android phones and tablets have an array of sensors available to apps—from

location and wireless signal strength to temperature and humidity. The sensor

collection app runs in the background on an Android device and reports the

values of a number of these sensors directly to BigQuery.

This app is not intended to track users; it is merely an interesting data source

that enables distributed data collection and can showcase the streaming ingestion

features of BigQuery. For the sake of privacy, location is reported only at a coarse

ZIP code level, and the app gives users the ability to turn off the collection of

https://code.google.com/p/bigquery-e2e

 Chapter 2 ■ BigQuery Fundamentals 41

c02.indd 03:16:26:PM 05/09/2014 Page 41

individual sensors. The application also enables you to change the rate at which

the sensors are reported; by default, they are sampled once every 5 minutes.

Chapter 8 shows how to install the app on your own Android devices.

The default settings log to the main BigQuery Sensors app at http://

bigquery-sensors.appspot.com, but you can change it to point to your own

AppEngine instance after you have that up and running. The app will log,

periodically, the coarse-grained location of the user, the applications the user

has running, and the values of various sensors. More information about the

application and the schema of the data collected is in Chapter 4, in the section

entitled “Data Model for End-to-End Application.”

If you’re not comfortable running the sensor collection app on your phone,

no worries; you can always copy the sample data from the bigquery-e2e public

project. It still may be useful, however, to browse the source code that posts the

sensor data directly to BigQuery. The code is written in Java because that is the

standard development language for Android apps.

BigQuery Sensors AppEngine App

The main part of the BigQuery Sensors application is the AppEngine data

reporting web app, which demonstrates how BigQuery can be used in a real-

world application. It uses most of the major features of the BigQuery API, from

managing tables to running queries to importing AppEngine Datastore backups.

The application generates custom charts and reports for a set of BigQuery

tables. You can see a histogram of the number of different ZIP codes users visited

during a day, or track which applications are most popular. Of course, because

this application is not widely deployed, there may not be great geographic

coverage, but there should be enough to whet your appetite to see how it can

apply to your own purposes.

We use GViz and Dygraph to generate the graphs. If you are more comfort-

able using another graphing utility, it is relatively easy to adapt the graphing

display to another framework. Our goal is to show off BigQuery, not graphing

APIs, so the charts are fairly rudimentary. They should demonstrate, however,

that it is possible to make some nice graphs without a lot of effort. Figure 2.4

shows some of the default graphs for the sensor data application.

The web application is hosted at http://bigquery-sensors.appspot.com

if you’d like to check it out. If the usage isn’t self-explanatory, Chapter 8 goes

into more detail about how to interact with it, and by the time you get there

you should know more about how to use BigQuery. The code for the website

is written in Python. Because Python is a fairly concise and readable language,

it should be easier to fi nd and follow the BigQuery-specifi c sections than if the

website was written in another language such as Java.

http://bigquery-sensors.appspot.com
http://bigquery-sensors.appspot.com
http://bigquery-sensors.appspot.com

42 Part I ■ BigQuery Fundamentals

c02.indd 03:16:26:PM 05/09/2014 Page 42

Figure 2.4: BigQuery End-to-End reporting page

Running Ad-Hoc Queries

The AppEngine and Android apps aren’t doing anything magical with respect

to BigQuery; they just populate and query standard BigQuery tables. The tables

used by the BigQuery Sensors application are publicly accessible by anyone with

a BigQuery account. You likely will want to lock down your data more tightly,

but for the purposes of the book, we wanted to make the underlying data as

available as possible.

To access these tables, you can open the BigQuery web UI at https://

bigquery.cloud.google.com and select Switch to project ➪ Display project

from the project menu on the left tab. Then enter bigquery-e2e as the project

ID. The datasets used by the End-to-End application display on the left panel.

Chapter 3, “Getting Started with BigQuery,” has more information about set-

ting up your account for using BigQuery, so if it isn’t clear how to start, detailed

instructions are on the way. Figure 2.2, earlier in the chapter, shows what the

web UI looks like.

As you work through the examples in the book, it may be useful to browse

these tables; look at their schemas, look at the contents, and run a couple of

https://bigquery.cloud.google.com
https://bigquery.cloud.google.com

 Chapter 2 ■ BigQuery Fundamentals 43

c02.indd 03:16:26:PM 05/09/2014 Page 43

sample queries on them. Note that running queries costs money if you go

above the “free” 1 TB per month quota. All the examples in this book should

use relatively small data sizes to keep you under the 1 TB cap, but you should

know that after you exceed that limit, you’re on your own for any query charges

that are incurred.

Summary

This chapter introduced BigQuery and walked through the various compo-

nents of the service: the query engine, the cloud-based data warehouse, and

the HTTP API.

The chapter also evaluated BigQuery for prospective customers by describing

the types of problems it is good for and the types of problems it isn’t good for. We

compared it to other Big Data systems such as Hadoop and NoSQL databases.

This chapter also discussed the technology that BigQuery is built on top of,

such as Dremel, Colossus, and Megastore, which may be interesting to those who

follow Google’s technology disclosures. It mapped out the various components of

the Google Cloud Platform and described how they interoperate with BigQuery.

Finally, this chapter introduced the Android app and Sensors AppEngine

application that are the basis for the examples in this book, and whose source

code can be helpful in bootstrapping your own applications leveraging BigQuery.

At this point, you’ve probably had enough about what BigQuery is and are

eager to fi nd out how to use it. Chapter 3 will get you up and running.

45

c03.indd 01:4:1:PM 05/08/2014 Page 45

Throughout this book, features of BigQuery are explained using sample com-

mands and code that you can use to develop a solid understanding of how the

service works. This chapter covers the setup necessary to use the examples. This

chapter focuses on quickly getting to a working environment, so you shouldn’t

worry if terms or concepts seem unfamiliar. Detailed explanations follow in

later chapters. If you have worked with the Google Cloud Platform, you can

skip sections that seem familiar. If you use BigQuery and want to understand

advanced features, you can safely skip this entire chapter.

Creating a Project

BigQuery is a part of the Google Cloud Platform suite of services. To start you

need a Google account. If you have an existing Google account, for example

an @gmail.com e-mail address, you can use it; otherwise, you can create one at

https://accounts.google.com/. This account will be your primary identity

when using the service. Next, you need to set up a project to enable and manage

Google APIs and cloud services.

C H A P T E R

3

Getting Started with BigQuery

mailto:@gmail.com
https://accounts.google.com

46 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 46

SAFEGUARDING YOUR PASSWORD

You should never enter your Google account password anywhere other than the

Google login page in a browser. It is not uncommon to see passwords for databases

or web APIs embedded in source code. However, this should never be the case when

working with Google APIs.

Google APIs Console

The project management console is located at https://console.developers

.google.com/. If you haven’t created a project before, you will be prompted to

create one. Even if you have an existing project, it is probably a good idea to create

a separate one for trying the examples in this book. When you create a project

you have the option of choosing a unique ID or accepting a randomly generated

unique ID. You will use this ID in the examples shown in this book so you may

want to pick a memorable ID. Keep in mind that like an e-mail address, this ID

must be unique across all Google Cloud Platform projects, so you might fi nd

that common words are already reserved. After the project is created, you are

presented with a couple of samples to help you quickly get started. You can skip

the samples and just directly enable BigQuery. Select the APIs & auth entry in

the navigation panel on the left. This displays the list of available APIs (Figure

3.1) and indicates which have been enabled for the project.

Enable the BigQuery API entry. The fi rst time you enable the API, you are

presented with the BigQuery terms of service agreement. After you accept the

terms, you return to the services console, and BigQuery will be enabled. Be

aware that this is a per-project setting and that you will need to enable the ser-

vice for each new project. None of the other cloud services are strictly required,

but we recommend you also enable Google Cloud Storage (GCS), which enables

additional ways to get data in and out of BigQuery.

Before proceeding to the next step, it is useful to understand how to navigate

the console. The navigation menu is on the left of the main panel and lists the

various sections of the console:

 ■ Project title: Displays the name of the currently selected project. This is

also the link back to the project list view.

 ■ Overview: Summary of the project settings and sample wizard

 ■ APIs & auth: Manage the set of services enabled and access credentials.

 ■ Permissions: Manage project members and permissions.

 ■ Settings: Set up billing details. Also delete the project when you no longer

need it.

 ■ BigQuery: BigQuery web application.

https://console.developers.google.com/

 Chapter 3 ■ Getting Started with BigQuery 47

c03.indd 01:4:1:PM 05/08/2014 Page 47

Enable ServicesProject Title

Navigation Panel

Figure 3.1: Google cloud services control panel

There are a couple of additional sections but they are not relevant to using

BigQuery. By default, the project is assigned the name My Project, which appears

at the top of the navigation panel. It will be helpful to rename the project to

BigQuery Examples so you can refer to it easily in later sections. To do this,

navigate to Settings and select Rename. Enter the name BigQuery Examples

in the dialog that opens and save it.

Before you can try any samples that involve API access, you need to set up

authentication keys. Navigate to the APIs & auth section. A Credentials entry

will appear in the navigation panel. Selecting this entry will bring up a panel

that allows you to manage access keys and identities. Clicking on Create New

Client ID launches a dialog that allows you to select the type of client you require.

The details of each type are beyond the scope of this chapter; for now, just

select Service Account (Figure 3.2) and create the identity. After the account is

created, your browser will receive the secret key and prompt you to save the fi le.

You will also see a message containing the password for the secret key, which is

always “notasecret.” The password is not intended to be a strong password. The

48 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 48

downloaded fi le, on the other hand, contains the secret key that will be used to

assert the identity of this service account and should be stored securely. Save

the fi le to a secure location and remember where you put it—you will need it

later in the setup process. After you download the key, you return to the API

Access section, and there is an entry for the newly created service account.

Figure 3.2: OAuth client type selection

CLIENT TYPES

The web and installed application client types enable developers to request access

to user data in Google accounts. The service account is more like a user account and

can appear in team and access control lists. The installed client credentials are the

simplest to use with hand-built HTTP requests. In Chapter 5, “Talking to the BigQuery

API,” you construct such requests to explore the details of the API. However, you do

not need to create a credential of this type because you can use one set up for the

examples in this book.

This information, shown in Figure 3.3, needs to be saved so that it can be

used in the code samples for authentication. The simplest way is to download a

JSON fi le describing the account using the link in the account information panel.

Alternatively, you can just record the e-mail address for the service account.

Figure 3.3: Service account information

www.allitebooks.com

http://www.allitebooks.org

 Chapter 3 ■ Getting Started with BigQuery 49

c03.indd 01:4:1:PM 05/08/2014 Page 49

By default, the service account is added as an editor to the project team. If you

navigate to the Permissions section of the project, as you can see in Figure 3.4,

the service account appears in the list of project members. The additional entries

with unusual addresses are also service accounts, but they are associated with

App Engine and Compute Engine and cannot be used directly.

Figure 3.4: Service account permissions

Although the default service account permission works fi ne for the samples in

this book, it is useful to understand that the service account has specifi c project

permissions that can be managed just like any other project member.

There is one fi nal piece of project information that you must record for use

in the examples. Navigate to the project overview section and look for the fi eld

labeled Project ID. This ID uniquely identifi es the project and will be used when

you need to refer to the project. Save this ID in a text fi le so that you can access

it in the following steps. Also note that there is a fi eld labeled Project Number,

which is an alternate ID for your project and can be used in place of the Project

ID. This is mostly a legacy of the old project management process, and you can

simply stick with using the Project ID.

Free Tier Limitations and Billing

At this point you have a fully confi gured project but have not yet set up billing.

This means the project you created will be limited to the BigQuery free usage

level, which we refer to as the free tier. A signifi cant number of examples in this

book require access to a project with billing set up. However, you do not have

to enable billing right away because you can always return to this section if

you would like to explore the features not available in the free tier. Table 3.1

50 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 50

summarizes the quotas for various operations available in the free and billed

tiers. Note that these are just quotas and that in the billed tier there are charges

associated with usage.

Table 3.1: Comparison Quotas for Free and Billed Tiers

FEATURE FREE TIER BILLED TIER

Query 100 GB/month 10 TB/day

Storage Only anonymous results Unlimited

Load None 10 K/Day

Export 1 K/Day 10 K/Day

All users have to access a few public datasets made available by the service

to allow users to experiment with queries. In addition, you can access any table

shared with your account. However, none of the data storage and manage-

ment features are available in the free tier. To enable those features you need

to set up billing. Even with billing enabled the 100 GB/month free allowance

still applies. In addition, there is no fi xed cost; if you do not actually store any

data in the service, no charges will accrue. The details of the BigQuery pricing

model are available at https://developers.google.com/bigquery/pricing.

Concretely, the cost of running through most of the examples in this book in

a month should be well under $10, and anything that can generate nontrivial

charges is mentioned.

To turn on billing, select the Settings ➪ Billing section in the project navigation

panel. Until you actually set up billing, the link to the section will be highlighted

with a warning icon. The section contains a single button to Enable Billing, and

clicking the button walks you through the setup fl ow. You need to register a credit

card, which will be charged monthly for the resources used in the prior month.

After you submit all the required information, you return to the main project page.

Setting up billing on the project enables billing for all the services that have been

switched on in the project, and you will receive a combined invoice broken down

by service usage. You can monitor your recent BigQuery usage by clicking on

the gear icon next to the BigQuery entry in the APIs panel (under APIs & auth).

This completes the project setup. Sections in this book that require a project

with billing enabled highlight the requirement. If you choose not to turn on

billing, you can simply skip the examples in these sections. For additional infor-

mation on the Google APIs consoles and project management visit https://

developers.google.com/console/help/.

https://developers.google.com/bigquery/pricing
https://developers.google.com/console/help
https://developers.google.com/console/help

 Chapter 3 ■ Getting Started with BigQuery 51

c03.indd 01:4:1:PM 05/08/2014 Page 51

Running Your First Query

BigQuery is an “API-fi rst” service. All its functionality is available via its public

API, and its features are designed for programmatic access. However, for conve-

nience and ease of use, there is a web application provided by the service that

makes it simple to try various features of the service. It is similar in function

to MySQL Workbench and similar products that give you the ability to quickly

view the layout of your database and run queries. You can use this application

to verify that your project is set up correctly and to try your fi rst simple query.

Navigate your browser to https://bigquery.cloud.google.com/.

When you arrive at the BigQuery web application homepage, you should see a

screen similar to the one in Figure 3.5. If you instead see a message directing you to

set up a project, then it is likely you did not enable the BigQuery API on the project

you created. If so, you will need to head back to the APIs console and enable it.

Figure 3.5: BigQuery Welcome screen

You can navigate the data in your projects using the left side panel. If you have

only one BigQuery-enabled project you can access, it should already be selected

by default. If this is the case, the project you just created, BigQuery Examples,

should appear in the navigation panel to indicate that it is the current project.

If you have more than one project, you can switch between them by clicking

the arrow next to the project title and selecting Switch to Project.

Because your project was just created, there is no data under the project, so

there is not much to see. However, all BigQuery users have access to a pub-

lic dataset containing tables that can be used to try BigQuery. Click the link

publicdata:samples to open the dataset. You see a list of names appear under

https://bigquery.cloud.google.com

52 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 52

the link corresponding to tables available in this public dataset. The datasets

referenced in the sample code in this book are available publicly so that you can

query them without having to load your own versions. To view them in this

interface, click the arrow next to the project title, and select Switch to Project ➪

Display Project. In the dialog that appears, enter bigquery-e2e in the Project ID

fi eld and click OK. You see additional datasets appear in the navigation panel.

Now that you have access to a couple tables, you can explore the data in those

tables. Click the natality table under publicdata:samples to see that the main

panel changes to display the schema of the table. This table contains birth records

collected by the U.S. government. Click the Details button that appears on the

top-right corner of the main panel to see a summary of the table and a sample

of the records contained in this table. This view can be useful if you ever want

to peek at a table referenced in an example.

It is time to run your fi rst query. Click the Query Table button in the top-right

corner. A query editor displays fi lled in with a skeleton query. On the right,

just below the text box containing the query, you can see a red exclamation

icon. This indicates that the query currently entered is invalid. Pay attention to

this icon as you perform the next step. Modify the contents of the box so that it

contains the following query:

SELECT
 state, COUNT(state) Num
FROM [publicdata:samples.natality]
GROUP BY 1
ORDER BY 2 DESC

Notice that after you update the contents of the text box, a green check mark

icon replaces the red exclamation icon, indicating that the query is valid. Click

the green icon to reveal additional validation information. The message indi-

cates how much data will be processed to compute the result of the query. It is

important to pay attention to this value because it is the amount of processing

you will be charged for when you run the query. If you have not enabled bill-

ing on your project, you should be especially careful because this amount will

be deducted from your limited query quota. Chapter 4, “Understanding the

BigQuery Object Model,” explains this in more detail; however, the main thing

to note here is how to locate this information. Now run the query by clicking

Run Query.

Congratulations; you have run your fi rst query using BigQuery. Close the

query editor by clicking the X icon (Figure 3.6) located at the top left corner

of the editor. This fi lls the main panel with the results of the query. You can

page through the results using the navigation elements below the results table.

Now that you have run a query, your query history will no longer be empty.

Select the Query History item in the navigation panel. You should see a single

 Chapter 3 ■ Getting Started with BigQuery 53

c03.indd 01:4:1:PM 05/08/2014 Page 53

entry, unless you experimented with other queries. Selecting an entry from

the query history expands it and presents various options to reuse the query.

You can edit it if it needs to be modifi ed or simply run it again. However, if you

just want to return to the results of the query, you can use the button labeled

“Show Previous Results”, as long as the results are still available (they expire

after 24 hours). If you select a query that is more than 24 hours old, you have

to rerun the query to see the results. Each project has an independent per-user

query history, so you are seeing only the queries run from your account under

the currently active project.

Project Menu

DatasetTable

Advanced Options
Query Status

Indicator

Figure 3.6: Query results display

If you want to experiment with the query editor, consider using the

shakespeare table under publicdata:samples. The table contains word frequen-

cies across a couple of works by Shakespeare. The advantage is that it is a small

table, so the cost of querying the table is negligible. The query editor supports

a couple of common convenience features:

 ■ Syntax highlighting

 ■ Indenting support for formatting

54 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 54

 ■ Tab completion of fi elds and functions

 ■ Parenthesis matching

These simple features make it a convenient tool for data exploration and

prototyping queries. If you are interested in trying variations of queries pre-

sented in the examples, it is convenient to copy them into the editor and modify

them. Some of the examples refer to additional options available when running

queries. Many of these options can be controlled in the advanced options panel

opened by clicking Enable Options. These options will be covered in Chapter 7.

Loading Data

BigQuery only permits loading data into projects that have billing enabled. If

you have not set up billing, you can skip this section. If you have enabled bill-

ing try the commands in this section to verify that billing is correctly set up

for your project.

First, you need to create a dataset in your project. Again, open up the proj-

ect menu by clicking the icon next to the project title. Select the option Create

new dataset. You see a dialog asking only for the name of the dataset; enter

reference and click OK. Under the project title you can see an entry for reference

appear. Hovering over this entry displays two icons, a plus and a drop-down

arrow. Clicking the drop-down icon displays a menu for managing the dataset.

Now you want to create a table, so select Create new table. The plus icon is a

shortcut for creating a table. This launches the Table Creation Wizard. Follow

these steps to complete the wizard:

 1. Specify the table to be created (Figure 3.7). Set the table name to zip_codes.

Figure 3.7: Table to create

 Chapter 3 ■ Getting Started with BigQuery 55

c03.indd 01:4:1:PM 05/08/2014 Page 55

 2. Set the source location for the data (Figure 3.8). As part of the support-

ing material on this book’s website, you can use a fi le containing ZIP

code information made available in Google Cloud Storage. To use this

data select the Google Storage option, and set the location to gs://

bigquery-e2e/data/zip_code_data.csv.

Figure 3.8: Source locations

 3. Describe the data contained in the fi le (Figure 3.9). This is a string describ-

ing the fi elds present in the data. The string is somewhat long, so it is best

copied from the download materials for this chapter. Just look for Zip

codes schema in queries.txt. Be sure not to submit at this point because

there is one advanced option that still needs to be specifi ed. Click Next to

see these options.

 4. Indicate that the data has a header row (Figure 3.10). Set Header Rows to

Skip to 1. Now click Submit on the wizard.

You see the zip_codes table appear under the reference dataset with an

annotation that it is being loaded. In addition, the Job History panel changes to

indicate that a job is running. Navigate to Job History (Figure 3.11) to see the list

of jobs you have created. There should be an entry for the one you just started.

The icon on the left of the entry indicates if the job is in progress or complete. If

it succeeds, a green check icon appears next to the job. You can click the job to

expand it to inspect additional details. If the job failed, the details contain the

error message explaining the failure. This job should succeed assuming there

are no issues with the project billing setup or the schema that you entered. When

the job completes click the zip_codes table to see what it contains.

56 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 56

Figure 3.9: Schema

Figure 3.10: Advanced Options

 Chapter 3 ■ Getting Started with BigQuery 57

c03.indd 01:4:1:PM 05/08/2014 Page 57

Figure 3.11: Job history and details

Using the Command-Line Client

Having accessed the BigQuery web interface to run a query, you have confi rmed

that your account and project are correctly set up. It is also useful to have the

BigQuery command-line client installed because it will be used extensively in

the samples. The client is a Python application built using the Python Google

APIs client library. The code for the client is open source, so in addition to being

a useful tool, it is also a good reference for BigQuery API usage. The next sec-

tion walks you through the setup process.

58 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 58

Install and Setup

Because the client is a Python application, you need to have Python installed. If

your platform does not come with Python installed, you can follow the instal-

lation instructions at http://www.python.org/getit/releases/2.7.5/ to set

up Python on your machine. The Google Cloud SDK described below requires

Python version 2.7.x and the samples in the book have been tested with this

version, so the link is for that specifi c version. If you have multiple versions of

Python installed, ensure that your python command is referring to the appro-

priate version. On Mac OS X, for example, the version distributed with the OS

is located at /usr/bin/python and the one set up by the Python installer is

located at /usr/local/bin/python. Adding an alias to your shell initialization

script allows you to directly use the commands that follow without specifying

the full path.

alias python=/usr/local/bin/python

The code for the BigQuery client is open source and is hosted at https://

code.google.com/p/google-bigquery-tools/. The client is distributed as part

of the Google Cloud SDK, which is available at https://developers.google

.com/cloud/sdk/. The SDK site has platform specifi c installations. Since the

details of the installation are likely to change over time, we have not reproduced

those instructions here. You will be given the option of installing a language-

specifi c Google AppEngine SDK. If you want to try the AppEngine examples

in this book, you should select the Python option. The installation script will

ask if it should modify your PATH environment variable to include the SDK bin

directory. If you skip this step you will need to manually add:

<install directory>/google-cloud-sdk/bin

to your path because the examples use the tools in this directory. Once you

are done with the installation, launch a new terminal so that your environment

is updated.

With the tools set up, you need to confi gure them with the Google account to

use when talking to the service. It uses the installed client OAuth fl ow, which

requires that you use a browser to complete authentication. You initiate the

setup by running:

$ gcloud auth login
Your browser has been opened to visit:

 https://accounts.google.com/o/oauth2
 /auth?scope=https%3A%2F%2Fwww.googleapis>

You can view your existing projects and create new ones in the Google
Developers Console at: https://console.developers.google.com. If you

http://www.python.org/getit/releases/2.7.5
https://code.google.com/p/google-bigquery-tools
https://code.google.com/p/google-bigquery-tools
https://developers.google.com/cloud/sdk/
https://accounts.google.com/o/oauth2
https://console.developers.google.com

 Chapter 3 ■ Getting Started with BigQuery 59

c03.indd 01:4:1:PM 05/08/2014 Page 59

have a project ready, you can enter it now.

Enter your Google Cloud project ID (or leave blank to not set): project

You are logged in as xyz@gmail.com.

When you run the tool it will launch your web browser and open a web page

(Figure 3.12) informing you that a client application is requesting permission to

manage Google Cloud Platform services under your account. This is similar to

how websites delegate access to user data. After you grant permission, authen-

tication is complete and a credential is stored on your computer that enables

you to access the service using the command-line client. Additionally, the login

process prompts you to enter the ID of the project you will be using. This is the

ID of the project you created in the “Creating a Project” section.

Figure 3.12: Online authorization page

You can revoke this access at anytime from any computer that has access to the

Internet. Visit https://www.google.com/settings/security and navigate to the

section Account permissions. Click View all, and you see the list of applications

that you have authenticated with a button to revoke access. Clicking the Revoke

mailto:xyz@gmail.com
https://www.google.com/settings/security

60 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 60

Access button next to the Google Cloud SDK entry disables the client on every

machine you have set it up on. To revoke access on a specifi c computer you run:

$ gcloud auth revoke

This has to be run on the computer for which you wish to disable access. Also

if you have multiple Google Cloud Platform projects you can always change the

default project you selected at setup.

$ gcloud config set project <project id>

Returning to the setup of the client, notice that it printed a list of projects with

BigQuery enabled. If you have only a single project available, it automatically

selects that project as your default project for your operations and fi nishes the

setup process. If you have access to more than one BigQuery project, it asks

you to select a project from the list. You should choose the project you created

earlier in the chapter, which should be called BigQuery Examples.

Using the Client

You can always fi nd out what operations are supported by bq by running:

$ bq

The output is a list of commands with a brief description of their purpose

and usage. Every bq command has the following general structure:

bq [global flags] <command> [command flags] [command arguments]

The global fl ags control options that apply across commands and affect the

overall behavior of the tool. They must appear before the command; otherwise

they are treated as invalid command fl ags. You can see a list of these fl ags by

running:

$ bq –-help

You can get help on any specifi c command by running:
bq help <command>

Now start by using the client to inspect the contents of the project that you

were viewing in the web application. The command you need to use is ls, which

applies across various collections in the service. The –p option is used to list

the projects you can access.

$ bq ls –p
 projectId friendlyName
 -------------- -------------------
 317752944021 BigQuery Examples

 Chapter 3 ■ Getting Started with BigQuery 61

c03.indd 01:4:1:PM 05/08/2014 Page 61

The bare command, without any arguments, lists datasets in the default

project. If specify a dataset name, it lists the tables in that dataset.

$ bq ls
 datasetId

 reference
$ bq ls reference
 tableId

 zip_codes

You can use the same command with the –j option to see the list of recent

jobs that have been run in a project.

$ bq --format=csv ls -j
jobId,Job Type,State,Start Time,Duration
job_9cd353dc7d4f4b46a00840625af82be9,load,SUCCESS,19 Aug 16:17:04,0:00:>
job_2f4aa76f1bef48268080677a556a1dbd,query,SUCCESS,15 Aug 17:39:15,0:00>

Observe that both the load job you ran and the query you issue from the

BigQuery web UI are listed. As discussed later, queries are a type of job. For

now, just keep in mind that the command-line client, unlike the web application,

does not actually distinguish between different kinds of jobs for operations. Also

the command demonstrates how you can control the output of the client via the

–-format option. By default it uses tabular formatting that is easy for humans

to read, but it also supports options that are more convenient for scripting.

Another difference between the client and web application is that the client

does not have a way to list additional datasets you might have access to out-

side the currently confi gured project. In the web application you saw that the

publicdata:samples dataset appeared in the navigation panel. This dataset,

although not easily discoverable, is still accessible via the command-line client.

$ bq ls publicdata:samples
 tableId

 github_nested
 github_timeline
 gsod
 natality
 shakespeare
 trigrams
 wikipedia

You will have the opportunity to try all the commands available in the client

over the course of the book. This section covered suffi cient ground to verify

62 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 62

that your client is correctly confi gured to access the project you can use to try

the examples in this book.

Service Account Access

In the project setup step, you created a service account that is used as the iden-

tity talking to BigQuery in most of the sample code. The advantage of using

service account authentication is that it doesn’t require any user input, just a

private key. It may be useful to run the command-line client under the service

account identity to debug the samples or any other code you write that uses

these accounts. This section covers the credential setup for the service account

you created.

When you ran the client initialization command and stepped through the

authentication fl ow, you installed credentials for your Google account in a

confi guration fi le saved on your machine. On Mac and Linux machines, this

fi le is $HOME/.bigqueryrc, and on Windows machines it is %USERPROFILE%\

.bigqueryrc. Try viewing this fi le in any text viewer, for example:

$ cat $HOME/.bigqueryrc
project_id = 317752944021
credential_file = /Users/siddartha/.bigquery.v2.token

Remember that every invocation of the client can include global fl ags that

are specifi ed before the command. This fi le is simply a list of global fl ags that

are applied by default at every invocation. Any fl ags that are repeated on the

command line override the default value specifi ed in this confi guration fi le.

To authenticate as a service account, you need to create a separate confi guration

fi le. First, you need the client e-mail address, which you can fi nd in the JSON

fi le that you downloaded with the account information. It looks like <service-

account-id>@developer.gserviceaccount.com. Create a confi guration fi le for

the service account called $HOME/.bigqueryrc.<service-account-id> with the

following contents.

service_account = <service-account-id>@developer.gserviceaccount.com
service_account_credential_file = <location for token file>
service_account_private_key_file = <location of downloaded private key>
project_id = <project-id>

The download for this chapter contains a script to help you generate this fi le

from the client secrets you downloaded from the APIs console. You have to copy

or move the private key you downloaded to the location specifi ed by the second

argument to the script ($HOME/.bigquery.privatekey.p12), which ends up as

the value for the service_account_private_key_file fl ag. It is a good idea to

make this fi le readable by your account only, especially if it is a shared machine.

$ export SERVICE_ACCOUNT_ID="<account-id>"
$ python make_service_account_rc.py \

 Chapter 3 ■ Getting Started with BigQuery 63

c03.indd 01:4:1:PM 05/08/2014 Page 63

 <path to client_secrets.json> \
 <path to private key file> \
 >$HOME/.bigqueryrc.$SERVICE_ACCOUNT_ID

SETUPTOOLS

Under the hood these commands rely on the Python setuptools (https://pypi
.python.org/pypi/setuptools) package. This package simplifi es Python pack-

age management and is used again later in this chapter to install the client libraries.

You should install this package in your system Python library so that it is easily acces-

sible. You may also want to consider pip (https://pypi.python.org/pypi/pip),

which is an alternative that has some advantages but is not available for all operating

systems.

Now you can run a command as your service account by specifying the new

.bigqueryrc fi le:

$ bq --bigqueryrc=$HOME/.bigqueryrc.$SERVICE_ACCOUNT_ID ls

If you get an error complaining that service accounts require the Python

OpenSSL library (https://pypi.python.org/pypi/pyOpenSSL), then you need

to install that module before proceeding. The easiest way to do that is to use

the setuptools Python package distribution framework. With this package

manager installed you just need to execute:

$ easy_install pyOpenSSl

This fetches and sets up the necessary packages. If you are unable to install

packages in a system-wide Python library location, you will need to modify

this command to install the library in a private location that is included in the

PYTHONPATH environment variable. After this is complete you can try rerunning

the client command.

The ls command you just ran generates the same output you would get when

running the command under your own Google account. If you try to list jobs,

however, you can see that there are no jobs run by the service account yet.

$ export BIGQUERYRC=$HOME/.bigqueryrc.$SERVICE_ACCOUNT_ID
$ bq ls –j
$ bq query '
 SELECT zip FROM [bigquery-e2e:reference.zip_codes]
 WHERE area_codes CONTAINS "425" LIMIT 3'
+-------+
| zip |
+-------+
| 98004 |
| 98005 |
| 98006 |
+-------+

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pyOpenSSL

64 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 64

$ bq –-format=csv ls –j
jobId,Job Type,State,Start Time,Duration
bqjob_r11253d471625_0140a50036d1_1,query,SUCCESS,22 Aug 00:49:48,0:00:00

In the command above, you set the BIGQUERYRC environment variable, which

is equivalent to passing the –bigqueryrc global fl ag to the client. You can clear

this environment variable by running:

$ unset BIGQUERYRC

After running a query the job list is no longer empty. When you switch back to

your account, by clearing the environment variable, the job list does not contain

the jobs run by the service account. Keep in mind that setting the environment

variable from the command line only affects the current terminal session.

If you ran all the commands in this section without errors, then you have

your client confi gured for service account access.

Setting Up Google Cloud Storage

You can do quite a bit with BigQuery without enabling any other services in the

Google Cloud Platform. However, to get the most out of the service, it is best used

with other components of the platform. Google Cloud Storage is particularly

useful because it effectively serves as the hard disk for the Google Cloud Platform.

This service provides a useful staging area for data that you plan to import into

and export from BigQuery. Unfortunately, it has no free tier, so if you have not

set up billing, this section is not relevant. If you have set up billing, enabling

Google Cloud Storage is simply a matter of enabling it in the services panel of

the Google APIs console, the same place you enabled the BigQuery API. There

is also a Google Cloud Storage JSON API that you can ignore. Like BigQuery,

no charges accrue unless you actually store data in the service.

After the service is enabled, an entry for Google Cloud Storage appears in the

left navigation panel of the Google APIs console. Clicking this item expands this

entry and displays two links. One link is for the web-based storage browser and

one takes you to the GCS Project dashboard. Clicking the Storage Browser link

displays a page (Figure 3.13) where you can create a bucket to hold fi les in GCS.

Click New Bucket, which opens a dialog asking you for a name. This name

has to be globally unique across the service. A reliable option is to use the

project number that appears below the project title BigQuery Examples in the

top-left corner. If you assigned an ID to the project you created, you can use

that ID. After you click Create, the new bucket appears on the page. Clicking

the bucket takes you to the contents of the bucket. This will be empty because

 Chapter 3 ■ Getting Started with BigQuery 65

c03.indd 01:4:1:PM 05/08/2014 Page 65

you just created it. To test that this bucket works with BigQuery, export some

data from BigQuery into this bucket. Using the command-line client execute:

$ bq extract bigquery-e2e:reference.zip_codes gs://<bucket>/zip_codes.csv

Waiting on bqjob_r14fa7ecfc2d8c12d_00000140a539e06f_1 ... (25s)

Current status: DONE

Figure 3.13: Google Cloud Storage Manager

Refresh the content lists by reloading the page. You can see that a fi le named

zip_codes.csv appears in the bucket. Clicking this fi le downloads it to your

machine. This is how you can use Google Cloud Storage to get data in and out

of BigQuery.

Like BigQuery, Google Cloud Storage has a Python-based command-line

tool that is convenient to use for some tasks. The tool is installed as part of the

Google Cloud SDK and uses the credentials you confi gured when you set up

the SDK. You can use the tool to inspect the fi le you created by extracting data

from BigQuery.

$ gsutil ls
gs://317752944021/
$ gsutil ls gs://317752944021/
gs://317752944021/zip_codes.csv
$ gsutil cat -r 0-300 gs://317752944021/zip_codes.csv
zip,type,primary_city,state,county,timezone,area_codes,latitude,longitu>

66 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 66

00501,UNIQUE,Holtsville,NY,Suffolk County,America/New_York,631,40.81,-7>
00544,UNIQUE,Holtsville,NY,Suffolk County,America/New_York,631,40.81,-7>

Now you have both BigQuery and Google Cloud Storage set up with the ability

to move data between them. For additional information on Google Cloud Storage,

see the service documentation at https://developers.google.com/storage/.

Development Environment

This section covers additional libraries and tools required to work through

the code examples in this book. Because most of the examples in this book use

Python, it is a good idea to go through the Python section. The other sections

cover setup for Java and other Google developer frameworks covered in the

book. Rather than installing all the tools at once, it is probably better to come

back to this section as required.

Python Librarie s

In addition to the client tools, you need to install the Google API client librar-

ies for Python. To install the latest version, follow the instructions at https://

developers.google.com/api-client-library/python/start/installation.

For general development you should install the libraries using this method since

it makes it easy to upgrade the libraries and manage dependencies. However,

for working on the examples in this book, it is simpler to install the zip fi le

containing the code that accompanies this book that also includes the version

of the libraries used in the examples.

$ DOWNLOADS="http://storage.googleapis.com/bigquery-e2e/downloads"
$ curl ${DOWNLOADS}/bigquery_e2e_samples.zip –O
$ unzip bigquery_e2e_samples.zip cd bigquery_e2e_samples
To use the API libraries that are packaged with the samples.
Command assumes that you are currently in the samples directory.
$ export PYTHONPATH=${PYTHONPATH}:$(pwd)/lib

The bigquery_e2e_samples directory contains all the samples organized by

chapter and directory with required libraries. The last command in the snippet

above can be used to set up your PYTHONPATH environment variable to point to

these libraries.

https://developers.google.com/storage
https://developers.google.com/api-client-library/python/start/installation
https://developers.google.com/api-client-library/python/start/installation
http://storage.googleapis.com/bigquery-e2e/downloads

 Chapter 3 ■ Getting Started with BigQuery 67

c03.indd 01:4:1:PM 05/08/2014 Page 67

Java Libraries

If you are specifi cally interested in the sample Java code, chances are you already

have a working Java development environment (http://docs.oracle.com/

javase/7/docs/webnotes/install/). In addition, you need the Java BigQuery

client libraries. Unlike the Python Google APIs client library, which is a single

library for all the APIs, the Java libraries are distributed as a set of common

(OAuth and HTTP) libraries and separate per-API packages. The latest ver-

sion of the BigQuery library is located at https://developers.google.com/

api-client-library/java/apis/bigquery/v2. This page also has instructions

on setting up the libraries under a variety of development frameworks. The

samples download described in the previous section also contains the Java

libraries required by the chapters that have Java examples.

Additional Tools

Over the course of the book, you develop a substantial application built on the

Google AppEngine platform and Android platform in addition to BigQuery.

The details of setting up the development tools for these platforms are beyond

the scope of this book. However, many online resources are available to help

with the process.

Google AppEngine (https://developers.google.com/appengine/) is an

application platform that simplifi es building scalable web services. It sup-

ports a number of runtime environments, but this book uses only the Python

run time. To work through the AppEngine examples in this book, you need

the Python SDK available at https://developers.google.com/appengine/

downloads#Google_App_Engine_SDK_for_Python. To actually deploy the

sample code to your application, you can follow the instructions at https://

developers.google.com/appengine/docs/python/gettingstartedpython27/

uploading. Note that AppEngine has a free usage level, so you can try this

at no cost.

Android (http://www.android.com) is Google’s mobile platform, and as

part of the sample application in this book, you develop a mobile client for

Android. Developing for Android requires a substantial tool chain, and setup

is covered in detail on the Android site. This book supplies an Eclipse project

that you can import after you have the Android plug-in set up to experiment

with the client. In addition, the client is available in the Android App Store so

that you can use it without actually having to build it. The details are covered

in Chapter 8, “Putting It Together,” which explains the example mobile client

and web application.

http://docs.oracle.com/javase/7/docs/webnotes/install
http://docs.oracle.com/javase/7/docs/webnotes/install
https://developers.google.com
https://developers.google.com/appengine
https://developers.google.com/appengine
https://developers.google.com/appengine/docs/python/gettingstartedpython27
https://developers.google.com/appengine/docs/python/gettingstartedpython27
http://www.android.com

68 Part I ■ BigQuery Fundamentals

c03.indd 01:4:1:PM 05/08/2014 Page 68

Summary

This chapter covered the account setup and tools required to work with BigQuery

and try the examples in this book. The basic account and project confi guration

within Google Cloud Platform was explained. Then the tools you use to interact

with the service were described. They include:

 ■ BigQuery web client

 ■ bq, the command line client

 ■ gsuti l, the Google Cloud Storage command line client

Finally, the development environment and SDKs you need to install to work

with the code discussed in later chapters was covered.

Many of the details described in this chapter will change over time, and in

some cases will likely change quite often. Wherever possible, we have included

pointers to online resources where you will fi nd the latest instructions. So if

you fi nd that something is not working as described, consult these resources

to see if there are updated instructions .

69

c04.indd 05:5:58:PM 04/29/2014 Page 69

To understand how to use BigQuery, it is helpful to know a bit about the princi-

pal abstractions that it uses and a little bit of terminology. This chapter explains

the key objects used by BigQuery and establishes a language for talking about

them, which will be useful in subsequent chapters.

BigQuery is a structured data store; that is, it divides data into rows and

columns. A collection of rows of data is called a table, just like in any relational

database. Tables have a schema describing the columns of data they contain.

Tables are grouped into datasets, which are logical collections of tables that can

be shared. Datasets are owned by projects, which control billing and serve as a

global namespace root, meaning all of the object names in BigQuery are rela-

tive to the project. Finally, all asynchronous operations BigQuery performs on

behalf of users are done via jobs. Figure 4.1 shows the relationship between the

primary BigQuery abstractions. This chapter describes these in more detail,

starting with projects, then delving into data, and fi nishing up with jobs and

what BigQuery can do with your data.

C H A P T E R

4

Understanding the BigQuery

Object Model

70 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 70

Project (billing, top-level container)

Dataset (organization, access control)

Table (data with schema)

Job (query, import, export, copy)

Figure 4.1: BigQuery API abstractions

Projects

You’ve already seen and created a project in Chapter 3, “Getting Started with

BigQuery,” but what is a project exactly? Projects combine a number of some-

what disparate functions—naming, billing, and access control—into a single

entity. Projects are managed via the Google Developers Console (http://

console.developers.google.com), which is a central location to control access

to Google APIs. For the most part, after a project has been set up and confi gured,

most users don’t need to bother with it. However, when starting, it is helpful to

understand how projects are used and confi gured.

Project Names

A project serves as the root of the namespace for all other BigQuery objects;

that is, in order to talk about other objects, you need to specify which project

it belongs to. The names are visible when using the raw BigQuery HTTP API;

the URLs for all BigQuery accesses include projects/<project id> to indicate

which project is being addressed. Because objects such as tables or datasets

from different users will be in different projects, they don’t have to worry about

naming collisions. Project names are guaranteed to be unique by the Google

Developers Console.

Projects have two or even three names, which can be a cause for confusion.

The fi rst name is the project’s friendly name, which is the name you specify when

you create the project. This name is not unique; it is just an easy-to-remember

string. However, because it can be ambiguous, the friendly name is not useful

to BigQuery in naming objects.

The second name is the project number. All projects have a 64-bit number that

uniquely identifi es them. These numbers are assigned when the project is created;

they are visible at the end of the Google Developers Console URL (for example,

https://console.developers.google.com/project/857243983440) and also

can be seen on the project overview status page. Everywhere in BigQuery where

http://console.developers.google.com
http://console.developers.google.com
https://console.developers.google.com/project/857243983440

 Chapter 4 ■ Understanding the BigQuery Object Model 71

c04.indd 05:5:58:PM 04/29/2014 Page 71

you can specify a project, you can use this 64-bit number. Most of the time,

unless you construct API requests by hand, you do not need to use this number

directly. The BigQuery web UI enables you to select the project to use from a

drop-down of your available projects, and the command-line client saves your

default project number in a local fi le. If you access BigQuery programmatically,

you’ll likely have the project number stashed in a constant somewhere.

Because it can be a pain to type and even more diffi cult to remember a 64-bit

number, the Developers Console provides another way to name a project: the

project ID. These IDs can be more convenient to type than project numbers and

also make it easier to know at a glance what the project contains. For example,

the project for the sample application used in this book is called bigquery-

sensors, which is easier to remember than 1036853159133.

Project IDs are carved from a single global namespace. If I name my proj-

ect bigquery-samples, no one else can ever use this name for their project.

There are some restrictions around project IDs; for example, you should not

name your project after another company’s trademark. In addition, after a

project ID is assigned, it cannot be changed, so choose wisely. Both the proj-

ect ID and the project number can be used interchangeably with BigQuery.

Figure 4.2 shows a screenshot of the Google Developer Console showing the

three project names.

Figure 4.2: Project names, numbers, and IDs in the Developer Console

72 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 72

Project Billing

One of the primary purposes of projects is to know who to bill for accesses to

Google APIs. Although BigQuery and a number of other Google APIs have a

limited amount of free usage, some operations require a credit card to be entered

and billing to be set up before they can be used. For example, although BigQuery

enables up to 1 TB of free queries per month, users cannot use the streaming insert

API unless they sign up for billing. Enabling billing on a project can be done via

the Developers Console’s billing tab and is generally as simple as entering valid

credit card information. Large customers may prefer to be billed via invoice.

This is possible to set up but requires contacting a Google sales representative.

Project Access Control

Projects can also be used to authorize specifi c users to access data and per-

form operations on behalf of the project. The Permissions tab in the Google

Developers Console provides a way to add users as either viewers, editors, or

owners. Everyone in the team list can run jobs (including queries) on behalf of

the project. Users who intend to access BigQuery from an AppEngine app should

add their AppEngine service account to the list. (The service account will look

like account@appspot.gserviceaccount.com.) The project permissions page

will look something like Figure 4.3.

Figure 4.3: Developer Console Team page

mailto:account@appspot.gserviceaccount.com

 Chapter 4 ■ Understanding the BigQuery Object Model 73

c04.indd 05:5:58:PM 04/29/2014 Page 73

The permissions listed in the project become a default access control list (ACL)

for datasets in the project. Viewers get read access, editors get write access, and

owners get owner access. Note that this is just the default ACL; the dataset ACL

can be updated to change or remove any of the default project entries. To prevent

a situation in which the people responsible for paying the bills for a project can

be required to pay for something they don’t have access to, project owners have

some special rights. Project owners can always modify object ACLs, so they can

add themselves back to the dataset ACL if necessary.

Projects and AppEngine

Google AppEngine automatically creates a project for developers when they

sign up. Older AppEngine apps may not have a one-to-one mapping to projects,

but newer ones should always have an associated project. AppEngine creates a

special nonuser account created for every project, called a service account. This

can be particularly useful in accessing BigQuery because it can automatically

communicate with BigQuery without the need to manage credentials. However,

the service account must be explicitly authorized to access BigQuery by adding

it to the project permissions. Chapter 8, “Putting It Together,” walks through

the authorization options from AppEngine in more detail.

BigQuery Data

Data in BigQuery follows a strict hierarchy: Rows of raw data that follow a

schema are stored in a table; tables are grouped into datasets; and datasets

belong to projects. Projects belong to whoever is paying the bills for the data

storage. This hierarchy is visible in the URL paths used in the BigQuery REST

API, as well as in the names of objects. The REST paths are described in much

more detail in the next chapter; this section gives a rundown on how BigQuery

objects are named.

Naming in BigQuery

There are two ways to refer to objects in BigQuery: as identifi ers and as references.
In a query, the identifi er of the object is used. Take, for example, this query:

SELECT message FROM [bigquery-e2e:logs.latest]

The fi eld message is selected from table latest in dataset logs in project

bigquery-e2e. This syntax is used in queries because the table identifi ers need

to be compact and easy to type by humans. Identifi ers are usually referred to

74 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 74

as “IDs” and can be relative or fully-qualifi ed. A relative ID is relative to the

parent, while the fully-qualifi ed ID is the full name of the object, which can be

used to fi nd it in any context. The table in the previous example has a relative

ID of latest and a fully-qualifi ed ID of bigquery-e2e:logs.latest.

In the API, however, the name components are split to make it easier to

create and parse names. For example, if you have the fully-qualified ID

bigquery-e2e:logs.latest and you want to fi nd out the dataset ID, you’d have

to fi gure out a way to extract only the portion you need from the full name.

This extraction is an error-prone process, and relies on knowing exactly what

characters are expected to be in the different portions of the ID. To prevent you

from having to try to parse identifi ers, the API returns a JSON object with the

individual name components. These JSON objects are called references. The

reference corresponding to the table bigquery-e2e:logs.latest is:

{"projectId": "bigquery-e2e", "datasetId": "logs", "tableId": "latest"}

The datasetId fi eld can be easily extracted from this result. In Python, to

extract the dataset ID from the table reference, you can treat the reference as a dict:

dataset_id = table_ref["datasetId"]

In Java, if you use the BigQuery client library, the TableReference object

would have a getDatasetId() method:

String datasetId = tableRef.getDatasetId();

Table 4.1 shows the identifi er and reference format for BigQuery objects.

Table 4.1: BigQuery Object Names

OBJECT TYPE REFERENCE COMPONENTS

FULLY QUALIFIED

IDENTIFIERS

Project projectId: bigquery-e2e bigquery-e2e

Project (Google

Apps for Your

Domain)

projectId: google
.com:bigquery-e2e

google
.com:bigquery-e2e

Dataset projectId: bigquery-e2e

datasetId: logs

bigquery-e2e:logs

Dataset (Google

Apps for Your

Domain)

projectId: google
.com:bigquery-e2e

projectId: logs

google
.com:bigquery-e2e:logs

 Chapter 4 ■ Understanding the BigQuery Object Model 75

c04.indd 05:5:58:PM 04/29/2014 Page 75

OBJECT TYPE REFERENCE COMPONENTS

FULLY QUALIFIED

IDENTIFIERS

Table projectId: bigquery-e2e

datasetId: logs

tableId: latest

bigquery-e2e:logs
.latest

Job projectId: bigquery-e2e

job_id: job-abcdefg0001

bigquery-e2e:job-
abcdefg0001

Schemas

BigQuery schemas control what type of data the tables are allowed to con-

tain. Schemas contain zero or more fi elds, which are strongly typed columns

of values. The primitive fi eld types are INTEGER, FLOAT, BOOLEAN, STRING, and

TIMESTAMP. INTEGER values are all signed, 64-bit values. FLOATs are IEEE 754

double-precision values. BOOLEANs are simple fl ags; they can be either true

or false. STRINGs are UTF8-encoded string values. If you want to query

over binary data, you should base64-encode it first (or hex-encode it for

easier querying). TIMESTAMPs are microsecond-resolution UTC timestamps.

Figure 4.4 shows a table with a simple, fl at schema.

foo

Field 1 Field 2 Field 3 Field 4 Field 5

Row 1 1.3 42 –1text text

barRow 2

Row …

0.9 42 0more text

Figure 4.4: Simple table with flat schema

Fields have a mode indicating whether they are REQUIRED, NULLABLE, or

REPEATED. Trying to load a null fi eld into a REQUIRED fi eld will result in an

error. NULLABLE fi elds, on the other hand, are allowed to have null values.

REPEATED fi elds can be thought of as arrays of values. An empty REPEATED fi eld

is semantically equivalent to a null value.

Fields can also be nested; these are given a type of RECORD, indicating they

have a subschema. RECORDs can be repeated as well. Although repeated fi elds can

76 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 76

be useful when the data is hierarchical, it is often a good idea to avoid unneces-

sary repeated fi elds. Repeated RECORD fi elds often become diffi cult to work with

and query after they get beyond the fi rst or second nesting level. Nested fi elds

are referred to by dots; for instance if RECORD outer_field has a fi eld called

inner_field, which is also a RECORD containing the fi eld inner_inner_field,

you could access the innermost fi eld via the name outer_field.inner_field

.inner_inner_field. Figure 4.5 shows a typical nested schema.

foo

Field 1 Field 2 Field 3.1 Field 3.2 Field 3.3

Row 1

1.3

1.8

2.1

42 –1text text

44 –2even more text

bar
Row 2

2.2

1.8

42 –1text text

Row …

Figure 4.5: Nested BigQuery schema

Tables

Tables in BigQuery are similar to tables in a relational database–they are col-

lections of rows and columns of structured data. Being structured means they

have a schema, which applies to all the data in the table. BigQuery supports

nested schemas, meaning you can have a row of data that has arrays of values or

nested records. Table schemas are generally specifi ed when the table is created

and can be updated only in limited ways. The Tables.update() API method

enables you to add new columns to the table and to relax REQUIRED fi elds to

make them NULLABLE.

BigQuery tables do not support row-level updates. Tables can be appended

to, so they can continue growing after they are created. Appending may be

useful if you have data being generated periodically; you can add to the table

as new results come in. Tables can also be truncated, which means that a single

atomic operation can delete them and replace them with new data. The truncate

operation is useful, for example, if you mirror data from an external data store

and want to always replace the table with the latest version.

 Chapter 4 ■ Understanding the BigQuery Object Model 77

c04.indd 05:5:58:PM 04/29/2014 Page 77

Query results in BigQuery are themselves tables. Any operation you can per-

form on a BigQuery table can be performed on a query result. By default, query

results are “anonymous,” meaning they are given a random name belonging

to a hidden dataset and will expire after 24 hours. However, queries can also

specify named destination tables, in which case the results will stick around

until the destination tables are deleted.

In addition to data, tables have some additional interesting metadata. A table

can specify an expiration time, which enables it to be automatically garbage

collected after it expires. Tables also have a row count and a last modifi ed time,

which can be used to tell whether they have been updated recently.

Datasets

BigQuery datasets are collections of tables. They are logical groupings of tables,

which can be thought of as similar to a database. Unlike databases, however, a

dataset doesn’t provide any indication of where or how the underlying tables

are stored, and there are no restrictions about combining data (via copy, the

SQL JOIN operation, and so on) in different datasets.

Dataset Access Control

Datasets are the primary unit of sharing in BigQuery because they control access

to all underlying tables. Datasets have ACLs that specify readers, writers, and

owners for the dataset. Readers are allowed to read data from tables in a dataset

and run queries against those tables; writers have the same permissions as read-

ers but are also allowed to create and modify tables; and owners have the same

permissions as writers but are also allowed to change the ACL on the dataset.

By default, the ACL on a dataset specifi es only the project permissions set

up in the Google Developers Console. The project owners map to dataset own-

ers; project editors map to dataset writers; and project viewers map to dataset

readers. These ACLs can be changed, however, and the project permissions

entries can be removed from the dataset. As previously mentioned, project

owners have some special rights. Because the project owners pay for the dataset,

they always have the option to delete it. This prevents people from having a

dataset they are obliged to pay for but cannot remove.

If a user is not a member of the project team, in order to run queries against

tables in a dataset, they need to be a member of some other project team that

will get billed for their queries. If you allow a user to read your tables, this will

not give them permission to do anything that may cost you money; for them to

do that, they must be a member of your project’s team.

For example, suppose you give Alice access to read your Logs dataset, but

Alice is not a member of the project team. She can read values out of the dataset,

78 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 78

but if she wants to run a query, she needs to run in some project where she is a

member of the team. Then, if Bob is an editor on the project team but you remove

him from the ACL of the Sekret dataset, Bob cannot run queries against, read

data from, or even see that the Sekret dataset exists.

Jobs

In BigQuery, when you want to get something done—adding data, running a

query, copying a table, and so on—you use a job. Jobs are asynchronous opera-

tions that BigQuery performs on a user’s behalf. Some jobs, like Query jobs,

may have convenient API wrappers that make them appear to be synchronous,

but under the covers they’re still asynchronous operations. You can check their

status while they’re running, and you can come back and get the results later

via a separate API call.

Job Components

Jobs have four main parts: a reference, which is a unique name for the job; a

confi guration that tells BigQuery what to run; status of the job, which includes

errors and warnings; and job statistics to provide information about what the

job accomplished. Let’s consider each of these job parts in turn.

Job References

Job references are immutable names for a job. They can be used to look up the

status of a job when it is running or statistics when the job has completed. They

can be used by project owners to fi gure out what was run in their project and

by whom. Job references are also useful when contacting BigQuery support

about a problem; the support engineer or BigQuery developer can use the job

ID to look up what happened and fi gure out what went wrong.

There are two parts of a job reference: a project ID and a job ID. Project IDs can

be either the project number or project ID discussed earlier in this chapter (not

the project friendly name, however). All jobs run in the context of a project that

indicates who is responsible for paying the bills for any work done by the job.

Job IDs are strings of letters, numbers, and underscores that must be unique per

project. This uniqueness constraint for job IDs within a project is important. By

carefully controlling the job IDs, you can know whether something has already

run and can prevent duplication.

 Chapter 4 ■ Understanding the BigQuery Object Model 79

c04.indd 05:5:58:PM 04/29/2014 Page 79

THE CASE FOR SPECIFYING YOUR OWN JOB ID

After you submit a job insert request, BigQuery starts processing the job on your

behalf. A number of things can go wrong that would prevent BigQuery from com-

municating back to you the status of the job unless you have a pre-arranged name to

refer to. For instance, your wireless network could disconnect. Your wired network

could have a hiccup. A BigQuery server could crash. Your machine could crash. A traffi c

management algorithm could decide to drop packets that are crossing intercontinen-

tal fi ber-optic cables in order to make way for something more important.

All these things may look, to you, like errors starting the job. However, because

BigQuery runs the job asynchronously, when you get an error, it might actually still

complete successfully. If the job is a query, maybe this isn’t important; you can just

run the job again. But if the job were appending data to a table, you want to know

whether you need to run it again or whether the import actually succeeded.

The way to avoid these types of problems is to create your own job ID for each task.

When you run the Jobs.insert() API, you can specify a unique ID for the job that

will be created. This can give you a way to refer to the job if a connection error occurs.

Usually, coming up with a unique name is easier than it sounds—just use the current

time or the pathname of the fi le you’re importing.

If you have a known job ID, you have two ways of fi guring out whether the job

ran successfully. The fi rst is the simplest: Just try running it again with the same ID.

Because job IDs are enforced to be unique, you cannot run a job with the same name

twice. If the job actually started, the second call to Jobs.insert() will fail with

an Already Exists error. The following transcript shows an example of what happens

when you try to create the same job twice. (We fi rst generate a job ID based on the

date so that it will start out as unique.)

$ JOB_ID=job_$(date +"%s")

$ bq --job_id=${JOB_ID} query --max_rows=0 "SELECT 17"

Waiting on job_1394690025 ... (0s) Current status: DONE

$ bq --job_id=${JOB_ID} query --max_rows=0 "SELECT 17"

BigQuery error in query operation: Already Exists:

 Job bigquery-e2e:job_1394690025

The second way to tell whether a job creation operation actually succeeded is to

use the Jobs.get() API to look up the status. If the job does not exist, you’ll get a

Not Found error. If the job did run and has an error, that error will be present in the job

status. Next is an example of running a job that doesn’t actually manage to contact

BigQuery because the network is down (we yanked out our network cable). After the

network has been repaired, the command bq show tells us whether it actually ran. In

this case, it did not, so we can retry the query.

$ JOB_ID=job_$(date +"%s")

$ bq --job_id=${JOB_ID} query --max_rows=0 "SELECT 42"

Network connection problem encountered, please try again.

Continues

80 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 80

Once we plug the network cable back in, we can try again:

$ bq show -j ${JOB_ID}

BigQuery error in show operation: Not Found:

 Job bigquery-e2e:job_1394690102

Both the bq command-line client tool and the BigQuery Web UI create job IDs auto-

matically before starting jobs. The bq tool also has a mechanism for using a

fi ngerprint of the job to prevent re-execution of the same job unintentionally. This is

discussed in more detail in Chapter 6, “Loading Data.”

Job Confi guration

The job confi guration section specifi es what should get run. BigQuery may tweak

the confi guration—it might canonicalize path names, for example—but after

the job has been created (that is, Jobs.insert() has returned successfully) the

confi guration will never be changed.

There are four types of jobs: Query, Load, Copy, and Extract. Every query

that you run is a Query job. Load jobs import data from outside of BigQuery. Copy
jobs make fast copies of tables. Extract jobs can be used to make entire tables

available outside of BigQuery.

The job confi guration has a subsection for each type of job that can be run.

The presence of the particular subsection is the signal for BigQuery to run that

particular type of job. Only one per-job-type confi guration section should be

present at a time. For example, a Query job confi guration may look like this:

{"query": {"query": "SELECT 17"}}

Alternately, a Load job confi guration may look like this:

{"load": {
 "sourceUri": "gs://foo/bar.csv",
 "destinationTable": {
 "projectId": "bigquery-e2e",
 "datasetId": "logs",
 "tableId": "latest"}}}

Don’t worry about the exact fi elds that are present here. Individual job types

are discussed in more detail in subsequent chapters: Query jobs in Chapter 7

(“Running Queries”), Load jobs in Chapter 6, Copy jobs in Chapter 10 (“Advanced

Queries”), and Export jobs in Chapter 11 (“Managing Data Stored in BigQuery”).

(continued)

 Chapter 4 ■ Understanding the BigQuery Object Model 81

c04.indd 05:5:58:PM 04/29/2014 Page 81

For now, we will limit discussion to a few settings that are common across job

types: dryRun, createDisposition, and writeDisposition.

Dry Run

The dryRun fl ag is one of the only settings present on the top level of the job

confi guration, and its purpose is to instruct BigQuery to not actually run the job.

Instead, dry run requests will perform validation and authorization checks to

determine whether the job is likely to succeed, and then return to the user without

creating a persistent job or starting the work of the job. Dry run requests may

also return some statistics so that callers can estimate the amount of resources

that would be used by a job. This can be useful to estimate the cost of running

a job or to validate a query without actually running it. The BigQuery web UI

uses the dryRun fl ag to validate queries as you type them, and you can use bq

to do the same, as shown here:

 $ bq query --dry_run --format=json "bad query"
Error in query string: Encountered " <ID> "bad "" at line 1,
column 1.
Was expecting:
<EOF>

Create Disposition

Create disposition controls when tables get created as the result of a job. There are

two values for createDisposition: CREATE_NEVER and CREATE_IF_NEEDED. These

values determine what BigQuery should do if a table doesn’t exist. CREATE_NEVER

requires a pre-existing table for the job to run. CREATE_IF_NEEDED is usually

the default; it means that if a table doesn’t already exist, go ahead and create it,

atomically, when the job is ready to complete.

Write Disposition

The writeDisposition fl ag controls how and when to write to a table and has

three possible values: WRITE_APPEND, WRITE_TRUNCATE, and WRITE_EMPTY.

If the write disposition is WRITE_APPEND, the job will append any new data to

the end of the table. You can run multiple jobs appending to a table in parallel

without worrying that they will interfere with each other or corrupt the table.

If the write disposition is WRITE_EMPTY, if the table currently has data in it, the

write will fail. This can be useful to make sure that multiple jobs all creating

the same table don’t end up appending their results together, if you want only

one of them to succeed.

Finally, WRITE_TRUNCATE will atomically replace the data that is currently in

the table with the results of this job. This can be useful, for example, to reload

82 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 82

data in a table. An analogy to WRITE_TRUNCATE is the scene in the fi rst Indiana

Jones movie where he takes the golden idol from the temple—as he takes it, he

replaces it with a bag of sand that seems to be about the same size as the idol.

Hopefully, your usage of WRITE_TRUNCATE will have a better outcome than in

the movie.

The bq tool does not give control over write dispositions directly. By default,

for example, load jobs run as WRITE_APPEND. It does however allow you to change

the disposition to WRITE_TRUNCATE by passing the --replace fl ag:

$ echo a,b,c > temp.csv
$ bq load --replace scratch.table1 temp.csv "f1,f2,f3"
Waiting on bqjob_r1ef2a0ae815fa433_000001401128cb0b_1 ... (36s) Current
status: DONE

All table write operations in a job happen atomically at the end of the job.

That is, when the job completes, either all write operations are performed at

once or none of them are. For example, if you use WRITE_TRUNCATE, there will be

no period of time when the table is empty—other callers will either see all the

original data or all the replaced data. Moreover, if there is a WRITE_APPEND job

happening at the same time as a WRITE_TRUNCATE job is running, the expected

behavior depends on which one fi nishes fi rst. If the append completes fi rst,

the truncate also truncates the appended data. If the truncate job completes

fi rst, the appended data will be present in the table along with the results of

the truncate job.

Job Status

Job status entries have three fi elds: state, errorResult, and errors. The state

is the state the current job is in; jobs start as PENDING, progress to RUNNING when

they are actually being acted upon, and then are marked DONE when the job

completes. There is no error state. If the job failed, the state will still be DONE,

but the errorResult fi eld will be populated. Figure 4.6 shows the usual job state

transitions, both when the job runs successfully and when there is an error.

state: PENDING state: RUNNING state: DONE

state: PENDING state: RUNNING state: DONE
errorResult: Error!

Error!

Figure 4.6: Job states and errors

 Chapter 4 ■ Understanding the BigQuery Object Model 83

c04.indd 05:5:58:PM 04/29/2014 Page 83

You can use the bq tool to inspect job state by using the show -j command.

The following code snippet creates a load job that will fail because the data

doesn’t match the schema, and get the status of the job during each of the three

job phases.

$ JOB_ID=job_$(date +"%s")
$ bq --nosync –job_id=${JOB_ID} \
 load scratch.table1 temp.csv "f1,f2"
Successfully started load bigquery-e2e:job_1394420275
$ bq show -j ${JOB_ID}
Job bigquery-e2e:job_1394420275

 Job Type State Start Time Duration Bytes Processed
 ---------- --------- ------------ ---------- -----------------
 load PENDING

$ bq show -j ${JOB_ID}
Job bigquery-e2e:job_1394420275

 Job Type State Start Time Duration Bytes Processed
 ---------- --------- ----------------- ---------- -----------------
 load RUNNING 21 Jul 15:32:14

$ bq show -j ${JOB_ID}
Job bigquery-e2e:job_1394420275

 Job Type State Start Time Duration Bytes Processed
 ---------- --------- ----------------- ---------- -----------------
 load DONE 21 Jul 15:32:14 0:00:05

Errors encountered during job execution. Too many errors encountered.
Limit is: 0.
Failure details:
 - Too many columns: expected 2 column(s) but got 3 column(s). For
 additional help: http://goo.gl/RWuPQ

The errors fi eld is a list of problems that occurred while running the job. These

problems may or may not be fatal; like compiler warnings, they may be ways

to tell you something went wrong in case you want to deal with it, but it didn’t

affect the outcome. The job may actually have completed successfully (if so, the

errorResult fi eld will be empty) but the errors list might still report errors.

An example of a successful job with the errors list populated is a job that

loads data from a CSV fi le but had a couple of bad rows (but still below the

maxBadRecords threshold). The following snippet shows an example running

the same load command as before, but with one bad record allowed, which

lets the job succeed. The errorResult fi eld is not present; there are warnings

in the errors stream:

http://goo.gl/RWuPQ

84 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 84

$ JOB_ID=job_$(date +"%s")
$ bq --job_id=${JOB_ID} \
 load --max_bad_records=1 scratch.table1 temp.csv "f1,f2"
Waiting on job_1394723344 ... (25s) Current status: DONE
 $ bq show -j --format=prettyjson ${JOB_ID}
{
...
"status": {
 "errors": [
 {
 "location": "File: 0 / Line:1",
 "message": "Too many columns: ...",
 "reason": "invalid"
 },
 {
 "message": "Input contained no data",
 "reason": "invalid"
 }
],
 "state": "DONE"
 }
}

Job Statistics

The jobStatistics sub-message is the simplest part of the job object. As you

probably have guessed, jobStatistics reports various statistics about how the

job has run. For instance, it includes startTime, which is the time in millisec-

onds since 1/1/1970 that the job started. (That is, the state went from PENDING

to RUNNING.) It also includes endTime, which is the time that the job completed.

Other fi elds are specifi c to the type of job that was run, but we’ll call out one

here: totalBytesProcessed. For Query jobs, this is the number of bytes that

were read from the source tables, which is a number that is directly related

to the cost you get charged to run the query. See the “BigQuery Billing and

Quotas” section later in this chapter for how the total bytes processed number

can be interpreted.

Job Access Control

To run a job, a user must be a member of the project team, in any role (reader,

editor, or owner). But what do we mean by user? A user can be anyone with

a Google account, which includes GMail accounts and Google Apps For Your

Domain accounts. A user might be a service account that runs on behalf of an

application but is considered to be a user by BigQuery for authentication purposes.

 Chapter 4 ■ Understanding the BigQuery Object Model 85

c04.indd 05:5:58:PM 04/29/2014 Page 85

A user may or may not be an end user who is using a web app. For example, in

our sensor data application, visitors to the website may trigger BigQuery queries

to be run, but they are not members of the project team. Instead, the application

itself authenticates to BigQuery (via the service account), which then runs the

queries and displays the results to the user.

There is one additional user requirement to run a job: The user must have

the rights to operate on the data used by the job. If you want to run a job that

creates a table, you must have write access on the table’s enclosing dataset. It

doesn’t matter which project that table is in—you could be running the job in

one project but writing tables in another one—but you must have write access to

anything you are modifying. Likewise, you must have read access to anything

you are reading. If you are a member of the project’s ACL, you may have rights

conferred via the default ACL inherited from the project, but if the dataset ACL

has been customized, you may not. For more information about ACLs and access

rights, see the “Datasets” section earlier in this chapter.

BigQuery Billing and Quotas

BigQuery users are currently charged for two things: storage and queries. Both

are proportional to data size. Storage costs can be incurred even if you’re not

actively using BigQuery; processing costs get incurred only when you actually

run queries. The cost models are described in more detail next; although this

book does not mention prices because these are subject to change. Up-to-date

information about BigQuery pricing is available at https://developers.google

.com/bigquery/pricing.

Storage Costs

Storage is measured in the number of bytes stored in all your tables multiplied

by the amount of time the tables are live. The price for storage is quoted in tera-

bytes (for the pedantic, this is actually tebibytes, or 240 bytes) per month. If you

create a table that is 3 TB, and that table is around for 2 days before you delete

it, you’ll be charged for 1/5 of a TB-month [3 TB * 2 days / (30 days/month)]. If

you load a big fi le but it fails, you will not be charged for the failed load. You

are only charged for data stored in BigQuery, not for jobs that store data.

If you have a 10 MB CSV fi le and you load it into BigQuery, how much do

you actually get charged for? The answer depends on the type of data you’re

loading. Numeric data types (FLOAT, INTEGER, and TIMESTAMP) are charged at 8

bytes per value. String (STRING) values are charged at the length of the UTF8-

encoded string plus 2. (The 2 bytes at the end are for null-termination.) BOOLEAN

values are charged at one byte per value. Null values, regardless of type, are

https://developers.google.com/bigquery/pricing

86 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 86

not charged at all. You can see how many bytes were loaded by looking at the

load statistics of a successful load job.

$ JOB_ID=job_$(date +"%s")
$ echo 1,1.0,foo > temp.csv
$ bq --job_id=${JOB_ID} \
 load scratch.table2 temp.csv "f1:integer,f2:float,f3:string"
Waiting on bqjob_r11463cdf65f08230_00000140037462c6_1 ... (36s) Current
 status: DONE
$ bq --format=prettyjson show -j ${JOB_ID} | grep outputBytes
 "outputBytes": "21",

Here you can see that 21 bytes were loaded—that includes 8 bytes for each of

the two numeric fi elds, plus 3 bytes for “foo” plus 2 bytes for the null-terminator.

Processing Costs

BigQuery charges you for the number of bytes scanned by a query. This is

roughly proportional to the amount of work that BigQuery does for each query

because all queries are essentially table scans—that is, they must read all the

rows in the table.

Each column in a table is stored separately, however, so BigQuery needs to

read only the columns that are directly referenced by the query. This selectiv-

ity can make it somewhat diffi cult to know how much a given query will cost,

especially because the number of bytes per column is not exposed to users, only

the total number of bytes in the table.

Luckily, there is a mechanism to determine query cost (in bytes processed):

running the query in dry run mode. Dry run reports the amount of resources

that would be used by a job but does not actually run the job. This comes in

handy to fi gure out how much a query would cost. The command shown here

uses bq in dry run mode to fi nd out how much it would cost (in bytes) to query

over the title fi eld of the public Wikipedia table:

 $ bq query --dry_run --format=prettyjson \
 "select title from publicdata:samples.wikipedia" \
 | grep totalBytesProcessed
 "totalBytesProcessed": "7294285723"

The lazy (and perhaps spendthrift) way to determine the cost of the

query is just to run the query. As mentioned in a previous section, the

totalBytesProcessed fi eld in the job statistics will tell you how many bytes

were processed in queries that have been run. The BigQuery web UI reports

this number for all queries in the status bar above the query results.

There is no charge for queries that do not complete successfully. Similarly,

dry run queries are also free.

 Chapter 4 ■ Understanding the BigQuery Object Model 87

c04.indd 05:5:58:PM 04/29/2014 Page 87

Query RPCs

Using the jobs API to run a query can involve a lot of steps: First start a job, then

poll for completion, and then read the results when the job is done. Because

running queries is such a fundamental part of BigQuery, there are special APIs

that provide an easier way to query and read query results: the Jobs.query()

and Jobs.getQueryResults() RPC methods. These APIs don’t do anything

that you couldn’t do via other methods. In fact, they provide less functionality

because some features, such as batch mode and named destination tables, are

not supported using the Jobs.query() RPC.

That said, for many simple query situations, it can be signifi cantly easier to

just call the Jobs.query() RPC to run a query and get results in one step. If

you have long-running queries, or you are using a framework that doesn’t allow

you to wait for a long period of time on a single HTTP request (AppEngine is

an example—it limits all HTTP requests to 60 seconds or less), Jobs.query()

may not be suffi cient. If the Jobs.query() timeout expires, you can call the

Jobs.getQueryResults() RPC to wait for the query to complete and return the

results in a single step. This can prevent the need for a polling loop or using

the TableData.list() method to extract query results. Both Jobs.query()

and Jobs.getQueryResults() APIs are discussed in more detail in Chapter 7.

TableData.insertAll() RPCs

The only BigQuery API to be charged on a per-invocation basis is TableData

.insertAll(). Unless you are adding a massive amount of data, the costs will

be minimal, however. The announced cost is $.01 per 100,000 rows inserted, so

for $1 a day you can insert 10 million rows into a table. If you are adding much

more data than that, you may be better off batching up your inserts and adding

the data via a Load job.

Data Model for End-to-End Application

The BigQuery end-to-end sensor app uses the objects described in this chapter

to organize its data for querying and display. This section describes the project

setup, the datasets, the tables, and the schemas that are used for the sensor

application.

Project

The project used by the sensor data app has the project ID bigquery-e2e. The

project number and project name are visible in Figure 4.2. The BigQuery and

88 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 88

Cloud Storage APIs have both been enabled via the services tab (hence you

can see them in the left panel), and billing has been enabled via the billing tab

(which is necessary to load data).

The project permissions confi guration (refer to Figure 4.3) is relatively straight-

forward: The two authors of this book are both owners; the service account from

the BigQuery Sensors AppEngine app is a reader. The service account is a reader

instead of an editor as a security precaution that prevents it from updating data

unintentionally or maliciously. Having reader-level access does allow a user to

run queries and other jobs that may cost the project owner money—so be care-

ful when adding people to your team!

Datasets

There are four datasets used in the sensor app: logs, reference, dashboard,

and backup. The logs dataset contains the streamed data from mobile sen-

sors, with one table per day. The dashboard contains a cache of values used for

rendering charts in the app. The reference dataset contains reference tables

that have been downloaded from external sources. Finally, the backup dataset

contains backups from the app’s AppEngine datastore. All these datasets have

been locked down via custom ACLs.

The logs dataset contains sensitive data, so the default project reader and

project writer ACL entries have been removed. Project owners are still on the

ACL so that we (the owners) can query the data to diagnose problems with the

app. The logs are read by the sensor data AppEngine app, so the app’s service

account (bigquery-sensors@appspot.gserviceaccount.com) has been added

as a reader on the dataset ACL.

It was tempting to give write access to All Authenticated Users so that any-

one could stream data directly to the logs tables, but that would mean that

anyone could write anything they want to our tables and we’d end up pay-

ing for it. It also means that anyone could falsify the data; for our purposes

that isn’t important, but in many others, it would be a serious risk. Instead,

we have a service account write updates on behalf of our streaming users;

the logs are written to by a different service account than is used for reading

(857243983440-...@developer.gserviceaccount.com). We give that account

write access. Figure 4.7 has the sharing setup for the logs dataset.

The backups dataset is locked down even more; it is only writable by project

owners. The reference and dashboard datasets are considered less sensitive, so

they have default access left in place. They will be read and written by service

accounts (via the AppEngine app), but those service accounts are members of

the project, so we don’t need to set any special ACL entries.

We’ve also added read access for All Authenticated Users to all of these datasets.

Normally, this entry would not be present in any of the datasets. However, we

mailto:sensors@appspot.gserviceaccount.com
mailto:857243983440-...@developer.gserviceaccount.com

 Chapter 4 ■ Understanding the BigQuery Object Model 89

c04.indd 05:5:58:PM 04/29/2014 Page 89

opened up access to grant our readers the ability to look at the data. (It wouldn’t

be much use for teaching people about BigQuery otherwise.)

Figure 4.7: Sharing setup for logs dataset

Tables

There are a number of tables used in our application, but we’ll discuss only

one type of table here: the logs.device_* tables. These tables contain the daily

sensor data streams. We use the * wildcard on the table names when describing

them because the new tables are created every day, and the table names include

the date. For example, the February 24, 2014 debug log table would be logs

.device_20140224. The other tables used in the application will be introduced

in later chapters when they are needed.

As previously mentioned, a new logs table is created every day. This means

that you can have a lot of tables accumulating in the logs datas, and often the

old ones aren’t interesting any more. To avoid having too many tables that

you’re unlikely to care about (and unlikely to want to pay for), we set the table

expiration time to 30 days in the future when the table is created. This means

90 Part I ■ BigQuery Fundamentals

c04.indd 05:5:58:PM 04/29/2014 Page 90

that after a month, the tables will expire and you won’t have to worry about

seeing them or paying for them any longer.

The sensor data table has all of the sensor and application information that has

been streamed in from mobile devices. It has a very wide schema. One advantage

of BigQuery’s columnar storage system is that empty fi elds are “free”—they are

free to store, and they cost money only in queries when they are explicitly used.

So you can add lots of fi elds that may be used only in limited circumstances.

We won’t go into detail about all of fi elds, but Table 4.2 describes some of the

more interesting data points collected from the mobile devices.

Table 4.2: Sensor Data Schema (Abridged)

FIELD TYPE DESCRIPTION

id STRING

(REQUIRED)

ID of the device recording its data

time TIMESTAMP

(REQUIRED)

Time the sensor data was recorded

screen_on BOOLEAN Whether the device screen was on

memory RECORD Memory usage and capacity information

memory
.avaiable

INTEGER Amount of memory on the device, in bytes

memory
.used

INTEGER Amount of memory currently in use, in bytes

running REPEATED
RECORD

Record containing running application informa-

tion on the device

running
.name

STRING Name of the running app

running
.memory

RECORD Information about memory used by the app

running
.memory
.total

INTEGER Total amount of memory used by the app, in

bytes

This table will be referenced throughout the book; you’ll see how it gets

created in Chapter 8.

 Chapter 4 ■ Understanding the BigQuery Object Model 91

c04.indd 05:5:58:PM 04/29/2014 Page 91

Summary

 This chapter discussed the principal abstractions used by BigQuery: projects,

datasets, tables, schemas, and jobs. This chapter talked about the relationships

among these objects, how they are used, and how access to them can be controlled.

Understanding these abstractions is important when using BigQuery, and it may

be helpful to refer back to this chapter if something about these objects doesn’t

make sense. We also introduced the data model of our sensor data application

and described how the BigQuery tables, datasets, and projects are set up.

c05.indd 01:5:49:PM 05/08/2014 Page 93

Par t

II
Basic BigQuery

In This Part

Chapter 5: Talking to the BigQuery API

Chapter 6: Loading Data

Chapter 7: Running Queries

Chapter 8: Putting It Together

c05.indd 01:5:49:PM 05/08/2014 Page 94

95

c05.indd 01:5:49:PM 05/08/2014 Page 95

The last chapter described the principal abstractions used by BigQuery: projects,

datasets, tables, and jobs. This chapter shows you how those concepts map into

interaction with the BigQuery service. We introduce the BigQuery REST API by

describing the raw underlying HTTP format. We show that there is no magic

involved: The BigQuery service is just a server that accepts HTTP requests and

returns JSON responses. After reading this chapter, you should understand the

API model and be able to interact with the service.

If you do not plan to write code to access BigQuery—that is, you plan to use

only tools such as bq or the BigQuery web interface to use BigQuery—you may

want to skip this chapter. That said, understanding how the BigQuery API works

may make your interaction with BigQuery tools make more sense because those

tools use the BigQuery API underneath the covers.

Introduction to Google APIs

Google has a number of externally facing APIs for accessing Google products:

the Maps API, a Google+ API, several AdSense APIs, and more. You can see a list

of them all in the Google Cloud Console. (Go to https://console.developers

.google.com. click the name of a project, then click the APIs & auth tab.) BigQuery

is just one of these APIs and shares a lot in common with other Google web services.

C H A P T E R

5

Talking to the BigQuery API

https://console.developers.google.com

96 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 96

This section gives information about the basics of accessing any of the REST-

based Google web APIs, with a focus on how these operations work in BigQuery.

We demonstrate raw access using the UNIX curl command so that you can see

what actually happens at the API level. When an example requires stringing

together multiple commands, we use Python code instead, which will likely

be closer to the code you’d write to solve tasks yourself. If you’re familiar with

other web APIs, you should feel comfortable quickly.

We run all of the commands in this chapter in the bigquery-e2e project, but

if you try them out yourself, you should substitute your own project ID. We

defi ne a shell environment variable for the project ID in order to save typing

and make it easy to substitute a different project:

$ PROJECT_ID=bigquery-e2e

After you’ve set this environment variable, all the commands in this chapter

should work as-is using your project instead of ours.

Additionally, some of the examples require setting up state using concepts

we haven’t introduced yet. For these commands, we’ll use the bq command-

line client for the sake of expediency. For example, let’s start out by creating a

scratch dataset that we’ll use for storing tables in this chapter.

$ bq --project_id=${PROJECT_ID} mk -d scratch

Authenticating API Access

The fi rst thing that a Google API front-end server does, after it validates that

you sent it a well-formed request, is authenticate the user to fi gure out who

is making the request. On a good day, this is a simple process. On a bad day,

authentication can be the most frustrating part of trying to get two systems to

talk to each other. Sometimes you have all the data you need to call an API, but

trying to convince the other API you’re who you say you are can be far more

complex than you expect.

AUTHENTICATION VERSUS AUTHORIZATION

It is easy to confuse authentication (how do I know you’re who you say you are?) and

authorization (how do I know what you’re allowed to do?). The term “auth” is often

used so that you don’t have to try to remember which one is correct. Part of the

problem is that the words look similar, but they also are easy to mix up because most

physical examples you have do both types of “auth” at the same time. For example,

your driver’s license is a token that both authenticates you (establishes your identity)

and authorizes you to drive a car (certifi es you passed your driving requirements in

your state).

 Chapter 5 ■ Talking to the BigQuery API 97

c05.indd 01:5:49:PM 05/08/2014 Page 97

To see how authentication and authorization can be separated, imagine what hap-

pens when your driver’s license expires. You obviously shouldn’t drive without getting it

renewed. But it is only the authorization portion that has expired. It should be (although

I wouldn’t try arguing this with a bouncer at a bar) completely acceptable as a form of

authentication; it still uniquely identifi es you as the person on the card.

In BigQuery, authorization and authentication are distinct mechanisms.

Authorization is done via project teams and dataset ACLs, which are described in

Chapter 4, “Understanding the BigQuery Object Model.” Authentication is done via

the mysterious mechanisms described next.

Why Is Authentication So Hard?

To understand why authentication can be so tricky, it helps to consider some

history. Back in the wild and freewheeling days of the World Wide Web, you

didn’t need fancy authentication schemes. You just sent your username and

password as part of the URL request and everyone loved it. This was called

HTTP Basic Authentication, which was easy to use. Of course, from a security

perspective, it is terrible—your password is sent in the clear on every request.

It is easy for someone listening on the network to get your password, and from

then on, they can impersonate you.

Most interactive web access moved to a different model; you send your pass-

word to the server once in an encrypted session and get a token or cookie back

that you then use to talk to the server. This doesn’t provide a whole lot more

security than before—if someone can steal that cookie, he can impersonate you.

That is essentially what a cross-site-scripting (XSS) attack does. A mitigation

that is often used is that the cookie times out after a period of time, which is

why you have to log back in to Gmail every couple of weeks.

For API access, however, you don’t want to re-login. You want to just log in

once and have the API continue to work. Some Google APIs allow a mechanism

similar to cookie-based login, called ClientLogin. BigQuery does not support

ClientLogin because it is not considered secure enough; the long-lived ClientLogin

tokens are too vulnerable.

The other problem with ClientLogin is that you have to send a password to

each site you log in to. This is similar to using the web when you have to create

a new username and password to do everything from bank transfers to buying

movie tickets. Hopefully, you use a different username and password for the

movie site than you do for your bank account, but soon password management

gets diffi cult. One of the goals of more “advanced” authorization protocols is

that they limit the proliferation of passwords by limiting the number of places

you have to trust to send your password to.

98 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 98

While discussing your authentication wish lists, you also might want to be

able to delegate narrow access to a third party. Maybe you would like to autho-

rize a third party to print out your photos from Picasa. You trust them with

your photos, but you don’t trust them with your Gmail. You also don’t want

to send them your Google password. You hear about sites with bad password

management policies all the time, and you’d rather not have your Gmail account

become a vector for a spammer in Nigeria.

Now the requirements are starting to get tricky. You want to reduce the

number of sites you need to trust with your password; you want to give third

parties the ability to perform certain actions on your behalf without having

to trust them completely; you don’t want to send a long-lived token over the

wire; and you don’t want to send your password unless you have to. In soft-

ware engineering, when things start getting complex, people want to build

the “one” solution so that no one else has to implement it again. Often, this just

leads to more complexity. OpenID, for example, attempts to be a distributed

authentication mechanism. It is, however, used more for end-user web browser

authentication rather than APIs, which are often called by programs other than

browsers. OAuth and its successor OAuth2 attempt to solve the same problems

as OpenID but for API access.

If you want to talk to BigQuery, you need to use OAuth2. OAuth2 satisfi es the

requirements listed previously, with, of course, a cost in terms of implementa-

tion complexity.

OAuth2

Describing the OAuth2 protocol in detail is beyond the scope of this book;

instead, we provide the basics. If you hunger for more information, you can

check out the offi cial OAuth website at http://oauth.net/2/.

FRIENDS DON’T LET FRIENDS REIMPLEMENT OAUTH2

If you fi nd yourself implementing the OAuth2 protocol yourself, you should strongly

consider using one of the published OAuth2 libraries instead. They’re listed on this

page: https://developers.google.com/accounts/docs/OAuth2, which

also has helpful information about OAuth2 as it applies, specifi cally, to Google APIs.

As mentioned in the last section, authentication protocols try to reduce the

number of systems you need to trust. In OAuth2, you need to trust only the

Google Authorization Server. (Yes, that’s Authorization not Authentication,

sorry.) OAuth documentation tends to use the word “Authorization” instead of

“Authentication,” even though that isn’t how it is used in BigQuery. One way to

http://oauth.net/2
https://developers.google.com/accounts/docs/OAuth2

 Chapter 5 ■ Talking to the BigQuery API 99

c05.indd 01:5:49:PM 05/08/2014 Page 99

think of it is that OAuth is authorizing you to access the API, and then BigQuery

authorizes you to access the resources (tables, datasets, and so on).

Client Secrets

In Chapter 3, “Getting Started with BigQuery,” you saw how to set up a Client

ID for Installed Applications via the Google Cloud Console. If you skipped that

step, you should go read it now, because you are going to need it here. The Client

ID contains information that can identify your application to Google APIs. On

the Cloud Console page for your project, if you click Credentials under APIs &

auth, you can see the Client ID for your project. Click the Download JSON link

in the Client ID section to download a client_secrets.json fi le. The client

secrets JSON fi le for the BigQuery end-to-end project looks like this:

$ cat client_secrets.json
{
 "installed": {
 "client_id": "857243983440.apps.googleusercontent.com",
 "client_secret": "9z0P5eC1WjYtRug90aKiejns",
 "redirect_uris": ["urn:ietf:wg:oauth:2.0:oob"],
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://accounts.google.com/o/oauth2/token"
 }
}

Despite being called “secret,” we’ve included the client_secret for our proj-

ect. That is because, as used by BigQuery, the client_secrets.json fi le doesn’t

contain any important secrets. If you use other Google APIs such as Google

Maps, this information may be more sensitive. In BigQuery, the client ID and

client secret fi elds serve only to identify the application making the request. For

instance, if you look through the sources for bq.py, the client secret is provided

right there in the source:

$ grep client_secret bq.py
 'client_secret': 'wbER7576mc_1YOII0dGk7jEE',

The reason this “secret” is not so secret is that all access control and authen-

tication is done with respect to users making the request, not the application.

So if someone steals your client_secret, she can impersonate your application

(which has no special rights) but not any users.

The auth_uri and token_uri fi elds in the client_secrets.json fi le tell the OAuth

fl ow which Authorization Server to talk to. The redirect_uris fi eld can be considered

opaque. In a normal OAuth fl ow, a redirect URI is provided to tell the Authorization

Server what page to go to after authorization is complete. When you authorize for

an installed client, however, this isn’t needed. The urn:ietf:wg:oauth:2.0:oob

https://accounts.google.com/o/oauth2/auth
https://accounts.google.com/o/oauth2/token

100 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 100

value is just a special identifi er that says there isn’t a page to go to, and instead, it

should show the result of the authorization fl ow.

OAuth Flow

There are a few different types of OAuth fl ow; however, as mentioned before,

you should likely not try to implement them yourself. Here we walk you through

the installed application fl ow, but the other types of fl ows (service account and

web server) are similar. The way to perform OAuth2 authorization in Python

is to use your client_secrets.json fi le to create a flow object:

$ python
>>> from oauth2client.client import flow_from_clientsecrets
>>> BIGQUERY_SCOPE = 'https://www.googleapis.com/auth/bigquery'
>>> flow = flow_from_clientsecrets('client_secrets.json',
... scope=[BIGQUERY_SCOPE])

The scope parameter is what tells the authorization process that you want

to access BigQuery. If you want to access a different service as well as use the

same credentials, you could pass additional scopes here.

You likely don’t want to rerun the full authorization fl ow each time you run

the application. The oauth2client storage object provides mechanisms to save

your credentials:

>>> from oauth2client.file import Storage
>>> storage = Storage('bigquery_credentials.dat')
>>> creds = storage.get()

In this case, we save the credentials to a fi le called biguery_credentials.dat.

If that fi le doesn’t exist or doesn’t have valid credentials (which it will not the

fi rst time you run storage.get()), you can run the fl ow to fetch new credentials:

>>> from oauth2client.tools import run
>>> creds = run(flow, storage)
Your browser has been opened to visit:
 https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.go
+ ogleapis.com%2Fauth%2Fbigquery&redirect_uri=http%3A%2F%2Flocalhost
+ %3A8080%2F&response_type=code&client_id=857243983440.apps
+ .googleusercontent.com&access
+ _type=offline

If your browser is on a different machine then exit and re-run this
application with the command-line parameter

 --noauth_local_webserver

Authentication successful.

This opens your browser window, prompts you to log in (if you’re not already

logged in), and prompts you to allow the application access to your BigQuery

data. When you accept, the fl ow automatically completes.

https://www.googleapis.com/auth/bigquery
https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.go

 Chapter 5 ■ Talking to the BigQuery API 101

c05.indd 01:5:49:PM 05/08/2014 Page 101

This step may seem like black magic; you went to a web page and somehow

your Python client knew about it. What is actually happening here? A request

gets sent to the Authorization Server (the auth_uri from your client_secrets

.json). This request doesn’t actually know anything about you and doesn’t include

your username or password. It does send some identifying information about

your project (the client_secret and the client_id from client_secrets.json).

As a response, the Authorization Server returns an access URL. The access

URL must be visited in a web browser. This is a security precaution; because you

may need to enter your password, you want to make sure that no one captures

your password and sends it to their servers in North Korea. When you visit the

access URL in the browser, it asks you whether you want to grant access to the

scopes that were requested by the fl ow (in this case, just BigQuery).

If you accept, the Authorization Server then issues a redirect to a localhost

address. This is where the black magic comes in. When you called run() on the

flow object, it started up a web server on your computer. When the Authorization

Server redirects your browser to your local web server, it provides the credential

information as part of the request. The run() operation listens for this request,

and after it receives the credentials, shuts down the web server and returns.

Everything you need to talk to BigQuery is now in the creds object, and also

saved in a fi le called bigquery_credentials.dat.

OAuth2 Credentials

Now that you’ve seen how to run an OAuth2 fl ow to get credentials, look at

what the credentials actually contain.

>>> import json
>>> print json.dumps(json.loads(creds.to_json()), indent=2)
{
 "_module": "oauth2client.client",
 "token_expiry": "2013-08-11T18:07:59Z",
 "access_token": "...",
 "token_uri": "https://accounts.google.com/o/oauth2/token",
 "invalid": false,
 "user_agent": null,
 "client_id": "857243983440.apps.googleusercontent.com",
 "id_token": null,
 "client_secret": "9z0P5eC1WjYtRug90aKiejns",
 "_class": "OAuth2Credentials",
 "refresh_token": "1/_V43XWglqRtCQCJ2X_AWyajZK1i1NcpRt2DyhIBYLC4"
}

OAuth2 uses a split-token technique to keep your credentials secure. That is,

your credentials are split into two pieces: a long-lived refresh token and a short-

lived access token.

The only thing that the refresh token does is enable you to create more

access tokens. Because the refresh token is a long-lived credential, you want to

https://accounts.google.com/o/oauth2/token

102 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 102

keep it secret. That means sending it only to the Google Authorization Server,

not an API such as BigQuery directly. Instead, you send another request to the

Authorization Server, providing your refresh token in order to get a new token:

an access token.

The access token, fi nally, is what you use to access BigQuery. At a raw, HTTP

level, the access token should be passed in the Authorization header as a Bearer

token. The fi le auth.py, included in the downloads for this chapter, performs

the OAuth2 authentication dance and prints out an HTTP Authorization header

containing the access token. For example:

$ python auth.py
Authorization: Bearer ya29.1.AADtN_V2kFUrjX8wghCSPJng7XR2k7t...

You can run the auth.py command from within a curl command to fetch

the access token and set it as the Authorization header in an HTTP request. The

following command lists projects available for use with BigQuery; it is a good

test to see whether authentication worked.

$ curl -H \
 "$(python auth.py)"\
 https://www.googleapis.com/bigquery/v2/projects?alt=json

The access token, however, has two limitations: It has a limited scope, mean-

ing that it is valid only to access BigQuery, and it has a limited lifetime, usually

approximately 5 minutes. (This is what the token_expiry fi eld in the credentials

object refers to). After your access token expires, you need to call the Authorization

Server with your refresh token to get a new access token.

Split tokens may seem strange; however, you do often encounter them in

physical access situations. For example, when you go to the Department of

Motor Vehicles to get a driver’s license in the United States, you need to bring

your birth certifi cate. This is your long-lived, secure credential. You use this

credential to acquire a driver’s license, which has a limited expiration time, and

it is what you need to use to actually drive a car. The driver’s license is a lower

value credential; it is relatively easy to replace if lost, as long as you still have

your birth certifi cate. Likewise the birth certifi cate is a higher value credential,

even though you cannot use it if you get pulled over for speeding.

Just as renewing your driver’s license can be a pain, renewing your access

token whenever it expires can also be a lot of work. This is another reason to

use a standard OAuth2 library, which takes care of renewing your access tokens

automatically. In Python, you can wrap the httplib2.Http() object you use

to make your HTTP requests with one that does the access token bookkeeping

and adds authorization to all your requests:

>>> import httplib2
>>> http = creds.authorize(httplib2.Http())

https://www.googleapis.com/bigquery/v2/projects?alt=json

 Chapter 5 ■ Talking to the BigQuery API 103

c05.indd 01:5:49:PM 05/08/2014 Page 103

The resulting http object can be used to talk to BigQuery or any other Google

API without worrying any further about authentication.

If this protocol sounds complicated, it is even more complicated than it sounds,

since some details are omitted. As mentioned elsewhere, you probably shouldn’t

implement this yourself. The Google APIs client libraries are available for most

programming languages and can dramatically simplify the process of getting

a fresh access token. Listing 5.1 shows the full process of getting OAuth2 cre-

dentials in Python.

Listing 5.1: OAuth2 credential authorization (auth.py)

'''Handles credentials and authorization.

This module is used by the sample scripts to handle credentials and
generating authorized clients. The module can also be run directly
to print out the HTTP authorization header for use in curl commands.
Running:
 python auth.py
will print the header to stdout. Note that the first time this module
is run (either directly or via a sample script) it will trigger the
OAuth authorization process.
'''
for the saved credentials. If the user has never completed
OAuth authorization this module will initiate the process.
import httplib2
import json
import os
from apiclient import discovery
from oauth2client.client import flow_from_clientsecrets
from oauth2client.client import SignedJwtAssertionCredentials
from oauth2client.file import Storage
from oauth2client.tools import run

BIGQUERY_SCOPE = 'https://www.googleapis.com/auth/bigquery'

Service account and keyfile only used for service account auth.
SERVICE_ACCT = ('<service account id>@developer.gserviceaccount.com')
Set this to the full path to your service account private key file.
KEY_FILE = 'key.p12'

def get_creds():
 '''Get credentials for use in API requests.

 Generates service account credentials if the key file is present,
 and regular user credentials if the file is not found.
 '''
 if os.path.exists(KEY_FILE):
 return get_service_acct_creds(SERVICE_ACCT, KEY_FILE)
 else:

Continues

https://www.googleapis.com/auth/bigquery

104 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 104

return get_oauth2_creds()

def get_oauth2_creds():
 '''Generates user credentials.

 Will prompt the user to authorize the client when run the first time.
 Saves the credentials in ~/bigquery_credentials.dat.
 '''
 flow = flow_from_clientsecrets('client_secrets.json',
 scope=BIGQUERY_SCOPE)
 storage = Storage(os.path.expanduser('~/bigquery_credentials.dat'))
 credentials = storage.get()
 if credentials is None or credentials.invalid:
 credentials = run(flow, storage)
 else:
 # Make sure we have an up-to-date copy of the creds.
 credentials.refresh(httplib2.Http())
 return credentials

def get_service_acct_creds(service_acct, key_file):
 '''Generate service account credentials using the given key file.

 service_acct: service account ID.
 key_file: path to file containing private key.
 '''
 with open (key_file, 'rb') as f:
 key = f.read()
 creds = SignedJwtAssertionCredentials(
 service_acct,
 key,
 BIGQUERY_SCOPE)
 return creds.refresh(httlib2.Http())

def print_creds(credentials):
 '''Prints the authorization header to use in HTTP requests.'''
 cred_dict = json.loads(credentials.to_json())
 if 'access_token' in cred_dict:
 print 'Authorization: Bearer %s' % (cred_dict['access_token'],)
 else:
 print 'creds: %s' % (cred_dict,)

def build_bq_client():
 '''Constructs a bigquery client object.'''
 return discovery.build('bigquery', 'v2',
 http=get_creds().authorize(httplib2.Http()))

def main():
 print_creds(get_creds())

if __name__ == "__main__":
 main()

Listing 5.1: (continued)

 Chapter 5 ■ Talking to the BigQuery API 105

c05.indd 01:5:49:PM 05/08/2014 Page 105

The method get_oauth2_creds() will create user credentials, while the method

build_bq_client() can be used to build an authenticated BigQuery client. This

BigQuery client can be used directly to make requests to BigQuery with no

further authentication or credential manipulation necessary. If you run this fi le

as a standalone Python script, it will perform authentication and print out an

OAuth2 access token. This mechanism is used in many of the examples in this

chapter in order to be able to make raw HTTP requests using curl. This code

is available in the fi le auth.py in the supplemental materials for this chapter.

Service Account Authorization

An alternative way to perform authorization is to use a service account. This

method requires a little more work to set up, but less code. A service account

has a cryptographic key pair that authenticates requests. If you know the private

key, you can authorize without generating any refresh or access tokens. There

is a caveat, though: You don’t connect as yourself; you connect as a special type

of account called a service account. You need to add the service account to your

project team in the Google Developer console in order to allow the service

account to access your project.

In Chapter 3 you set up a service account, generated a key pair, and down-

loaded it somewhere safe. The e-mail address of the service account (for

example, long-random-address@developer.gserviceaccount.com) and the

private key fi le (in PKCS#12 format) are all you need to perform authentica-

tion. The method get_service_acct_creds() in Listing 5.1 can turn a service

account e-mail address PKCS#12 fi le and a service account e-mail address

into valid OAuth2 credentials that can be used the same way as the OAuth2

credentials generated in the previous section.

RESTful Web Services for the SOAP-Less Masses

Most Google APIs, including BigQuery, adhere to a REST model. REST is one

of those acronyms where knowing what it stands for doesn’t actually help you

understand what it is. If you casually read the Wikipedia page for Representational

State Transfer (http://en.wikipedia.org/wiki/Representational_state_

transfer), you might not come away from it knowing much more about REST

or what people mean when they say they have a REST API. Part of the problem

is that REST can mean a variety of different things, from the very broad to the

very narrow. Here’s an explanation of REST in Google API context.

If you’ve been coding web services for a while, you likely have encountered

SOAP, which is a standard for describing and transmitting web API requests.

There are probably some good things about SOAP. It has a number of downsides,

however; it is complex to implement, highly verbose, and most unfortunately,

it uses XML. SOAP’s popularity has been declining, largely because people want

an easier way to interact with their APIs while still providing some structure.

mailto:address@developer.gserviceaccount.com
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

106 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 106

Although REST has been around since HTTP 1.1 was defi ned in 1999, its

widespread use in web services is a much more recent phenomenon. People real-

ized that instead of creating fancy XML API descriptions to implement SOAP,

they could just make their web API look like something that was already well

understood—collections of fi les in the World Wide Web. As many Java servlet

developers realize, when you respond to a GET request on a URL that ends

with foo.txt, there doesn’t have to be a fi le named foo.txt—you can serve up

whatever data you want to in response. Moreover, the path portion of the URL,

(for example, google/apis/v2/foo.txt) can carry important information, as

well as can the trailing query string (as in foo.text.?start_row).

This is the central principle of REST—that you can make APIs that look like

requests for fi les, with URLs that provide key information about what resources

are requested. Sometimes, however, it requires a little bit of wrangling to make

an API fi t a REST model.

REST Collections

To make an API RESTful, you can take the main objects—users, for example—

and expose operations on them as operations on collections of those objects. The

endpoint that responds to those operations is a simple URL, usually with the

name of the collection as part of the URL. For instance, the method to create a

user wouldn’t be called “create.” It would be an insert operation into the users

collection (called Users.insert()) that you’d send to the users URL.

REST collections respond to a standardized set of operations, or HTTP verbs.

The verb is the fi rst portion of the HTTP protocol. When you open a web page

in your browser, it sends a GET request to the server you’re accessing. If you are

updating data—submitting a form, for instance—it uses the POST verb instead.

The HTTP 1.1 specifi cation describes a few more verbs that can come in handy

when accessing REST collections, as shown in Table 5.1.

Table 5.1: REST Verbs

METHOD NAME VERB DESCRIPTION

insert() POST Adds a resource to the collection

get() GET Gets a single resource in the collection

list() GET Lists resources

update() PUT Updates an entire resource

patch() PATCH Updates a portion of a resource

delete() DELETE Deletes a resource

 Chapter 5 ■ Talking to the BigQuery API 107

c05.indd 01:5:49:PM 05/08/2014 Page 107

To list objects in a collection, you send a GET request to the base URL of the

collection. For instance, in BigQuery, there is a Projects collection, represent-

ing the projects that are visible to the logged-in user. To list your projects, you

can send an HTTP GET request to https://www.googleapis.com/bigquery/

v2/projects.

To read a particular object in a REST collection, send a GET request to the URL of

the object. In BigQuery, the Datasets collection is nested under the projects collec-

tion; you can read the metadata for the dataset bigquery-e2e:application_logs

object by sending a GET request to https://www.googleapis.com/bigquery/v2/

projects/bigquery-e2e/datasets/application_logs.

Similarly, POST can add an object to a collection, PUT and PATCH will update

an object, and DELETE will delete an object. Not all operations will be valid on

all collections, but the important part is that the model is consistent.

Although the REST collection-based model sounds great in practice, what do

you do if your API doesn’t look like collections of objects? This point is where

REST stops becoming a technology and starts becoming a philosophy. Advocates

of REST would say that the act of turning your API into a set of collections actu-

ally makes it a cleaner, more understandable API. They say that the benefi ts of

an easy-to-describe API outweigh the ugly bits when you try too hard to make

something fi t the model. Furthermore, even if you follow REST, you can have

non-REST operations by adding custom RPC methods.

BigQuery tends to follow the REST model closely; it has collections for Projects,

Datasets, Tables, Table Data, and Jobs. A couple of API methods that don’t fi t the

model nicely are added as RPCs: Jobs.query() and Jobs.getQueryResults().

These collections are described in more detail in Chapter 7, “Running Queries.”

REST URLs

Another of the main design tenets of REST is that URLs used to interact with the

API should be human readable. This is different from other RPC mechanisms

such as SOAP and JsonRPC, in which you send data to a fi xed URL. Google APIs

REST URLs consist of six or seven parts: protocol, host, API selector, version,

path, method (optionally), and query string, as shown in Figure 5.1.

Protocol Host

https :// www.googleapis.com / bigquery/v2 / projects/bq-e2e ? maxResults=3

API / Version Path Query

Figure 5.1: Google APIs REST URLs

https://www.googleapis.com/bigquery
https://www.googleapis.com/bigquery/v2/projects/bigquery-e2e/datasets/application_logs
http://www.googleapis.com

108 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 108

Protocol

The protocol used by BigQuery is HTTPS, which is a security layer that uses

SSL on top of raw HTTP. This means that all requests and responses are sent

encrypted. Some Google APIs may be available via HTTP, but in BigQuery, all of

the data is considered sensitive, so it must be sent encrypted. In the past, people

cited performance reasons for avoiding HTTPS. Now, most people believe that

the security gained (prevention against man-in-the-middle attacks, authentication

of both client and server, and so on) is worth the 1 or 2 percent performance hit.

Host

The hostname for all BigQuery requests is www.googleapis.com. Most, if not

all, Google APIs use the same domain. They are not hosted at google.com

for security reasons. If BigQuery was hosted at google.com and there was a

cross-site-scripting (XSS) vulnerability in some Google web product (Picasa,

for example), then an attacker could gain access to your data in BigQuery, or

any other Google API. Although XSS vulnerabilities in Google sites are rare,

it is safer to remove them as a possible risk. By hosting APIs on a domain that

does not have any web properties, www.googleapis.com should be immune

from XSS attacks.

API Selector

The API selector is how the Google API front-end servers can route your calls

to the right API. There are two parts of the API selector: name and version. For

BigQuery, the API name is, somewhat obviously, bigquery. The BigQuery beta

version introduced at Google IO in 2010 was version v1, but ever since it was

launched publicly, the version has been v2. In the future, the active version

number may change if breaking changes are introduced.

The BigQuery team’s philosophy on changes tends to be that API additions

can be made without a version number revision. For example, the ability to

run queries in dry run mode was added via an additional fl ag passed into the

query. Because there was no breaking change—it would only affect users who

explicitly used the fl ag—there was no need to change the version. Other Google

APIs have different criteria for increasing the version number.

One thing to note about the API version is that when it does change, the old

version is usually left running for a signifi cant period of time—usually six

months to a year. Users of the old version may not use new features, but they

should continue to use the old feature sets without problems. This is why the

version number is included in the path, rather than just using something like

“latest,” because it enables running multiple versions side by side and means

that new versions can be added without breaking old ones.

http://www.googleapis.com
http://www.googleapis.com

 Chapter 5 ■ Talking to the BigQuery API 109

c05.indd 01:5:49:PM 05/08/2014 Page 109

Path

The path to get to a REST object should mirror the object hierarchy. For example,

in BigQuery, tables belong to datasets, which belong to projects. So the path

portion of the URL to read table latest in dataset logs in project bigquery-e2e

looks like projects/bigquery-e2e/datsets/logs/tables/latest. The pattern,

as you may notice from the table URL, is usually collection name/object

name/sub collection name/object name. Although it may seem redundant

to pass the collection name each time, it makes it easy to add new collections

at various levels of the hierarchy and can resolve ambiguity. In addition, the

collection names in the URL path serve as a way of self-documenting the URL,

at the expense of only a few bytes in the request.

Method

The method portion of the URL is an optional component that tells BigQuery

what operation to perform. The method is not present in pure REST requests

because REST API calls specify the operation to perform via the HTTP verb:

GET, PUT, POST, DELETE, and so on. Some BigQuery operations don’t fi t well in

a REST model, so they use custom methods. An example of this is the Jobs

.query() operation, which is a shortcut for inserting a job in the Jobs collec-

tion, waiting for the job to complete, and reading the results. The path and

method portion of the Jobs.query() operation URL looks like projects/

{project ID}/query.

Operations that have a method name are often referred to as RPC methods

to distinguish them from pure REST calls. Some of them use HTTP GET, but

most of them use the HTTP POST verb because GET requests are supposed to

be nullipotent, meaning they do not change any state. Perhaps surprisingly, the

Jobs.query() RPC method is a POST for reasons that are described in Chapter 7.

Query

The fi nal portion of the URL is the query string. This should not be confused

with a BigQuery query. The query string is used only for HTTP GET requests

(either RPC-style requests or REST get() and list() operations) as a method

of passing parameters to the API method. When you make a POST request, you

send the posted data to the server in the body of the request. In a GET request,

on the other hand, the only way you can send information to the server is by

including it in the request URL.

Query strings, when present, are always the last part of the URL, after the portion

that describes the resource being accessed. Query strings begin with the ? character

and contain any number of key-value pairs of the format key=value, separated by

the & character. For example, the following URL . . . /projects/bigquery-e2e/

110 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 110

datasets/logs/tables/latest/data?prettyPrint=true&maxRows=10 lists

10 rows from the table bigquery-e2e:logs.latest and pretty-prints the results.

REST Transport

Most RPC frameworks, such as SOAP, are designed to be transport-agnostic.

That is, they are designed to work regardless of how the messages are being

delivered—raw TCP, HTTP, or Post-it notes sent via carrier pigeon. This follows

good network systems design where you want to keep different layers of the

protocol stack independent of each other.

REST, on the other hand, is intricately tied to HTTP as the transport layer.

In the real world, there are real advantages to creating tight coupling between

the layers of network protocols. The advantage of HTTP is that it plays so nicely

with other systems. For example, most corporation fi rewalls are confi gured to

allow HTTP traffi c through. Caching and proxying of HTTP data is well defi ned

and well understood. There are also a number of open standards for authenti-

cation, such as OAuth and OpenID. REST is designed to reuse as much of the

HTTP infrastructure as possible and can take advantage of advanced HTTP

features, such as ETags, which are discussed in the section entitled “Common

Operations” later in this chapter.

REST Encoding

Although REST doesn’t defi ne an encoding standard for data sent and returned,

in practice it is almost always JSON. Google APIs in general, and BigQuery in

particular, use JSON encoding unless you specify otherwise via the alt query

parameter. JSON has a number of advantages; it is reasonably compact, it is

easy to parse, it is human-readable-and-writable, and it has a simple and open

standard. Dynamic programming languages such as Python can automatically

turn JSON values into typed objects that make parsing trivial. For example, in

Python, the following code snippet turns a JSON string into a dict object let-

ting you access the fi elds as keys:

>>> import json
>>> json_str = '{"a": 3, "b": "foo"}'
>>> json_dict = json.loads(json_str)
>>> print json_dict['a']
3

The choice of encoding is another advantage REST has over SOAP—SOAP

generally uses XML, which is much more diffi cult to parse. The code in almost

any programming language would be much more complex to parse than the

same values encoded in XML.

 Chapter 5 ■ Talking to the BigQuery API 111

c05.indd 01:5:49:PM 05/08/2014 Page 111

REST Resources

As previously mentioned, REST collections are collections of resources. But what

is a resource? A resource is any object that you want to perform operations on.

In BigQuery, the resources are the same as the principal abstractions discussed

in Chapter 4: project, dataset, table, table data, and job.

All Google API resources have a number of common fi elds. Because these

fi elds are considered boilerplate, many of the examples in this chapter omit them

to just highlight the more interesting aspects of the API. Here is a curl request

that gets the dataset object for the scratch dataset we created earlier, showing

only the common fi elds discussed in this section (we also set up a couple of

handy environment variables in order to save some typing):

$ BASE_URL=https://www.googleapis.com/bigquery/v2
$ PROJECTS_URL=${BASE_URL}/projects
$ PROJECT_URL=${PROJECTS_URL}/${PROJECT_ID}
$ DATASETS_URL=${PROJECT_URL}/datasets
$ DATASET_URL=${DATASETS_URL}/scratch
$ curl -H "$(python auth.py)" \
 "${DATASET_URL}"
{
 "kind": "bigquery#dataset",
 "etag": "\"4PTsVxg68bQkQs1RJ1Ndewqkgg4/KOb9IHTeiiCy_ICxng0jrzYn6Zk\"",
 "id": "bigquery-e2e:scratch",
 "selfLink": "https://www.googleapis.com/bigquery/...",
 "datasetReference": {
 "datasetId": "scratch",
 "projectId": "bigquery-e2e"
 },
...
}

The fi rst fi eld you’ll notice is kind, which, in this case, is bigquery#dataset.

The general pattern is that the kind is the API name followed by the # sign fol-

lowed by the resource type. This fi eld is not particularly interesting by itself

because you usually know what object type you’re expecting. That said, it could

make it easy to write code that handles several different types of responses by

inspecting the kind fi eld.

The etag fi eld is the next common fi eld in the resource. This is a hash of

the resource object and can be useful for detecting when a resource changes.

The section titled “ETags and the If-None-Match Header” has more informa-

tion on how the etag fi eld can be useful.

Next is the id fi eld, which uniquely identifi es the resource within that collec-

tion. In BigQuery, there is always a reference fi eld that is a better way to refer

to the resource. For this dataset, the id is bigquery-e2e:application_logs.

https://www.googleapis.com/bigquery/v2
https://www.googleapis.com/bigquery

112 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 112

Although this name seems straightforward, if you want to extract only the

project ID portion, it can be tricky to parse. The datasetReference fi eld would

help you here, since it has the datasetId and projectId fi elds listed individually.

Finally, there is a selfLink fi eld. This is a URI that you can use to read the

resource later. This tends to not be very useful; if you just read the object, you

probably already know which URL to use to get the object. However, it can

sometimes be useful as the result of a list operation, because it tells you how to

get the individual resource from the listing.

Discovering Google APIs

There is an advantage, however, that SOAP has over REST APIs. Although REST

APIs are often easier to develop intuition about, there is no common description

language for them. SOAP APIs, on the other hand, have a well-defi ned XML

description that can tell you everything you need to know to call the API.

Google attempts to bridge this gap in API description via the discovery

page. If you navigate your web browser to https://www.googleapis.com/

discovery/v1/apis/bigquery/v2/rest, you can fi nd the discovery document

for the BigQuery API. In fact, if you read and understand this page, much of

the rest of this chapter will be redundant. (Although hopefully you’ll fi nd the

rest of the chapter more interesting than 2000 lines of JSON.)

Unlike this book, however, the discovery document is designed to be read

by programs, not necessarily by humans. That said, it is easy for humans to

understand it, since one of the principles of REST is human-readability. Offi cial

documentation can sometimes be missing or out of date, but the discovery docu-

ment is the actual defi nition of the API, and as such, it is always up to date. It

can be useful if you want to read about the different arguments to various API

calls or to fi nd out what various fi elds mean. For example, near the top of the

discovery document is a section that looks like:

 "prettyPrint": {
 "type": "boolean",
 "description": "Returns response with indentations and line breaks.",
 "default": "true",
 "location": "query"
 },

This snippet tells you about an undocumented feature: that you can add

prettyPrint=true to the query portion (that is, the part after the ?) of any

BigQuery URL, and it will cause the response to be returned in a format that

is easier for humans to read (as opposed to more compact, which is easier for

computers to read and more effi cient to transmit).

The description of the API in the discovery document is rich enough to enable

automatic generation of client libraries in a variety of programming languages.

https://www.googleapis.com

 Chapter 5 ■ Talking to the BigQuery API 113

c05.indd 01:5:49:PM 05/08/2014 Page 113

The page at https://developers.google.com/bigquery/client-libraries

has a number of links to these auto-generated client libraries for languages

from Java to PHP to Ruby. The Python library, in particular, is used in many of

the samples in this book. For the most part, you should use the client libraries

instead of coding directly against the API. It will be easier, it will be type-safe

(in languages that are statically typed), and it will let you know in the event

that some behavior in the API changes.

There is, however, a downside to an automatically generated client: The code

that gets generated might not be the code that you’d write if you were writing

a client from scratch. Some operations may be awkward; others may not use

language features as cleanly as you’d like. For example, in the Java client, the

JobStatus.getState() method returns a String, when it would be cleaner to

return an enum containing the possible values. That said, the generated client

is often convenient, especially when using a modern code editor that can auto-

complete or display documentation.

From Python, to use the automatically generated BigQuery client, just import

apiclient.discovery and call build():

>>> from apiclient.discovery import build
>>> service = build('bigquery', 'v2')

You can then use the generated client to call BigQuery:

>>> service.projects().list().execute()
{u'totalItems': 3, u'kind': u'bigquery#projectList', ...}

Common Operations

Several operations are common across the BigQuery collections and are gener-

ally common across other Google APIs as well. This section describes a number

of them as they apply to BigQuery and demonstrates their usage with bq.py

and curl.

Paging through Collections

Often there are more results in a collection than are convenient to return at a

single time. When this is true, the results will be truncated—you’ll get only the

fi rst page of results. If you have run 10,000 jobs, you may only care about the

most recent ones, so you might be okay with just these limited results. Other

times, however, you really do want to see all the resources in the collection. The

mechanism to access other pages of results is called paging. BigQuery, like other

Google APIs, supports paging primarily via the maxResults and pageToken

arguments. It also has limited support for index-based pagination. These fl ags

are described next.

https://developers.google.com/bigquery/client-libraries

114 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 114

maxResults

The fi rst tool that you can use for paging is the maxResults parameter, which

controls the maximum number of results that can be returned. This fl ag is

accepted on all BigQuery collections. Let’s create a new scratch dataset so we

have more than one to list:

$ bq --project_id=${PROJECT_ID} \
 mk -d "scratch_2"

Now, to list datasets in the your project but limit the results to the fi rst one,

you can run the following curl command:

$ curl -H "$(python auth.py)" \
 "${DATASETS_URL}?maxResults=1" \
{
...
"datasets": [
 {
 "kind": "bigquery#dataset",
 "id": "bigquery-e2e:scratch",
 "datasetReference": {
 "datasetId": "scratch",
 "projectId": "bigquery-e2e"
 }
 }
]
}

If the number you give is larger than the largest accepted by BigQuery, you

get BigQuery’s maximum rather than an error. This makes it easier to say “give

me as many results as possible.”

startIndex

The simplest form of pagination is index-based pagination, using the startIndex

parameter. If you got 10 results last time, you can specify that the next request

start on the 11th value. Note that startIndex can give unexpected results when

the underlying collection is changing. For example, if you use indexed pagina-

tion to get results 1-10, then request results 11–20, if the underlying results have

changed, you might not see the values you expect. You might skip some results

or see some of the same results you saw last time.

Because it is diffi cult to do a stable listing, indexed pagination is discouraged.

It is supported only on the TableData.list() operation because often you do

care about the 100th row in the table, especially when looking at the results

from a query. To demonstrate this, let’s fi rst run a query that will generate some

results to page through. This query computes percentile distribution of word

counts in Shakespeare’s plays.

 Chapter 5 ■ Talking to the BigQuery API 115

c05.indd 01:5:49:PM 05/08/2014 Page 115

$ bq query \
 --destination_table=scratch.table1 \
 --max_rows=0 \
 "select quantiles(word_count) from publicdata:samples.shakespeare"
Waiting on bqjob_r8717055dd1ebad8_0000014070d5e4b8_1 ... (0s) Current
status: DONE

Once we have created the table, we can read the 100th row which is the 99th

percentile.

$ TABLES_URL=${DATASET_URL}/tables
$ TABLE_URL=${TABLES_URL}/table1
$ TABLEDATA_URL=${TABLE_URL}/data
$ curl -H "$(python auth.py)" \
 "${TABLEDATA_URL}?maxResults=1&startIndex=99"
{
 "kind": "bigquery#tableDataList",
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/vk5JRNdt-25J-ICZ34R0Dqpt1Fc\"",
 "totalRows": "100",
 "rows": [
 {
 "f": [
 {
 "v": "995"
 }
]
 }
]
}

pageToken

Specifying a large number of results isn’t actually a paging mechanism

however; it is just a way of controlling the size of a page. (Although it might

mean you don’t have to do paging because you could get all the results at

once.) The preferred way to page through results is to use a page token. This

is an opaque value that is returned by each list operation and tells BigQuery

where to start in the list the next time the API is called. For instance, if you get

pageToken=@53579480 from a TableData.list() operation when reading the

fi rst 10 rows from a table, you can read the next 10 rows by passing the same

pageToken value in your next request. Although sometimes the value of the

page token may seem predictable, you should treat it as opaque because the

format can change at any time.

Because you have a value threaded through the chain of list() calls, token-

based pagination can give you a stable snapshot of the results. The BigQuery

TableData collection gives you a stable listing; that is, the data you see when

paging will be exactly the data that was present when you started paging,

even if the underlying table changes. Because providing a stable list operation

116 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 116

requires keeping around extra state, the token may be only valid for a certain

period of time—generally 24 hours.

Here you can use curl to get the fi rst row in a table:

$ curl -H "$(python auth.py)"\
 "${TABLEDATA_URL}?maxResults=1"
{
 "kind": "bigquery#tableDataList",
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/hDRfxHX8yY1GRPpTthhjzhvMMj8\"",
 "totalRows": "100",
 "pageToken": "1@1376284335714",
 "rows": [
 {
 "f": [
 {
 "v": "1"
 }
]
 }
]
}

You can get the next row via the following command (substituting your page

token for the one here):

$ curl -H "$(python auth.py)" \
 "${TABLEDATA_URL}?maxResults=1&pageToken=1@1376284335714"
{
 "kind": "bigquery#tableDataList",
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/wkrQkIirE3G6Vvv0_ZnfZOk_V64\"",
 "totalRows": "100",
 "pageToken": "2@1376284335714",
 "rows": [
 {
 "f": [
 {
 "v": "1"
 }
]
 }
]
}

The TableData collection allows you to page through a consistent snapshot of

a table. The BigQuery Projects, Tables, Datasets, and Jobs collections give a softer

guarantee of consistency while paging. They never skip values if new values

arrive, but they might include values that arrive after paging starts. The way this

is done is that the pagination token describes the last value returned; future list

 Chapter 5 ■ Talking to the BigQuery API 117

c05.indd 01:5:49:PM 05/08/2014 Page 117

operations begin pagination at that value. You can tell when you get to the end

of the listing because you won’t get a pageToken in the response.

Updating Resources

The standard way to update a REST resource is the HTTP PUT verb. This allows

you to replace the entire object with a new one. Of course, there may be rules

governing which fi elds you are allowed to change—you can’t generally update

a creation time of an object, for example.

The problem with updating an entire object is that it becomes easy to have a

race condition with another update operation. For example, if Alice updates the

table bigquery-e2e:logs.latest to add a description, and meanwhile Bob is

updating the same table to change the schema, either Alice’s or Bob’s updates

might be lost. Bob and Alice may have both read the original copy, made their

changes on that copy, and replaced the old version with their new one. Whoever’s

update runs fi rst will be overwritten by the next update.

The way to prevent this type of race condition is to use the HTTP PATCH verb.

When using PATCH, you need to specify only the values you want to change, not

the entire resource. So Alice could specify just the table description, and Bob

could specify just the schema modifi cation, and both operations would complete

successfully without the possibility of clobbering each other.

In BigQuery, the only collections that support updates (via update or patch)

are Tables and Datasets. Update operations just modify metadata; they don’t

modify data in the tables.

Response-Control Options

Some resources in Google APIs can be quite large; for instance, query Job resources

include the query text, which can be up to 100 kB. If you want to list 10,000 jobs

that all have 100 kB of queries, you might end up reading a lot of data. What’s

more, there is a good chance you don’t care about the actual query text, so most

of what you’re reading isn’t useful. BigQuery supports three mechanisms to

help reduce the amount of data returned and to focus on the interesting data:

projections, fi eld restrictions, and ETags.

Projections

Projections are predefi ned views of a resource that include only a subset of the

resource’s fi elds. The Jobs collection is the only collection in BigQuery that sup-

ports projection. It defi nes two projections: full and minimal. The full projection

returns the entire job, which may include a lot of data—the full text of queries,

full table schemas, and so on. The minimal projection, on the other hand, omits

a lot of potentially expensive fi elds and just returns the fi elds that are likely to

118 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 118

be more interesting—the job status, the statistics, and so on. When listing jobs,

the default projection that is returned is the minimal one. If you want to see

the full projection, you can specify projection=full in the URL query string.

Here is an example that returns the minimal projection of a single job:

$ JOBS_URL=${PROJECT_URL}/jobs
$ curl -H "$(python auth.py)" \
 "${JOBS_URL}?maxResults=1&projection=minimal"
{
 "kind": "bigquery#jobList",
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/UakzbU_RhC8kGP0ve9SOqAWE6Ls\"",
 "nextPageToken": "1374677424654-...",
 "jobs": [
 {
 "id": "bigquery-e2e:bqjob_r1ef2a0ae815fa433_000001401128cb0b_1",
 "kind": "bigquery#job",
 "jobReference": {
 "projectId": "bigquery-e2e",
 "jobId": "bqjob_r1ef2a0ae815fa433_000001401128cb0b_1"
 },
 "state": "DONE",
 "statistics": {
 "startTime": "1374677431634",
 "endTime": "1374677458425",
 "load": {
 "inputFiles": "1",
 "inputFileBytes": "3",
 "outputRows": "1",
 "outputBytes": "0"
 }
 },
 "status": {
 "state": "DONE"
 }
 }
]
}

Likewise here is the same job with the full projection:

$ curl -H "$(python auth.py)" \
 "${JOBS_URL}?maxResults=1&projection=full"
{
 "kind": "bigquery#jobList",
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/ytdMysUYGZY_OZKW01VMUuMdT0k\"",
 "nextPageToken": "1374677424654-...",
 "jobs": [
 {
 "id": "bigquery-e2e:bqjob_r1ef2a0ae815fa433_000001401128cb0b_1",

 Chapter 5 ■ Talking to the BigQuery API 119

c05.indd 01:5:49:PM 05/08/2014 Page 119

 "kind": "bigquery#job",
 "jobReference": {
 "projectId": "bigquery-e2e",
 "jobId": "bqjob_r1ef2a0ae815fa433_000001401128cb0b_1"
 },
 "state": "DONE",
 "statistics": {
 "startTime": "1374677431634",
 "endTime": "1374677458425",
 "load": {
 "inputFiles": "1",
 "inputFileBytes": "3",
 "outputRows": "1",
 "outputBytes": "0"
 }
 },
 "configuration": {
 "load": {
 "schema": {
 "fields": [
 {
 "name": "f1",
 "type": "STRING"
 },
 {
 "name": "f2",
 "type": "INTEGER"
 },
 {
 "name": "f3",
 "type": "FLOAT"
 }
]
 },
 "destinationTable": {
 "projectId": "bigquery-e2e",
 "datasetId": "scratch",
 "tableId": "table1"
 },
 "writeDisposition": "WRITE_TRUNCATE",
 "maxBadRecords": 0
 }
 },
 "status": {
 "state": "DONE"
 }
 }
]
}

120 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 120

The full projection includes the confi guration, which may contain a lot of

data. This particular job is a Load job, so it has the table schema, which can be

hundreds or thousands of fi elds. Query jobs have the SQL query that was run,

which also can take up a lot of space in the response.

Field Restrictions

Projections are a somewhat coarse way of specifying the fi elds you care about.

Field restrictions, on the other hand, allow you to specify exactly the fi elds you

want. The advantage of projections is that they are easy to use—you don’t have

to know exactly what you want. The advantage of specifying exact fi eld lists

is that you have control over exactly what you get in response. All BigQuery

collections support fi eld restrictions for all operations. To specify the set of

fi elds you want to see in the result, list them as a comma-delimited URL query

parameter, as in fields=field1,field2, Nested fi elds can be specifi ed

via parentheses. For example, to list just the id and totalItems fi elds from the

Projects collection, you can specify:

$ curl –H "$(python auth.py)" \
 "${PROJECTS_URL}?alt=json&fields=projects(id),totalItems"
{
 "projects": [
 {
 "id": "bigquery-e2e"
 },
 {
 "id": "420824040427"
 }
],
 "totalItems": 3
}

ETags and the If-None-Match Header

One of these advanced HTTP features that can come in handy with BigQuery is

the combination of ETags and the If-None-Match HTTP header. Sometimes, you

want to know if a resource or list of resources has changed since the last time

you read it. ETags are a convenient mechanism to do this; they are fi ngerprint

values that are returned in the API call. If you read the same object twice and it

has the same ETag, it has not changed. Here is an example of the ETag returned

from a BigQuery Tables.get() call:

$ curl -H "$(python auth.py)" \
 "${TABLE_URL}?fields=etag,lastModifiedTime"
{
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/gS3ul2baST3PwOoDSGXgugy2uws\"",
 "lastModifiedTime": "1374677458335"
}

 Chapter 5 ■ Talking to the BigQuery API 121

c05.indd 01:5:49:PM 05/08/2014 Page 121

You may ask, what is the use of an ETag when you could just match the results

yourself? Although sometimes it can be more convenient to use the ETag than

computing your own hash, the principal value can be in saving network traffi c

when you combine it with a request that specifi es the If-None-Match HTTP

header. For the ETag previously returned, this would look like:

$ ETAG=\"yBc8hy8wJ370nDaoIj0ElxNcWUg/gS3ul2baST3PwOoDSGXgugy2uws\"
$ curl -H "$(python auth.py)" \
 -H "If-None-Match: ${ETAG}" \
 -w "%{http_code}\\n" \
 "${TABLE_URL}?fields=etag,lastModifiedTime"

This uses the -w option to curl to return the HTTP status code. It returns

the HTTP status code 304 Not Modified with an empty response. If you run

a job to update the table, the ETag changes, and the same command returns a

value again:

$ echo foo,1,1.0 >foo.csv
$ bq load --replace scratch.table1 foo.csv \
 "f1:string,f2:integer,f3:float"
Waiting on bqjob_r1acbcee37ed9abeb_000001407034129d_1 ... (26s)
Current status: DONE
$ curl -H "$(python auth.py)" \
 -H "If-None-Match: ${ETAG}" \
 "${TABLE_URL}?fields=etag,lastModifiedTime"
{
 "etag": "\"yBc8hy8wJ370nDaoIj0ElxNcWUg/rlB4v5eu0LBEfFBRBW7-oRFArSQ\"",
 "lastModifiedTime": "1376270939965"
}

Batch Requests

It is common to want to request a number of results from an API in parallel.

Maybe you have a list of jobs or tables that you’d like to look up. Although you

could do this by setting up and sending multiple API requests, there is also

a built-in Google API mechanism called a batch request. Batch requests enable

you to send multiple separate requests and get the responses back for all of

them at once.

The raw HTTP mechanism to deal with batch requests is a little bit

tricky. You can read more about it at https://developers.google.com/

api-client-library/python/guide/batch. Here you just see the Python ver-

sion, which wraps a lot of the complexity in an easy-to-use API. Creating a batch

request is simple; just create a new BatchHttpRequest(), add the individual API

requests you want to make to the batch request, and then call execute(). If you

provide a callback method, you get one callback for each response, providing

the ID of the request and the response. This can be convenient so that you don’t

have to try to separate the responses on your own.

https://developers.google.com

122 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 122

The following Python code can read the metadata for two tables in a single

HTTP request:

>>> from apiclient.http import BatchHttpRequest
>>> batch = BatchHttpRequest()
>>> def batch_callback(request_id, response, exception):
... if exception is not None:
... print "Exception: %s" % (exception,)
... else:
... print "Request %s Response %s" % (request_id, response)
... pass
...
>>> batch.add(service.tables().get(projectId='bigquery-e2e',
... datasetId='application_logs',
... tableId='debug_20130720'), callback=batch_callback)
>>> batch.add(service.tables().get(projectId='bigquery-e2e',
... datasetId='application_logs',
... tableId='usage_logs'), callback=batch_callback)
>>> batch.execute(http=http)
Request 1 Response {
 ...
 u'tableReference': {
 u'projectId': u'bigquery-e2e',
 u'tableId': u'debug_20130720',
 u'datasetId': u'application_logs'},
 u'numRows': u'3',
 ...}
Request 2 Response {
 ...
 u'tableReference': {
 u'projectId': u'bigquery-e2e',
 u'tableId': u'usage_logs',
 u'datasetId': u'application_logs'},
 u'numRows': u'3'
 ...}

Before we move on, let’s clean up our scratch dataset so we can start the next

section with an empty project:

$ bq rm –r –f –d scratch
$ bq rm –r –f –d scratch_2

BigQuery REST Collections

As mentioned earlier in this chapter, there are fi ve BigQuery REST collections:

Projects, Datasets, Tables, Table Data, and Jobs. The objects contained by these

collections are called resources; the REST operations in the collection can investigate

 Chapter 5 ■ Talking to the BigQuery API 123

c05.indd 01:5:49:PM 05/08/2014 Page 123

and manipulate resource objects. This section describes each of these collections

in turn, describes the valid operations, demonstrates how they are used, and

shows additional ways to control their behavior.

In the REST model, a collection maps to a URL. Figure 5.2 shows a high-level

view of the relationships between BigQuery collections and their URLs. These

collections are discussed from the outside in, starting with Projects, which is a

container for all the other collections.

https://www.googleapis.com/bigquery/v2

/projects/github

/datasets/snapshots

/tables/20130613

/jobs/job_ab0987adfd7a6

Figure 5.2: BigQuery collections and their URLs

Projects

The Projects collection is the simplest of the BigQuery REST collections; it has

only a single method: Projects.list(). Projects are containers for all the other

objects in BigQuery, but because projects are confi gured via the Google Developers

Console (not in BigQuery), the BigQuery API doesn’t have any operations on

projects other than to list them. In fact, if there was a better way to get a list

of projects that had BigQuery enabled, the Projects collection would likely be

unnecessary. At a later date BigQuery may store information on a per-project

basis; if so, the Projects collection would become more interesting. The Projects

collection is summarized in Table 5.2.

Table 5.2: Projects REST Collection

METHOD URL HTTP VERB

Projects.list() . . . /projects GET

Project Resource

The Project resource contains only the project name fields: projectId,

projectNumber, and friendlyName. If it seems confusing that a project would

have three different names, read the section on project references in Chapter 4.

At some point in the future, the resource may refl ect the project ACL as well,

https://www.googleapis.com/bigquery/v2

124 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 124

but currently it contains only the name fi elds, which are all immutable. Table

5.3 contains fi eld descriptions for the Project resource.

Table 5.3: Project Resource Fields

FIELD TYPE DESCRIPTION

projectId string Unique name of the project. This may be a numeric ID

or the project ID that was set in the Google Developers

Console.

projectNumber number Unique number identifying the project.

friendlyName string Friendly name for the project. Not unique.

Projects.list()

The Projects.list() method returns a list of all the projects you are a member

of (that is, in the project team as either an owner, editor, or reader) that also have

BigQuery enabled. There is no way to list projects for a different user other than

by logging in as them. As mentioned in Chapter 4, all members of a project team

can run jobs billed to the project, so you can run jobs in any project returned

by the Projects.list() operation.

Although you probably won’t be a member of enough projects for it to mat-

ter, you can page through Projects.list() results using the maxResults and

pageToken parameters, which are described earlier in this chapter in the section

“Paging through Collections.”

$ curl -H "$(python auth.py)" \
 https://www.googleapis.com/bigquery/v2/projects?alt=json
{
"projects": [
 {
 "kind": "bigquery#project",
 "id": "540617388650",
 "numericId": "540617388650",
 "projectReference": {
 "projectId": "540617388650"
 },
 "friendlyName": "API Project"
 },
 {
 "kind": "bigquery#project",
 "id": "bigquery-e2e",
 "numericId": "857243983440",
 "projectReference": {
 "projectId": "bigquery-e2e"

https://www.googleapis.com/bigquery/v2/projects?alt=json

 Chapter 5 ■ Talking to the BigQuery API 125

c05.indd 01:5:49:PM 05/08/2014 Page 125

 },
 "friendlyName": "Bigquery End-to-End"
 },
"totalItems": 2
}

USING BQ APILOG TO UNDERSTAND THE BIGQUERY API

Sometimes you try running something against the BigQuery API that you’re pretty

sure should work, but for some reason you get back a cryptic error. One way of fi gur-

ing out what is wrong is to compare it against a tool that you know works.

The bq command-line client has an --apilog fl ag that can be used to see exactly

what requests and responses are sent. It does skip a couple of details, such as the

authorization header (as a security precaution), but, in general it is useful to under-

stand what is happening at the raw HTTP level.

For example, the way to list projects in bq is to run bq ls -p. If you just add the

--apilog=- parameter (the “-” tells it to output to stdout), and you can see the

HTTP request that was sent:

$ bq --apilog=- ls -p

...

INFO:apiclient.discovery:URL being requested:

https://www.googleapis.com/bigquery/v2/projects?alt=json

INFO:root:--response-start--

INFO:root:status: 200

...

INFO:root:{

...

"projects": [

 {

 "kind": "bigquery#project",

 "id": "540617388650",

 "numericId": "540617388650",

 "projectReference": {

 "projectId": "540617388650"

 },

 "friendlyName": "API Project"

 },

 {

 "kind": "bigquery#project",

 "id": "bigquery-e2e",

 "numericId": "857243983440",

 "projectReference": {

 "projectId": "bigquery-e2e"

 },

Continues

https://www.googleapis.com/bigquery/v2/projects?alt=json

126 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 126

 "friendlyName": "Bigquery End-to-End"

 }

],

 "totalItems": 2

}

This response is virtually identical to the curl response shown for Projects
.list(). When something is not working, it is often helpful to compare the request

you send with the request sent by bq.

Datasets

Datasets are containers for tables with some minor metadata and an access control

list (ACL). The Datasets collection offers the full range of RESTful operations:

insert(), get(), list(), update(), patch(), and delete(). A dataset belongs

to a project; any storage used by the dataset is billed to the project. Table 5.4

summarizes the REST methods available in the Datasets collection.

Table 5.4: Datasets REST Collection

METHOD URL HTTP VERB

Datasets.insert() . . . /projects/<project_id>/
datasets/

POST

Datasets.get() . . . /projects/<project_id>/
datasets/<dataset_id>

GET

Datasets.list() . . . /projects/<project_id>/
datasets

GET

Datasets.update() . . . /projects/<project_id>/
datasets/<dataset_id>

PUT

Datasets.patch() . . . /projects/<project_id>/
datasets/<dataset_id>

PATCH

Datasets.delete() . . . /projects/<project_id>/
datasets/<dataset_id>

DELETE

Dataset Resource

The Dataset resource contains fi elds that can be divided up into four parts: the

dataset reference, which specifi es the dataset name; the dataset ACL, which

controls who has access to the dataset; dataset statistics, such as creation and

modifi ed times; and user metadata, such as description and friendly name. The

interesting fi elds of the Dataset resource are described in Table 5.5.

(continued)

 Chapter 5 ■ Talking to the BigQuery API 127

c05.indd 01:5:49:PM 05/08/2014 Page 127

Table 5.5: Dataset Resource Fields

FIELD TYPE DESCRIPTION

datasetReference object Components of the dataset name. Immutable

after the dataset has been created.

datasetReference
.datasetId

string Name of the dataset, unique within the project.

datasetReference
.projectId

string Unique name or number identifying the project

the dataset belongs to.

access object
array

Dataset ACL. Exactly one of specialGroup,
domain, and userByEmail must be set.

access.role string Access role: One of READER, WRITER, or OWNER.

access
.specialGroup

string Group being given access.

Either projectReaders,

projectWriters, projectOwners, or

allAuthenticatedUsers.

access.userByEmail string E-mail address of user being given access. Must

be a gmail.com or Google Apps For Your

Domain address.

access.domain string Name of domain (for example, google.com)

where all users are given access.

creationTime number Creation time of the dataset, in milliseconds

since 1/1/1970. Set automatically.

lastModifiedTime number Last time the dataset metadata was modifi ed,

in milliseconds since 1/1/1970. Does not get

updated when tables get created or updated.

Set automatically.

friendlyName string Friendly name for the dataset. Not unique.

description string Free-text description of the dataset.

Datasets.insert()

The Datasets.insert() operation is the only way to create a new dataset. The

only fi elds you need to specify are the dataset and project IDs, but if you choose

to specify an ACL or a friendly name, those will also work. The dataset inherits

the project ACL by default; project readers become dataset readers, project edi-

tors become dataset writers, and project owners become dataset owners. If you

specify an ACL with no owners, you will be added as an owner. Here is the

output of using curl to create a dataset:

$ DATASET_REF="{'datasetId': 'scratch', 'projectId': '${PROJECT_ID}'}"
$ DATASETS_URL=${PROJECT_URL}/datasets

128 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 128

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X POST \
 --data-binary "{'datasetReference': ${DATASET_REF}}" \
 "${DATASETS_URL}"
{
...
"datasetReference": {
 "datasetId": "scratch",
 "projectId": "bigquery-e2e"
 },
 "access": [
 {
 "role": "READER",
 "specialGroup": "projectReaders"
 },
 {
 "role": "WRITER",
 "specialGroup": "projectWriters"
 },
 {
 "role": "OWNER",
 "specialGroup": "projectOwners"
 }
],
 "creationTime": "1376367421192",
 "lastModifiedTime": "1376367421192"
}

Datasets.get()

The Datasets.get() API returns the current state of the dataset. You can use

fi eld projections to return only certain fi elds, or use the If-None-Match header

to return only the result if the dataset has changed. Both of these options

are described earlier in this chapter. Following is an example that reads the

scratch dataset object but limits the returned fi elds to the dataset ID and the

creation time:

$ DATASET_URL=${DATASETS_URL}/scratch
$ curl -H "$(python auth.py)" \
 "${DATASET_URL}?fields=creationTime,datasetReference(datasetId)"
{
 "datasetReference": {
 "datasetId": "scratch"
 },
 "creationTime": "1374439672882"
}

 Chapter 5 ■ Talking to the BigQuery API 129

c05.indd 01:5:49:PM 05/08/2014 Page 129

Datasets.list()

The Datasets.list() operation returns the datasets in the project. This is an

eventually consistent operation—that is, if you create a dataset and do a list

operation immediately afterward, you may not see your new dataset in that

list right away. With the exception of Datasets.list() and Tables.list(), all

operations in the BigQuery API are guaranteed to be consistent.

The list operation doesn’t return the full Dataset resource; it returns only

the dataset reference fi elds. If you need to see the full resource—for example,

if you want to see the dataset ACLs—you need to call Datasets.get() on the

dataset you want to read.

Note that Datasets.list()returns only datasets that you have access to.

BigQuery must do an access check for each dataset, which is a somewhat expen-

sive operation. For this reason, the total number of datasets in the collection

is not returned. This lets BigQuery return a page of results without having to

do the access checks on all the datasets in the project. It can just return when it

has found enough datasets to satisfy the maxResults parameter. The way to tell

whether more datasets are available is that the response contains a pageToken

fi eld, which you can then use to page through the results.

Following is a curl transcript showing a Datasets.list() request that is

limited to the fi rst result:

$ curl -H "$(python auth.py)" \
 "${DATASETS_URL}?maxResults=1"
{
 "nextPageToken": "scratch",
 "datasets": [
 {
 "kind": "bigquery#dataset",
 "id": "bigquery-e2e:scratch",
 "datasetReference": {
 "datasetId": "scratch",
 "projectId": "bigquery-e2e"
 }
 }
]
}

Datasets.update()

The Datasets.update() operation enables you to modify the mutable fi elds

of a dataset. The only directly modifi able fi elds are the ACL (the access fi eld)

and the friendly name and description of the dataset (the friendlyName and

description fi elds, respectively). Any attempt to modify an immutable fi eld

130 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 130

is ignored. Updating the dataset (via Datasets.update() or Datasets.patch())

causes the last modifi ed time to be set to the time the operation occurred.

UPDATING ACL OWNERSHIP

A dataset must always have at least one owner. If you try to remove all owners from

the ACL, you will be magically added back as the owner. (This is less strange than it

sounds because you must have been an owner in the fi rst place to change the ACL.)

Furthermore, project owners can always update the ACL, even if they’re not actually

on the ACL. This is to prevent a situation in which the people paying for the storage of

the dataset cannot delete it or exercise control over it.

The Datasets.update() method has one more quirk: It will not update the

ACL unless an ACL is specifi ed in the update request. This makes it behave

more like the patch() operation. This behavior was necessary for backward

compatibility and to make it easier to update other dataset fi elds. A dataset with

no access control list is not valid, so there should be no ambiguity about what

the user actually wanted (because they cannot clear the access fi eld).

The following command updates a dataset to set the friendly name to “my

dataset”:

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X PUT \
 --data-binary "{'datasetReference': ${DATASET_REF}, \
 'friendlyName': 'my dataset'}" \
 "${DATASETS_URL}/scratch"
{
 "datasetReference": {
 "datasetId": "scratch",
 "projectId": "bigquery-e2e"
 },
 "friendlyName": "my dataset",
 "access": [
 {
 "role": "READER",
 "specialGroup": "projectReaders"
 },
 {
 "role": "WRITER",
 "specialGroup": "projectWriters"
 },
 {
 "role": "OWNER",
 "specialGroup": "projectOwners"
 }
],

 Chapter 5 ■ Talking to the BigQuery API 131

c05.indd 01:5:49:PM 05/08/2014 Page 131

 "creationTime": "1376367421192",
 "lastModifiedTime": "1376369547951"
}

Datasets.patch()

Patch operates just like update, except you don’t need to provide all the fi elds;

instead you just need the ones you care about updating. This is more than just

convenience; it makes it possible for multiple updaters to operate on the same

object without worrying that they clobber each other.

For example, suppose Alice was updating the ACL for the application_logs

dataset. She executes a Datasets.read() operation to get the current state,

applies her ACL changes, and then calls Datasets.update() to commit her

changes. At the same time, however, Bob wants to update the dataset’s friendly

name to Bob’s Dataset. If he reads the dataset before Alice’s changes have been

made but writes his update after her changes have fi nished, the ACL updates

will be wiped out. The patch command gives a way to avoid that problem, by

only specifying the fi elds to update. Alice could patch the ACL while Bob is

patching the friendly name, and both updates will complete successfully and

produce the wanted outcome.

Here is a curl session showing a patch operation on the dataset to set the

friendly name to “Bob’s Dataset.” Notice that you don’t even have to specify

the dataset reference fi elds:

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X PATCH \
 --data-binary "{'friendlyName': 'Bob\'s dataset'}" \
 "${DATASET_URL}"
{
 ...
 "datasetReference": {
 "datasetId": "scratch",
 "projectId": "bigquery-e2e"
 },
 "friendlyName": "Bob's dataset",
 "access": [...],
 "creationTime": "1376367421192",
 "lastModifiedTime": "1376370888255"
}

Datasets.delete()

The fi nal operation on a dataset (pun intended) is the Datasets.delete() method.

To delete a dataset, you must be an owner of the dataset, and the dataset must

be empty (i.e. there are no tables in the dataset). If you really want to delete the

132 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 132

tables too, you can specify the deleteContents fl ag. It should go without say-

ing that you should be careful when using this operation because there is no

undelete operation available for datasets.

One thing that can be surprising is that delete operations do not return the

standard HTTP 200 response on success; they return 204 instead. The 204

response code is defi ned as No Content. Because the delete operation doesn’t

return any content, you get a 204 instead of a 200. Because this is still a response

in the range 200–299, it is still a successful response code, but naïve code may

assume that anything that isn’t a 200 is a failure.

The following curl command deletes the scratch dataset:

$ curl -H "$(python auth.py)" \
 -X DELETE \
 -w "%{http_code}\\n" \
 "${DATASET_URL}"
204

That’s it—bye-bye dataset!

Tables

The Tables collection contains metadata about BigQuery tables. Table data is not

accessible via the Tables collection; if you want to access the contents of a table,

use the TableData collection instead. Tables offer all the common REST opera-

tions: insert(), get(), list(), update(), patch(), and delete(). Just as data-

sets belong to a project, tables belong to a dataset. Tables do not have their own

access control; all access control decisions are made via the containing dataset.

The URL for the Tables collection is nested underneath the datasets collection.

For example, the URL to read the table bigquery-e2e:application_logs.usage_

log is https://www.googleapis.com/bigquery/v2/projects/bigquery-e2e/

datasets/application_logs/tables/usage_logs. Table 5.6 shows the available

REST methods and their relative URLs. Several of the URLs are identical; the

only difference is the HTTP verb used.

Table 5.6: Tables REST Collection

METHOD URL

HTTP

VERB

Tables.insert() . . . /datasets/<dataset_id>/tables/ POST

Tables.get() . . . /datasets/<dataset_id>/
tables/<table_id>

GET

Tables.list() . . . /datasets/<dataset_id>/tables/ GET

https://www.googleapis.com/bigquery/v2/projects/bigquery-e2e

 Chapter 5 ■ Talking to the BigQuery API 133

c05.indd 01:5:49:PM 05/08/2014 Page 133

METHOD URL

HTTP

VERB

Tables.update() . . . /datasets/<dataset_id>/
tables/<table_id>

PUT

Tables.patch() . . . /datasets/<dataset_id>/
tables/<table_id>

PATCH

Tables.delete() . . . /datasets/<dataset_id>/
tables/<table_id>

DELETE

Table Resource

The Table resource is similar to the Dataset resource. Table references contain

an extra fi eld, tableId, which uniquely identifi es it within the dataset. Instead

of an ACL, the primary distinguishing feature of a Table resource is a schema,

which describes the format of each row in the table. Finally, there are some

additional statistics fi elds, such as row and byte counts (numRows and numBytes,

respectively). Tables also may have an expiration time (the expirationTime

fi eld), which is a way to create tables that are automatically deleted when they

expire. The interesting fi elds of the Table resource are described in Table 5.7.

Table 5.7: Table Resource Fields

FIELD TYPE DESCRIPTION

tableReference object Components of the table name.

Immutable after the table has been

created.

tableReference
.tableId

string Name of the table, unique within the

dataset.

tableReference
.datasetId

string Name of the dataset the table

belongs to.

tableReference
.projectId

string Unique name or number identifying

the project the dataset belongs to.

creationTime number Creation time of the table, in mil-

liseconds since 1/1/1970. Set

automatically.

lastModifiedTime number Last time the table was modifi ed,

in milliseconds since 1/1/1970. Is

updated whenever the table meta-

data or underlying data is changed.

Set automatically.

Continues

134 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 134

FIELD TYPE DESCRIPTION

numBytes number Number of bytes of data in all fi elds.

If you run a SELECT * query on

this table, this would be the num-

ber of bytes you’d be charged for

accessing.

numRows number Number of rows in the table.

expirationTime number Time (in milliseconds since 1/1/1970)

when the table will be deleted auto-

matically. Settable by the user.

schema object Schema of the table. May be set by

the user or implicitly via a job.

schema.fields object array Repeated list of fi elds, or columns, in

the table.

schema.fields
.name

string Name of the fi eld.

schema.fields
.type

string Type of the fi eld. One of {INTEGER,

FLOAT, BOOLEAN, TIMESTAMP,

STRING, or RECORD}.

schema.fields
.mode

string Field mode. One of {NULLABLE,

REQUIRED, or REPEATED}. Default

is NULLABLE.

schema.fields
.fields

object array Nested schema fi eld records, of the

same type as schema.fields.

friendlyName number Friendly name for the table. Not

unique.

description string Description of the table.

Tables.insert()

You can create a table via the Tables.insert() operation; although in practice,

most tables are created as a side effect of a job. For example, a Load job can

specify a create disposition of CREATE_IF_NEEDED, which means the target table

will be created if it doesn’t already exist. One reason you might want to create

a table by hand is if you want to reserve the name and make sure it is available

for querying (that is, it wouldn’t cause an error) even before any data arrives.

Alternatively, you might want to specify an expiration time so that the table

will be automatically deleted when it expires.

Table 5-7 (continued)

 Chapter 5 ■ Talking to the BigQuery API 135

c05.indd 01:5:49:PM 05/08/2014 Page 135

Here is the output of using curl to create a simple table (after re-creating the

dataset fi rst with bq):

$ bq mk –d scratch
$ TABLES_URL=${DATASETS_URL}/scratch/tables
$ SCHEMA="{'fields': [{'name':'foo', 'type': 'STRING'}]}"
$ TABLE_REF="{'tableId': 'table1', \
 'datasetId': 'scratch', \
 'projectId': '${PROJECT_ID}'}"
$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X POST \
 --data-binary "{'tableReference': ${TABLE_REF}, \
 'schema': ${SCHEMA}}" \
 "${TABLES_URL}"
{
...
 "tableReference": {
 "projectId": "bigquery-e2e",
 "datasetId": "scratch",
 "tableId": "table1"
 },
"schema": {
 "fields": [
 {
 "name": "foo",
 "type": "STRING"
 }
]
 },
 "creationTime": "1376533497018",
 "lastModifiedTime": "1376533497018"
}

Tables.get()

The Tables.get() method returns the current state of the table. You can use

fi eld projections to return only certain fi elds (useful because the schema can be

very large), or use the If-None-Match header to return only the result if the table

has changed. The lastModifiedTime on the table gets updated whenever any

data in the table changes, not just when the table metadata changes, so looking

at the lastModifiedTime can let you know whether you need to reread the table

data. For instance, you might want to rerun a query every time a table changes.

Following is an example that reads the table scratch.table1 after running a

Load job that added one row:

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \

136 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 136

 -X GET \
 "${TABLES_URL}/table1"
{
 ...
 "tableReference": {
 "projectId": "bigquery-e2e",
 "datasetId": "scratch",
 "tableId": "table1"
 },
 "schema": {
 "fields": [
 {
 "name": "f1",
 "type": "STRING"
 }
]
 },
 "numRows": "1",
 "numBytes": "8",
 "creationTime": "1376533497018",
 "lastModifiedTime": "1376534761629"
}

Tables.list()

The Tables.list() method returns the list of tables in a dataset. If there are

more results than can be comfortably returned in a single response, you can

use the paging mechanisms described earlier in the chapter to page through

the results. Tables.list(), like Datasets.list(), is eventually consistent with

respect to recently added tables. That is, if you add a table and immediately call

Tables.list(), you might not see it. If you call Tables.get(), however, you

always see the table if it exists.

Unlike Datasets.list(), Tables.list() returns a count of the total number

of tables in the dataset, even if fewer are returned in the list operation. If the

list operation doesn’t return all of the tables, this is due to paging, not access

control, since all tables in a dataset share the same ACL.

To conserve response size (because table schemas can be very large), Tables

.list() doesn’t return the full Table resource; it includes only the table reference

information. If you need to see the full Table resource, you should call Tables.get().

Following is a curl transcript showing a tables.list() request:

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X GET \
 "${TABLES_URL}?maxResults=1"
{
 ...

 Chapter 5 ■ Talking to the BigQuery API 137

c05.indd 01:5:49:PM 05/08/2014 Page 137

 "nextPageToken": "table1",
 "tables": [
 {
 "kind": "bigquery#table",
 "id": "bigquery-e2e:scratch.table1",
 "tableReference": {
 "projectId": "bigquery-e2e",
 "datasetId": "scratch",
 "tableId": "table1"
 }
 }
],
 "totalItems": 2
}

Tables.update()

The Tables.update() operation enables you to modify the mutable fi elds of a

table. The freely modifi able fi elds are the expiration time, friendly name, and

description (expirationTime, friendlyName, and description). The schema

can also be modifi ed in certain limited ways.

If a table doesn’t have a schema, you always can add one. If a table already

has a schema, you can’t remove fi elds, and the only change you can make to a

fi eld is to change the mode from REQUIRED to NULLABLE. You can, however add

fi elds, but again with restrictions. The fi elds you add must have the mode set to

NULLABLE or REPEATED (or empty because NULLABLE is the default). This restric-

tion makes sense because if you added a new required fi eld, all previous data

in the table wouldn’t have had that fi eld, so it wouldn’t match the schema. You

can also only add fi elds at the end of the schema.

Following is an example of a curl request adding a fi eld to the table schema:

$ SCHEMA2="{'fields': [\
 {'name':'foo', 'type': 'STRING'}, \
 {'name': 'bar', 'type': 'FLOAT'}]}"
$ TABLE_JSON="{'tableReference': ${TABLE_REF}, 'schema': ${SCHEMA2}}"
$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X PUT \
 --data-binary "${TABLE_JSON}" \
 "${TABLES_URL}/table1"
{
...
"tableReference": {
 "projectId": "bigquery-e2e",
 "datasetId": "scratch",
 "tableId": "table1"
 },

138 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 138

 "schema": {
 "fields": [
 {
 "name": "foo",
 "type": "STRING"
 },
 {
 "name": "bar",
 "type": "FLOAT"
 }
]
 },
 "numBytes": "0",
 "numRows": "0",
 "creationTime": "1376537757773",
 "lastModifiedTime": "1376537882648"
}

Tables.patch()

Patch enables you update a table without specifying all the fi elds on the table.

This is especially nice if you want to leave the schema as-is and just want to

update a single fi eld such as expirationTime. Here is a curl command showing

how you can update the expiration time with a simple request without affect-

ing the schema:

$ EXPIRATION_TIME=$(($(date +"%s")+24*60*60))000
$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X PATCH \
 --data-binary "{'expirationTime': '${EXPIRATION_TIME}'}" \
 "${TABLES_URL}/table1"
{
...
"tableReference": {
 "projectId": "bigquery-e2e",
 "datasetId": "scratch",
 "tableId": "table1"
 },
 "schema": {
 "fields": [
 {
 "name": "foo",
 "type": "STRING"
 },
 {
 "name": "bar",
 "type": "FLOAT"

 Chapter 5 ■ Talking to the BigQuery API 139

c05.indd 01:5:49:PM 05/08/2014 Page 139

 }
]
 },
 "numBytes": "0",
 "numRows": "0",
 "creationTime": "1376537757773",
 "expirationTime": "1376624670453",
 "lastModifiedTime": "1376538270453"
}

Tables.delete()

Deleting a table is simple and irrevocable. Just call Tables.delete() or send

the HTTP DELETE verb to the table name, and poof! Your table is gone! Note

that like Datasets.delete(), Tables.delete() returns the HTTP response

code 204 on success.

$ curl -H "$(python auth.py)" \
 -X DELETE \
 -w "%{http_code}\\n" \
 "${TABLES_URL}/table1"
204

TableData

The TableData collection is one of the ways you can access the data in your

tables. The collection’s resource is a table row, which contains a single row

of data from the table. There are only two operations available on table data:

list() and insertAll(). Only list() is a true REST operation; insertAll()

is an RPC method that inserts multiple rows into the table.

Because table data belongs to a table, it is nested under the table URL. A full

TableData.list() URL for the bigquery-e2e:application_logs.usage_log

table is https://www.googleapis.com/bigquery/v2/projects/bigquery-e2e/

datasets/application_logs/tables/usage_logs/data. Table 5.8 shows the

available REST methods in the table data collection and their relative URLs.

Table 5.8: TableData REST Collection

METHOD URL

HTTP

VERB

TableData.list() . . . /tables/<table_id>/data/ GET

TableData
.insertAll()

. . . /tables/<table_id>/data/
insertAll

POST

https://www.googleapis.com/bigquery/v2/projects/bigquery-e2e

140 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 140

TableData Resource

The TableData resource is the TableRow, which, at fi rst, looks like an odd col-

lection of f and v lists. After you get familiar with it, it still looks like an odd

collection of f and v lists, but at least they make a little bit more sense.

Each row is a structure with one fi eld f, containing a list of structures that also

have a single fi eld, this time called v. The TableData rows use the same format as

query results that are returned by Jobs.query() and Jobs.getQueryResults()

and are modeled after the Google GViz format.

So what’s with the f and v? Why not have more idiomatic JSON with lists

of {"fieldName": "fieldValue"}? The primary reason is compactness. If you

request a million rows and each row has the same fi eld names, it is highly

redundant to specify the fi eld names in each row. The names f and v were also

chosen to be as compact as possible, rather than something more verbose like

fields and value.

Schemas in BigQuery can be recursive. In the nested case, there will be a

nested f inside of a v.

The table data row format is described in Table 5.9.

Table 5.9: TableData Resource Fields

FIELD TYPE DESCRIPTION

f object array List of fi elds in the row.

f.v any Value of the fi eld. Although the fi eld can be of any type,

it will always be rendered as a string.

f.v.f object array Nested fi eld representation.

TableData.list()

The TableData.list() method reads data from a table. The TableData.list()

method supports both index-based pagination and page-token-based pagination.

Although token-based pagination is usually preferred, sometimes the actual

index of the row is important.

When using index-based pagination, if the table is changing while you page

through it, you always see the latest data, which may not be what you expect.

Token-based pagination always gives you a stable view of the table, so if you

ask for the next page, you get the next page of results as of the time you started

paging through the table. Because this may require extra storage to keep around

old versions of the table, page tokens have a limited lifetime—if you try to use

them after seven days you’ll get an error.

In order to see how TableData.list() works on nested data, let’s fi rst load

some nested data via the bq tool.

 Chapter 5 ■ Talking to the BigQuery API 141

c05.indd 01:5:49:PM 05/08/2014 Page 141

$ bq load \
 --source_format=NEWLINE_DELIMITED_JSON \
 scratch.nested nested.json \
 nested.schema.json

Here is a curl command that reads data from a small nested table. You can

see all of the funny fs and vs:

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X GET \
 "${TABLES_URL}/nested/data?prettyPrint=false"
{"kind":"bigquery#tableDataList", ... "totalRows":"3",
"rows":[
 {"f":[{"v":"1"}, {"v":{"f":[{"v":"2.0"}, {"v":[{"v":"foo"}]}]}}]},
 {"f":[{"v":"2"},{"v":{"f":[{"v":"4.0"}, {"v":[{"v":"bar"}]}]}}]},
 {"f":[{"v":"3"},{"v":{"f":[{"v":"8.0"},
 {"v":[{"v":"baz"},{"v":"qux"}]}]}}]}]}

TABLEDATA ORDERING

Loosely speaking, TableData.list() returns rows in order of oldest data to

newest data. That is, if you have a table where you append new values daily and

page through it using TableData.list(), you get the data from the fi rst day

fi rst, then the next day, and so on.

There is a caveat to the ordering rules, however. BigQuery periodically runs a back-

ground operation to optimize table representation for querying. When you do a lot of

small imports, the internal representation of the table is less effi cient to query against.

The table optimization process can reorder data, but does so only with older data in

the table. Data that was added within the last seven days will never be reordered.

Reading data from tables in a dynamic programming language, such as

Python, is quite convenient. Dynamic languages make it easy to handle cases

in which you don’t know the types ahead of time. In Python, you can parse the

JSON response and turn it into a dict object and then access the fi elds as you

would any dict. Here is the code in Python to iterate through query results

and print them:

def print_results(results):
 fields = results['schema']['fields']
 rows = results.get('rows', [])
 for row in rows:
 for i in xrange(0, len(fields)):
 cell = row['f'][i]
 field = fields[i]
 print "%s: %s " % (field['name'], cell['v']),
 print ''

142 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 142

Most of the Python examples in this book will look similar if translated into

other programming languages. However, statically typed languages, such as

Java, make it more diffi cult to write code where the types are not known ahead

of time. Because the code is much different from the Python version, we show

the Java code in Listing 5.2 to iterate through the rows in a Tabledata.list()

response and print it as JSON with the fi elds labeled.

Listing 5.2: Parsing TableData list nested responses from Java (ResultReader.java)

import com.google.api.client.util.Data;
import com.google.api.services.bigquery.model.GetQueryResultsResponse;
import com.google.api.services.bigquery.model.QueryResponse;
import com.google.api.services.bigquery.model.TableCell;
import com.google.api.services.bigquery.model.TableDataList;
import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableRow;
import com.google.api.services.bigquery.model.TableSchema;

import java.io.PrintStream;
import java.util.List;
import java.util.Map;

/**
 * Translates f / v results from BigQuery table listing or query results
 * into {field1 : value1, field2 : value2, ...} JSON output.
 */
public class ResultReader {
 private final PrintStream printer;
 public ResultReader() {
 this(System.out);
 }
 public ResultReader(PrintStream stream) {
 this.printer = stream;
 }

 private <T extends Map<String, Object>> T fixup(T parent,
 Object obj) {
 // Because of the cell recursion, we have to do something slightly
 // goofy: We turn the cell/row into a map, then turn it back into a
 // cell/row. This works around some Java type inconsistencies
 // between neted calls and outer ones.
 @SuppressWarnings("unchecked")
 Map<String, Object> valueMap = (Map<String, Object>) obj;
 parent.putAll(valueMap);
 return parent;
 }

 private void printCellValue(TableFieldSchema field, TableCell cell) {
 if (Data.isNull(cell.getV())) {
 printer.append("null");

 Chapter 5 ■ Talking to the BigQuery API 143

c05.indd 01:5:49:PM 05/08/2014 Page 143

 return;
 } else if (field.getType().toLowerCase().equals("record")) {
 TableRow tableRow = fixup(new TableRow(), cell.getV());
 printCells(field.getFields(), tableRow.getF());
 } else {
 // Everything that isn't a record can be printed as a string.
 printer.format("\"%s\"", cell.getV().toString());
 }
 }

 private void printCell(TableFieldSchema field, TableCell cell) {
 printer.format("\"%s\": ", field.getName());
 String mode = field.getMode();
 if (mode != null && mode.toLowerCase().equals("repeated")) {
 // We've got a repeated field here. This is actually a list of
 // values.
 printer.append("[");
 if (!Data.isNull(cell)) {

 @SuppressWarnings("unchecked")
 List<Object> values = (List<Object>) cell.getV();

 for (int ii = 0; ii < values.size(); ii += 1) {
 if (ii != 0) {
 printer.append(", ");
 }
 TableCell innerCell = fixup(new TableCell(), values.get(ii));
 printCellValue(field, innerCell);
 }
 }
 printer.append("]");
 } else {
 printCellValue(field, cell);
 }
 }

 private void printCells(List<TableFieldSchema> fields,
 List<TableCell> cells) {
 printer.append("{");
 for (int ii = 0; ii < fields.size(); ii += 1) {
 if (ii != 0) {
 printer.append(", ");
 }
 TableFieldSchema field = fields.get(ii);
 TableCell cell = fixup(new TableCell(), cells.get(ii));
 printCell(field, cell);
 }
 printer.append("}");

Continues

144 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 144

 }

 public void printRows(TableSchema schema, List<TableRow> rows) {
 for (TableRow row : rows) {
 printCells(schema.getFields(), row.getF());
 }
 }

 public void print(QueryResponse response) {
 printRows(response.getSchema(), response.getRows());
 }

 public void print(GetQueryResultsResponse response) {
 printRows(response.getSchema(), response.getRows());
 }

 public void print(TableSchema schema, TableDataList response) {
 printRows(schema, response.getRows());
 }
}

TableData.insertAll()

The TableData.insertAll() method is used for appending records to a table.

It is described in much more detail in Chapter 6, “Loading Data,” in the section

on streaming imports. You may ask, why provide a nonstandard insertAll()

RPC method but not a normal REST insert() call? The primary reason is effi -

ciency; if you have Big Data but send individual POST requests to add each row

to your table, you’re going to incur a lot of network overhead to set up and tear

down HTTP connections. Although you can call TableData.insertAll() to

send records one at a time, the record list in the API signature encourages you

to batch up your requests.

Jobs

The Jobs collection enables you to actually “do” things with BigQuery, such as

add your data or query it. This chapter gives only a cursory introduction to the

types of jobs you can run in BigQuery and some of their more common options.

Later chapters go into more detail. For now, we just consider REST operations

on jobs and the shared portions of the Job resource.

Jobs always belong to a single project—the project that will be responsible

for paying for running the jobs. Job quotas are per-project as well. To refl ect

this relationship, the Jobs collection is nested under the Projects collection. A

full Jobs.list() URL for the bigquery-e2e project is https://www.googleapis

.com/bigquery/v2/projects/bigquery-e2e/jobs. Table 5.10 shows the avail-

able REST methods and their relative URLs.

Listing 5.2: (continued)

https://www.googleapis

 Chapter 5 ■ Talking to the BigQuery API 145

c05.indd 01:5:49:PM 05/08/2014 Page 145

Table 5.10: Jobs REST Collection

METHOD URL

HTTP

VERB

Jobs.insert() . . . /projects/<project_id>/jobs/ POST

Jobs.get() . . . /projects/<project_id>/
jobs/<job_id>

GET

Jobs.list() . . . /projects/<project_id>/jobs/ GET

Jobs.query() . . . /projects/<project_id>/queries/ POST

Jobs
.getQueryResults()

. . . /projects/<project_id>/
queries/<job_id>

GET

Jobs Resource

The Job resource has four main parts: job reference, which uniquely identifi es

the job; confi guration, which tells BigQuery what to run; statistics that describe

how the job ran; and status to tell you the current state of the job. These com-

ponents are described at a high level in Table 5.11.

Table 5.11: Job Resource Top-level Components

FIELD TYPE DESCRIPTION

jobReference object Components of the job name. Unique within the proj-

ect. Immutable after the job has been created.

configuration object JobConfiguration object indicating what opera-

tion the job should run. For example, for a Query job,

the configuration.query portion will be fi lled

out with the query to run.

status object JobStatus object describing current job state and

any errors that may have accumulated on the job.

statistics object JobStatistics object containing statistics about

how the job was run, such as when the job started,

when it completed, and how much data it processed.

JobReference

The job reference contains two fields: jobId and projectId, as shown in

Table 5.12 The projectId is the project that “owns” the job. For example,

if you run a query, the project specified in the project ID is responsible for

paying for any charges incurred by the query. It doesn’t matter which proj-

ect the tables being queried belong to—just the project specified in the job.

The job ID must be unique within the project. If multiple users all run jobs in

the same project, this can mean some coordination between users is required.

146 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 146

If you do not specify a job ID when you create the job, BigQuery will cre-

ate one for you that is random and guaranteed to be unique. If you care about

tracking the outcome of the job, however, you should specify your own ID. This

way you can fi nd out what happened with the job, even if the Jobs.insert()

request returns an error.

Table 5.12: Job Reference Components

FIELD TYPE DESCRIPTION

jobId string ID of the job, unique within the project

projectId string ID of the project that will be billed for the job

JobConfiguration

The JobConfiguration object contains several subsections, one for each type

of job that can be run. When creating a job, you should fi ll out only one of these

sections—the one that corresponds to the type of job you want to run. Table 5.13

shows the top-level confi gurations. The details of per-job confi gurations will be

described in later chapters.

Table 5.13: Job Confi guration Components

FIELD TYPE DESCRIPTION

copy object Confi guration for table Copy jobs. Table copy is a fast

metadata-only operation. Described in Chapter 11,

“Managing Data Stored in BigQuery.”

extract object Confi guration for Extract jobs, used to export an entire table

out of BigQuery. Extract is described in Chapter 12, “External

Data Processing.”

load object Confi guration for Load jobs, used to get bulk data into

BigQuery. Load jobs are described in Chapter 6.

query object Confi guration for Query jobs. Can be created directly, or

indirectly via the Jobs.query() method. Query jobs are

described in Chapter 7.

dryRun boolean When set, runs the job in dry-run mode, which means that

the confi guration is verifi ed but the job is not actually run.

This does not create an actual job. dryRun jobs are free.

JobStatus

The job status object, shown in Table 5.14, will let you know whether the job

has started or whether it had any errors. The state fi eld will always be either

PENDING, RUNNING, or DONE. If the job failed, the reason for the failure will be

in the errorResult fi eld. The error fi eld also contains a list of errors but does

 Chapter 5 ■ Talking to the BigQuery API 147

c05.indd 01:5:49:PM 05/08/2014 Page 147

not necessarily indicate that the job failed. Instead, the errors in the error list

should be thought of as warnings when the errorResult is not present.

Table 5.14: JobStatus Components

FIELD TYPE DESCRIPTION

state string Either PENDING, to indicate the job is still

queued; RUNNING, to indicate the job is actively

running; or DONE to indicate the job has com-

pleted and all side eff ects are committed.

errorResult object If present, the error that caused the job to fail.

errorResult
.location

string Optional location of the error.

errorResult
.message

string A user-readable description of the error.

errorResult
.reason

string A short error code describing the error, such as

notFound. If you have code that handles errors,

the reason should be used to make decisions

about the type of error, rather than the message,

which may change at any time.

errors object
array

All the errors that occurred on the job. Presence

of errors in this fi eld does not necessarily indi-

cate job failure.

JobStatistics

The job statistics tell you information about the job that ran, such as how long

it ran for and how much work it did. The JobStatistics object, described in

Table 5.15, has a main section that has job timing data, in addition to per-job-type

nested sections.

Table 5.15: JobStatistics Components

FIELD TYPE DESCRIPTION

creationTime number The time, in milliseconds since 1/1/1970 UTC

that this job was created.

startTime number The time, in milliseconds since 1/1/1970 UTC

that this job was started (that is, the state

went from PENDING to RUNNING).

endTime number The time, in milliseconds since 1/1/1970 UTC

that this job was completed (that is, the

state transitioned to DONE).

Continues

148 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 148

FIELD TYPE DESCRIPTION

query object Statistics reported by Query jobs.

query.cacheHit boolean Whether the query result was found in the

query cache.

query
.totalBytesProcessed

number Number of bytes scanned by the query.

This is the value used for assessing billing

charges for queries.

load object Statistics reported by Load jobs.

load.inputFileBytes number Number of bytes of read from source fi les

that were imported.

load.inputFiles number Number of source fi les that were imported.

load.outputBytes number Number of bytes added to the table. This

value will be used in computing billing for

table storage.

load.outputRows number How many additional rows of data were

added to the table.

Jobs.insert()

When you insert a job into the Jobs collection, this tells BigQuery to run a job

to perform some asynchronous operation on your behalf. The only informa-

tion you need to provide is the configuration section. That said, it is strongly

recommended that you also provide a jobId in the jobReference section, so

that it is easier to track what happened if something goes wrong. The follow-

ing commands create a job ID from the current time and run a curl request to

start a Query job.

$ JOB_ID=job_$(date +"%s")
$ JOB_REFERENCE="{'jobId': '${JOB_ID}', 'projectId': '${PROJECT_ID}'}"
$ JOB_CONFIG="{'query': {'query': 'select 17'}}"
$ JOB="{'jobReference': ${JOB_REF}, 'configuration': ${JOB_CONFIG}}"
$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X POST \
 --data-binary "${JOB}" \
 "${JOBS_URL}"
{
...
 "jobReference": {
 "projectId": "bigquery-e2e",
 "jobId": " job_1394518034"
 },

Table 5.15 (continued)

 Chapter 5 ■ Talking to the BigQuery API 149

c05.indd 01:5:49:PM 05/08/2014 Page 149

 "configuration": {
 "query": {
 "query": "select 17",
 "destinationTable": {
 "projectId": "bigquery-e2e",
 "datasetId": "_0e32b38e1117b2fcea992287c138bd53acfff7cc",
 "tableId": "anon5c03da1f543a2486eca295f285b40eb87b01ea84"
 },
 "createDisposition": "CREATE_IF_NEEDED",
 "writeDisposition": "WRITE_TRUNCATE"
 }
 },
 "status": {
 "state": "RUNNING"
 },
 "statistics": {
 "creationTime": "1376685153301",
 "startTime": "1376685153396"
 }

Jobs.get()

After you create a job, it is common to poll until the job completes. (That is,

wait until job['status']['state'] == 'DONE'.) You should wait a second or

so between polling attempts, so your polling doesn’t look like an attempted

denial-of-service attack on Google.

If you hadn’t specifi ed the job ID, you could still know how to look up the job

because the Jobs.insert() request returns the jobReference in the response.

However, if Jobs.insert() returned an error (say your network was temporarily

disabled), you’d have no way of knowing whether the job actually ran.

If it sounds like we’re over-hyping the value of providing your own job ID , it is

because it is something that is easy to do that can solve a lot of potential problems.

We see a lot of support requests that are made more diffi cult by not having a job

ID to use to investigate, and a lot of customers that end up accidentally rerun-

ning jobs because they haven’t provided a job ID. We just want to make sure that

you’re aware of the option.

Here is a curl request that shows getting job state for the same job_1394518034

previously created:

$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 "${JOBS_URL}/${JOB_ID}"
{
...
"jobReference": {
 "projectId": "bigquery-e2e",
 "jobId": " job_1394518034"
 },

150 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 150

 "configuration": {
 "query": {
 "query": "select 17",
 "destinationTable": {
 "projectId": "bigquery-e2e",
 "datasetId": "_0e32b38e1117b2fcea992287c138bd53acfff7cc",
 "tableId": "anon5c03da1f543a2486eca295f285b40eb87b01ea84"
 },
 "createDisposition": "CREATE_IF_NEEDED",
 "writeDisposition": "WRITE_TRUNCATE"
 }
 },
 "status": {
 "state": "DONE"
 },
 "statistics": {
 "creationTime": "1376685153301",
 "startTime": "1376685153396",
 "endTime": "1376685153696",
 "query": {
 "totalBytesProcessed": "0",
 }
 }
}

Jobs.list()

The Jobs.list() method tells you which jobs are currently running or which

jobs have run recently. You can specify a job state fi lter, so you can see just run-

ning jobs, or just pending jobs by using the stateFilter parameter. Jobs will

be returned in reverse order of time; that is, the jobs that were created most

recently will be returned fi rst.

When you call Jobs.list(), you see only the jobs you have run yourself. If

you want to see jobs run by others, you should set the allUsers fl ag to true,

which will let you see all the jobs run by all users in the project. (You need to

be an owner of the project, however.) The allUsers fl ag allows project owners

to see the jobs that have been run that they will, ultimately, be paying for.

When listing jobs, you can also specify a projection. The default projection

is “minimal,” which doesn’t include the configuration fi eld, but if you’d like

to see the full Job resource, you can specify projection=full.

Here is a curl command that shows you just the job IDs of recently com-

pleted jobs:

$ FIELDS="jobs(jobReference(jobId))"
$ PARAMS="stateFilter=DONE&fields=${FIELDS}&maxResults=2"
$ curl -H "$(python auth.py)" \
 -H "Content-Type: application/json" \

 Chapter 5 ■ Talking to the BigQuery API 151

c05.indd 01:5:49:PM 05/08/2014 Page 151

 -X GET \
 "${JOBS_URL}?${PARAMS}"
{
 "jobs": [
 {
 "jobReference": {
 "jobId": "bqjob_r29016a1bfe5187c8_000001408ce3ffc5_1"
 }
 },
 {
 "jobReference": {
 "jobId": "bqjob_r239fa6e7bb78440_000001408ce3e8f2_1"
 }
 }
]
}

Jobs.query() and Jobs.getQueryResults() RPCs

The Jobs.query() and Jobs.getQueryResults() APIs are used to run queries

and get the results of queries, respectively. These APIs are covered in depth in

Chapter 7, so we defer discussion of them until that chapter.

BigQuery API Tour

There is an old puzzle called the “knight’s tour” in chess: How can you move a

knight around a chessboard such that it hits every square exactly once? Listing 5.3

shows the “knight’s tour” of the BigQuery API—it runs through each API method

in each collection once, leaving the end state the same as when you started. This

puts all the APIs in context, lets you see how they work, and shows how to call

them from Python.

Listing 5.3: A Knight’s tour of the BigQuery API (tour.py)

Python imports
import io
import json
import sys
import time

Google APIs imports
from apiclient.discovery import build
from apiclient.errors import HttpError
from apiclient.http import MediaIoBaseUpload

BigQuery e2e imports

Continues

152 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 152

import auth

Runs through each BigQuery API request.
def run_tour(service, project_id):
 print 'Running BigQuery API tour'

 projects = service.projects()
 datasets = service.datasets()
 tables = service.tables()
 tabledata = service.tabledata()
 jobs = service.jobs()

 # Generate some IDs to use with the tour.
 tour = 'tour_%d' % (time.time())
 dataset_id = 'dataset_' + tour
 table_id = 'table_' + tour
 job_id = 'job_' + tour

 project_ref = {'projectId': project_id}
 dataset_ref = {'datasetId': dataset_id,
 'projectId': project_id}
 table_ref = {'tableId': table_id,
 'datasetId': dataset_id,
 'projectId': project_id}
 job_ref = {'jobId': job_id,
 'projectId': project_id}

 # First, find the project and print out the friendly name.
 for project in projects.list().execute()['projects']:
 if (project['id'] == project_id):
 print 'Found %s: %s' % (project_id, project['friendlyName'])

 # Now create a dataset
 dataset = {'datasetReference': dataset_ref}
 dataset = datasets.insert(body=dataset, **project_ref).execute()

 # Patch the dataset to set a friendly name.
 update = {'friendlyName': 'Tour dataset'}
 dataset = datasets.patch(body=update, **dataset_ref).execute()

 # Print out the dataset for posterity
 print '%s' % (dataset,)

 # Find our dataset in the datasets list:
 dataset_list = datasets.list(**project_ref).execute()
 for current in dataset_list['datasets']:
 if current['id'] == dataset['id']:
 print 'found %s' % (dataset['id'])

 ### Now onto tables...
 table = {'tableReference': table_ref}

Listing 5.3: (continued)

 Chapter 5 ■ Talking to the BigQuery API 153

c05.indd 01:5:49:PM 05/08/2014 Page 153

 table = tables.insert(body=table, **dataset_ref).execute()

 # Update the table to add a schema:
 table['schema'] = {'fields': [{'name': 'a', 'type': 'string'}]}
 table = tables.update(body=table, **table_ref).execute()

 # Patch the table to add a friendly name
 patch = {'friendlyName': 'Friendly table'}
 table = tables.patch(body=patch, **table_ref).execute()

 # Print table for posterity:
 print table

 # Find our table in the tables list:
 table_list = tables.list(**dataset_ref).execute()
 for current in table_list['tables']:
 if current['id'] == table['id']: print 'found %s' % (table['id'])

 ## And now for some jobs...
 config = {'load': {'destinationTable': table_ref}}
 load_text = 'first\nsecond\nthird'

 # Remember to always name your jobs!
 job = {'jobReference': job_ref, 'configuration': config}

 media = MediaIoBaseUpload(io.BytesIO(load_text),
 mimetype='application/octet-stream')
 job = jobs.insert(body=job,
 media_body=media,
 **project_ref).execute()

 # List our running or pending jobs:
 job_list = jobs.list(
 stateFilter=['pending', 'running'],
 **project_ref).execute()
 print job_list

 while job['status']['state'] <> 'DONE':
 job = jobs.get(**job_ref).execute()

 # Now run a query against that table.
 query = 'select count(*) from [%s]' % (table['id'])
 query_request = {'query': query, 'timeoutMs': 0, 'maxResults': 1}
 results = jobs.query(body=query_request, **project_ref).execute()
 while not results['jobComplete']:
 get_results_request = results['jobReference'].copy()
 get_results_request['timeoutMs'] = 10000
 get_results_request['maxResults'] = 10
 results = jobs.getQueryResults(
 **get_results_request).execute()

Continues

154 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 154

 print results

 # Now let's read the data from our table.
 data = tabledata.list(**table_ref).execute()
 table = tables.get(**table_ref).execute()
 print 'Table %s\nData:%s' % (data, table)

 # Now we should clean up our toys.
 tables.delete(**table_ref).execute()
 datasets.delete(**dataset_ref).execute()

 # Now try reading the dataset after deleting it:
 try:
 datasets.get(**dataset_ref).execute()
 print "That's funny, we should never get here!"
 except HttpError as err:
 print 'Expected error:\n%s' % (err,)

 # Done!

def main(argv):

 service = auth.build_bq_client()
 project_id = 'bigquery-e2e' if len(argv) == 0 else argv[0]
 run_tour(service, project_id)

if __name__ == '__main__':
 main(sys.argv[1:])

Error Handling in BigQuery

In a perfect world, every BigQuery operation would succeed and there would

be no need to debug or worry about errors. In practice, however, there are a

number of different types of errors you’ll encounter, and depending on how

you use BigQuery, different ways to handle them.

HTTP Errors and Responses

All BigQuery API calls are HTTP requests; therefore in accordance with the

HTTP 1.1 spec, they all return HTTP status codes. Codes between 200 and 299

are “success” codes, but nearly all requests will return 200 on success. The only

other success code used by BigQuery is 204 No Content, which will be returned

when deleting datasets or tables.

HTTP error codes are in the range 400–599. Unless there was some kind of

severe network error or badly malformed request, BigQuery returns a standard

JSON response on error, in addition to the raw status code, that can be used

to make sense of what went wrong. Table 5.16 describes the fi eld of that error

response.

Listing 5.3: (continued)

 Chapter 5 ■ Talking to the BigQuery API 155

c05.indd 01:5:49:PM 05/08/2014 Page 155

Table 5.16: HTTP Error Response Components

FIELD TYPE DESCRIPTION

code number HTTP status code that maps most closely to

the response. Rather than using this to try

to determine the issue, you should use the

errors.reason value instead.

message string User-facing message describing the fi rst error.

errors object
array

List of HTTP errors encountered. Will nearly

always have exactly one error.

errors.domain string Nearly always global. Not very interesting.

errors.message string User-facing message describing the error.

errors.reason string Code categorizing the error. If you are han-

dling errors in code, you should use this fi eld

rather than the message (which may change

at any time) or the HTTP response code (which

maps imperfectly onto the set of possible

errors) to determine what went wrong.

errors.location string

(optional)

Describes where in the request the error

occurred. May provide additional information

about the error.

errors
.locationType

string

(optional)

Provides additional context for the errors
.location fi eld.

Following is an example error you’ll get if you use an invalid Authorization

header:

{
 "error": {
 "errors": [
 {
 "domain": "global",
 "reason": "authError",
 "message": "Invalid Credentials",
 "locationType": "header",
 "location": "Authorization"
 }
],
 "code": 401,
 "message": "Invalid Credentials"
 }
}

Here you can see that there is one error on the global domain (which 99.9

percent of error responses will share). The HTTP response code is 401. If you

156 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 156

look that up in the HTTP 1.1 spec, you’ll see that it is the code for Unauthorized.

You shouldn’t need to look it up because you can use the reason fi eld authEr-

ror, which means that there was an error authorizing the request.

If you forgot the Authorization header entirely, you’ll still get an HTTP 401

response, but you’ll get the error reason of required, a location of Authorization,

and a locationType of header. This enables you to know that your request was

missing a required fi eld: the Authorization header.

Table 5.17 provides a partial list of the HTTP errors that BigQuery can return.

Table 5.17: BigQuery HTTP Errors

CODE REASON DESCRIPTION

400 invalidParameter One or more of the arguments you supplied in the

request was invalid.

400 parseError The JSON request you sent could not be parsed

correctly.

400 invalidQuery The BigQuery query you specifi ed could not be

parsed correctly.

400 required Your request was missing a required fi eld.

400 resourcesExceeded Your query required too many resources to com-

plete successfully. This can happen when doing an

ORDER BY on a large query result, for example.

400 responseTooLarge Your query response was larger than 128 MB and

you did not specify allowLargeResults. Can

also happen when an intermediate calculation was

too large.

401 authError Your Authorization header was invalid. This

does not mean that you tried to access something

you didn’t have access to.

403 accessDenied You tried to perform an operation on a resource

that you weren’t authorized to access. For example,

you tried to run a job in a project without being a

member of the project team.

403 billingNotEnabled You tried to perform a BigQuery operation that

requires billing to be enabled.

403 blacklisted You tried to perform an operation that is on the

blacklist. This can happen in rare instances when

queries or types of queries are blacklisted to pre-

vent the exploitation of bugs in the system. If you

see this error, it should provide you contact infor-

mation in the message so that you can fi nd out

what it is that has been blacklisted.

403 rateLimitExceeded You’re sending BigQuery requests too quickly; try

slowing down.

 Chapter 5 ■ Talking to the BigQuery API 157

c05.indd 01:5:49:PM 05/08/2014 Page 157

CODE REASON DESCRIPTION

403 quotaExceeded You’ve exceeded a long-term (most likely daily)

quota limit.

404 notFound You tried to access a resource that doesn’t exist.

409 duplicate You tried to create a resource that already exists.

500 internalError Your response triggered an internal BigQuery error.

This is always a BigQuery bug.

503 backendError There was an error connecting to BigQuery, or

BigQuery experienced an error contacting another

required service. If you retry, this error will likely go

away.

Job Errors and Responses

Most BigQuery errors are reported as an HTTP error of the type described

in the previous section. However, when you run a BigQuery job, it gets run

asynchronously. Errors that are encountered on the job may not happen in the

context of an HTTP request. To report errors, jobs use the status.errorResult

and status.errors fi elds. These are described in more detail in the more detail

in the “Jobs” section in this chapter.

Job errors are reported using the same data structure as the HTTP response

errors. The only difference is that they do not have an HTTP response code

because they aren’t HTTP errors. But they look virtually identical to the HTTP

responses.

For example, when you try to read a dataset that doesn’t exist, you get the

following error in the errors fi eld of the response:

{
 "domain": "global",
 "reason": "notFound",
 "message": "Not Found: Dataset bigquery-e2e:nonexistent"
}

When you run a query against a nonexistent dataset, which creates a job, you

get a nearly identical error in the job.errorResult fi eld:

"errorResult": {
 "reason": "notFound",
 "message": "Not Found: Dataset bigquery-e2e:nonexistent"
}

Error Reporting for Jobs.query() and Jobs.getQueryResults()

The lines between a job error and an HTTP error get murkier when you consider

the Jobs.query() and Jobs.getQueryResults() APIs. These APIs wait for a

query to complete and return the results. The Jobs.query() API is designed

158 Part II ■ Basic BigQuery

c05.indd 01:5:49:PM 05/08/2014 Page 158

to be callable in a synchronous fashion—having to distinguish between errors

in the request and network errors, and errors in the job would be too onerous.

For this reason, the Jobs.query() and Jobs.getQueryResults() methods that

hit a fatal error (that is, the Query job has a status.errorResult) return those

errors as HTTP errors. For example, the same query that previously generated

the notFound errorResult would return the following HTTP response code if

executed via the jobs.query() API:

{
 "error": {
 "errors": [
 {
 "domain": "global",
 "reason": "notFound",
 "message": "Not Found: Dataset bigquery-e2e:nonexistent"
 }
],
 "code": 404,
 "message": "Not Found: Dataset bigquery-e2e:nonexistent"
 }
}

Summary

In this chapter we discussed how Google APIs in general and BigQuery in par-

ticular fi t in with the REST model. You saw some of the raw HTTP-level features

of Google APIs and how they can be invoked from higher-level languages. You

also walked through the BigQuery REST collections: Projects, Datasets, Tables,

TableData, and Jobs, and saw the operations that are valid on those collections.

Also of note in the chapter were the coding samples: the code to get an up-to-date

OAuth2 token and Python code exercising every method in the BigQuery API. You

also saw how to read table data from both Java and Python.

Finally, you went through the types of errors you’re likely to see, what they

mean, and what to do when you see them.

159

c06.indd 05:7:55:PM 04/29/2014 Page 159

Before you can begin to slice, dice, and roll up your data in BigQuery, fi rst

you have to get the data into the service. In Chapter 3, “Getting Started with

BigQuery,” you worked through a simplifi ed example of loading data to verify

that billing was correctly enabled on your account. Unfortunately, loading data

is not usually quite so simple. For that example a fi le hosted in Google Cloud

Storage was available in a format understood by BigQuery, and you were sup-

plied with a schema that matched the data. When you need to load your own

data into the service, you need to tackle each of these steps. This is not to imply

that loading data is super challenging; rather it is to emphasize that it is an

important part of using the service that is at times overlooked.

There are two distinct pieces to the process of loading data into BigQuery:

 ■ Formatting your data appropriately

 ■ Transferring the data to BigQuery

In most scenarios the data you need to analyze lives in a system you control:

fi les on your computer, records in a database, or logs from hosted servers, to

name a few. The fi rst task is to extract the data from the systems in a form that

BigQuery can accept. In some cases this is trivial because the data happens to

be in a suitable format such as a CSV fi le on your machine, but in other cases

C H A P T E R

6

Loading Data

160 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 160

it might require some massaging or an extraction (the E in Extract-Transform-

Load) from a database. With installed software you might be done at this point

because the application and data usually reside on the same machine or network.

With cloud services there is an additional step; the data needs to be shipped to

the service. With ever-increasing bandwidth this is becoming less of an issue,

but there are still data volumes at which it becomes important to plan how you

move bytes around.

The aim of this chapter is to give you an in-depth understanding of BigQuery’s

capabilities for ingesting data. The material is organized around the two tasks

described above. It may be that your use case allows for straightforward load-

ing that does not rely on any of the advanced options. But if this is not the case,

you will be equipped to select and implement an appropriate solution for your

data pipeline into BigQuery.

N O T E To try the examples in this chapter, you need access to a project with billing

enabled because BigQuery does not allow loading data into projects without billing.

Billing setup is covered in Chapter 3.

Bulk Loads

Broadly, BigQuery has two modes for loading data:

 ■ Batch or bulk loads of a large number of records

 ■ Single record insertions

In practice, a batch could contain a single record, and a single insert request

can contain multiple records. The more meaningful difference is that the bulk

mode is designed to provide high throughput, and the single record mode is

designed for low latency. This is refl ected in their performance and in the costs

and quotas associated with these modes. This is covered in detail in the sec-

tions on quotas, but the main point is that bulk loads are the mode best suited

to getting a large amount of data into BigQuery quickly.

In addition to enabling high throughput data transfers into BigQuery, bulk

uploads have an important property; in database terminology they have Atomic,

Consistent, Isolated, and Durable (ACID) semantics. In simple terms it means

that a bulk load operation modifi es a table in BigQuery so that:

 ■ The records loaded become visible in queries at the same time. Another

way of saying the same thing is that a query sees all the records from a

load operation or none of them. (Atomic)

 ■ Either the operation succeeds and the table is modifi ed appropriately or

the operation fails and the table is left unperturbed. (Consistent)

 Chapter 6 ■ Loading Data 161

c06.indd 05:7:55:PM 04/29/2014 Page 161

 ■ When the operation is reported as successful, all future queries are guar-

anteed to observe the data added by the job. (Durable)

Isolation is not particularly relevant in this case because load jobs are not

read-modify-write operations, so they are not dependent on the existing contents

of a table. This makes them trivially isolated. These properties of bulk loads

are often crucial when loading data because they make it simple to ensure that

queries operate on valid data.

So far we have been qualifying load with the term “bulk.” In the BigQuery

API this corresponds to a job with load confi guration and bulk is implied. For

simplicity, from here, the operation of loading a batch of records is referred to

as a load job. It is this job that has ACID semantics in BigQuery, particularly for

other jobs in the system. As described in Chapter 5, “Talking to the BigQuery

API,” a load job like every BigQuery job goes through the same life cycle of

pending, running, and done.

N O T E The code in this chapter assumes a dataset named ch06 exists in the project

you use for trying the sample code. You can create this dataset by running:

 bq mk ch06

And when you fi nish this chapter, you can clean up by running:

 bq rm -f -r ch06

Listing 6.1 (a and b) is the skeleton Python code for executing a load job in

BigQuery and monitoring it over its life cycle. This involves a job insertion,

polling to detect completion, and inspecting the fi nal status of the job. The main

feature to note is the polling loop. It is not generally necessary to poll load jobs

frequently because they usually take at least 30 seconds. The code provided

uses a 10-second wait between Jobs.get() operations and this is a reasonable

value. You may want to tune the wait depending on the nature of the load jobs

you need to run—if you run large loads, a longer wait time would be more

appropriate. Also observe that the code Listing 6.1b has comments indicating

where you would add code to control the confi guration of the job and manage

the transfer of data to the service. The following sections contain code snippets

to place in these locations to enable a particular confi guration.

The confi guration of a load job has three distinct components:

 ■ Source: Location from which bytes will be read

 ■ Destination: Table that will be modifi ed on success

 ■ Format: Instructions on how to turn the bytes into valid records

The reason it is useful to consider these separately is that they can, for the

most part, be varied independently. In addition, the settings you select for each

of these is driven by different considerations. Source is dictated by where your

data currently exists, destination by how you would like to structure your data

162 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 162

in the service, and format by what you can most conveniently generate or the

schema of your table. Now dive into each of these sections to understand what

BigQuery supports.

Listing 6.1a: (run_load.py)

'''Common functions used to execute load jobs.'''

import json
import time

def start_and_wait(jobs, project_id, load, media_body=None):
 '''Run a load job with the given specification.

 jobs: client for the jobs collection in the service.
 project_id: project ID under which the job will run.
 load: the load job configuration.
 media_body: optional media object, ie file, to upload.
 '''
 start = time.time()
 job_id = 'ch06_%d' % start
 # Create the job.
 result = jobs.insert(
 projectId=project_id,
 body={
 'jobReference': {
 'jobId': job_id
 },
 'configuration': {
 'load': load
 }
 },
 media_body=media_body).execute()
 print json.dumps(result, indent=2)
 # Wait for completion.
 done = False
 while not done:
 time.sleep(10)
 result = jobs.get(projectId=project_id, jobId=job_id).execute()
 print "%s %ds" % (result['status']['state'], time.time() - start)
 done = result['status']['state'] == 'DONE'
 # Print all errors and warnings.
 for err in result['status'].get('errors', []):
 print json.dumps(err, indent=2)
 # Check for failure.
 if 'errorResult' in result['status']:
 print 'FAILED'
 print json.dumps(result['status']['errorResult'], indent=2)
 else:
 print 'SUCCESS'

 Chapter 6 ■ Loading Data 163

c06.indd 05:7:55:PM 04/29/2014 Page 163

Listing 6.1b: (load.py)

Sample code authorization support.
import auth
Functions to help run a load job.
import run_load

def main():
 service = auth.build_bq_client()

 # Load configuration with the destination specified.
 load_config = {
 'destinationTable': {
 'projectId': auth.PROJECT_ID,
 'datasetId': 'ch06',
 # You can update this for each example.
 'tableId': 'example_basic'
 }
 }
 # Setup the job here.
 # load[property] = value
 load_config['schema'] = {
 'fields': [
 {'name':'string_f', 'type':'STRING'},
 {'name':'boolean_f', 'type':'BOOLEAN'},
 {'name':'integer_f', 'type':'INTEGER'},
 {'name':'float_f', 'type':'FLOAT'},
 {'name':'timestamp_f', 'type':'TIMESTAMP'}
]
 }
 load_config['sourceUris'] = [
 'gs://bigquery-e2e/chapters/06/sample.csv',
]
 # End of job configuration.

 run_load.start_and_wait(service.jobs(),
 auth.PROJECT_ID,
 load_config)

if __name__ == '__main__':
 main()

Moving Bytes

Fundamentally, the task of loading data involves shipping your data encoded

as bytes to BigQuery and having the service interpret those bytes and turn

them into records that faithfully represent the data you want to analyze. We

start by describing how to transfer your data into the service. BigQuery has a

few different mechanisms for receiving your data:

164 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 164

 ■ Google Cloud Storage

 ■ Resumable uploads

 ■ Multipart HTTP requests

The following sections describe the strengths and limitations of each mecha-

nism and how to use them.

Google Cloud Storage

A useful way to think about the role of Google Cloud Storage is to compare it

to the fi le system on your personal machine. Effectively, GCS is the fi le system

for the Google Cloud Platform. Every component of the platform, including

BigQuery, supports reading fi les stored in GCS. Unless you use GCS as part of

your application platform, your data will not be hosted in the service. However,

there are a couple of compelling reasons to use GCS for transferring data to

BigQuery.

 ■ Robust tools and APIs for uploading data

 ■ Simple BigQuery integration

 ■ Cost effective data archival and backup solution

The drawback is that you have to pay for storing the data in GCS until you

load it into BigQuery, which can be wasteful if you already store your data in

a different location.

With GCS you have already completed the heavy lifting of moving the bytes

representing your data into the Google Cloud Platform even before initiating

the API call to BigQuery. This is accomplished via the GCS API (https://

developers.google.com/storage/docs/overview) or more simply using one of

the client tools (gsutil, browser application). GCS objects are arranged accord-

ing to a two-level naming scheme: a top-level bucket name and an object name.

Bucket names are globally unique in the service, and object names are unique

within a bucket. When using the gsutil command-line tool to access a fi le stored

in GCS, you will use a URI of the form:

gs://<bucket>/<object>

BigQuery expects URIs in the same format when referencing GCS fi les in a

load job. Here is the code snippet to confi gure GCS locations in a load job:

loadConfig['sourceUris'] = [
 'gs://bigquery-e2e/chapters/06/sample.csv',
 'gs://bigquery-e2e/chapters/06/sample_*',
]

You can see that a single load job can specify multiple GCS URIs and that

URIs can be wildcards. Following the terminology commonly used in shells,

https://developers.google.com/storage/docs/overview
https://developers.google.com/storage/docs/overview

 Chapter 6 ■ Loading Data 165

c06.indd 05:7:55:PM 04/29/2014 Page 165

a URI with a wildcard is called a glob. Note that wildcard characters are only

valid in the object name portion of the GCS URI. The glob features shown in

Table 6-1 are supported:

Table 6-1: Glob Patterns

PATTERN MATCHES

? Any single character except for /

* Any sequence of characters except for /

[characters] Set of characters, which can include ranges, for example [a–z]

[!characters] Characters not in the list

Even though GCS does not support explicit directories, the wildcards still

do not match the “/” character so globs match fi les like they would in a regular

fi le system. For example, gs://bucket/f* will match gs://bucket/file and

exclude gs://bucket/f/other. There is an upper limit of 1000 fi les per load

job, after glob expansion. Additional limits apply to the number of bytes in a

single fi le and the total number of bytes, which are covered when discussing

the limits and quotas that apply to load jobs.

Access control works as you would expect; the creator of the job must have

reader access for all the fi les you enumerate in the sourceUris list. If you include

a glob in the list, you must also have reader access on the bucket, which grants

permission to list the contents of a bucket.

Because GCS and BigQuery are both a part of the Google Cloud Platform, it

is easy to forget that loading data from GCS into BigQuery creates an additional

copy of your data. The data stored in GCS is unchanged by the BigQuery load

job, and after the job has completed, deleting the GCS fi les will have no effect on

the data in BigQuery. Again it is useful to consider the analogy to your local fi le

system. If you restore the contents of a database from a backup fi le, the database

ends up storing a copy of the data in a manner suitable for its operation. The

backup remains unchanged. GCS and BigQuery operate in a similar manner.

Resumable Uploads

When using GCS as the data source, you need to have transferred the bytes before

issuing the load job creation request. BigQuery also supports issuing the load

job creation before moving the bytes to the service and moving the bytes in the

same HTTP request that creates the load job. There are a couple of advantages

to passing the job in the initial HTTP request and then transmitting the data

over multiple requests.

 ■ Some types of request errors can be caught early, so that you are notifi ed

before actually transferring all the bytes. Currently the validation is lim-

ited, but over time it is likely to become more comprehensive.

166 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 166

 ■ When you do not require a copy of the data in GCS, a direct upload to

BigQuery avoids explicit management of the fi les in GCS and associated

charges.

 ■ The transfer is accomplished via a protocol that allows interrupted uploads

to be resumed rather than restarted.

Defi ning the load job before moving the bytes to BigQuery sounds like it

requires time travel; fortunately nothing so advanced is involved. This mode of

operation is achieved by having the job insertion HTTP request return a URL that

you use to upload the data to be loaded. BigQuery does not start processing the

request until you start pushing the data into the service. Error conditions that

can be detected by just inspecting the job creation request are reported before

the upload location is returned. Of course, the operation can still fail after you

start uploading the data if there is an error parsing the bytes supplied, but this

should not be surprising.

The details of the protocol are neatly wrapped up when you use the Google-

supplied API client libraries. The following code sample shows how it is done

in the Python client library.

from apiclient.http import MediaFileUpload
upload = MediaFileUpload('sample.csv',
 mimetype='application/octet-stream',
 # This enables resumable uploads.
 resumable=True)
result = jobs.insert(projectId=PROJECT_ID,
 body=body,
 media_body=upload).execute()

There is no need to set sourceUris in the load confi guration because BigQuery

is going to use the uploaded data as the source. Using the client libraries hides

the details of how the data is transferred, but it is useful to understand what is

happening under the covers.

Like every REST (as covered in Chapter 4, “Understanding the BigQuery

Object Model,” and Chapter 5) creation operation, the initial insert request is

an HTTP POST request specifying the full confi guration of the job in the body

of the request with one crucial difference. Instead of posting to:

https://www.googleapis.com/\
bigquery/v2/projects/${PROJECT_ID}/jobs

the following variant is used:

https://www.googleapis.com/upload/bigquery/v2\
/projects/${PROJECT_ID}/jobs?uploadType=resumable

When this alternative URL is used, the request is handled a little differently.

Initial error checking is performed, but instead of fully processing the request

https://www.googleapis.com/\
https://www.googleapis.com/upload/bigquery/v2\

 Chapter 6 ■ Loading Data 167

c06.indd 05:7:55:PM 04/29/2014 Page 167

(strictly it cannot complete processing because the bytes have not yet been

supplied), a location to upload the data is returned as an HTTP header in the

response. Here is an example initial request:

$ BASE_URL=https://www.googleapis.com/upload/bigquery/v2
$ PROJECT_ID=317752944021
$ PROJECT_URL=${BASE_URL}/projects/${PROJECT_ID}
$ curl -D - -H "$(python auth.py)" \
 -H 'Content-Type: application/json' \
 -H 'X-Upload-Content-Type: application/octet-stream' \
 -H 'X-Upload-Content-Length: 2000000' \
 --data-binary '{}' \
 ${PROJECT_URL}/jobs?uploadType=resumable
HTTP/1.1 200 OK
Location: https://www.googleapis.com/upload/bigquery/v2/projects\...
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: Fri, 01 Jan 1990 00:00:00 GMT
Date: Wed, 12 Mar 2014 04:35:01 GMT
Server: HTTP Upload Server Built on Mar 3 2014 15:12:04 (1393888324)
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Alternate-Protocol: 443:quic

Notice the X-Upload-* headers used to supply information about the bytes to

be uploaded. The X-Upload-Content-Length header is optional and can be left

out if the size is not known. The URL returned in the Location header should be

used to perform the upload. It is referred to as the session_url in the snippets

that follow. At this point the service is ready to accept the data to import using

the Resumable Upload protocol at the supplied URL. You can fi nd a detailed

description of this protocol at https://developers.google.com/drive/web/

manage-uploads#resumable that you should refer to if you write your own cli-

ent implementation. The main features are support for a range header in PUT

requests, which allows you to specify the piece of the upload being supplied in the

request, and the ability to interrogate how much of the data has been received. A

partial upload is achieved by including the Content-Range header as shown here:

PUT {session_url} HTTP/1.1

Authorization: your_auth_token
Content-Length: 524288
Content-Type: application/octet-stream
Content-Range: bytes 0-524287/2000000

This allows a large fi le to be uploaded in chunks rather than a single large

HTTP request, which can be unreliable. If the fi nal size is unknown, you can use

“*” instead of a number. To discover how much of the upload has been received,

you PUT a 0 byte range and the server responds with a Range header indicating

the range that has been received.

https://www.googleapis.com/upload/bigquery/v2
https://www.googleapis.com/upload/bigquery/v2/projects\
https://developers.google.com/drive/web

168 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 168

PUT {session_uri} HTTP/1.1
Authorization: your_auth_token
Content-Length: 0
Content-Range: bytes */*

HTTP/1.1 308 Resume Incomplete
Content-Length: 0
Range: 0-42

The response indicates that the client needs to resume uploading from byte

43 (0-indexed). Uploading a range that has already been accepted leads to unde-

fi ned behavior, so don’t do that. Also, if the upload is never completed, it simply

times out and the request is deemed incomplete. The upload and request are

considered complete when the last byte of the range is supplied. If the size was

not specifi ed upfront, the fi nal request must contain the total size rather than

“*” so that the server can determine that the upload is complete. Completing the

upload triggers the fi nal request processing, so the response to the PUT request

that completes the upload contains the response to the initial insert request.

Because this was a job insert request, it contains the load job that was inserted.

All other operations on the job proceed via the standard request path.

As mentioned earlier when using the Python or Java client, all these details

are hidden from the programmer. All that needs to be supplied is the fi le (or

fi le-like) object to be uploaded and a fl ag indicating that the Resumable Upload

protocol should be employed. If all you need to do is load data into BigQuery

for analysis, most of the time the Resumable Upload protocol is the appropriate

way to move your data.

Multipart Upload

You have now covered uploading data before creating a load job and upload-

ing data after creating one. BigQuery also supports uploading data in the same

request that creates the load job. This approach is not well suited for large data

transfers because it relies on moving all the data in a single HTTP request,

which becomes less reliable with increasing upload sizes. If at all feasible it is

preferable to use the Resumable Upload method. However, in some scenarios

it is not convenient to implement the resumable protocol because it requires

multiple HTTP operations. In this case you can use multipart uploads, which

are based on the widely used MIME multipart standard (http://www.w3.org/

Protocols/rfc1341/7_2_Multipart.html). The standard is a scheme for packing

multiple objects into a single stream of bytes. It is used to transfer attachments

in an e-mail message and for fi le uploads from browsers as part of web forms.

The Content-Type header specifi es a string (chosen so that it does not collide

with the content) that is used as a separator between sections of the stream.

Each section within the stream contains headers describing the content in the

section followed by the body of the section containing the actual data.

http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

 Chapter 6 ■ Loading Data 169

c06.indd 05:7:55:PM 04/29/2014 Page 169

When using this method to upload data to BigQuery, you construct the request

body to contain two MIME multipart sections. One section contains the body

of the job insert request specifying the details of the job. The second section

contains the bytes to be loaded by job. As was the case with Resumable Upload,

you do not specify sourceUris, and you use a different URL to indicate that the

request is a multipart request rather than a regular request:

https://www.googleapis.com/upload/bigquery/v2\
/projects/${PROJECT_ID}/jobs?uploadType=multipart

Here is a skeleton request highlighting the key features of the multipart

standard:

POST /upload/bigquery/v2/projects/999/jobs?uploadType=multipart HTTP/1.1
Authentication: your_auth_token
Content-Length: 67342
Content-Type: multipart/related; boundary=gc0p4Jq0M2Yt08jU534c0p

--gc0p4Jq0M2Yt08jU534c0p
Content-Type: application/json; charset=UTF-8

{
 'configuration': {
 'load': { …
 }
 }
}
--gc0p4Jq0M2Yt08jU534c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

<your data base64 encoded>
--gc0p4Jq0M2Yt08jU534c0p--

And that is about all there is to say about this method, which is its main

advantage: simplicity. The response to this request will be an error if the

job could not be created (in which case the work done to transfer the bytes

is lost); otherwise, it will contain the job created. Notice that in the exam-

ple we have base64-encoded the data in the request body and added the

Content-Transfer-Encoding header. This is not strictly necessary but it can

help mitigate issues with problematic HTTP proxies.

When using the client library, you select this mode of operation by simply

leaving out resumable=True or setting it explicitly to False. However, there is

no good reason to use this mode when working through the client libraries. The

resumable fl ag defaults to False to maintain backward compatibility with earlier

versions of the client library and APIs that do not support the Resumable Upload

protocol. If for some reason you cannot use the client library in your application,

it is reasonable to implement this multipart method rather than implement the

https://www.googleapis.com/upload/bigquery/v2\

170 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 170

full Resumable Upload protocol, which requires more complicated code. Just

be aware that you may encounter issues with failed HTTP requests trying to

upload large amounts of data with this approach. The problem is that the likeli-

hood of a random failure affecting a request increases with the size of a request.

So a very large request can fail frequently due to intermittent network failures.

That covers the different options you have for moving your data into BigQuery.

If you primarily work with installed software, it may seem odd to move the

data rather than move the software. On the other hand, if you are familiar with

cloud-based services, the process of moving your data into the cloud will feel

natural. This section has covered three separate methods for transferring data.

Google Cloud Storage is ideal if you would like to retain a backup copy of your

data outside of BigQuery. Once the data is uploaded to GCS, importing it into

BigQuery is simply a matter of referencing the fi les. If you only need the data

to be stored in BigQuery, the Resumable Upload protocol is the best choice

because it allows for large amounts of data to be transferred robustly. Finally, if

simplicity or minimizing the number of HTTP requests is the most important

consideration, you can use multipart requests, but be aware that this method

may not scale well to large data sizes.

Destination Table

Now you need to control where the data you are loading ends up inside BigQuery.

The load job confi guration specifi es a single destination table and optionally

includes a schema for the table. The destination table can live in any project

or dataset as long as the job creator (the identity used to insert the job into the

service) has write permissions on the dataset containing the table. This was

explained in Chapter 4 in the section on access controls. If the job creator does

not have suitable permissions, the job will still be created but will end up in

the done state and include an error indicating that access was denied. Here is

the code snippet specifying a destination for a load job:

load_config = {
 'destinationTable': {
 'projectId': auth.PROJECT_ID,
 'datasetId': 'ch06',
 'tableId': 'example_basic'
 }
}
load_config['schema'] = {
 'fields': [
 # ...
]
}

 Chapter 6 ■ Loading Data 171

c06.indd 05:7:55:PM 04/29/2014 Page 171

The schema is optional if the specifi ed destination table already exists and

has a schema. In this case the load job uses the schema on the table to interpret

the data uploaded. When there is no existing schema or the table does not exist,

the job must specify a schema. If the table has a schema and the job specifi es a

schema, the schemas must be compatible. Compatibility here means that every

fi eld present in the existing table schema must be present with the same type

in the job schema. This effectively implies that new columns can be added to

tables by load jobs, but columns can never be removed. The previous snippet

shows you where the schema is specifi ed in the job confi guration.

Multiple load jobs running concurrently and attempting to modify the schema

of a table can fail in unpredictable ways. Frankly, if you are in this situation,

you probably should rethink your loading strategy. However, it is worth under-

standing the nature of the problem. Before spelling out the problematic issue,

it is worth recalling the discussion of the ACID properties of jobs. (A)tomic, (C)

onsistent, and (D)urable were covered but we indicated that (I)solated was not

relevant because load jobs do not depend on the existing contents of a table.

This was something of a white lie. It is true that they have no access to the data

already present in a table. However, they do depend on the existing schema of

the table and as mentioned can modify the existing schema by adding columns.

In this respect isolation is relevant and load jobs are isolated from other load

jobs because they capture a copy of the destination table’s schema at the time

they are created and do not observe changes to the schema that may occur

while they are running. This can lead to the job eventually failing because the

schema of the table changes while it is in progress.

If all this seems too complicated, follow this simple rule of thumb: Do not

modify the schema of an existing table by specifying a schema on a job. Instead

modify the schema by updating the table, and do this only when there are no

pending or running jobs. However, if you are interested in how this unpredict-

able behavior can arise, here is a concrete example. Assume that the table being

updated has columns A and B. Load job 1 adds column C, and load job 2 adds

columns C and D. Both jobs can be legally started at the same time because

they are both performing compatible (with the existing table) schema updates.

If job 1 completes before job 2, both jobs can succeed because the schema update

of job 2 is adding a column (D) in addition to the column (C) added by job 1.

However, if job 2 completes before job 1, job 1 will fail because the schema it

specifi ed removes a column (D) with respect to the schema specifi ed in job 2.

Because the completion order of concurrently executing jobs is not guaranteed,

this implies that job 1 may fail randomly, which is unwanted. Also after job 2

succeeds it will be impossible to retry job 1.

In addition to specifying where the load job should put the data, you can

also tune how the load job behaves if the existing destination table does or does

172 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 172

not exist, and what it does with any data that might already be present in the

destination table. This behavior is tuned by controlling the create and write

dispositions of the job. These properties were briefl y described in Chapter 4 in

the overview of the Jobs collection. You can control the dispositions by modify-

ing the job confi guration:

load['createDisposition'] = 'CREATE_IF_NEEDED'
load['writeDisposition'] = 'WRITE_TRUNCATE'

Table 6-2 shows the supported dispositions and how they affect the opera-

tion of the job:

Table 6-2: Create and Write Dispositions

CREATE DISPOSITION

CREATE_IF_NEEDED Creates the table if it does not exist

CREATE_NEVER Fails if the table does not already exist

WRITE DISPOSITION

WRITE_EMPTY Fails if the table is not empty

WRITE_TRUNCATE Replaces any existing contents with the new data

WRITE_APPEND Adds the new data to the existing data

You could argue that actually all that is required is WRITE_APPEND because

manually deleting and re-creating the table as required could simulate all the

other modes. However, these properties are useful when there are concurrent

query jobs and load jobs operating on the same table. It allows for well-defi ned

behavior without additional coordination at the application level to ensure that

a query job is not run while a table is being deleted and re-created. A simple

example is a daily job that creates a table containing data for the previous day.

By using the WRITE_EMPTY write disposition, you can guarantee that the data

will be loaded exactly once, even if for some reason your daily loading script

is invoked twice. Because both instances of the script will be writing to the

same table with the WRITE_EMPTY disposition, only one of them will be allowed

to succeed and actually add data to the table. If WRITE_APPEND were the only

supported mode, it is possible that the data could be duplicated unless care

was taken in the script to ensure that a second attempt did not run unless it

was certain that the fi rst attempt failed prior to initiating the load job. Because

concurrent updates and queries are common, the API supports these modes to

ensure that table modifi cations happen in a predictable fashion.

When the job API was described in Chapter 5, you saw that specifying an ID

when inserting a job was optional. If no ID is specifi ed as part of the job insert,

the server assigns a random unique ID. For query jobs that are not modifying

 Chapter 6 ■ Loading Data 173

c06.indd 05:7:55:PM 04/29/2014 Page 173

an existing table, it is reasonable to rely on this automatic assignment. However,

when working with load jobs that modify the contents of a table it is important

for the client to select an ID, so we are going to revisit that discussion.

Client selected job IDs prevent the creation of duplicate instances of a job

due to retries in the client or communication layer. The reason for avoiding

duplication is easy to see in the context of WRITE_APPEND jobs. If you insert two

jobs that are confi gured to append the same data to a given destination table,

the table will end up with two copies of the data, which is almost certainly not

what you want. Of course, you would not intentionally insert duplicate jobs, but

it is easy for error handling code to inadvertently generate duplicate requests.

When a Jobs.insert() request fails due to a network error, it is possible that

BigQuery actually performed the insert operation but the client failed to receive

the success response. Without a client selected job ID, the only way to detect

this condition is to list all the jobs and see if a job exists with the confi guration

you were trying to submit. However, if you selected a job ID before issuing the

request, you could simply retry inserting the job with the same ID. If BigQuery

has already accepted the job, it responds with an already exists error; otherwise,

the retried insert succeeds. This way you can guarantee that an append opera-

tion happens exactly once.

The bq command-line client supports explicitly specifying the job ID for any

operation that creates a job:

bq --job_id=<job id> load ...

To use this correctly you need to select an ID that corresponds to the specifi c

data you are trying to load so that multiple instances of the same command do

not duplicate the job. For example, if the data were collected on a particular day,

you could use an ID of the form my_data_YYYYMMDD. The client also supports

a fl ag that computes the ID as a function of the job confi guration it constructs:

bq --fingerprint_job_id load ...

This way you do not have to come up with an ID generation scheme but retain

the important property of not doing the same work more than once. Because the

ID is a hash of the confi guration, its value will not be meaningful, but if you do

not need to look up specifi c jobs at a later time, this is not an issue.

In some situations with multiple writers, it is not always convenient to coordi-

nate the writers to select a suitable job ID. If the operation they are performing

is idempotent (repeated application does not affect the state) or it is acceptable

that only one of them succeeds, it is possible to avoid explicit coordination for ID

selection and instead rely on write dispositions to produce the desired behavior.

Previously you saw an example with WRITE_EMPTY, which ensures that only one

job ends up modifying the table. Another example is the use of CREATE_NEVER

with jobs that create the table. Again only one job can successfully create the

table. If WRITE_TRUNCATE is used by multiple jobs updating the same table, the

174 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 174

table usually contains the data loaded by the most recent job. BigQuery does

not guarantee the order of completion for concurrently running jobs, but gener-

ally they complete in the order they were submitted if they are doing a similar

amount of processing. Creative use of these dispositions is covered in more

detail in Chapter 11, “Managing Data Stored in BigQuery,” which deals with

strategies for managing data in BigQuery.

Data Formats

You learned how to transfer your data to BigQuery and how to control where

the data ends up. This section describes how the service interprets the data you

transfer. Currently BigQuery supports three different data formats: CSV, newline-

delimited JSON, and AppEngine Datastore backups. CSV is more like a family

of related formats, whereas the other two formats are more strictly specifi ed.

Generally, the choice of format is determined by the application that is produc-

ing your data or where you have it stored. However, not all the formats support

the full range of types and modes available in BigQuery schemas. In this case

the schema imposes an additional constraint on suitable formats.

CSV

It is a bit generous to say the CSV format was designed. There is a specifi ca-

tion of the format available (http://tools.ietf.org/html/rfc4180) but in

practice a lot of CSV encountered in the wild is actually some variant of this

basic standard. However, for better or worse it is the de facto standard for data

interchange and is supported by almost every data processing tool. BigQuery

supports the basic format and has a number of fl ags to adjust parsing so that it

can support common variants.

BigQuery tables support fi elds that are arrays and fi elds that are nested within

other fi elds. When a table contains such fi elds, it is not possible to represent a

record in the table as a simple list of values. The CSV family of formats was

designed to represent tabular data, so each record or line of data is a simple list

of values. As a result this input format is not compatible with BigQuery schemas

that contain fi elds that are arrays or have type RECORD. If you are constrained to

using CSV as an input format, you should not employ a schema that includes

these features.

To understand how CSV formatted data is turned into a BigQuery record,

consider the following concrete schema:

load_config['schema'] = {
 'fields': [
 {'name':'string_f', 'type':'STRING'},

http://tools.ietf.org/html/rfc4180

 Chapter 6 ■ Loading Data 175

c06.indd 05:7:55:PM 04/29/2014 Page 175

 {'name':'boolean_f', 'type':'BOOLEAN'},
 {'name':'integer_f', 'type':'INTEGER'},
 {'name':'float_f', 'type':'FLOAT'},
 {'name':'timestamp_f', 'type':'TIMESTAMP'}
]
}

Because the default mode for a fi eld is NULLABLE, all the fi elds in this schema

are optional. Now look at a couple of lines of CSV to see how they can be trans-

formed into records.

"one",true,1,1.0,2011-11-11 11:11:11
,,,,
"",false,,3.14e-1,1380378423
bare string ,"TRUE","0","0.000","2013-01-03 09:15:02.478 -05:00"
"quoted , and "" in a string",,,,

All the preceding lines import correctly into the table. The fi elds mapping is a

simple positional mapping, so the order of the fi elds in the schema is signifi cant,

and the order of the values in the CSV data must line up. The fi rst line illustrates

the basic formatting of values. An unquoted empty string is interpreted as a

missing or null value, so the second line generates a record with null values for

every fi eld. In the fourth line you can see that quoting is optional for strings

that do not contain the fi eld separating character (comma by default). It is legal

to quote any fi eld even if the quotes are not required. Floating point values can

use either a decimal representation or scientifi c notation. Boolean values can be

any of true, false, t, and f, and the case is not signifi cant.

Whitespace handling is easy to overlook in CSV. Leading and trailing whitespace

characters in fi elds are ignored. So on the fourth line, the fi rst fi eld is parsed

as "bare string" with the trailing space dropped. If you need to preserve

whitespace in a string fi eld use quotes.

Timestamp values can be represented as a calendar date and time or as seconds

since the UNIX epoch (1970-01-01 00:00:00 UTC). The fi rst and fourth lines use

the string format, and the third line uses seconds since the epoch. The string

format for timestamps is:

YYYY-MM-DD HH:MM:SS[.ssssss] [±00:00]

The fractional seconds and time zone offset are optional. If the offset is not

present, the UTC time zone is assumed. Time zone offset codes (e.g. UTC, EST,

PDT) are not supported.

The line (record) separators are not easy to see in the previous sample. Each

line must be terminated by a newline (\n), carriage return (\r), or a carriage

return followed by a new newline (\r\n). By default the service assumes that

176 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 176

these characters do not appear within fi elds, even if the fi eld is quoted. The

reasons for this is explained in a separate section, but the main thing to note is

that these characters serve as the record separators in the CSV format.

This covers the basics of the CSV format. If you can directly generate the CSV

to be loaded into BigQuery, this is all you need. However, in many scenarios

you cannot control the details of how the CSV is generated, so it is necessary to

adjust how the data is parsed. The next few sections are organized by parsing

options specifi c to the CSV format.

fieldDelimiter

A common variant of the CSV format is Tab-Separated-Values where the tab

(\t) character is used to separate fi elds rather than a comma. This is convenient

when the fi elds are text and frequently contain commas. With tab as the separa-

tor, commas can appear in fi elds without quoting. More generally, it is useful to

choose an arbitrary character as the fi eld separator depending on the characters

that are common in the fi eld data. BigQuery supports a fi eld delimiter option

that allows the overriding comma as the separator.

load_config['fieldDelimiter'] = '\011'

This code sets the delimiter to the tab character, which corresponds to octal

code 011. We used the octal code instead of the C escape code ‘\t’ to emphasize

that the delimiter has to be set to a single byte in the range 0–255. Setting a

byte using the octal code escape only works for bytes in the range 0-127. If you

are sending a byte in the range 128–255 it needs to be encoded as a multi-byte

UTF-8 character in the request. The service converts the UTF-8 string back to

ISO-8859-1, almost the same as Latin1, encoding and uses the fi rst byte in the

converted string. To get a feel for what is happening on the wire, try the fol-

lowing commands on the Python interactive prompt:

separator = b'\246'.decode('latin1')
separator
u'\xa6'
print separator
¦
separator.encode('utf8')
'\xc2\xa6'

If you want to use the byte with decimal value 166 (octal value 246), which

corresponds to the broken bar (¦) in Latin1 encoding, as the separator for fi eld

values you would need to send the bytes '\xc2\xa6' on the wire, which is the

UTF-8 encoding of this character.

 Chapter 6 ■ Loading Data 177

c06.indd 05:7:55:PM 04/29/2014 Page 177

quote

Just like you can customize the fi eld delimiter, you can change the default quot-

ing character (") to be any single byte character. The setting is interpreted like

fieldDelimiter, the fi rst byte of the string after conversion to Latin1 encoding.

For example, this is how you would set it to the single quote character:

load['quote'] = "'"

Modifying the delimiter and quote is useful when fi elds contain sentences

and paragraphs that usually have punctuation. You still need to be careful about

the handling of newlines and carriage returns and may need to come up with

a scheme for escaping them or transforming them in your data.

encoding

You just got a taste for the complications that character encoding brings to

the table. If you work with UTF-8, you can basically ignore encoding because

UTF-8 is the encoding used natively by BigQuery and is the encoding used in

the HTTP-based API. If at all possible you want to stick with UTF-8 because it

avoids any diffi culty associated with encoding conversions.

Note that even if you use UTF-8 for the values of the fi eld, the lines of data

will not be valid UTF-8 data if you use a fi eld delimiter in the range 128–255.

When BigQuery parses your data; it fi rst splits the data into rows based on the

record delimiter (limited to “\n,” “\r,” and “\r\n”). Then it splits rows into

fi elds based on the customizable fi eld delimiter and then checks the encoding

of each individual fi eld. The only alternative encoding supported is ISO-8859-1,

which is a superset of Latin1. To request that your values be treated as Latin1

strings and converted to UTF-8, use the following setting:

load['encoding'] = 'ISO-8859-1'

It is also legal to set this fi eld to UTF-8, but that has no effect because it is

the default encoding. If you set the input encoding to ISO-8859-1, single-byte

characters in the range 128–255 will be converted to the corresponding multi-

byte UTF-8 characters.

skipLeadingRows

Many tools that produce CSV include one or more header rows describing

the fi elds present in the data. It is tedious to have to strip this header because

in practice it means regenerating the entire fi le to just remove the fi rst few

lines. Instead you can set a parameter in the confi guration to indicate to the

parser that it should ignore some number of lines at the start of the fi le. If your

178 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 178

confi guration specifi ed multiple source fi les (on GCS), the lines at the start of

each of the fi les will be skipped.

load['skipLeadingRows'] = 6

This code causes the fi rst six lines of every fi le to be ignored.

allowJaggedRows

When encoding records with a lot of fi elds (columns) that are frequently null-

valued, some tools choose to leave out trailing fi elds that are null. When reading

this data all columns after the last column present in a row must be treated as

null or absent. Making this data conform to the requirements of the basic CSV

format would mean padding each row with trailing commas (the fi eld delimiter)

to represent the null columns. Again BigQuery has a feature that can handle

this data.

load['allowJaggedRows'] = True

In this mode BigQuery will accept a row with fewer columns than the number

of fi elds in the schema as long as all the fi elds in the schema that are missing are

marked as NULLABLE. Note that any null column that appears before a non-null

column must still be explicitly encoded as a blank fi eld in the row.

allowQuotedNewlines

This option deserves careful explanation because it affects the one aspect of

CSV parsing in which BigQuery’s default behavior differs from the specifi cation

of the format. The CSV format enables the newline character to appear within

quoted fi elds. This is necessary to let the format encode values that contain

the line separator. However, it turns out that this feature makes it impossible

to safely process chunks of a CSV fi le in parallel. In any chunk other than the

fi rst chunk, it is impossible to tell if a newline occurs inside a quoted string or

outside a quoted string. This means that the fi le can be processed only from

beginning to end by a single process keeping track of whether it is in the middle

of a quoted value. However, the majority of CSV associated with data processing

does not contain quoted newlines, so it would be a shame if the default behavior

were to use the slow, but specifi cation-compatible, serial processing strategy

instead of the faster parallel processing strategy. As a result, BigQuery defaults

to behavior that assumes that no quoted newlines are present in the input data,

and it can be safely divided up for parallel processing. If your data does have

quoted newlines, you can set the allowQuotedNewlines property:

load['allowQuotedNewlines'] = True

This makes it process each input fi le serially (separate fi les are still processed

in parallel) so that it can correctly handle the values. Beware that this can be

much slower than processing your data in parallel. If each individual load is

 Chapter 6 ■ Loading Data 179

c06.indd 05:7:55:PM 04/29/2014 Page 179

small (say, <100MB) this is not a signifi cant issue, but if your loads are much

larger, you should consider alternatives. One simple workaround is to substi-

tute newlines in strings with some other sequence, for example, the C escape

sequence \n. The exact choice of replacement characters depends on how you

intend to query the fi eld.

Compression

The last option to cover is not quite an option but rather a property of the data.

BigQuery supports GZIP-compressed CSV data. It automatically detects if the

data is compressed in a recognized format, and if so it decompresses the data

before processing it. GZIP compression has the same property as quoted newlines

for distributed processing. Decompressing a fi le requires that a single process

decompress the entire fi le because it is not possible to resume decompression

in the middle of fi le. However, compression can be critical for transferring data,

especially with formats such as CSV, which compress quite well, so it may still

be necessary to employ compression. Most HTTP client implementations can

transparently compress the request so that both ends deal only with uncom-

pressed data. If you are instead relying on explicit compression prior to trans-

mitting your data to BigQuery (or GCS), it is a good idea to generate multiple

compressed fi les with sizes between 10MB–100MB rather than a single, large

compressed fi le. Because the processing can still be parallelized over fi les, you

can benefi t from distributed processing.

This completes the discussion of CSV, which has the most options for process-

ing because it is such a loosely implemented format. There is a good chance that

you will use it as an input format because it is so widely adopted. It is a good

idea to be familiar with all the options covered in this section because they

might end up saving you the trouble of reformatting your data.

JSON

The other textual format that BigQuery supports is JSON (http://www.json

.org), which has established itself as the standard for data exchange between

web applications. This is the only textual format that BigQuery supports that

can represent schemas with array and RECORD type fi elds, so if you use those

features in your tables, you have to use this format to load data into your tables.

The JSON format has a detailed specifi cation with fully defi ned lexical analysis

rules that produce strongly typed values. The most natural way to encode a list

of records with JSON encoding would be to use the JSON list type, which is

basically a comma-delimited series of JSON values enclosed in square brackets

([]). This encoding, like quoted newlines in CSV, would make it impossible to

process a large JSON encoded fi le in parallel. To overcome this data processing,

frameworks (for example, Hive, http://hive.apache.org) have introduced a

variant of JSON that is referred to here as newline delimited JSON. In regular

http://www.json.org
http://www.json.org
http://hive.apache.org

180 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 180

JSON the newline character (\n) is treated as whitespace and is allowed to

appear anywhere that whitespace is allowed. However, it is not allowed to

appear in strings. Instead it must be escaped in strings as "\n". (This would be

a JSON string representing a single newline character.) Newline delimited JSON

takes advantage of this and promotes it to a record separating character that

must appear only at record boundaries. It is not permitted to appear anywhere

within a single record. The advantage of this format is that it is trivial to detect

record boundaries (simply scan for a newline) making it convenient for parallel

processing. This is the variant of JSON that is accepted by BigQuery load jobs.

To illustrate how the list and record types are encoded, use a schema that

includes these features:

load_config['schema'] = {
 'fields': [
 {'name':'string_f', 'type':'STRING'},
 {'name':'boolean_f', 'type':'BOOLEAN', 'mode':'REPEATED'},
 {'name':'record_f', 'type':'RECORD',
 'fields': [
 {'name':'integer_f', 'type':'INTEGER'},
 {'name':'float_f', 'type':'FLOAT'}
]
 },
 {'name':'timestamp_f', 'type':'TIMESTAMP'}
]
}
Select the JSON input format.
load_config['sourceFormat'] = 'NEWLINE_DELIMITED_JSON'

The last line of the previous snippet confi gures the job to treat the input

as JSON. The following sample illustrates the newline-delimited format. To

emphasize the role of newlines, they are explicitly rendered as \n. Ignore the

actual line breaks because they are present only to improve legibility.

{
 "string_f": "one",
 "boolean_f": [true, false],
 "record_f": {
 "integer_f": 1,
 "float_f": 1.1
 },
 "timestamp_f": "2013-09-18 13:21:03 -07:00"
}\n
{
 "string_f": null,
 "boolean_f": []
}\n

 Chapter 6 ■ Loading Data 181

c06.indd 05:7:55:PM 04/29/2014 Page 181

{
 "timestamp_f":1379897943.51
}\n
{
 "boolean_f": ["true"],
 "record_f": {
 "integer_f":"3",
 "float_f":"1"
 }
}

The top-level record is represented as a JSON object with fi eld names of the

object corresponding to the columns or top-level fi elds of the table. Repeated

fi elds are represented as JSON lists and nested records as nested JSON objects.

This mapping is natural and probably obvious. The fi rst line of input in the

sample illustrates these features. Note that a JSON null value is equivalent to

the absence of the JSON fi eld and is interpreted as a NULL value for the corre-

sponding fi eld in the table. So in the second line of the sample, nothing would

change if you simply left out the string_f entry from the JSON object.

JSON supports just three primitive types: string, Boolean, and number. Because

BigQuery supports more types, a one-to-one mapping between primitive types

does not exist. BigQuery can accept a JSON string value for any primitive fi eld if

it can parse the string value as the type declared in the schema. For example, on

line 4 of the sample, you can see that the boolean and integer values are present

as strings. These will be converted because they can be parsed as the respective

types. Note that the float_f fi eld happens to have an integer value. However,

this does not affect how it ends up being stored in BigQuery, namely the value

1.0. Finally, timestamp fi elds are interpreted as they are in the CSV format. You

can pass a JSON number value that represents (integer or fractional) seconds

since the UNIX epoch or a human readable string with the format described

in the CSV section. Here, too, if you are passing seconds since the epoch, it is

acceptable to pass it as a string containing the number.

It is plain to see that JSON is a verbose format because the fi eld names appear

in every record. In web applications it has replaced XML, which is even more

verbose, so it is generally seen as an improvement over that format. However,

for large data transfers the repetition of fi eld names imposes a signifi cant byte

cost. Fortunately, it turns out that GZIP is effective at bringing this cost down.

CSV and JSON representations of the same data end up being about the same

size after GZIP compression. BigQuery supports GZIP compressed JSON, so you

should defi nitely consider compressing the data but bear in mind the constraint

of keeping each individual compressed fi le a reasonable size. The same guide-

line given for CSV, 10–100 MB post compression is also reasonable for JSON.

182 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 182

AppEngine Datastore Backup

Datastore is the scalable NoSQL store that is part of the Google AppEngine

platform (http://appengine.google.com/). It is available within the platform

and is also accessible through a standalone HTTP API (https://developers

.google.com/datastore/). Datastore supports effi cient single-record updates,

lookup, and index-based scans. However, scanning a large Datastore table is

an expensive operation that is signifi cantly slower than running a query in

BigQuery over a similar sized table. The two services complement each other

in their performance characteristics, and in many cases it is useful to load your

Datastore table into BigQuery to perform analytics and reporting. The bridge

between these two services is based on the AppEngine facility to generate backups

of Datastore tables (Kinds, in Datastore parlance) stored in GCS. BigQuery can

import these backups from GCS and enable queries over the data. Because the

data in BigQuery corresponds to a snapshot of the Datastore table at the time

of the backup, the queries are not executing over the live data. This limitation

poses a problem for real-time use cases, but for many reporting and analytics

use cases, this is generally acceptable.

When you perform a Datastore backup to GCS, it produces a manifest fi le

describing the contents of the backup that is stored in GCS along with the actual

data fi les containing your data. Importing this into BigQuery is simply a mat-

ter of specifying the right format and the location of the manifest fi le in GCS:

load_config['sourceFormat'] = 'DATASTORE_BACKUP'
load_config['sourceUris'] = ['gs://<backup bucket>/<backup manifest>']

Running this load job is simple enough and is much like a CSV or JSON

load from GCS. However, there is a lot going on behind the scenes. The most

important part is that the schema for the destination table is derived from the

entities in your backup. A good understanding of the Datastore data model is

required to follow the schema generation algorithm and appreciate its limita-

tions. This discussion is beyond the scope of this chapter on loading data into

BigQuery. Instead, check out the full details of this integration in Chapter 11,

which covers this topic and the relevant concepts in Datastore.

Errors

The beginning of the chapter mentioned that one of the challenges with mov-

ing data is that often the producer and consumer have minor disagreements

about how the data should be represented. BigQuery is no different and despite

your best intentions, it is possible that the data you ship to the service will be

considered invalid. Common issues include:

 ■ Incorrectly formatted fields, for example, an invalid timestamp

representation

http://appengine.google.com
https://developers.google.com/datastore
https://developers.google.com/datastore

 Chapter 6 ■ Loading Data 183

c06.indd 05:7:55:PM 04/29/2014 Page 183

 ■ Mismatches between the declared schema and supplied data

 ■ Data corruption at some point in the pipeline

 ■ Bad data in fi elds such as invalid UTF-8 characters

These errors fi t the label of data errors. In addition a load operation can fail

due to a confi guration error or a quota error. Possible confi guration errors are:

 ■ Permission errors

 ■ Quota limits

 ■ Data size limits

 ■ Non-existent sources or destination table

Data errors are somewhat different from the other types of errors because

a load job can have many data errors and can be confi gured to succeed even

if data errors are present. The other types of errors always cause the job to

fail. As covered in Chapter 5, the jobs resource in the API has a status section,

which contains two fi elds related to errors. The errorResult fi eld is present if

the job is done and has failed. The errors fi eld is a list of objects with the same

structure as errorResult and may be present even if the job completed success-

fully. As such, the errors fi eld is better interpreted as a list of warnings and

errors. Most job types in the service do not generate warnings that appear in

this fi eld. Load jobs, however, use this fi eld to report data errors. It is often the

case that the input data has multiple data errors, and it would be inconvenient

if each run of a load job reported only a single error. So assuming the absence

of confi guration and quota errors, a load job reports zero or more errors in the

errors fi eld, and if the job failed, one of the entries in the list also appears in

the errorResult fi eld.

Unlike data errors, confi guration errors can show up in two different locations.

A confi guration or quota error that causes the job creation request to fail results

in a top-level error (HTTP error codes 40x) being returned in the response to the

creation request. Confi guration errors that occur after the job has been created

have the error reported in the errorResult fi eld and included in the errors list.

To see all this in action, here are sample jobs that generate errors of all sorts.

These examples do not bother with errors that cause the job creation to fail

because that is covered in Chapter 5 and is not specifi c to load jobs. Instead, start

with a job that has an invalid confi guration due to missing permissions. For

example, attempt to load some data into the BigQuery public samples dataset:

load_config['destinationTable'] = {
 'projectId': 'publicdata',
 'datasetId': 'samples',
 'tableId': 'mypersonaltable'
}

184 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 184

Unless you have somehow gotten write access to the BigQuery samples dataset,

you should see the script report that the job failed. The code listing you have

been using for all the examples in this chapter supports reporting the errors

and checking the overall success status of the job.

for err in result['status'].get('errors', []):
 print json.dumps(err, indent=2)

if 'errorResult' in result['status']:
 print 'FAILED'
 print json.dumps(result['status']['errorResult'], indent=2)
else:
 print 'SUCCESS'

In this snippet the for-loop prints out the contents of the errors (and warn-

ings) list. The conditional is checking for the presence of the errorResult fi eld

to report whether the job succeeded or failed. The job you just ran ended up in

the done state with errorResult present, so the fi nal lines of output indicate

the job failed.

FAILED
{
 "reason": "accessDenied",
 "message": "Access Denied: Table publicdata:samples.mypersonaltable:
 CREATE_TABLE"
}

In this case you can see that the job failed because you lack suffi cient permis-

sions to create a table in the specifi ed dataset.

To see what kind of data errors can be generated, there’s an input fi le that is

riddled with errors. The following job confi guration loads this fi le:

load_config['schema'] = {
 'fields': [
 {'name':'string_f', 'type':'STRING'},
 {'name':'boolean_f', 'type':'BOOLEAN'},
 {'name':'integer_f', 'type':'INTEGER',
 'mode':'REQUIRED'},
 {'name':'float_f', 'type':'FLOAT'},
 {'name':'timestamp_f', 'type':'TIMESTAMP'}
]
}
load_config['sourceUris'] = [
 'gs://bigquery-e2e/chapters/06/sample_bad.csv',
]

The example also changes the schema to include a fi eld that is declared a

REQUIRED fi eld to illustrate that an error is reported when no value is supplied

 Chapter 6 ■ Loading Data 185

c06.indd 05:7:55:PM 04/29/2014 Page 185

for a required fi eld. When you run the sample that loads this data, you can

observe seven errors that look like this:

{
 "reason": "invalid",
 "message": "Could not interpret bool from string.",
 "location": "File: 0 / " "Line:2 / Field:2"
}

The errors are reporting bad records that were rejected. The reason code is

always invalid and the message fi eld describes the problem. In this case you

passed the value “nottrue” for a boolean fi eld, which was not recognized. These

errors also contain a location entry describing where the error was encountered.

The location may refer to a specifi c fi eld but in some cases—for example, too

many or too few columns—it just refers to the line or position at which the

error occurred. When the input fi le is processed in parallel, the location will be

reported as the byte offset of the start of the line rather than a line number. This

is more convenient when dealing with large fi les because it does not require

reading the fi le from the beginning to count lines.

The most interesting error is the one that appears in the errorResult fi eld. It

does not correspond to any of the errors that were encountered while parsing

the data.

{
 "reason": "invalid",
 "message": "Too many errors encountered. Limit is: 0."
}

The job did not fail due to the individual parse errors that resulted in bad

records. Rather the job failed because the number of bad records encountered

exceeded a threshold. The default limit for the number of bad records allowed

in a load job is zero. This limit can be modifi ed, but fi rst you should discuss

why you might want to change its value. Generally, when loading data into the

service, users expect that all the data will be loaded without any errors. If errors

are present it usually indicates a serious error in how the data is being supplied,

which needs to be corrected before retrying the load operation. However, in

some cases users are dealing with imperfect data; for example, the collection

process corrupts a small number of records. If the data is still useful with these

corrupt records dropped, it is reasonable to have the service ignore some number

of faulty records. To support this load jobs accept a maxBadRecords parameter.

For example, modifying the load job you just ran to set this parameter can make

the job succeed:

loadConfig['maxBadRecords'] = 7

The job still reports the bad records encountered, but if they are fewer than

the value specifi ed in this parameter, the job still succeeds and all the good

186 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 186

records are added to the destination table. If there are a large number of bad

records, only a sample of them will be reported in the errors list; however, all

the bad records are counted for the purpose of enforcing the maxBadRecords test.

This completes the review of the errors commonly encountered by load jobs.

One class of errors mentioned but not discussed in detail is quota errors. The

next section discusses the limits that apply to load jobs and also covers the

related errors raised when these limits are exceeded.

Limits and Quotas

Load jobs are subject to two types of limits by the service:

 ■ Limits on the total amount of data processed by a single job

 ■ The rate at which import jobs can be submitted to the service

The limits on a single job are rarely encountered in practice because they are

large enough that network transfer is usually the bottleneck. The second set of

limits requires more attention because a large number of tables requiring regular

updates or a single table being updated concurrently can run into these limits.

The values specifi ed in this section are subject to change. You should refer to

the service documentation for up-to-date information (https://developers

.google.com/bigquery/quota-policy#import).

Start by looking at the limits on a single job because they are simple to describe.

An individual load job is restricted to a maximum of:

 ■ 10,000 input fi les, only relevant when loading multiple fi les from GCS

 ■ 1 TB total input bytes

In addition, there are limits on each fi le to ensure that processing can be

suffi ciently parallelized. As discussed in the section on formats, some formats

can be split up for parallel processing and others cannot, so these limits vary

by format. GZIP compressed input is limited to a maximum of 1 GB per fi le.

For uncompressed data the following limits apply:

 ■ 4 GB for CSV data that may contain quoted newlines

 ■ 1 TB for CSV data that does not contain quoted newlines

 ■ 1 TB for newline delimited JSON

Although each compressed fi le is limited to 1 GB, the total job can still refer-

ence up to 1 TB of input data. It is common to achieve compression ratios greater

than 10x on CSV, so the limit of 1 GB of input data per fi le can translate to more

than 10 GB of uncompressed CSV per fi le or 10 TB for the entire job, which is a

substantial volume of data. So if your primary requirement is loading a large

volume of data, the most effective choice is generating compressed fi les between

100 MB and 1 GB in GCS.

https://developers.google.com/bigquery/quota-policy#import
https://developers.google.com/bigquery/quota-policy#import

 Chapter 6 ■ Loading Data 187

c06.indd 05:7:55:PM 04/29/2014 Page 187

Now consider the second set of limits, or quotas, that apply to the rate of load

job creation and execution:

 ■ 20 load jobs per project in RUNNING state

 ■ 10,000 load jobs per project per day

 ■ 1,000 load jobs per destination table per day

To understand the fi rst limit, remember that every job proceeds through the

states PENDING, RUNNING, and DONE. When your job is PENDING, it is queued but

no processing is actually occurring. The actually work is performed in RUNNING

state. The system limits the number of load jobs concurrently in RUNNING state. If

additional load jobs are submitted after there are 20 running jobs, they remain

in the PENDING state until some of the running jobs are completed. This effec-

tively caps the maximum load throughput available to a single project. There

is a nontrivial amount of overhead associated with a load job, so to access the

full throughput available to a project, you need to issue load jobs larger than 10

GB of uncompressed data. This is only a rough guideline because it is perfectly

reasonable to initiate load jobs with smaller input sizes, but be aware that after

you drop below 1 MB, a signifi cant fraction of the running time will be spent

setting up and tearing down the job. This means your effective throughput of

bytes loaded will be lower.

The next two limits on total load jobs per day are self-explanatory, but they

have signifi cant ramifi cations. Consider the following scenarios:

 ■ 1,000 separate tables that each need to be updated once per hour

 ■ A single table that needs to be updated by 10 independent processes every

5 minutes

Both these load requirements run up against the quota limits before one-

half of the day is over. The fi rst case exhausts the project level quota and the

second exhausts the per table quota. When you attempt to create a load job that

violates these limits, the job creation request fails with an error that has reason

code quotaExceeded. Retrying the job cannot help until the quota resets. These

limits are an indication that load jobs are not intended for small frequent table

updates. If you run up against these limits, it is likely that restructuring your

tables or load operation can address the issue. For example, in the 1,000 table

scenario described, it may be feasible to combine the 1,000 tables into a single

table with an additional fi eld to distinguish between records that were in separate

tables. In the single table case, it is likely possible to collect the updates from

all 10 independent processes and combine them into a single load operation.

In both cases this would work around the quota constraint without sacrifi cing

the frequency of updates.

Another point to note is that small load jobs are wasteful of the per table

quota. If you load only a handful of records per load job, at the end of the day,

188 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 188

your table will contain only a few thousand records, not exactly Big Data. The

usual reason for issuing small frequent updates is to keep the table fresh for

some real-time data source. Considering that even a small load job can take

anywhere from tens of seconds to a couple of minutes, this is not an effective

way to keep data fresh or utilize your daily quota. This issue sets you up nicely

for the next major section of this chapter. As previously mentioned, BigQuery

supports a throughput optimized load operation and a latency optimized load

operation. When you run into the daily table or project limits, it may be a signal

that you should use the latency optimized operation. The next section covers

this alternative way of loading data into the service.

Streaming Inserts

If you are familiar with traditional databases, you may wonder why so much

machinery is required to load a couple of records into a table. As discussed in

Chapter 2, “BigQuery Fundamentals,” aspects of the service resemble a rela-

tional database, but at its core BigQuery is a distributed processing framework

optimized for dealing with large amounts of data. As a result, its primary load-

ing mechanism is geared toward ingesting large quantities of data rather than

individual records. Nevertheless, the service does provide a simple operation

for inserting individual records, referred to here as a streaming insert. Even

though it bears a strong resemblance to the SQL insert statement, do not be fooled;

there are substantial differences. The API gains it simplicity and low latency

by foregoing the strong guarantees offered by the job-based load operation.

Perhaps in contrast to the ACID properties of load jobs, you can describe this

operation as Eventual-At-least-Once. This means one or more copies of a record

inserted via the streaming API are guaranteed to eventually appear in queries

over the destination table. This may seem like an alarmingly weak promise,

but it is suffi cient for a variety of applications. In practice, records inserted via

this API are available immediately and exactly once in queries, which means

that it enables real-time analytics. You just have to be careful not to rely on this

behavior for the correctness of your application because it is not guaranteed.

Chapter 11 discusses patterns for working around this weaker guarantee. Here

you dive into the details of using this API.

Before you can insert a row into a table, you must fi rst create the table with a

schema compatible with the rows you will be inserting. You can use the bq tool

to create the table and then insert a row into the table using curl:

$ bq mk -t ch06.streamed ts:timestamp,label:string,count:integer

$ BASE_URL=https://www.googleapis.com/bigquery/v2
$ PROJECT_ID=317752944021
$ PROJECT_URL=${BASE_URL}/projects/${PROJECT_ID}

https://www.googleapis.com/bigquery/v2

 Chapter 6 ■ Loading Data 189

c06.indd 05:7:55:PM 04/29/2014 Page 189

$ DATASET_URL=${PROJECT_URL}/datasets/ch06
$ table_url() {
> echo -n ${DATASET_URL}/tables/${1}
> }
$ curl -H "$(python auth.py)" \
> -H 'Content-Type: application/json' \
> --data-binary '{
> "rows": [
> {"json": {"ts":1381186891,"label":"test","count":42}}
>]
}' $(table_url streamed)/insertAll
{
 "kind": "bigquery#tableDataInsertAllResponse"
}

$ bq head ch06.streamed
+---------------------+-------+-------+
| ts | label | count |
+---------------------+-------+-------+
| 2013-10-07 23:01:11 | test | 42 |
+---------------------+-------+-------+

It may take a minute or so for the row to appear when you list the table or

query it. This delay is only present the fi rst time you insert a row into a table.

Once a streamed row appears in the table, additional rows inserted are available

immediately. If you do not stream any data to a table for an extended duration

(a couple of hours or so), this initial delay may recur.

Looking at the insert request you can see that the actual data inserted is nested

within a JSON object. The top-level object must contain a list-valued fi eld named

rows. Each entry in the list is an object with a fi eld named json whose value is

the record being inserted. The JSON value that appears at this fi eld is identical

to the row that you would use in JSON formatted input to load jobs. The only

difference is that new lines are not signifi cant and are treated the same as any

other whitespace that appears between JSON values. Here is the full specifi ca-

tion for the insert request:

{
 "kind": "bigquery#tableDataInsertAllRequest",
 "rows": [
 {
 "insertId": string,
 "json": {record data}
 }
]
}

The only additional field that was not part of the example request is

insertId. This fi eld is actually important and requires the most explanation.

190 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 190

Just as job ID protects you from inserting the same job multiple times, the insert

ID prevents the same record from being inserted multiple times if a request is

retried. Because the client might receive a failure response even if the server has

successfully handled the request, the client might attempt to reinsert a record

that has already been received by the service. If you set the insertId to the

same value across multiple insert requests, the service uses it to de-duplicate

records. You should always insert the same record for a given ID because the

service does not guarantee which record (fi rst, last, or any in between) will be

saved for a given ID. But there is an important caveat: This deduplication works

only for a fi nite amount of time. The exact duration may change but it is cur-

rently around 5 minutes. Beyond that, the service discards the state associated

with the insertId. After this time the service treats an insert with the same

ID as a new distinct record. In most scenarios in which a client has to retry an

operation, this time window is suffi cient to avoid duplication. However, it is not

a strong guarantee, which is why this API has at-least-once semantics. To sum-

marize, using a unique insertId for each record inserted reduces the chance

of duplication but does not eliminate all duplication.

W A R N I N G The insert operation implemented in the bq tool does not supply

insert IDs to the API. This makes in unsuitable for production usage, but it is conve-

nient to use during development and testing.

Now turn to the response returned by the insert request. The response is

used to report the errors that occurred while processing the insert. As you saw,

when the request succeeds, the response is basically empty. Errors that cause the

entire request to fail return an HTTP error status code and the body contains

additional details. Otherwise, a 200 status is returned, and the response contains

information about individual rows that failed. This is analogous to how load

job errors are handled. You can see the error reporting in action by issuing a

couple of bad requests. To give you a better sense of the actual HTTP requests

and responses, use curl to manually construct the requests.

 $ curl -H "$(python auth.py)" \
 -H 'Content-Type: application/json' \
 --data-binary '{
 "rows": [
 {"json": {"count": "4.2", "ts": 123, "label": "bad"}}
]
}' $(table_url foo)/insertAll
{
 "error": {
 "errors": [
 {
 "domain": "global",
 "reason": "notFound",
 "message": "Not Found: Table 317752944021:ch06.foo"
 }

 Chapter 6 ■ Loading Data 191

c06.indd 05:7:55:PM 04/29/2014 Page 191

],
 "code": 404,
 "message": "Not Found: Table 317752944021:ch06.foo"
 }
}

Because the request attempts to insert data into a table that does not exist, the

request fails and returns a 404 response code indicating that the table does not

exist. Now try to insert the same request using the table you created.

$ curl -H "$(python auth.py)" \
 -H 'Content-Type: application/json' \
 --data-binary '{
 "rows": [
 {"json": {"count": "4.2", "ts": 123, "label": "bad"}}
]
}' $(table_url streamed)/insertAll
{
 "kind": "bigquery#tableDataInsertAllResponse",
 "insertErrors": [
 {
 "index": 0,
 "errors": [
 {
 "reason": "invalid",
 "message": "Could not convert value to integer."
 }
]
 }
]
}

When individual records fail the insertErrors list is returned, which contains

an entry for every failed record. Each entry contains an index (0-based) fi eld that

links the errors in the entry to a corresponding record in the request. Invalid

records generate errors similar to the data errors reported by JSON load jobs.

There is no point retrying invalid inserts, but connection and other transient

errors should be retried. If the request contains only a couple of records, and

includes the insertId fi elds, it is reasonable to retry the entire request, but if

the request has a large number of records, it is more effi cient to retry only the

failed records.

Just as with load jobs, there is a size limit on an individual request and rate

limits on the total number of requests.

 ■ Maximum record size: 100 KB

 ■ Maximum bytes per request: 1 MB

 ■ Table rate limit: 10,000 rows/second (enforced over 10 seconds)

 ■ Project rate limit: 100,000 rows/second

192 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 192

Record size and bytes refers to the size computed based on the data in the

records and not the JSON encoded size.

To complete this section now look at how to perform inserts using the Python

client API. Listing 6.2 is a script that accepts a fi lename as an argument. It tails

(polls for data appearing at the end) the given fi le and parses each line, turns

it into a record, and then performs an insert. Notice that it uses the fi lename

and position of the record as the insertId, which ensures that if the script is

restarted on the fi le, the records will not be duplicated. This is not perfect because

if the script is restarted after the deduplication window has passed, the records

will end up duplicated. Fixing this behavior is left as an exercise to the reader.

Another feature to note is that the script builds batches of up to 10 records before

submitting the request, but only if the records are immediately available. This

usually increases throughput without delaying the delivery of records.

Listing 6.2 : (stream.py)

def tail_and_insert(infile,
 tabledata,
 project_id,
 dataset_id,
 table_id):
 '''Tail a file and stream its lines to a BigQuery table.

 infile: file object to be tailed.
 tabledata: tabledata collection client
 project_id: project ID of the destination table.
 dataset_id: dataset ID of the destination table.
 table_id: table ID of the destination table.
 '''
 pos = 0
 rows = []
 while True:
 # If the file has additional data available and there are less than
 # 10 buffered rows then fetch the next available line.
 line = infile.readline() if len(rows) < 10 else None
 # If the line is a complete line buffer it.
 if line and line[-1] == '\n':
 # Record the end of the last full line.
 pos = infile.tell()
 ts, label, count = line.split(',')
 rows.append({
 'insertId': '%s%d' % (sys.argv[1], pos),
 'json': {
 'ts': int(ts.strip()),
 'label': label.strip(),
 'count': int(count.strip())
 }

 Chapter 6 ■ Loading Data 193

c06.indd 05:7:55:PM 04/29/2014 Page 193

 })
 # 10 buffered rows or no new data so flush buffer by positing it.
 else:
 if rows:
 tabledata.insertAll(
 projectId=project_id,
 datasetId=dataset_id,
 tableId=table_id,
 body={'rows': rows}).execute()
 del rows[:]
 else:
 # No new data so sleep briefly.
 time.sleep(0.1)
 # Re-position the file at the end of the last full record.
 infile.seek(pos)

def main():
 service = auth.build_bq_client()

 with open(sys.argv[1], 'a+') as infile:
 tail_and_insert(infile,
 service.tabledata(),
 auth.PROJECT_ID,
 'ch06',
 'streamed')

if __name__ == '__main__':
 main()

It is worth calling attention once again to the key feature of the streaming

insert API—records appear in the table as soon as the request completes. Usually

records are available within 100 ms of the request being initiated. This enables a

number of real-time use cases in applications; so building a pipeline that utilizes

the API is a good investment.

Summary

 Data storage is a big part of the BigQuery service, so it has a lot of features related

to loading data. This chapter covered all the methods for moving your data into

the service and highlighted common pitfalls. It discussed using Google Cloud

Storage, the Resumable Upload protocol, and multipart requests as mechanisms

to transfer data into the service. Next, the formats, CSV, JSON, and Datastore

backups that the service currently supports were covered. Finally, how to use

the low latency streaming API for inserting individual records was explained.

194 Part II ■ Basic BigQuery

c06.indd 05:7:55:PM 04/29/2014 Page 194

It is useful to be aware of the full range of options because often you are

constrained by the current location of your data and may be able to avoid com-

plicated transformations if you can use the right combination of features. In

cases in which you build a custom data pipeline, this information can help

you design an effective solution. Hopefully, the task of getting your data into

BigQuery will be simple in relation to the overall challenge of collecting data

that can deliver useful insights.

195

c07.indd 12:41:4:PM 05/02/2014 Page 195

This chapter describes how to run queries in BigQuery—from how to send the

API requests to how to construct valid queries in the BigQuery variant of SQL.

The chapter is divided into two sections: query API and query language.

The query API section describes the mechanics of how to run queries. If you

do not intend to write code to interact with the BigQuery API, you might want to

skim this section rather than skip it completely; it has information about what is

possible via the underlying API, which might come in handy even if you’re going

to use only a web interface or command-line client to interact with BigQuery.

The query language section describes the features of BigQuery SQL. It assumes

some familiarity with writing SQL queries and does not attempt to be an in-

depth query reference. It does, however, walk through simple query creation

and focus on differences between BigQuery and standard SQL.

After reading this chapter you should know everything you need to know to

construct and run simple queries in BigQuery. Understanding how the query

engine works at a high level is key to getting the most out of BigQuery queries.

For this reason, more advanced query topics are deferred until Chapter 10,

“Advanced Queries,” after the query architecture has been explained.

C H A P T E R

7

Running Queries

196 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 196

BigQuery Query API

As discussed in Chapter 5, “Talking to the BigQuery API,” all BigQuery queries

are jobs. Because they are jobs, they execute asynchronously; you can decouple

the act of starting a query from fetching results. You can also see which queries

you’ve already run and fetch the results in multiple pages.

Another salient feature of query jobs helps with reading query results: All query

results are saved in a BigQuery table. This enables you to interact with query results

the same way you would read any other table. You can copy the query result table,

export it to Google Cloud Storage, and run queries against the query results them-

selves. Query result tables are discussed more thoroughly in the “Query Result

Tables” section later in this chapter.

Query API Methods

There are two ways to run queries using the BigQuery HTTP API: You can call

Jobs.insert() to add a Query job to the Jobs REST collection, or you can use

the Jobs.query() and Jobs.getQueryResults() RPC methods. The former

method is a bit more complex; you need to insert the Query job, poll for comple-

tion, and then read the results. The latter can be simpler when you want to do

simple things; you can run a query and get results back in a single API call.

That said, by the time you account for large query results, queries that take

more than a few seconds, or error handling, the two methods may involve the

same amount of code.

WHEN SHOULD YOU USE JOBS.QUERY VERSUS JOBS.INSERT TO RUN QUERIES?

The diff erence between the Jobs.query() and the Jobs.insert() method

is sometimes referred to as “porcelain” versus “plumbing.” The Jobs.insert()
“plumbing” API enables you do anything the Jobs.query() API does and more but

may have fewer conveniences; the Jobs.query() “porcelain” method is simpler and

easier to use.

The Jobs.query() method should generally be preferred whenever it can be

used, for example, when you won’t need to save the results in a named destination

table, when you won’t need large (> 128 MB) query results, and when you expect the

query to run quickly. One advantage of Jobs.query() is that it waits for results

before returning. This saves you from having to poll for query completion.

The Jobs.insert() method, conversely, should be used whenever you need to

control your destination table, query priority, or when you need large query results. It

is also useful when you’re writing code that needs to work with all kinds of jobs, rather

than just query jobs.

 Chapter 7 ■ Running Queries 197

c07.indd 12:41:4:PM 05/02/2014 Page 197

The following Python command shows running a simple query via the Jobs

.query() API:

$ python
>>> import auth
>>> import pprint
>>> project_id = 'bigquery-e2e'
>>> service = auth.build_bq_client()
>>> response = service.jobs().query(
... projectId=project_id,
... body={'query': 'SELECT 17'}).execute()
>>> pprint.pprint(response)
{u'cacheHit': True,
 u'jobComplete': True,
 u'jobReference': {u'jobId': u'job_86V_-s5k_EyN3Fuk8ym03nItDrM',
 u'projectId': u'bigquery-e2e'},
 u'kind': u'bigquery#queryResponse',
 u'rows': [{u'f': [{u'v': u'17'}]}],
 u'schema': {u'fields': [{u'mode': u'NULLABLE',
 u'name': u'f0_',
 u'type': u'INTEGER'}]},
 u'totalBytesProcessed': u'0',
 u'totalRows': u'1'}

The corresponding commands to just start the query using Jobs.insert()

is not much more complex:

>>> import time
>>> job_id = 'job_%d' % int(time.time() * 1000)
>>> response = service.jobs().insert(
... projectId=project_id,
... body={'configuration': {'query': {'query': 'SELECT 17'}},
... 'jobReference': {'jobId': job_id,
... 'projectId': project_id}}
...).execute()
>>> pprint.pprint(response)
{u'configuration': {
 u'query': {
 u'createDisposition': u'CREATE_IF_NEEDED',
 u'destinationTable': {
 u'datasetId': u'_0e32b38e1117b2fcea992287c138bd53acfff7cc',
 u'projectId': u'bigquery-e2e',
 u'tableId': u'anon5c03da1f543a2486eca295f285b40eb87b01ea84'
 },
 u'query': u'SELECT 17',
 u'writeDisposition': u'WRITE_TRUNCATE'}},
 u'etag': u'"Ny_MVtklP3Cn04wt1Sr9PinHZEI/jqd_3fxcej4s3YkUyZl--c8JK88"',
 u'id': u'bigquery-e2e:job_1394904041084',

198 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 198

 u'jobReference': {u'jobId': u'job_1394904041084',
 u'projectId': u'bigquery-e2e'},
 u'kind': u'bigquery#job',
 u'selfLink': u'https://www.googleapis.com/bigquery/...',
 u'statistics': {u'creationTime': u'1394904325715',
 u'startTime': u'1394904326024'},
 u'status': {u'state': u'RUNNING'}}

However, if you look at the output of Jobs.insert(), you can notice two

things: You don’t get any query results, and the job is still in the RUNNING state.

Before you can get query results, you need to wait for the job to complete. You

can do this by calling Jobs.get() with the job ID from the original request:

>>> response = service.jobs().get(projectId=project_id,
... jobId=job_id).execute()

You can use a Python trick to avoid having to pass parameters individually,

by using the ** operator to turn a Python dict into named parameters. The

following command is identical to the previous one, but saves some typing:

>>> response = service.jobs().get(**response['jobReference']).execute()

Here is what the resulting Job resource looks like:

>>> pprint.pprint(response)
{u'configuration': {
 u'query': {
 u'createDisposition': u'CREATE_IF_NEEDED',
 u'destinationTable': {
 u'datasetId': u'_0e32b38e1117b2fcea992287c138bd53acfff7cc',
 u'projectId': u'bigquery-e2e',
 u'tableId': u'anon5c03da1f543a2486eca295f285b40eb87b01ea84'
 },
 u'query': u'SELECT 17',
 u'writeDisposition': u'WRITE_TRUNCATE'}},
 u'etag': u'"Ny_MVtklP3Cn04wt1Sr9PinHZEI/jqd_3fxcej4s3YkUyZl--c8JK88"',
 u'id': u'bigquery-e2e:job_1394904041084',
 u'jobReference': {u'jobId': u'job_1394904041084',
 u'projectId': u'bigquery-e2e'},
 u'kind': u'bigquery#job',
 u'selfLink': u'https://www.googleapis.com/bigquery/...',
 u'statistics': {u'creationTime': u'1394904325715',
 u'endTime': u'1394904326418',
 u'query': {u'cacheHit': True,
 u'totalBytesProcessed': u'0'},
 u'startTime': u'1394904326024',
 u'totalBytesProcessed': u'0'},
 u'status': {u'state': u'DONE'}}

http://www.googleapis.com/bigquery
http://www.googleapis.com/bigquery

 Chapter 7 ■ Running Queries 199

c07.indd 12:41:4:PM 05/02/2014 Page 199

The job looks similar, but is now in state DONE, and has a couple of extra statistics

values. You’ll note that the table and dataset IDs are long unintelligible strings;

these values describe an automatically created table to hold the query results.

Now that the job is complete, you can read the results by calling TableData

.list() with the table ID returned by the job:

>>> table_ref = response['configuration']['query']['destinationTable']
>>> results = service.tabledata().list(**table_ref).execute()
>>> pprint.pprint(results)
{u'etag': u'"Ny_MVtklP3Cn04wt1Sr9PinHZEI/dXCj1HevhJ0HiCBv_gB0LRPFaDE"',
 u'kind': u'bigquery#tableDataList',
 u'rows': [{u'f': [{u'v': u'17'}]}],
 u'totalRows': u'1'}

Using Jobs.insert() you got the same result: “17,” but with two

more API calls. You might also notice that the results of Jobs.query()

contained the schema of the result table but the TableData.list() response did

not. Sometimes you might already know the resulting schema. If you wrote the

query yourself, you may know exactly what the schema should look like. Most

of the time, however, you likely won’t know the result schema in advance. To get

the table schema requires another API call, this time to the Tables.get() API.

>>> schema = service.tables().get(**table_ref).execute()['schema']
>>> pprint.pprint(schema)
{u'fields': [{u'mode': u'NULLABLE', u'name': u'f0_',
 u'type': u'INTEGER'}]}

Jobs.query() RPC

As previously mentioned, Jobs.query() is the simpler query API. It lacks

some of the confi guration options controlling how to run your query that Jobs

.insert() has but is usually the easiest way to run a query and get the results.

Running Jobs.query() is equivalent to calling Jobs.insert() to start the

job, Jobs.get() to poll for job completion, and TableData.list() to get the

fi rst page of results. Query results get stored in a temporary table that lives for

24 hours. If you need your query results to stick around longer, you can copy

them to a permanent table with a copy job, or you can use the more fully fea-

tured Jobs.insert() method to run your query and specify a destination table.

The most important parameter (other than the query string, of course) is

timeoutMs, which controls how long the query request waits before returning.

The default timeout is 10 seconds; it is set so short because many contexts where

you may be issuing the query (such as AppEngine) automatically cancel any

200 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 200

HTTP request that takes too long. The maximum timeoutMs is 200 seconds;

you can set it to something larger, but BigQuery treats it as if you set it to the

maximum value.

More than 98 percent of BigQuery queries return in less than 3 seconds (obvi-

ously this is highly dependent on the query being run); if you set the timeoutMs

value to a large value, you’re almost certain to get a response without a timeout.

Queries that take longer than a few seconds are generally complicated with lots

of JOIN or GROUP BY operations; simpler queries should always complete within a

reasonable timeout, unless they are operating over truly massive amounts of data.

When Jobs.query() times out, it doesn’t return an HTTP response error.

Instead, it returns a normal query response, but the jobComplete fl ag will be

set to false. It also returns a jobId for the Query job. You can use this jobId to

call Jobs.getQueryResults() to both wait for the job to complete and return

the results.

You might wonder why the Jobs.query() request is a POST request and

not a GET request. After all, a number of systems that you might want to use

to run queries support only GET requests, and there is a convenient standard

“q=<url encoded query>” syntax that you could use. One technical issue is that

GET requests require passing all the data in the URL, and many web-capable

systems have a limit on the length of URL they can use in a GET request. Internet

Explorer has a hard-limit for URLs at approximately 2048 characters; Microsoft

Excel limits URL query strings to 256 characters. Many SQL queries in BigQuery

are several kilobytes long; any system with a URL length limit would be unable

to issue a considerable proportion of BigQuery queries.

SET MAXRESULTS ON YOUR QUERIES

If you set the maxResults fl ag on a query to a value that isn’t too large (say, 1000

results), you reduce the chances of hitting a connection error. Large HTTP responses

can fail in many diff erent places and many diff erent ways; if you request smaller

results you can always go back and fetch more. Most of the time, you actually are

only interested in the fi rst few results; requesting more is just going to take longer to

download.

It is easy to confuse the maxResults fi eld with the LIMIT keyword in the query.

The LIMIT keyword controls how many results are computed by the query engine

and stored in the result table. The maxResults fi eld controls only how many results

are returned in the fi rst page of results. Your query might return many more rows,

which would be stored in the query result temporary table in BigQuery. For example,

if your query returned a million rows and you set maxResults to 10, Jobs.query()
would return only the fi rst 10 rows. You can page through the rest, however, by calling

Jobs.getQueryResults().

 Chapter 7 ■ Running Queries 201

c07.indd 12:41:4:PM 05/02/2014 Page 201

There is also an API design-related reason that Jobs.query() is a POST opera-

tion instead of a GET. HTTP GET requests are not supposed to make any state

changes. They can be crawled, pre-fetched, cached, are susceptible to double-

dispatch, and so on. However, running a query can cost you money. It would

not seem right to have an HTTP GET run up a bill, so the Jobs.query() method

is exposed as a POST operation, not a GET.

Table 7.1 shows the fi elds that are returned in the Jobs.query() method:

Table 7.1: Jobs.query() Response Fields

FIELD TYPE DESCRIPTION

cacheHit boolean Whether the query results were found in the

cache. When true, the query did not actually

need to run (and you weren’t charged).

jobComplete boolean Whether the job is actually fi nished. If

this is False or absent, there was a

timeout, and you need to call Jobs
.getQueryResults() to wait for and

fetch the results.

jobReference object JobReference describing the query job.

You can use this to look up the job informa-

tion with Jobs.get() or look up query

results via Jobs.getQueryResults().

jobReference
.projectId

string ID of the project in which you ran the job.

This is the project that will get billed for

query processing.

jobReference.jobId string A job ID that was generated by BigQuery

pageToken string An opaque value that you can use to fetch

subsequent pages of results. This will be pres-

ent only if there are more results to return.

rows object
array

TableRow list of results in f / v format. (See

the TableData.list() API description

in Chapter 5 for more information on this

format.)

schema object TableSchema of the results. (See the Table

resource description in Chapter 5 for more

information.)

totalBytesProcessed number Total number of bytes processed in the query.

This is the amount that you will be billed for

running the query (or in the case of a dry run,

the amount that you would have been billed).

totalRows number The total number of rows in the result table

202 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 202

Here is an example Python command to send a simple query request with a

large timeout value:

>>> response = service.jobs().query(
... projectId=project_id,
... body={'query': 'SELECT 17', 'timeoutMs': 1000000}).execute()
>>> pprint.pprint(response)
{u'cacheHit': True,
 u'jobComplete': True,
 u'jobReference': {u'jobId': u'job_85QYWMD7jBuqPOtIEgk1BaheODE',
 u'projectId': u'bigquery-e2e'},
 u'kind': u'bigquery#queryResponse',
 u'rows': [{u'f': [{u'v': u'17'}]}],
 u'schema': {u'fields': [{u'mode': u'NULLABLE',
 u'name': u'f0_',
 u'type': u'INTEGER'}]},
 u'totalBytesProcessed': u'0',
 u'totalRows': u'1'}

Jobs.getQueryResults() RPC

There are two limitations to the Jobs.query() API: Sometimes queries run

longer than the timeout you specify, and sometimes queries return more data

than you can read in a single page of results. The Jobs.getQueryResults() API

addresses both of these issues by giving you a mechanism to pick up where

Jobs.query() left off.

When you run the original Jobs.query(), it returns three important pieces

of data: a jobId that can be used to look up information about the Query job, a

jobComplete fl ag that tells you whether the query completed within the time-

out value, and a pageToken that can let you page through additional results (if

there are any).

After you have the jobId from the Jobs.query() result, you can use it to

call Jobs.getQueryResults(). The result format of Jobs.getQueryResults()

is identical to Jobs.query(). If the query still isn’t done, the jobComplete fl ag

will still be false. If the query does complete within the timeout, the fi rst page of

results will be returned, along with a pageToken that lets you read more results.

You can call Jobs.getQueryResults() on any query job, not just one that

was run via Jobs.query(). This can be useful because the waiting is done on

the server side, so you’ll get a response as soon as the query has completed.

That is, since the Jobs.getQueryResults() API waits for the query to fi nish (or

timeout), you don’t need to add a sleep operation in your code; all of the waiting

occurs during the API call. It also does one fewer API call because you don’t

have to wait for the query to complete before reading the results—the results

are returned as soon as they are ready.

 Chapter 7 ■ Running Queries 203

c07.indd 12:41:4:PM 05/02/2014 Page 203

Listing 7.1 demonstrates the use of Jobs.query() and Jobs.getQueryResults()

to run a query and fetch all the results.

Listing 7.1: Running a query via Jobs.query() and polling for results with Jobs

.getQueryResults() (query.py)

import auth
import pprint
import sys

def print_results(schema, rows):
 ''' Prints query results, given a schema. '''
 for row in rows:
 line = []
 for i in xrange(0, len(schema)):
 cell = row['f'][i]
 field = schema[i]
 line.append({field['name']: cell['v']})
 pprint.pprint(line)

class QueryRpc:
 def __init__(self, service, project_id):
 self.service = service
 self.project_id = project_id

 def run(self, query, response_handler=print_results,
 timeout_ms=30*1000, max_results=1024):
 '''Run a query RPC and print the results.

 query: text of query to run.
 response_handler: function that is used to process results.
 timeout_ms: timeout of each RPC call.
 max_results: maximum number of results to process.
 '''
 query_request = {
 'query': query,
 # Use a timeout of 0, which means we'll always need
 # to get results via getQueryResults().
 'timeoutMs': 0,
 'maxResults': max_results
 }

 # Start the query.
 response = self.service.jobs().query(
 projectId=self.project_id,
 body=query_request).execute()
 job_ref = response['jobReference']

 while True:
 page_token = response.get('pageToken', None)

continues

204 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 204

Listing 7.1: (continued)

 query_complete = response.get('jobComplete', False)
 if query_complete:
 fields = response.get('schema', {}).get('fields', [])
 rows = response.get('rows', [])
 response_handler(fields, rows)
 if page_token is None:
 # The query is done and there are no more results
 # to read.
 break
 response = self.service.jobs().getQueryResults(
 projectId = self.project_id,
 jobId = job_ref['jobId'],
 timeoutMs = timeout_ms,
 pageToken = page_token,
 maxResults = max_results).execute()

def main(argv):
 if len(argv) == 0:
 print 'Usage: query.py <project_id> [query]'
 return
 service = auth.build_bq_client()
 project_id = argv[0]
 query = QueryRpc(service, project_id)
 if len(argv) < 2:
 query_text = 'SELECT 17'
 else:
 # The entire rest of the command line is the query.
 query_text = ' '.join(argv[1:])

 query.run(query_text)

if __name__ == "__main__":
 main(sys.argv[1:])

Querying via Jobs.insert()

As previously mentioned, Jobs.insert() is the most fl exible way to run a query

job. To indicate that the job is a query, you need to fi ll out the query subsection

of the job confi guration. When using Jobs.insert(), you can run your query

at a lower priority, abort the query if the result isn’t already cached, append

results to a destination table, or specify your own job ID.

If you’re not familiar with using the Jobs REST Collection, check out

Chapter 5, which describes the Jobs resource in detail. Table 7.2 shows the

options available in the query confi guration.

 Chapter 7 ■ Running Queries 205

c07.indd 12:41:4:PM 05/02/2014 Page 205

Table 7.2: JobConfi gurationQuery Request Fields

FIELD TYPE DESCRIPTION

allowLargeResults boolean Whether the results of the query can be larger

than 128 MB. (The default is False.)

createDisposition btring A create disposition value (CREATE_NEVER or

CREATE_IF_NEEDED) describing under which

conditions to create the output table. (Note that

CREATE_NEVER doesn’t mean that the query

won’t write its output to a table; it means that

the destination table must already exist.)

defaultDataset object DatasetReference to use to qualify table

names in the query text that don’t have a dataset

or project specifi ed. Note you can specify only

the projectId, only the datasetId, or both.

destinationTable object TableReference of the table where desti-

nation results will be written. If not specifi ed,

a unique temporary table will be created by

BigQuery.

priority string The priority of the query. The default and high-

est priority is INTERACTIVE. Alternatively,

specify BATCH priority to run your query in the

batch queue.

query string Query string, in BigQuery SQL format

useQueryCache boolean Whether the query is allowed to get results from

the query cache. The default is True. Set this to

False if you want to rerun the query even if it

is already cached.

writeDisposition string Write disposition value describing how to write

out the results. Options are WRITE_APPEND

to append results to an existing table, WRITE_
EMPTY to fail the job if the destination table is

not empty, and WRITE_TRUNCATE to replace

the table contents with the query results.

Listing 7.1 showed how to query via Jobs.query() and Jobs

.getQueryResults(). Listing 7.2 shows a similar mechanism to query via

the Jobs.insert() method. Note that this requires more code; you need to

call Jobs.get() to wait for the job to complete, Tables.get() if you want

the table schema, and TableData.list() to read the results. There are also

some additional options shown in the code, such as specifying a destination

table, specifying a job ID, allowing large result sizes, and running the query

at batch priority.

206 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 206

Listing 7.2: Alternative way to run queries: Jobs.insert() and TableData.list() (query_job.py)

import sys
import pprint
import time

def print_results(schema, rows):
 ''' Prints query results, given a schema. '''
 for row in rows:
 line = []
 for i in xrange(0, len(schema)):
 cell = row['f'][i]
 field = schema[i]
 line.append({field['name']: cell['v']})
 pprint.pprint(line)

class QueryJob:
 def __init__(self, service, project_id):
 self.service = service
 self.project_id = project_id

 def run(self, query, response_handler=print_results,
 job_id=None, destination_table=None,
 allow_large_results=False,
 batch_priority=False):
 '''Run a Query Job and print the results.

 query: text of query to run.
 response_handler: function that is used to process results.
 job_id: optional job id to provide to BigQuery.

allow_large_results: whether to allow query results larger than
 128 MB.
 destination_table: if present, the destination table to write
 the query results to.
 batch_priority: whether to run the query at batch priority
 '''

 query_config = {
 'query': query,
 'allowLargeResults': allow_large_results
 }
 if not job_id:
 # If the caller did not specify a job id, generate one
 # based on the current time.
 job_id = 'job_%d' % int(time.time() * 1000)

 if destination_table:
 # If this is run multiple times, truncate the table and
 # replace it with the new results.

 Chapter 7 ■ Running Queries 207

c07.indd 12:41:4:PM 05/02/2014 Page 207

 query_config['writeDisposition'] = 'WRITE_TRUNCATE'
 query_config['destinationTable'] = destination_table
 query_config['allowLargeResults'] = allow_large_results

 if batch_priority:
 query_config['priority'] = 'BATCH'

 job_ref = {'projectId': self.project_id}
 if job_id:
 job_ref['jobId'] = job_id

 job = {
 'configuration': {'query': query_config},
 'jobReference': job_ref
 }

 print 'Starting query job "%s"' % (job,)
 job = self.service.jobs().insert(projectId=self.project_id,
 body=job).execute()
 # Fetch the job ID from the running job, in case one wasn't
 # already specified above.
 job_ref = job['jobReference']

 # Wait for the job to complete.
 while job['status']['state'] != 'DONE':
 print 'Waiting for job %s to complete: %s' % (
 job_ref, job['status']['state'])
 time.sleep(1.0)
 job = self.service.jobs().get(
 jobId = job_ref['jobId'],
 projectId = job_ref['projectId']).execute()

 if 'errorResult' in job['status']:
 print 'Error %s' % (job['status']['errorResult'],)
 return

 # Read the results using TableData.list(). Note that we could
 # also read the results using jobs.getQueryResults(), but for the
 # purposes of this sample, we wanted to show the TableData
 # equivalent.

 qery_config = job['configuration']['query']
 destination_table_ref = query_config['destinationTable']
 schema = self.service.tables().get(
 tableId=destination_table_ref['tableId'],
 datasetId=destination_table_ref['datasetId'],
 projectId=destination_table_ref['projectId']
).execute()['schema']

continues

208 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 208

Listing 7.2: (continued)

 page_token = None
 while True:
 response = self.service.tabledata().list(
 pageToken=page_token,
 tableId=destination_table_ref['tableId'],
 datasetId=destination_table_ref['datasetId'],
 projectId=destination_table_ref['projectId']).execute()
 page_token = response.get('pageToken', None)
 fields = schema.get('fields', [])
 rows = response.get('rows', [])
 response_handler(fields, rows)
 if page_token is None:
 # The query is done and there are no more results
 # to read.
 break

def main(argv):
 if len(argv) == 0:
 print('Usage: query_job.py <project_id> [query]')
 return
 service = auth.build_bq_client()
 project_id = argv[0]
 query_job = QueryJob(service, project_id)
 if len(argv) < 2:
 query = 'SELECT 17'
 else:
 # The entire rest of the command line is the query.
 query = ' '.join(argv[1:])
 destination = {
 'projectId': project_id,
 'datasetId': 'scratch',
 'tableId': 'results'}
 query_job.run(query, destination_table=destination)

if __name__ == "__main__":
 main(sys.argv[1:])

After you start the job via Jobs.insert() , you can still call Jobs

.getQueryResults() to read the results. This listing shows the lower-level methods

that demonstrate what Jobs.getQueryResults() actually does behind the scenes.

Query API Features

Now that you have seen the basic mechanics of the query API, consider some

of the more advanced features available. You can access these features, for the

most part, in the BigQuery web interface or via the bq command-line tool. We

show the Python code in order to demonstrate the raw API settings.

 Chapter 7 ■ Running Queries 209

c07.indd 12:41:4:PM 05/02/2014 Page 209

Query Result Tables

All query results are fi rst-class tables in BigQuery; whether you use the Jobs

.query() or the Jobs.insert() method to run a query, your query results are

always tables. This means you can list them, copy them, get their schema, and

run queries against them. Query result tables have some special properties,

which are described in this section.

Anonymous Tables

When you don’t explicitly provide a name for the destination table, BigQuery

generates a unique table name for the result. These unique tables are called

anonymous tables because their names are unimportant. The name of the table

is added to the job confi guration in the job resource; you can fi nd it by calling

Jobs.get(). Here is an example of using the Jobs.query() method to run a

query and then Jobs.get() to fi nd the anonymous table name:

>>> response = service.jobs().query(
... projectId=project_id,
... body={'query': 'SELECT 42'}).execute()
>>> job = service.jobs().get(**response['jobReference']).execute()
>>> destination_table=job['configuration']['query']['destinationTable']
>>> pprint.pprint(destination_table)
{u'datasetId': u'_0e32b38e1117b2fcea992287c138bd53acfff7cc',
 u'projectId': u'bigquery-e2e',
 u'tableId': u'anonde3fd1ade53226f48a842c7518bb9b0fe911e606'}
}

One interesting thing about the anonymous table is the dataset ID:

"_0e32b38e1117b2fcea992287c138bd53acfff7cc". This dataset doesn’t show

up when you list your datasets, either via the API or in the web UI. Datasets

that start with an underscore are hidden; they can be listed only if you pass the

all fl ag to Datasets.list(). BigQuery creates hidden datasets as needed to

hold query results on a per-user-per-project basis. All the queries you run in a

particular project use the same dataset to hold your query results; if different

users run the same query, their results would go in a different dataset. If you

inspect the ACL of the hidden dataset created to hold query results, you can

see that it is restricted to a single user:

>>> dataset = service.datasets().get(
... projectId=destination_table['projectId'],
... datasetId=destination_table['datasetId']).execute()
>>> pprint.pprint(dataset)
{u'access': [{u'role': u'OWNER', u'userByEmail': u'jtigani@gmail.com'}],
 u'creationTime': u'1374444606886',
 u'datasetReference': {
 u'datasetId': u'_0e32b38e1117b2fcea992287c138bd53acfff7cc',
 u'projectId': u'bigquery-e2e'},

mailto:u'jtigani@gmail.com

210 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 210

 u'etag': u'"Ny_MVtklP3Cn04wt1Sr9PinHZEI/T9T-JJCytvKVcXb9FoswD2KVexo"',
 u'id': u'bigquery-e2e:_0e32b38e1117b2fcea992287c138bd53acfff7cc',
 u'kind': u'bigquery#dataset',
 u'lastModifiedTime': u'1374444606886',
 u'selfLink': u'https://www.googleapis.com/bigquery/v2/..."}

Anonymous tables have some special properties; they are immutable, mean-

ing you cannot append to them. (Although you can rewrite them, as you see in

the section on caching.) You also do not pay for their storage. Because BigQuery

doesn’t charge for anonymous tables, they have a limited lifespan—they expire

in 24 hours. This lifespan of an anonymous table cannot be directly changed,

although running a query that returns the same table from the query cache can

renew the table so that it will be valid for another 24 hours.

Here is a Python command that shows the anonymous table created by the

previous query:

>>> table = service.tables().get(
... projectId=destination_table['projectId'],
... datasetId=destination_table['datasetId'],
... tableId=destination_table['tableId']).execute()
>>> pprint.pprint(table)
{u'creationTime': u'1394986053339',
 u'etag': u'...',
 u'expirationTime': u'1395072453345',
 u'id': u'...,
 u'kind': u'bigquery#table',
 u'lastModifiedTime': u'1394986053339',
 u'numBytes': u'8',
 u'numRows': u'1',
 u'schema': {u'fields': [{u'mode': u'NULLABLE',
 u'name': u'f0_',
 u'type': u'INTEGER'}]},
 u'selfLink': u'...',
 u'tableReference': {
 u'datasetId': u'_0e32b38e1117b2fcea992287c138bd53acfff7cc',
 u'projectId': u'bigquery-e2e',
 u'tableId': u'anonde3fd1ade53226f48a842c7518bb9b0fe911e606'},
 u'type': u'TABLE'}

Specifying Where to Write Query Results

Sometimes, you want to keep query results around longer than 24 hours. You can

do this by specifying the name of a destination table for the query rather than

letting BigQuery pick the destination. To specify the destination table, you must

use the Jobs.insert() method (not Jobs.query()), and you should fi ll out the

destinationTable parameter in the query confi guration. Note that when you

use a named destination table, you must pay for any storage the table uses, and

the table never expires unless you explicitly set an expiration time on the table.

http://www.googleapis.com/bigquery/v2

 Chapter 7 ■ Running Queries 211

c07.indd 12:41:4:PM 05/02/2014 Page 211

The writeDisposition fl ag may come in handy when specifying the destina-

tion table. Specifying WRITE_APPEND lets you append the results to an existing

table. If you want to overwrite an existing table completely, you can specify

WRITE_TRUNCATE instead. These operations happen atomically; you can either

see the table as it was before the query results get written or you see all the

results added to the table. If the query fails, the table will not be modifi ed at all.

Query Cache

BigQuery attempts to cache query results and returns results from the cache

whenever possible. If you run SELECT COUNT(*) FROM [publicdata:samples

.wikipedia], the result is added to the cache. If you run the same query a

second time, you get the cached result. As a user this is nice because you don’t get

charged for queries that hit the cache. You also can get a result faster if you don’t

actually have to run the query. Cached queries live for 24 hours after the last access.

Queries are cached per-user, so if you run a query and your coworker runs

the same query, she can’t use your cached result. Having per-user caches helps

prevent both security and privacy issues.

Some types of queries cannot be cached. For example, if you run the query

SELECT NOW() + RAND(), the query won’t be cached because the result is non-

deterministic. Likewise, if you write the query results to a named destination

table, the results won’t be cached because the results live in the destination

table rather than the cache. Finally, if the tables you query against change, the

cache will be purged.

If you don’t want to allow your results to be cached, you can set

useQueryCache to false when you run the query (either via Jobs.insert() or

Jobs.query()). For the most part, you won’t need this fl ag; however, you might be

explicitly trying to test performance without using the cache, and you’ll actually

want to see how long the query takes to run and how much data it processes.

Queries that return cached results will have the cacheHit fl ag set to true, and

the totalBytesProcessed will be set to 0, indicating you aren’t charged for any

processing.

The following Python commands show the cache in operation. First, a unique

query is generated, so it will be guaranteed not to be in the cache. Then the

same query is run twice, back to back. The fi rst time it will not be in the cache,

the second time it will be:

>>> query = 'SELECT COUNT(word), %f FROM [%s]' % (
... time.time(), 'publicdata:samples.shakespeare')
>>> response1 = service.jobs().query(
... projectId=project_id,
... body={'query': query}).execute()
>>> response2 = service.jobs().query(
... projectId=project_id,
... body={'query': query}).execute()

212 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 212

>>> pprint.pprint(response1)
{u'cacheHit': False,
 u'jobComplete': True,
 u'jobReference': {u'jobId': u'job_ruB2mvCJliNKHeERhsPzxhZJtSs',
 u'projectId': u'bigquery-e2e'},
 u'kind': u'bigquery#queryResponse',
 u'rows': [{u'f': [{u'v': u'164656'}, {u'v': u'1.394988017942355E9'}]}],
 u'schema': {u'fields': [{u'mode': u'NULLABLE',
 u'name': u'f0_',
 u'type': u'INTEGER'},
 {u'mode': u'NULLABLE',
 u'name': u'f1_',
 u'type': u'FLOAT'}]},
 u'totalBytesProcessed': u'1332943',
 u'totalRows': u'1'}
>>> pprint.pprint(response2)
{u'cacheHit': True,
 u'jobComplete': True,
 u'jobReference': {u'jobId': u'job_5mIaUK-wRS477BZoYTBipN18Qd8',
 u'projectId': u'bigquery-e2e'},
 u'kind': u'bigquery#queryResponse',
 u'rows': [{u'f': [{u'v': u'164656'}, {u'v': u'1.394988017942355E9'}]}],
 u'schema': {u'fields': [{u'mode': u'NULLABLE',
 u'name': u'f0_',
 u'type': u'INTEGER'},
 {u'mode': u'NULLABLE',
 u'name': u'f1_',
 u'type': u'FLOAT'}]},
 u'totalBytesProcessed': u'0',
 u'totalRows': u'1'}

Note that the number of bytes processed is 1332943 in the fi rst query, but goes

down to 0 in the second query. The cacheHit fl ag also goes from False to True.

The operation of the cache relies on the anonymous tables described in a

previous section. Because BigQuery is free to give these tables any names that

it wants, it generates a deterministic name from the query. To create this name,

it takes a parsed version of the query that you’re running and the last modifi ed

times of all of the tables involved in the query, and computes a cryptographic

hash. It then uses this cryptographic hash as the name of the table. The next

time the query is run, BigQuery checks for the existence of a table with this

name, and if it already exists, just uses that in the response. You can see this in

action by checking the destination table names of back-to-back query jobs that

run the same query—they will be the same table.

Sometimes, you might want to run a query only if it is already cached. Maybe

you want to avoid running up any more charges, or maybe the query takes a

long time and you don’t want to wait for the query to execute. If you set the cre-

ateDisposition in the query confi guration to CREATE_NEVER, this tells BigQuery

that if the cached table doesn’t exist, don’t create it.

 Chapter 7 ■ Running Queries 213

c07.indd 12:41:4:PM 05/02/2014 Page 213

Returning Large Results

By default, BigQuery query responses are limited to 128 MB. There are some

architectural reasons for this limitation, which are discussed in Chapter 9,

“Understanding Query Execution,” but there is also a common-sense justifi cation

as well: When you’re dealing with Big Data, it is easy to generate giant results.

Much of the time, however, you don’t actually care about those giant results.

For example, you might want to read some of the data from the table, so you

run a “SELECT *” query on the table. If that table is 100 TB, you’ve just fi lled up

the equivalent of dozens of hard drives just to read a few rows.

Sometimes, however, you really do want to run a query that generates a lot

of output data. The way to tell BigQuery you’re serious about wanting all that

data is to set allowLargeResults to true in the query confi guration. Note that

because you’re going to be writing out a lot of data, BigQuery wants to make

sure you know in advance where that data is supposed to go. As a consequence,

allowLargeResults requires the destinationTable parameter to be set on the job.

Query Priorities

By default, queries run at an INTERACTIVE priority, which is the highest priority

level. However, sometimes you might not need the results of a query imme-

diately. Maybe you’re building a dashboard or computing some intermediate

tables that will be queried later. In this case, you can specify BATCH as the

query priority.

The advantage to running your query at BATCH priority is that you will not

be subject to the same query limitations as when you run interactive queries.

When you run a query at INTERACTIVE priority, BigQuery assumes there is

someone waiting for the answer who will be grumpy if he doesn’t get it soon,

so if it can’t process the query quickly, it will return an error. When running

at BATCH priority, BigQuery tries to run the query if at all possible, even if it is

going to take a long time.

There are a number of query quotas, described in the next section, designed

to keep one user from taking too many compute resources at once. Batch queries

are not subject to concurrent query quotas; however, if BigQuery can’t run your

query quickly or soon, it will just queue it up and run it when there is available

space. This makes it easy to create a lot of batch queries at once without having

to worry about rate limits.

Query Billing and Quotas

When you run a BigQuery query, you may be using several thousand machines

and hundreds of thousands of disks. That hardware is expensive to buy, run,

and maintain. Moreover, the cluster of machines you’re using to run your query

214 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 214

needs to be shared across multiple users who may be running queries at the

same time. If someone at Company A is running giant queries, he shouldn’t

affect your ability to run queries. These factors are what drive the quota and

billing policies for BigQuery.

What Does It Cost to Run My Query?

As of the time of publication, BigQuery queries cost $5 per TB scanned, whether

they’re for interactive or batch queries. These numbers are likely to change in the

future; if they do change, they will probably go down. (This is based on assump-

tions made about costs of processing over time, not on any inside information

about pricing plans.) If you care about how much your queries cost, you should

check out the BigQuery pricing page here: https://developers.google.com/

bigquery/pricing. Google also offers reserved instances for users who expect

to run a lot of queries.

If the query cost is measured in dollars per byte scanned, how do you

know how many bytes are going to be scanned? Every query in BigQuery

does a full-table scan. That is, if the query requires reading even a single row

from a table, BigQuery reads all the rows. Even if you add a LIMIT clause to

a query, it still requires reading all the rows because LIMIT limits only the

results, not the amount of data read in the fi rst place. This behavior is dif-

ferent from traditional databases, which use indexes to avoid having to read

portions of a table.

Although you do need to read all the rows of the table, you won’t necessarily

read all the columns. In practice, most queries actually read only a few columns

from a table. Because BigQuery stores data in columnar format, it needs to read

only the columns used in the query, and the other columns can be left alone.

This is, again, different from a traditional relational database, where rows are

stored together; so if you need to read part of a row, the database would need

to read the whole thing.

BigQuery enables users to take advantage of the column-store format; you get

charged for reading only the columns that are used in your query. Although the

columns are stored compressed, the amount charged is based on the uncom-

pressed size. One rationale behind charging for uncompressed data rather than

compressed data size is that it makes it easier for people to understand how

much they are being charged.

https://developers.google.com

 Chapter 7 ■ Running Queries 215

c07.indd 12:41:4:PM 05/02/2014 Page 215

If you have two tables with the same number of rows and columns but differ-

ent data but you are charged different amounts for querying them, this could

lead to confusion. Moreover, if you went from highly compressible data to

less-compressible data, you’d likely be surprised if you started getting charged

more. Furthermore, because compression ratios can be infl uenced by ordering,

if BigQuery moves data around and gets better or worse compression, you’d

likely be surprised if the cost for querying the same data changed over time.

The byte cost of the data is related to the type of the data. Table 7.3 shows the

column data type and the number of bytes that are charged:

Table 7.3: Bytes Charged by Column Type

TYPE NUMBER OF BYTES

INTEGER 8

FLOAT 8

TIMESTAMP 8

BOOLEAN 1

STRING Length of the string encoded as UTF-8 + 2 bytes

RECORD 0 (see RECORD fi elds in the following list)

In addition to the type-based byte count, following are some other rules for

the byte cost calculation:

 ■ NULL fi elds are considered size 0. That is, any NULL value in any fi eld is

“free.”

 ■ RECORD fi elds—that is, fi elds that have nested data—do not add to the

cost. However, any fi eld referenced inside the record counts normally

toward the query cost.

 ■ Repeated fi elds are billed as the sum of the cost of each of the repeated

values. That is, if you have an integer that is repeated 10 times, you are

charged for 80 bytes. If the repeated value count is 0, you are not charged

for any bytes consumed.

The byte count used for query billing calculation is the same as the byte count

used for storage; that is, you will be billed for storing all the columns in the table

based on the same type-based byte count that is used for queries.

216 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 216

SELECT * CONSIDERED HARMFUL

When BigQuery was initially released, it didn’t support SELECT *. This wasn’t an

oversight; it was intended to prevent users from unintentionally incurring unneces-

sary charges. If you consider how BigQuery works, you’ll realize that SELECT * is

going to tell BigQuery to read every byte in the table as fast as possible; that is going

to be an expensive operation. If you have a terabyte of data in your table, SELECT *

is going to cost you $5 (at current prices). Because SELECT * doesn’t actually change

your data, you could have just read it via TableData.list() for free.

The initial assumption was that if you wanted to read all the columns in the table,

you would be willing to list all those columns to indicate that you’re serious about it.

However, several customers complained, so SELECT * was added. That said, most of

the time, there are better ways to get the data you want than using SELECT *.

In the relational database world, it is common to run a SELECT * query to check

out a table and try to understand the data in it. Maybe one column is always NULL, or

you want to fi nd out whether the State column uses abbreviations. If you’re just try-

ing to get a feel for your data, you can read the rows directly from the table (for free!)

rather than running a query. If you have access to the bq command-line client, you

can use the “bq head tablename” command. If you use the BigQuery Web UI, you

can select the table and click the Details button, which shows you the fi rst few rows.

Both of these mechanisms use the underlying TableData.list() API, which is free,

instead of running a query.

Sometimes people who run SELECT * actually do want to read all the data in the

table. Maybe they want to make a copy of the table or want to download the table. If

you use SELECT * for either of these reasons, there are better, less expensive ways to

accomplish your goals.

If you want to download the table, consider an Export job, which can write out the

table as CSV or JSON to a Google Cloud Storage location of your choosing. If you want

to make a copy of the table, you can run a Copy job. Both these options are available

from the command line or the web UI.

There are valid use cases in which you still want to use SELECT *. For example,

maybe you want to fi lter your table and you want to create a smaller temporary table

(as in SELECT * FROM . . . WHERE . . .). Using SELECT * in an inner query

(as in SELECT foo FROM (SELECT * from tablename), which will read only

the foo column) is effi cient because only the columns that are used in the outer query

actually need to be read.

The bottom line is this: If you use SELECT * in your query, you should pause a

moment and consider whether there is a better option.

Determining Query Cost

You can tell how much a query costs by reading the totalBytesProcesed fi eld

in the response to Jobs.query() or in the statistics fi eld in the Job resource

returned by Jobs.get(). Consider the following query, which counts the number

of active ZIP codes with nonzero populations in each state:

 Chapter 7 ■ Running Queries 217

c07.indd 12:41:4:PM 05/02/2014 Page 217

>>> query = """
... SELECT state, COUNT(*) AS cnt
... FROM [bigquery-e2e:reference.zip_codes]
... WHERE population > 0 AND decommissioned = false
... GROUP BY state, ORDER BY cnt DESC
... """

This query reads three fi elds from the table bigquery-e2e:reference.zip_

codes: state, decommissioned, and population. Here is a Python command

that runs the query and returns only the number of bytes processed:

>>> service.jobs().query(
... projectId=project_id,
... body={'query': query, 'useQueryCache': False}
...).execute()['totalBytesProcessed']
u'552786'

With the Tables.get() method, you can see that the table has 42,522 rows:

>>> service.tables().get(
... projectId=project_id,
... datasetId='reference',
... tableId='zip_codes').execute()['numRows']
u'42522'

If there were no STRING fi elds read by the query, the number of rows would be

enough to determine the number of bytes processed. However, the state fi eld

has a variable length (it will be different in every row). The number of bytes

processed per row should be the length of the state fi eld plus 2 bytes, 8 bytes

for the population fi eld, and 1 byte for the decommissioned fi eld. The following

query computes the cost by adding up the fi eld sizes:

>>> cost_query = """
... SELECT state_len + pop_len + decommissioned_len FROM (
... SELECT SUM(LENGTH(state) + 2) AS state_len,
... 8 * COUNT(population) AS pop_len,
... COUNT(decommissioned) AS decommissioned_len
... FROM [bigquery-e2e:reference.zip_codes])
... """
>>> service.jobs().query(
... projectId=project_id,
... body={'query': cost_query}
...).execute()['rows'][0]['f'][0]['v']
u'552786'

This query returns the same value as the previous totalBytesProcessed:

552,876—or just over one-half a megabyte. Of course, running a query to com-

pute how much a query costs is not particularly effi cient because that query will

cost you money, too. What if you want to fi nd out how much a query will cost

218 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 218

before actually running it? You can do this by running a query command that

sets the dryRun flag to true in the query confi guration, which tells BigQuery

to not actually run the query.

>>> service.jobs().query(
... projectId=project_id,
... body={'query': query, 'dryRun': True}
...).execute()['totalBytesProcessed']
u'552786'

The same options for determining query cost are also available in the UI.

If you click the green query validation icon under the query, you can see how

many bytes would be processed if you ran the query. Likewise, after you run

the query, it tells you how many bytes were processed when the query was run.

Figure 7.1 shows both of these indicators.

Figure 7.1: Query byte estimation

How Many Queries Can You Run?

BigQuery imposes two different types of limits on queries: quotas and rate

limits. The quotas are the easiest to understand; you can run up to 20,000 queries

a day that process up to 100 TB of data. (Note that although these numbers are

 Chapter 7 ■ Running Queries 219

c07.indd 12:41:4:PM 05/02/2014 Page 219

subject to change, it is extremely unlikely that the quotas will be reduced.) If

you’re running lots of huge queries and those amounts aren’t enough for you,

don’t worry—these caps (unlike some other quotas that BigQuery exposes) can

be raised —they are put in place to prevent people from unintentionally running

up a large bill quickly. That said, 100 TB of data processed is $500 (at current

prices), so you can still spend a lot of money in a 24-hour period. If you want to

run more queries, contact Google Cloud Support. They will likely want some

more information about how you use BigQuery to make sure you get the most

for your money and aren’t abusing the system.

Query rate limits are designed to encourage users to spread their queries

out throughout the day to smooth out load on the query clusters responsible

for executing queries. These clusters, although large, are not infi nite. To make

sure that they remain responsive even when one customer performs a lot of

queries, BigQuery imposes rate limits on how many queries a single customer

can send at once. These rate limits are somewhat complex; they’re designed to

let users run giant queries if they want but also to more strongly limit queries

that process a lot of data.

The simplest rate limit is the concurrent query rate limit. You can run up to

20 queries at once. The other rate limit is a bit more confusing: You can run 1

query of any size and up to 19 other queries that add up to 1 TB of simultaneous

processing. The 1 TB portion of the limit can be thought of as a pipe with fi xed

capacity. When the pipe is full, you cannot start new queries. When one query

completes, it opens up space in the pipe that you can fi ll with another query.

The number of bytes processed by a query determines the amount of space the

query takes in the pipe.

If the pipe was the only mechanism used, you could never run queries that

processed more than 1 TB of data. To make sure customers can run larger que-

ries, any query that doesn’t fi t in the 1 TB pipe fi lls the “large” query slot. This

slot doesn’t need to be taken up by an actual large query; if the pipe is full with

two 500 GB queries and you run another query that processes only 1 MB that

will go in the “large” query slot. That said, the “large” query slot is most useful

when you run queries that are actually large. These limits do mean, however,

that you can never run more than one large query at once.

If your query has already been cached, it won’t need to actually be executed

by the compute cluster, so it won’t count against any of the rate limits. It will
however, count toward your daily limit. This is to prevent people from abusing

the cache. If you need to access the same data over and over again, you should

use TableData.list() to read the data directly without running the query or

caching the data locally.

Batch Query Limits

When you hit a rate limit in a query run at normal (INTERACTIVE) priority,

your query will fail, and you will need to try again later. The reasoning is that

INTERACTIVE queries are intended to be, well, interactive. The assumption is

220 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 220

that if the queries were queued, people would experience degraded query per-

formance and think the queries were just running slowly rather than realize

that their queries are stuck in the queue.

Sometimes, however, you aren’t actively waiting for the query to return;

maybe you’re updating a dashboard that runs a large number of queries once

an hour. In these cases, it would be nice to just “fi re and forget” your queries;

that is, start all your queries at once and not have to worry about query pipes

and large query sizes. Batch queries can help with this issue. When you run a

query at BATCH priority, it is not subject to any of the rate limits discussed in

the previous section. The only limitation is the total number of allowed batch

queries per day, which is set at 10,000.

That said, when you run BATCH queries, BigQuery runs them at a lower prior-

ity. They are queued and execute when the system has spare capacity. To make

sure that your queries make forward progress, if a batch query hasn’t executed

within 3 hours, it gets promoted to INTERACTIVE priority and will run as soon

as it can be scheduled.

Other Query Limitations

BigQuery works on Big Data, so there should be no limitations, right? Well, not

exactly. BigQuery can perform many operations faster than a relational data-

base because of its architecture (which is described in more detail in Chapter

9). That said, there are some trade-offs—things that insert it may seem like it

should do, but it doesn’t do well.

Query Result Size Limitations

When you run a normal query in BigQuery, the response size is limited to 128 MB

of compressed data. Sometimes, it is hard to know what 128 MB of compressed

data means. Does it get compressed 2x? 10x? The results are compressed within

their respective columns, which means the compression ratio tends to be very

good. For example, if you have one column that is the name of a country, there

will likely be only a few different values. When you have only a few distinct

values, this means that there isn’t a lot of unique information, and the column

will generally compress well. If you return encrypted blobs of data, they will

likely not compress well because they will be mostly random.

Often it is easy to write a query that returns large results without intending

to; maybe you just ran a SELECT * query when you just wanted to see the fi rst

few rows of data. Or maybe you just wanted to see the top few rows from the

query results. To prevent these types of queries from having to do a lot more

work writing out massive query results, BigQuery defaults to failing when

you run a query with massive results sets. If you don’t need all the results, it

is easy to just add a LIMIT 1000 to the end of the query, and you’ll just get the

fi rst 1000 rows.

 Chapter 7 ■ Running Queries 221

c07.indd 12:41:4:PM 05/02/2014 Page 221

Although the rationale behind the query result size limitation is closely tied

to the BigQuery architecture, at a high level it is because the entire query result

must be returned from a single worker in the compute cluster. When an opera-

tion must be done on a single worker, it means that it doesn’t scale out. For this

reason, the size is limited.

Sometimes, however, you want to see results larger than 128 MB. You can

work around this limitation by setting the allowLargeResults fl ag on the query.

This causes each of the BigQuery workers to write their results out individu-

ally. Because the query results can be written in parallel for allowLargeResults

queries, there are no limits to their size. The only limit is that you must specify a

destination table for the query, so you will know where to refer to it afterward,

and you can manage its lifetime. Even though results are written in parallel,

writing large results can be signifi cantly slower than writing out small ones.

Query Length and Table Limits

The maximum-allowed length of a query is 100,000 characters. It is unlikely that

hand-written queries will ever get this long—usually the ones that bump up

against the limit are machine-generated, often with certain sections repeated

over and over again. If you fi nd yourself wanting to write a query that is longer

than 100 k, you might break it up into multiple subqueries.

There is also a 1000-table limit to the number of tables you can reference

in a query. If you hit this limit, it is usually because your data is sharded too

fi nely. You can read more about sharding strategies in Chapter 11, “Managing

Data Stored in BigQuery.” Moreover, the more tables you use in your query, the

slower your query will run. For small numbers of tables (up to a few dozen) the

slowdown will likely be imperceptible. But if you run queries against hundreds

of tables, you’ll likely be adding a couple of seconds to the query that are spent

looking up information about the tables you’ve referenced.

BigQuery Query Language

The query language used by BigQuery is a variant of SQL. This section assumes

some familiarity with SQL, but the concepts should be straightforward enough

that you can write basic queries even if you’ve never seen a SELECT statement

before. More advanced queries are covered in Chapter 9, after you have had a

chance to digest the BigQuery query architecture.

If you’re a SQL guru, you may see some of these examples and exclaim, “But

that’s not how it is done in the SQL-92 standard!” The last part of this section

walks you through the differences between BigQuery SQL and standard SQL

to shine some light on why certain syntax decisions were made. You’ll also

see some features, such as querying over nested and repeated fi elds, for which

there is no standard.

222 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 222

BigQuery SQL in Five Queries

If it were done, when ‘tis done, then ‘twere well it were done quickly
—Macbeth

Rather than try to exhaustively defi ne the BigQuery SQL language, we take

a simpler approach: considering fi ve simple queries that show off interesting

BigQuery features and functionality. These queries build upon each other to

compute word usage analysis for Shakespeare’s plays. If you understand these fi ve

queries, you can use the same techniques to answer questions about your data.

Source Table Introduction

The queries in this section reference the public Shakespeare sample table

(publicdata:samples.shakespeare). Although it is not a “big data” table—it

weighs in at only 6.1 MB—it is useful for trying out queries because it is almost

free to query it. You can run more than 170,000 queries against it and still be

under your monthly “free query” quota.

The Shakespeare table contains the breakdown of word usage in Shakespeare

plays and sonnets. The fi elds are described in Table 7.4.

Table 7.4: Shakespeare Table Schema

FIELD TYPE DESCRIPTION

word STRING Word used in a play. If the same word is used in multiple

plays, it will have an entry for each play it appears in.

word_count INTEGER Number of times the word appears in the play

corpus STRING Name of the play, with spaces removed and in all low-

ercase. The sonnets get a single entry (“sonnets”), as do

Shakespeare’s other writings (“various”).

corpus_date INTEGER Year the play was written, or 0 for “sonnets” and “vari-

ous” because they were written across multiple years.

Query #1: Field Projection with Filter

SELECT LOWER(word) AS word, word_count AS frequency, corpus
FROM [publicdata:samples.shakespeare]
WHERE corpus CONTAINS 'king' AND LENGTH(word) > 5
ORDER BY frequency DESC
LIMIT 10

 Chapter 7 ■ Running Queries 223

c07.indd 12:41:4:PM 05/02/2014 Page 223

This query returns the most commonly used words (lowercased) longer than

fi ve letters, the count, and the corpus in which they appear, in any of Shakespeare’s

plays with “king” in the title. It doesn’t, however, count frequency across plays;

it just returns the count of the word per-play. Here are the results:

+------------+-----------+----------------+
| word | frequency | corpus |
+------------+-----------+----------------+
falstaff	199	2kinghenryiv
prince	192	1kinghenryiv
richard	188	kingrichardiii
gloucester	182	kingrichardiii
edward	181	3kinghenryvi
falstaff	168	1kinghenryiv
gloucester	141	kinglear
richard	134	kingrichardii
warwick	122	3kinghenryvi
cardinal	121	kinghenryviii
+------------+-----------+----------------+

Now let’s walk through the query, line by line:

SELECT LOWER(word) AS word, word_count AS frequency, corpus

All SQL queries that return data (and thus all BigQuery queries) start with the

word SELECT, indicating that you’re selecting data out of a table. After SELECT,

you have comma-delimited fi eld projections. These can be the raw fi elds (like

word_count), computed values (like LOWER(word), which transforms word to

lowercase), or aggregation functions (see the next query). You can also decide

what you want the name of the fi eld to be by using the AS keyword. For example,

word_count AS frequency renames word_count to frequency in the output.

Fields with computed values get assigned a unique fi eld name, like f0_, which

you may have seen in query results earlier in this chapter. In this query when

we lowercased the word fi eld, we also assigned an alias, so that it would get a

user-friendly name, rather than f0_.

The next line is:

FROM [publicdata:samples.shakespeare]

After the selected fi eld list comes the FROM clause, which instructs the query

engine where to find the data. Fully specified BigQuery table names are

designated by project_id_or_number:dataset_name.table_name. That said,

you often don’t need to use the fully specifi ed name. The project ID defaults to

the project that runs the query. If you don’t like specifying the dataset name

either and are using the API (as opposed to the query UI), you can set a default

dataset in the job query confi guration.

224 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 224

You may have noticed the funny brackets around the table name that aren’t

there in standard SQL. These are generally optional, but some table names

require these quote characters to parse correctly. For example, if the table name

was shakespeare-plays rather than shakespeare, the query parser would have

a diffi cult time telling whether this was a subtraction operation (shakespeare

minus plays) or a table name. To prevent parsing ambiguities, it is usually saf-

est to just include the brackets.

Moving to the next line in the query, you have:

WHERE corpus CONTAINS 'king' AND LENGTH(word) > 5

This line contains the WHERE clause, which enables you to fi lter which rows

are returned. In this case, the fi lter returns only rows where the corpus fi eld

contains “king” and the word fi eld is longer than fi ve letters. You can also call

most functions here; the test for words longer than fi ve letters in the name could

have been written as REGEXP_MATCH(word, '\\w{5}\\w+').

One of the last pieces of a query is the optional ORDER BY clause, which enables

you to choose the sort order of the query results:

ORDER BY frequency DESC

One trick that can come in handy is to order by the index of the fi eld in the

SELECT clause. In this case, frequency is the second fi eld mentioned, so this

could have been written as ORDER BY 2 DESC.

ORDER BY has some limitations, however. At this time, it is the only non-

parallelizable operation in BigQuery. That means that the entire sort opera-

tion must occur in a single query worker. To prevent that single worker from

getting bogged down, there are limits on the size of result that an ORDER BY

can process. If you get a Response Too Large error that you didn’t expect, the

ORDER BY clause may be the culprit.

Finally, you have a limit on the number of rows that are returned:

LIMIT 10

It is generally a good idea to add a limit to your query to prevent the dreaded

Response Too Large error that is returned whenever the query result size is

larger than 128 MB (unless, of course, you have set the allow_large_results

option on your query).

If you’re interested in why the Response Too Large error exists, Chapter 9

describes how query execution works and why result sizes for most queries are

limited. For the most part, however, the maximum result size is not an issue

because you usually care about only the fi rst few results of your query. In addi-

tion, much of the time when the query returns too many results, it means that

 Chapter 7 ■ Running Queries 225

c07.indd 12:41:4:PM 05/02/2014 Page 225

there was something wrong with the query—a fi lter condition was missing, or

something about the data was unexpected.

Query #2: Aggregation

SELECT word, COUNT(*) AS corpora, SUM(word_count) AS total
FROM [publicdata:samples.shakespeare]
WHERE LENGTH(word) > 5
GROUP BY word
HAVING corpora >= 2 AND corpora <> total
ORDER BY corpora DESC, total DESC
LIMIT 20

Although it is interesting to see the word frequency in a single Shakespeare

play, it may be more interesting to see how the word frequencies look across all

the plays that Shakespeare wrote. Query #2 returns the words that Shakespeare

uses in more than two plays and appear more than once in some play, and ranks

them by how many plays they appear in and the number of total occurrences.

It also includes a count of how many plays use the word and the total number

of times the word is used across all Shakespeare’s plays. The top results are

displayed here:

+----------+---------+-------+
| word | corpora | total |
+----------+---------+-------+
should	42	1505
heaven	42	585
myself	42	564
himself	42	471
though	42	445
tongue	42	436
thought	42	400
thousand	42	343
things	42	321
without	42	301
reason	42	290
cannot	41	745
before	41	658
honour	41	641
better	41	587
nothing	41	567
little	41	503
friends	41	480
friend	41	440
indeed	41	369
+----------+---------+-------+

226 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 226

The top result is “should,” appearing a total of 1,505 times in all 42 corpora.

Perhaps this means that Shakespeare enjoyed telling people what to do.

The SELECT statement, at fi rst, doesn’t look too different from query #1. You

now have SELECT word, COUNT(*) AS corpora, SUM(word_count) AS total

instead of SELECT LOWER(word) AS word, word_count as frequency, corpus.

However, the operations performed by these two lines are different; the

key is in the functions that are called. In Query #1, the function called in

the SELECT statement was LOWER(), which translates the fi eld value to lower-

case. The LOWER()function operates only on a single row at a time. In Query #2,

however, you have COUNT() and SUM(). These are aggregation functions, which

operate over a fi eld in multiple rows at once.

If you take a query without a GROUP BY and add an aggregation function to

the SELECT line, you’ll get only a single result; that result will be the value of

the aggregation function applied over the entire table. Note there are rules on

mixing aggregation functions with nonaggregations: You either need aggrega-

tions everywhere or nowhere. If you think about this, it makes sense: If you

compute the sum over a particular fi eld, you want one result, but if you return

the fi eld as well, you want multiple results. Because you can’t satisfy both of

these constraints at once, this situation is disallowed.

You may notice, however, that we did have a mixture of aggregation func-

tions and raw fi elds in the query; we are selecting word as well as SUM() and

COUNT(). Why is this legal? You can legally perform this operation because of the

GROUP BY clause: GROUP BY word. This causes the query engine to partition the

table into buckets—one for each value of the word fi eld. The aggregation func-

tions then get applied to each of the buckets, outputting one row per distinct

word value.

To give a concrete example, consider the word “bagpipe,” which occurs twice

in Merchant of Venice, once in King Henry IV part 1 and once in Winter’s Tale.
When you group by word, you get a single bucket for “bagpipe.” The COUNT()

operation returns “3” because there are three plays in which it appears. The

SUM(word_count) operation returns 4 since it appears four times across the three

plays. In the query results, then, you’d get one row for “bagpipe” in the results:

{word: bagpipe, corpora: 3, total: 4}.

There is one more line we haven’t mentioned yet and doesn’t look familiar

from query #1:

HAVING corpora >= 2 AND corpora <> total

A HAVING clause is a lot like a WHERE clause; this one fi lters out any word that

appears only in one corpus or once per corpus. The difference between a WHERE

and HAVING clause is when the fi ltering is applied. A WHERE clause fi lters values

in the original table; it gets applied before any aggregation is done. However, a

HAVING clause applies fi lters after any aggregation, so you can use the aggregated

 Chapter 7 ■ Running Queries 227

c07.indd 12:41:4:PM 05/02/2014 Page 227

fi elds. This HAVING clause uses the corpora and total fi elds, which are not fi elds

on the original table—they were computed via aggregating row values.

Query #3: Joins

SELECT shakespeare.word AS word,
 SUM(shakespeare.word_count / english.count) AS rel_freq,
FROM [publicdata:samples.shakespeare] AS shakespeare
JOIN [bigquery-e2e:reference.word_frequency] AS english
ON shakespeare.word = english.word
GROUP BY word
ORDER BY rel_freq DESC
LIMIT 10

For the third query, we combine Shakespeare data with another data set—

one that tells you overall frequency of words in the English language. This

other data set contains two fi elds: word, which is the word in question, and

word_frequency, which is the total number of times the word appeared when

scanning a large corpus of English-language documents. This data came from

a free word-frequency list compiled here: http://invokeit.wordpress.com/

frequency-word-lists/. We have downloaded the list and saved it in a table

named bigquery-e2e:reference.word_frequency.

Armed with a list of overall English word frequency, you can now see how the

word frequencies in Shakespeare compare to overall English-language usage.

Query #3 computes the relative frequency between Shakespeare’s usage and

English-language usage.

We no longer have to fi lter based on word length because (we assume) the

high-frequency words in the Shakespeare corpus like “the” will also be high-

frequency in the English-language corpus and won’t show up in the top of the

results. If they do, that might be someone’s doctoral thesis waiting to happen:

“An analysis of the preponderance of defi nite article usage in Shakespeare.

What does usage of the word ‘the’ in the Bard’s early plays tell us about socio-

economic confl ict in Elizabethan England?”

The way to combine multiple data sets in this way in SQL is to use a JOIN

operation. A JOIN takes two tables and matches every row in the fi rst table

against every row in the second table. The ON clause (required in BigQuery

SQL) is a kind of fi lter that keeps only those rows where fi elds in the fi rst table

match fi elds in the second. BigQuery supports only equijoins, which is a fancy

way of saying that you can perform a JOIN only when the values on the fi rst

table exactly match the values on the second. If the fi elds require coercion, you

can usually use a nested SELECT, which is introduced in query #4, to make the

values match up correctly.

http://invokeit.wordpress.com

228 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 228

When performing a JOIN, the JOIN clause follows the FROM clause:

FROM [publicdata:samples.shakespeare] AS shakespeare
JOIN [bigquery-e2e:reference.word_frequency] AS english
ON shakespeare.word = english.word

The FROM clause looks slightly different too—we’ve added a table alias. Because

you now have more than one table involved in your query, you need to have a

way to tell which table you’re talking about when you reference a fi eld. To do

this, you can qualify the fi eld name with the table name. For example, this query

uses english.count to refer to the fi eld count in the table with the alias english.

The JOIN clause is a lot like a FROM clause; you provide the name of the table

you are joining against (or a nested SELECT statement, which is described in the

next query). BigQuery supports both INNER and OUTER joins, but the description

of these is deferred to chapter 10.

A feature that can come in handy when you join two large tables is the EACH

keyword (which is not standard SQL). You can think of EACH as a hint to the

BigQuery query optimizer that tells it you have two large tables. Chapter 9 gives

more background on how this optimization works, but for now just remember

that JOIN EACH can be useful for joining two large tables.

The results of this query are here:

+-----------+----------+
| word | rel_freq |
+-----------+----------+
villany	49.0
pass'd	34.0
wrong'd	31.0
learn'd	30.0
begg'd	25.0
offer'd	22.0
mock'd	21.0
prevail'd	20.0
wash'd	20.0
he'll	19.75
+-----------+----------+

The highest relative frequency ratio between words in a Shakespeare play

and words in modern English is the word “villainy.” In fact, “villainy” is the

only word in the top 10 that isn’t a contraction (for example, “wrong’d”). The

Ph.D. dissertation on this subject is left as an exercise for the reader.

Query #4: Subselects

SELECT shakespeare.word AS word,
 SUM(shakespeare.word_count / english.cnt) AS rel_freq,

 Chapter 7 ■ Running Queries 229

c07.indd 12:41:4:PM 05/02/2014 Page 229

FROM (
 SELECT LOWER(word) AS word,
 word_count / 945845 as word_count
 FROM [publicdata:samples.shakespeare]
 WHERE NOT REGEXP_MATCH(word, '[A-Z]+')
 AND NOT word CONTAINS "'"
) AS shakespeare
JOIN (
 SELECT LOWER(word) AS word,
 count / 121464569 AS cnt
 FROM [bigquery-e2e:reference.word_frequency]
) AS english
ON shakespeare.word = english.word
GROUP BY word
ORDER BY rel_freq DESC
LIMIT 100

One problem with query #3 is that the words in the Shakespeare table have

inconsistent capitalization. That is, if the word appeared at the beginning of a

sentence, its fi rst letter is capitalized, but if it appears elsewhere in the sentence,

it is in lowercase. We’d like to correct for this, so “Falchion” and “falchion” show

up as the same word. To do this, we can just convert the word to lowercase.

Unfortunately, we need to do this conversion before the JOIN operation takes

place, which means we need to use a subselect.

We change our original FROM clause into a nested select statement that computes

the lowercase word. We make one other change: We fi lter out words that are all

caps. In our Shakespeare dataset, names of characters display in all caps, such

as “HAMLET.” Because names of characters are going to show up in the plays

more often than in a wider dataset, to prevent these from distorting the results,

we fi lter them out. We also fi lter out anything with an apostrophe—Shakespeare

made up a lot of contractions that don’t exist in modern spelling—”wrong’d,”

for example—and these aren’t particularly interesting to report.

As a bonus, we’ve also applied the same lowercase conversion to the word_

frequency corpus. In this case, it wasn’t necessary, but we’ve added it here to

show that you can also perform subselects in the JOIN clause too. We’ve also

divided the counts by the number of rows in each table, so that neither table is

weighted more heavily than the other.

Query #4 starts to look complicated. But if you compare it to query #3, it isn’t

that different. This is a common pattern to use in BigQuery, maybe more so than

in other dialects of SQL. You start with a simple SQL query, and start nesting

subselects when you need to convert or aggregate values. It can make it harder

to read the query, but can allow you get a lot done in a single query without

creating temporary tables.

For those playing along at home, you’ll notice that “villainy” is still in the #1

spot, but some other interesting words show up near the top: “trencher,” “falchion,”

“tapster,” “fi tly,” and “spritely”—these all sound like good names for startups.

230 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 230

+----------------+--------------------+
| word | rel_freq |
+----------------+--------------------+
villany	6292.536177703534
amain	1926.2865850112858
severally	1797.867479343867
trencher	1412.6101623416098
beseeming	1284.1910566741906
clamours	1284.1910566741906
falchion	1027.3528453393526
swinged	1027.3528453393526
strucken	898.9337396719336
bewray	898.9337396719335
wooers	898.9337396719335
cozen	770.5146340045145
fitly	770.5146340045145
...	
tapster	770.5146340045144
...	
spritely	642.0955283370954
...

Query #5: Table Unions

SELECT shakespeare.word AS word,
 (shakespeare.word_count / english.freq) AS rel_freq,
FROM (
 SELECT LOWER(word) AS word, SUM(word_count) AS word_count
 FROM [publicdata:samples.shakespeare]
 WHERE NOT REGEXP_MATCH(word, '[A-Z]+')
 AND NOT word CONTAINS "'"
 GROUP BY word
) AS shakespeare
JOIN (
 SELECT word, SUM(freq) AS freq
 FROM (
 SELECT LOWER(word) AS word, FLOAT(count) AS freq
 FROM [bigquery-e2e:reference.word_frequency]
), (
 SELECT LOWER(first) AS word, sum(cell.match_count)/1583 AS freq
 FROM [publicdata:samples.trigrams]
 GROUP BY word)
 GROUP BY word
) AS english
ON shakespeare.word = english.word
ORDER BY rel_freq DESC
LIMIT 100

 Chapter 7 ■ Running Queries 231

c07.indd 12:41:4:PM 05/02/2014 Page 231

W A R N I N G This query processes 54 GB of data, which would cost $0.27 at

current BigQuery prices. This might not break the bank, but you also might want to

think twice before running it too often.

This query looks a bit intimidating—fi ve SELECT statements, one JOIN, three

GROUP BYs, and a lot of parentheses. But if you look at it carefully, you’ve already

seen just about everything used in this query, with a single exception: We

combine two SELECT statements together with a comma. This is addressed in

a minute, but fi rst consider what this query does and why you’d want to use it.

If you look at the actual numbers returned from query #4, you’ll notice some-

thing surprising: The ratio between the number of times “villainy” appears in

Shakespeare to the total number of times it appears in a wider English-language

corpus is 49:1. That is 49 times more total, not 49 times more frequently. This

means that “villainy” probably appeared only one or two times in the word_

frequency corpus, but it appeared a lot more often in Shakespeare. Clearly, the

Shakespeare texts weren’t part of the corpus used.

This problem can be fi xed by adding another data source that contains the

Shakespeare texts. The trigrams table in the BigQuery public sample dataset

contains every three-word combination in the English language that was found

during the Google Books book-scanning project. There are 68 billion rows in

the table, representing 192 billion scanned words. BigQuery is supposed to

work on Big Data, but so far we’ve mostly used toy tables; this query should

test BigQuery’s handling of a real Big Data table.

The fi rst step, as you can see in the added inner query, is rolling up the tri-

grams to individual words. The table has three fi elds representing the word in

the trigram: first, second, and third. We’re going to consider only the fi rst

element in the trigram, and sum up how many times it appears throughout the

corpus. The subquery follows:

 SELECT LOWER(first) AS word, sum(cell.match_count)/1583 AS freq
 FROM [publicdata:samples.trigrams]
 GROUP BY word)

This should look very familiar, although the appearance of the constant 1583

may be surprising. This number is the ratio of the number of total elements in

the trigrams corpus to the number of elements in the word_count corpus. We

scale the frequencies this way so that the trigrams dataset doesn’t dwarf the

importance of the word_count corpus; we’d like to treat them as equals, despite

one having vastly more data.

The next step is combining the two tables, word_count and trigrams. Query

#5 shows how to combine these tables using a table union. The syntax for a

table union is simple: concatenate two or more tables together with a comma

(for example, FROM table1, table2, . . .).

232 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 232

If you’re a SQL guru, you’re probably more than a little bit surprised by

this—there is already an accepted standard interpretation of tables separated

by commas—an implicit JOIN. BigQuery, perhaps unfortunately, changes this

convention to mean UNION ALL. This nonstandard behavior is discussed in the

next section.

In this query, we want to combine the data from the two tables but they have

different column names. To get the column names to match up, we use a sub-

select to lowercase the words and change the column names. Then we group

by word and sum the word counts to get a single effective table that has the

combined frequency data.

There is another change in this query, related to a potential problem with

numerical precision when summing the ratios. To fi x this, we changed the fi rst

subselect to compute the total word frequency across all plays, so there will be

a single row per word. We moved the GROUP BY inside that sub-select, so the

ratio computation is done only once per word and not as an aggregation.

If you look at these results, you’ll fi nd that Shakespeare uses some strange

words, indeed:

+-------------+--------------------+
| word | rel_freq |
+-------------+--------------------+
holp	207.0076923076923
pricket	79.81512605042016
unpeople	57.56363636363636
burgonet	55.54385964912281
therewithal	55.435797665369655
nonino	50.656
extemporal	46.10679611650485
hungerly	45.66346153846154
prains	42.78378378378378
vizards	40.851612903225806
+-------------+--------------------+

According to the Internet, “holp” is an archaic form of the past tense of “to

help,” as in “My colleague was hungerly trying to learn BigQuery, so I donned

my burgonet, and thus equipped with my vizards, by extemporal query edit-

ing, I holp him therewithal.” This sentence would probably make more sense

to someone living in Elizabethan England.

Diff erences from Standard SQL

There are a number of differences between BigQuery SQL and standard SQL.

The reasons for these differences primarily fall into three buckets: things that

 Chapter 7 ■ Running Queries 233

c07.indd 12:41:4:PM 05/02/2014 Page 233

were more diffi cult to implement in a parallel query engine (for example, an exact

COUNT DISTINCT), syntax shortcuts for expected usage patterns (for example,

comma as UNION ALL rather than JOIN), and extra features that aren’t available

in standard SQL (for example, handling of nested and repeated fi elds). Some of

the principal differences from standard SQL are listed in this section.

Comma as UNION ALL

This is perhaps the most confusing quirk of BigQuery for people with a back-

ground in SQL. In most variants of SQL, if you specify “… FROM table1, table2,”

this is actually an implicit JOIN operation. However, in BigQuery, the previous

operation is UNION ALL; that is, BigQuery performs the query as if there was

one large table with all the data from both table1 and table2.

You may be wondering why this behavior was chosen. When Dremel (the

query engine behind BigQuery) was fi rst developed, JOIN operations were not

supported. However, there were a lot of users who had tables broken up by

day; they often wanted to query across several of them. To make the syntax for

querying across multiple tables as simple as possible, the Dremel SQL designers

used a comma-separated list of tables to concatenate tables. This syntax wasn’t

ambiguous because JOIN didn’t exist. Now that JOIN is supported, however, the

syntax creates confusion. However, because there are now a lot of users who rely

on the comma-separated list to mean UNION ALL, it would be diffi cult to change.

JOIN EACH and GROUP EACH

If you run a query that has a GROUP BY operation where the number of resulting

rows is high, the query may fail with a Resources Exceeded error. Likewise, if

you try to do a JOIN operation on two large tables, you may get the same error.

In both of these cases, the EACH keyword can come to the rescue.

EACH is a hint to the BigQuery query optimizer that instructs it to perform a

shuffl e operation. Shuffl e is described in detail in Chapter 9, but for now it can be

described as sorting the data to process more of the data in parallel. At some

time in the future, BigQuery may be smart enough to infer the table size so that

you won’t need to use a qualifi er, but as of this writing, the EACH keyword is

required when performing “big” JOINs or certain GROUP BYs.

It isn’t recommended to just add EACH to all your queries; for many types of

queries (JOIN of one large table against a smaller one, or GROUP BY with only a

few distinct values), using EACH may be signifi cantly slower. A reasonable rule

of thumb is that if the smaller table in the JOIN is more than 1 million rows, or

the GROUP BY has more than a million distinct values, you’re probably better

off using EACH.

234 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 234

Approximate Values: COUNT DISTINCT

Another BigQuery deviation from standard SQL is the behavior of

COUNT DISTINCT, which returns only an approximate value. This is often surpris-

ing to users who want to get an exact count of the number of distinct values in a

column. The fewer the number of distinct values, the better the approximation

will be; if less than 1000, the number will be exact.

BigQuery doesn’t provide an exact value by default because the exact value

is surprisingly diffi cult to calculate for a large table. To know whether you’ve

seen a value before, you have to keep track of all values that you’ve seen; this

is expensive and diffi cult to do unless you fi rst sort the data.

If you’re not content with the approximate value, you have two options: Supply

a bucket count as an optional argument to COUNT(DISTINCT field, [buckets]),

or rewrite your query to perform a GROUP EACH BY and count the results.

For example, say your original query is:

SELECT COUNT(DISTINCT word)
FROM [publicdata:samples.shakespeare]

The exact value is 32,786, but the value returned by the preceding query

is 31,719. One option for rewriting the query is just to specify a bucket count

larger than the expected value. There are only approximately 50,000 words in

the English language, so a bucket count of 50,000 should be reasonable.

SELECT COUNT(DISTINCT word, 50000)
FROM [publicdata:samples.shakespeare]

This gives the exact value. Specifying a higher bucket count has limitations;

however, each bucket takes up memory, and too many buckets can cause a

Resources Exceeded error. If you want to remove any uncertainty, you can

perform a GROUP BY operation:

SELECT COUNT(*)
FROM (
 SELECT word
 FROM [publicdata:samples.shakespeare]
 GROUP BY word)

The downside to the GROUP BY approach is that it may make it more diffi cult

to compute multiple values in a single query; that is, if you were also trying to

compute the sum of the word_count fi eld as well, you’d have to make sure that

count would propagate through the GROUP BY, as in:

SELECT COUNT(word), SUM(word_count)
FROM (
 SELECT word, SUM(word_count) AS word_count
 FROM [publicdata:samples.shakespeare]
 GROUP BY word)

 Chapter 7 ■ Running Queries 235

c07.indd 12:41:4:PM 05/02/2014 Page 235

Size Limitations in Ordered Results

In most SQL databases, you can add an ORDER BY X clause to the end of your

query, and no matter what, your results will come back in a prescribed order.

When you have large data, however, sorting is expensive.

If you run an ORDER BY operation on too many values, BigQuery returns a

Too Many Results error. This error often confuses people because ORDER BY is

often combined with a LIMIT clause limiting the number of results. How can

there be too many results if you limit it to 10? The problem is that the ORDER BY

must be done over the entire result set before the limit is applied—the query

engine can’t just take 10 random results and return those in order.

There is only a partial workaround for the size limitation in the ORDER BY

operation. Much of the time when you run a query that has an ORDER BY opera-

tion, you’re interested only in the fi rst few results. You want to fi nd the highest

value, or the most frequent, and so on. If you run queries that have this pattern

but have a large number of potential results, you can use the TOP function.

Following is an example of rewriting a query with an ORDER BY into a TOP query:

SELECT corpus, COUNT(*) AS total
FROM [publicdata:samples.shakespeare]
GROUP BY corpus
ORDER BY total DESC
LIMIT 20

You can rewrite as
SELECT TOP(corpus, 20), COUNT(*) AS total
FROM [publicdata:samples.shakespeare]

Note that TOP() is only approximate; however if you are just looking for the

most common values, it will virtually always give you the ones you want.

Nested and Repeated Fields

The BigQuery data model supports nested and repeated fi elds; neither of these

are part of standard SQL. Nested fi elds are simply fi elds that are nested into

records; for the most part they are indistinguishable from fi elds with “.” in the

name. Repeated fi elds are a bit funkier, however. They allow you to have a single

fi eld contain multiple values of the same type. Fields can be both nested and

repeated; this means that a single fi eld can have an array of records.

Because there wasn’t a standard syntax for SQL queries over nested and

repeated data, the BigQuery team opted for query simplicity rather than language

rigor. That means that BigQuery tries to “do the right thing” with respect to

your query and often makes queries over nested and repeated data convenient.

For example, when you use a repeated fi eld in a GROUP BY clause in a query, the

repeated fi eld is automatically fl attened. (That is, for each repeated value, the

236 Part II ■ Basic BigQuery

c07.indd 12:41:4:PM 05/02/2014 Page 236

entire row is repeated.) However, sometimes nested and repeated data can be

awkward or surprising. For instance, seemingly trivial changes to the query

can cause an automatic fl attening. Multiple repeated fi elds can also be diffi cult

to manage in a single query.

That said, having the ability to query over nested and repeated fi elds is

extremely powerful and can be a way to write much more convenient queries

than if you had to store your data in a less natural format. You can read about

how to query over your nested and repeated data in Chapter 10.

Summary

 This chapter showed you how to run queries via the BigQuery API and how to

write queries in the BigQuery SQL language. You should now be comfortable

with the various options for executing queries; you should know how to set

destination tables and priorities; and you should know how to get query results

larger than 128 MB. This chapter also discussed the quotas and limits imposed

by BigQuery. Forthcoming chapters delve into the architecture, which hopefully

can provide some rationale behind those limits.

The BigQuery SQL language should be more familiar; you went through

several example queries that were similar to queries you might want to run on

your own, and differences between BigQuery SQL and SQL dialects you may

be more familiar with were highlighted.

By this point in the book, you’ve walked through all the major pieces of

BigQuery, and you should be ready to start developing applications that leverage

the service. The next chapter ties together the pieces and builds a log-processing

application with what you’ve learned so far.

237

c08.indd 01:46:12:PM 05/08/2014 Page 237

The fi rst one-half of the book describes the mechanics of how you interact

with BigQuery at different layers of the programming stack; covering the low

level HTTP transport all the way up to the command-line and web client. The

following chapters cover more advanced uses of BigQuery by exploring the

query language and how to assemble basic operations into useful solutions. This

chapter in the middle of the book is a bit of a diversion. It covers the construc-

tion of a toy application involving Android, App Engine, and a few JavaScript

frameworks—all of which are quite independent of BigQuery. The point of

building an application involving these pieces and BigQuery is to concretely

demonstrate how the service can be leveraged in a real application.

One important caveat is that the application code is not actually production

code. Production code with all the requirements of testability and comprehen-

sive error handling tends to obscure the core functionality. The code samples

that accompany this chapter provide a complete application while allowing

you to quickly see how the various pieces fi t together. Even the discussion in

the chapter focuses on the parts where the different components integrate with

each other because those tend to be the most interesting. Also, no attempt has

been made to strictly adhere to the best practices of any of the platforms other

than BigQuery. After all, this is a book about BigQuery, and a number of excel-

lent books and online resources for working with Android and App Engine

C H A P T E R

8

Putting It Together

238 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 238

are available. To summarize, this chapter can be a source of ideas for how you

can incorporate BigQuery into your applications to enable easy data analyses

rather than source code to be incorporated directly. Portions of the code are also

called out that can be made more robust as a useful exercise.

This chapter appears in the middle of the book rather than at the end because

it presents concrete use cases for the solutions described in the following chapters

that cover advanced BigQuery features. If you are not interested in the details

of the application, you may want to at least read the fi rst section explaining its

functionality because it provides some context for the material in later chapters.

A Quick Tour

The introduction to the book discussed the question of what qualifi es as Big

Data. One possible criterion was data volumes that exceed the capacity of a single

machine to process in an acceptable amount of time and hence require some

distributed processing scheme. One way to generate this volume would be to

have a single machine generating data for a long time. The more common way

you might end up in this situation is when the data generation is distributed.

Now that connected devices are ubiquitous, it is common for applications to

have a million or more clients. Even if each client generates only a couple records

per day, with these kinds of numbers, it is easy for the data volumes to quickly

exceed the bounds of a single machine. As homage to the wild rise of mobile

devices, the sample application involves a mobile app that periodically records

the state of the phone and pushes it into the cloud for analyses.

The mobile component of the application is an Android app. The app has a

simple management panel that handles registering the device for log collec-

tion, manages the state of log collection, and selects an interval for logging, as

shown in Figure 8.1. When logging is enabled, a background task is scheduled

to periodically sample the state of the phone and ship it to the cloud component

of the application.

You can inspect the logs being recorded by selecting the Last Log menu

item, which brings up a panel containing the last record that was posted as

a JSON value. Before you can proceed with registration, you need to visit the

web application.

The Google App Engine hosted web application implements the registration

service that maintains a list of registered devices for each user. You can fi nd

this at https://bigquery-sensors.appspot.com/manage.

You may download and install the mobile app by selecting the Google Playstore

link. The device management page requires that you are logged in to the website

(using Google managed sign on). The page, as shown in Figure 8.2, lists the set of

devices you have registered with the application and a registration code to add

a new device. You need to enter this code into the mobile app to register it with

https://bigquery-sensors.appspot.com/manage

 Chapter 8 ■ Putting It Together 239

c08.indd 01:46:12:PM 05/08/2014 Page 239

the service before you can enable monitoring on your phone. Deleting a device

from the list causes the application to stop accepting data from the device. The

descriptions that follow do not require you to have the application installed or

your device registered, so feel free to skip these steps.

Figure 8.1: Mobile client

This is a good time to describe the type of information that will be transferred

to the service. The logs include the following information about your phone:

 ■ Device ID

 ■ Screen status

 ■ Battery and power

 ■ System memory usage

 ■ Location information

 ■ Running applications

The version of the application available on the site records only the coarse

location information, whereas the version built from the sample code records

fi ne location information. This is a fair amount of information, but the app does

allow you to disable recording location and application information. Still, if

240 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 240

you have concerns, you should defi nitely consider building your own version

of the application and logging to your private instance for experimenting with

this sample application.

Figure 8.2: Device registration

The last part of the application is a dashboard that summarizes the logs

being received by the application. Although the fi rst two parts described dealt

with getting data into BigQuery, this part deals with extracting and rendering

a useful summary of the data. The dashboard is again built on Google App

Engine and is available at: https://bigquery-sensors.appspot.com/console.

The page consists of a collection of graphs and tables that provide an aggre-

gated view of the state of the phones registered with the service. Of course,

aggregated information is interesting, but a key strength of BigQuery is the

capability to perform interactive queries over a large number of records with-

out any pre-aggregation. To highlight this capability, the application generates

reports for individual phones registered under your account. You can navigate

to these records from the device management page previously mentioned by

clicking the device ID for the registered device. This takes you to a page with

a summary of the records associated with that device.

https://bigquery-sensors.appspot.com/console

 Chapter 8 ■ Putting It Together 241

c08.indd 01:46:12:PM 05/08/2014 Page 241

GIT REPOSITORY

The source for the sample application is included in the download for this chapter.

However, we expect it to evolve over time, so we have also made it available as an

online repository at https://code.google.com/p/bigquery-e2e/.

You can download the latest version from the site as a zip fi le, or if you have git

installed, you can check out the source code.

$ GOOGLE_USER='<your Google username>'

$ git clone https:/${GOOGLE_USER}@code.google.com/p/bigquery-e2e/

We would be happy to receive patches!

In the process of building the sample application, we were frequently reminded

that interesting data is often sensitive data. Whenever a large amount of detailed

information is collected, it must be carefully managed. We have ensured that

the top-level dashboard, shown in Figure 8.3, contains only aggregated data and

that only the owners of devices have access to device level dashboards. Also, the

datasets containing the logs are not publicly shared because it is hard to predict

what kind of information can be extracted by running queries. We encourage

you to deploy your own instance of the application if you want to try it in depth.

Figure 8.3: Dashboard

https://code.google.com/p/bigquery-e2e

242 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 242

Now that you have some idea of what the application does, you can peel

back the covers and see how the individual components are put together. The

next few sections are organized to roughly correspond with the description

of the parts given in this section. Other than a few points of integration, the

individual pieces are fairly independent, so you can focus on the ones that are

most interesting to you.

Mobile Client

The Android platform was chosen for the sample, so you need to install the devel-

oper tools for building Android applications. The current Android Development

Kit is a tool chain that integrates with the Eclipse IDE. A version is also available

for IntelliJ, referred to as Android Studio, which is available as an early access

preview at this time. For the sample in this book we have supplied an Eclipse

project that you can import to build the code and experiment with the applica-

tion. If you do not already have Eclipse installed, fi rst you need to download and

install the IDE from http://www.eclipse.org. You can download and install the

development kit from http://developer.android.com/sdk/. Detailed installa-

tion instructions are available on the site, which we will not bother reproducing

here. The sample application targets version 17 of the Android runtime.

 1. Start Eclipse and select Windows ➪ Android SDK Manager and ensure

that version 17 of the SDK is installed. It is fi ne if more than one SDK

version is installed.

 2. After you have the SDK installed, create a new Eclipse project that imports

the sample application code. The recommended practice for Android

projects is to include the Eclipse project settings in your source code (and

revision control system), so it is included in the download for this chapter.

After unpacking the download for the chapter, you can fi nd the source

code for the mobile client under ch08/sensors/client.

 3. To create the project in Eclipse, select File ➪ Import ➪ Android/Existing

Android Code into Workspace. In the dialog that appears, set the root

directory to the full path to the client source directory, and ensure that

both Copy Projects into Workspace and Add Project to Working Sets are

unchecked.

 4. Clicking Finish creates a project called SensorsClient in your Eclipse

workspace. The project defaults to building automatically. You can disable

automatic building and instead select the project and then use Project ➪

Build Project explicitly. If everything is set up correctly, the project should

build without any errors.

The built application needs to be deployed either to a virtual device or a real

phone. A virtual device is convenient for testing and is straightforward to set

http://www.eclipse.org
http://developer.android.com/sdk

 Chapter 8 ■ Putting It Together 243

c08.indd 01:46:12:PM 05/08/2014 Page 243

up. Selecting Window ➪ Android Virtual Device Manager brings up a dialog

listing confi gured devices and controls to edit them and create new ones. You

can fi nd instructions on managing virtual devices at http://developer.android

.com/tools/devices/.

The sample application targets SDK version 14 as the minimum supported

version, so the main setting to pay attention to when creating the device is to

select a target with a SDK version equal to or higher than 14. For reference, the

app was developed using a Nexus 4 virtual device with Android 4.2.2 (API ver-

sion 17). It is also fairly simple to test the application on a real device. Detailed

instructions are available at http://developer.android.com/tools/device.html.

These online resources are part of the Android developer website, which is a

useful destination if you are interested in experimenting with the sample mobile

client. With the SDK set up you can start exploring the source code.

Monitoring Service

The source code for the project is spread across four Java source fi les and a hand-

ful of XML fi les that contain UI resources. The core part of the application is a

background service that periodically wakes up, captures the state of the phone,

and ships it to the cloud component of the application by performing an HTTP

POST operation. This functionality is implemented in the fi les:

 ■ MonitoringService.java

 ■ CommandRunner.java

The rest of the fi les implement the user interface for the application and

handle the registration of the device. In the context of BigQuery and analytics,

this background service, shown in Listing 8.1, is the most interesting part of the

application and demonstrates a design you may end up reusing in your clients.

Listing 8.1: MonitoringService.java

public class MonitoringService extends IntentService {
 // ELIDED
 private String deviceId;
 private CommandRunner commandRunner;
 private PendingIntent pendingIntent;
 private JSONObject lastRecord;
 // ELIDED

 public void start(String deviceId, int intervalMillis,
 CommandRunner commandRunner) {
 stop();
 this.deviceId = deviceId;
 this.commandRunner = commandRunner;
 // ELIDED
 pendingIntent = PendingIntent.getService(this, 0, logIntent, 0);

continues

http://developer.android
http://developer.android.com/tools/device.html

244 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 244

Listing 8.1 (continued)

 AlarmManager alarm =
 (AlarmManager) getSystemService(Context.ALARM_SERVICE);
 alarm.setRepeating(AlarmManager.RTC_WAKEUP, Calendar.getInstance()
 .getTimeInMillis(), intervalMillis, pendingIntent);
 }

 public void stop() {
 if (pendingIntent != null) {
 AlarmManager alarm =
 (AlarmManager) getSystemService(Context.ALARM_SERVICE);
 alarm.cancel(pendingIntent);
 pendingIntent = null;
 }
 deviceId = null;
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 if (intent.filterEquals(logIntent)) {
 try {
 JSONObject newRecord = buildRecord();
 appendToLog(newRecord);
 lastRecord = newRecord;
 Intent update = new Intent(LOG_UPDATE);
 sendBroadcast(update);
 transmit(newRecord);
 } catch (JSONException ex) {
 Log.e(TAG, "Failed to build JSON record.", ex);
 } catch (IOException ex) {
 Log.e(TAG, "Could not save record.", ex);
 }
 }
 }

 private void transmit(final JSONObject record) {
 AsyncTask<Void, Void, Void> task =
 new AsyncTask<Void, Void, Void>() {
 @Override
 protected Void doInBackground(Void... params) {
 try {
 // Performs the HTTP operation to transmit the record.
 commandRunner.run("record", record);
 } catch (ErrorResult e) {
 Log.e(TAG, e.getError() + ": " + e.getMessage());
 }
 return null;
 }
 };

 Chapter 8 ■ Putting It Together 245

c08.indd 01:46:12:PM 05/08/2014 Page 245

 task.execute();
 }

 private JSONObject buildRecord() throws JSONException {
 SharedPreferences prefs =
 getSharedPreferences(ManageActivity.PREFS, MODE_PRIVATE);
 JSONObject newRecord = new JSONObject();
 newRecord.put("id", deviceId);
 newRecord.put("ts",
 ((double) Calendar.getInstance().getTimeInMillis()) / 1000.0);
 newRecord.put("screen_on",
 ((PowerManager)
 getSystemService(Context.POWER_SERVICE)).isScreenOn());
 newRecord.put("power", getPowerStatus());
 ActivityManager activityManager =
 (ActivityManager) getSystemService(ACTIVITY_SERVICE);
 newRecord.put("memory", getMemory(activityManager));
 if (prefs.getBoolean(ManageActivity.LOCATION_STATE, true) &&
 lastLocation != null) {
 newRecord.put("location", getLocation(lastLocation));
 }
 if (prefs.getBoolean(ManageActivity.APPLICATIONS_STATE, true)) {
 newRecord.put("running", getRunning(activityManager));
 }
 return newRecord;
 }
 // ELIDED

 private void appendToLog(JSONObject record) throws IOException {
 File currentLog = new File(getCacheDir(), CURRENT_LOG);
 if (currentLog.exists() && currentLog.length() > MAX_LOG_SIZE) {
 File lastLog = new File(getCacheDir(), LAST_LOG);
 if (lastLog.exists()) {
 if (!lastLog.delete()) {
 Log.e(TAG, "Could not delete old log file: "
 + lastLog.getPath());
 return;
 }
 }
 if (!currentLog.renameTo(lastLog)) {
 Log.e(TAG, "Could not rotate: " + currentLog.getPath());
 return;
 }
 }
 FileOutputStream log = new FileOutputStream(currentLog, true);
 log.write(record.toString().getBytes());
 log.write('\n');
 log.close();
 }
}

246 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 246

When users interact with an application, there is often a stream of interest-

ing events developers would like to capture. Shipping these events from the

client to a backend service needs to be done with some care. Performing block-

ing network operations on user interface threads is entirely taboo because it

can cause the user interface to become unresponsive. Even issuing individual

asynchronous I/O operations is usually not optimal because it leads to small,

frequent, and concurrent network operations that each have fi xed HTTP and

network overheads that can lead to ineffi cient usage of network bandwidth.

In Android you can instead implement a background logging service for your

application, as done in the sample application. This allows you to optimize the

transmission of the logs, for example, by batching them into larger requests,

ensuring only a single request is outstanding at any given time and controlling

the rate at which requests are initiated.

In Listing 8.1 you can see the main methods that control the life cycle of the

service. The start(...) method registers periodic alarms with the operating

system that cause the onHandleIntent(...) method to be invoked periodi-

cally. The stop() method cancels the alarm using the handle saved when the

alarm was registered. The log is captured and sent in the onHandleIntent(...)

method, but notice that the actual transmission of the record that occurs in the

transmit(...) method is wrapped in an AsyncTask. The reason for this addi-

tional complexity is that onHandleIntent(...) is invoked on the event handling

thread, and we want to avoid stalling the event handling thread. Even for a

background service, it is important to avoid blocking on the event handling

thread because that would make the service appear to be unresponsive to the OS.

This background logging service is not complex because the data is generated

in the background service and on a fi xed schedule. A useful exercise would be

to modify the implementation so that it can batch records rather than transmit

each one independently.

Next turn your attention to the buildRecord() method that collects the data

to be logged. Observe that we use the Android JSON library to construct a

JSONObject with the data. This is convenient because it ends up in a format that

is directly compatible with what the BigQuery API expects. The table schema we

are targeting is shown in Listing 8.2. In the appendToLog(JSONObject record)

method, we append the records to a log fi le on the device. This is convenient for

testing because the resulting fi le can be extracted from the virtual device and

loaded into BigQuery using the load operation because the log fi le is correctly

formatted as newline-delimited JSON. If the load job succeeds, you know that you

are generating records with the correct fi elds for the table you are aiming to fi ll.

Listing 8.2: Log table schema

[
 {"name": "id", "type": "string", "mode": "required"},
 {"name": "ts", "type": "timestamp", "mode": "required"},

 Chapter 8 ■ Putting It Together 247

c08.indd 01:46:12:PM 05/08/2014 Page 247

 {"name": "screen_on", "type": "boolean"},
 {"name": "power", "type": "record", "fields": [
 {"name": "charging", "type": "boolean"},
 {"name": "usb", "type": "boolean"},
 {"name": "ac", "type": "boolean"},
 {"name": "charge", "type": "float"}
]},
 {"name": "memory", "type": "record", "fields": [
 {"name": "available", "type": "integer"},
 {"name": "used", "type": "integer"},
 {"name": "low", "type": "boolean"}
]},
 {"name": "location", "type": "record", "fields": [
 {"name": "ts", "type": "timestamp"},
 {"name": "accuracy", "type": "float"},
 {"name": "provider", "type": "string"},
 {"name": "lat", "type": "float"},
 {"name": "lng", "type": "float"},
 {"name": "altitude", "type": "float"},
 {"name": "bearing", "type": "float"},
 {"name": "speed", "type": "float"},
 {"name": "country", "type": "string"},
 {"name": "state", "type": "string"},
 {"name": "zip", "type": "string"}
]},
 {"name": "running", "type": "record", "mode": "repeated", "fields": [
 {"name": "name", "type": "string"},
 {"name": "pid", "type": "integer"},
 {"name": "uid", "type": "integer"},
 {"name": "memory_trim", "type": "integer"},
 {"name": "importance", "type": "record", "fields": [
 {"name": "level", "type": "integer"},
 {"name": "reason", "type": "integer"},
 {"name": "lru", "type": "integer"},
 {"name": "pid", "type": "integer"},
 {"name": "component", "type": "string"}
]},
 {"name": "package", "type": "string", "mode": "repeated"},
 {"name": "memory", "type": "record", "fields": [
 {"name": "total", "type": "integer"},
 {"name": "dirty_private", "type": "integer"},
 {"name": "dirty_shared", "type": "integer"}
]}
]}
]

Client Server Protocol

Generally, when implementing client/server communication, you would use

a full-featured framework that enables you to concentrate on the higher level

248 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 248

details of the messages being communicated rather than the details of the wire

protocol. A nice option for the Google Android/App Engine (iOS is also sup-

ported) platform is the Google Cloud Endpoints framework. This is available

at https://cloud.google.com/products/cloud-endpoints/.

This is a well-rounded framework for implementing web services with sup-

port for generating strongly typed server and client libraries that simplify

building the application. However, for our sample such a framework adds a

lot of machinery that tends to obscure the core functions performed. Also,

implementing a simple client/server protocol is a good way to appreciate what

these frameworks are trying to solve and why you would want to use them in

a production application. This section describes the code that implements the

client side of the simple protocol used in the application.

CLIENT/SERVER FRAMEWORKS

The Google Cloud Endpoints framework is only one of many frameworks suitable for

production client/server communication. Following are a few other libraries that you

may want to consider if you are looking for a solution for client/server communication.

 ■ GSON: Automatic Java object to JSON conversion (https://code.google
.com/p/google-gson/)

 ■ Volley: Framework for asynchronous HTTP requests (https://developers
.google.com/events/io/sessions/325304728)

 ■ Retrofi t: Java annotation-based framework for generating REST API bindings

(http://square.github.io/retrofit/)

The protocol the application uses is based on passing JSON encoded data in

HTTP POST requests and responses. For each message to be sent, the client initi-

ates a separate POST request with the data encoded in the body of the request,

and the server responds with a JSON object. If no errors occur the client can go

ahead and use the response object from the server. Because this is a monitoring

application, the server never has to return data to the client, so when a request

succeeds, the client simply receives an empty JSON object. The client has to deal

with three types of errors:

 ■ Errors at the HTTP transport layer and below

 ■ Request encoding errors

 ■ Application level errors

You cannot control how the fi rst class of errors is reported but the latter two

classes of errors are detected by the code, so you can decide how to signal the

issue. We chose to report request-encoding errors using the appropriate HTTP

client error (4xx) status codes. When the request is well formed but the server

https://cloud.google.com/products/cloud-endpoints
https://code.google.com/p/google-gson
https://code.google.com/p/google-gson
https://developers.google.com/events/io/sessions/325304728
https://developers.google.com/events/io/sessions/325304728
http://square.github.io/retrofit

 Chapter 8 ■ Putting It Together 249

c08.indd 01:46:12:PM 05/08/2014 Page 249

encounters an error while processing it, we chose to return HTTP status code 200

(which indicates success at the HTTP layer) but return a JSON object containing

the keys error and message to indicate why the request failed. Finally, the client

specifi es the action to be performed with the request object using the appropri-

ate URL on the server (/command/<action>). The client side implementation of

the protocol is shown in Listing 8.3.

Listing 8.3: CommandRunner.java

class CommandRunner {
 private final URI host;

 static class ErrorResult extends Exception {
 private static final long serialVersionUID = 1L;
 private final String error;

 ErrorResult(JSONObject error) {
 super(error.optString("message"));
 this.error = error.optString("error", "Unknown");
 }

 ErrorResult(Throwable ex) {
 super(ex);
 this.error = ex.getClass().getSimpleName();
 }

 String getError() {
 return error;
 }
 }

 CommandRunner(String host) {
 try {
 this.host = new URI("http://" + host);
 } catch (URISyntaxException ex) {
 throw new RuntimeException(ex);
 }
 }

 // Handles transmitting a command and decoding the response.
 JSONObject run(String command, JSONObject arg) throws ErrorResult {
 JSONObject result = new JSONObject();
 HttpURLConnection conn = createConnection(command);
 try {
 byte body[] = arg.toString().getBytes();
 int responseCode = sendRequest(conn, body);
 String response = readResponse(conn);
 try {
 result = responseCode == 200 ?
 new JSONObject(response) :

continues

250 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 250

Listing 8.3: (continued)

 connectionError(responseCode, response);
 } catch (JSONException ex) {
 throw new ErrorResult(ex);
 }
 } finally {
 conn.disconnect();
 }
 if (result.has("error")) {
 throw new ErrorResult(result);
 }
 return result;
 }

 // Sets up an HTTP connection to the command URL.
 private HttpURLConnection createConnection(String command)
 throws ErrorResult {
 String path = "/command/" + command;
 try {
 URL url = host.getPort() == -1 ?
 new URL(host.getScheme(), host.getHost(), path) :
 new URL(host.getScheme(), host.getHost(),
 host.getPort(), path);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setConnectTimeout(60 * 1000);
 conn.setReadTimeout(60 * 1000);
 conn.setRequestProperty(
 "User-Agent", CommandRunner.class.getCanonicalName());
 conn.setDoInput(true);
 conn.setDoOutput(true);
 return conn;
 } catch (IOException ex) {
 throw new ErrorResult(ex);
 }
 }

 // Opens the connection and performs the HTTP POST operation.
 private int sendRequest(HttpURLConnection conn, byte[] body)
 throws ErrorResult {
 conn.setRequestProperty("Content-Type", "application/json");
 conn.setFixedLengthStreamingMode(body.length);
 try {
 conn.setRequestMethod("POST");
 conn.connect();
 OutputStream os = conn.getOutputStream();
 try {
 os.write(body);
 } finally {
 os.close();
 }
 return conn.getResponseCode();

 Chapter 8 ■ Putting It Together 251

c08.indd 01:46:12:PM 05/08/2014 Page 251

 } catch (IOException ex) {
 throw new ErrorResult(ex);
 }
 }

 // Reads the response body from the HTTP connection.
 private String readResponse(HttpURLConnection conn)
 throws ErrorResult {
 int contentLength = conn.getContentLength();
 try {
 InputStreamReader is =
 new InputStreamReader(conn.getInputStream(), "UTF-8");
 try {
 StringBuilder builder = new StringBuilder();
 char buffer[];
 if (contentLength > 0) {
 buffer = new char[contentLength];
 } else {
 buffer = new char[512];
 }
 int charsRead;
 while ((charsRead = is.read(buffer)) > 0) {
 builder.append(buffer, 0, charsRead);
 }
 return builder.toString();
 } finally {
 is.close();
 }
 } catch (IOException ex) {
 throw new ErrorResult(ex);
 }
 }

 // Wraps a HTTP error code and response body in an ErrorResult object.
 private JSONObject connectionError(int code, String body) {
 JSONObject result = new JSONObject();
 try {
 result.put("error", "ConnectionError");
 result.put("message", String.format("Code = %d: %s", code, body));
 } catch (JSONException e) {
 throw new RuntimeException(e);
 }
 return result;
 }
}

The application performs two types of requests, a registration request and a

log request. The registration request is initiated by the settings UI component

(ManageActivity.java), and you can see in Listing 8.1 that the monitoring service

initiates the logging request in transmit(...). Both classes use the CommandRunner

class, shown in Listing 8.3, that implements the protocol described. This class is

252 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 252

initialized with a host that it will direct the requests to and provides a method

that accepts a command and JSON object pair and returns a JSON object result.

It handles all the details of turning this into a suitable request and decoding a

suitable response. Note how it also unifi es all error handling across the three

types of errors discussed previously so that the caller needs to deal only with

a single uniform type of exception. This class provides a good transition to the

server side of the application because the two pieces integrate based on this pro-

tocol, so the next section covers the server side implementation of this protocol.

Log Collection Service

The Google App Engine was chosen for the implementation of the web component

of the service. This platform is particularly well suited to building custom user

interfaces over data hosted in BigQuery. Communication between the services

is simple and effi cient; and the GAE framework provides a number of support

services, like scheduled tasks and task queues, to build data management solu-

tions on top of BigQuery. Chapter 11, “Managing Data Stored in BigQuery,”

and Chapter 12, “External Data Processing,” discuss how to move data, in both

directions, between Datastore, the App Engine scalable transactional store, and

BigQuery. In the sample application, App Engine is used to manage the registry

of devices, relay logs from the devices into BigQuery, and serve the dashboard

pages. The source code for the application is available in the chapter download at:

ch08/sensors/cloud

To work with this code you need the App Engine Python SDK, which is avail-

able at https://developers.google.com/appengine/downloads.

If you are entirely new to App Engine you should take a look at the Python

tutorial on the App Engine documentation site. It covers the initial setup and

the basics of using App Engine for developing web applications. It is available

at https://developers.google.com/appengine/docs/python/.

There are plug-ins that can help with development if you use Eclipse as your

IDE, but it is not necessary for working with the code for this chapter. You

can test the application locally without actually provisioning an App Engine

application, but if you want to test it with real devices, you need to deploy the

code to a live instance.

https://developers.google.com/appengine/downloads
https://developers.google.com/appengine/docs/python

 Chapter 8 ■ Putting It Together 253

c08.indd 01:46:12:PM 05/08/2014 Page 253

USING YOUR OWN INSTANCE

To use the source code with your own BigQuery project and application instance, you

need to modify constants in three fi les.

sensors/cloud/src/app.yaml

 application: <your application id>

sensors/cloud/src/config.py

 PROJECT_ID = '<your project id>'

sensors/client/res/values/strings.xml

 <your application id>.appspot.com

After you modify the code, you can upload the application to your instance using

the App Engine SDK.

appcfg.py update -–oauth2 sensors/cloud/src

Since the App Engine application will be invoking the BigQuery API, you need

to confi gure API access for your application. In the Developer Console, you need to

enable the BigQuery API for the project associated with your App Engine application.

Then you need to add the application service account, available from Administration

➢ Application Settings, to your BigQuery project as an editor. This setup can be

reused for the App Engine examples discussed in Chapters 11 and 12.

Log Trampoline

Start by looking at how the client communicates with the web applica-

tion to implement registration and logging. Just like the client had a single

class, _JSONHandler, encapsulate the details of the client server protocol in

the mobile client, there is a class in the server code that deals with the detail

of unpacking requests and packing responses. Subclasses implement the

handle(self, arg) method and perform the actual operation and return a

result as a JSON object, which in Python is any dictionary-like object that the

JSON library can serialize. The method can optionally raise an exception, which

the base class catches and transforms into an error as specifi ed by the simple

communication protocol used in this application. Listing 8.4 contains the source

code for the base class and the two handlers implemented in the application.

Listing 8.4: Command handlers (main.py)

class _JsonHandler(webapp2.RequestHandler):
 '''Generic JSON command handler.'''

continues

254 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 254

Listing 8.4: (continued)

 MAX_PAYLOAD_SIZE = 16 * 1024

 def post(self):
 if self.request.headers.get('Content-Type') != 'application/json':
 self.response.set_status(
 httplib.UNSUPPORTED_MEDIA_TYPE,
 message='Expected Content-Type: application/json')
 return
 if len(self.request.body) > self.MAX_PAYLOAD_SIZE:
 self.response.set_status(
 httplib.REQUEST_ENTITY_TOO_LARGE,
 message=('Max payload size (%d) exceeded' %
 self.MAX_PAYLOAD_SIZE))
 return
 try:
 arg = json.loads(self.request.body)
 except ValueError, e:
 self.response.set_status(
 httplib.BAD_REQUEST,
 message='Could not parse body as json: ' + str(e))
 return
 self.response.headers['Content-Type'] = 'application/json'
 try:
 result = json.dumps(self.handle(arg))
 except Exception, e:
 result = self.json_error(e)
 self.response.out.write(result)

 def json_error(self, e):
 logging.warn('Handler Error: %s' % unicode(e))
 return json.dumps({'error': e.__class__.__name__,
 'message': e.message})

 def handle(self, arg):
 raise NotImplementedError

class RegisterHandler(_JsonHandler):
 '''Handle the registration command.'''
 def handle(self, arg):
 device_id = arg.get('id', None)
 if not device_id:
 raise ValueError('id entry missing from argument')
 candidate = models.Candidate.get_by_device_id(device_id)
 if not candidate:
 raise KeyError('Id %s not valid' % device_id)
 candidate.register(arg)
 return {}

class RecordHandler(_JsonHandler):

 Chapter 8 ■ Putting It Together 255

c08.indd 01:46:12:PM 05/08/2014 Page 255

 '''Handle the logging command.'''
 def handle(self, arg):
 device_id = arg.get('id', None)
 if not device_id:
 raise ValueError('id entry missing from argument')
 device = models.Device.get_by_device_id(device_id)
 if not device:
 raise KeyError('id %s not valid' % device_id)
 # Extract the UTC day from the timestamp in the record.
 ts = int(arg.get('ts', 0.0))
 day = datetime.utcfromtimestamp(ts)
 # Save the record using the streaming API.
 result = bigquery.tabledata().insertAll(
 projectId=PROJECT_ID,
 datasetId='logs',
 tableId='device_' + day.strftime("%Y%m%d"),
 body=dict(rows=[
 # Generate a suitable insert id.
 {'insertId': ('%s:%d' % (device_id, ts)),
 'json': arg}])).execute()
 if 'error' in result or result.get('insertErrors'):
 logging.error('Insert failed: ' + unicode(result))
 return {}

app = webapp2.WSGIApplication([
 # ELIDED
 webapp2.Route(r'/command/register',
 handler=RegisterHandler, name='register'),
 webapp2.Route(r'/command/record',
 handler=RecordHandler, name='record'),
], debug=True)

The registration handler looks up the supplied registration ID in Datastore,

and if it fi nds it, the handler adds a new device record with the data supplied

by the client. Chapter 11 looks at this device registration information in more

detail and explains how to pull it into BigQuery for analytics. Here you focus

on the handler, which handles the logs sent by the clients, particularly because

this method directly integrates with BigQuery via the streaming insert API.

The server receives a log record as a JSON object, which is handled by

RecordHandler.handle(...). The one bit of logic that the code applies is to direct

the record to the daily table corresponding to the timestamp in the record. It is

signifi cant that the code uses data from the record to deterministically compute

the destination table. If instead it used the system time or some other value that

could change independently of the record, then it is possible for a given record to

be inserted into different tables if the client happened to retry the request due to

an unexpected error receiving the acknowledgment from the server. To protect

against similar duplication between the handler and BigQuery, it generates a

256 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 256

globally unique insertId, assuming at most one record per second from each

device, by concatenating the device ID and timestamp.

Since the client is shipping a JSON object that conforms to the schema of the

BigQuery table, it can directly be added as the json fi eld of the insert record.

The server is a trampoline for the mobile logs because it bounces the record

from the client with no transformations into a BigQuery operation. This imple-

mentation tends to be straightforward but suffers from the drawback that you

will be paying for the App Engine resources required to process these records.

If you have a large volume of data fl owing to BigQuery, the resources required

can be substantial. In the next section on how authentication works on App

Engine, you look at a scheme to avoid passing the data through App Engine.

Before wrapping up this section on saving the logs, consider how these daily

tables are created. After all, the streaming insert operation requires that the tables

already exist. The function to create a set of daily tables for upcoming days is

fairly simple and shown in Listing 8.5. It attempts to create 3 tables between

2 and 4 days ahead of the current time. The advantage of creating multiple

consecutive tables is that it automatically incorporates retries on failures. If

you run this handler every day, then it attempts to create a given table 5 times

before it is required. Of course, creating a table for a given day on that same

day is too late since insertions will already be failing. However, it is convenient

for initial setup. Also take a look at how the expiry time is set up on the table.

Note that the expiry time is calculated relative to the time it will start to receive

records rather than its creation time. Keeping the expiry aligned with the UTC

day boundary also makes the lifetime more predictable. Tables vanishing at

arbitrary times within a day would be confusing. The mechanism to run this

handler every day is discussed in detail later in the chapter.

Listing 8.5: Table Creation Handler (dashboard.py)

class _CreateTableHandler(webapp2.RequestHandler):
 # The get call schedules the post call to create tables.
 def get(self):
 taskqueue.add(url=self.request.route.build(
 self.request, [], {}))
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.write('ok')

 # Performs the actual creation.
 def post(self):
 # First create required datasets.
 for dataset in ['logs', 'dashboard']:
 try:
 bigquery.datasets().insert(
 projectId=PROJECT_ID,
 body={

 Chapter 8 ■ Putting It Together 257

c08.indd 01:46:12:PM 05/08/2014 Page 257

 'datasetReference': {
 'datasetId': dataset
 }
 }).execute()
 except HttpError, e:
 if e.resp.status == httplib.CONFLICT:
 logging.info('Dataset %s exists' % dataset)
 else:
 logging.error('Error: ' + str(e))

 # Create daily tables for the next few days.
 with open('bq/schema_log.json', 'r') as schema_file:
 schema = json.load(schema_file)
 today = datetime.datetime.utcnow()
 for delta in xrange(2, 5):
 day = today + datetime.timedelta(days=delta)
 exp = calendar.timegm(
 (day + datetime.timedelta(days=15)).replace(
 hour=0, minute=0, second=0, microsecond=0)
 .utctimetuple()) * 1000
 request = bigquery.tables().insert(
 projectId=PROJECT_ID,
 datasetId='logs',
 body={
 'tableReference': {
 'tableId': day.strftime('device_%Y%m%d')
 },
 'expirationTime': exp,
 'schema': {
 'fields': schema
 }
 })
 try:
 result = request.execute()
 logging.info('Created table ' + result['id'])
 except HttpError, e:
 if e.resp.status == httplib.CONFLICT:
 logging.info('Table for %s exists' % day)
 else:
 logging.error('Error: ' + str(e))

Authentication

There are three separate types of credentials used in this application:

 ■ The end user’s Google credentials

 ■ The application service account’s Google credentials

 ■ Application-specifi c device registration IDs

258 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 258

This section describes how these three credentials related to each other and

in particular how a device is bound to an end user account.

The Manage Devices page of the application is annotated using a Python

decorator, @login_required, to indicate it requires authenticated access. The

user proves their identity by presenting a cookie issued by Google’s login ser-

vice. If users visit the page without the appropriate cookie, they are redirected

to the login page to obtain one. Based on the user’s identity, the page fetches

and renders the set of phones associated with the account and a registration ID,

also bound to the user’s identity, which can be used to add a new phone. When

the user enters this ID in the mobile client, the client passes the ID to the web

application to verify that it is valid, and if it is, the client uses it to start logging

records. This completes the association of a device to a user account.

Each time a log record is received from the mobile client, the web applica-

tion validates that the device ID in the record is still associated with some user

account. Because there is no user identity involved at this point, it is assumed

that the ID is globally unique. This is achieved, with an infi nitesimal chance of

collision, by generating a 9-byte (9 bytes fi t in a 12 byte Base64 encoded string)

random number as the registration ID for a user. If the ID in the record is suc-

cessfully located, then the application writes the record to BigQuery under its

service account identity. This completes the chain of custody that ensures only

users with registered devices can get their logs into the project’s BigQuery tables.

The mechanism used to prove the application’s service account identity to

BigQuery is OAuth, which is covered in detail in Chapter 5, “Talking to the

BigQuery API.” However, there is a simple API for obtaining the OAuth token

for this special identity when running under App Engine. Because App Engine

runs the application code, it can vouch for the identity of the application. It does

this by essentially injecting a token into the application. An App Engine-specifi c

module in the Google OAuth library can access this injected token.

import httplib2
from oauth2client.appengine import AppAssertionCredentials
from apiclient import discovery
from google.appengine.api import memcache

credentials = AppAssertionCredentials(
 scope='https://www.googleapis.com/auth/bigquery')
bigquery = discovery.build('bigquery', 'v2',
 http=credentials.authorize(httplib2.Http(memcache)))

When the BigQuery client is constructed this way under App Engine, the

framework supplied token is added as an authentication header by the OAuth

library to the client HTTP requests. Of course, this authenticates only the requests.

There is still the question of authorization, which depends on suitable ACLs being

present on the objects accessed. You need to add the service account identity to

the BigQuery projects and datasets that will be accessed from App Engine. The

identity is referenced using a handle that looks like an e-mail address:

https://www.googleapis.com/auth/bigquery

 Chapter 8 ■ Putting It Together 259

c08.indd 01:46:12:PM 05/08/2014 Page 259

<app id>@appspot.gserviceaccount.com

You can add this handle to an ACL just like you would a regular user account.

This information is always available under the Application Settings section of

the App Engine administration console for your application.

SERVICE ACCOUNT AND LOCAL TESTING

Service account credentials are easy to obtain when your application is actually run-

ning in App Engine. However, during development, the local development server

cannot generate the credential for the service account associated with your applica-

tion. This is inconvenient because all the code that interacts with BigQuery will fail.

Fortunately, the dev_appserver.py supports passing it a diff erent service account

and private key on the command line and then simulates the production behavior but

generates credentials for the supplied service account instead. Chapter 3, “Getting

Started with BigQuery,” covers the provisioning of service accounts in a project.

The private key downloaded from the Google Developer Console is not in the right

format for use with the development server, so it needs to be converted before it can

be used. The following instructions require that you have OpenSSL installed.

$ SERVICE_ACCOUNT='<account email>'

$ DOWNLOADED_KEY='downloaded-privatekey.p12'

$ DEVAPPSERVER_KEY='/tmp/key-rsa.pem'

$ openssl pkcs12 -in ${DOWNLOADED_KEY} \

 -nodes -nocerts -passin pass:notasecret |

 openssl rsa -out ${DEVAPPSERVER_KEY}

$ dev_appserver.py \

 --appidentity_email_address ${SERVICE_ACCOUNT} \

 --appidentity_private_key_path ${DEVAPPSERVER_KEY} \

 sensors/cloud/src/app.yaml

This runs the development server locally on port 8080 and an administration con-

sole on port 8000. The application depends on certain datasets and tables existing in

your BigQuery project. To create them, visit the administration console at http://
localhost:8000/ and navigate to the Cron Jobs section. Run each of the jobs listed

starting with /dashboard/create. Once this is done you can visit http://
localhost:8080/. You will be greeted with a very empty dashboard until you actu-

ally record some data.

The authentication and authorization scheme described here is the simplest

approach supported by the App Engine framework. Most of the time it should

be suffi cient. However, as was pointed out in the previous section, it suffers

from the drawback that it requires all BigQuery bound requests to pass through

App Engine. It turns out that the OAuth protocol allows you to avoid this pass-

through without compromising the security of your data. Remember, from

Chapter 5 “Talking to BigQuery API,” that an OAuth credential consists of two

pieces: a short-lived access token passed in API requests to service providers

http://localhost:8000
http://localhost:8000
http://localhost:8080
http://localhost:8080

260 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 260

such as BigQuery, and a refresh token passed to authentication providers such

as the Google login service to obtain fresh access tokens. Instead of requests

passing through the application, just let the application return the access token

to clients and have them directly communicate with BigQuery.

To do this safely, a service account with limited access should be provisioned,

and the OAuth credential should be constructed only with the scopes required

by the client operation. For example, for logs written by the clients, the account

needs to have write access to the dataset containing the log tables and only the

streaming scope is required.

https://www.googleapis.com/auth/bigquery.insertdata

Like the scopes introduced previously, this is not really a URL. It is just the

string used to identify the scope when authenticating. It is important to create a

separate account solely for this purpose and limit its access to just the datasets

that will receive the records. This will avoid inadvertently leaking additional

privileges to clients that have the access token.

Because the access token is only valid for a short time, its capabilities will be

fairly limited. Although such an approach is defi nitely valuable in scenarios in

which the traffi c volume is substantial, signifi cant drawbacks exist. The most

obvious one is that you can no longer rely on server-side validation. If there are

rogue or broken clients, they might corrupt tables by writing bad data, so pay

attention to these scenarios when considering this approach.

You can encounter the same issue of passing data through the App Engine

application when building the dashboard component discussed next. Reading

data can also bypass the web application if the access token is shipped to a

JavaScript client running in the browser. Locking down the capabilities for

this type of access can be quite challenging and is often not justifi ed because

the resources required are not that much greater than what is required to serve

the dashboard itself.

Dashboard

The goal of the dashboard page is to provide a summary of the data collected

by the application so that viewers can quickly identify the main trends. Most

of the effort in putting together a useful dashboard goes toward fi nding the

right queries and selecting the appropriate visualizations. However, there are

aspects of using BigQuery that require special attention when it is used to drive

a dashboard or reporting application. Chapter 11 covers these patterns in detail.

This section highlights where they appear in the sample application so that you

can see them in action.

https://www.googleapis.com/auth/bigquery.insertdata

 Chapter 8 ■ Putting It Together 261

c08.indd 01:46:12:PM 05/08/2014 Page 261

Data Caching

Because a dashboard page is often viewed frequently, requires multiple queries

to construct, and users expect it to appear with little delay, it is not a good idea

to issue new queries for every dashboard page request. Queries that involve

large tables are especially problematic because the costs for these will be sub-

stantial and the latency high enough that it will stall the rendering of the page.

Instead, you can cache the data that needs to be rendered periodically so that

the resources used to compute the data can be shared across multiple views

of the dashboard. In App Engine it is easy to coordinate this caching using its

task-scheduling feature. The application defi nes a cron.yaml fi le containing a

list of tasks and their scheduling information.

cron:
- description: create daily tables
 url: /dashboard/create
 schedule: every day 01:00
- description: 10m dashboard refresh
 url: /dashboard/trigger/10m
 schedule: every 10 minutes
- description: hourly dashboard refresh
 url: /dashboard/trigger/12h
 schedule: every 12 hours

App Engine invokes the confi gured URLs at the appropriate time to kick off

the operation. You can see that we also included an entry for the table creation

task shown in Listing 8.5. Keep in mind that these URLs need to be locked down

because we would not want end users to trigger these operations. The simplest

way to do this is in the dispatch confi guration in app.yaml.

- url: /dashboard/.*
 script: dashboard.app
 login: admin

Note that the development server does not run these automatically, but you

can use the administration console to trigger them for testing as described in

the “Service Account and Local Testing” feature above.

To avoid running expensive and slow queries each time the dashboard page

is requested, we have chosen to maintain a cache of results required by the page

in the dashboard dataset. The contents of this dataset are updated periodically

by using the scheduled task facility of AppEngine to run query jobs that write

their results to tables in this dataset. The page itself only uses tables in this

dataset to present a visual summary to the viewer.

262 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 262

The way we have chosen to organize updating our tables for the dashboard

is to defi ne a list containing BackgroundQuery objects. Each object specifi es the

query job confi guration to be executed and a refresh interval. The handler for

the scheduled task scans the list for entries with a refresh interval matching

the interval specifi ed as a request parameter to the task and launches the job

for each match.

For simplicity, the scheduled task does not bother to check the status of these

jobs because it does not need the result. Of course, there is the possibility of

transient failures. For cached results that are updated frequently this may not

matter because the job will be re-executed in a little while. However, for longer

intervals this may lead to unacceptable staleness, so in a production application

you would ideally wait for completion and, if a transient error is detected, retry

the query. It is important that the destination tables for these jobs be in a specifi c

location, as opposed to being anonymous, because they are going to be read or

queried while rendering the dashboard, as shown in Listing 8.6.

Listing 8.6: Dashboard cache management (dashboard.py)

Structure representing a query to be cached.
BackgroundQuery = namedtuple('BackgroundQuery', [
 'query_job',
 'max_age',
])

Scheduled task to trigger dashboard refreshes.
class _Trigger(webapp2.RequestHandler):
 # max_age is the interval be handled.
 def get(self, max_age):
 logging.info("Triggering: " + max_age)
 for index in xrange(len(BACKGROUND_QUERIES)):
 cached = BACKGROUND_QUERIES[int(index)]
 # Only trigger if it is the special value 'all' or if the
 # configuration specifies an interval matching the input interval.
 if (max_age == 'all' or cached.max_age == max_age):
 taskqueue.add(url='/dashboard/update', params={'index': index})
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.write('ok')

Handles a dashboard cache update for a given configuration.
class _Update(webapp2.RequestHandler):
 # max_age is the interval be handled.
 def post(self):
 index = self.request.get('index')
 logging.info("Dashboard update: " + index)
 cached = BACKGROUND_QUERIES[int(index)]
 result = bigquery.jobs().insert(

 Chapter 8 ■ Putting It Together 263

c08.indd 01:46:12:PM 05/08/2014 Page 263

 projectId=PROJECT_ID,
 body=cached.query_job).execute()
 logging.info(str(result))
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.write('ok')

Helper function to construct query job configurations.
def _dashboard_query_job(
 query,
 table,
 # Results cached for rendering go in the dashboard dataset.
 dataset='dashboard'):
 return {
 'configuration': {
 'query': {
 'query': query,
 'destinationTable': {
 'projectId': PROJECT_ID,
 'datasetId': dataset,
 'tableId': table
 },
 'writeDisposition': 'WRITE_TRUNCATE'
 }
 }
 }

List of queries that need to be cached in the dasboard dataset.
BACKGROUND_QUERIES = [
 BackgroundQuery(
 _dashboard_query_job(
 '''SELECT
 SEC_TO_TIMESTAMP(INTEGER(TIMESTAMP_TO_SEC(ts)/60) * 60)
 [Minute],
 COUNT(ts) [Records],
 SUM(IF(screen_on, 1, 0)) / COUNT(ts) [FracScreenOn],
 SUM(IF(power.charging, 1, 0)) / COUNT(ts) [FracCharging],
 SUM(IF(power.charge > 0.5, 1, 0)) / COUNT(ts) [FracHalfCharged]
 FROM TABLE_DATE_RANGE(logs.device_,
 DATE_ADD(CURRENT_TIMESTAMP(), -1, 'DAY'),
 CURRENT_TIMESTAMP())
 WHERE TIMESTAMP_TO_USEC(ts) > (NOW() - 24 * 60 * 60 * 1000 * 1000)
 GROUP BY 1
 ORDER BY 1''',
 'records_per_minute'
),
 max_age='10m'
),
 BackgroundQuery(
 _dashboard_query_job(
 '''SELECT running.name, COUNT(id)

continues

264 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 264

Listing 8.6: (continued)

 FROM TABLE_DATE_RANGE(logs.device_,
 DATE_ADD(CURRENT_TIMESTAMP(), -6, 'DAY'),
 CURRENT_TIMESTAMP())
 WHERE LEFT(running.name, LENGTH('com.android.')) != 'com.android.'
 AND LEFT(running.name, LENGTH('android.')) != 'android.'
 AND LEFT(running.name, LENGTH('com.google.')) != 'com.google.'
 AND LEFT(running.name, LENGTH('com.motorola.')) != 'com.motorola.'
 AND LEFT(running.name, LENGTH('com.qualcomm.')) != 'com.qualcomm.'
 AND running.name NOT IN (
 'system',
 'com.googlecode.bigquery_e2e.sensors.client',
 'com.redbend.vdmc')
 AND running.importance.level >= 100
 AND running.importance.level < 400
 GROUP BY 1
 ORDER BY 2 DESC''',
 'top_apps'
),
 max_age='12h'
),
 BackgroundQuery(
 _dashboard_query_job(
 '''SELECT ZipsInDay, COUNT(1) FROM (
 SELECT D, id, COUNT(zip) ZipsInDay FROM (
 SELECT
 DATE(ts) D, id, location.zip [zip]
 FROM TABLE_DATE_RANGE(logs.device_,
 DATE_ADD(CURRENT_TIMESTAMP(),
 -6, 'DAY'),
 CURRENT_TIMESTAMP())
 GROUP EACH BY 1, 2, 3)
 GROUP EACH BY 1, 2)
 GROUP BY 1 ORDER BY 1''',
 'zips_in_day'
),
 max_age='12h'
),
]

This simple application has only a couple of tables that need to be updated, so

you could just initiate the query jobs from the scheduled task. However, if there

are a large number of tables and especially if you want to monitor the outcome of

the operation, it is not practical to issue them sequentially in a single scheduled

task handler. The sample code is designed to scale up by leveraging the Task

Queue framework available in App Engine (https://developers.google.com/

appengine/docs/python/taskqueue/). The scheduled task adds tasks to a queue

rather than performing the actual work. Besides ensuring that the scheduled

task completes in a bounded amount of time, the use of queues also allows the

https://developers.google.com/appengine/docs/python/taskqueue
https://developers.google.com/appengine/docs/python/taskqueue

 Chapter 8 ■ Putting It Together 265

c08.indd 01:46:12:PM 05/08/2014 Page 265

application to manage the concurrency of operations to ensure you stay under

BigQuery rate limits. Here we simply use the default queue confi guration, but

App Engine allows custom queue confi gurations that rate limit task execution.

Data Transformation

You now have data cached in the dashboard dataset, ready for delivery to the

user for rendering in the UI. In the sample application you have the JavaScript

client fetch the data from the web application rather than directly from BigQuery

so that you can control the access to the data. Also, you want to make it simple

for the JavaScript application to render the data, so you want to supply it in a

format that is convenient for your rendering framework. To support this you

can implement a handler in the web application that enables you to transform

the data returned by BigQuery into different formats. This code is a little com-

plex because it needs to be fl exible in input and output. Chapter 5 describes

two different methods for reading data. The data from a table can be read via

the bigquery.tabledata().list() operation, and data that is the result of a

query job can be read via the bigquery.jobs().query() and bigquery.jobs()

.getQueryResults() methods. The former can read data from any table. The lat-

ter which is limited to tables generated by query jobs has the advantage that you

can issue a query and read its result in a single call for queries that run quickly

and return a modest amount of data. We have implemented the data handler

in the application so that it supports both methods as shown in Listing 8.7. If an

existing table is requested, the bigquery.tabledata() API is used, and if the

request requires running a new query, the bigquery.jobs() API is invoked.

Listing 8.7: Data formatting handler (dashboard.py)

class _Formatter(object):
 '''Base class for formatting rows.'''

 def mime_type(self):
 '''Returns the mime type that the format conforms to.'''
 return 'text/plain'

 def start(self, out):
 '''Called before the first row is output.'''
 pass

 def format(self, out):
 '''Called for each batch of rows to be formatted.'''
 pass

 def finish(self, out):
 '''Called after all rows have been written.'''

continues

266 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 266

Listing 8.7: (continued)

 pass

class _CSV(_Formatter):
 '''Format rows as CSV.'''
 def format(self, rows, out):
 out.write('\n'.join([
 ','.join([cell.get('v') for cell in row.get('f')])
 for row in rows]))

class _Datatable(_Formatter):
 '''Format data for consumption by the google visualization library.'''
 def __init__(self, config):
 self._columns = json.dumps(config.columns)
 # Need to cast values because the Datatable will treat strings
 # as 0 rather than casting to a number.
 self._converters = [
 float if c['type'] == 'number' else str
 for c in config.columns
]
 self._add_comma = False

 def _cast(self, cols):
 return [
 {"v":self._converters[i](cols[i]['v'])}
 for i in xrange(len(cols))
]

 def mime_type(self):
 return 'application/json'

 def start(self, out):
 out.write('{"cols":' + self._columns + ',\n "rows":[\n')

 def format(self, rows, out):
 if rows:
 if self._add_comma:
 out.write(',\n')
 else:
 self._add_comma = True
 out.write(',\n'.join([
 ('{"c":[' +
 (','.join([json.dumps(cell) for cell in
 self._cast(row.get('f'))])) +
 ']}')
 for row in rows]))

 def finish(self, out):
 out.write(']}')
class _NextPage(object):

 Chapter 8 ■ Putting It Together 267

c08.indd 01:46:12:PM 05/08/2014 Page 267

 '''Abstract class for paginating over data.'''
 def fetch(self, token=None, num=10000):
 return self._make_request(token, num).execute()

 def _make_request(self, token, num):
 pass

class _TableData(_NextPage):
 '''Implements paginating with tabledata().list().'''
 def __init__(self, project, dataset, table):
 self._kwargs = dict(
 projectId=project,
 datasetId=dataset,
 tableId=table)

 def _make_request(self, token, num):
 return bigquery.tabledata().list(
 pageToken=token,
 maxResults=num,
 **self._kwargs)

class _QueryResults(_NextPage):
 '''Implements paginating with jobs().getQueryResults().'''
 def __init__(self, project, job):
 self._kwargs = dict(
 projectId=project,
 jobId=job)

 def _make_request(self, token, num):
 return bigquery.jobs().getQueryResults(
 pageToken=token,
 maxResults=num,
 **self._kwargs)

class _DataHandler(webapp2.RequestHandler):
 def _init_formatter(self, config):
 if self.request.get('format') == 'datatable':
 return _Datatable(config)
 return _CSV()

 def get(self, console_id):
 self.response.headers['Cache-Control'] = 'max-age=300'
 console = CONSOLES[int(console_id)]
 formatter = self._init_formatter(console)
 self.response.headers['Content-Type'] = formatter.mime_type()
 if console.table:
 dataset, table = console.table
 next_page = _TableData(PROJECT_ID, dataset, table)
 result = next_page.fetch()
 else:
 result = bigquery.jobs().query(

continues

268 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 268

Listing 8.7: (continued)

 projectId=PROJECT_ID,
 body={'query': console.query, 'maxResults': 10000}).execute()
 if 'jobReference' in result:
 job_id = result['jobReference']['jobId']
 next_page = _QueryResults(PROJECT_ID, job_id)
 while 'jobComplete' in result and not result['jobComplete']:
 result = next_page.fetch()
 formatter.start(self.response)
 while result.get('rows'):
 formatter.format(result['rows'], self.response)
 result = (next_page.fetch(result['pageToken'])
 if 'pageToken' in result else {})
 if result.get('code', 200) != 200:
 self.response.set_status(
 500, message=('Could not fetch data for %s\n%s' %
 (str(console.table or console.query), json.dumps(result))))
 return
 formatter.finish(self.response)

CONSOLES = [
 ConsoleData(
 [
 {'label': 'Minute', 'type': 'number'},
 {'label': 'Records', 'type': 'number'},
],
 query=(
 '''SELECT Minute, Records
 FROM dashboard.records_per_minute
 ORDER BY 1''')),
 ConsoleData(
 [
 {'label': 'Minute', 'type': 'number'},
 {'label': 'Screen On', 'type': 'number'},
 {'label': 'Charging', 'type': 'number'},
 {'label': 'Half Charged', 'type': 'number'},
],
 query=(
 '''SELECT Minute, FracScreenOn, FracCharging, FracHalfCharged
 FROM dashboard.records_per_minute
 ORDER BY 1''')),
 ConsoleData(
 [
 {'label': 'Application', 'type': 'string'},
 {'label': 'Users', 'type': 'number'},
],
 table=('dashboard', 'top_apps')),
 ConsoleData(
 [
 {'label': 'Zips In One Day', 'type': 'number'},

 Chapter 8 ■ Putting It Together 269

c08.indd 01:46:12:PM 05/08/2014 Page 269

 {'label': 'Num Device Days', 'type': 'number'},
],
 table=('dashboard', 'zips_in_day')),
]

Note that the handler does not actually accept a table name or query in the

request. Instead it expects an index into a list defi ned in the fi le that explicitly

defi nes specifi c tables and queries. This avoids the issue of SQL injection exploits

or inadvertently exposing tables because the client is not allowed to directly

specify a query or table name. The list is constructed a bit like our cached table

defi nitions with a structure describing the data to be supplied to the web client.

One aspect that may seem a little odd is that we use queries in this list despite

having the ability to cache data. The reason is that the queries in this list are

designed to take advantage of the BigQuery internal cache, so they do not add

any overhead. This technique is covered in Chapter 11.

Web Client

Turning data into useful visualizations is a vast topic. The main goal of the

sample application is to demonstrate the pattern for integrating with a suitable

framework. There are a bewildering number of visualization libraries span-

ning the dimensions of sophistication and ease of use. The right choice greatly

depends on the application and other components being employed. For the

sample application we use two separate visualization frameworks:

 ■ http://dygraphs.com/

 ■ https://developers.google.com/chart/

Honestly, we could have just made do with the second, Google Charts, frame-

work. However, we chose to use two fairly different frameworks to better illus-

trate what it takes to integrate with a given framework. When you look at the

code, you see that most of the machinery that moves and manipulates the data

is independent of the visualization layer. There is a little bit of plumbing that

varies that needs to be switched. In fact, we have already covered the most

complex piece, the formatting of the data. The previous section introduced the

CSV and Datatable formatters. We use CSV to populate Dygraph time series

visualizations and the Datatable format to populate Google Charts visualiza-

tions. In the JavaScript code, this results in a minor change to the URL from

which the data is loaded, as shown in Listing 8.8.

Listing 8.8: Dygraph and Google Charts (dashboard.js)

(function() {
 var g = new Dygraph(
 document.getElementById("g1"),

continues

http://dygraphs.com
https://developers.google.com/chart

270 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 270

Listing 8.8: (continued)

 "/data/1?format=csv",
 {
 title: "Screen and Power",
 xlabel: "Time",
 ylabel: "Fraction",
 labels: ["Time", "Screen On", "Charging", "Half Charged"],
 legend: "always",
 labelsDiv: document.getElementById("g1-legend"),
 xValueParser: function(x) { return 1000 * parseFloat(x); },
 axes: {
 x: {
 valueFormatter: function(ms) {
 return new Date(ms).strftime('%H:%M');
 },
 axisLabelFormatter: function(d) {
 return d.strftime('%m/%d');
 },
 ticker: Dygraph.dateTicker,
 pixelsPerLabel: 100
 }
 },
 rollPeriod: 12
 });
})();

$.ajax({
 url: "/data/2?format=datatable",
 dataType:"json",
}).done(function (data) {
 (new google.visualization.PieChart(document.getElementById('g2')))
 .draw(new google.visualization.DataTable(data),
 {
 title: "App Usage",
 titleTextStyle: { fontSize: 20 },
 chartArea:{left:"10%", top:"10%",
 width:"90%", height:"90%"},
 sliceVisibilityThreshold: 1.0/120
 });
})

This code is simple, assuming some familiarity with Javascript and HTML,

because all the heavy lifting has been done on the server. If you are not familiar

with Javascript or JQuery, in particular, the key point is that this code is mostly

confi guration specifying labels and visual options for the graphs. Beyond that

the only information needed to fetch and render the data is a URL where the

 Chapter 8 ■ Putting It Together 271

c08.indd 01:46:12:PM 05/08/2014 Page 271

server returns results in the appropriate format. With this done you have fi nally

completed the dashboard application. If you want to experiment with the visu-

alization code and integration with BigQuery, you do not have to limit yourself

to these mobile logs. It is easy to modify the code to use tables from the public

dataset or any other dataset your service account can access.

Beyond the Dashboard

One of the key features of BigQuery is that the raw data is always easily acces-

sible for exploration as shown in Figure 8.4. As part of the sample project, we

have made some of the data we collected from our personal phones available

for queries, so you can get a sense of ad-hoc exploration. This feature was used

heavily during development to select and refi ne suitable queries. In later chap-

ters you also see how to use third-party tools to build dashboards or visualize

this data.

Figure 8.4: Data in BigQuery UI

272 Part II ■ Basic BigQuery

c08.indd 01:46:12:PM 05/08/2014 Page 272

Summary

This chapter demonstrated how the whole platform can be stitched together to

build rich applications for recording and analyzing data. This sample code might

be a useful starting point for exploring various features of the Google Cloud

Platform. There are certainly areas in which the integration is challenging, but

we demonstrated that in a lot of cases the pieces fi t together quite naturally. If

there is an aspect of the application that does not seem clear at this point, read

on, because detailed explanation of the techniques used in this application

appear in the following chapters.

Lastly, you should also check out the sample applications released by the

BigQuery team. You can see one example at https://demobigquery.appspot.c om/.

Generally, the source code for these applications is also made available so

that you can adapt it to your application. Because the product is adding features

regularly, these examples evolve over time to refl ect the best way to implement

solutions using the servi ce.

https://demobigquery.appspot.c

c09.indd 12:35:11:PM 05/02/2014 Page 273

In This Part

Chapter 9: Understanding Query Execution

Chapter 10: Advanced Queries

Chapter 11: Managing Data Stored in BigQuery

Par t

III
Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 274

275

c09.indd 12:35:11:PM 05/02/2014 Page 275

The SQL query language defi nes what data should be returned by a query, not

how the results should be obtained. For the past 40 years or so, the primary

engine for performing SQL queries has been the relational database. People are

familiar with how a relational database works. They’ve developed an intuition

for what will run quickly, what will be ineffi cient, and what kinds of things to

avoid. Their intuition is based on knowledge about how a relational database

will execute their queries.

Although BigQuery runs the same types of SQL queries that you can run

on a relational database, it executes them in a different way. Because of this,

intuition that you may have about query execution is likely to lead you astray.

For example, in a relational database, there may be a performance advantage to

storing some computed value so that it can be indexed. In BigQuery, because of

the parallel architecture, you can do complex manipulation inline in the query

without a signifi cant change in query execution time.

This chapter describes the architecture of the underlying Dremel query

engine used by BigQuery. The aim is to help you develop an intuition about

how BigQuery queries will execute. It also should shine a light on some of the

quirks of execution, such as why you may get a Response Too Large error even

if you’ve specifi ed that you want only 10 rows in the response.

There are three main sections in this chapter. The fi rst part describes the

ColumnIO storage format and Dremel query execution architecture. The second

part discusses how various queries are processed, and some of the tricks that

C H A P T E R

9

Understanding Query Execution

276 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 276

are used to process queries in parallel. Finally, Dremel is compared to other

familiar execution environments, such as a traditional relational database (for

example, MySQL) and MapReduce (for example, Hadoop or Hive).

After reading this chapter, you should be able to write queries that run effi -

ciently and take advantage of the power of the Dremel query engine. Moreover,

you should understand why some queries fail and what to do to fi x them. The

next chapter, which describes some advanced query techniques, draws heavily

from the concepts described here.

Background

A large portion of the effort that goes into database research and engineering

development deals with improving query performance. Much of that work is

predicated on the knowledge that some things are slow and others are fast—

reading from disk is slow, whereas reading memory is fast; seeking to a new spot

on the disk is slow, but a sequential scan is fast. Processors can compute values

quickly, but it is even better to precompute values that you’re going to need.

One of the cardinal sins of database design is the table scan, which is what

you resort to when the query optimizer gives up and can’t fi gure out a fast way

to execute your query. A table scan does exactly what it sounds like; it scans the

entire table by reading it one row at a time. On many database systems, not only

are table scans slow, but also they risk slowing down other operations because

they keep the disk busy. A signifi cant portion of the complexity in a modern

database system is designed to avoid table scans, at all costs.

The designers of Dremel thought, “Why does a table scan have to be slow?”

“What would it take to make a table scan fast?” and “If we do make a table scan

fast, does that make other things easier?” They set a goal of performing a table

scan over a 1 TB table in less than 1 second.

Achieving a processing rate of a terabyte per second is tough. A standard

hard disk can read approximately 100 MB per second. (That is probably a bit on

the high side, but it is in the right ballpark.) If you have a hard disk and want to

read a terabyte from it, it is going to take you 10,000 seconds, or approximately

3 hours.

Moreover, if you’re going to do interesting queries, but don’t have indexes,

you’re going to need a lot of processing capacity. If your 1 TB table has 256 bytes

per row, you can process 1 million rows per second per CPU. To process the

whole table in one second would take 4,000 CPUs.

The combination of innovative software design, scale-out architecture, and

Google’s massive hardware infrastructure enabled the Dremel team to achieve its

goal of taming the table scan. The architecture sections in this chapter describe

how they did it. If you prefer to read the technical writeup, a research paper

 Chapter 9 ■ Understanding Query Execution 277

c09.indd 12:35:11:PM 05/02/2014 Page 277

introducing Dremel is available from the Google Research website here: http://

research.google.com/pubs/pub36632.html.

The technology described in this chapter is not necessarily what will be

running when you use BigQuery. The individual components, from the

ColumnIO storage format to the Colossus File System to the Dremel servers,

are all undergoing constant improvement and innovation. Description of

some components in this chapter are simplifi ed in order to prevent disclosing

confi dential information. The important part is that the high-level concepts

are likely to remain the same in the future, even if the underlying technology

stack changes over time.

Storage Architecture

The most expensive part of any operation over Big Data is almost always I/O.

As previously mentioned, the disk I/O involved to read a 1 TB table will take

hours. If your goal is to interactively query a 1 TB table, you need to fi gure out

ways to bring the time you spend reading data down by 5 orders of magnitude.

There are two technologies that Dremel uses to achieve (and at times far

surpass) the 1 TB per second goal. The fi rst is called Colossus: a large, parallel,

distributed fi lesystem, developed at Google as a successor for the Google File

System (GFS). The second is the storage format, called ColumnIO, which arranges

the data in a manner that makes it easier to query.

Colossus File System (CFS)

Although Google described the architecture of its predecessor GFS in a public

research paper (http://static.googleusercontent.com/media/research

.google.com/en/us/archive/gfs-sosp2003.pdf), it has kept Colossus largely

under wraps. Details about Colossus are generally confi dential; it is a refi nement

of GFS that fi xes a number of scalability problems. For now just focus on the

features of CFS that enable Dremel’s super-fast query performance, which for

the most part, are the same as GFS (or the open source clone, HDFS).

Colossus is a distributed fi lesystem, which means that the storage is not

physically attached to the machines requesting the data, and that data is dis-

tributed across the network. All of the data in Colossus is stored on commodity

disks. Expensive storage hardware solutions can be fast, but they are a single

point of failure and often don’t scale well. Storing the data on standard server

hard drives means that you can afford a lot more of them—you just need to be

prepared when some of them inevitably fail.

The machines that contain the disks and serve up the data are called chunk
servers. The term “chunk” refers to portions of the fi les; a large fi le will be split

http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf

278 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 278

into multiple chunks, and each will be stored on different physical disks. This

partitioning means that you can get higher effective read bandwidth because you

can read from many of these disks in parallel. Dremel takes advantage of this;

when you run a query, it can read your data from thousands of disks at once.

Splitting the data into multiple partitions that can be read in parallel is a pow-

erful way to make reads fast, but it isn’t suffi cient for the performance required

by Dremel. There are a lot of reasons that reading a particular chunk could be

slow; the machine serving it could be overloaded, it could have crashed, there

could be network congestion, or the disk could be going bad. Although the

probability of each of these problems is small, when you read from thousands

of disks, the chances that at least one has a problem gets much higher.

The term for having a laggard or two among a lot of samples is called tail
latency. A query is only as fast as the slowest disk; a problem in the “tail” of the

latency distribution can signifi cantly affect query performance. One way that

Colossus handles tail latency is via replication. That is, multiple copies of the

same data are stored in different locations. So if one chunk server is slow, the

data can be fetched from somewhere else.

The published Dremel paper mentioned another way of limiting tail latency—

ignoring data that takes too long to read, as long as enough of it can be read.

Internal Google services use this option, usually requiring only 98 percent of

the data to be read before calling a query successful. BigQuery, however, does

not use this option; for a BigQuery query to succeed, every last byte of data

must be read.

ColumnIO

ColumnIO is the primary fi le format used to store data in BigQuery. In a tra-

ditional database, data is laid out on disk in order to ensure access is as fast as

possible for typical workloads. The ColumnIO data format is laid out to ensure

fast access for Dremel workloads. Traditional databases rely on indexes so that

they can skip to the data they need for the query. Dremel takes a more brute

force approach, reading every single row for each query. While a database such

as MySQL can skip rows it doesn’t need, Dremel takes an alternative approach;

it can avoid reading columns it doesn’t need.

Traditional databases store data in row-order. That is, they store all the fi elds

in the fi rst row, then all the fi elds in the second row, and so on. ColumnIO stores

the data in column-order. Each column gets its own fi le. To read from multiple

columns at once, you need to open all the fi les you need and iterate through

each one in parallel. This read operation must be synchronized, but because

each column is coming from a different chunk server, the I/O requests can all

be performed in parallel.

 Chapter 9 ■ Understanding Query Execution 279

c09.indd 12:35:11:PM 05/02/2014 Page 279

Note that in a traditional storage system, reading from column-based storage

will likely be slow because the disk would have to constantly seek for each of

the column fi les instead of just reading sequentially. Because BigQuery stores

the data in CFS, however, each column is going to come from a different disk

in the storage cluster. This means that reading from multiple fi les at once will

not involve any additional seek operations.

Figure 9.1 shows a columnar layout and compares it to a record-based one.

Nested fi elds are treated as completely separate fi elds. Repeated fi elds are packed

within the parent fi eld, with a special marker that indicates the start of the next

row. This makes seeking in a repeated fi eld somewhat more expensive than

seeking in a singular fi eld because you have to scan through all the repeated

values to get to the next row.

Record-Oriented Storage Column-Oriented Storage

Figure 9.1: Record-oriented versus column-oriented storage

There are two factors that make reading from column-oriented storage

faster than record-oriented storage: selectivity and compression. Selectivity is

the ability to select only the columns needed in the query. Many tables have a

wide schema, but most queries just reference a few fi elds. The ability to read

only the columns needed by the query is a key feature of ColumnIO, which

can often reduce the amount of data needed to read by an order of magnitude

or more.

Each column in ColumnIO is compressed separately. Dremel reads back

the compressed data and decompresses it on-the-fl y as needed. Because I/O

bandwidth is by far the biggest bottleneck in the system, you can improve your

overall throughput by a factor of 10 or more by operating over compressed data.

At fi rst, you might not expect a column store to compress so well because it

isn’t immediately apparent why it would compress much better than a record

store—after all, they’re both storing the same data. You’re probably used to

seeing data compress at 2 or 3 to 1 when you compress a fi le, so 10x sounds

unreasonable.

To see why column stores compress so well, think about what a compression

algorithm does: It searches for redundant information and re-encodes it in a

280 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 280

smaller way. For example, if you have the string QQQrrQQQ, you could compress

it to aba, and store the mapping of a to QQQ and b to rr. Although this is a con-

trived example, it is how most compression algorithms work, in some form. First,

the algorithm scans the input and looks for repeated strings. Then it saves the

repeated data in a dictionary. Finally, it can then replace the redundant input

with an optimal encoding.

Now think back to the ColumnIO disk format, which has one fi le per column.

What do the individual fi elds look like? They’re not usually random text. They

often fall into one of the following categories:

 ■ IDs: These could be a customer ID or an e-mail address. They usually

have a decent amount of redundancy (or to be technical, low entropy).

An e-mail address, for example, probably ends in “.com.” In addition,

there are probably a lot of e-mail addresses from the same domain, like

“user@hotmail.com.”

 ■ Small numbers: Most numbers are small and don’t use all their allotted

8 bytes. For example, an age column will be unlikely to have more than

100 distinct values. Even when they’re larger, numbers often follow pat-

terns; numbers in nature have a lot more 1s than 9s, whereas prices have

a lot more 9s than anything else.

 ■ Enumerated data: Enumerations are the kings of redundancy. Often in

a database table, you have a column for Item Code or Language. These

fi elds may have only a few distinct values but may take up a lot of space

writing out those values in full for each row.

 ■ Regular strings: Many string-valued fi elds compress extremely well.

A URL, for example, nearly always starts with http://, and the rest

of the URL could be mostly redundant. A user-agent string is another

example, which tends to be a long string describing a browser but with

a high degree of regularity.

It is also usually more effi cient to compress values of the same type than it

is to compress records containing multiple types. Floating point values have

numerical similarities, as do UTF-8 encoded characters in a string; these simi-

larities can be exploited by the compression algorithm to come up with a more

compact representation.

Of course, not all fi elds compress well. But in practice, the compression ratio

within a column is much higher than for raw text. By trading off the time spent

decompressing the data for time spent reading the data from the network, you

can scan the data even faster.

mailto:user@hotmail.com.%E2%80%9D

 Chapter 9 ■ Understanding Query Execution 281

c09.indd 12:35:11:PM 05/02/2014 Page 281

IF COLUMNIO COMPRESSES SO WELL, WHY DOES BIGQUERY CHARGE

PER BY TE INSTEAD OF PER COMPRESSED BY TE?

BigQuery charges for storage based on the number of bytes stored in the table with-

out accounting for compression. As previously described, BigQuery stores data as

compressed and relies on this compression for performance. If your data in BigQuery

is highly compressible, shouldn’t you be rewarded with smaller storage costs?

There are two reasons you’re charged full-freight for your stored data. The fi rst is

that just because the data compresses well doesn’t mean that it is much less diffi cult

to query. For example, if you compare long strings via a WHERE clause, the query

engine has to read the whole string to determine if there is a match, even if that string

compressed well on disk. And although BigQuery could compute one size for queries

and another for storage, that adds signifi cant complexity without much additional

benefi t.

The second rationale behind the pricing is just predictability. Say you upload a column

containing 1,000 integers today and get charged for 2,000 bytes because those integers

compressed at a 4-to-1 compression ratio. If then you upload another 1,000 integers

tomorrow, you might get a completely diff erent compression ratio. Moreover, BigQuery

periodically reshuffl es data as needed by the service. Sometimes, that might change

how the data is split between fi les, which can change the compression ratio for better or

worse. It would be highly surprising if the storage costs for a table changed from day to

day just because BigQuery moved the underlying data.

The compromise that was chosen was to charge only for uncompressed bytes, but

to charge perhaps a lower rate than might have been otherwise picked.

Durability and Availability

This section describes the current implementation of how your data is stored

in BigQuery. While BigQuery does not have offi cial data reliability guarantees,

every table in BigQuery is replicated several times. Data in a CFS cell is rep-

licated in three ways to provide durability and reduce tail latency. BigQuery

also asynchronously replicates all tables to multiple geographically distributed

datacenters. If there is a power failure in one datacenter, it should not affect

your ability to get to your data.

When you initially load data into BigQuery, it is added only to a single

datacenter, so there is a small window where the data is singly homed (even

though it is still replicated three ways within the datacenter). When the

load completes, a synchronization process copies that data to other remote

datacenters. When you query your table, you should always get the most recent

version of your data, even if it has not fi nished replicating everywhere.

282 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 282

When you have distributed a fi lesystem with a large number of disks (at

least 10s of thousands), replication is essential because some of those disks fail

every day. Disks can fail in a lot of different ways: They can develop errors due

to cosmic rays, their motors can burn out slowly, the machine that hosts them

can have a bad power supply, or the magnetic disks can lose their sensitivity.

Having multiple choices of where to read data from comes in handy when you

read from a lot of disks because the odds that at least one is healthy are high.

Durability is a measure of the persistence of data. Data that is replicated nine

ways and has adequate failure replacement policies (that is, when a disk fails

it isn’t just removed, but the copy of the data is replaced on a fresh disk) has

an expected lifetime on the order of 1 million years (see http://cseweb.ucsd.

edu/users/pasquale/Papers/ipdps10.pdf). That said, Google BigQuery does

not at this time publish a durability guarantee for its data. As with all data, if it

is critical, make a backup. BigQuery enables you to easily copy a table to back

it up, or you can export it to Google Cloud Storage for safekeeping.

Availability is a measure of your ability to get to your data when you want it.

BigQuery does publish a guarantee that the service will be available 99.9% of the

time. This guarantee includes the ability to get to your data. The most likely data

non-availability scenario would be if the BigQuery servers had a global outage.

Of course, this section describes a snapshot in time; BigQuery may increase

or decrease the replication factor. Durability and availability of data are and

will continue to be top priorities of Google and BigQuery. For more read-

ing on the subject, check out this blog post on disaster data recovery for

Google enterprise data: http://googleenterprise.blogspot.com/2010/03/

disaster-recovery-by-google.html. Although this article was not specifi cally

written with BigQuery in mind, the policies described are similar.

Query Processing

SQL is a declarative language rather than an imperative one. This is a fancy

way of saying that you declare what you want to happen, rather than describe

how you want it to happen. Without this property, the switch from a standard,

sequentially processed relational database to a parallel query engine like Dremel

would not be nearly as easy. Imagine if, instead of a WHERE clause, you had to

describe how to look up the data in a B-Tree (an on disk data structure that backs

most relational databases). If this was the case, you’d be stuck with databases

that use B-Trees (and, most likely, only programmers would be able to fi gure

out how to run queries).

With SQL, however, the query describes precisely which data you want to

be returned in the query and leaves up to the database implementation how it

wants to get that data. You might have an Oracle database responding to your

http://cseweb.ucsd
http://googleenterprise.blogspot.com/2010/03

 Chapter 9 ■ Understanding Query Execution 283

c09.indd 12:35:11:PM 05/02/2014 Page 283

queries, or you might have an overworked graduate student typing all the

responses by hand.

In the last section, you saw that between the Colossus distributed fi lesystem

and ColumnIO, you can easily meet the goal of reading the data for a 1 TB table

in less than 1 second. Of course, just because you can get all of that data off a

disk quickly doesn’t mean it is going to be fast to run the query. For instance,

you’re not going to be able to process it all on a single machine—even if you

have a magical 10 terabit Ethernet; the fastest memory bandwidth is something

like 25 GB per second, which means you’d need 40 seconds just to read the data

out of memory. And then if you were able to only spend one processor cycle per

row, it would take almost a minute to process a terabyte table.

From these rough calculations, it should be apparent that you need to scale

out the query processing so that it can be done on multiple machines in parallel,

especially if you don’t want to invest in absurdly expensive custom hardware.

In general, Google prefers to buy a lot of off-the-shelf hardware and fi gure out

ways to make algorithms scale out. Any query processing solution, therefore,

should run on commodity hardware.

This section describes the Dremel query engine, which is Google’s solution

for scaling out SQL queries by processing them in parallel.

Dremel Serving Trees

If you were going to construct a parallel SQL engine, how would you do it? You’d

likely want to have a number of independent workers, each operating over a

small subset of the data. For some simple queries, this might be all you need.

Take, for example, the query SELECT field1 FROM table1 WHERE field2 > 0.

This query is trivially parallelizable. Each worker, operating over a portion of the

data, can read the two required fi elds, and return the field1 values whenever

field2 matches the fi lter condition.

You may suspect that not all queries will be this easy, and if so, you are

right. Now take a similar query: SELECT COUNT(field1) FROM table1 WHERE

field2 > 0. This seems like it should be easy too, but instead of just returning

the field1 values, you need to count values. Because you need to return a single

total count, you can’t just have each parallel worker operate independently.

However, you can have another worker aggregate the results and compute the

total sum. Let’s call the aggregator the “mixer,” since it mixes data from multiple

workers, and the workers that are reading the data directly “shards.”

After partitioning the query workers into a mixer and shards, to com-

pute the query results you can send the filter portion of the query

(SELECT field1 WHERE field2 > 0) to each of the shards and have them send

the fi ltered results to the mixer. The mixer would then count the results and

report the fi nal sum.

284 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 284

Alternatively, you could pre-aggregate the count in the shards. That is, com-

pute the local count in the shards, and the mixer would just have to sum up

the partial counts. This way of running the query means that a lot more of the

work can be done in the shards, since the mixer only has to compute the sum of

a few values (one value per shard). Performing more work in the shards means

that the query can scale out effi ciently.

This mechanism just described—shards reading the raw table data and

performing fi lters and partial aggregation, and then passing results up to a

mixer that does further aggregation—is the basis of how Dremel works. Each

aggregation method, from COUNT() to SUM() to STDDEV(), and so on, can be

partitioned into parallel operations that can be combined into a fi nal result or

results. Operations like GROUP BY, as well, can be partially performed in the

shards and subsequently combined in the mixer.

In a typical Dremel tree, there are hundreds or thousands of shards. Because

aggregating the results from all these shards is more work than a single mixer

could handle, the mixers are arranged in a tree. At the root of the tree is the

root mixer, which is responsible for responding back to the caller with the result

data. Figure 9.2 shows a Dremel tree with two levels of mixers.

Shard 0

Mixer 1
Shard 0-8

Mixer 1
Shard 9-16

Root
Mixer

Mixer 1
Shard 17-24

Shard 10 Shard 12 Shard 20 Shard 24

Distributed Storage (e.g., CFS)

Figure 9.2: Dremel serving tree

Basic Queries

To help you understand how Dremel works, this section looks at a few queries

and walks you through how they are executed. For clarity in these examples, we

only describe the operations of a single mixer. When there are multiple levels

of mixers, they just repeat the same operations, so if you understand how one

works, you understand how a tree of them works. These queries all use the

 Chapter 9 ■ Understanding Query Execution 285

c09.indd 12:35:11:PM 05/02/2014 Page 285

publicdata:samples.shakespeare table which contains counts for each word

used in each Shakespeare play.

The fi rst query performs a fi lter and a sort:

SELECT word, corpus, word_count
FROM [publicdata:samples.shakespeare]
WHERE LENGTH(word) > 4 AND NOT REGEXP_MATCH(word, "^[A-Z]+")
ORDER BY word_count DESC
LIMIT 5

This query computes the top fi ve words in any Shakespeare play by frequency,

returning the word, the play in which it appears, and the word count. It fi lters

out any word less than four letters and anything that is all caps (in order to

ignore character names). If you run the query, you fi nd that the top value is

“shall,” which appears in both Merry Wives of Windsor and Henry VI, Part 2 119

times each.

Query Execution

When you run this query, Dremel performs the following steps:

 1. The mixer receives the query. Its job is to parallelize the query so that it can

be sent to the shards for execution. The fi rst thing that it does is translate

the query into a form that can be handled by the shards—in many cases,

this means simplifying the query. In this case, however, the entire query

is meaningful to the shard. The mixer then looks up the table name and

translates it into its underlying fi le names.

Each shard gets a subset of the fi les to operate over. The number of fi les

may limit the amount of parallelism possible in the query. If there are

1,000 shards available but only 10 fi les, only 10 shards will be involved in

the query. For small tables like the Shakespeare sample table, only a few

shards may be used. For other large tables, there may be more fi les than

shards, and each shard will be responsible for processing multiple fi les.

In general, BigQuery manages the fi le count to balance performance with

shard effi ciency. (That is, too many fi les can be just as bad as too few because

you’ll end up with shards that spend most of their time opening fi les.)

 2. The shards receive the customized query. They open the underlying fi les

that they were assigned and start reading. Because each fi eld in ColumnIO

is stored in a separate fi le, this means opening one fi le per column ref-

erenced in the query. As it scans the table, the shard walks through the

opened column fi les in parallel, one row at a time.

The fi rst portion of the query to be applied is the WHERE clause, which fi l-

ters out rows that aren’t interesting. In this case, all rows where the word

length is less than 4 are dropped, and the regular expression is applied

to remove words in all caps.

286 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 286

The shards can apply an optimization here—they need to return only

the top fi ve values ordered by word count. To fi nd the top fi ve values,

they use a data structure called a priority queue, which is an effi cient

way of keeping track of the top values without having to sort them all

in place.

 3. Each shard returns its top 5 results to the mixer. The mixer can also use

a priority queue to keep track of the top fi ve results from the shards, and

after all the shards have completed, it can return results back to the caller.

The mixer doesn’t have to worry about the WHERE clause because all the

values it handles should be valid responses to the query.

If there was no ORDER BY operation, the mixer could perform another

optimization; it could return immediately after it had received fi ve valid

results from the shards. But in this case it has to wait until all the shards

have fi nished because the top fi ve values might be returned only in the

last shard.

GROUP BY Queries

You saw how a simple query that just does a fi lter and a sort operates. Now look

at a slightly more complex query that does aggregation:

SELECT corpus, SUM(word_count) AS total_words
FROM [publicdata:samples.shakespeare]
WHERE LENGTH(word) > 4
GROUP BY corpus
ORDER BY total_words DESC
LIMIT 5

This query computes the top fi ve Shakespeare plays in terms of total word

count, excluding words shorter than fi ve characters, and returns them in reverse

order. For example, the top result is Richard III, which has 11,514 words, followed

by Hamlet at 11,439 words.

Query Execution

The steps necessary to execute this query are:

 1. The mixer receives the query. In this case, the shards don’t need to know

about the ORDER BY operation because they’ll have to return all of their

data. The mixer strips the ORDER BY clause and the LIMIT, and sends the

query to the shards.

 2. The shard receives the query and starts reading the corpus and word_count

fi elds. The shard applies the WHERE clause and computes the aggregations

needed for the GROUP BY. After the shard has totaled all the word_count

values for each corpus, it returns those results to the mixer.

 Chapter 9 ■ Understanding Query Execution 287

c09.indd 12:35:11:PM 05/02/2014 Page 287

The amounts of resources used in this step are proportional to cardinality

of the corpus fi eld—that is, the number of unique values. In a large table,

there might be billions of individual values. The shard needs to keep all

of them in memory so that it can perform the aggregation (the sum of the

word_count fi eld for each corpus). If there are too many values, it will

run out of memory and return an error complaining that resources have

been exceeded. There are ways around this error—see the section entitled

“Shuffl ed Queries” later in this chapter.

You might think, at fi rst, that each shard could collect corpus names and

word counts and would have to return only the top fi ve to the mixer.

However, this isn’t the case; the shard has to return all the results. Imagine

a case in which a certain corpus didn’t score highly when its word count

was computed by any individual shard, but after all the shards aggregated

their results together, the corpus would end up with the highest word

count. In other words, because the data may be unevenly distributed, all

the results need to be aggregated in the mixer.

 3. The mixer receives the results from the shards. It then needs to merge

the aggregates. That is, if shard 1 fi nds 1,500 words in Hamlet and shard

2 fi nds 1,000 words in Hamlet, the mixer needs to compute the running

total. After all the shards have returned, the mixer takes the top fi ve values

(it needs to sort all the values this time—it can’t use the priority queue

trick you saw in the last query, for the same reason that the shards had to

return all of their data) and returns them to the caller.

The mixer is another place where too many unique values can cause

memory exhaustion and lead to queries failing. Like memory exhaustion

in the shards, a shuffl e operation is usually the solution to the problem.

JOIN Queries

Although most aggregation functions and query clauses follow the same pat-

terns as described in the previous sections, JOIN queries operate signifi cantly

differently. BigQuery has two types of JOIN operation: “small” JOIN and “big”

JOIN. A “small” JOIN is any JOIN operation where at least one of the tables is

less than 8 MB, compressed. The underlying table doesn’t necessarily have to be

small; you could do a small JOIN where you JOIN on the outcome of a subquery

that fi lters a large table down to a smaller one. A “big” JOIN is any JOIN where

both sides of the JOIN are larger than 8 MB and requires a different technique

to execute it. This technique is discussed in the “Shuffl ed Queries” section.

JOIN Relational Operator

Before discussing how JOIN queries work, it may be useful to review what a JOIN

query does. Every JOIN operation has two tables, which are usually denoted

288 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 288

LEFT and RIGHT. The LEFT table is the one that is mentioned fi rst in the query,

the RIGHT table is the one mentioned after the JOIN keyword. Both the LEFT and

RIGHT need not be physical tables; they could be the results of subqueries instead.

JOIN is an operator in the relational algebra that says to take every row in the

LEFT table and match it with every row in the RIGHT table and generate a new

row that has the contents of the row in the LEFT table along with the contents

of the row in the RIGHT table. A CROSS JOIN is the simplest form of JOIN, which

actually does generate one row for every possible combination of rows in the

source tables. Other JOIN types can be thought of as applying a CROSS JOIN but

fi ltering the results based on some condition.

Most JOINs are either INNER or OUTER JOINs instead of CROSS JOINs. INNER and

OUTER JOIN operations specify a fi lter via an ON clause (for example, ON table1

.foo = table2.bar). The fi lter says to generate all the rows that would be in the

CROSS JOIN, but only keep rows where a fi eld in the LEFT table matches a fi eld

in the RIGHT table. Some other SQL systems allow the fi lter to be specifi ed in a

WHERE clause (for example, WHERE table1.foo = table2.bar), but in BigQuery,

only the ON clause version is supported.

The difference between INNER and OUTER is how they handle cases when

there are no matches between the value in the LEFT table and the value in the

RIGHT. An INNER JOIN drops any rows where there is not a match, whereas an

OUTER JOIN keeps the row and fi lls the side that doesn’t match with null values.

The difference between LEFT OUTER and RIGHT OUTER JOIN is which table gets

precedence—the LEFT or the RIGHT. It isn’t important to understand all the

possible JOIN options now, but some familiarity with JOIN semantics helps to

understand the BigQuery JOIN implementation.

Broadcast JOIN

A “small” JOIN is often called a “broadcast” JOIN because it relies on broadcast-

ing the smaller table to all the nodes in the computation tree. A JOIN operation

needs to generate all combinations of rows where the fi elds specifi ed in the ON

clause match. To process the JOIN operation, you can walk all the rows in the

LEFT table and fi gure out whether there is a matching row in the RIGHT table.

If the RIGHT table is small, you can just put all the values into a hash table. The

hash table has keys that are the JOIN keys from the ON clause, and the values

are the rest of the row (or the fi elds needed from the row in the query). Then,

for each row on the left, you can do a quick lookup by key to fi nd the matching

row from the RIGHT table.

This algorithm is parallelizable, as long as you replicate the hash table to each

parallel worker. This, in essence, is how the broadcast JOIN works. The smaller

table is required to be on the RIGHT side of the query, and it is broadcast to each

worker node. Then the worker can perform the JOIN operation by doing a simple

key lookup. Figure 9.3 shows how a broadcast JOIN operation works in practice.

 Chapter 9 ■ Understanding Query Execution 289

c09.indd 12:35:11:PM 05/02/2014 Page 289

The small boxes to the left of the shards and mixers are the RIGHT table from

the query, which gets distributed to every node in the tree.

Shard 0

Mixer 1
Shard 0-8

Root
Mixer

Mixer 1
Shard 17-24

Shard 20 Shard 24

Distributed Storage (e.g., CFS)

Figure 9.3: Broadcast JOIN

You may see why there is a size limit for broadcast JOIN. First, the entire hash

table needs to fi t in memory, so it is constrained by memory limitations on the

worker. Furthermore, the hash table also needs to be broadcast to every shard in

the Dremel cluster. If there are 5,000 shards and you have an 8 MB table, you’ve

just sent 40 GB of traffi c across the network.

Now that you’ve seen how broadcast JOIN works, we can walk through an

example:

SELECT wiki.title
FROM [publicdata:samples.wikipedia] AS wiki
JOIN (
 SELECT word
 FROM [publicdata:samples.shakespeare]
 GROUP BY word
) AS shakes
ON wiki.title = shakes.word

This query joins the Wikipedia sample table with the Shakespeare sample

table. The Wikipedia table has one row for every update made to any Wikipedia

page. The only fi eld we use in this query is title, which is the title of the page

that was edited. The query returns one row per revision to each Wikipedia entry

whose title is a word in a Shakespeare play.

The Wikipedia table is “large,” so it must go on the LEFT side of the JOIN.

The Shakespeare table is small, but it is made even smaller by performing

GROUP BY word. The reason to do this is because there are many rows in the

Shakespeare table for each word—one for each corpus that used that word.

290 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 290

There are also multiple rows in the Wikipedia table for each title—one for each

revision to the entry.

If you had just done the JOIN without a GROUP BY, you’d get one row for each

corpus containing the word multiplied by the number of revisions. The word

“Peace” is in 33 of Shakespeare’s plays and the “Peace” Wikipedia entry has

2741 revisions, so joining just those two keys would generate 33 x 2741= 90,453

rows in the result—just for that one word. Because this isn’t what you want, you

should do the GROUP BY on the Shakespeare table so that you collapse the Hamlet
entries down to one row, and you end up with only 2 million rows in the result.

Here is how this query executes:

 1. The mixer receives the query. This is a two-stage query; you have to

compute the results of the subquery on the Shakespeare table in order to

fi nd and prepare the RIGHT table of the JOIN. To kick off the fi rst stage,

the mixer extracts the subquery SELECT word FROM [publicdata:samples

.shakespeare] GROUP BY word and sends it to the shards.

 2. Each shard receives the subquery, reads the Shakespeare table, and per-

forms the GROUP BY aggregation. Each shard then returns one row per

Shakespeare corpus.

 3. The mixer completes the aggregation from the shards’ responses, and ends

up with an in-memory table containing one row per corpus. It names that

result table [__inline_table] so that it can be referred to later.

 4. Once the results of the subquery have been computed, the mixer sends the

following query to the shards: SELECT wiki.title FROM [wiki_table_path]

AS wiki JOIN [__inline_table] AS shakes ON wiki.title = shakes

.word. It also sends the inline result table along with the query.

 5. Each shard gets this query and the inline table computed in the subquery.

It takes the inline table and generates a lookup table from it. The keys of

the lookup table are the Shakespearean words and the values of the lookup

table are the same as the keys (because word is the only fi eld needed by

the query).

After the lookup table has been created, the shard iterates through each

row of its portion of the Wikipedia table. For each row, it takes the title

fi eld and looks for it in the lookup table. If it does not exist, it skips the

row. If it does exist, it adds a row to the results. The only fi eld needed

in the results in this example is the title, but in other cases there could

be fi elds from the RIGHT table or other computed fi elds that would go in

the results.

 6. All of the work to compute the JOIN can be done in the shards, so all the

mixer has to do is collect the results and return them to the caller.

 Chapter 9 ■ Understanding Query Execution 291

c09.indd 12:35:11:PM 05/02/2014 Page 291

Shuffl ed Queries

As previously described, both the GROUP BY and the JOIN operations have some

limitations; GROUP BY cannot handle cases in which there are large numbers of

distinct values, and JOIN can’t handle cases in which one of the tables is larger

than 8 MB. The good news is that there is a mechanism that works around

both of these problems; the bad news is that this mechanism requires a slight

syntax change.

In both the GROUP BY case and the JOIN case, you need to aggregate data in

the mixer because the shards don’t have enough information to compute the

results. For example, if you were grouping by corpus, multiple shards might

see rows for the corpus Hamlet, so the partial result has to be passed back to

the mixer. What if, however, the underlying data were sorted by corpus, and

a single shard processed all the Hamlet entries? If this was the case, you could

perform the GROUP BY operation in the shards, and it wouldn’t matter how

many distinct corpus values you had because you wouldn’t have a bottleneck

at the mixer.

When you use GROUP EACH BY instead of GROUP BY, this tells Dremel to per-

form a shuffl e operation. If you’ve used Hadoop or another MapReduce system,

the shuffl e step may look familiar; the hidden step in a MapReduce is shuffl e,

which sorts all the data before passing it to the reducer.

Dremel’s shuffl e is a little bit different from Hadoop’s shuffl e; the latter per-

forms a merge sort of all the keys in the dataset. Dremel doesn’t care about the

ordering, however; it performs a hash partitioning of the data. The goal of these

two approaches is the same, but a hash partitioning is less work than a sort.

The way the hash partitioning works is that each value is assigned a key. A

hash function is applied in a source shard to the key to turn it into a number.

That number, the hash code, is used to assign the entire row to a destination

shard. The source shard then sends the row over to the network to the assigned

destination shard. Because the workers are assigned stable ranges of the hash

key space, a single worker gets all the values that have the same key.

For GROUP EACH BY operations, the shuffl e key is the fi eld or fi elds used for the

grouping. That is, if you do a GROUP EACH BY corpus on the Shakespeare table,

all the rows that have Hamlet as the corpus hash to the same value and are sent

to the same shard. All the rows that have the corpus of Macbeth will hash to a

different value, so they will be sent to a different shard than the Hamlet rows.

Figure 9.4 shows how the shuffl e operation works. Each shard fi rst reads the

data from storage, then forwards that data on to a diferent shard depending on

the value of the shuffl e key.

This same trick also works for JOIN, but both sides of the JOIN need to be

shuffl ed. To specify a shuffl ed JOIN, you can use the syntax JOIN EACH where

292 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 292

you would otherwise have used JOIN, as in LEFT OUTER JOIN EACH. The shuffl e

key is the fi eld or fi elds used in the ON clause. That is, if your query looks like

JOIN EACH . . . ON left.key1 = right.key2, the left table is shuffl ed by the

key1 fi eld, and the right table is shuffl ed by the key2 fi eld. Since the same hash

function is used on both, all of the rows with matching values from either table

will end up in the same shard. This enables the JOIN operation to proceed in

the shards and in parallel, in a method similar to the broadcast JOIN.

Shard 0 Shard 10 Shard 12 Shard 20 Shard 24

Distributed Storage (e.g., CFS)

Figure 9.4: Shuffle operation

Now that we’ve discussed the basic operation, we can consider an example,

using the same query as in the broadcast JOIN example, but with JOIN EACH

instead of JOIN. Note that this query doesn’t need to use a shuffl ed JOIN, but

it is useful to do so to compare its execution with the broadcast JOIN version.

Here is the query:

SELECT wiki.title
FROM [publicdata:samples.wikipedia] as wiki
JOIN EACH(
 SELECT word
 FROM [publicdata:samples.shakespeare]
 GROUP EACH BY word) as shakes
ON wiki.title = shakes.word

The steps involved to execute this query are:

 1. The mixer receives the query and plans the execution. This query requires

fi ve phases:

 a. The Shakespeare table on the right must be shuffl ed prior to the

GROUP BY.

 Chapter 9 ■ Understanding Query Execution 293

c09.indd 12:35:11:PM 05/02/2014 Page 293

 b. The GROUP BY subquery on the right must be run to compute the distinct

Shakespeare words.

 c. The right table must be shuffl ed prior to the JOIN.

 d. The left table must be shuffl ed prior to the JOIN.

 e. Finally, the JOIN results can be computed in the shards.

To start things off, the mixer dispatches the fi rst part of the query (the

shuffl e of the Shakespeare table) to the shards.

 2. The shards receive the request to shuffle the publicdata:samples

.shakespeare table into 100 partitions based on the word fi eld. Each shard

computes a hash key for each word value and sends the hashed row to a

different shard indicated by the hash. For the word “peace” for example,

the hash function returns the value 7146922576. This would get sent to

shard 76, because there are 100 shuffl e partitions and 7146922576 % 100 =

76. After the shuffl e is complete, the shards return to the mixer indicating

they are fi nished. (Note that they do not return any results at this point.)

The temporary table with the results is given the name __table1.

 3. Once the Shakespeare table rows have been sorted by word value

into distinct partitions, the GROUP BY operation from the RIGHT sub-

query can be done entirely in the shards. The shards receive the query

SELECT word FROM [__table1] GROUP BY word. The results of this subuery

are stored in table __table2.

 4. The mixer now kicks off a new shuffl e on the left table by instructing the

shards to shuffl e the [publicdata:samples.wikipedia] table into 500

partitions based on the title fi eld. The results are saved in a temporary

table called __table3.

 5. Now that all the preparatory work is done, the two temporary tables

can be joined. Because the LEFT and RIGHT tables have been sorted by

the fi eld they are being joined by, the work of the JOIN can be done in

parallel on the shards. The mixer sends SELECT wiki.title FROM __

table3 AS wiki JOIN __table2 AS shakes ON wiki.title = shakes

. word to the shards. The __table2 and __table3 tables are the outputs

of the shuffl e phases that have been patiently waiting to be joined. After

computing the JOIN, the results are returned to the mixer.

 6. The mixer doesn’t need to do any aggregation in this query, so it just

returns all the results to the caller.

294 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 294

WHEN TO USE SHUFFLED QUERIES

GROUP EACH BY and JOIN EACH BY queries are extremely powerful because they

enable you to operate over larger and more complex data sets than you otherwise

would be able to process. It is tempting, therefore, to use the keyword everywhere.

However, there are some disadvantages to using the EACH keyword. Most obvious,

using EACH adds a lot of extra processing to the query, which can slow down perfor-

mance signifi cantly. Although it is diffi cult to estimate how long a shuffl e operation

will take, you can count on anywhere from 2 seconds to 60 seconds added time,

depending on table sizes.

What might not be obvious is that there are other cases in which a shuffl e query

is slower—when too many results all hash to the same shard. Because a single shard

must process every row that hashes to a particular value, if a single value is too com-

mon, this can overload the shard and end up taking much longer to process.

A simple example of this would be if you imagine a huge customer table with a

Country fi eld. If 99 percent of your customers are in the United States, if you do a

GROUP EACH BY Country, a single shard needs to process 99 percent of the rows.

This process can take a long time and can even lead to your queries being canceled.

It is likely that future versions of BigQuery will be smarter about picking whether to

do a shuffl e, so you won’t have to worry about it. For now, however, you should prob-

ably default to not using the EACH keyword unless you need it.

Materialize Queries

When you run a normal query in BigQuery, you’re limited to results that are

less than 128 MB. If you think about how the query runs in the Dremel serving

tree, you can see why this limit exists—because everything has to be returned

through the root mixer. If you had 100 GB of results, this would be a lot of data

to return from a single server, with a lot of data to aggregate in one place.

Dremel supports an alternative query mode called materialize where the

shards write out the results directly and in parallel. This, of course, means that

the entire query must be parallelizable. Top-level ORDER BY operations may be

slow (because a sort must be computed globally), and queries may end up taking

substantially longer to complete because writing data to permanent storage is

slower than returning it over the network. Despite these limitations, material-

ize queries are extremely powerful—they can write out hundreds of gigabytes

in only a few seconds.

For most queries, however, the user who issued them cares only about the fi rst

few results. In the BigQuery Web UI, for example, few people fetch the second

page of results, let alone the last one. If you run a SELECT * query to look at the

fi rst few rows of a table and you write out 10 TB and wait 5 minutes, you’ll be

wasting a lot of your time and Google’s processing resources.

 Chapter 9 ■ Understanding Query Execution 295

c09.indd 12:35:11:PM 05/02/2014 Page 295

To prevent you from accidentally generating massive results, materialize

queries are not the default. If you want a massive result set, you need to set

the fl ag allowLargeResults in the query and specify a destination table. The

destination table is required because of how large results tend to be used;

because they are too large to be processed by a human, they are usually going

to be processed by a machine. Often you want to run another query against

your large result table, or maybe you want to export the results to Google

Cloud Storage so that you can process them on an external system. In these

cases, it is useful to have a table with a name to refer to as the source of those

subsequent operations.

Finally, writing out large results is expensive. Although BigQuery doesn’t

charge you for normal query results, it does charge you for the storage used for

anything with a destination table. If you write out a 1 TB table, you have pay

the cost of storing that table.

Architecture Comparisons

To understand BigQuery, it can be helpful to put it in context with other archi-

tectures you may already be familiar with. If you’re coming from a background

where you’ve used a lot of relational databases, or you use Hadoop to process your

data, you might have certain assumptions about what is going to be fast, what

is going to be slow, or what is going to be impossible. BigQuery’s architecture

creates a different set of things that are fast, slow, or impossible; understand-

ing the difference in the architectures can help you generate an intuition about

when to use one tool versus another.

Relational Databases

If you’re doing any kind of analytics, you almost certainly have experience using

a relational database. Relational databases exist in many forms—from Open

Source examples such as MySQL and Postgres to commercial juggernauts such

as Microsoft SQL Server and Oracle.

In addition, if you’ve used a relational database, you’ve probably even thought

about optimizing one—adding indexes, normalizing data, adding additional

disk spindles, and so on. Relational database architecture tends to be almost

hard-wired into how most people think about querying their data, whether

they realize it or not.

This section outlines the architecture of a typical relational database, focusing

on the parts that contribute most to its performance. You also see when to use

it and how it compares to BigQuery.

296 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 296

Relational Database Design

Relational databases have been around since the early 1970s—they have had

a lot of time to be refi ned and improved upon. That said, the fundamentals

haven’t changed in that time: They still rely on the same underlying data struc-

tures and apply the same types of optimization tricks as they have for the past

several decades.

Data Storage Architecture

The fundamental data structure in a relational database is the B-Tree. A B-Tree

is a specialized tree, usually stored on disk, with a relatively high branching

factor (unlike a binary tree, which has a branching factor of two). Each node can

point to a number of children, up to the branching factor, which is often on the

order of 1000 elements. This means that a tree of depth 3 could contain up to a

billion nodes (10003). Figure 9.5 shows a 3-level B-Tree. The diagram may look

similar to a Dremel serving tree; the principal difference is that the boxes here

represent metadata on disk, not independent services.

Level 2
60-69

Level 1
100-199

Level 1
400-499

Root
0-999

Level 1
700-799

Level 2
410-419

Level 2
430-439

Level 2
750-759

Disk Storage

Figure 9.5: A small B-Tree

B-Trees take advantage of the fact that disk I/O is much slower than memory

access. A single disk read operation can read an entire B-Tree node into mem-

ory, after which time the contents of node can be scanned quickly. A 3-level

B-Tree requires at most three disk reads to fi nd any element. The processor

has to do more work, scanning three entire nodes (which may be composed

of thousands of elements), but the time spent by the CPU is much smaller

than the disk time.

Filesystem cache behavior can also help; the root node of the B-Tree will almost

always be cached in memory. The second level nodes also have a high cache hit

 Chapter 9 ■ Understanding Query Execution 297

c09.indd 12:35:11:PM 05/02/2014 Page 297

rate because there are only 1000 of them. This means that most searches have

to do only a single disk seek and read to fi nd the element they are looking for.

B-trees are also convenient data structures for inserting and deleting data. If

you add a new node, most of the time you can do it by just adding the relevant

pointer from the parent node. Only one out of every 1000 times will you have to

rebalance. Of course, rebalancing can be tricky, but there have been decades of

database improvements to work on perfecting this operation. A delete operation

is even easier; just delete the pointer to the data. When an entire node is empty,

you can reclaim the storage.

When doing analytics queries, you’re not usually just looking up data—you’re

often scanning for data within certain parameters. B-trees make these types of

scans easy; because they are stored in sorted order, scanning for values within

a range is just a sequential in-order traversal of the tree.

Relational Database Optimization

Relational databases generally have primary and secondary indexes. Both of

these are B-Trees. The only difference is that the primary index also generally

stores the data within the B-Tree, which is a performance optimization to save

additional disk I/O. Secondary indexes are additional B-trees that point to the

data in the primary key.

In addition to the B-Tree, relational databases often store extra information

about the table that can help when planning the best way to run the query. This

information can be stored inside the B-Tree or in additional table metadata. For

example, a database often stores the number of rows in a table and an approxima-

tion of the cardinality, or number of distinct values in each fi eld. This metadata

can be useful to avoid reading unnecessary data or deciding which index to use.

When a query is run, the query planner module makes an educated guess

about the fastest way to fi nd the data needed in the query. For instance, if there

is a WHERE clause restricting the data on column foo, the query planner fi rst tries

to fi nd an index on column foo. If there is no suitable index, the query has to do

a full table scan, which can be extremely slow. This means that all the data in the

table has to be read, even if the WHERE restriction picked out only a single row.

This is why DBAs get paid a lot of money; they look at which types of queries

get run and make sure there are indexes on the right columns.

Comparative Analysis

You may have noticed that a B-Tree in a relational database looks a lot like the

computational tree in BigQuery; that isn’t a coincidence. BigQuery’s computa-

tion tree can be thought of as a B-tree that is computed on-the-fl y. Whereas

in a relational database, a table scan is punishment for not having an index,

BigQuery always does the table scan and builds the index in parallel. The benefi t

298 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 298

of BigQuery is that table scans are optimized and ad-hoc queries just work, with

no indexes or optimization required.

There are some things that a relational database does better. Lookups of single

rows from the primary key or secondary keys are extremely fast. When data

is changing, not just being appended to, a relational database can make more

sense because BigQuery doesn’t currently support updates or deletes. Finally,

if you are doing a huge numbers of queries, you’ll likely run up against the

BigQuery quota policy.

There are drawbacks to a relational database, too. If you are running ad-hoc

queries, and don’t have a lot of time and energy to spend optimizing your data

layout, you may end up spending a lot of time waiting for your queries to run.

If you have large tables, the database software you’re using may not scale well.

This last point is why a number of new “no-SQL” databases exist and was the

rationale for creating BigQuery in the fi rst place.

MapReduce

MapReduce, as a Big Data processing architecture, has only been around for

approximately 10 years. It was developed at Google by Jeff Dean and Sanjay

Ghemawat as a mechanism to perform computations over large data sets

by applying principles from functional programming (the Map and Reduce

operations). The primary idea is that you decompose your computation into

two phases: Map, which transforms the data, and Reduce, which combines

the results.

After Google published the principles of MapReduce in a research paper, Doug

Cutting picked up the concept and began building an open source version that he

called Hadoop, after his son’s toy elephant. In the past couple of years, Hadoop has

gained rapid popularity because of companies such as Yahoo! that productized

it and startups such as Cloudera and MapR that pushed the boundaries of what

it could do. Most people who use MapReduce now use it via Hadoop.

Comparisons of BigQuery to MapReduce are included because many people

who consider using BigQuery also wonder why they shouldn’t just use some-

thing such as Hive on top of Hadoop. This section shows the architecture of

MapReduce and why it is generally more suited toward batch workloads than

interactive exploration of your data.

MapReduce Design

Despite the name, MapReduce isn’t just Map and Reduce—it is actually Map,

Combine, Shuffl e, and Reduce. And actually, what you usually think of as

MapReduce encompasses not just the actual computation, but also a number of

other technologies that enable it such as a distributed fi lesystem.

 Chapter 9 ■ Understanding Query Execution 299

c09.indd 12:35:11:PM 05/02/2014 Page 299

Map Phase

The Map phase is modeled after the Map operation in functional programming.

In functional programming, Map applies a function of one argument to each ele-

ment in a collection and creates a new collection with all the results. An example

would be taking a function ToUpperCase() and applying it to each element in a

string of characters. The result would be another string of characters that were

all capitalized. In functional programming, functions are “pure,” which means

that they do not have any external side effects.

This lack of side effects may sound like a technicality, but it is actually a key

factor in a MapReduce. When you call Map on a collection, because the func-

tion called on each element doesn’t have any inputs other than the element it is

operating on and doesn’t change any external state, the order in which elements

are processed doesn’t matter. The Map operation might process the collection in

order, in reverse order, or in parallel. The operation might even run in another

process or another machine.

In MapReduce, the Map phase is slightly more general. It runs a Mapper

function over each element in the source data. The Mapper function takes one

element and emits a list of 0 or more key-value pairs. The key is an address used

by the Reduce phase, and the value is the value to be processed in the Reduce

phase. For example, if your MapReduce was going to compute the number

of times each word in the source data appeared, the Mapper function would

take a single line, break it up into words, and emit each word paired with the

number of times it appeared in that line. The Reduce phase is responsible for

collecting the results.

Combine Phase

After the Map phase has started producing values, the Combine phase can

start, if needed. Combine is merely an optimization to save the amount of I/O

that has to be done in the next phases. A Combiner function can take multiple

outputs within the same Map worker and combine them, so less data needs to

be written out to disk before the Shuffl e can operate on it.

Shuffle Phase

The Shuffl e phase, like the shuffl e operation in BigQuery, is just a big sort. In

practice, it tends to be a merge sort because that can be done in parallel. The

key used for the sort is the key emitted during the Map phase—so each key

used is sorted to the same place.

Although Shuffl e serves to only move data around and is actually a null

operation from a computation standpoint, Shuffl e is often the slowest part of

the MapReduce operation. If you think about what has to happen, you have a

lot of data—terabytes, potentially—and you need to compute a global ordering.

In practice, Shuffl e needs to only hash partition the data. That is, you need to

300 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 300

make sure only that all data with the same key ends up in the same place, rather

than requiring that keys actually get sorted. However, Hadoop does a complete

merge sort to make it easier for Reducers that rely on ordering.

Reduce Phase

The Reduce phase is what enables MapReduce to aggregate data across the

entire data set. It is based on the functional programming Reduce operation

which, like Map, applies a function to each element in a collection and returns

a collection of results. The Reducer function is a bit different, however—it takes

two arguments—a key and a collection of inputs. Remember that the Mapper

function returned key-value pairs and Shuffl e sorted those pairs by key. Reduce

calls the Reducer function once with each unique key returned by a Mapper

along with all the values that were produced with that key.

To see how this can work, think about the previous word count example.

The Mapper returns pairs of words with the number of times they appear in

an input line. Shuffl e then sorts these results by key. The Reduce phase calls

the Reducer with each word as a key and a list of the counts from each line.

The reducer can then just compute the sum of this list and emit the word and

the total count to compute the word count.

MapReduce Example

The canonical MapReduce example is counting word frequencies in a data set.

Consider a MapReduce operation that will count the word frequencies in the

following three lines of text:

1: "Tomorrow, and tomorrow, and tomorrow"
2: "Creeps in this petty pace from day to day"
3: "To the last syllable of recorded time"

The Mapper function gets called once with each of these lines. It doesn’t matter

in which order they get called, or even whether the three calls are performed

on the same machine. The output of the three Mapper calls look like:

1: [{tomorrow, 3}, {and, 2}]
2: [{creeps, 1}, {in, 1}, {this, 1}, {petty, 1}, {pace, 1},
 {from, 1}, {day, 2}, {to, 1}]
3: [{to, 1}, {the, 1}, {last, 1}, {syllable, 1}, {of, 1},
 {recorded, 1}, {time, 1}]

Next, the Shuffl e phase goes to work on the Mapper’s output and produces

the following:

{and, [2]}
{creeps, [1]}
{day, [2]}
{from, [1]}
{in, [1]}
{last, [1]}

 Chapter 9 ■ Understanding Query Execution 301

c09.indd 12:35:11:PM 05/02/2014 Page 301

{of, [1]}
{pace, [1]}
{petty, [1]}
{recorded, [1]}
{syllable, [1]}
{the, [1]}
{this, [1]}
{time, [1]}
{to, [1, 1]}
{tomorrow, [3]}

The shuffl er output is mostly uninteresting except for to, which is the only

word to appear on more than one line. The to entry contains a list of two ele-

ments, one for each time it appeared in the Mapper’s output.

Finally, this data is passed to the Reducer, which takes each word and sums

up the totals and produces a count for each word. The results follow:

{and, 2}
{creeps, 1}
{day, 2}
{from, 1}
{in, 1}
{last, 1}
{of, 1}
{pace, 1}
{petty, 1}
{recorded, 1}
{syllable, 1}
{the, 1}
{this, 1}
{time, 1}
{to, 2}
{tomorrow, 3}

At fi rst, it might seem a bit awkward to decompose your computation into a

Map and Reduce phase. However, a very wide range of problems can be broken

into a series of Map and Reduce operations, and there are a number of tools

built on top of Hadoop that can help.

Storage System

MapReduce doesn’t rely on a particular storage system or storage format the

way relational databases do. However, in practice, a standard fi lesystem is not

well suited for performing MapReduce operations. If you’re just reading from a

single disk, you are likely going to be limited by the disk speed, and processing

the data in parallel isn’t actually going to help.

Apache Hadoop uses a custom distributed fi lesystem called HDFS that is in

many ways similar to the Google File System (GFS) or the Colossus File System

used by BigQuery. Because HDFS is distributed among many nodes, it can read

in parallel and hopefully keep up with the Map and Reduce workers.

302 Part III ■ Advanced BigQuery

c09.indd 12:35:11:PM 05/02/2014 Page 302

Worker Management

The fi nal key piece of MapReduce architecture is the worker manager, called the

Controller in Google MapReduce or the Name Node in Hadoop. When dealing

with large numbers of workers (many MapReduces use hundreds or thousands

of nodes), individual workers often fail for some reason. If that causes the entire

MapReduce operation to fail, it might cause you to lose a lot of work and have

to restart the operation. Because the Mapper and Reducer functions are free of

side effects, they should be idempotent—that is, you can rerun them and get

the same results.

When a worker crashes, or even is particularly slow, the MapReduce Controller

assigns a new worker to operate over the same data. If the initial worker com-

pletes, that should be fi ne because the operation was idempotent. The Controller

also needs to distinguish between a worker that fails because of a hardware

problem or a network hiccup and a worker that fails because there is something

wrong with the Mapper or Reducer functions that causes it to crash on certain

input data.

Comparative Analysis

The primary advantages of MapReduce are scalability and fl exibility. Unlike a

relational database, where if you want it to be faster you need to change how

it is stored or buy faster hardware (which is often orders of magnitude more

expensive), you can scale a MapReduce by just buying more of the same hard-

ware. That is another way of saying that MapReduce scales out linearly.

MapReduce is extremely fl exible. Because the Mapper and Reducer functions

can be anything you want them to be, you can perform arbitrary computations

over your data. You’re not locked into a language such as SQL where you can

perform only certain aggregations.

There are downsides, however. MapReduce is designed for batch workloads,

not actually interactive ones. MapReduce frameworks usually take a long time

to spin up the requisite number of workers, and the Shuffl e operation often adds

long delays. Most MapReduce operations take minutes or hours to run, rather

than the seconds you’d hope for if you were performing exploratory analysis

on your data.

Another drawback of MapReduce is that it forces you to divide up your

operation into a Map and Reduce phase, which is not usually the way you’d

think about your data analysis task. What’s more, many computations can’t be

expressed in a single MapReduce, so they may require multiple passes through

the data. It can be tricky to keep track of workfl ow for jobs that do more than

one MapReduce.

There are various tools and programming paradigms that help with many

of these drawbacks. Cascading provides a way of expressing your computation

 Chapter 9 ■ Understanding Query Execution 303

c09.indd 12:35:11:PM 05/02/2014 Page 303

via stream operations that can turn into multiple MapReduce rounds. Hive and

Pig are both mechanisms that enable you to write SQL or SQL-style queries that

get turned into MapReduces.

MapReduce also is a lower-level tool than BigQuery or a relational database.

That is, it requires you to know how many mappers and reducers you need,

requires you to set up HDFS and monitoring software, and in general, requires

a lot of knowledge about the system to run it.

At Google, MapReduce is still extremely popular and is used as a comple-

ment to Dremel. MapReduce is usually not run directly, however—there are

higher-level tools, like FlumeJava (described here: http://pages.cs.wisc

.edu/~akella/CS838/F12/838-CloudPapers/FlumeJava.pdf) that enable you to

coordinate your MapReduces. For big, batch data transformations, MapReduce

is usually preferred. For data investigation Dremel is a better tool.

Summary

This chapter described how the technologies that underlie BigQuery actually

work—from the Dremel query engine to the Colossus File System. Hopefully,

the next time you run a query that takes longer than you expect, or returns a

ResponseToo Large error, you’ll know a bit more about why it happened, and

what you can do to improve it.

It also discussed how the architecture of BigQuery differs from architecture

of other technologies such as Hadoop and MySQL. None of these is appropriate

for all situations, and after reading this chapter, you should know more about

when to use each of them. Hopefully, you’ll fi nd ample reasons to use BigQuery.

The next chapter shows a number of scenarios using a wide range of advanced

BigQuery features. Understanding the underlying architecture should be help-

ful in developing an intuition about how these queries work and how to push

the limits of what BigQuery can do.

http://pages.cs.wisc

c09.indd 12:35:11:PM 05/02/2014 Page 304

305

c10.indd 06:53:21:PM 05/02/2014 Page 305

At this point, you should be familiar with BigQuery SQL (Chapter 7, “Running

Queries”) and how BigQuery SQL is executed (Chapter 9, “Understanding Query

Execution”). This chapter builds on those two topics, shows some additional

things you can do with BigQuery, and demonstrates how they relate to the

underlying architecture.

The chapter is divided into four portions:

 ■ Advanced SQL: Describes how to use more advanced SQL constructs

(variants of JOIN, windowing functions, and so on) that are part of stan-

dard SQL.

 ■ BigQuery SQL extensions: Describes features in BigQuery, such as queries

over nested and repeated fi elds that do not exist in standard SQL. It also

relates these features to the BigQuery architecture.

 ■ Query Troubleshooting: Gives some common errors encountered when

writing queries and some tricks to avoid those errors. There are some

cases where queries that seem like they should work actually fail; this

section describes why they fail and how to fi x them.

 ■ Query Recipes: Contains a number of recipes for answering common

questions in SQL, such as how to compute a trailing 3-day average and

how to perform cohort analysis.

C H A P T E R

10

Advanced Queries

306 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 306

You can read this chapter through directly, but it may also be a useful reference

guide. For example, the troubleshooting section can be helpful when debugging

a query that you think should run successfully but BigQuery doesn’t agree. The

recipes section can be useful to refer to if you’re struggling with how to phrase

your question in SQL. If you have never worked with SQL before, you may

want to look through a basic SQL tutorial before reading this chapter because

it assumes familiarity with the basics of SQL.

Advanced SQL

This section describes some more advanced SQL features that are available in

BigQuery. If you’re a SQL guru, you might just want to skim and note “ah...

feature X is available!” For others, this may be the fi rst time you’ve encountered

these features, and you might want to pay attention to the examples more closely.

The advanced SQL features described here include subqueries; join variants

(inner, outer, semi-join and anti-join), and window functions (RANK, CUME_

DIST, and so on). Depending on your background, these may seem like basic

features or they may appear exotic. Either way, they are useful in BigQuery

and are described here.

A NOTE ON “STANDARD” SQL

Many people refer to the SQL standard as if it was a single, uncontroversial document.

As a comparison, the HTTP protocol, which is used whenever you navigate to a web

page, is defi ned in RFC 2616. It has been implemented dozens of times by web severs

and web browsers. The fact that you can usually switch from Firefox to Safari without

much hassle is a testament to the clarity and widespread implementation of the HTTP

standard.

The SQL standard, however, can mean a lot of diff erent things. For example, there

are SQL-92, SQL-99, SQL-2003, SQL-2006, and more. Moreover, most database imple-

mentations pick and choose from the various SQL standards and may lack basic fea-

tures from any standard version. For example, Oracle doesn’t have a TIME type, and

few people care about the XML-based features that were added in the XML-mad days

when the SQL-2003 specifi cation was defi ned.

One of the biggest diffi culties with the specifi cation of SQL is that all vendors had

ways that they wanted to extend what was possible to do in SQL. They may have pro-

ceeded with an implementation before there was a specifi cation. Another vendor may

have added a similar feature a diff erent way. That feature, then, becomes diffi cult to

standardize because there are competing implementations, and backward compat-

ibility can become problematic.

BigQuery has a number of features for which no standards exist, such as support

for nested and repeated fi elds. In these cases, BigQuery diverges from the standard

SQL because the features aren’t in the standard but were considered important to the

product.

 Chapter 10 ■ Advanced Queries 307

c10.indd 06:53:21:PM 05/02/2014 Page 307

There are also a number of potentially painful cases where BigQuery diverges from

the SQL standard. The syntax for table union is an example of this: To make it easy to

query multiple tables at once, the comma operator was used to indicate UNION ALL.

This decision confuses many people because a comma-separated list of tables usually

indicates a JOIN operation.

Work is being done to make BigQuery SQL look more like Standard SQL. Most of

the changes are in expanded support for the features described in the standard. For

example, until recently, BigQuery required that all fi elds in an ORDER BY be listed in

the SELECT fi eld list; this is non-standard and inconvenient, so the limitation was qui-

etly eliminated.

Changes that are not backward compatible will eventually arise. However,

during the deprecation period following breaking changes, the new syntax will

be opt-in, and the old syntax will likely be supported for an additional period

after the default is changed.

Subqueries

A subquery is a query inside of another query. For instance, in SELECT foo FROM

(SELECT field1 AS foo FROM table1), the SELECT field1 AS foo FROM table1

query in parentheses is a subquery. The SQL-92 specifi cation says that you can

use a subquery almost anywhere—in a FROM clause, in a SELECT fi eld list, or in a

WHERE clause.

In many SQL environments, such as MySQL, subqueries are somewhat rare

and can have poor performance. (The two statements are often related; if sub-

queries are slow, people won’t use them often.) In BigQuery, however, subqueries

are used extensively in certain clauses and generally run quite fast.

Preventing Duplicate Computation

One of the reasons to use subqueries is that BigQuery doesn’t do much in the

way of query optimization. If you need to use a value multiple places in the

query, you may be better off using a subquery and computing the value only

once. Performance issues aside, this can often lead to a more readable query. For

example, if you want to translate a timestamp to a particular time zone and use

the same value in both the SELECT clause and a WHERE clause, you could write:

SELECT DATE_ADD(ts, -8, "HOUR") AS pst
FROM [bigquery-e2e:ch10.sample_data]
WHERE DATE_ADD(ts, -8, "HOUR") > TIMESTAMP("2013-12-13")
LIMIT 10

308 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 308

This query does the same date computation twice; moreover, if you want to

change it, you have to remember to keep it in sync in both places. A cleaner way

to write the query would be with a subquery:

SELECT pst
FROM (
 SELECT DATE_ADD(ts, -8, "HOUR") AS pst
 FROM [bigquery-e2e:ch10.sample_data])
WHERE pst > TIMESTAMP("2013-12-13")
LIMIT 10

This formulation of the query will likely run faster but also will be easier to

maintain.

Working around Quirks in the Query Language

There are, admittedly, a couple of cases where BigQuery doesn’t allow certain

standard query formulations and requires you to revise your query accordingly.

Usually, a good error message is given that can help you rewrite your query. For

example, JOIN queries require the fi elds in the ON clause to be the same type, so

if you have an integer value and a string value, the join will fail. For example,

consider the following query:

SELECT t1.vInt
FROM (SELECT 17 AS vInt) AS t1
JOIN (SELECT "17" AS vString) AS t2
ON t1.vInt = t2.vString

If you run this, you’ll get the error Cannot compare fields as join attributes

(Incompatible types. 'vInt' : TYPE_INT32 'vString' : TYPE_STRING).

This error message is a bit cryptic and exposes internal names for data types, but

it should suffi ce to let you fi gure out that you need to coerce the values before

comparing them. To fi x the query, you can use a subquery again:

SELECT t1.vString
FROM (SELECT STRING(vInt) as vString
 FROM (SELECT 17 as vInt)) as t1
JOIN (SELECT "17" as vString) as t2
ON t1.vString = t2.vString

Note the only change necessary is to wrap one of the tables in a subquery

that applies the necessary type coercion.

Many of the cases where subqueries were required to work around quirks

in the BigQuery version of SQL have been fi xed. As mentioned in the previous

section, ORDER BY columns used to be required to be in the SELECT list; this often

required a subquery if the fi eld you wanted to sort by wasn’t a fi eld you wanted

to have in your output. Many of these limitations are being quietly eliminated,

and if you try again, one day they might just work. By the time you read this

book, the JOIN coercion example in this section may no longer require a subquery.

 Chapter 10 ■ Advanced Queries 309

c10.indd 06:53:21:PM 05/02/2014 Page 309

IN and NOT IN Clauses

A common use of a subquery is in an IN or a NOT IN clause. The following query

returns all the words in a play that match the title of a different Shakespeare play:

SELECT corpus, word FROM [publicdata:samples.shakespeare]
WHERE word <> corpus AND word IN (
 SELECT corpus
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus)

Queries that use the IN keyword together with a subquery are called semi-

joins, and queries that use NOT IN however are called anti-joins. Both of these

types of queries are discussed more in the “Semi-JOIN and Anti-JOIN” section

later in this chapter.

Nested Computation

Often you’ll want to run a subquery because that is the best way to compute

your data. For instance, you need to do a GROUP BY before you do a JOIN, or

you want to coerce fi elds in one table to look like another one. This query, for

example, computes the largest update size for the top 100 most edited Wikipedia

entries. It uses a subquery to fi gure out which titles have been edited most often:

SELECT
 a.title AS title,
 edit_count,
 MAX(num_characters) AS max_entry_size
FROM [publicdata:samples.wikipedia] b
JOIN (
 SELECT
 TOP(title, 100) AS title,
 COUNT(*) AS edit_count
 FROM [publicdata:samples.wikipedia]) a
ON a.title = b.title
GROUP BY
 title,
 edit_count

A common technique for composing queries in BigQuery is to start at the

inside of the query and work your way out. That is, if you have complex queries

with multiple joins and nested queries, you start by getting the inner queries to

work and then wrap them with layers of outer queries like an onion. This way,

each of the inner queries is something that you can run on its own and hopefully

test. If you try to compose the query outside in, it is easy to get lost while you’re

composing the query. Strategies to speed up and reduce the cost of experimenta-

tion are described in the “Data Sampling” section later in this chapter.

310 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 310

Combining Tables: Implicit UNION and JOIN

In SQL, there are only two ways to combine data from multiple tables: UNION

and JOIN. UNION takes the rows from multiple tables and appends them into a

single logical table. JOIN, however, takes the columns from multiple tables and

combines them into a single logical table. UNION is fairly straightforward, but

JOINs come in many variants that control how the table rows are matched when

the columns are appended.

Implicit UNION ALL

Standard SQL defi nes two types of UNION: UNION and UNION ALL. UNION (without

ALL) combines two tables but ignores duplicates. If table A has 10 rows and

table B has 7 rows, but two of the rows in table B are identical to rows in table

A, the UNION of those two tables will have 15 rows—all the rows in A and B

with the duplicates removed. As you can probably imagine, this is a compu-

tationally expensive operation.

UNION ALL, however, performs blind concatenation. If table A has 10 rows

and table B has 7 rows, when you UNION ALL them together, you’ll get all 17

rows of A and B together. UNION ALL is a much less computationally expensive

operation because it doesn’t have to fi nd the duplicate values.

Currently, neither UNION nor UNION ALL is directly supported in BigQuery. So

why is it discussed here? BigQuery does support UNION ALL via a nonstandard

syntax: a comma-separated list of tables in the FROM clause. This is mentioned

in the same section with JOIN operations because standard SQL uses this nota-

tion to mean JOIN.

WHY DOES COMMA MEAN UNION ALL AND NOT JOIN?

If we had to come up with the one deviation from the standard in BigQuery SQL that

caused the most confusion, the choice of comma to mean UNION ALL and not JOIN

would likely be it. This book mentions it several times because we wanted to make

sure that this nonstandard pattern doesn’t surprise users.

In BigQuery, UNION is much more common than JOIN. Users often split their tables

up by day or by customer. This partitioning can help them manage data lifetime (for

example, they delete tables older than 90 days) or to save them money on queries

(because query cost is proportional to number of bytes in the columns referenced).

But by splitting up data into multiple pieces, it means that users often want to query

against multiple tables at once. For instance, if you have daily tables and want to

query against a month’s worth of data, you need to UNION ALL 30 diff erent tables

together.

 Chapter 10 ■ Advanced Queries 311

c10.indd 06:53:21:PM 05/02/2014 Page 311

From a syntax perspective, UNION ALL is clumsy; you don’t UNION together

table names, you UNION together subqueries. So to UNION a week’s worth of tables

together, you’d need to write the same query over and over again:

(SELECT foo FROM table1)

UNION ALL

(SELECT foo FROM table2)

UNION ALL

(SELECT foo FROM table3)

. . .

The BigQuery syntax lets you list the tables separated by commas:

SELECT foo FROM table1, table2, table3. . .

This is much easier to write and to understand. Are there other syntaxes that would

have been almost as compact but didn’t violate SQL standards so thoroughly? Yes, of

course. It is possible that in the future BigQuery will introduce a new syntax for table

UNION (perhaps a table-valued function TABLE_UNION() that lets you list tables)

that doesn’t look like a JOIN.

Here is an example of a UNION ALL operation in BigQuery:

SELECT COUNT(ts), COUNT(DISTINCT id)
FROM [bigquery-e2e:public.device_20140218],
 [bigquery-e2e:public.device_20140219],
 [bigquery-e2e:public.device_20140220]

BigQuery limits table unions to 100 tables. If you want to query over more

than this, you need to split your query up into multiple pieces. If you query over

a lot of tables, you might consider using the table functions TABLE_DATE_RANGE

and TABLE_QUERY, which allow you to specify a range of tables rather than list-

ing them individually.

INNER JOIN

INNER JOIN is the most common type of join; it instructs the query engine to

take the left table and match it with rows in the right table where both tables

share a set of matching column values. One row containing all columns from

both tables is generated for every pair of rows from the left and right table that

satisfy the ON clause. In BigQuery the ON clause is restricted to testing equality

between fi elds from the tables. More complicated conditions must be placed in

the WHERE clause.

312 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 312

For example, say you wanted to look up GitHub repositories that are also the

name of Shakespeare plays and also return the date the Shakespeare play was

written for each one. You could run this query:

SELECT shakespeare.corpus AS name,
 github.repository_owner,
 shakespeare.corpus_date
FROM [publicdata:samples.github_timeline] github
INNER JOIN (
 SELECT corpus, max(corpus_date) AS corpus_date
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus) shakespeare
ON shakespeare.corpus = github.repository_name
LIMIT 5

With an INNER JOIN, if there are Shakespeare plays that aren’t GitHub reposi-

tories, they won’t be returned; likewise if there are GitHub repositories that

aren’t Shakespeare plays, those won’t be returned either. The above statements

may seem somewhat obvious, but they aren’t true of OUTER JOINs.

Because INNER JOIN is so common, it is the default behavior when you use

JOIN without any other modifi ers.

OUTER JOIN

OUTER JOINs are used when you want to return all the rows in a particular table,

regardless of whether they match a result in the table you’re joining against. If

there is no match, then the fi elds for the other table will be null in the result.

OUTER JOINs have three fl avors:

 ■ LEFT OUTER JOIN: Returns all the rows in the left table (the table men-

tioned in the FROM clause)

 ■ RIGHT OUTER JOIN: Returns all the rows in the right table (the table men-

tioned after the JOIN keyword). All RIGHT OUTER JOINs can be rewritten

as LEFT OUTER JOINs by swapping the order of the tables in the query.

 ■ FULL OUTER JOIN: Returns all the rows in both the left and right tables

To come up with an example for an OUTER JOIN, suppose you want to return

all GitHub repositories, regardless of whether they matched the name of a

Shakespeare play. If they do match, however, you want to return the date of

the Shakespeare play whose name they share. To construct this query, you

can use the exact same query from the INNER JOIN section, but change the

INNER JOIN to a LEFT OUTER JOIN. (Use LEFT because the table you want to read

in full is the LEFT table.)

SELECT github.repository_name AS name,
 github.repository_owner,

 Chapter 10 ■ Advanced Queries 313

c10.indd 06:53:21:PM 05/02/2014 Page 313

 shakespeare.corpus_date
FROM [publicdata:samples.github_timeline] github
LEFT OUTER JOIN (
 SELECT corpus, max(corpus_date) as corpus_date
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus) shakespeare
ON shakespeare.corpus = github.repository_name
WHERE repository_language = "Python"
LIMIT 5;

Note that in this case, we’ve changed the name fi eld in the SELECT list to the

repository name fi eld from the GitHub table rather than the corpus name from

the Shakespeare table. In an INNER JOIN, these can be used interchangeably

because they will always be identical. But in an OUTER JOIN, the fi eld referenced

in the ON clause may be null if there was no match on that side.

CROSS JOIN

CROSS JOIN is used relatively rarely, but it is arguably the most powerful type

of JOIN operation. CROSS JOIN says to match each row in the left table with

each row in the right table. If you don’t fi lter the results, you end up with N x

M results, where N is the number of rows in the left table and M is the number

of rows in the right table. It is easy to see that the numbers can get large; if

you have a billion rows in the left table and a million rows in the right, a naïve

CROSS JOIN will generate a quadrillion rows. That is a lot of rows, and chances

are that was not what you actually intended to do.

When combined with a judicious fi lter—a WHERE clause on either the left

side or right side or both—CROSS JOINs can be extremely useful to push the

boundaries of SQL. Whereas INNER and OUTER JOINs are used to combine

tables that have columns that can be tested for simple equality, CROSS JOIN,

however, is usually used to relate tables using a more complex condition. For

example, this query computes the Wikipedia titles that contain the name of

any Shakespeare play.

SELECT wikipedia.title
FROM [publicdata:samples.wikipedia] wikipedia
CROSS JOIN (
 SELECT corpus
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus) AS shakespeare
WHERE wikipedia.title CONTAINS shakespeare.corpus
GROUP BY wikipedia.title
IGNORE CASE

The reason this query needed to be a CROSS JOIN was because the effective

JOIN condition was that one fi eld contains another, ignoring case. There is

314 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 314

no ON clause that could specify the containment condition because ON clauses

must specify an exact match. Instead, the CROSS JOIN matched each Wikipedia

title with each Shakespeare corpus and returned only the ones where the title

contained the name of the Shakespeare play. If part of the condition includes

equality between columns, you should use an INNER JOIN and move that condi-

tion to the ON clause since it will be executed more effi ciently. A CROSS JOIN is

only required when no such equality condition exists. In addition, if the JOIN

clause appears in a subquery, you should push fi lters into the WHERE clause of

the subquery whenever feasible.

Semi-JOIN and Anti-JOIN

Semi- and anti-JOIN are fancy words for JOIN operations that you may not have

even recognized are JOINs. If you want to specify a fi lter from a list generated

by a query, you can use a subquery with the IN clause. For example, consider

the following query, which returns long words from the fi ve largest works in

the Shakespeare table.

SELECT word
FROM [publicdata:samples.shakespeare]
WHERE corpus IN (
 SELECT corpus FROM (
 SELECT corpus, SUM(word_count) total
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus ORDER BY total DESC LIMIT 5))
AND LENGTH(word) > 14
GROUP BY word

This is a semi-JOIN. An anti-JOIN is the opposite when you fi lter based on

not having membership in a list. The anti- JOIN version of the previous query

returns long words from all works except for the fi ve largest:

SELECT word
FROM [publicdata:samples.shakespeare]
WHERE corpus NOT IN (
 SELECT corpus FROM (
 SELECT corpus, SUM(word_count) total
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus ORDER BY total DESC LIMIT 5))
AND LENGTH(word) > 14
GROUP BY word

You may wonder why this is considered a JOIN. It turns out that it is possible

to rewrite the semi-JOIN form as an INNER JOIN query and the anti-JOIN as a

LEFT OUTER JOIN. However, the query is a lot more cumbersome when it is

 Chapter 10 ■ Advanced Queries 315

c10.indd 06:53:21:PM 05/02/2014 Page 315

written with the explicit JOIN syntax. The IN operator makes the query easier

to follow and modify.

JOIN KEY CARTESIANPRODUCT EXPLOSION

One aspect of SQL JOINs that often confuses people who are relatively new to using

them is what happens when there are multiple matches on the left and the right. For

instance, the following query joins the GitHub and Shakespeare tables where the

Shakespeare corpus name matches the GitHub repository name and the Shakespeare

corpus is The Tempest:

SELECT shakespeare.corpus

FROM [publicdata:samples.github_timeline] github

JOIN [publicdata:samples.shakespeare] shakespeare

ON github.repository_name = shakespeare.corpus

WHERE shakespeare.corpus = "tempest"

There are 146 rows in the GitHub table where the repository name is “tempest” and

3636 rows in the Shakespeare table where the corpus name is the same. So when we

join these two tables by matching the repository name with the corpus, we get

146 * 3636 which is more than one-half of a million rows.

It is easy to see that if you’re not careful, when you run a JOIN operation, you can

get unintended explosions in the results. Imagine joining a table of customers with

a table of orders on the customer_id. If both tables have a signifi cant number of

frequently occurring values, the join could end up producing billions of results by

matching the commonly occurring value in one table with each instance of the value

in the other table. If you run a JOIN operation and BigQuery tells you the results are

too large to return, JOIN key explosion may be the culprit.

Analytic and Windowing Functions

There are some data transformations that are awkward to express in SQL. A

good example is computing the rank of a record within a given group of records.

The basic problem is that the tuple relational calculus, the formal framework

underlying SQL, does not actually support ordered sequences and expressing

operations that rely on the order. In fact, even the ORDER BY clause is not sup-

ported by the calculus but is nevertheless present in SQL. As the use of relational

databases for data analysis grew, it became necessary to support these kinds of

operations. Initially developers implemented custom solutions using program-

ming extensions available in individual databases. Eventually database providers

added SQL extensions to support these types of operations, and these extensions

were standardized as window functions in ANSI SQL 99. Arguably, their syntax

316 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 316

and usage is fairly awkward because they do not fi t neatly into the underlying

framework. Nevertheless, they enable a range of useful operations. BigQuery

supports these window functions, and this section discusses how to use them.

The main property of window function expressions is the capability to defi ne

a sequence (in some cases just a set) of values over which the function should

operate.

 window-function OVER ([PARTITION BY fields]
 [ORDER BY fields])

When the OVER clause is empty, the window covers all the rows in the query

result. The partition clause is optional and divides the rows into separate windows

over which the function is applied; much like a grouping clause but it does not

combine rows. Window functions that operate over an ordered sequence require

the ORDER BY clause to specify the ordering within each window. The window

function can appear only as a column in a SELECT clause; for example, it cannot

be used in an arithmetic expression or in a WHERE clause. You can always use a

subquery if you need to operate on the result of a window function.

We will start with the simplest possible window function clause and work

toward more complex usage.

SELECT zip, RATIO_TO_REPORT(population) OVER() AS population_fraction
FROM [bigquery-e2e:reference.zip_codes]
WHERE primary_city = 'Seattle'

This query computes the fraction of the population that resides in a ZIP code

associated with Seattle. The fraction is computed with respect to the sum of the

population fi eld across all rows returned by the query.

You can modify the query to generate results for multiple cities of interest by

adjusting the fi lter condition.

SELECT * FROM (
 SELECT primary_city, zip,
 RATIO_TO_REPORT(population) OVER() AS fraction
 FROM [bigquery-e2e:reference.zip_codes]
 WHERE primary_city IN ('Bellevue', 'Kirkland', 'Seattle'))
ORDER BY primary_city, fraction DESC

Currently, the use of window functions is not compatible with a top-level ORDER

BY clause, so you need to use a subquery to order the fi nal result. However, this

gives different results from the previous query for Seattle alone. This is because

now the population is being normalized with respect to the total population

of Bellevue, Kirkland, and Seattle. To instead normalize the population with

respect to the population of the city corresponding to each row, you need the

PARTITION BY clause.

SELECT * FROM (
 SELECT primary_city, zip,
 RATIO_TO_REPORT(population)

 Chapter 10 ■ Advanced Queries 317

c10.indd 06:53:21:PM 05/02/2014 Page 317

 OVER(PARTITION BY primary_city) AS city_fraction
 FROM [bigquery-e2e:reference.zip_codes]
 WHERE primary_city IN ('Bellevue', 'Kirkland', 'Seattle'))
ORDER BY primary_city, city_fraction DESC

This will treat rows with the same primary city as a window and use the total

population of each window to normalize rows in the window.

Next, turn your attention to fi nding the three most populated ZIP codes in

each state. Because you are ranking ZIP codes by population, you need the

ORDER BY clause.

SELECT state, zip, population FROM (
 SELECT
 state, zip, population,
 RANK() OVER (PARTITION BY state
 ORDER BY population DESC) AS pop_rank
 FROM [bigquery-e2e:reference.zip_codes]
 WHERE population > 0)
WHERE pop_rank <= 3
ORDER BY state, population DESC

Without the outer ORDER BY clause, the ordering of the rows returned is

undefi ned; therefore, you need to explicitly specify the order you would like

rather than relying on the order specifi ed in the OVER clause.

Queries can also use multiple window functions in a single SELECT clause.

There is a restriction that all the window functions in the query use the same

partitioning and ordering clause. This restriction is nonstandard, so it is likely

to be lifted as the service enhances support for the feature.

SELECT state, zip, fraction FROM (
 SELECT state,
 zip,
 RATIO_TO_REPORT(population)
 OVER (PARTITION BY state
 ORDER BY population DESC) AS fraction,
 RANK() OVER (PARTITION BY state
 ORDER BY population DESC) AS pop_rank
 FROM [bigquery-e2e:reference.zip_codes]
 WHERE population > 0)
WHERE pop_rank <= 3
ORDER BY state, fraction DESC

This query would be challenging to write in SQL without the support for

window functions.

If you need to perform an aggregation before applying the window function,

you need to mix in an aggregation operation. However, the GROUP BY clause does

not play well with window functions. Like with ORDER BY, the trick is to use a

subquery, but this time as an inner query that feeds the window function query.

SELECT
 primary_city,

318 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 318

 RATIO_TO_REPORT(city_total) OVER() AS fraction
FROM (
 SELECT
 primary_city,
 SUM(population) AS city_total
 FROM [bigquery-e2e:reference.zip_codes]
 WHERE primary_city IN ('Bellevue', 'Kirkland', 'Seattle')
 GROUP BY primary_city)

Refer to the BigQuery documentation for the list of currently supported

window functions. Over time this list is certainly going to grow and it is also

likely that some of the restrictions around the use of these functions will be

lifted. Even with their current limitations, they can greatly simplify many data

analysis tasks.

BigQuery SQL Extensions

As mentioned at length elsewhere, BigQuery SQL, like most implementations,

is not standard-compliant. Some of the differences between standard SQL and

BigQuery SQL are omissions or semantic changes. However, other differences

are extensions that BigQuery made to the language because no standard exists

for them, but they provide signifi cant power and expressivity to the query lan-

guage. One such example is the capability to query nested and repeated fi elds;

this allows users to store their data in a conceptually convenient way while also

allowing the data to be queried. There is no standard SQL way to query a fi eld

that is itself a list of values. Other examples include special syntax for accessing a

portion of a table or hints that tell the query engine how to parallelize the query.

The EACH Keyword

The EACH keyword is an optimization hint to the query engine that tells it to

perform a shuffl e operation. Chapter 9 has a detailed discussion of how shuffl e

works, but the effect is that it sorts data so that it can be processed in parallel.

Note that this is only a hint: BigQuery may decide to shuffl e data without an

EACH keyword, and the presence of an EACH keyword doesn’t guarantee that

your data will be shuffl ed. In fact, at some point, we’d like to eliminate the need

for EACH entirely.

Adding EACH to your queries can often enable a query that otherwise would

have failed with an “insuffi cient resources” error to succeed. Whether EACH

is needed isn’t always a factor of table size, it is often a factor of cardinality.

Cardinality is the number of distinct elements considered for the operation (JOIN,

GROUP BY, or PARTITION BY). This number is diffi cult for BigQuery to estimate,

so it relies on hints from the query writer.

 Chapter 10 ■ Advanced Queries 319

c10.indd 06:53:21:PM 05/02/2014 Page 319

GROUP EACH BY

If you perform a GROUP BY of a large number of distinct values, you might need

to use GROUP EACH BY instead. For example, the following query fails with the

error “resources exceeded during query execution”:

SELECT title, count(*) as cnt
FROM [publicdata:samples.wikipedia]
GROUP BY title
ORDER BY cnt DESC
LIMIT 100

It may seem counter-intuitive that you still exceed the available resources

when you have limited the results to only the fi rst 100; however, note that it isn’t

just any 100 results; it is the top 100 by frequency. This means that the count of

entries matching a title has to be computed for every title. (There are almost

20 million of them.) Because there isn’t a way to avoid computing the count

for each title, there aren’t any easy shortcuts to take. What’s more, the root of

the execution tree has to aggregate all the results; this is the point at which the

available resources are exceeded because one node has to sum up all the counts

returned by the computation nodes.

The solution to getting this query to run successfully, as you may have guessed,

is to use GROUP EACH BY. This causes the table to be partitioned by title before the

query is run. After the fi elds needed in the query have been sorted, the per-title

counts become much easier to compute because each node can compute local

values and just report their top 100 to their parent. And the root doesn’t have

to keep around counts for each value, just the top counts that it has seen. Here

is the version of the previous query that will run successfully:

SELECT title, COUNT(*) AS cnt
FROM [publicdata:samples.wikipedia]
GROUP EACH BY title
ORDER BY cnt DESC
LIMIT 100

JOIN EACH

If you don’t specify EACH when you perform a JOIN operation, BigQuery requires

that the table on the right side of the join be small enough to send the entire

thing to every node of the computation tree. This means that if the table on the

right side of the join doesn’t fi t into less than 8 MB when compressed, your query

will fail. For example, if you take the query from the OUTER JOIN example and

reverse the left and right tables and switch to an INNER JOIN, you get:

SELECT github.repository_name,
 github.repository_owner,
 shakespeare.corpus_date

320 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 320

FROM (
 SELECT corpus, max(corpus_date) AS corpus_date
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus) shakespeare
INNER JOIN [publicdata:samples.github_timeline] github
 ON shakespeare.corpus = github.repository_name

This query fails with the error “The JOIN operator’s right-side table must be

a small table.” This isn’t as big of a limitation as it sounds because many JOIN

queries use a subselect to narrow down the table that is joined against; as long

as the computed result is smaller than 8 MB, the JOIN will succeed. However,

when that is not possible you can fi x the query by adding the EACH keyword

to the join:

SELECT github.repository_name,
 github.repository_owner,
 shakespeare.corpus_date
FROM (
 SELECT corpus, max(corpus_date) AS corpus_date
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus) shakespeare
INNER JOIN EACH [publicdata:samples.github_timeline] github
 ON shakespeare.corpus = github.repository_name

Data Sampling

Sometimes, it would be nice to operate on only a small portion of your data.

Maybe you’re testing out a query over a giant table and don’t want to incur large

costs while you’re getting your query right. Or maybe you are running into

“resources exceeded” errors, so you need to break up your table into pieces. In

a BigQuery query, there are two commonly used ways to break up your data:

HASH sampling and partition decorators. A word of caution, you may not want

to try all the queries in this section because they will consume a fair amount

of your quota.

HASH Sampling

HASH sampling is a mechanism for selecting a small portion of your table. It

assigns a HASH value to each row in the table and fi lters out only those rows that

match a certain pattern. This mechanism is similar to how BigQuery performs

the shuffl e operation.

For example, say you want to select 10 percent of the unique titles from the

Wikipedia sample dataset. You could run the following query:

SELECT title, COUNT(*)
FROM [publicdata:samples.wikipedia]
WHERE HASH(title) % 10 == 0
GROUP BY title

 Chapter 10 ■ Advanced Queries 321

c10.indd 06:53:21:PM 05/02/2014 Page 321

This applies a HASH function to each title and keeps the rows where the hash

value divides evenly into 10. The HASH function can be thought of as a kind of

random number generator. However, it isn’t completely random: HASH applies

a complex function that makes the output for a given input as random as pos-

sible; however, if you run it with the same input multiple times, you’ll always

get the same answer. This has the nice property that all rows that have the same

source value will HASH to the same result, so if you fi lter on the HASH value, you

can fi lter out a portion of the distinct source data.

The next interesting part of the WHERE clause is the % 10 == 0 part. The %

symbol is the modulo operator, which returns the remainder of the left side

divided by the right side. So WHERE HASH(title) % 10 == 0 is just a fancy way

of taking 1 out of every 10 distinct hash values.

Note that this is different than just taking 10 percent of the data; applying the

HASH fi lter means you keep 10 percent of titles, not necessarily 10 percent of the

underlying data. If you want to know the number of distinct titles, multiply-

ing by 10 gives you a good estimate. If, however, you had just kept 10 percent

of the underlying rows, you likely wouldn’t know how that would affect the

distinct title count.

The other advantage of having the HASH function return stable results is that

you can use it to compute different slices of your underlying table. You already

got the fi rst 10 percent of the titles; you can get the second 10 percent by chang-

ing the value that you’re comparing against:

SELECT title, COUNT(*)
FROM [publicdata:samples.wikipedia]
WHERE ABS(HASH(title) % 10) == 1
GROUP BY title

To get the next slice of the table, increment the value you’re matching against;

this is the remainder when divided by 10. You can get each of the 10 slices in

turn by running once with each number from 0 up to 9. If you look closely at

the query, however, you might notice that there was one additional change: the

addition of an absolute value (ABS()) call to the hashed value.

The modulo operator doesn’t behave predictably when given a negative

number. Some programming languages defi ne the modulo of a negative num-

ber to be negative. Others say it is always positive. Others say it is always the

same sign as the right side (10 in this case). BigQuery SQL defi nes the output of

the modulo operator as the same sign as the left side of the operation. Because

HASH can return negative values, taking the modulo of the result can return a

negative value. So if you fi lter by HASH values where the modulo is equal to 1,

you’ll miss out on the ones where the modulo is –1. This is fairly confusing,

and it confuses a lot of people who are surprised when their HASH fi lters don’t

work the way they expect.

There is one drawback to using HASH fi ltering: You have to run your queries

over the whole table. If you run queries against each of 10 slices, it means you

have to run 10 queries against the whole table, which can get expensive.

322 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 322

Partition Decorators

Partition decorators allow you to run a query that runs only over a subset of the

rows in your table. Unlike HASH partitioning, you are billed only for accessing

the rows in one partition. Using partition decorators can be faster than using

HASH partitioning as well because your query has to read only a small por-

tion of the table.

To use a partition decorator, just add $<index>-of-<count> to the name of

the table you use, where <index> is the index of the partition you use, starting

with 0, and <count> is how many pieces you want to divide the table into. For

example, to access the fi rst 10th of the Wikipedia sample table, use the table name

[publicdata:samples.wikipedia$0-of-10].

Here’s the query used for the HASH partitioning example but with partition

decorators instead:

SELECT title, COUNT(*)
FROM [publicdata:samples.wikipedia$0-of-10]
GROUP BY title

Although the HASH partition example scanned 6.79 GB, this one scans only

690 MB—a much less expensive query. The results, however, are subtly differ-

ent. Although the HASH partitioning example fi ltered by title, this is fi ltering by

row; it will run over approximately 10 percent of rows, but that might not mean

only 10 percent of titles are returned. This may sound somewhat confusing now,

but it is generally obvious what you want from the context. In the case of the

Wikipedia edits data, since each title is edited many times, it is possible that

90 percent of the titles appear in a 10 percent slice of the edit records.

Partition decorators have some limitations; you can’t partition a table any

further than its underlying granularity. Internally, BigQuery stores tables in

shards; these are discrete chunks of data that can be processed in parallel. If

you have a 100 GB table, it might be stored in 5000 shards, which allows it to be

processed by up to 5000 workers in parallel. You shouldn’t make any assump-

tions about the size of number of shards in a table. BigQuery will repartition

data periodically to optimize the storage and query behavior.

If you try to partition your table into more pieces than BigQuery has shards

for that table, you won’t get an error, but you won’t get an even balance. If the

table has only a single shard and you ask for partition 0 of 100, you will likely

get a partition that has all the data in the table; in this case partitions 1 through

99 would all be empty.

Like other decorator types, but unlike HASH partitioning, partition decorators

can be used anywhere that a table is read from in BigQuery. This means you can

use tabledata.list() to read from a table partition. Chapter 12, “External Data

Processing,” describes how this can be useful when performing a MapReduce

 Chapter 10 ■ Advanced Queries 323

c10.indd 06:53:21:PM 05/02/2014 Page 323

over the table. Alternatively, you can copy a single partition or export a single

partition. On the other hand, decorators cannot be used to sample the results of a

subquery, whereas HASH partitioning can be applied to the results of subqueries.

Stable Partitioning with Snapshot Decorators

Whether you use HASH partitioning or partition decorators, you can run into

trouble if you try to run queries over several non-overlapping portions of the

table but the underlying table is changing. Say you’re using HASH partitioning

to query the table in three different chunks and append the results together:

-- 0
SELECT title, COUNT(*) FROM [publicdata:samples.wikipedia]
WHERE ABS(HASH(title) % 3) == 0 GROUP BY title
-- 1
SELECT title, COUNT(*) FROM [publicdata:samples.wikipedia]
WHERE ABS(HASH(title) % 3) == 1 GROUP BY title;
-- 2
SELECT title, COUNT(*) FROM [publicdata:samples.wikipedia]
WHERE ABS(HASH(title) % 3) == 2 GROUP BY title;

What if the table changes in between the fi rst and second queries? You’re

going to end up with results that don’t actually refl ect the underlying table

at any particular point in time. The issue is even more severe with partition

decorators because the partition boundaries will change when data is added to

the table, so you could miss some rows entirely.

If you use either HASH partitioning or partition decorators on tables that may

be changing, it is recommended that you use a snapshot decorator as well. A

snapshot decorator can be used to read the table of a particular timestamp. To

use a snapshot decorator, just append @<timestamp> to the table name, where

<timestamp> is the time of the snapshot in milliseconds since 1970. The snapshot

time must be within the last 7 days; detailed table history is kept only for a week.

For example, to use partition decorators with snapshot decorators to read

the fi rst third of a stable snapshot of the Wikipedia sample table at timestamp

1390581599000, you can use:

SELECT title, COUNT(*)
FROM [publicdata:samples.wikipedia@1390581599000$0-of-3]
GROUP BY title

Note that the snapshot decorator must come before the partition decorator.

Describing the table this way is equivalent to reading the table at the snapshot

time and then partitioning it into thirds.

Snapshot decorators have some extra tricks and options. To fi nd out more,

check out the table decorators’ section in Chapter 11, “Managing Data Stored

in BigQuery,” which discusses them in more detail.

324 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 324

Repeated Fields

Relational databases encourage us to think of data as fl at records spread across

different tables with suitable foreign key relations. In practice, it is often more

natural to have records with a rich structure. For example, an order placed on a

website consists of top-level information such as the time of the transaction and

the customer together with additional details like the list of items along with

their quantities. This is a natural unit of data and the ability to represent it as

a single large record would be convenient. Similarly, the application described

in Chapter 8, “Putting It Together,” stores all the data coming from devices in

a single table with a large number of fi elds. These types of complex schemas

are well supported in BigQuery.

It has been previously discussed that BigQuery uses a columnar storage

scheme to deliver better performance. It is clear how records with a simple

schema consisting of only required or optional fi elds with primitive types

could be laid out in storage so the data in a single column appears sequentially.

Optional fi elds would require some care because you would need to have some

way to indicate that a particular fi eld was absent in a given record, for example, a

reserved value that represented NULL. Even nested or record type fi elds without

repetition are easy to handle because you could just treat all the fi elds as top-

level fi elds using the fully qualifi ed names. However, after you combine nested

and repeated fi elds, the columnar representation becomes more interesting.

The scheme used in BigQuery is explained in the Dremel paper, and variants

have been adopted in related open source formats (Parquet). These formats are

designed to support complex schemas without sacrifi cing the advantages of

columnar storage for data analysis.

Storing these complex records is only half the story; it would be quite useless if

we cannot also query over them effectively. Since standard SQL operates on fl at

relational tables, it is not always convenient for working with complex schemas.

BigQuery SQL has added support for some non-standard extensions to simplify

working with these schemas. This section explains how to use these features.

Pre-Joined Layout

The catch with respect to queries is that you need to operate over these structured

records using SQL. However, relational databases don’t encourage schemas with

nested and repeated fi elds, and as a result, SQL is not well suited to manipulating

these records with internal structure. Fortunately, repeated fi elds bear a striking

resemblance to foreign key relationships between relational tables. When you

recognize the similarities, it can feel quite natural to operate on repeated fi elds

using SQL. An example from the sample application can illustrate this point.

Each log record in the sample application consists of fi elds with one value

per record such as the timestamp and location information. It also has fi elds

 Chapter 10 ■ Advanced Queries 325

c10.indd 06:53:21:PM 05/02/2014 Page 325

that are lists, such as the set of applications that have recently been used on the

phone. The full schema was described Chapter 8; here the portion relevant to

the examples is reproduced.

[
 {"name": "ts", "type": "timestamp", "mode": "required"},
 {"name": "location", "type": "record", "fields": [
 {"name": "zip", "type": "string"}
]},
 {"name": "running", "type": "record", "mode": "repeated", "fields": [
 {"name": "name", "type": "string"},
 {"name": "importance", "type": "record", "fields": [
 {"name": "level", "type": "integer"}
]},
 {"name": "memory", "type": "record", "fields": [
 {"name": "total", "type": "integer"},
]}
]}
]

The standard way to represent this data in a relational database would be to

use two separate tables and establish a foreign key relationship between them.

CREATE TABLE PhoneLog (
 record_id CHAR(64),
 id CHAR(64),
 ts TIMESTAMP,
 location_zip CHAR(5),
 PRIMARY KEY (record_id)
);
CREATE TABLE Application (
 record_id CHAR(64),
 position TINYINT UNSIGNED,
 name VARCHAR(128),
 importance_level INT,
 memory_total INT,
 PRIMARY KEY (record_id, position),
 FOREIGN KEY (record_id) REFERENCES PhoneLog(record_id)
);

You can see that the second table declaration looks a lot like the nested record

schema defi nition, but instead of placing it within an outer schema, a foreign key

relationship is declared. Now look at a simple query over these two tables that

fetches the importance level of a given application within a particular ZIP code.

SELECT MAX(running.importance_level)
FROM PhoneLog
NATURAL JOIN Application running
WHERE location_zip = '98107'
 AND running.name = 'com.googlecode.bigquery_e2e.sensors.client'

326 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 326

The NATURAL JOIN operator combines the two tables to generate one larger

table that has the columns from both tables and the same number of rows as

the Application table. Because one record from the PhoneLog matches zero or

more rows in the Application table, its values are repeated for each matching

row. Now perform the same operation with the nested schema.

SELECT MAX(running.importance.level)
FROM [bigquery-e2e:ch10.sample_data]
WHERE location.zip = '98107'
 AND running.name = 'com.googlecode.bigquery_e2e.sensors.client'

Because we were careful in choosing the aliases, the query looks almost

identical to the query over the separate tables, but now the NATURAL JOIN is

implicit. Just as NATURAL JOIN repeated the values for the fi elds from the left

side (PhoneLog) table, the values in the top-level fi elds are repeated once for each

value in the application ID fi eld.

You have probably realized where this discussion is leading. The NATURAL JOIN

operation and repeated fi elds are nearly equivalent. In fact, sophisticated database

storage engines allow you to confi gure your tables so that the records of one table

are interleaved between the records of the parent (the left side of the join) table. This

is advantageous when most queries end up accessing both tables because it reduces

the disk seeks. However, queries that scan just the parent table are degraded because

all the records from the child table must be skipped over. With columnar storage,

scans are not impacted; a query that references only fi elds in the outer record

incurs no penalty from fi elds in the nested record. However, any join operation

in a query is relatively costly in BigQuery because it does not maintain indexes.

To avoid joins in your query, you should store nested records whenever possible.

In effect, this data is pre-joined, which makes it more effi cient to query. There are

caveats, which are discussed next, but a good rule of thumb is that you can use

your data collection process as a guide for how to structure records. Another clue

is if you fi nd you need to update two different tables consistently, for example,

if you have an Orders table and an ItemsInOrder table and you need to insert

entries in both tables atomically for each order processed. In a database you will

likely use a transaction. In BigQuery you could achieve the same result by nesting

ItemsInOrder in Orders because record insertions are atomic. In general, all the

information that is recorded in a single operation or event should be packaged

into a record with a suitable schema.

When working with nested and repeated schemas, special attention needs

to be paid to the use of COUNT. Take for example this query that counts various

fi elds in our logs.

SELECT COUNT(running.name) / COUNT(ts) AS apps_per_record
FROM [bigquery-e2e:ch10.sample_data]

 Chapter 10 ■ Advanced Queries 327

c10.indd 06:53:21:PM 05/02/2014 Page 327

Note the use of COUNT(ts) rather than COUNT(*). In BigQuery, COUNT(*) returns

the total number of top-level records. It is a good practice to use COUNT(field) unless

you are certain you want COUNT(*). For a repeated fi eld, COUNT(field) returns

the total repetitions of the fi eld across all records. This behavior is in contrast to

the behavior you would see in a relational database. Assuming no NULL values

are present in the fi elds, then a COUNT of any fi eld in a natural join query would

return the identical value, matching the total number of rows generated by the

join. This difference is an indication that our analogy between multiple relational

tables and repeated fi elds, while useful, is only approximate.

All this is a round about way of saying that for the majority of queries, repeated

fi elds work the way you would expect. For many applications they are the natural

choice for modeling data and should be leveraged. The remainder of this section

describes nonstandard extensions to support operations on repeated fi elds in

the SQL variant supported by BigQuery. These extensions are provided because

some common operations on repeated fi elds would be tedious to implement

using standard SQL.

WITHIN

Consider the problem of fi nding the average memory used by the application

consuming the most memory in each record collected. This requires comput-

ing the maximum memory over all apps in a single record. To do this with

the two relational tables previously introduced, you would perform a nested

GROUP BY query.

SELECT AVG(max_mem_usage) AS avg_of_max
FROM (
 SELECT MAX(mem_usage) AS max_mem_usage
 FROM Application GROUP BY record_Id)

This does not work with the nested schema because there is no explicit record_

id fi eld that can be used in the inner query. To support these kinds of queries,

BigQuery supports the WITHIN clause, which can be applied to aggregation

expressions in the SELECT clause.

<aggregation> WITHIN <RECORD|record field>

The WITHIN clause is used to narrow the scope of aggregation operators. The

default scope for an aggregation operator (COUNT, SUM, MAX, and so on) is the

GROUP BY clause if one is present; otherwise, its scope is all the records that satisfy

the WHERE clause. Instead of using the GROUP BY clause to create separate aggrega-

tion scopes, you can use the WITHIN clause to specify scopes that correspond to

the top-level record, with the RECORD keyword, or any nested record fi eld. Each

column in the SELECT clause can specify a different aggregation scope using

WITHIN or can be a non-aggregate expression. This is in contrast to GROUP BY

328 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 328

queries where the only non-aggregate columns permitted are the fi elds present

in the GROUP BY clause. The following query illustrates how to use the clause.

SELECT AVG(max_mem_usage) AS avg_of_max
FROM (
 SELECT MAX(running.memory.total) AS max_mem_usage WITHIN RECORD
 FROM [bigquery-e2e:ch10.sample_data])

When a fi eld, rather than the top-level record, is specifi ed in the clause, the

aggregation operator generates one value for each occurrence of the specifi ed

fi eld. You need to expand the schema a little further to illustrate how fi eld level

aggregation is used. When you record the list of processes, you also record the

list of packages loaded by the process.

[
 . . .,
 {"name": "running", "type": "record", "mode": "repeated", "fields": [
 . . .,
 {"name": "package", "type": "string", "mode": "repeated"},
 . . .
]}
]

Using this data you can compute the average memory used per package

loaded, broken down by application.

SELECT application_id,
 AVG(mem_used / (num_pkgs + 1)) AS mem_per_pkg
FROM (
 SELECT running.name AS application_id,
 running.memory.total AS mem_used,
 COUNT(running.package) WITHIN running AS num_pkgs
 FROM [bigquery-e2e:ch10.sample_data])
GROUP BY application_id
ORDER BY mem_per_pkg DESC

This query illustrates both fi eld scoped aggregation and the mixing of non-

aggregate columns and aggregate columns in a single select expression.

You can see that the WITHIN clause is more than just a replacement for the

GROUP BY technique you would use in a regular SQL. It greatly simplifi es working

with repeated fi elds in queries and gives you an easy way to summarize them.

OMIT IF

BigQuery SQL supports a fi lter clause in addition to the WHERE clause that sim-

plifi es operating on repeated fi elds. This clause should follow the FROM clause

and has the form:

OMIT <RECORD|field> IF <condition>

 Chapter 10 ■ Advanced Queries 329

c10.indd 06:53:21:PM 05/02/2014 Page 329

In contrast to the WHERE clause, elements are excluded if they satisfy the condi-

tion. More important, whereas the WHERE clause fi lters only the entire top-level

record, the OMIT IF clause can exclude an individual element in a repeated fi eld,

and its condition can include aggregate functions of fi elds that appear below

the element being omitted. In fact, all repeated fi elds referenced that are scoped

below the fi ltered fi eld must appear within an aggregate function.

Before considering an example, it is worth noting that OMIT IF is just a syn-

tactic convenience. It can always be replaced by a subquery that computes the

condition using the WITHIN clause. Nevertheless, it is useful because it makes

for more readable queries when dealing with repeated fi elds.

For the fi rst example, modify the per package memory usage query to exclude

apps that use fewer than three packages.

SELECT application_id,
 AVG(mem_used / (num_pkgs + 1)) AS mem_per_pkg
FROM (
 SELECT running.name AS application_id,
 running.memory.total AS mem_used,
 COUNT(running.package) WITHIN running AS num_pkgs
 FROM [bigquery-e2e:ch10.sample_data]
 OMIT running IF COUNT(running.package) < 3)
GROUP BY application_id
ORDER BY mem_per_pkg DESC

The usage of the clause is self-explanatory. The key point to note is that

the aggregate functions are scoped to the fi eld being omitted. If you replaced

running with RECORD, then COUNT(running.package) would have counted the

total packages across all applications in the record.

Say you want to ignore a specifi c application in the calculation of memory

usage. You could do this quite simply by modifying the scope.

OMIT running.package IF running.package = 'com.google.android.gms'

If instead, you want to exclude entire applications that use this package you

need to modify the scope of the OMIT IF clause. The issue is that you want to

omit the entire running element but that requires you only refer to the running

.package fi eld inside an aggregate function. Here is one simple way to achieve

this result.

OMIT running IF SOME(running.package = 'com.google.android.gms')

SOME(<condition>) acts as a disjunction, evaluating to true if any of its

inputs are true. Similarly, EVERY can be used as a conjunction that requires all

its inputs to evaluate to true. These simple aggregation functions make the

OMIT IF clause useful in a variety of queries involving repeated fi elds.

330 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 330

FLATTEN

As long as a query does not involve independently repeating fi elds, the semantics

of querying repeated fi elds are faithful to inner join semantics as described

earlier. When there are multiple independently repeating fi elds, the rules are

more complicated. Before discussing how such fi elds can be mixed, you fi rst

need to understand what it means to be independently repeating. Intuitively,

two fi elds repeat independently if there is no correspondence between the ele-

ments of one fi eld and the elements of the other fi eld. More precisely, a fi eld

may repeat because it is itself repeated or any record in the path to the fi eld is

repeated; two fi elds repeat independently if the set of repeated fi elds in the path

to either fi eld is not a subset of the repeated fi elds in the other path. A concrete

schema can help clarify this defi nition.

[
 {"name": "a", "type": "string"},
 {"name": "b", "type": "string", mode: "repeated"},
 {"name": "c", "type": "string", mode: "repeated"},
 {"name": "d", "type": "record", mode: "repeated", "fields": [
 {"name": "a", "type": "string"},
 {"name": "b", "type": "string", mode:"repeated"}
]}
]

Given this schema, (b, c) and (c, d.a) are examples of independently

repeating fi elds while (a, b), (a, d.b), and (d.a, d.b) are not indepen-

dently repeating. Trivially, a leaf fi eld that is repeated is independent with

respect to any other fi eld that repeats. Non-repeated leaf fi elds (but potentially

contained within one or more repeated records) require inspection of the paths

to the fi elds to determine independence. With this understanding of independent

repetition, now look at why it is interesting for queries.

Now expand the relational tables so that you can continue the comparison to

traditional databases. Each log record in the sample data also contains a list of

visible wireless networks. These fi elds are not defi ned in the schema in Chapter

8 and the data is not collected. They are only included in the sample data for

this chapter to support the examples.

[
 . . .
 {"name": "wireless", "type": "record", "mode": "repeated", "fields": [
 {"name": "ssid", "type": "string"},
 {"name": "bssid", "type": "string"},
 {"name": "connected", "type": "boolean"}
]},
]

 Chapter 10 ■ Advanced Queries 331

c10.indd 06:53:21:PM 05/02/2014 Page 331

In the relational database you would use an additional table, WirelessNetwork,

with a foreign key. The foreign key relationships of Application and

WirelessNetwork to PhoneLog are identical.

CREATE TABLE WirelessNetwork (
 record_id CHAR(64),
 position TINYINT UNSIGNED,
 ssid CHAR(32),
 bssid CHAR(32),
 connected BOOLEAN,
 PRIMARY KEY (record_id, position),
 FOREIGN KEY (record_id) REFERENCES PhoneLog(record_id)
);

Consider a query that determines the relationship between recent applica-

tions running and the currently connected wireless network for a given device.

SELECT
 wireless.ssid AS ssid,
 running.name AS app,
 COUNT(1) AS cnt
FROM PhoneLog
NATURAL JOIN Application running
NATURAL JOIN WirelessNetwork wireless
WHERE id = 'U7nHcz-7bKTu'
 AND wireless.connected
 AND running.importance_level > 300
GROUP BY ssid, app
ORDER BY ssid, cnt DESC

Simply dropping the NATURAL JOINs does not yield a valid BigQuery query.

This is because of the restriction on the use of independently repeating fi elds.

The reason this restriction exists is to avoid inadvertent data explosions. The

double natural join generates the cartesian product of records with a given log

ID from the Application table with a set of records with the same log ID in the

WirelessNetwork table. The query explicitly requests the cartesian product by

including multiple joins. If BigQuery implicitly generated a cartesian product for

each independently repeating pair, it would be easy to inadvertently construct

computationally expensive queries.

Just because an operation is expensive does not mean it isn’t the right thing

to do. So BigQuery supports a FLATTEN operator that allows you to explicitly

specify that a cartesian product is required.

FLATTEN(<table value>, <field>)

This operation converts the specifi ed repeated fi eld to an optional fi eld, gen-

erating a new record for each value in the list and copying all other fi elds

through unchanged. Before you port your relational query to BigQuery using

332 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 332

this operator, consider a simpler example. Here is a query counting separate

fi elds in the table.

SELECT COUNT(ts) AS records, COUNT(running.name) AS apps
FROM [bigquery-e2e:ch10.sample_data]

As discussed earlier the counts are different because repeated fi elds are not

quite handled like a join between two relational tables. If you insert the FLATTEN

operator into the query, you get a different result.

SELECT COUNT(ts) AS records, COUNT(running.name) AS apps
FROM FLATTEN([bigquery-e2e:ch10.sample_data], running)

The two counts returned by this query will be identical and will match the

application count column in the previous query. This result exactly matches

what you would expect from a relational database, an indication that FLATTEN

multiplies the number or records like a JOIN.

Now you can get back to the query comparing wireless networks and appli-

cations. You can choose to fl atten either of the two repeated fi elds involved. It

is preferable to choose the fi eld that has lower average multiplicity, but in this

case there is no obvious choice, so arbitrarily fl atten the wireless fi eld.

SELECT
 wireless.ssid AS ssid,
 running.name AS app,
 COUNT(1) AS cnt
FROM FLATTEN([bigquery-e2e:ch10.sample_data], wireless)
WHERE id = 'U7nHcz-7bKTu'
 AND wireless.connected
 AND running.importance.level > 300
GROUP BY ssid, app
ORDER BY ssid, cnt DESC

Again the JOIN clauses drop away, but this time you must add a FLATTEN

invocation around the source table. What if the WHERE clause involved three

independently repeating fi elds? The FLATTEN operator can be nested to generate

the cartesian product over multiple fi elds.

FLATTEN(FLATTEN(table), field1), field2)

Note that the fi rst argument to fl atten can also be a subquery. For example,

you could rewrite the query to a more effi cient form that fi lters records before

fl attening.

SELECT
 wireless.ssid AS ssid,
 running.name AS app,
 COUNT(1) AS cnt
FROM FLATTEN(
 SELECT *
 FROM [bigquery-e2e:ch10.sample_data]

 Chapter 10 ■ Advanced Queries 333

c10.indd 06:53:21:PM 05/02/2014 Page 333

 WHERE id = 'U7nHcz-7bKTu',
 wireless)
WHERE running.importance.level > 300
 AND wireless.connected
GROUP BY ssid, app
ORDER BY ssid, cnt DESC;

You may not observe an improvement in performance because the optimizer

could be performing the same transformation. One subtle point to pay attention

to is that it is OK to pass independently repeating fi elds through a subquery.

This is not a problem because the subquery just preserves the repeated structure.

Independently repeating fi elds are only a problem if they explicitly appear in the

query. Currently BigQuery automatically fl attens a single repeated fi eld appear-

ing in the outermost SELECT clause. As a consequence, query results never have

repeated fi elds. If more than one independently repeating fi eld appears in the

outermost SELECT clause, BigQuery will reject the query rather than generate

the cartesian product of the repeating fi elds. If this is what you require you can

explicitly FLATTEN one of the repeating fi elds.

Repeated Field Functions

Almost all the functions in the query language operate the same way on single-

ton and repeated fi elds. However, a couple of functions provided specifi cally

operate on or produce repeated fi elds.

 ■ NEST(field)

 ■ POSITION(field)

 ■ NTH(index, field)

 ■ LAST(field)

NEST is an aggregation function that is roughly the inverse of FLATTEN. It

must be used as a column in the SELECT clause together with a GROUP BY clause.

Currently, it is not particularly useful because BigQuery fl attens all top-level

query results, so it will undo the work of a top-level NEST expression. In addition,

the ability to operate only on a single fi eld signifi cantly limits its usefulness. In

subqueries you will likely want to use window functions instead of NEST, so

we will not bother with an example of its usage.

The rest of the functions take repeated fi elds as inputs. Keep in mind that a

fi eld itself may not be repeated, but if any of the records in the path to the fi eld

are repeated, then the fi eld is treated as repeated. The functions operate with

respect to the scope specifi ed by the WITHIN clause. For example, in our appli-

cation device log, POSITION(running.name) WITHIN RECORD returns the index

of the application in the list of applications. As you have probably guessed,

POSITION returns the position of a value in a repeated fi eld; NTH returns a value

334 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 334

at a particular position in the repeated fi eld; and LAST returns the last element in

the repeated fi eld. There is no FIRST because that is the same as NTH(1, field).

All the functions use 1-based indexing; there is no 0th element. Here is a query

that computes the difference in importance levels between the applications in

the fi rst and last position:

SELECT AVG(importance_delta) FROM (
 SELECT
 (NTH(1, running.importance.level)
 - LAST(running.importance.level)) WITHIN RECORD
 AS importance_delta
 FROM [bigquery-e2e:ch10.sample_data])

The Parallel Lists query recipe that describes how to zip together two parallel

repeated fi elds demonstrates the use of POSITION. Note that it is illegal to use

POSITION on a non-repeated fi eld.

Query Errors

Errors associated with query jobs fall into three categories:

 ■ Transient

 ■ Invalid user input

 ■ Execution failures

The fi rst two classes of errors can occur on any of the API operations. Of

course, because queries can be complicated and are susceptible to a variety of

syntax and semantic errors, it is common to encounter the second class of errors.

The error message is usually clear enough to determine the problematic parts.

Unfortunately, there are times when the message is cryptic, and there is no

simple prescription for dealing with these cases. The best you can do is report

instances of unhelpful messages through the support channels described in

the introduction. The last class covers cases where the query is well formed but

cannot be computed due to limitations in the execution engine. These types of

errors are the focus of this section because in some cases workarounds exist.

Result Too Large

When new users fi rst try the service, it is common for them to start by trying

the simplest possible query to get a feel for the web interface, command-line

client, or API. The usual candidate is something along the lines of:

SELECT * FROM [publicdata:samples.wikipedia]

 Chapter 10 ■ Advanced Queries 335

c10.indd 06:53:21:PM 05/02/2014 Page 335

It is an unfortunate way to start because the service responds with a disap-

pointing error message.

errorResult": {
 "reason": "responseTooLarge",
 "message": "Response too large to return."
}

Considering that the service is intended to operate on “Big Data,” it is some-

what surprising that it is complaining that such a simple operation is too large.

In this particular scenario the underlying issue is that users are expecting

the service to behave like traditional databases they are familiar with, but the

service is not quite meeting their expectation. In a database, the result of a query

is a cursor, which allows you to fetch rows incrementally. When the result can be

trivially computed, the cursor can just be a fancy pointer into the source table.

Most tools will fetch a small number of rows from the cursor and then discard

it. BigQuery operates differently; a query is actually a job that transforms a set of

source tables into a new table. As a result the simple SELECT * query is actually

attempting to make a full copy of the Wikipedia sample table. Making a copy

is defi nitely not what users had in mind. Fixing the query is simply a matter

of appending a LIMIT with a reasonable value to the end. However, this error

merits additional discussion.

ENCOURAGING A LIMIT

In the fi rst release of the web application, the query template in the compose box did

not include a trailing limit. We quickly discovered users were hitting this error, so the

default template was modifi ed to include a limit of 1,000 rows. Unfortunately, no such

safety net exists in the command-line client, so users still hit this error when testing

with that tool.

Arguably, the aim of most queries is to turn “Big Data” into “Small Data”—

the loose defi nition of small data being something humans can usefully

consume. Even if the data is feeding visualizations, this limit is usually not

more than a couple of thousand rows. In many cases a “Response too large”

error is an indication that a query is not suffi ciently selective or requires fur-

ther aggregation. The error is triggered when the size of the result exceeds

approximately 128 MB. The specifi c value is not particularly useful because

it is likely to change over time, and in any case it is not easy to estimate the

size of your results before running the query. A simpler rule of thumb is to

aim for query results that return less than 10,000 rows.

When developing complex queries that involve subqueries, it is often useful

to look at the result of the subquery to ensure it is producing the results you

intended. Often these subqueries generate large results, which the fi nal outer

336 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 336

query will summarize into a manageable number of rows. Simply slap a LIMIT

clause at the end of the subquery to test it independently; just remember to drop

the clause when pasting it into the fi nal query. Further, if you have an ORDER BY

clause and need only the top or bottom N results, then adding a LIMIT N clause

will likely signifi cantly speed up your query execution.

Finally, there are times when you do want to execute a query that is going to

return a large result. Possible use cases include:

 ■ The result will be used as a source in future queries.

 ■ Data will be exported for external processing.

 ■ The table is being updated to fi x bad data.

For these use cases BigQuery does support generating large results, but it

requires that the allowLargeResults fl ag be explicitly set to true in the query

job confi guration. If you are wondering why this fl ag does not default to true,

the reason is that large result generation uses a different execution mode that is

slower than the default mode that has the size restriction. Queries that generate

small results are orders of magnitude more common than large result queries,

so it would be a shame to slow all of them down by defaulting to the large

result execution path. Because you will need to reference the results in queries

or export jobs, you are required to supply a destination table to save the results

when the fl ag is set to true. Note that, unlike with anonymous tables, you will

begin to accrue storage costs for your query results when the query completes,

and it will not be automatically garbage collected.

job['configuration'] = {
 'query': {
 'allowLargeResults': True,
 'destinationTable': {
 'projectId': 'myproject',
 'datasetId': 'mydataset',
 'tableId': 'my_big_result'
 }
 'query': 'SELECT . . .'
 }
}

You can also enable the fl ag when issuing queries using the command-line

client.

$ bq query –-allow_large_results \
 -–destination_table foo.bar \
 'SELECT * FROM [some.table] WHERE . . .'

This feature is powerful and should certainly be utilized when appropriate,

but it is not a good idea to always enable it because then all your queries will

be slower.

 Chapter 10 ■ Advanced Queries 337

c10.indd 06:53:21:PM 05/02/2014 Page 337

Resources Exceeded

Considering that every computational system has its limitations, it should not

come as a surprise that there are some queries that simply do not fi t within the

resource constraints of BigQuery. However, the mode of failure may be somewhat

surprising. Many database systems will not by default fail a query because it

is too expensive. Instead they will attempt to make progress given the existing

resources even if it means consuming all the resources at the expense of other

queries in the system, and they may take an unreasonably long time. BigQuery

aims to execute every query within a time frame that is proportional to the data

being scanned, so it fails the query relatively quickly rather than processing it

indefi nitely. This approach has merits, but you also have to cope with its drawbacks.

It is useful to understand at a high level why some queries fail to fi t within

the constraints of the system. Chapter 9 covers the execution model in detail,

and it is useful to keep it in mind when considering resource errors. To achieve

good performance, the system avoids using a disk once the data has been read

from a disk. The intermediate results in each node are kept in volatile memory,

and every query is subject to a limit on the memory it uses in a single node.

When a query exceeds this limit on any single node, the query fails and reports

a resources exceeded exception.

errorResult": {
 "reason": "resourcesExceeded",
 "message": "Resources exceeded."
}

Retrying the unit of work on a different node is not going to help matters

because the limit is a static value, so any other node will encounter the same

limit. For the same reason, retrying the query is not going to help matters.

There are a few different query features that have high memory requirements

within a single execution node:

 ■ GROUP BY clauses that generate a large number of distinct groups

 ■ Aggregation functions that require memory proportional to the number

of input values

 ■ Join operations that generate a greater number of outputs than inputs

Earlier in the chapter you saw how to deal with queries that have the fi rst

property by using the EACH qualifi er in the GROUP BY clause. Queries that have

large memory requirements for each group handled can fail even when the

EACH qualifi er is used. In some cases it is possible to avoid this resource limit;

for example, the “Exact Count Distinct” section in this chapter presents a scal-

able alternative to the COUNT(DISTINCT field) function, which often causes

resource exhaustion errors. Unfortunately, there is no reliable procedure for

fi xing all queries that encounter this issue. Here we discuss the class of queries

338 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 338

that generally encounter this issue and suggestions for how to modify them so

that they succeed.

Most of the familiar aggregation functions have outputs that are indepen-

dent of the number of values fed to them, for example COUNT, SUM, MIN, and

MAX. However, the GROUP_CONCAT and NEST aggregation functions have outputs

that are proportional to the size of their inputs. Other aggregation functions

have theoretically constant output size, but the constant is large as in the case

of COUNT(DISTINCT field, N) with a large value for N (the constant is propor-

tional N). Finally, operations like QUANTILES have intermediate state that grows

logarithmically with input values, but once again have a large constant factor

that can be problematic. Because all these consume a substantial amount of

memory per output record, they tend to cause memory limit violations as the

results are collected up the execution tree. To avoid the error you need to modify

the query to generate fewer total output rows by limiting the set of input values

considered. This may require building up the fi nal result by running multiple

queries, all appending their results to the same fi nal result table.

When a query does not involve a join, the number of output rows is strictly

less than or equal to the number of input rows. When a join is present, then for

each distinct value of the join key, the number of output rows is the product

of the number of rows in the left and right table with the given key. The query

might eventually discard or aggregate these rows, but they must at least be

transiently generated. Most of the time joins deal with one-to-many relation-

ships, but when you work with a many-to-many relationship between two

tables, the amount of intermediate state can easily grow large. This can lead to

high-memory usage in the leaf nodes of the execution engine. Note that even

in cases where the memory usage is not an issue, this can cause the query to

run slowly. In some cases you can control this expansion of data by adjusting

the query. The Cross Join query recipe in the following section for calculating

concurrency of operations is an example of how you can design the join so that

the number of intermediate rows is manageable.

Regrettably, there is no simple prescription for dealing with these errors.

Hopefully, we have at least given you enough information to identify the parts

of the query that are causing the error and ideas for how to work around the

error. Fortunately, as the execution engine evolves over time and expands its

capabilities, these errors will be less common and you can forget this section!

Recipes

This section is organized as a grab bag of queries that are useful in reporting

applications. We have tried to concentrate on queries that look fairly differ-

ent from a similar query over data stored in a relational database. It is worth

 Chapter 10 ■ Advanced Queries 339

c10.indd 06:53:21:PM 05/02/2014 Page 339

skimming this chapter to get a sense for the types of reports being addressed.

That way, when you do encounter a report that seems tricky to generate using

BigQuery, you will know if this section has a pertinent recipe and can return

to it to look up the details.

Pivot

The operation of pivoting or transposing a table is common when shaping

data for reports or visualization. In SQL the natural way to generate totals

broken down by multiple dimensions is to use a grouping clause with required

dimensions. This works well because it generalizes to an arbitrary number of

dimensions. However, when working with two dimensions, especially when

one dimension has only a handful of possible values, it is useful to have a col-

umn for each value of the dimension. For example, you might be interested in

fi nding the longest 100 words across the plays of Shakespeare together with

the counts for how often they appear in each work.

SELECT word, corpus, corpus_total
FROM (
 SELECT
 word,
 LENGTH(word) AS word_len,
 corpus,
 SUM(word_count) AS corpus_total
 FROM [publicdata:samples.shakespeare]
 WHERE LENGTH(word) > 10
 GROUP BY word, word_len, corpus)
ORDER BY word_len DESC
LIMIT 100

This query does not quite do what we set out to do because each row cor-

responds to a word and corpus pair. We will fi x it as we pivot the data.

If you are only interested in a specifi c set of his works, it would be more

convenient if you could have a column for the count of the word in each of the

works of interest. In addition, you can then ensure that you collect 100 separate

words because each row will correspond to a single word. You can achieve this

by adding multiple aggregation columns with conditional expressions.

SELECT
 word,
 SUM(IF(corpus = 'kinglear', corpus_total, 0)) AS kinglear,
 SUM(IF(corpus = 'tempest', corpus_total, 0)) AS tempest,
 SUM(IF(corpus = 'macbeth', corpus_total, 0)) AS macbeth,
 SUM(corpus_total) AS [total]
FROM (
 SELECT
 word,

340 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 340

 LENGTH(word) word_len,
 corpus,
 SUM(word_count) corpus_total
 FROM [publicdata:samples.shakespeare]
 WHERE LENGTH(word) > 10
 GROUP BY word, word_len, corpus)
GROUP BY word, word_len
ORDER BY word_len DESC
LIMIT 100

This query generates three columns for the counts of the longest words in

King Lear, Tempest, and Macbeth. It also includes a total column that is the total

across all the works in the table. As you might guess, most of the counts are

zero because long words are unique and tend to be limited to a single corpus.

In many cases the values to pivot are not known up front. Even in this query

we picked three works at random. In realistic reports there is usually a better

way to select the columns. For example, we could identify the three largest

works and use those in our column expressions.

SELECT CONCAT(
 CONCAT("SUM(IF(corpus = '", corpus),
 "', corpus_total, 0)")
FROM (
 SELECT corpus, SUM(word_count) total
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus
 ORDER BY total DESC
 LIMIT 3)

If the number of columns grows large, the query can be tedious to write, but

usually such queries are generated programmatically. The previous query gener-

ates the individual column expressions. In practice, you might not actually want

BigQuery to handle your formatting, but the query illustrates how you might

feed a query result into a string-formatting library to generate the fi nal query.

Cohort Analysis

When trying to make sense of Big Data, it is common to discuss cohorts that are

basically sets of entities that have a specifi c property, for example:

 ■ Users who accessed a given application on their phone

 ■ Wikipedia contributors that edited a particular title

 ■ Cities that have more than one ZIP code

In most cases it is not possible to determine if an entity belongs to a particular

cohort by inspecting a single record. Here you investigate how to compute a

condition that spans multiple rows and use it in a cohort analysis query.

 Chapter 10 ■ Advanced Queries 341

c10.indd 06:53:21:PM 05/02/2014 Page 341

T I P In this chapter we have mostly used explicit fi eld references in GROUP BY and

ORDER BY clauses. This generally makes the query a little easier to understand. The

older SQL standard and many popular implementations also support using column

indices in these clauses. BigQuery also supports this feature, and we have used it in

the queries that appear in this recipe and also in other chapters. Often it is useful

when you are experimenting with queries, and in some cases it even improves the

readability of the query. However, the feature is not standardized, so if that is a con-

cern, you may want to avoid it in your production code.

In the Wikipedia example, because each record contains a single edit, you

must look at all the edits for a given contributor to determine if the contribu-

tor belongs to the cohort. You can evaluate each record to see if it establishes

membership or not, but then you need to combine all the results to see if there

is at least one record where the condition evaluates to true. The SOME and EVERY

aggregate functions perform the logical aggregation required for this operation.

SOME computes the disjunction of its inputs; it is true only if there is at least one

input that is true. EVERY computes the conjunction of its inputs; it is false if at

least one input is false.

SELECT bush_all, bush_some, obama_all, obama_some,
 COUNT(1) AS num, AVG(edits) AS avg_edits
FROM (
 SELECT contributor_id,
 EVERY(bush_edit) AS bush_all, SOME(bush_edit) AS bush_some,
 EVERY(obama_edit) AS obama_all, SOME(obama_edit) AS obama_some,
 COUNT(1) AS edits
 FROM (
 SELECT
 contributor_id,
 (LOWER(title) = 'george w. bush') AS bush_edit,
 (LOWER(title) = 'barrack obama') AS obama_edit
 FROM [publicdata:samples.wikipedia])
 GROUP EACH BY 1
 HAVING bush_all OR bush_some OR obama_all OR obama_some)
GROUP BY 1, 2, 3, 4
ORDER BY 1, 2, 3, 4

The innermost query could have been collapsed into the containing query, but

it is often more readable if you have a query that solely computes the conditions

on individual records, especially if a condition is used more than once in the

containing query as is the case here. The GROUP EACH BY nested within a GROUP

BY query is typical for cohort analysis. The EACH query is collecting and sum-

marizing all the records for every user. It is common to need EACH because there

are usually a large number of entities, so shuffl ing the data among nodes avoids

hitting resource limits. This inner query produces one record per user with fi elds

that describe the properties of interest. The outer query then counts the number

342 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 342

of users falling in each cohort, where the cohort is defi ned by specifi c values for

the properties computed. In our example, the properties are “user has edited at
least one Bush page,” “user has only edited Obama pages,” and so on. This group-

ing does not have an EACH because the number of different cohorts tends to be

small for any given query, in our example, just 5. You can accumulate multiple

statistics in one pass; for example, this query computes the number of unique

users in each cohort and the average number of edits per contributor in a cohort.

To illustrate more complex cohort conditions that can be implemented using

the same basic strategy, imagine defi ning a cohort based on the relative times

of the fi rst edit.

SELECT
 IF(bush_some AND obama_some,
 first_bush < first_obama, NULL) AS bush_earlier,
 bush_some,
 obama_some,
 COUNT(1) AS num,
 AVG(edits) AS avg_edits
FROM (
 SELECT
 contributor_id,
 MIN(IF(bush_edit, ts, 99999999999)) AS first_bush,
 SOME(bush_edit) AS bush_some,
 MIN(IF(obama_edit, ts, 99999999999)) AS first_obama,
 SOME(obama_edit) AS obama_some,
 COUNT(1) AS edits
 FROM (
 SELECT
 contributor_id,
 timestamp AS ts,
 (LOWER(title) = 'george w. bush') AS bush_edit,
 (LOWER(title) = 'barrack obama') AS obama_edit
 FROM [publicdata:samples.wikipedia])
 WHERE bush_edit OR obama_edit
 GROUP EACH BY 1)
GROUP BY 1, 2, 3
ORDER BY 1, 2, 3

The main feature to observe is that you can compute cohort membership in

the top-level query. In this case, you can subdivide the cohort of contributors

that have edited the pages of Obama and Bush into separate cohorts depending

on which page was edited earlier. You can also see that we tweaked the rows

being considered for the total statistics by moving the condition from the HAVING

clause to the WHERE clause, limiting the query to rows involving the pages of

interest, which is a condition we can apply prior to the aggregation.

The essential piece of this technique is using a nested GROUP EACH specify-

ing the fi elds that identify the entity that is being evaluated for inclusion in

a cohort. After you have a handle on this bit, you can play with the row fi lter

 Chapter 10 ■ Advanced Queries 343

c10.indd 06:53:21:PM 05/02/2014 Page 343

conditions and aggregations at different levels of the query to extract the infor-

mation you need.

Parallel Lists

When you design schemas for BigQuery, it is best to organize repeated data

so that fi elds that repeat together are collected into a RECORD type fi eld that is

repeated; this allows for simpler queries over the data. Unfortunately, there are

times when you have to deal with data that is structured as independent lists

where elements at equal indexes are related to each other. For example, consider

this table representing mappings between numbers in different representations.

[
 {"name": "src_id", "type": "string"},
 {"name": "dst_id", "type": "string"},
 {"name": "src", "type": "string", "mode": "repeated"},
 {"name": "dst", "type":"string", "mode": "repeated"}
]

Ideally, you would have preferred a schema that paired the source and des-

tination values into a single record.

[
 {"name": "src_id", "type": "string"},
 {"name": "dst_id", "type": "string"},
 {"name": "map", "type": "record", "mode": "repeated", "fields": [
 {"name": "src", "type": "string"},
 {"name": "dst", "type": "string"}
]}
]

Fortunately, if you are stuck with the former schema, you can still arrange

for the pairs to be constructed on-the-fl y.

You can use the POSITION function to access the index of each value, but

you need to include a FLATTEN operation because the fi elds accessed are

independently repeating.

SELECT src_id, dst_id, src, dst
FROM FLATTEN((
 SELECT src_id, dst_id,
 POSITION(src) AS src_index, src,
 POSITION(dst) AS dst_index, dst
 FROM [bigquery-e2e:ch10.parallel]),
 src)
WHERE src_index = dst_index

This works well enough, but keep in mind this is quite a bit more expensive

than the simpler queries possible with the more appropriate schema. The execu-

tion engine has to generate the cross product of the elements in the list before

344 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 344

it can fi lter it down to matching the entries with the matching positions. Just to

demonstrate that you can actually do something useful with the result of this

query, here is a version that does a little more than pulling the entries together.

SELECT src,
 GROUP_CONCAT(CONCAT(dst_id, CONCAT(":", dst))) AS dst_list
FROM FLATTEN((
 SELECT
 src_id, dst_id,
 POSITION(src) AS src_index, src,
 POSITION(dst) AS dst_index, dst
 FROM [bigquery-e2e:ch10.parallel]),
 src)
WHERE src_index = dst_index
 AND src_id = "decimal"
GROUP BY src
ORDER BY src

This approach generalizes to more than two parallel lists. Each additional

repeated fi eld requires a nested FLATTEN. You should also place the WHERE clauses,

applying the position equality fi lter in the nested queries, rather than collecting

them all at the top-level to reduce the number of intermediate rows generated

by the cross product. That means one such condition following each FLATTEN

invocation.

Exact Count Distinct

The COUNT(DISTINCT field, N) aggregation function is approximate and

intended to be a quick way to roughly determine the cardinality of a given fi eld.

It is exact for cardinalities less than N, so it is tempting to simply use it with a

large value of N to determine the exact cardinality. This is problematic because

it consumes memory proportional to N causing these kinds of queries to fail.

There is a straightforward way to determine the exact cardinality of a fi eld, and

it also scales to larger cardinalities. The query is slower because it involves a

shuffl e operation, so rather than using the approach outlined next all the time,

reserve it for when you have to compute exact cardinalities for large sets.

Here is the simplest version of the query that highlights how the shuffl e is

used to collapse duplicate values in a given fi eld.

SELECT COUNT(1) AS unique FROM (
 SELECT 1 FROM [publicdata:samples.shakespeare]
 GROUP EACH BY word)

The inner query buckets each input row into a group associated with a dis-

tinct word. The SELECT 1 is perhaps a little confusing. The query would remain

the same if you change it to SELECT word, but you can use a constant expres-

sion here to emphasize that you do not care about the actual value of the word

 Chapter 10 ■ Advanced Queries 345

c10.indd 06:53:21:PM 05/02/2014 Page 345

outside the grouping clause. COUNT(1) similarly indicates that we are interested

in the number of rows rather than any particular fi eld. This approach scales to

millions of distinct values because EACH distributes the aggregation operation.

It is fairly common to want to determine distinct values broken down across

one or more dimensions. Daily active users over the last seven days or distinct

HTTP user agents by URL are examples of such queries. All you need to do

is add an additional fi eld to the grouping clause and thread it through to the

outer query.

SELECT wp_namespace,
 COUNT(num) AS unique,
 SUM(num) AS total
FROM (
 SELECT wp_namespace,
 COUNT(1) AS num
 FROM [publicdata:samples.wikipedia]
 GROUP EACH BY wp_namespace, contributor_id)
GROUP BY wp_namespace
ORDER BY wp_namespace

In addition to cardinality, this query also records the total counts broken down

by the same dimension. It is common to want both together, so it is helpful to

fetch them in a single query.

One nice capability of COUNT(DISTINCT field) is that a single query can deter-

mine the cardinality of multiple fi elds. With a little cleverness you can modify

your exact version to do the same.

SELECT wp_namespace,
 SUM(IF(field = 'ID', 1, 0)) AS unique_id,
 SUM(IF(field = 'ID', INTEGER(num), 0)) AS total_id,
 SUM(IF(field = 'IP', 1, 0)) AS unique_ip,
 SUM(IF(field = 'IP', INTEGER(num), 0)) AS total_ip,
FROM (
 SELECT wp_namespace, field, COUNT(1) AS num
 FROM (
 SELECT wp_namespace,
 'ID' AS field,
 HASH(contributor_id) AS val
 FROM [publicdata:samples.wikipedia]
 WHERE contributor_id IS NOT NULL
), (
 SELECT
 wp_namespace,
 'IP' AS field,
 HASH(contributor_ip) AS val
 FROM [publicdata:samples.wikipedia]
 WHERE contributor_ip IS NOT NULL)
 GROUP EACH BY wp_namespace, field, val)
GROUP BY wp_namespace
ORDER BY wp_namespace

346 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 346

This query is fairly complicated, but it has the advantage that you do not

need to run and wait for a query job for each fi eld that you need to analyze.

The pivot by fi eld type in the top-level SELECT clause is not actually required,

so you could replace that with a simple aggregation by fi eld type and simplify

the query a little.

Trailing Averages

With the introduction of window functions, it is fairly easy to generate trailing

(or other moving averages). The main issue to deal with is some of the restric-

tions around the use of window functions. To demonstrate how to construct

the query, we have created a synthetic dataset (bigquery-e2e:ch10.sessions)

corresponding to user sessions on some hypothetical service. Each record has

a user ID and a start and end timestamp.

[
 {"name": "user_id", "type": "string"},
 {"name": "start", "type": "timestamp"},
 {"name": "end", "type": "timestamp"}
]

The metric we are going to smooth is the daily active users. We start with

an inner query that computes the base metric and then wrap it in a query that

uses window functions to fetch trailing rows. The outermost query combines

the trailing values into a weighted average paying attention to missing values.

SELECT
 start_date,
 ((num_0 +
 IF(num_1 > -1, num_1, num_0) * 0.5 +
 IF(num_2 > -1, num_2, num_0) * 0.25) /
 1.75) AS smooth_num
FROM (
 SELECT
 start_date,
 num_0,
 LAG(num_0, 1, INTEGER(-1))
 OVER (ORDER BY start_date) AS num_1,
 LAG(num_0, 2, INTEGER(-1))
 OVER (ORDER BY start_date) AS num_2
 FROM (
 SELECT
 DATE(start) AS start_date,
 INTEGER(COUNT(1)) num_0
 FROM [bigquery-e2e:ch10.sessions]
 GROUP BY start_date))
ORDER BY start_date

 Chapter 10 ■ Advanced Queries 347

c10.indd 06:53:21:PM 05/02/2014 Page 347

This method is easy to follow but there is one important caveat. If there are

missing days from the inner query, then the moving average will be wrong

because the missing day will not be treated as zero, rather the fi rst nonzero

day before it will be used. If your data can suffer from gaps, you may want to

consider forming the union of the inner query and table containing a zero entry

for every day of interest to ensure there are no gaps.

Finding Concurrency

Now continue with the session dataset used in the previous recipe to illustrate

an interesting way to leverage CROSS JOIN. The goal is to compute the maxi-

mum number of concurrent sessions observed for each hour of a given day,

performing the calculation at minute granularity.

The basic idea is to determine all the sessions that were live during a given

minute. You can do this by cross-joining each session with every minute of the

day and then discarding all the minutes that do not fall within the start and

end time of the minute. Then group the values by minute and count the occur-

rences. Finally group the minutes by hour and take the max count over all the

minutes in the given hour.

SELECT
 INTEGER(minute / 60) AS hour,
 MAX(active) AS active
FROM (
 SELECT m.index AS minute, COUNT(s.user_id) AS active
 FROM (
 SELECT
 user_id,
 INTEGER((TIMESTAMP_TO_SEC(start) -
 TIMESTAMP_TO_SEC(TIMESTAMP('2014-01-15'))) /
 60) AS start_min,
 INTEGER((TIMESTAMP_TO_SEC(end) -
 TIMESTAMP_TO_SEC(TIMESTAMP('2014-01-15'))) /
 60) AS end_min
 FROM [bigquery-e2e:ch10.sessions]
 WHERE start > '2014-01-14 23:00:00'
 AND end < '2014-01-16 01:00:00') s
 CROSS JOIN [bigquery-e2e:ch10.minutes] m
 WHERE s.start_min <= m.index AND m.index <= s.end_min
 GROUP BY minute)
GROUP BY hour
ORDER BY hour

To make this work you need to load a fi le containing the minutes. Actually

all you need is a table with a single column containing the integers [0, 24 * 60].

We have generated the table bigquery-e2e:ch10.minutes by simply loading a

text fi le containing these integers. If your input is spread across tables covering

348 Part III ■ Advanced BigQuery

c10.indd 06:53:21:PM 05/02/2014 Page 348

different time periods, then you need to adjust the query for sessions that span

the boundaries of your tables. Since this example only uses a single table, all

you had to do was ensure that the inner WHERE clause selected sessions from an

interval slightly larger than the day you are analyzing.

Abstracting a bit from this specifi c problem, there are two important points

to note. Firstly, JOIN, and CROSS JOIN in particular, allow you to expand the

number of input rows, effectively multiplying the left table with the right table.

Second, although the ON clause in BigQuery joins is restricted to equality com-

parisons, you can always use the WHERE clause to apply more general fi ltering

conditions to the generated rows. The only danger to avoid is both tables being

large in which case the cross product is prohibitive.

Summary

This was a long chapter, heavy on examples and details, yet it covered only a

small part of what can be done with BigQuery. For programmers familiar with

procedural languages, SQL can initially seem awkward. However, given some

time, you may fi nd yourself warming to the notion that the language is well

suited to the task of transforming structured data. The examples covered are

merely a starting point for all the interesting queries you can run to extract

meaningful information from your data.

One other important point is that BigQuery is constantly evolving the capabili-

ties of its SQL implementation. Over time, various awkward restrictions have

been dropped, and additional functions and language features have been added.

You will fi nd that more of your analysis can be done easily within the service.

Inevitably you will hit a problem that seems intractable in SQL. Consider

reaching out to the BigQuery StackOverfl ow forum mentioned in the introduc-

tion or the broader SQL community for ideas on how to tackle the problem. Even

if we cannot solve your challenge, we are interested to learn about the different

kinds of problems people are trying to tackle. Who knows, your question may

lead to the next round of new language features or functions.

349

c11.indd 02:41:35:PM 04/29/2014 Page 349

The previous chapters cover how BigQuery simplifi es analytics over large

datasets. BigQuery also has features to simplify data management and the

integration of analytics into an application. This chapter covers those features

and how to handle common data warehousing tasks using them.

Query Caching

As discussed in Chapter 7, “Running Queries,” BigQuery has an auto-caching

feature that enables it to reuse results across identical queries. This feature is

convenient because it is transparent to the user but is limited to instances in

which the service can guarantee that existing results from a prior query job are

identical to the results that would be generated by running the query again,

which we will elaborate on below. The application developer, on the other hand,

knows a great deal more about the use case. So when the application can trade

freshness for execution cost, it is possible to further reduce query costs by directly

managing caching. With many data warehousing systems, it is necessary to

utilize a separate caching framework, for example Memcached, to reduce load

on the query engine or the latency of operations in a front end. With BigQuery

it is usually feasible to avoid a separate caching framework for query results

C H A P T E R

11

Managing Data Stored in

BigQuery

350 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 350

by leveraging the feature that query results are actually new tables that can be

assigned an explicit name. Different parts of the application can interact with

the same query result by accessing the appropriate named table. Next you see

how this works.

Result Caching

To understand how named query results are useful, look at how to build a page

in your application that renders the top 100 most active Android applications

over, for example, the last 6 hours. Imagine something like a leaderboard for

applications, which could perhaps serve as a navigational element leading to

information about a specifi c application. First, you need to formulate the query

that can generate the information that needs to be displayed:

SELECT
 running.name AppName,
 AVG(running.memory.total) MemUsage,
 COUNT(running.name) Running
FROM (TABLE_DATE_RANGE(logs.device_,
 DATE_ADD(CURRENT_TIMESTAMP(), -1, 'DAY'),
 CURRENT_TIMESTAMP()))
WHERE
 (TIMESTAMP_TO_SEC(CURRENT_TIMESTAMP()) -
 TIMESTAMP_TO_SEC(ts)) < 60 * 60 * 6
GROUP BY 1
ORDER BY 3 DESC
LIMIT 100;

This is a simple query capturing application usage over a 6-hour rolling window.

Note that this query is not cacheable because of the use of CURRENT_TIMESTAMP

and the continuously updated source tables. The cost of this query is going to be

proportional to the number of records in the source tables, which is expected to

be large. If you plan for the page displaying this table to be accessed frequently,

for example, once per minute, you would need to run this query approximately

1,500 times a day.

If it is reasonable for the contents of the page to be up to 1 hour behind the

current contents of the source table, fewer distinct queries need to be run. One

simple way to do this is to tweak the query so that BigQuery considers it auto-

cacheable. For example, you could generate a timestamp that is rounded to a

1-hour boundary and include it as a constant expression in place of CURRENT_

TIMESTAMP() in the query. This works well at handling queries that gener-

ate identical results. However, this does not work if the underlying tables are

changing frequently because the query needs to be rerun at least as frequently

 Chapter 11 ■ Managing Data Stored in BigQuery 351

c11.indd 02:41:35:PM 04/29/2014 Page 351

as the underlying table is changing. For a table that is continuously updated via

streaming inserts, this implies that the query can never be cached.

You can structure the dashboard data generation differently to cache results

in a manner tuned to the application. The general idea is to run the query from

a background process that stores the results in a known location. The dash-

board rendering code can then simply retrieve the results rather than actually

issue the query. The details of how you trigger the periodic refresh depend on

the application framework. For example, if you are using AppEngine this is

easily done using the scheduled tasks feature (https://developers.google

.com/appengine/docs/python/config/cron). Chapter 8, “Putting it Together,”

covers the details of setting up such background tasks. Here we focus on how to

explicitly cache and read query results. Listing 11.1 contains functions to refresh

the contents of a query result cache table and a function to read back the results.

 Listing 11.1 Caching query results

def cache_query(jobs, query, cache_id):
 # Must use Jobs.insert() because Jobs.query() does not
 # support a named destination.
 resp = jobs.insert(
 projectId=auth.PROJECT_ID,
 body={
 'configuration': {
 'query': {
 'query': query,
 'destinationTable': {
 'projectId': auth.PROJECT_ID,
 'datasetId': CACHE_DATASET,
 'tableId': cache_id
 },
 'writeDisposition': 'WRITE_TRUNCATE'
 }
 }
 }).execute()
 if 'jobReference' in resp:
 job_id = resp['jobReference']['jobId']
 while not resp.get('jobComplete', False):
 resp = jobs.getQueryResults(
 projectId=auth.PROJECT_ID,
 jobId=job_id,
 # Do not need the data.
 maxResults=0).execute()
 else:
 raise SystemError('Query failed: %s' % json.dumps(resp))
 return resp

continues

https://developers.google.com/appengine/docs/python/config/cron
https://developers.google.com/appengine/docs/python/config/cron

352 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 352

Listing 11.1: (continued)

def read_cache(tabledata, cache_id):
 rows = []
 resp = {'pageToken': None}
 while 'pageToken' in resp:
 resp = tabledata.list(
 projectId=auth.PROJECT_ID,
 datasetId=CACHE_DATASET,
 tableId=cache_id,
 pageToken=resp['pageToken'],
 maxResults=10000).execute()
 rows.extend([[cell.get('v') for cell in row.get('f')]
 for row in resp.get('rows', [])])
 return rows

def update_top_apps(jobs):
 return cache_query(
 jobs,
 '''
SELECT
 running.name AppName,
 AVG(running.memory.total) MemUsage,
 COUNT(running.name) Running'''
FROM (TABLE_DATE_RANGE(logs.device_,
DATE_ADD(CURRENT_TIMESTAMP(), -1, 'DAY'),
CURRENT_TIMESTAMP()))
Daily tables are protected so we substitute a sample table.
'''
FROM [bigquery-e2e:ch11.sample_device_log]'''
Drop the where clause since the sample table is static.
WHERE
(TIMESTAMP_TO_SEC(CURRENT_TIMESTAMP()) -
TIMESTAMP_TO_SEC(ts)) < 60 * 60 * 6
'''
GROUP BY 1
ORDER BY 3 DESC
LIMIT 100''', TOP_APPS_ID)

The background task would need to periodically invoke update_top_

apps(jobs)and the dashboard page will read the cached results using read_

cache(tabledata, TOP_APPS_ID). Following are three points to note:

 ■ The update is atomic.

 ■ Results pagination will be consistent even with the background update.

(See Chapter 7, “Running Queries.”)

 ■ Accessing the rows from the result table is fast and cheap (free).

The fi rst two points deserve further explanation. In cases in which the results

cannot be fetched in a single request, BigQuery guarantees consistent pagination

 Chapter 11 ■ Managing Data Stored in BigQuery 353

c11.indd 02:41:35:PM 04/29/2014 Page 353

even if the table is changing underneath the reader. This means that no additional

coordination (locking, for example) is required between the background task

and the dashboard handler. Also it is worth noting that the background task

does not bother to wait for the completion of the job or check for success. In the

rare event that there is a failure for some reason, the results will be a little staler

than usual but the next scheduled invocation will fi x the problem. Note that

the age of the results can be determined by observing the modifi cation time of

the table. If it is appropriate, the dashboard page can either report an error or

directly run the query if the results in the cache are too old.

The aim of the strategies discussed in this section is to cache the results of

your queries. Often, this can be achieved by simply adjusting the query. In other

cases, you need to control how frequently the query is executed. Let’s go back

to the question of how many times this query would need to be run. With this

cron-based scheme, it would be executed roughly twice an hour or approxi-

mately 50 times a day. At the modest usage levels we assumed, that is a 30-fold

reduction in query volume compared to a design that runs the query for each

request. In addition, the latency of the dashboard page will also be reduced.

Intermediate Results

As you have seen, query results are tables, so they can be used as sources for

further queries. This feature can be useful in a variety of application scenarios.

For example, consider the problem of exploring the mobile records collected

according to the hour and state in which they were collected. Potentially inter-

esting statistics are:

 ■ Counts by hour summed over all states

 ■ Relative distribution by state in a particular time range

 ■ Hourly distribution for a given state

Running any one of these queries on the base data each time a page is rendered

can be expensive. Because each result would require a unique query, a simple

cache would not be effective. But a single intermediate table can make all these

queries have a fi xed, lower cost independent of the underlying table size. You

can construct this intermediate table with the following query:

SELECT
 DATE(l.ts) Day,
 HOUR(l.ts) Hour,
 z.state State,
 COUNT(l.ts) Num
FROM [bigquery-e2e:ch11.sample_device_log] l
INNER JOIN [bigquery-e2e:reference.zip_codes] z
 ON z.zip=l.location.zip
GROUP BY 1, 2, 3
ORDER BY 1, 2, 3;

354 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 354

The result table is not suitable for direct rendering because it has 7 × 24 × 50 =

8400 rows but is small enough that the cost of a query on the table is negligible.

A further rollup query, one that performs additional aggregation, on this result

table can be used to generate a summary view. Filter queries that select a subset

of rows corresponding to specifi c states and time ranges can be used to explore

details. Also note that identical queries referencing this table will benefi t from

the auto-caching feature because this result table is effectively frozen until the

query that generated it is run again. By virtue of this feature, frequently accessed

graphs will end up being cached and returning immediately. It is also worth

noting that the size of this intermediate table can be scaled by 2 to 3 orders of

magnitude without noticeably impacting query latency, allowing the intermedi-

ate table to hold more granular records.

In traditional databases, query results are usually ephemeral and special

action has to be taken to stash them in temporary tables or external stores.

BigQuery takes a different approach, making query results available for 24 hours

or indefi nitely if assigned a name. This section illustrated how applications can

take advantage of this behavior.

Table Snapshots

BigQuery provides table management features that make it simple to handle

many aspects of the data life cycle, including backups and snapshots of chang-

ing datasets to enable historical analysis. Developers should, of course, consider

integrating separate backup systems when appropriate; Chapter 12, “External

Data Processing,” which covers exports, might be useful in that regard. This

section focuses on facilities available within BigQuery.

These features are enabled by BigQuery’s capability to cheaply create copies

of tables. This is achieved by running a table copy job that specifi es a source and

destination table. This job usually completes in less than 1 minute independent

of the table size. Although the job is free, it is subject to the overall job quota, and

storage charges begin to accrue for both copies of the data. See the copy_table()

function in Listing 11.2 for the details of how a copy job is confi gured.

Now look at a concrete archiving requirement to see how this might be utilized.

In the sample application you have an AppEngine Datastore table, devices, in

which you can record all current installations of the mobile app. In the next

section, “AppEngine Datastore Integration,” you learn how a snapshot of this

table is made available for queries in BigQuery. Because rows in this table are

continuously updated, it is useful to have access to historical versions because

you can then compare how installations vary over time. The goal is to have a

new snapshot of this table every day but retain some number of older versions.

Listing 11.2 illustrates how you can combine the update step with copy jobs to

meet this requirement.

 Chapter 11 ■ Managing Data Stored in BigQuery 355

c11.indd 02:41:35:PM 04/29/2014 Page 355

Listing 11.2 Backups using copy

EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000

def wait(jobs, job_ref):
 '''Helper function to block for completion.'''
 start = time.time()
 done = False
 while not done:
 time.sleep(10)
 result = jobs.get(**job_ref).execute()
 print "%s %ds" % (result['status']['state'], time.time() - start)
 done = result['status']['state'] == 'DONE'
 if 'errorResult' in result['status']:
 raise SystemError(json.dumps(
 result['status']['errorResult'], indent=2))

def copy_table(jobs, src, dst):
 '''Insert and wait for a copy job with src and dst.'''
 resp = jobs.insert(
 projectId=auth.PROJECT_ID,
 body={
 'configuration': {
 'copy': {
 'sourceTable': src,
 'destinationTable': dst,
 'writeDisposition': 'WRITE_TRUNCATE'
 }
 }
 }).execute()
 print json.dumps(resp, indent=2)
 wait(jobs, resp['jobReference'])

def make_table_ref(table_id):
 return {
 'projectId': auth.PROJECT_ID,
 'datasetId': 'ch11',
 'tableId': table_id
 }

def load_device_data(jobs, dst):
 # This method simulates loading data from datastore by
 # simply copying a sample table to a new location.
 copy_table(
 jobs,
 src=make_table_ref('devices'),
 dst=dst)

def load_and_backup(bq, date):
 # Get the latest data.

continues

356 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 356

Listing 11.2: (continued)

 daily = make_table_ref('devices_' +
 date.strftime('%Y%m%d'))
 load_device_data(bq.jobs(), daily)

 # Make the snapshot representing the latest.
 current = daily.copy()
 current['tableId'] = 'devices_current'
 copy_table(bq.jobs(), daily, current)

 quarters = {
 '0331': 1,
 '0630': 2,
 '0930': 3,
 '1231': 4
 }
 quarter = quarters.get(date.strftime('%m%d'), None)
 if quarter:
 quarterly = daily.copy()
 quarterly['tableId'] = (
 'devices_%dq%d' % (date.year, quarter))
 copy_table(bq.jobs(), daily, quarterly)

 # Finally set the daily version to expire.
 bq.tables().patch(
 body={
 'expirationTime': long(time.time() * 1000 +
 EXPIRATION_MS)
 },
 **daily).execute()

This code ends up retaining daily versions of the table for the last 30 days, by

virtue of the expiration time set on the daily snapshots, and quarterly versions

indefi nitely. Figure 11.1 illustrates how the data is moved between the daily,

current, and quarterly tables. This aligns well with classic versioning schemes

that retain a larger number of recent snapshots and older snapshots at a coarser

resolution. This enables analyses at higher resolution over recent time intervals

and lower resolution analyses over longer intervals.

A backup strategy serves as a defense against data loss, but also as a safe-

guard against inadvertent data corruption due to bugs in software or operator

error. Cloud storage has an excellent track record for data durability because

providers have a lot of experience building redundant fault-tolerant systems.

However, these measures do not help with a bug that corrupts the stored data.

This is another scenario in which the table copy feature can be used effectively

to prevent such corruption from occurring, especially in the management of

tables that are being periodically updated by appending new data. One way to

do this safely is to load the new data into a staging table. Then run a suite of

verifi cation queries against the new data. Note that the verifi cation suite can

 Chapter 11 ■ Managing Data Stored in BigQuery 357

c11.indd 02:41:35:PM 04/29/2014 Page 357

easily be set up to combine the new and old data to simulate the table contents

that appears after the update is completed, if this is required for determining

validity. After the suite passes, the table copy operation can be used to append

the staged data into the table that needs to be updated. The reason this works is

that the copy job accepts a write disposition just like the load job, and with dis-

position set to append, it adds the data rather than truncating existing contents.

 jobData = {
 'configuration': {
 'copy': {
 'sourceTable': source,
 'destinationTable': destination,
 'writeDisposition': 'WRITE_APPEND'
 }
 }
 }

current

20130631

2013q2 2013q1

20130625 20130625

DeletedLive

20130331

current current current

Figure 11.1: Multiresolution backups

The advantage of this scheme over simply performing a backup before

modifying the table and then rolling back on corruption is that queries can con-

tinue to operate on the table, and they will never encounter corrupt data. With

a rollback-based scheme, there is a window between corruption and rollback

when queries will potentially be returning incorrect results.

One fi nal scenario is covered in which table copy is useful; although it is not

quite related to data backup. When a query is run without a destination table

specifi ed, the default mode, the results are stored in a service-assigned anony-

mous table. This anonymous table cannot be shared because it lives in a dataset

that cannot have its ACL modifi ed, and further, it is automatically garbage

358 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 358

collected. If the results do need to be shared or saved, there is no need to rerun

the query with a new destination. Instead, the anonymous table can simply be

copied to the new destination, which can be shared or retained indefi nitely. It

is worth mentioning that this is how the BigQuery UI implements the Save as

Table feature.

AppEngine Datastore Integration

Chapter 6, “Loading Data,” briefl y described how AppEngine Datastore back-

ups can be imported into BigQuery to allow analytics over the contents. The

mechanics from the BigQuery side were pretty much the same as loading CSV

or JSON data from Google Cloud Storage. In fact, in some ways it was sim-

pler because the table schema was not required because it is derived from the

contents of the backup. However, this fi nal step of loading a backup into BigQuery

is a relatively small part of the overall Datastore-BigQuery integration. This

section covers the details on the AppEngine side and covers important features

and caveats in the integration. Developers who have used Datastore will fi nd

that the material is familiar, but it is still useful to see how the features of the

service relate to BigQuery. If you are not familiar with Datastore, the section

can serve as a quick introduction to its capabilities and help you evaluate if it

could be used as a component in your analytics solution.

Briefl y, Datastore is a NoSQL data storage service that is well suited to

transactional workloads. It supports:

 ■ Effi cient writes, reads, and lookups of individual records

 ■ A well-defi ned consistency model and transactions

 ■ Secondary indexes

 ■ Structured records

 ■ A whole lot more

You can learn all about the service at https://developers.google.com/

datastore/. The two most important characteristics with respect to BigQuery are:

 ■ Relatively slow and expensive full scan queries

 ■ NoSQL, records are not required to adhere to a schema.

The cost of full scan queries is what makes BigQuery integration interesting.

In general, Datastore has a high cost for low selectivity queries where a large

fraction of rows have to be inspected. If a primary or secondary index cannot

be used to limit the amount of data that needs to be read from a large table,

the query is generally prohibitively slow and expensive on Datastore. Further,

the query language supported by BigQuery is much richer and permits much

https://developers.google.com

 Chapter 11 ■ Managing Data Stored in BigQuery 359

c11.indd 02:41:35:PM 04/29/2014 Page 359

more complex queries than the query language supported by Datastore, which

is intended mainly for record lookup operations. The second point, the NoSQL

nature of Datastore, is probably the main source of complexity in the integra-

tion of the two services.

By now you have seen that schemas are strictly enforced on BigQuery tables.

In Datastore terminology tables are kinds. A set of entities in Datastore have the

same kind if certain parts of their Datastore key are the same. Although entities

are structured, namely they have fi elds with values rather than being a binary

or text blob, they are not required to all have a uniform structure. In fact, even

entities of the same kind are not required to have the same structure. However,

it is common for entities of the same kind to have a uniform structure. This is

generally enforced at the application layer, and the commonly used Datastore

client libraries are geared to this kind of usage. The service does not enforce

this behavior, and there are examples of applications that take advantage of

this fl exibility. When entities of a given kind have a uniform structure, the

integration with BigQuery is quite transparent, and the kind maps neatly to a

BigQuery table. Now start with an example that fi ts this simple usage model

and then explore what happens when a non-uniform structure is introduced.

To fully work through the examples in this section, you need an AppEngine

project and a Google Cloud Storage project. Sample data is available so that

some of the examples can be tried with just a BigQuery project.

Simple Kind

As part of the sensor application developed for this book, we stored information

about the devices registered with the application to stream logs. We chose to

store this data in Datastore as the Device kind. Each entity of this kind repre-

sented a single device registered with the service and stored information that

was pretty much constant for a given device so that each log record did not

have to duplicate this information. Here is the Python code used to describe

the information stored in these entities:

class Device(ndb.Model):
 """Registration record for a device logging to the service."""
 owner = ndb.UserProperty()
 added = ndb.DateTimeProperty(indexed=False, auto_now_add=True)
 type = ndb.StringProperty(indexed=False, choices=('phone', 'tablet'))
 make = ndb.StringProperty(indexed=False, validator=_validate_str)
 model = ndb.StringProperty(indexed=False, validator=_validate_str)
 os = ndb.StringProperty(indexed=False, choices=('android', 'ios'))
 os_version = ndb.StringProperty(indexed=False,
 validator=_validate_version)
 storage_gb = ndb.IntegerProperty(indexed=False)
 screen = ndb.LocalStructuredProperty(Screen)

360 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 360

 carrier = ndb.StringProperty(indexed=False)
 home_zip5 = ndb.StringProperty(indexed=False, validator=_verify_zip5)

This snippet is from the models.py fi le in the sample application described

in Chapter 8, “Putting it Together.” Even without understanding all the details

of the client API, it should be apparent this is defi ning something very much

like a schema. By default, the client API uses the name of the class as the kind

of the records. Note that there is no explicit table creation step. A kind exists

as long as one or more entities with the appropriate key exist. Here is a code

snippet for creating a Device entity:

device = Device(id=base64.b64encode(os.urandom(9), '-_'))
device.owner = user
device.type = self.request.get('type')
device.make = self.request.get('make')
...
device.put()

The sensor application supports the creation and deletion of these device

records to allow users to register and unregister their phones and tablets with

the application.

When the client component of the sensor application logs a record from a

device, it includes the ID stored in the registration record for the device. You

can easily imagine that a lot of interesting queries would be possible if it was

possible to join the log records with the device records using the ID. Fortunately,

you can get this done easily if you can accept a snapshot of the data in Datastore.

For the purpose of the sensor application, a daily snapshot works well, and it

is quite likely that a similar approach would work for a variety of applications.

So, the task at hand is to get this data from Datastore into BigQuery where you

can mix it with other data to generate useful results.

Generating a Snapshot

The fi rst step is to generate a backup or a snapshot of the entities of a given

kind in Datastore. You can use the AppEngine administration console to man-

age the process. The list of AppEngine applications you can manage is located

at https://appengine.google.com/. Selecting a project from the list takes you

to the dashboard with a navigation panel on the left. To administer Datastore

select the Datastore Admin link under the data section in the panel. If this is

the fi rst time you are using this feature, you will be prompted to enable the

https://appengine.google.com

 Chapter 11 ■ Managing Data Stored in BigQuery 361

c11.indd 02:41:35:PM 04/29/2014 Page 361

feature; accept to continue. You will see a panel, shown in Figure 11.2, listing

the kinds stored in your application.

Figure 11.2: Datastore backup console

For the sample application you need to select the Device kind and click

Backup Entities. For this sample you have just one kind, but AppEngine supports

saving multiple kinds in a single operation. This takes you to a form where you

can specify the details of the backup. The most important backup option is the

destination. The entities can either be saved to Blobstore or to Google Cloud

Storage. BigQuery does not support reading from AppEngine Blobstore, so you

must select the Google Cloud Storage option. With the GCS option you need to

specify a bucket. You are not restricted to a top-level bucket; you can specify a

path within the bucket. It is helpful to specify a unique path for each backup

because it makes it much simpler to locate the fi les when you have many backups.

This is especially important when loading the backup into BigQuery because

you need to pass the name of the backup fi le in the load job confi guration. After

the form is complete, click the Backup Entities button to initiate the backup. You

will be taken to a page where you can monitor the underlying MapReduce job

performing the snapshot. If you go back to the Datastore Admin page, you see

the backup you scheduled either in pending or completed state. When a backup

is complete you can select the backup and click information to see the details

of the backup as shown in Figure 11.3.

362 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 362

Figure 11.3: Datastore backup information page

The piece of information you are interested is the Handle, which is effectively

the location of the backup. In practice it is easier to locate the relevant fi les using

gsutil, for example:

$ gsutil ls gs://bigquery-e2e/data/backup/datastore/001/*.backup_info

We have made a couple of backups from the sample application world readable

so that you can try the BigQuery commands even if you do not set up your own

copy of the AppEngine sample application. Running the command previously

shown lists two fi les of the form:

gs://bigquery-e2e/data/backup/datastore/001/handle.Device.backup_info
gs://bigquery-e2e/data/backup/datastore/001/handle.backup_info

These are metadata fi les describing the contents of the backup. The fi rst fi le

stores information specifi c to the backup of a single kind. The second fi le stores

information about the backup that is common across all the kinds.

With the backup completed you are now ready to load this data into BigQuery.

Loading a Backup

Chapter 6 mentioned the capability to load Datastore data in the context of

explaining the sourceFormat option in the load job confi guration. Now we are in

a position to explain the full details. A BigQuery load job with the sourceFormat

set to DATASTORE_BACKUP expects a single source URI, the backup metadata fi le

for the kind that needs to be imported. Note that the metadata fi le for the overall

backup is not relevant here. In addition you need to specify the destination table

that will receive the contents of the fi le. You can perform the operation using

the command-line client.

$ bq mk ch11
$ BACKUP_PATH='gs:// bigquery-e2e/data/backup/datastore/001'
$ BACKUP_HANDLE='. . .'
$ bq load --source_format=DATASTORE_BACKUP \

 Chapter 11 ■ Managing Data Stored in BigQuery 363

c11.indd 02:41:35:PM 04/29/2014 Page 363

 ch11.devices \
 ${BACKUP_PATH}/${BACKUP_HANDLE}.Device.backup_info

For the most part this looks like a regular load job, but there are a couple of

caveats:

 ■ The WRITE_APPEND write disposition is not supported.

 ■ The schema is not specifi ed in the job.

The write disposition restriction is primarily to avoid operator error because

it is usually not sensible to load multiple copies of a Datastore backup into the

same table. The second restriction is more interesting. Because Datastore is a

NoSQL store, the schema for the destination table has to be derived. The backup

metadata contains the full set of fi elds (and their types) encountered while

generating the backup. BigQuery uses this data to generate a schema that can

hold all the entities in the backup. Hence the user is not permitted to specify a

schema in the job confi guration.

Querying the Data

The fi rst thing to try is to look at the schema of the destination table, as shown

in Listing 11.3.

Listing 11.3 Schema of the table generated from a Datastore backup

$ bq show ch11.devices
Table 317752944021:ch11.devices

 Last modified Schema Total Rows Total>
----------------- --------------------------------- ------------ ------>
 12 Nov 00:34:16 |- added: integer 3 567
 |- os: string
 |- make: string
 |- home_zip5: string
 |- os_version: string
 |- carrier: string
 +- owner: record
 | |- email: string
 | |- userid: integer
 |- model: string
 |- type: string
 +- screen: record
 | |- diagonal: float
 | |- res_x: integer
 | |- res_y: integer
 | +- __key__: record
 | | |- namespace: string

continues

364 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 364

Listing 11.3: (continued)

 | | |- app: string
 | | |- path: string
 | | |- kind: string
 | | |- name: string
 | | |- id: integer
 |- storage_gb: integer
 +- __key__: record
 | |- namespace: string
 | |- app: string
 | |- path: string
 | |- kind: string
 | |- name: string
 | |- id: integer
 |- __error__: string (repeated)
 |- __has_error__: boolean

Comparing this with the model defi nitions used in the AppEngine application,

you can see that all the fi elds declared in the model are present in the schema.

In addition there are a couple of special fi elds that are added by the import job.

These fi elds contain additional information captured during the transformation

from Datastore entities to BigQuery records.

 ■ __has_error__: Indicates if an error occurred while transforming the row.

 ■ __error__: A repeated fi eld containing descriptions of the transforma-

tion errors.

 ■ __key__: The Datastore entity key, so that you can locate the corresponding

entity. Note that every nested entity includes this fi eld, but it is usually

empty because nested entities are commonly purely local to the contain-

ing entity.

The fi elds under __key__ correspond to the terms documented in the Datastore

key reference available at https://developers.google.com/appengine/docs/

python/ndb/keyclass.

It is convenient to have access to the kind, id, and name properties, but it is the

path fi eld that uniquely locates an individual entity. It is a string representation

of the array returned by the Key.flat() method in the Datastore client library.

Outside of these special fi elds the table constructed from the snapshot behaves

just like a regular BigQuery table. Here is a simple query to look at errors that

occurred when the snapshot was loaded:

$ bq query \
 'SELECT __key__.name, __has_error__, __error__
 FROM ch11.devices'
+--------------+---------------+-----------+
| __key___name | __has_error__ | __error__ |
+--------------+---------------+-----------+
| H1JInRKWgXoU | false | NULL |

https://developers.google.com/appengine/docs

 Chapter 11 ■ Managing Data Stored in BigQuery 365

c11.indd 02:41:35:PM 04/29/2014 Page 365

| WOBWlk3th8HW | false | NULL |
| cVDuditLBGN_ | false | NULL |
+--------------+---------------+-----------+

In this case there were no errors encountered when the data was loaded. The

reason errors occur during transformation is that the Datastore type system

and BigQuery type system differ, and this results in some values being unsup-

ported. For example, BigQuery has a 64 K limit of the string type, but Datastore

has no hard limit on the size of TextProperty fi elds, so values are truncated.

An error will be added to the record to indicate that a loss-y transformation

was applied to a fi eld.

Finally take a quick look at the actual data that appears in the table:

$ bq query \
 'SELECT __key__.name, owner.email, make, model
 FROM ch11.devices'
+--------------+-----------------------+-------+-------+
| __key___name | owner_email | make | model |
+--------------+-----------------------+-------+-------+
H1JInRKWgXoU	bigquerye2e@gmail.com	nexus	s
WOBWlk3th8HW	bigquerye2e@gmail.com	nexus	7
cVDuditLBGN_	bigquerye2e@gmail.com	nexus	10
+--------------+-----------------------+-------+-------+

This is not a particularly interesting query, but it gives you an idea of how

you might use this data inside BigQuery. The sample application has a couple

of examples that illustrate how this table can be joined with the logs to produce

useful aggregations by device property.

Automation

Creating a backup through the Datastore Admin console is convenient but not

at all suitable for performing regular backups. The Datastore documentation

describes how to set up a periodic backup using the AppEngine cron feature.

This documentation is available at https://developers.google.com/appengine/

articles/scheduled_backups.

We recommend using a variation of the basic instructions. The cron job as

described will end up placing all the backups under the same GCS path. This is

inconvenient because it makes it somewhat harder to discover when the backup

for a particular date has completed. If instead the date could be included in the

GCS path, it would be simple to detect the completion of the backup. You can

achieve this by installing a custom handler that is invoked by the AppEngine

cron system. In the custom handler you simply invoke the backup handler but

use the current date in the value passed to the gs_bucket_name parameter. The

handler URL will look something like this (newlines and indentation have been

added for legibility):

mailto:bigquerye2e@gmail.com
mailto:bigquerye2e@gmail.com
mailto:bigquerye2e@gmail.com
https://developers.google.com/appengine/articles/scheduled_backups

366 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 366

http://ah-builtin-python-bundle.application_id.appspot.com/
 _ah/datastore_admin/_ah/datastore_admin/backup.create?
 name=daily-date&
 kind=kind1&
 kind=kindN&
 queue=default&
 filesystem=gs&
 gs_bucket_name=bucket/path/date

This scheme allows you to easily detect when new data needs to be loaded

into BigQuery. You schedule a separate cron that runs periodically. It looks for

the presence of a load job for the current date and also the backup info fi le for

the current date. If no job is present but the fi le is present, it inserts a load job

passing the fi le it found as the source URI. A little more care has to be taken if

you want to be resilient to retry-able job failures, but even that is quite straight-

forward with a naming scheme for the job that includes an attempt counter.

You can also use AppEngine task queues instead of a separate cron job, but the

individual steps are basically the same. Refer to the sample application for the

complete implementation of this periodic loading scheme.

Mixing Types

The start of this section discussed that going from NoSQL storage to a strictly

typed storage introduces complications. However, in the previous example

everything seems to have gone smoothly. This is because we did not actually

use any of the NoSQL fl exibility. Now take a look at what happens when you do

exercise some of the features. When we defi ned the model for Device entities,

we chose to use an IntegerProperty to represent the number of gigabytes of

storage present in a device.

TRUE STORY

This example may seem a bit contrived, but one of the authors actually ran into this

scenario. Developing the application in 2013, it was easy to assume that every phone

model would have a couple of GB of storage. When an actual catalog of models was

consulted, there were a number of models with less than 1 GB of storage released as

recently as 2012.

Say you need to update your model to support fractional gigabytes. You could

update your model to use a FloatProperty for the fi eld instead.

class Device(ndb.Model):
 ...
 storage_gb = ndb.FloatProperty(indexed=False)
 ...

http://ah-builtin-python-bundle.application_id.appspot.com

 Chapter 11 ■ Managing Data Stored in BigQuery 367

c11.indd 02:41:35:PM 04/29/2014 Page 367

Observe that we have updated the type of the fi eld but retained the same

name. When we update the application and add a new device, everything works

just fi ne. Datastore does not mind that we have some entities with an integer

for storage_gb and others with a fl oating-point value.

If you run through the same steps of the Datastore snapshot and import the

results into a new table, you end up with a schema that is different from the

original table. Here is the schema of the resulting table:

$ bq show ch11.devices_multi_type
Table 317752944021:ch11.devices_multi_type

 Last modified Schema Total Rows Total Byt>
----------------- ----------------------------- ------------ ---------->
 12 Nov 00:56:18 |- added: integer 4 796
 . . .
 +- storage_gb: record
 | |- float: float
 | |- integer: integer
 | |- provided: string
 . . .

The difference is that the storage_gb fi eld has been promoted from a simple

integer fi eld to a record fi eld. This is to allow the fi eld to represent both integer

values and fl oating-point values. For entities that have an integer value for

storage_gb, the integer subfi eld will contain the value, the float subfi eld

will be NULL, and provided will contain the value integer. For entities that

contain a fl oating point value for storage_gb, it will be the other way around.

In this fashion the strictly-typed schema represents the fl exibility of the NoSQL

storage model. In this case it is relatively simple to use the fi eld in queries. Here

is an example of how you could query the fi eld:

$ bq query \
 'SELECT IF(storage_gb.float IS NULL,
 FLOAT(storage_gb.integer),
 storage_gb.float) storage_gb
 FROM ch11.devices_multi_type'
+------------+
| storage_gb |
+------------+
| 16.0 |
| 16.0 |
| 32.0 |
| 0.5 |
+------------+

This coerces the fi eld to a simple fl oating-point value at query time.

Although the service can handle the representation of general NoSQL enti-

ties, you should be wary of relying on this feature. If the types of fi elds vary

368 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 368

substantially across entities, you will end up with unwieldy schemas that are

not convenient to work with in queries. If you are in a position to design your

storage scheme, it is good to strike a balance between leveraging the fl exibility

of NoSQL and having uniform entities that are convenient to query.

Final Thoughts

It may be a little surprising that we have devoted so much space to Datastore

in a section on managing data in BigQuery. We have devoted a fair amount of

space to this topic because Datastore and BigQuery complement each other.

They are good examples of platform components that can be combined so that

the overall solution is more than just the sum of its parts. In fact, in this chapter

we have even used GCS as a conduit between the services. Over time we expect

this integration to become more seamless, but it is already possible to do a lot

by putting them together.

Metatables and Table Sharding

When compared to traditional databases, there is a proliferation of tables in

BigQuery. There are a few reasons for this difference:

 ■ Every query result generates a new table.

 ■ The unit of deletion is a table.

 ■ Query costs are proportional to table sizes, so partitioning can help

manage costs.

Tables in BigQuery feel a bit like fi les in a fi lesystem. A database with thou-

sands of tables would be regarded with suspicion, but fi lesystems containing

thousands of fi les are the norm. This section covers the features the service

offers to deal with this abundance of tables. The unifying theme is that these

features allow tables (in contrast to the contents of tables) to be treated a bit like

data and to be included in expressions rather than just static references.

Time Travel

Tables in BigQuery are mutable, and you have seen how you can grow tables

over time using jobs with the WRITE_APPEND disposition or by inserting indi-

vidual records. In this chapter you have also seen how to save a snapshot of

a table prior to modifying it so that you can retain a historical copy. The abil-

ity to retrieve earlier versions of data is a useful feature in any data storage

system. It is quite likely that you are familiar with fi lesystems that allow you to

access historical views of the fi lesystem or the ability in Google Docs to access

revisions (https://support.google.com/drive/answer/190843). BigQuery

https://support.google.com/drive/answer/190843

 Chapter 11 ■ Managing Data Stored in BigQuery 369

c11.indd 02:41:35:PM 04/29/2014 Page 369

supports similar access to table revisions. Almost anywhere that you can pass

a table name, you can instead pass a reference to a slice (in the time dimension)

of the table. This section discusses this type of metatable and how to use it to

implement common data management solutions.

YOU NEED YOUR OWN COPY OF THE SAMPLE TABLE

In most cases we provide sample tables for queries in a shared dataset so that you can

test queries without building your own version. In this case it is not possible because

BigQuery collapses revisions older than 7 days. Instead, you have to build your own

fresh copy to try the examples. It also means that you have to adjust all the time-

stamps appropriately.

First create a table that is particularly amenable to time slicing. The table

may seem a bit contrived, but it clearly illustrates how the slicing expressions

function. Here is the recipe for building the sample table:

$ bq query --destination_table=ch11.time_lapse \
 'SELECT 0 index, 0 millis'
$ for i in $(seq 10); do
 echo $i
 bq query --append_table --destination_table=ch11.time_lapse \
 "SELECT ${i} index, INTEGER(NOW()/1000) millis"
 sleep 10
 done

Here you use a query to append a row to a fi xed destination table (ch11

.time_lapse) that includes a timestamp and row index. Each query run is a job

and the jobs are the atom of change that BigQuery tracks. You cannot reference

changes smaller than that made by a single job because its effect is atomic. Here

is what the table looks like after the command completes:

$ bq head ch11.time_lapse
+-------+---------------+
| index | millis |
+-------+---------------+
0	0
1	1395214708049
2	1395214719589
3	1395214731135
4	1395214742932
5	1395214754874
6	1395214766503
7	1395214778642
8	1395214790355
9	1395214802060
10	1395214814200
+-------+---------------+

370 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 370

The key property to keep in mind is that the millis fi eld of a given record is

approximately the same as (it will be a little before) the completion time of the

query that added it to the table.

The syntax for referencing a time slice of a table is:

<table name>@[-]<start time>[-[<end time>]]

It will be easiest to understand the various options by trying examples of each

variation. Start with the simplest variant, a reference to a table as it existed at

a particular point in time:

$ START_TIME='1395214700000'
$ bq head ch11.time_lapse@$((${START_TIME} + 5 * 10 * 1000))
+-------+---------------+
| index | millis |
+-------+---------------+
2	1395214719589
4	1395214742932
0	0
1	1395214708049
3	1395214731135
+-------+---------------+

If you are wondering why the rows do not appear in order, keep in mind

that BigQuery does not guarantee a stable ordering of rows in a table. Only the

result of a query with an explicit ORDER BY clause has well-defi ned ordering.

This is the table as it existed before the fi fth row was added. You can see that

the value used for the timestamp is the timestamp that appears at index 5 in

the full table. The timestamp is encoded as the milliseconds since the UNIX

epoch (1970-01-01 00:00:00 UTC). If you pick a time that is earlier than the table

creation time, you will, unsurprisingly, get a NOT_FOUND error. Instead of an

absolute time, you could use a relative time by adding a leading hyphen. The

value specifi ed as the relative time is interpreted as an offset in milliseconds

with respect to the current time. The absolute time is computed by subtracting

the offset from the current time.

$ date +%s; bq head ch11.time_lapse@-850000
1395215611
+-------+---------------+
| index | millis |
+-------+---------------+
2	1395214719589
4	1395214742932
0	0
1	1395214708049
5	1395214754874
3	1395214731135
+-------+---------------+

 Chapter 11 ■ Managing Data Stored in BigQuery 371

c11.indd 02:41:35:PM 04/29/2014 Page 371

The value 0 refers to the table's oldest available version. Table history is retained

for 7 days so this version is that old unless the table was created more recently.

$ bq head ch11.time_lapse@0
+-------+--------+
| index | millis |
+-------+--------+
| 0 | 0 |
+-------+--------+

The previous examples refer to the table as it existed at a particular point in

time. You can also reference the set of changes that occurred in a specifi c time

interval. For example, to see all the rows added, you could use:

$ bq head ch11.time_lapse@$((${START_TIME} + 6 * 10 * 1000))-
+-------+---------------+
| index | millis |
+-------+---------------+
8	1395214790355
9	1395214802060
7	1395214778642
10	1395214814200
+-------+---------------+

The trailing hyphen indicates that the upper bound for the time interval

should be the current time. Again, adding a leading hyphen causes the value

to be treated as an offset with respect to the current time.

$ date +%s; bq head ch11.time_lapse@-850000-
1395215622
+-------+---------------+
| index | millis |
+-------+---------------+
8	1395214790355
9	1395214802060
7	1395214778642
10	1395214814200
+-------+---------------+

Finally, here is how you would reference a closed interval:

$ AROUND_3=$((${START_TIME} + 3 * 10 * 1000))
$ AROUND_7=$((${START_TIME} + 7 * 10 * 1000))
$ bq head ch11.time_lapse@${AROUND_3}-${AROUND_7}

+-------+---------------+
| index | millis |
+-------+---------------+
| 4 | 1395214742932 |

372 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 372

6	1395214766503
5	1395214754874
3	1395214731135
+-------+---------------+

This covers the full range of options that you can use to address a historical

view of a table. Now take a look at a couple of different ways you can use these

references. Here is a query that accesses only part of the table:

$ bq query \
 "SELECT MIN(index), MAX(index)
 FROM [ch11.time_lapse@${AROUND_3}-${AROUND_7}]"
+-----+-----+
| f0_ | f1_ |
+-----+-----+
| 3 | 6 |
+-----+-----+

Note that the table reference has to be quoted because it is not a valid identi-

fi er. Other than that it behaves just like a regular table. An important feature

is that you are billed only for the portion of the table you scanned. You can see

this using the show command:

$ bq show ch11.time_lapse
Table 317752944021:ch11.time_lapse

 Last modified Schema Total Rows Total Bytes Expi>
----------------- -------------------- ------------ ------------- ----->
 13 Nov 14:27:04 |- index: integer 10 160
 |- millis: integer
$ bq show ch11.time_lapse@${AROUND_3}-${AROUND_7}
Table 317752944021:ch11.time_lapse@1384381608691-1384381619201

 Last modified Schema Total Rows Total Bytes Expi>
----------------- -------------------- ------------ ------------- ----->
 13 Nov 14:27:04 |- index: integer 4 64
 |- millis: integer

The number of rows and bytes in the slice are a fraction of the rows and bytes

in the full table. In addition, a dry run query on a slice can be used to probe

how many bytes a query will scan. This feature is helpful for applications that

need to frequently query the most recently added data to a table. They can avoid

paying for the cost of scanning the full table by using a table reference that limits

the query to changes that occurred in the time window of interest. The sample

application uses this feature to generate graphs of recent logs.

 Chapter 11 ■ Managing Data Stored in BigQuery 373

c11.indd 02:41:35:PM 04/29/2014 Page 373

Table Recovery

When we discussed the table copy job we described how it could be used to

prevent corruption due to a bad load job. With time slices of tables, we have a

tool to recover from inadvertent table corruption even if no copy was created

prior to the load operation. The idea is straightforward: Copy the table, as it

existed prior to the job, to a new table. Then the corrupted table can be deleted

(or truncated) and replaced with the recovered table.

$ bq cp ch11.time_lapse@1384381614244 ch11.recovered
Table '317752944021:ch11.time_lapse@1384381614244' successfully \
copied to '317752944021:ch11.recovered'
$ bq head ch11.recovered
+-------+---------------+
| index | millis |
+-------+---------------+
5	1384381611449
2	1384381603871
4	1384381608691
3	1384381606536
1	1384381601244
+-------+---------------+

You can see that the recovered table is missing the last 5 rows added to the

original table. We picked the timestamp of the sixth row (1384381614244), so the

sixth row and all rows after it have been dropped. The main challenge with using

this technique is fi nding the right timestamps. Unfortunately, the timestamps

correspond to the completion time of the job that added the data, rather than

the last modifi cation time of the table, which can differ slightly. To remove data

added by a job, you must fi nd the job metadata or adjust the timestamp via trial

and error. We will leave it as an exercise for you to fi gure out how to fi x a table

that has bad data sandwiched between good data, for example when a valid

import follows a bad import.

Caveats

Tables being updated via the streaming API deserve special attention. Time

slices that have no end time will include all rows that have been inserted

successfully (subject to the caveats discussed in Chapter 6 with respect to stream-

ing). Beyond that the behavior is loosely defi ned. Behind the scenes, rows are

buffered and then inserted in batches. Each batch insertion behaves like a job,

and all the rows in the batch appear atomically at a specifi c timestamp. The fact

that a row is associated with two separate timestamps, row insert and batch

374 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 374

insert, leads to surprising behavior when slicing these tables. However, it is

reasonable to use slices to isolate recently added records, namely an interval

with no end time. This will at least fetch all the rows added since the start time

but possibly additional rows that were inserted at an earlier time.

When we introduced these time slicing references, we mentioned that they

could be used in most places where a table name is expected. A notable excep-

tion is in mutation operations. For example, you cannot use a time slice as the

destination for a load or query job. Deleting a time slice would be useful but

is not currently permitted. It is conceivable that some of these restrictions may

be lifted in the future, but for now you are restricted to using time slices as

sources of data.

Selecting Tables

The list operation on the REST table resource allows clients to paginate through

the list of tables in a dataset. If there are only a handful of tables in a dataset,

this works great. However, fi nding one or a few tables in a large dataset can be

cumbersome using this paginated approach. To simplify locating tables, the

service provides a metatable that contains a record for each table in the dataset:

<dataset>.__TABLES__

Listing 11.4 offers a quick tour of its features.

Listing 11.4 Using the dataset metatable

$ bq show ch11.__TABLES__
Table 317752944021:ch11.__TABLES__

 Last modified Schema Total Rows Total B>
----------------- -------------------------------- ------------ ------->
 13 Nov 22:44:52 |- project_id: string 4
 |- dataset_id: string
 |- table_id: string
 |- creation_time: integer
 |- last_modified_time: integer
 |- row_count: integer
 |- size_bytes: integer
 |- type: integer

$ bq query \
 'SELECT table_id, MSEC_TO_TIMESTAMP(last_modified_time)
 FROM ch11.__TABLES__
 ORDER BY 2 DESC'
+--------------------+---------------------+
| table_id | f0_ |
+--------------------+---------------------+
| recovered | 2013-11-14 06:44:52 |
| time_lapse | 2013-11-13 22:27:04 |

 Chapter 11 ■ Managing Data Stored in BigQuery 375

c11.indd 02:41:35:PM 04/29/2014 Page 375

| devices_multi_type | 2013-11-12 08:56:18 |
| devices | 2013-11-12 08:34:16 |
+--------------------+---------------------+

You can use this table to easily locate tables that meet some criteria, for example,

fi nding all tables that begin with the prefi x “logs” that have been modifi ed in

the last 4 hours.

Dynamic Table Lists

The dataset metatable can be directly queried to simplify administering tables

or supporting more effi cient navigation of datasets in user interfaces. However,

when combined with a function that allows it to be used to construct lists of

tables in the FROM clause of a query, it becomes substantially more powerful.

The beginning of this chapter discussed that the BigQuery data management

and query pricing models encourage partitioning tables. The ability to dynami-

cally generate a list of tables in a query simplifi es recombining the partitions

when queries need to span a variable number of partitions based on the value

of one or more query parameters. To explore this feature, start with setting up

a couple of tables:

$ DAY_LIST='20131108 20131109 20131110
 20131111 20131112 20131113 20131114'
$ for day in ${DAY_LIST}; do
 for kind in a b; do
 echo $kind $day
 bq query --destination_table=ch11.${kind}_${day} \
 "SELECT \"${kind}\" kind, \"${day}\" day"
 done
 done

Now take a quick look at what you created:

$ bq query "SELECT table_id FROM ch11.__TABLES__
 WHERE REGEXP_MATCH(table_id, r'^(a|b)_')"
+------------+
| table_id |
+------------+
| a_20131108 |
| . . . |
| a_20131114 |
| b_20131108 |
| . . . |
| b_20131114 |
+------------+

You can see how to use the metatable to locate the tables rather than just

simply listing the dataset.

376 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 376

If the list of tables in a query depends on the input or needs to be resolved

just before running the query, you could now achieve that by issuing two

queries. First, query the dataset metatable, and then use the results of that query

to construct the actual query over your tables. The script two_phase.py in the

examples for this chapter performs this two-step query. Here is the relevant bit:

Query the metatable for a list of matching tables.
resp = bq.jobs().query(
 projectId=PROJECT_ID,
 body={'query':('SELECT table_id FROM ch11.__TABLES__ '
 'WHERE LEFT(table_id, 2) = "%s_"'
 % (sys.argv[1]))}
).execute()
Build the list of tables.
tables = ', '.join(['ch11.' + cell(r, 0) for r in resp['rows']])
Run a query over the list of tables.
resp = bq.jobs().query(
 projectId=PROJECT_ID,
 body={'query':('SELECT kind, COUNT(day) FROM %s '
 'GROUP BY 1' % tables)}
).execute()

We have listed this code for two reasons. First, it clarifi es the semantics of the

function that will be introduced below and second, it illustrates the boilerplate

and extra operation you can avoid by using it. The function that simulates this

table listing behavior is TABLE_QUERY, and it has the following signature:

 (TABLE_QUERY(<dataset>,
 "<conditional expression>")

It should appear in the FROM clause of a query just like you would use a

subselect expression. Just as with subselects it must appear in parentheses. The

conditional expression can be any expression that would be legal in the WHERE

clause of a query over the dataset metatable. With this function the script we

wrote could be replaced with:

$ (INPUT="a"
 bq query "SELECT kind, count(day) [count]
 FROM (TABLE_QUERY(
 ch11, 'LEFT(table_id, 2) = \"${INPUT}_\"'))
 GROUP BY 1")
+------+-------+
| kind | count |
+------+-------+
| a | 7 |
+------+-------+

 Chapter 11 ■ Managing Data Stored in BigQuery 377

c11.indd 02:41:35:PM 04/29/2014 Page 377

The conditions in the WHERE clause of the fi rst query in the script are passed

as a string to the TABLE_QUERY function. The function effectively simulates the

operations performed by the script, but more effi ciently because it can all hap-

pen within the service. Keep in mind that the limit on the total number of tables

referenced in a single query still applies. It is easiest to work out the conditional

expression using direct queries over the dataset metatable. After you fi gure out

the correct expression, just copy that into the fi nal query.

NO TABLES SELECTED

Both versions, script and TABLE_QUERY, will fail if the conditions lead to no tables

being selected. They will fail with the same error indicating a bad FROM clause. You

should plan on handling this error if you use this function.

Date Partitioned Datasets

Because time is frequently an important dimension when data is collected, it

usually has a privileged role in the organization of data. A common design is

to partition data into time-based buckets. The data is then managed and que-

ried at the granularity of these buckets. For example, you may want to delete

all buckets older than some age. The default time range for queries may be the

last 7 days, and being able to limit the data scanned for most queries could help

reduce costs. The approach that works well in BigQuery is to put data into daily

tables, so the time bucket is 1 day. To simplify this use case, BigQuery has a

specialization of the TABLE_QUERY function that operates on tables that conform

to the following naming scheme:

<table prefix>YYYYMMDD

The function is TABLE_DATE_RANGE and has the following signature:

(TABLE_DATE_RANGE(<prefix>,
 <start timestamp>,
 <end timestamp>)

Whenever a calendar date appears, you have to worry about the issue of time

zones. Currently, the only time zone supported is UTC, so the feature works

best if you use UTC-aligned day boundaries. Otherwise, you need to shift times

into the UTC time zone.

Here is a sample query using the tables we created:

$ bq query "SELECT kind, MIN(day), MAX(day)
 FROM (TABLE_DATE_RANGE(ch11.a_,

378 Part III ■ Advanced BigQuery

c11.indd 02:41:35:PM 04/29/2014 Page 378

 DATE_ADD(TIMESTAMP('20131114'), -3,
 'DAY'),
 CURRENT_TIMESTAMP()))
 GROUP BY 1"
+------+----------+----------+
| kind | f0_ | f1_ |
+------+----------+----------+
| a | 20131111 | 20131114 |
+------+----------+----------+

Notice that for start and end timestamp you can supply any expression

that evaluates to a timestamp. To use date constants you can cast a string to a

timestamp:

$ bq query "SELECT kind, MIN(day), MAX(day)
 FROM (TABLE_DATE_RANGE(ch11.b_,
 TIMESTAMP('2013-11-09'),
 TIMESTAMP('2013-11-11')))
 GROUP BY 1"
+------+----------+----------+
| kind | f0_ | f1_ |
+------+----------+----------+
| b | 20131109 | 20131111 |
+------+----------+----------+

The reason this function is particularly helpful is that it can be a chore to

work out the conditions that select out an arbitrary date range. It is certainly

possible to implement the same functionality using TABLE_QUERY directly, but

this function makes it a lot simpler and avoids common date handling errors.

This completes the discussion of metatables in BigQuery. The reason these

one-row tables (or appends to a single table) were created was to illustrate how

to move the computation from operations over rows in tables to operations

over the tables. All the complexity of the query was inside the FROM clause

with a simple boilerplate in the other clauses. Clearly this was a bit contrived.

Real-world applications have most of the logic in the clauses operating on the

data in the table with a little bit of logic in the FROM clause to specify a relevant

set of tables (or table slices). The sample application has examples that use this

functionality, which you can explore.

Summary

This chapter covered strategies for managing data within BigQuery and across

the Google Cloud Platform as it relates to data warehousing. Some of these

strategies are related to schemes you can use in a traditional database or data

 Chapter 11 ■ Managing Data Stored in BigQuery 379

c11.indd 02:41:35:PM 04/29/2014 Page 379

warehouse but implement in a manner better suited to operating in the cloud

and within BigQuery. The sample application combines a few of these strategies

to illustrate how they fi t together in a realistic application. Similarly, you can

fi nd the right combination of features to support your analytics applications .

c12.indd 11:40:17:AM 05/07/2014 Page 381

Par t

IV
BigQuery Applications

In This Part

Chapter 12: External Data Processing

Chapter 13: Using BigQuery from Third-Party Tools

Chapter 14: Querying Google Data Sources

c12.indd 11:40:17:AM 05/07/2014 Page 382

383

c12.indd 11:40:17:AM 05/07/2014 Page 383

By this point you should be getting good at using BigQuery and have an under-

standing of how it works. That said, sometimes it may not be convenient to use

BigQuery directly via the API, generated clients, or web UI. Other times, you

need to do something with your data that isn’t possible inside of BigQuery.

This chapter shows you how to handle both of these situations. In data ware-

housing, the process of taking data out of one storage system and adding it to

another one is called ETL, for Extract Transform and Load. The fi rst section in

this chapter is about Extract: You’ve got your data in BigQuery and you want

to take it out. The next section describes different ways to Transform your data,

such as running a Hadoop MapReduce on Google Compute Engine. The Load

component of ETL was covered in Chapter 6, “Loading Data.”

The last portion of the chapter shows some of the alternative interfaces

to BigQuery that enable you to access your data from two popular spread-

sheet programs: Google Spreadsheets and Microsoft Excel. You can use Google

Apps Script to run BigQuery queries, which enables you to fi ll your Google

Spreadsheets (or even Google Forms) with BigQuery data. For those of you who

prefer Microsoft Excel to Google Spreadsheets, the fi nal portion of the chapter

describes the BigQuery Excel Connector that enables you to run BigQuery

queries from Microsoft Excel directly.

This chapter covers only the Google-provided interfaces. Chapter 13, “Using

BigQuery from Third-Party Tools,” describes some of the third-party tools that

have been built taking advantage of the BigQuery API.

C H A P T E R

12

External Data Processing

384 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 384

Getting Data Out of BigQuery

Although there are a lot of things you can do with BigQuery’s SQL language,

sometimes you want to take your data out of BigQuery. Maybe you have a

custom prediction algorithm that you want to run over your data via Hadoop;

maybe you want to feed a BigQuery table into an in-house reporting tool; or

maybe you just want to make a backup of your data to store somewhere else.

You can read your data out of BigQuery in two ways: The fi rst is to extract

it; the second is to read it directly. Extract is the “E” from ETL. (“T” is trans-

form and “L” is load.) In BigQuery, you can extract your data by running an

Extract job. Reading the data directly, however, can be done using the TableData

.list() operation.

Extract Jobs

Chapter 5, “Talking to the BigQuery API,” gave an overview of the BigQuery

Jobs interface but didn’t go into detail about the various types of jobs that can

be run. Extract jobs are the opposite of Load jobs. A Load job takes data from

somewhere outside of BigQuery and imports it into a BigQuery table, whereas

an Extract job takes a BigQuery table and exports it outside of BigQuery.

To run an Extract job, you need to fi ll out an extract confi guration of a job

object and insert the job into the BigQuery jobs collection. Here is an example

that uses the raw HTTP API to extract the Shakespeare word-count reference

table that you’ve seen in several other chapters to a Google Cloud Storage bucket

as newline-delimited JSON:

$ PROJECT_ID=bigquery-e2e
$ BUCKET_ID=bigquery-e2e
$ BASE_URL="https://www.googleapis.com/bigquery/v2"
$ JOBS_URL="${BASE_URL}/projects/${PROJECT_ID}/jobs"
$ GCS_OBJECT="data/extract/shakespeare_$(date +'%s').json"
$ DESTINATION_PATH="gs://${BUCKET_ID}/${GCS_OBJECT}"
$ SOURCE_TABLE="{ \
 'projectId': 'publicdata', \
 'datasetId': 'samples', \
 'tableId': 'shakespeare'}"
$ JOB_CONFIG="{'extract': { 'sourceTable': ${SOURCE_TABLE}, \
 'destinationUris': ['${DESTINATION_PATH}'], \
 'destinationFormat': 'NEWLINE_DELIMITED_JSON'}}"
$ JOB="{'configuration': ${JOB_CONFIG}}"
$ curl \
 -H "$(python auth.py)" \
 -H "Content-Type: application/json" \
 -X POST \
 --data-binary "${JOB}" \

https://www.googleapis.com/bigquery/v2

 Chapter 12 ■ External Data Processing 385

c12.indd 11:40:17:AM 05/07/2014 Page 385

 "${JOBS_URL}"
{
...
"configuration": {
 "extract": {
 "sourceTable": {
 "projectId": "publicdata",
 "datasetId": "samples",
 "tableId": "shakespeare"
 },
 "destinationUris": [
 "gs://bigquery-e2e/data/extract/shakespeare_1395530836.json"
],
 "destinationFormat": "NEWLINE_DELIMITED_JSON"
 }
 }
}

Downloading Data from GCS

Once you’ve extracted the data from BigQuery, you might want to download

it locally. You can download Google Cloud Storage (GCS) fi les via the gsutil

command-line tool distributed with the Google Cloud SDK. Alternatively, you

might, want to download the fi le programmatically. Listing 12.1 shows the

Python code to download GCS fi les in Python.

Listing 12.1: Downloading fi les from Google Cloud Storage (gcs_reader.py)

import os
import sys

Imports from the Google API client:
from apiclient.errors import HttpError
from apiclient.http import MediaIoBaseDownload

Imports from local files in this directory:
import auth

Number of bytes to download per request.
CHUNKSIZE = 1024 * 1024

class GcsReader:
 '''Reads files from Google Cloud Storage.

 Verifies the presence of files in Google Cloud Storage. Will download
 the files as well if download_dir is not None.

continues

386 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 386

Listing 12.1: (continued)

 '''

 def __init__(self, gcs_bucket, download_dir=None):
 self.gcs_service = auth.build_gcs_client()
 self.gcs_bucket = gcs_bucket
 self.download_dir = download_dir

 def make_uri(self, gcs_object):
 '''Turn a bucket and object into a Google Cloud Storage path.'''
 return 'gs://%s/%s' % (self.gcs_bucket, gcs_object)

 def check_gcs_file(self, gcs_object):
 '''Returns a tuple of (GCS URI, size) if the file is present.'''
 try:
 metadata = self.gcs_service.objects().get(
 bucket=self.gcs_bucket, object=gcs_object).execute()
 uri = self.make_uri(gcs_object)
 return (uri, int(metadata.get('size', 0)))
 except HttpError, err:
 # If the error is anything except a 'Not Found' print the error.
 if err.resp.status <> 404:
 print err
 return (None, None)

 def make_output_dir(self, output_file):
 '''Creates an output directory for the downloaded results.'''
 output_dir = os.path.dirname(output_file)
 if os.path.exists(output_dir) and os.path.isdir(output_dir):
 # Nothing to do.
 return
 os.makedirs(output_dir)

 def complete_download(self, media):
 while True:
 # Download the next chunk, allowing 3 retries.
 _, done = media.next_chunk(num_retries=3)
 if done: return

 def download_file(self, gcs_object):
 '''Downloads a GCS object to directory download_dir.'''
 output_file_name = os.path.join(self.download_dir, gcs_object)
 self.make_output_dir(output_file_name)
 with open(output_file_name, 'w') as out_file:
 request = self.gcs_service.objects().get_media(
 bucket=self.gcs_bucket, object=gcs_object)
 media = MediaIoBaseDownload(out_file, request,
 chunksize=CHUNKSIZE)

 print 'Downloading:\n%s to\n%s' % (
 self.make_uri(gcs_object), output_file_name)

 Chapter 12 ■ External Data Processing 387

c12.indd 11:40:17:AM 05/07/2014 Page 387

 self.complete_download(media)

 def read(self, gcs_object):
 '''Read the file and returns the file size or None if not found.'''
 uri, file_size = self.check_gcs_file(gcs_object)
 if uri is None:
 return None
 print '%s size: %d' % (uri, file_size)
 if self.download_dir is not None:
 self.download_file(gcs_object)
 return file_size

To use the GcsReader, you can write code such as the following:

$ python
>>> gcs_bucket='bigquery-e2e'
>>> from gcs_reader import GcsReader
>>> GcsReader(gcs_bucket=gcs_bucket,
... download_dir='/tmp/bigquery').read('shakespeare.json')
gs://bigquery-e2e/shakespeare.json size: 13019156
Downloading:
gs://bigquery-e2e/shakespeare.json to /tmp/bigquery/shakespeare
.json
13019156

This will read the GCS fi le gs://bigquery-e2e/shakespeare.json and down-

load it to the /tmp/bigquery directory on your local machine. The data will be

downloaded in 1 MB chunks using the HTTP resumable download protocol.

The details of the code aren’t important, but the subsequent examples in this

section use the GcsReader to download fi les after running BigQuery extract

jobs, so understanding what it does at a high level is useful.

This example uses the same authentication code from Chapter 5, but has a

couple of additional tweaks. It adds a method to the auth module to get the GCS

service object, similar to the method that creates an authenticated BigQuery

service object. The other change to the auth module is to add the GCS OAuth2

scope to the list of required scopes. Unfortunately, this requires you to re-

authenticate. In order to prevent you from getting errors when you run these

examples, the saved credential fi le is named differently from the one used in

other chapters. If you run these examples and get a HTTP 403 error “Insuffi cient

Permissions,” try deleting the saved credentials (~/bigquery_credentials.dat)

and rerunning the operation.

Running Extract Jobs

By this point, you should understand how the BigQuery Jobs API works; if not,

you should read the section titled “Jobs” in Chapter 5. Since we assume you’re

familiar with starting jobs and waiting for them to complete, the code to do so

is not shown here in the text. The job management code used in the subsequent

388 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 388

listings is encapsulated in the JobRunner object defi ned in job_runner.py fi le.

This fi le is included within the supplemental download material for this chapter.

Listing 12.2 runs a BigQuery Extract job via a JobRunner and then downloads

the results using a GcsReader, which was defi ned in the previous listing.

Listing 12.2: Exporting a table via an Extract job (extract_and_read.py)

import json
import logging
import sys
import time

Imports from local files in this directory:
import auth
from gcs_reader import GcsReader
from job_runner import JobRunner

def make_extract_config(source_project_id, source_dataset_id,
 source_table_id, destination_uris):
 '''Creates a dict containing an export job configuration.'''

 source_table_ref = {
 'projectId': source_project_id,
 'datasetId': source_dataset_id,
 'tableId': source_table_id}
 extract_config = {
 'sourceTable': source_table_ref,
 'destinationFormat': 'NEWLINE_DELIMITED_JSON',
 'destinationUris': destination_uris}
 return {'extract': extract_config}

def run_extract_job(job_runner, gcs_reader, source_project_id,
 source_dataset_id, source_table_id):
 '''Runs a BigQuery extract job and reads the results.'''

 timestamp = int(time.time())
 gcs_object = 'output/%s.%s_%d.json' % (
 source_dataset_id,
 source_table_id,
 timestamp)
 destination_uri = gcs_reader.make_uri(gcs_object)
 job_config = make_extract_config(
 source_project_id,
 source_dataset_id,
 source_table_id,
 [destination_uri])
 if not job_runner.start_job(job_config):
 return

 print json.dumps(job_runner.get_job(), indent=2)

 job_runner.wait_for_complete()
 gcs_reader.read(gcs_object)

 Chapter 12 ■ External Data Processing 389

c12.indd 11:40:17:AM 05/07/2014 Page 389

Because the details of running a job and downloading a fi le from GCS are

abstracted away from this listing, the code is short and straightforward. The

method run_extract_job picks a GCS path name based on the timestamp

and name of the table being downloaded, and then creates an Extract job

to write to that GCS path. Once the job completes, the listing downloads

the object using the GcsReader. The following snippet is an example usage

of this code that exports the table publicdata:samples.shakespeare and

downloads the results:

$ python
>>> project_id='bigquery-e2e'
>>> gcs_bucket='bigquery-e2e'
>>> from gcs_reader import GcsReader
>>> from job_runner import JobRunner
>>> import extract_and_read
>>> extract_and_read.run_extract_job(
... JobRunner(project_id=project_id),
... GcsReader(gcs_bucket=gcs_bucket,
... download_dir='/tmp/bigquery'),
... source_project_id='publicdata',
... source_dataset_id='samples',
... source_table_id='shakespeare')
{
 "status": {
 "state": "PENDING"
 },
 "kind": "bigquery#job",
 "statistics": {
 "creationTime": "1395596962435"
 },
 "jobReference": {
 "projectId": "bigquery-e2e",
 "jobId": "job_1395596963"
 },
 "etag": "\"Ny_MVtklP3Cn04wt1Sr9PinHZEI/-ytBLaKo_odhSBz-AVUT8r4aR7M\"",
 "configuration": {
 "extract": {
 "destinationUri":
 "gs://bigquery-e2e/output/samples.shakespeare_1395596964.json",
 "destinationUris": [
 "gs://bigquery-e2e/output/samples.shakespeare_1395596964.json"
],
 "sourceTable": {
 "projectId": "publicdata",
 "tableId": "shakespeare",
 "datasetId": "samples"
 }
 }
 },

390 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 390

 "id": "bigquery-e2e:job_1395596963",
 "selfLink": "https://www.googleapis.com/bigquery/v2/projects/..."
}
PENDING 1s
PENDING 7s
PENDING 12s
PENDING 17s
RUNNING 23s
RUNNING 29s
DONE 35s
JOB COMPLETED
Downloading:
gs://bigquery-e2e/output/samples.shakespeare_1395596964.json to
/tmp/bigquery/output/samples.shakespeare_1395596964.json

The default extract format, like the default in Load jobs, is CSV. If you have

tables with nested and repeated fi elds, CSV won’t work because you can’t rep-

resent a repeated fi eld as a comma-separated row without introducing new

formatting—at which point it isn’t actually CSV anymore. If you don’t want

to export your data as CSV, you can specify a destinationFormat of NEWLINE_

DELIMITED_JSON, which outputs each row as a JSON element, with each row

separated by a newline character (\n). Table 12.1 lists all the confi guration options

for an Extract job.

Table 12.1: Extract Confi guration Fields

FIELD TYPE DESCRIPTION

sourceTable.tableid string Table ID of the source table

sourceTable.datasetId string Dataset ID of the dataset containing

the table to export

datasetReference.projectId string Project ID of the project that owns

the table to be exported

destinationUris string
array

Where to write the output

destinationFormat string Either CSV or NEWLINE_
DELIMITED_JSON, depending on

the wanted format of the output.

The default is CSV.

https://www.googleapis.com/bigquery/v2/projects

 Chapter 12 ■ External Data Processing 391

c12.indd 11:40:17:AM 05/07/2014 Page 391

FIELD TYPE DESCRIPTION

printHeader boolean Whether to include a header row

with the names of the fi elds. This is

only valid for

destinationFormat = CSV.

fieldDelimiter string Single character to use to separate

fi elds. This is only valid when

destinationFormat = CSV.

The default is “,.”

Most of these parameters are relatively straightforward; however, the

destinationUris could benefi t from a little bit of extra explanation. The

destinationUris value should contain a path that the user running the job

has write access to in GCS. GCS paths look like gs://bucketname/objectname.

Although you can specify additional slashes in the name to make it look like a

directory, there is no real directory hierarchy. A path like gs://bucket/directory/

subdir/object just refers to an object named directory/subdir/object in

bucket bucket. This is mentioned because you don’t have to worry about creat-

ing subdirectories before exporting a table.

There are a couple of other special options that you can use when specifying

a destination URI or URIs, which are described next.

Pattern Export Paths

BigQuery won’t export fi les larger than 1 GB to a single fi lename. Because a

single fi le can’t be written in parallel, a large destination fi le is ineffi cient to emit.

If you export large tables, you can use a pattern path, which allows as many

fi les to be written as necessary.

You shouldn’t make any assumptions about the size or number of these fi les,

other than that they will all be smaller than 1 GB in size. Small tables will likely

just be exported as a single fi le, and larger tables will be broken into a larger

number of pieces. BigQuery often moves data around to make it easier to query,

so if you export the same table more than once, it might be split a different way

each time.

To create a pattern export path, specify the glob character * somewhere in your

destinationUris fi eld. Glob patterns operate like command-line glob matching

(for example, foo*.txt), rather than regular expressions (where you’d specify

foo.*\.txt). The glob patterns will be replaced by a shard number padded to

twelve digits, which starts at 000000000000 and increments by one for each fi le

392 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 392

that is written out. For instance, if you pass the fi lename gs://bigquery-e2e/

data/extract/zipcodes*.json, BigQuery may write out these objects:

gs://bigquery-e2e/data/extract/zipcodes0000000000.json
gs://bigquery-e2e/data/extract/zipcodes0000000001.json
gs://bigquery-e2e/data/extract/zipcodes0000000002.json

These fi les generally are written out in parallel (up to a limit, of course), so

using a glob pattern can drastically reduce the time it takes to export a table.

It is a best practice to always use a glob when exporting, since a glob pattern

allows you to export data without worrying about the size of the source table.

Partitioned Export

Nobody likes waiting around for data. Often the reason you want to export your

data is because you want to use it right away somewhere else. For example, you

might be running a Hadoop job over your data in Google Compute Engine, or

you might be exporting analysis results into your local MySQL database. In

those cases, you don’t necessarily want to wait until every last byte is ready

because it is probably going to take you a while to consume the data. Ideally,

you’d like to start processing the data as soon as possible.

If you have a number of parallel readers (as in the Hadoop case), you can tell

BigQuery to write your data out to multiple patterns immediately. When the

destinationUris fi eld has more than one path, the export goes into a special

“partitioned” mode, where the target fi le sizes are smaller and the parallel writ-

ers work on separate patterns immediately. When the writer fi nishes, it writes

a special 0-row fi le to signal completion.

This mode can be extremely useful when you export data to use as input to a

Hadoop job. In this case, each Hadoop worker will be looking for a single pat-

tern and will continue to poll for new data until a 0-byte object is found. GCS

shows only fi les after they have completed.

Listing 12.3 demonstrates an example of how you would use partitioned export.

Listing 12.3: Parallel export readers (extract_and_partitioned_read.py)

import sys
import threading
import time

from apiclient.errors import HttpError

Imports from local files in this directory:
from gcs_reader import GcsReader
from job_runner import JobRunner

class PartitionReader(threading.Thread):

 Chapter 12 ■ External Data Processing 393

c12.indd 11:40:17:AM 05/07/2014 Page 393

 '''Reads output files from a partitioned BigQuery extract job.'''
 def __init__(self, job_runner, gcs_reader, partition_id):
 threading.Thread.__init__(self)
 self.job_runner = job_runner
 self.partition_id = partition_id
 self.gcs_reader = gcs_reader
 self.gcs_object_glob = None

 def resolve_shard_path(self, path, index):
 '''Turns a glob path and an index into the expected filename.'''
 path_fmt = path.replace('*', '%012d')
 return path_fmt % (index,)

 def read_shard(self, shard):
 '''Reads the file if the file is present or returns None.'''
 resolved_object = self.resolve_shard_path(self.gcs_object_glob,
 shard)
 return self.gcs_reader.read(resolved_object)

 def start(self, gcs_object_glob):
 ''' Starts the thread, reading a GCS object pattern.'''
 self.gcs_object_glob = gcs_object_glob;
 threading.Thread.start(self)

 def wait_for_complete(self):
 ''' Waits for the thread to complete.'''
 self.join()

 def run(self):
 '''Waits for files to be written and reads them when they arrive.'''

 if not self.gcs_object_glob:
 raise Exception(
 'Must set the gcs_object_glob before running thread')

 print "[%d] STARTING on %s" % (self.partition_id,
 self.gcs_reader.make_uri(self.gcs_object_glob))
 job_done = False
 shard_index = 0
 while True:
 file_size = self.read_shard(shard_index)
 if file_size is not None:
 # Found a new file, save it, and start looking for the next one.
 shard_index += 1
 elif job_done: break
 else:
 # Check whether the job is done. If the job is done, we don't
 # want to exit immediately; we want to check one more time
 # for files.
 job_done = self.job_runner.get_job_state() == 'DONE'

continues

394 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 394

Listing 12.3: (continued)

 if not job_done:
 # Didn't find a new path, and the job is still running,
 # so wait a few seconds and try again.
 time.sleep(5)
 print "[%d] DONE. Read %d files" % (self.partition_id, shard_index)

def make_extract_config(source_project_id, source_dataset_id,
 source_table_id, destination_uris):
 '''Creates a dict containing an export job configuration.'''

 source_table_ref = {
 'projectId': source_project_id,
 'datasetId': source_dataset_id,
 'tableId': source_table_id}
 extract_config = {
 'sourceTable': source_table_ref,
 'destinationFormat': 'NEWLINE_DELIMITED_JSON',
 'destinationUris': destination_uris}
 return {'extract': extract_config}

def run_partitioned_extract_job(job_runner, gcs_readers,
 source_project_id, source_dataset_id, source_table_id):
 '''Runs a BigQuery extract job and reads the results.'''
 destination_uris = []
 gcs_objects = []
 timestamp = int(time.time())
 partition_readers = []
 for index in range(len(gcs_readers)):
 gcs_object = 'output/%s.%s_%d.%d.*.json' % (
 source_dataset_id,
 source_table_id,
 timestamp,
 index)
 gcs_objects.append(gcs_object)
 destination_uris.append(gcs_readers[index].make_uri(gcs_object))

 # Create the reader thread for this partition.
 partition_readers.append(
 PartitionReader(job_runner=job_runner,
 gcs_reader=gcs_readers[index],
 partition_id=index))

 job_config = make_extract_config(source_project_id, source_dataset_id,
 source_table_id, destination_uris)
 if not job_runner.start_job(job_config):
 return

 # First start all of the reader threads.
 for index in range(len(partition_readers)):

 Chapter 12 ■ External Data Processing 395

c12.indd 11:40:17:AM 05/07/2014 Page 395

 partition_readers[index].start(gcs_objects[index])
 # Wait for all of the reader threads to complete.
 for index in range(len(partition_readers)):
 partition_readers[index].wait_for_complete()

This code has two main parts: the PartitionReader class that downloads fi les

when they become available and the run_partitioned_extract_job method that

launches the partitioned read and waits for it to complete. The PartitionedReader

extends Python’s Thread object and periodically polls for new fi les to be avail-

able. Once the BigQuery job is complete, no more new fi les will arrive, so it exits

after reading all remaining fi les.

The run_partitioned_extract_job method starts the job, and then starts all

of the PartitionedReader threads to read and download the fi les in parallel.

It returns after waiting for all of those threads to complete. The following code

snippet shows how to use the run_partitioned_extract_job to download the

publicdata:samples.shakespeare table in three partitions:

$ python
>>> from extract_and_partitioned_read import run_partitioned_extract_job
>>> from job_runner import JobRunner
>>> from gcs_reader import GcsReader
>>> project_id='bigquery-e2e'
>>> gcs_bucket='bigquery-e2e'
>>> run_partitioned_extract_job(
... JobRunner(project_id=project_id),
... [GcsReader(gcs_bucket=gcs_bucket,
... download_dir='/tmp/bigquery') for x in range(3)],
... source_project_id='publicdata',
... source_dataset_id='samples',
... source_table_id='shakespeare')
[0] STARTING on gs://bigquery-e2e/...shakespeare_1395605954.0.*.json
[1] STARTING on gs://bigquery-e2e/...shakespeare_1395605954.1.*.json
[2] STARTING on gs://bigquery-e2e/....shakespeare_1395605954.2.*.json
Downloading:
gs://bigquery-e2e/...shakespeare_1395605954.1.000000000000.json to
/tmp/bigquery/output/samples.shakespeare_1395605954.1.000000000000.json
Downloading:
gs://bigquery-e2e/....shakespeare_1395605954.0.000000000000.json to
/tmp/bigquery/output/samples.shakespeare_1395605954.0.000000000000.json
Downloading:
gs://bigquery-e2e/...shakespeare_1395605954.2.000000000000.json to
/tmp/bigquery/output/samples.shakespeare_1395605954.2.000000000000.json
[1] DONE. Read 1 files
[2] DONE. Read 1 files
Downloading:
gs://bigquery-e2e/...shakespeare_1395605954.0.000000000001.json to
/tmp/bigquery/output/samples.shakespeare_1395605954.0.000000000001.json
[0] DONE. Read 2 files

396 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 396

TableData.list()

If you want to read data out of a table, the alternative to an Export job is to just

read the data directly using the TableData.list() method. Chapter 5 demon-

strated using TableData.list() to read rows of data from a table. You can also

use the same method to read an entire table, one page of rows at a time.

There are drawbacks to this approach, however. TableData.list() has two

paging modes: using the row index and using a page token. Page tokens are

the easiest to use because you get back a page token after you start reading the

table, which you can then use in your next request to pick up where you left off.

When no page token is returned, it means you are at the end of the table. A page

token also reads from a single point in time, so if the table changes while you’re

reading from it, you still get a stable version of the table. The problem with page

tokens, however, is that they force you to read the entire table serially, that is,

start at the beginning and read to the end.

The other way of reading from a table, via a row index, lets you read any

rows you want, whenever you want. So if you want to skip to row 1,000,000 and

read from there, you can just specify that row as the start index. This makes

it easier to read a table in parallel because each parallel worker can skip to the

index that they want. For instance, if you have 10,000,000 rows in the table and

10 workers, the fi rst worker would start at row 0 and read the fi rst 1,000,000

rows, the second worker would read rows 1,000,000 through 1,999,999, and so

on. There are two problems with reading a table this way: It is trickier to keep

track of which rows to read by which worker, and if the table changes while

you’re reading it, you’re going to read inconsistent data.

Listing 12.4 shows a TableReader class that can be used to read an entire

table using TableData.list(). It reads one page at a time and then calls out to

a ResultHandler class that processes each page of results as it arrives. If you

use the FileResultHandler, it will write the results (still in the F/V row format)

to a local fi le. The section titled “TableData.list()” in Chapter 5 shows how to

translate the F/V format to a fl at JSON format.

Listing 12.4: Reading a table with TableData.list() (table_reader.py)

import json
import os
import sys
import threading
import time

Imports from the Google API client:
from apiclient.errors import HttpError

Imports from files in this directory:

 Chapter 12 ■ External Data Processing 397

c12.indd 11:40:17:AM 05/07/2014 Page 397

import auth

READ_CHUNK_SIZE= 64 * 1024

class ResultHandler:
 '''Abstract class to handle reading TableData rows.'''

 def handle_rows(self, rows):
 '''Process one page of results.'''
 pass

class TableReader:
 '''Reads data from a BigQuery table.'''

 def __init__(self, project_id, dataset_id, table_id,
 start_index=None, read_count=None, next_page_token=None):
 self.project_id = project_id
 self.dataset_id = dataset_id
 self.bq_service = auth.build_bq_client()
 self.next_page_token = next_page_token
 self.next_index = start_index
 self.rows_left = read_count
 self.table_id = table_id

 def get_table_info(self):
 '''Returns a tuple of (modified time, row count) for the table.'''

 table = self.bq_service.tables().get(
 projectId=self.project_id,
 datasetId=self.dataset_id,
 tableId=self.table_id).execute()
 last_modified = int(table.get('lastModifiedTime', 0))
 row_count = int(table.get('numRows', 0))
 print '%s last modified at %d' % (
 table['id'], last_modified)
 return (last_modified, row_count)

 def advance(self, rows, page_token):
 '''Called after reading a page, advances current indices.'''

 done = page_token is None
 if self.rows_left is not None:
 self.rows_left -= len(rows)
 if self.rows_left < 0: print 'Error: Read too many rows!'
 if self.rows_left <= 0: done = True

 if self.next_index is not None:
 self.next_index += len(rows)
 else:
 # Only use page tokens when we're not using
 # index-based pagination.

continues

398 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 398

Listing 12.4: (continued)

 self.next_page_token = page_token
 return done

 def get_table_id(self):
 if '@' in self.table_id and self.snapshot_time is not None:
 raise Exception("Table already has a snapshot time")
 if self.snapshot_time is None:
 return self.table_id
 else:
 return '%s@%d' % (self.table_id, self.snapshot_time)

 def make_read_message(self, row_count, max_results):
 '''Creates a status message for the current read operation.'''
 read_msg = 'Read %d rows' % (row_count,)
 if self.next_index is not None:
 read_msg = '%s at %s' % (read_msg, self.next_index)
 elif self.next_page_token is not None:
 read_msg = '%s at %s' % (read_msg, self.next_page_token)
 else:
 read_msg = '%s from start' % (read_msg,)
 if max_results <> row_count:
 read_msg = '%s [max %d]' % (read_msg, max_results)
 return read_msg

 def read_one_page(self, max_results=READ_CHUNK_SIZE):
 '''Reads one page from the table.'''

 while True:
 try:
 if self.rows_left is not None and self.rows_left < max_results:
 max_results = self.rows_left

 data = self.bq_service.tabledata().list(
 projectId=self.project_id,
 datasetId=self.dataset_id,
 tableId=self.get_table_id(),
 startIndex=self.next_index,
 pageToken=self.next_page_token,
 maxResults=max_results).execute()
 next_page_token = data.get('pageToken', None)
 rows = data.get('rows', [])
 print self.make_read_message(len(rows), max_results)
 is_done = self.advance(rows, next_page_token)
 return (is_done, rows)
 except HttpError, err:
 # If the error is a rate limit or connection error, wait and
 # try again.
 if err.resp.status in [403, 500, 503]:
 print '%s: Retryable error %s, waiting' % (
 self.thread_id, err.resp.status,)

 Chapter 12 ■ External Data Processing 399

c12.indd 11:40:17:AM 05/07/2014 Page 399

 time.sleep(5)
 else: raise

 def read(self, result_handler, snapshot_time=None):
 '''Reads an entire table until the end or we hit a row limit.'''
 # Read the current time and use that for the snapshot time.
 # This will prevent us from getting inconsistent results when the
 # underlying table is changing.
 if snapshot_time is None and not '@' in self.table_id:
 self.snapshot_time = int(time.time() * 1000)
 self.snapshot_time = snapshot_time
 while True:
 is_done, rows = self.read_one_page()
 if rows:
 result_handler.handle_rows(rows)
 if is_done:
 return

class FileResultHandler(ResultHandler):
 '''Result handler that saves rows to a file.'''

 def __init__(self, output_file_name):
 self.output_file_name = output_file_name
 print 'Writing results to %s' % (output_file_name,)

 def __enter__(self):
 self.make_output_dir()
 self.output_file = open(self.output_file_name, 'w')
 return self

 def __exit__(self, type, value, traceback):
 if self.output_file:
 self.output_file.close()
 self.output_file = None

 def make_output_dir(self):
 '''Creates an output directory for the downloaded results.'''

 output_dir = os.path.dirname(self.output_file_name)
 if os.path.exists(output_dir) and os.path.isdir(output_dir):
 # Nothing to do.
 return
 os.makedirs(output_dir)

 def handle_rows(self, rows):
 if self.output_file is None:
 self.__enter()

continues

400 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 400

Listing 12.4: (continued)

 self.output_file.write(json.dumps(rows, indent=2))

class TableReadThread (threading.Thread):
 '''Thread that reads from a table and writes it to a file.'''
 def __init__(self, table_reader, output_file_name,
 thread_id='thread'):
 threading.Thread.__init__(self)
 self.table_reader = table_reader
 self.output_file_name = output_file_name
 self.thread_id = thread_id

 def run(self):
 print 'Reading %s' % (self.thread_id,)
 with FileResultHandler(self.output_file_name) as result_handler:
 self.table_reader.read(result_handler)

This listing is a little bit more detailed than it needs to be, in order to simplify

subsequent listings, which show how to read in parallel threads. The TableReader

class can do index-based or pagination token-based reading, and will add a

snapshot time to the table ID so that the listing is based on a stable snapshot

of the table. This listing also handles errors, which is important if you want to

be able to reliably read a large number of pages from a table. Finally, there is a

TableReadThread class that is used in Listings 12.5 and 12.6 in order to spin up

a separate thread to read a table or portion of a table. The following example

uses a TableReader to read the publicdata:samples.shakespeare table in a

background TableReadThread and saves the results to fi le.

$ python
>>> from table_reader import TableReader
>>> from table_reader import TableReadThread
>>> output_file_name = '/tmp/bigquery/shakespeare'
>>> table_reader = TableReader(project_id='publicdata',
... dataset_id='samples',
... table_id='shakespeare')
>>> thread = TableReadThread(table_reader, output_file_name)
>>> thread.start()
Writing results to /tmp/bigquery/shakespeare
>>> thread.join()
Read 65536 rows from start
Read 65536 rows at CIDBB777777QOGQIBCAIABAQQCAAI===
Read 33584 rows at CIDBB777777QOGQIBCAIACAQQCAAI=== [max 65536]

Table Decorators

BigQuery provides a mechanism called table decorators that can solve many

of the problems encountered when using TableData.list() to read a table in

parallel. Decorators can be used anywhere you otherwise would read from

 Chapter 12 ■ External Data Processing 401

c12.indd 11:40:17:AM 05/07/2014 Page 401

a table: in a Query, Copy, or Extract job, or in a TableData.list() operation.

Chapter 11, “Managing Data Stored in BigQuery,” shows some examples of how

table decorators can be used for data management; here you see how they’re

useful in reading your data out of BigQuery.

Snapshot Decorators

Table snapshot decorators were discussed in Chapter 11. They can be used

anywhere a table is read (in the API, in a query, and so on) to refer to a histori-

cal snapshot of a table at a particular time. You can use a snapshot decorator

by adding @timestamp to a table name, where timestamp is the number of mil-

liseconds since the POSIX epoch (that is, January 1st, 1970 GMT). For example,

publicdata:samples.wikipedia@1386465812000 is the BigQuery public sample

table as of 1:23 AM GMT on December 8, 2013. The snapshot time must be within

the last 7 days (this snapshot only worked until December 15, 2013, for example),

but 7 days should be plenty of time to read a table. Note that if you’re reading via

page tokens, no snapshot decorator is needed because the page token implicitly

specifi es a snapshot time.

If you’re going to read a table in parallel via row indexes, and that table might

be changing, you should use a snapshot decorator. This way all the reads will

be based on the same version of the table. To fi nd a starting snapshot time,

fi rst read as of the current time. The Python time.time() method returns the

number of seconds since the POSIX epoch as a fl oating-point value. To get the

current snapshot time, just multiply the current time by 1000 and cast to an

integer, as in: timestamp = int(1000 * time.time()). Then, each parallel

worker should use the same snapshot time so that row 1,000,000 means the

same thing for all readers.

Listing 12.5 shows how to get a good snapshot time and use it in a parallel

TableData.list() operation. The net effect of this listing is the same as in 12.3;

however, in this case you read the table directly instead of extracting it fi rst to

GCS.

Listing 12.5: Reading from a table by index in parallel (tabledata_index.py)

import os
import sys
import time

Imports from files in this directory:
from table_reader import TableReader
from table_reader import TableReadThread

def parallel_indexed_read(partition_count,
 project_id, dataset_id, table_id, output_dir):
 '''Divides up a table and reads the pieces in parllel by index.'''

continues

402 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 402

Listing 12.5: (continued)

 table_reader = TableReader(project_id, dataset_id, table_id)
 _, row_count = table_reader.get_table_info()
 snapshot_time = int(time.time() * 1000)
 stride = row_count / partition_count
 threads = []
 for index in range(partition_count):
 file_name = '%s.%d' % (os.path.join(output_dir, table_id), index)
 start_index = stride * index
 thread_reader = TableReader(
 project_id=project_id,
 dataset_id=dataset_id,
 table_id='%s@%d' % (table_id, snapshot_time),
 start_index=start_index,
 read_count=stride)
 read_thread = TableReadThread(
 thread_reader,
 file_name,
 thread_id='[%d-%d)' % (start_index, start_index + stride))
 threads.append(read_thread)
 threads[index].start()

 for index in range(partition_count):

First, this listing reads the number of rows in the table, so it can partition the

table into row ranges. Next, it iterates through the number of desired partitions

(that is, the number of parallel readers you want) and assigns each one a section

of the table to read by creating a TableReader that is limited to that section. It

then spins up a TableReadThread to run each TableReader. Finally, it waits for

all of the threads to complete. Following is an example of running the indexed

table reader to read your favorite table, publicdata:samples.shakespeare in

three parallel threads:

$ python
>>> import tabledata_index
>>> tabledata_index.parallel_indexed_read(
... 3, 'publicdata', 'samples', 'shakespeare',
... '/tmp/bigquery')
publicdata:samples.shakespeare last modified at 1335916045099
Reading [0-54885)
Writing results to /tmp/bigquery/shakespeare.0
Reading [54885-109770)
Writing results to /tmp/bigquery/shakespeare.1
Reading [109770-164655)
Writing results to /tmp/bigquery/shakespeare.2
Read 54885 rows at 54885
Read 54885 rows at 109770
Read 54885 rows at 0

 Chapter 12 ■ External Data Processing 403

c12.indd 11:40:17:AM 05/07/2014 Page 403

Time Range Decorators

Another way to split up a table is to use a time range decorator, which allows

you to read only data that was added to a table during a particular time range,

for example:

publicdata:samples.wikipedia@1386465812000-1386465899999

Time range decorators create a view of the table containing only the data that

was added between those two timestamps. Like a snapshot decorator, the times

used in time range decorators must be within the last 7 days.

How is reading only a time slice of data in a table useful when reading out a

table? It is useful because you might not have to read out the whole table. Maybe

you read the table yesterday at time T, so today you need to read only the data

that was added between T and now. If you had to read out the entire table page

by page it might take a long time, but the data that was added in the last 24

hours might be much more manageable.

Because you don’t always know what the current time is in milliseconds

since 1/1/1970, there is another mode of address available for time range deco-

rators. Negative numbers indicate relative numbers. For example, the table

publicdata:samples.wikipedia@-7200000--3600000 would contain all the data

added between 2 hours and 1 hour ago. Don’t forget: You’re measuring time in

milliseconds, which is why you have such big numbers.

Dynamic Partition Decorators

A third table decorator type can help when you’re reading from a table in parallel:

a partition decorator. This decorator type lets you partition a table into as many

pieces as you like by modifying the name of the table that you use. Partition

decorators are specifi ed as <table>$<index>-of-<count>, where <index> is the

partition number (starting with 0) and <count> is the number of total partitions.

If you have 3 Hadoop workers, each one could read a different partition of the

table, for example:

publicdata:samples.wikipedia$0-of-3
publicdata:samples.wikipedia$1-of-3
publicdata:samples.wikipedia$2-of-3

There are a couple of caveats with partition decorators: They do not guarantee

to divide up the table range in exact chunks, and if you ask for too many parti-

tions, the last ones will be empty. That is, if you have a 10-row table and ask for

two partitions, you’ll likely fi nd that the fi rst partition has all 10 rows and there

are none in the second. The partition granularity is usually approximately 32

MB of table data (although a lot of factors can infl uence the size), so this is most

useful when you’re dealing with a large table.

404 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 404

Of course, you still have the same issue where the different workers start

reading at different times and might be operating over different data if the table

is changing. To prevent this, you can use a snapshot decorator in conjunction

with a partition decorator. The snapshot decorator comes fi rst from left to right;

you can think of it as “table X, snapshotted at time T, partitioned into Y pieces.”

The Wikipedia table above would then be:

publicdata:samples.wikipedia@1386465812000$0-of-3
publicdata:samples.wikipedia@1386465812000$1-of-3
publicdata:samples.wikipedia@1386465812000$2-of-3

Listing 12.6 is similar to Listing 12.5 except it uses a partition decorator instead

of dividing up the table by rows. This method of reading the table will likely

be much faster than using the range-based indexing.

Listing 12.6: Reading from a table in parallel using partition decorators (tabledata_

partition.py)

import os
import sys
import threading
import time

Imports from files in this directory:
from table_reader import TableReader
from table_reader import TableReadThread

def parallel_partitioned_read(partition_count,
 project_id, dataset_id, table_id, output_dir):

 snapshot_time = int(time.time() * 1000)
 threads = []
 for index in range(partition_count):
 file_name = '%s.%d' % (os.path.join(output_dir, table_id), index)
 suffix ='$%d-of-%d' % (index, partition_count)
 partition_table_id = '%s@%d%s' % (table_id, snapshot_time, suffix)
 thread_reader = TableReader(
 project_id=project_id,
 dataset_id=dataset_id,
 table_id=partition_table_id)
 read_thread = TableReadThread(
 thread_reader,
 file_name,
 thread_id=suffix)
 threads.append(read_thread)
 threads[index].start()

 for index in range(partition_count):
 threads[index].join()

 Chapter 12 ■ External Data Processing 405

c12.indd 11:40:17:AM 05/07/2014 Page 405

EXTRACT JOBS VERSUS TABLEDATA.LIST FOR READING DATA IN PARALLEL

Both Extract jobs and TableData.list() let you read data from tables in parallel.

When should you use one versus the other? The answer, unsurprisingly, depends on

how you want to read the data. If you want to read the table like a fi le—that is, read

1 k bytes at a time—you will likely want to use the output of an Extract job. Extract

produces fi les that live in Google Cloud Storage (GCS) that you can read multiple times

and in any byte range you choose. You can download the fi les using standard HTTP

resumable download operations.

TableData.list(), however, lets you read a specifi c number of rows but doesn’t

give you control over bytes. To read all the data, you need to use a page token to fetch

the next section of data. This means that you can’t just plug it in as-is to download

your tables.

There are latency trade-off s as well. Extract jobs require you to wait for the data

to be produced, but when it is ready, you can download at the speed of your Internet

connection. TableData.list(), however, lets you read data immediately, but the

eff ective bandwidth will be lower because the data has to be transcoded into your

desired format on-the-fl y.

AppEngine MapReduce

There are a number of reasons you might want to extract data from BigQuery.

One common case is when a certain data transformation cannot be expressed

as a query within the service. For instance, it could be any combination of the

following:

 ■ Computation is not expressible in SQL.

 ■ It is too slow or expensive when expressed as a SQL query.

 ■ Requires specialized functions that are not supported

If you extract your data from the service, you are then free to run your com-

putation using a framework that supports the transformation you require. The

MapReduce family of data processing frameworks is especially well suited to

transformations of large datasets. Hadoop is the most popular implementation

of this computation model, but it is not the only one. The AppEngine platform

also supports the MapReduce model of computation, which can be used to

transform BigQuery tables. This section covers using this framework to aug-

ment BigQuery.

Before diving into the nuts and bolts of using AppEngine MapReduce, it

is useful to have a well-defi ned use case in mind. Compared to running a

query within BigQuery, the AppEngine framework is going to appear rather

cumbersome. This is to be expected because it is a more general-purpose

406 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 406

computing framework. However, it does warrant a motivating example that

justifi es the additional complexity.

In our sample application in Chapter 8, “Putting It Together”, we had cap-

tured logs from the phone that included geolocation information describing the

position of the phone. The logs record the latitude, longitude, and ZIP (postal)

code that most closely correspond to the coordinates. ZIP codes prove handy

for joining log records with other geographic information.

Joining tables based on geographic information using latitude and longitude

is actually challenging in (BigQuery) SQL because a simple equality join is not

feasible. Equality joins work when the exact value in one table matches the exact

value in another table. If you have latitude and longitude points, you rarely will

have two points in different tables that match exactly, and typically you’re more

interested in proximity than exact overlap.

However, if you can bucket data into suffi ciently small regions, such as a ZIP

code, then you can use a straightforward equality join. You can easily imagine

that in the fi rst iteration of our application we neglected to include the ZIP code

in our log records; however, we are going to use this to drive our examples for

this section.

Concretely, we are going to transform a BigQuery table with latitude and lon-

gitude fi elds into a new table that has all the original fi elds, plus an additional

fi eld with the ZIP code that is the best match for the record. To avoid distractions

we will use a simple source table with the following schema:

[
 {"name": "id", "type": "string"},
 {"name": "lat", "type": "float"},
 {"name": "lng", "type": "float"}
]

The transformed table will have the same schema with one additional fi eld:

[
 {"name": "id", "type": "string"},
 {"name": "lat", "type": "float"},
 {"name": "lng", "type": "float"},
 {"name": "zip", "type": "string"}
]

Now that you have a well-specifi ed problem, you can move on to fi nding a

solution.

 Chapter 12 ■ External Data Processing 407

c12.indd 11:40:17:AM 05/07/2014 Page 407

Sequential Solution

The most straightforward way to solve the ZIP-code assignment problem

would be to:

 1. Export the data from the table to a fi le on GCS.

 2. Download the data to a local fi le.

 3. Run a custom program that transforms the fi le.

 4. Load the transformed fi le into the new BigQuery table.

Steps 1, 2, and 4 have been covered in detail in the fi rst section and in

Chapter 6. Although step 3 is not actually specifi c to BigQuery, the details of

how to construct the program to transform the data are going to be relevant

to how to run it in the AppEngine MapReduce framework. Listing 12.7 shows

how to solve the problem if you deal with data that is small enough that you

can process it sequentially. This listing is a baseline that you can compare

against a parallel version.

Listing 12.7: Resolving to ZIP code (add_zip.py)

import json
import sys

Imports from files in local directory:
from kdtree import KDTree

class ZipPoint(tuple):
 '''Tuple containing a lat, long, and zip code.'''
 def __new__(cls, json_dict):
 return super(ZipPoint, cls).__new__(
 cls, (json_dict['lat'], json_dict['lng']))

 def __init__(self, json_dict):
 self.zip = json_dict['zip']

with open('zip_centers.json', 'r') as f:
 ZIP_INDEX = KDTree([ZipPoint(json.loads(r)) for r in f])

def apply(input):
 val = json.loads(input)
 closest = ZIP_INDEX.query((val['lat'], val['lng']))
 if closest:
 val['zip'] = closest[0].zip

continues

408 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 408

Listing 12.7: (continued)

 yield json.dumps(val) + '\n'
 else:
 yield input

if __name__ == '__main__':
 for line in sys.stdin:
 for o in apply(line):
 print o,

This listing reads records from standard input, looks up the ZIP code, and

writes records with the ZIP code added to the standard output. The input records

must be specifi ed as newline-delimited JSON matching your expected input

schema. The output format is similar, with the addition of the ZIP code fi eld.

On startup, the listing loads the ZIP code database into an index (a k-d tree, which

supports effi cient lookup of the nearest points to a given point; see https://code

.google.com/p/python-kdtree/). Then it parses each input line as a JSON object,

looks up the nearest ZIP code, and emits the record with the ZIP code it located

added to the record. You can run the script with the following command line:

$ cd appengine
$ python add_zip.py ../add_zip_sample.json
$ cd ..

The code has been structured so that the core computation is independent of

the details of input and output. This enables you to clearly see the parts that stay

the same when it is converted to a MapReduce computation. You might not be

familiar with the Python __new__ operator. This is used in order to represent

the ZipPoint class as a tuple.

Before moving on, it is important to note that the script seems simple only

because most of the complexity is hidden in the k-d tree library it uses. This

illustrates why it is sometimes necessary to perform transformations outside of

BigQuery. There are inevitably specialized algorithms that will be diffi cult to

implement within the BigQuery query language. Furthermore, it is likely that

implementations exist in some suitable external framework. In these situations

you need to look for the best way to make the data stored in BigQuery accessible

in the appropriate framework.

STARTING WITH THE SAMPLE

There is a fair amount of setup and boilerplate code required to get an AppEngine

project confi gured and running. First, you’ll need to create an AppEngine app from

https://appengine.google.com/start/createapp. To simplify the setup

necessary to run the examples in this section, the downloads for this chapter contain

a complete AppEngine project. There is a script fi le provided called setup_
appengine.py that can be used to set up your local AppEngine environment and

customize the required confi guration fi les. To use, run the following command:

$ python setup_appengine.py ${APP_ID} ${PROJECT_ID} ${GCS_BUCKET)

https://code
https://appengine.google.com/start/createapp

 Chapter 12 ■ External Data Processing 409

c12.indd 11:40:17:AM 05/07/2014 Page 409

This command will extract the appengine_deps.zip fi le into the appen-
gine directory and generate a controller.yaml fi le with the settings needed to

complete the MapReduce example in this section. More information on setting up

AppEngine is provided in Chapter 8 in the section titled "Log Collection Service.

You can then start the app by simply loading those fi les using the appcfg tool

from the AppEngine SDK. This operation may take several minutes.

$ appcfg.py update appengine/controller.yaml

08:07 AM Host: appengine.google.com

08:07 AM Application: ...; version: 1

08:07 AM

Starting update of app: ..., version: 1

08:07 AM Getting current resource limits.

08:07 AM Scanning files on local disk.

08:07 AM Cloning 4 static files.

08:07 AM Cloning 130 application files.

08:07 AM Compilation starting.

08:07 AM Compilation completed.

08:07 AM Starting deployment.

08:07 AM Checking if deployment succeeded.

08:07 AM Will check again in 1 seconds.

...

08:20 AM Will check again in 60 seconds.

08:21 AM Checking if deployment succeeded.

08:21 AM Deployment successful.

08:21 AM Checking if updated app version is serving.

08:21 AM Completed update of app: ..., version: 1

Basic AppEngine MapReduce

The AppEngine MapReduce framework enables you to leverage AppEngine

scalability to solve your data processing challenges. The authoritative docu-

mentation for the feature is available at https://developers.google.com/

appengine/docs/python/dataprocessing/.

We will port our simple script to AppEngine MapReduce to show how it works

with simple data inputs. Rather than use local fi les as inputs and outputs to the

script, the AppEngine version directly reads the GCS input fi le and writes the

output straight back to GCS.

In this example, GCS is used as the cloud equivalent of a local fi lesystem.

We are postponing BigQuery integration a little longer so that you can focus

on the difference between scripts intended to be executed on a single machine

and the MapReduce version that can be scaled up.

To set up your AppEngine project to run MapReduce jobs, you need to

install the AppEngine MapReduce SDK. The samples for this chapter include

an AppEngine project with the SDK installed. Instructions for downloading the

SDK into your application directory are available at the link previously given.

https://developers.google.com

410 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 410

In addition, you need to install the library for AppEngine/GCS integration,

which is available at https://developers.google.com/appengine/docs/python/

googlecloudstorageclient/download.

After adding this client library to your application, you need to grant permis-

sion to the AppEngine application service account. This will let it create fi les in

your output GCS bucket. To grant access, substitute your own AppEngine ID

for APP_ID and your own GCS bucket for GCS_BUCKET and issue the following

commands:

$ APP_ID=bigquery-mr-sample
$ GCS_BUCKET=bigquery-e2e
$ gsutil acl ch \
 -u ${APP_ID}@appspot.gserviceaccount.com:W \
 gs://${GCS_BUCKET}
Updated ACL on gs://bigquery-e2e/

You can run a simple MapReduce with almost no additional code beyond the

previous script. You just need to set some confi guration parameters and save

them in a fi le called mapreduce.yaml at the top level of the AppEngine project

directory. Here is an example mapreduce.yaml fi le:

mapreduce:
- name: Add Zip Codes
 mapper:

 handler: add_zip.apply
 input_reader: mapreduce.input_readers.FileInputReader
 output_writer:
 mapreduce.output_writers._GoogleCloudStorageOutputWriter
 params_validator: validator.adjust_spec
 params:
 - name: files
 value: /gs/bigquery-e2e/chapters/12/add_zip_input.json

 - name: shards
 default: 1
 - name: format
 default: lines
 - name: output_bucket
 default: bigquery-e2e

This fi le is basically a replacement for the last part of our script that read

from the standard input and wrote to the standard output in Listing 12.7.

You just need to tell the MapReduce where to get the source data and where

https://developers.google.com/appengine/docs/python

 Chapter 12 ■ External Data Processing 411

c12.indd 11:40:17:AM 05/07/2014 Page 411

to write the results. The input_reader and output_writer fi elds indicate that

you want to read and write data in GCS. The params fi eld contains parameters

that control the behavior of these modules, in this case, by specifying the input

and output location as well as the degree of parallelism. Note that fi les in GCS

are referenced using a slightly different syntax: /gs/bucket/object instead of

the gs://bucket/object format used by BigQuery.

The default output bucket is set to bigquery-e2e. You will not have write

access to this bucket, so you can either override the value to your own GCS

bucket here or you can wait until you start the MapReduce and set the value in

the MapReduce settings page.

If you’ve modifi ed any of the fi les in the AppEngine app, you’ll need to re-

upload the most recent version. You can do this by re-running the previous

appcfg.py command:

$ appcfg.py update controller.yaml

After you have uploaded your application with the MapReduce SDK, you can

navigate to http://<your-app>.appspot.com/mapreduce.

You can see a console that lists MapReduce jobs that have been created, as

well as a form for creating new jobs according to the templates you defi ned. In

this case you see a single option representing your MapReduce confi guration,

with form fi elds that allow you to edit the parameters.

Unfortunately, the automatic forms support only simple string parameters,

but some of the input modules expect a list or dictionary of values. To turn

the form parameters into a confi guration dictionary that you need to pass into

the I/O modules, you can provide a Python function to do the translation. The

params_validator setting in the confi guration provides the name of a param-

eter transformation and validation function. It is passed a dictionary of all the

values in the form as its single argument; it can modify that dictionary to turn it

into a valid MapReduce confi guration. If it throws an exception, the MapReduce

creation simply fails. We have defi ned a simple version for this pair of writer

and reader in validator.py:

def adjust_spec(params):
 params['files'] = params['files'].split()
 params['output_writer'] = {
 'bucket_name': params['output_bucket'],
 'naming_format': 'test/$id-$num'}

Using the validator lets you confi gure your MapReduces using the simple

confi guration fi le and AppEngine console, rather than requiring you to write

custom code to confi gure and launch your MapReduce jobs.

412 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 412

DEVELOPMENT SERVER

It is easiest to test AppEngine MapReduce code by actually uploading it and using the

live version rather than testing using the development server dev_appserver.py.

The reason for this is that dev_appserver.py uses a fake GCS; therefore, you would

fi rst have to create GCS fi les at the appropriate location before the example can work

correctly. Arguably, it would be nicer if dev_appserver.py had the ability to use

real GCS fi les, but at this time it does not support that option.

This is a good time to try running a MapReduce job. Simply set the output_

bucket parameter (just the bucket name, no gs:// or /gs/ is necessary) to the

GCS bucket that you are using for the example, and click Run. The status page

will update and list your job as now running. You can click the link to the job

to follow its progress. When the job fi nishes successfully, you can inspect its

output by listing the contents of your bucket. The sample provided writes to

fi lenames of the form test/<job id>-<shard>, For example:

$ gsutil ls gs://${GCS_BUCKET}/test/*
gs://bigquery-e2e/test/15784101297666AC77A71-0
gs://bigquery-e2e/test/15792505778554A7B9C41-0

This list command displays the output fi le generated by your job.

BigQuery Integration

Now that you have seen how to MapReduce over fi les that live in GCS, you

can integrate with BigQuery by coordinating the MapReduce job with a pair

of BigQuery export and import jobs. You need to run a BigQuery export job to

materialize the contents of a table as a set of GCS fi les. When that job completes

you can run the MapReduce job in AppEngine to produce output fi les in GCS.

Finally, you need to run a BigQuery import job to populate a table with the

contents of the output fi les.

All the BigQuery-related plumbing should be familiar. The fi rst section of

this chapter covered the details of extracting data from BigQuery tables, and

Chapter 6 covered loading data into tables. The main challenge is to run all

this in the AppEngine environment and coordinate it with a MapReduce job.

Ordinarily, you’d run into an AppEngine limitation—all requests must fi nish

within 60 seconds. Because BigQuery Load and Extract jobs may take longer

than 60 seconds, you need to implement a complex timer-and-callback mecha-

nism that would divide up the longer-lived BigQuery jobs into smaller chunks.

However, to simplify the code, you can take advantage of AppEngine’s support

for long-lived instances; you just need to write a function that sequentially per-

forms each step. Because long-lived instances are allowed to spin up background

 Chapter 12 ■ External Data Processing 413

c12.indd 11:40:17:AM 05/07/2014 Page 413

threads and have no restrictions on the time spent on an individual request,

your background thread can simply poll for the completion of each step.

Confi guring long-lived instances is covered in the AppEngine documentation.

The setup_appengine.py script creates a controller.yaml fi le that defi nes a

suitable AppEngine module. The signifi cant portions of this fi le are:

application: bigquery-mr-sample
module: controller
version: 1
runtime: python27
api_version: 1
threadsafe: yes
instance_class: B4
basic_scaling:
 max_instances: 1

handlers:
- url: /mapreduce/pipeline/images
 static_dir: mapreduce/lib/pipeline/ui/images

- url: /mapreduce(/.*)?
 script: mapreduce.main.APP
 login: admin

- url: .*
 script: controller.app
 login: admin

libraries:
- name: webapp2
 version: latest
- name: pycrypto
 version: latest
...

The common bits have been elided to highlight the portions that enable

implementation of the controller script, which is defi ned in controller.py.

Most of the controller script defi nes a simple web application that allows the

process to be started by an HTTP POST request and then displays the status of

individual steps in the process. A single function, run_transform, and a couple

of helper functions handle the transformation process. Listing 12.8 contains the

defi nition of the MapReduce job.

Listing 12.8: The RunTransform task (appengine/controller.py)

import cgi
import time
import threading

continues

414 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 414

Listing 12.8: (continued)

import json

from google.appengine.api import users
from google.appengine.ext.webapp.util import login_required
from google.appengine.api import memcache
from google.appengine.api import app_identity
from google.appengine.api import background_thread
import webapp2
import httplib2
from oauth2client.appengine import AppAssertionCredentials
from apiclient.discovery import build
from mapreduce.mapper_pipeline import MapperPipeline
from job_runner import JobRunner
from config import PROJECT_ID
from config import GCS_BUCKET

credentials = AppAssertionCredentials(
 scope='https://www.googleapis.com/auth/bigquery')
bigquery = build('bigquery', 'v2',
 http=credentials.authorize(httplib2.Http(memcache)))

g_state_lock = threading.RLock()
ZERO_STATE = {
 'status': 'IDLE',
 'extract_job_id': '',
 'extract_result': '',
 'load_job_id': '',
 'load_result': '',
 'mapper_link': '',
 'error': 'None',
 'refresh': '',
 }
g_state = ZERO_STATE.copy()

def pre(s):
 '''Helper function to format JSON for display.'''
 return '<pre>' + cgi.escape(str(s)) + '</pre>'

def run_bigquery_job(job_id_prefix, job_type, config):
 '''Run a bigquery job and update pipeline status.'''
 global g_state
 runner = JobRunner(PROJECT_ID,
 job_id_prefix + '_' + job_type,
 client=bigquery)
 runner.start_job({job_type: config})
 with g_state_lock:
 g_state[job_type + '_job_id'] = runner.job_id
 job_state = 'STARTED'
 while job_state != 'DONE':
 time.sleep(5)
 result = runner.get_job()

https://www.googleapis.com/auth/bigquery

 Chapter 12 ■ External Data Processing 415

c12.indd 11:40:17:AM 05/07/2014 Page 415

 job_state = result['status']['state']
 with g_state_lock:
 g_state[job_type + '_result'] = pre(json.dumps(result, indent=2))

 if 'errorResult' in result['status']:
 raise RuntimeError(json.dumps(result['status']['errorResult'],
 indent=2))

def wait_for_pipeline(pipeline_id):
 '''Wait for a MapReduce pipeline to complete.'''
 mapreduce_id = None
 while True:
 time.sleep(5)
 pipeline = MapperPipeline.from_id(pipeline_id)
 if not mapreduce_id and pipeline.outputs.job_id.filled:
 mapreduce_id = pipeline.outputs.job_id.value
 with g_state_lock:
 g_state['mapper_link'] = (
 '%s' % (
 mapreduce_id, mapreduce_id))
 if pipeline.has_finalized:
 break
 if pipeline.outputs.result_status.value != 'success':
 raise RuntimeError('Mapper job failed, see status link.')

def table_reference(table_id):
 '''Helper to construct a table reference.'''
 return {
 'projectId': PROJECT_ID,
 'datasetId': 'ch12',
 'tableId': table_id,
 }

OUTPUT_SCHEMA = {
 'fields': [
 {'name':'id', 'type':'STRING'},
 {'name':'lat', 'type':'FLOAT'},
 {'name':'lng', 'type':'FLOAT'},
 {'name':'zip', 'type':'STRING'},
]
 }

def run_transform():
 JOB_ID_PREFIX = 'ch12_%d' % int(time.time())
 TMP_PATH = 'tmp/mapreduce/%s' % JOB_ID_PREFIX

 # Extract from BigQuery to GCS.
 run_bigquery_job(JOB_ID_PREFIX, 'extract', {
 'sourceTable': table_reference('add_zip_input'),
 'destinationUri': 'gs://%s/%s/input-*' % (GCS_BUCKET, TMP_PATH),
 'destinationFormat': 'NEWLINE_DELIMITED_JSON',
 })

continues

416 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 416

Listing 12.8: (continued)

 # Run the mapper job to annotate the records.
 mapper = MapperPipeline(
 'Add Zip',
 'add_zip.apply',
 'mapreduce.input_readers.FileInputReader',
 'mapreduce.output_writers._GoogleCloudStorageOutputWriter',
 params={
 'files': ['/gs/%s/%s/input-*' % (GCS_BUCKET, TMP_PATH)],
 'format': 'lines',
 'output_writer': {
 'bucket_name': GCS_BUCKET,
 'naming_format': TMP_PATH + '/output-$num',
 }
 })
 mapper.start()
 wait_for_pipeline(mapper.pipeline_id)

 # Load from GCS into BigQuery.
 run_bigquery_job(JOB_ID_PREFIX, 'load', {
 'destinationTable': table_reference('add_zip_output'),
 'sourceUris': ['gs://%s/%s/output-*' % (GCS_BUCKET, TMP_PATH)],
 'sourceFormat': 'NEWLINE_DELIMITED_JSON',
 'schema': OUTPUT_SCHEMA,
 'writeDisposition': 'WRITE_TRUNCATE',
 })

def run_attempt():
 global g_state
 try:
 with g_state_lock:
 if g_state['status'] == 'RUNNING':
 return
 g_state = ZERO_STATE.copy()
 g_state['status'] = 'RUNNING'
 run_transform()
 except Exception, err:
 with g_state_lock:
 g_state['error'] = pre(err)
 finally:
 with g_state_lock:
 g_state['status'] = 'IDLE'

class MainHandler(webapp2.RequestHandler):
 @login_required
 def get(self):
 current = ZERO_STATE.copy()
 with g_state_lock:
 current.update(g_state)
 if current['status'] == 'RUNNING':
 current['refresh'] = '<meta http-equiv="refresh" content="6"/>'
 self.response.write(_PAGE % current)

 Chapter 12 ■ External Data Processing 417

c12.indd 11:40:17:AM 05/07/2014 Page 417

 def post(self):
 if not users.is_current_user_admin():
 self.abort(401, 'Must be an admin to start a mapreduce.')
 background_thread.start_new_background_thread(run_attempt, [])
 self.redirect(self.request.route.build(self.request, [], {}))

app = webapp2.WSGIApplication([
 webapp2.Route(r'/', handler=MainHandler, name='main'),
], debug=True)

Before you can run this code, you'll need to load the zip codes source fi le into

BigQuery. You can do this with the following commands:

$ bq mk ch12
$ bq load --source_format=NEWLINE_DELIMITED_JSON \
 ch12.add_zip_input add_zip_sample.json \
 "id:string,lat:float,lng:float"

The MainHandler class that responds to requests to the /mapreduce URL simply

spins up a background thread when it receives a POST request, which is triggered

when you hit the Run button. The background thread runs a BigQuery job to extract

the table to Google Cloud Storage and then runs an AppEngine mapper pipeline

to add the zip code and save the output back in Google Cloud Storage. Finally,

the background thread runs a Load job to import the data back into BigQuery.

There is a lot of boilerplate code that handles AppEngine MapReduce state

management. We have included a function that waits for MapReduce pipeline

completion so that it is clear how to poll for its status. The defi nition of the

MapReduce pipeline, the middle operation, in code closely mirrors the con-

fi guration in the controller.yaml fi le previously discussed. We specify the

outputs of the earlier step as the inputs to the next step to chain them together.

In this case, a simple sequential pipeline approach works well and makes it

easy to see what is happening. If the individual steps have more complex depen-

dencies or could run in parallel, then you could use the AppEngine pipeline

framework to orchestrate the steps. More information on the pipeline framework

is available at: https://code.google.com/p/appengine-pipeline/.

In addition, we have not covered cleaning up the fi les generated on GCS.

One option is to add code to the function to perform the deletion explicitly.

Alternatively, you can use automatic life-cycle management available in GCS to

clean up the fi les after some duration. Documentation for this feature is available

at https://developers.google.com/storage/docs/lifecycle.

PROGRAMMING LANGUAGE NOTE

AppEngine is a general-purpose computing environment. In our examples we have

used Python, but all these features are also available in the AppEngine Java SDK, so

you could use Java if it is more convenient for your application. Translating the Python

APIs to Java is mostly straightforward. You should consult the AppEngine documenta-

tion for more information about the diff erences between the Java and Python APIs.

https://code.google.com/p/appengine-pipeline
https://developers.google.com/storage/docs/lifecycle

418 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 418

The AppEngine SDK contains other reader and writer modules that let you

specify Datastore or Cloud SQL as MapReduce sources or destinations. Using

these, you can modify the sample presented in this chapter to move data between

BigQuery and AppEngine. This approach is more fl exible than the Datastore

backup import method presented in Chapter 11 because it allows you to trans-

form the data before insertion into BigQuery. This can be useful when your

Datastore entities have a complicated or nonuniform structure.

In addition, AppEngine also supports transferring data in the reverse direction,

from BigQuery to Datastore. This can be useful to mirror data in both locations.

If your application requires effi cient individual object lookups, Datastore is a

perfect solution; if you also require more complex analytics, having the same data

also in BigQuery allows fast queries over the entire dataset. Be aware, however,

that you will incur the costs of Datastore writes when performing this operation.

The AppEngine MapReduce SDK does not contain direct BigQuery input

readers and writers as of the time of publication. It is quite likely, however, that

they will become available in future releases. When they do the process will

become even simpler—instead of supplying BigQuery job confi gurations in

code, you will be able to specify them in the confi g fi le, like the GCS example.

Using BigQuery with Hadoop

Hadoop is more or less synonymous with Big Data. It started out as a clone of

Google MapReduce and Google File System (GFS) but has since developed into

a robust ecosystem for storing and processing large amounts of data. A number

of tools have been built on top of Hadoop to make it easier to use; a number of

companies have been formed to help customers use Hadoop, and a lot of work

has gone into improving its performance.

Several BigQuery customers have migrated from Hadoop to BigQuery to

perform faster, interactive queries over their data. They still, often, have a sig-

nifi cant amount of “business logic” in their Hadoop pipelines, transforming the

raw data, anonymizing it, cleaning it, and so on. For these customers, BigQuery

doesn’t replace Hadoop; it complements it.

You can, of course, run your Hadoop cluster anywhere: on premise, on Amazon

Elastic Computer Cloud (EC2), and so on. But given that you are MapReducing

over data that will either come from or go to BigQuery, it will usually be more

effi cient to perform the computation near where the data is stored to minimize

having to copy it across the Internet (which can be expensive in terms of both

time and money). For that reason, we discuss running your Hadoop cluster on

Google Compute Engine.

Hadoop on Google Compute Engine (GCE)

You don’t need any additional support to run Hadoop on Google Compute

Engine; the GCE API is quite robust and it isn’t hard to write a script to manage

a cluster to run your Hadoop jobs. There are even third-party companies, such

 Chapter 12 ■ External Data Processing 419

c12.indd 11:40:17:AM 05/07/2014 Page 419

as Qubole, that have built products out of Hadoop cluster management. Hadoop

is a key part of Cloud Computing, and the performance of Hadoop on GCE is a

key differentiator for Google’s Cloud. To make it easier to run Hadoop on GCE,

Google has released special cluster-management tools and data connectors to

talk to Google data sources and sinks.

These Hadoop-on-GCE tools are relatively new at the time of publication—so

far, they are merely a set of scripts that can create and manage a Hadoop cluster

for you. They also include connectors to allow you to access data in AppEngine

Datastore, Google Cloud Storage, and BigQuery. Because at the time of this

writing these tools have not yet been released to the public, we don’t provide

a walkthrough of how to use them, other than to mention that they will be

available, and if you are a Hadoop user, options exist for running Hadoop over

BigQuery data. For more information, see https://developers.google.com/

hadoop/bigquery-connector

Querying BigQuery from a Spreadsheet

Spreadsheets allow you to generate charts and visualizations of your data, and

enable advanced data manipulation features like pivot tables. However, spread-

sheets aren’t designed for Big Data—they tend to not scale well and become

diffi cult to manage when they get too large. That said, the world seems to run

on spreadsheets, and many data analysts want to use a spreadsheet to access

their large datasets. To squeeze the large data sets into a small spreadsheet, the

usual mechanism is to run a query over the raw data to pre-aggregate it into

something more easily manipulated in a spreadsheet.

BigQuery provides two different mechanisms for running queries on spread-

sheets, depending on what software you use. If you use Google Spreadsheets,

you can use the Apps Script language to script your access to BigQuery. If you

use Microsoft Excel, you can use the BigQuery Excel Connector to run your

queries. The former is a richer interface that gives you a lot of control over how

you run your queries. The latter is a simpler mechanism but, due to the limita-

tions of sending HTTP requests in Excel, lacks some of the bells and whistles

of the Apps Script version.

BigQuery Queries in Google Spreadsheets (Apps Script)

Apps Script is a programming language based on JavaScript that allows you to

extend Google Apps to talk to outside services. You can make HTTP requests,

perform a mail merge, and run queries on BigQuery. You can add buttons and

menu items, and generally customize Google’s apps to do things that you wish

they could do but don’t already.

The main use case for the BigQuery integration in Apps Script is to run queries

in Google Spreadsheets. However, you also could use them to run an import

https://developers.google.com

420 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 420

job periodically from Google Cloud Storage. On the BigQuery team, we use

Apps Script to automate a number of query tasks. For example, when we get a

customer who reports a problem in a certain job ID, to fi nd information about

the job, we need to also have the project ID. We can use Apps Script to make a

BigQuery query into our metadata table to match the job ID with the project.

This is a relatively simple operation, but it saves a lot of typing.

BIGQUERY INTEGRATION IN APPS SCRIPT IS EXPERIMENTAL

Here’s a caveat: The BigQuery Apps Script integration (like the Apps Script integration

with several other Google APIs) is still marked experimental. This means that things

can change without much notice. In the past year this has happened only once, but it

can be frustrating when a script that worked yesterday stops working today.

Both the BigQuery and the Apps Script teams work hard to prevent breaking

changes, and the rate of change will likely go down over time. The good part is that

many things will likely get better. For example, a lot of steps are needed to start using

BigQuery in an Apps Script; this will almost certainly get easier over time.

Enabling Apps Script in Google Drive

The fi rst step toward running Apps Script is turning it on in Google Drive. This

can be done from https://drive.google.com by clicking the big, red CREATE

button and then selecting Connect More Apps, as shown in Figure 12.1. A win-

dow displays enabling you to select which apps you want to connect to Drive.

The Google Apps Script option will likely be displayed on the fi rst page of apps,

but if it is not, you can search for it in the top-right corner of the dialog box.

Select Google Apps Script, and click the green button to connect your account.

You may be asked to authorize Google Apps Script. In the process of getting

BigQuery enabled, you may see the authorization page again; if so, you should

click allow each time. The authorization that you’ll be prompted for doesn’t do

anything particularly scary; it just allows Google Apps Script to access your

data in BigQuery. This makes sense because if you want to run a BigQuery

query in your spreadsheet, that spreadsheet needs to see your BigQuery data.

Creating an Apps Script in Your Spreadsheet

The hard part is over, right? Unfortunately, there are 37(-ish) other steps needed

to start using BigQuery in your Google Spreadsheet. Fortunately, none of the

steps are diffi cult.

Although you can create a standalone Apps Script directly from Google Drive,

these scripts cannot be used from within a spreadsheet. It is an easy mistake to

https://drive.google.com

 Chapter 12 ■ External Data Processing 421

c12.indd 11:40:17:AM 05/07/2014 Page 421

start out with a standalone script and then try to connect it to your spreadsheet;

however, as we found out the hard way, this doesn’t work.

Figure 12.1: Enabling Apps Script in Google Drive

To create a Spreadsheet script, you should fi rst open Google Spreadsheets;

then select Script Editor from the tools menu. This creates a new script that can

access your spreadsheet. You get a pop-up asking you what kind of script to

create. Just select Blank Project. You might want to try running something on

your script to verify that it works. Try entering this in your script:

function onOpen() {
 var ss = SpreadsheetApp.getActiveSpreadsheet();
 var menuEntries = [];
 menuEntries.push({name: "Set project", functionName: "setProject"});
 ss.addMenu("BigQuery", menuEntries);
 }

function setProject() {
 var sheet = SpreadsheetApp.getActiveSheet();
 var cell = sheet.getActiveCell();

422 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 422

 var value = cell.getValue();
 if (value) {
 projectId = String(value);
 UserProperties.setProperty('PROJECT_ID', projectId);
 Logger.log('Project id set to %s', projectId);
 } else {
 Logger.log('Project id not set');
 }
}

This installs a BigQuery menu when you open your spreadsheet and adds a

Set Project menu item. Save the script, go back to the spreadsheet, and reload the

page in your browser. You should now see a BigQuery menu item. Enter your

project ID in a cell. With it selected, run the Set Project item from the BigQuery

menu. This saves your project ID as a per-user property. This project ID will

be used when talking to BigQuery, so you don’t have to indicate it every time

you want to run a query or hard-code it in the script. After you set your project

ID, you can delete it from the spreadsheet—it has been saved and you won’t

need to use it again.

Switch back to your script so that you can enable BigQuery and start to write

some interesting code. One pointer for checking out what you’ve run in Apps

Script: If you go to the View menu and select Execution Transcript, you can see

the output from the last operation that you ran. In this case, it shows the output

from when you set your project ID from the BigQuery menu. This transcript

can be helpful when debugging because it can tell you what was executed and

show you line numbers of any problems you encounter.

Enabling BigQuery in Your Apps Script

You’re almost there. You just need to turn on BigQuery…how hard can that

be? From your script, go to the Resources menu and select Advanced Google

Services. A dialog box displays showing a number of Google APIs, their version

numbers, and an on-off toggle for each one. Look for the entry for BigQuery

API. Make sure the version says v2, and turn on the toggle to enable BigQuery

access. Figure 12.2 shows BigQuery enabled.

Don’t close the dialog box yet—there may be one more step. Hopefully, by

the time you read this, the extra step will be unnecessary. If at the bottom of the

dialog box it says, “These services must be enabled in the Google Developers

Console,” you need to click through, and once again switch a toggle to turn on

BigQuery. This page looks like the project setup page when you signed up for

BigQuery and turned on billing. You do not have to sign up for billing here, and

although this does create a project, this project is not used in a meaningful way

when you access BigQuery. This project does not show up in your projects list.

After enabling BigQuery from the list, you can safely forget that this project

even exists.

 Chapter 12 ■ External Data Processing 423

c12.indd 11:40:17:AM 05/07/2014 Page 423

Figure 12.2: Enabling BigQuery in Apps Script

Now you can close the various dialog boxes and browser tabs that have

popped up, and BigQuery access should be ready to go.

Running a BigQuery Query in Apps Script

Before returning to the spreadsheet, just write a simple function that runs a

query and logs the result. This way you can verify that things are confi gured

correctly and BigQuery works. Try entering the following function (substituting

your own project ID) and pressing Save:

function simpleQuery() {
 var projectId = 'bigquery-e2e'; // YOUR PROJECT HERE.
 var sql = 'SELECT corpus, COUNT(*) as cnt '
 + 'FROM [publicdata:samples.shakespeare] '
 + 'GROUP BY corpus';
 Logger.log('%s: Running query: "%s"', projectId, sql);
 var resource = {
 'query': sql
 };
 var queryResults = BigQuery.Jobs.query(resource, projectId);
 Logger.log('Got query results:\n%s', queryResults);
}

424 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 424

This function is more or less the simplest way to run a query. As you’ve seen

in previous chapters, it is far from complete; it doesn’t handle queries that take

longer to run than the default timeout, and it fetches only the fi rst page of results.

The advantage, however, is it lets you know whether you have BigQuery working.

Select simpleQuery from the Select Function drop-down menu, and then click

the Play button. This runs the query and writes the results to the logger.

If you open the log (under the View menu), you should see both the query and

the results. If there was an error, you can see that in the log or in the execution

transcript (also on the View menu). If you need more debugging support, if you

use the bug icon instead of the play icon, you can step through the script and

set breakpoints, and so on.

Writing Query Results to a Spreadsheet

You now have all the pieces you need to write a script that lets you send arbitrary

queries to BigQuery and write the results to a spreadsheet. Listing 12.9 lets you

run queries and writes the results to a Query Results sheet in the spreadsheet.

Listing 12.9: Running a query and writing the results to a spreadsheet (query.gs)

 /**
 * BigQuery query script.
 * This script installs a 'BigQuery' menu in your spreadsheet that
 * allow you to run queries.
 *
 * To use, first enter your project ID in a
 * cell of your choosing, then with that cell selected, select the
 * 'Set project' item from the BigQuery menu. This will save your
 * project ID as a user property so you won't need to set it again.
 * You can delete the cell where you had entered the project ID.
 * To run a query, write a query in any cell or range of cells.
 * Select those cells, and then pick 'Run Query' from the BigQuery
 * menu. This will run the query you've selected and add the outputs
 * to a new sheet called 'Query Results'. If this sheet already
 * existed, it will be cleared and rewritten (so don't put stuff you
 * want to keep in the results sheet). Note that Google Spreadsheets
 * has a limit of about 400,000 cells, so if you have large query
 * results, you might find yourself hitting this limit pretty quickly.
 */

// Name of the sheet that will contain the query results. This page
// will be cleared every time the query is run.
var QUERY_RESULTS_SHEET = 'Query Results'
// Name of the user property where we save the project ID.
var PROJECT_ID_PROPERTY = 'PROJECT_ID'
// Number of results to return from BigQuery per page.

 Chapter 12 ■ External Data Processing 425

c12.indd 11:40:17:AM 05/07/2014 Page 425

var MAX_RESULTS_PER_PAGE = 1000

/** Installs a BigQuery menu to allow you to run queries. */
function onOpen() {
 var ss = SpreadsheetApp.getActiveSpreadsheet();

 var menuEntries = [];
 // Create a menu link to the 'runQuery' function. To run a query,
 // select the cells that contain your query and then select 'Run
 // a query from the BigQuery menu.
 menuEntries.push({name: "Run a query", functionName: "runQuery"});

 // Before you can run a query, you need to set a project ID to use
 // with the query. You can do this by selecting a cell that has the
 // project ID to use, then picking the the 'Set project" menu item
 // from the BigQuery menu. Note that after you set the project ID,
 // you can delete that cell... the project ID is remembered as part
 // of the user properties for the script.
 menuEntries.push({name: "Set project", functionName: "setProject"});
 ss.addMenu("BigQuery", menuEntries);
}

/**
 * Sets the project ID to use for BigQuery queries. User
 * should select a cell containing the desired project ID
 * and then call the setProject menu item.
 */
function setProject() {
 var sheet = SpreadsheetApp.getActiveSheet();
 var cell = sheet.getActiveCell();
 var value = cell.getValue();
 if (value) {
 projectId = String(value);
 UserProperties.setProperty(PROJECT_ID_PROPERTY, projectId);
 Logger.log('Project ID set to %s', projectId);
 } else {
 Logger.log('Project ID not set');
 }
}

/**
 * Gets the project ID property.
 */
function getProjectId() {
 var projectId = UserProperties.getProperty(PROJECT_ID_PROPERTY);
 if (!projectId) {
 throw new Error("Property PROJECT_ID is not registered");
 }
 return projectId;

continues

426 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 426

Listing 12.9: (continued)

}

/**
 * Reads the query from the active selection in the current
 * spreadsheet. To read from more than one cell, just select the range
 * of cells you want.
 */
function readQuery() {
 var sheet = SpreadsheetApp.getActiveSheet();
 var range = sheet.getActiveRange();
 var values = range.getValues();
 query = values.join(' ');
 return query;
}

/**
 * Given a sheet to write to, the start row and a 2D array of
 * values, writes those values to the sheet.
 */
function writeChunk(sheet, startIndex, data) {
 var nRows = data.length;
 if (nRows == 0) {
 // Nothing to do.
 Logger.log('No results to write');
 return;
 }
 var nCols = data[0].length;
 sheet.getRange(startIndex, 1, nRows, nCols).setValues(data);
 Logger.log('Wrote %s rows to: %s', nRows, sheet.getName());
}

/**
 * Translates the .f and .v format of the query results into
 * a 2D array of values.
 */
function extractRows(rows) {
 // Append the results.
 var data = new Array(rows.length);
 for (var i = 0; i < rows.length; i++) {
 var cols = rows[i].f;
 data[i] = new Array(cols.length);
 for (var j = 0; j < cols.length; j++) {
 data[i][j] = cols[j].v;
 }
 }
 return data;
}

/**
 * Sets up a sheet with a given name which will contain our
 * query results. If the sheet already exists, it will be cleared.

 Chapter 12 ■ External Data Processing 427

c12.indd 11:40:17:AM 05/07/2014 Page 427

 * If it doesn't exist, we'll create a new one.
 */
function setUpResultSheet(sheetName) {
 var spreadsheet = SpreadsheetApp.getActive();
 var sheet = spreadsheet.getSheetByName(sheetName);

 if (spreadsheet.getActiveSheet().getName() == sheetName) {
 // Don't run a query from the queryResults sheet -- this will
 // erase your query!
 throw new Error("Cannot write query results to active sheet");
 }

 if (sheet) {
 sheet.clear();
 } else {
 sheet = spreadsheet.insertSheet(sheetName);
 }
 return sheet;
}

/**
 * Gets a function that can be used to write out chunks of
 * data as they're being returned from BigQuery.
 */
function getChunkWriter(sheetName) {
 return function(rowIndex, rows) {
 var sheet;
 if (rowIndex == 1) {
 // If we're starting from the beginning, we need to set up
 // the result sheet.
 sheet = setUpResultSheet(sheetName);
 } else {
 // The sheet should already exist and be ready for us to write.
 sheet = SpreadsheetApp.getActive().getSheetByName(sheetName);
 }
 writeChunk(sheet, rowIndex, rows);
 return rowIndex + rows.length;
 }
}

/**
 * Pulls the field names out of query results. Retrurns them
 * as a 2D array with 1 row, so they can be written via the
 * same mechanism we use to write rows of data.
 */
function extractHeaders(fields) {
 return [fields.map(function(field) {return field.name;})];
}

/**
 * Runs a given SQL query and writes the results to the chunkWriter

continues

428 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 428

Listing 12.9: (continued)

 * one page at a time. This is preferable to returning results, since
 * the query results may be large.
 */
function runSqlQuery(projectId, sql, chunkWriter) {
 Logger.log('%s: Running query: %s', projectId, sql);
 var resource = {
 'query': sql,
 'maxResults': MAX_RESULTS_PER_PAGE
 };
 var queryResults = BigQuery.Jobs.query(resource, projectId);

 var jobId = queryResults.jobReference.jobId;

 // The job might not actually be done; wait until it is marked
 // complete. For simple queries, it will have completed within the
 // default timeout, but for more complex queries (JOIN, etc), you
 // might find the query takes a long time.
 var sleepTimeMs = 500;
 while (!queryResults.jobComplete) {
 Utilities.sleep(sleepTimeMs);
 sleepTimeMs *= 2;
 queryResults = BigQuery.Jobs.getQueryResults(projectId, jobId);
 }

 // Write the field names as the first row.
 chunkWriter(1, extractHeaders(queryResults.schema.fields));
 // Now we've got the first page, write that out to the spreadsheet.
 nextIndex = chunkWriter(2, extractRows(queryResults.rows));

 // But wait, there's more!
 while (queryResults.pageToken) {
 queryResults = BigQuery.Jobs.getQueryResults(projectId, jobId, {
 'pageToken': queryResults.pageToken,
 'maxResults': MAX_RESULTS_PER_PAGE
 });

 nextIndex = chunkWriter(nextIndex, extractRows(queryResults.rows));
 }
}

/**
 * Runs a query from the currently selected cells and write the results
 * to a sheet called 'Query Results' in the current spreadsheet.
 */
function runQuery() {
 var chunkWriter = getChunkWriter(QUERY_RESULTS_SHEET);
 runSqlQuery(getProjectId(), readQuery(), chunkWriter);
}

 Chapter 12 ■ External Data Processing 429

c12.indd 11:40:17:AM 05/07/2014 Page 429

Everything in this code listing should be familiar: The polling loop that waits

for a job to complete is similar to the Python listing in Chapter 7, “Running

Queries.” Writing the results to the spreadsheet uses the same objects that you

saw earlier when setting the project ID property.

Running this script is easy (especially when compared to the setup steps).

First, write the query you intend to run in any range of cells. With those cells

selected, execute Run Query from the BigQuery menu. (If this menu item isn’t

there, you might need to reload the page because it updates only when you open

the spreadsheet.) The script then runs your query, downloads the results one

page at a time, and writes the results to a Query Results sheet. If the destination

sheet didn’t exist, it will be created; otherwise that sheet will be reset.

This example grazed only the surface of the kinds of things that you can do

in Apps Script, but hopefully it whet your appetite. For those of you who don’t

have the luxury of using Google Spreadsheets, the next section describes using

BigQuery from Excel.

BigQuery Queries in Microsoft Excel

It is surprising (or perhaps terrifying) to realize how much of the world runs on

Excel spreadsheets. During the fi nancial crisis in 2008, there were stories about

traders who managed multibillion dollar trading strategies from a single Excel

spreadsheet with no backup. A coding error in an Excel spreadsheet created

by an economist led to numerous national governments choosing policies that

may have been economically unsound. Excel is an extremely powerful tool for

making sense of your data, if you use it wisely.

Excel has built-in support for connecting to outside data sources. It can con-

nect to databases via ODBC, import fi les from a myriad of other sources, and

run queries on the web. The BigQuery team built a custom AppEngine app

that exposes the BigQuery query API in a manner that can integrate with Excel

without requiring custom macros or client-installed software. This section walks

you through setting up access and querying your BigQuery data from an Excel

spreadsheet. Although some of the steps or menu items involved may be differ-

ent between Mac and Windows versions, or on different versions of Excel, the

BigQuery Excel Connector should work with any version of Excel since Offi ce 97.

BigQuery Excel Connector App

The fi rst step in using BigQuery from Excel is visiting the BigQuery Excel

Connector page at https://bigquery-connector.appspot.com/. This page

should have all the instructions necessary for integration; although, some of

the details can be tricky if you’re unfamiliar with setting up external queries in

https://bigquery-connector.appspot.com

430 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 430

Excel. The fi rst bit talks about a key, which you won’t have yet, so don’t worry

about it for now.

Click the link that says, “Click here to download the IQY fi le,” and save the

resulting fi le to your local disk. The next section describes what this fi le is and

how to use it, but for now, just remember where you saved it.

Next, you need to create an authorization key. Because Microsoft Excel doesn’t

support OAuth2 (which hadn’t been invented yet when Excel Web Queries were

created), you need to use a separate authorization mechanism. The connector

app can generate a secret key that you can use to authenticate as you. You can

revoke it at any time, and it is valid for an interval of your choice up to 30 days.

Scroll to the bottom of the page, pick a key lifetime, and click the Create Key

button. This reloads the page, and at the top you see your new key. You can

retrieve the key again by coming back to the connector page. You need to cut

and paste it into a prompt in Excel.

The Web Query (.iqy) File

In the last section, you should have downloaded a fi le called connector.iqy.

This fi le is just a simple text fi le that describes how Excel should make requests

to the BigQuery connector. Now take a look at the contents:

WEB
1
https://bigquery-connector.appspot.com/data
q=["Query", "Enter a query:"]&
p=["Project","Enter a project ID:"]&
k=["Key", "Enter your Connector Key:"]

The fi rst two lines, WEB and 1, are required by the .IQY specifi cation (more

information about that at http://support.microsoft.com/kb/157482). The

third line is the address to send the queries to. In this case, it is the address of

the BigQuery connector query endpoint. The last line (broken up into three

lines to avoid line-wrapping issues) describes the HTTP POST request to make.

There are three parameters that need to be sent to the connector as part of

the request. If you’ve been using BigQuery for a while, you probably can guess

what they are:

 1. The query that you want to send, for example, SELECT 17

 2. The project that will be billed for the queries you run, for example,

bigquery-e2e

 3. An authorization key. This is the part that we glossed over on the original

BigQuery Connector landing page.

There is some extra formatting in the .IQY fi le that tells Excel to prompt for the

data. If you prefer, you could just hard-code your choices in the .IQY fi le. If you

https://bigquery-connector.appspot.com/data
http://support.microsoft.com/kb/157482

 Chapter 12 ■ External Data Processing 431

c12.indd 11:40:17:AM 05/07/2014 Page 431

manage Excel installations in an enterprise setting, for example, you might want

to just set the project ID to your company’s project to save individual users this

step. Alternatively, you might want to hard-code the authorization key so that

users don’t have to do key management. For ordinary operation, however, you

shouldn’t need to modify the .IQY fi le.

Excel Web Query

Now that you’ve done the external setup, open Microsoft Excel. These instruc-

tions are based on Microsoft Excel for Mac 2011, but any version since Excel 97

should work on either Windows or Mac. That said, the menu options change

on virtually every version, so if your UI doesn’t match the screen shots, you

might have to do a little more digging to fi gure out how to complete the setup.

From the Data menu, select the Get External Data submenu and the Run

Saved Query menu item, as shown in Figure 12.3. This brings up a fi le open

dialog box that prompts you to fi nd the .IQY fi le you downloaded from the

BigQuery Connector app. To see this fi le listed, you may have to change the

Enable selector from Text Files to Query Files. Select your connector.iqy fi le

and click the Get Data button.

Figure 12.3: Setting up a Web Query

432 Part IV ■ BigQuery Applications

c12.indd 11:40:17:AM 05/07/2014 Page 432

After you select the .IQY fi le, you’ll be given a series of prompts to confi gure

the query. The fi rst prompt is the location of the output data, which is a cell or

range of cells that will get the query results after the query is run. This is the one

choice that you cannot change later, so pick a good spot that you’ll remember.

The remaining prompts come directly from the .IQY fi le (Query, Project, and

Key). The query can either be a static query, like SELECT 17, or you can give a

cell or range of cells where the query text will be drawn from. You’ll usually

want to give a cell or range of cells, unless you know that you’ll want to run

only the same query.

If your query is longer than 256 characters, you need to split it across multiple

cells. This is a limitation of Excel Web Queries and can be a little bit frustrating

when you run into it accidentally. We recommend specifying a reasonably large

range of cells when you set up the Web Query so that you can write queries that

are as long as you like. This limitation isn’t all bad; it can make your queries

more readable by forcing them to be split up across multiple lines.

The next prompt is for project ID, which should be the project that will be

billed for your queries. (You must, of course, be a member of the project team

to run queries in that project.) You should probably select the “Use this value/

reference for future refreshes” box because it is unlikely that your project ID

will change.

Finally, you need your authorization key. This key can be cut-and-pasted from

the key you generated when you selected the Generate key. You should also

probably select the box to remember your key so that you don’t have to juggle

the key every time you open the document.

After completing the three prompts, you should be ready to start querying.

Just enter the query in the query source range you specifi ed, and the results

should pop up within a few seconds. Depending on the version of Excel you

use, you may have some additional options, like having the query results auto-

refresh when the query changes or having the query run periodically. You can

also specify a cell to hold the project ID and key so that you can enter them

in the spreadsheet instead of via the dialog boxes. Figure 12.4 shows a query

along with the results.

 Chapter 12 ■ External Data Processing 433

c12.indd 11:40:17:AM 05/07/2014 Page 433

Figure 12.4: Excel Web Query and results

Summary

 Sometimes you may want to use tools that operate over your raw BigQuery data

or otherwise use BigQuery through other mechanisms than the BigQuery Web

UI or HTTP API. This chapter showed ways to access your data when you’re

not using BigQuery directly. You saw how to export your data from BigQuery

via export jobs and via direct download.

You saw how to access your data in parallel because when you deal with Big

Data, you’re going to want to take advantage of scale-out parallel architectures.

MapReduce is the most common parallel architecture, and you saw how to

use AppEngine’s MapReduce to transform data in parallel. Google Compute

Engine’s Hadoop integration was introduced, which you can also use to perform

MapReduces over your BigQuery tables.

Finally, you saw how to run BigQuery queries from two different spreadsheet

programs: Google Spreadsheets and Microsoft Excel. The spreadsheet integra-

tion can be a good launching point for incorporation of BigQuery data into your

own Business Intelligence applications.

The next chapter introduces some third-party tools that have been built on

top of BigQuery that enable you to visualize your data and extend the scope of

BigQuery access and usefulness.

435

c13.indd 01:4:8:PM 05/06/2014 Page 435

BigQuery was designed to be a platform for Big Data analytics that you could

layer other tools on top of, rather than an all-in-one Big Data solution. A number

of third parties have built tools on top of BigQuery to extend its capabilities.

Some of these tools enable you to make BigQuery work just like your on-premise

relational database, visualize your data in the cloud, or access your data from

scientifi c applications. This chapter walks you through several of these types of

tools; the goal is to show a little bit of what they can do and how they integrate

with BigQuery.

There are three parts to this chapter:

 ■ BigQuery adapters: If you currently use ODBC or JDBC to connect to your

database, you can use BigQuery without writing any code just by using

the Simba ODBC driver. This section also discusses client-side encryption.

 ■ Scientifi c data processing: R is the de facto standard for scientifi c data

analysis. See how to use the bigrquery R package to connect to BigQuery

from R. Also see BigQuery in the Python Data Analysis Library (aka pandas).

 ■ Data visualization: See how to visualize your BigQuery data using two

popular commercial applications: Tableau and BIME.

These are only a representative sampling of the third-party tools that integrate

with BigQuery. Google keeps track of a number of them at https://developers

C H A P T E R

13

Using BigQuery from

Third-Party Tools

https://developers

436 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 436

.google.com/bigquery/third-party-tools. There is also a handy BigQuery sub-

reddit (http://reddit.com/r/bigquery) that is a more crowd-sourced collection

of applications of BigQuery. Before starting on a new project, it might be helpful

to check these locations to see if someone has already done a lot of the hard work

for you!

BigQuery Adapters

There are two ways to try to incorporate BigQuery into your production processes:

You can either adapt your code to talk to BigQuery or you can adapt BigQuery

to talk to your code. If the latter route sounds silly, it needn’t be; some third-

party tools adapt BigQuery to make it look like a standard relational database.

For instance, if your code uses “standard” Open Database Connectivity (ODBC)

connections, you can use a freely available ODBC driver to start performing

BigQuery queries without having to change your code. The Simba ODBC driver

translates Standard SQL into BigQuery SQL and allows BigQuery to be used

virtually anywhere an ODBC-compatible database can be used. Alternately, if

you use Java to talk to your database, you can use the StarSchema Java Database

Connectivity (JDBC) connector to allow you to talk directly to BigQuery. Both

of these mechanisms have limitations, however, which are discussed later in

this section.

There is another type of connector discussed in this section: the Encrypted

BigQuery (ebq) connector, which adapts BigQuery to look like BigQuery, but

with a twist: It encrypts all the data locally so that the server never sees the

unencrypted data. The ebq connector performs a number of mathematical tricks

to allow you to access your data normally and do most of the same types of

queries you do on your unencrypted data.

Simba ODBC Connector

ODBC is one of the oldest ways to talk to a database; it is a well-understood

standard that is used by a wide range of software and has connectors for a wide

range of databases. Simba is a Canadian company that specializes in writing

ODBC drivers. It has been around for almost as long as ODBC has and has

built ODBC drivers for virtually anything that you can think of—from SAP

to MongoDB to Hive. One of its most recent ODBC drivers provides access to

BigQuery.

The Simba driver has two modes of operation. The fi rst, native mode, allows

you to run queries directly in BigQuery SQL. That is, you write the same queries

that you’d write if you were using the BigQuery web UI, and the Simba driver

http://reddit.com/r/bigquery

 Chapter 13 ■ Using BigQuery from Third-Party Tools 437

c13.indd 01:4:8:PM 05/06/2014 Page 437

passes them to BigQuery. The other, translated mode, translates standard SQL

queries into BigQuery SQL. So if you already have code that writes SQL queries,

you can switch to BigQuery just by switching ODBC drivers.

Depending on your use case, you may decide to use one native or direct

mode. The advantage of the direct mode is that you always know what BigQuery

is going to execute, and you can run the exact same queries by hand in the

BigQuery web UI. Translated mode, however, will let you swap out BigQuery

as your query back end without making any changes to your queries.

Unlike JDBC, ODBC drivers are platform-dependent. That means that an

ODBC driver that works on Windows won’t work on a Mac or Linux machine.

The Simba driver currently comes in two fl avors: Windows and Linux. However,

as of this writing, only the Windows version is available for free. This platform

dependence is something to consider when choosing the connector.

One additional note in favor of the Simba driver, however is that Simba is

the expert in ODBC, and its driver is fully fl edged and full-featured. Simba

charges for many of its drivers, and because of this, it has a higher standard of

documentation and support. Now, let’s move on before starting a war between

the forces of open and closed source.

Like the SQL standard, ODBC is a wide standard that includes a lot of pieces.

Simba has implemented most of these pieces except Data Defi nition Language

(DDL). Because BigQuery doesn’t support CREATE TABLE or ALTER TABLE com-

mands, the Simba ODBC driver doesn’t handle them either, even in translated

mode. If your analysis setup requires creating temporary tables or changing

schemas, you might need to write code that specifi cally handles these cases by

making direct BigQuery calls (such as the Tables.insert() or Tables.update()

REST calls described in Chapter 4, “Understanding the BigQuery Object Model”).

The Simba driver also has limited support for prepared statements and param-

eter substitution. BigQuery does not support prepared statements, and although

translated mode could emulate them, this support isn’t currently available in

the driver.

Installing and Confi guring

If you go to the Simba website, it wants to charge you to download the BigQuery

ODBC driver. However, the Windows versions of the driver are available on

the BigQuery third-party tools page at https://developers.google.com/

bigquery/third-party-tools. If you need the Linux version, want tech sup-

port, or merely want to get updates, you can get those from Simba at http://www

.simba.com/connectors/google-bigquery-odbc. The remainder of these setup

instructions assume you use Windows 7, although the steps won’t be much dif-

ferent whether you run Windows XP or Windows 8.

https://developers.google.com
http://www.simba.com/connectors/google-bigquery-odbc

438 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 438

To install the Simba driver and create a DSN, you can do the following:

 1. Download the Simba BigQuery ODBC driver that matches your operating

system and hardware (the 64- or 32-bit versions as necessary) and run the

installer. This registers the BigQuery ODBC connector with the operating

system. (Note it also requires administrator privileges on your machine.)

 2. After the driver is installed, you need to create a Data Source Name (DSN),

an antique Windows term for a connection to a database. To create your DSN

to connect to BigQuery, open the Control Panel, select the Administrative

Tools (see Figure 13.1) and open the Data Sources (ODBC) applet. You

might have to change your Control Panel view to large or small icons to

see Administrative Tools.

Figure 13.1: The Administrative Tools Control Panel folder

 3. After you open the Data Sources Control Panel applet, click Add in the User

DSN tab. This creates the connection for just a single user; alternatively

you could use a System DSN if you want to create the connection for all

users of the machine. The Add button brings up a dialog box asking you

to select the DSN type. Choose Simba BigQuery ODBC driver from the

list, and it displays the BigQuery-specifi c settings dialog box.

 4. Create a name for the DSN (bigquery1, for example). This is the name

that you will use later when you use the DSN to connect to BigQuery.

 Chapter 13 ■ Using BigQuery from Third-Party Tools 439

c13.indd 01:4:8:PM 05/06/2014 Page 439

 5. The DSN encapsulates authorization for BigQuery, so to set it up, you’ll

need to tell BigQuery who you are and perform the OAuth2 sign-in process.

Click the Sign in button, and it pops up a web browser. Google requires

that OAuth2 be done in a web browser, which can make this type of login

fl ow a bit awkward. The rationale is that this prevents you from having to

type your password into anything that isn’t a web browser; presumably

you already trust your web browser with your password. The good part

is that you have to do it only once, when you set up the DSN.

 6. You’ll be prompted to log in (if you’re not already logged in) and asked

whether you want to allow access to your BigQuery data. After you accept,

you’ll be given a code that you need to cut and paste into the Confi rmation

Code box in the Connection dialog box. When you paste in the confi rma-

tion code, it automatically fi lls in the refresh token. After authentication,

your Connector Setup dialog box should look something like Figure 13.2.

Figure 13.2: Simba BigQuery ODBC Connector Setup dialog box

 7. The last step in setting up your BigQuery connection is selecting a project.

The Catalog project will be the project that datasets and tables will be

440 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 440

drawn from; you’ll have an opportunity to select the actual datasets and

tables later, but they all must come from this project. By default, all queries

you perform will be billed to this same project. If, however, you want to

read from a different project than you want charged for the queries, you

can set the Billed Project to something different. These settings can also

be overridden later, so you shouldn’t worry too much about what you

set them to here.

 8. Press Test to verify that the connection is working. It will pop up a dialog

box that lists the datasets in the catalog project—if this succeeds it means

that it could connect to BigQuery and authorize successfully. Press OK

to dismiss, and it takes you back to the Connector Setup dialog box.

As previously mentioned the Simba driver transparently rewrites standard

SQL into BigQuery SQL. Often, this is exactly what you want; you may have

a tool that generates standard SQL, and you want to use BigQuery without

changing your queries. Sometimes, however, you may want to express a query

in BigQuery SQL exactly. Maybe you want to take advantage of nested and

repeated data, or use the EACH keyword to allow JOIN operations between two

large tables.

If you want to write queries in BigQuery SQL and not Standard SQL, you

can tell the Simba driver to pass through the SQL statements exactly and not

perform any transformations. To do this, click the Advanced Options button,

which hides an important check box: Use Native Queries, which defaults to

unchecked. Checking the box causes the driver to pass through queries exactly

as they are written. You may also have the option of overriding these options

when you create an ODBC connection.

In ODBC terms, the Simba BigQuery ODBC connector maps a project to an ODBC

catalog; this means you need to choose ahead of time which project you will use.

For most practical purposes this is not a problem because most people use a single

project in their queries. When you write queries, you should use the dataset name

and table name only; the project name will be implicit. For example, the query you

might run in the BigQuery web UI SELECT COUNT(*) FROM [publicdata:samples

.shakespeare] would look like SELECT COUNT(*) FROM samples.shakespeare

when using the ODBC driver; the publicdata project ID must be specifi ed in the

connection settings.

ODBC Queries from the .NET Framework

ODBC is a platform-dependent mechanism; if you use ODBC to talk to your

data source, you’re probably using Windows. The most common programming

environment on Windows is the Common Language Runtime (CLR), which

allows you to program in a number of different languages using identical APIs.

 Chapter 13 ■ Using BigQuery from Third-Party Tools 441

c13.indd 01:4:8:PM 05/06/2014 Page 441

The fl agship programming language under the CLR is C#. Because we expect

that C# will be the most relevant language for users of the Simba BigQuery

ODBC driver, we’ve provided C# sample code to talk to BigQuery via ODBC

in Listing 13.1.

Listing 13.1: Simple ODBC query application (C#) (bigquery_odbc.cs)

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Odbc;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace BigQueryE2E
{
 /**
 * Helper class to build an ODBC Connection to connect to a Simba
 * BigQuery ODBC Driver.
 */
 class ConnectionBuilder {
 public String Dsn;
 public String Catalog;
 public String ExecCatalog;
 public bool UseNativeQuery;

 public OdbcConnection Build() {
 if (Catalog == null || Dsn == null) {
 throw new ArgumentException(
 "Missing required Connection setting");
 }

 StringBuilder connectionString = new StringBuilder();
 connectionString.AppendFormat("DSN={0}; Catalog={1};",
 Dsn, Catalog);
 if (ExecCatalog != null) {
 connectionString.AppendFormat("ExecCatalog={0};",
 ExecCatalog);
 }
 if (UseNativeQuery) {
 connectionString.Append("UseNativeQuery=1");
 }

 OdbcConnection conn = new OdbcConnection();
 conn.ConnectionString = connectionString.ToString();
 return conn;
 }

continues

442 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 442

Listing 13.1: (continued)

 }

 /**
 * Simple console program that runs a query against BigQuery,
 * prints the results, and waits for a user to hit any key
 * before exiting.
 */
 class Program {
 private static String Query =
 "SELECT corpus, SUM(word_count) " +
 "FROM samples.shakespeare " +
 "GROUP BY corpus";

 private static void PrintResults(OdbcDataReader reader) {
 for (int ii = 0; ii < reader.FieldCount; ii += 1) {
 System.Console.Write("{0}{1}",
 reader.GetName(ii),
 ii + 1 < reader.FieldCount ? "\t" : "\n");
 }
 while (reader.Read()) {
 for (int ii = 0; ii < reader.FieldCount; ii += 1) {
 System.Console.Write("{0}{1}",
 reader.GetValue(ii),
 ii + 1 < reader.FieldCount ? "\t" : "\n");
 }
 }
 }

 static void Main(string[] args) {
 ConnectionBuilder builder = new ConnectionBuilder();
 // Set this to the name of the ODBC dns you created:
 builder.Dsn = "bigquery1";
 // This is the default project that will be used to resolve tables
 // in the job:
 builder.Catalog = "publicdata";
 // Set this to your own project ID so that Jobs are run under
 // this project:
 builder.ExecCatalog = "bigquery-e2e";

 string state = "creating connection";
 try {
 state = "opening connection";
 using (OdbcConnection connection = builder.Build()) {
 connection.Open();
 state = "creating command";
 using (OdbcCommand command = connection.CreateCommand()) {
 command.CommandText = Query;
 state = "running query";
 using (OdbcDataReader reader = command.ExecuteReader()) {
 PrintResults(reader);
 }
 }

 Chapter 13 ■ Using BigQuery from Third-Party Tools 443

c13.indd 01:4:8:PM 05/06/2014 Page 443

 }
 } catch (Exception ex) {
 System.Console.WriteLine("Error {0}: {1}", state, ex);
 }
 // Wait until the "any key" is pressed.
 System.Console.ReadKey();
 }
 }
}

Most of the sample code is boilerplate that you would use to talk to any data

source using ODBC. The BigQuery-specifi c parts are actually involved only in

creating the connection; because of this, we’ve separated out the ConnectionBuilder

into its own class that lets you easily create an ODBC connection to talk to your

BigQuery data.

To use the ConnectionBuilder, you need to specify the DSN name; this is the

name of the connection you created in the ODBC setup steps. We created the DSN

as bigquery1, so we set that as the DSN name. You also need to specify a catalog,

which is the project from which to read the tables. The code talks about catalogs,

which are ODBC terms, but for BigQuery connections catalogs are synonymous

with projects. If you are going to be reading data from the same project that you

want to bill queries to, this is all the information that you need. However, if you

want to bill a different project, you can set the billing project independently. The

fi nal option, which we don’t specify in the following code snippet because we

don’t use it, is to turn on Native mode, which can cause the ODBC driver to pass

your queries directly through to BigQuery without modifi cation.

Here is the code that creates a connection to the DSN bigquery1 using the

project publicdata and bills queries to the bigquery-e2e project:

ConnectionBuilder builder = new ConnectionBuilder();
builder.Dsn = "bigquery1";
builder.Catalog = "publicdata";
builder.ExecCatalog = "bigquery-e2e";
OdbcConnection connection = builder.Build();

The ConnectionBuilder takes this information and turns it into

the ODBC connection string DSN=bigquery1; Catalog=publicdata;

ExecCatalog=bigquery-e2e. When you run this code, you should fi ll in

your own project ID as the builder.Catalog.

There are a couple of limitations to the ODBC driver. Some ODBC features,

like prepared statements and parameter substitution, may not work; you should

test them to try them out before relying on them in your code. In addition, by

default, when you build a C# program, it is targeted as “anycpu,” which means

that it can run on either 32-bit or 64-bit platforms. However, the Simba ODBC

driver that you install will be tied to a particular processor type. When you build

your program, you need to make sure to specify a processor target that matches

444 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 444

the processor type of your Simba driver. If the processor type is set to the wrong

processor target, you’ll get an error that it doesn’t match the ODBC driver.

How to Find Out More

To fi nd out more about the Simba ODBC driver, the page at http://www.simba

.com/connectors/google-bigquery-odbc has installation instructions and docu-

mentation on what, exactly, is supported. The Quick Start guide shows how the

ODBC driver can be used to connect Microsoft Excel to your BigQuery tables.

Chapter 12, “External Data Processing,” shows how to connect to Excel via the

BigQuery Excel Connector. The Simba ODBC driver provides another option.

You should note that the default way to connect to an ODBC source in Excel

is to download the entire table; this may not be what you want if you have large

tables. As a workaround, you can create a small table with the query results

you want to use in Excel. Alternatively, you can use the Microsoft Queries tool

provided with Offi ce to create the query that will be used.

The previous example for connecting to the ODBC driver relies on Microsoft’s

.NET runtime and is written in C#. If you’re not a fan of C# but still want to use

the ODBC driver, you can try pyodbc, which lets you make ODBC connections

from Python. Pyodbc seems to be robust and well supported. It is available at

https://code.google.com/p/pyodbc/.

JDBC Connection Options

If you write code in Java, the most obvious database connection type to use is

JDBC, not ODBC. JDBC performs most of the same types of tasks as ODBC but in

a platform-independent way. You shouldn’t have to worry about whether you’re

going to be running on Windows or Linux, let alone whether your processor

type is 32 bit versus 64 bit. Unfortunately, although there are a couple of JDBC

driver options, they all have limitations.

The most straightforward way to use JDBC with BigQuery is to use the Simba

ODBC driver and use the ODBC to JDBC bridge that is built into Java, via the

sun.jdbc.odbc.JdbcOdbcDriver class. However, according to Oracle’s offi -

cial documentation at http://docs.oracle.com/javase/7/docs/technotes/

guides/jdbc/bridge.html, this class is being deprecated in Java 8. So if you

use this class to connect to your ODBC connections, you may have a diffi cult

time upgrading to a newer Java runtime.

There is a native JDBC driver that can connect to BigQuery, developed by

StarSchema and released as open source at https://code.google.com/p/

starschema-bigquery-jdbc/. Although this JDBC driver does work, it is not

under active development and using it may not be as simple as plugging it into

your current system like other JDBC drivers. The good news is that because it

is open source, if you need to tweak it, you should be able to update it yourself.

http://www.simba.com/connectors/google-bigquery-odbc
https://code.google.com/p/pyodbc
http://docs.oracle.com/javase/7/docs/technotes
https://code.google.com/p/starschema-bigquery-jdbc/

 Chapter 13 ■ Using BigQuery from Third-Party Tools 445

c13.indd 01:4:8:PM 05/06/2014 Page 445

Client-Side Encryption with Encrypted BigQuery

Many potential BigQuery customers aren’t comfortable storing their produc-

tion data in a public cloud. As the value exposed by “the cloud” increases, more

people are getting over their hesitations. That said, as a rule of thumb, if you

absolutely depend on keeping something secret, you must encrypt it yourself

before using any cloud product, and you should decrypt it only in your client.

The problem is that in order to run interesting queries, the query engine needs

to see unencrypted data. For example, under ordinary circumstances, you can’t

compute the sum of an encrypted fi eld or order by an encrypted value.

As a side note, if you want to protect your data from a government, your best

bet is to store the data in a computer that you never turn on and have sealed

in a lead box. If government X wants your data, it will get it. We don’t want to

get involved in speculation about Google’s relationship with any government,

other than to say that it is the opinion of the authors that your data is going to

be safest from spying, government or otherwise, in Google’s cloud.

Encrypted BigQuery (ebq) is a tool that enables you to encrypt your data

client side and then upload it to BigQuery. The unencrypted source data never

gets sent over the network; the encryption key is never sent over the network

either. As such, there is no way that anyone at Google can decrypt your data.

This means you need to be careful with your key because if you lose it, you’ll

lose access to your data irrevocably.

You might notice that ebq commands look a lot like commands in the bq

command-line client; this is because Encrypted BigQuery is an open source fork

of bq that adds in client-side encryption functionality. Although researchers at

Google wrote Encrypted BigQuery, it uses only publicly documented interfaces.

If you’d like to implement your own client-side encryption, or expand upon

what is done in ebq, it is relatively easy to do so. You can check out the code or

the offi cial documentation at the project website here: https://code.google

.com/p/encrypted-bigquery-client/.

Installing and Confi guring

If you have Python setuptools installed, installing Encrypted BigQuery is as

simple as running the command:

$ easy_install encrypted_bigquery

Of course, nothing is ever that easy. If you’re on a Mac, you might need to

prefi x the command with sudo. You might also need to install XCode, which is

available from the Mac App Store. If you can’t or don’t want to use easy_install,

you can do a manual installation by following the steps at https://pypi.python

.org/pypi/encrypted_bigquery/1.0.

https://code.google.com/p/encrypted-bigquery-client/
https://pypi.python.org/pypi/encrypted_bigquery/1.0

446 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 446

After you install Encrypted BigQuery, you can run the ebq command:

$ ebq --helpshort
Python script for interacting with BigQuery using encrypted data.
USAGE: ebq [--global_flags] <command> [--command_flags] [args]

Global flags:

/usr/local/bin/ebq:
 --master_key_filename: The path of the file containing the master key
 to use in encrypting to use in encrypting table data.

Run 'ebq help' to see the list of available commands.
Run 'ebq help <command>' to get help for <command>.

Using Encrypted BigQuery

To start, get some data that you want to encrypt. For our examples, we export

the public Shakespeare table and re-import it with encryption. Note that you

have to download the data locally—the encryption must happen on the client

side, so you can’t encrypt a fi le that is already stored in Google Cloud Storage.

$ GCS_BUKET=biquery-e2e
$ bq extract --destination_format=NEWLINE_DELIMITED_JSON \
 publicdata:samples.shakespeare \
 gs://${GCS_BUCKET}/shakespeare.json
Waiting on bqjob_ ... (26s) Current status: DONE
$ gsutil cp gs://${GCS_BUCKET}/shakespeare.json .

Now look up the schema of the table and save it in a fi le named table.txt.

$ bq --format=prettyjson show \
 publicdata:samples.shakespeare > table.txt
$ cat table.txt
...
 "schema": {
 "fields": [
 {
 "name": "word",
 "type": "STRING"
 },
 {
 "name": "word_count",
 "type": "INTEGER"
 },
 {
 "name": "corpus",
 "type": "STRING"
 },
 {
 "name": "corpus_date",

 Chapter 13 ■ Using BigQuery from Third-Party Tools 447

c13.indd 01:4:8:PM 05/06/2014 Page 447

 "type": "INTEGER"
 }
]
 },
...

To create an encrypted version, run an ebq load job with some special schema

options. Edit table.txt so that it just has the schema fi elds, and for each col-

umn, indicates what type of encryption you want to do. Save the resulting fi le

as encrypted_schema.txt (this fi le is also distributed with the downloads for

this chapter, which can save you some typing.).

$ cat encrypted_schema.txt
 [
 {
 "name": "word",
 "type": "STRING",
 "encrypt": "probabilistic"
 },
 {
 "name": "word_count",
 "type": "integer",
 "encrypt": "homomorphic"
 },
 {
 "name": "corpus",
 "type": "STRING",
 "encrypt": "pseudonym"
 },
 {
 "name": "corpus_date",
 "type": "integer",
 "encrypt": "none"
 }
]

You may notice a new entry in each fi eld: encrypt. This tells ebq how to encrypt

that fi eld of the schema. The following section on encryption modes describes

the meaning of these values. First, however, create a dataset that will hold your

encrypted tables. The command line is the same as the normal bq usage:

$ ebq mk ch13

To encrypt and load the data, you can use the following command:

$ ebq --master_key_filename=ebq.key load \
 --source_format=NEWLINE_DELIMITED_JSON \
 ch13.enc_shakes shakespeare.json encrypted_schema.txt

You must specify a master key fi le via the master_key_filename fl ag; this

is the encryption key that will be used. If the encryption key doesn’t already

exist, a new key fi le will be created. Otherwise, loading the encrypted table

448 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 448

looks just like a standard bq load command line. The encryption process can

be slow; you should allow plenty of time for the data to be encrypted and the

encrypted load operation to run. Because a special type of encryption is being

used, it is much slower than you might expect. The Shakespeare table, which

is not a large table, may take an hour or so to complete encryption.

After the data has loaded, you can get information about the encrypted table

via ebq show (which is similar to the bq show command):

$ ebq --master_key_filename=ebq.key show ch13.enc_shakes
Table bigquery-e2e:ch13.enc_shakes

 Last modified Schema Total Rows
 ----------------- --------------------------------------- ------------
 07 Feb 19:45:16 |- word: ciphertext (required) 164656
 |- word_count: ciphertext (required)
 |- corpus: ciphertext (required)
 |- corpus_date: integer (required)

If you try to read the data outside of ebq, it will look like garbage. The col-

umn names get rewritten to contain the encryption type. For example corpus

becomes p698000442118338_PSEUDONYM_corpus. The values themselves get

rewritten as Base-64 encoded binary values; hamlet in pseudonym encryption

becomes something like: ztYxwmeiiZB/yDPC4W8u6g== (depending, of course,

on the encryption key). Figure 13.3 shows what the enc_shakes table looks like

in the BigQuery web UI.

Encryption Modes

The encryption modes used in this example are pseudonym, homomorphic,

and probabilistic. These don’t tell ebq which encryption algorithm to use—it

always uses standard AES. Instead of describing which encryption algorithm

to use, the encryption modes describe desired properties of the encrypted data.

The available encryption types are:

 ■ none: Not actually encrypted. Use this value for fi elds you don’t care if

an attacker sees, or numeric fi elds that aren’t meaningful on their own.

 ■ pseudonym: This is the simplest encryption mode that always encrypts the

same data the same way, given a particular key. This allows you to check

whether two values are equal, lets you JOIN on encrypted values, and lets

you GROUP BY the encrypted values. The downside is that this type of fi eld

can be vulnerable to attackers who can use correlation attacks or known-

frequency attacks to fi nd out the plaintext. Once they have decrypted the

value once, they know everywhere it appears.

 ■ probabalistic: Encrypts the same text differently every time. This makes

it harder for known-plaintext and correlation attacks to operate.

 Chapter 13 ■ Using BigQuery from Third-Party Tools 449

c13.indd 01:4:8:PM 05/06/2014 Page 449

 ■ homomorphic: Encrypts numeric fi elds with special mathematical properties

that allow mathematical operations (specifi cally, sums) to be performed

on the encrypted data that yield an encrypted result.

 ■ searchwords: Encrypts data such that you can fi nd a particular word

within a longer string. Note that each individual word will be encrypted

the same way each time, so this can allow known plaintext attacks or lin-

guistic frequency attacks. The advantage of this type of encryption is that

it lets you fi nd records that have a particular word embedded in a longer

string without the query engine seeing anything except encrypted data.

 ■ probabilistic_searchwords: Combines probabilistic encryption with

searchwords encryption. Encrypts each separate word with probabilistic

encryption, so it will be different each time. This allows you to pull out

individual words and compare them.

Figure 13.3: Encrypted BigQuery table as seen in the BigQuery web UI

Attacks Against Encrypted Data

We’ve mentioned a lot of attacks against the encryption; what do these actually

mean? An active attacker can glean information about encrypted data without

450 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 450

being able to break the encryption directly. For example, say that an attacker

has access to an encrypted table and wants to know the words that are used

in Macbeth. The attacker knows that there are six Shakespeare plays where the

name of the play is also a character, one of which is Macbeth. He could use this

information to fi nd the rows in the table where the corpus fi eld equals the word

fi eld. He might also know that of the six plays where the name of the play is

also a character, only two were written in the same year: Macbeth and Othello.

So with this information he could narrow the fi eld down to only two plays by

fi nding out which plays had an encrypted year that matched another one. He

can further narrow this down to one with the knowledge that Macbeth is shorter

than Othello, so it should have fewer words.

Without decrypting the data, the attacker can now fi nd the exact rows that

represent Macbeth. Of course, he can’t decrypt the words, so you’re safe, right?

Not quite; say he knows the words in Othello. He can also tell which encrypted

words are in Othello because it is the other one from the same year. He can then

fi nd out which words in Macbeth are also in Othello.

As you can see, by cleverly using outside knowledge and some of the plaintext

values, an attacker can start to pick apart your encryption. Encrypted BigQuery

has a clever way around this: probabilistic encryption. This means that the same

data may be encrypted in different ways. The value Macbeth might be encrypted

one way in one row and another way in the next row. This would thwart the

attacker because he wouldn’t be able to perform correlations.

The "encrypt": "probabilistic" entry in the encrypted Shakespeare schema

instructs ebq to encrypt the fi eld a different way each time it is seen. The down-

side of probabilistic encryption is that it makes the fi eld a bit harder to use; you

can decrypt it only when you select it; you can’t do a GROUP BY or an EQUALS

check on the fi eld.

However, the corpus fi eld uses pseudonym encryption, which encrypts the same

value the same way every time. Pseudonym encryption is useful for fi ltering

or grouping by values. For example, you can GROUP BY and even ORDER BY the

corpus fi eld because it uses pseudonym encryption.

$ ebq --master_key_filename=ebq.key query "
 SELECT corpus, COUNT(word_count)
 FROM ch13.enc_shakes
 GROUP BY corpus"

However, if you group by the word fi eld, you’ll get an error because you can’t

group by something that uses probabilistic encryption, since it is encrypted

differently every time.

$ ebq --master_key_filename=ebq.key query "
 SELECT word, COUNT(word_count)

 Chapter 13 ■ Using BigQuery from Third-Party Tools 451

c13.indd 01:4:8:PM 05/06/2014 Page 451

 FROM ch13.enc_shakes
 GROUP BY word"
Error in query string: Cannot GROUP BY probabilistic encryption.

Another interesting encryption mode is homomorphic, which can be used

only for numeric fi elds (integers and fl oats). This tells Encrypted BigQuery to

encrypt the fi elds in a way that you can still do math on them. One downside

of encrypting numbers normally is that they no longer act like numbers. That

is, the query engine doesn’t know how to sum them, for example, unless

you decrypt them fi rst. Fear not, homomorphic encryption to the rescue!

Although describing the math behind homomorphic encryption is beyond the

scope of this book, we can say that it is a special encryption form that allows

you to add two encrypted values to get their encrypted sum without ever

decrypting the data.

There is a special SQL function that the BigQuery query engine implements to

allow the addition of encrypted values—PAILLIER_SUM(). Encrypted BigQuery

turns your SUM() aggregations over encrypted fi elds into PAILLIER_SUM().

You can use PAILLIER_SUM on your own to perform homomorphic encryption;

you don’t need to rely on ebq to do it for you. The following query sums the

homomorphically-encrypted fi eld word_count and fi lters by the pseudonym-

encrypted fi eld corpus.

$ ebq --master_key_filename=ebq.key query "
 SELECT sum(word_count)
 FROM ch13.enc_shakes
 WHERE corpus = 'hamlet'"
Waiting on bqjob_... (1s) Current status: DONE
+-----------------+
| SUM(word_count) |
+-----------------+
| 32446.0 |
+-----------------+

You can see that this is the same value we’d get from computing the sum on

the unencrypted table:

$ bq query "
 SELECT SUM(word_count)
 FROM publicdata:samples.shakespeare
 WHERE corpus = 'hamlet'"
Waiting on bqjob_... (0s) Current status: DONE
+-------+
| f0_ |
+-------+
| 32446 |
+-------+

452 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 452

For more information on ebq and available encryption modes, check out the

Encrypted BigQuery docs available from https://pypi.python.org/pypi/

encrypted_bigquery.

Scientifi c Data Processing Tools in BigQuery

Sometimes, pure SQL isn’t enough for your data analysis needs. Maybe you’d

like to train a machine learning model on your data or apply advanced statis-

tical functions to squeeze meaning from your tables. A number of scientifi c

and mathematical processing tools are available to perform these types of

analyses.

This section shows how to use BigQuery with two popular free scientifi c

processing applications: R and Pandas. R is a popular programming language

and runtime environment for statistical data processing. Pandas, while it is

somewhat less ubiquitous than R, has the advantage that it enables you to work

directly in Python. If you’re already using Python, pandas can be easier to

integrate with your existing tools and libraries. Both R and pandas have good

support for BigQuery. R can interact with BigQuery via an extension package

written by a researcher from Rice University. Pandas, on the other hand, has

direct BigQuery support available in the library.

If you use a different tool that doesn’t have direct support for BigQuery, it

is likely you can connect to BigQuery via ODBC, which makes BigQuery look

like any other relational database. The “BigQuery Connectors” section earlier

in this chapter has more information to help out in these cases.

BigQuery from R

R is an open-source statistical analysis tool/programming environment that

lets you perform powerful analyses without writing a lot of code. The core

language has a convenient syntax for manipulating structured data; there is a

relatively simple notation that enables you to perform operations over vectors

and matrices. R also has a data frame data type that acts like a table for many

purposes but can also include additional metadata.

R is a dynamically typed language, which allows various operations to “do

the right thing” when they get different types of data as input. If you sum a

vector, you’ll get a number, but if you sum a table, you’ll get a vector of sums

of the columns. Conversely, the lack of strong typing can also make it much

harder to fi gure out when something goes wrong. We won’t say anything else

negative about dynamic typing here for fear of igniting a war between the static

and dynamic typing proponents.

https://pypi.python.org/pypi/encrypted_bigquery

 Chapter 13 ■ Using BigQuery from Third-Party Tools 453

c13.indd 01:4:8:PM 05/06/2014 Page 453

One limitation of R, however, is that it requires all the data it operates on to

reside in memory. If you want to analyze a billion-row dataset, it is unlikely

that you’ll have enough memory to handle it. This limitation is important when

working with BigQuery; you probably wouldn’t want to download an entire

BigQuery table at once, and if you could, it likely wouldn’t fi t in memory.

The real power of R is in the extension packages; there are hundreds of curated

open-source extensions that can do sophisticated analyses that range from unsu-

pervised clustering to Bayesian prediction. You can browse the available extension

packages and read the documentation at http://cran.us.r-project.org/web/

packages/available_packages_by_name.html. Many of these extensions are

optimized C or Fortran code, which can run orders of magnitude faster than

programs written in R. To download and install, visit http://www.r-project

.org and select the download for your operating system.

Bigrquery Extension

The bigrquery extension enables you to interact with your BigQuery tables from

R. Because, in general, your BigQuery tables will be larger than you’ll want to

manipulate directly in R, bigrquery enables you to run BigQuery queries and

download the results as an R data frame. These data frames preserve information

about the original table and allow you to manipulate, plot, or further analyze

the local copy of the data. They do, however, eagerly download all of the data,

which can be slow. A future enhancement to bigrquery may allow you to access

data lazily, so you can leave as much of the data as possible in the cloud and

download it only when you need it.

Installing Bigrquery

Bigrquery is a standard R extension that lives in CRAN—the central R exten-

sion repository. Like any CRAN package, you can install it directly from the R

command line by running:

> install.packages("bigrquery", dependencies=TRUE)

Adding the dependencies=TRUE argument should ensure that the transitive

dependencies are installed as well. The Rook package is also needed to perform

authentication; the rjson package is needed to parse JSON responses coming

from BigQuery. These commands will get you the latest bigrquery version from

CRAN. To install the latest version released by the tool author, you can install

it using devtools:

> install.packages("devtools", dependencies=TRUE)
> devtools::install_github("assertthat")
> devtools::install_github("bigrquery")

http://cran.us.r-project.org/web/packages/available_packages_by_name.html
http://www.r-project.org

454 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 454

After bigrquery is installed, you will need to perform authentication.

Authentication is triggered the fi rst time you try to run a query; in this case,

just run a dummy query to force authentication to occur.

> library(bigrquery)
> billing_project <- "bigquery-e2e"
> query_exec("publicdata", "samples", "SELECT 17",
 billing=billing_project)
starting httpd help server ... done
Waiting for authentication in browser...

This pops up a browser window that prompts you to log in (if you’re not

already logged in) and asks you if you want to allow access to your BigQuery

Data. Press Allow. Then it displays a page that says Authentication Complete

- You Can Now Close This Page and Return to R. When you return to the R

window, you should see:

starting httpd help server ... done
Waiting for authentication in browser...
Authentication complete.

 f0_
1 17

If you see the result 17, it means that bigrquery is working correctly.

Running Your First BigQuery Query from R

Now that you have bigrquery installed and can authenticate with BigQuery,

try running a simple query:

> query <- "SELECT corpus, max(corpus_date) as date, count(*) as c
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus ORDER BY date asc"
> results <- query_exec("publicdata", "samples",
 query, billing=billing_project)

The publicdata and samples arguments to the query_exec function may be

surprising. The fi rst two positional arguments are the default project and data-

set for tables referenced in a query. As of the current version of bigrquery, you

need to specify these even if you use fully qualifi ed table names (for example,

publicdata:samples.shakespeare) in the query. The advantage of specifying

the defaults is that it makes your queries simpler because you can specify only

the table name, not the project or dataset. To specify which project gets billed

for the query, you should use the billing argument. The authenticated user

must be a member of the project team to run queries, so you can’t run queries as

publicdata. If you don’t pass the billed project, BigQuery attributes the query

to the project ID passed as the fi rst positional argument.

 Chapter 13 ■ Using BigQuery from Third-Party Tools 455

c13.indd 01:4:8:PM 05/06/2014 Page 455

After the query completes, the entire results will be downloaded into an R

data frame. For queries returning large results, this can take a lot of time and

space. Even though this query only returns 42 rows and 3 columns, it is still a

good idea to use head() rather than print() to display the results. If there are

more than a few dozen results, it won’t be particularly useful to list them all to

the screen, so head() will just show the fi rst few rows.

> dim(results)
[1] 42 3
> head(results)
 corpus date c
1 various 0 1349
2 sonnets 0 3677
3 1kinghenryvi 1590 4441
4 3kinghenryvi 1590 4076
5 2kinghenryvi 1590 4683
6 kingrichardiii 1592 4713

R Example: Predicting Shakespeare

Now that you’ve seen how to use bigrquery to run BigQuery queries in R, let's

try a more interesting example: See if we can predict, based on the words in a

Shakespeare play, whether the play is a comedy, a history, or a tragedy. This type

of classifi cation is an example of something that is easy to do in R but cannot

be done directly from SQL.

We use a naïve Bayesian classifi er to classify the plays. Although this might

sound, well, naïve, this is a powerful prediction mechanism. For example, naïve

Bayes is the basis for most spam fi lters. If you think about it, predicting whether

a play is a comedy, history, or tragedy from word usage is similar to predicting

whether an e-mail is spam. Perhaps in the 17th century, people worried about

“unsolicited histories” that they’d have to sit through when what they actually

wanted was a light comedy. In that case, our classifi er would have been able to

tell them whether they should stay home instead.

To start, fi rst fi nd a fi ltered list of all the words used in Shakespeare plays.

Exclude the words used in every play because they don’t provide any predic-

tive power. Exclude, also, the words that are used only in a single play because

they could lead to overfi tting the data. Here’s the query that gets all the words

in Shakespeare that show up in more than 1 and fewer than 35 plays:

SELECT word, word_count, corpus
FROM [publicdata:samples.shakespeare]
WHERE word IN (
 SELECT word
 FROM (

456 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 456

 SELECT word, COUNT(*) as corpus_count
 FROM [publicdata:samples.shakespeare]
 GROUP BY word
 HAVING corpus_count > 1 and corpus_count < 36
))

This can serve as the core of your query. There is a technique in Information

Retrieval called TF-IDF, which means that you compute the term frequency

(TF) and multiply by the inverse document frequency (IDF). In other words,

for each word in the corpus, you divide the number of times that word occurs

by the number of total words in the document. This mechanism lets you com-

pare relative frequencies for documents that are different sizes. You can apply

TF-IDF to your Shakespeare results by dividing each word count by the number

of words in the corresponding play:

$ QUERY="
SELECT s1.word AS word,
 10000 * s1.word_count/s2.total_words AS tfidf,
 s1.corpus as corpus
FROM (
SELECT word, word_count, corpus
FROM [publicdata:samples.shakespeare]
WHERE word IN (
 SELECT word
 FROM (
 SELECT word, COUNT(*) AS corpus_count
 FROM [publicdata:samples.shakespeare]
 GROUP BY word
 HAVING corpus_count > 1 AND corpus_count < 36
))) s1
JOIN (
 SELECT corpus, SUM(word_count) AS total_words
 FROM [publicdata:samples.shakespeare]
 GROUP BY corpus
) s2
ON s1.corpus = s2.corpus"

You could do the rest of the work in R, but there are still a lot of results here

to import directly (more than 100,000). So you can perform one more step in

BigQuery—pivot in the corpus so that you have one row per word and one col-

umn for each play; the values will be the computed TF-IDF for the word/play

combination. Now save the query results as the table ch13.shakespeare_tfidf

to make it easier to refer to in the future. You can do this with the following

command:

$ bq query --destination_table=ch13.shakespeare_tfidf "${QUERY}"

The fi nal query to perform the pivot is a bit verbose because you need to list

each play you’re interested in as the column name. Note that you’re going to

 Chapter 13 ■ Using BigQuery from Third-Party Tools 457

c13.indd 01:4:8:PM 05/06/2014 Page 457

ignore anything that isn’t a comedy, history, or tragedy (the sonnets and the poem

“Venus and Adonis,” for example). Here is the full query to compute the pivoted

TF-IDF values:

> query <- "
SELECT word,
SUM(IF (corpus == '1kinghenryiv', tfidf, 0)) AS onekinghenryiv,
SUM(IF (corpus == '1kinghenryvi', tfidf, 0)) AS onekinghenryvi,
SUM(IF (corpus == '2kinghenryiv', tfidf, 0)) AS twokinghenryiv,
SUM(IF (corpus == '2kinghenryvi', tfidf, 0)) AS twokinghenryvi,
SUM(IF (corpus == '3kinghenryvi', tfidf, 0)) AS threekinghenryvi,
SUM(IF (corpus == 'allswellthatendswell', tfidf, 0))
 AS allswellthatendswell,
SUM(IF (corpus == 'antonyandcleopatra', tfidf, 0))
 AS antonyandcleopatra,
SUM(IF (corpus == 'asyoulikeit', tfidf, 0)) AS asyoulikeit,
SUM(IF (corpus == 'comedyoferrors', tfidf, 0)) AS comedyoferrors,
SUM(IF (corpus == 'coriolanus', tfidf, 0)) AS coriolanus,
SUM(IF (corpus == 'cymbeline', tfidf, 0)) AS cymbeline,
SUM(IF (corpus == 'hamlet', tfidf, 0)) AS hamlet,
SUM(IF (corpus == 'juliuscaesar', tfidf, 0)) AS juliuscaesar,
SUM(IF (corpus == 'kinghenryv', tfidf, 0)) AS kinghenryv,
SUM(IF (corpus == 'kinghenryviii', tfidf, 0)) AS kinghenryviii,
SUM(IF (corpus == 'kingjohn', tfidf, 0)) AS kingjohn,
SUM(IF (corpus == 'kinglear', tfidf, 0)) AS kinglear,
SUM(IF (corpus == 'kingrichardii', tfidf, 0)) AS kingrichardii,
SUM(IF (corpus == 'kingrichardiii', tfidf, 0)) AS kingrichardiii,
SUM(IF (corpus == 'loverscomplaint', tfidf, 0)) AS loverscomplaint,
SUM(IF (corpus == 'loveslabourslost', tfidf, 0)) AS loveslabourslost,
SUM(IF (corpus == 'macbeth', tfidf, 0)) AS macbeth,
SUM(IF (corpus == 'measureforemeasure', tfidf, 0))
 AS measureforemeasure,
SUM(IF (corpus == 'merchantofvenice', tfidf, 0)) AS merchantofvenice,
SUM(IF (corpus == 'merrywivesofwindsor', tfidf, 0))
 AS merrywivesofwindsor,
SUM(IF (corpus == 'midsummersnightsdream', tfidf, 0))
 AS midsummersnightsdream,
SUM(IF (corpus == 'muchadoaboutnothing', tfidf, 0))
 AS muchadoaboutnothing,
SUM(IF (corpus == 'othello', tfidf, 0)) AS othello,
SUM(IF (corpus == 'periclesprinceoftyre', tfidf, 0))
 AS periclesprinceoftyre,
SUM(IF (corpus == 'romeoandjuliet', tfidf, 0)) AS romeoandjuliet,
SUM(IF (corpus == 'tamingoftheshrew', tfidf, 0)) AS tamingoftheshrew,
SUM(IF (corpus == 'tempest', tfidf, 0)) AS tempest,
SUM(IF (corpus == 'timonofathens', tfidf, 0)) AS timonofathens,
SUM(IF (corpus == 'titusandronicus', tfidf, 0)) AS titusandronicus,
SUM(IF (corpus == 'troilusandcressida', tfidf, 0))
 AS troilusandcressida,

458 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 458

SUM(IF (corpus == 'twelfthnight', tfidf, 0)) AS twelfthnight,
SUM(IF (corpus == 'twogentlemenofverona', tfidf, 0))
 AS twogentlemenofverona,
SUM(IF (corpus == 'winterstale', tfidf, 0)) AS winterstale,
FROM [ch13.shakespeare_tfidf]
GROUP BY word"

You can set this as the query in R and fetch the results:

> results <- query_exec("bigquery-e2e", "ch13", query,
 billing=billing_project,
 max_pages=Inf)
3.6 megabytes processed
Retrieving data: 28.7s
> summary(results)
 word onekinghenryiv onekinghenryvi twokinghenryiv
 Length:16281 Min. : 0.0000 Min. : 0.000 Min. : 0.0000
 Class :character 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.0000
 Mode :character Median : 0.0000 Median : 0.000 Median : 0.0000
 Mean : 0.7842 Mean : 0.738 Mean : 0.8419
 3rd Qu.: 0.0000 3rd Qu.: 0.000 3rd Qu.: 0.0000
 Max. :631.0000 Max. :435.000 Max. :614.0000
...

This command creates a data frame with more than 16,000 rows, one row for

each word that is used in more than one play but not all of them. The fi rst column

is the word; the subsequent columns are the TF-IDF values of the word in each

of the plays. You can drop the fi rst column at this point because you won’t need

to know which word it is to perform the prediction. However, you can store

the word as the name of the row in the data frame in case you need it again.

> rownames(results) <- results$word
> results$word <- NULL

Next, you need to know whether a particular play is a comedy, a history,

or a tragedy. You can look this information up from the list at http://www

.opensourceshakespeare.org/views/plays/plays.php and compute a lookup

table by hand:

> categories_str = "
corpus, type
onekinghenryiv, history
onekinghenryvi, history
twokinghenryiv, history
twokinghenryvi, history
threekinghenryvi, history
allswellthatendswell, comedy
antonyandcleopatra, tragedy
asyoulikeit, comedy
comedyoferrors, comedy

http://www.opensourceshakespeare.org/views/plays/plays.php

 Chapter 13 ■ Using BigQuery from Third-Party Tools 459

c13.indd 01:4:8:PM 05/06/2014 Page 459

coriolanus, tragedy
cymbeline, tragedy
hamlet, tragedy
juliuscaesar, tragedy
kinghenryv, history
kinghenryviii, history
kingjohn, history
kinglear, history
kingrichardii, history
kingrichardiii, history
loverscomplaint, comedy
loveslabourslost, comedy
macbeth, tragedy
measureforemeasure, comedy
merchantofvenice, comedy
merrywivesofwindsor, comedy
midsummersnightsdream, comedy
muchadoaboutnothing, comedy
othello, tragedy
periclesprinceoftyre, history
romeoandjuliet, tragedy
tamingoftheshrew, comedy
tempest, comedy
timonofathens, tragedy
titusandronicus, tragedy
troilusandcressida, tragedy
twelfthnight, comedy
twogentlemenofverona, comedy
winterstale, comedy"
> categories = read.csv(text=categories_str)
> summary(categories)
 corpus type
 allswellthatendswell: 1 comedy :15
 antonyandcleopatra : 1 history:12
 asyoulikeit : 1 tragedy:11
 comedyoferrors : 1
 coriolanus : 1
 cymbeline : 1
 (Other) :32

Now do the same thing with the play names in the categories table that you

did in the results table—you can use the play name as the row name and drop

the fi rst row:

> rownames(categories) <- categories$corpus
> categories$corpus <- NULL
> summary(categories)

Now, you have all the data you need to run the naïve Bayesian classifi er. There

are a couple of different implementations of the naïve Bayes in R; the example

460 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 460

uses the one from the e1071 package. You need to make sure it is installed fi rst

before you can use it:

> install.packages("e1071")
. . .
> library(e1071)

You can train your naïve Bayes classifi er by giving it a table of plays with

their TF-IDF values and the actual values we’re looking for (that is, whether

the play is a comedy, history, or tragedy). Note that you need to transpose the

results because the naiveBayes function expects that each row will be a differ-

ent sample, with the columns being the features, whereas your results table has

the columns as samples (that is, plays) and the rows as features (that is, TF-IDF

values for a particular word). In R, you can transpose with the t() function:

> classifier <- naiveBayes(t(results), categories[,1])

Finally, with the classifi er trained, you can predict whether a play is a comedy,

history, or tragedy with the predict() method:

> predictions <- predict(classifier, t(results))
> predictions
 [1] history history history history history comedy tragedy comedy
 [9] comedy tragedy tragedy tragedy tragedy history history history
[17] history history history comedy comedy tragedy comedy comedy
[25] comedy comedy comedy tragedy history tragedy comedy comedy
[33] tragedy tragedy tragedy comedy comedy comedy

To test the validity of your predictions, you can check against the actual values:

> table(predictions, categories[,1], dnn=list('predicted','actual'))
 actual
predicted comedy history tragedy
 comedy 15 0 0
 history 0 12 0
 tragedy 0 0 11

We can see here that the classifi er predicted correctly for all Shakespeare

plays you gave it. You might notice that we’re cheating here a little bit—we’re

predicting over the same data that was used for training. In practice, you’d want

to keep a holdout set from the training data or perform cross-validation, but

that is beyond the scope of this example.

Finding Out More Information

CRAN is generally the fi rst place you should look to fi nd out more about any-

thing in R. The bigrquery package on CRAN at http://cran.us.r-project

.org/web/packages/bigrquery/index.html has documentation of the available

http://cran.us.r-project.org/web/packages/bigrquery/index.html

 Chapter 13 ■ Using BigQuery from Third-Party Tools 461

c13.indd 01:4:8:PM 05/06/2014 Page 461

commands and how to use them. This will likely be more up to date than this

book, so be sure to check it out.

The version of bigrquery on CRAN may not be the most recent, however.

Bigrquery is currently under active development; the Open Source project for

bigrquery is on github at https://github.com/hadley/bigrquery. If you’d like

to read the source code to see how bigrquery works (or even submit a patch to

add new functionality), you can check out the github bigrquery project. There

is nothing mysterious or magical; the most interesting parts may be the OAuth2

authentication and the job management code. This code is all open source,

licensed as GPL v3, so you can copy it and make changes and extensions to it

as you want.

Hadley Wickham, the creator of the bigrquery package, also has a more

ambitious project called dplyr that can use BigQuery (among other back ends).

Dplyr simplifi es applying operations to local or remote tabular data. If you’re

interested in using BigQuery on R, you might also be interested in check-

ing it out—it is available on CRAN at http://cran.us.r-project.org/web/

packages/dplyr/index.html.

Python Pandas and BigQuery

One of the downsides of R is that it is poorly integrated with things outside of

scientifi c and statistical analysis. If you want to perform unsupervised cluster-

ing, it is great, but if you want to integrate it with other code you have written,

it can be more diffi cult. R has fantastic library support for scientifi c applications

but lacks an ecosystem that can let you do things like request and parse data

from a website as easily as in other languages. Although R is a Turing-complete

programming language, nobody writes much code in R unless they have to, so

it remains a niche language.

Scientifi c Programming in Python

Python is used in a wide range of general-purpose programming environments.

It lacks, however, the kind of scientifi c and mathematical functions that you get

with R. Because Python is general purpose and a hugely popular language, people

have started to make up the gap between Python and R by adding a number

of libraries, most of which are implemented in C++ or Fortran for performance

reasons. Here is a list of the primary Python mathematical and scientifi c libraries:

 ■ NumPy: Fast matrix manipulation and linear algebra

 ■ SciPy: More scientifi c computing goodies

 ■ SymPy: Symbolic math library

 ■ Pandas: Data analysis library

https://github.com/hadley/bigrquery
http://cran.us.r-project.org/web/packages/dplyr/index.html

462 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 462

These libraries provide a lot of mathematical and scientifi c functions in Python

and make up some of the gap between Python and R (or even commercial sci-

entifi c computing environments such as Matlab or Mathematica). These don’t,

however, provide the syntactic sugar that makes R so easy to work with. Although

writing Python code may be easier than writing C++, the Python command shell

is not as nice for scientifi c workloads as the R shell. But Python has a library for

that, too; iPython provides a convenient notebook interface that enables you to

save and annotate your environment, much like the R shell.

But what if you want some functionality that is only available in R, or func-

tionality that you’re used to in R and for which you don’t want to learn a new

method? For these cases in which you really want to use something in R, there

is the RPy library, which enables you to call out to R functions from within your

Python code. RPy can turn pandas data frame into an R data frame automati-

cally. You can also use RPy to plot your graphs via R’s nice plotting functions,

or you can use the matplotlib library to plot graphs directly from Python.

Pandas BigQuery Module

The Python data analytics library, pandas, has an experimental module called

pandas.io.gbq that enables you to query your BigQuery tables and turn the

results into pandas data frames. This library is functionally similar to the

bigrquery package in R. Most BigQuery operations other than queries need to

be done outside of the Python environment, however, although there is limited

support for creating a BigQuery table from a Python data frame.

Installing Pandas and Related Dependencies

The installation method to use for installing pandas can depend highly on

your operating system and version. Python has a number of package managers,

from pip to setuptools to MacPorts to Anaconda, any of which can be used to

install pandas. On Mac OS X, running easy_install pandas may be suffi cient.

However, if you want to use SciPy (which is used in the examples in this sec-

tion), you might need to download and install additional components, such as

XCode and even Fortran libraries.

Anaconda is a prepackaged suite of Python scientifi c computing and data

analysis tools. This may be the easiest option, since it provides everything you

need, from pandas to iPython to SciPy and NumPy. Even if you already have

some of the components, Anaconda can be easier than trying to manage all

the confi guration bits and pieces that you’d otherwise need. One downside

of Anaconda is that it is a separate installation; this means that you need to

install the Google Cloud SDK inside of an Anaconda terminal window to get

it to integrate correctly. (This last point may be addressed by the time you read

this, however.)

 Chapter 13 ■ Using BigQuery from Third-Party Tools 463

c13.indd 01:4:8:PM 05/06/2014 Page 463

Running Your First BigQuery Query with Pandas

The pandas.io.gbq module performs authorization in a different way from most

other tools; it decides to let somebody else take care of the problem. The gbq

module reuses the authorization information saved by the bq command-line tool.

It also reuses the default project ID set by bq, so you don’t have to pass a project

ID with all your requests. If you have not installed bq or have not authorized

your Google account using it, you should follow the instructions in Chapter 3,

“Getting Started with BigQuery.”

Assuming you have authenticated with bq or the Google Cloud SDK, it is

easy to run a query in pandas:

$ python
>>> from pandas.io import gbq
>>> data_frame = gbq.read_gbq(
 'SELECT COUNT(*) FROM [publicdata:samples.shakespeare]')
Waiting on bqjob_r2f6dcee956cff5bd_0000014460593881_1 ... (0s)
Current status: DONE
>>> print "%s" % (data_frame,)
 f0_
0 164656

[1 rows x 1 columns]

If the gbq.read_gbq() command works without returning an error, then

you’re all set to begin using BigQuery from pandas.

Pandas Example: Clustering Shakespeare

In the R example, we tried to classify Shakespeare texts into genres; whether

they are tragedies, histories, or comedies. To do so, we needed to know the

genre in advance for some of the plays in order to train our machine learning

model. Wouldn’t it be nice if we didn’t have to know any genres in advance,

but we’d still be able to classify the plays? We could divide up the plays into

the “natural” buckets and go back and see if those buckets have any real-world

meaning. That is, instead of providing classifi cations at the beginning, we can

provide them after we’ve already sorted the plays into buckets. Of course, the

buckets may not correspond to genre, but they might also show some hidden

similarity between the plays, or align themselves in other ways, like early or

late plays or even plays that were written by Shakespeare’s evil twin brother.

This type of analysis is called unsupervised learning, and there are a lot of

different algorithms you can use to approach the problem. One of the standard

algorithms is called k-means clustering, which groups unlabeled data into a fi xed

(k) number of clusters. K-means clustering is provided in the scipy.clustering

.vq package.

464 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 464

We’ll use a k of 2, which means we’re going to be dividing up the plays into

two different buckets. We don’t have a lot of data (there are only 38 plays that

we know about), so dividing up the plays into a lot of clusters may not be par-

ticularly instructive. After clustering, we’ll see if this binary division makes

any intuitive sense.

The Python fi le clustering_shakespeare.py has the entire script for com-

puting the clusters, but we will walk you through the individual pieces. Start

with the import statements:

>>> from numpy import array
>>> from numpy import asarray
>>> from pandas import DataFrame
>>> from pandas.io import gbq
>>> from scipy.cluster.vq import vq, kmeans, whiten

Note that you need numpy, pandas, and scipy to be installed. If they’re not,

or they have problems, you’ll see errors either here or when you try to use

them. A bit of forewarning—if you don’t have everything installed correctly,

the errors can be a bit cryptic because the thing that fails to load often isn’t the

thing that is missing. If module A imports module B, you might see module A

fail to load, but module B might be the missing one, and you may not get an

error message telling you why.

Next, after you verify that you have all the libraries that you need, run a

BigQuery query to get the data you need:

>>> query = """
 SELECT word,
 SUM(if (corpus == '1kinghenryiv', tfidf, 0)) as onekinghenryiv,
...
 SUM(if (corpus == 'winterstale', tfidf, 0)) as winterstale,
 FROM [ch13.shakespeare_tfidf]
 GROUP BY word
"""
>>> data_frame = gbq.read_gbq(query)

This is the same query from the Predicting Shakespeare example in the section

on R; it relies on the same intermediate table, ch13.shakespeare_tfidf, which

contains relative frequencies for all the words in all Shakespeare’s plays. You can

run the query using the pandas gbq.read_gbq() method and save the result in

a data frame. A pandas data frame is similar to an R data frame; it is a bit like

a matrix but can have additional metadata, such as column and row names.

The fi rst column of the data frame is word; this contains nearly every word

that is used somewhere in Shakespeare. The subsequent columns are the nor-

malized frequencies of the corresponding word’s usage in each of Shakespeare’s

plays. The column names (other than word) are the names of the plays. You don’t

actually use the word in the clustering step; the learning process doesn’t know

anything about words; it just cares about the relative frequencies that make up

 Chapter 13 ■ Using BigQuery from Third-Party Tools 465

c13.indd 01:4:8:PM 05/06/2014 Page 465

the feature matrix. Because you don’t need the actual words, you can drop the

word column from the data frame.

>>> del data_frame['word']

To run k-means clustering, you need to turn the data frame into an array

where each row is a vector describing the sample. That is, you want each play to

represent one row, while the word frequencies are columns. To coerce the data

into this format, you can create a numpy array containing the transposed results:

>>> features = asarray(data_frame.T)

After you create the features matrix, pass it to the clustering function:

>>> codes, _ = kmeans(features, 2)

K is set to 2, which means you’re just trying to fi nd two clusters. Another way

of looking at it is that you’re creating a hyperplane dividing the Shakespeare

word frequency matrix into two parts, where the hyperplane is defi ned as all the

points that are equidistant from the two cluster centroids. If that sounds confus-

ing, don’t worry; it was just an excuse to get to write the word “hyperplane.”

The fi rst result from the kmeans() function is the “code book”; this is a k by

N matrix (where k is the number of clusters and N is the number of samples)

that defi nes the centroids of the clusters. In this case, the code book contains

two columns, one for each cluster. The rows contain the expected frequency of

each word in the play for the corresponding cluster.

After you fi nd the two clusters, sort the Shakespeare plays into which clus-

ter they are closest to. You can use the vq() (short for “vector quantization”)

method for this.

>>> assignments, _ = vq(features, codes)
>>> results = {
 'play' : array(data_frame.columns.values),
 'cluster' : assignments}

The assignments will be an array of cluster indexes indicating which clus-

ter each sample was closest to. That is, there will be a value of 0 or 1 for each

Shakespeare play that says whether that play was in the fi rst or second cluster.

A DataFrame is pandas’ version of R’s data frame that represents a matrix of

values with some additional metadata. You can match the cluster with the play

name with a little bit of DataFrame magic; combine the column names from

the result of the BigQuery query (which are the play names) with the cluster

assignments and then sort by the cluster. The sort operation enables you to see

all the plays that showed up in the same cluster, which can give you a good

picture of which plays were assigned to which cluster.

>>> result_frame = DataFrame.from_dict(results).sort(['cluster',
 'play'])

466 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 466

The assignment matrix is reproduced here:

 cluster play
5 0 allswellthatendswell
6 0 antonyandcleopatra
7 0 asyoulikeit
8 0 comedyoferrors
9 0 coriolanus
10 0 cymbeline
11 0 hamlet
12 0 juliuscaesar
19 0 loverscomplaint
20 0 loveslabourslost
21 0 macbeth
22 0 measureforemeasure
23 0 merchantofvenice
24 0 merrywivesofwindsor
25 0 midsummersnightsdream
26 0 muchadoaboutnothing
27 0 othello
28 0 periclesprinceoftyre
29 0 romeoandjuliet
30 0 tamingoftheshrew
31 0 tempest
32 0 timonofathens
33 0 titusandronicus
34 0 troilusandcressida
35 0 twelfthnight
36 0 twogentlemenofverona
37 0 winterstale
13 1 kinghenryv
14 1 kinghenryviii
15 1 kingjohn
16 1 kinglear
17 1 kingrichardii
18 1 kingrichardiii
0 1 onekinghenryiv
1 1 onekinghenryvi
4 1 threekinghenryvi
2 1 twokinghenryiv
3 1 twokinghenryvi

[38 rows x 2 columns]

This is a cool result—given no information other than relative word frequencies

of various plays, the clustering algorithm has divided up Shakespeare’s output

into two buckets—one that contains all the histories, and one that contains all

of the other plays. This was done without saying which plays are histories or

even what history means.

 Chapter 13 ■ Using BigQuery from Third-Party Tools 467

c13.indd 01:4:8:PM 05/06/2014 Page 467

Visualizing Data in BigQuery

One of the problems with Big Data is that it becomes diffi cult to build an intu-

ition about your data. If you have a thousand rows in a table, you can scan it,

see whether one column is always numeric, or whether there are nulls, and if

there are, fi gure out what the nulls represent. When you have a million rows,

however, it is harder to get a feel for the data—you’re not likely to want to read

through all the data.

Data visualization tools can help you make sense of your data; good ones

make it easy to “see” various aspects of data, interactively. If you want to plot

one column by another, it is usually quite trivial, or if you want to get statistics

about unique values, the tool usually computes them for you. Most data visu-

alization tools work great on your million row table; however, if you have a

billion rows, they may start to take minutes to compute simple values, or hours

to produce a graph.

There are a number of data visualization tools that combine with BigQuery to

get the performance you’d expect from a small dataset on your Big Data tables

of virtually any size. This section introduces two of them that take two different

approaches to data visualization: Tableau and Bime.

Visualizing Your BigQuery Data with Tableau

Tableau has quickly become the gold standard for data visualization; it makes

it easy to get a feel for your data in a way that is diffi cult when you’re just writ-

ing queries. You can drag and drop fi elds to plot one against another, apply

aggregations, and so on. It has a lot of automatic intelligence built in so that it

can pick the best type of graph for your data.

Tableau’s main visualization product, Tableau Desktop, is a thick client. This

means that a lot of the visualization work is being done on your machine, rather

than in the cloud. At a time when everything seems to be moving to the cloud,

this feels like a bit of a throwback. However, there are good reasons to do work

on the client: It enables you to build much snappier visualizations because you

don’t have to wait until some remote server decides to process your request.

There is a downside to performing the work on the client—it usually means

that you need the data to exist on the client as well. For big datasets, requiring

client-side data can mean spending a lot of time reading your data (especially

if that data is stored in the cloud).

When interacting with BigQuery (and other Big Data sources), however,

Tableau takes a hybrid approach: It issues BigQuery queries to perform aggrega-

tions and then downloads the results of those queries locally. This means that

only the query results need to be transferred to the client, and it doesn’t need

468 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 468

to rerun the BigQuery queries unless the aggregations change. In this model,

many data manipulations can be done with only local data.

There are a couple of potential “gotchas” when using BigQuery with Tableau.

The fi rst is that you don’t have much control over the SQL that is generated.

Tableau currently uses the Simba BigQuery ODBC driver to issue standard ODBC

requests (as Standard SQL). This doesn’t allow usage of specialized BigQuery

SQL syntax, such as using the EACH keyword to group by a fi eld that has a lot

of distinct values. Tableau treats BigQuery like a standard data source, so it

doesn’t have many specializations that would make BigQuery perform better.

It is possible that by the time you read this, Tableau will have released a cus-

tom connector that can more effectively handle BigQuery data sources. Tableau

has specialized data connectors for other data sources (for Apache Hive, for

example). A specialized connector would mean that you wouldn’t need the

Simba ODBC driver; you could run in environments in which the ODBC driver

isn’t available (such as on a Mac).

Tableau has a free 14-day trial that you can use to try out the BigQuery inte-

gration. To sign up, just navigate to http://www.tableausoftware.com/ in your

web browser and click the Free Trial button. Select the Tableau Desktop option

and follow instructions from there to download and install the software.

WARNING: VISUALIZATION TOOLS CAN RUN A LOT OF QUERIES

In Tableau, when you drag and drop a fi eld to indicate you want it to represent the

rows of your chart, or change the aggregation from SUM() to COUNT(), it issues a

query. If you tweak the parameters a lot, it can cause you to run a lot of queries. If you

run a lot of queries over a large table, it is going to get expensive.

Other Visualization tools such as BIME, have the same issue. They trade off ease

of use for understanding exactly which queries are going to be executed and when.

Visualization tools frequently issue queries to get statistics about certain columns, or

in response to interactions you make in the UI.

The automatic caching that BigQuery does can help out here—if a query has

already been issued within the last 24 hours, the cached results will be retuned rather

than running a separate query. That said, if you have billions of rows in your table, you

should know that every time you tweak something it might cost you money.

Connecting Tableau to Your BigQuery Tables

Tableau has built-in support for BigQuery; to connect to a BigQuery table,

follow these steps:

 1. Open Tableau to a blank workspace; then click Connect to Data. This

opens a menu that lists the different types of data sources Tableau can

communicate with.

http://www.tableausoftware.com

 Chapter 13 ■ Using BigQuery from Third-Party Tools 469

c13.indd 01:4:8:PM 05/06/2014 Page 469

 2. Under the On a Server menu, select Google BigQuery. This pops up a

browser window that prompts you to log in to your Google account.

 3. Log in to your Google account, and accept the OAuth2 prompt asking

you whether you want to allow Tableau Desktop to have access to your

BigQuery data. After you accept, your OAuth2 refresh token will be cached,

and you won’t have to log in again unless you reinstall or revoke the token.

Tableau does not ever see your login credentials. Figure 13.4 shows the

prompt to allow Tableau access to your data and shows the Connect to

Data” dialog box in the background.

Figure 13.4: Granting Tableau access to your BigQuery data

 4. After granting authorization, you’ll be prompted for which table you’d

like to use. For this example, use the public Shakespeare table. Select

publicdata from the Project menu and samples as the dataset. You can

select Projects and Datasets from a list, but you need to type the table

name in manually. Type shakespeare for the table name and press OK.

It automatically creates a connector name to use for the table based on

the information you entered. Figure 13.5 shows the populated connection

dialog box.

470 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 470

Figure 13.5: Tableau BigQuery Connection dialog box

 5. After creating the connection, you see another prompt asking how you

want to connect to BigQuery. You should select the Connect live and check

the Always Do this For BigQuery box. This tells Tableau to leave as much

of the data as possible on the BigQuery servers. You almost certainly want

this option when dealing with large tables because the other alternative

is to download all your data locally.

Creating a Visualization

At this point you should connect to your BigQuery tables in Tableau—so how

do you make pretty graphs and visualizations? Although a lesson on how to

use Tableau is beyond the scope of this book, it is intuitive to use. We will walk

you through producing a simple visualization that shows how easy it can be to

create graphs that extract meaning from your data.

Tableau is a drag-and-drop environment; if you don’t like using the mouse,

you might just have to put away your mouse-o-phobia for a little bit if you

want to create fantastic pictures. In order to graph anything, you need at

least two fi elds; the graph lets you see how the fi rst fi eld varies in relation to

the second one. This is true for almost any kind of graph: A bar graph plots

a name against a height, and a line graph plots an ordered series against

another value. Even a pie chart needs at least two variables: the names of the

pie slices and their sizes.

You’re actually not limited to plotting two variables in Tableau; you can use

color, size, or even tooltip text as other dimensions. And you’re not limited to

pie, line, or bar graphs either; if you have geographic data, you can easily plot

the data on a map in dozens of different ways. You’re also not limited to val-

ues that are actually present in raw form in your data. Tableau can perform a

number of different types of aggregations: SUM(), COUNT(), and so on and can

 Chapter 13 ■ Using BigQuery from Third-Party Tools 471

c13.indd 01:4:8:PM 05/06/2014 Page 471

apply them automatically to make the graph make more sense. Probably the

best way to fi gure out what is available is just to play with it for a while and see

what you come up with.

As a demonstration, however, we can create a bar chart of the word count of

each Shakespeare corpus in the Shakespeare dataset. The fi elds from the table

are divided up into dimensions and measures; the dimensions are the text fi elds

and the measures are the numeric fi elds. Tableau automatically categorizes fi elds

into dimensions and measures based on statistics about the fi elds such as num-

ber of unique values and whether they are numeric types. For the Shakespeare

table, the dimensions are corpus and word; the measures are corpus_date and

word_count. There are a couple of other special dimensions and measures, such

as Measure names, Number of Records, and Measure Values, which aren’t in

the actual dataset but can be computed on-the-fl y. You can drag the measures

and dimensions between the boxes to create visualizations.

Did Shakespeare Get Lazy as He Got Older?

As a way of demonstrating the use of Tableau on BigQuery data, let’s see if

we can fi gure out whether Shakespeare got wordier as his career progressed,

or whether he got lazy and started wrapping up his plays as soon as possible.

You could, of course, do this with a query; but because the results are multi-

dimensional (play versus word count versus date), it can be tricky to grok the

patterns from a table of results by itself. You can get this information in a single

numerical result using a correlation query:

SELECT CORR(count, date)
FROM (
 SELECT SUM(word_count) AS count, MIN(corpus_date) AS date
 FROM publicdata:samples.shakespeare
 GROUP BY corpus)

This returns 0.41—a high positive correlation. Sounds like maybe Shakespeare

stopped listening to his editor telling him to “wrap it up” after he got a little bit

of fame. Not quite, however. If you look at the extreme values of the data, there

are two corpora with a corpus_date of 0: sonnets and various. Because they

were written over a period of time, there is no one date that makes the most

sense; whoever created the dataset has the date set to 0. The collected sonnets

are shorter than any play, and the various other writings are only one-fi fth as

long as the shortest play. These two values are going to completely skew the

correlation calculation; if you remove them by adding the fi lter WHERE corpus_

date > 0, you see that the actual correlation coeffi cient is actually negative,

although quite small: –0.21.

This mistake highlights why data visualization is so powerful; if you rely

on the raw numbers without looking closely at them, you run the risk of mak-

ing mistakes if you have outliers or data you don’t expect. Data visualization,

472 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 472

in general, makes these types of issues much more obvious. To see this, walk

through how you could visualize this relationship in Tableau.

To start out, drag the corpus measure to the Columns box. This indicates that

you want to plot something against the Shakespeare corpus name (for example,

Hamlet or Merchant of Venice). To generate a nice bar chart, all you need to do is

drag word_count from the Measures pane to the Rows box. It automatically selects

SUM as the aggregation and plots the corpus name as the bar label versus the

total word count of the play. From this, it is easy to see that Hamlet and Richard
III have a lot of words, whereas The Comedy of Errors is signifi cantly shorter

(which may be, in fact, how you like your Shakespeare). This graph displayed

in Figure 13.6 is the equivalent of running the query:

SELECT corpus, SUM(word_count)
FROM [publicdata:samples.shakespeare]
GROUP BY corpus

If you’d rather see the number of distinct words, you can right-click the

SUM(word_count) icon and change the aggregation to CNT(word_count) via

the Measure submenu. Remember that each row in the underlying table has

a single word and the number of times it appears in a particular corpus. The

sum is the total number of words in the corpus; the count is the number of

different words.

Now add another dimension to the table (or actually, another measure).

Drag the corpus_date measure to the Color box in the Marks window. This

tells Tableau to let the color of the bar be proportional to the value of that

measure. A darker bar will correspond to a later date, a lighter one will cor-

respond to an earlier one. Because corpus_date doesn’t vary independently

for a particular corpus (for example, all records for Hamlet will have the

same corpus date—the date that Hamlet was published), the aggregation

you choose here isn’t important—we’ll suggest AVG(corpus_date), but you

could just as easily use MIN or MAX because all the values for a single corpus

will be identical.

The date dimension, however, is going to be skewed by the corpora that

you saw earlier that don’t have publication dates: various and sonnets don’t

have a single date, so they’re recorded as 0. You can see this immediately

because it skews the coloring so that you can’t see the difference in grada-

tions between the other plays. To fi x the skew, you can change the scaling.

Right-click AVG(corpus_date), choose Edit Colors, then click Advanced. In

the Advanced menu, you can set a custom range; set it to start at 1590 and end

at 1620, which is the range of Shakespeare’s writing career. After you make

this adjustment, you should see lighter bars for the earlier plays, such as King
Henry VI, and darker ones for the later ones, such as The Tempest. Figure 13.6

shows this graph; see if you can tell whether Shakespeare got longer-winded

as he got older.

 Chapter 13 ■ Using BigQuery from Third-Party Tools 473

c13.indd 01:4:8:PM 05/06/2014 Page 473

Figure 13.6: Tableau bar graph of Shakespeare corpus versus word count

Visualizing Your BigQuery Data with BIME

Do you fi nd it a little bit odd that to visualize your data in the cloud, you have

to install software on a Windows desktop machine to access your data? After

all, your data lives in the cloud, so why can’t you access it via the cloud?

For the cloud-o-philes, BIME Analytics offers a robust cloud-based data

visualization option that works from any fl ash-enabled web browser. This

enables you to analyze your data that lives in the cloud while keeping it in the

cloud. BIME can connect to dozens of different types of data sources, includ-

ing BigQuery, and visualize them live. It also offers an option to pull your data

out of whatever datastore it is currently in and store it in a BigQuery dataset. It

provides a variety of extract, transform, and load (ETL) options to help fi nesse

your data into a format that makes it easy to query. We won’t go into the ETL

option further, but using BIME to automatically import your data into BigQuery

can be a great way to save you the overhead of managing it yourself.

BIME may be cloud-based, but it is not free. You should consult the pric-

ing page at http://www.bimeanalytics.com/pricing.html to determine

whether it is within your budget. BigQuery is only available in the Big Data

pricing tier, which might seem cheap if you’re running a large enterprise, but it

might seem expensive if you just have a couple of tables you’d like to turn into

http://www.bimeanalytics.com/pricing.html

474 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 474

pretty graphs. Like Tableau, BIME has a free trial that you can use to try it out

while you’re deciding if it is right for your needs.

Connecting BIME to Your BigQuery Tables

In order to use BIME with BigQuery, follow these steps:

 1. Sign up for BIME by clicking on the Try BIME Free button at http://www

.bimeanalytics.com/index.html. After you complete the signup process,

you will receive a custom URL that you can use to connect to the service.

For our trial, it was http://bqtrial.bimeapp.com.

 2. Navigate to the custom BIME URL and click on the Create Connection,

which should be visible on the landing page. After clicking it, it brings up

the Create Connection dialog box. Figure 13.7 shows the various options,

with BigQuery in the bottom-left corner.

Figure 13.7: BIME create connection dialog box

 3. Select BigQuery and then press Next. You’ll be prompted to name the

connection; call it Shakespeare because you want to connect to the public

shakespeare table.

http://www.bimeanalytics.com/index.html
http://bqtrial.bimeapp.com

 Chapter 13 ■ Using BigQuery from Third-Party Tools 475

c13.indd 01:4:8:PM 05/06/2014 Page 475

 4. Click the Connect with Google button. This brings up a web page with

the standard Google OAuth2 prompt. It asks you to log in to your Google

account (if you’re not already logged in), and then whether you want to

allow BIME to view and manage your data in BigQuery. After you approve

the access, you have to cut and paste a verifi cation code that BIME then

uses to access your BigQuery tables in the future.

 5. Next, click the … next to the Table prompt. This brings up the BigQuery

Explorer dialog box, as shown in Figure 13.8, where you can select the

project, dataset, and table that you’d like to connect to. For this example,

select publicdata, samples, and then shakespeare. Press Select, and it

takes you back to the General tab with the table name fi lled out.

Figure 13.8: BIME BigQuery Table Explorer dialog box

 6. Click on Next one more time, and BIME will pull down the schema of

the table and present you with a dialog box that lets you select columns.

If you want all your columns to be available in your visualizations, you

can just ignore this dialog box and press Next again.

 7. The Cloud Storage tab is where you can tell BIME where you want to store

your data if you want to store it elsewhere. If you have Oracle data, for

476 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 476

example, that you want to visualize by storing it in the cloud in BigQuery,

you can select Google BigQuery, and BIME can take care of ingesting all

your Oracle data into BigQuery. Because the Shakespeare table is already

in BigQuery, you can just select None and press Save. Because this was

the last required tab, it then takes you to the Analysis screen, where you

can create your visualizations.

Creating a Visualization

To compare BIME to Tableau, we will create the same bar graph that you did

in the Tableau section. You should note that like Tableau, BIME often runs que-

ries as a result of small changes you make in the UI; these queries can add up

in cost, especially if you’re visualizing large tables. To create the Shakespeare

corpus length graph:

 1. Select the Shakespeare connection that you just created, because you

want to analyze the Shakespeare table and click Load. This brings up the

analysis pane, which looks a lot like a Tableau workspace.

 2. Drag the corpus entry from the Axis of Analysis menu to the Columns

bar, which means you’re going to be visualizing on a per-corpus basis.

Then drag the word_count measure to the Measures bar. (Note there are

two places labeled Measures; you want the one on the right that doesn’t

already have word_count listed.) This will bring up a table showing word

counts per corpus.

 3. To create a bar chart with this information, click Grid to open up the visu-

alization menu and then Column to create a columnar bar chart. Now you

should see each corpus listed along the bottom row with the word count

as the height of the column.

 4. Since our desired visualization uses color to indicate the date the play was

written, drag corpus_date to the Color tab. You should then see red and

green bars.

 5. The default aggregation that is used is SUM(), but for corpus_date, this

doesn’t make sense; adding multiple dates together doesn’t mean anything.

Moreover, the SUM() aggregation doesn’t make sense here because the

corpus_date entries matching a particular corpus all have the same value.

MIN() is a better choice, although MAX() or AVG() would also produce the

same visualization. Select the drop-down menu in the Color tab and pick

MIN() from the available options.

 6. Remember from the Tableau example that two of the corpora have a date

of 0, which skews the coloring. On the right side, under Measures, there

are sliders that let you select the range to use. Pick something like 1500

as the minimum, which should give enough dynamic range so that you

 Chapter 13 ■ Using BigQuery from Third-Party Tools 477

c13.indd 01:4:8:PM 05/06/2014 Page 477

can see the difference between the various plays. Figure 13.9 shows the

fi nal visualization, which shows the variation between the corpus date

and corpus length of Shakespeare’s oeuvre.

Figure 13.9: Shakespeare corpus versus word count in BIME

Other Data Visualization Options

There are a lot of ways you can visualize your BigQuery data; you have just seen

two commercial solutions. If you’re cost-sensitive, or just want to make a quick

graph or two, Tableau and BIME might not be the most cost-effective option.

(Although both do have free trials to let you decide if they’re right for you.)

There is an up-to-date list of popular third-party visualization tools at https://

developers.google.com/bigquery/third-party-tools, which includes both

Tableau and BIME but also other options such as Metric Insights and QlikView.

If you don’t want to spend money on your visualizations, you can also build

nice graphs via your favorite spreadsheet software. Microsoft Excel has advanced

charting features, and we’ve shown two different ways to use it with BigQuery

(via the BigQuery Excel Connector, described in Chapter 12, or via the ODBC

driver, described earlier in this chapter). Google Docs’ graphing capabilities

are more limited, but it has the advantage of being free, and it works from any

web browser.

https://developers.google.com/bigquery/third-party-tools
https://developers.google.com/bigquery/third-party-tools

478 Part IV ■ BigQuery Applications

c13.indd 01:4:8:PM 05/06/2014 Page 478

You can also build any visualization you want by writing a little bit of cus-

tom code; this may sound like a lot of work but is simpler than it sounds. In

addition, writing your own graphing code lets you customize your graphs to

show exactly what you want to show, not what some tool decides to show you.

Chapter 8, “Putting It Together,” provided sample code to build dashboards for

a data collection app, using Google’s charting API, Gviz (https://developers

.google.com/chart/interactive/docs/reference) for bar graphs and dygraphs

(http://dygraphs.com/) for time series graphs.

If neither of those is powerful enough for you, d3 (http://d3js.org/) is a

general-purpose, open source JavaScript library for turning data into HTML

DOM elements. It can build some impressive graphs and animations, and there

are a number of extensions available for building different types of charts.

That said, it is also more involved and can be a lot of work to set up even fairly

simple graphs.

Summary

This chapter walked you through a number of third-party tools built on top

of BigQuery. Some of these tools, such as Tableau and BIME, enable you to

visualize your data; others, such as the Simba BigQuery ODBC driver, enable

you to integrate BigQuery into your existing software with little or no changes

necessary. The section on Encrypted BigQuery showed how you can encrypt

your data client side, such that Google’s servers never see the unencrypted data.

In addition, this chapter described two different mechanisms for scientifi c

computing using BigQuery: bigrquery, which lets you run BigQuery queries

from R, and Python pandas, which lets you do the same from Python’s scientifi c

computing environment. Both of these systems are open source, so if you want

to see how they work or reuse any of the components, you can do so fairly easily.

Along the way, you graphed the relationship between the lengths of

Shakespeare’s plays and when he wrote them, built a machine-learning model

to classify Shakespeare plays by genre, and clustered those plays into histories

and other plays.

Finally, you saw only a sampling of the currently available third-party tools

for BigQuery; the SAS connector, visualization options such as QlikView, and

ETL tools such as Informatica and Pervasive were not mentioned. It is likely

that by the time you read this chapter, still more options will be available. To

see more up-to-date sampling of available third-party tools, check out the list

at https://developers.google.com/bigquery/third-party-tools.

https://developers.google.com/chart/interactive/docs/reference
https://developers.google.com/chart/interactive/docs/reference
http://dygraphs.com
http://d3js.org
https://developers.google.com/bigquery/third-party-tools

479

c14.indd 01:14:15:PM 05/08/2014 Page 479

For users of certain Google services, BigQuery enables more direct access to their

data contained in the service. The current set of services supporting BigQuery

enhanced access includes:

 ■ Google Analytics

 ■ AdSense

 ■ Google Cloud Storage (GCS)

These services, as part of their core functionality, have dashboards that enable

you to access summarized views of your data with varying degrees of custom-

ization available in their interfaces. What is generally true is that a fair amount

of aggregation is applied to the underlying data in your account before it is

rendered. These views are designed to cover the common use cases. However,

if you have more advanced analysis requirements, especially if you need to

combine the data in the service with external data sources, you end up wanting

direct access to the data. These services support using BigQuery to give access

to the un-aggregated data. Note that this has the advantage that you do not

have to download the data to perform useful analysis. For heavy users of these

services, this is quite important because the volume of data collected by these

services can be substantial, and simply downloading and storing the full data

can be challenging, to say nothing of analyzing it effi ciently. Of course, you can

still use BigQuery to export or download your data if required.

C H A P T E R

14

Querying Google Data Sources

480 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 480

Unfortunately, the access method is not at all uniform across these services, so

each of the services just listed is covered in a separate section. BigQuery-based

access is considered an advanced feature of these services, so we assume that

you are already familiar with the basic functionality of the service. The focus

is on enabling access and the details of how the data appears in BigQuery as it

relates to formulating queries.

Google Analytics

Google Analytics (http://www.google.com/analytics) is one of the leading

web traffi c analysis services. It enables you to monitor and analyze the behavior

of your users across your web properties and mobile applications. The service

records hits, a page view, or any other developer-defi ned action from individual

users and organizes them into visits, where a visit roughly corresponds to a

session of activity. Developers can instrument the logging to include a variety

of custom dimensions or values that are saved as part of the hit or visit. The

service front end allows you to view this data in a variety of reports and dash-

boards that support a substantial amount of customization. Direct access to

individual hits organized into visits is available via BigQuery, but it requires

that you have a Premium account. A Premium account requires a USD 150,000

annual contract, so the target audience is high-traffi c sites that are generating a

substantial amount of data. Hopefully, in the future this feature will be avail-

able to additional account types.

Setting Up BigQuery Access

When Google Analytics is integrated with BigQuery, it pushes a copy of your

daily traffi c data into BigQuery every day. When this data is in BigQuery, you

can manage it independently of your Google Analytics account. For example,

you can control the ACL and lifetime or make additional copies as you see fi t.

To start you need to contact your Premium support manager https://support

.google.com/analytics/answer/3437618) and give him two bits of information:

 ■ BigQuery project ID that should receive your data

 ■ Google Analytics view ID

Your Google Analytics account can handle multiple properties and each

property can have more than one view. A view is a subset of the data (defi ned

http://www.google.com/analytics
https://support.google.com/analytics/answer/3437618

 Chapter 14 ■ Querying Google Data Sources 481

c14.indd 01:14:15:PM 05/08/2014 Page 481

by custom fi lters) collected for a single property. By default, every property

has a single view that contains all the data for the property. Currently Google

Analytics supports only exporting a single view per property to BigQuery, so

most likely you want to have this unfi ltered view pushed into BigQuery because

then you can run queries over all the data for your property. When you submit

this request, you will be instructed to modify the ACL of your project so that

Google Analytics can write data to your project. Specifi cally, you will be asked

to add edit permissions on the project for the account:

analytics-processing-dev@system.gserviceaccount.com

After you have done this, support updates your account confi guration so that

a nightly job pushes your data into the project. A dataset will be created with a

name equal to the view ID you specifi ed in the request, and within that dataset

a daily table will be created some time after the end of the day. The tables have

the following naming pattern:

ga_sessions_YYYYMMDD

Table Schema

Fortunately, you can experiment with this feature without going through all

this setup or even signing up for a Premium account. The Google Analytics

team provides a sample dataset that you can use to understand the nature of

the data generated. You can add this data to your view in the BigQuery UI by

adding the project google.com:analytics-bigquery using the project menu

(the drop-down next to the project name, Switch to Project ➪ Display Project).

Alternately, you can navigate to the BigQuery UI link https://bigquery.cloud

.google.com/project/google.com:analytics-bigquery.

After you add the project, the sample dataset (LondonCycleHelmet) appears

in the navigation panel. It contains two tables:

 ■ ga_sessions_20130910

 ■ refunds_201309

For now you can ignore the second table. The fi rst table is the sample table

that contains data that corresponds to what Google Analytics collects when

users interact with a web property. Selecting the table displays a complicated

schema that has a large number of fi elds, as shown in Figure 14.1.

mailto:dev@system.gserviceaccount.com
https://bigquery.cloud.google.com/project/google.com:analytics-bigquery

482 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 482

Figure 14.1: Google Analytics sample data

This schema is a great example of leveraging BigQuery’s capability to represent

nested and repeated structures in a record. To help understand the schema, it

is useful to look at a stripped down version that highlights the most important

properties and nested structures. We have used italics to indicate fi elds that are

records containing nested fi elds and boldface to indicate fi elds that are repeated.

Note that we have fi elds that are bold and italic to indicate that they are repeated

records, and we have repeated fi elds that appear within a repeated fi eld.

 ■ visitorId

 ■ date

 ■ totals

 ■ trafficSource

 ■ device

 ■ customDimensions

 ■ hits

 ■ time

 ■ referrer

 ■ page

 ■ transaction

 ■ customVariables

 ■ customDimensions

 ■ customMetrics

 Chapter 14 ■ Querying Google Data Sources 483

c14.indd 01:14:15:PM 05/08/2014 Page 483

This structure may appear rather complex, especially when compared to

schemas in relational databases. However, it is quite natural considering the

data collected. As we discussed, Google Analytics organizes user actions (hits)

on your web property into sessions (visits). Each record in this table corresponds

to a single visit, and the visit contains the corresponding list of hits. Each visit

has a fi eld describing data that is common across all the hits in the visit, for

example, the device used to access your property. Each hit subrecord contains

data specifi c to the hit, for example, the page that was accessed.

As we mentioned earlier, the data collected can also be customized. Google

Analytics allows you to instrument your application and add data to each record;

these are recorded in the repeated custom[Variables/Dimensions/Metrics]

fi elds. Dimensions that are common across hits appear at the top level, and hit-

specifi c custom properties appear within each hit record.

The totals fi eld that appears at the top level is actually a summary of the

hits collection. In principle it is possible to compute the information present

in the totals from the collection of hits, but it is convenient to have these visit

metrics precomputed.

Querying the Tables

Now that you have a basic feel for the shape of the data, try a simple query. In

the queries that follow, the table name has been abbreviated to meet formatting

requirements, but the queries in the supporting material for this chapter use

the fully qualifi ed name.

SELECT
 device.browser,
 SUM(totals.bounces)/SUM(totals.visits) bounce_rate
FROM [LondonCycleHelmet.ga_sessions_20130910]
GROUP BY 1

This is a simple query that generates the bounce rate broken down by browser.

This query is quite uninteresting because you could easily access the same data

along with a nice chart with the Google Analytics web interface. It is worth

verifying that the results you get from a simple query match what you see in the

web interface. This can help verify that the correct data is being transferred to

your dataset. But, you are actually interested in the new analysis that becomes

feasible after you can access the raw hit data. Here is a query that leverages the

structure of the data and BigQuery’s more advanced query features to compute

a more interesting result.

SELECT
 yellow,
 orange,

484 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 484

 SUM(TotalTime)/SUM(Visits) avg_time
FROM (
 SELECT
 MAX(IF(hits.page.pagePath CONTAINS 'yellow', 1, 0))
 WITHIN RECORD yellow,
 MAX(IF(hits.page.pagePath CONTAINS 'orange', 1, 0))
 WITHIN RECORD orange,
 totals.timeOnSite TotalTime,
 1 AS Visits
 FROM [LondonCycleHelmet.ga_sessions_20130910])
GROUP BY 1, 2

The “Repeated Fields” section in Chapter 10, “Advanced Queries,” introduced

the scoped aggregation feature that allows you to control aggregation opera-

tions. The feature is used here to compute new derived properties for visits:

 ■ orange indicates whether a user visited a web page with “orange” in the

path.

 ■ yellow indicates whether a user visited a web page with “yellow” in the

path.

You can then use these derived properties as dimensions and compute the

average time spent per visit broken down by these dimensions.

After you understand the schema of the records, you can work with the data

in these tables just like any other table in BigQuery. As mentioned earlier, one

of the most useful features of having your Google Analytics data accessible in

BigQuery is that you can join it with other data you have uploaded. The sample

dataset contains a refunds table with a TransactionId fi eld that can be joined

against the hits.transaction.transactionId fi eld in the traffi c data table.

For completeness here is a query that performs a join to compute the average

refund broken down by traffi c source. All the techniques used in the query

should be familiar from Chapter 10. Note the use of FLATTEN to allow joining

with a repeated fi eld.

SELECT
 traffic_data.source,
 SUM(refunds.RefundAmount)/COUNT(traffic_data.tid) refund
FROM FLATTEN(
 (SELECT
 trafficSource.source source,
 hits.transaction.transactionId tid
 FROM
 [LondonCycleHelmet.ga_sessions_20130910]
), tid) traffic_data
INNER JOIN
 [LondonCycleHelmet.refunds_201309] refunds
 ON traffic_data.tid=refunds.TransactionId
GROUP BY 1

 Chapter 14 ■ Querying Google Data Sources 485

c14.indd 01:14:15:PM 05/08/2014 Page 485

The discussion of querying this data wraps up with a recipe for dealing with

custom dimensions, metrics, and variables. These dynamic properties can be a

bit awkward to work with because they do not fi t comfortably in a query lan-

guage intended to work with explicitly specifi ed fi elds. You can use the WITHIN

operator to pivot these fi elds in an inner query so that the outer query can treat

your custom property as a regular fi eld. Here is a sample query:

SELECT * FROM (
 SELECT
 visitId, hits.hitNumber,
 MAX(IF(hits.customDimensions.index = 1,
 hits.customDimensions.value, NULL))
 WITHIN hits.customDimensions Item,
 MAX(IF(hits.customDimensions.index = 3,
 hits.customDimensions.value, NULL))
 WITHIN hits.customDimensions Level
 FROM [LondonCycleHelmet.ga_sessions_20130910])
LIMIT 100

In the example, the outer query was a trivial limit query. A realistic query

would use the generated Item and Level fi elds to do something useful.

Beyond querying, you can also export these tables to GCS if you want to access

the data as JSON. Because the tables have a nested schema you cannot directly

export them as CSV. However, you could run a query and export the resulting

table as CSV. You also need to manage the lifetime of these tables because they

count toward your storage usage in BigQuery.

Google AdSense

Google AdSense is a publisher product that allows content owners to use adver-

tisements from Google’s inventory, collected from its network of advertisers,

to generate revenue from their sites. The Google AdSense interface allows

publishers to monitor the performance of ads on their sites and discover the ad

units that work well with their sites. For large publishers it is more useful to

have programmatic access to this data and AdSense provides an API to access

this data and now also provides access to this data through BigQuery. The data

accessible through either method does not provide details of individual impres-

sions or clicks. Instead it provides daily rollups along important dimensions (ad

unit, domain, channel, and others). The amount of data can still be substantial

because a large site might display thousands of distinct ads each day, so it is

still important to fi lter and aggregate the data, which is simple in BigQuery.

The data is made available differently from Google Analytics. All users access

the same dataset:

google.com:adsense-reports:Reports

486 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 486

Once again you can display this dataset in the BigQuery UI by navigating

to the dataset URL https://bigquery.cloud.google.com/project/google

.com:adsense-reports.

This dataset is readable by any BigQuery user, but the contents of the table

depend on the user querying the table. The data made available corresponds to

the AdSense accounts that you are authorized to access. This has the advantage

that there is no special required setup; if you have access to BigQuery, you have

access to your AdSense data in BigQuery. However, it has the disadvantage

that it is not actually possible to share queries because different users see dif-

ferent data, and you do not have any control over the lifetime of the data. The

result of a query over these tables is a regular (either anonymous or named)

BigQuery table, which you can preserve indefi nitely and share independently

of the source data.

Table Structure

The AdSense dataset contains fi ve different tables, as shown in Figure 14.2,

which represent the same ad serving data aggregated by different dimensions.

 ■ DailyDomainReport

 ■ DailyReport

 ■ DailyAdUnitReport

 ■ DailyUrlChannelReport

 ■ DailyCustomChannelReport

Figure 14.2: AdSense dataset in BigQuery

https://bigquery.cloud.google.com/project/google.com:adsense-reports

 Chapter 14 ■ Querying Google Data Sources 487

c14.indd 01:14:15:PM 05/08/2014 Page 487

Each of these tables has a date fi eld so that you can access daily records. They

have a common set of metric fi elds that measure the performance of ads:

 ■ ad_requests

 ■ matched_ad_requests

 ■ individual_ad_impressions

 ■ clicks

 ■ earnings

 ■ page_views (only present in DailyReport and DailyDomainReport)

In addition, there are a few dimension fi elds present in all the tables:

 ■ ad_client_id

 ■ product_code

 ■ product_name

The remaining dimension fi elds vary across the fi ve tables and are described

next in the description of each table. The fi elds in these tables should be familiar

to users who have managed AdSense accounts. For a full explanation of indi-

vidual fi elds, refer to the AdSense API documentation (https://developers.

google.com/adsense/management/).

DailyDomainReport

The domain-level report is the least granular, broken down only by the domain

of the web page hosting the ads. It has a single dimension in addition to the

common dimensions.

 ■ domain_name

Here is a query that extracts page views for all days since January 1, 2014, for

a single domain:

SELECT date, page_views
FROM [google.com:adsense-reports:Reports.DailyDomainReport]
WHERE domain_name = 'www.asciiflow.com'
 AND date >= '2014-01-01'
ORDER BY 1

Note that the date fi eld in these tables is a string fi eld formatted as YYYY-MM-DD.

https://developers.google.com/adsense/management
https://developers.google.com/adsense/management
http://www.asciiflow.com

488 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 488

DailyReport

Here are the dimensions available in the DailyReport table:

 ■ ad_format_[code, name]

 ■ bid_type_[code, name]

 ■ targeting_type_[code, name]

 ■ platform_type_[code, name]

 ■ country_[code, name]

You can see that each dimension comes in code and name variants. The name

is a human-friendly representation of the code. It is often nicer to work with

codes because they are more strictly specifi ed. For example, the country_code

fi eld follows the ISO 3166-1 alpha-2 standard for specifying countries. You can

easily generate a table containing the mapping from code to human-readable

representation.

SELECT ad_format_code, ad_format_name
FROM [google.com:adsense-reports:Reports.DailyReport]
GROUP BY 1, 2

The results of this query are shown in Table 14.1.

Table 14.1: Ad Format Code to Name Mapping

AD_FORMAT_CODE AD_FORMAT_NAME

dynamic_image Animated image

Flash Flash

Html Image

text Text

You can save the resulting table permanently for use in joins to map from codes

to readable values. If you do this, you would want to periodically regenerate the

map because it can grow over time depending on the ads served on your site.

DailyAdUnitReport

This table contains metrics for each of the ad units that you have defi ned across

the sites in your account. Because you control the defi nition of ad units, the

amount of data in this table depends on how many separate ad units you defi ne.

The following dimensions are available in the table:

 ■ All the dimensions available in the DailyReport table

 ■ ad_unit_id

 Chapter 14 ■ Querying Google Data Sources 489

c14.indd 01:14:15:PM 05/08/2014 Page 489

 ■ ad_unit_[code, name]

 ■ ad_unit_size_[code, name]

Three separate fi elds, the id, code, and name, identify an ad_unit. AdSense

assigns the id and code, and the account manager chooses the name for the

unit. Because you can control the name, it is the simplest fi eld to use for joining

against other data you might have describing the ad unit. Here is a query that

shows the sizes of ad units served on a given day:

SELECT ad_unit_name, ad_unit_size_code
FROM [google.com:adsense-reports:Reports.DailyAdUnitReport]
WHERE date = '2014-01-04'
GROUP BY 1, 2

Because this table has all the dimensions present in the DailyReport table,

it may seem like it makes that table redundant. However, note that the page

view metric is only available in the DailyReport table. Because a single page

view can contain multiple ad units, it is not possible to associate a page view

with rows in the ad unit table, which is why the metric does not appear in this

table. To use page views (generally to normalize totals by the number of page

views) you must work with the DailyReport table.

DailyUrlChannelReport

 Just as the DailyAdUnit table is a breakdown of daily totals by ad units, the

DailyUrlChannelReport table contains the metrics broken down by the URLs on

which the ad unit was served. However, you must explicitly create URL chan-

nels to track the URLs you are interested in before data will be collected for a

channel. The AdSense documentation describes how to set up a URL channel.

The dimensions in this table are:

 ■ All the dimensions available in the DailyReport table

 ■ url_channel_id

 ■ url_channel_name

Like with the ad unit name, you control the channel name when you confi g-

ure it. Here is a sample query over this table that computes click-through rates

by URL channel:

SELECT
 url_channel_name,
 SUM(clicks)/SUM(individual_ad_impressions) ctr
FROM [google.com:adsense-reports:Reports.DailyUrlChannelReport]
WHERE date >= '2014-01-01'
GROUP BY 1

490 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 490

DailyCustomChannelReport

You can confi gure custom channels in your accounts much like you can

defi ne URL channels. However, with custom channels you control the channel

an ad unit is assigned to rather than have it be fi xed by the URL path. Again,

this table is a breakdown of the DailyReport table with fi elds added to identify

the custom channel.

 ■ All the dimensions available in the DailyReport table

 ■ custom_channel_id

 ■ custom_channel_[code, name]

The coverage of the individual tables concludes with a fi nal example comput-

ing the revenue rate broken down by custom channels.

SELECT
 custom_channel_name,
 SUM(earnings)/SUM(ad_requests) revenue_rate
FROM [google.com:adsense-reports:Reports.DailyCustomChannelReport]
WHERE date >= '2014-01-01'
GROUP BY 1

Leveraging BigQuery

As you have seen, all these tables have simple fl at schemas, so constructing

queries is straightforward. These kinds of results are accessible in the AdSense

UI, but the advantage of using BigQuery is that you can use your own reporting

and dashboard framework rather than relying on the AdSense user interface.

For example, you could use a tool like Tableau or the BigQuery Excel Connector

to analyze your data. You could also join the data in these tables with other data

you have, but keep in mind that you do not have much control over the values

of the fi elds, so it may be necessary to transform your data to have fi eld values

suitable for joining against these tables.

You may also want to save a full copy of your data to your own tables. The

advantage of doing this is that you can manage the lifetime of the data and share

it with other users without granting them access to your AdSense account. A

“SELECT *” query with the allowLargeResults fl ag set and a destination table

specifi ed will do the trick. The only downside is that you will have to pay for stor-

age and queries (currently, queries over AdSense data are free) over your copy of

the data. However, given the volume of data this should not be signifi cant.

 Chapter 14 ■ Querying Google Data Sources 491

c14.indd 01:14:15:PM 05/08/2014 Page 491

Google Cloud Storage

Throughout this book we have used GCS as a way to move data in and out of

the Google Cloud. The most common use case for GCS is to host static content

in web applications and for sharing large binary fi les. In these scenarios it is

useful to inspect GCS access logs to understand how the content is used. GCS

supports confi guring buckets so that operations on objects in the bucket are

eventually exported to a different logging bucket. These fi les can be imported

into BigQuery, so you can analyze GCS logs without having to download and

process the fi les. This section discusses how to set up and manage this process.

The process for setting up logging in GCS requires choosing a bucket that

will be used to store your logs and then using the gsutil tool to update the

bucket you need to track with confi guration indicating that access and usage

logs should be written to the logging bucket. The full details are available at:

https://developers.google.com/storage/docs/accesslogs

Here are the gsutil commands you need to start collecting logs:

$ LOG_BUCKET="bigquery-e2e"
$ gsutil mb gs://${LOG_BUCKET}
$ gsutil acl ch -g cloud-storage-analytics@google.com:W \
 gs://${LOG_BUCKET}
$ LOG_PREFIX="chapters/14/log"
$ SERVING_BUCKET="my-serving-bucket"
$ gsutil logging set on \
 -b gs://${LOG_BUCKET} \
 -o ${LOG_PREFIX} \
 gs://${SERVING_BUCKET}

The fi rst command is required only if the bucket does not exist. The second

command grants access to a service group that will be writing the logs, and the

fi nal command actually enables logging for the bucket. Note that these com-

mands will work only if you update the variables in the snippet to reference

GCS buckets that you administer.

When logging is enabled, two types of fi les, usage and storage, will periodi-

cally be added to the bucket you specifi ed. The usage fi les contain the operations

performed on the bucket and the storage fi les contain the byte-hours of storage

consumed over a 24-hour period. Both of these fi les contain CSV formatted data.

The storage fi les are not particularly interesting because they are trivial and

https://developers.google.com/storage/docs/accesslogs
mailto:analytics@google.com:W

492 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 492

contain only a single record. The rest of this section focuses on the usage fi les

that have a lot more information.

The usage fi le contains a number of fi elds that provide a detailed description

of every operation performed on the bucket. Table 14-2 lists the fi elds available.

Table 14-2: Fields in the GCS Usage Records

FIELD DESCRIPTION TYPE

time_micros Time (microseconds since the Unix epoch) the

request was completed

Integer

c_ip IP address of client String

c_ip_type IP address type: 1=IPV4, 2=IPV6 String

c_ip_region Currently not supplied String

cs_method HTTP request method String

cs_uri Request path (does not include the host) String

sc_status HTTP status code returned to client Integer

cs_bytes Request bytes Integer

sc_bytes Response bytes Integer

time_taken_
micros

Time (microseconds) taken to process the request Integer

cs_host HTTP request host String

cs_referer HTTP referrer header value, if present String

cs_user_agent HTTP user agent header value, if present String

s_request_id Server assigned request ID String

cs_operation GCS operation performed String

cs_bucket Target bucket String

cs_object Target object String

Because the usage log is CSV formatted, it is immediately compatible with

BigQuery, so you can load the data into a BigQuery table with a suitable schema.

GCS provides a reference schema that you can download.

gsutil cp gs://pub/cloud_storage_usage_schema_v0.json /tmp/

If you prefer to use different names for the fi elds, you can modify the fi eld

names in the downloaded schema; the command to load the data will still work.

 Chapter 14 ■ Querying Google Data Sources 493

c14.indd 01:14:15:PM 05/08/2014 Page 493

For the command to load the data into BigQuery, you need to specify the list of

fi les. The log fi les generated conform to a naming scheme:

gs://<log bucket>/<log prefix>_usage_YYYY_MM_DD_hh_mm_ss_<id>_v0

The ID following the timestamp on the fi le is a system-generated string to

avoid name collisions. For example, you might be saving the serving logs of 2

different buckets to the same log bucket and prefi x. In the event that log fi les

are generated in the same second, the ID ensures that one of them does not

clobber the other.

A reasonable scheme is to load all the logs for a day after the last log for the

day has been generated. Because logs are generated hourly, you could set up a

cronjob that executes a couple of hours after midnight UTC to load the previ-

ous day’s logs. Assuming you have a suitable dataset created in BigQuery, the

command would look something like this:

$ LOG_DATASET='ch14'
$ bq mk ${LOG_DATASET}
$ bq load \
 --skip_leading_rows=1 \
 --schema=/tmp/cloud_storage_usage_schema_v0.json \
 ${LOG_DATASET}.gcs_usage \
 "gs://${LOG_BUCKET}/${LOG_PREFIX}_usage_2014_02_*"

You could keep the table more up to date by loading fi les through the day

as they appear, but this requires additional bookkeeping to track which fi les

have been loaded. One strategy is to use load job IDs that contain the suffi x of

the name of the fi le that is being loaded. Then you could have a periodic job

that checks to see which fi les have been scheduled by enumerating jobs and

scheduling jobs for fi les that have no corresponding job ID.

After the data is loaded into BigQuery, you can run all sorts of interesting

queries on your usage data. Here is one to get you started:

SELECT
 HOUR(time) traffic_hour
 SUM(get_bucket) bucket_gets,
 SUM(put_bucket) bucket_puts,
 SUM(head_object) object_heads,
 SUM(get_object) object_gets
FROM (
 SELECT
 USEC_TO_TIMESTAMP(time_micros) time,
 IF(cs_operation = 'GET_Bucket', 1, 0) get_bucket,
 IF(cs_operation = 'PUT_Bucket', 1, 0) put_bucket,
 IF(cs_operation = 'HEAD_Object', 1, 0) head_object,
 IF(cs_operation = 'GET_Object', 1, 0) get_object
 FROM [bigquery-e2e:ch14.gcs_usage])
WHERE

494 Part IV ■ BigQuery Applications

c14.indd 01:14:15:PM 05/08/2014 Page 494

 time >= '2014-02-19 00:00:00' AND
 time < '2014-02-20 00:00:00'
GROUP BY 1
ORDER BY 1

This query computes counts of different types of GCS operations broken down

by the hour for a single day. The USEC_TO_TIMESTAMP conversion is required

because we used the reference schema that defi nes time_micros as an integer fi eld.

Keep in mind that your data has been copied into BigQuery, so you have two

copies of your logs. Depending on how you intend to use this data, you may

want to retain only a single copy. Because your GCS logs are regular fi les in

GCS, you are charged for the storage they consume.

Summary

 This chapter presented a handful of Google products that make large volumes of

data more useful to their customers by exposing it through BigQuery. BigQuery

is useful in this context because it provides a way for customers to operate on

their data rather than simply expose it as bytes they must download and process

before extracting value from it. Although the current list of products enabling

this access is a small fraction of Google services’ universe, over time more

products will follow suit. Hopefully, the manner in which the data is exposed

will also become more uniform across Google products. For now, if you are a

user of one of these products, you can use the recipes described in this chapter

to get more mileage from them.

495

bindex.indd 11:29:38:AM 05/08/2014 Page 495

SYMBOLS
** (asterisk/double), Python,

198
() (parentheses)

nested fi elds, 120
parenthesis matching, query

editor, 54
% (percent symbol), modulo

operator, 321
| (pipe symbol), Tab-Separate-

Values, 176
" (quote character)

bulk loads, 177
table names, 224

[] (square brackets), JSON,
179

A
AaaS. See Analytics as a

Service
ABS(), 321
abstractions, 69–70
Access, 127
access, Datasets(), 129
access control list (ACL)

anonymous tables, 209, 357
datasets, 77–78, 87, 126
Datasets(), 130
Datasets.insert(), 127
Datasets.list(), 129
Datasets.patch(), 131
GCS, 165
Google Analytics, 480

jobs, 85
mobile client, 259
permissions, 73
Project resource, 123
Tables.list(), 136

access tokens
API client library, 103
OAuth, 101–102, 259–260
server-side validation, 260

accessDenied, HTTP errors,
156

access.domain, 127
access.role, 127
access.specialGroup, 127
access.userByEmail, 127
ACID. See Atomic, Consistent,

Isolated, Durable
ACL. See access control list
adapters, third-party tools,

436–452
ad-hoc queries

relational database, 298
Sensor, 42–43

Advanced Options, 56
advanced queries, 305–348

advanced SQL, 306–318
query errors, 334–338
recipes, 338–348
SQL extensions, 318–334

advanced SQL, 306–318
analytic function, 315–318
subqueries, 307–309
tables, 310–315
window functions, 315–318

aggregation
WITHIN, 327–328
cohort analysis, 343
Google Analytics, 483
query language, 225–227
window functions, 317

aliases, 326
allowJaggedRows, 178
allowLargeResults, 205, 213,

221
materialize queries, 295
query errors, 336

allUsers, 150
ALTER TABLE, 22, 437
Amazon EC2, 35, 418
Amazon Redshift, 8, 25
analytic function, advanced

SQL, 315–318
Analytics as a Service (AaaS),

26–29
asynchronous job execution,

28–29
global data namespace,

26–27
Android app, 67

AppEngine, 248
mobile client, 242–252
Sensor, 40–41

Android Development Kit,
242

anonymous tables, 209–210
ACL, 357
garbage collection, 357–358

anti-JOIN, 314–315

Index

bindex.indd 11:29:38:AM 05/08/2014 Page 496

496 Index ■ A–B

Apache Drill, 8, 31
API client library

access tokens, 103
multipart uploads, 169
Python, 57, 66
Resumable Upload, 166

API selector, REST URLs, 108
apiclient.discovery,

build(), 113
API-fi rst service, 51
--apilog, 125–126
APIs console, 49–50

GCS, 64
projects, 46–49
service account

authentication, 62
appcfg.py, 411
appendtoLog(JSONObject

record), 246
AppEngine, 9, 67

Android app, 248
asynchronous job execution,

28
authentication, 259–260
authorization, 73, 259–260
Blobstore, 361
cache, 261
Cloud Datastore, 36
Cloud SQL, 418
dashboard, 240
GCS, 409
Google Cloud Platform, 35
log collection service,

252–253
MapReduce, 405–418
OAuth, 258
projects, 72, 73
Python, 252
rate limits, 265
registration service, 238
scalability, 409
Sensor, 41–42
service account, 49, 73
tables, 261
Task Queue, 264
URLs, 261

AppEngine Datastore, 418
backup

automation, 365–366
bulk loads, 182
data storage, 358–368
mixing types, 366–368
snapshots, 360–365

Cloud Datastore, 36
APP_ID, 410
application_logs, 131

Apps Script
Google Drive, 420–421
HTTP request, 419
queries, 423–424
query results, 424–429
spreadsheets, 419–429

app.yaml, 261
asynchronous HTTP requests,

248
asynchronous job execution,

28–29, 69, 148
AsyncTask, 246
Atomic, Consistent, Isolated,

Durable (ACID), 5, 160–161,
171, 188

authentication
AppEngine, 259–260
bigrquery, 454
command-line client, 59
Google APIs, 96–105
jobs, 84–85
log trampoline, 257–269
OpenID, 98
service account, 62–64

authentication keys, 47
authError, HTTP errors, 156
authorization

AppEngine, 73,
259–260

Google APIs, 96
service account, 105

Authorization, 102
auth.py, 102
auth_uri, 99
availability, storage

architecture, 281–282

B
backendError, HTTP errors,

157
background logging service,

246
BackgroundQuery, 262
backup, 87
BATCH, 213, 220
batch requests, 121–122
BatchHttpRequest(), 121
Bearer token, 102
Big Data, 3–13

cohort analysis, 340
data rate, 12
MapReduce, 12–13
SQL queries, 16–21

Big Data Stack 1.0, 4–5
Big Data Stack 2.0, 5–7
Big Iron, 3–4

BigQuery API, 195–236
features, 208–213
methods, 196–208
query result tables, 208–211

BigQuery Storage API, 9
bigquery_credentials.dat,

100, 101
bigquery_e2e_samples, 66
bigquery.jobs(), 265
BIGQUERYRC, 64
-bigqueryrc, 64
bigquery.tabledata(), 265
bigrquery, 453–454, 460
Bigtable, 5, 6, 32
billing, 85–90

APIs console, 49–50
ColumnIO bytes, 281
projects, 73
queries, 213–221
R, 454

billingNotEnabled, HTTP
errors, 156

BIME
ETL, 473
tables, 473–476
visualization, 473–477

blacklisted, HTTP errors, 156
Blobstore, AppEngine, 361
BOOLEAN, 75, 85, 215
bq
--apilog, 125–126
command-line client, 60–61,

68
job ID, 80

job status, 83
streaming inserts, 188
TableData.list(), 140

bq load, 448
bq show, 79
broadcast JOIN, 288–290

shuffl ed queries, 292–293
B-trees, 282, 296–297
buckets, GCS, 64–65, 164
build(), apiclient.

discovery, 113
build_bq_client(), 105
buildRecord(), 246
bulk loads

ACID, 160–161
allowJaggedRows, 178
AppEngine Datastore

backup, 182
bytes, 163–170

multipart uploads, 168–170
Resumable Upload,

165–168

bindex.indd 11:29:38:AM 05/08/2014 Page 497

 Index ■ B–C 497

character encoding, 177
compression, 179
CSV, 174–176
data formats, 174–182
destination table, 170–174
error handling, 182–186
fieldDelimiter, 176
GCS, 164–165
JSON, 179–181
limits, 186–188
loading data, 160–188
quotas, 186–188

bytes
bulk loads, 163–170

multipart uploads,
168–170

Resumable Upload,
165–168

ColumnIO, billing, 281
query cost, 215

C
C#, 441–443
cache

B-trees, 296–297
dashboard, 261–265, 352
data transformation, 269
queries, 211–212

data storage, 349–354
query results, 350–353
REST transport, 110

cacheHit, 201, 212
cascading, MapReduce,

302–303
Cassandra, 8
CFS. See Colossus

File System
chain of custody, 258
character encoding, bulk

loads, 177
chunk servers, 277–278
client secrets, end-to-end

application, 99
client server protocol,

monitoring service,
247–252

client types, Google account,
48

client_id, 101
ClientLogin, 97
client_secret, 99, 101
client-side encryption,

445–452
cloud analytics, Google Cloud

Platform, 9–10

cloud data warehousing,
24–26

Cloud Datastore, 32, 36
Cloud Hadoop, 10
Cloud SQL, 9, 36, 418
cloud storage. See also Google

Cloud Storage
durability, 356
Google Cloud Platform, 9

Cloudera, 8
CLR. See Common Language

Runtime
code, HTTP errors, 155
cohort analysis, 340–343
collections

common operations, 113–122
paging, 113–117
REST, 122–158

datasets, 126–132
jobs, 144–151
projects, 123–126
TableData, 139–144
tables, 132–139

Colossus, 6, 32–33
Colossus File System (CFS),

277–278, 301
ColumnIO, 32–33, 278–281
Combine phase, MapReduce,

299
/command/<action>, 249
command-line client, 57–64

AppEngine Datastore
backup, 362–363

bq, 60–61
job ID, 80

ls, 60, 63
Python, GCS, 65–66
query errors, 334–335
service account, 62–64

CommandRunner, 249–252
Common Language Runtime

(CLR), 441
compression

bulk loads, 179
ColumnIO, 279–280
Dremel, 279
JSON, 181
UTF-8, 280

computational trees, 297
Compute Engine, service

account, 49
concurrency, 347–348
configuration, 148, 150
ConnectionBuilder, 443
connector App, Excel, 429–430
connector.iqy, 430–431

consistency
AppEngine Datastore

backups, 358
Big Data Stack 2.0, 6
NoSQL, 31

ContentRange, 167
Content-Transfer-Encoding,

169
Content-Type, 168
Controller, MapReduce, 302
controller.yaml, 413, 417
copy, JobConfiguration, 146
Copy jobs, job confi guration, 80
corpus, 222, 286–287, 451, 472
corpus_date, 222
CouchDB, open source

stack, 8
COUNT(), 226, 326

Dremel, 284
query errors, 338

COUNT(DISTINCT field, N),
344–346

COUNT(running.package),
OMIT IF, 329

COUNT(ts), 327
COUNT (*), 327
COUNT DISTINCT, 234
CRAN, 453, 460
CREATE TABLE, 437
createDisposition, 205, 212
createDisposition:

CREATE_IF_NEEDED, job
confi guration, 81

createDisposition:
CREATE_NEVER, job
confi guration, 81

CREATE_IF_NEEDED, 134, 172,
205

CREATE_NEVER, 172, 205, 212
creationTime, 127, 133, 147
Creative Commons, Sensor, 40
credentials, OAuth, 101–105,

260
creds, 101
cron.yaml, 261
CROSS JOIN, 288, 313–314,

347–348
cross-site scripting (XSS), 108
CSV

bulk loads, 174–176, 186
Dygraph, 269
Extract jobs, 390
GCS, 491–492
Google Analytics, 484
GZIP, 179
JSON, 181

bindex.indd 11:29:38:AM 05/08/2014 Page 498

498 Index ■ C–E

curl, 96, 121, 129, 148
Datasets.insert(), 127
Datasets.patch(), 131
Jobs.get(), 149–150
Jobs.list(), 150
streaming inserts, 188, 190
Tables.insert(), 135
Tables.list(), 136
Tables.update(), 137

CURRENT_TIMESTAMP(), 350
cursor, 335
Cutting, Doug, 298

D
DailyAdUnitReport, 488–489
DailyCustomChannelReport,

490
DailyDomainReport, 487
DailyReport, 488
DailyUrlChannelReport, 489
dashboard, 241, 260–271

AppEngine, 240
cache, 261–265, 352
data transformation, 265–269
GCS, 64
tables, 262
web client, 269–271

dashboard, 87
/dashboard/create, 259
Data Defi nition Language

(DDL), 437
data frame, R, 465
data ingestion, 21–22
data rate, Big Data, 12
data sampling, SQL

extensions, 320–323
Data Source Name (DSN),

438–439, 443
data storage, 32–33, 349–379.

See also cloud storage;
Google Cloud Storage;
storage architecture

AppEngine Datastore
backup, 358–368

metatables, 368–378
query cache, 349–354
relational database, 296–297
structured, 22–23
tables

shards, 368–378
snapshots, 354–358

data transformation
dashboard, 265–269
SQL, 315–318

DataFrame, Python Pandas,
465

Dataset resource, 126–127
datasetId, 74, 205
DatasetReference, 205
datasetReference, 112, 127
datasetReference.

datasetId, 127
datasetReference.

projectId, 127
datasets, 69

ACL, 77–78, 87, 126
anonymous tables, 209
date partitioned datasets,

377–378
end-to-end applications,

88–89
Google AdSense, 486
loading data, 54
metadata, 126
metatables, 374
permissions, 77
REST collections, 126–132
structured data storage,

22–23
tables, 109, 126

Datasets.delete(), 131–132
Datasets.get(), 128
Datasets.insert(), 127–128
Datasets.list(), 129, 209
Datasets.patch(), 131
Datasets.update(), 129–131
Datastore, 9. See also

AppEngine Datastore
Cloud Datastore, 32

DATASTORE_BACKUP, 362
date partitioned datasets,

377–378
DDL. See Data Defi nition

Language
Dean, Jeff, 298
declarative language, SQL,

282
defaultDataset, 205
DELETE

REST, 106, 107
Tables.delete(), 139

delete(), REST, 106
deleteContents, 132
description, 127, 129, 134, 137
destination, bulk load, 161–162
destination table

bulk loads, 170–174
materialize queries, 295

destinationFormat, 390

destinationTable, 205
destinationUris, 390, 391
dev_appserver.py, 259, 412
development environment,

66–67
Device, AppEngine Datastore,

359
devtools, 453
dict, 110, 141, 198
direct upload, 21–22
discovery page, 112–113
DONE

bulk loads, 187
jobs, 82
jobStatus, 146

Dremel, 31
Big Data Stack 2.0, 7
compression, 279
query computation, 33–34
query execution, 276–277
serving trees
GROUP BY queries, 284–286
JOIN queries, 287–290
query processing, 283–295

SQL queries, 16
table scans, 276
tail latency, 278

DROP TABLE, 22
dryRun, 81, 146, 218
DSN. See Data Source Name
duplicate, HTTP errors, 157
durability

cloud storage, 356
storage architecture, 281–282

Dygraph, 41, 269–270
dynamic partition decorators,

403–404
dynamic table lists, 375–377
dynamically typed language,

452

E
EACH, 233, 294

cohort analysis, 341
GROUP BY, 337
query errors, 337
SQL extensions, 318

ebq. See Encrypted
EC2. See Amazon EC2
Eclipse IDE, 242, 252
Elastic Computer Cloud. See

Amazon EC2
Encrypted BigQuery (ebq),

436, 445–452

bindex.indd 11:29:38:AM 05/08/2014 Page 499

 Index ■ E–G 499

encrypted_schema.txt, 447
encryption modes, 448–449
endTime, 84, 147
end-to-end applications, 87–90

client secrets, 99
datasets, 88–89
projects, 87–88
tables, 89–90

enumerations,
ColumnIO, 280

error, 146–147, 249
__error__, 364
error handling, 154–158

bulk loads, 182–186
HTTP, 154–157
jobs, 157–158
Jobs.getQueryResponse(),

157–158
Jobs.query(), 157–158
Resumable Upload,

165–166
errorResult, 82–83, 146, 147,

183
errorResult.location, 147
errorResult.message, 147
errorResult.reason, 147
errors

bulk loads, 183
HTTP errors, 155
job status, 82–83

errors.domain, 155
errors.location, 155
errors.locationType, 155
errors.message, 155
errors.reason, 155
etag, 111
ETags, 120–121
ETL. See Extract Transform

and Load
Eventual-At-Least-Once, 188
EVERY, 329, 341
exact count distinct,

344–346
Excel

connector App, 429–430
connector.iqy, 430–431
queries, 429–433
spreadsheets, 429–433
Web Query, 431–433

execute(), 121
execution nodes, SQL queries,

19
expirationTime, 134,

137, 138
extension packages, R, 453

external data processing,
383–433

AppEngine MapReduce,
405–418

Extract jobs, 384–395
Hadoop, 418–419
spreadsheets, 419–433
TableData.list(), 396–405

extract, 146
Extract jobs

AppEngine MapReduce, 412
confi guration fi elds, 390–392
CSV, 390
external data processing,

384–395
job confi guration, 80
parallel execution, 405
partitioned export, 392–395
pattern export paths,

391–392
running, 387–391
TableData.list(), 405

Extract Transform and Load
(ETL), 34–35, 384, 473

F
fi eld projection, 222–225
fi eld restrictions, 120
fieldDelimiter, 176, 391
fi elds. See also nested fi elds;

repeated fi elds
ebq, 447
nested, 76
NULLABLE, 75
Project resource, 124
RECORD, 75–76
REPEATED, 75
REQUIRED, 75
REST, 111

FIRST, 334
FLATTEN, 330–334

Google Analytics, 483
parallel lists, 343–344

FLOAT, 75, 85, 215
float, 367
float_f, 181
FloatProperty, 366
FlumeJava, 6–7
foo, 297
foreign keys, 325
--format, 61
format, bulk load, 161–162
Fox, Armando, 16
free tier, APIs console, 49–50

friendly names, 70, 127
friendlyName, 123–124, 127,

129, 134, 137
FROM, 228, 375, 376
full, 117–120
FULL OUTER JOIN, 312

G
garbage collection, 357–358
GCE. See Google Compute

Engine
GCS. See Google Cloud

Storage
GCS_BUCKET, 410
GcsReader, 387, 388
gcs_reader.py, 385–387
GET

HTTP, 107, 109
Java servlet, 106
Jobs.query(), 200
REST, 106

get(), 106
getDatasetId(), 74
get_oauth2_creds(), 105
GFS. See Google File System
Ghemawat, Sanjay, 298
git, repository, 241
GitHub, 26, 315
global data namespace,

26–27
global fl ags control options,

command-line-client, 60,
62, 64

globs, 165, 392–393
Google account, 45–46

client types, 48
command-line-client, 58
jobs, 84
JSON, 48
password, 46

Google AdSense
DailyAdUnitReport,

488–489
DailyCustomChannelReport,

490
DailyDomainReport, 487
DailyReport, 488
DailyUrlChannelReport,

489
datasets, 486
queries, 485–490
tables, 486–490

Google Analytics
queries, 480–485
tables

bindex.indd 11:29:38:AM 05/08/2014 Page 500

500 Index ■ G–I

queries, 483–485
schema, 481–483

Google APIs, 95–158
authentication, 96–105
authorization, 96

Google Authorization Server,
98, 101

Google Charts, 269–270
Google Cloud Endpoints, 248
Google Cloud Platform, 8–10,

23–26, 34–37
AppEngine, 35
cloud data warehousing,

24–25
Cloud Datastore, 36
Cloud SQL, 36
GCE, 34–35
GCS, 165
projects, command-line-

client, 60
Google Cloud SDK, Python, 58
Google Cloud Storage (GCS),

9, 21, 64–66
AppEngine, 409

MapReduce, 417
Apps Script, 420
buckets, 64–65
bulk loads, 164–165
destinationUris, 391
downloading data, 385–387
ebq, 446
end-to-end applications,

87–88
Extract jobs, 384–385
gsutil, 385
OAuth, 387
Project dashboard, 64
projects, 46
Python command-line-

client, 65–66
queries, 491–494
run_extract_job, 389
setting up, 64–66
usage fi le, 492

Google Cloud Support, 39
Google Compute Engine

(GCE), 9, 33, 34–35, 418–419
Google Developer Console, 70,

71, 73, 105, 259
Google Drive, 420–421
Google File System (GFS), 5, 6,

32, 301
Google Playstore, 238–239
Google Spreadsheets. See

Apps Script

googleapis.com, 108
googlebigquery,

StackOverfl ow.com, 39
GROUP BY
WITHIN, 327–328
broadcast JOIN, 289–290
cohort analysis, 341
COUNT DISTINCT, 234
Dremel serving trees,

284–286
EACH, 337
Jobs.query(), 200
limitations, 291
pseudonym, 448, 450
query errors, 337
repeated fi elds, 235–236
subqueries, 309
window functions, 317
word, 226

GROUP EACH, 233, 234, 342
GROUP EACH BY, 291, 294, 319,

341
GROUP_CONCAT, 338
GSON, 248
gsutil, 68, 385
GViz, Sensor, 41
GZIP, 179, 181, 186

H
Hadoop

Big Data Stack 1.0, 5
external data processing,

418–419
GCE, 34, 418–419
Hive, 298
Name Node, 302
open source stack, 8
shuffl ed queries, 291

Hadoop File System (HDFS),
12–13, 31, 301

Handle, AppEngine Datastore
backup, 362

hardware failures, cloud data
warehousing, 24–25

__has_error__, 364
hash partitioning, 291
HASH sampling, SQL

extensions, 320–321
HAVING, 226–227
HDFS. See Hadoop File

System
Hive, 8, 298, 303
homomorphic, encryption

mode, 449, 451
host, REST URLs, 108

HTTP
access tokens, 102
API

AaaS, 28
Extract jobs, 384–385

Basic Authentication, 97
compression, 179
error handling, 154–157
exact count distinct, 345
GET, 107, 109
libraries, 67
monitoring service, 246
OAuth, 105
POST, 109

AppEngine MapReduce,
413

JSON, 248
monitoring service, 243
Resumable Upload, 166

requests
Apps Script, 419
asynchronous, 248
Jobs.query(), 200
multipart uploads, 168, 170
OAuth, 258
streaming inserts, 190

REST, 106
Resumable Upload, 165, 166
transport layer, errors, 248

I
id, 90
idempotent

destination table, 173
MapReduce, 302

identifi ers, 73–75
IDF. See inverse document

frequency
If-None-Match HTTP

headers, 120–121, 128, 135
immutability, anonymous

tables, 210
Impala, 8
implicit UNION ALL, 310–311
IN, subqueries, 309, 314
indenting, query editor, 53
indexes

primary, 297
row, 396
secondary

AppEngine Datastore
backups, 358

relational database, 297
$<index>-of-<count>, 322
INNER JOIN, 288, 311–312

bindex.indd 11:29:38:AM 05/08/2014 Page 501

 Index ■ I–K 501

input_reader, 411
insert(), 106, 144
insertAll(), 139
insertId, 189–190, 256
INTEGER, 75

GCS, 492
query cost, 215
storage costs, 85

integer, 367
IntegerProperty, 366
INTERACTIVE, query priority,

213, 219–220
intermediate tables, 352–353
internalError, 157
invalid, 185
invalidParameter, HTTP

errors, 156
invalidQuery, HTTP errors,

156
inverse document frequency

(IDF), 456–460
I/O

B-trees, 296
cloud data warehousing, 25
ColumnIO, 278
monitoring service, 246

ItemsInOrder, 326

J
-j, command-line-client, 61
Java

JSON, 248
libraries, 67
monitoring service, 243–245
REST API, 248
servlet, GET, 106

Java Database Connectivity
(JDBC), 436, 444

JavaScript, 265, 269
JDBC. See Java Database

Connectivity
Job History, 55, 57
job ID

Apps Script, 420
destination table, 173
GCS, 493
job references, 78
jobReference, 145–146
Jobs.get(), 149–150, 198
Jobs.insert(), 204
specifying, 79–80

job references, 78–80
Job resource, 145–148
job statistics, 84
job status, 82–84

jobComplete, Jobs.query(),
200, 201

JobConfiguration, 146
JobConfigurationQuery, 205
jobId, 200
jobReference, 145–146, 201
jobReference.jobId, 201
jobReference.projectId, 201
JobRunner, 388
job_runner.py, 388
jobs, 69, 78–85

ACL, 85
authentication, 84–85
confi guration, 80–82
error handling,

157–158
extract, 384–395
REST collections, 144–151

Jobs.get(), 79, 149–150
anonymous tables, 209
bulk load, 161
job ID, 198

Jobs.getQueryResponse(),
157–158

Jobs.getQueryResults(), 87,
151, 199

jobId, 200
RPC, 202–204

Jobs.insert(), 79, 148–149,
204–208

destination table, 173
Jobs.query(), 196, 199
result tables, 208–211
RUNNING, 198
TableData.list(), 206–208
useQueryCache, 211

Jobs.list(), 150–151
Jobs.query(), 87, 109, 151

anonymous tables, 209
error handling, 157–158
Jobs.getQueryResults(),

202–204
Jobs.insert(), 196, 199
Python, 197–198
query result tables, 208–211
RPC, 199–202
useQueryCache, 211

JobStatistics, 147–148
jobStatistics, 84
jobStatus, 146–147
JobStatus.getState(), 113
JOIN
FROM, 228
ON, 308
Big Data Stack 1.0, 4

broadcast, 288–290
concurrency, 348
FLATTEN, 332
Jobs.query(), 200
key cross-product explosion,

315
limitations, 291
performance benchmarks,

20–21
queries, 287–290

Dremel serving trees,
287–290

query language, 227–228
shuffl ed queries, 291–292
SQL, 307
subqueries, 309
tables, 232, 287–288

JOIN EACH, 228, 233
shuffl ed queries, 291–292
SQL extensions, 319–320

JOIN EACH BY, 294
JSON

AppEngine MapReduce, 408
bigrquery, 453
bulk loads, 179–181
error, 249
Extract jobs, 384–385
GCS, 64
Google account, 48
Google Analytics, 484
HTTP POST, 248
Java, 248
Last Log, 238
message, 249
OAuth, 99
references, 74
REST encoding, 110
service account

authentication, 62
streaming inserts, 189
TableData.list(),

141–142
json, 256
JSONHandler, 253
JSONObject, 246

K
__key__, 364
key cross-product explosion,

JOIN, 315
Key.flat(), 364
key-value-pairs, 109
kind, REST, 111
kinds, AppEngine Datastore

backups, 359–366

502 Index ■ L–N

bindex.indd 11:29:38:AM 05/08/2014 Page 502

L
LAST(field), 333–334
Last Log, JSON, 238
lastModifiedTime, 127, 133,

135
latency, cache, 261
LEFT OUTER JOIN, 312
LEFT table, 288
LIMIT
maxResults, 200
ORDER BY, 235, 286
query errors, 335, 336

list()
pageToken, 115
REST, 106
TableData, 139

load, 146, 148
Load jobs

AppEngine MapReduce, 412
job confi guration, 80

loading data, 159–194
bulk loads, 160–188
projects, 54–57
streaming inserts, 188–193

load.inputFileBytes, 148
load.inputFiles, 148
load.outputBytes, 148
load.outputRows, 148
local testing, service account,

259
Location, 167
log collection service

AppEngine, 252–253
log trampoline, 253–260
mobile client, 252–260

log request, monitoring
service, 251–252

log trampoline, 253–260
login service, 258
@login_required, 258
logs.device_*, 89
low latency, 160
LOWER(), 226
ls, 60, 63

M
Mac OS X, 58, 445
MainHandler, 417
Manage Devices, Python, 258
ManageActivity.java, 251
Map phase, MapReduce, 299
MapReduce, 30

AppEngine, 405–418
Big Data, 12–13

Big Data Stack 1.0, 5
Big Data Stack 2.0, 5–6
Controller, 302
partition decorators, 322–323
query execution, 298–303
scaled-up machines, 409
shuffl ed queries, 291

/mapreduce, MainHandler, 417
mapreduce.yaml, 410
master key, ebq, 447
materialize queries, 294–295
MAX

query errors, 338
Tableau, 472

maxBadRecords, 185–186
maxResults, 200

collection paging, 114
Datasets.list(), 129
Projects.list(), 124

MDX, 29
mean time between failures

(MTBFs), 4
Megastore, 6, 7
memory, 90
memory.available, 90
memory.used, 90
message

bulk loads, 185
HTTP errors, 155
JSON, 249

metadata, 77, 126
tables, B-trees, 297

Metastore, 31–32
metatables, 368–378

datasets, 374
methods

BigQuery API, 196–208
REST URLs, 109

Metric Insights, 477
Microsoft Excel. See Excel
millis, 370
MIME, 168–169
MIN

query errors, 338
Tableau, 472

minimal, 117–118
mixer

broadcast JOIN, 290
Dremel, 283–287

mobile client, 242–252
log collection service,

252–260
models.py, 360
modulo operator, 321
MongoDB, 8

monitoring service,
243–252

client server protocol,
247–252

MTBFs. See mean time
between failures

multipart uploads, 168–170
multitenancy, 25–26
MySQL, 36
MySQL Workbench, 51

N
\n, JSON newline character,

179
Name Node, Hadoop, 302
names, 73–75

friendly, 70, 127
object names, GCS, 164
projects, 70–72
tables, 223

parsing, 224
natality, 52
NATURAL JOIN, 326, 331
NEST, 338
NEST(field), 333
nested computation,

subqueries, 309
nested fi elds, 76,

235–236
ColumnIO, 279
fi eld restrictions, 120
relational database, 324

nested schemas, 76
.NET Framework, Simba

ODBC, 440–444
networking, 33
newline character (\n), JSON,

179
NEWLINE_DELIMITED_JSON, 390
none, encryption mode, 448
Non-Uniform Memory Access

(NUMA), 33
NoSQL, 29–30

AppEngine Datastore
backups, 358, 363,
366–368

Cloud Datastore, 36
Cloud SQL, 36
consistency, 31
Megastore, 31
open source stack, 8

NOT IN, 309
notFound, HTTP errors, 157
NTH(field), 333–334

bindex.indd 11:29:38:AM 05/08/2014 Page 503

 Index ■ N–P 503

NULL
float, 367
query cost, 215

null, JSON, 181
Null, storage costs, 85–86
NULLABLE, 75, 76
Tables.update(), 137

nullipotent, 109
NUMA. See Non-Uniform

Memory Access
numBytes, 134
NumPy, 461
numRows, 134

O
OAuth, 98–105

access tokens, 259–260
AppEngine, 258
command-line-client, 58
credentials, 101–105, 260
Excel, 430
fl ow, 100–101
GCS, 387
Google Authorization

Server, 98, 101
HTTP requests, 258
libraries, 67
mobile client, 258
split-tokens, 101–102

oauth2client, 100
object model, 69
object names, GCS, 164
ODBC. See Open Database

Connectivity
OLAP. See Online Analytics

Processing
OLTP. See Online Transaction

Processing
OMIT IF, 328–329
ON

concurrency, 348
JOIN, 288, 308

onHandleIntent(...), 246
Online Analytics Processing

(OLAP), 29
Online Transaction

Processing (OLTP), 29
Open Database Connectivity

(ODBC)
Excel, 429
Simba, 436–444

open source, 30–31
command-line-client, 58
stack, 7–8

OpenID, 98
OpenSSL library, 63, 259
ORDER BY, 224

cohort analysis, 341
Dremel, 286
LIMIT, 235, 286
materialize queries, 294
pseudonym, 450
SQL, 307, 308, 315
TOP, 235
well-defi ned ordering, 370
window functions, 316, 317

OUTER JOIN, 288, 312–313
output_bucket, 412
output_writer, 411
OVER, window functions, 317

P
-p, command-line-client, 60
PaaS. See Platform-as-a-

Service
page tokens, TableList(), 396
pageToken

collection paging, 115–117
Datasets.list(), 129
Jobs.query(), 201
Projects.list(), 124
TableData.list(), 140

paging, collections, 113–117
PAILLIER_SUM(), 451
Pandas, Python, 461–466
pandas.io.bq, 463
pandas.io.gbq, 462
parallel execution

cloud data warehousing,
25–26

Colossus, 32
ColumnIO, 278
Extract jobs, 405
TableData.list(), 405

parallel lists, 343–344
params_validator, 411
parenthesis matching, query

editor, 54
parseError, 156
parsing

ambiguities, 224
identifi ers, 74
JSON, 141, 408
names, 74
REST, 110
table names, 224

PartionedHeader, 395
PARTITION BY, 316–317

partition decorators, SQL
extensions, 322–323

partitioning
date partitioned datasets,

377–378
Extract jobs, 392–395
hash, 291
stable, 323

passwords
ClientLogin, 97
Google account, 46
service account, 47–48

Pasumansky, Mosha, 29
PATCH, 106, 107
patch(), 106, 130, 131
PATH, 58
path, REST URLs, 109
Paxos, Megastore, 31–32
PENDING

bulk loads, 187
jobs, 82
jobStatus, 146

performance benchmarks,
19–21

permissions
ACL, 73
bulk loads, 183
command-line-client, 59
datasets, 77
projects, 72, 73
service account, 49

Pig, 8, 303
pivot, 339–340

Google Analytics, 484
PKCS12, 105
Platform-as-a-Service (PaaS),

35
POSITION(field), 333–334
POSITION, parallel lists, 343
POST

HTTP, 109
AppEngine MapReduce,

413
JSON, 248
monitoring service, 243
Resumable Upload, 166

Jobs.query(), 201
REST, 106, 107
RPCs, 109
TableData.insertAll(),

144
PostgreSQL, 8
Prediction API, 9
pre-joined layout, 324–327
prettyPrint=true, 112

bindex.indd 11:29:38:AM 05/08/2014 Page 504

504 Index ■ P–Q

primary index, 297
primary key, 298
primitive types

JSON, 181
schema, 75–76

printHeader, 391
priority,

JobConfigurationQuery,
205

priority queue, 286
private key, Google Developer

Console, 259
probablistic, encryption

mode, 448
probablistic_searchwords,

encryption mode, 449
processing costs, 86
Project dashboard, GCS, 64
Project ID, 49

Apps Script, 423
job references, 78
project number, 71

project names, 70–72
project number, 70–71
Project resource, 123–124
projectId
JobConfigurationQuery,

205
jobReference, 145
Project resource, 123–124

projection=full, 150
projections, 117–120
projectNumber, 123–124
projects, 45–50, 69

APIs console, 46–49
AppEngine, 72, 73
billing, 73
end-to-end applications,

87–88
Google Cloud Platform,

command-line-client, 60
Google Developer Console,

70, 71
loading data, 54–57
permissions, 73
REST collections, 123–126
structured data storage, 23
web UI, 71

Projects.list(), 123–126
projects/<project id>, 70
protocol

client server protocol,
monitoring service,
247–252

REST URLs, 108
Resumable Upload, 166

provided, float, 367
proxying, REST transport, 110
pseudonym, encryption mode,

448, 450
publicdata:samples, 52, 61,

454
PUT

REST, 106, 107
Resumable Upload, 167, 168

Python
anonymous tables, 210
API client library, 57, 66
AppEngine, 252
AppEngine Datastore,

359–360
batch requests, 121–122
command-line client, GCS,

65–66
dict, 198
ebq, 445
GCS, 385–387
installation, 58
Jobs.query(), 197–198
libraries, 113, 461–462
Manage Devices, 258
OAuth, 101
OpenSSL library, 63
Pandas, 461–466
REST encoding, 110
Sensor, 41
setuptools, 63
TableData.list(), 141–142

PYTHONPATH, 63, 66

Q
QlikView, 477
QUANTILES, 338
queries

ad-hoc
relational database, 298
Sensor, 42–43

advanced, 305–348
advanced SQL, 306–318
query errors, 334–338
recipes, 338–348
SQL extensions, 318–334

allowLargeResults, 213
Apps Script, 423–424
billing, 213–221
cache, 211–212

data storage, 349–354
cost of, 214–218
Excel, 429–433
GCS, 491–494
Google AdSense, 485–490
Google Analytics, 480–485

JOIN, 287–290
Dremel serving trees,

287–290
large results, 213
limits, 218–221
materialize, 294–295
optimization, subqueries,

307
priorities, 213, 219–220
processing

Dremel serving trees,
283–295

query execution, 282–295
quotas, 213–221
R, 454–455
RPCs, 87
shuffl ed, 291–294
SQL

Big Data, 16–21
Dremel, 16
execution nodes, 19
scale-out, 283

subqueries
IN, 309, 314
advanced SQL, 307–309
query errors, 335–336

tables
Google Analytics, 483–485
limits, 221

queries.txt, 55
query
JobConfiguration, 146
JobConfigurationQuery,

205
Jobs.insert(), 204
JobStatistics, 148

query computation, 33–34
Dremel, 33–34

query editor, 52, 53–54
query errors, 334–338

resources exceeded,
337–338

result too large, 334–336
query execution, 275–303

Dremel, 276–277
MapReduce, 298–303
query processing, 282–295
relational database, 295–298
storage architecture, 277–282

Query jobs, 80
query language

aggregation, 225–227
fi eld projection, 222–225
JOIN, 227–228
SQL, 221–236

differences, 232–236

bindex.indd 11:29:38:AM 05/08/2014 Page 505

 Index ■ Q–S 505

subselects, 228–230
table unions, 230–232
tables, 222

query results
Apps Scripts, 424–429
cache, 350–353
intermediate tables, 352–353
size limitations, 220–221
tables, 77

BigQuery API, 208–211
query string, REST URLs,

109–110
query.cacheHit, 148
query_exec, 454
query.totalBytesProcessed,

148
quotaExceeded, 157, 187
quotas, 85–90

bulk loads, 186–188
queries, 213–221

R
R

bigrquery, 453–454
data frame, 465
extension packages, 453
Python, 461
queries, 454–455
third-party tools, 452–461

Range, 167
rate limits, AppEngine, 265
rateLimitExceeded, 156
read_cache(tabledata,TOP_

APPS_ID), 352
rebalancing, 297
recipes, 338–348

cohort analysis, 340–343
concurrency, 347–348
exact count distinct, 344–346
parallel lists, 343–344
pivot, 339–340
trailing averages, 346–347

RECORD, 75–76, 215, 327, 329
record types, structured data

storage, 22
RecordHandler.handle(...),

255
recovery, tables, 373
redirect_uris, 99
Redshift. See Amazon

Redshift
Reduce phase, MapReduce,

300
reference, 87
references, 73–75
refresh tokens, 101–102

registration request,
monitoring service,
251–252

registration service,
AppEngine, 238

relational database, 29–30
data storage architecture,

296–297
nested fi elds, 324
optimization, 297
query execution,

295–298
repeated fi elds, 324
tables, 76

REPEATED, 75, 137
repeated fi elds, 235–236
WITHIN, 327–328
ColumnIO, 279
FLATTEN, 330–334
functions, 333–334
Google Analytics, 483
OMIT IF, 328–329
pre-joined layout,

324–327
query cost, 215
relational database, 324
SQL extensions,

324–334
structured data storage, 22

repository
git, 241
GitHub, 315

Representational State
Transfer (REST)

API, 73, 95, 105–112
Java, 248
SOAP, 105–112

collections, 122–158
datasets, 126–132
jobs, 144–151
projects, 123–126
TableData, 139–144
tables, 132–139

encoding, 110
fi elds, 111
HTTP, 106
resources, 111–112

updating, 117
transport layer, 110
URLs, 107–110

REQUIRED, 75, 76, 137
required, HTTP errors, 156
reserved capacity, 18
resources

Dataset, 126–127
Job, 145–148

Project, 123–124
REST, 111–112

updating, 117
Table, 133–134
TableData, 140

resourcesExceeded, HTTP
errors, 156

response-control, 117–121
responseTooLarge, HTTP

errors, 156
REST. See Representational

State Transfer
ResultHandler, 396
Resumable Upload,

165–168
resumable=true, 169
Retrofi t, 248
Revoke Access, 59–60
RIGHT OUTER JOIN, 17, 288,

312
RIGHT table, 288
row index, TableList(), 396
rows, Jobs.query(), 201
RPCs
Jobs.getQueryResults(),

202–204
POST, 109
queries, 87
TableData.insertAll(), 87

run(), 101
run_extract_job, 389
RUNNING

bulk loads, 187
jobs, 82
Jobs.insert(), 198
jobStatus, 146

running, Sensor schema, 90
running.memory, 90
running.memory.total, 90
running.name, 90
run_partitioned_extract_

job, 395
runtime environment,

AppEngine, 67
run_transform, 413

S
scalability

AppEngine, 409
MapReduce, 302

scaled-up machines, 3–4
MapReduce, 409

scale-out
cloud data warehousing, 24
SQL queries, 283

schema, 22, 69, 75–76

506 Index ■ S–S

bindex.indd 11:29:38:AM 05/08/2014 Page 506

AppEngine Datastore
backup, 363–364

destination table, 171
loading data, 56
nested, 76
parallel lists, 343
Sensors, 90
table

ColumnIO, 279
ebq, 446
Google Analytics, 481–483
log trampoline, 256
monitoring service, 246

TableData.list(), 199
tables, 76
Tables.patch(), 138

Schema, 134
schema, Jobs.query(), 201
Schema.fields, 134
Schema.fields.fields, 134
Schema.fields.mode, 134
Schema.fields.name, 134
Schema.fields.type, 134
scientifi c tools, 452–466
ebq, 445–452
Python Pandas, 461–466
R

bigrquery, 453–454
SciPy, 461
scratch, 132
screen_on, 90
searchwords, encryption

mode, 449
secondary index

AppEngine Datastore
backups, 358

relational database, 297
secondary keys, relational

database, 298
secret key, 47
SELECT
WITHIN, 327
exact count distinct, 344, 346
FLATTEN, 333
LOWER(), 226
queries, 213, 223
SQL, 307, 308
subqueries, 307
window functions, 316, 317

SELECT *, 216, 220, 294, 335
SELECT COUNT(*) FROM, 211
SELECT NOW() + RAND(), 211
selectivity, ColumnIO, 279
selfLink, 112
semi-JOIN, 314–315

Sensors, 39–43
end-to-end applications, 88
schema, 90

server-side validation, 260
service account

AppEngine, 49, 72
authentication, 62–64
authorization, 105
command-line client,

62–64
Compute Engine, 49
local testing, 259
password, 47–48
permissions, 49

project, 73
service account identity, 258
service history, 37–39
service-level agreements

(SLAs), 4
serving trees, Dremel
GROUP BY queries, 284–286
JOIN queries, 287–290
query processing, 283–295

session_url, Resumable
Upload, 167

setuptools, Python, 63
shards

broadcast JOIN, 289, 290
Dremel, 283–287
shuffl ed queries, 291, 292
tables, 368–378

show -j, 83
shuffl e operation, 233
Shuffl e phase, MapReduce,

299–300
shuffl ed queries, 291–294
Simba ODBC, 436–444

.NET Framework,
440–444

SQL, 440
skipLeadingRows, 177–178
SLAs. See service-level

agreements
slicing expressions function,

369
snapshot decorators, 323,

401–402
snapshots

AppEngine Datastore
backup, 360–365

table, 354–358
SOAP

REST API, 105–112
REST encoding, 110
XML, 112

SOME()
cohort analysis, 341
OMIT IF, 329

source, bulk load, 161
sourceFormat, 362
sourceTable.datasetId, 390
sourceTable.tableid, 390
sourceUris, 165, 166, 169
Spanner, 6
split-tokens, OAuth, 101–102
spreadsheets

Apps Script, 419–429
Excel, 429–433
external data processing,

419–433
SQL. See also advanced SQL;

NoSQL
data transformation, 315–318
declarative language, 282
extensions, 318–334
WITHIN, 327–328
data sampling, 320–323
EACH, 318
FLATTEN, 330–334
GROUP EACH BY, 319
HASH sampling, 320–321
JOIN EACH, 319–320
OMIT IF, 328–329
partition decorators,

322–323
pre-joined layout, 324–327
repeated fi elds, 324–334
snapshot decorators, 323
stable partitioning, 323

injection exploits, 269
MySQL, 36
MySQL Workbench, 51
queries

Big Data, 16–21
Dremel, 16
execution nodes, 19
scale-out, 283

query language, 221–236
differences, 232–236

Simba ODBC, 440
standards, 306–307
statements, 10

stable partitioning, 323
StackOverfl ow.com, 39
start(...), 246
startIndex, 114–115
startTime, 84, 147
state, 82, 147, 217
stateFilter, 150
status.errorResult(), 158

bindex.indd 11:29:38:AM 05/08/2014 Page 507

 Index ■ S–T 507

STDDEV(), 284
storage architecture

availability, 281–282
CFS, 277–278
ColumnIO, 278–281
durability, 281–282
query execution, 277–282

storage costs, 85–86
storage_gb, 367
storage.get(), 100
streaming inserts

loading data, 188–193
log trampoline, 255

STRING, 75
query cost, 215, 217
storage costs, 85

String, 113
string_f, 181
string-valued fi elds,

ColumnIO, 280
structured data storage, 22–23
subqueries
IN, 309, 314
advanced SQL, 307–309
query errors, 335–336

subselects, 228–230
sudo, 445
SUM(), 226, 284, 338
SymPy, 461
syntax highlighting, query

editor, 53

T
\t, Tab-Separate-Values, 176
tab completion, query editor,

54
Table Creation Wizard, 54–55
table decorators, 400–401
table ID, 199
Table resource, 133–134
table scan, 276
table unions, 230–232
Tableau, 467–473
TableData

ordering, 141
resources, 140
REST collections, 139–144

TableData.insertAll(), 87,
144

TableData.list(), 87,
140–144

dynamic paritition
decorators, 403–404

ETL, 384

external data processing,
396–405

Extract jobs, 405
Jobs.insert(), 206–208
pageToken, 115
parallel execution, 405
schema, 199
snapshot decorators,

401–402
table decorators, 400–401
table ID, 199
time range decorators, 403

TABLE_DATE_RANGE, 311
table.list(), 322
TABLE_QUERY, 311, 377, 378
TableReader, 396, 400, 402
TableReadThread, 400, 402
TableReference, 74, 205
tableReference, 133
tableReference.datasetId,

133
tableReference.tableId, 133
TableRow, 140
tables, 69, 76–77

advanced SQL, 310–315
anonymous, 209–210
AppEngine, 261
BIME, 473–476
cache, 261
Colossus, 32–33
dashboard, 262
datasets, 109, 126
end-to-end application,

89–90
global data namespace,

26–27
Google AdSense,

486–490
identifi ers, 73–74
JOIN, 232, 287–288
loading data, 54–55
metadata, 77

B-trees, 297
Metastore, 31–32
names, 223

parsing, 224
NATURAL JOIN, 326
queries

Google Analytics, 483–485
limits, 221

query language, 222
query results, 77

BigQuery API, 208–211
recovery, 373
REST collections, 132–139

schema, 75–76
ColumnIO, 279
ebq, 446
Google Analytics, 481–483
log trampoline, 256
monitoring service, 246

Sensor, 42–43
shards, 368–378
size, 19
snapshots, 354–358
streaming inserts, 188–191
structured data storage, 22
UNION, 311
UNION ALL, 310
WRITE_APPEND, 210, 368
WRITE_TRUNCATE, 210

Tables.delete(), 139
Tables.get(), 120, 135–136
Tables.insert(), 134–135
Tables.list(), 136–137
Tables.patch(), 138–139
Tables.update(), 137–138
tables.update(), 76
table.txt, 447
TABLE_UNION(), 311
Tab-Separate-Values, 176
tail latency, 278
Task Queue, AppEngine, 264
Team page, Google Developer

Console, 73
technology stack, 31–34
term frequency (TF), 456–460
third-party tools, 435–478

adapters, 436–452
BIME, 473–477
client-side encryption,

445–452
ebq, 445–452
JDBC, 436, 444
Python Pandas, 461–466
R, 452–461
scientifi c tools, 452–466
Simba ODBC, 436–444
Tableau, 467–473
visualization, 467–478

Thread, 395
time, 90
time range decorators, 403
timeoutMs, 199–200
timer-and-callback

mechanism, 412
TIMESTAMP, 75

GCS, 492
query cost, 215
storage costs, 85

bindex.indd 11:29:38:AM 05/08/2014 Page 508

508 Index ■ T–X-Y-Z

@<timestamp>, 323
token_expiry, 102
token_uri, 99
TOP, ORDER BY, 235
totalBytesProcessed
Jobs.query(), 201
jobStatistics, 84
processing costs, 86
query cache, 211
query cost, 217

totalRows, 201
trailing averages, 346–347
transmit(...), 251
transport layer

HTTP, errors, 248
REST, 110

trigrams, 231

U
UNION, 310–311
UNION ALL, 232, 233, 307,

310–311
UNIX, 96
update(), 106
UPDATE TABLE, 22
update_top_apps(jobs), 352
URIs
DATASTORE_BACKUP, 362
GCS, 164–165

URLs
AppEngine, 261
cache, 261
ColumnIO, 280
exact count distinct, 345
Jobs.query(), 200
REST, 107–110
Resumable Upload, 166
web client, 270–271

usage fi le, GCS, 492
USEC_TO_TIMESTAMP, 494
useQueryCache, 205, 211

user-agent string, ColumnIO,
280

UTF-8
bulk loads, 183
character encoding, 177
ColumnIO, 280
compression, 280
Tab-Separate-Values, 176

V
validator.py, 411
version history, 37–38
visualization

BIME, 473–477
Tableau, 467–473
third-party tools, 467–478
web client, 269

Volley, 248

W
-w, 121
web client, dashboard,

269–271
Web Query, Excel, 431–433
web UI

AaaS, 27
command-line-client, 61
job ID, 80
processing costs, 86
projects, 71

WHERE, 224
cohort analysis, 342
concurrency, 348
Dremel, 286
dynamic table lists, 376–377
GROUP BY, 286
HASH sampling, 321
HAVING, 226–227
JOIN, 288
OMIT IF, 329

relational database, 297
subqueries, 307
window functions, 316

Wickham, Hadley, 461
Wikipedia

broadcast JOIN, 289–290
cohort analysis, 341
CROSS JOIN, 314
HASH sampling, 320
partition decorators, 322
subqueries, 309

wildcards, GCS, 164, 165
window functions, advanced

SQL, 315–318
WITHIN, 327–328, 484
WITHIN RECORD, 333
word, 222, 226
word_count, 222, 231, 234,

286–287, 451
WRITE_APPEND, 81

AppEngine Datastore
backup, 363

destination table, 172–173
JobConfigurationQuery,

205
tables, 210, 368

writeDisposition, 81–82,
205, 210

WRITE_EMPTY, 81, 172,
173, 205

WRITE_TRUNCATE, 81–82, 172,
173–174, 205, 210

XYZ
XML

JSON, 181
monitoring service, 243
REST encoding, 110
SOAP, 112

XSS. See cross-site scripting
X-Upload-* , 167

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Part I BigQuery Fundamentals�����������������������������������
	Chapter 1 The Story of Big Data at Google��
	Big Data Stack 1.0�������������������������
	Big Data Stack 2.0 (and Beyond)��������������������������������������
	Open Source Stack������������������������
	Google Cloud Platform����������������������������
	Cloud Processing�����������������������
	Cloud Storage��������������������
	Cloud Analytics����������������������

	Problem Statement������������������������
	What Is Big Data?������������������������
	Why Big Data?��������������������
	Why Do You Need New Ways to Process Big Data?��
	How Can You Read a Terabyte in a Second?���
	What about MapReduce?����������������������������
	How Can You Ask Questions of Your Big Data and Quickly Get Answers?��

	Summary��������������

	Chapter 2 BigQuery Fundamentals��������������������������������������
	What Is BigQuery?������������������������
	SQL Queries over Big Data��������������������������������
	Cloud Storage System���������������������������
	Distributed Cloud Computing����������������������������������
	Analytics as a Service (AaaS?)�������������������������������������
	What BigQuery Isn’t��������������������������
	BigQuery Technology Stack��������������������������������
	Google Cloud Platform����������������������������
	BigQuery Service History�������������������������������

	BigQuery Sensors Application�����������������������������������
	Sensor Client Android App��������������������������������
	BigQuery Sensors AppEngine App�������������������������������������
	Running Ad-Hoc Queries�����������������������������

	Summary��������������

	Chapter 3 Getting Started with BigQuery��
	Creating a Project�������������������������
	Google APIs Console��������������������������
	Free Tier Limitations and Billing��

	Running Your First Query�������������������������������
	Loading Data�������������������

	Using the Command-Line Client������������������������������������
	Install and Setup������������������������
	Using the Client�����������������������
	Service Account Access�����������������������������

	Setting Up Google Cloud Storage��������������������������������������
	Development Environment������������������������������
	Python Libraries�����������������������
	Java Libraries���������������������
	Additional Tools�����������������������

	Summary��������������

	Chapter 4 Understanding the BigQuery Object Model��
	Projects���������������
	Project Names��������������������
	Project Billing����������������������
	Project Access Control�����������������������������
	Projects and AppEngine�����������������������������

	BigQuery Data��������������������
	Naming in BigQuery�������������������������
	Schemas��������������
	Tables�������������
	Datasets���������������

	Jobs�����������
	Job Components���������������������

	BigQuery Billing and Quotas����������������������������������
	Storage Costs��������������������
	Processing Costs�����������������������
	Query RPCs�����������������
	TableData.insertAll() RPCs���������������������������������

	Data Model for End-to-End Application��
	Project��������������
	Datasets���������������
	Tables�������������

	Summary��������������

	Part II Basic BigQuery�����������������������������
	Chapter 5 Talking to the BigQuery API��
	Introduction to Google APIs����������������������������������
	Authenticating API Access��������������������������������
	RESTful Web Services for the SOAP-Less Masses��
	Discovering Google APIs������������������������������
	Common Operations������������������������

	BigQuery REST Collections��������������������������������
	Projects���������������
	Datasets���������������
	Tables�������������
	TableData����������������
	Jobs�����������
	BigQuery API Tour������������������������
	Error Handling in BigQuery���������������������������������

	Summary��������������

	Chapter 6 Loading Data�����������������������������
	Bulk Loads�����������������
	Moving Bytes�������������������
	Destination Table������������������������
	Data Formats�������������������
	Errors�������������
	Limits and Quotas������������������������

	Streaming Inserts������������������������
	Summary��������������

	Chapter 7 Running Queries��������������������������������
	BigQuery Query API�������������������������
	Query API Methods������������������������
	Query API Features�������������������������
	Query Billing and Quotas�������������������������������

	BigQuery Query Language������������������������������
	BigQuery SQL in Five Queries�����������������������������������
	Differences from Standard SQL������������������������������������

	Summary��������������

	Chapter 8 Putting It Together������������������������������������
	A Quick Tour�������������������
	Mobile Client��������������������
	Monitoring Service�������������������������

	Log Collection Service�����������������������������
	Log Trampoline���������������������

	Dashboard����������������
	Data Caching�������������������
	Data Transformation��������������������������
	Web Client�����������������

	Summary��������������

	Part III Advanced BigQuery���������������������������������
	Chapter 9 Understanding Query Execution��
	Background�����������������
	Storage Architecture���������������������������
	Colossus File System (CFS)���������������������������������
	ColumnIO���������������
	Durability and Availability����������������������������������

	Query Processing�����������������������
	Dremel Serving Trees���������������������������

	Architecture Comparisons�������������������������������
	Relational Databases���������������������������
	MapReduce����������������

	Summary��������������

	Chapter 10 Advanced Queries����������������������������������
	Advanced SQL�������������������
	Subqueries�����������������
	Combining Tables: Implicit UNION and JOIN��
	Analytic and Windowing Functions���������������������������������������

	BigQuery SQL Extensions������������������������������
	The EACH Keyword�����������������������
	Data Sampling��������������������
	Repeated Fields����������������������

	Query Errors�������������������
	Result Too Large�����������������������
	Resources Exceeded�������������������������

	Recipes��������������
	Pivot������������
	Cohort Analysis����������������������
	Parallel Lists���������������������
	Exact Count Distinct���������������������������
	Trailing Averages������������������������
	Finding Concurrency��������������������������

	Summary��������������

	Chapter 11 Managing Data Stored in BigQuery��
	Query Caching��������������������
	Result Caching���������������������
	Table Snapshots����������������������
	AppEngine Datastore Integration��������������������������������������
	Simple Kind������������������
	Mixing Types�������������������
	Final Thoughts���������������������

	Metatables and Table Sharding������������������������������������
	Time Travel������������������
	Selecting Tables�����������������������

	Summary��������������

	Part IV BigQuery Applications������������������������������������
	Chapter 12 External Data Processing��
	Getting Data Out of BigQuery�����������������������������������
	Extract Jobs�������������������
	TableData.list()�����������������������

	AppEngine MapReduce��������������������������
	Sequential Solution��������������������������
	Basic AppEngine MapReduce��������������������������������
	BigQuery Integration���������������������������
	Using BigQuery with Hadoop���������������������������������

	Querying BigQuery from a Spreadsheet���
	BigQuery Queries in Google Spreadsheets (Apps Script)��
	BigQuery Queries in Microsoft Excel��

	Summary��������������

	Chapter 13 Using BigQuery from Third-Party Tools���
	BigQuery Adapters������������������������
	Simba ODBC Connector���������������������������
	JDBC Connection Options������������������������������
	Client-Side Encryption with Encrypted BigQuery���

	Scientific Data Processing Tools in BigQuery���
	BigQuery from R����������������������
	Python Pandas and BigQuery���������������������������������

	Visualizing Data in BigQuery�����������������������������������
	Visualizing Your BigQuery Data with Tableau��
	Visualizing Your BigQuery Data with BIME���
	Other Data Visualization Options���������������������������������������

	Summary��������������

	Chapter 14 Querying Google Data Sources��
	Google Analytics�����������������������
	Setting Up BigQuery Access���������������������������������
	Table Schema�������������������
	Querying the Tables��������������������������

	Google AdSense���������������������
	Table Structure����������������������
	Leveraging BigQuery��������������������������

	Google Cloud Storage���������������������������
	Summary��������������

	Index

