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INTRODUCTION

his book is about the application of graph visualization and analysis for business. Graph 

applications are a unique and valuable resource for discovering actionable insights in 

data. In recent years, analysts inside some of the world’s most innovative companies 

have been intensively exploring graph-based approaches to a gain deeper understanding 

of the dynamics of their businesses while discovering opportunities and strategies for 

improvement.

As the volume, variety, and velocity of available data has grown, so has the need for 

techniques and technology to make sense of it all. Organizations have become acutely 

aware of the limitations of simple dashboard-style charts. Dashboards are good at show-

ing metrics and trends. hey can inform you when areas of business are underperforming 

or outperforming others, but they cannot begin to tell you why, and understanding why 

is key to taking efective action. 

he function of a graph is to represent links between things, revealing the structure 

and nature of relationships in data. Relationships are fundamental to the why and the 

how of things, which is one of the reasons graph analysis and visualization has so much 

potential for value.

Looking back on 20 years of our personal history designing and building new appli-

cations for business and intelligence analysts, the authors realize that graphs have played 

a role in many of those solutions. Today, several of our most signiicant research and 

software development eforts are, in essence, graph-based. 

Despite the utility of graphs, however, little has been published about the application 

of graphs outside of the world of science, and even less has been published about graph 

design. With recent advancements in the capabilities of open source graph tools and 

libraries, graphs have become accessible to every business analyst, but access to knowl-

edge of efective principles and techniques for graph analysis and visualization remains 

relatively limited. Our hope in writing this book is to help change that.

xvii
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WHO THIS BOOK IS FOR

his book is for data scientists and analysts interested in applying graph analysis to 

 decision-oriented problems. he examples provided are taken from the business world, 

but the principles and techniques used are highly relevant to government and non-proit 

problems as well.

No prior knowledge of graph theory or practice is required. A reader who is new to 

graph analysis should ind it useful to read this book from start to inish. More experi-

enced readers may choose to skip ahead to subjects of interest in Part 3, which expands 

in detail on speciic analytic themes. 

Some examples in this book include light programming, but the majority of sample 

applications use point-and-click tools. In both cases, a moderate level of technical apti-

tude will be required.

HOW THIS BOOK IS STRUCTURED

his book is composed of four parts. he irst part represents a broad introduction to the 

subject of graphs. Subsequent parts are organized into progressively more specialized or 

advanced topics. Chapters 3 through 10 are written by Richard Brath, and the remaining 

chapters by David Jonker.

 ■ Part 1—In the irst part of the book, the authors provide an overview of graph 

applications in business and introduce various types of graphs, which are covered 

in more detail in Part 3.

 ■ Part 2—he second part provides a comprehensive look at the major steps in the 

process of graph visualization and analysis.

 ■ Part 3—he third part of this book is organized into distinct analytic themes and 

associated graph types and techniques.

 ■ Part 4—he fourth part focuses on advanced topics representing areas of ongoing 

research, as well as fundamental design principles.
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MATERIALS FOR DOWNLOAD

his book includes online data iles, source code distributions, and graph visualization 

iles to accompany the examples provided. hese Supplemental Materials are organized 

by chapter. he software required to view or run these iles is described in each of the 

chapter examples. Files for download include the following:

 ■ Data files—Most data iles are available in a generic format such as text (.txt) or 

comma-separated values (.csv), which can be read directly into graph software or 

otherwise used by programs. In some cases, there will be two iles, one for nodes 

and one for edges (that is, the links between nodes). In other cases, graph data 

iles will be provided in a graph-speciic ile format, such as .gdf or .graphml. 

hese are formats that many graph tools import directly. 

 ■ Excel files—here are a few Excel spreadsheet examples identiied by .xls or 

.xlsx ile extensions. hese require Microsoft Excel in order to run.

 ■ Graph visualization files—Some examples also include graph visualization iles 

such as .gephi or .cys. hese are iles associated with speciic graph visualization 

software such as Gephi or Cytoscape, respectively. To view these iles, you must 

irst download the free graph visualization software package and install it. See the 

following section for details.

 ■ Python code—Programming examples use the Python language. hese pro-

gramming iles are identiied by the extension .py. Python examples are done in 

version Python 3.x and require the download and installation of Python. See the 

following section for details. 

 ■ HTML and JavaScript—Examples using JavaScript are typically web pages con-

taining JavaScript and identiied as .html iles. hese iles will run in a standard 

modern web browser such as the latest version of Chrome or Firefox.

Source code for the samples is available for download from the following website: 

www.wiley.com/go/GraphAnalysisVisualization

www.allitebooks.com

http://www.allitebooks.org
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WHAT YOU NEED TO TRY THE EXAMPLES

A variety of tools are used in the book to process data and/or visualize data. In order to 

use the data iles previously identiied, the following software may be required: 

 ■ Gephi—he end-user point-and-click free software product Gephi (https://

gephi.github.io/) is used for many of the graph visualization examples in the 

book. Many of the data iles can be imported into Gephi for analysis and visual-

ization. Chapter 7 of the book discusses some of Gephi’s features, building on the 

basic graph analysis process described in Chapters 3 through 6. 

 ■ Cytoscape—Cytoscape (www.cytoscape.org/index.html) is another free end-user 

software tool for graph analysis used in many examples in the book. Many of the 

data iles can also be imported in Cytoscape for analysis and visualization. Chap-

ter 7 discusses some of Cytoscape’s features and also outlines some of the difer-

ences between Gephi and Cytoscape. 

 ■ yEd—yEd (www.yworks.com/en/products/yiles/yed/) is an alternative free end-

user point-and-click software product made by yWorks for graph analysis and 

visualization.

 ■ Excel—Microsoft Excel (http://products.ofice.com/en-us/excel) spreadsheets 

are used in several examples. Excel is not free, but most readers will already have 

a copy, and Microsoft does allow download for time-limited evaluations. Several 

examples also use the NodeXL plug-in for Excel.

 ■ NodeXL—Excel allows developers to create plug-ins that access and enhance 

Excel’s functionality. NodelXL (http://nodexl.codeplex.com/) provides graph 

functionality for social network data retrieval, as well as graph analysis and 

visualization.  

 ■ Python—For programmatic manipulation of data, the Python 3 (https://www.

python.org/) programming language is used in some examples. Python is freely 

available. 

 ■ A modern browser—While any modern web browser should be capable of view-

ing the JavaScript/HTML examples, Chrome (https://www.google.com/intl/

en_us/chrome/browser/) was the browser used by the authors.
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 ■ D3.js—D3 (http://d3js.org/) is a JavaScript library used to create a variety of 

interactive data visualizations in a browser, and used, for example, in Chapter 8.

 ■ Aperture JS—Aperture JS (http://aperturejs.com/) is a JavaScript framework 

library used in some of the examples in the later part of the book, for example, in 

Chapter 12. 

 ■ Titan—A Titan (http://thinkaurelius.github.io/titan/) graph database is used 

for several big data examples found in Chapter 14.

To use these software libraries and tools, you will need to download them yourself 

and install them, with the exception of the JavaScript libraries, D3.js, and Aperture JS. 

hese are packaged with the examples for download from the companion website speci-

ied earlier.

CAVEATS

he chapters in this book use case study examples to illustrate various applications and 

forms of graphs and how to use them yourself. Illustrations make use of real tools and 

real data where possible. here are caveats to keep in mind with both of these. 

While the authors have used open source tools that are freely available to anyone, 

many of these tools are still works in progress and, as such, lack some of the polish and 

robustness you might expect of a inished product. Expect that a little extra patience will, 

at times, be the price of being an early adopter. Another aspect of documenting work-

in-progress tools is that they are more likely to change. Use the tool-related steps in this 

book as general guidelines to a process. If the user interface does not seem to be exactly 

as described, ind the matching items in the newer interface. If you cannot ind them 

yourself, a quick Internet search is usually enough to ind what you’re looking for. 

he other caveat to keep in mind is about the data being analyzed. A book like this 

depends on public data sets. While immense strides have been made in recent years in 

opening up corporate data sets to the public for advancing the art and science of analytics 

and visualization, private data sets are invariably larger and richer. While the analysis 

in this book is true to the data used, in many cases the data is only a proxy or sample of 

what can be found inside a corporate network. Treat the analysis as a template approach 

that can be reproduced with access to all of your data.
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CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of 

conventions have been used throughout the book.

Warnings hold important, not-to-be-forgotten information that is directly rele-

vant to the surrounding text.

Notes indicate notes, tips, hints, tricks, or and asides to the current 

discussion.

Tips are hints or tricks to help you master the information being discussed.

As for styles in the text:

 ■ New terms and important words are highlighted when introduced.

 ■ Keyboard strokes are shown like this: Ctrl+A.

 ■ Filenames, URLs, and code within the text are shown like so:  

persistence.properties. 
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Overview
The irst part of this book introduces the subject of graphs 
and provides answers to two essential questions: why are 

graphs valuable to business analysis, and what kinds of 

opportunities can they be used to discover? A wide spec-

trum of techniques and applications are discussed, draw-

ing from history and real-world experience. Case examples 

are used to illustrate value. 

Before proceeding to a discussion of the process of 

graph analysis in the second part of the book, this over-

view provides you with a sense of just how many types of 
graphs there are and how many areas of potential value 

exist, even within a single business. References serve as a 

guide to subsequent chapters in the third part of the book, 

which cover each class of graph in more detail and step 

through tutorial style applications of graph analysis. 

Table P1-1 describes the topics of Chapters 1 and 2.

P
A

R
T

 1



TABLE P1-1: Overview

TOPIC DESCRIPTION

Why 

Graphs? 

(Chapter 1)

What are graphs, and why are they useful to a business analyst? 

Chapter 1, “Why Graphs?,” introduces the concept of graphs, and 

deines several key terms used in this book. Select historical and 
modern anecdotes recount applications of graph analysis and 
visualization in business, documenting a steady rise to prominence 
spurred on by today’s challenges of vast and complex data. Real-
world cases attest to the value of graphs.

A Graph 

for Every 
Problem 
(Chapter 2)

Chapter 2, ūA Graph for Every Problem,Ŭ provides a systematic over-
view of the wide variety of graph types and the kinds of problems 
they are useful for solving. The discussion begins with an example 
contrasting how relationships revealed in other ways can also 
be expressed using nodes and links. Subsequent topics describe 
graph techniques for gaining business insights involving hierar-
chies, communities, flows, and spatial networks. References are 
included to further detail in subsequent chapters.

PART 1 Overview2
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1
WHY GRAPHS?

his book is about graphs and how graphs can be used 
to help solve business problems. When many people hear 
the word “graph,” they think bar charts or line charts, and 
rightly so, because those are also sometimes known as bar 
graphs or line graphs. his book is not about charts. his 
book is about the node-link diagram kind of graph. 

At its essence, a graph is a structured representation of connected things and how 

they are related. As you will discover in the following chapters, graphs are capable of rep-

resenting complex data in a way that an analyst can make sense of.

Because graphs have a long history in mathematics, discussions about graph analysis 

and visualization tend to include a lot of confusing esoteric terms such as edge and degree. 

his area of study responsible for this is generally known as graph theory. 

For the discussions in this book, we use more universally accessible and less ambigu-

ous terms where possible. For example, a link is a relationship between nodes and is typi-

cally drawn as a line. Nodes are entities (or essentially “things”) that are joined by links. 

Nodes are often represented visually by a circle. 

An edge is another word for a link in graph theory, and the term degree becomes a lit-

tle less opaque if you are familiar with the concept of six degrees of separation, popularized 

by the play and movie of the same name. But only a little less opaque, because not only 

can “degree” mean the minimum number of steps of separation between linked entities, 

it can also mean the number of link connections that a node has. 



PART 1 Overview4

The glossary at the end of this book can serve as a cheat sheet if you ind 
you need a little graph-theory-to-English translation.

In some circles, graphs are still viewed as abstract and diicult-to-understand con-

structs used mainly by scientists walking around with disheveled hair. Although graphs 

do have a long-standing tradition in scientiic circles, the reality is that, when properly 

designed and executed, graphs can be one of the most intuitive ways to analyze informa-

tion. here is a good chance you have used graph representations if you drew things in 

a notebook or on a whiteboard to think through or explain concepts—which is really a 

form of visualization.

More importantly, graphs provide a means of gaining highly unique and valuable 

insight from data. Graph analysis brings complex relationships to light, informing efec-

tive decision-making. Visualization is central to that process. Being able to see relation-

ships visually is critical to understanding, whether they be characteristics of the raw data 

or speciic features highlighted by graph analytics.  

Information visualization exists for the sole purpose of understanding more, and in 

less time. Our brains are naturally wired to perceive and comprehend things visually. 

Reading is a time-consuming, sequential process, requiring the reader to mentally piece 

together an understanding. Pictures can convey information instantly, revealing complex 

patterns and outliers in easily digested ways.

here was a time when visualizations were drawn by hand after the painstaking gath-

ering of data. But today, computer systems can harvest vast amounts of data and turn it 

into pictures in mere milliseconds, enabling analysts to instantly comprehend and act on 

information. Virtually any business can now beneit from visualization, and, as a result, 

it has become core to systems across all industries and around the world. Graphs, how-

ever, are one of the last forms of visualization to remain underutilized. here was a time, 

though, when that was true for all information visualization in business.

VISUALIZATION IN BUSINESS

he use of computer-rendered visualization for decision-making in business is a relatively 

recent phenomenon. Twenty years ago, as recent grads from the University of Waterloo 

N
O

T
E



CHAPTER 1 Why Graphs? 5

School of Architecture, we decided to abandon the design of physical landscapes for the 

lure of an emerging and wide-open new world of virtual landscapes. One of us spent 

a few years working on three-dimensional (3-D) modeling software before we joined 

forces with other colleagues to see if similar technology could be applied to the problem 

of displaying large amounts of abstract information for high-lying decision-makers in 

inance and other industries. he seeds of that collaborative venture were to grow into 

an eventual long-term partnership, which included William Wright and another young 

architect, homas Kapler.

In the early days of this venture into business visualization, the value of even prim-

itive charts was not always widely understood or accepted in oices of Fortune 500 

companies. Our irst pitches to corporate decision-makers started with the most basic 

of value propositions—that of the value of visualization itself. he pitch started with 

a slide presenting a small table of numbers and a challenge to the executives in the 

room to describe patterns. he next slide followed with the same numbers shown in a 

line chart. Visualized, patterns were immediately clear. In the table, the patterns were 

clearly not. hat basic principle was the foundation for extrapolating how visualization 

could be even more essential in gaining insights from data that was orders of magni-

tude bigger and more complex.

At that time, the use of computers for primitive charting was still in its infancy, and 

beyond that, a product industry for analyzing business data visually was (by and large) 

yet to be born. What little advanced work that was going on was conined to a handful 

of corporate research labs and start-ups. Business was uncharted territory, in all senses of 

the word.

In those early days, one of the obstacles to the adoption of visualization in the busi-

ness world was the limited graphic capabilities of computer systems at the time. When 

Edward Tufte’s book Envisioning Information (Cheshire, CT: Graphics Press, 1990) was 

published, best-practice examples in the industry were still print-based, and the case 

studies in his seminal design book were no exception. he average computer was still far 

behind in quality of display. 

When we hit the streets of New York in the early 1990s with novel interactive 3-D 

demos for inancial analysts and traders, they had nearly a hundred pounds of specialized 

hardware in tow. Powering a single system required a hefty Silicon Graphics Inc. (SGI) 

computer and monitor. Between wrestling the equipment in and out of taxi trunks, and 
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careening it down city sidewalks on rickety, collapsible hand carts, it didn’t take long 

before a new machine received its irst patch of duct tape. 

he bigger problem was that pretty much no one on Wall Street (or the rest of the 

business world, for that matter) had an SGI machine. Interactive visualization software 

systems were a hard sell when they came with a ive-igure price tag per user for a new 

machine and operating system that didn’t run any of their other apps. We generated a lot 

of buzz making one-of prototypes for a long list of high-proile irms, but progression to 

wide deployments were hard to come by.

When Microsoft Windows computers finally began to roll out with improved 

graphics application program interfaces (APIs) and graphics cards, it was a game 

changer. Access to higher-quality graphics capabilities on most desktops removed 

the requirement for expensive specialized machines, representing a major step in 

the democratization of advanced visualization for business use. By the mid to late 

1990s, widely deployed high-powered analytics client platforms like the Bloomberg 

Terminal were running on PCs. Even highly specialized and demanding systems 

like the NASDAQ MarketSite broadcast wall were run on commodity Windows 

computers.

As the graphics capabilities of hardware began to mature, awareness of the value of 

visualization also matured. Timely, accurate, quickly perceived events and trends were 

critical to making lightning-fast decisions on the trading loor and elsewhere where 

systems and events needed constant monitoring. In business analysis as well, the value 

of representing information graphically to aid insight and to support strategic-level 

 decision-making was quickly gaining momentum across all industries.

Surrounded by a rapidly growing market, we found our niche at the fresh and 

exciting edge of uncharted territory. For example, when the NASDAQ MarketSite 

began its move from the private conines of a downtown oice to a public studio on 

Times Square, rebuilding its software infrastructure in the process, we were granted 

the task of designing and building the visualization systems and content. To open 

on the eve of the Millennium, the new studio would be composed of a 40-foot-long 

broadcast wall made up of roughly a hundred displays, and an electronic display 

wrapping the seven-story exterior tower. More than 6,000 stocks and indices would 

be displayed visually on demand in real time for reporters and the general public.
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Before and since then, we have found ourselves with the privilege of working 

behind the scenes to help many of the world’s most innovative companies and orga-

nizations solve their toughest information problems visually, through design and 

technology development. In doing so, we have had an opportunity to witness how the 

industry has evolved inside the walls of almost a hundred businesses, spanning the 

most data-intensive of industries. As time has progressed, the volume of available data 

has only increased, and so has the latent potential of information that can be gained 

from it. Data is now literally everywhere, waiting to be tapped for actionable insights. 

As the realization that visualization is needed to make sense of it all has grown, so 

has the realization that visualization systems must be highly interactive. It is not suf-

icient simply to plot data and view it, just as it is not suicient to simply compute an 

answer and present it. Analysis is an interactive process of rapid query, answer, and explo-

ration, involving computational processes, visual display, and visual manipulation. In 

the early 2000s, dissatisfaction with the perception of visualization as simply an output 

channel led the research community to coin the term visual analytics to better represent 

and promote the interactive sense-making aspects of analysis.

Another awareness that has grown with the increasing size and complexity of 

information problems in business is that a basic palette of line, bar, and pie charts is 

rarely enough to express all of the valuable information available, and to leverage it for 

 decision-making. Richer forms and combinations of forms are needed. Graphs, as it so 

happens, are one of the most valuable.

GRAPHS IN BUSINESS

We have been helping organizations visualize and analyze graphs for almost 25 years. 

Graphs have been around much longer. One of the irst graph problems was a deceptively 

simple question by Leonhard Euler: Was there a route so that each of the seven bridges 

in Königsberg, Prussia (now known as Kaliningrad, Russia), would be crossed only once, 

as shown on the left of Figure 1-1. Euler simpliied the question into a graph, as shown 

on the right of Figure 1-1.

Since then, obviously many more problems have been analyzed as graphs, in business 

as well as science. Many such problems are geographic, just like Euler’s. 
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FIGURE 1-1: In the seven bridges of Königsberg problem, Leonhard Euler explored whether each bridge 
could be crossed only once. On the left is a map showing the seven bridges, and on the right is the 
graph equivalent.

One of the irst graph visualizations we produced was a geographic graph problem as 

well. In supply chain optimization, the task is to optimize the shipping between factories 

and warehouses to reduce costs. As shown in Figure 1-2, our visualization depicted the 

locations of facilities with icons indicating attributes such as type, inventory, capacity, 

and utilization, as well as major links indicating average costs.

FIGURE 1-2: One of the authors’ irst visualizations depicted a manufacturing and distribution supply 
chain network.
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Various types of analyses can be done with this kind of supply chain visualization, 

ranging from inspecting individual routes to rationalizing the overall number of facto-

ries and warehouses. One interesting inding was that the costs between two particular 

factories doubled in March, June, September, and December. On inspection, it was dis-

covered that a particular route was increasing shipping costs heavily at the end of each 

quarter. Further investigation showed that this route switched from land-based shipping 

to faster (but more expensive) air-freight shipping. Some questioning revealed that this 

change was driven by high-level objectives to reach quarterly targets. Because this pat-

tern repeated consistently every quarter, the analysts realized that better planning and 

coordination between the two factories throughout the quarter could result in a better 

shipping schedule, and a reduction of shipping costs in the last month of the quarter. 

Similarly, graph analysis and visualization can be used in the analysis and optimization 

of other supply chain networks. 

Chapter 9, “Relationships,” discusses basic graphs and relationships in more 

detail. 

Finding Anomalies

Spatial graphs are often used to analyze the low of goods around a company or around 

the world. One excellent early example of a low graph is from Joseph Minard in the 

mid-1800s that, as shown in Figure 1-3, examined emigration around the world. Look-

ing at it, you can easily see the low of emigrants from the United Kingdom to the colo-

nies, French and Germanic peoples to the United States, Portuguese to Brazil, as well as 

Africans, Indians, and Chinese to other locations. 

Graphs can be made to analyze the movement of people, goods, or money, whether 

across the world, through processes, or through websites. Another of our early projects 

was for an airline company that wanted to analyze performance across its route network. 

Each link in the graph showed a light route and had metrics such as revenue, passenger 

counts, eiciency, and proitability. 
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FIGURE 1-3: Joseph Minard’s flow graph shows emigrants worldwide in 1858.

A number of examples in this book look at statistics about movement 

between locations, speciically in the discussions in Chapter 12, ūFlows.Ŭ

Flow data sets, with an element of time, can quickly become Big Data. In such cases, 

we have used diferent strategies for dealing with these dynamic low graphs, such as 

clustering. Figure 1-4 shows a recent application for investigating money low between 

entities. 
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FIGURE 1-4: This flow graph shows money flow over time between different entities.

This particular example is discussed in detail in Chapter 15, “Dynamic 

Graphs.” 

hese graph examples are about inding and understanding anomalies such as unex-

pected links and unexpected lows. Identifying fraudulent activity and understanding 

paths through websites are examples of applications of this kind of graph analysis. Find-

ing these anomalies can aid business by improving eiciencies, such as reducing losses or 

reducing clicks. 

Managing Networks and Supply Chains

Pipelines, electrical systems, and railway networks are all large-scale physical networks. 

hey are capital-intensive with large upfront costs that must be recovered through 

eicient operation. Similarly, large manufacturing and distribution networks have sig-

niicant investments in plants, transport, warehousing, and other infrastructure. Adjust-

ments must be made as conditions change. 
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Figure 1-5 shows an old diagram of freight traic on a railroad from 1912–13. he 

thickness of various sections clearly indicates the volume of traic, with two sides of each 

connection indicating the volume of traic in either direction. If both sides are equal, 

then fully loaded box cars are generating revenue in each direction. Note the imbalance 

in freight traic to and from Kansas City (top) and Ft. Scott shown here. 

FIGURE 1-5: This graph shows freight trafic density and direction on the St. Louis and San Francisco 
Railroad in 1912–13.

Image courtesy Prelinger Library (www.prelingerlibrary.org).

Analyzing physical networks is an ongoing requirement for planners. As populations 

and energy use changes, the electrical grid must be adapted, too. Figure 1-6 shows a por-

tion of the use of electricity on the West Coast of the United States from 2002. It shows 

only electrical transmission lines that are congested (that is, near capacity), potentially 

necessitating infrastructure upgrades. 
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FIGURE 1-6: This shows congested transmission lines in the western  
United States electrical grid in 2002.

Redrawn based on U.S. Department of Energy National Transmission Grid Study 2002.

Many of these networks being analyzed in long-term planning must also be actively 

monitored to ensure eicient and trouble-free operation. One such project for us involved 

real-time data for a natural gas pipeline. In the case of the pipeline, nodes were com-

pressor stations, and links were pipelines between each compressor station. Sensors in 

the compressor stations collected data such as pressure, low, how close the compressor is 

operating to its limits, and alerts (such as a fault in a mechanical compressor). he alert-

based system provided one way to easily monitor the system: no alerts equals no problem. 

he solution provided was a graph visualization roughly along the lines of the one 

shown in Figure 1-7. he links were sized based on pipeline capacity, with nodes indi-

cating low through the station as a 3D bar, colored the node based on the limits (for 
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example, blue for not close to limit and red for close to, or exceeding, limit), and added a 

signiicant red lag on top of the node if an alert was triggered. 

FIGURE 1-7: As shown in this pipeline graph, gas generally flows from the north (top of image) to the 
south (bottom left). 

One interesting incident occurred shortly after we had completed an early version of 

the visualization. he alert system had no active alarms. But the visualization showed 

one compressor station operating close to it limits with a high volume going through the 

station (red in the igure). Inspecting all the node attributes associated with that station 

via a tooltip indicated no particular problems other than the station was working very 

hard and close to its limits. Having the whole graph visible meant that the analysts could 

visually inspect all the neighboring nodes for clues. One of the nodes immediately con-

nected to this node had an extremely low volume (the low blue node immediately to  

the right). 

he operators could easily see that the hard-working node was compensating for the 

neighbor node—in efect, performing additional work to maintain overall throughput 

of that portion of the network. his is a good example of where graph visualization is an 

efective complement to other kinds of graph analytics. he alert system by itself failed to 



CHAPTER 1 Why Graphs? 15

create a message for the problem node, but the visualization provided enough informa-

tion that the viewer could see the problem and pinpoint its source. 

Geographic graphs are discussed more in this book, particularly in Chap-

ter 13, “Spatial Networks.” 

Managing networks, regardless of real-time, daily, or monthly analysis, requires 

understanding multiple variables about both nodes and links in order to assess the overall 

network health. he graphic depiction of the network and the data acts as an aid to visu-

ally navigate hops to assess issues and understand their impact. 

Identifying Risk Patterns

Beyond geographic networks, networks can simply be logical connections between 

things, such as computers or telephones. Figure 1-8 shows an early network drawing of 

the ARPANET (the forerunner to the Internet). One myth about the early ARPANET 

was that the network had many paths and decentralized message routing to deter nuclear 

attacks. However, this decentralization may have been more because of the unreliability 

of links and nodes in early computing.

Rather than focus on all the logical connections between speciic computers, another 

way to look at the Internet is to examine where the traic is going from and to. Partic-

ularly useful in network security is knowing which computers are targets for potential 

hackers and attackers, or otherwise performing actions in the network that are anoma-

lous. his is a graph problem that can be drawn to show connections between the source 

computer (for example, the hacker or the internal thief ’s computer) and the target com-

puter (for example, the corporate website or the ofshore bank account). 

Because many diferent kinds of events can occur (viruses, malware, bots, and so 

on), there are many diferent kinds of links. Furthermore, these network events are hap-

pening over time. hey are transient, appearing and disappearing. here can be many 

diferent ways of representing this kind of graph, such as showing all the links, aggregat-

ing links by type of event, providing an interface to show links between only a set time 

period, and so on. 
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FIGURE 1-8: This early drawing from 1977 shows the ARPANET, the precursor to the Internet.

Chapter 9 shows a few examples of graphs representing many links 

simultaneously. 

Figure 1-9 shows a sketch of a graph visualization we constructed that used an inter-

face to show only links over particular time periods. By isolating time periods, the viewer 

could identify event sequences, potential related events, and potential collaborators—

symptomatic of a more organized attack. Also, diferent kinds of attacks have diferent 

visual signatures that stand out when viewing the patterns in a particular time period. 
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FIGURE 1-9: This graph visualization shows potential anomalies with connections between internal 
computers (inside) and external computers (around perimeter). 

Chapter 4, “Stats and Layout,” discusses in detail the visual layout of a 

network.

Visualizing connections and patterns of connections may be useful for spotting risk, 

such as diferent types of threats to a physical network as shown here, as well as other 

types of risk, such as inancial counterparty risk. Analyzing risk without graphs may 

lead to limited conclusions. Graph-based analysis can help reveal how risk exposure may 

extend to other entities.

N
O

T
E



PART 1 Overview18

Optimizing Asset Mix

he objective of a market basket analysis is to understand which products have a strong 

tendency to be purchased together. More generally, this is a graph where you are looking 

for strong correlations between things, which could be products purchased together, peo-

ple who are popular at the same time, stock prices that move together, actors who appear 

in movies together, and so on. 

One old approach to understanding these correlations was to create a matrix with 

each item listed in the columns and in the rows. he cells in the matrix indicate the 

strength of the relationship between the pair of items. When there are only a few items, 

the matrix can show all the possible connections between any pair of products, as shown 

in Figure 1-10. 

FIGURE 1-10: This adjacency matrix shows how many times one product  
purchase leads to the purchase of the second product.

Chapter 7, ūPoint-and-Click Graph Tools,Ŭ discusses adjacency matrices in a 
bit more detail. 

As the number of products grows, however, the number of potential connections is 

exponential. A matrix is less efective when looking at hundreds of items. To address that 

we have put together visualizations for problems which include analysis of market baskets 

of products at retail stores, the connections between people via e-mail, and the correla-

tion of stocks. 

In one fun example, we took a market basket visualization that we created for a client 

to compare correlations of inancial assets and changed the data to a set of correlations 
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between some of the top Twitter celebrities, as shown in Figure 1-11. he distance 

between any pair of nodes indicates the strength of the correlation (close nodes have a 

strong relationship). Because there are many items, we turned of all the links to keep the 

display clean. Perhaps not surprisingly, there is a strong correlation between celebrities 

such as Justin Bieber, Lady Gaga, Felicia Day, and Taylor Swift. Inverse correlations are 

on the lip side in this visualization, and perhaps unsurprisingly, Margaret Atwood and 

Richard Florida are inversely correlated to the pop stars.

FIGURE 1-11: This shows that the correlations between top Twitter accounts (Justin Bieber, Felicia Day, 
Lady Gaga, and Taylor Swift) are all close together.
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Chapter 6, “Explore and Explain,” discusses more about market basket 

analyses. 

While an analysis of correlations between celebrities may seem triling, a similar 

approach is used to optimize portfolios of other types of assets, such as inancial port-

folios, pharmaceutical drugs, or oil wells. he proximity of nodes as a result of force- 

directed layout algorithms (discussed in Chapter 4) provides insights into the asset 

choices that comprise of a collection of assets, such as close alternatives, isolated single-

tons, and opposites. 

Mapping Social Hierarchies

here is a lot of current interest in social networks. Mapping out social networks goes 

back hundreds of years. 

Figure 1-12 shows the genealogical tree for French royal family from Louis XIV to 

Louis XVI from the book A Complete Genealogical, Historical, Chronological, And Geo-

graphical Atlas by M. Lavoisne (Philadelphia: M. Carey and Son, 1820). his wonderful 

visualization shows direct rulers, spouses, ofspring, and branches that merge together 

again. Nodes are people, with kings shown as crowns, men shown as illed circles, and 

women shown as transparent diamonds. Links are lines with time proceeding from 

top to bottom, and horizontal line style diferentiates between the children of married 

spouses (plain line) or mistresses (diamond line). 

Chapter 5, “Visual Attributes,” explores how to use visual attributes 

such as shape and color. Chapter 16, “Design,” discusses related design 

considerations. 
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FIGURE 1-12: This portion of a genealogy chart shows the French royal family from Louis XIV to Louis XVI.

Courtesy davidrumsey.com.

In business environments, organizational charts (sometimes called org charts) are sim-

ilar to genealogical trees. Although simple org charts work for small hierarchies, other 

approaches are needed for exploring large hierarchies with thousands of managers or 

tens of thousands of staf in contact centers. By combining the hierarchical view with 

time series views, trends and changes in performance can be viewed at any level as a time 

series, and up and down the hierarchy. 

Figure 1-13 shows an early version of a visualization we created for a client showing 

org charts with time series. Consistent coloring across the nodes and links allows the 

viewer to track how the positive and negative contributions roll up. 

Chapter 10, “Hierarchies,” provides more information about organizational 

charts.N
O

T
E



PART 1 Overview22

FIGURE 1-13: The left side of this organizational hierarchy uses color to indicate performance through 
all the levels, with the lowest level expanded on the right side to show performance over time.

Hierarchies are a unique type of graph and can be used to drill down through the 

organization to assess where the contribution to performance is coming from—for exam-

ple, based on staf (as shown here) or based on other means such as attribution models. 

By providing this hierarchical decomposition, management can spot whether issues are 

localized, within a group or broad-based. Using this insight, they can respond more 

efectively to these diferent scenarios.

Detecting Communities

Beyond genealogical charts and the visualization of friend networks, visual analysis of 

social networks has many other applications. In health care, social networks can be used 

to analyze relationships and the potential spread of disease. Researchers have mapped 

out all the “romantic and sexual relationships” in a Midwestern high school (research 

paper: “Chains of afection: he structure of adolescent romantic and sexual networks” 

by Bearman, Moody, and Stovel). Out of 832 participating students, 573 were involved 
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in a sexual or romantic relationship. Of those, many (126) were involved with only one 

partner over the previous 18 months, but there were also larger components where a per-

son may have been involved with more than one other person. 

Figure 1-14 (created using Gephi) shows a large component of 288 students linked  

by sexual relationship. his graph is important because it indicates how approximately  

50 percent of sexually involved students could be linked in the difusion of sexually 

transmitted diseases (STDs). 

FIGURE 1-14: In this visualization of romantic and sexual relationships at a Midwest high school,  
you see how a large percentage of students surveyed are connected to each other through long chains 
of relationships.

he spread of diseases is similar to the spread of viral marketing or the spread of 

opinions and sentiment. Some irms may have data based on sales referrals or e-mail or 

extracted from social media such as Twitter. 

Analyzing these social networks will often reveal clusters with higher densities of 

interconnections known in graph terms as communities. Identifying these groups of peo-

ple and how they are connected can help a company identify diferent customer segments 

and better understand the dynamics of inluence within and between them. 
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In a large company, social network problems may easily involve millions of nodes. 

Representing these graphs visually and exploring them for the purposes of extracting 

meaningful information is exceptionally diicult. Common desktop tools like Gephi 

(which are limited by in memory processing on a single machine) are not designed for 

graphs of that size. 

We are involved in an ongoing advanced research efort exploring the use of cluster 

computing for community-detection and graph-drawing techniques to achieve highly 

scalable zoomable graphs with millions of nodes and tens of millions of links. Figure 1-15 

shows an example of one such graph involving referrals. Clusters of medical practitioners 

seeing the same patients are outlined with circles, indicating communities. 

FIGURE 1-15: Use of distributed community-detection techniques and multi-scale graph drawing tech-
niques can reveal community structure in very large graphs. Here, the DocGraph data set is visualized in 
its entirety, comprising millions of medical practitioner nodes and tens of millions of referral links.
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More information about the data used in this example can be found on the 

DocGraph project website at http://docgraph.org. 

The analysis of clusters and communities is outlined in Chapter 11, “Commu-

nities,” and the theme is picked up again in Chapter 14, “Big Data.” 

Analysis of social networks can provide insights into clusters of people or organiza-

tions and inluential connections within and between those clusters. hese insights can 

be used to understand difusion through a network (such as spread of coupons or a virus) 

and to understand communities (such as customer segmentation based on connections). 

GRAPHS TODAY

In the age of Big Data, many of the world’s most data-rich businesses are searching for 

new ways to make sense of vast streams of complex, irregular, sometimes unveriiable, 

interconnected data. Graph analysis and visualization is gaining momentum as a tool 

for helping to do just that. Graphs are particularly good at characterizing complex, com-

pound relationships that are not easily described in black-and-white terms. hey are also 

a natural choice for displaying networks, which are an increasingly integral part of many 

business data sets.

Desktop tools like Gephi and Cytoscape (which typically originate in scientiic com-

munities) have made strides in visual quality and scale for graph visualization and anal-

ysis. With their open and extensible nature, these tools can be easily applied to business 

problems, given the right amount of technical training and determination. With the 

prospect of cloud-based systems on the horizon, graphs promise to become even more 

easily accessible to the wider community of business analysts.

he goal of this book is to inspire creative thinking about the potential application of 

graphs to your own business problems and to share a little of our own domain knowledge 

in the hopes that you may try it yourself. Step-by-step tool usage and code samples are 

provided using case examples that demonstrate how graph analysis and visualization can 

be used to gain insights from data.
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SUMMARY

Graph analysis is a powerful tool for discovering valuable information about relationships 

in complex data, representing signiicant business opportunity. Graph visualization is 

essential and, when used properly, can also be extremely intuitive. Information visualiza-

tion takes advantage of natural perceptive abilities to allow an analyst to see more infor-

mation, more quickly. 

he importance of visualization in business has risen to widespread recognition as the 

volume of data available continues to increase. During that time, graphs have developed 

into an instrumental tool, with applicability in areas such as network monitoring, mar-

ket basket analysis, inluence analysis, and optimizing of processes and organizational 

structures. With the rise of Big Data the importance of techniques suited to dealing with 

complex relationships has risen with it. Need has fueled technology development, and 

today graph tools are emerging as a valuable resource available to any business analyst.

Chapter 2 provides a detailed overview of the many kinds of graphs and how they can 

be used in solving various business problems. he irst example provides an illustration 

of how graphs are efective at intuitively summarizing relationships at a high level, while 

providing additional levels of detail with further analysis. Additional examples show 

diferent forms of graphs, as well as their relative strengths and suitability to answering 

speciic kinds of questions. 
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2
A GRAPH FOR EVERY 
PROBLEM

Graphs are one of the most versatile and powerful ways to 
express complex data—and the least understood. In real-
ity, people use graph techniques in meeting rooms every 
day, labeling and diagramming relationships to explain 
their thinking to others. Graphs can express relatively 
complicated concepts that other visualizations cannot. 

When chosen wisely, the right technique can lend the simplest and most intui-

tive expression of a particular type of information. When chosen poorly (or naively 

employed), a graph can be painfully abstract and obtuse. One of the primary goals of this 

chapter is to encourage graph authors to break free of the trap of simple colored nodes 

and links and to think more creatively about graphs.

his chapter introduces graph solutions and is organized by classes of problems. Later 

chapters in Part 3 of this book provide in-depth walkthroughs of each of these classes 

using example problems and data. Documented, reproducible steps are provided for using 

tools, and sometimes code, to do the same. 

At irst glance, your own business problems may seem too multidimensional to it 

into one of these seemingly small and tidy boxes. For example, your problem may involve 
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both spatial networks and low and will certainly always involve relationships. hese are 

not mutually exclusive aspects. When choosing an approach, try to think of what is most 

fundamental about the questions you are attempting to answer.

RELATIONSHIPS

One of the most valuable and fundamental uses of graphs is to express a model of the 

relationships that compose a deined world or system. In a way, anytime you draw dia-

grams on a whiteboard, you are creating a graph of sorts. Graphs enable you to explain a 

world in a way that can be readily absorbed. A graph presents a visual model that trans-

lates into a mental model, a way in which you can internalize an understanding of sys-

tems and factors that help inform smart business decisions.

Similar to how diagrams can be drawn informally by hand, diagrammatic graphs can 

be generated formally by computers. Formalisms vary by approach, but essentially, in 

any formal graph structure, subjects and objects are represented by nodes, and relations 

are expressed by links. When the goal is to understand the elements of a world and their 

relationships, as well as how they are related, graphs are an invaluable technique.

he representation of a relationship in a graph can be reduced to a line, sometimes 

with a particular weight to indicate strength or volume. But in reality, the underlying 

relationship often has more nuanced or expansive characteristics than can be shown with 

a simple line. If the world being displayed is reasonably small, visually expressive links, 

along with their nodes, can help to more fully explain the nature of relationships. 

One type of relationship that is fundamental to data science in virtually any business 

is correlation. Correlations provide an indication of when and how aspects of a world are 

related, which can inform decisions in pursuit of business objectives. Understanding what 

conditions are most favorable to a particular outcome provides the basis of a strategy for 

action, inluencing the probability of a proitable outcome by manipulating those factors 

that are within control. Depending on the industry, that strategy might take the form of 

targeted advertising, adjusting premiums based on a risk assessment, or other actions.

Figure 2-1 reveals feature relationships in a modern take on a classic data science 

study known as the Iris lower data set published by Sir Isaac Fisher in 1936. A tech-

nique known as a scatterplot matrix is used to plot 50 samples of each of three species of 

Iris, for each pairwise combination of four features. he features plotted in each scat-

terplot are found by following the row and column to the feature labels. he data here 
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represents lower classiications and their features, but it could just as well represent cus-

tomer classiications and their purchasing or risk characteristics.

FIGURE 2-1: This modern web-based scatterplot matrix chart of the classic Iris flowers data  
set from Sir Isaac Fisher in 1936 shows relationships between features for three species.

All the raw data is shown here, but only two aspects of information can really be 

taken away from an analysis of this chart: the deining features for any species and the 

correlations between features, both across and within species. It appears that the species 

here can be identiied primarily by diferences in petal width and length, which seem to 

be strongly correlated, and there also looks to be a correlation of both sepal width and 

sepal length.



PART 1 Overview30

A correlation between petal and sepal length indicates only that both tend to grow 

in size together, which seems logical and not particularly interesting. If these were cor-

relations between product purchases, however, a known ainity for one class of product 

would increase the likelihood of ainity for another, indicating value in marketing to 

those customers. 

If you inspect the observed correlations in the lower data set more closely, however, 

you see signiicant disparities within species that are not very obvious in the scatterplot 

matrix. Figure 2-2 shows correlation matrix charts for both the full data set and all three 

species individually. he correlations observed across all of the species do not hold within 

all of the species. Petal length and width are good indicators of species and so are cor-

related at the global level. But once the species is known, one is not always an indicator 

of likelihood of the other. 

FIGURE 2-2: A series of correlation matrices constructed in a spreadsheet reveal how correlations 
between characteristics vary signiicantly within subject groups. Here, subject groups are species  
of Iris flowers but could also be customer proiles.

he same phenomenon occurs in business. For example, statistics may show a correla-

tion between comic book and sports biography purchases. However, the correlation may 

simply be an indicator that the purchaser is a young male. If it is already known that the 

purchaser is a man between the age of 18 and 25, there may be no correlation whatso-

ever, and promoting comics alongside sports bios here would be a waste of time.

Computers are very good at modeling these kinds of relationships and computing the 

likelihood of other realities or behaviors given a set of known facts. Given a case of a, b, 

c, a computer can communicate the likelihood of d, e, f. However, without visualization 

of the nature of the underlying relationships and how they are interconnected, it is dif-

icult for an analyst to gain suicient enough understanding of the landscape to inform 

strategic business decisions.

Figure 2-1 and Figure 2-2 are useful charts. hey share a common characteristic in 

that they present a collection of slices of information. However, it is impossible to take 
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them in as a whole and come away with a big picture. An analyst would instead read the 

charts serially, perhaps prioritizing based on the most interesting-looking cells, and make 

individual observations that could be then taken away and assembled into a portrayal of 

the big picture in some other form. It might take the form of narrative annotation and 

explanation, a manually drawn diagram, or both.

On the other hand, a graph is intrinsically diagrammatic, capable of expressing the 

big picture without manual construction. Figure 2-3 shows one method of summarizing 

the same relationships between features using a graph. Features with reasonably strong 

correlations within any or across all of the species are linked, with dots on the links rep-

resenting the scope of correlation. 

FIGURE 2-3: Graphs provide a big-picture model of how everything is related.  
For example, here, sepal width is linked to sepal length, and only in the case of  
Setosa, which are small with relatively wide sepals for their size. Petal length  
and width are the best indicators of species, reflected by the obvious stratiication  
in those nodes.
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Having each subject represented only once with all of its relationships, in the context 

of all of the other subjects and their relationships, makes it possible to see how every-

thing is related at the big-picture level. It is also convenient for summarizing important 

things about each subject in the same context. Here, the distribution of values for each 

species is drawn in alternating homogenous and heterogeneous rings, summarizing the 

deining characteristics of each species. Clear radial striations in the Petal Length and 

Petal Width nodes indicate that they are good features for classifying lowers.

Because graphs can summarize relationships so efectively and so eiciently, they 

can more easily scale to allow you to show more information. For example, the number 

of features could easily be tripled in this case, and the big picture would still be evident 

(and more interesting) in Figure 2-3, easily outdistancing the efectiveness of the matrix 

charts for doing the same. Graphs are truly unparalleled in their capability to express 

interconnected relationships. 

Chapter 9, “Relationships,” provides further examples of visualization and 

analysis of relationships using graphs.

HIERARCHIES

Graphs are also a great choice for gaining insights from hierarchical data. Hierarchical 

graphs are typically referred to as trees. Trees have a root parent node with links branch-

ing to a second order of nodes, which may in turn branch again, eventually reaching the 

leaf nodes that have no children. Each node descendant of the root has a single parent. 

Trees have many business applications. Figure 2-4 reframes the Iris lower classiica-

tion information as a decision tree. A decision tree shows sequences of decisions that lead 

to particular conclusions. Each node in the tree is a decision, and each link represents a 

path to follow based on particular criteria. 

he Iris decision tree starts with the greatest distinguishing characteristic of each 

species, which is petal length. All 50 of the Setosa samples can be correctly identiied by 

their characteristically short petals. If the petals are longer, petal width can be measured 

and an estimate made as to whether they are Virginica or Versicolor. he statistics in this 

case indicate how many samples will be correctly classiied using this approach.
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FIGURE 2-4: A decision tree articulates a series of branching paths that lead to  
different conclusions. Here, the flower data set shown in the previous igures is  
reframed to show a rudimentary process of classiication based on deining features.

A decision tree can be useful as a simple rule-of-thumb approach to human decision 

making. It can also be a useful method of prioritizing information gathering. In the 

lower classiication case, it is not necessary to measure anything other than petal length 

to make a classiication decision in a third of the samples. Similar criteria priorities may 

exist in marketing products to individuals. For example, it may be most valuable to know 

gender, followed by age. You can use priorities to order ields in an online account proile, 

or questions in a survey, to target the most important data.

Trees are also perfect for understanding organizations. A family tree is an example 

of a visualization technique for an organizational hierarchy, where ancestors are placed 
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at the root and children branch out from parent nodes. he work-life equivalent of a 

family tree is commonly called an organizational chart, or org chart. An org chart shows 

the structure of who reports to whom in a business, from CEO on down the chain of 

authority. Org charts provide information about corporate structure, as well as a frame-

work for understanding corporate performance.

Figure 2-5 shows an example org chart produced by OrgVue. OrgVue is a software 

platform for organization design, Human Resources (HR) analytics, and strategic work-

force planning. Bubble size in this graph can be used to indicate the size of staf or bud-

get. Color can be mapped to other objective-related characteristics, such as airmative 

action employment classiication of staf members.

FIGURE 2-5: An org chart reflects organizational structure using a tree. Corporate performance- related 
characteristics such as department size and afirmative action employment classiication can be 
mapped to size and color of each node.

Used with permission. All rights reserved by OrgVue.
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An org chart provides an ideal, intuitive framework for portraying characteristics of an 

organization. However, when those characteristics are summative and a more precise read-

ing of proportional contribution is desired, a sunburst chart may be an appropriate choice. 

In Figure 2-5, the size of staf for a manager is the sum of the size of staf for each of 

the manager’s direct reports. Each higher-level bubble represents the sum size of bubbles 

below. his gives an impression of department size, which is, in most cases, a suicient 

level of detail. When the goal is to analyze department performance, however, more pre-

cision may be desired. 

he sunburst chart in Figure 2-6 shows a similar organization with proit and loss 

information, as well as an additional level of detail. he tree is rooted at the center and 

branches out radially. Sibling nodes are represented as subdivided sectors of their parents, 

indicating precise proportion of the whole. In this case, nodes simply touch their parents 

instead of being linked with lines. 

FIGURE 2-6: A sunburst chart provides an alternate representation of hierarchy appropriate for  
viewing organizational subdivisions by proportion of the whole. Proit and loss are shown in  
degrees of green and red, revealing roots of overall corporate performance.

Used with permission. All rights reserved by OrgVue.
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Org charts can lend more clarity to the qualitative aspects of a tree, whereas sunburst 

charts tend to lend more clarity to quantitative aspects. Both are ideal choices for repre-

senting hierarchies. 

Chapter 10, “Hierarchies,” covers visualization and analysis of business hier-

archies in depth.

COMMUNITIES

Graphs are indispensable for revealing communities, which are fundamental to under-

standing macro relationships and dynamics in business data. Communities in a graph 

visualization are similar to geospatial communities on a map in that they are qualitatively 

relected by clusters of related members in close proximity, distinguishable from the ield 

of other graph members. 

Figure 2-7 shows communities of philosophers linked by inluence using data 

extracted from Wikipedia by DBpedia. he PageRank algorithm is used to size nodes 

based on their degree of inluence, and layouts are used to cluster nodes with common 

inluences. Even without knowing much about philosophy, you can spot the most inlu-

ential igures such as Kant, Marx, and Wolf, as well as many of the ancients like Plato 

and Aristotle. Communities of inluence also have apparent regional tendencies, with a 

prevalence of German names in the mid right and British names in several clusters to the 

lower left.

Delving into the dynamics of inluence is central to the art of persuasion in busi-

ness. he popular writer Malcom Gladwell puts forth a social theory of inluence in 

he Tipping Point (New York: Little, Brown, and Company, 2000), which suggests the 

importance of individuals he labels mavens and connectors, as well as salesmen. Graph 

visualization and analytics like PageRank and centrality algorithms can help reveal 

mavens and connectors. For example, a connector would be a hub relected by many 

incoming and outgoing connections, including bridge connections to other communities. 

On the other hand, a maven might be more likely to show as a node with a large number 

of inluential outgoing links. 
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FIGURE 2-7: Visualizing a large graph reveals communities. Here, philosophers listed in DBpedia are 
clustered by influence. Labels characterize clusters and show key nodes.

Linking communities of buyers with products provides useful information about 

patterns of customer interest and purchasing. Figure 2-8 shows products that are linked 

to a seminal design book, marked by the large icon, through co-purchase and co-review. 

Where linked by review, the reviewer appears in black. Closely linked products sur-

rounding the central product can be seen as most related, implying domain similarity, 
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in which case the reviewers who link them and little else are more likely to be domain 

specialists than the efusive reviewers on the periphery. he opinions of domain special-

ists, most like mavens in Gladwell’s social lexicon, may be particularly inluential. As 

potential connectors, the efusive reviewers that bridge communities are also interesting 

because they suggest areas of cross-domain appeal. 

FIGURE 2-8: Graphs can be used to visualize product communities, linked here by co-purchase and 
co-review. Symbols reflect class of product.



CHAPTER 2 A Graph for Every Problem 39

For advertising purposes, however, what are more immediately relevant than hints of 

inluence in this case are the clusters of other products that are likely to appeal to buyers 

of a product. Figure 2-7 uses symbols reinforced with color to reveal patterns by basic 

class of product. he label-based technique used in Figure 2-7 can be used instead here 

with product titles to provide a more nuanced (but cluttered) view of the character of 

products in each cluster. Chapter 14, “Big Data,” provides further analysis of this data.

One of the characteristics of graph visualization of communities is that visually spa-

tial relationships are more important than link clarity. he links produce the spatial rela-

tionship but become less important when you are reading the graph. In some cases, if the 

goal is simply to identify and analyze cliques, it may be clearer to remove the links. 

Figure 2-9 shows computed online social communities separated into groups with 

links hidden. Locale is relected by color and label, indicating composition of the group. 

Because the original layout is preserved, central connectors and general relationships are 

still apparent.

FIGURE 2-9: Hiding links can produce a clearer view if the goal is simply to identify and analyze  
cliques. Here, online communities are characterized by locale.
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In other cases, links might represent essential information, and the lack of clarity in 

a community graph can be a problem. Figure 2-10 shows how communities in a highly 

connected graph (in this case, money low) that would otherwise form a hairball can be 

aggregated and summarized visually to show interconnection. Chapter 11, “Communi-

ties,” and Chapter 14 cover these examples in more detail.

FIGURE 2-10: Communities in a highly connected ūhairballŬ graph can instead be aggregated and sum-
marized visually to better show community links. Here, link width and color reflect money flow.

FLOWS

he graph in Figure 2-10 shows money low between communities but is still fundamen-

tally structured to focus on community structure. Distance separates those communities 

that are least connected and brings related communities together. It is not clear which 

direction money lows in, and the links in the middle are still relatively dense. When the 

goal is to clearly understand low, other graph techniques must be used.
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he decision tree in Figure 2-4 shows a process, which is an event-oriented type of 

low. One of the most important aspects of low is that it is directional—that is, it has a 

source and a destination. he decision tree demonstrates one of the most fundamental 

principles of visualizing low, which is that the most intuitive way to show direction is to 

use a consistent direction across the whole graph. he left-to-right layout of nodes in the 

decision tree makes it easy to see low is left to right. 

he same principle applies to graph problems that are not trees. Figure 2-11 shows a 

complex supply chain of materials for the textile industry. his visualization technique is 

known as a Sankey diagram. In this technique, low always enters the same side of each 

node and exits on the other. Width indicates the volume of low.

FIGURE 2-11: Sankey diagrams are an ideal graph technique for showing flow. Here, flow of materials in 
textile production is shown, where width indicates volume.
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Sankey diagrams can also be used to show paths of customer experience. For exam-

ple, Figure 2-12 shows low through website pages. In this case, each column in the 

diagram represents a step in those paths, with the exception of the irst, which shows 

something of their origin. A node may technically appear in more than one column, 

because web pages are organized by sequence. he red down arrows indicate the end of 

the road for a subset of paths.

FIGURE 2-12: Flow graphs can also show customer paths through a website. Google Analytics provides 
this for analysts looking to boost engagement and click-through.

Flow graphs can also be combined with small multiple charts to show low over time. 

Figure 2-13 is an example of how inancial transaction activity between parties can be 

shown using Inluent. Communities of similar nodes are hierarchically clustered and 

summarized for scalability. Figure 2-14 shows how low of inluence (in this case, steel 

consumption factors) can be visible even when not easily quantiiable. Correlation of time 

series patterns suggest complex relationships of cause and efect. 

A left-to-right layout works brilliantly for indicating low direction. However, when 

there is frequently an exchange of low in both directions, you may want to use an alter-

native layout approach. Figure 2-15 uses a D3 chord chart to show reciprocal low by 

modifying the width of the link on either end to relect outgoing exports. he links in 

a chord chart resemble two arrows that collide in the middle and swallow one another. 

In this example, red links emphasize trade imbalance, and red country nodes are net 

exporters. Green countries are net importers. 
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FIGURE 2-13: Flow can be combined with charts to show patterns over time,  
as shown here with inance.

FIGURE 2-14: A behavioral factor tree shows the effects of modeled influencing  
factors in an outcome through correlation of pattern and inflection.
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Chapter 12, ūFlows,Ŭ provides detailed examples of the use of graphs for flow 
analysis, including a case study using this data.

FIGURE 2-15: Chord diagrams show reciprocal flow between entities. Here, all reported trade of goods 
between countries is represented by width of link at the exporting country. Color flags trade imbalance.

Data courtesy of DESA/UNSD, United Nations Comtrade database.
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SPATIAL NETWORKS

Graphs are also clearly a natural choice for showing spatial network data. In a spatial 

network, nodes already have a meaningful real-world location, which is often a commu-

nication advantage if nodes are familiar. One of the challenges, however, can be that the 

limited capability to move nodes can make it more diicult to make links easily readable. 

In Figure 2-16, a ictional subway map demonstrates how schematic versions of spatial 

network graphs can abstract angles and locations for legibility.

FIGURE 2-16: Schematic network diagrams abstract spatial layout to optimize legibility, as  
in the route map shown here.

In addition to showing how network routes and hubs are connected, graphs can also 

show performance characteristics of those routes and hubs. Figure 2-17 shows average 

winter light delays for all airline routes lying in and out of airports across the United 

States. Red routes and airports indicate greater delays. he size of route and airport indi-

cate the number of lights.
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FIGURE 2-17: Average flight delays for all routes and airports across the United States are shown here in 
red for December 2013, revealing trends and anomalies.

he link density in Figure 2-17 is extraordinarily high, but the approach still works 

to reveal interesting geospatial patterns of red. It helps that airports are more likely to 

link to other airports that are closer by, which reduces the number of links that cross the 

entire country. 

Although that is the case in many spatial networks, in the 1997 interstate Commod-

ity Flow Survey data shown in Figure 2-18, every state is linked with almost every other 

in both directions, creating nearly 2,500 cross-country links. Furthermore, the disparity 

between state sizes makes it likely that low between large states such as California and 

New Jersey on opposite sides of the country would obscure the view of small states in 

between.

A link rose technique was used for the graph in Figure 2-18 using Aperture JS, which 

summarizes outgoing low in each direction at each node, removing links for clarity. 

States are colored by region to distinguish between near and far low. 
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FIGURE 2-18: An Aperture JS link rose diagram summarizes flow in each direction around a node. Here, 
flow of commodities to other states is shown using 1997 Commodity Flow Survey data from the U.S. 
Department of Transportation’s Bureau of Transportation Statistics.

However, when the goal is to show traic along routes, as shown in Figure 2-17, and 

a large number of them exist, you can subdivide the spatial ield recursively into tiles and 

aggregate by tile cell for better scalability. Figure 2-19 shows a tile-based visualization of 

shipping traic statistics. Areas of high traic in this graph (such as the capes of South 

Africa and the coast of Japan) appear in red and black. Chapter 14 provides more exam-

ples of tile-based approaches.

Graphs are an obvious it for visualizing spatial networks. Choosing appropriate tech-

niques depending on the objective will help to overcome challenges that spatial networks 

can sometimes present. 
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FIGURE 2-19: You can use tile-based aggregation and rendering techniques to graph a very large num-
ber of links, as in this visualization of shipping trafic over a period of a year.

Chapter 13, “Spatial Networks,” provides more in-depth information on visual-

ization and analysis of spatial networks.N
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SUMMARY

Graphs come in many shapes and sizes, suitable for an extremely wide variety of business 

problems. To choose the right approach, you must understand the relative strengths and 

weaknesses of each, know your data, and, most importantly, know what your objectives 

are. Graphs can be a solution to a problem in themselves, or they can be the organizing 

framework for small multiples of other types of visualization (such as line charts, bar 

charts, donut charts, or radial indicators, as shown in the preceding examples).

Diagrammatic relationships can be shown using expressive links and nodes, express-

ing a model or high-level conceptual picture of a problem. Hierarchies can be efectively 

visualized using trees or sunburst charts. Distant, near, nested, and overlapping commu-

nities can be revealed through clustered layouts and characterized with symbols or labels. 

Or, they can be grouped and summarized in more detail using computational clustering 

approaches. 

Flows are usually best expressed as Sankey diagrams, or left-to-right trees. When 

lows are traded between each node, a chord diagram is an appropriate choice. In spatial 

networks, often a schematic approach to locating nodes and routes will help to clarify the 

graph. When visualizing route statistics for a large graph, a brute-force overplotting of 

links can still be efective in some cases, but tile-based aggregation techniques can pro-

vide greater scalability and color accuracy when expressing very dense areas of a graph.

his chapter served as an introduction of the many approaches to visualizing and 

analyzing graphs for business problems. he chapters in Part 2 describe the processes and 

tools used to do so, starting at the beginning with data, as discussed in Chapter 3.





Process and Tools 
The goal of this part of the book is to outline all the steps in-

volved in taking raw data and transforming it into an insight-

ful, interactive analysis of a graph data set. Various examples 

will be used throughout this section—such as the graph of 

people associated with 10,000 e-mails shown in Figure P2-1.

FIGURE P2-1: Graph of people connected through 10,000 e-mail messages 
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Whether you are exploring e-mails, tweets, market baskets, Internet networks, light 

networks, or global trade lows, you usually follow a sequence of steps, as well as use vari-

ous tools, to transform data into insights through analysis and visualizations.

PROCESS

Table P2-1 provides an overview of the next six chapters. Chapter 3 (“Data—Collect, 

Clean, and Connect”), Chapter 4 (“Stats and Layout”), Chapter 5 (“Visual Attributes”), 

and Chapter 6 (“Explore and Explain”) walk you through the major steps, starting from 

data through to communicating results. Chapter 7 (“Point-and-Click Graph Tools”) and 

Chapter 8 (“Lightweight Programming) discuss how this is accomplished using either 

point-and-click graph software or programming. 

TABLE P2-1: Process of Visualization

STEP EXAMPLE DESCRIPTION

Data 

(Chapter 3)

Collect and clean the data. Then prepare it for use as a graph data 
set with explicit nodes and edges and associated attributes for 
each. For example, for e-mail data, this involves creating nodes and 
edges out of To, From, and Cc ields.

Layout 

(Chapter 4)

Review statistics and arrange the nodes and edges in a way that 
reveals insightful patterns such as components, clusters, and so 
on. Many different kinds of layouts are possible. For example, in an 
e-mail graph, this may mean identifying nodes that act as bridges 
between different groups of people. 

Add Visual 

Attributes 

(Chapter 5)

Adjust labels, sizes, colors, and line thickness to enhance under-
standing. For example, with an e-mail data set, you can use addi-
tional data such as the number of messages, message size, and how 
recent the e-mail is to adjust visual attributes such as node size and 
color. This helps differentiate particular individuals of interest.

Interact, 

Explain, 
Further 
Analysis 

(Chapter 6)

Zoom, select, ilter, annotate, and explain. In a social data set, 
zooming, iltering, and drilling down all provide ways to isolate data 
of interest and to identify particular individuals. You can then pres-
ent or publish the results or export/integrate the results with other 
software for further analysis.
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TOOLS

Types of tools used to create graph visualization range from point-and-click software to 

varying degrees of scripting and programming. Table P2-2 provides some examples.

TABLE P2-2: Tools of Visualization

TOOLSET EXAMPLE DESCRIPTION

Point and Click 
Graph Tools 
(Chapter 7)

You can perform graph analysis with tools such as spread-
sheets and free (or at least low-cost) point-and-click graph 
software such as Excel, Gephi, and Cytoscape. 

Programming 
(Chapter 8)

Some programming may be required, and some simpler 
lightweight programming tools are available that you can 
use to with graphs, including Python and JavaScript. Python 
is useful for data preparation. JavaScript is useful for dis-
playing interactive graphs on web pages.
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3
DATA—COLLECT, CLEAN, 
AND CONNECT

his chapter discusses how to get raw data that you might 
ind in a corporate environment and turn it into data that 
you can use in a graph. Good insights cannot result from 
dirty data! Once you have an objective, you need data. 
Make sure the data is valid, clean, and properly organized 
before proceeding on to analysis and visualization. Follow-
ing are the data steps that you must follow:

 ■ Collect—Where is the data coming from? Graph data in corporate environments 

may be buried in many diferent data sets. his chapter discusses some of the dif-

ferent ways graphs may exist within common data. 

 ■ Clean—What is the quality of this data? Are items identiied consistently? Are 

there many empty values? Are there duplicate entries? Are there any privacy 

issues? here can be many issues you must resolve while preparing data before you 

are able to use it with graph software. 

 ■ Connect—How do you turn data into graph data? You have many diferent ways 

to create graph data. Most require that you create a data set of nodes and edges, 

which may then be organized into one or more iles. Finally, the data is ready to 

import into graph software. 
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KNOW THE OBJECTIVE

he authors once worked on a project for a senior vice president who said, “Here’s some 

data about our staf—what can you show me?” We prepared a beautiful interactive graph 

visualization and he replied, “his tells me nothing I don’t already know.”

his precautionary story illustrates that the irst step in the process of graph visualiza-

tion is to understand what the objective is. If you don’t have a clear objective, you cannot 

know which data to use, how to prepare it, and what to analyze. As you move through 

the analytic process, goals and objectives help guide choices in data preparation, layouts, 

and so on. Incremental indings along the way can be reviewed to help reine the goals. 

Make sure you know what your goals are at the outset, and revise as needed 

through the process. 

COLLECT: IDENTIFY DATA

Assuming there is a clear objective, the next big step—and sometimes the most diicult 

step—concerns data collection and data preparation. Rarely is graph-oriented data read-

ily available and nicely formatted. One quote often repeated in network analysis is, “First 

you need to ‘collect the dots’ before you can ‘connect the dots.’” 

Your irst challenge may be determining what data to collect. First, identify what data 

is available relative to your objective. Also, recall that a graph is made up of two related 

data sets: a set of nodes and a set of links (that is, the connections between the nodes, 

also called edges). Identify which of the data available may have information that contains 

links. Consider the following example.

Suppose that a senior sales rep is working with a team on a major account in a sales 

process that takes many months. Each team member works with diferent staf at the 

major account. he senior sales rep recognizes the importance of understanding the cus-

tomer, which means understanding the various staf employed by the customer, and their 

relationships. Ideally, the rep wants a map of all the staf and their interpersonal relation-

ships—that is, a graph. he rep would like to see clusters of staf, where the key commu-

nication channels are, and which staf occupies the most critical points in the network. 

Figure 3-1 shows an example.

T
IP



CHAPTER 3 Data—Collect, Clean, and Connect 57

Ann

Ben

Tim

Zoe

FIGURE 3-1: In this desired graph, lines indicate the relationships  
between individual people. The color and width of the line add  
extra information.

his graph data is not automatically available. Even with the best sales force auto-

mation system, there may be many elements outside of the system. here is likely a 

wide range of data available, including many documents (such as proposals, technical 

literature, pricing guides, and answers to questions), relationship databases, and many 

communications (such as hundreds or thousands of e-mails, phone calls, attachments, 

video conferences, and other interactions with the customer). None of these data 

sources is in a nice graph data set, but some of the communications have connections 

between people. 

Consider e-mail data. For each e-mail, a list of people is identiied in the To, From, 

and Cc ields that represent connections between people. For example, if someone is 

Cc’d in many e-mails, you might conclude that particular person is signiicant. From a 

set of e-mails, you can extract a graph. In Figure 3-1, you can see that Ann only connects 

with Ben on e-mails (indicated by a line between Ann and Ben). In addition to the graph 

of people and the connections, additional data provides additional useful insights. For 

example, in Figure 3-1 more e-mails exist where Ben and Tim are both included (indi-

cated by a thicker line).

Potential Graph Data Sources

he previous scenario is an example of graph data existing buried inside transactions. 

Graph data can exist in many diferent ways in other data. Finding graph data requires 

that you identify within that other data both the nodes and the links between nodes. You 

will ind that some nodes and links may already exist in other data. 
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Node and Link Data Sets (for Example, Flight Stats)

On rare occasions, there can be data sets that are already nicely organized with both node 

data and link data. One example is a light database (for example, http://transtats.bts.gov).

Are you a frequent traveler? Ever wonder which routes have the most passengers? Or, 

have you found a route that has a lot of competition presumably leading to better fares? 

Have you ever wondered which routes have the most light delays? here is a wealth of 

light data on government websites and through the marketing departments of major air-

lines that can be graphed to answer these curious traveler questions.

he light data sets at http://transtats.bts.gov consist of a primary data set con-

taining each light (that is, the links), and a supplementary data set containing each air-

port (that is, the nodes). In the primary data set, each light can be indicated by a single 

record. he record indicates the city pair (that is, a link), such as ORD–LGA or LAX–

ATL. Note that this particular data has directed links. ORD–LGA is a light that starts 

in Chicago’s O’Hare Airport and ends at LaGuardia Airport in New York City and is 

diferent from LGA–ORD, which is a light going in the other direction. Both links  

are valid.

Flight, Origin, Destination, Distance, Duration 

AA100, ORD, LGA, 836km, 1:55

DL364, LAX, ATL, 2384km, n/a

AA102, ORD, LGA, 836km, 1:55

QF32, LHR, SYD, 11711km, 22:18

...

For directed graphs, A-B and B-A are two different edges, and both are valid. In 

an undirected graph, A-B and B-A are the same edge, and only one pair should 

occur in an undirected graph.

he supplementary data set of airports lists the nodes. In this example, the individual 

airports (such as ORD and LAX) are the nodes: 

Airport, Name, Latitude, Longitude, AvgFlightsPerDay

ORD, O'Hare, 41.94, -87.9, 2409

LGA, LaGuardia, 40.77, -73.87, 423

T
IP
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LAX, Los Angeles, 33.9, -118.40, 1218

...

In the case of this airline data, the graph itself is simply the nodes (airports) and links 

(routes between airports). Additional attributes, such as AvgFlightsPerDay, Distance, or 

Duration, may not be important to draw the graph but may be important in the analysis 

of the graph and achieving the goal. For example, inding the shortest light in duration 

between London, England, and Auckland, New Zealand, would require both the graph 

and the duration associated with each link. 

One challenge with links in general is that most graph visualization software does 

not handle many links between the same pair of nodes. Using the light example, if 

15 lights are listed in the light database from ORD to LGA, some types of graph visu-

alization software must receive summarized links (that is, a single link for ORD–LGA 

with an extra ield indicating a count of 15 lights).

Because many airlines may serve the same route, you have multiple links per route. To 

consolidate multiple links into a single link, you can use a pivot table in the spreadsheet 

to summarize the data for each route, and then you use this pivot table as the output for 

the graph data, as shown in Chapter 7, and the Flight Stats spreadsheet in the Supple-

mentary Material on this book’s companion website. Or, you can consolidate multiple 

links programmatically, as shown in the e-mail example in Chapter 8. 

Link Records (for Example, Network Logs)

Sometimes only links are identiied in a data set. One example is network log iles. 

Although log iles may seem arcane, they contain a wealth of interesting information—

for example, from where people are connecting into a corporate network, when and 

where big iles are transferred out, patterns of regular activity (such as network backup), 

and patterns of irregular activity (such as hackers attempting to break in).  

Network log iles may indicate a source computer IP address and destination com-

puter IP address in each line, identifying a link. You can extract nodes by compiling a 

list of all unique IP addresses in the source and destination IP addresses, as shown here:

Timestamp, Source, Destination, Etc 

2/25/2014, 9.8.2.3, 128.2.9.87

2/25/2014, 7.6.9.5, 128.2.19.45

2/25/2014, 7.6.9.5, 128.2.9.87

...
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For an example, see the Network_Logs data in the Supplementary Material on this 

book’s companion website. his is a small sample Excel spreadsheet showing anony-

mous network data from an intrusion system, and it shows techniques for summarizing 

the link data using pivot tables. Real-world network systems can generate tremendous 

amounts of data that require a programmatic approach to handle the data.

Transaction Records (for Example, Purchases, E‑mails)

By looking at the items that co-exist in a transaction, you can construct a graph. Nodes 

are the items, and links are the co-occurrence of items within any transaction. Examples 

of this type of graph include a wide variety of social networking (including e-mail data, 

as discussed earlier in this chapter), as well as multiple authors of documents such as 

books, news stories, or reports. 

Ever wonder how websites recommend additional products you may be interested 

in? If you’re looking at the book Calvin and Hobbes Lazy Sunday Afternoon (Kansas City, 

Mo.: Andrews-McNeel Publishing, 1989) and see four other recommended books, these 

additional books could be the result of a market basket analysis. 

here are diferent ways of computing product recommendations, such as machine 

learning, collaborative iltering, and market basket analysis. A market basket analysis is a 

graph created by connecting all the items purchased in a single transaction (that is, all 

the items in that market basket are linked together).

In the case of an e-mail, a market basket is all the people involved in each e-mail. An 

example of e-mail data may look like this:

To, From, CC, Date, Size

"Joe", "Zoe", "Tim", 12/09/2014, 156kb

"Joe", "Ben", "Ann, Tim, Zoe", 11/09/2014, 2048kb

"Joe", "Tim", "Ben, Zoe", 11/09/2014, 805kb

... 

In this example, each row is a single e-mail, and all the people in the From, To, Cc, 

and Bcc ields form a set of links. Chapter 8 provides an example programming script to 

turn email data into a graph data set. See the Python Email data in the Supplementary 

Material on this book’s companion website for an example of raw, anonymous e-mail 

data similar to what was previously transformed into node and link graph data and then 

visualized. 
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Sequence Data (for Example, Customer Paths, Patent Citations)

Sequence data is very similar to transaction data. 

In a web server log, each row indicates a particular web page served to a particular 

user. Within each row, a client IP address and possibly a session identiier is used to 

indicate a particular session for a user accessing the website. By collecting all the records 

corresponding to a particular session, all the web pages for that session are identiied, 

in the sequence that the user went through the website. hat is, this is a set of nodes 

(web pages) and the associated links (sequence) that the user traveled through the site. 

By combining multiple paths, you might see if people take common routes through a 

website: 

Time Client_Address Requested_File Status

09:55:15 12.34.56.78 GET /index.html 200

09:57:35 12.34.56.78 GET /images/logo.gif 200

09:58:22 12.34.56.78 GET /lash/splash.swf 200

09:58:35 55.44.33.22 GET /ad/advertisement.js 404

...

Sequences can also be found in many other kinds of data. One good example is the 

creation of a network of doctors based on patient visits by creating links for multiple doc-

tors who bill for the same patient around the same time (http://bit.ly/1bgyHuk). Strong 

links between a pair of doctors implies a strong relationship (such as referrals). What’s 

fascinating here is that raw transaction data of patient visits has been turned into a graph, 

which then reveals new, valuable information about connections between doctors. 

Another example is patent citations. Each patent references prior patents. he various 

references can be collected to gain insights such as which patents are referenced the most. 

Unstructured Data (for Example, Tweets)

Unstructured data can also be processed to extract nodes and links. A means to identify 

nodes and identify links is required. For example, tweets are short, 140-character mes-

sages publicly broadcast on Twitter. Tweets are a rich data source from which you can 

mine diferent kinds of nodes and links by looking for co-occurrence of hash tags (that 

is, user-deined topics), usernames, or stock symbols within tweets, and you can extract 

these to form graphs. his approach is similar to the transaction approach used with 
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e-mail analysis described earlier. Sample raw data may look like this (for example, via 

tweetarchivist.com): 

UserName, Time, Tweet

Benzinga, 01/15/2014, Is #Wendys Success at #McDonalds Expense? 

$MCD $WEN http://t.co/OibzrKFiVB

SeekingAlpha, 01/15/2014, 2 Dividend Machines I Purchased Last Week 

     http://t.co/hMcX5rvSxH $TGT $KO $MCD

wallstCS, 01/15/2014, RT @Jacqui_WSCS: #Starbucks Catches 

     "McDonald's Syndrome" and Gets a #Stock Downgrade 

     http://t.co/elwMdFbcQ4 via @wallstCS $SBUX $MCD

...

In this example, the co-occurrence of hash tags in the irst tweet can be used to iden-

tify a link (for example, #Wendys and #McDonalds). In the second tweet, co- occurrence  

of stock symbols for Target, Coca-Cola, and McDonald’s can be used to establish  

links ($TGT, $KO, $MCD), and in the third tweet, a link between users can be identiied  

(@wallstCS and @Jacqui_WSCS).

In a less-structured set of data (such as a book), nodes can be identiied such as char-

acters in a story. Consider Alice’s Adventures in Wonderland (New York: HarperCollins, 

1865). Characters (such as Alice, the Mad Hatter, and the Rabbit) are nodes. Links can 

be created such as co-occurrence of characters within a paragraph, as shown here:

There was nothing so VERY remarkable in that; nor did Alice think it so 

VERY much out of the way to hear the Rabbit say to itself, 'Oh dear! Oh 

dear! I shall be late!' (when she thought it over afterwards, it 

occurred to her that she ought to have wondered at this, but at the 

time it all s eemed quite natural); but when the Rabbit actually TOOK 

A WATCH OUT OF ITS WAISTCOAT-POCKET, and looked at it, and then hurried 

on, Alice started to her feet, for it lashed across her mind that she 

had never before seen a rabbit with either a waistcoat-pocket, or 

a watch to take out of it, and burning with curiosity, she ran 

across the ield after it, and fortunately was just in time to 

see it pop down a large rabbit-hole under the hedge.

...
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Matrix (for Example, Trade, Migration)

Sometimes a matrix of data contains the same entries in both the irst column and 

irst row. 

For example, global trade lows between countries can be represented as a table of 

numbers (http://stats.oecd.org). Each cell represents a link, with the irst column and 

irst row indicating nodes: 

From/To, Austria, Belgium, Denmark, ...

Austria,     n/a,  2.197b,  1.014b, ...

Belgium,  4.411b,     n/a,  3.681b, ...

Denmark,  0.753b,  1.284b,     n/a, ...

...

See the Trade Flow example in the Supplementary Materials on this book’s compan-

ion website. In the spreadsheet, you can see a technique for transforming the matrix of 

links into a list of links using spreadsheet formulas. 

Statistical Correlation (for Example, Stocks, News Stories)

In all the previous examples, a connection existed in the data. Graphs can also be created 

statistically. 

For example, two stocks can be said to have a strong correlation if their prices move 

up and down together. his can be computed statistically as a function of the two time 

series of data. Raw price time series may look like this: 

Stock, Jan-2, Jan-3, Jan-4, Jan-5,...

AAPL, 520.21, 515.98, 518.22, 514.29

GOOG, 958.37, 968.77, 978.11, 988.33

IBM, 177.34, 176.33, 175.44, 176.58

...

Links can be formed between every pair of time series using a correlation function 

(that is, stock prices that move up and down similarly are highly correlated, whereas 

stocks that move in opposite directions are inversely correlated), as shown here:

Stock1, Stock2, 1 year correlation

AAPL, GOOG, 0.94

AAPL, IBM, 0.77

GOOG, IBM, 0.66

...
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he correlations between two time series can be computed using the correlation 

function correl() in Excel, using statistical software, or programmatically (for example, 

using Python). hese correlation relationships can be useful. For example, an investor 

may like the price pattern of a particular stock (say, a tobacco stock) but would prefer to 

invest in an alternative stock that has a similar price pattern to the original—that is, a 

highly correlated stock. Real-world portfolio managers are interested in correlations—

they want diversiied portfolios where the stocks they own are not strongly correlated so 

that if the performance of one stock goes down, the other stocks do not follow. 

Note that any pair of time series can be transformed into a correlation such as Google 

searches over time or time series of news story topics. In the Supplementary Materials on 

this book’s companion website, see the Stocks example, which shows how to transform 

raw time series data into links based on correlations.

Two Data Types (for Example, Board Memberships)

A bipartite graph has two diferent types of nodes, with linkages between the diferent 

types. For example, a graph analysis of executives and their board memberships reveals 

the connections between companies via board members. he two diferent data types in 

this example are people and companies. hese are the nodes. he board memberships are 

the links that connect a person to a company: 

Exec, Board, Tenure

Sergey Brin, Google, 13 years

Paul Otellini, Intel, 11 years

Paul Otellini, Google, 9 years

...

Many Data Types (for Example, Social Links)

he idea of two data types can be extended to many diferent types of data. People can 

be connected through many kinds of commonalities—for example, LinkedIn builds con-

nections via companies, friendships, educational institutions, group memberships, and so 

on. In many business cases, each type of connection may be in diferent databases, mak-

ing the integration of this disparate data much more diicult. Be sure to keep the type 

of link in the data—some graph software will be able to analyze and explicitly represent 

these diferent types of links, such as Cytoscape.
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Potential Hierarchy Data Sources

Hierarchies are a special type of graph. hough hierarchies may be embedded into data 

in a number of the techniques discussed previously, they may also be embedded in data 

with other techniques.

Links within a Node (for Example, Employee Data)

In one approach, a node may be described as containing a link to the next higher node in 

the hierarchy (that is, the “parent” for that node). 

For example, a human resources database has each record indicating an employee, 

and the manager of each employee indicated in one of the ields. he successive chains of 

managers can be used to create a graph: 

Person, Age, Income, Manager

Ann, 22, 20000, Ben

Ben, 33, 30000, Zoe

Tim, 44, 40000, Zoe

...

Flattened Hierarchies (for Example, Pivot Tables)

Flattened hierarchies are sometimes found in public data sets and from spreadsheets, 

such as exported pivot tables. In lattened hierarchies, each successive column represents 

the next level of the hierarchy. Each row represents a node. Links must be extracted by 

identifying each unique pair across successive pair of columns. 

In the following example, the links are as follows:

 ■ Technology ⇨ Software, Software ⇨ Application_Software

 ■ Technology ⇨ Hardware, Hardware ⇨ Computer_Hardware

 ■ Financials ⇨ Insurance and Insurance ⇨ Life_Insurance

Note that the root level is sometimes not shown as a distinct column or row, and so 

the node and link to the top level must be created. Following from the same example,  

the node would be Portfolio and the links would be Portfolio ⇨ Technology and Portfo-

lio ⇨ Financials:

Sector, Industry, Sub-Industry, Company, Holdings
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Technology, Software, Application Software, Adobe, 12857

Technology, Hardware, Computer Hardware, Apple, 10475

Financials, Insurance, Life Insurance, Alac, 2934

...

Hierarchy Codes (for Example, Government Data)

Sometimes hierarchies are deined with alphanumeric codes. he various nodes and links 

can be extracted via a lookup table indicating the code. 

For example, the previous data showing a inancial portfolio and hierarchy can be 

described using standardized codes such as Global Industry Classiications (GICs), 

wherein the data may resemble the following:

Company, GICScode, Holdings

Adobe, 4510, 12857

Apple, 4520, 10475

Alac, 4030, 2934

...

In this example, the numeric code can be decoded to determine the position of each 

item in the hierarchy. For example, in the GICs system, the irst two numbers determine 

the sector, the next digit determines the industry, and the fourth digit determines the 

subindustry. 

Alphanumeric hierarchies are common in some government data. For example, see 

the Occupations (and corresponding yEd visualization ile) data set in the Supplemen-

tary Materials on this book’s companion website for a hierarchical data set showing sal-

ary data by occupation in the United States. 

Hierarchy as Indentations (for Example, Reports)

In some software and reports, hierarchies are made human-readable by using whitespace 

(for example, www.bls.gov/cpi/#data). Extracting the number of spaces in front of a 

label determines that node’s level in the hierarchy, and the next shortest line immediately 

above determines the parent (that is, link) for that node: 

CPI Expenditure Level                                       Weight

+ All items............................................     100

+  Food and beverages..................................     14.792
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+   Food...............................................     13.742

+    Food at home......................................      7.816

+     Cereals and bakery products......................      1.09

+      Cereals and cereal products.....................      0.35

+       Flour and prepared lour mixes.................       0.039

+       Breakfast cereal...............................      0.194

...

See the CPI data set in the Supplementary Materials on this book’s companion web-

site for an example. 

Getting the Data 

Identifying the data is only part of the problem—actually getting the data can be an 

interesting challenge in some corporate environments. Techniques for getting data 

include the following:

 ■ File download—Many of the previously described data sets are available as 

downloadable iles on the Internet from various sites. http://data.gov can be a 

good top-level source for U.S. data. http://stats.oecd.org or http://data 

.worldbank.org can be good sources for data across countries. Social network data 

can be accessed from a variety of sites such as http://tweetarchivist.com. 

 ■ Report data export—Many reporting software solutions provide a means to 

export data as lat iles or into spreadsheets.

 ■ Tools—Various software apps and plug-ins are available to make data access for 

a particular type of data easier. For example, NodeXL provides point-and-click 

access from Excel to social network data, including Twitter and Facebook. Exam-

ples of NodeXL and social data are shown in Chapters 7 (“Point-and-Click Graph 

Tools”) and Chapter 11 (“Communities”). Google Spreadsheet provides formulas 

that can directly pull data from web sources such as RSS feeds and web pages.

 ■ Programming—Both Internet sources and internal data sources such as databases 

can be accessed programmatically. (See Chapter 8, “Lightweight Programming,” 

for more about this.)
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 ■ Cut and paste—When all else fails, sometimes cut and paste works. Some web-

based publications use a PDF ile format, and data can be cut and pasted into 

spreadsheets. In many software solutions, data is presented in tables where items 

can be selected. Try selecting data in a table-like interface and then attempt to 

copy it. For example, you can cut and paste e-mail data out of Outlook, as shown 

in Figure 3-2 and Figure 3-3. In Outlook, the e-mail list pane is a customizable 

table: columns such as To and Cc can be added, and columns such as Size and 

Date can be reformatted via right-clicks on the column headers. hen, multiple 

rows can be selected via Shift+click and pasted into a spreadsheet or text editor.

FIGURE 3-2: Often tables can be reconigured and multiple rows selected and then copied to 
export the data. Here e-mail data is copied out of Outlook.

FIGURE 3-3: Then the data can be pasted into a spreadsheet or text editor, such as this freeware 
editor called Programmer’s Notepad.
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CLEAN: FIX THE DATA

Very rarely is data already in a nice format ready to use. And, too often, data is frustrat-

ingly messy. Unfortunately, most graph software is not designed to operate on messy 

data, and it is your task to irst clean and prepare data before providing it to graph 

software. 

Carrying on with the senior sales rep example outlined previously, let’s use a data set 

of 10,000 e-mails as an illustration. Each person who sent, received, or was Cc’d will be 

a node. Links will be formed between any pair of people included in the same e-mail. 

Because the actual messages are not required, only the metadata is exported: To, 

From, Cc, Bcc, Date, e-mail size, and so on. he exported data set ideally will look like 

this, with each row indicating one e-mail message between a group of people:

To,    From,  CC,    Date,       Size

"Ben", "Zoe", "",    12/09/2014, 156kb

"Ben", "Zoe", "Tim", 02/02/2014, 25kb 

"Ben", "Tim", "Zoe", 11/18/2014, 77kb

"Ben", "Ann", "",    10/31/2014, 2048kb

... 

Unfortunately, real data is rarely as tidy and error-free as the data shown here. A 

real-world e-mail data ile may look more like this (with various anomalies shown 

underlined):

To,    From,        CC,         Date,       Size

"Ben", "Zoe",       "",         12/09/2014, 156kb

"Ben", "Zoe Jones", "Tim",      02/02/2014, 25kb 

"Ben", "Tim",       "Tim; Zoe", 11/09/2014, 77kb

"Ben", "Ann",       76.3,       n/a,        2048kb

"Ben", "",          "",         01/01/2014, 4.2Mb

...

In this example of dirty data, many data-quality issues must be addressed before con-

structing the graph data: 

 ■ Inconsistent node names—Nodes are not consistently named. In this example, 

both “Zoe” and “Zoe Jones” refer to the same person. In real-world data, this can 

get quite messy. For example, in one e-mail data set you may ind that “John Doe” 
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also appeared as “ john.doe@bigco.com” or “Doe, John,” with or without sur-

rounding quotes, with preixes (for example, “SMTP: john.doe@bigco.com”) and/

or suixes (for example, “John Doe (Email)”). hese need to be consolidated into 

a single record. 

 ■ Duplicate nodes—Within the node data set, each node should appear only once. 

For example, “Zoe Jones” should occur only one time. If multiple “Zoe Jones” 

occur in the data and all refer to the same Zoe Jones, these should be aggregated 

into a single record. If two diferent Zoe Jones are employed, then the node 

should be identiied with a unique identiier (for example, an e-mail address or 

employee number). 

 ■ Duplicate links—Some types of graph visualization and analysis software do not 

work well with many links between the same pair of nodes, and these must be 

consolidated. It is quite common to have many links in the data between the same 

pair of nodes based on additional attributes. For example, in the Flight_Stats 

data set provided in the Supplementary Material on this book’s companion web-

site, there may be multiple lights on a given day between a pair of cities at dif-

ferent times, on diferent airlines. If the objective is to understand the number of 

lights between each city pair, these must be consolidated down to a single link 

for that city pair. Alternatively, if the objective is to analyze each of the diferent 

carrier networks, the diferent links must be maintained, and the analysis tools 

chosen must handle multiple links between points.

 ■ Self-loop—A node that has a link that connects to itself is a self-loop. In the third 

e-mail of the previous example, Tim has sent an e-mail to Ben and Zoe, but also 

Cc’d himself, thus creating a self-loop. Self-loops may not be relevant to the ana-

lytic objectives. Self-loops are not handled in some graph software.

 ■ Isolated nodes—In the inal e-mail shown previously, no From or Cc is iden-

tiied. It is feasible to have nodes in data sets to which no links exist—on some 

occasions graph programs may have problems with unlinked nodes. 

 ■ Links pointing to nonexistent nodes—Although this does not occur in the pre-

vious example, in some data sets, a link may be deined between two nodes, where 

one of the nodes does not exist in the list of nodes. his may cause problems with 

some graph software.
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 ■ Invalid data—Unfortunately, real-world data consists of ields that may be empty, 

NULL, or may otherwise have invalid data. A column of numeric data may have 

text entries such as N/A or #ERROR. hese entries should be cleaned or removed. 

 ■ Units—Data sets can sometimes shift units, as indicated by the inal e-mail 

showing the size in megabytes (MB), whereas all earlier examples were in kilo-

bytes (KB). All numeric data needs to be normalized to the same units.  

here are many approaches to dealing with invalid, incomplete, and inconsistent 

data. A simple approach may be to remove the particular problematic record, but other 

approaches including inputing missing values or normalizing the data. hese are beyond 

the scope of this book. 

Depending on the data set, privacy issues may need to be addressed—for example, 

where people are uniquely identiied by name or numbers (such as a government ID 

number). In an e-mail data set, the names of individuals should be replaced with num-

bers, letters, or generic names. Unique, generic names can be found in government reg-

istries (for example, www.ssa.gov/OACT/babynames/limits.html). Corporate policy varies 

at diferent companies, so check the appropriate guidelines. If you are uncertain, replac-

ing personally identifying information (such as names) with other data is a good idea. 

CONNECT: ORGANIZE GRAPH DATA

By deinition, a graph is a collection of nodes and links between the nodes. Graph soft-

ware almost always works with a data set of nodes and a data set of links. Even it not 

required, conceptually, it can be very efective to identify and organize data into a set of 

nodes and set of links. his will enable data exploration with a wider variety of tools if 

this clear separation is available. 

Extending the e-mail example, the clean data may look like this:  

To,    From,  CC,    Date,       Size

"Ben", "Zoe", "",    12/09/2014, 156kb

"Ben", "Zoe", "Tim", 02/02/2014, 25kb 

"Ben", "Tim", "Zoe", 11/18/2014, 77kb

"Ben", "Ann", "",    10/31/2014, 2048kb

...
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But, unfortunately, this data is not in a nice graph data format. he typical target 

format of graph data will be nicely organized into two data sets—a table of nodes and a 

table of links, as shown here:

Nodes:

"Ann" 

"Ben"  

"Tim" 

"Zoe"  

Links:

NodeA, NodeB 

"Ann", "Ben"

"Ben", "Tim"

"Ben", "Zoe"

"Tim", "Zoe"

Furthermore, the target graph data can be much more useful if it contains additional 

information, such as counts, size, and recentness, which may be used later in the analysis:

Nodes:

Person, Number_of_Emails,  Total_kb, Most_Recent_Date

"Ann",  1,                 2048,     10/31/2014 

"Ben",  4,                 7687,     12/09/2014

"Tim",  2,                 102,      11/18/2014 

"Zoe",  3,                 4292,     12/09/2014

Links:

NodeA, NodeB, Number_of_Msgs

"Ann", "Ben", 1

"Ben", "Tim", 2

"Ben", "Zoe", 3

"Tim", "Zoe", 2

Nodes must be extracted from the To, From, and Cc ields. Similarly, links must 

be constructed between people within a single row—in the previous example, the irst 

e-mail represents an e-mail from Zoe to Ben (that is, a link). 
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Compute the Graph

Transforming raw data into a set of nodes and a set of links typically requires some com-

putation. You can do this via programming, or sometimes spreadsheet formulas may be 

suicient (see the sample spreadsheets on the accompanying website). 

Following the e-mail example, the raw data was accessed via cut and paste from  

Outlook to Excel. Transforming the raw e-mail data into a set of nodes and links 

required some programming, which will be shown in detail in Chapter 8. Essentially,  

for the e-mail data set, the process looked like this (for each row in the data):

1. Extract each unique node. For example, for the irst e-mail, the nodes are Ben 

and Zoe. 

2. Add these nodes to the node list and set the count (number of e-mails) to 1.  

If a node already exists in the node list, instead increment the count for that  

node by 1.

3. Each unique pair of nodes within the row is a link. In the second e-mail, the 

nodes are Ben, Zoe, and Tim. he unique pairs are Ben-Zoe, Ben-Tim, and  

Tim-Zoe. Each of these links must be added to the link list with a count of 1. If 

the link already exists, then instead increment the count for that node by 1.

When processing links, if the links are not directed, then Tim–Zoe and Zoe–

Tim represent the same link, and only one of these pairs should be in the out-

put link list. Alternatively, if the links are directed, then Tim–Zoe represents a 

link from Tim to Zoe, whereas Zoe–Tim represents a different link from Zoe 

to Tim—and both pairs can exist in the output link list.

he results of this computation are two data sets—a set of nodes and a set of links—

exactly the output desired. Although many of the examples provided in the supplemen-

tary data are small (that is, less than 10,000 nodes), you can take the same approach with 

much larger data sets. For data sets with millions to billions of nodes, the approach can 

be extended to using optimized processes, graph databases, and distributed computing.
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Already, at this point, with this trivial data set, you can identify some interesting 

graph properties by sorting these lists. In this trivial example, the node that occurs most 

frequently is Ben, and the most frequent link is Ben–Zoe.

Another interesting property is the number of nodes and number of links. With four 

nodes and four links this is not a fully connected data set. A fully connected data set—

meaning every possible link exists—would have 16 links. At four links and four nodes, 

it is certain that this cannot be a hierarchy either—a single hierarchy always has one less 

link than the number of nodes.

With the 10,000 e-mail data set, following are some of the interesting properties:

 ■ here are 2,500 nodes. With 10,000 e-mails, this means that each e-mail is not to 

a diferent person, so some people will occur multiple times.

 ■ here are 9,600 links, signiicantly less than 2,500 × 2,500 possible links (that is, 

a fully connected 2,500-node data set would have more than 6 million links). he 

ratio of the number of actual links to the maximum number of links is called graph 

density, and if the graph density is low, the graph is considered a sparse graph.

 ■ he node with the highest count is Michael Johnson with 2,271 e-mails. Michael 

is the head of sales in this data set—he Cc’s or is Cc’d by many people because he 

must coordinate between sales, marketing, technical, and executive staf.

Graph statistics will be discussed in more detail at the beginning of 

 Chapter 4, “Stats and Layout.”

When processing the initial data, it may be useful to ilter out some of the data at 

this early stage. For example, using an e-mail data set extracted from one person’s e-mail 

inbox (say, Richard’s e-mail) means that every single e-mail will have Richard in either 

the To, Cc, or Bcc ields. Later, when visualizing this data, every single link to Richard 

will then be drawn in addition to all the other links, thus creating a potentially cluttered 

view. Because it is already known that Richard is the source of the e-mail data, it may be 

much more efective to ilter out Richard during this initial computation. In the e-mail 

data set, all links to Richard have been removed.

A number of scenarios exist in which it may be desirable to ilter out links during the 

data preparation stage, such as removing some of the weaker links in massive graphs to 
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make it faster to process the graph in later steps. For example, in the case of correlated 

time series for stocks, the result shown in Figure 3-4 is a fully connected graph with a 

link for every possible combination. Processing the data so that only the top few links for 

each stock are retained can result in a completely diferent visual layout later.

FIGURE 3-4: Same data set of stock correlations. In the left image, all links were used. In the right 
image, only the top three links per node were output and used.

At this point, these two data sets can be output into the appropriate ile formats that 

can then be read by graph software. You can learn more details about the programming 

in Chapter 8.

Graph Data File Formats

Once data has been collected and connected, most graph analysis applications will need 

some way to input the graph data. Although specialized graph databases are available, 

in many business-analysis and smaller data-science applications, simple data iles can be 

used to exchange graph data between graph applications. 
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As with many things in the ields of computer software and data, more than one ile 

format is available for graph data. Some of the more common techniques are discussed in 

the following sections. A number of the supplementary examples on this book’s compan-

ion website are provided in multiple formats. A few of the examples (such as Trade and 

CPI) include sample spreadsheets that provide examples of preparing data for diferent ile 

formats on successive worksheets.

Most graph software only supports a few ile types, may not support all 
ields, and may have other issues, such as requiring speciic names for some 
columns. Some experimentation with data preparation and data formats 

likely will be required. 

CSV Files

A simple way to deal with graph ile formats is to create two separate iles—one ile of 

nodes and one ile of links—both of which are in a Comma Separated Value (CSV) format. 

hese iles are identiied with a .csv extension. Following are a couple of examples:

Nodes.csv:

Person, Number_of_Emails, Total_kb, Most_Recent_Date

"Ann",  1,                2048,     "10/31/2014" 

"Ben",  4,                7687,     "12/09/2014"

"Tim",  2,                102,      "11/18/2014" 

"Zoe",  3,                4292,     "12/09/2014"

Links.csv:

NodeA, NodeB, Number_of_Msgs

"Ann", "Ben", 1

"Ben", "Tim", 2

"Ben", "Zoe", 3

"Tim", "Zoe", 2

W
A

R
N

IN
G



CHAPTER 3 Data—Collect, Clean, and Connect 77

Note the following conventions for CSV iles for graph data:

 ■ Header row—he top row of each ile deines the name of data for each column. 

 ■ Node column—he irst column of the node ile contains the unique identiier for 

each node. 

 ■ Link columns—he irst two columns of the link ile contain the links. In a 

directed graph, the irst column indicates the source nodes, and the second col-

umn indicates the destination nodes. 

CSV iles can be easily opened, edited, extended, and exported in many programs, 

including spreadsheets and text editors. CSV iles can be problematic because there is no 

data quality enforced in their format. For example, the authors have come across CSV 

iles with embedded tabs, extremely long ields, invalid numerical values, and so on.

GDF Files

he GDF ile format began with a graph system called GUESS and is now commonly 

used with the graph software Gephi. GDF is similar to CSV iles; however, both nodes 

and links are deined within the same ile, and visual attributes such as edge widths, 

node sizes, colors, shapes, visibility, or even images can be deined in the ile as well. 

he GDF ile format is a good format for people who manipulate their graph data with 

spreadsheets. Following is an example using the simple e-mail data set:

EmailGraph.gdf:

nodedef> name VARCHAR, NumEmails DOUBLE, width DOUBLE, Recency VARCHAR

'Ann',1,2048,'10/31/2014'

'Ben',4,7687,'12/09/2014'

'Tim',2,102,'11/18/2014'

'Zoe',3,4292,'12/09/2014'

edgedef> NodeA VARCHAR, NodeB VARCHAR, weight DOUBLE, color VARCHAR

'Ann','Ben',1,'0,0,255'

'Ben','Tim',2,'0,255,0'

'Ben','Zoe',3,'255,0,0'

'Tim','Zoe',2,'255,0,255'
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You can learn more about the GDF ile format at http://guess. wikispot 
.org/The_GUESS_.gdf_format or http://gephi.github.io/users/

supported-graph-formats/gdf-format/.

he ile is set out with the nodes irst, followed by the links. he irst row of the 

nodes section is similar to the irst row of a nodes CSV ile:

 ■ nodedef>—he header row starts with the keyword nodedef> to clearly mark 

out the start of the nodes section. here is no space between nodedef and the 

 greater-than symbol.

 ■ Node column—he irst column is required to be the node column. he con-

vention is that this column is titled name, and some software requires it to have 

this title. 

 ■ Label column—An optional label column is used to deine the label to apply to 

the node. A label column is almost always very useful to have, even if it is a dupli-

cate of the name column. It is even better to have a label that is short, for exam-

ple, 'LGA' instead of 'New York La Guardia Airport' or 'US' instead of 'United 

States', because long labels tend to overlap and obscure each other later in the 

graph visualization steps.

 ■ Other node columns—Additional columns can be added, such as color, width, 

visibility, position, and so on. Not all graph software is going to necessarily auto-

matically use these attributes even if they are present. Some software requires that 

these columns be in a speciic order. For example, according to http://gephi.org/

users/supported-graph-formats/gdf-format/, the Gephi graph visualization 

software documentation indicates that it supports attributes when listed as col-

umns with the following names in the following order: 

 ■ name

 ■ label

 ■ visible

 ■ labelvisible
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 ■ width

 ■ height

 ■ x

 ■ y

 ■ color 

Other software (for example, GUESS) supports additional attributes such as 

shape and image.

If the nodes contain geographic attributes and if the longitude and latitude 

data corresponding to each node is available, then the longitude and latitude 

can be put into x and y columns in order to plot the data geographically. 

 ■ Data types—Each column is indicated with a title, just as with a CSV ile. In 

addition, the inal text for each column indicates the data type. his helps the 

graph software understand if the column should be interpreted as text or as a 

numeric value. his is important for deining other visual attributes, such as colors 

and sizes, and interactive features such as iltering. Following are some common 

data types:

 ■ VARCHAR—VARCHAR stands for VARiable CHARacter ield. It deines a ield 

as a text ield. Node and link ID ields are typically VARCHAR, as are ields for 

labels or other text. Color could also be deined as VARCHAR, whether deined as 

a name (for example, 'orange') or as an RGB value (for example, '255,127,0').

 ■ DOUBLE—Use DOUBLE for numerical values, such as node size, edge width, 

popu lation, average age, and so on. 

 ■ BOOLEAN—Use this for an attribute such as Visible. A boolean column can 

only have ields set to either TRUE or FALSE. 

 ■ INT—his is used for an integer. Typically, you use DOUBLE if you are using a 

number. INT is used for lookup codes such as a shape. GDF supports diferent 
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node shapes (called style) such as circles, squares, and images where the code 1 

corresponds to a square, 2 is a circle, and so on. Note that not all graph soft-

ware supports the use of diferent shapes. 

he links section is similar to the nodes section:

 ■ edgedef>—he header row starts with the keyword edgedef> to clearly mark the 

start of the nodes section. 

 ■ NodeA, NodeB columns—he irst two columns deine the links. For directed 

graphs, the irst column indicates the source node, and the second column indi-

cates the destination node. 

 ■ weight—An optional weight column with numeric values deines the thickness of 

the links connecting nodes. his is very efective for indicating the strength of the 

relationship. Some caution is required when setting weights in the source data—

some software will not handle negative weights; some software will truncate large 

numbers, and some will not. Gephi, for example, may display a massive arrow 

larger than the entire graph, thus obscuring everything for a large value. A safe 

approach is to normalize the weight data to the range of 1–10 or 1–50 for the irst 

time the ile is created and iteratively experiment with the visualization software. 

 ■ Other link columns—Additional columns can be added, such as label 

 visibility, color, directed, and so on. he use of the directed column can be 

particularly useful if the graph has a mix of both directed and undirected links. 

Otherwise, if the graph has links of all one type (directed or undirected), most 

graph software provides a simple checkbox to declare all links as directed or 

undirected.

GDF iles can be easily edited with a spreadsheet. To export a GDF ile from a 

spreadsheet, save it as a CSV ile, then rename the extension from .csv to .gdf. 

Other Node‑and‑Link File Formats

Many other ile formats exist. You may want to use a more structured ile format, such 

as GML or GraphML. hese formats potentially ofer more features, but there is the 
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complementary challenge in that these features may not be used by the target graph 

software. 

One approach might be to transform data into these other formats by using graph 

analysis software (for example, Gephi) that can load and export a wide variety of difer-

ent graph ile formats. Another approach might be to use some lightweight program-

ming, discussed further in Chapter 8, to transform and output your desired data into the 

target format. 

Graph Modeling Language (GML) is a fairly straightforward format, very similar to 

GDF—that is, a single ile of nodes and links. It does ofer more lexibility (for example, 

deining edges that are non-straight lines as a list of points). Unfortunately, GML does 

not identify data type. A basic GML ile may look like this:  

EmailGraph.gml:

graph [

     directed 0

     node [ id 1 label "Ann" numEmail 1 totalKb 2048 ]

     node [ id 2 label "Ben" numEmail 4 totalKb 7687 ]

     node [ id 3 label "Tim" numEmail 2 totalKb 102 ]

     node [ id 4 label "Zoe" numEmail 3 totalKb 4292 ]

     edge [ source 1 target 2 numMsg 1 ]

     edge [ source 2 target 3 numMsg 2 ]

     edge [ source 2 target 4 numMsg 3 ]

     edge [ source 3 target 4 numMsg 2 ]

]

Details on GML ile format are available at http://www.im.uni-passau.de/ 
ileadmin/iles/lehrstuhl/brandenburg/projekte/gml/gml-technical- 

report.pdf.

GraphML is a Graph XML ile format. It is more verbose than GML or other graph 

data ile types because GraphML uses XML standards for encoding data. GraphML is 

used as the ile format for the graph visualization software yEd. Note that yEd includes a 

lot of detail in its GraphML ile, and other graph software that can read GraphML iles 

may ignore, skip over, or generate warnings for these additional attributes. GraphML 
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provides useful features such as data type identiiers, as is shown in the top section of the 

following sample ile:

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

  <key id="NodeLabel" attr.name="Label" attr.type="string" for="node" />

  <key id="NumMail" attr.name="NumMail" attr.type="double" for="node" />

  <key id="TotalKb" attr.name="TotalKb" attr.type="double" for="node" />

  <key id="NumMsg" attr.name="NumMsg" attr.type="double" for="edge" />

  <graph edgedefault="undirected">

    <node id="Ann">

      <data key="NodeLabel">Ann</data>

      <data key="NumEmail">1</data>

      <data key="TotalKb">2048</data>

    </node>

    <node id="Ben">

      <data key="NodeLabel">Ben</data>

      <data key="NumEmail">4</data>

      <data key="TotalKb">7687</data>

    </node>

    ... more nodes ...

    <edge source="Ann" target="Ben">

      <data key="NumMsg">1</data>

    </edge>

    ... more edges ...

  </graph>

</graphml>

GraphML is well documented at http://graphml.graphdrawing.org/primer/

graphml-primer.html.

JavaScript Object Notation (JSON) is a diferent open standard alternative to XML 

that works well with JavaScript and web-based interactive visualizations. d3.js is a 

N
O

T
E



CHAPTER 3 Data—Collect, Clean, and Connect 83

popular visualization library that does use some graphs, and, as shown in the following 

example, a graph can be represented in JSON:

{

  "nodes":[

    { "name":"Ann","numEmail":1,"totalKb":2048 },

    { "name":"Ben","numEmail":4,"totalKb":7687 },

    { "name":"Tim","numEmail":2,"totalKb":102 },

    { "name":"Zoe","numEmail":3,"totalKb":4292 }

  ],

  "links":[

     { "source":0,"target":1,"value":1 },

     { "source":1,"target":2,"value":2 },

     { "source":1,"target":3,"value":3 },

     { "source":2,"target":3,"value":2 }

  ]

}

Essentially, this is a list of nodes, denoted as "nodes":[] and a list of links, shown as 

"link":[]. Each individual node object is shown in braces ({}) as a set of attribute:val-

ues. Note in this example that the links do not reference nodes by name. Instead, links 

reference the nodes by the index number of the node in its list, with the irst item having 

an index of zero. For example, the link { "source":1,"target":3,"value":3 } is a link 

from source node index 1 (Ben) to target node index 3 (Zoe). All of the data is wrapped 

in a single set of braces to indicate the overall graph object. 

Some tools will output JSON, but the format can vary. Gephi can load data and save 

data in a variety of formats, including export JSON via a Gephi plug-in. Its JSON for-

mat follows a similar pattern with some minor variances—for example, Gephi uses the 

term “edges,” whereas d3.js uses the term “links.” For the same data set shown previ-

ously, Gephi will output JSON like this:

{

  "edges":[

    {"source":"Ben","target":"Tim","id":"1422",

        "attributes":{"Weight":"2.0"},"color":"

        rgb(153,153,153)", size":2.0},
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    {"source":"Ann","target":"Ben","id":"1421",

        "attributes":{"Weight":"1.0"},"color":"rgb(153,153,153)",

        "size":1.0},

    {"source":"Ben","target":"Zoe","id":"1423",

        "attributes":{"Weight":"3.0"},"color":"rgb(153,153,153)",

        "size":3.0},

    {"source":"Tim","target":"Zoe","id":"1424",

        "attributes":{"Weight":"2.0"},"color":"rgb(153,153,153)",

        "size":2.0}

  ],

  "nodes":[

    {"label":"Tim","x":3.358,"y":0.669,"id":"Tim",

        "attributes":{"numemails":"2.0"},"color":"rgb(153,153,153)",

        "size":4.0},

    {"label":"Ben","x":0.759,"y":0.063,"id":"Ben",

        "attributes":{"numemails":"4.0"},"color":"rgb(153,153,153)",

        "size":100.0},

    {"label":"Ann","x":-3.696,"y":0.833,"id":"Ann",

        "attributes":{"numemails":"1.0"},"color":"rgb(153,153,153)",

        "size":28.6},

    {"label":"Zoe","x":-0.422,"y":-1.566,"id":"Zoe",

        "attributes":{"numemails":"3.0"},"color":"rgb(153,153,153)",

        "size":57.0}

  ]

}

Other Data Formats

In some cases, the target software may use data in a format that is not a list of nodes and 

a list of links. 

Matrix layouts are used by some software where all the possible links are expected. 

For example, the d3.js chord diagram example uses a two-dimensional (2D) matrix of 

data to deine the links. 
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PUTTING IT ALL TOGETHER

he essential irst steps in graph analysis and visualization are to acquire the right data 

and to answer the objective. To recap, following are the key steps to getting data:

 ■ Objective—Prior to collecting data, ensure that the objective is known. his will 

help establish what data needs to be collected and how it can be prepared. For 

example, the question of whether to maintain multiple links between nodes or 

aggregate them into a single link must be understood in the context of the overall 

project goals.

 ■ Collect—Graph data can exist in data in many diferent ways. It may be neces-

sary to collect data from multiple sources and/or evaluate the data to determine if 

there is a way that links could be resident in the data and potentially extracted (for 

example, by spreadsheets or programmatically).

 ■ Clean—Unfortunately, real-world data may often have quality issues, and for 

graphs, you have additional concerns to address. Some graph software cannot 

handle self-loops, duplicate links, missing nodes, or Null values.

 ■ Connect—Data must be transformed into a format that graph software can use—

typically a list of nodes and links. Once prepared, the data must be output, and 

you have various ile format alternatives. CSV, GDF, GML, and JSON can all be 

straightforward to use when preparing spreadsheets or via programming.

SUMMARY

In any kind of data analysis or data visualization, data is required. It is quite feasible for a 

project to fail with inadequate data and poor preparation. herefore, take care to identify 

the right data and prepare it appropriately.

With a well-deined objective and the right data, you can proceed to the next step—

graph analysis and visual layout, as described in Chapter 4. Finally, you can start to look 

at some the statistics and the organization of the graph visually.
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4
STATS AND LAYOUT

Once graph data is prepared, it can be analyzed and visu-
alized. he next goal is to get a high-level understanding 
of the graph: 

 ■ Is it all connected together or in many separate parts? 

 ■ Is it a hierarchy?

 ■ Is it sparse, or is it densely connected? 

 ■ Are there obvious clusters? 

hese are the questions that this chapter addresses. 

Statistics can provide a wealth of information, and some high-level statistics will 

answer questions about size, density, and number of separate graphs. 

Layouts are an important visual technique to get a sense of the graph structure. Dif-

ferent layouts will reveal diferent aspects of the graph, enabling diferent types of analy-

ses and supporting diferent types of stories. 

A wide variety of node-and-link layouts can provide diferent ways of revealing the 

connections, groupings, and sequences in graphs. Other types of graph layouts focus on 

other properties of a graph, revealing lows, hierarchies, or multiple attributes.



PART 2 Process and Tools88

BASIC GRAPH STATISTICS

You can compute a wide variety of graph statistics. Which graph statistics are relevant 

depends, in part, on your objective. Some of the simpler graph statistics are outlined 

here, such as density, degree, and centrality.

Size (Number of Nodes and Number of Edges)

As described in Chapter 3, “Data—Collect, Clean, and Connect,” you can collect various 

simple graph statistics (such as graph size statistics—that is, number of nodes and num-

ber of edges) during the data preparation. Graph size statistics are used to establish how 

to best proceed further. Consider the following:

 ■ Graphs with hundreds to hundreds of thousands of edges can be processed on 

a local computer, whereas graphs with millions to billions of edges require a 

multi-computer graph analysis approach. 

 ■ Graphs with thousands of edges can be directly visualized, whereas larger graphs 

require a strategy or interface for selecting and iltering down to smaller, more 

manageable subsets of the graph.

Size statistics also provide a quick validation that the graph data imported correctly 

into the target analysis and visualization software. Does the software show the same 

number of nodes and edges as noted when the data was prepared?

Density

Graph density is the ratio of actual edges to the maximum possible edges. A fully con-

nected graph (that is, a dense graph) will have every node connected to every other 

node—for n nodes, the maximal graph will approach n2 edges for a directed graph (or 

½ n2 nodes for an undirected graph). Density is a good summary statistic. A large dense 

graph can take a long time to process. Visualizing dense graphs can result in cluttered 

graphs with too many lines to visually decipher.  
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Keep the following in mind:

 ■ Dense graphs—You can use, ilter, extract, and visualize dense graphs in many 

ways. A market basket analysis (which is a graph of all products purchased together) 

is a dense graph, because almost every product combination is purchased given 

enough transactions. Depending on the objective, a dense graph may be

 ■ Reduced to just the top edges, for example, by iltering out edges below a set 

threshold or by retaining only the top n edges for each node. 

 ■ Visualized using techniques that can work well on fully connected graphs 

(such as a chord diagram or matrix), or visualized using a node-and-link tech-

nique, with edges removed via edge iltering.

 ■ Sparse graphs—By contrast, a sparse graph has a low number of edges compared 

to the maximum number of edges. Graphs that have the number of edges on the 

order of one, two, or three times the number of nodes are often good for visualiz-

ing, and many diferent layout techniques will work well.

 ■ Hierarchy—A density less than one hints that the graph could be a hierarchy 

and/or has multiple components. A hierarchy (or tree) is a sparse graph with a den-

sity where the number of edges is one less than the number of nodes for a single 

tree. If you have multiple separate trees, the diference between the nodes and 

edges indicates the number of trees.  

Number of Components

A component is a completely disconnected subgraph from the rest of the graph. he 

number of components is the number of these distinct disconnected subgraphs. You can 

measure each component for size by counting the number of nodes and edges within that 

component. A single node with no connections is an isolated node. 

When visualizing a graph with multiple components, use a layout that clearly sep-

arates the diferent components. Edges that crisscross make it more diicult to visually 

distinguish the diferent components, as shown in Figure 4-1.
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FIGURE 4-1: Different components are easier  
to identify if they do not overlap in the graph layout.

Degree and Paths

he famous graph game “Six Degrees of Kevin Bacon” is incorrectly named! For those 

unfamiliar with the game, a randomly named movie actor is linked to Kevin Bacon 

through other actors, where each pair of actors must have co-starred in a movie together. 

he challenge is to connect the random actor to Kevin Bacon in as few edges as possible 

(for example, “How many steps does it take to connect Arnold Schwarzenegger with 

Kevin Bacon?”) his game is so popular that a number of websites exist to ind the short-

est path between an actor and Kevin Bacon (for example, http://oracleofbacon.org). 

he answer to previous question, by the way, is only two steps to connect Schwarzeneg-

ger and Bacon (for example through Tom Arnold or John Cleese). 

Path

A path is a sequence of edges that connect a pair of vertices. he distance between any 

two nodes can be thought of as the shortest path between a pair of nodes in the graph 

and is measured as the number of edges used to create this route. 

Average path length is a property of the entire graph that indicates the average number 

of edges across all the shortest paths for every possible pair of nodes in a network. Intu-

itively speaking, it measures how many edges must be travelled across to get from one 

place in the network to another. 

he diameter of a graph is simply the largest of all the shortest paths between each 

pair of nodes in the graph. Graph diameter can be an interesting measure to get a sense 

of how spread out or how compact the graph is. Diferent layouts can emphasize (for 

example, force-directed) or hide (for example, chord) the sense of diameter. A layout that 

emphasizes diameter will emphasize the outermost leaves, as well as make the center 

more visually apparent. Figure 4-2 shows an example.
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FIGURE 4-2: The two graphs shown here each have ive nodes and ive edges.  
The left graph has a diameter of 2. The graph on the right has a diameter of 3  
(for example, from A to D).

In business applications, paths are interesting when there is a sequence being ana-

lyzed, such as paths through a website, or a customer journey to purchase a new vehicle. 

he goal of the analysis may be to minimize the number of steps in the path, reduce 

the number of abandoned shopping carts, or make each step in the journey a positive 

experience.

Referring back to the Kevin Bacon game, the target of the game is to ind the short-

est path (in less than six steps) to Kevin Bacon. he game could be more accurately 

renamed to “Shortest Path to Kevin Bacon.” he reference to six degrees is a reference to 

earlier social network theory that everyone in the world is only six steps away from any 

other person in the world. When talking about graphs, the term distance is used to mea-

sure lengths of paths whereas the term degree (discussed next) is a property of a node.  

Degree

Node degree is the number of edges connecting to a given node. A node with degree zero 

is a node with no edges—it is an isolated node. A node with degree one has only a single 

edge and is often called a leaf node. 

When considering the entire graph, the average degree is simply an average of the 

degree of all nodes. When the average degree is higher, each node has high connectivity, 

the graph is densely connected with a large number of edges, and dense graphs tend to 

become more diicult to lay out nicely (for example, there will often be many more cross-

ing lines). 

he maximum degree can be particularly interesting. For example, in a social network, 

the node with the maximum degree is the one with the most connected nodes. he 
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assumption in “Six Degrees of Kevin Bacon” is that Kevin Bacon is a highly connected 

person—that is, that he has a very high degree, making it easy to connect to him. 

High-degree people in social networks can be critical in the success of spreading a 

message or spreading a virus. Consider Gaëtan Dugas, an early HIV case in the 1980s. 

Gaëtan is node “0” in the graph shown in Figure 4-3. hrough the analysis of relation-

ships across various states (shown as two letters), cases were sequenced (shown as num-

bers) and connected back to Gaëtan. He became known as “patient zero” because he was 

the earliest known patient in this study.   

FIGURE 4-3: This graph is from an early study of HIV where patient 0 is the irst HIV case and  
also the highest degree, making him suspect as an early source.

Original source: American Journal of Medicine, March 1984  

(redrawn based on http://en.wikipedia.org/wiki/File:AIDS_index_case_graph.svg)
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This graph was re-created in Gephi. For a more detailed graph and 
more information on Gaëtan, see http://en.wikipedia.org/wiki/

Ga%C3%ABtan_Dugas.

Centrality

Centrality is an attempt to identify the nodes at the center of the graph. You can measure 

centrality in many diferent ways: 

 ■ Degree centrality is the simplest. his is simply the node with the highest degree 

(that is, the highest number of connections). In a social network, this is the 

very well-connected person, and the importance of this person is that he or 

she will likely know what’s going on around him or her because he or she is so 

well-connected. 

 ■ Betweenness centrality measures the number of times that a particular node is a 

member of the shortest path between two other nodes. 

 ■ Closeness centrality measures the average distance to all other nodes from each 

node. In a social network, this could be a VIP for which all communications pass 

through a few intermediaries (for example, an assistant or a spouse), but acts as a 

bridge between diferent clusters.

 ■ Katz centrality sums all of the weighted distances to all other nodes from a given 

node. he further away a node is from the measured node, the lower the weight 

and the lower the contribution to centrality.

 ■ Eigenvector centrality is similar to Katz centrality, but it is a recursive approach 

where a node is more likely to be central if its neighbors are central.

 ■ PageRank centrality is famous as the method used by Google to rank pages. Simi-

lar to Katz and eigenvector, it additionally weights nodes by other factors, such as 

the degree of the node.

So, is Kevin Bacon at the center of all actors? Perhaps Bacon has starred in a large 

number of epic movies with casts of thousands and, therefore, has the highest degree 

N
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resulting in degree centrality. Or, perhaps Bacon has been in only a few movies but is 

connected with some extremely well-connected actors for betweenness centrality. he 

answer also depends on the data. With each new movie, every actor’s centrality score  

can shift.

hese subtle diferences can be important when discussing relative importance of dif-

ferent nodes in a network, as shown in the diagrammatic social network in Figure 4-4.

Cap

Ben

Abe Dan Edy Fay Gus

Han

Jay

Ira

Kim

FIGURE 4-4: This small social network shows different key central people.

 ■ Dan has the highest degree centrality (that is, has the most connections). Dan is 

important because he has the most immediate friends. 

 ■ Gus has the highest betweenness centrality, meaning Gus most frequently occurs 

on the shortest path. If a message needs to travel between any two people, Gus is 

mostly likely to be on the path.

 ■ Fay has the best closeness—that is, the shortest average distance to all other 

nodes. Starting a message at Fay gets the message to everyone else in the fewest 

number of steps. Note that even though Fay (and Edy) each have only two edges, 

they occupy the critical bridge between the left and right sides of the graph.
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Viral Marketing Example

A small real-world example can illustrate many of these statistical concepts and exhibit 

many similar properties to the schematic diagram shown in Figure 4-4. If you happily 

forward e-mails, you may be generating data that marketers can analyze. he image in 

Figure 4-5 is the result of a viral e-mail campaign for a single e-mail starting at John 

(blue node) and then forwarded successively through a number of people.

FIGURE 4-5: This network shows the spread of a viral e-mail starting with John. Statistics help  
identify some of the key nodes.
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 ■ High degree people are shown by node size. Vern and Abel distribute e-mails 

widely. 

 ■ Betweenness centrality is represented by text size. John and Drew have the high-

est betweenness centrality—and each is at the center of respective halves of the 

network.

 ■ Closeness centrality is represented by color. he central horizontal spine—John, 

Tiny, and Drew—are the deepest blue.

 ■ Furthest away is Yuko (purple, far right) as measured by closeness central-

ity. Betweenness and degree do not diferentiate between leaf nodes, but 

closeness does.

 ■ Note that Tiny has only two connections but is in a critical position joining the 

two halves of the network.

his example shows some of diferent, critical roles that various nodes have in this 

social network and how some of those roles can be revealed through both statistics such 

as centrality and the visual representation. he statistics also hint at some of the poten-

tial characteristics of these people. For example, although people such as Tiny or Trey 

may have very low degree (that is, very few edges), the edges that they do have are highly 

inluential. Expressed diferently, access to Tiny and Trey may be limited, but if they can 

be accessed, they can open up new large clusters.

This data set is available in the supplementary materials under ViralMarketing. 

Note that the data has been cleansed, and names are not actual names.N
O

T
E
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LAYOUTS

Many diferent kinds of layouts can reveal diferent structures in the graph.

Node‑and‑Link Layouts

One common method for drawing graphs is to draw nodes as markers, and edges as lines 

connecting them (also referred to as links). Table 4-1 provides more detail.

TABLE 4-1: Node-and-Link Layouts

TYPE EXAMPLE DESCRIPTION

Force-Directed These layouts mimic physical forces, with forces pushing 
nodes apart, and links pulling connected nodes together.

Node-Only These layouts are used in conjunction with force-directed 
layouts, particularly with large graphs.

Time-Oriented

time

These layouts are used where time is an element of 
the graph. A time-based ordering facilitates seeing the 
sequence.

Top-Down These layouts are a traditional organizational layout of a 
hierarchy—top-down or left-right.

Radial Sometimes a circular layout for graphs and hierarchies 
are effective.
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Other Layouts

You can use a variety of other graph layouts and techniques for analyzing graphs visually. 

Some of these are shown in Table 4-2.

TABLE 4-2: Other Layouts

TYPE EXAMPLE DESCRIPTION

Maps When geographic coordinates are available, you can 
organize the nodes based on location, and add a map.

Chord Diagram This is a circular layout that can be useful for showing 
directional flows.

Adjacency Matrix Links are represented within a matrix.

Treemap This is an area-based representation of a hierarchy.

Hierarchical Pie This is a circular area-based representation of a hierarchy 
with explicit levels.

Parallel 

Coordinates

This is usually not used for graph analysis but can be 
used for interacting with some types of graphs, such as 
bipartite graphs (for example, network security).

he choice of layout is important. Perception of the graph can be highly inluenced 

by diferent layouts. Figure 4-6 shows a tiny graph with four nodes and six edges rep-

resented in four diferent ways. In the left diagram, all the nodes are evenly spread out 
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around the perimeter, but two links are crossed. he second diagram has no crossed 

links, but the node in the center of the triangle perceptually is diferent than the ones 

around the edges, leading to a potentially erroneous conclusion that the center node has 

higher centrality than the others. he third diagram has all the nodes in a line, but two 

are centered and two are at the ends. he inal diagram shows a completely diferent rep-

resentation using illed areas to represent nodes and a shared boundary between areas to 

represent an edge.

FIGURE 4-6: This shows the same graph drawn four different ways. All nodes have the same  
number of connections but appear differently relative to their neighbors in the right three graphs.

Force‑Directed Layout

A highly popular technique used to lay out graphs is a force-directed layout. he approach 

is appealing because it seems intuitive, can work on most any type of graph, and can 

work for large-sized graphs. he approach essentially pulls together nodes that are con-

nected and may push apart nodes that are not connected. 

his is sometimes called a “spring” layout. In other words, links are considered as 

springs, and the springs will stretch and compress if needed but have a set size when they 

are at rest. Typically, all the nodes and springs start in a random layout, and the springs 

are recomputed iteratively until the forces cancel each other out.

Force-directed layouts are popular because of the intuitive outcome—nodes that are 

far away from each other are likely many steps away from each other, and nodes that are 

physically close to each other are likely only a step or two away from each other. Fig-

ure 4-7 shows an example of a force-directed layout applied to a channel-lipping data 

set. his is data from a television viewer, with each node representing a diferent televi-

sion channel and a link indicating a click changing from one channel to the other. 
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FIGURE 4-7: Nodes are television channels, and links are clicks from a remote control showing  
a person flipping from one channel to another.

At irst glance, this may appear chaotic with thousands of purple links. Visually, this 

can be read as follows:

 ■ In the center are approximately two dozen nodes dominated by a half dozen yel-

low and orange large nodes. With so many links around them, they are in a sea 

of purple links. hese are the most-watched television channels, such as VQRI 

and VDRU, which are major national broadcast networks (station identiiers have 

been replaced with these generic names). Also, because they are very close to each 

other, the person is most frequently clicking from one of these channels in the 

center to another adjacent channel. 
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 ■ Immediately above and to the left of the largest nodes is a cluster of medium-sized 

purple nodes (for example, GAN, GANPE, GANZE, and so on). his is a col-

lection of specialty cable channels that have a high degree of connection between 

them, forming a distinct cluster.

 ■ Tiny nodes near the perimeter of the image surrounded by a lot of white are sta-

tions with low viewership. hey tend to have very few, very long lines connect-

ing them back to the rest of data—meaning that these are channels that are not 

clicked through from very many other channels. 

 ■ Long tendrils of channels radiate out from the center. hese tendrils represent 

channels that are most commonly clicked through in a sequence, and the start of 

the clicking sequence is more likely to start at the end of the tendril closer to the 

center. he many purple links to and from various nodes indicate many paths to 

and from these channels. hese tendrils tend to be channel packages (for example, 

a set of basketball channels or a set of baseball channels). 

To get a nice force-directed layout requires using one or more force-directed layout 

algorithms. Some graph packages provide a number of diferent algorithms with many 

settings. Some use the names of researchers; some use generic names. 

Some common layout algorithms may include the following:

 ■ Fruchterman Reingold—he Fruchterman Reingold layout algorithm can be a 

good place to start. It lays out the graph in a fairly compact circle, and separate 

components stay within this circle, as opposed to lying away as found in some 

other layout algorithms. he downside to Fruchterman Reingold is that all nodes 

tend to be the same distance apart, and separate components may not be readily 

apparent. Fruchterman Reingold is highly dependent on the layout before it is 

run, so a better result may occur after irst running one of the other layouts.

 ■ Force Atlas—he Force Atlas layouts can produce good layouts pulling strongly 

connected nodes together and weakly connected nodes apart. Force Atlas may 

require more iterative experimentation with parameters. If available, try Force 

Atlas 2, and try adjusting parameters such as “Prevent Overlap,” “LogMode,” and 

“Scaling.” Scaling adjusts the ratio of the attraction force along the links and the 

repulsion between nodes. Force Atlas can work well for dense graphs and fully 

connected graphs where the edges have weights associated with them. Force Atlas 
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sometimes is less efective when the graph is very sparse, or the graph has many 

components.

 ■ Yifan Hu—Yifan Hu is somewhat similar to Force Atlas. It can be fast on large data 

sets. Whereas Force Atlas tends to get diferent results tweaking various parame-

ters, Yifan Hu tends to come up with a similar layout. Yifan Hu does not take into 

account node sizes, edge weights, and so on, in the software package Gephi. 

To get a sense of how these diferent algorithms compare, Table 4-3 shows the results 

of these algorithms on a few diferent data sets (all done using Gephi).

TABLE 4-3: Samples of Different Layout Algorithm Results with Different Types of Graphs

FRUCHTERMAN  

REINGOLD

FORCE ATLAS 2 YIFAN HU  

PROPORTIONAL

Channel 

 Flipping (one 
component, 
dense graph)

CPI (hierarchy)

Stocks (fully 
connected)
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More: Organic, Prefuse, Force, Spring, and SOM

In diferent graph packages, there will be completely diferent layout algorithms. For 

example, Cytoscape has force-directed layouts such as Organic, Prefuse, Force, Spring, 

and Inverted Self Organizing Map (SOM). Where do you start? Sometimes you should 

try them all! Figure 4-8 shows the diferent results on the channel-lip data.

FIGURE 4-8: This shows Cytoscape’s layout of the television channel browsing data using Organic, Pre-
fuse, and Spring layouts

In all these layouts, it is apparent that there is one large densely connected cluster, 

with a number of more weakly connected channels around the center. he big diference 

between the defaults in these algorithms seems to be the density of the center of the 

clusters and how far spread out some of the outliers are. At the heart of all force-directed 

algorithms are the forces. In most cases, you have control over these settings.

Getting a nice force-directed layout almost always requires some experimen-

tation with different algorithms and different settings.

Force Settings and Other Settings

Force-directed layouts are, by deinition, controlled by their forces. Getting a good layout 

often involves going beyond the defaults and adjusting some of the force attributes, such 

as attraction, repulsion, and gravity.

 ■ Attraction/repulsion—Adjusting the ratio between attraction/repulsion is one 

important consideration. his may be set as a single parameter (for example, 

N
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Relative Strength in Yifan Hu, Scaling in Force Atlas, or both in Gephi) or as 

multiple parameters (for example, Attraction and Repulsion in Force-Directed 

layout in Cytoscape). If all the nodes are in a blob, increasing repulsion can help 

push the nodes apart.

 ■ Gravity—Gravity is similar to attraction, but it applies to all nodes, even when 

not connected. Turning up gravity can bring very distant nodes back toward the 

center, but turning up gravity too high will create a packed circle. 

 ■ Edge weight—he strength of the attraction can be the same for all nodes, or 

it can be based on weight of the edges. Strong weights will pull nodes closer 

together. Edge weight is an attribute provided with the data. his is perhaps the 

most important additional attribute to include when you prepare your data.

Other Layout Settings

Beyond basic control over forces, each layout algorithm will have a bewildering set of 

additional settings. Some are self-explanatory (such as no-overlap, which is a useful set-

ting to turn on). Others may be vague. Experimentation with these settings is required. 

Many other possible settings are available, including linear versus logarithmic, tem-

perature, and so on. For example, in the previous comparisons, note that the CPI Force 

Atlas 2 example has edge weight inluence 0.2 and scaling 50, whereas the Stocks  

Force Atlas 2 example is LinLog with gravity 8.

Getting the wrong balance between attraction and repulsion can cause 

most of the nodes to collapse into a big blob or fly out toward ininity. Simply 
adjust the forces and try again.

Force-directed layouts can be inicky. When using default Force Atlas 2 settings for 

the Stocks graph included in the supplemental material, it completely disappears of the 

screen (that is, expands so quickly as if to disappear). If your graph expands too much, 

try increasing the attraction/gravity and/or switching to a logarithmic mode. If it all the 

nodes are in a tight blob, try increasing the repulsion, reducing gravity, or, if available, 

forcing no-overlap.

T
IP
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Speed, Iteration, and Approximation Settings

Some settings are related to the speed and quality of the layout. Force-directed algo-

rithms step through each node, incrementally adjusting the position of each one to 

resolve the forces. hey repeat these steps hundreds or thousands of times—this is the 

number of iterations. Reducing the number of iterations increases the speed but reduces 

the quality. Similarly, settings that increase speed, or increase approximations, will 

reduce quality. 

Interacting with Force‑Directed Layouts

You can interact with force-directed layouts in diferent ways, including the following:

 ■ Interactive layout—he iterative nature of force-directed layouts can be a beneit. 

You can make adjustments while it is running or at stops between iterations. You 

can adjust attraction and repulsion settings and see the impact while you watch. 

You can watch a cluster of intertwined nodes appear to be stuck together, and you 

can help disentangle these nodes interactively by dragging a few nodes out—way 

out—and the other nodes will follow. 

In some software, you must wait for the iterations to inish before you can click 

and drag nodes. In this case, you can still adjust the nodes and then run the algo-

rithm again (but make sure that the algorithm does not reset all the positions each 

time you run it in the settings). 

 ■ Label Adjust and other tweaking layouts—here may also be some additional 

layouts that are intended to be run after a force-directed layout. he Label Adjust 

layout minimally pushes nodes around to minimize the overlap of labels. Simi-

larly, the Noverlap layout pushes nodes around to minimize overlapping nodes.

 ■ Mix-and-match layouts—Because the layouts are iterative, you can also start 

with one layout and a little bit of another layout. In this mode of experimenting 

with diferent layouts, it can be useful to slow down the layout algorithms—each 

one has a speed setting (or a step size) that can be reduced. he e-mail graph 

shown in the introduction to Part 2 (Figure P2-1) started with a Force Atlas 2 

layout and then has some Fruchterman Reingold added.  
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Some force-directed layouts can be different every time. There is usually 

no way of going backward in force simulations, and sometimes there is no 

undo. So, if you have a layout you like, save it.

Node‑Only Layout

Sometimes you have so many links that it’s not worth showing all of them. Using a 

force-directed layout implies that the distance between adjacent nodes indicates the 

strength of the connection between those nodes. For large graphs, thousands or millions 

of links clutter the view, making it impossible to see patterns. Instead, the links can be 

removed from the display and the clusters and adjacencies are still visible. 

For example, the http://internet-map.net by Ruslan Enikeev shown in Figure 4-9 

includes 350,000 websites with many millions of links. By showing only the nodes, the 

viewer can see relative clustering and implied relationships. 

FIGURE 4-9: The http://internet-map.net shows a map of 350,000 websites, organized by a force-directed 
layout.

Copyright 2014 by Ruslan Enikeev (used with permission)

T
IP



CHAPTER 4 Stats and Layout 107

Some care should be taken with this approach. It is feasible for nodes that are not 

actually close to each other to be close in a force-directed graph, particularly with sparse 

graphs and only gravity pushing nodes apart. In fact, a graph with no links, but some 

gravity to pull nodes together and some repulsion to keep some spacing between nodes, 

can create a nice-looking, but meaningless, layout.

Time Oriented

Some kinds of graphs have nodes organized by time. Patents have references to earlier 

examples—each reference is a directed edge. Tracking down successive references gener-

ates a directed graph. Consider an example.

A client involved in a patent investigation was excited at the prospect of visualizing 

the relationship between patents. A typical force-directed layout results in a visualization 

that clearly shows clustering such as Figure 4-10, which was created with Cytoscape 

using the Prefuse layout. However, there is no sense of time—two nodes beside each 

other may have occurred at completely diferent times.

FIGURE 4-10: In this force-directed layout of patent citations, any indication  
of which nodes came earlier and which nodes came later is not visible.
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his is a perfect example of where a force-directed layout is inefective. he time ele-

ment is an essential feature in understanding this data. To better understand which items 

came irst and which items came later, a layout is needed where the sequence is pre-

served. A hierarchical layout, or a directed acyclic graph (DAG) layout, will preserve order 

so that the direction is always pointing down (or right). 

he layout in Figure 4-11 is the same patent data (using the hierarchical layout from 

Cytoscape) with the earliest patents at the top and later patents toward the bottom. 

Although the layout isn’t as compact as the previous force-directed layout, it provides 

a clear indication of precedence—the earlier patents are always above later patents. For 

any particular patent of interest, links going up are prior patents cited by this particular 

patent, and links going down are later patents that have cited this particular patent. his 

visual relationship of before and after is the basic approach used in the interactive explo-

ration of massive time-based networks.

FIGURE 4-11: In this hierarchical layout of patent citations, earlier patents are above later patents.

Note that time is not explicitly depicted. You cannot look at a particular patent and 

make a determination about what time that patent occurred. Near the bottom-right corner 

of the image are a dozen components of two nodes each. he layout only indicates which 

came irst and which came second. If one pair occurred in the 1930s and another pair 

came in the 1970s, this can only be determined by interacting with the nodes of interest. 



CHAPTER 4 Stats and Layout 109

Top‑Down and Other Orthogonal Hierarchies

Hierarchical data may be displayed in a “traditional” top-down hierarchy. his is similar 

to the previous time-oriented approach, except that the data is strictly a hierarchy of data. 

One interesting consideration is whether to set out the hierarchy as top-down or, 

alternatively, left-right or bottom-up. Another consideration regards labels. If the hier-

archy is wide, it will be diicult to it labels on it. On the other hand, if the hierarchy 

is turned sideways, there will be much more space horizontally to it in the labels. Fig-

ure 4-12 and Figure 4-13 show the same hierarchy previously shown in Figure 4-5 with a 

force-directed layout, only this time with a hierarchical layout created in yEd. 

FIGURE 4-12: This hierarchical layout of the viral marketing example uses the same data as shown in 
Figure 4-5. The top-down layout results in a wide graph, making it dificult to label nodes.

FIGURE 4-13: In this hierarchical layout of the viral  
marketing example shown in Figure 4-5, a left-to-right  
orientation allows more space for node labels.



PART 2 Process and Tools110

With larger hierarchies, a strictly top-down or left-right approach is often unusable 
because the graph becomes too long and narrow. Alternatives to purely top-down 
or left-right are other orthogonal layouts that alternate between top-down/left-
right, or otherwise organize nodes into a hierarchy of blocks. Figure 4-14 shows an 
organizational chart for more than 4,000 managers within 6 levels from the CEO, 
in this case generated with the yEd compact tree layout. he CEO is the tiny yel-
low dot in the top-left corner. 

FIGURE 4-14: This organizational chart shows 4,000 managers in 6 levels at a large-scale company.
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Radial Hierarchy

A radial hierarchy can be preferable to a top-down or left-right hierarchy, particularly 

when hierarchies are very wide. As always, a number of variations exist. In yEd, the 

radial hierarchy generates a nice hierarchy with successive circular shells, as shown in the 

left of Figure 4-15. he radial hierarchy may work well with hundreds of nodes but can 

be problematic with larger hierarchies.

FIGURE 4-15: Radial hierarchy and circular hierarchy of viral e-mails.

An alternative circular layout will set out each successive level as another set of cir-

cles around each successive node—as shown on the right side of Figure 4-15. It may not 

be particularly appealing on this hierarchy with a few hundred nodes but can work well 

with even larger hierarchies. It tends to look good on hierarchies where intermediate 

nodes in the tree tend to have degrees higher than 3 or 4 so that the circular shape is 

more visibly apparent. 

Figure 4-16 shows a hierarchy of more than 4,000 managers in a Fortune 500 com-

pany. he president is the person shown near the bottom left of the image as a light 

yellow dot. People with more direct reports are clearly more visible surrounded by larger 

circles of nodes. And you can get a sense of circles made up of smaller circles. he upper-

left quadrant of the image shows in the center a direct report of the CEO, surrounded by 

many smaller bubbles showing successive levels of managers and sub-managers. Com-

paring these various levels of bubbles provides a much stronger sense of who is responsi-

ble for diferent areas of the company, compared to the traditional organizational chart 

showing only one or two levels seen back in Figure 4-14.
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FIGURE 4-16: This is a circular layout of 4,000 managers.

Geographic Layout and Maps

Sometimes, nodes correspond to cities or countries, and you may want to lay out the 

visualization geographically. Physical networks, such as air traic, rail traic, electrical 

grids, pipelines, and many supply-chain networks are the kinds of data that have geo-

graphical coordinates associated with them. Once longitude and latitude coordinates 

are available for each node, the x and y values for each node can simply be set to these 

coordinates and then displayed in any graph software that supports setting x and y coor-

dinates based on user-provided data. Figure 4-17 shows domestic passenger air traic 

across the continental United States set out geographically. 

Sometimes graphs on maps end up with too many nodes overlapping each other, typ-

ically in densely populated areas, such as the East Coast of the United States he incred-

ible density of airports in Figure 4-17 obscures many of the airports. Instead of achieving 

exact geographical layout, a better approach might be to start with a geographical layout 



CHAPTER 4 Stats and Layout 113

and then shift the nodes automatically to reduce overlap. he result will be easier to view 

with less overlap, and the relative location of nodes to each other will be similar. Com-

pare Figure 4-17 and Figure 4-18 to see the diference.

FIGURE 4-17: This shows air trafic in the continental United States. Airport size indicates the number of 
cities served by that airport (that is, node degree). Edge color indicates the number of passengers (dark 
for few, bright green for many).

FIGURE 4-18: This geographical layout shows airports shifted to reduce overlap.
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Chord Diagrams

When viewing lows that go in each direction between a pair of nodes, the challenge can 

be representing the magnitude of the lows in each direction, as shown in Figure 4-19. 

FIGURE 4-19: This shows bidirectional flows with overlapping links, curved links, and a chord link. 

A chord diagram represents low in each direction by joining the nodes on opposite 

sides with a single chord, where the thickness of the chord indicates the magnitude of 

the outbound low from that node. By visually comparing the sizes at either end of the 

chord, the viewer has a sense of the total low in each direction. Visually comparing 

both ends indicates the diference between the two. Figure 4-20 indicates trade low 

between major countries depicted as a chord diagram. Chord diagrams will be discussed 

more in Chapter 12, “Flows.” 

FIGURE 4-20: This shows trade flows between countries. 
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Adjacency Matrix

he connections between nodes can be shown in a matrix. he row header and column 

header indicate the nodes, and a illed square in the matrix indicates an adjacency (that is, 

a link) between two items, based on which row and which column it is associated with. 

In the example shown in Figure 4-21, the colored matrix indicates all the edges 

between every pair of stocks. he diagonal is white—these are self-loops and not relevant 

in this analysis. he number in the cell is the correlation, which ranges from negative one 

to positive one, and can be considered an edge weight. 

For a directed graph, the rows represent source nodes and the columns represent tar-

get nodes. he colors of the cells on either side of the diagonal will be diferent. For an 

undirected graph, the colors are symmetric across the diagonal, and the lower diagonal 

does not need to be drawn.  

FIGURE 4-21: This adjacency matrix shows stock correlations. All edges are equally visible.
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Matrix diagrams can be efective when the graph is fairly dense and where the goal is 

to analyze links. For an analyst trying to understand which stocks are strongly correlated 

and which are not (see the Stock example data set), the task is focused on all the edges. 

he matrix diagram in Figure 4-22 shows all the correlations—that is, all the edges—as 

a colored matrix with the detailed data values and all edges are equally visible. 

FIGURE 4-22: Using this force-directed graph of stock correlations, the  
assigned task requires analyzing links, but some links are dificult to see.

An adjacency matrix can be effective when the analysis is focused on individ-

ual edges and groups of similar edges. 

However, while showing the overall clustering pattern, the force-directed diagram 

(Figure 4-22) makes it more diicult to see all the links. Some links are very long, 

and others are not visible at all. Furthermore, the intuitive understanding of distance 

between nodes is useful for understanding the overall graph but is not efective for com-

paring individual links. 

Look closely at the relationship between Symantec (SYMC) and Oracle (ORCL) ver-

sus eBay (EBAY) and IBM. In the matrix, eBay-IBM is stronger (0.4, light orange) than 

Symantec-Oracle (-0.3, reddish). But in the force-directed diagram, Symantec-Oracle is 

much closer together than eBay-IBM, and the link between Symantec-Oracle is diicult 

to perceive.

Sorting of matrix diagrams helps reveal some of the higher-level patterns. You can 

do simple sorting using a tool such as Excel and more advanced sorting with some light 

T
IP
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programming. By convention, the same sorting is always applied to both the rows and 

columns. Using Excel and sorted adjacency matrices are discussed in more detail in 

Chapter 7, “Point-and-Click Graph Tools.” 

Treemap

A treemap is a representation of a hierarchy as a series of nested rectangles completely 

illing the plot. he size of each rectangle is based on a quantity. You can visibly see the 

proportion of each item relative to its peers in the group. 

Figure 4-23 (created with MicroStrategy Analytics Desktop) shows a treemap of 

U.S. inlation data as indicated by the various components that make up Consumer Price 

Index (CPI). he size of each box indicates the portion of the component within the 

CPI, and the color indicates the percent change over the irst decade of the 2000s. Large 

items contribute signiicant weight to the CPI—the cost of housing is the single largest 

expense. Bright green items have increased the most—gasoline costs went up signii-

cantly in the 2000s. Bright red items have gone down the most—television prices have 

dropped signiicantly (for example, a 55-inch television would have been very expensive 

in 2000 and much more afordable in 2010). 

FIGURE 4-23: In this treemap of the U.S. Consumer Price Index, size indicates the weight of the index, 
and color indicates the change from 2000 to 2010.
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Note that data for a treemap may not be formatted as a set of nodes and a 

set of edges. Some tools use a flattened hierarchy, with each column indicat-

ing a successive level in the hierarchy. 

Hierarchical Pie Chart

he authors were once working on a project for a Fortune 500 inancial irm. he top 

executive for capital markets said to us, “I want a treemap so I can see what our whole 

portfolio looks like. But it can’t be a treemap—50 percent of the people have no idea 

what it is, and the other 50 percent love them. I need something that is intuitive for 

everyone.” he authors created a visualization based on a hierarchical pie chart that was 

successfully deployed to all the users. 

Also known as a sunburst chart, the hierarchical pie chart is a close cousin of the tree-

map. A treemap focuses on the leaves of the tree (the boxes), and the intermediate levels 

of the tree are compressed into thin strips. As shown in Figure 4-24, in the hierarchical 

pie, the intermediate levels are on successive rings, and each of these intermediate levels 

can also be analyzed through size and color. 

Parallel Coordinates 

Often, in the analysis of graphs, the topology of the graph is not the objective, even 

though you may be analyzing graph data. 

he parallel coordinates technique is not a graph layout. But it is extremely useful for the 

analysis of data with many attributes. Network log data contains graph information— 

source computers and target computers—as well as a wide variety of other ields (such as 

timestamp, ports, country, and so on). 

N
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FIGURE 4-24: This hierarchical pie chart of the U.S. Consumer Price Index uses same data as Figure 4-23.

As shown in Figure 4-25, the parallel coordinates representation shows each ield as 

a vertical line ranging from the minimum value to the maximum value. Each row of  

data becomes one zigzag line crossing over each ield at the location corresponding to  

the data value.
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FIGURE 4-25: With this parallel coordinates visualization, you can view network security log ile data 
with one attack type highlighted.

In Figure 4-25, anonymous network security data is plotted with the vertical axes 

representing source country, source computer, target computer, sequence, time (in sec-

onds), attack type, and target country. he thin colored lines zigzagging across represent 

individual rows from the log ile, with color indicating the attack type. In the snapshot, 

one attack type (registry reads) has been highlighted as bright red lines. he red lines 

emanate from one source country in the upper left and proceed through a few source 

computers (where the red lines cross the second axis “source”) and primarily attach only 

a few target computers (where the red lines cross the third axis “target”). hese attacks 

have occurred throughout the overall sequence and timeframe (where the red lines cross 

the fourth axis and ifth axis). he sixth axis is the attack type, and all of these lines are 

of the same attack type, and, therefore, all meet at one point.

In practice, parallel coordinate plots are used interactively to isolate data of interest, 

either by direct interaction with the plot—such as the click on the particular attack type 

as discussed previously—or via clicks on adjacent charts. Successive clicks can then be 

used to further isolate the data of interest. 

Following with the previous example, it seems that a few computers are particu-

larly targeted. hese can be further isolated. In Figure 4-26, only one of the targeted 
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computers of the registry reads attacks has been highlighted in bright red, as can be seen 

in the third column of the parallel coordinate plot, as well as the ninth item in the far-

right bar chart. Visual inspection shows that this particular target computer is attacked 

from two diferent source computers (second column) and that these events occur at reg-

ular intervals over time (ifth column and also the timeline chart below). With this extra 

insight, combining link analysis with other variables, the security specialist may be able 

to reach a conclusion—for example, this is an expected regular event, and this is not an 

attack.

Parallel coordinate plot and linked-chart multi-variate analysis isn’t the target of this 

book. However, it is a highly recommended data exploration and analysis technique that 

can be efective for analyzing some types of graphs. 

The graph in Figure 4-26 was created with Mondrian (http://www.rosuda.org/
Mondrian).

FIGURE 4-26: This isolates an attack type on only one target computer, with additional charts providing 
context.
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PUTTING IT ALL TOGETHER

Statistics and layout are the starting points for analyzing and understanding graphs. To 

recap, following are key elements to keep in mind: 

 ■ Statistics—A proile of the entire network (such as size, density, number of com-

ponents, average degree, and diameter) helps you to understand the nature of the 

graph, and assists you when it comes to visualizing the graph. Statistics such as 

degree and centrality help identify particular nodes of interest.

 ■ Node-and-link layout—he node and link layout is a very common way to repre-

sent a graph and can be laid out with many diferent techniques. 

 ■ Force-directed layouts are very popular, particularly with larger and denser 

graphs. 

 ■ Time-ordered graphs can work well with directed graphs. 

 ■ Circular and orthogonal layouts can work well for hierarchies and directional 

lows.  

 ■ Other representations—Depending on the data and the objective, you should 

consider other representations. 

 ■ Chord diagrams can be efective for analysis of bidirectional lows between 

pairs of nodes in directed graphs.

 ■ Adjacency matrices can be very efective for comparing and clustering edges 

(but not path analysis). 

 ■ Treemaps and hierarchical pies can be an intuitive way to analyze hierarchies, 

particularly when there is a magnitude. 

 ■ Parallel coordinate plots can be efective for analyzing graphs with many vari-

ables where relationships between all the variables are more important than 

the graph structure.
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SUMMARY

he irst level of analyzing a graph is to get a high-level understanding of the graph. 

Creating some overall statistics and generating a graph layout can provide a good under-

standing of the types of relationships in the graph. 

You should consider diferent kinds of layouts, depending on the objective and the 

nature of the graph, ranging from a variety of node-and-link layouts to other types of 

layouts such as adjacency matrixes, chord diagrams, treemaps, and, in some cases, paral-

lel coordinates.

Once you have a layout, you must consider what data you want to reveal about the 

nodes and edges, and how to reveal it. Chapter 5 provides a discussion on the use of size, 

color, labels, line styles, and so on, to show this information in the graph.
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5
VISUAL ATTRIBUTES

Once you have a basic graph with a reasonable layout, 
applying visual attributes is the next step. In a business 
environment, there is often much more data about nodes 
and edges, such as age, income, gender, frequency of pur-
chases, type of relationship, strength of relationship, and 
so on. hese can be perceived by using visual attributes 
such as colors, line widths, sizes, labels, and so on. Choos-
ing the right visual attribute takes advantage of our human 
perception. For example, a bright red item pops out from 
gray ones, or larger items are more visually dominant than 
small items.
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Following are some important attributes examined in this chapter:

 ■ Node attributes—Not all nodes are the same. Which has the most connections? 

Which is the oldest? Which has the biggest change? Use visual attributes such as 

color and size to reveal node data. 

 ■ Link attributes—Which links have the strongest connections? What are the dif-

ferent types of links? In what direction do the links point? Visual attributes such 

as color, line width, and arrows show link data. 

 ■ Labels—Who is that? What is that node? Perhaps one of the most important 

elements (particularly in smaller graphs), labels should not be an afterthought, but 

carefully planned so that they are clear, legible, and informative.

Consider a portion of the e-mail visualization discussed in the previous chapters. Fig-

ure 5-1 shows a subset that represents people in the family of one of the authors e-mailing 

each other. Nodes represent people, and the links represent e-mail transfers between 

the users.

FIGURE 5-1: In this graph of e-mails among family, the graph shows three clusters but doesn’t reveal 
additional details such as the number of e-mails, the size of e-mails, and who the people are.

he graph without any sizes, colors, or labels only reveals three clusters in the family 

and hints that a few people act as bridges between these clusters. But who are these peo-

ple? Who sends the most e-mails? Who connects the diferent groups? What’s diferent 

between these clusters? hese are the sorts of questions best answered by adding visual 

attributes to the graph.
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ESSENTIAL VISUAL ATTRIBUTES

Table 5-1 shows a few basic visual attributes that are efective in almost every graph for 

showing additional data attributes or graph statistics.

TABLE 5-1: Basic Visual Attributes

ATTRIBUTE EXAMPLE DESCRIPTION

Node size Shows magnitudes or quantities such as counts  
or sums 

Node color Shows different categories, or shows positive/negative 
numeric values

Label Ann

Ben

Tim

Zoe

Shows individual identity of a node or link

Edge weight Shows the strength of a connection between nodes

Edge color Shows categories (such as the type of connection) or 
numeric values (such as how recent the connection is) 

Edge type Shows direction via arrows, or shows other attributes 
via line styles

As shown in Table 5-2, beyond the essentials, many additional attributes are useful 

for showing data or for increasing the visual clarity of graph.
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TABLE 5-2: Additional Visual Attributes

ATTRIBUTE EXAMPLE DESCRIPTION

Bundled edges Use these for aesthetics or to reveal relationships about 
connections.

Shapes Use unique shapes to show a few different categories 
(for example, male/female, up/down, and so on).

Images Use an image for a node (for example, a photo, a flag, an 
icon, a pie chart, bar chart, or sparkline).

Transparency, 
border color, 

arrow shape, 

font family, label 
offset, shadows, 

gradients, and 

more

There are other visual attributes that are less commonly 
used, sometimes because they are not available in a 
particular program, because they may be more obscure, 
or because they do not visually pop out as much as attri-
butes such as size or color.

he availability of these visual attributes varies widely by software package. Depend-

ing on which software you are using, it can be challenging to ind where to adjust the 

visual properties. In most cases, there will be one place in the software to adjust the 

visual attribute globally across the entire visualization (for example, set all colors to blue, 

set all lines to a particular thickness, set all shapes to circles), and this setting is usually 

easier to ind. here will then be another place in the user interface to connect a visual 

attribute to a data value. his is referred to as a style mapping (in Cytoscape), properties 

mapper (in yEd), or partition and ranking (in Gephi). 

Connecting data to visual attributes is diferent in each graph software package. In 

some packages, the options may be fairly limited, whereas other packages are highly lex-

ible. For example, Cytoscape provides more visual attributes and more precise settings 

than some other graph software but may be more diicult to use.
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KEY NODE ATTRIBUTES

Nodes often represent nouns. Some of the nodes in the examples so far in this book have 

been people, stocks, television channels, categories of purchases, websites, web pages, 

computers, and countries. Nouns often have additional attributes such as size, age, 

income, gender, viewers, proit, errors, or populations. Even if other data attributes are 

not available, you can use graph statistics such as degree and centrality. All of these addi-

tional data attributes are not visible in the layout of the graph, but you can show them by 

using a variety of visual attributes. In particular, the visual attributes of size, color, and 

label are very strong visual cues that can efectively indicate information and are conigu-

rable in most graph software packages. 

Node Size

Size is a useful visual attribute for data that represents a magnitude. Data such as counts 

and sums in graph statistics (such as degree, that is, a count of the number of connec-

tions) are good candidates to represent with size. Data that is not negative or zero works 

well. Fields such as number of followers, total sales, page count, market capitalization, 

total bytes, weight, number of likes, number of passengers, total trade, and proportion of 

a whole can all work well. hese are all non-negative data examples. 

If the data has zero values, consider having a minimum size instead of zero, which is 

an invisible node. If the data has both positive values and negative values (for example, 

proit or loss), consider setting size to the absolute values and color to the sign (for exam-

ple, positive to cyan and negative to red).

In most software, you will have some indication of the original range of your data 

values. In the e-mail data for Figure 5-1, the number of e-mails among family mem-

bers ranges from 1 to 36, and the total size of e-mails for each family member ranges 

from 9KB (for example, short messages) to 1,300KB (for example, messages with 

image attachments). Note that the range is fairly small for the number of e-mails (the 

largest number of e-mails is 36 times the smallest), whereas it is larger for total size 

(the largest e-mail is 140 times larger than the smallest). his range may impact how 

you conigure size.
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Accurate Size

You may want people to be able to look at the graph and visually estimate relative sizes. 

In this case, you want a node that is visually twice as big to represent data that is twice as 

large. Note that node size is an area. his means that a node that is twice as big in area is, 

in fact, only 1.4 times as wide and high as the smaller node. Figure 5-2 shows accurately 

sized nodes based on the number of e-mails sent. 

FIGURE 5-2: E-mails between family members are shown here with nodes accurately sized based on 
number of e-mails from 1 to 36. There are a few people who send a large number of e-mails, and the left 
cluster clearly has larger nodes (more e-mails) than the right cluster.

If you want size to accurately represent data, inspect the resulting visual-

ization to validate the sizes by comparing different nodes. Some software 

scales sizes linearly to the data (incorrect for accuracy), and some soft-
ware scales sizes to the square root of the data (correct for accuracy). 

You may want to add a column to the node data that is a square root of the intended 

size data, in case your software doesn’t automatically use the square root of the size. If 

you intend to have accurate sizes, it can be useful to have a legend or otherwise indicate 

the sizes of some of the diferent nodes, including the largest and smallest nodes.
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Relative Size

Relative sizes can be useful, too, particularly where the dynamic range is more than a 

couple orders of magnitude. he problem with extremely large ranges and accurate sizes 

is that some nodes are teeny dots (for example, a single pixel), and other nodes are so 

large that they completely overwhelm (or obscure) other nodes, as shown in Figure 5-3. 

In this case, relative size can be efective. With relative sizes, nodes that represent larger 

data are visually bigger, and nodes that represent smaller data are visually smaller. 

FIGURE 5-3: E-mails between family members are shown here with nodes accurately sized based on 
e-mail size. The smallest nodes are a few kilobytes, and the largest are megabytes. The huge range 
makes teeny nodes almost disappear and large nodes overwhelm.

If no scale or legend is visible, it is better to assume that sizes are relative until you 

have a way to verify them.

Minimum Size, Overlap, and Other Options

Very small nodes may be diicult to see or even accidentally ignored. If your data has 

some very small values, an alternative approach to relative size is to set a minimum size.

When using a wide variety of node sizes, you can end up with items overlapping 

or obscuring other nodes. As described in Chapter 4, “Stats and Layout,” some layouts 

enable you to adjust node locations by node size (for example, a no-overlap setting). 

Alternatively, you should ensure that small nodes draw on top of large nodes or have 

large nodes be more transparent than small nodes. 
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Another approach for nodes with a very large range of values is to use color instead of 

size. Note that people are able to discriminate a wider range of sizes than they are able to 

discriminate color, so typically it will be better to use size.

Node Color

Color is a powerful visual indicator of data. Color has diferent attributes such as hue 

(for example, red, yellow, orange, green), which is diferent than brightness (for example, 

ranging from dark green to light green), both of which are diferent from saturation (for 

example, ranging from vivid red to muted red to gray with a bit of red). Hue also has 

perceptual connotations. For example, use red for hot, warning, or loss; blue for cold or 

night; green for proit; and so on. Using color semantics can help the viewer more quickly 

understand the representation. It is important to understand a little about color because 

you can use color in three main ways to add information to nodes or edges:

 ■ Magnitude

 ■ Positive and negative values

 ■ Categories

Magnitude

Similar to node size, you can use color to show magnitudes (such as counts or size) by 

using a quantitative color scale (also called a sequential color scale). In this use of color, typ-

ically you deine the color for the lowest value and the highest value. he chosen color 

scale should vary from a dark color to a light color over the range of values. People per-

ceive brightness of the color and will see patterns based on brightness. herefore, you 

should use a set of colors that vary in brightness in proportion to the numeric values they 

represent. For this reason, you should not use a “rainbow color scale,” because the bright-

ness varies inconsistently, as shown in Figure 5-4. If you take away the hue (such as with 

a low-contrast projector or a black-and-white hard copy), the variation in brightness 

across the colors is very apparent.
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FIGURE 5-4: The rainbow color scale (left) does not consistently increase in brightness,  
as shown in the grayscale image of the same rainbow color scale (right). Do not use  
a rainbow color scale for magnitude.

Examples of good choices include simply varying from a dark hue to a bright version 

of that same hue. Or, pick a dark color (such as blue) and a related bright color (such as 

cyan). Figure 5-5 shows an example.

FIGURE 5-5: The upper row contains color scales that vary only in brightness. The second  
row has color scales that vary in both brightness and a bit of hue. Both are effective, but the  
lower color scale is more interesting and can be more effective.

Extending the e-mail example introduced at the beginning of this chapter, Fig-

ure 5-6 shows node size indicating number of messages, and node color indicating total 

e-mail size from yellow indicating small e-mail size to red indicating large e-mail size. 

FIGURE 5-6: In this graph of family e-mails, nodes are sized by number of e-mails, and node color indi-
cates the total size of e-mails ranging from tiny e-mails in yellow to large e-mails in red.
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Combining multiple visual attributes to show diferent data attributes can yield some 

interesting insights that are otherwise hidden in the data. Figure 5-6 is the irst example 

in this chapter where two visual attributes are used to show two diferent data attributes. 

On the left, nodes are yellow (small e-mails) and have a slightly larger node size (more 

e-mails), whereas on the right side nodes are orange (large e-mails) and have a smaller 

node size (fewer e-mails). he interpretation is that the right side represents family mem-

bers who like to send fewer, bigger messages (for example, photos), whereas the left side 

represents family members who send more textual messages back and forth.

Positive and Negative Values

For numerical values that diverge from a baseline (such as positive and negative num-

bers), a diverging color scale draws attention to the opposite ends of the scale. As shown 

in Figure 5-7, the center color is typically close to the brightness of the background color 

(for example, yellow or beige for a white background), and the ends are typically vivid 

colors (such as red and greenish-blue, or orange and blue). 

FIGURE 5-7: Diverging color scales are effective for data where you want to focus on the  
values at either extreme, such as the extreme positive and negative values.

Any applications tracking changes in prices and values (such as investments, CPI, 

migration, or net trade lows) may use a diverging color scale to diferentiate between 

positive and negative directions, as well as draw attention to the magnitude at the 

extremes. 

Figure 5-8 shows diverging color scales for income data by various occupations 

(available from www.census.gov or www.bls.gov). he diverging color indicates percent 

change in income over the ten-year period from 2001 to 2010, with a diverging color 

scale set at 25 percent (the rate of inlation over the same period). he darker the color 

is, the greater the divergence. Oranges to reds indicate real wages that have decreased 

over the period, and greens indicate real wages that have increased. Gray is used to 

indicate no data. 
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FIGURE 5-8: Sales occupations in the United States are colored by percent change in income from 2001 
to 2010, using a diverging color scale centered at 25 percent—the inflation over the same period. Gray 
indicates no data.

In this example, it is easy to see that door-to-door sales’ incomes have decreased the 

most, while models’ incomes have signiicantly increased. Most sales occupations are 

light orange, indicating a modest increase in wages, but a bit less than the level of inla-

tion over the same period. A larger version with all the occupations is available in the 

Supplementary Materials on this book’s companion website. 

Categories 

Many diferent kinds of categories exist: professions, gender, religion, tags, and so on. 

Any quantity can be turned into a category, too—for example, age can be turned into a 

few age groups. Using color to show categories is efective for up to ten or so categories—

because each color needs to be clearly distinguishable from other colors. Recall that peo-

ple perceive brightness as a strong cue, so color choices for categories should leverage the 

natural brightness associated with diferent hues, as shown in Figure 5-9. 

FIGURE 5-9: Uniquely distinguishable colors are useful for  
differentiating categories.

Figure 5-10 shows the top 4 levels of a Fortune 500 company’s organizational chart 

with 12 diferent job categories color-coded. Executives are in yellow in the hub of each 
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cluster. Engineers are in cyan, predominantly in the upper-left cluster, and the blues are 

administrative roles (including inance, tax, real estate, facilities, construction, and so 

on). he administrative roles tend to have a few people in almost every cluster. 

FIGURE 5-10: This hierarchy of a Fortune 500 company is color-coded by job category (for example, 
engineers in cyan and administration in blue).

Color Blindness

One extra challenge with color is creating palettes that are efective for color-blind people. 

About 1.3 percent of the population has a form of red-green color blindness. Vischeck.com 

provides a quick means to transform a color image into what it looks like for someone with 

diferent forms of color blindness. Using Vischeck for red-green color blindness with the 

previously shown diverging color scales results in what is shown Figure 5-11.

Using pure red and pure green for diverging color is usually considered inefective for 

the color blind—the red-green diverging colors in the igure have blue mixed with the 

green to create some diference. Note how the blue-orange palette appears to have more 

diferentiation. 
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FIGURE 5-11: Two color scales. The upper image shows the original color scale,  
and the lower image shows the color scale after simulating red-green color blindness  
(using vischeck.com).

Numerous websites exist that can generate good colors. ColorBrewer 

( colorbrewer.org) is a well-known resource for creating effective color pal-

ettes of all three examples. You can also use a color recommender (http:// 
aperturejs.com/colorrecommender/index.html) to generate palettes.

Labels

Labels can be one of the most important enhancements to a graph. Labels unambigu-

ously identify speciic nodes (or links). he topology may reveal that there is a critical 

node connecting two clusters, and the color may indicate importance, but a label is 

required to reveal the speciic identity of the node. Interactions such as tooltips or selec-

tion (discussed in Chapter 6, “Explore and Explain”) can reveal node identity, but it is 

important to remember that those interactions are lost once the graph is shown as an 

image in a PowerPoint presentation, a printout, or a PDF ile. 

Labels can be tricky to use. Some earlier examples in this book show nice short 

names such as Chad or Zoe, whereas real-world names are much longer. Even the 

generic names applied to the e-mail data result in rather long labels, as shown in Fig-

ure 5-12. Label legibility is an immediate problem—some labels are diicult to read 

because of overlap, and some are diicult to read against dark node colors. 

N
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FIGURE 5-12: Labels applied to the family e-mail example include such problems as labels overlapping 
and labels that are dificult to read against dark colors.

Reducing Label Width

In node and link diagrams, nodes tend to be fairly “squarish” in proportion (such as cir-

cles, stars, and so on). Layouts tend to position the nodes based on distance without any 

special regard to horizontal versus vertical distance. Labels, however, tend to be wide, 

resulting in problems with long labels reaching across multiple nodes and interfering 

with other labels. A few remedies exist for managing label width:

 ■ Condensed fonts/narrow fonts—A wide variety of specially designed narrow 

fonts are available, and this is the perfect time to use them because they are 25 

percent to 50 percent narrower than standard fonts. hough most Windows users 

will be familiar with Arial Narrow, other choices may already be available on your 

system (as shown in Figure 5-13), including fonts such as Myriad Pro Condensed, 

Gill Sans Condensed, or even Gill Sans Extra Condensed (which is an extremely 

narrow font).

If you have limited choices for narrow fonts, a few nice open source condensed 

fonts are available (in other words, no fee for commercial use) such as Open Sans 

Condensed and Miso (available, for example, from http://fontsquirrel.com). 

Gill Sans Extra Condensed is used in Figure 5-14. Be careful, though—the nar-

rower the font, the larger the font size required to maintain readability. 



CHAPTER 5 Visual Attributes 139

FIGURE 5-13: Condensed fonts are 25 percent to 50 percent narrower than standard  
fonts—useful for labeling graphs.

FIGURE 5-14: This is the same family graph using Gill Sans Extra Condensed. You can reduce 
the amount of overlap by using narrow fonts.

 ■ Short labels—Long labels can often be shortened, although shorter labels may 

not automatically exist in the source data. In the e-mail example, names can be 

shortened to irst initial plus surname, as shown in Figure 5-15.
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FIGURE 5-15: Shortening labels reduces overlap and makes the scene much less cluttered.

Improving Label Legibility

Even with short labels and narrow fonts, some text will still be diicult to read over lines 

and nodes. he readability of text depends on the amount of contrast against the back-

ground. As shown in Figure 5-16, an orange label on a purple background of the same 

brightness will be diicult to read—contrast is required. 

Michael Faraday James Maxwell

FIGURE 5-16: Labels that have the same brightness (or darkness) as their background  
are more dificult to read.

herefore, if black labels are on top of dark nodes and lines, they will be diicult to 

read. You can improve legibility in many ways:

 ■ Change colors of nodes and/or links—Adjust the range of colors of the underly-

ing node to increase contrast. Following from the previous example, brightening 

all of the node colors results in labels that are easier to read. 

 ■ Tweak node positions—Depending on the software used, you may ind tools to 

automatically adjust node positions for improved label visibility, or the capability to 

simply move and drag an ofending node or two. Figure 5-17 shows an example.

 ■ Adjust label position—Placing a label above or below a node may be more efective 

than placing the label over the node. Not all graph software provides this option.
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FIGURE 5-17: This graph of family e-mails has node color brightened and a couple node loca-
tions slightly shifted to improve label visibility.

 ■ Change label colors—In some cases, the label color can be switched depending 

on the color of what is behind it, such as pie hierarchy in Chapter 4 (Figures 4-23 

and 4-24).

 ■ Labels only—Remove the nodes completely and use only the label as the node. 

As shown in Figure 5-18, labels can also vary in size, color, and other attributes 

based on data, so this is feasible, although the range of colors and sizes must be 

tweaked. 

FIGURE 5-18: This graph of family e-mails uses labels to indicate three data attributes. Label 
size indicates number of e-mails, label color indicates total size of e-mails (from small in amber 
to large in dark red and purple), and the label text indicates the speciic sender.
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 ■ Smaller labels—Although smaller fonts reduce overlap to improve legibility, they 

are more diicult to read. Depending on the device (for example, a laptop), 8 to 10 

points could be considered a minimum size. Ultra-high-quality printers available 

at high-end print shops can produce readable fonts down to 4 points, although 4 

points may be too small for some people to read, so 5 or 6 points may be a better 

minimum size, even with access to these high-quality printers. 

Reinforcing Labels

Label size and color can be used to reinforce node size and color. In Figure 5-19, the 

underlying nodes vary in size and color. he labels on top also vary in size and color 

using the same attributes as the nodes (although the label colors are much darker versions 

of the node colors). his approach can reinforce the other visual attributes, look more 

visually appealing, and improve readability (somewhat) if labels partially overlap. 

FIGURE 5-19: Colors and size of labels reinforce the color and size of the underlying nodes.

In general, the approach of using one data attribute to set two or more visual attri-

butes is called redundant encoding. Some redundant encoding can be considered to be 

good because, as viewers learn the visualization, they see these diferent cues represent-

ing the same thing, and it helps them understand it. In Figure 5-19, it seems logical to 

have smaller labels on smaller items and larger labels on larger items—the redundant 

encoding here acts as an aid to the viewers. 
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KEY EDGE ATTRIBUTES

Edges, like nodes, may have many attributes associated with them. Edges represent rela-

tionships. here can be diferent types of relationships, including directions, quantities, 

measurements, and statistics. Weight, color, and line style are key visual attributes for 

revealing additional data about edges.

Edge Weight

Edge weight is common in many data sets and is important for many layout algorithms. 

Visually, edge weight is simply the thickness of the edge between two nodes. In the 

e-mail data set, edge weight has already been included in all the previous examples 

because the particular force-directed layout used edge weight as part of its calculations. 

However, the edges were all drawn fairly thin to de-emphasize edge weight. As shown in 

Figure 5-20, edge weight can be increased, revealing connections where there have been 

many e-mails. 

FIGURE 5-20: Edge weight shows number of e-mails between people. Trevor Duncan (red node) is 
involved in many e-mails with many other people.

As edge weight becomes thicker, transparency of the edges can help; otherwise, all 

the edges can become a big blob.
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Edge Color

Edge color can show data attributes in a very similar way to node color. All the guidelines 

discussed previously regarding color and the diferent types of color scales (sequence, 

diverging, categoric) apply to edge color as well. Again using the e-mail example, in Fig-

ure 5-21, edge color is added to indicate the recency of the e-mails between each pair of 

people, ranging from red (recent) to blue (old).

FIGURE 5-21: Edge color shows recency of e-mails, with newest e-mails in red and oldest e-mails in 
grayish-blue. The cluster on the right has been more active recently than the cluster on the left.

If you have many overlapping edges, having different edge colors as well as a 

bit of transparency will help viewers distinguish between them.

Edge Type

Edge type is a broad category covering many diferent line styles associated with edges, 

including arrows, dashes, and curves. 

Arrows are critically important for indicating low in directed graphs when edges are 

lines. (Note that, instead of arrows, the chord diagram uses width at the start and the end 

to indicate low.)

T
IP
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Curved edges are often used in conjunction with arrows so that arrows in both 

directions between a pair of nodes do not overlap and can be clearly distinguished. 

his curvature does not need to be very large—a small curvature means the lows 

in either direction can be easily compared. Figure 5-22 shows trade lows as edges 

with arrows and a very slight line curvature so that the lows do not overlap and so 

that the opposite low is almost immediately adjacent. For example, the low from 

China to the United States (bright pink) is much larger than the low from the United 

States to China (purple), whereas the low to/from Canada and the United States is 

almost equal. 

FIGURE 5-22: In this graph of trade flows of the top 12 countries (by 2012 GDP), curved  
arrows indicate direction of flow, and edge color and width indicate value of trade flow.  
Subtle curvature keeps the opposite flow close for comparison.
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Curved edges are sometimes used in undirected graphs—they can be used to reduce 

apparent connections between a series of nodes all in a row; and sometimes curved edges 

are used because they are aesthetically pleasing. Figure 5-23 shows curved edges on the 

e-mail data set.

FIGURE 5-23: This shows edge curvature, color, and thickness, as well as labels with size and color, and 
nodes with size and color. A legend is provided for reference.

Dashes can be useful for indicating diferent types of connections. In an organizational 

chart, dashed lines are often used to indicate indirect relationships. Diferent categories of 

connections may also exist in other data. For example, in the airline data set, dashes could 

be used to diferentiate routes with only freight service or non-regularly scheduled service. 

COMBINING BASIC ATTRIBUTES

Combining multiple attributes such as node size, color, labels, edge weight, edge color, 

and curvature can transform dense information into a visually appealing graph image. It 

is important to provide all the detailed information about the visual attributes in a leg-

end, or at least a caption with the graph, so that the viewers can decode the image. Also, 

although you can encode many attributes using all these attributes, you must be careful 

not to make the image so complex that the viewer struggles to decode what it means. 

Given all the combinations, a legend is a very useful aid.
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Consider Figure 5-23, the graph of family e-mails. Some people may consider it too 

complicated because it now encodes ive diferent data attributes across seven diferent 

visual attributes!

So, how do you interpret the graph in Figure 5-23? To recap, the set of nodes rep-

resents the (anonymous) family and friends of the author, not including the author. he 

visual attributes are conigured as shown in the legend and described as follows:

 ■ Node size—his represents the number of e-mails the person was included in 

(also node label size). 

 ■ Node color—his represents the overall number of bytes sent, ranging from a few 

(yellow) to a large number (red). his is also shown in a very dark version of the 

same color for the node label.

 ■ Label—his indicates the name of the person (generically anonymous). 

 ■ Edge weight—his represents the total kilobytes sent between a pair of people.

 ■ Edge color—his represents the most recent e-mail between a pair of people, 

ranging from red (very recent) to blue (a year ago). 

he topology and the thick edges (many e-mails) show the importance of T. Schwartz 

in connecting the left cluster to the center cluster. Schwartz sends many e-mails, but big 

e-mails. Schwartz is the primary connector between the center cluster (direct family) and 

the left cluster (a set of in-laws and cousins). 

Note that B. Adkins (shown large at the bottom) is also in a similar bridging position 

to Schwartz, but B. Adkins’ role is diferent. Adkins is large because Adkins sends a lot 

of e-mails to the author (who is not otherwise shown in this graph). However, Adkins 

rarely copies other people (all the lines are thin and the color is close to yellow). Adkins 

is simply communicating a lot of short e-mails directly with the author—that is, Adkins 

is a point-to-point communicator, not a broadcast communicator.

J. Armstrong and T. Duncan (and, to a lesser extent, R. Broussard) connect the cen-

tral cluster to the right cluster (another set of in-laws). his is the side of the family that 

likes to send bigger e-mails, as shown by the orange node color indicating larger e-mails 

than the yellow e-mails. (Armstrong and Duncan often send photos of family gather-

ings.) he Duncan/Armstrong side has also been active more recently, with edge colors 

closer to red. Unlike Schwartz and Adkins, the Duncan/Armstrong pair both communi-

cate fairly heavily. 
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So what does all this mean? If you need to get a message out with the widest reach, 

you should contact Schwartz and one of Duncan/Armstrong pair. And, if you have a 

secret, it is likely safe to share it with Adkins.

BUNDLES, SHAPES, IMAGES, AND MORE

You can manipulate many more visual attributes to enhance visual aesthetics and/or add 

additional data. Each software package should (hopefully) ofer all the basic attributes 

previously discussed, but additional attributes available can vary widely. he earlier 

e-mail examples in the chapter were created with Gephi, but the following examples 

have been created with other software. 

Bundled Edges

An exciting attribute to emerge in recent years is bundled edges. hese are not quite the 

same as curved edges. he idea is to simplify the visual depiction of the graph (particu-

larly when it has many edges) by grouping edges together (particularly when the edges 

are close to each other). his could be considered perhaps an aesthetic attribute or a type 

of layout attribute. 

Figure 5-24 shows bundled edges for the e-mail example (created with Cytoscape 

using the Bundle Edges feature). Note how the relationships indicated by Broussard, 

Duncan, and Armstrong difer from Figure 5-23. Previously, Duncan seemed to be 

the key link bridging between the middle cluster to the right cluster. But with edge 

bundling, alternative paths between middle and right clusters through Armstrong and 

Broussard are now more visually apparent.  

Shape

You can use shape to represent a few categories of data. Typically, you will have a few 

shapes to pick from, such as a circle, square, or triangle (for example, in Cytoscape). Fig-

ure 5-25 shows the same Fortune 500 organizational chart as seen in Figure 5-8 colored by 

job category, but now with shape applied to indicate region (for example, squares indicate 

people located in the European Union, and diamonds indicate people in North America).
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FIGURE 5-24: Bundled edges simplify the image by clustering edges traveling similar paths.

FIGURE 5-25: In this portion of a Fortune 500 company hierarchy, shapes vary to indicate  
region. (The full version is provided in the Supplementary Materials on this book’s  
companion website.)

Node Image

Instead of shapes or colors, you can use images for nodes. he simplest case can be literal 

images of items, such as lags for countries in a view of trade low, portraits for people 

in a social network, or photos of products. Figure 5-26 shows a simple example of trade 

low data using images of lags for each node (created with NodeXL). 
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FIGURE 5-26: The international trade flow with countries is indicated by flags.

he approach using images can be extended to show diferent kinds of attributes as an 

adjunct to other node attributes. he authors have created visuals such as mini pie charts 

or mini-line charts used in graphs on some particular occasions. his requires extra efort 

to generate all the images and then to conigure the graph software to use the images. 

But you can use this approach to reveal information that would otherwise be diicult to 

show (such as trends). 

Node Border

You have already explored edge type. Similarly, the node border has attributes such as line 

weight, line style, and line color that you can use to indicate additional data. Extending 



CHAPTER 5 Visual Attributes 151

the occupation example, you can set node size to the number of people in a particu-

lar occupation. You can set node color to a diverging color scale indicating change in 

wages over the ten-year period from 2001 to 2010. Additional data includes the median 

income—how much money did the typical person in this occupation earn? Although you 

could potentially use font size or font color, there could be challenges with layout or legi-

bility of the font over the colored background. 

In Figure 5-27 (created with yEd), the outline color has been set to the income level, 

with dark purple indicating low income (below $20,000—for example, cashiers) ranging 

to a bright cyan indicating a high median above $140,000 (none in this image are in the 

highest income category). Note, per the example shown in Figure 5-8, models are the 

darkest green, indicating a large increase in income (up over 50 percent), but the overall 

median income is low ($30,000 to –$40,000—presumably the median model is not a 

supermodel). he sales engineers have also increased in bright green (up 45 percent to 50 

percent), and their income is fairly high, too ($80,000 to $100,000). 

FIGURE 5-27: In this graph of sales occupations, border color indicates income.

More Attributes

Many more attributes are available than have been addressed here. he authors have 

added visual attributes to graphs such as glows, drop shadows, multi-line text labels, 

multiple font styles, three-dimensional (3D) nodes, gradient edges, pie chart and dough-

nut chart nodes, dozens of shape types, and more. Although all these advanced attributes 
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are feasible, they each have diferent caveats and may not be easily accessible in many 

graph visualization packages. Feel free to experiment with some of the advanced fea-

tures, but beware that the results may not be as efective as intended, and keep in mind 

how the use of these features relates back to the overall objective. 

Interference and Separation

Combining many visual attributes results in interference and/or legibility issues. Some 

attributes still visually pop out (such as size), but other attributes such as colors or font 

styles may be more diicult to distinguish—particularly if the same visual attribute is 

being used multiple times (for example, color for both node ill and node outline). 

Figure 5-28 shows the sales occupation data with color being used to indicate both 

change in income (node ill color) and total income (node outline color). Note that the 

bright red ills may be easily perceived, but the bright cyan outlines require efort to visu-

ally scan across all the boxes to see them. 

FIGURE 5-28: In this representation of occupation data, node ill color indicates income change, and 
node outline color indicates overall income. Note that the outline colors do not visually pop out.
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In general, care is required when adding many extra data attributes. Ensure that the 

most important data for the objective incorporates the visual attributes that visually pop 

out (such as size and node ill color). Don’t add extra data that isn’t relevant to the anal-

ysis. In the occupation income example, if change in income was not important to the 

objective, you can use node ill color instead for the important attribute. 

When you have many equally important data attributes and you use them as support 

for successive points in an analysis, you might consider using two images or three images. 

In each case, use a consistent layout, but then, in successive versions, vary the attribute of 

interest. For example, Figure 5-29 shows the occupation data irst colored by change in 

income and then colored by median income. 

PUTTING IT ALL TOGETHER

Node, edge, and label attributes can increase the information delivered by a graph, as 

well as increase its clarity and appeal. Basic attributes such as size, color, and labels can 

be used efectively to add data in any graph. Keep in mind the following:

 ■ Node size is an efective attribute for conveying non-negative quantities.

 ■ Node color is efective and visually appealing for conveying information such as 

categories, quantities, or diverging values. 

 ■ Labels are extremely useful for identifying nodes, as well as potentially showing 

information via label color and size. Good labels require efort and should not be 

an afterthought.

 ■ Edge weight (that is, line thickness) is very efective for indicating the strength of 

the relationship.

 ■ Like node color, edge color can be visually efective for diferentiating among 

edges (for example, categories), as well as quantities or diverging values. 

 ■ Edge type (such as arrows and curvature) is useful for directed edges. 

 ■ Bundles, shapes, images, borders, and other advanced attributes can enhance the 

visualization, but beware of cluttering the visualization or making it confusing.
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FIGURE 5-29: Here, occupation data is represented irst by percent change in income (red-green) and 
second by income bracket (purple-cyan). In both examples, the extreme values can be easily perceived.
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SUMMARY

Applying visual attributes can be one of the most exciting steps in creating a graph—the 

story of the data starts to be revealed as visual attributes add information on top of the 

topology. Starting with the basics of size, color, and labels can be an efective way to add 

information and to increase visual clarity in a graph. Many more attributes are available 

but should be approached with some caution because a graph can be made more compli-

cated and more diicult to understand if too many diferent or advanced attributes are 

combined at once.

A legend is extremely useful to include as well. Once two or three diferent 

visual attributes are used, it is important to be able to quickly and easily recall the 

coniguration. 

Just as the visual attributes help reveal the graph’s story, interaction becomes the next 

step in understanding the graph. As you’ll see in Chapter 6, interactions enable you to 

explore the graph in more detail, zooming in, iltering out weak edges or small nodes, 

probing for data details, isolating subsets, and so on, which can help the viewer gain 

additional insights.  
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6
EXPLORE AND EXPLAIN

After getting data, visually laying out the graph, and 
attaching data to visual attributes, you may want to 
explore the network in more detail to gain some insights. 
he interesting patterns described in the various examples 
in the previous chapters may not be so obvious in your 
graph. In many cases, some amount of interactive analysis 
is required before patterns emerge. Often, initial graphs 
look like “a hairball” or “a plate of spaghetti.” Do not 
despair. Most graph software packages contain interactive 
features to explore the graph in more detail, which are the 
topics of this chapter. For example, zoom and identiica-
tion interactions let you explore graph details. Filters and 
selection help you focus on items of interest and hide less 
relevant items.

Assuming that you do gain some insights, in most situations you will want to share 

those indings with other people. Whether those indings appear in a PowerPoint pre-

sentation, whitepaper, or poster, you will want to help the viewer see those patterns, too. 

he second portion of this chapter covers enhancements such as annotations, labels, leg-

ends, and explanations to help you convey your indings. 
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EXPLORE, EXPLAIN, AND EXPORT

Upon irst viewing a graph, the viewer (whether the graph author or the presentation 

audience) may have some basic questions: 

 ■ What am I looking at?

 ■ Are there some landmarks?

 ■ What is this node (or link)? 

 ■ What is it connected to? 

Basic interactions are used in conjunction with graph layout and the coniguration 

of visual attributes to do a irst-level assessment and understanding of the graph. hen, 

interactions such as iltering and isolation provide a powerful means for exploring the 

graph, in addition to topological analysis (such as exploring neighbors, exploring paths, 

and modifying the graph). 

For presentation, more context is required for the audience. It may be helpful to add 

a legend, add annotations, and sequence a story to help the viewer understand the graph. 

Additionally, you may provide an export of data so that the viewer can do further analysis. 

Table 6-1 shows the various interactions involved with this process.

TABLE 6-1: Interactions

TYPE EXAMPLE DESCRIPTION

Zoom and pan Go from an overview with all of the context down to a 
local neighborhood by zooming and panning. Capabilities 
to rotate, scale, and translate offer similar effects for dif-
ferent purposes.

Identify

Zoe

Hover and/or click to identify the speciic node, conirm 
the visual attributes, or inspect the detailed data. 

Filter Set criteria to remove items that do not match, and focus 
only on the items that do match. Explore the graph based 
on statistical graph properties or other data properties.
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TYPE EXAMPLE DESCRIPTION

Isolate Select a subgraph, move it to its own workspace to lay it 
out again, focus on speciic properties, and so on.

Neighbors Assess the immediate neighbors, or reach out two or 
three steps away to see what a particular node can reach. 

Paths
A

B

Explore the routes from one node to another. How many 
hops are needed? 

Drag, move, 
modify, delete, 
group, and so on

Adjust the scope of the network. Isolate subgraphs, move 
nodes, modify properties, delete irrelevant nodes, and 
group related nodes.

Explanation 
Sequence

1

2

3

Explanation requires a logical sequence to tell a story 
about data. For example, you may start from an overview 
and step toward a speciic observation. 

Annotate Ana

Zoe

Mark particular nodes, edges, or parts of the graph that 
are relative to the story.

Legend

People — Friends

Add a legend to aid the viewers in understanding what 
they are looking at, as well as explain all the visual 
attributes.

Export

Nodes
A, Ana, ...
Z, Zoe, ...
Links, ...

Generate images and data sets for further presentation 
and/or analysis.
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ESSENTIAL EXPLORATORY INTERACTIONS

In this section, an example consisting of a market basket analysis steps through the vari-

ous interactions using a real-world data set of purchases. As a quick recap, a market basket 

analysis is a graph where nodes are products purchased, and edges occur when two prod-

ucts are purchased together. 

he apocryphal “beer and diapers” data mining story is an example of a market bas-

ket analysis. he story claims that a convenience store retailer noticed a large number of 

purchases included both beer and diapers and then adjusted the store layout by placing 

diapers near the beer to increase beer sales. Although this particular story may never 

have actually happened, this type of correlation between goods purchased together is 

fundamental to market basket analysis. You see this every day when using website inter-

faces such as Amazon (people who purchased X also purchased Y) and Netlix (people 

who viewed A also viewed B) or when observing marketers who look at potential impulse 

purchases (for example, items bought with a wide variety of other items). his type of 

analysis can be computed in diferent ways; graph analysis is only one approach. 

For a detailed account of the beer and diapers story, see: www. dssresources 
.com/newsletters/66.php.

Market basket graphs tend to be very dense. When aggregating data across thousands 

of baskets, it is not uncommon for two unrelated items to get purchased together a few 

times. Because market basket graphs are dense, interaction is required to explore the 

graph and gain insight. 

he example of a market basket analysis in this chapter uses anonymous data from a 

hardware store to view more than 300,000 items purchased in more than 10,000 basket 

purchases. he graph has approximately 8,000 products and 180,000 links. he irst half 

of this chapter shows the various types of interactions used to do an exploratory analysis. 

Gephi is used for the screen shots, but Cytoscape or other graph software could have 

been used. You can see the same graph in more detail using the MarketBasket examples 

in the Supplementary Materials available on this book’s companion website. 

he initial view of the data in Gephi may look like a square with random node lay-

outs, as shown in Figure 6-1. he nodes have been sized and colored by the total revenue 

N
O
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for that item (pink is low revenue, and deep purple is high revenue). he edges have been 

colored by the frequency at which each pair of products has been purchased. 

FIGURE 6-1: This initial market basket graph looks like a square with random node layouts.

On such a large graph, layout takes time. In Figure 6-2, the layout has been done 

using a Yifan Hu multi-level layout in Gephi and required approximately 5 minutes to 

compute. he visual results indicate a disconnected graph with one very big component, 

a few very small components, and a number of isolated dots. he isolated dots are simply 

individual products that were purchased with no other products. Examples of some of 

these individual product purchases include specialized tools or parts. 
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FIGURE 6-2: This market basket graph has a force-directed layout applied, indicating one  
large component, a few small components, and many isolated dots.

Zoom and Pan (and Scale and Rotate…)

Navigating around a graph is a fundamental requirement, and because no standard 

exists, each software package implements zoom and pan diferently. You might try the 

following:

 ■ Zoom via mouse wheel (or drag vertically along the center of the mouse on 

Mac)—Generally, a mouse wheel is supported for zooming, and the cursor is the 
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center point for the zoom. Gephi, yEd, and NodeXL support a mouse wheel, but 

Cytoscape does not. 

 ■ Pan by pressing the right mouse button and dragging—In many graphical 

applications, if you press the right mouse button and then click and drag, you can 

easily pan around the scene. his works in Gephi and yEd. In Cytoscape, the 

right-click-and-drag action is linked to zoom.

 ■ Pan by pressing center mouse button, clicking, and clicking and dragging—In 

Cytoscape and NodeXL, you can press the center mouse button, click, and then 

click and drag to pan. 

 ■ Pan using the scrollbars—If available, you can use scrollbars to pan. 

Scaling, translating, and rotating are used to alter node positions. Scaling can be used 

to space the nodes closer together or further apart without changing the line widths, 

font sizes, node sizes, and so on. his can be efective if you want to make the graph a bit 

more dense without having to increase the size of all the elements separately. 

Zoom and pan are not the same as scale and translate. Zoom and pan 

change your viewpoint, while scale and translate change the positions of 

nodes.

Scaling, translating, and rotating can be very efective when you are working with 

parts of a graph. For some of the examples in this book, the automatic layouts left huge 

gaps between diferent parts of the graph. You can select a portion of the graph and drag 

it closer (that is, translate it), and possibly add a bit of rotation and scale, to help make 

the graph more dense while still preserving the overall layout. Scale, translate, and rotate 

functionality can vary widely between software. Chapter 7, “Point-and-Click Graph 

Tools,” provides further information on these. 

In the market basket analysis, it may be interesting to zoom in on some of the small 

components. Using zoom and pan, you can quickly focus on the little component in the 

upper-right corner of the graph in Figure 6-2, as shown zoomed in Figure 6-3. 

T
IP
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FIGURE 6-3: These small components in a market  
basket graph are related spare parts that were  
purchased together.

his particular component is a collection of nodes that represent obscure replacement 

parts that, on occasion, may be purchased together.

Identify

In the 1990s, the authors were building a visualization of a banking network. At one 

point, the CEO heard about the project and decided to see it irsthand. Because he was 

a very action-oriented CEO, he immediately took control of the mouse. Although the 

authors had identiied some very interesting red nodes in this network, the CEO irst 

went to the big nodes—the well-known familiar nodes—to identify them. his helped 

him conirm his intuitive understanding of what he was seeing. By recognizing and val-

idating these known points irst, he could gain conidence before proceeding to explore 

the anomalies. It also helped to establish some landmarks in the visual scene—he could 

refer to the known large nodes and the relationship of other nodes to the known nodes. 

You can identify data points in multiple ways. Labels, if already added, are excellent 

but can show only a small amount of data. Tooltips, if available in the graphing software, 

can be efective because they are immediately adjacent to whatever you are pointing at. 

Most software packages have an information panel beside the graph somewhere. 

For example, you could use the yEd Properties View panel (discussed in more detail 

in Chapter 7), which is typically in the lower-right corner. Cytoscape typically displays 

a panel at the bottom. Note that, in some software, you must go into a particular mode 
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to access the details for a node. For example, in Gephi, you must click the following icon 

for the Edit Selector, which, in turn, opens a detail panel in the upper-left corner:  .

Picking any item and inspecting the details panel helps you validate what you’re see-

ing. In many software packages, the detail panel is also an editor where you can edit the 

data and possibly other graphical attributes.

You can identify a few nodes at random to spot-check the validity of the data 

and conirm the visual mapping.

Getting back to the market basket analysis, any node can be selected and inspected, 

as shown in Figure 6-4, which shows a snapshot of Gephi with the detail panel in the 

upper-left corner. Here you can see that the item is product number 10206, that 5 units 

were sold for a total of $320.58 in revenue, and the product name is Welch (which is not 

the real product name because the real data is conidential). Note that all the attributes 

are editable, including color, which has been changed here to yellow to make the selected 

node stand out in the screen snapshot. 

FIGURE 6-4: One node (yellow) has been selected from a market basket graph with  
the details shown in the upper-left panel in Gephi.

T
IP
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Filter 

If you look back at Figure 6-2, you notice that there is still the challenge of the giant 

component with too many edges to be clearly distinguishable. Filtering is a fundamen-

tal operation in all data visualization—a way to easily remove some of the data that is 

currently not of interest so that you can focus on what remains. Filtering doesn’t actu-

ally delete the data. It just visibly hides the data, and usually you can make all the data 

visible again by simply adjusting the ilter values, turning of the ilters, or deleting  

the ilters. 

Filters are particularly important for exploratory analysis. By adjusting ilter settings, 

you can quickly isolate and segment the graph by various data attributes and statistical 

properties. Sometimes these adjustments are goal-oriented to a particular line in an 

inquiry (for example, what’s connected to this speciic node), or sometimes it may be 

more about formulating various hypotheses (for example, are products from the lighting 

and the looring departments connected, and, if not, what else is connected to lighting). 

By adjusting ilters and settings (plus zoom and identify), you can start to explore  

diferent parts of the graph, and gain some understanding about what’s happening  

in diferent areas.

Exploratory data analysis is an approach to understanding data visually. 

Interactions such as ilters, navigation, and identiication help reveal pat-
terns and outliers. This can suggest possible causes and relationships that 

can be the basis for further interaction to uncover supporting evidence. You 

can use multiple iterations to explore different scenarios and reveal new 

insights.

In the market basket graph, if you use Gephi, you can see that you can apply a wide 

variety of ilters. In this example, the hypothesis is that interesting links and clusters 

N
O

T
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exist in the giant component, but with many irrelevant connections—because eventually 

someone will purchase any two products together in a basket. herefore, the following 

ilters are applied to explore this further: 

 ■ Giant component—his is a topology ilter that removes all the small com-

ponents and isolated nodes. his reduces the data set from 8,000 nodes down 

to 7,400 nodes, with no signiicant change on the edges (still approximately 

180,000 edges). 

 ■ Edge weight—Many items are bought together with very low frequency almost at 

random. hese low-frequency purchase pairs are noise-obscuring more interesting 

patterns. So, a ilter on edge weight set to a threshold of 4 immediately removes 

any edges that occurred three or fewer times. Note that, in Gephi, when the two 

ilters are combined, all nodes that are now isolated or part of smaller components 

are also removed. his reduces the graph incredibly quickly down to 1,600 nodes 

and 6,300 edges, as shown in the left image in Figure 6-5.

he same idea of iltering may be achieved in diferent ways in diferent software. 

For example, in Cytoscape, iltering is achieved by using selection tools available via 

the Select menu and ilter tools in the Select panel. Using the same market basket data 

in Cytoscape, irst a ilter is created in the Select panel based on column data of edge 

weight. he ilter is set to select edges of weight above 3 and then applied (with the 

Apply button). his selects the target edges of weight 3 or higher. 

Note, however, that the nodes they are connected to are not selected. he Selection 

menu is then used to Select ⇨ Nodes ⇨ “Nodes connected by selected edges.” his 

results in a similar subset to the approach used in Gephi. 

All the other nodes and edges are still cluttering the view. In Cytoscape, you can hide 

selections. In this case, you can invert the selected nodes and selected edges, and then 

you can hide the selection—all via options under the Select menu.
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FIGURE 6-5: By iltering the market basket down to edges for only three or more purchases  
together, you can reduce 180,000 edges down to 6,300 edges.

Isolate and Redo Layout

In Figure 6-5, note that the center of the cluster is still too dense to see any edges. So, 

you can redo the layout in conjunction with iltering. 

But, you may also like the original layout, have become familiar with it, and may 

want to return to it. Because force-directed layouts can achieve a diferent layout every 

time, you must save this layout. In some graph packages, you may want to save diferent 

versions of the ile each with diferent ilters and layouts so that you can easily return 

to them. 
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Graph software may ofer ways to manage multiple subsets of a graph, each with 

a diferent set of nodes, edges, and layout. For example, Cytoscape allows a selected 

portion of a graph to be copied and managed as a separate network (File ⇨ New to 

create new graph instances, and the Network tab to manage diferent networks). Gephi 

ofers multiple workspaces. In this market basket analysis using Gephi, you can select 

all the points (using the rectangle selection). hen, you right-click to pop up a context 

menu. Choose “Copy to… New Workspace” to access workspaces via a menu in the 

 bottom-right corner. 

Now, you can apply a new layout to this iltered subset of nodes. For example, using 

Force Atlas 2 layout with Prevent Overlap turned on, Scaling set to 0.6 (so the layout 

does not spread out too far), and LinLog Mode turned on (to enhance separation of 

clusters), you can produce a layout with more visually distinct clusters as shown in  

Figure 6-6.

FIGURE 6-6: This market basket with clusters is more apparent after a new layout.
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Gephi incrementally refreshes the screen while calculating the new layout, which is 

generally useful for exploratory analysis:

 ■ You can see nodes moving and keep track of them as the layout shifts to a new 

position. You don’t have to re-learn the layout after the layout inishes calculating. 

 ■ You can interact while the layout is still adjusting positions. You can pick nodes 

and even drag them while the layout is continuing to adjust. his can help disen-

tangle some parts of the graph faster than waiting for the layout to disentangle it.

By creating a new layout on this isolated subset of the graph you see clusters that are 

much more distinct. For example, there is a cluster at the bottom as shown in Figure 6-7, 

which is connected by a single thin edge that may seem worthy of investigation. 

FIGURE 6-7: A cluster of do-it-yourself books  
appears at the bottom of the market basket  
analysis.

Using identiication interactions, individual items can be investigated. In this clus-

ter are do-it-yourself books, indicating people are likely to purchase multiple books. 

As shown in Figure 6-8, the books connect back to the central cluster through a small 

cluster of clearance books and then to the large cluster via two high-degree nodes—one 

of which is an extension cord, and the other of which is a tape measure. hese are both 

common items that might be needed at the start of a project.
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FIGURE 6-8: Discount books (pink—near bottom) are connected to the larger clusters via two nodes—
extension cords and tape measures (highlighted).

MORE INTERACTIVE EXPLORATION

You can also use a wide variety of other analytical interactions, depending on the soft-

ware package you are using. Some of these interactions might be available as separately 

downloadable add-ins. Some more common types of analysis are identifying neighbors, 

inding paths, deleting/modifying data, grouping, and so on. 

Identifying Neighbors 

Neighbors are the nodes directly connected by a single edge to a speciic node. Because 

this is often of interest in graph analysis, Gephi automatically highlights the immediate 
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neighbors of any node that the mouse is on top of. In Cytoscape, you can use buttons on 

the main toolbar to highlight the neighbors of a selected node. 

In Gephi, this technique of highlighting the immediate neighbors applies to any 

selection. Using Gephi for the market basket analysis, you can select all the nodes in the 

top-right cluster, which highlights all the neighbors to all the selected nodes, as shown in 

Figure 6-9. 

FIGURE 6-9: Light ixtures have only a few connections back to the central mass of products including 
smoke detectors and extended warranties.

Without interaction, it is easy to see that the cluster is distinct with only a few edges 

going back to the center. Now, with the neighbors highlighted, you can identify the 

individual nodes that connect this cluster to the center. his cluster happens to be light 

ixtures, and the connected products in the center are items such as smoke detectors and 

extended warranties. You can also see a number of products in the cluster immediately 

below that are joined. hese are products associated with household painting. his implies 

a reasonable degree of connection between lighting products and painting products. 
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Paths

In Chapter 4, “Stats and Layout,” you learned about paths in the context of a viral mar-

keting example (see Figure 4-5). In that discussion, you read about a marketer who was 

very interested in understanding the paths to get information to low between people, 

particularly if the marketer does not have a direct connection with their target audience. 

A path analysis can also be useful in a market basket analysis to see how close, or how 

far apart, some diferent products may be. For example, when you look at the graph in 

Figure 6-6, you can see three distinct clusters near the top-right corner. Whereas the irst 

two clusters appear to be interconnected, the third cluster seems to be somewhat inde-

pendent. You can select individual products from the upper cluster and the lower cluster, 

and ind paths such as this, rather than the tenuous path shown in Figure 6-10. Trying a 

few diferent combinations can yield some shorter examples than what is shown in Fig-

ure 6-10, but the general conclusion is that the paths between them are fairly indirect. 

FIGURE 6-10: The connection from a product in the top-right cluster to a product in the middle-right 
cluster is highly indirect.
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Sometimes it can be tricky to track a particular node in a dense graph. You 

can modify the label, for example, with a *; change the node shape (for exam-

ple, to a star); or change the node color (for example, to bright yellow). Alter-
nately, put a sticky note on the computer screen with an arrow to temporarily 

mark the speciic node of interest.

Deleting

Sometimes you have situations in which you want to remove one node. An ego-network 

is a graph of all the neighbors of one node and all their connections. Applying an ego- 

network analysis to the extension cord from the market basket analysis reveals a network 

shown in Figure 6-11. 

FIGURE 6-11: This shows all the products purchased with the extension cord (in green).

T
IP
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However, because it is already known that all items are connected to the extension 

cord, it is no longer necessary to display the extension cord node and its associated 

edges—all those edges are obscuring further analysis. Selecting the extension cord node 

and deleting it makes the rest of the graph somewhat easier to decipher, as shown in Fig-

ure 6-12. In this particular graph, another product also seems to act as a bridge between 

the left and right clusters—it is a power strip. 

FIGURE 6-12: This shows all the products purchased with the extension cord, with the  
extension cord removed. A second product, near the center, is also highly connected  
to both the left and right sides.
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Grouping

Grouping is useful when you’ve identiied that certain nodes are associated because they 

are similar (for example, extension cord and power strip) or because they have been 

strongly clustered together (for example, books). In this case, some graph software will 

allow items to be grouped together. Ideally, a node that represents a group of items 

should be visually distinct from other nodes such as diferent shapes. 

Depending on the software, sometimes nodes can be grouped together, moved, and 

then ungrouped/expanded as a way to move around sets of nodes.

Iterative Analysis

Exploratory analysis is iterative—you visually inspect, form a hypothesis, narrow down 

via iltering or selection, identify, and repeat. Within this process, changing the layout, 

visual attributes, and sometimes ixing bad data are also part of the iterative process. 

hrough the process of analysis and iteration, you can become more familiar with the 

graph and the data, which, in turn, spurs additional questions and can yield successive 

insights. 

In the market basket analysis, various insights can result from the analysis. For exam-

ple, you could use the two clusters near the top-right corner in Figure 6-6 to justify a 

standalone store—these products do not have a strong reliance on other product cate-

gories. Or, you could see that books connect back to some more general products—the 

books stand relatively alone, but if they were located more closely to the general products, 

perhaps they would sell more. Or, you might see that general hardware products could be 

sold with the do-it-yourself books in bookstores. With successive iterations, insights can 

be improved or new insights can result.

For many of these interactions (particularly when exploring connections, paths, 

and neighbors), more pixels can help make the details visible. For example, one of the 

authors’ workstations provides double the resolution of current HD displays, and another 

workstation has ive times the resolution of HD, as shown Figure 6-13. hus, the difer-

ent workstations can aid in diferent interactions.



CHAPTER 6 Explore and Explain 177

FIGURE 6-13: More pixels are useful when interactively exploring larger graphs.

EXPLAIN

After you have completed all the work of collecting data, laying out graphs, connect-

ing visual attributes, and inding insights, it is likely that you will want to share those 

insights with other people. 

In general, telling a story with a graph must be done carefully, or the impact can sim-

ply be one of confusion. Early in his career, one of this book’s authors received one type 

of this reaction from his boss who said, “here’s too much here. What am I supposed to 

look at? Where am I supposed to look? How am I supposed to know, or is the goal to 

overwhelm?”
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Sequence of a Data Story

You can tell a story in many ways. After years of trial and error, one of this book’s 

authors now tends to use a fairly basic template for telling data stories, although there 

can certainly be better versions, depending on the type of story you need to tell. he 

approach roughly follows the process set out in the last few chapters:

1. State the goal. Starting with the goal provides the frame of reference as to why 

the audience should even be thinking about this problem. For example, “Identify 

strategies for microstores: an analysis of complementary product categories to standalone.” 

his can also indicate the metrics of importance, the data used, the scope of the 

data, and the analysis. 

2. Provide an overview. he overall visual representation of a graph may be unfa-

miliar and confusing to some viewers, with colored dots and lines everywhere. A 

high-level indication should focus on the following:

2a. What are the nodes? An example might be, “Nodes are products we sell.”

2b. What are the edges? An example might be, “Links indicate when two products 

have sold together.”

2c. What do the size and color indicate? An example might be, “Nodes are sized 

and colored by revenue. he link width indicates the number of times two products 

were purchased together.”

2d. Identify a few familiar recognizable data points. his moves the story from 

the general concept into speciic familiar information that is relevant. An 

example might be, “So, for example, this big purple node represents light bulbs, our 

top-selling item. Or, this wide line represents the connection between screwdrivers 

and screws.” 

3. Provide a specific analysis. Once the audience is familiar with the objective, 

the structure, and a few data points, individual patterns can be identiied and 

explained. An example might be, “hese two clusters to the upper-right corner repre-

sent lighting products and paint products. Note that they are not strongly connected to  

our other products—meaning that we could consider a microstore based purely on this 

product segment.” 
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4. Explain the anomalies. he audience may be interested in what is highly vis-

ible, such as outliers and anomalies (for example, the discrete little cluster in 

Figure 6-3). hese should not be ignored but explained as part of the process to 

help familiarize the viewer with what may be important or unimportant. If these 

anomalies are unimportant, it might be useful to completely remove them if the 

presentation is brief or include them and explain them away immediately after 

step 2d. An example might be, “hese little clusters of to the side are obscure products 

purchased together—but they are not purchased together with our core products.”

5. Filter and drill down. When you use a subset of data or you use a new layout, 

there is a change of context. his context shift must be conveyed clearly, or the 

viewer can be confused. Sometimes a sequence of images may aid the explana-

tion. An example might be, “From this larger graph, we can extract only the products 

that sell with an extension cord, shown here as a green dot, and then we can remove the 

extension cord to more clearly see that there are two diferent clusters of products that sell 

with extension cords.” 

How the explanation is to be conveyed depends on how the story is told:

 ■ A presentation such as a PowerPoint beneits from a verbal story, during which the 

presenter controls the discussion and low, but the viewers do not have the capa-

bility to inspect the data, zoom in, nor control how long to linger on an image.

 ■ A distribution such as a PDF ile can allow the viewers to review the data, visual-

izations, and analysis at their own pace, and potentially zoom in to inspect details 

and read small labels. 

 ■ An interactive analysis such as an interactive version on a web page (or a saved 

ile, graph software, and accompanying directions) allows the viewers to do some 

explorations on their own. In this scenario, the end viewer has more control (or 

even full control) over the analysis.

In the case of a presentation, some of the story elements can be verbal but should be 

backed up with a corresponding visual element such that the viewers can still decode 

what they are seeing should they arrive late or otherwise miss a point being made. In 

the case of a PDF or other distributed document, these story elements must be made an 

explicit visual element. 
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Legends

In most cases, some form of legend should be added. Ideally, you should include a nice 

legend, similar to a map legend, which visually indicates the range of data that is desir-

able. Some graph software (such as Cytoscape) provides a legend that you can export. 

Some graph software (such as yEd or Gephi) provides some visual indicators when 

coniguring the visual attribute, which can potentially be captured with a screen cap-

ture. Unfortunately, these techniques result in graphical legends that are not necessarily 

self-explanatory to the casual viewer, so you may want to create one, such as the one in 

Figure 6-14, using drawing tools (for example, PowerPoint or Illustrator). 

FIGURE 6-14: This is a legend for the market basket visualization.

Another alternative is to put a brief text legend below or beside the graph, such as one 

including the following:

 ■ Nodes indicate products.

 ■ Node size indicates product revenue from $0 to $450K.

 ■ Node color similarly indicates revenue from $0 (pink) to $450K (deep purple).

 ■ Links indicate pairs of products purchased together.

 ■ Link width and color indicate frequency of pairs purchased from 1 (narrow, 

dark blue) to 500 times (wider and green).
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Annotations

In the process of telling a data story, you may refer to speciic items such as “the large 

purple node” or “the node at the bottom of the screen.” his can be somewhat ambiguous 

because there may be multiple nodes close to the stated criteria. 

You can clearly identify nodes or edges of interest by changing the color or adding a 

label. You can add labels selectively to only a few items by adding an extra column of data 

to the nodes data and then entering notes on only the items that you want to be labeled, 

as shown in Figure 6-15. 

FIGURE 6-15: Graph with particular nodes highlighted and labeled.

In some software, other enhancements include shifting the label (so as not to obscure 

the node), changing the shape, changing/adding other visual attributes, or adding direct 

annotations.

Often, you may want to add other annotations (such as arrows, circles around partic-

ular items, or outlines around a particular cluster). Because most graph software doesn’t 

provide general drawing tools, you must add these types of annotations in other software, 

such as Adobe Acrobat, Adobe Illustrator, or Microsoft PowerPoint. Cytoscape does have 

some text and drawing annotation tools available via the right-click context menu.
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Figure 6-16 shows a complete explanation of the hardware store market basket anal-

ysis graph created with Gephi and with titles, explanations, a legend, and annotations 

added via Adobe Illustrator. Note that some minor enhancements were done to the graph 

prior. For example, node spacing was increased by using the Noverlap Gephi plug-in, 

and graph preview options (such as a slight transparency) were tweaked to node edges to 

improve the legibility of the output graph prior to output as SVG. he SVG was directly 

imported to Adobe Illustrator, enhancements were added, and then it was output as a 

PDF ile (or other high quality format, such as EPS). 

FIGURE 6-16: This market basket analysis includes an explanation, legend, and annotations. The graph 
was created in Gephi and exported as SVG, and then additional information was added in Adobe Illustrator.
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Figure 6-17 shows a similar analysis with explanation for the same hardware store 

market-based analysis, created using Cytoscape instead of Gephi. In this example, a 

Cytoscape graph was exported to a .png image. he image was inserted into PowerPoint 

with various text and outlines added. Since Cytoscape can generate and export a legend, 

a portion of the Cytoscape legend has been added to the PowerPoint ile.

FIGURE 6-17: This is the same market basket data with similar analysis and story. This version was 
created in Cytoscape and exported as .png, and then additional information was added in Microsoft 
PowerPoint.

Export Data Subsets, Graphs, and Images

Finally, you may need to provide data subsets, images, or graph iles of the results as part 

of the explanation. Most graph software provides the capability to export all of these. 
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Data Files

You learned about various graph ile formats in Chapter 3, “Data—Collect, Clean, and 

Connect.” here can be many reasons to export graph data, including the following:

 ■ Subgraph—One beneit of graph export is that a small, isolated subgraph can  

be exported, resulting in a smaller ile size and less exposure to possibly coniden-

tial data. 

 ■ Enhanced graph data—Other graph statistics (such as degree or centrality mea-

sures) can be exported with the graph data and then used by other software. 

Image Files

Images are often a desired output. Following are a few important points about exporting 

images:

 ■ Bitmap images—Bitmap images (such as .png, .jpg, or .jpeg iles) may look nice 

but will be simply the pixels that you see on the screen. Zooming in on a bitmap 

image will show a grainy image with no additional useful information. Bitmap 

images produced at typical screen resolutions are okay for PowerPoint presenta-

tions and hard copy. Higher resolutions are required if the target output is larger 

(such as a poster). In this chapter, most of the images are bitmap screen shots from 

the actual interactive session.

 ■ Vector images—Vector images (such as PDF or SVG iles) represent the image 

as geometry (lines, circles, text, and so on). hese can be scaled up and zoomed 

in, and small fonts can become readable when zoomed in. However, in vector for-

mats, fonts may change to a diferent style if a font is not available on the viewer’s 

computer. he location of labels may not be exactly as located in the original soft-

ware. Sometimes the document may be clipped with part of the graph missing. 

For the latter problem, the SVG export tends to have fewer cropping problems. 

Although SVG can be viewed directly in a recent web browser, PDF is a more 

common, more familiar format, and there is an additional step to convert SVG 

into a PDF ile (for example, via Adobe Illustrator). In most of the other chapters 

of this book, high-quality vector-based images are used. 
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Interactive Web Applications

As graph visualization software packages add more features, direct export of the graph 

into an interactive web application will become available. his feature is expected soon in 

Cytoscape. 

PUTTING IT ALL TOGETHER

Exploration, explanation, and export are various interactions with a graph that help 

achieve insight, share insights, and use those insights. 

Many of these interactions are used together to enable exploratory analysis of a large 

graph by providing an easy means to aid the formulation of a hypothesis, test assump-

tions, explore relationships, and sift through the graph. You can repeat this process itera-

tively to test a wide variety of ideas to gain a wide variety of insights:

 ■ Navigate—Zoom and pan are essential to move between an overall context and a 

view of local detail.

 ■ Identify—Accessing all the data associated with a node via mouse-over or 

mouse-click establishes which nodes are which, helps establish landmarks within 

the scene, and allows for inspection of detail data.

 ■ Filter—Interactive iltering enables exploratory analysis of a large graph and pro-

vides a quick means to isolate subsets of the graph based on any data attributes.

 ■ Isolate—You can isolate and then analyze graph subsets separately, including 

re-layout, changing attributes, and any other exploratory interactions.

 ■ Neighbors—Adjacencies indicate the direct relationships to a particular node.

 ■ Paths—You can use paths to identify a route though a large graph to understand 

how to connect from one point to another. 

 ■ Delete/move/modify—You can delete individual nodes (for example, to see what 

connections remain with a target node removed), move them to make patterns 

more clear, or modify them to stand out (for example, by changing shape). 

 ■ Group—You can combine multiple nodes.
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After gaining a number of insights, you should consider the following when commu-

nicating these indings to other people:

 ■ Sequence—Use a story to explain the objective, what the coniguration is, and 

what patterns can be seen.

 ■ Legend—Add legends so the viewer knows what the visual attributes are. 

 ■ Annotate—Add annotations to call out speciic nodes.

 ■ Export—Export data or images for reports and presentations.

SUMMARY

Interactive exploration is often the stage where insights are found in a graph. Gain pro-

iciency with the interactive tools in your graph software to sift through subsets of data, 

understand neighbors and paths, and isolate parts of the graph. 

To share insights, assemble an annotated story that explains the indings step-by-step 

and provides images and/or exports of graph data. he full sequence provides the recip-

ient with the objective, the data used in its representation, and the visual indings in a 

concise explanation that can be delivered to all stakeholders.

In this chapter, the interactions discussed are implemented in diferent ways in dif-

ferent point-and-click graph software. Chapter 7 discusses some of the graph software 

packages available, some of their unique strengths, and how some of the essential inter-

actions work.
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7
POINT-AND-CLICK  
GRAPH TOOLS

As you’ve read through the previous chapters, you have 
learned about the process for graph analysis and visualiza-
tion. It’s now time to consider the tools that you can use to 
analyze and visualize graphs.  

A number of good point-and-click graph analysis and visualization tools are available 

to explore modestly sized graphs. hese tools can provide quick insights without requir-

ing any programming. Note that point-and-click tools are not necessarily as quick and 

easy to use as you might expect, so allow time to learn the software and its idiosyncrasies. 

In the writing of this book, the following point-and-click tools have been used. No 

single point-and-click tool is best; each tool has speciic strengths. 

 ■ Excel—his is efective for data cleansing, data preparation, and the visualiza-

tion of small-scale matrices. Free alternatives (such as Google Spreadsheet) can 

be used for some of these tasks. (See http://products.ofice.com/en-us/excel or 

http://docs.google.com.)

 ■ NodeXL—his is a free plug-in for Excel that provides direct graph import from 

social networks and e-mail, as well as some visualization capabilities. (See http://

nodexl.codeplex.com/.)
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 ■ Gephi—his is a free, popular graph analysis and visualization software package 

with extensive data import/export capabilities, rich layout capabilities, and addi-

tional third-party plug-ins. (See https://gephi.github.io/.)

 ■ Cytoscape—his is a free, powerful graph analysis and visualization software 

package with some capabilities beyond Gephi, including multiple links between 

the same pair of nodes, and a very wide variety of visual attributes. (See http://

www.cytoscape.org/.)

 ■ yEd—his is a free graph layout and analysis package with a wide variety of  

edge layouts and labeling options. (See www.yworks.com/en/products/ 

yiles/yed/.)

his chapter takes a closer look at each of these tools.

EXCEL

he spreadsheet has evolved beyond a simple data calculation tool into a sophisticated 

and lexible repository for collecting, analyzing, and summarizing data from multiple 

sources. 

For preparation of graph data, Excel can be an efective tool in helping you summa-

rize links, extract nodes, or enhance the data with additional attributes. For example, 

Excel is utilized to enhance data in the “Community Topic Analysis,” in Chapter 11, 

“Communities.” Because the need to summarize links and/or create nodes can be a com-

mon task with most graph data sets, let’s take a look at a quick illustration. 

Summarizing Links

As discussed in Chapter 3, “Data—Collect, Clean, and Connect,” network logs and air 

traic data may have many links between a pair of nodes, but some graph analysis will 

permit only one link between a pair of nodes (or two directed links). You can use Excel’s 

PivotTable functionality to summarize all the data corresponding to a source and desti-

nation node, thus consolidating multiple links into a single link. 

As a simple example, raw link data from air traic data may appear as shown in Fig-

ure 7-1. Note that an additional column has been added (E) to concatenate the origin 



CHAPTER 7 Point-and-Click Graph Tools 189

and destination into a single cell, which will be used to create the summaries in the next 

step into directed links. 

FIGURE 7-1: This sample raw flight data in Excel has a DIRECTED 
LINK column and UNDIRECTED LINK column added.

For undirected links, column F instead places the origin-to-destination order of 

the nodes into a consistent node1-node2 pair in alphabetic order using the formula 

=IF(A7<B7,A7&" - "&B7,B7&" - "&A7). In cells E5 and E6, note how DFW-->LAX is difer-

ent from LAX-->DFW, whereas in cells F5 and F6 they are the same.

In the next step, as shown in Figure 7-2, the links are aggregated into a single link 

per origin-destination using a PivotTable in the spreadsheet, with the rows set to the 

DIRECTED LINK column created previously, and summaries based on counts and sums.

FIGURE 7-2: These links have been aggregated with a PivotTable. The  
last two columns are added to separate the origin and destination.

he irst three columns are the PivotTable. he inal two columns have been added to 

split the route back into corresponding references to the origin and destination nodes. As 

a result, each row represents a single consolidated link ready to use in the graph software. 

Figure 7-2 shows summarized directed links—note how rows 5 and 6 are the links JKF-

to-LAX and LAX-to-JFK. If the data were summed based on undirected links, there 

would be only a single entry for JFK-LAX. 

See the AirTraficData-Jan2013.xlsx Excel spreadsheet in the FlightStats folder of 

the Supplementary Materials on this book’s companion website for an example.
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Extracting Nodes 

he previous example had both a data set of nodes and a data set of links where the links 

were summarized. But in some data sets no separate list of nodes is available, such as 

network logs. In network log data, each record lists a connection (that is, a link). hese 

links may need to be summarized. In addition, a set of nodes must also be extracted. 

Extracting nodes can be done by utilizing a similar approach with PivotTables with 

summaries based on nodes. Because you have two columns of nodes (for example, source 

and target), you must create two PivotTables, one for each column. You can then concat-

enate these to create the node list, and if duplicate nodes exist, you can remove them. 

See the NetworkLogs Excel spreadsheet in the supplemental materials for an example.

Adjacency Matrix Visualization in Excel

Most people wouldn’t think of Excel as a graph visualization environment. However, 

Excel can be handy for visualizing adjacency matrices (which were irst discussed in 

Chapter 4, “Stats and Layout”). An adjacency matrix is simply a grid where nodes are 

represented as the titles to rows and columns, and links are represented as the cells in a 

matrix. he number in the cell indicates a link attribute such as the weight of the link. 

Using Excel’s conditional formatting, you can make the values represented by the 

links more visually explicit. For example, Figure 7-3 shows the time series correlations 

between 20 topics. Time series correlations indicate how two diferent items move together 

over time. In this example, topics are based on a list of popular on-line topics from a list 

published by Time magazine a few years ago. When two topics are popular at the same 

time, they are highly correlated (green). Two topics that are popular at opposite times are 

inversely correlated (red), and topics with no correlation are yellow. 

Simply viewing all the connections as a color-coded matrix is not suicient to see 

clusters or patterns. he only visible pattern is the green diagonal line through the center, 

which simply indicates that any topic is perfectly correlated with itself, and this is not an 

interesting insight. 

Rearranging the data in Excel can improve your capability to see clusters. A simple 

approach may be simply to sort by a particular column (and also do the sort in the corre-

sponding row to preserve the same order in both rows and columns). his is a good start 

and shows how all the other items are correlated to one speciic topic. 
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FIGURE 7-3: This adjacency matrix in Excel shows trend correlations between topics. Clusters  
are not visible.

For example, in this data set, you can sort both vertically and horizontally by Harvard 

Business Review (an inluential business publication), as shown in Figure 7-4. Although 

this shows items that correlate with Harvard Business Review (as shown in Figure 7-5), 

only one other cluster is readily apparent when zoomed out across the large data set of  

80 topics. 

FIGURE 7-4: This adjacency matrix is sorted based on correlations to Harvard Business Review
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FIGURE 7-5: This zoomed-out adjacency matrix shows all 7,000 links sorted by Harvard Business Review.

Using Excel Visual Basic for Applications (VBA), you can program more advanced 

clustering. For example, you could use a naive cluster sort in which each successive row 

and column is sorted so that the next item is the closest to the previous item, which 

results in an adjacency matrix, as shown in Figure 7-6. his reveals a number of smaller, 

highly correlated clusters all along the diagonal, and some strong inverse correlation 

clusters as well. 

FIGURE 7-6: This zoomed-out adjacency matrix shows successive sorting via a macro. More distinct 
clusters are visible.
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As shown in rows 3 and 4 in Figure 7-7, zooming in shows a little cluster with John 

McCain and Sarah Palin. You can ind more advanced (and more eicient) VBA cluster-

ing algorithms online.

FIGURE 7-7: This is a close-up of a successively sorted spreadsheet showing the tiny cluster of  
McCain and Palin near the top left.

NODEXL

Excel is a popular program partially because the graph data is visible and editable directly 

in Excel, making it easy to adapt, extend, add to, and modify the data using spreadsheet 

formulas. NodeXL is a free Excel plug-in speciically designed for automating the col-

lection of social network data, organizing the data for graphs, and visualizing graphs. 

NodeXL makes it particularly easy to import data from a variety of social networks and 

applications, including Twitter, Flickr, Facebook, YouTube, Outlook, Exchange Server, 

and more. 

NodeXL Basics

NodeXL provides a template spreadsheet that you can use to organize a graph and conig-

ure its visual attributes. As shown in Figure 7-8, a ribbon toolbar across the top of Excel 

aids with data acquisition, analysis, ilters, export, help, and so on. A visualization win-

dow assists with interactive exploration of the graph.
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FIGURE 7-8: NodeXL is an Excel plug-in with templates you can use to easily conigure the graph. 
Mouse over any cell for coniguration hints.

NodelXL Worksheet

NodeXL provides all the features and lexibility of Excel, such as familiar toolbars, for-

mulas, and ilters. he worksheet templates make it easy to conigure and manipulate the 

graph. Each column heading includes a brief comment that indicates how to use the cells 

in that column. (Point at the little red comment triangle to see the comment.) 

he following are some useful Excel worksheet functionality:

 ■ Formulas—You can set visual attributes using Excel’s formulas. You can use stan-

dard Excel formulas such as setting cell F3 to be = R3 + 2. Since the NodeXL 

template sets up the graph data in Excel tables, you can also use Excel column ref-

erences, which work similar to named ranges in Excel. For example, if one column 

is named MyData, then a formula in another column can be set to reference the 

initial column by name—for example, =sum([MyData]). To reference the data in 

the column corresponding to the same row as the formula, the column reference 
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is preixed with a @—for example, =[@MyData]. For example, in the graph in Fig-

ure 7-8, note the following:

 ■ Node size is set to the sum of In-Degree and Out-Degree, as shown here: 

=[@In-Degree]+[@Out-Degree]

 ■ Node label is set to the Twitter name if the node size is large, as shown here: 

=IF([@Size]>8,[@Vertex],"")

NodeXL’s templates are set up as Excel Tables and can use Column Refer-

ences in formulas. 

 ■ Column Filters—Every data attribute can be used as a ilter using Excel’s column 

ilter drop-down menus. For example, social network data may result in many 

small nodes or nodes without any edges. Use the drop-downs to remove all the 

nodes without edges, as shown in Figure 7-9.

FIGURE 7-9: You can use Excel’s ilters to remove  
items from the visualization.

T
IP
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NodeXL Menu and Ribbon Toolbar

Clicking the NodeXL menu provides a ribbon toolbar to access many NodeXL features, 

such as the following:

 ■ Import—his button provides a drop-down, many with wizards to assist in 

acquiring data from many diferent data sources (including data that may be in 

other Excel spreadsheets). 

 ■ Prepare Data—his button provides functionality to automatically summarize 

edges (that is, remove duplicate edges) and create nodes from edges. his can be 

easier than creating PivotTables, as discussed earlier in this chapter. 

 ■ Autofill Columns—Visual attributes can be conigured via this pop-up window, 

as a faster and easier alternative to using Excel formulas.

 ■ Filters—his provides a pop-up window to dynamically ilter numeric values via 

interactive slider bars. 

 ■ Graph Metrics—Statistics such as degree, centrality, and pagerank can be cal-

culated using this pop-up window, as well as text associated with social network 

data. he statistics will be added as additional columns and additional worksheets. 

Social Network Features

One of the diferentiators for NodeXL from other point-and-click graph software is its 

speciic functionality for the analysis of social networks. It provides tools that make it 

easy to acquire social network data, load it into Excel, extract social network–speciic 

data such as top hashtags, and follow links back to web sources. 

Social Network Data Acquisition

Compared to manually collecting data and creating a graph as described in Chapter 3, 

NodeXL makes social data acquisition much easier (although it may not collect a large 

amount of historical data). To facilitate data acquisition from a social network, NodeXL 

provides wizards to walk you through the process. Figure 7-10 shows the Twitter Search 

import wizard you can use to search for all tweets containing the word “fendi” (a luxury 

fashion brand). Note that you must authorize NodeXL to access your Twitter account 

(the wizard provides steps to complete this). 
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FIGURE 7-10: This shows Twitter search data  
acquisition in NodeXL.

Social Network Analytics

NodeXL’s graph analytics provide some unique functions for analysis of the text often 

associated with social network data, such as words, top items, top hashtags, top domains, 

and top mentions (Figure 7-11). You can then display this extracted information in labels 

or tooltips. 

FIGURE 7-11: NodeXL provides functionality to extract top  
domains, words, hashtags, and URLs in tweet data.
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Big Tooltips

Clicking a node in NodeXL automatically scrolls Excel to the corresponding row in the 

spreadsheet. But even faster, NodeXL provides tooltips as you move across any node so 

you don’t have to scroll around in the spreadsheet. By default, the tooltips include useful 

information beyond the label. For example, as shown in Figure 7-12, with Twitter data, 

the tooltip includes the most recent tweet. Because the data that appears in the tooltips is 

simply a column, diferent data can be shown in the tooltip via formulas. 

FIGURE 7-12: You can access the text data  
associated with a node easily via tooltips.

Images

NodeXL also provides the capability to specify a unique image per each node. With social 

data, this means that user images can be added. hese images can be automatically added 

when importing social data such as Twitter searches. he image URL is placed in the 

Image File column on the Vertices worksheet. Note that you must set the node shape to 

Image in order for the image to appear. Using labels and images in a brand network pro-

vides a view of the brand ecosystem—that is, co-mentioned brands. Figure 7-13 shows 

other Twitter users with many followers co-mentioned with “fendi” (on a Sunday in  

May 2014).

Worklow
If you right-click nodes, you see a large context menu. When using Twitter data, select-

ing the inal item on the menu opens a web browser on that user’s Twitter stream. 

NodeXL enables you to add custom menu items by simply deining the actions in two 

columns so that various actions can be available by clicking a node. 
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FIGURE 7-13: This shows brands co-mentioned with ūfendi,Ŭ sized  
by the number of followers for each brand.

Layout

NodeXL provides some basic layouts and a few force-directed layouts (such as 

 Fruchterman-Reingold and Harel-Koren). One nice feature in NodeXL layouts is the 

capability to put each component in a separate box, accessed via NodeXL Toolbar ⇨ 



PART 2 Process and Tools200

Layout ⇨ Layout Options. In contrast, without this feature, diferent components may 

remain tangled together (as may happen with the Fruchterman-Reingold layout) or loat 

far away in some other layouts. 

By placing each component in separate boxes, the visible separation is clear. For 

example, in Figure 7-14, a collection of tweets referencing the term “fendi” can be clearly 

separated into components connected to the oicial brand versus other components that 

may reference “fendi.”

FIGURE 7-14: Putting layout groups in separate boxes clearly separates different components in NodeXL.

As you will see shortly, Gephi provides more lexibility with layouts by ofering 

more graph layout algorithms, more parameters, and direct interaction with layouts. 

One approach is to create and organize the basic attributes in NodeXL and then 

export/import the data into Gephi or other software to utilize more features beyond 

those ofered by NodeXL. his approach is used in Chapter 11, which analyzes social 

network communities starting with NodeXL and then moving to Gephi. 
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You can download NodeXL at http://nodexl.codeplex.com/. From this loca-

tion, you can ind links to the latest download, introductory overviews, and 
a book speciically regarding the analysis of social networks using NodeXL 
titled Analyzing Social Media Networks with NodeXL: Insights from a Connected 

World, by Derek Hansen, Ben Shneiderman, and Marc A. Smith (Burlington, 
Massachusetts: Morgan Kaufman, 2010). Note that NodeXL includes a 

detailed help document that you can access from the ribbon toolbar. 

GEPHI

Gephi is a highly popular, free, open source program with strengths in providing a wide 

variety of graph import/export formats, statistics, many interactive layout algorithms, 

lexible iltering, high-quality output, and various plug-ins for data import/export, analy-

sis, and layout. Gephi is available in a number of languages, including English, Spanish, 

Russian, Chinese, and Japanese. 

Gephi Basics

As shown in Figure 7-15, the main window in Gephi is surrounded by panels for con-

iguring the visualization. Immediately after loading data, you can use the layout and 

visualization panels to the left to conigure a visualization. Panels to the right provide 

stats, ilters to sift out data, and summaries. Immediately surrounding the visualization 

window are numerous buttons for directly interacting with the graph itself. 

A number of online tutorials are available for getting started with the basics 

of Gephi.

N
O

T
E

N
O

T
E
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SummaryVisualization Window

Selection configuration

Settings

Reset

Tools

Filters

 and Stats

Workspaces

Modes

Layouts

Visual
Attributes

FIGURE 7-15: In the main Gephi window, the visualization is surrounded by a wide variety  
of interactive tools.

Interactive Layout

At the core of graph visualization, graph layout is often a challenging problem. Gephi 

provides force-directed layout algorithms (such as Force Atlas and Fruchterman- 

Reingold), with which you can interact while they are running. Furthermore, you can 

apply diferent layouts, with each starting where the previous left of. Adjusting layouts 

while the layout algorithm is still running can be extremely useful in many situations, 

including the following:

 ■ Tweaking parameters—Are nodes spreading out too much? Increase the grav-

ity and see the nodes start drifting closer together. Did you increase gravity too 

much? Tweak it again. 

 ■ Moving a node—Is there a node tangled in with some others? Drag it of to the 

side. Repeat as necessary to untangle portions of the graph. 

 ■ Moving many nodes—By default, dragging afects the node immediately under 

the tip of the cursor. Adjust selection size, which enables you to select and move a 

region of nodes easily. First, to drag, select the hand icon in the selection tools. 

To adjust the size of the dragging, click the word “Dragging” immediately above 
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in the selection coniguration region (see Figure 7-16), and then adjust the drag 

diameter.

2. Drag Size

3. Adjust
1. Drag

FIGURE 7-16: To adjust node positions, click on the drag icon (1). To adjust the  
size of drag region, click the dragging micro-menu (2) and adjust the slider bar (3).

Applying layouts in succession can be efective for clarifying and improving readabil-

ity. Consider the following:

 ■ Force-directed adjustment—You can use the Force Atlas layout to tweak another 

layout—for example, to pull it closer together. You can apply Fruchterman- 

Reingold to pull apart the densely packed areas of the graph, while at the same 

time pulling in far-lung nodes.

 ■ Small shifts—Layouts such as Noverlap (that is, no overlap) and Label Adjust 

help shift node positions slightly to improve the visual clarity of cluttered areas or 

increase spacing to improve readability. 

Gephi makes it easy to mix and match different layouts, but be sure you 

save layouts that you like. It may be impossible to re-create a force-directed 

layout.

In conjunction with layout, basic navigation is simple. You can use a mouse wheel to 

zoom, and you can drag with the right mouse button to pan. If you happen to navigate to 

an empty screen, you can use the Reset Zoom button. 

Graph Statistics and Visual Attributes

Graph statistics can be computed using the Statistics panel. Tooltips provide hints 

regarding each metric. Computing a metric will generate a report showing the distribu-

tion of the metric. 

T
IP
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Visual attributes are set under the Partition, Ranking, and Clustering panel. Gephi 

allows a few visual attributes to be connected to data attributes, such as node size, node 

color, label size, and label color. he term “partition” corresponds to discrete category 

data, such as “male” and “female” categories in gender data. he term “ranking” corre-

sponds to a quantity, such as the numeric values provided with income data.  

Filtering 

Gephi’s Filter panel provides a set of folders organizing diferent types of ilters and 

operations, such as ilters on ranges of numeric values, text searches, network topology, 

and so on. Filters are conigured by dragging and dropping ilters from the library into 

the Query section in the lower part of the panel, and they are turned on using the Filter 

button. 

Multiple queries can be conigured by dragging multiple ilters into the Query  

panel. If you click between diferent queries, you toggle between diferent ilter states. 

Complex queries comprised of multiple ilters are created by adding another ilter to an 

existing query. 

he iltered results of a particular query can be added back to the data or copied or 

moved to a new workspace. 

Overview vs. Preview Modes

Unlike any other graph software, Gephi has the following two visual modes, which can 

be a bit confusing, particularly when a feature is available in one mode but not the other:

 ■ Overview—he overview mode is the main mode for exploring graphs. It pro-

vides a rich interactive analytic environment for adjusting layouts, coniguring 

visual attributes, adjusting ilters, and otherwise exploring the graph. 

 ■ Preview—he preview mode is a prepublication environment for tweaking visual 

attributes in advance of generating high-quality visual output. Preview mode is 

usually used after most of the analysis has been done in overview mode. Unlike 

the highly interactive overview mode, any change made in preview mode requires 

you to explicitly click the Refresh button to redraw the graph.

If you plan to explore a graph only interactively, you don’t need preview mode.T
IP
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Note that each mode provides inconsistent features and diferent defaults (at least, as 

of this writing), particularly with respect to visual attributes such as the following:

 ■ Sizes—he size of edge width, node labels, and nodes may be diferent than the 

preview and may need to be scaled.

 ■ Colors—Color may appear slightly diferent in overview mode versus preview 

mode. For example, edge colors appear darker in overview than preview. Nodes in 

overview are outlined in a dark version of the node color, but this not available in 

the preview mode. 

 ■ Curved links—hese are available only in preview mode.

 ■ Labels—In overview mode, only labels above a particular size will appear, 

whereas in preview mode all labels are shown. 

If you want high-quality output of the scene, use the preview mode and 

export as PDF or SVG iles. Toggle back and forth between overview and pre-

view modes to check what it looks like, rather than trying to get it perfect in 

overview mode irst.

Caveats

Gephi is powerful but quirky. Although it can generate great-looking graphs and provide 

a good experience while you are interacting with the layout, it can be frustrating during 

other tasks.

Data 

Gephi ofers a fairly wide variety of data import and export formats. You can use it to 

convert graph data from one ile format to another. However, it does not support every 

feature in every ile format. For data import, it also ofers useful feedback on issues found 

during data import, which can be very helpful in preparing data. 

T
IP
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Gephi works fairly well with GDF iles, and GDF iles can be easy to generate 

using tools such as Excel. However, you must follow Gephi’s assumed column naming 

conventions. 

Gephi provides some online examples of the GDF ile format for reference,  
such as those found at https://gephi.org/users/supported-graph-formats/

gdf-format/.

Similarly, with comma-separated value (CSV) iles, you must name the columns 

in order for Gephi to utilize the data. he nodes ile requires a column named ID and 

should have a column named Label. he links ile requires a Source column and  Target 

column, with optional Label and Weight. Although you can reconigure labels later in 

Gephi, the authors haven’t found anywhere to reset weight, so it looks like you must set 

it up during the data load. 

Interface

You must search through the interface to ind various features, sometimes buried under 

tiny arrows or drop-down menus or associated with a non-obvious icon (move the mouse 

over the icon for a tooltip) or combination of icons (for example, for the Edit panel to 

see a node’s contents, ensure that both the arrow and arrow with a question mark are 

selected). Following are some particularly tricky points:

 ■ Node size—When setting a data value to node size, by default, Gephi will apply 

the size based on width, not area. hus, a node that represents a number twice as 

large as another number will have four times the area. As shown in Figure 7-17, 

Gephi provides a spline interpolation function that can be useful for addressing this 

size issue. 

Interpolators are also useful for color. For example, if the source data is skewed 

with many low values and one high value, the resulting color variation may be dif-

icult to discern. You can use an interpolator to spread out the small values over a 

larger range and compress the high values. 

N
O

T
E
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FIGURE 7-17: In Gephi, when you are coniguring a data value to a visual attribute, you  
can conigure the default linear interpolation with the spline interpolator such as this  
curve, which is similar to a square-root interpolation.

 ■ Identification—Identifying nodes is a common task. In Gephi, you can do this 

with either labels or the Edit panel. Given Gephi’s quirky interface, a few steps 

are required:

1. Turn labels on (using the irst T button in the lower toolbar). 

2. Scale the labels to a reasonable size (the second slider bar in lower toolbar, as 

shown here).

3. Set the label size to a data value. he beneit here is that the smallest labels can 

be made to disappear, thus reducing clutter and improving readability. You set 

this via a drop-down menu in the Ranking tab, with the Nodes sub-tab and 

the A-with-diamond icon, as shown in Figure 7-18.

FIGURE 7-18: You can set text  
size to data.
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Plug‑ins

Plug-ins extend the functionality of Gephi. However, plug-ins aren’t necessarily robust 

or stable. Anyone can author a plug-in and make it available. Save your work irst, before 

using a plug-in. Following are a few commonly used plug-ins:

 ■ Noverlap—Use this to adjust positions of nodes slightly so that none overlap. his 

one is very useful. 

 ■ OpenOrd—his is a fast force-directed layout algorithm. 

 ■ GeoLayout—his is a layout where nodes are placed geographically using 

 latitude/longitude coordinates. If your data has addresses or ZIP codes, you must 

irst convert them into latitude/longitude. 

 ■ MapOfCountries—his draws a map behind the geolayout. Note that sometimes 

issues arise with alignment, column names, drawing in preview mode with curved 

edges, and there is no apparent way to remove the map once it has been added.

 ■ Force Atlas 3D—his is a three-dimensional (3D) layout you can use when 

Gephi is in 3D mode. However, in most cases, 3D is not going to be efective 

because it will result in more nodes being obscured by other nodes.

Gephi is available at https://gephi.org/. Links to a quick-start guide and 

tutorial as well as plug-ins, and so on, are available from the main page.

CYTOSCAPE

Cytoscape is another powerful freeware graph analysis and visualization software pack-

age. It was originally developed for analysis of biological data, but it works for any kind 

of graph data. Some of the terminology is a bit diferent than with other packages. For 

example, Cytoscape uses network to refer to a graph and sometimes uses interaction to 

refer to an edge. It has a number of features beyond other packages, such as the capability 

to handle multiple links between a pair of nodes, a much wider range of visual attributes 

that can be connected to data more lexibly than with other software, and a variety of 

plug-ins from the Cytoscape App Store. 

N
O

T
E
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Cytoscape Basics

As shown in Figure 7-19, Cytoscape presents a straightforward interface you can use for 

creating and interacting with the visualization. Toward the bottom of the screen, a data 

table, by default, always updates to show the details for whichever nodes and links are 

currently selected. In the visualization window, nodes and links can be selected using the 

conventions found in many software packages—that is, click to select, click and drag to 

select a block of items, Shift+click to add additional items to the selection, and Ctrl+click 

to remove an item from the selection. 

Layout/Stats

Toolbar

Search/Help

Visualization

Window

Data Table

Control Panel

   • Network

   • Visual Attributes

   • Filters

FIGURE 7-19: This is the main window of Cytoscape.

You can ind graph statistics under the Tools menu and apply them to any selected 

subset of the graph. 

Layouts in Cytoscape are not as interactive as in Gephi. You pick a layout from the 

Layout menu, and the new graph layout appears. Adjusting a layout requires trial and 

error. Select Layout ⇨ Settings, adjust a property, select Layout again, and repeat until 

you are satisied with the results. One alternative is that you can generate the layout in 

another program (for example, Gephi or yEd), export it as GraphML, and then import it 

into Cytoscape.
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If you already have x and y positions for nodes (for example, latitude and 
longitude, or positions generated in other software), you won’t ind a layout 
for these. Instead, Cytoscape provides visual attributes for node x and node y 

positions.

Although Cytoscape does not have layouts that tweak node positions in the current 

version, it does make it easy to click and drag to move nodes or groups of nodes or apply 

layouts to a selected subset of the graph.

Selection and iltering work together. You can select parts of the graph via click, 

click-and-drag, the Selection menu, or ilters. You can then act upon this subset—for 

example, you can group it together (via right-click), collapse it into a single node (via 

right-click, and thereafter collapse and expand via double-click), place it into new net-

work workspaces (created via File ⇨ New, and accessed under the Network tab in the 

Control Panel), and so on.

Importing Data into Cytoscape

Getting data into Cytoscape can be the irst challenge. If you have diiculties importing 

data, Cytoscape works well with GraphML iles, and GraphML iles can be generated 

with most other software. Note that Cytoscape does not support data of type loat in a 

GraphML ile, and Gephi, for example, exports some items as type loat. You can use a 

text editor to simply replace any references to loat with double.

To import lat iles of links and nodes (such as CSV or text iles), the data import into 

Cytoscape is very lexible, which means that it has many settings. You can import these 

lat iles by following a speciic sequence:

1. First, load the links data via the Import Network from the following File button 

(or File ⇨ Import ⇨ Network ⇨ File menu):

T
IP
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As shown in Figure 7-20, a detailed dialog box appears, where you must identify 

the following:

 ■ Source node (called Source Interaction) 

 ■ Target node (called Target Interaction) 

 ■ Type of link (called Interaction Type), which you can leave empty if there is 

only one type of link between nodes

Configure Links

Show Options

Adjust Delimeters

Adjust Headings

Select Additonal
Columns

FIGURE 7-20: With Cytoscape text ile import, you can conigure many  
items to get the data to import correctly.

2. his dialog box has many settings: so click Advanced ⇨ Show Text File Import 

Options, which enables you to conigure the following:

 ■ Field separators—Adjust the delimiters as needed (for example, turn of spaces 

so that names do not get split into separate columns). Note that separators inside 

quotation marks are still treated as separators, so “New York, NY” will, unfortu-

nately, be split into two columns if commas are set as separators. Tab-delimited 

text iles (.txt) are a safer choice than comma-delimited iles (.csv).

 ■ Header row—Make certain that the header row is not treated as data, but 

instead treated as column names.
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 ■ Check desired data columns—Data columns are not automatically imported. 

You must click the X and change it into a check mark to select the column for 

import.

3. A graph is displayed after the links are loaded, but you must still load all the node 

properties. Click the Import Table from the following File button (or File ⇨ 

Import ⇨ Table ⇨ File), which enables you to import the node ile. Similar to the 

link ile, you need to set the options, delimiters, headings, and so on.

4. Note that Cytoscape does not like items that are empty or null. You are better of 

putting in a zero or space for an otherwise empty item.

Visual Attributes

Cytoscape is powerful with regard to visual attributes. Just about any visual attribute 

can be connected (mapped) to data. For example, beyond size and color, Cytoscape ofers 

node border color, node border width, node transparency, label font, edge line type, edge 

transparency, edge visibility, and so on. 

You can access the visual attributes under the Style tab. he panel shows a list of 

visual attributes organized by tabs at the bottom to switch between node attributes and 

edge attributes. Note that additional visual attributes may be available under the Proper-

ties drop-down. Each visual attribute has three settings:

 ■ Default—his button sets the default value for the attribute (for example, set the 

edge color to black).

 ■ Map—his button deines the mapping to translate data values into visual attri-

butes (for example, set the edge color based on passenger volume data).  

 ■ Bypass—his button allows an override value for the attribute for the currently 

selected subset of the graph. For example, all the links associated with one node 

could be set to bright red. his is useful to draw attention to part of the graph or 

otherwise mark speciic nodes and edges of interest.  
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While referring to Figure 7-21, follow these steps to conigure a visual attribute:

1. First, in the Control Panel, under the Styles tab, ind the attribute of interest (for 

example, Edge Stroke Color) and expand it. his will show additional rows to set 

the column to connect the attribute to and the type of mapping to apply.

FIGURE 7-21: You can conigure visual attributes in Cytoscape.

2. hen, you must connect it to a column of data. he row labeled “Column” will 

initially say “-- select value --”. Click the text “-- select value --” and a drop down-

menu will appear listing the data columns. Pick one.

3. Finally, you must set a Mapping Type, also initially set to “-- select value --”. You 

can choose from three types of mapping: 

 ■ Passthrough literally passes the value right through to the attribute. his is 

appropriate for labels.

 ■ Discrete enables each unique data value to be independently connected to a 

unique variation of the visual attribute (for example, unique shapes or unique 

colors). Use this for category data, particularly when you have fewer than 

ten or so categories. Click into the attribute ield to set the attribute for that 

category. Any item left blank gets the default property, set previously in the 

Defaults section.

 ■ Continuous transforms numeric data into a range of visual attributes. Click  

the graphic to open the editor. You can create multiple levels and set values at 

each level.
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As an example of discrete mapping, Figure 7-22 shows airline passenger traic data 

for the top 500 routes between U.S. cities, and Figure 7-23 shows the settings from the 

Visual Mapping Browser. he multiple links between nodes are immediately apparent. 

For example, four diferent connections between Honolulu and Los Angeles (HNL-to-

LAX) are shown in the lower left of Figure 7-22. Using Edge Stroke Color, a unique 

color has been set per airline. he major hubs per airline are visible where an airport with 

high degree has many lines of the same color—for example Delta in Atlanta (ATL) and 

Minneapolis (MSP), American in Dallas (DFW), and so on. 

FIGURE 7-22: This shows major air routes in the United States, colored by airline. See Figure 7-23 for the 
visual mapping in Cytoscape.

However, some of those links can be diicult to see, because some airlines may only 

have a few lights in the top 500, and it can be diicult to create a color palette with 

more than a half dozen or so distinct colors (whereas here there are a dozen airlines). 

herefore, Edge Line Type is used to further diferentiate the edges for those airlines 

that ly only a few routes, making them much more readily visible. For example, Alaska 

Airlines appears as dotted lines in the top left; Virgin Airlines appears as a ishbone 

pattern between San Francisco (SFO), Los Angeles (LAX), and Las Vegas (LAS); and 
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Shuttle appears as the zigzag edge between Chicago O’Hare (ORD) and New York 

LaGuardia (LGA). 

FIGURE 7-23: This discrete visual mapping in Cytoscape  
uses edge color and edge line type to indicate airlines.

Finally, Cytoscape also provides the capability to export a legend for the visual map-

pings, under an unlabeled button near the top-right corner of the Style panel. his will 

create a nicer legend than a screen shot, as shown in Figure 7-23.
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For continuous mapping, Cytoscape ofers more control over the connection of the 

data to visual attributes than most other packages. For example, topic correlation (dis-

cussed earlier in this chapter) ranges from 1 (strongly correlated) to –1 (inversely cor-

related), with 0 indicating no correlation. To show these edges, you could show 1  

and –1 as thick, but 0 as thin. Cytoscape can do this as shown in Figure 7-24.

FIGURE 7-24: The Continuous Mapping Editor in Cytoscape enables you to  
change how the range of the data is applied to the range of the visual attribute.

Similarly, you can adjust edge transparency or any other continuous attribute at var-

ious levels. Figure 7-25 shows the topic correlation graph with the continuous mappings 

for edge color, edge transparency, and edge width set, as shown in Figure 7-26. Note 

how some highly correlated topics may not be close together but are still highly visible 

because the thick green connection remains visible over the other thinner, more trans-

parent connections (such as John McCain and Sarah Palin or Nancy Pelosi and Claire 

McCaskill). 
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FIGURE 7-25: Topics that trend similarly are joined by thick green lines. Topics that are inversely cor-
related have thick red lines between them. Topics with no correlation have transparent thin brown lines.

FIGURE 7-26: This shows visual mapping for  
the topic correlation graph in Figure 7-25.
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Apps Menu

Like Gephi, Cytoscape provides a variety of plug-ins via the Apps menu. hough many 

are speciic to biological research, Cytoscape provides general-purpose plug-ins as well, 

including the following:

 ■ Venn and Euler—his displays a graph as an approximate Venn diagram (dis-

cussed in Chapter 11).

 ■ Clustering—A variety of clustering apps are available, such as ClusterViz, which 

provides multiple clustering algorithms and diagrams of each cluster.

 ■ Path analysis—You can use PathExplorer to ind the shortest path between a pair 

of nodes.

You can download Cytoscape from www.cytoscape.org/. Note that multiple 

versions of Cytoscape are available. Download the latest version. Links to 

documentation are also available. 

YED

Unlike some of the open source graph tools outlined here, yEd is produced by the com-

mercial software company yWorks, which has a long history of producing software for 

drawing and laying out graphs. yEd is a free version of its software. 

yEd has strong capabilities for creating and editing graphs via point-and-click. Com-

ing from a commercial background, the software is robust (that is, it doesn’t crash), and it 

supports undo/redo.

In some graph software, clicking on the background deselects items. But in 

yEd, gratuitous clicks in the main window creates new nodes! 
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yEd can produce specialized types of graphs such as lowcharts, class diagrams, and 

process management diagrams with the expected styles associated with the special graph 

types. yEd provides a number of robust layouts, good label handling, and, particularly 

unique to yEd, the capability to route links with multiple bends according to layout rules. 

yEd Basics

Figure 7-27 shows the basic layout of the screen when you are working with yED.

Layout
Settings

Context
View

Node
List

Properties

Shape 

Types

Layout, 

Stats, 

Navigation
Visualization Window

FIGURE 7-27: This shows an overview of yEd.

GraphML is the native ile format for yEd. You can export GraphML formats from 

other graph software and import them into yEd. yEd also has direct Excel import func-

tionality, including the capability to directly import an adjacency matrix or node/edge 

lists. 

You can compute a few graph statistics from the Tools menu and directly apply them 

to node attributes such as color. 

yEd has some efective and popular layout algorithms. Some of yWorks’ graph layouts 

are embedded in Cytoscape. One part of yWorks’ business is selling the graph layout 

algorithms for embedding into other software. he Organic Layout is a force-directed 

layout. Other layouts (such as Hierarchy, Circular, and Radial) can be efective with 

some graphs. 
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One of yEd’s powerful features is layouts for edges. After the nodes have been posi-

tioned, try some of the edge layouts. For example, Organic can subtly bend lines to avoid 

overlapping lines with nodes that they do not connect with, as shown in Figure 7-28. 

Note how the link from Drew to Trey bends around the other nodes.

FIGURE 7-28: yEd’s edge routing layouts can, for example, bend edges to neatly weave in  
between nodes, rather than overlapping and causing potential misinterpretation.

yEd is packed with functionality, and some items may be a bit diicult to ind. Scale, 

Rotate, Mirror, and so on, are under the Tools ⇨ Geometric Transformation menu. 

Visual attribute coniguration in yEd is hidden under the Edit ⇨ Properties Mapper 

menu. yEd provides a broad range of visual attributes that can be connected to data, such 

as border color, tooltips, gradient ills, line type, and arrow style. 

As shown in Figure 7-29, the Properties Mapper dialog box ofers the following:

 ■ he Conigurations list shows all the previous conigurations that have been made 

and named. You can copy a previous coniguration if it has desirable settings. 

 ■ he Mappings list (center) shows all the visual attributes for the current conig-

uration. Each item (Data Source, Map To, and Conversion) has a drop-down 

menu. You can deine the mapping once all three have been set. 

 ■ Selected Mapping (bottom) indicates the data values and the corresponding visual 

attribute setting.
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The visual attribute mappings are applied in the order listed. You can use the 

same visual attribute multiple times, and only the last mapping will be effec-

tive. You can return to previous mappings by changing the order.

FIGURE 7-29: This shows the yEd Properties Mapper.

It is easy to override visual attributes. For example, you can select any combination of 

nodes and edit their properties in the property view. In addition, a wide variety of shapes 

and various icons are available (such as people, computers, lowchart symbols, and so on).

You can download yEd from www.yworks.com/en/products_yed_about.html. 

Detailed help documents and tutorials are also available. 

T
IP
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SUMMARY

Diferent point-and-click tools are available for working with graphs, from acquiring 

and processing data, computing graph statistics, visualizing graphs via various layouts 

and attributes, and providing interactions to explore and ilter the graph. Although each 

tool ofers a breadth of features across statistics, visualization, and interaction, each ofers 

some unique features as well, including the following: 

 ■ NodeXL provides social data acquisition with a couple of unique layouts.

 ■ Gephi provides rich interactive layouts and high-quality outputs.

 ■ Cytoscape provides many visual attributes, lexible mapping, annotations, and 

interactive output.

 ■ yEd provides a variety of edge routing layouts and shape types.

Furthermore, you can use common ile formats such as GraphML to process a graph 

partially in one tool, and then you can transfer the graph to another tool. However, some 

care is required because some features are not supported in some products.

Sometimes, though, no combination of point-and-click tools is suicient for the task. 

Under these circumstances, you may need to look into programming to achieve your 

objectives. Simple, lightweight programming such as Python or JavaScript can be used 

to accomplish some speciic tasks (such as data preparation or customized interactive web 

visualizations). Lightweight programming is the subject of Chapter 8.
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8
LIGHTWEIGHT 
 PROGRAMMING

Sometimes you need to go beyond what has been prepack-
aged even in the most lexible point-and-click software. 
In graph analysis, programming typically becomes useful 
in a few areas. his chapter provides some code examples 
for both Python and JavaScript. Each section starts with a 
simple introductory example and then builds progressively 
to more detailed examples.

Often data isn’t quite right and must be cleaned or transformed into a graph. Python 

is an excellent programming tool for programming novices (and even experts) to quickly 

create some code to manipulate graph data. Examples in the irst part of the chapter 

include cleaning data—extracting nodes from a data set with only links, and extracting 

both nodes and links from a data set not organized as a graph (for example, e-mail).

Although Gephi and Cytoscape may seem powerful, sometimes you may want to use 

other types of visualizations, or perhaps you want to put an interactive graph on a web page. 

JavaScript is one way to build out lightweight visualizations. he second part of the chapter 

focuses on JavaScript, the drawing format Scalable Vector Graphics (SVG), and the visual-

ization library D3. he discussion builds incrementally from simple geometry, through sim-

ple graphs with rectangular and circular layouts, to interactive force-directed graphs. 
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PYTHON

If you’ve ever done any programming, Python is quick to learn, has a straightforward 

syntax, and is fairly forgiving. Python provides object-oriented programming concepts, 

but if you want, you can do everything procedurally. If you are comfortable using Excel, 

Python is not a big jump. 

Note that Python had some changes between version 2 and version 3. All the 

examples shown here utilize Python version 3 or later. 

Getting Started

To use Python, you must irst download a recent version from Python.org. It’s also 

handy to have a nice text editor that provides syntax highlighting. One of this book’s 

authors uses Programmer’s Notepad (www.pnotepad.org/), whereas the other uses Sub-

lime Text (www.sublimetext.com).

he emphasis in this book is not on the basics of programming Python. If you are 

already familiar with programming, you may ind all you need is a Python 3 cheat sheet 

(such as www.cogsci.rpi.edu/~destem/gamedev/python.pdf or www.ar-python.com/

wp-content/uploads/mementopython3-english.pdf). Be aware that the biggest quirk in 

Python is that indentation matters in loops and if statements. Many other useful books, 

websites, and programming resources are available for Python, including the following:

 ■ Python.org online documentation (https://docs.python.org/3/)

 ■ Beginning Programming with Python for Dummies (Indianapolis: Wiley, 2014)

If you get stuck at some point, likely your question has already been answered on 

a programming Q&A website such as http://stackoverlow.com/questions/tagged/

python.

N
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Cleaning Data

Many data sources can be messy. Python is a good tool for data cleansing and prepara-

tion. Perhaps long labels must be shortened, or accents must be removed because your 

graph software cannot handle them. Consider the following example of data that must 

be cleaned:

From, To, CC, Date, Size

"Joé", "Zoë", "Timothy", 12/09/2014, 156kb

"Joé", "Ben", "SMTP:Ann@mail.co; Timothy; Zoë", 11/09/2014, 2048kb

"Joé", "Timothy", "Ben; Zoë", 11/09/2014, 805kb

"Joé", , "Ben", 11/01/2014, 22kb

he following Python script reads each line, replaces Timothy with Tim, removes a 

leading STMP:, removes the domain name from the e-mail address, and strips out Uni-

code characters:

import re

import unicodedata

ilein = open("origData.csv","r")

ileout = open("cleanData.csv","w")

for line in ilein:

     line = line.replace("Timothy","Tim").replace("SMTP:","")

     line = re.sub("@[a-zA-Z0-9_.-]*","",line)

     line= "".join(x for x in unicodedata.normalize("NFKD",line) 

               if unicodedata.category(x)!="Mn" )

     ileout.write(line)

     

ilein.close()

ileout.close()

he irst two lines of this script import Python libraries that add functionality to 

Python. he irst one is for handling regular expressions (re), which is a way to do search 

and replace on string patterns. he second provides Unicode data functionality (that is, 

handling strings with complex characters from a wide variety of languages). 
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he next two lines open the original data ile and the output data ile. hen, the main 

loop reads each line from the input ile and processes it:

 ■ line.replace("oldstring","newstring") is a simple ind and replace. replace() 

can be chained in a sequence for multiple substitutions. 

 ■ re.sub() is used to perform regular expression substitution. To remove the domain 

name from an e-mail, the expression @[a-zA-A0-9_.-]* matches an initial @ sym-

bol followed by a character that is any of the following for any length after the 

@ symbol: lowercase (a-z), uppercase (A-Z), numeric (0-9), underscore, period, or 

dash. Whatever is matched is replaced with nothing (""). 

 ■ "".join(x …) starts with an empty string and then successively adds a new char-

acter x, going through each character in the line and normalizing the charac-

ter from Unicode to ASCII when the character is not of type Mn (non-spacing 

mark). his line is an example of inding a good solution on stackoverlow.com.  

It is much nicer solution to substitute characters with a close ASCII charac-

ter, rather than just dropping out accented characters using a regular expres-

sion. Simply searching in a web browser for programming questions (such as 

“python remove accents from string”) will often return useful code snippets 

showing how other programmers have solved similar issues. In this exam-

ple, the web search returned http://stackoverlow.com/questions/517923/

what-is-the-best-way-to-remove-accents-in-a-python-unicode-string.

Running this script across the sample e-mail data shown previously results in the fol-

lowing output:

From, To, CC, Date, Size

"Joe", "Zoe", "Tim", 12/09/2014, 156kb

"Joe", "Ben", "Ann; Tim; Zoe", 11/09/2014, 2048kb

"Joe", "Tim", "Ben; Zoe", 11/09/2014, 805kb

"Joe", , "Ben", 11/01/2014, 22kb 
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Extracting a Set of Nodes from a Link Data Set

Sometimes a data set may consist of only a set of links. Network logs are one example 

discussed earlier in Chapter 3, “Data—Collect, Clean, and Connect.” Another example 

is the following data set of writers and their inluences was extracted from dbpedia.org:

subject          inluence

Frank Herbert    Edgar Rice Burroughs

Frank Herbert    H. G. Wells

Frank Herbert    Jules Verne

J. G. Ballard    William S. Burroughs

J. G. Ballard    Alfred Jarry

 ...

dbpedia.org is an online resource of structured data from Wikipedia. DBpedia can 

be queried to extract data, including graph data sets. You can ind an overview of DBpe-

dia’s data sets at http://wiki.dbpedia.org/Datasets. You can enter a simple query at 

http://dbpedia.org/snorql/. 

As an example, if you want to focus on science iction writers and their inluences, 

you can see the data collected for a sample writer such as Stephen King (http://dbpedia 

.org/page/Stephen_King). One of the ields is inluencedby, which is a list of other 

science iction writers that Stephen King was inluenced by. (his means that data for 

a social network of writers is in DBpedia.) To extract data from DBpedia, you use the 

query language SPARQL. (SPARQL and related graph database technology is discussed 

more in Chapter 14, “Big Data.”) For example, you can enter the following SPARQL 

query on http://dbpedia.org/snorql (note that data and ields on DBpedia can 

change—scripts may not necessarily work as is):

SELECT * WHERE {

?subject dbpedia2:genre :Science_iction.

?subject rdf:type foaf:Person.

?subject <http://dbpedia.org/ontology/inluencedBy> ?inluence.

}

You can use SPARQL queries directly in Gephi with the Semantic Web Import 

plug-in.T
IP
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he resulting data is a set of links with the author being the source node, and the 

corresponding inluence being the target node. While this query generates a fairly simple 

data set, the query can be enhanced to add a variety of additional data attributes. For 

example, data available may include birthdate, nationality, description, nicely formatted 

label, list of works, and so on. 

Given the ile of links, the programming task is to extract a set of nodes. he 

approach used here is as follows:

1. Open the link ile. 

2. For each line in the link ile, take the source node and the target node and add 

them to a list of nodes, checking to make sure that nodes are not duplicated.

3. Write out the node ile.

CSV File and Lists

Python has a comma-separated value (CSV) reader library with functionality to make it 

easy to parse .csv and tab-delimited (.txt) iles. he following code opens the .csv ile 

and calls a function to add two nodes per each row:

import csv

# open the link ile

with open ("SciFiWriters.txt”, "r") as inputile:

     datareader = csv.reader(inputile, delimiter="\t")

     # skip the header row

     next(datareader, None)

     # process each row: add source node and target node

     for row in datareader:

          addNode(row[0])

          addNode(row[1])

he irst line imports the Python csv library. he next two lines open the text ile 

SciFiWriters.txt as read-only ("r") and set the delimiter to tab ("\t") as opposed to 

the default, which is a comma. he ile has a header row (subject inluence), which is 

skipped over using next(datareader, None).
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he csv library turns each row of input into a list data structure. You can access each 

ield in the list using an index (referred to in Python as a slice). he index is an integer, 

starting at zero for the irst item. For example, consider a data row in the data ile:

Stephen King     Edgar Allan Poe

he irst item is accessed using row[0], which returns Stephen King, while row[1] 

returns Edgar Allan Poe, and so on. You can reference the entire row simply using row. 

Python provides convenient ways to access lists using indexes, including 

shortcuts for getting the last item on a list or sublist. You can use the same 

techniques to access subsets of strings, too.

Each row is processed with a for loop. For each row, the function addNode is called. 

he function addNode takes one argument: the node ID (that is, the person’s name). 

 addNode is called twice, irst for the source node (the irst two items in the row), followed 

by the target node (the next item in the row of data).

Collecting Nodes in a Hashmap

At the beginning of the Python script, the addNode() function is deined (def), which adds 

and updates nodes in a global hashmap declared in nodemap={}. A hashmap is a type of data 

structure that allows for eicient access of items using a unique key. Conveniently, nodes in 

graphs must have a unique ID, so this ID can be used as the key for a hashmap. In addition 

to the key, hashmaps can store additional values, lists, or objects. Here the hashmap is used 

to store node objects:

nodemap = {}

# deine function to ind or add a node; and adjust its count

def addNode(name):

     if name in nodemap:

          node = nodemap[name]

          node["count"] += 1

     else:

          node = {"nodeid": name, "count": 1}

          nodemap[name] = node

     return

T
IP
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An empty hashmap is initially deined (nodemap = {}). he addNode function is 

deined with one arguments passe in: name, which is the unique node ID (that is, the 

author’s name, or the name of the inluencer).

Python hashmaps are an eficient alternative to lists. You can quickly add or 
remove items without iterating across a list.

he irst line inside the function (if name in nodemap:) checks to see whether the 

key name has already been used in the hashmap. If false (such as the irst time calling 

addNode), the else section is called. In the else section, a new node is deined using 

name:value pairs (node = {"nodeid": name, "count": 1), and then the node is added to 

the nodemap using the key (nodemap[name] = node).

On successive calls to the function addNode, in some cases the node already exists, 

and name in nodemap will be true. In this case, the variable node will be assigned to 

the already existing node object retrieved using the key node = nodemap[name]. With 

the retrieved node, any value stored with this node can be adjusted using the appropri-

ate name to access it. For example, incrementing the count for the number of times this 

name has occurred is done with node["count"] += 1.

Writing Out the Node Hashmap

he inal step is to write out the ile, which steps through all the nodes in nodemap and 

writes out a node on each successive row in the ile.

#write out nodes

with open("nodes.txt", "w", newline="") as nodeile:

     formatter = csv.writer(nodeile, delimiter="\t")

     formatter.writerow(["Id","Count"])

     for name in nodemap:

          node = nodemap[name]

          formatter.writerow([node["nodeid"],node["count"],

               ])

T
IP
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Opening the ile is similar to reading, except it’s set for writing ("w"). A header row 

is written irst, and then a loop iterates through each key (that is, name) in the hashmap 

(for name in nodemap:).

he key is used to retrieve the node with node = nodemap[name]. Writing each row 

requires passing a single object to the formatter. Because the data must be in a spe-

ciic order to match the column headers, each data item is placed in order (for example, 

node["nodeid"], node["count"], and so on), and the overall set is placed into a list 

(denoted with square brackets, []) and passed to the formatter.

he Python script and the sample data set are available in the Supplemental Materials 

on this book’s companion website. he overall Python script looks like this:

import csv

nodemap = {}

# deine function to ind or add a node; and adjust its count

def addNode(name):

     if name in nodemap:

          node = nodemap[name]

          node["count"] += 1

     else:

          node = {"nodeid": name, "count": 1}

          nodemap[name] = node

     return

with open ("SciFiWriters.txt", "r") as inputile:

     datareader = csv.reader(inputile, delimiter="\t")

     # skip the header row

     next(datareader, None)

     # process each row: add source node and target node

     for row in datareader:

          addNode(row[0])

          addNode(row[1])
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#write out nodes

with open("nodes.txt", "w", newline="") as nodeile:

     formatter = csv.writer(nodeile, delimiter="\t")

     formatter.writerow(["Id","Count"])

     for name in nodemap:

          node = nodemap[name]

          formatter.writerow([node["nodeid"],node["count"],

               ])

he resulting link and node iles can then be imported into graph software. For 

example, Figure 8-1 shows this data set plotted in Gephi.

FIGURE 8-1: This is a graph of science iction writers and their influences extracted from 
Wikipedia data.
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Transforming E‑mail Data into a Graph

E-mail data is an example of a data set that requires more efort to transform into a 

graph. It may be possible to ind point-and-click software that automatically imports 

e-mail data (for example, NodeXL), but there may be other requirements (such as data 

cleansing or anonymization), or diferent metrics requiring you to create a simple pro-

gram to process the data. he core task is to transform data that originally may look like 

this sample e-mail CSV ile into a set of nodes and links:

From, To, CC, Date, Size

"Joe", "Zoe", "Tim", 12/09/2014, 156kb

"Joe", "Ben", "Ann; Tim; Zoe", 11/09/2014, 2048kb

"Joe", "Tim", "Ben; Zoe", 11/09/2014, 805kb

"Joe", , "Ben", 11/01/2014, 22kb

he node data is a list of all the unique e-mail participants, and the link data is a list 

of all the occurrences of e-mails between two participants, aggregated into a single link 

with an associated weight representing the number of communications between the two 

participants. he approach to process e-mail data programmatically into a graph is sim-

ilar to the previous example, with a bit more efort to prepare the data, and an extra step 

to generate links:

1. Open the data ile. 

2. For each line in the data ile, 

a. Create a distribution list of all the people involved in the e-mail.

b. Add each person to a list of nodes, checking to make sure that nodes are not 

duplicated.

c. For each pair of people, deine a uniquely named link (that is, source-target), 

and add that to a list of links, making sure that links are not duplicated.

3. Write out the node ile and link ile.
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Opening the ile and starting the loop to process each row is similar to the previous 

example, except the default comma delimiter is used.

with open ("emailSample.txt") as dataile:

     datareader = csv.reader(dataile)

     # skip the header row

     next(datareader, None)

     # process each row: add source node and target node

     for row in datareader:

Processing each row has a few more steps than before. Some data preparation is done 

irst. For example, the e-mail size, stored in row[4], is in a string such as 25kb, so the kb 

is removed, and the remaining string is converted into an integer.

          kb = int(row[4].replace("kb",""))

Creating a Distribution List

he list of people in the e-mail distribution is spread out across three columns (from, to, 

cc), and each of these can contain zero, one, or many people. To make this easier to work 

with, you create a distribution list, as shown here:

          distlist = [];

          for i in range(0,3):

               names = row[i].replace('"','').split(';')

               for name in names:

                    name = name.strip()

                    if (name!=""):

                         distlist.append(name) 

First, you create an empty list to assemble all the names. 

          distlist = [];     

hen you create a loop to go through the irst three items in the row, (that is, the 

from, to, and cc ields).

          for i in range(0,3):

               names = row[i].replace('"','').split(';')
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For each ield, there may be multiple people, which are separated with semicolons, 

whitespace, and quotation marks. You create a list of names by irst removing the outer 

quotation marks and splitting the ield based on the semicolons. 

his list of names is then iterated through. Any extraneous spaces are removed via 

strip(). Because a ield can be empty (for example, no one was CC’d), there is also a 

check for an empty name. If the name is not empty, it is appended to the distribution list.

               for name in names:

                    name = name.strip()

                    if (name!=""):

                         distlist.append(name)

he overall data preparation to create the distribution list for this one e-mail looks 

like this:

          for i in range(0,3):

               names = row[i].replace('"','').split(';')

               for name in names:

                    name = name.strip()

                    if (name!=""):

                         distlist.append(name)

Creating Nodes

Now you can create the nodes, one for each person in the distribution list for this e-mail, 

along with additional information such as the size of this e-mail, using the addNode 

function as shown here:

          # create the nodes

          for name in distlist:

               addNode(name,kb)

At this point, let’s review the addNode function at the beginning of the script ile. It is 

similar to the previous science iction example, but with a slight modiication. his time, 

addNode has two parameters passed to it—the node name and the size of the e-mail. In 

addition to name and count, the node data will also track the total e-mail size.

def addNode(key, kbytes):

     if key in nodemap:
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          node = nodemap[key]

          node["count"] += 1

          node["size"] += kbytes

     else:

          node = {"id": key, "count": 1, "size": kbytes}

          nodemap[key] = node

     return  

Creating Directed Links

Creating links is similar to creating nodes. A source node and target node are required. 

Given that the order of the original data was from, to, cc, the irst name on the distri-

bution list is the source, and all subsequent names are targets. For example, for a distri-

bution list with four items (Joe, Tim, Ben, Zoe), you create three links (Joe-Tim, Joe-Ben, 

and Joe-Zoe).

          # create directed links: 

          for i in range(1,len(distlist)):

               addLink(distlist[0],distlist[i],kb)

he addLink function is similar to the addNode function. For a link, the key can be 

the unique link that is the combination of the source and target nodes.

def addLink(src, tgt, kbytes):

     key = src + "..." + tgt

     if key in linkmap:

          link = linkmap[key]

          link["count"] += 1

          link["size"] += kbytes

     else:

          link = {"src": src, "tgt": tgt, "count": 1, "size": kbytes}

          linkmap[key] = link

     return



CHAPTER 8 Lightweight Programming 237

Creating Undirected Links

Depending on the objective, you may want to identify connections between all people on 

a distribution list based on the assumption that all people who are copied on a message 

are linked together. In this case, you want to use undirected links instead of directed 

links between all people in the distribution list. You can use the same addLink function 

to create each link, but you have more links to create. Each person in the distribution list 

is part of the same e-mail, and you create a link between each unique pair of people. For 

example, for a distribution list with four items ( Joe, Tim, Ben, Zoe), you create six links 

(Joe-Tim, Joe-Ben, Joe-Zoe, Tim-Ben, Tim-Zoe, and Ben-Zoe). 

Another requirement is that you should create only a single link between a pair of 

people. For example, Ben-Zoe is the same link as Zoe-Ben. To avoid duplication of links, 

always deine the links in alphabetical order.  

To generate all the unique person-pairs, you use two loops to walk through all the 

combinations of people.

          # create undirected links: 

          for i in range(0,len(distlist)):

               for j in range (i+1,len(distlist)):

                    if distlist[i] < distlist[j]:

                         source = distlist[i] 

                         target = distlist[j]

                    else: 

                         source = distlist[j] 

                         target = distlist[i] 

                    addLink(source,target,kb)

Writing out the Node and Link Files

he inal step is to write out the resulting iles. his is similar to the ile written in the 

previous example. he entire script for creating the e-mail graph is as follows (using 

undirected links), with the ile write at the end:

import csv

nodemap = {}

linkmap = {}
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# deine function to ind or add node; and add to its count and size

def addNode(key, kbytes):

     if key in nodemap:

          node = nodemap[key]

          node["count"] += 1

          node["size"] += kbytes

     else:

          node = {"id": key, "count": 1, "size": kbytes}

          nodemap[key] = node

     return 

     

# similar function to add/update links

def addLink(src, tgt, kbytes):

     key = src + "..." + tgt

     if key in linkmap:

          link = linkmap[key]

          link["count"] += 1

          link["size"] += kbytes

     else:

          link = {"src": src, "tgt": tgt, "count": 1, "size": kbytes}

          linkmap[key] = link

     return 

# open the ile and skip the header row

with open ("emailSample.txt") as dataile:

     datareader = csv.reader(dataile)

     next(datareader, None)

     

     # process each email

     for row in datareader:     

          # size of this email

          kb = int(row[4].replace("kb",""))
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          # create a distribution list of all the people in this email

          distlist = [];

          #loop through distribution ields: from, to and cc:

          for i in range(0,3):

               # split apart when the ield has multiple names

               names = row[i].replace('"','').split(';')

               for name in names:

                    name = name.strip()

                    # add the name to the distribution list

                    if (name!=""):

                         distlist.append(name) 

          # create the nodes

          for i in range(0,len(distlist)):

               addNode(distlist[i],kb)

                                                  

          # undirected graph:

          # create links between each pair in thedistlist

          for i in range(0,len(distlist)):

               for j in range (i+1,len(distlist)):

                    if distlist[i] < distlist[j]:

                         source = distlist[i] 

                         target = distlist[j]

                    else: 

                         source = distlist[j] 

                         target = distlist[i] 

                    addLink(source,target,kb)

                    

#write out nodes

with open("nodes.csv", "w", newline="") as csvile:

     formatter = csv.writer(csvile)

     formatter.writerow(["Node","NumEmail","SumSize"])

     for key in nodemap:

          node = nodemap[key]
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          formatter.writerow([node["id"],node["count"],node["size"]])

#write out the links

with open("links.csv", "w", newline="") as csvile:

     formatter = csv.writer(csvile)

     formatter.writerow(["Source","Target","NumEmail","SumSize"])

     for key in linkmap:

          lk = linkmap[key]

          formatter.writerow([lk["src"],lk["tgt"],lk["count"],

               lk["size"]])

For the trivial e-mail data set using Joe, the resulting node and link iles can be read 

into graph software. On the left of Figure 8-2 are Gephi visualizations showing directed 

links, and undirected links are shown on the right. 

Ann

Tim

Zoe
Ben

Joe

Ann

Tim

Zoe
Ben

Joe
FIGURE 8-2: This is the result of the simple e-mail data processing, imported into Gephi and  
visualized, with directed links on the left and undirected links on the right.

his same script can be used on a much larger list of e-mails. Figure 8-3 shows the 

visualized result of the same script (with undirected links) used on a data set of 10,000 

e-mails.
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FIGURE 8-3: The same e-mail processing script can be applied to a data set with 10,000 e-mails.

Graph Databases

Python is a handy scripting language for processing small graphs. For huge graphs, a 

graph database is likely required. Chapter 14 discusses graph databases in more detail.
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JAVASCRIPT AND GRAPH VISUALIZATION

JavaScript is the programming language of the web browser—the ubiquitous interface to 

almost everything. You can use JavaScript to view graph data interactively in the browser, 

which is particularly useful if you want someone else to see and interact with your graph. 

Many diferent libraries and technologies are available for drawing things in the 

browser using JavaScript, including SVG, Canvas, ProtoVis, Raphael, D3, and P5, to 

name a few. SVG and Canvas are more popular with novices interested in low-level 

drawing. D3 and P5 are popular libraries for making interactive graphics in a browser, 

but D3 speciically has a data visualization focus. 

If you are new to web-based development, the following examples are in HTML. 

hey can be saved as .html iles and opened directly in a web browser. Modern web 

browsers also provide built-in developer tools to inspect the web page in the browser. For 

example, in the web browser Chrome, the developer tools are accessed under the cus-

tomization menu More Tools… ⇨ Developer Tools. his opens a panel with many tabs, 

allowing for various diagnostics on the current web page.

D3 Basics

Before getting started, irst you may want to download D3.js (typically just referred to as 

D3) from d3js.org. If you will be working with D3 and always have an Internet connec-

tion, this step isn’t needed. You may also want to view the many examples and documen-

tation available at the same website. 

Because D3 is a comprehensive library that allows for a wide range of data visualiza-

tions, this part of the discussion provides only a simple introduction to D3 and an exam-

ple using graph functionality in D3. For more general review of D3, many books and 

online tutorials are available, including the following:

 ■ Scott Murray’s book, Interactive Data Visualization for the Web (Sebastopol, 

CA: O’Reilly Media, 2013), with a number of nice online tutorials at http:// 

alignedleft.com/tutorials/d3/

 ■ Mike Dewar’s book, Getting Started with D3 (Sebastopol, CA: O’Reilly Media, 2012)

 ■ Dashing D3.js tutorial at https://www.dashingd3js.com/table-of-contents
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Don’t expect to see the same speed or the capability to handle as many nodes com-

pared to desktop software. D3 is based on the underlying technology SVG, which is not 

fast, but the graphics have a wide variety of visual attributes. When you create a visual-

ization in D3, the D3 code is creating and modifying SVG in the browser dynamically. 

To use D3, you don’t need to know all the details of SVG. However, when debugging 

D3 using the browser’s developer tools, you will see SVG code, so it is useful to look at 

some simple SVG irst before getting into D3.

SVG

You can draw graphics on an HTML page using SVG. he following is a simple HTML 

page that draws a couple of circles in SVG:

<!DOCTYPE html>

<meta charset="utf-8">

<body>

<svg width="500" height="500">  

  <circle cx="100" cy="100" r="75" ill="orange"/>

  <circle cx="300" cy="150" r="50" ill="yellow" stroke="blue" />

</svg>

</body>     

he initial section simply identiies that this is an HTML page (irst two lines) and 

starts of the body of the HTML document (third line). he SVG object deines an area 

of 500 by 500 pixels on the page in which to place SVG graphical objects. he origin 

is in the top-left corner, with the positive x-axis going to the right, and positive y-axis 

going down. 

he next two lines deine SVG circle objects, the irst being a circle with center (cx 

and cy) at (100,100), a radius (r) of 75 pixels, and illed with orange. he second circle is 

farther to the right (cx is 300), farther down (cy is 150), smaller (r is 50), and illed in yel-

low with a blue outline. In the Chrome browser, it looks like Figure 8-4.
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FIGURE 8-4: You can use SVG to draw two simple circles on a web page.

he bottom half of the browser has the developer tools opened, accessed from the 

top-right menu (or using Ctrl+Shift+I in Chrome). Using the Inspector window, you can 

see the exact HTML that is being drawn and point at any item on the page (for example, 

a circle) to highlight the corresponding HTML below.  

D3 and SVG

D3’s approach is to use JavaScript to generate the SVG dynamically when the Java Script 

is executed. You can script the same scene previously shown in Figure 8-4 in D3 as 

follows:

<!DOCTYPE html>

<meta charset="utf-8">

<body>
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<script src="http://d3js.org/d3.v3.min.js"></script>

<script>

var svg = d3.select("body").append("svg")

    .attr("width", 500)

    .attr("height", 500);

svg.append("circle")

     .attr("cx", 100)

     .attr("cy", 100)

     .attr("r", 75)

     .attr("ill", "orange");

svg.append("circle")

     .attr("cx", 300)

     .attr("cy", 150)

     .attr("r", 50)

     .attr("ill", "yellow")

     .attr("stroke", "blue");

</script>

</body>

After the initial HTML deinition, the irst script object loads the D3 JavaScript 

visualization library directly from the D3 website so that the rest of the scripts on this 

page can use D3. he rest of the page is JavaScript that creates the SVG dynamically 

when the code is executed. 

he next three lines use JavaScript method chaining to create the SVG region. 

var svg = d3.select("body").append("svg")

    .attr("width", 500)

    .attr("height", 500);

Each successive step of the chain performs one action and returns an object for the 

next method. To understand what is happening, read these three lines from left to right:

 ■ var svg =—Deine the variable svg.

 ■ d3—Call the d3 library. 
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 ■ .select("body")—From the d3 library, use the select method to pick and return 

the object "body" on the web page.

 ■ .append("svg")—Add a new object, after all the other objects contained in body 

of type svg. his returns the svg object, on which you can now set attributes.

 ■ .attr("width",500), .attr("height",500)—Set some attributes associated with 

the svg object. In this case, svg has attributes of width and height that are being 

set to the variables width and height. Each time .attr is used, the same object is 

returned, thereby allowing more attributes to be set in successively chained meth-

ods. Note that the inal item on a method chain has a semicolon to indicate the 

end of the chain.

At the end of this sequence, the SVG drawing area is set up but is otherwise empty 

with no content. he next ive lines of D3 code create the irst circle:

svg.append("circle")

     .attr("cx", 100)

     .attr("cy", 100)

     .attr("r", 75)

     .attr("ill", "orange");

his example simply takes the svg variable previously deined, pointing to the new 

svg object, and appends to it a new circle SVG object. his object has various circle 

attributes deined. Similar code is used to make the second circle.

Running this in a browser with the Inspector window open shows the HTML, 

script, and all the SVG code that was created by the script, as shown in Figure 8-5.

D3, Data, and SVG

Creating individual objects is cumbersome, particularly when you are trying to create a lot of 

objects, with each one connected to data. D3 provides methods that make it easy to create a 

set of graphical objects, each one connected to a successive data item from a list of data. 

he JavaScript code that you create in D3 will need data in order to draw a graph. To 

accomplish this, you can do one of the following:

 ■ Embed the data directly in the JavaScript code.

 ■ Fetch the data from a web service.

 ■ Load the data from a local data ile such as a .csv ile. 
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FIGURE 8-5: These are the same circles as before, but this time the script creates  
the SVG portion on-the-fly when the script executes.

Accessing data from local iles is blocked by many web browsers for security reasons, 

so for the purposes of the examples presented here, let’s use data directly in the code or 

simply extract it into a separate JavaScript ile. 

his next example has a list of data, [20,50, 75, 40]. Four circles are created based 

on this data.

<!DOCTYPE html>

<meta charset="utf-8">

<body>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script>

var myData = [20,50,75,40];
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var svg = d3.select("body").append("svg")

    .attr("width", 500)

    .attr("height", 500);

svg.selectAll("circle")

    .data(myData)

  .enter().append("circle")

    .attr("cx", function(d,i) { return (i*100+100); })

    .attr("cy", 100)

    .attr("r", function(d) { return d; })

    .attr("ill", "orange")

    .attr("stroke", "blue");

</script>

</body>

In this example, the data is deined near the top as a JavaScript list (var myData = 

[20,50,75,40];), and then each circle can be created in D3 based on the data. here is a 

bit more to the method chain to set up the geometry based on data:

 ■ svg—Start with the svg object.

 ■ .selectAll("circle")—Select all objects contained in the svg object of type 

circle. No circle objects have been created yet, so this is just a placeholder for 

objects that are about to be created.

 ■ .data(myData)—his identiies which data will be connected to the graphical 

objects (that is, the list of four values). 

 ■ .enter().append("circle")—he enter portion now sets up the selection specii-

cally for those objects that do not yet exist (that is, the new objects that are enter-

ing the scene). For each of those items, a graphical circle object is appended.

 ■ .attr("cx", function(d,i)—Instead of a single value, a function is used. he 

function has two parameters available for working with data. d references the 

data for this speciic node, so, for example, d for the irst item is 20. i is an itera-

tor, which starts at 0 and increases by 1 for each successive data item. 
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 ■ return (i*100+100);—he function returns a value based on the iterator i, which 

is multiplied by 100 (so the circles are spaced out by 100 pixels each) and 100 is 

added as a padding so that the irst circle isn’t cut of.

 ■ .attr("cy", 100)—his simply sets the y value to a constant of 100. 

 ■ .attr("r", function(d) { return d; })—he radius is based on a function of 

the data value (that is, the data from the array is directly mapped to the size of the 

circle). 

 ■ .attr("ill", "orange"), .attr("stroke", "blue");—Set the ill and outline color of the 

circles. 

Figure 8-6 shows the result of this code.

FIGURE 8-6: By running the sample code, you can see D3 creating circles based on data.
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Where the circles partially overlap, you can see how each successive circle is drawn 

on top of the previous circle. All the SVG is drawn in the sequence listed.  You should be 

aware of this sequence so later on when you draw a graph, links are not drawn over the 

top of the nodes or labels drawn last. 

D3 and Graphs

D3 is all about data visualization, and not simply graph visualization. Examples provided 

with the library include non-graph visualizations such as bar charts, scatterplots, and box 

plots, as well as general graph visualizations such as node-link graphs, chord diagrams, 

and Sankey diagrams. Other examples include hierarchy-speciic visualizations such as 

dendograms, collapsible trees, treemaps, and sunbursts. 

A Simple Graph in D3

Let’s start with a simple graph from a simple data set with four nodes and four edges. 

Following is the code for the entire HTML page for drawing the graph, including  

the data:

<!DOCTYPE html>

<meta charset="utf-8">

<body>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script>

// this is the graph data 

graph = {

 "nodes":[

     {"name":"Ann","NumEmail":1,"SumSize":100},

     {"name":"Ben","NumEmail":4,"SumSize":500},

     {"name":"Tim","NumEmail":2,"SumSize":200},

     {"name":"Zoe","NumEmail":3,"SumSize":400}

  ],

 "links":[
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     {"source":0,"target":1,"NumEmail":1,"SumSize":100},

     {"source":1,"target":2,"NumEmail":1,"SumSize":100},

     {"source":2,"target":3,"NumEmail":1,"SumSize":100},

     {"source":1,"target":3,"NumEmail":2,"SumSize":300}

  ]

}

// set up the drawing area

var width = 500,

    height = 500;

var svg = d3.select("body").append("svg")

    .attr("width", width)

    .attr("height", height);

// some variables for layout assistance

var pad = 50;

var num = Math.sqrt(graph.nodes.length);

var scale = (width - pad * 2) / (num+1);

// draw the nodes 

var node = svg.selectAll(".node")

    .data(graph.nodes)

  .enter().append("circle")

    .attr("r", 15)

     .attr("cx", function(d,i) { return scale * (i / num) + pad; })

     .attr("cy", function(d,i) { return scale * (i % num) + pad; });

// draw the links

var link = svg.selectAll(".link")

    .data(graph.links)

  .enter().append("line")

    .style("stroke","blue")

     .attr("x1", function(d,i) { return scale * (d.source / num) 
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          + pad;})

     .attr("y1", function(d,i) { return scale * (d.source % num) 

          + pad; })

     .attr("x2", function(d,i) { return scale * (d.target / num) 

          + pad;})

     .attr("y2", function(d,i) { return scale * (d.target % num) 

         + pad; }); 

      

</script>

</body>

he irst four lines set up the web page and load the D3 library. his is followed by 

the beginning of the script, where the irst portion includes the graph data. he graph 

data is deined in JavaScript as follows: 

 ■ A list of nodes is contained in square brackets ([]).

 ■ Each node is an object contained in curly braces ({}).

 ■ Each attribute is identiied by its name and value pair ("itemtype": "value"). 

Note that the links refer to the nodes based on the node order. For example, the irst 

link has a source node 0 (Ann) and a target node 1 (Ben). In JavaScript, complex data 

objects such as this graph can be accessed by dot notation. For example, graph.nodes is a 

reference to the list of nodes, and graph.nodes[0].name would have the value Ann. 

<script>

// this is the graph data 

graph = {

 "nodes":[

     {"name":"Ann","NumEmail":1,"SumSize":100},

     {"name":"Ben","NumEmail":4,"SumSize":500},

     {"name":"Tim","NumEmail":2,"SumSize":200},

     {"name":"Zoe","NumEmail":3,"SumSize":400}

  ],

 "links":[

     {"source":0,"target":1,"NumEmail":1,"SumSize":100},
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     {"source":1,"target":2,"NumEmail":1,"SumSize":100},

     {"source":2,"target":3,"NumEmail":1,"SumSize":100},

     {"source":1,"target":3,"NumEmail":2,"SumSize":300}

  ]

}

he SVG drawing area of the web page is created next. In this example, the width 

and height have been set up as separate variables so that they can be referenced later 

when calculating layouts. 

// set up the drawing area

var width = 500,

    height = 500;

var svg = d3.select("body").append("svg")

    .attr("width", width)

    .attr("height", height);     

In drawing the graph, you can place nodes anywhere in this 500-pixel-by-500-pixel 

area. So, you irst set up some variables to assist in a layout. 

// some variables for layout assistance

var pad = 50;

var num = Math.sqrt(graph.nodes.length);

var scale = (width - pad * 2) / (num);

With this code, you do the following:

 ■ You don’t want nodes right on the edge of the drawing area and partially chopped 

of, so you allow for some padding around the edges (pad=50).

 ■ A simple layout algorithm is a grid-like layout incrementing the position of each 

successive node and wrapping it after reaching the end of line. Because the code 

should be generic to handle diferent graphs, the number of items per line should 

depend on the total number of items. Here, num is set to the square root of the total 

number of nodes (graph.nodes.length). For example, for 4 nodes, the number of 

nodes per row will be 2; for 100 items, the number of nodes per row will be 10. 

 ■ he spacing between the items is handled by a scale factor, based on the number 

of items to it in a given width (less the padding on both sides). 
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 Now, you can create each node in D3 based on the graph.node data. 

// draw the nodes 

var node = svg.selectAll(".node")

    .data(graph.nodes)

  .enter().append("circle")

    .attr("r", 10)

    .attr("cx", function(d,i) { return scale * (i / num) + pad; })

    .attr("cy", function(d,i) { return scale * (i % num) + pad; }); 

 In this case, there is a bit more to the method chain to set up the nodes:

 ■ svg—Start with the svg object.

 ■ .selectAll(".node")—Select all objects contained in the svg object of class node, 

which are about to be created.

 ■ .data(graph.nodes)—Identify the data (that is, the list of nodes in the graph 

object) to connect to the graphical objects. 

 ■ .enter().append("circle")—Create a graphical circle per each node in the list. 

 ■ .attr("r",15)—Set attribute r (that is, the radius) to 15 pixels. 

 ■ .attr("cx", function(d,i) {return scale * (i / num) + pad; })—Set circle 

x position to a function. he function returns a value based on the iterator i 

divided by number of items per line (num), scaled by the scale factor, and moved 

over by pad to adjust for padding. 

 ■ .attr("cy", function(d,i) {return scale * (i % num) + pad; })—he 

 function for the y position is similar, using a modulus (%) operator to wrap the  

y value after each column is completed.

Similar to the previous example, at this point, a set of circles has been created. he 

next portion generates all the lines corresponding to links. his code is very similar to 

the circle code, except that SVG line objects have diferent attributes—x1 and y1 refer 

to the starting x and y coordinates of the line, and x2 and y2 refer to the ending x and y 

coordinates of the line.  

// draw the links

var link = svg.selectAll(".link")

    .data(graph.links)
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  .enter().append("line")

    .attr("stroke","blue")

    .attr("x1", function(d,i) { return scale * (d.source / num) 

         + pad;})

    .attr("y1", function(d,i) { return scale * (d.source % num) 

         + pad; })

    .attr("x2", function(d,i) { return scale * (d.target / num) 

         + pad;})

    .attr("y2", function(d,i) { return scale * (d.target % num) 

         + pad; }); 

he function for x1,y1, and so on, is a bit diferent for the lines, too. For the nodes, 

the iterator is used so that node 0 is placed based on a function of the iterator. For the 

links, the graph.links.source attribute provides a numerical index to the corresponding 

source node. In the .data step of this chain, the links are connected to the list of links 

(that is, graph.links). hen, when each line is created for a link, the function provides 

the parameters d and i, where d is a reference to that link’s data, so d.source indicates 

the index to the source node, and d.target indicates the index to the target node.

Figure 8-7 shows the result of this example code.

FIGURE 8-7: This very simple graph is drawn in D3 using the sample  
code provided.
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If you look closely, you will see that the blue lines are on top of the nodes. You can ix 

this easily by putting the links section of the code before the nodes section of the code. 

his means that the nodes will draw on top of the links.  

Using Different Data

Because the example code was written to be fairly lexible, you should be able to change 

the data set and otherwise use the same code. Now, let’s substitute the data to use the same 

data set as presented in Chapter 5, “Visual Attributes” (that is, a data set with approxi-

mately 70 people sending e-mails to each other), in JavaScript format. he data is available 

in JavaScript form in the Supplemental Materials on this book’s companion website. 

If you need to change from CSV format to JavaScript data format, you can 

either write a Python script, or use an online CSV-to-JavaScript Object Nota-

tion (JSON) converter (for example, search for CSV2JSON in Google). 

his e-mail data has a few more attributes. For example, for nodes, it has attributes 

such as shortname and recency, as shown here:

{ "id": 0, "name": "Maci Perkins", "shortname": "M. Perkins", 

     "numEmail": 3, "sumSize": 448102, "recency": 200},

{ "id": 1, "name": "Garrett Aguilar", "shortname": "G. Aguilar", 

     "numEmail": 2, "sumSize": 433735, "recency": 200},

{ "id": 2, "name": "Jada Ray", "shortname": "J. Ray", 

     "numEmail": 6, "sumSize": 701842, "recency": 145},

Figure 8-8 shows the results of using this data. he layout algorithm automatically 

adjusts to it all the data, because the scale factor and number of items per row are based 

on the size of the data.

Changing the Layout

Some other types of layouts are fairly straightforward to calculate. he grid layout shown 

in Figure 8-8 isn’t perfectly a grid and could be improved by rounding numbers rather 

than just using loating-point numbers. 

N
O

T
E
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FIGURE 8-8: You can use the same e-mail data set as presented in  
Chapter 5 to draw this graph in D3.

A circular layout requires only high-school trigonometry to calculate, as shown here: 

// angle and radius for layout assistance

var ang = 2 * Math.PI / graph.nodes.length;

var rad = width / 2.5 ;

// create the links

var link = svg.selectAll("line").data(graph.links).enter()

     .append("line")

  .style("stroke", "blue")

  .attr("x1", function(d) { return(rad * Math.cos(d.source*ang) 

       +.5*width); })

  .attr("y1", function(d) { return(rad * Math.sin(d.source*ang) 

       +.5*width); })
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  .attr("x2", function(d) { return(rad * Math.cos(d.target*ang) 

       +.5*width); })

  .attr("y2", function(d) { return(rad * Math.sin(d.target*ang) 

       +.5*width); }); 

  

// create the nodes and set out in a circular layout

var node = svg.selectAll("circle").data(graph.nodes).enter()

     .append("circle")

  .attr("r", 6)

  .attr("cx", function(d,i) { return(rad * Math.cos(i*ang) 

       + .5*width); })

  .attr("cy", function(d,i) { return(rad * Math.sin(i*ang) 

       + .5*width); });

In this example, ang sets out the angle to increment each node based on the number 

of items (measured in radians). rad sets the radius slightly smaller than two times the 

width of the SVG area so that there is a bit of space left for padding. his is essentially a 

scaling factor.

he x,y location of the nodes and link end points is then a function, where x is a 

cosine of an angle (index times the angle increment), scaled by the radius (r), and ofset 

by half the SVG area. (Otherwise, it would be centered around the top corner, not in the 

center of the screen.)

Figure 8-9 shows the results of using the circular layout. 

Adding Visual Attributes and D3 Scales

Each SVG object supports a variety of visual attributes, outlined in detail in the 

SVG speciication (www.w3.org/TR/SVG11/Overview.html). Following are a few quick 

improvements:

 ■ Outlines around nodes

attr("stroke", "white")

 ■ Line transparency

.attr("stroke-opacity", 0.25)



CHAPTER 8 Lightweight Programming 259

FIGURE 8-9: Using the same data, you can create a circular layout.

Just like x and y values, visual attributes can also be set to data attributes.

 ■ Node radius set to number of e-mails per node 

.attr("r", function(d) {return Math.sqrt(d.numEmail)*2; })

 ■ Line width set to link weight

.attr("stroke-width", function(d) {return d.weight *0.2; })

Now the visualization looks like Figure 8-10. 
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FIGURE 8-10: Using visual attributes, you can show e-mail data with  
nodes sized based on data.

Setting sizes based on data directly isn’t a good idea. To get the line weight right, 

the data was multiplied by 0.2, which probably will not be the right value for a diferent 

data set. D3 provides built-in scales to transform data attributes (based on whatever the 

domain of the raw data is in) into the numerical values relevant to the range appropriate 

to the visualization (such as sizes or even colors). You do this in three steps: 

1. Determine the range.

2. Deine a scale.

3. Use the scale when creating the visual attribute. 
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For example, for the nodes, you can use a JavaScript loop to calculate the minimum and 

maximum values of the data to establish the range of the raw data irst, as shown here:

// calculate min/max values

var minEmail = 0, maxEmail = 0, 

     minRecent = 0, maxRecent = 0;

for (var i = 0; i < graph.nodes.length; i++) {

     var minEmail = Math.min(minEmail, graph.nodes[i].numEmail);

     var maxEmail = Math.max(maxEmail, graph.nodes[i].numEmail);

     var minRecent = Math.min(minRecent, graph.nodes[i].recency);

     var maxRecent = Math.max(maxRecent, graph.nodes[i].recency);

}

You then set up a size scale and color scale, as shown here:

// set up a size scale and a color scale

var nodesize = d3.scale.sqrt()

     .domain([minEmail,maxEmail])

     .range([2,15]);

var nodecolor = d3.scale.linear()

     .domain([minRecent,maxRecent])

     .range(["yellow","red"]);

Here, D3 scales are deined using d3.scale, followed by the mapping function. D3 

provides some built-in mappings, such as square root (useful for mapping data to sizes of 

things) and linear (useful for most other cases). hen, you specify the domain and range, 

each as a list of values. Because you have the min and max values, you use these in the list 

to identify the domain. hen, in the range, you provide the values for the min and the 

max in the visualization. D3 will interpolate between the values provided. For example, 

for node size, D3 will interpolate between a minimum size of 2 and a maximum of 15. 

D3 scales will also interpolate colors. In this example,  a color scale is created where D3 

will interpolate between the colors listed, yellow to red.

Finally, you use the scale functions when the data is assigned to the visual attribute, 

as shown here:

  .attr("r", function(d) { return nodesize(d.numEmail); })

  .attr("ill", function(d) { return nodecolor(d.recency); })
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Figure 8-11 shows how the visualization now appears. 

FIGURE 8-11: By using visual attributes, you can show e-mail data  
with color coding.

Adding Interaction

Although the visualization steps just discussed perhaps create a result that is visually 

appealing, it doesn’t reveal the details of any of the items. A tooltip would be a simple 

and highly useful interaction to add. SVG conveniently provides a title object that con-

tains text. You can add the title object to any SVG object, and most browsers will show 

the title as a tooltip. Adding the following code creates a title for the circles:

node.append("title")

  .text(function(d) { return d.name + "\n # email: " + d.numEmail; });

he text in the title object is set to a function that returns a string containing the 

node name and also the number of e-mails. he \n is a newline character that puts the 

number of e-mails on a second line in the tooltip.
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Adding Explanations

Adding explanations to D3 visualizations is easy. he entire capabilities of HTML are 

available. You can add an HTML heading and paragraph to explain what the viewer is 

seeing (for example, colors and sizes) and perhaps an interesting observation or two. Fol-

lowing is an example of how to do this:

<body>

<h1> A graph of emails </h1>

<p> Nodes show idividual people sending emails. Size is proportional to 

the number of emails sent, color is related to recency (most recent 

senders are yellow, older are red). Note how the lower right is  a 

group of senders that are fairly thin links and fairly old. Point 

at any node for details.</p>

Figure 8-12 shows the page with the explanations.

FIGURE 8-12: Using HTML, you can add a tooltip and  
explanations to a circular graph.
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D3 Springy Graph 

Instead of programming layouts manually, D3 provides some automated layouts, includ-

ing a force-directed layout speciically designed for graphs. Force-directed layouts are 

sometimes called spring layouts because the links act like springs pulling nodes together. 

Chapter 4, “Stats and Layout,” discusses force-directed layouts in more detail. Spring 

layouts are a bit more complex than the layouts previously discussed. Spring layouts 

iterate over and over, changing the layout each time to resolve the forces between all the 

nodes. You have a number of items to set up in order to use the springy layout.

First, set up the force-directed graph layout system prior to creating the SVG scene. 

In the following code, charge sets repulsion between nodes to minimize node overlap, 

linkDistance sets desired link length, and size sets the overall area available:

var force = d3.layout.force()

    .charge(-250)

    .linkDistance(100)

    .size([width, height]);

Next, the force system is connected to the data. You must provide the force system 

with the list of nodes and the list of links. Note that the links do not refer to the nodes 

by name, but rather by the number implied by the order of the nodes in the ile (with the 

irst node starting at 0). his is consistent with how you’ve been using nodes and links up 

to this point. he inal method (start) starts the force calculations:

  force

      .nodes(graph.nodes)

      .links(graph.links)

      .start();

his inal piece of the code deines functions that update attributes on the nodes and 

links each time the force calculations update. Note that these functions reference the 

data attributes x and y (for example, d.source.x, d.target.y, d.x). When the data is con-

nected to the force system, D3 adds an x and y attribute to the source, target, and node 

to keep track of the positions.  

  force.on("tick", function() {

    link.attr("x1", function(d) { return d.source.x; })

        .attr("y1", function(d) { return d.source.y; })
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        .attr("x2", function(d) { return d.target.x; })

        .attr("y2", function(d) { return d.target.y; });

    node.attr("cx", function(d) { return d.x; })

        .attr("cy", function(d) { return d.y; });

  });

});

</script>

At this point, the springy graph is ready to run. 

Click‑and‑Drag Nodes

D3’s springy layout also provides a nice interaction: the capability to drag nodes while 

the layout is updating. When the nodes are created, a call method is added that refers to 

the force.drag function. his built-in function automatically responds to drag events on 

the target object, changing the object’s x and y position to the new mouse position. 

      .call(force.drag);

When dragging any node, all the other nodes update as well, with the entire graph 

appearing to be bouncy, hence the reference to a springy graph. he resulting graph 

shown in Figure 8-13 now has clusters much more obvious than in the circular layout or 

the grid layout. 

Labels

It is nice to add labels to a graph. You can use the SVG text element to add labels. he 

text element has many attributes, including font family, alignment, font-size, x, y, and 

also a dx, dy for nudging text. (In the following example, the label is nudged down a 

half a character.) Because text labels must be on top of the nodes and lines, text is the 

last visual object added to the scene.

var label = svg.selectAll("label").data(graph.nodes).enter().append

     ("text")

  .attr("text-anchor", "middle")

  .attr("font-family", "Arial")

  .attr("dy", "0.5em")
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  .attr("font-size", function(d) {return nodesize(d.numEmail); })

  .text(function(d) { return d.shortname; })

  .call(force.drag);

Note that call(force.drag) has been moved to the text, because the text is on top 

of the circle, and, therefore, a mouse click will hit the text, not the circle. Similarly, the 

tooltip will not appear when the mouse is over the label, so you need to add the title to 

the label as well.

label.append("title")

  .text(function(d) { return d.name + "\n # email: " + d.numEmail; });

FIGURE 8-13: In the springy graph of e-mails in D3, clusters  
are much more obvious.
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Also note that the text x and y position is not set in the label creation. hese posi-

tions must update as the forces are updated. he x,y positions must be set in the springy 

layout update function, just like the nodes.

     label.attr("x", function(d) { return d.x; })

         .attr("y", function(d) { return d.y; });

Figure 8-14 shows the labeled graph.

FIGURE 8-14: This shows a labeled springy graph.

Full Springy Graph Code 

You have inserted and modiied a lot of code since the start of this section on D3. 

he following code represents the visualization in Figure 8-13 (also available in the 
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Supplementary Materials on this book’s companion website). Note that the data is now 

in a separate ile, simply referenced in its own script object. 

<!DOCTYPE html>

<meta charset="utf-8">

<body>

<h1> A graph of emails </h1>

<p> Nodes show individual people sending emails. Size is proportional 

to the number of emails sent, color is related to recency (most recent 

senders are yellow, older are red). Note how clusters are visually 

distinct. Point at any node for details.</p>

<script src="http://d3js.org/d3.v3.min.js"></script>

<script src="familyEmail.js"></script>

<script>

// calculate min/max values

var minEmail = 0, maxEmail = 0, 

     minRecent = 0, maxRecent = 0;

for (var i = 0; i < graph.nodes.length; i++) {

     var minEmail = Math.min(minEmail, graph.nodes[i].numEmail);

     var maxEmail = Math.max(maxEmail, graph.nodes[i].numEmail);

     var minRecent = Math.min(minRecent, graph.nodes[i].recency);

     var maxRecent = Math.max(maxRecent, graph.nodes[i].recency);

}

// set up a size scale and a color scale

var nodesize = d3.scale.sqrt()

     .domain([minEmail,maxEmail])

     .range([2,15]);

var nodecolor = d3.scale.linear()

     .domain([minRecent,maxRecent])

     .range(["yellow","red"]);
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// set up the graph drawing area

var width = 500;

var height = 500;

var svg = d3.select("body").append("svg")

    .attr("width", width)

    .attr("height", height);

     

// set up the force system 

var force = d3.layout.force()

    .charge(-250)

    .linkDistance(100)

    .size([width, height]);

force.nodes(graph.nodes)

     .links(graph.links)

     .start();

// create the links

var link = svg.selectAll("line").data(graph.links).enter().append

     ("line")

  .style("stroke", "blue")

  .style("stroke-opacity", 0.25)

  .style("stroke-width", function(d) { return d.weight *0.2; }); 

  

// create the nodes as circles

var node = svg.selectAll("circle").data(graph.nodes).enter().append

     ("circle")

  .attr("r", function(d) { return nodesize(d.numEmail); })

  .attr("ill", function(d) { return nodecolor(d.recency); })

  .attr("stroke", "white");

// add labels to the nodes  

var label = svg.selectAll("label").data(graph.nodes).enter().append
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     ("text")

  .attr("text-anchor", "middle")

  .attr("font-family", "Arial")

  .attr("dy", "0.5em")

  .attr("font-size", function(d) {return nodesize(d.numEmail); })

  .text(function(d) { return d.shortname; })

  .call(force.drag);

 

// "titles" are text strings that appear as tooltips

label.append("title")

  .text(function(d) { return d.name + "\n # email: " + d.numEmail; });

  

node.append("title")

  .text(function(d) { return d.name + "\n # email: " + d.numEmail; });

  

// force.on tick updates the location of the graphics each calc cycle

force.on("tick", function() {

    link.attr("x1", function(d) { return d.source.x; })

        .attr("y1", function(d) { return d.source.y; })

        .attr("x2", function(d) { return d.target.x; })

        .attr("y2", function(d) { return d.target.y; });

    node.attr("cx", function(d) { return d.x; })

        .attr("cy", function(d) { return d.y; });

          

     label.attr("x", function(d) { return d.x; })

         .attr("y", function(d) { return d.y; });

  });

       

</script>

</body>
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his example merely scratches of surface of what is possible for visualizing graphs 

using JavaScript. his is just an introduction to D3 and much more could still be added. 

For example, reinements could include the following: 

 ■ Show only big labels. 

 ■ Highlight a selection and its immediate neighbors. 

 ■ Better handle label overlap.

More JavaScript graph examples appear in the following chapters:

 ■ Chapter 12, “Flows,” includes examples of a circular chord diagram of trade low 

using D3.

 ■ Chapter 12 includes examples of a Sankey low diagram using Aperture JS. 

 ■ Chapter 13, “Spatial Networks,” includes examples of a link rose diagram using 

Aperture JS.

Beyond these, you can ind numerous examples at d3js.org. Other libraries (such as 

Aperture JS) and various books, websites, and online forums provide more information. 

SUMMARY

Python and JavaScript are free, well-documented languages with extensive references 

online and in books. 

Python is a fairly easy-to-use scripting language for manipulating graph data for tasks 

such as data cleansing, as well as extracting nodes and/or links from graph data. 

JavaScript is useful for creating browser-based interactive visualizations of graph data. 

he underlying SVG library provides browser-based support for drawing graphics, and 

higher-level libraries such as D3 provide capabilities for connecting these graphics to 

data, as well as speciic functionality for graphs (such as force-directed layouts).

Until now, the focus of the book has been on the basics of using graphs—the process 

and the tools. he next part of this book shifts to various types of analyses for which 

graphs are useful, starting with relationships in the Chapter 9. Links describe relation-

ships between things and can be used to ind interesting connections between things 

(such as fraud). 





Visual Analysis  
of Graphs
This part of the book considers some of different types of 

graphs and example of associated analyses over the next 

ive chapters. Table P3-1 provides a broad overview of 
these chapters.P
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TABLE P3-1: Overview

TOPIC DESCRIPTION

Relationships  
(Chapter 9)

Graphs may have any number of links between a pair of nodes. For some types 
of applications (such as fraud analysis), it is important to keep all links between 
these nodes and have techniques to analyze the many different connections. 

Hierarchies  

(Chapter 10)

Beyond organizational charts, hierarchies are used in many applications to 
organize data. Hierarchies are a unique type of graph. They can have unique 
representations (such as treemaps) or be used in combination with other types 
of graphs (such as visitor path analysis). 

Communities  
(Chapter 11)

The clustering of nodes in graphs reveals communities. Enhancing node and link 
data, iltering, grouping, and additional analytic techniques can help reine the 
qualities to deine these communities and make them visually apparent (such as 
in social network data).

Flows  
(Chapter 12)

Graphs are often used to indicate flows between nodes, whether communica-
tions, money global trade, or web trafic. Flow visualization has unique represen-
tations and associated analyses such as Sankey diagrams and chord diagrams. 

Spatial Networks  
(Chapter 13)

For graphs based on spatial data (such as airline trafic, electrical grids, or brain 
topography), the data can be plotted directly based on the spatial coordinates 

associated with the nodes and links. Because the relative position of nodes is 
predetermined, there can be challenges and speciic approaches for working 
with this data.
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9
RELATIONSHIPS

Connections are what deine a graph. Without links, 
nodes are just a table of data. While most of this book has 
discussed links as only one or two links between nodes, 
oftentimes there are multiple links. For many objectives, 
these multiple links may be aggregated into a singular 
link. However, for some types of analyses and applica-
tions, you want to keep those many links and then have 
approaches to view, ilter, and separate diferent subsets 
of the graph based on these links. Applications where it is 
important to ind and identify a few anomalies in the data 
(such as fraud detection or cybersecurity) are examples 
where it is important to retain the individual links.  
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LINKS AND RELATIONSHIPS

At very simple level, you have undirected links. You can perform a lot of graph analysis 

at this level, and most of the examples in the book up to this point utilize undirected 

links. You have also seen a few examples with directed links.

But in the real world, relationships can be much more complex than simple directed 

and undirected links. For example, let’s say that you are a user of LinkedIn. You can 

query a particular person, and if you are directly connected, the relationship is immedi-

ately shown. LinkedIn will also show all the types of connections between you and the 

other person (for example, ield of study, skills and expertise, location, school, group, and 

so on). Figure 9-1 shows the many links between the two authors of this book. 

FIGURE 9-1: Many types of links connect the two authors  
on LinkedIn’s social network.

Most of the time, using LinkedIn, you will see only single links between people, such 

as the direct connection between the authors. However, being able to see the multiple 

links provides additional insights not available with summary links. In this particular 

LinkedIn example, the links indicate common connections based on work, school, skills, 

and groups, which could be used as a basis for starting a discussion or searching for com-

monality with other parties.
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Note that some graph software (such as Gephi) handles only one link between a pair 

of nodes (or two directed links). Other graph software (such as Cytoscape) may handle 

many links between pairs of nodes. he next few examples use Cytoscape. You must 

ensure that all the links are visibly displayed. Cytoscape, for example, contains a “level of 

detail” feature that turns of the display of ine details such as labels and multiple links 

when you are zoomed out and then turns them on when you zoom in. You can validate 

that all the links are visible by zooming in and out, or you can make all links and labels 

visible by using the View ⇨ Show Graphic Details menu.

Similarities in Fraud Claims

Insurance fraud is a signiicant problem. Although it might be perceived as a victimless 

crime, insurance fraud can afect innocent people directly through injury or damage and 

also increases insurance premiums for everyone using insurance. 

One way to explore potential fraudulent claims is to analyze similarities between 

insurance claims. One person may have multiple valid claims after a series of accidents 

or after a series of thefts. But a fraudster may attempt to obfuscate multiple claims by 

slightly altering personal information (for example, iling one claim under the name Jef 

Benson and another under the name Geof Bensen) or using slightly diferent address 

(for example, 34 Main Street versus 34a Maine Street). 

Figure 9-2 shows an export of some data from a fraud analysis system and that has 

been loaded into Cytoscape. Each node represents an insurance claim, and each edge 

represents one type of similarity between two claims. he visual attributes of the edges 

have been set so that similarities are color-coded (for example, purple for similar phone 

numbers, green for similarly named involved parties, and red for similar vehicle identi-

ication numbers, or VINs). A similarity is represented as dashed for a weak connection, 

with a solid line for an exact match. 

Notice the multiple diferent fraudulent components (that is, separate clusters). At 

the top left is a component with connections between various claims that all have sim-

ilar phone numbers (purple connection). In reality, this may not be a fraudulent cluster 

(the phone numbers could be diferent extensions from one place of business). 

he lower-left component has similar phone numbers but also has quite a few claims 

with similar VINs (red links). his may be a set of claims with people all using the 
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corporate phone number, and vehicles may have similar VINs because they may be part 

of a company’s leet of vehicles and purchased in a single large transaction. 

FIGURE 9-2: Different clusters of suspect insurance claims are linked by similarities.

In the middle of Figure 9-2, stretching from top to bottom is an interesting compo-

nent showing many similarity types and multiple connections between a pair of claims, 

including similar people names (green), similar phone numbers (purple), and similar 

addresses (brown). A number of nodes have many connections, and these highly con-

nected nodes are each somewhat unique. Notice that claim 44 (near the top) is mostly 

connected by similarly named people, whereas 55 (right) is mostly connected by similar 

phone numbers.

Claim 42 shares three solid connections (two people and one vehicle) with claim 70, 

which is likely the same vehicle and occupants (for example, a spouse), but claim 42 is 

also suspiciously linked to other claims in a wide variety of similarities. Claim 42 is a 

claim worth exploring further. 

he irst step is to investigate the immediate details available in the graph. he data 

was exported from the fraud system, including the item labels of the similarity match. 

By selecting the edges around node 42, you can see the details for each link in the Table 

panel, as shown in Figure 9-3. You will notice similar names (note that the real data has 

been modiied here to relect ictional names). Based on this set of matching names (as 

well as phone numbers and addresses), a fraud investigator may be inclined to go back to 

the various connected claims and open an investigation.
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FIGURE 9-3: Some of the connection attributes indicate similar names.

Cybersecurity

Internet security is an incredibly important topic. Massive data breaches, compromised 

credit cards, and insecure accounts grab news headlines every few months. Hackers use 

many diferent techniques to probe for weaknesses, exploit vulnerabilities, and launch 

attacks. Security personnel have a variety of tools to detect anomalies on their networks, 

which may reveal weaknesses or indicate potential attacks. hese tools generate data, 

such as log iles, where each line in the log ile indicates the IP address of source and tar-

get computers (that is, links), as well as diferent attack types (that is, types of links). You 

can analyze this information and plot it with graph software. 

Network logs can be enormous, so prior to visualizing, it may be efective to narrow 

down the scope of data, such as a particular time range, a subset of computers, attack 

types, or other attribute ilters. Figure 9-4 shows 1,000 links from an intrusion-detection 

system, with the IP addresses and speciic attack types anonymized. his has been visu-

alized using Cytoscape.

Cytoscape may show only some links and labels by default. To turn on all 

links and labels, choose View ⇨ Show Graphic Details.

Source computers (that is, potential attackers) are represented as triangles, and tar-

get computers are represented as circles. Each link indicates a single row from the log 

ile created by the intrusion software—that is, an anomalous network event that could 

be related to an attack. here are 19 diferent types of links as indicated in the legend 

T
IP
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associated with Figure 9-4. About eight to ten unique colors can be reasonably distin-

guished when used as thin lines, so line type (for example, solid, dashed, wavy, zigzag, 

arrowed, and so on) is combined with color to create uniquely identiiable lines. Even 

though there are three variations of purple lines, each one has a unique line type, for 

example, dashed purple for Spoof, solid purple for Teardrop, and an arrow line for Tim-

eout Error.

FIGURE 9-4: This graph of anomalous events on a computer network shows nodes representing com-
puters, and a wide variety of events indicated by link color and line type.

You can see many diferent components in the resulting visualization. In most com-

ponents, all the links in that component are the same color. he giant purple component 

is comprised of only two nodes and about 100 links, all of the same type. his may 

indicate some behavior that is anomalous to the intrusion system but possibly benign or 

expected by the network administrators (perhaps some form of data update or a conig-

ured download script). 

On the other hand, some components have multiple types of links. he large com-

ponent near the bottom left is shown larger in Figure 9-5. he triangle near the center 

(128.70.100.158) is a potential attacker using multiple attack types against diferent tar-

get computers (circles), along with potential collaborators (other triangles). his could be 

indicative of suspect behavior.
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FIGURE 9-5: In this visualization of a suspect component, note that the computer  
near the center generates multiple different kinds of attacks against multiple targets.

Note that other small components could represent bigger threats. Some attack types 

may be frequent but relatively harmless, whereas other attack types may be rare but 

highly dangerous and indicative of an expert attacker. Let’s assume that DNS and FTP 

attacks are important to identify. Only four DNS Overlow attacks between a single 

source and target are hidden in the ield of two-node components on the left side of Fig-

ure 9-4, and enlarged in Figure 9-6. Similarly, only two FTP attacks (shown as a yellow 

zigzag link) exist in this data, hidden in two diferent small components. 

FIGURE 9-6: Some speciic specialized attacks may be easy to miss in the larger graph shown in  
Figure 9-4.
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E-MAIL RELATIONSHIPS

Social networks are full of fuzzy relationships. You can extract and transform this data 

into multiple diferent link types to explore and better understand the relationships. Fol-

lowing are some of the many diferent sources of social data that may contain multiple 

types of relationships:

 ■ An address book or directory may provide metadata such as department, tenure, 

and responsibilities of a person. 

 ■ A sales system or customer relationship management (CRM) system may contain 

metadata such as job title, management level, responsibilities, and so on. 

 ■ Content analysis (for example, keywords in an e-mail title) may indicate useful 

information, such as products or opportunities. 

 ■ E-mail addresses can be used to diferentiate between types of e-mails (for example, 

bob@us.ibm.com is likely a diferent kind of relationship than bob789@gmail.com).

 ■ From, To, CC, and BCC can be used to identify how close the relationship is.  

A From-To relationship indicates a direct communication between two people. A 

From-CC relationship indicates a potentially weaker relationship, where a person 

may simply be informed of status.

Using one of the author’s e-mails as an example, links have been created that identify 

diferent products and strategic relationships in e-mails between a pair of people. Col-

oring link types by these relationships can then reveal who is involved in which types of 

discussions, as shown by the color legend associated with this graph in Figure 9-7. 

A subset of this graph was discussed in Chapter 5, “Visual Attributes.” Figure 9-7 

shows a much larger graph (2,000 nodes and 10,000 edges) than the previous examples. 

Here, the patterns are diicult to discern at a high level. You can see many components 

and various colors in the largest component (top right), but many overlapping links are 

obscuring each other, even when using transparency. If you want to focus on which 

people are communicating about which products, you are able to make only very broad 

generalizations about this large cluster, such as that it tends to be more blue left of center, 

more purple below center, and more reddish-brown above center. 
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FIGURE 9-7: In this e-mail graph, it is dificult to discern much more than broad generalizations.

Spatial Separation

One efective way of comparing portions of graphs is to use spatial separation. You can 

separate each subgraph of interest into its own window. Because the layout has not 

changed, you can make visual comparisons across the separate windows using the same 

landmarks in each graph to aid in orientation. Landmarks such as the Eifel Tower in 

Paris help visitors orient themselves in a city. Landmarks in a graph are particular nodes 

or portions of a graph that are visually distinct, such as a large node or a cluster of a few 

nodes that form a unique pattern. 

To create this spatial separation, you use iltering and isolation. You place each suc-

cessive iltered graph into a new network based on the selection.

In Cytoscape, the worklow to ilter and isolate is as follows:

1. Create a new ilter using the Filter tab in the Control Panel under the Select tab.

2. Deine the ilter (for example, on link type and choose the types).
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3. Add additional ilters, if needed (for example, add another link type). 

4. Select Apply Filter to select only those links.

5. Expand the selection to include adjacent nodes (Select ⇨ Nodes ⇨ Nodes con-

nected by selected edges).

6. Expand the selection to include other immediate neighbors, if needed (Select ⇨ 

Nodes ⇨ First Neighbors of Selected Nodes).

7. Make the selection a new graph in a new visualization window (File ⇨ New ⇨ 

Network ⇨ From selected nodes, selected edges).

In the e-mail graph introduced earlier, most of the product discussions occur in the 

largest component (as shown in the top right of Figure 9-7). As shown in Figure 9-8, 

using Cytoscape, you can isolate this component and separate each product subgraph. 

Figure 9-9 shows a larger, clearer version of the three product graphs, with the three 

largest nodes highlighted as landmarks in each graph to facilitate comparisons.

FIGURE 9-8: The large graph (center) has too many overlapping links to distinguish different groups. 
Each type of link is isolated and separated out in the three graphs at right. 
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FIGURE 9-9: This shows the three different product subgraphs from within the same  
e-mail graph. The three largest nodes (upper management) are highlighted in each  
graph to facilitate visual comparison between graphs.
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When you visually inspect these three subgraphs, you see that the three largest nodes 

are involved in all products—Miller, Williams, and Garcia are upper management. he 

blue product is the largest subgraph, which indicates that conversations tend to be broader, 

bringing in more people (that is, more connections) into conversations. For example, a large 

cluster on the left side represents a technology customer for that product, as well as tech-

nology-oriented discussions. he purple product contains a number of thin lines moving 

out. he furthest nodes out are customers, and conversations are very focused on only a 

person or two. he brownish-red product is quite small in terms of people and contains an 

interesting cluster above the management, which does not appear in the other two prod-

ucts. hese nodes represent a distributor who is largely responsible for selling this product.  

All the approaches discussed so far require using graph software that can handle many 

links between nodes. he rest of this chapter shows how multiple links between nodes 

can be handled by software that is limited to only one undirected link or a pair of directed 

links between nodes. his will be accomplished by transforming links into nodes.

ACTORS AND MOVIES

Another means you can use to analyze larger, complex, multilink graphs is to transform 

links into nodes. In this example, consider the Kevin Bacon game (described in Chap-

ter 4, “Stats and Layout”), where actors are connected to other actors by movies in which 

they have both been co-stars. 

Wikipedia contains data on ilms including stars in each ilm. Wikipedia’s metadata 

is organized and accessible via http://dbpedia.org, where queries can be made inter-

actively using SPARQL, a query language for databases in the Resource Description 

Format (RDF). A sample DBpedia query is shown in Chapter 8, “Lightweight Program-

ming” and discussed in more detail in Chapter 14, “Big Data.” his example is based on a 

DBpedia query that extracted a dataset of 20,000 movies and 21,000 actors on Wikipe-

dia. he raw data is a list of links, movies, and actors, as shown here: 

101 Dalmations       Glenn Close

101 Dalmations       Jeff Daniels

102 Dalmations       Glenn Close

02 Dalmations        Gérard Depardieu

A snapshot of the data is provided in the Supplemental Materials on this book’s com-

panion website. 
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You can then process the result of the query (for example, using Python, as described in 

Chapter 8, “Lightweight Programming”) into a set of nodes and set of links ready to visual-

ize. You have a couple of options with regard to how this data can be represented as a graph.

Following the general approach of this chapter, one way to see how actors are linked 

together is to have actors as nodes and movies as the links that join actors together. As 

shown in Figure 9-10, visualizing in this way directly results in a massive graph that can 

take a long time to lay out and does not reveal many insights. 

FIGURE 9-10: This graph of actors connected by movies does not provide  
many insights.
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Almost all of the graph is tied up in one giant component (top) with too many con-

nections to reveal any patterns. Other teeny clusters indicate ilms with connections 

between the co-stars but otherwise not connected to any other ilm. For example, the 

large yellow dot near the bottom center represents Adolf Hitler, which is connected to 

other Nazi generals via links that represent the movie Triumph of the Will. hese actors 

did not appear in any other ilms, which is why there are no connections to other movies. 

Another large yellow dot is labeled “Napoleon,” which seems surprising because 

Napoleon died before the era of moving pictures. In this case, “Napoleon” refers to an 

Indian actor named Kumaresan Duraisamy, whose stage name is Napoleon. his little 

example hints at some of the challenges when using open source Big Data. hough 

it is promising, you are prone to experiencing a wide variety of errors, omissions, and 

anomalies when using open source data such as Wikipedia, as opposed to a better 

curated data set.

Extracting a smaller network for a speciic analysis may be closer to a speciic objec-

tive, such as an analysis of the co-stars of Leonardo DiCaprio. Figure 9-11 shows the ego 

network corresponding to Leonardo DiCaprio. You can extract an ego network in Cyto-

scape by following these steps:

1. Select the ego node by entering the node name in the search box. 

2. Expand the selection using Select First Neighbors of Selected Node, available as a 

button on the toolbar or under the Select ⇨ Nodes menu.

3. Put the selection set into a new graph window using New Network from 

 Selection, available as a button on the toolbar or under the File ⇨ New ⇨ 

 Network menu.

4. Apply a layout algorithm to this subgraph from the Layout menu.

Each node represents an actor. Each link represents a movie in which two actors 

starred. Straight links indicate a single movie. Curved links indicate a second or third 

movie in which both actors co-starred. (You can mouse over any link to see the name of 

the movie.) he nodes are sized by the number of links the actor’s Wikipedia page has, 

and color is based on the number of times the actor appears in the overall data set. hick 

lines indicate movies that have more links in Wikipedia (for example, he Aviator or 

Inception), as opposed to movies that have few links (for example, Don’s Plum).
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FIGURE 9-11: In this representation of all the co-stars of Leonardo DiCaprio, links are drawn between a 
pair of actors that acted on the same ilm together.

he result is a data set that shows who DiCaprio has acted with, but it doesn’t show 

which movies connect people together, leaving some vital information accessible only via 

tooltips. Although it is possible to turn on the movie names, too many exist, and they 

obfuscate the display. Furthermore, overall, the scene seems cluttered with all the links 

between all the actors. However, if you remove all the links that do not directly connect 

to DiCaprio, you get an underwhelming visualization, as shown in Figure 9-12. 
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FIGURE 9-12: All the costars of Leonardo DiCaprio showing only the links to DiCaprio  
is an underwhelming visualization.

LINKS TURNED INTO NODES

Now, consider the simple LinkedIn graph discussed at the beginning of this chapter. In 

that example, the links between David and Richard are shown also explicitly as nodes. 

An alternative graph representation for the DiCaprio example is to transform the 

graph (using programming, such as Python) so that both actors and movies are nodes 

and links are used to indicate an actor starring in a movie. If you extract the ego network 

for Leonardo DiCaprio from this data set, with the irst level including movies and the 

second level including co-stars, you get a graph as shown in Figure 9-13. 

his is called a bipartite graph, or bigraph. It is called bipartite because it’s made up of two 

kinds of nodes that are never directly connected. In this case, you have actors connected to 

movies, and movies connected to actors. You must go through one to get to the other. 
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FIGURE 9-13: This version of the graph shows all of DiCaprio’s movies and co-stars.

his movie and actor data appears much cleaner and more informative when pre-

sented as a bigraph, as opposed to the two graphs shown in Figure 9-11 and Figure 9-12. 

he two connections of John C. Reilly to DiCaprio are clearly visible (via What’s Eating 

Gilbert Grape and he Aviator). What’s missing are all the connections between actors 

through non-DiCaprio movies. Also, the movies that actors share in common are explic-

itly represented as unique nodes, and the common connection is now visually explicit. 

If your graph software allows only one or two edges between nodes, you 

must transform multiple edges into nodes or otherwise summarize multiple 

edges together. Cytoscape allows many edges between nodes and was 

used in the irst set of DiCaprio graphs. Gephi allows only one edge (or two 
directed edges) between nodes and was used in Figure 9-13. 

T
IP
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Note the example shown in Figure 9-13 was created using Gephi. You can extract an 

ego network in Gephi by following these steps:

1. Use the Ego Network Filter, available in the Filter panel under the Topology 

folder. 

2. Set the ilter to the node ID of interest (for example, Leonardo DiCaprio) and 

Depth to the distance of interest (for this example, Depth was set to 2). 

3. Click the Filter button to apply the ilter.

4. Right-click one of the nodes and select Copy to…New Workspace.

SUMMARY

You can use many types of connections to join networks together. Representing these 

many connections can be a challenge, and the solution depends on the objective of the 

analysis. 

You may have scenarios in which you must see those many links between nodes, par-

ticularly in applications such as fraud or network analysis, where the objective is to sift 

through and identify anomalies or identify speciic linkages. Working with diferent link 

types can also reveal diferent subgroups within the graph. (his theme is addressed in 

more detail in Chapter 11, “Communities.”)

Furthermore, links can be transformed and represented as nodes in a bipartite graph, 

which ofers added lexibility, and can reveal diferent visual patterns when combined 

with iltering. 

Many scenarios exist where the many links between nodes can be simpliied into 

a single link and analyzed, as discussed in many of the other chapters throughout 

this book.

As the actor and movie graph was successively iltered and simpliied, simple graphs 

similar to hierarchies started to emerge. Chapter 10 discusses hierarchies. 
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10
HIERARCHIES

he word “hierarchy” means a group of individuals or 
things arranged in a speciic order. It is often associated 
with a social order found in every oice (as might be 
expressed on an organizational chart) or other organiza-
tions such as schools, associations, and so on. 

More generally, hierarchies are a special type of graph. Hierarchies have no cycles 

(that is, no loops) and can be depicted in unique ways such as treemaps and pie hierar-

chies. Hierarchies can be efective for unique types of analysis such as decision trees. 

Also, hierarchies can be extracted from more complex graphs and used as a way to orga-

nize and analyze the graph.

ORGANIZATIONAL CHARTS

Organizational charts have existed for more than a century. With the beginnings of large 

companies after the Industrial Revolution, organizational charts were recommended 

by early managers not necessarily as a tool for analysis but as a tool for command and 

control. In Graphic Methods for Presenting Facts (New York: Engineering Magazine Com-

pany, 1914), Willard Cope Briton wrote, “If such a chart is made, there will be fewer 

cases of conlict or of short-circuiting of orders.” Figure 10-1 shows an example of an 

early organizational chart.
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FIGURE 10-1: This organizational chart is for a stove manufacturing company from the 1910s. Image 
courtesy Prelinger Library (www.prelingerlibrary.org).

Source: Graphic Methods for Presenting Facts (New York: Engineering Magazine Company, 1914),  

Willard Brinton Cope. 

Organizational charts evolved from earlier genealogy charts. Some early genealogy 

charts were beautifully illustrated and conveyed a wealth of information beyond lineage. 

For example, Figure 10-2 shows the genealogy of French royalty in the fourteenth cen-

tury as published in an 1820s publication (courtesy of www.davidrumsey.com). For this 

chart, the following conventions were used:

 ■ Nodes indicate people, with black circles for men, diamonds for women, and 

crowns for rulers. 

 ■ Italics indicate spouses. 

 ■ Icons indicate date of death. 

 ■ Diamond-shaped line styles indicate illegitimate ofspring. 

 ■ Small caps indicate rulers, and all-caps denote distinct branches. 

 ■ Wider portions of the tree have unique background shading. 
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he image conveys a lot of information in a dense layout that is highly readable and easy 

to understand. 

FIGURE 10-2: This chart shows the genealogy of French royalty conveying a lot of  
detailed information via font styles, icons, and line styles. 

Source: A Complete Genealogical, Historical, Chronological, And Geographical Atlas (Philadelphia:  

M. Carey and Son, 1820) by M. Carey and M. Lavoisne. Image courtesy of www.davidrumsey.com.

You can view this map online by visiting www.davidrumsey.com/luna/

servlet/view/search?q=image_no=%221642040%22.

Like the genealogy chart, organizational charts can similarly layer in additional 

information using visual variables such as node shape, node size, line width, and so on. 

Figure 10-3 shows a chart from the 1910s Pujo Committee Report. 

N
O

T
E
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FIGURE 10-3: This chart shows J.P. Morgan’s social network from 1913. A tree depicts J.P. Morgan’s and 
other banking company afiliations across American industry, with line styles indicating different kinds 
of afiliations, and bubble size indicating market value.

Source: Arsene P. Pujo, Chairman of the U.S. House of Representatives Banking  

and Currency Committee, “Money Trust Investigation: Investigation of Financial and Monetary  

Conditions in the United States Under House Resolutions Nos. 429 and 504: 1912-1913.” 

You can view this report online by visiting publicintelligence.net/

pujo-committee-money-trust-wall-street-banking-cartel-investigation- 

1912-1913.

his chart depicts a hierarchy starting with J.P. Morgan (at the center of the chart), 

through other big inancial institutions to major American companies with the con-

nection lines indicating diferent types of relationships such as large stock holdings, 

directors, or trustees. he outcome of the committee investigation was a report conclud-

ing that signiicant resources and capital were controlled by 341 directors held across 

112 corporations by members of a small group of inancial institutions, with J.P. Morgan 

iguring in prominently. hese indings led to new extensions to antitrust laws. 

N
O

T
E



CHAPTER 10 Hierarchies 297

hese organizational and genealogical charts depict hierarchies that are a special kind 

of graph that can be useful when analyzing and depicting graphs. 

TREES AND GRAPHS

In graph terminology, a hierarchy can be called a tree. In a tree, no paths are cycles (cir-

cular paths), and there exists only one path between any two nodes. he number of links 

in an undirected tree is always equal to the number of nodes less one. Beyond the idea of a 

social hierarchy, many diferent data sets are trees or, more importantly, can be analyzed 

as trees. 

he trees shown in Figure 10-2 and Figure 10-3 are extracted from larger graphs. For 

example, the genealogy chart (Figure 10-2) has references to other family trees as royalty 

married across families from diferent countries. Or, in the case of the Pujo Committee 

Report (Figure 10-3), directors of large companies may have had connections across 

companies without being connected to J.P. Morgan.

Any graph can be turned into a tree to answer simple questions about the graph. A 

spanning tree is a graph where some of the edges have been discarded so that no cycles 

remain—leaving a tree. Figure 10-4 shows a graph and a corresponding spanning tree. 

Note that many diferent spanning trees can be created from the same graph, so the 

edges that are kept should correspond to the objective.

Joe Joe

FIGURE 10-4: On the left, you see a graph, and on the right, a spanning tree of the same graph. In this 
spanning tree, only the links that connect a node back to Joe on the shortest path remain.

Consider the graph shown earlier in this book in Figure 9-10, which showed movie 

actors connected to each other via movies in which they had acted. he graph in Fig-

ure 9-10 had a single giant component with approximately 20,000 actors. he task was 

an analysis of a speciic actor, Leonardo DiCaprio, and his connections. his resulted in a 

smaller, but still highly connected, graph. 
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Instead, you could create a tree representing all the connections to DiCaprio. he 

irst level of connection to him is his co-stars (or, in tree terminology, the children of 

DiCaprio). he next level shows people who have co-starred in movies with these people 

not including DiCaprio or his co-stars, and so on. Note that if a diferent star was of 

interest (say, Christopher Walken), the tree should be extracted again because the process 

described earlier creates the optimal tree (that is, shortest paths) for the root actor.  

Highly connected networks can be locally analyzed to a speciic node by 
extracting a tree.

Ideally, using a tool, you should be able to automatically extract the tree from the 

graph. However, for this example, a spanning tree ilter was not found in the popular 

graph visualization toolkits, so a Python script was created instead. 

he script essentially starts with a single node of interest (for example, Leonardo 

DiCaprio) and then walks through the entire list of links. If the link contains Leonardo 

DiCaprio, then that node is added to the list of links in the tree. If the link is a dupli-

cate (that is, it includes DiCaprio and the list already contains the same co-star, from a 

second movie), that link is thrown away. At the end of the irst pass, what remains is a 

tree containing all the irst-level links to Leonardo DiCaprio and a slightly shorter list of 

links. his process is then repeated, using the irst-level tree as the set of nodes of inter-

est. he process repeats for as many levels as desired. 

his results in the graph shown in Figure 10-5. At only two levels of connection, 

Leonardo DiCaprio is connected to more than 3,300 actors from the original 20,000 

actor data set. 

Popularity (as measured by the frequency of nodes occurring from the original Wiki-

pedia data extract) is used to size nodes. Larger nodes tend to occur for actors who have 

appeared in many ilms documented in the Wikipedia data set (such as Michael Caine, 

Christopher Lee, Robert De Niro, Prakash Raj, and Amitabh Bachchan). Connec-

tions can be visibly traced to DiCaprio (highlighted in green). So, for example, Don-

ald Sutherland (near the bottom) can be connected to DiCaprio via Robert De Niro. 

 Amitabh Bachchan and Christopher Lee (also near the bottom) are both two steps away 

from DiCaprio and can be connected via Ben Kingsley. 

T
IP
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FIGURE 10-5: You can see actors connected to Leonardo DiCaprio within two steps.

he actor network is a type of graph known as a small world network, which means 

that there are many connections in the graph, and within a few steps, many of the other 

nodes can be reached. Using the Python script to extract the tree, you can ind that the 

connections to Leonardo DiCaprio expand rapidly as follows: 

 ■ he irst level results in 102 direct connections to DiCaprio. 
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 ■ he second level (shown in Figure 10-5) connects DiCaprio to 3,393 actors, either 

directly connected or only one step away. 

Six Degrees: The Science of a Connected Age (New York: W.W. Norton & Com-

pany, 2003), a book by Duncan Watt, uses academic research on graphs 

(such as small world networks) and presents them along with real-world 
examples in an easily readable format for a general audience.

 ■ he third level expands to 13,310 actors—already encompassing more than 60 

percent of the actors in this component. 

So, while a tree-based approach can help ilter out the complexity of the graph to 

answer some questions local to a node, in this type of small world network, even a tree 

will rapidly expand and can become diicult to draw. Interestingly, there are many more 

possible ways to draw a hierarchy than simply using a node-link representation.

DRAWING A HIERARCHY

You can draw hierarchies in many diferent ways and use them to reveal diferent pat-

terns. One very common business use of hierarchies is aggregations of constituent com-

ponents—for example, sales of various products by category, cost of all the constituent 

elements that make up a product, indexes composed of stocks by sector, contributions to 

proitability by business unit, or organization of a workforce.

Instead of using a node-and-link representation, a treemap or a hierarchical pie chart 

can be used to represent a hierarchy. A node-and-link representation has a lot of space 

between nodes, whereas the treemap and pie hierarchy ill the space. In the case of the 

treemap, rectangles indicate quantities, and thick boundaries diferentiate between levels 

in the hierarchy. For the pie hierarchy, wedge sizes indicate quantities, and successive 

subdivisions from the center out indicate levels of hierarchy. 

Figure 10-6 shows the same hierarchy drawn three times depicting a grouping of the 

United States in 1800 with objects sized based on the population of each state.

T
IP
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FIGURE 10-6: The same hierarchy of U.S. states from 1800 is shown as  
a node-and-link hierarchy (top), treemap (left), and hierarchical pie  
chart (right).

Figure 10-7 shows a treemap of data from occupations in the United States based on 

data from the U.S. Bureau of Labor Statistics as of 2010 (www.bls.gov/oes/). Each rect-

angle is sized by the number of people with that occupation and colored by the median 

income ranging from dark blue (earning $20,000 or less per year) to light green (earning 

more than $125,000 or more per year). 



PART 3 Visual Analysis of Graphs302

FIGURE 10-7: This treemap shows occupations in the United States with size indicating number of peo-
ple employed, and color indicating income.

he treemap makes it very apparent which occupations have the most people (for 

example, retail salespersons, near the lower left) and regions of high income (for example, 

management, a set of rectangles near the middle bottom, mostly green). Food prepara-

tion (a group of rectangles near the top left) is almost uniformly colored by low wages—

despite the glamour associated with food preparation on U.S. reality television shows.

Color encoding where the brightness consistently increases while the hue 

slightly varies can provide more distinctly perceivable levels than just varying 
brightness. This also orders the patterns perceptually so that brighter colors 

always represent a higher numeric value than a darker color. 

A treemap can be very efective for displaying two variables by size and color. How-

ever, some deiciencies may make it diicult to answer some types of questions. For 

example, although each square is apparent, the median for a group is not discernible. 

Sales (lower left) exhibits quite a bit of variability, including some higher-income orange 

T
IP
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and even a bit of green, whereas Construction (upper middle) tends to be largely purple. 

he question of which group has the higher median income cannot be answered by this 

treemap. 

Instead, a hierarchical pie chart (sometimes referred to as a sunburst chart) can be 

efective for showing intermediate aggregations. Figure 10-8 shows the same occupation 

income data set with the same color scheme. he outer perimeter shows the individual 

occupations (the leaf nodes), and successive levels toward the center indicate successive 

summaries. 

FIGURE 10-8: This hierarchical pie chart shows occupations sized by number employed and  
colored using median income.
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For example, near the 7 o’clock orientation, you can see some labels at the perimeter 

with occupations such as First-Line Supervisors of Retail Sales, Cashiers, Retail Sales 

Sales Representatives, and so on. Moving closer toward the center, you see a wedge 

labeled “Sales and Related,” which corresponds to the aggregation of all the outer wedges 

connected to it. 

Looking at the chart, you can answer the previous question regarding median income 

of Sales versus Construction. Near the bottom (at the 7 o’clock orientation), Sales is blue, 

while Construction on the left (at the 10 o’clock orientation) is purple, meaning that 

Construction has the higher median income.

Note that the individual occupations are now slivers around the perimeter and vary 

in size indicating the number of people employed in an occupation. Some slivers are 

thin and diicult to discern. Interactive versions of hierarchical pies allow the user to 

drill down and drill up by clicking wedges (to drill down) or the center (to drill up). his 

enables the user to explore large hierarchies. 

To see an example of this, visit www.jasondavies.com/coffee-wheel/. 

Both treemaps and hierarchical pie charts are efective at showing two data attributes 

via size and color. A node-and-link graph can display the tree data and potentially use 

more visual attributes to convey additional information. Figure 10-9 shows the use of the 

same data as a graph. Cytoscape provides a wide variety of visual attributes that can be 

used to encode data, and here the node outline has been made wider and colored to indi-

cate change in income.

In the node-and-link graph view, the intermediate nodes are prominent, just as they 

were in the hierarchical pie chart. he additional outline color indicates the change in 

median income over the 10-year period from 2000 to 2010, a period when many jobs 

were moved ofshore. 

Outline color is dark gray between 0 percent and 30 percent change in income. 

Because the threshold over the 10-year period was 30 percent, 30 percent is set as the 

Consumer Price Index (CPI), a widely used measure of inlation. Efectively, a change in 

income under 30 percent does not keep up with inlation. 
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FIGURE 10-9: This shows occupations in a node-and-link graph, sized by number employed, and colored 
by median income. Also, an outline color per node indicates change in income between 2000 and 2010.

An actual decline in income is shown in bright red and can be seen scattered across 

a few occupations in diferent sectors such as Coaches, Chiropractors, Locomotive Fir-

ers, Forest Fire Inspectors, and Door-to-door Salespersons. On the other hand, bright 

green outlines indicate median income growth above the rate of inlation, and these can 

be seen clustered in a few major occupational areas (such as Management, Business & 

Finance, Life Sciences, and Architecture & Engineering). 
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Note that the color scheme chosen for the nodes ranges from a very dark blue to a 

very light green—creating a conundrum for labeling. Reading text depends on the con-

trast between the text and the background. One solution is to adjust the range of colors 

for the nodes so as not to be so dark. But this is not feasible here because the colors 

should be the same across all three diferent visualizations in order to be comparable. 

Instead, a white outline is added around the text to clearly separate it from dark nodes. 

When using text with outlines, use a heavy font such as bold or black; otherwise, thin 

font details can disappear.

Note that the leaf nodes are now much smaller and more diicult to read. If detail is 

required, interactive zooming is needed (for example, PDF output can be easily zoomed) 

or printed out to poster size.

DECISION TREES

Decision trees predict an outcome by dividing data by successive criteria, forming a hier-

archy. he game “Twenty Questions” works like a decision tree. With each successive 

question, the player attempts to eliminate a signiicant portion of possible answers. Each 

decision point is a branch in the tree. he best strategy is to ask questions that quickly 

narrow down the possible answers.

he approach is often used in database marketing, where data attributes such as age, 

income, gender, and employment are used to make marketing decisions such as which 

credit card ofer to mail out to a prospective customer. Perhaps you’ve been on a phone 

call with a cable service provider to address some concern and been ofered an Internet 

upgrade, followed by an ofer for additional channels. A decision tree has been created 

and is being used to prompt the call center operator to make successive ofers. If done 

well, the caller is receiving ofers that are meaningful and relevant. 

Decision trees can be created out of a wide range of data where a sequence of deci-

sions can be derived either directly from a given observed sequence or generated algorith-

mically (for example, in statistical software solutions such as R or as libraries for general 

programming languages such as the package DecisionTree for Python). 

One interesting example of the former comes from professional sports. Players make 

decisions during gameplay, and a sequence of decisions can then be analyzed to see if 
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there is some commonality. Ofensive strategies require some degree of uncertainty to 

make it more diicult for the defending team to plan its response. As Major League 

Baseball pitcher C.J. Wilson has said, “Pitchers fall into traps. hey get predictable with 

pitch sequences.” 

Sports data has become more widely available, and you can use this data to create a 

decision tree. For example, National Football League (NFL) fans collect and organize 

play-by-play data and also create programs to parse, extract, and summarize the data. 

For an example of a collection of play-by-play data, see archive 
.advancedfootballanalytics.com/2010/04/play-by-play-data.html. For an 
example of a program used to parse, extract, and summarize the data, see 

https://github.com/10low/playbyplay.

Based on this play data, you can construct a decision tree for each team to see the 

sequence of decisions on whether to pass the ball or run the ball for each down. Ideally, 

a team would not have a visible pattern (such as always passing on the irst down and 

always running on the second down). 

Using a simple Python script, you can count the number of plays in each sequence, 

as well as record the average number of yards gained. Each successive node records the 

data for that sequence. For example, a irst-level node may indicate a irst-down run, and 

a second-level node may indicate the previous decision followed by the current decision 

(for example, a irst-down run followed by a second-down pass, and so on). he output is 

a tree that can then be visualized using Cytoscape, as shown in Figure 10-10.

In this example, each team has a decision tree summarizing pass versus run over the 

2011 NFL season. Each level in the tree is a successive down. he irst split indicates the 

decision at irst down, the second split indicates the next decision at second down, and 

so on. For each split, there can be a pass (triangle) or run (circle), or neither (an octagon), 

which indicates a play that was something else (such as a kick, a sack, or data that was 

undetermined). he color indicates the average yards gained for that play type. 
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FIGURE 10-10: Pass or run decision trees for 2011 NFL conference inal teams help users discern any 
patterns.

Looking only at the irst down, you can see that Baltimore and San Francisco both 

tended to run a bit more than pass, whereas the opposite is true for New England and 

New York. Also, the irst-down pass for New England and New York both tend to be a 

brighter cyan color than the passes for BAL and SF, indicating that the New England 

and New York teams gain more yards on average than do Baltimore and San Francisco 

for a irst-down pass. At this irst level, you can determine that New England and New 

York are strong passing teams. 

Comparing the next level splits takes a bit more visual efort. Looking at San Fran-

cisco, for example, while irst down is split with a slight bias toward runs, at the next level, 

the sizes of triangles and circles is fairly similar, again with a slight bias toward runs.

Looking at Baltimore, on the other hand, you can see a diferent pattern. On the irst 

down, Baltimore tends to run. But on the second down, all the second-down triangles 

tend to be bigger than the corresponding run circles. his leads to the observation that 

Baltimore uses more runs for the irst down and more passes for the second down. 

You can also visually compare speciic sequences. For example, you can see if a team 

does a irst-down pass followed by a second-down pass or whether (for all teams) third 

down is more likely to feature a pass instead of a run.
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his example is a naïve analysis of NFL plays because it does not take into account 

the game state (for example, how many yards to reach a irst down or how many yards 

the team is away from scoring a touchdown). hese other factors will also have an impact 

on decision-making. However, this example illustrates how you can use the approach to 

reveal patterns in decisions and, in the case of football, how teams might determine a 

defensive counter-strategy. 

To complete the story, New England and New York (both shown to be strong 
passing teams) defeated Baltimore and San Francisco in their respective 
conference inals. The Super Bowl pitted New England against New York, 
whose decision trees show similar run and pass behavior. In a closely con-

tested game, the New York Giants won the Super Bowl.

All the tree representations shown so far in this chapter depict only the tree. However, 

as shown in some of the examples, the trees may be extracted from more complex graphs. 

Tree representations can be helpful for analyzing these more complex graphs as well.

WEBSITE TREES AND EFFECTIVENESS

Websites are complex containers that mix together a wide variety of content and various 

interactions. Each click by the viewers on the website represents valuable information 

about what content is being viewed. More importantly, this information can also be used 

to understand what’s working and what’s not working—that is, portions of a site that are 

efective and how people are actually traversing the site. 

Although a site may be made up of thousands or millions of pages, a site can often be 

thought of as a hierarchy, and most websites have a site map that is an explicit hierarchy 

showing the organization of the content of the site. All the pages on a website slot into a 

particular node within a site map. hus, you can use a tree to represent all the content of 

the website as a hierarchy. 

From a website analysis perspective, then, you can use this site map tree to collect and 

organize information about the site. For example, at a simple level, nodes can contain 

data such as the number of pages associated with them, the number of page views, or the 

average dwell time.
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Figure 10-11 shows the website of an appliance manufacturer, organized following 

a site map. Nodes represent diferent portions of the site. Node color is the measure of 

efectiveness, ranging from light green (highly efective) to dark red (inefective). Efec-

tiveness can be measured in many diferent ways, such as explicit surveys (for example, 

“How would you rate your visit today?”) or implicit surveys (for example, “How long did 

this visitor spend on the site?” or “How frequently was a particular page the exit page 

for a visit?”). his visit-oriented data can then be attributed back across all the pages that 

were part of a visit, giving a score per page. hese page scores can then be rolled up per 

each site area, providing a sense of the efectiveness of various site sections. 

FIGURE 10-11: To show website effectiveness, nodes are sized by visits and colored  
by percent of effectiveness.

From the snapshot, it appears that the Products section (at the bottom) is ranked 

fairly efective, although Kitchen appliances are clearly more popular (more visits) and 

more efective (lighter, greener) than Laundry appliances. Some website sections (such as 

Finance) are universally red, while subsections of the Support website range from highly 

efective to poor. his tree diagram of the site can be very useful as shown here, and the 

same approach can be used to show more levels of a website. 
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A website tree can also be used to layer additional information on top of the tree. 

Because paths may move along the same branches as the tree, graph software that sup-

ports multiple simultaneous links is required (such as Cytoscape). First, all the links 

except for the web hierarchy must be iltered out so that the hierarchical layout can be 

applied. hen, you must restore and reilter all the links and then reilter them again, this 

time to leave only the hierarchy and speciic path. To diferentiate between the tree and 

the path, you must apply visual attributes such as color, line style, and line thickness. 

Figure 10-12 shows a path for a single visitor depicted as tiny blue arrows on top of 

the tree. his is a visitor that starts at the landing page on the left, moves through the 

homepage into the Product section, and explores Refrigerators, Ovens, and Dishwash-

ers. he visitor then proceeds to the Research section but backtracks to the Refrigerators 

and then proceeds onto the Dealer section and utilizes the Search Inventory section. 

his way of showing paths raises some interesting questions. For example, if the site was 

designed to facilitate forward progress from product overview to research, why did the 

viewer need to return from activities in the Research area back to the Products area?

FIGURE 10-12: The path of a single visit through the website is  
shown in a line with blue arrows.

Rather than looking at paths of individual customers, you can aggregate path data. 

Some website analysis software may have visualizations of a sales funnel, which is a view 

of the number of customers at each step in a sales process (for example, shopping cart, 

address entry, credit card entry, and purchase conirmation). It is called a funnel because 
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the number of customers at each stage of the process is typically fewer than the previous 

step, and when drawn as a bar chart, the successively smaller sizes may resemble a funnel. 

A more holistic view of the customer is the customer life cycle. Over the course of the 

customer’s experience with the company, the customer may have diferent objectives, 

such as learning about products, researching products, inding a store, getting help, or 

seeking service for the product. A customer life cycle can be thought of as a process pro-

ceeding through progressive stages of a relationship from initial courtship through to a 

loyal customer using ongoing services. In the tree shown in Figure 10-13, you can see the 

customer life cycle as an idealized counterclockwise low. 

FIGURE 10-13: This website tree also shows a counterclockwise  
customer life cycle.

To analyze the life cycle, you can ilter aggregate lows for speciic regions of the 

site. In this case, the edge data has additional columns that indicate if a particular edge 

belongs to a particular step. You can also tag lows to diferentiate forward lows from 

backward lows—the assumption being that building a relationship involves forward 

lows through the life cycle, while backward lows may indicate problems with the rela-

tionship or problems with the website that make it diicult for prospective customers 

to follow the planned sequence. Again, some efort is involved with creating ilters to 

remove all the edges that are not of interest and to set up all the visual attributes. 

Figure 10-14 shows the all the lows to the Research section of the site, with back-

ward lows indicated by arrows. 
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FIGURE 10-14: This shows all the flows to the Research portion  
of the website. Backward progress is shown as arrows.

Because Figure 10-14 is still complex with many overlapping links, you can apply addi-

tional iltering to remove forward lows and/or thin lows to result in an image similar to Fig-

ure 10-15. his image now shows the non-forward lows as arrows—for example, many lows 

from the research conigurator step go backward to the product step. Perhaps this indicates 

some confusion regarding the conigurator step resulting in people going backward.

FIGURE 10-15: This uses arrows to show all the backward flows  
associated with the Research portion of the website.
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Similarly, in Figure 10-15, there are many links not only back to Research from areas 

such as Finance, Locate, and Connect, but also from areas such as Replacement Parts 

and Warranty.

A much more complex low-based analysis is discussed in Chapter 12, “Flows.” Also, 

complex analyses that have some sense of hierarchy, some sense of low, and a lot of il-

tering are not necessarily easy to create and analyze using freeware graph software. You 

should expect to expend some efort organizing data and adapting to the iltering and 

layout constraints of the software. Or, consider investigating specialized software solu-

tions that exist for particular applications such as customer life cycle analysis.

SUMMARY

Tree drawing has been with us for a long time. Trees can clearly and unambiguously 

show a hierarchy of relationships, such as organizational charts, family trees, and deci-

sion trees. Or, a tree can be extracted from any graph—family trees are actually graphs 

where the authors have chosen to show only edges directly related to one immediate 

lineage. 

Trees can be drawn with a minimum of overlap to create visually clear diagrams. 

Furthermore, the many diferent ways to draw a tree can be used to reveal diferent 

aspects of the hierarchy and the data. 

You can use trees as an efective organizing device. A tree layout can be used to orga-

nize a complex graph and then used as a template for drawing other types of links on top 

of the tree.

However, for some types of analysis, such as understanding clusters that exist in 

graphs, other approaches are needed. Chapter 11 discusses techniques to identify and 

analyze clusters in graphs. 
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11
COMMUNITIES

One of the most valuable applications of graph visualiza-
tion and analytics is to explore community structure in 
large data sets. As shown in Figure 11-1, by organizing 
individual nodes into communities, you can see who or 
what is related from the 10,000-foot level. Good visuali-
zation can express what communities exist, their relative 
sizes and key characteristics, as well as how they relate to 
each other. When needed, visualization can also reveal 
who or what members belong to each community, or to 
which communities a member belongs. Analytics can tell 
you how cohesive a community is or how representative 
certain members are.
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FIGURE 11-1: One of the primary uses for visualization of large graphs is to analyze community struc-
ture. Each cluster of nodes in this diagram reflects a community.

Knowledge of community characteristics and relationships is essential to any 

 customer-driven business, especially when correlated with customer behavior. For 

 example, when you can determine the deining qualities of your best and worst customers 

or discover purchasing patterns for diferent customer proiles, you can then optimize 

sales through better targeting strategies. And when you understand the way in which 

diferent types of clients tend to respond to promotions and experiences, you can better 

tailor services and improve performance, and ultimately increase revenues.
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In the age of social media, understanding key social community inluencers can be 

important to building and maintaining a positive company image and reputation for 

many businesses. Knowing which opinions matter most, and to which social groups, 

enables you to focus and tailor your marketing eforts and determine when rapid action is 

required in response to developing negative chatter.

You can also direct community analysis inward on your own performance to reveal 

patterns in the success or failure of business initiatives. Like a medical scientist who 

seeks to identify factors behind illnesses and to understand how they afect various com-

munities of people, you can use insights into communities of company projects to iden-

tify key performance drivers and institute changes that will positively afect the health of 

the business.

his chapter begins with a deinition of community, introduces graph clustering, 

and steps through an example social media application beginning with the ingestion of 

data. Layout, color, and iltering techniques for visualization are then described. Aspects 

of community detection algorithms are deined, and one is chosen for the exercise. he 

example continues with community topic analysis, followed by an introduction to cliques 

and use of convex hulls. By the end of this chapter, you should be familiar with basic use 

of NodeXL and Gephi, as well as key techniques for visualizing and analyzing commu-

nity structure.

WHAT DEFINES A COMMUNITY?

In graph data, a community is a cluster of nodes with a relatively high density of internal 

connections, as shown in Figure 11-2. In technical terms, it is a set of nodes with high 

modularity. Communities may overlap each other. hey may also be nested, such that 

higher-level communities are formed from more localized communities.

Visualization can be indispensable when trying to understand the nature of identi-

ied communities and their collective structure. heir makeup, their relative distance, 

and how they overlap (and to what degree) are all aspects that are diicult to describe in 

words, but that are naturally expressed visually. 

Graph community visualization works similarly to many kinds of geospatial visuali-

zation in that the spatial coordinates of a node or data point are not important at the 

individual level, but rather in how they visually resolve into neighborhoods and geopo-

litical structures in the aggregate. It is, however, fundamentally diferent in that those 
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neighborhoods and communities cannot be identiied by their locations. Because spatial 

location in a graph is abstract, community characteristics must be visually expressed in a 

diferent way.

FIGURE 11-2: Graph communities are sets of densely connected nodes, illustrated  
here by color.

here is no one precise mathematical deinition of a community, nor is there one 

single approach for detecting one. he suitability of a technique depends on the nature 

of the data and the problem you are trying solve, and algorithms must often be tuned in 

individual cases for best results. he following two sections illustrate two common ways 

to look at community, clusters, and cliques, using the same case study data set.

GRAPH CLUSTERING

he most common computational approach to community detection is to use graph clus-

tering. Clustering is a goal-driven process by which sets of similar elements are grouped. 

Algorithms for achieving those goals vary, as do the goals themselves. One goal may be 

to organize data into a certain number of discrete clusters of similar elements. For exam-

ple, it may be useful to organize customers into 10 to 12 proiles. A diferent goal may 

be to create clusters of a certain size. An online store, for example, may wish to ind 10 

books similar to the book a customer is interested in.
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Graph clustering is a specialized form of clustering that uses graph structure to iden-

tify communities of nodes that are closely linked. Like all clustering, it is goal-driven. 

A goal may be to identify a limited number of connected subgraphs in a large data set to 

highlight top-level communities that are otherwise diicult to see. Or, it may be to make 

a graph easier to understand by simplifying areas that have dense connection internally 

but sparse connection externally. Fundamentally, clustering provides a higher-level read-

ing of graph structure in large graphs in order to make higher-level observations. 

A Social Network Case Study

On November 3, 1995, the Toronto Raptors played their irst basketball game in 

National Basketball Association (NBA) history, winning 94–79 over the New Jersey 

Nets. he Raptors, along with the Vancouver Grizzlies, represented the most recent 

NBA expansion teams and the irst to cross the U.S. border into Canada. It marked the 

return of professional basketball to the province where its inventor, James Naismith, 

grew up and to the city where the irst-ever NBA game was played. While the Grizzlies 

struggled to ind success, eventually relocating to Memphis, the fortunes of the Raptors 

were to soon soar on the wings of popular star player Vince Carter, famous for his elec-

trifying slam dunk prowess. 

he following years saw the end of the Carter era and the dawn and sunset of the 

Chris Bosh era in Toronto. Bosh was a perennial All-Star player and the face of the 

franchise before he left to join an emerging championship team in Miami. With his 

departure in 2010, the team was left with the challenge of rebuilding an identity. Under 

new management, the 2013–2014 Raptors began the season banking on maturing young 

talent and the signing of high-scoring Rudy Gay from Memphis. A new marketing rela-

tionship was also announced. Internationally successful hometown rap artist Drake was 

introduced as team ambassador, bringing energy and star power to the building process.

After a slow start to the season, the team’s general manager, Masai Ujiri, wasted little 

time in unloading Rudy Gay and his high salary to the Sacramento Kings, a move that 

was perceived by many as a plan to bail on the current year, inish low in the standings, 

and maximize the chances of signing prospect Andrew Wiggins. Wiggins was a market-

er’s dream, an exceptionally talented 18-year-old widely projected to be the irst overall 

pick in the 2014 draft (a future he would soon fulill) and a potential franchise NBA 

player. Wiggins was also a hometown boy, born and raised in Toronto.
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A funny thing happened, though, when the Raptors traded Rudy Gay. hey started 

winning. hrough a combination of athleticism and renewed commitment to work ethic 

and team basketball, by the end of January 2014, Toronto had climbed from the bottom 

of the standings to third place in the Eastern Conference, winning twice as many games 

as they lost along the way. here was something else that they found along the way: their 

identity. 

he fan community was buzzing with excitement. Team management may well have 

been motivated to ind out what that buzz looked like. Who was talking about the team, 

and what were they saying? What personnel and marketing moves generated the most 

excitement? he NBA has more than 200 million followers on Facebook and Twitter 

across all of its league, team, and player pages. As the following examples show, graph 

visualization can be used to give visual form to social media data, providing opportunity 

for exactly this kind of analysis.

Social Media Using NodeXL and Gephi

he NodeXL plug-in extends Microsoft Excel with capabilities for ingesting and prepar-

ing graph data for display. Using the Social Network Importer extension for NodeXL, 

you can extract data easily from Twitter and Facebook for further processing and export 

it in common graph format for importing into graph visualization tools like Gephi. 

If you haven’t yet installed the NodeXL and Social Network Importer, 

you can download them from http://nodexl.codeplex.com and http:// 

socialnetimporter.codeplex.com. Version 1.0.1.251 of NodeXL and ver-

sion 1.9.2 of Social Network Importer were used for this exercise.

From the Windows Start menu, ind the NodeXL program folder and open NodeXL 

Excel Template. Select the NodeXL ribbon, and on the Data ribbon group click  

Import ⇨ From Facebook Fan Page Network. 

A dialog box (Figure 11-3) appears. Before attempting to conigure the options, 

click the Login button at the bottom and type in your Facebook credentials. In the Fan 

Page input box, type Toronto Raptors, and select the matching result. Click the option 
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for “Based on co-comments,” and limit the sample to a one-month time range from 

12/15/2013 to 1/15/2014 and 15 comments or likes per post. Click Download to begin 

fetching the data. 

2

3

1

FIGURE 11-3: To import social media from a Facebook fan page, click to log in (1),  
type the name in the Fan Page box (2), and select it. Conigure the network type,  
sample range, and limit count (3).

When it completes, you will end up with two worksheets populated with people who 

commented on the same posts. As shown in Figure 11-4, the Vertices worksheet will be 

populated with people who commented on the Raptors fan page (about 1,600), and the 

Edges worksheet will be populated with a list of every two people who commented on 

the same post (about 15,000).

For each fan, the Vertices worksheet will include a name and photo, as well as 

demographic attributes such as sex and locale. It will also include a concatenated collec-

tion of all comments made by each fan in the “Tweet” column. his will be an ideal place 

to do a little more analysis on the comments, but it’s a good idea to get a visual look at 

the data irst and see whether your sample is the right scale to give you some insights into 

community structure. 
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FIGURE 11-4: Importing Facebook data will populate the Edges and Vertices worksheets with people 
who commented on the same posts.

You might have already noticed that NodeXL includes some basic graph-plotting 

capabilities, which can sometimes be useful for validating any data processing and 

enhancements you are working on in the spreadsheet. However, to make any sense of a 

graph this size, you will probably want to import it into a visualization tool like Gephi. 

Under the NodeXL ribbon, click Export ⇨ To GraphML File… to save the ile in a 

common graph ile format.

Open the saved ile in Gephi. A dialog box appears with options for interpreting 

the data. Choose Undirected as the link type, and proceed to inish the import and plot 

the resulting graph. If what you see looks like nothing you recognize (an indecipherable 

mess, as shown in Figure 11-5), congratulations, you have coughed up your irst hairball. 

Because the graph ile does not yet have coordinates assigned to the nodes, Gephi has 

distributed them randomly. Additional efort is required to make sense of the graph, 

starting with the application of layout. 
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FIGURE 11-5: Without the application of community-oriented visualization techniques,  
large graphs tend to look like meaningless hairballs.

If your graph has a hairball problem, you will need to tease out clusters visu-

ally through the use of layout, color, and other techniques.

Layouts that Cluster

he term cluster by deinition implies a spatial relationship. In common usage, the term is 

understood to mean a group of similar entities positioned (or occurring) closely together. 

Typically, in cluster algorithms as well the relative similarity of elements is represented 

mathematically as a distance. Like grapes on a vine, elements form a distinguishable 

cluster if collectively they are relatively near each other. 

T
IP
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It is easiest to understand clusters if they are visualized spatially. Fortunately, graph 

layouts that are particularly good at isolating clusters are available. In a sense, all 

graph layouts cluster linked nodes together, because one of the primary goals is to pro-

vide optimal clarity by minimizing crossover and overlap. However, some layouts do a 

better job of detangling hairballs than others. One of these is OpenOrd. 

OpenOrdLayout is a Gephi plug-in that doesn’t come with the base software 

download, so if you haven’t already installed it, go to the Tools menu, select 

Plug-ins, and look for it in the list of Available Plug-ins.

Select OpenOrd in the Layout pane of the Overview task mode. As with other 

Gephi layouts, highly technical options for ine-tuning are available, but in most cases, 

the default settings are efective. Click Run to watch OpenOrd animate through sev-

eral layout stages and complete. If the graph is now spread a little too thin relative  

the size of nodes, ine-tune it by running Force Atlas 2 for two or three seconds and 

then stop it. 

Force-directed algorithms like Force Atlas 2 use repelling forces between nodes and 

attracting forces along links to iteratively propel nodes into optimal positions. While 

they are computationally expensive and often have trouble disentangling “knotted” 

graphs, they can be ideal for reining layouts once a faster, more aggressive algorithm 

like OpenOrd is used to unbind and isolate clusters.  

Once a satisfactory layout is achieved, switch to Preview task mode, change the edge 

opacity to 20 percent, and click the Refresh button to update the visualization.

When working with a large graph in Gephi, you will need to make regular use 

of the higher-quality rendering and link opacity control provided by the Pre-

view task mode to get a good look at what you have so far.

What you will see in the resulting graph is that the layout has pulled together dis-

cernible community clusters, some in the middle and some on the edge (Figure 11-6). 
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Clusters in the middle represent communities of people who often post together but who 

also post more regularly with others as well, whereas clusters on the periphery do not. 

he largest nodes represent people who participate in the most posts. hey are social 

connectors in the Raptors fan base—those who are investing the most time and who are 

potentially among the most inluential. From a business perspective, these are particu-

larly interesting fans.

FIGURE 11-6: Layouts like OpenOrd pull clusters together spatially, revealing community structure.
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Using Color to Characterize Clusters

One node in the middle is larger than all the others—a primary social connector. Using 

the Edit feature, you can click the node to see a list of any details known about that 

person. 

One of the interesting details that may catch your eye in this case is that the “ number 

one” fan is a woman. Suspecting that a signiicant percentage of basketball fans are 

men, you may wonder whether a pattern exists between gender and social connection 

in this data. 

In the Overview task mode, select the Partition tab. As shown in Figure 11-7, the 

Partition tab provides controls to map a color from each unique data attribute value, 

whereas the Ranking tab provides controls to map a range of colors or sizes to a range of 

scalar values in the data. 

FIGURE 11-7: The Partition tab maps node and edge  
attributes from categorical data values.

Under Partition, select Nodes. Click the refresh button beside the drop-down menu, 

and select Sex. A list of unique values for gender appears, along with the frequency of 

occurrence, conirming your suspicion that more men are on the fan page than women. 

Choose culturally intuitive colors for gender (such as pink and blue), and a neutral reces-

sive color (such as white or grey) for null (unspeciied) values. Click Apply to see the 

results shown in Figure 11-8.
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FIGURE 11-8: Mapping color to node attributes such as gender in this example expresses facets of each 
cluster.

The three most important considerations in choosing colors are cultural 

associations, discriminability, and relative salience (how much it ūpopsŬ). 
Chapter 16, “Design,” includes more guidelines on color and other design 

choices.

T
IP



PART 3 Visual Analysis of Graphs328

he resulting visualization reveals the super-fan as a large pink node in the middle, 

with other female fans in pink spread throughout. Other pink nodes are social connec-

tors, but if they are any more likely to be connectors than men, the diference is subtle. 

You can conirm this more precisely if desired by calculating graph statistics like average 

degree and centrality for both men and women. In NodeXL, you can calculate these sta-

tistics for each node in the workbook by running Graph Metrics and then subsequently 

analyze them using column ilters and standard Excel statistical formulas.

Visualization reveals complex patterns visually that you can conirm more 
precisely through statistical calculation.

Another observation you may note is that the pink nodes are evenly distributed 

across the graph. Women in this sample do not seem to be any more likely to comment 

together. In fact, the opposite seems to be true—or is it? Filtering may provide a clearer 

picture. 

Find the Filters tab, and locate the Partition ilters in the Attributes folder. Drag 

the Sex ilter into the Queries pane below it. Check the “female” box and click the Filter 

button to hide the other nodes.

Now you can see which female fans are connected to other female fans. However, 

because the majority of nodes have been removed, you can no longer rely on spatial lay-

out to see whether or not they belong to the same communities. To proceed with more 

advanced analysis, each node will need to be explicitly associated with a community.

Community Detection

Computational community detection is a fertile area of scientiic research. Many algo-

rithms have been written to identify communities, with various strengths and weak-

nesses and representing a wide variety of approaches. All of the following can be factors 

in choosing the most useful algorithm in any given situation:

 ■ Desired count—his is the approximate number of communities that are infor-

mative and useful to display. In mathematics, this is often expressed as the 

 variable k.

T
IP
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 ■ Minimum criteria—While count is important, communities should still be held 

to a threshold of validity. If roughly seven is ideal for display but the fourth, ifth, 

sixth, and seventh are communities only by the loosest of deinitions, it may be 

better in some cases to identify only three.

 ■ Factoring in link weight—In most cases stronger links between nodes should be 

interpreted as tighter community bonds. his can be factored into computation. In 

technical terms, link strength in graphs is often referred to as edge weight. Links 

may, for example, be weighted by the number of transactions between two nodes 

or by the total value of all transactions if they vary in size.

 ■ Consideration of node similarity—In some cases, it is useful to identify com-

munities not only by how tightly they are linked but also by factoring in similarity 

of node attributes (such as demographic proile). For example, a cluster of closely 

associated, mostly middle-income Baby Boomers may be more actionable from a 

marketing perspective than simply a cluster of tightly linked customer accounts of 

all varieties.

 ■ Overlapping or discrete clusters—In reality, communities often overlap. How-

ever, for the purposes of analysis and decision making, it can sometimes be more 

useful if each node is assigned to only one cluster. In such cases, it is often com-

mon practice to assign all remaining nodes to an additional cluster representing 

“other.”

 ■ Compute time—Some algorithms are inherently more time consuming to calcu-

late than others. Depending on the size of the data set, a trade-of between time 

and quality may be required. Some algorithms are designed for this and work on a 

progressive reinement basis, which the user can monitor and stop when he or she 

achieves a satisfactory quality of result.

You can download many experimental community detection algorithms as plug-ins 

in graph tools like Gephi or Cytoscape. he Louvain modularity algorithm, however, 

provides one of the best balances of general utility and performance, making it a good 

choice as the core implementation of community detection in Gephi. Louvain strengths 

include relatively simple control over the number of communities, consideration of link 

weight, discrete classiication of all nodes, and relatively fast computation.
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In the Overview task mode, select the Statistics tab and click the Run button beside 

the Modularity statistic to execute the Louvain algorithm. Leave the option to use 

weights checked to consider strength of connection between members. You can use the 

resolution factor to control the number of communities into which the graph will be 

resolved. A setting of 1.0 is a good starting point, but return later to experiment with dif-

ferent values. Proceed to run the algorithm, assigning each node to a community.

Using Color to Distinguish Clusters

You can use color to characterize clusters that are visible spatially—by gender, for exam-

ple, in this community of fans. You can also use it to more clearly distinguish clusters 

that are not easy to see spatially (like the ones in the middle of this graph), or when many 

of the nodes are iltered out.

To color clusters, you must irst explicitly identify them. Now that each node belongs 

to a community, labeled a Modularity Class in Gephi, you can map it to color. In the Par-

tition tab, assign Modularity Class to node color and apply the change. If the option isn’t 

in the list, click the refresh button beside it.

he resulting plot shown in Figure 11-9 illustrates that color is an efective means 

of more easily distinguishing communities that do not have obvious spatial boundaries. 

Note, however, that this is relatively weak visualization thus far. Meaningful character-

ization of the communities being highlighted has been sacriiced, and far more colors 

are in use than can be deciphered by the partition legend. It is clear, however, where one 

community ends and another begins, which will be useful when ilters are applied to hide 

nodes in the graph.

Find the Filters tab, and locate the Partition ilters in the Attributes folder, as shown 

in Figure 11-10. Drag the Sex ilter into the Queries pane below it. Check the “female” 

box and click the Filter button. 

Return to the Preview pane to inspect the results. Now that fewer links are showing, 

increase the edge opacity to 80 percent and the thickness to 3.0. Take advantage of the 

additional whitespace to express more information by turning on node labels. Labeling 

can be a bit inicky in Gephi, so you may need to play with the settings a bit in both the 

Preview and Overview panes until you get something satisfactory. 
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FIGURE 11-9: Coloring by cluster can complement spatial layout by more clearly distinguishing clusters 
but otherwise adds little insight.

he settings used here are Myriad Pro Condensed 8, proportional size, color by 

parent node, maximum characters 7, and an outline size of 4 in white at 80 percent 

opacity. Making the label size proportional to the node size maintains the mapping 

from original node weight (importance in the overall graph) but will require that you 

play with the node scale back in the Overview task mode to manipulate the range of 

label scales. 
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FIGURE 11-10: You can use ilters to hide parts of the  
graph that are not relevant to immediate interests.

Return to the Preview task mode and refresh the view to see the results, as shown in 

Figure 11-11.

Hiding male nodes and their connections conirms that relatively few females seem 

to connect with other females. he implication may be that (at least in this sample) bas-

ketball is not a particularly common social topic between women, but a select few women 

may have a signiicant inluence on the much larger community of male and female fans. 

From a business perspective, this is an observation that might help to shape marketing 

strategies.

In the process of mapping color to clusters, you may have noticed a cluster of 

medium-sized nodes with very thick links between them (in Figure 11-9, they are 

orange), which could easily have been overlooked before. Clear the gender ilter by 

clicking the Filter button again to have another look. he thicker links indicate a 

higher degree of social media buzz. A stream of comments has been lying back and 

forth in that community. People seem excited about something. It would be very use-

ful to know what.
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FIGURE 11-11: Coloring by cluster can preserve community visibility when iltering, revealing here how 
few female fans comment with other female fans, with the exception of a handful of social connectors 
from select communities.
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Community Topic Analysis

Up until now, you have used layout, color, and algorithms to reveal community structure. 

You have identiied key social connectors and made observations about the role of women 

in the Raptors fan base. But these are most likely conirmations of things that, to some 

degree, you already know. Looking back at the original objectives deined for this data 

set, what you really set out to visualize is how the fan community is responding to moves 

made by the organization. What player moves have been popular? What buzz has the 

involvement of Drake generated?

You can use many approaches to identifying topics in social media. Focus on what 

you want to know. In this case, you want to identify buzz about players and about Drake. 

A simple approach would be to identify when any of the comments made have included a 

mention of them.

Export the graph from Gephi in GraphML to preserve its layout and import it back 

into NodeXL. Recall that fan rows in the Vertices worksheet include a concatenation 

of all comments made by that fan in the Tweet column. To the right of the existing col-

umns, outside of the data import area, add new columns for Drake and for each of the 

ive starting players: Demar Derozan, Jonas Valanciunas, Kyle Lowry, Amir Johnson, 

and Terrence Ross. To search for occurrence of either irst or last name, populate a row 

atop the new columns for each.

Create a formula in the cells of each new mention column that searches for the names 

above the column (Figure 11-12), recording a 0 if neither is found, and otherwise mark-

ing it with a 1:

=IF(AND(ISERROR(SEARCH(AL$2,Vertices[[#This Row],[Tweet]],1)),

     ISERROR(SEARCH(AL$1,Vertices[[#This Row],[Tweet]],1))),0,1)

FIGURE 11-12: Search for references to names and record matches.  
Summarize subject by single match, no match (ūotherŬ), or multiple  
matches (ūmixedŬ).
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Now, create a formula in a new column to the right of the mention columns that 

notes the single subject matched, “other” if none matched, or “mixed” if multiple subjects 

were matched:

=IF(SUM(AK3:AP3)>1,"mixed",IF(AK3=1,AK$2,IF(AL3=1,AL$2,IF(AM3=1,AM$2,

     IF(AN3=1,AN$2,IF(AO3=1,AO$2,IF(AP3=1,AP$2,"other")))))))

As a inal step, copy the values of the new columns into the graph data area of the 

worksheet using the Paste Values option. You should see a header with a drop-down 

arrow appear above the new graph data column, similar to the others. Give the mention 

columns and the topic column meaningful names, and export the enhanced graph in 

GraphML format for import into Gephi. When you import, ensure that you uncheck 

the auto size option to preserve your original node sizes.

Map node color to topic using the Partition tab. Modify the random default color 

assignments to make them intuitive. he players are one family of topics, so choose col-

ors from the same family. Blues and greens might be an appropriate choice for players, in 

which case, a distinctly diferent color like red might be a good choice for Drake. Neutral 

middle gray, a colorless color, is a logical choice for “other” topics, and “mixed” topics 

might naturally be represented by neutral-but-salient colors like white or black. Switch to 

Preview task mode, reapply edge opacity of 20 percent, and refresh the view. 

Edge opacity is not preserved in a GraphML export and will need to be reap-

plied when importing back into Gephi.

In the resulting visualization shown in Figure 11-13, you can clearly see that the hot 

topic in the most “excited” community is Drake, shown in red. You can also see that 

comments about players (shown in blues and greens) are relatively evenly distributed, 

which may be relective of the Raptors’ identity as a team-oriented unit. here is no one 

player who particularly stands out. 

T
IP
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FIGURE 11-13: Mapping node color to topics provides a picture of social media buzz across communi-
ties. Drake, shown in red, is a hot topic spreading through communities on the periphery.
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Looking more closely at the red clusters, you may also notice two things. One is that 

the communities where Drake is a hot topic are mostly on the periphery, whereas chatter 

about players is more likely to occur in the center of the fan community. Central mem-

bers who are more involved across posts appear to be the hard-core fans with a higher 

basketball IQ , relected by player knowledge. Another observation is that there is a 

density of communities near the nexus of Drake comments, which are also talking about 

Drake, a pattern that is not found with the player comments. Conirm that these com-

munities tend to be linked by switching to the Overview task mode and hovering over 

the red nodes, as shown in Figure 11-14. 

FIGURE 11-14: Hovering over a node in the Overview task mode highlights linked nodes, revealing here 
that chatter about Drake (shown in red) is spreading virally across communities.

hese are exactly the kinds of phenomena that a marketing department would be 

hoping to see. he involvement of Drake is generating excitement outside of the hard-

core fan base, where newbie fans are more likely to be drawn in, and the efect of that 

excitement seems to be viral.
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Community Sentiment

Mapping color to topics has shown you what communities are talking about and revealed 

patterns among topics. But what if you want to know what they are saying about those 

topics? Are the fans in this data set raving about the players, trashing them, or some-

thing in between? Determining whether a text is likely positive, negative, or neutral is 

known as sentiment classiication.

One way to perform sentiment classiication is to use a computer process whereby 

an algorithm that has been previously “trained” by a person estimates the sentiment of 

a new text based on similarity to text on which it was trained. his approach is often 

ideal in that the algorithm is capable of learning by example without exhaustive seman-

tic instruction from a human. But for results of reasonable quality, it requires that the 

algorithm be trained on similar data. For this data set, you want a classiier that has been 

trained speciically for social media. 

For simplicity, this example uses a convenient online web service provided by Viral 

Heat to classify fan comments directly from Excel. If you don’t already have a Viral Heat 

account, you will need to sign up for one at https://app.viralheat.com/developer/ and 

request a developer API key online, or use an alternate service.

Reopen the Raptors fan spreadsheet you enhanced with player mentions, and start by 

adding a new row to the top of the Vertices worksheet, followed by four empty columns 

to the right of the Tweet column. Name the new columns “Mood,” “Mood Probabil-

ity,” “Sentiment,” and “Topic Symbols.” To the far right, outside of the graph data area, 

add four new columns where the sentiment will be computed, and a ifth that will be 

reserved for visually expressing topics. Label these new columns “Classiication,” “Mood 

Calc,” “Mood Probability Calc,” “Sentiment Calc,” and “Topic Symbols Calc.” 

In the Classiication column, add the following formula to the vertex rows, replacing 

your_key_here with your own API key:

=WEBSERVICE("https://app.viralheat.com/social/api/sentiment?text=

     "&ENCODEURL(LEFT(Vertices[[#This Row],[Tweet]],

     360))&"&api_key=your_key_here&format=xml")

If you have an earlier version of Excel than 2013, you will need to install an 

Excel PowerUp and preix the WEBSERVICE, ENCODEURL, and FILTERXML func-

tions with pwr.N
O

T
E
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he formula will send the lesser of all or the irst 360 characters of each fan’s com-

ments to Viral Heat and populate cells with the results, which you will see appear in 

XML form. Note that any time the formula changes, the cells will resend requests, 

which is why you added the empty columns to the left beforehand to avoid that. 

Now, add a formula to the Mood Calc column to extract mood from the classiication 

result. he Classiication column in these example formulas is AV, and the row is 4:

=IF(LEN(AV4)>0,FILTERXML(AV4,"hash/mood"),"")

hen add a second formula to the cells in the Mood Probability Calc column to 

extract the estimated probability that the classiication is correct:

=IF(LEN(AV4)>0,FILTERXML(AV4,"hash/prob"),"")

Add a formula to the cells in the Sentiment Calc column that records the sentiment 

as positive, negative, or neutral using mood if the probability is beyond a threshold of 65 

percent:

=IF(LEN(AW4)>0,IF(AX4>=0.65,AW4,"neutral"),"")

Finally, copy the cells from the mood and sentiment calculation columns and use 

Paste Values to write them into the corresponding graph data columns you created 

earlier. 

You have enhanced the fan data with comment sentiment. Now you must decide how 

to represent it. Color is an ideal choice, but color is currently mapped to topic, and you 

want to see both topic and sentiment. Shape is not mapped to anything. So far, all the 

fan nodes have been represented as circles. If you map the shape of the nodes to topic, 

you can use color to express sentiment.

When choosing shapes for visualization, use intuitive symbols to make them 

easier to interpret.

Shapes are best if they are symbolic. If the information represented can be recognized 

in the form of the shape, it will be easier to interpret. For this data set, an intuitive sym-

bol for players might be their initials or jersey number, and for Drake, something musi-

cal. Use the top row added earlier to insert a symbol above each player mention column. 

You can use the Symbol button on the Insert ribbon in Excel to insert font characters not 

found on your keyboard, like the musical note shown in Figure 11-15.

T
IP
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FIGURE 11-15: Using symbols to express topic and color to express sentiment provides a high-level 
picture of the subject and mood of community chatter. Here, red and black indicate estimated positive 
and negative comments about Raptor players, indicated by their jersey numbers, and team ambassador 
Drake, indicated with a musical note.

In the Topic Symbols Calc column, add a formula to the fan rows that concatenates 

the symbols of any topic mentioned, separated by spaces:

=CONCATENATE(IF(AP4,CONCATENATE(AP$1," "),""),IF(AQ4,CONCATENATE(AQ$1," 

     "),""),IF(AR4,CONCATENATE(AR$1," "),""),IF(AS4,CONCATENATE(AS$1," 

     "),""),IF(AT4,CONCATENATE(AT$1," "),""),IF(AU4,

     CONCATENATE(AU$1," "),""))
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Copy the calculated symbol cells and use Paste Values to insert them into the Topic 

Symbols column you created earlier. Save the results, and export them in GraphML 

form.

Import the enhanced graph data into Gephi, and map the color to sentiment. Use a 

neutral color such as gray for neutral sentiment. Black is a natural choice for negative and 

will work well with any color you choose for positive. Click the expander at the bottom 

of the graph view. On the Labels tab, turn on node labels and switch their mapping from 

the Label data column to the new Topic Symbols column. In the Ranking tab, map the 

label size to degree. 

In the Preview task mode, set the node outlines to zero width so they don’t interfere 

visually with the labels. Choose a condensed font for the labels. Make them white and 

give them a thick outline of 8.0. Select the label outline color option, which inherits the 

parent node color. Reduce the edge opacity to a minimal number like 8.0 percent and 

refresh the view.

As you might expect, the fans in the middle of the graph who comment most often 

also talk about more of the players. Also notice that in the very tight clusters, the same 

symbols tend to repeat. hey are relatively consistent in topic. he dominance of red 

across the graph indicates that the mood is more positive than negative, with a strong 

nucleus of positive sentiment around the most active fans. Interestingly, with the excep-

tion of some of the peripheral banter involving Drake, most of the negative sentiment 

in black is in the center of the fan community. Looking closely, however, you will notice 

that black is very often surrounded by red, implying heated exchanges.

Symbols and color together make for a powerful combination. his is the picture 

of social media buzz that this chapter’s case study set out to see. Not only are patterns 

revealed, but enough individual character is expressed that you can spot community 

conversations that would be interesting to investigate further. What are those seemingly 

heated comments to the east about Drake about, or those clusters of red and black that 

did not mention the players or Drake? 

Graph visualization and interactive exploration of social media topics and sentiment 

enables you to take the overall pulse of customer communities, and identify heated dis-

cussion around products and initiatives that are worthy of attention. he next section 

shows how you can use analytics, visualization, and interaction to identify and analyze 

social groups.
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CLIQUES AND OTHER GROUPS

You may remember all too well what a clique is in common terms from your days on the 

school playground—a tight-knit social group that tends to speak and act as one, always 

together, and often to the exclusion of others. Perhaps not surprisingly, then, clique 

detection is often used in social network analysis. In the business world, for example, 

the presence of a clique may indicate a group with a strong collective perspective that is 

inluenced by strategic direct marketing to key individuals in that group.

In graph terms, a clique is deined as a subgraph in which each node connects to each 

of the other nodes. However, this deinition alone is not speciic enough to identify a set of 

communities of interest. For example, technically, two linked nodes form a clique, and one of 

those nodes and another adjacent node form an overlapping clique. Clearly, identifying triv-

ial relationships of this nature adds little to your understanding. Borrowing from the school 

playground example, describing each pairing of kids in a group of ive as a clique, as well as 

each combination of three, four, and all ive, is not a particularly helpful characterization.

A practical restriction for identifying cliques is that each be a maximal clique. A maximal 

clique is not a subgraph of any other clique, though it may overlap with others. his restric-

tion limits identiication to top-level cliques only. Other simple strategies of focusing clique 

identiication may be to specify a minimum size as shown in Figure 11-16, or the neighbor-

hood limits of a node of interest. No matter what the strategy, accurately computing maximal 

cliques is expensive, so keep in mind that most algorithms use some level of approximation.

FIGURE 11-16: In a maximal clique, detected here with minimum size 4, every node  
is connected to every other node, and its entirety is not contained within any larger clique.
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Cliques in Social Media

In the Raptors fan page data, all fans are linked to each other if they comment on the 

same post, so cliques are rampant. Isolating the largest cliques will be a useful constraint. 

NodeXL includes a method for identifying cliques and, provided they don’t overlap, 

there is a way to bring them into Gephi for visualization. It isn’t pretty, but it works.

Return to the NodeXL worksheet where you enhanced the data with topics. In the 

graph Analysis ribbon group, select Groups ⇨ Group by Motif. Motifs are not relevant 

here, but what will be relevant are the groups produced. In the options that appear, 

uncheck the fan and D-connector options, and specify a minimum size of 15 for cliques. 

he two Group worksheets will be populated with the results. Now comes the tricky 

part. To get the cliques into Gephi, you will need to transform them from their current 

form in the Group Vertices worksheet to a new form in the Vertices worksheet, which 

requires a bit of Excel wizardry.

Start by swapping the order of the Vertex and Group columns on the Group Vertices 

worksheet. Click the drop-down button on the Vertex column to sort it A to Z so that it 

can be used for lookup. Switch to the Vertices worksheet and add a column to the right 

of the graph data. Add a formula to the cells in the new column that will look for the 

Vertex in the Group worksheet, and populate each cell with the name of the clique group 

or an empty string if not found:

=IFERROR(VLOOKUP(Vertices[[#This Row],[Vertex]],

     GroupVertices[[Vertex]:[Group]],2,FALSE),"")

Create a new column in the graph data area of the worksheet and copy from the cells 

you added in the previous step. Use Paste Values to add a copy of the group references 

into the new column and label the column Clique. 

It would be useful to explore the demographic characteristics of cliques. However, 

you already looked at gender in the data and determined that women do not often post 

together, so sex will not be a factor. What about locale? Facebook locale consists of ISO 

codes for language and country joined by an underscore. To explore language and coun-

try separately, extract a new column for each:

=IF(LEN(Vertices[[#This Row],[Locale]])>0,

     RIGHT(Vertices[[#This Row],[Locale]],2),"")

=IF(LEN(Vertices[[#This Row],[Locale]])>0,

     LEFT(Vertices[[#This Row],[Locale]],2),"")
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Export the enhanced GraphML ile and import it into Gephi. In the Partition tab, 

map the Node color to Clique. Map null (meaning a node that is not part of a clique) 

to white. Inspect the resulting visualization in the preview mode. As shown in Fig-

ure 11-17, the result is arguably beautiful, but is it useful? It’s diicult to make sense of 

cliques in the middle where the nodes are densest. A clique has a very hard-edged deini-

tion. It would be ideal if the visual boundaries of the cliques were equally hard-edged.

FIGURE 11-17: Using color to identify large cliques here wins points for artistic impression, but it is difi-
cult to see their boundaries of inclusion or understand anything about them.
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Community Groups with Convex Hulls

A convex hull draws a bounding shape around the edge of a set of nodes to depict it as a 

group. Gephi includes basic convex hull functionality for those who are up to mastering 

the inicky worklow. 

he irst step in generating hulls is to create groups. Back in the Partition tab, under-

neath the list of colored cliques, you will ind a Group button. Before you click it, reset 

the color of the nodes in the view to gray. Groups will pick up the color of the nodes, and 

it will be useful in this case to reserve color for other purposes once the hulls are used 

to indicate cliques. Locate the reset buttons along the left border of the graph view and 

click to reset color. hen return to the clique partition list and proceed to group them. 

Each node in the simpliied graph will now represent a clique. Return to the reset 

buttons and reset size to see them all. Next, select them using the Rectangle Selection 

tool, and expand them using the context menu. Expanding will break up the groups into 

member nodes again, but this time with convex hulls drawn around each clique. Now 

that hulls are serving to cluster nodes, links are adding clutter. Toggle them of at the 

bottom of the graph pane. 

he last thing that doesn’t belong in this picture is the largest group, which is not 

actually a clique. Drag a Clique partition type attribute ilter into the Queries pane, and 

use the context menu to select all groups. hen click to deselect the null group. Click the 

Filter button to hide everything but the true cliques. 

Now that fewer elements are visible, you can use the extra space to further clarify 

the view. In the Layout tab, choose Force Atlas 2, and select the Prevent Overlap option 

before proceeding to run it. Even though links are not visible, linked nodes will still be 

drawn together, putting the most connected nodes in the middle. Use the Ranking tab 

to increase the size of nodes until they are touching by mapping degree to a range of 10 

to 25. Expand the controls at the bottom of the graph pane. Map the labels from the 

new country column created earlier and make them white. Choose a condensed font and 

adjust the scale so that the labels it snugly within their circles. 

You will immediately note that the dominant country code is US. his is the Face-

book locale that includes English-speaking Canadians, forming the most obvious group 

of local fans. Make it a relatively neutral color close to gray, appropriate for baseline nor-

mal, so that other countries are easier to see.
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As shown in Figure 11-18, you can now see the 18 most signiicant cliques in the 

sample data. Two clusters of color immediately stand out. One mysterious cluster of dark 

gray nodes without country labels is found to the south, and to the far north a cluster of 

red nodes with the country code LT. Smaller clusters of LT exist throughout. LT is the 

code for Lithuania, home of starting center Jonas Valanciunas. he Lithuanian clique 

was one of two groups you may have noticed being placed most remotely from other 

cliques, implying that it is less connected to the others. Social media may be a virtual 

medium, but clearly there can be a strong ethnic identity to fan cliques. 

FIGURE 11-18: Using convex hulls to bound nodes and hiding links creates a clear view of groups and 
identiies key social connectors. Here cliques in Raptors fan data emerge with notable patterns in 
locale.
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Another notable observation is that the orange British fans, coded as GB, are mem-

bers of more than half of the cliques. Like the green French-Canadian fans marked with 

CA, they mix freely, but in larger numbers. In fact, in three of those cases, the Brits are 

primary social connectors linking the cliques to other communities, indicated by their 

attraction to the center of the graph.

Overall, there is a surprisingly large contingent of Europeans in these cliques, imply-

ing that the team has a sizeable following overseas. Cultivating international interest in 

the NBA has been a priority of the league over the past decade, and the efort has been 

largely successful. he number of foreign-born players in the league has grown dramat-

ically, and international viewership has grown with it. Here you see a relection of how 

social media can extend the reach of a fan base and how the involvement of players born 

abroad can help to grow strong communities of fans in other countries. Monitoring this 

over time would provide valuable feedback on the progress of these initiatives and may 

provide clues as to how to foster growth of those communities.

By applying clique detection and by using grouping with convex hulls and hiding 

links, a clear picture of social communities and involvement of key social connectors 

emerges. Hulls provide crisp group boundaries when not obscured by other geometry 

and leave color for expressing other facets of the data. An additional advantage of convex 

hulls is that they can indicate membership in more than one group, whereas a simple 

node color mapping cannot.

Convex hulls have a lot in common with Venn diagrams, which also depict overlap-

ping groups. Venn diagrams are useful for summarizing community size and overlap in 

a simple-to-understand form for executive brieing but, unfortunately, do not scale well 

to more than three or four communities. he Cytoscape graph tool includes a plug-in 

for rendering groups in a graph as a Venn diagram for graphic export, but using the 

plug-in to illustrate topic mentions by fans in this sample data hints at the limitations of 

this approach. As shown in Figure 11-19, several overlaps are missing. It is interesting, 

though, to observe that, ittingly, point guard Kyle Lowry, whose job it is to distribute 

the ball, overlaps the most with other players.
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FIGURE 11-19: Venn diagrams provide an intuitive high-level expression of size and overlap for a small 
number of communities. Here, the Cytoscape Venn plug-in was used to organize fans by topic mentions.

SUMMARY

his chapter has looked at a relatively small sample of Toronto Raptors social media data 

containing about 1,600 people and 15,000 links. Exploring graph data visually is an ideal 

way to analyze community, identifying patterns and making observations that would 

otherwise be very diicult to detect and understand. Once potentially valuable observa-

tions are discovered and you now know what to look for, you can design targeted analyt-

ics and visualization to conirm those observations across all of the data. 
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Techniques for community visualization and analysis for much larger graphs is a 

challenge and has been an intense area of research. Approaches to this problem are 

covered in Chapter 14 on Big Data, including hierarchical community aggregation and 

summary visualization techniques.

In community analysis, like the examples in this chapter demonstrate, links very 

often serve the sole purpose of expressing collective connectedness in the aggregate. It is 

not important or even feasible using the techniques shown so far to understand the char-

acter or direction of links. However, in some data sets, direction is essential. Chapter 12 

examines lows, illustrating how you can use graphs to reveal structures and patterns of 

low through linked entities or events.
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12
FLOWS

Flow visualization can be one of the most intuitive and 
compelling forms of visual representation of quantitative 
information. One of the most famous examples is Charles 
Joseph Minard’s chart of Napoleon’s disastrous 1812 cam-
paign against Russia. Published in 1869, it showed loss of 
life as troops marched into battle and later retreated. As 
shown in Figure 12-1, route data like Minard’s or like that 
used in typical traic analysis is in most cases not a graph, 
but the same graphical techniques of line width and layout 
apply to graph data.

Flow is important in understanding systems and patterns of behavior. Flow visualiza-

tion can be used to describe the structure and state of a system, such as a supply chain or 

an economy. It can also be used for displaying transactional events, such as information 

exchange between computers or money transfers between inancial accounts. Flow visu-

alization can also be used to depict “softer” systems such as behavioral models, showing 

the potential inluence of various factors in a past, current, or future outcome, whether 

that be inancial results or the latest sports scores. 
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FIGURE 12-1: One of the most highly regarded visualizations of all time is Minard’s depiction of Napo-
leon’s ill-fated march on Russia in 1812. The use of route width to indicate volume (here, the size of army 
as it is decimated) can be applied with equal success to graph visualization.

his chapter describes how you can use graph visualization to reveal structures and 

patterns of low between and through nodes using various techniques such as Sankey 

diagrams, traditional graph layouts with link weight, chord diagrams, and behavioral 

factor trees. Web-based examples and model code are provided for illustration. 

SANKEY DIAGRAMS

Sankey diagrams are an efective way to see volume of low through a multi-step process 

or system. In a Sankey diagram, the lows are conventionally laid out left to right, and 

the width of a link indicates the volume of low. Incoming links always enter a node on 

the same side at right angles, and outgoing links exit in the same way on the opposite 

side. At each side of the node, links are stacked at their point of entry and exit to repre-

sent the total incoming and outgoing volume.

Transactional data is often ideally visualized in Sankey form. For example, money 

low through various accounts can be represented in this way, showing sources of funding 

and where the money is going. For a inancial crimes investigator, “following the money” 

is central to the task of identifying the perpetrators of fraud. Similarly, for an economist 
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or business analyst, understanding structures of supply and demand and low of goods 

and services can be essential to evaluating and managing inancial health.

he low of information can also be important in some industries, in addition to 

inancial low. For example, in cyber security, analyzing patterns of data low can help 

to spot potentially nefarious activity by computer hackers. Or, in criminal investigations 

(such as the Enron scandal), the low of e-mail and phone calls between employees can 

create a telling story.

Sometimes it’s actually the low of people that is of interest, rather than the low 

between people. For example, in a sales process, the goal is to persuade people from one 

purchasing stage to another, with the inal goal of sales conversion. Analyzing conversion 

rates through diferent sales channels and customer paths can provide valuable insights 

into which sales tactics are working and which are not. A website, for example, has the 

distinct advantage of being able to track movement of prospective customers through the 

site at a detailed level without any investment of efort. 

Google Analytics provides a means to track visitors to a website and enables you to 

deine related goals such as visiting a particular page or purchasing, in order to analyze 

success rates. As shown in Figure 12-2, one of the most useful visualizations available 

uses an interactive Sankey diagram to show paths that visitors took through the site. he 

height of each green block here relects the number of visitors to that page. Gray links 

to left of each indicate how they arrived there, and links to the right indicate where they 

went next. Red exit arrows indicate visitors who left the site at that page. 

FIGURE 12-2: Google Analytics provides dashboard visualization of visitor flow through a website using 
an interactive Sankey diagram.



PART 3 Visual Analysis of Graphs354

Google Analytics is currently free to use for anyone with a modestly sized website. 

After a simple setup process, Google Analytics requires only the addition of a few stan-

dard lines of JavaScript to each web page to track visits through the site. 

Take advantage of free Google Analytics by signing up at www.google.com/

analytics/ to analyze trafic through your website.

One of the interactive features that the Google Analytics visualization includes is the 

capability to highlight the subset of low through a particular node, which is one of the more 

generally useful techniques for any Sankey diagram. For example, as shown in Figure 12-3, 

clicking on Germany shows lines of low from that country in a darker blue, while fading 

the other links.

1

FIGURE 12-3: A useful interactive feature of Sankey diagrams is the capability to highlight the subset of 
flow through a node—in this case, visitors originating from Germany (1).

Another perfect use case for Sankey diagrams is supply chain management. For 

example, a manufacturing business must efectively manage the low of supplies and 

associated costs to respond to demand and optimize the bottom line. Delays result in lost 

sales, and oversupply results in stock that does not move or that must be warehoused at a 

cost. Problems with a supplier may carry on down the chain. For example, delays in the 

supply of lithium from the Andes may delay battery production in Taiwan, which may 

lead to delays in meeting demand for the latest smartphone, causing lost sales because 

some would-be customers chose a more readily available phone. 

T
IP
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As an example, Figure 12-4 shows a mock automotive supply chain where raw mate-

rials are supplied for parts production, which, in turn, are supplied for assembly. Vehicles 

are then supplied by the assembly plants to dealers. he width of each link indicates the 

value of goods being supplied as a measure of volume. he diference in width at each 

facility indicates value added. Color indicates a problem with the rate of production. Red 

links indicate a deicit of production against demand, and blue links indicate a surplus, 

making it easy to trace problems back to their source. 

FIGURE 12-4: Sankey diagrams are perfect for visualizing supply chains. In this automotive example, 
flow reflects value of goods supplied, and color represents variance from optimal rate of supply.
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CONSTRUCTING A SANKEY DIAGRAM

his section steps through the process of coding the supply chain visualization shown in 

Figure 12-4. To try this yourself, download the example package for this chapter pro-

vided with the Supplementary Materials on this book’s companion website. 

Although it is always more rewarding to use real data when experimenting with visu-

alization, supply chain data is often proprietary and diicult to ind. In this case, the data 

has been handcrafted instead to illustrate how you might approach building a solution for 

this kind of problem. his example uses version 1.1 of the Aperture JS library, which, in 

addition to Sankey support, includes icon and layout services that will be useful in this 

case. As with most graph data, nodes and links are supplied as arrays. Here, JavaScript 

Object Notation (JSON) form is used:

{

    "nodes": [

        {

            "name": "Steel",

            "type": "rawmaterials",

            "id": 100

        },

        {

            "name": "Assembly Plant A",

            "type": "manufacturing",

            "id": 1

        }, ...

   ],

    "links": [

        {

            "sourceId": 100,

            "targetId": 2,

            "value": 145,

            "rate": 0.0

        }, ...

   ]

}
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Online CSV-to-JSON converters in which you can paste your data and click a 

button to transform it are easily found with a quick web search.

Create the Page Structure

Once you have your data ile, you are ready to begin coding. If you don’t already have 

a place in mind to insert your visualization, start by creating the following simple web 

page. he following HTML code creates an empty document with a title and some basic 

styling, loads the JavaScript dependencies, and, after adding a graph container to the 

body, loads the supplychain.js ile, which you create next:

<!DOCTYPE html>

<html>

<head>

    <meta charset="utf-8">

    <title>Supply Chain</title>

    <script src="jquery.js"></script>

    <script src="raphael.js"></script>

    <script src="aperture.js"></script>

    <!-- container styling -->

    <style>

        #graph {

            width: 1200px;

            height: 1400px;

            margin: 0 auto 0 auto;

        }

    </style>

</head>

<body>

    <div id="graph"></div>

    <script src="supplychain.js"></script>

</body>

</html>

T
IP
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Process and Model the Data

Create a supplychain.js ile and open it for editing. Use jQuery to load the JSON ile 

into a JavaScript object. When the callback completes, use Aperture utility functions to 

process the arrays of nodes and links, and model them for use in your Sankey diagram. 

he linkNodes function will link them based on their data IDs, and the weightNodes 

function will calculate and store total low in and out of each node by summing the value 

ield of each of its links. he layout API will assign a location to each node. Add a call 

to make the visualization when it completes, using a method that you will deine next.

jQuery.getJSON("supplychain.json", function(data) {

    // Link the nodes from raw data, and enhance with total low 

    // in and out.

    aperture.graph

        .linkNodes(data.nodes, data.links)

        .weightNodes(data.nodes, {

            lowIn: {linksIn: 'value'},  // record sum value of links in

            lowOut: {linksOut: 'value'} // ... and out, in each node.

        });

    // Use layout to assign nodes a location, and construct the graph.

    aperture.layout.low(data, function() {

        makeMyGraph(data);

    });

});

Visualize the Data

Create the makeMyGraph function you invoked in the previous step after modeling the 

data. Begin by adding the base plot and a node layer. 

function makeMyGraph(data) {

    // CREATE THE NODE LINK PLOT
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    var graph = new aperture.NodeLink('#graph');

    // map from extents of abstract x,y layout to graphical area

    graph.map('node-x').from('x')

        .using(new aperture.Scalar('X').mappedTo([100, 1100]))

        .fromRange(data.nodes);

    graph.map('node-y').from('y')

        .using(new aperture.Scalar('Y').mappedTo([100, 1300]))

        .fromRange(data.nodes);

    // add a node layer

    var nodeLayer = graph.addLayer(aperture.NodeLayer);

    nodeLayer.all(data.nodes);

    

    

    //...

Next, add the Sankey path layer to draw the links. Map the width from the low key 

you created in the data processing stage. Map color and opacity from the rate of supply 

relative to demand to highlight deicits and surpluses. 

    //...

    // CREATE THE LINK REPRESENTATION.

    var linkLayer = graph.addLayer( aperture.SankeyPathLayer )

        .mapAll({

            'source-offset' : 5,

            'target-offset' : 43,

            'sankey-anchor' : 'bottom'

        });

    // Create a key to map from low values to link width

    var lowKey = new aperture.Scalar('Flow Volume')

        .expand(data.nodes, 'lowIn')
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        .expand(data.nodes, 'lowOut')

        .mappedTo([1,36]);

    // map data-driven attributes from link data ields

    linkLayer.map('stroke-width').from('value').using(lowKey);

    linkLayer.map('source').from('source');

    linkLayer.map('target').from('target');

    // deine range of supply rates to map link color and opacity from

    var rates = new aperture.Scalar('Supply (+/-% of Demand)', 

         [-20, 20]);

    // map rate to red (deicit), grey (on target), blue (surplus) range

    linkLayer.map('stroke').from('rate')

        .using(rates.mappedTo(['#e00', '#666', '#08a']));

    // map rate data to a range of opacities (less opaque when 

    // on target).

    linkLayer.map('opacity').from('rate')

        .using(rates.mappedTo([0.8, 0.2, 0.8]));

    // inally, make a link for each data object

    linkLayer.all(data.links, 'id');

    //...

Now that you have added the links to show low, create the representation for each 

facility in the supply chain. Each node will have an icon, a bar at the stem of outgoing 

low, and a label. If you are using your own data and have performance information 

available for each facility, consider adding additional indicators here.
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    //...

    // CREATE THE NODE REPRESENTATION.

    var iconLayer = nodeLayer.addLayer( aperture.IconLayer )

        .mapAll({

            'x' : -4,

            'width' : 36,

            'height' : 36,

            'anchor-x' : 1,

            'anchor-y' : 1

        });

    iconLayer.map('url').from(function() {

        return this.type + '.png';

    });

    var barLayer = nodeLayer.addLayer( aperture.BarLayer )

        .mapAll({

            'width' : 5,

            'orientation' : 'vertical',

            'ill' : '#666'

        });

    barLayer.map('length').from('lowOut')

        .using(lowKey)

        .ilter(function(v){return -v;}); // invert direction

    

    var labelLayer = nodeLayer.addLayer(aperture.LabelLayer) 

        .mapAll({

            'offset-y' : 8,



PART 3 Visual Analysis of Graphs362

            'font-size' : 12,

            'text-anchor' : 'start'

        });

    labelLayer.map('text').from('name');

    //...

Highlight Flow through a Node

he inal step in the construction of this example is to add the interactions for highlight-

ing low through a node. Create three sets for tracking highlight state: one for the focus 

node, one for its links, and one for linked nodes. Deine mapping ilters that apply to 

members of each set. Finally, add event handlers that add the node, its links, and linked 

nodes to the highlight sets when hovering over a node, and clear them when leaving. 

After modifying the sets, redraw the changed nodes and bring them to the front. 

After adding the event callbacks, there is one last step to completing your supply 

chain visualization: call the redraw function to draw it all. You are now ready to try it. 

    //...

    // deine sets to track highlight state.

    var focusNodes = new aperture.Set('id');

    var highlightedNodes = new aperture.Set('id');

    var highlightedLinks = new aperture.Set('id');

    // alter attributes when part of highlight sets

    barLayer.map('ill').ilter(focusNodes.constant('black'));

    linkLayer.map('opacity').ilter(highlightedLinks.constant(1.0));

    labelLayer.map('font-weight').ilter(focusNodes.constant('bold'));

    labelLayer.map('font-outline').ilter(focusNodes.constant

         ('#F0EFE7'));

    // deine three planes based on highlight state.
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    nodeLayer.map('plane').asValue('labeled')

        .ilter(highlightedNodes.constant('highlight'))

        .ilter(focusNodes.constant('focus'));

    // highlight node, links and linked nodes when hovering over a node

    nodeLayer.on('mouseover', function(event) {

        if (focusNodes.add(event.data.id)) {

            var changedNodes = [highlightedNodes.add(event.data.id)];

            var changedLinks= [];

            var links = event.data.linksIn.concat(event.data.linksOut);

            // Add to the highlight set.

            aperture.util.forEach(links, function(link) {

                changedNodes.push(highlightedNodes.add(link.other));

                changedLinks.push(highlightedLinks.add(link.id));

            },this);

            // redraw changed then bring the highlighted nodes to front.

            nodeLayer.all().where('id', changedNodes)

                .and(linkLayer.all().where('id', changedLinks))

                .redraw()

                .toFront(['labeled', 'highlight', 'focus']);

        }

    });

    // clear when leaving the node

    nodeLayer.on('mouseout', function(event) {

        if (focusNodes.clear()) {

            nodeLayer.all().where('id', highlightedNodes.clear())

                .and(linkLayer.all().where('id', 

                     highlightedLinks.clear()))

                .redraw()

                .toFront('labeled');
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        }

    });

    // inally, draw everything!

    graph.all().redraw();

}

As shown in Figure 12-5, hovering over a node should now highlight low through 

that node.

FIGURE 12-5: Hovering over a facility in the supply chain highlights  
flow through that node.

COMMUNITY LAYOUTS WITH FLOW

In certain cases, it may be desirable to lay out nodes in a more conventional fashion. 

If progression and clarity of low is less important than seeing clusters of nodes with a 

 general sense of volume around them, especially if the number of nodes is low, you can 

apply organic layouts. Figure 12-6 shows how the same supply chain example looks with 

an organic layout.
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FIGURE 12-6: Link width and color can also be used with other layouts to show flow if bidirectional or 
the progression of flow is less important than node location.
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You can make the following changes to the previous example to use an organic layout 

as shown in Figure 12-6. First, replace the Sankey layer with a link layer, but keep the 

same data mappings. Replace this:

    var linkLayer = graph.addLayer( aperture.SankeyPathLayer )

        .mapAll({

            'source-offset' : 5,

            'target-offset' : 43,

            'sankey-anchor' : 'bottom'

        });

with the following:

    var linkLayer = graph.addLayer( aperture.LinkLayer )

        .mapAll({

            'source-offset' : 24,

            'target-offset' : 24,

            'link-style' : 'arc'

        });

Next, remove the custom icon anchor settings, restoring them to the center of the 

node: 

    var iconLayer = nodeLayer.addLayer( aperture.IconLayer )

        .mapAll({

            'x' : -4,

            'width' : 36,

            'height' : 36,

            'anchor-x' : 1, // REMOVE THIS LINE AND THE NEXT!!

            'anchor-y' : 1  

        });

Remove the BarLayer altogether. hen remove the anchor on the label so that it, too, 

is centered, but move it down further underneath the icon. Change these label mappings:

    var labelLayer = nodeLayer.addLayer(aperture.LabelLayer) 

        .mapAll({

            'offset-y' : 8,

            'font-size' : 12,
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            'text-anchor' : 'start'

        });

to the following:

    var labelLayer = nodeLayer.addLayer(aperture.LabelLayer) 

        .mapAll({

            'offset-y' : 24,

            'font-size' : 12

        });

Lastly, modify the layout call from low:

    aperture.layout.low(data, function() {

        makeMyGraph(data);

    });

 To use the organic layout instead:

    aperture.layout.organic(data, function() {

        makeMyGraph(data);

    });

When the modiied code is run, you should see the visualization shown in Fig-

ure 12-6. Note that organic layout has a degree of variability, so the node locations will 

not be exactly the same in yours.

CHORD DIAGRAMS

Chord diagrams are an efective method of visualizing reciprocal low between entities. 

In a chord diagram, entities are arranged in a circle, and similar to a Sankey diagram, 

lines of low linking entities are arranged side by side at their origin and destination 

with thickness indicating the volume of low. What difers is that the lines are bidirec-

tional, with varying widths on either end indicating the volume lowing in either direc-

tion. Chord diagrams are a good choice when low is primarily bidirectional. You must 

be able to see low between but not through entities.

One common use case for chord diagrams is to visualize exchange of goods. Fig-

ure 12-7 shows total trade between countries valued in U.S. dollars for the year 2010. 

he chord width as it touches each country represents outgoing low of goods from coun-

try of origin, so the correct way to read direction of low is inward from the perimeter 
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rather than outward, like two arrows pointing at each other. he chord color is mapped 

to the country with greater exports of the two, indicating the dominant direction of low 

of goods.

FIGURE 12-7: Chord diagrams show reciprocal flow between entities. Here, all reported trade of goods 
between countries is represented by width of link at the exporting country. Color indicates the country 
with greater exports.

Data courtesy of DESA/UNSD, United Nations Comtrade database.
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Countries in this example are arranged around the circle in order of geospatial ori-

entation relative to the middle of the Atlantic Ocean, similar to the way you would view 

them on a map. Each country is then assigned a unique color, stepping through the full 

360 degrees of the color wheel in equal increments going around the circle. he result is 

that countries that are physically closer to each other tend to have colors that are more 

similar. Because cost of transportation is a signiicant factor in trade, you would expect 

countries that are physically closer to exchange more goods. By arranging and coloring 

countries in this way, you can more clearly see patterns and anomalies in that regard.

Because the color of each chord indicates the dominant direction of low, you can 

easily spot net exporters and net importers. Saudi Arabia, China, and the Netherlands, 

for example, have relatively uniformly colored chords, indicating they are net exporters, 

whereas the United States, Britain, and France are clearly net importers.

Patterns in the curvature of chords also tell a story. Germany is linked to many 

countries, but chords connecting them tend to bend more quickly, revealing how much 

of German trade is within Europe. No wonder, then, that Germany has such a vested 

interest in the economic health of the European Union (EU). By contrast, trade lines 

from the United States more often cross the circle to farther countries, implying higher 

transportation costs and, by extension, greater sensitivity to the price of oil, as well as the 

political and economic stability of oil-producing nations.

he relative distribution of chords within each exporter reveals patterns of economic 

dependency. Although Germany may be relatively dependent on export within the EU, 

look at how heavily the economies of Canada and Mexico rely on sales in the neighbor-

ing United States alone. Similarly, but to a lesser degree, notice how Australia relies on 

exports to nearby China, Japan, and South Korea, which are themselves net exporters, 

typically of manufactured goods. Interestingly, Canada, Mexico, and Australia have 

strong resource economies, implying that geographic proximity seems to be of greater 

advantage for sale of raw materials than it is for other goods and that, as a result, resource 

economies tend to be more exclusively reliant on the economic health of nearby importers.

CONSTRUCTING A CHORD DIAGRAM

Chord diagrams are a relatively specialized breed of chart. You will ind most are built with 

the Scalable Vector Graphics (SVG) based JavaScript library d3.js. In this section, you ind 

step-by-step instructions for coding the global trade visualization shown in Figure 12-7 

using d3.js, which you can easily adapt to your own data and embed in your own web app.
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Prepare the Data

Yearly import and export trade data is available for all reporting countries from the U.N., 

subject to availability and usage restrictions. Data available includes detailed statistics by 

classiication of goods. his example uses the 2010 reported imports only for each of the 

25 high gross domestic product (GDP) countries selected, which is recommended over 

the mirror statistics reported by the exporting country. 

Data for this example was obtained online from the DESA/UNSD, United 

Nations Comtrade database at comtrade.un.org, which makes data freely 

available for personal use or limited publications like this one. If you intend to 

use data from Comtrade, be sure you read its policy document irst to under-
stand usage and re-dissemination restrictions.

Locate the imports.csv data ile in the example materials you downloaded from the 

Supplementary Materials provided on this book’s companion website for this chapter. 

Each record in the data contains a reporting country and the partner country where the 

goods came from. he value column indicates the total value of goods in U.S. dollars.

Reporter,Partner,Value

36,36,872953626

36,56,1390394950

36,76,680796081

36,124,1561155248

...

Note that some countries report re-imports to themselves, which you will likely want to 

ignore. More obviously, countries in this data are represented by what looks like ISO 3166 

numeric country codes. Because you want to not only label countries in the visualization 

but also arrange them according to location, you must merge in country detail data. hat 

data is in the countries.csv ile.

ISOCC2,ISOCC3,ISONo,CountryName,ContinentCode,Continent,Latitude,

     Longitude

AD,AND,20,Andorra,EU,Europe,42.5,1.6

N
O

T
E



CHAPTER 12 Flows 371

AE,ARE,784,United Arab Emirates,AS,Asia,24,54

AF,AFG,4,Afghanistan,AS,Asia,33,65

AG,ATG,28,Antigua and Barbuda,NA,Americas,17.05,-61.8

AI,AIA,660,Anguilla,NA,Americas,18.25,-63.1667

...

You may ind that Comtrade does use ISO 3166 country codes, but with 
some slight differences, which have been corrected for this example. 

Create the Page Structure

With the two data iles and the d3.min.js library ile, you are ready to begin coding. 

Start with a simple container page. he following index.html page creates an empty 

page with a title and some basic styling, loads d3.js, and loads a JavaScript ile named 

worldtrade.js where you will put your code:

<!DOCTYPE html>

<html>

<head>

    <meta charset="utf-8">

    <title>Global Trade Flow</title>

    <script src="d3.min.js"></script>

    <!-- container styling -->

    <style>

        body {

            margin: 1em auto 4em auto;

            position: relative;

            width: 720px;

        }

        h1 {

            font: 30px Myriad Pro;

N
O

T
E
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            font-weight: normal;

            text-align: center;

        }

    </style>

</head>

<body>

    <h1>Global Trade Flow, 2010 ($USD)</h1>

    <script src="worldtrade.js"></script>

</body>

</html>

You will come back to this page later to add styles for the visualization you are about 

to make. Create the worldtrade.js ile and open it for editing. d3.js includes a basic 

utility function for reading from CSV iles using asynchronous Ajax requests. A supplied 

callback is invoked on completion. When the irst ile completes, load the second, and 

when that completes, invoke your main processing function with both results.

// worldtrade.js

d3.csv('imports.csv', function(imports) {

    d3.csv('countries.csv', function(countries) {

        onLoad(imports, countries);

    });

});

function onLoad(imports, countries) {

    // [TO DO: process data here]

}

Process and Model the Data

he irst processing step is to merge the country and import data and sort the countries 

geographically. Start by creating a function to reduce the list of countries to only those 

referenced in the import data:

function reportingCountries(imports, allCountries) {
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    var i;

    var row;

    var country;

    var countryMap= {};

    var countries= [];

    // build a map of all countries by code

    for (i=0; i<allCountries.length; i++) {

        row = allCountries[i];

        countryMap[row.ISONo] = row;

    }

    // then form a list of only those countries in the data

    for (i=0; i<imports.length; i++) {

        row = imports[i];

        // (data is grouped by reporter so watch for a change)

        if (country !== row.Reporter) {

            country = row.Reporter;

            countries.push(countryMap[row.Reporter]);

        }

    }

    return countries;

}

Everything in a visualization communicates information. Think of ways to 

order data in structured layouts like lists and circles that are consistent with 

a reader’s expectations and enhance the clarity of communication. 

T
IP
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Next, create a function to sort the countries by angle of direction from 40 degrees lat-

itude and –40 degrees longitude, which is roughly in the middle of the Atlantic Ocean. 

Here, the country records are enhanced in place with an extra directional member prop-

erty for sorting:

function sortCountries(countries) {

    var i;

    var row;

    // for each country...

    for (i=0; i<countries.length; i++) {

        row = countries[i];

        // store clockwise direction from middle of atlantic (40,-40)

        row.ClockwiseDirection = Math.PI*0.5 - 

            Math.atan2(Number(row.Latitude)-40, Number(row.Longitude)

                 +40);

        // make sure angles are positive

        if (row.ClockwiseDirection < 0) {

            row.ClockwiseDirection += Math.PI*2.0;

        }

    }

    // inally sort countries by clockwise direction from middle of ocean

    countries.sort(function(a,b) {

        return a.ClockwiseDirection - b.ClockwiseDirection;

    });

    return countries;

}

Now that you have functions to prepare the list of countries, it’s time to add a function 

to process the import records and put them in the right form. d3.js requires that chord 
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data be supplied in matrix form—a stripped-down array of arrays of numbers. he matrix 

cannot include anything but numbers, and no numbers can be missing. To ensure that the 

matrix will be valid, write a function to create the matrix and ill it irst with zeros:

function initMatrix(size) {

    var i,j;

    var matrix= [];

    var row;

    matrix.length = size;

    for (i=0; i<size; i++) {

        row = matrix[i] = [];

        row.length = size;

        for (j=0; j<size; j++) {

            row[j] = 0;

        }

    }

    return matrix;

}

Next, deine the function that will create the matrix by calling your initialization 

function and populating it with data. Remember to skip re-imports from the originating 

country to avoid extra noise in the data.

function createMatrix(imports, countries) {

    var matrix = initMatrix(countries.length);

    var i;

    var index= {};
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    for (i=0; i<countries.length; i++) {

        index[countries[i].ISONo] = i;

    }

    var row;

    var irow, icol;

    // process the data

    for (i=0; i<imports.length; i++) {

        row = imports[i];

        icol = index[row.Reporter];

        irow = index[row.Partner];

        // skip re-imports

        if (irow != icol) {

            matrix[irow][icol]= Number(row.Value);

        }

    }

    return matrix;

}

Visualize the Data

Now that all of the data processing functions are deined, it’s time to put them together 

in the onLoad function you deined earlier and create a function to visualize the data.

function onLoad(imports, countries) {

    // pare down the countries to import reporters only

    // and sort them radially based on geography

    countries = sortCountries(reportingCountries(imports, countries));
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    // reformat imports into a matrix of data

    imports = createMatrix(imports, countries);

    // build the visualization

    visualize(imports, countries);

}

function visualize(matrix, countries) {

    // [TO DO: construct the visualization!]

}

he irst step in constructing the chord visualization is to add an SVG element to the 

DOM with a root group anchored at the center. In this simple web page example, the 

SVG element is appended directly to the body. he next step is to compute the chord 

layout. Layouts encapsulate much of the complex form-speciic graphical construction. 

Sorting the exports for each country and layering chords in order of size will provide 

some additional clarity.

function visualize(imports, countries) {

    var width = 720,

        height = 720;

    // Construct an svg element with a root group anchored in the center

    var svg = d3.select('body').append('svg')

        .attr('width', width)

        .attr('height', height)

        .append('g')

            .attr('id', 'circle')

            .attr('transform', 'translate(' + width/2 + ',' + height/2 

                 + ')');

    // Compute the chord layout from the matrix
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    var layout = d3.layout.chord()

        .padding(.04)

        .sortSubgroups(d3.descending) // clockwise

        .sortChords(d3.ascending)     // layer-wise

        .matrix(imports);

    

    // ....

    

}

The grammar of graphical construction in d3.js is based on SVG. Creating 

new visualizations using d3.js requires a reasonably solid understanding of 

the SVG standard. SVG is a low-level graphics format that takes some time to 

learn. You will ind that you can often get by with minor modiications to the 
plentiful examples provided at d3js.org, but if you are planning to use d3.js  

more extensively in the long run, it is worth the investment to learn SVG.  

Now you are ready to begin creating the graphical elements. Start by creating the arcs 

for each country around the perimeter of the circle. Create an SVG group to parent them 

using the country groups produced by the layout data. 

    // ....

    var chord;

    // Add a group per country. On hover add the fade class to 

    // other chords

    var group = svg.selectAll('.group').data(layout.groups).enter()

        .append('g').attr('class', 'group').on('mouseover',

            function mouseover(d, i) {

                chord.classed('fade', function(p) {

                    return p.source.index != i && p.target.index != i;

                });

N
O

T
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            });

    // Arcs will step through color spectrum...

    var startHue = 180,

        hueStep = 360 / countries.length;

    var radius = Math.min(width, height)/2 - 10,

        innerRadius = radius - 24;

    function countryColor(i, l) {

        return d3.hsl(startHue - i*hueStep,.7, l||.5).rgb().toString();

    }

    // Add the country arcs.

    var groupPath = group.append('path').attr('id', function(d, i) {

        return 'group' + i;

    }).attr('d', d3.svg.arc().innerRadius(innerRadius).outerRadius

           (radius))

        // Fill with unique hue.

        .style('ill', function(d, i) {

            return countryColor(i);

        })

        // Outline with darker version of ill.

        .style('stroke', function(d, i) {

            return countryColor(i, 0.33);

        });

    // ...

Assign a color to each country by circling a full 360 degrees around the color wheel 

in equal steps, as shown in Figure 12-8.
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FIGURE 12-8: Arcs for each country step are assigned a hue by circling the color wheel.

Add a label for each country to follow the arc path. For countries with limited display 

space, use an ISO symbol instead of the full name:

    // ...

    // LABELS

    var labelXOffset = 3,

        labelYOffset = 15;

    // Add a label for each country...

    var groupText = group.append('text')

         .attr('x', labelXOffset)

         .attr('dy', labelYOffset);
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    // ...tailoring arc of text to available space.

    groupText.append('textPath').attr('xlink:href', function(d, i) {

        return '#group' + i;

    }).text(function(d, i) {

        return d.value > 300e9? countries[i].CountryName :

            d.value > 100e9? countries[i].ISOCC3 :

            d.value > 50e9? countries[i].ISOCC2 : '';

    });

    // ...

Next, add the chords. Use the color of the source country and a darker version of the 

same for the outline color. he layout class will supply the complex path geometry.

    // ...

    // Add the chords, coloring by source country

    chord = svg.selectAll('.chord').data(layout.chords).enter()

        .append('path').attr('class', 'chord')

            .attr('d', d3.svg.chord().radius(innerRadius))

            .style('ill', function(d) {

                return countryColor(d.source.index);

            })

            .style('stroke', function(d) {

                return countryColor(d.source.index, 0.25);

            });

    // ...

Before displaying, add some CSS styling to index.html. Reduce the opacity of the 

country arcs and assign the font for the labels. Specify the ill and outline stroke for the 

chords just added.

    <!-- D3 styling -->

    <style>

        .group path {

            ill-opacity: .5;
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        }

        svg {

          font: 11px Myriad Pro;

        }

        .chord {

            ill-opacity: .9;

        }

        path.chord {

            stroke: #000;

            stroke-width: .25px;

        }

Interactive Details on Demand

he resulting visualization should now look exactly like the trade diagram repre-

sented in Figure 12-7. As a inal step, add a few basic interactions. Before returning to 

worldtrade.js, add a style to index.html for a circle that will not be visible but that, 

when hovered over, will hide any contained path with the fade CSS class applied. 

        #circle circle {

            ill: none;

            pointer-events: all;

        }

        #circle:hover path.fade {

            display: none;

        }

    </style>

Insert the circle underneath the chord diagram and add the titles to the arcs and 

chords to display quantitative values in a tooltip on hover, as shown in Figure 12-9.

function visualize(imports, countries) {

    // ...



CHAPTER 12 Flows 383

    // INTERACTIONS

    var formatValue = d3.format('$,f')

    // Add an invisible circle underneath for hover events to 

    // ilter chords

    svg.insert('circle', ':irst-child').attr('r', radius);

    // Add a mouseover title for each group.

    group.append('title').text(

        function(d, i) {

            return countries[i].CountryName + ': ' + 

                 formatValue(d.value)

                + ' in imports';

        });

    // Add a mouseover title for each chord.

    chord.append('title').text(

        function(d) {

            return countries[d.source.index].CountryName + ' → '

                + countries[d.target.index].CountryName + ': '

                + formatValue(d.source.value) + '\n'

                + countries[d.target.index].CountryName + ' → '

                + countries[d.source.index].CountryName + ': '

                + formatValue(d.target.value);

        });

}

You now have an interactive chord diagram of low between countries, easily inte-

grated into any web page. An additional feature to consider would be an option to visual-

ize change in low from a previous point in time. An efective approach would be to map 

percentage change in export values for each country arc and percentage change in total 

low for each chord to a new color ramp. An intuitive color ramp for change uses red for 

decrease, green for increase, and a neutral gray for no change.
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FIGURE 12-9: Hovering over a country ilters out chords that do not involve that country.  
Moving the mouse to a single chord shows a tooltip summary of trade flowing in  
each direction.

BEHAVIORAL FACTOR TREE

Sankeys and chord diagrams are good at showing volumes of low through or between 

nodes of a graph. But what if your data has a natural directional low and observables at 

each node but does not have volume? In some cases, volume data might simply not be 

collected and available. In other cases, the issue might be inherent to the nature of the 

data. For example, a typical inancial or economic model used for forecasting and risk 
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management will include many factors that inluence an outcome, but these relationships 

are about complex transitive efects, not simply quantiied transactions. 

When behaviors are involved and the relationship between nodes cannot be prop-

erly expressed with one or two simple measures, relationships can often be understood 

through correlation of linked behaviors if arranged in a factor tree and made visible 

through the use of time series.

You may remember factor trees from grade school math. As shown in Figure 12-10,  

a factor tree breaks down a number successively into constituent factors and links them 

with lines. A behavioral factor tree uses the same structural approach but describes com-

plex relationships of inluence instead of simple multiplications. his technique for show-

ing linked visible behaviors is unique, speciic, and useful enough to give it a name to 

refer to.

42

76

32 7
FIGURE 12-10: A traditional factor tree like the one shown  
here is used in teaching mathematics to show how factors  
combine hierarchically to produce a result.

Behavioral factor trees are particularly efective for understanding models that can 

otherwise sufer from lack of transparency. Models are used to explain and often project 

behavior. Models that are not transparent tend to sufer from the “black box” problem. 

Like the number 42, which is the answer to life, the universe, and everything in Hitch-

hiker’s Guide to the Galaxy by Douglas Adams (New York: Del Rey, 1995), a simple sum-

mary often fails to ofer enough explanation and requires an inordinate amount of trust 

on behalf of the analyst—which is not always warranted.  
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Figure 12-11 shows how a behavioral factor tree can be used to understand potential 

contributing factors in an economic model when drilling down on an indicator. Com-

mon points of inlection, patterns, and trends in the time series over multiple scenarios 

ofer information as to the nature and degree of inluence, as well as how they combine 

to efect an ultimate outcome.

FIGURE 12-11: A behavioral factor tree shows the complex effects of influencing factors  
in an outcome through the use of links and correlation. Here, various factors driving  
consumption in an economic model are shown, revealing common inflection points and  
trends in associated behaviors.
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SUMMARY

his chapter described how speciic techniques like Sankey diagrams, chord diagrams, 

and traditional graph visualization can use links to communicate low of goods, money, 

information, or other data. Model code examples were provided with detailed step-by-

step instructions for use of each technique. Finally, behavioral factor trees were illus-

trated as a means of visualizing the complex low of inluence, as well as observed or 

projected efects in a model.

Chapter 13 looks at visualization of physical networks, some of which also involve 

low. he importance of pre-existing, meaningful node locations in physical networks 

provides unique challenges for graph visualization.
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13
SPATIAL NETWORKS

Spatial networks are a unique form of graph. Unlike 
in community analysis, where layout is instrumental in 
revealing how nodes are connected, nodes in a spatial 
network have pre-existing physical characteristics that 
are preserved, relying on link visualization alone to con-
vey connections. 

Spatial networks occur in nature, and graphs can be useful in understanding complex 

networks of this kind. Neuroscientists use graph visualization and analysis to learn more 

about how our brains are wired. In the business world, however, spatial networks are 

often equated with infrastructure. For example, supply chains have a spatial component 

that may be highly relevant to supply optimization. Oil pipelines, electrical power net-

works, transportation infrastructure, and computer networks are a few of the many other 

examples of spatial networks where graph visualization and analysis are of value. 

Seeing how elements are connected physically and logically provides insight into the 

structure of a system. It also provides important context in understanding the health and 

performance of a system, the impact of failures, and how to plan for and mitigate them. 

System routes and lows are often of central interest in spatial networks. One of the 

primary challenges of visualizing spatial networks is the limited number of links that 
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can be successfully displayed at once. Links that cross each other or other nodes in their 

path introduce perceptual confusion. So, when node locations are ixed and cannot be 

arranged to mitigate this, connections can quickly become diicult to follow. his can be 

a signiicant issue, given that link visualization is critical to conveying a spatial network.

his chapter discusses strategies for efective visualization of spatial networks, includ-

ing route aggregation, schematic representations, grouping of small worlds, and alterna-

tive representations for links.

SCHEMATIC LAYOUT

When Harry Beck began working for London Transport as a young draftsman in the 

1920s, the London Underground was in a state of rapid evolution. Previously inde-

pendently operated underground railway lines were in the process of integration, and 

lines were being extended further into the suburbs of the city. 

It was only as recent as 1908 that the railway companies had coordinated the publi-

cation of a single integrated map of the London Underground. Ongoing integration and 

expansion meant that the map was subject to regular revision. As the system became 

more complex, creating an easily navigated map was becoming an increasing challenge. 

Not only was more information being continually added, but some downtown areas were 

also exceptionally dense where formerly competing railways overlapped, while the system 

extended ever further into the suburbs where stops were farther apart. Fitting everything 

into a legible pocket-sized map was becoming diicult.

It was not part of Beck’s job description to make maps. He was an engineer working 

in the signals department, not a cartographer. However, as an engineer, he would have 

been familiar with schematic diagrams and the beneits of abstracting the representation 

of physical systems. He had an inspired idea about how to solve the map problem. He set 

about crafting it in his spare time and presenting it to his employer. 

In 1933, with the still tentative support of the London Underground, Beck intro-

duced a schematic variation of the “tube” map that would be quickly popularized into 

one of the most iconic symbols of London, and that would set the course for many future 

transit system maps to come. 
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Beck’s map maintained a spatial layout, but constrained lines to cardinal and ordinal 

directions, and spaced train stops evenly so that station names were easily read. Lines 

were shortened to be just long enough to it all of the stops comfortably. he River 

hames was the only aboveground geographic landmark that remained, but it was wisely 

chosen, serving as a key reference point for the position and scale of the entire network. 

Using the same principles, Figures 13-1 and 13-2 illustrate the diference between a 

geospatially accurate and schematic map for the ictional city of Lords. Both maps are 

printed at the same size, yet the schematic map is much easier to read. he introduction 

of this approach in the 1930s saw the same efect.

FIGURE 13-1: Prior to H. C. Beck’s reinvention of the London Underground map, subway networks were 
drawn with geospatial accuracy. However, as the size of networks increased, it became dificult to pro-
vide all of the information in legible form, as illustrated in the ictional map shown here.
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FIGURE 13-2: The same ictional network mapped in Figure 13-1 is shown here using a schematic 
approach. Geospatial accuracy is traded for clear communication of stops and logical physical 
relationships.

he lesson of Beck’s map was that exact spatial locations in a network are often less 

important than spatial relationships and that some lexibility in the location of nodes and 

links can greatly improve legibility. he approach also serves to reinforce a universal 

principle of visualization, which is to make sure that every bit of ink is adding clarity to 

the essence of information being sought and to remove all else. 

What Beck realized is that riders only need to know landmark station names, as well 

as the name and direction of the lines they are taking in order to navigate underground. 

Geographic context was useful for understanding where to get on and of but impractical 

for a pocket-sized map and not needed once traveling on the system. By removing all but 

one reference to what was above ground (other than what was communicated by station 

names), Beck was able to maximize the clarity of what was below ground. 

he decision as to what adds clarity and what detracts from it is not always easy, 

however. Beck continued to battle against movements to revert key aspects of his design, 
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some successful and some not, until parting ways with the department in 1959. Look-

ing back from a twenty-irst century perspective, with all the beneits of precise modern 

printing techniques, you might wonder whether Beck’s design would beneit from a few 

additional aboveground landmarks as reference points. However, the fundamental prin-

ciples behind the schematic approach to spatial layout remain timeless.

A Modern Application

Many of the best schematic spatial layouts are ixed and manually authored, like the 

London Underground. For a network of your own that is relatively static and that you 

want to revisit frequently, this is a practical approach. However, when you are working 

quickly to assemble a visualization of new data, you can apply techniques to achieve some 

of the same results. For example, the chord diagram of global trade low in Chapter 12, 

“Flows,” takes a schematic approach to country layout by arranging them around the 

circle by geographic orientation (see Figure 12-7). he following example uses a similar 

data set, this time with U.S. interstate transport of goods measured by value. 

A chord diagram is an option you might consider here as well. However, there is one 

signiicant diference between the nodes in this network versus the previous one. In the 

global data, a ring is a reasonable approximation of spatial relationships between the 

countries involved, whereas here it is not. here is no way to keep neighboring interior 

states from ending up at opposite sides of the circle. Introducing confusion into spatial 

relationships (which have a natural correlation with transportation) will corrupt a clear 

view of patterns of transport low across the country. Finding a means of maintaining 

approximate geographic location will give truer shape to the data.

he interstate transport data here was made available by the U.S. Department of 

Transportation’s Bureau of Transportation Statistics (BTS). he BTS maintains statistics 

for all modes of transportation, much of which is updated continuously. his particu-

lar data set was obtained from the results of a detailed 1997 Commodity Flow Survey 

(CFS), and subsequently enhanced with state locations.

Raw data used for this example, along with a wide variety of other 

 transportation-related data, is available for download from the Bureau of 

Transportation at http://transtats.bts.gov.N
O
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E
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Flow of transport was aggregated across all commodities by value of shipments out, 

in, and within for each state, measured in millions of U.S. dollars. Note that state statis-

tics include some zeros, indicating gaps in reporting, so caution should be taken in inter-

preting the results.

id,state,latitude,longitude,out($M),in($M),within($M)

AL,Alabama,32.799,-86.8073,0,29048,0

AK,Alaska,61.385,-152.2683,0,4644,0

AZ,Arizona,33.7712,-111.3877,63879,72882,37161

AR,Arkansas,34.9513,-92.3809,0,21455,0

CA,California,36.17,-119.7462,484287,307532,1930

...

States form the nodes in this graph, and links represent the value of shipments 

between states, in millions of dollars.

origin,destination,value

CA,AL,2633

CO,AL,277

CT,AL,124

FL,AL,1294

GA,AL,5380

IL,AL,1346

...

A relatively simple method of importing comma-separated value (CSV) node and 

link data into Gephi is to format it as a GDF ile. A GDF ile is a CSV ile with some 

special formatting of the column headers and with node and link data sections within 

the same ile. 

Copy the node data into a new ile, and start by inserting the nodedef> tag and 

changing the name of the state id column to name so that Gephi recognizes it as the 

node identity column. Next, assign a type to each column: VARCHAR for text and DOUBLE 

for numbers. Append the link data below the node data and repeat a similar process, 

beginning with an edgedef> tag. Change the name of the value column to weight so 

that Gephi will know to map it to link width. Save it as a ile with a GDF extension, like 

interstate-transport-1997.gdf. he following snippet shows how to do this:

nodedef>name VARCHAR,state VARCHAR,latitude DOUBLE,longitude DOUBLE,out 
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     DOUBLE,in DOUBLE,within DOUBLE

AL,Alabama,32.799,-86.8073,0,29048,0

AK,Alaska,61.385,-152.2683,0,4644,0

AZ,Arizona,33.7712,-111.3877,63879,72882,37161

AR,Arkansas,34.9513,-92.3809,0,21455,0

CA,California,36.17,-119.7462,484287,307532,1930

...

edgedef>origin VARCHAR,destination VARCHAR,weight DOUBLE

CA,AL,2633

CO,AL,277

CT,AL,124

FL,AL,1294

GA,AL,5380

IL,AL,1346

...

Open the new ile in Gephi, being sure to lag it as a directed graph. Once the graph 

data ile is opened, the irst step is to arrange the states according to location. Choose the 

Geo Layout and, using the default options, click Run to arrange the nodes geographi-

cally. Next, use the Ranking tab to map the value of incoming shipments to node size, 

and do the same for links. Make the nodes large enough to comfortably accommodate 

labels. hen, using the label editing pane at the bottom of the graph pane, turn on the 

two-letter state code labels, and bind their size to the size of the node. 

GeoLayout is a Gephi plug-in. If you have not already installed the plug-in, you 

will need to save your work and do so now.

In the Preview task mode, hide nodes by setting their opacity to zero, and turn on 

node labels, giving them a white outline. Bump up the maximum width of links to 20.0, 

and change their color to be universally gray, rather than mixing the colors of the nodes. 

Make them semi-transparent and refresh the view. You will now be looking at a view of 

transport volume between states. he fact that each state is connected to almost every 

N
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other state, however, is making it diicult to understand much about the low, especially 

for midsize to small states. An analytic would be useful here. 

Return to the Overview task mode and, in the Statistics pane, run the Modularity 

algorithm to group states into clusters where there is more localized low. Experiment 

with the settings until you get four to six clusters. Any more than that will be too local-

ized to be interesting, and any less will be too global. Using the Partition tab, assign 

the modularity class of each node to color. Return to the Preview task mode to view the 

result, as shown in Figure 13-3.

FIGURE 13-3: Mapping size to value of shipments and using a modularity analytic identiies regions of 
flow and a few broad patterns. However, overlapping nodes make it dificult to see links.

Notice that the modularity clusters (which are computed based solely on the topol-

ogy of low between nodes) map nicely into geospatial regions. In fact, not only do the 

clusters have pure spatial boundaries, they are almost exactly the same as the four oicial 

national regions deined by the United States Census Bureau. Given that census regions 

are deined primarily for statistical purposes, it seems very likely that the states within 

have additional statistical attributes that unite them outside of this data set. 

hough the modularity analytic tells you there are more cycles of low within the four 

state groups, it is diicult to see it. It’s particularly diicult to see much of anything in 
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areas like the Northeast, where there is a lot of overlap. his is where Beck’s lesson comes 

into play. To see relationships more clearly, a schematic geographic layout would be ideal. 

Use the Label Adjust layout to shift the nodes for legibility. Return to the Preview 

task mode, turn of the curve option on links, and give edge arrows a relative size of 2.0. 

By separating nodes, the links between them have become visible, revealing charac-

teristics that were previously obscured, as shown in Figure 13-4. For example, it is appar-

ent now that New Jersey is a net producer of goods, and many of those goods low to 

New York and Pennsylvania. It is also clear that Florida is a net consumer. By adjusting 

spatial position to better space nodes while preserving spatial relationships, more informa-

tion can be shown.

FIGURE 13-4: Using post-geospatial layout adjustments to give each node uncontested space provides 
room for more expressive links. Here, New Jersey is revealed as a net producer of goods, and Florida as 
a net consumer.

SMALL WORLD GROUPING

Another technique that can be useful in structuring a spatial network representation for 

legibility is to group small worlds. his technique can be appropriate if the links between 

physical nodes are abstract relationships rather than routes, as in this case here. he small 
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world phenomenon in graphs is closely associated with strong clusters and cliques or 

near-cliques in that it describes a set of nodes that are highly interconnected and signii-

cantly less connected to those outside the world. hey can be predeined by logical busi-

ness divisions, or they can be computed. 

Small worlds lend themselves well to grouping and hierarchical nesting to produce 

a network view where links do not cross other nodes or links. In this technique, small 

worlds are organized into larger bounding group nodes, and, while their internal links 

are visually preserved, links to nodes outside the world are instead aggregated and drawn 

between groups, as shown in Figure 13-5.

UNGROUPED GROUPED

FIGURE 13-5: Grouping small worlds and aggregating links between them is another useful technique 
for being able to see flow clearly.

In the transport data set used for this exercise, every state is connected to almost every 

other state. he whole country is a small world, making it unsuitable for this technique.

LINK ROSE SUMMARIES

Links are the essence of a spatial network visualization. But when nodes are highly con-

nected, and the center of the network is densely populated, drawing lines between each 

of the nodes creates visual interference. 

Looking again at the Gephi interstate transport visualization in Figure 13-4, 

restrained use of color and opacity has revealed a few broad-stroke characteristics of large 

states like Florida, California, and New Jersey, but it is diicult to see much else. What 

are the characteristics of transport to and from Montana? How do Massachusetts and 
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Virginia compare? You can see approximately where major transport corridors must lie, 

but this is somewhat misleading because the data does not contain route information. 

Are there any other interesting patterns that can be observed?

When traditional approaches are not working to solve a particular problem, it is use-

ful to step back and re-evaluate what information is truly essential. What’s of interest in 

this data is not the low of goods through states, but the low of goods in and out of a state 

from each other state. he few insights you were able to take away in the previous exer-

cise were most likely spotted by looking at the direction and thickness of incoming and 

outgoing lines directly around a node. 

hose patterns are easiest to see, especially if the node lies on the perimeter where it 

is less likely that interfering lines will cross it. If the interfering lines are removed, leav-

ing only the ink that describes incoming and outgoing low at each node, it would reveal 

key characteristics more clearly, no matter where the nodes lie. hat is precisely what a 

link rose is useful for.

In a link rose, the volume of link low associated with each node is summarized by 

subdividing the space around the node into radial sectors and aggregating the low of 

links for each sector. Flow in and out can be represented separately, which is useful for a 

directed graph like this one, or as a single sum low. 

Figure 13-6 shows the same interstate transport graph using link rose summaries. 

he faded inside sectors represent goods entering state borders from various directions, 

and the outside sectors represent goods leaving. Large net goods producers like Califor-

nia, Michigan, and New Jersey are clearly visible here, as are net consumers like Florida. 

However, unlike in the graph representation produced with Gephi, so are smaller net 

producers like Minnesota (MN), Oregon (OR), and Massachusetts (MA), as well as net 

consumers such as Virginia (VA). 

he link rose visualization provides a clearer view of low of goods to and from inte-

rior and coastal states alike. One limitation, however, is that for states that have low 

pointed in the direction of many other states (such as California or Massachusetts), it is 

diicult to tell how far the goods travel. For example, how much of the low out the bot-

tom of California heads to Texas versus Florida? You can get a sense of the relative pro-

portion in that case by looking at the matching incoming sector in the other two states. 

But what about Massachusetts? Interactions could be added to show links when hovering 

over a state. However, there is a way to add more information to the overview as well. 

Figure 13-7 shows how subdividing each sector into a series representing linked groups 

and sorting by distance can help to articulate relationships in more detail. For example, the 

largest sector heading out of Massachusetts bypasses the nearby states to destinations in the 
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Midwest and West in equal measure. he following example illustrates how to make this 

diagram in Aperture JS using graph data from the previous example.

FIGURE 13-6: A link rose summarizes volume of incoming and outgoing links by direction, pointing back 
at the other end of the relationship. Here, the value of goods shipped into each state is shown by the 
interior part of the rose, and shipments out are shown by the exterior. By removing links, smaller state 
relationships are no longer obscured.

FIGURE 13-7: A link rose can be subdivided into a series to better indicate the characteristics of linked 
nodes, and the series can be sorted by distance to communicate near and far in the direction being 
summarized.
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Building a Link Rose Diagram

To try this yourself, download the example package for this chapter from the Supple-

mentary Materials provided on this book’s companion website. To begin creating the 

link rose diagram, export the previous graph from Gephi in GraphML format. Follow-

ing a model similar to those in earlier chapters, create a basic HTML page to host the 

visualization, as shown here:

<!DOCTYPE html>

<html>

<head>

    <meta charset="utf-8">

    <title>Inter-State Transport</title>

    <script src="jquery.js"></script>

    <script src="raphael.js"></script>

    <script src="aperture.js"></script>

    <!-- container styling -->

    <style>

        body {

            margin: 0;

            position: absolute;

            width: 100%;

            height: 100%;

        }

    </style>

</head>

<body>

    <script src="transport.js"></script>

</body>

</html>

Next, create the transport.js JavaScript ile referenced previously. Your irst state-

ments will load the GraphML ile and parse it into object form. In the process, node 

positions will be transformed to it the screen and lip the y-axis from bottom-up to 
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top-down. Subsequent steps will be to compute the rose summaries for each of the nodes 

in preparation for visualization.

jQuery.get("transport.graphml", function(data) {

    // parse the graph ml ile

    var graphData = aperture.graph.fromGraphML(data, {

        left: 50, 

        top: 10, 

        width: 1500, 

        height: 750

    });

    var numSectors = 24;

    

    // enhance nodes with link rose data

    aperture.graph.linkRose(graphData.nodes, {

        value: 'value', 

        group: 'group',

        numSectors : numSectors

    });

    // construct the graph

    construct(graphData.nodes, numSectors);

});

Now create the construct function that you just called, passing it the data. Create 

the root visual elements, mapping node locations from the x and y of each data object, 

and then adding the nodes to a new layer. he next step is to add the rose layers. Before 

doing that, ind the upper range of the sum of values in and out of each state. his will 

be used to scale the visuals.
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function construct(nodes, numSectors) {

    // Create the root element for nodes and links

    var usa = new aperture.NodeLink(jQuery('body').get(0));

    usa.map('node-x').from('x');

    usa.map('node-y').from('y');

    

    // Create and populate the node layer

    var nodeLayer = usa.addLayer(aperture.NodeLayer);

    nodeLayer.all(nodes);

    

    // Find the data range

    var valueRange = new aperture.Scalar('Transported Value ($M)', [0]);

    

    nodes.forEach(function (node) {

        valueRange.expand(

            node.rose.linksIn.totals.sectorMax 

            + node.rose.linksOut.totals.sectorMax);

    });

    //...

Next, deine the rose for links out of each state. he base radius from which the sec-

tors will grow should be conigured to leave enough space for both the state label and the 

sectors for inlowing links. he scale for both needs to be the same.

    //...

    // Deine the visual range which the data range will be mapped to

    var roseStart = 18;

    var roseWidth = 145;

    var roseOutKey = valueRange.mappedTo([0, roseWidth]);

    var roseBaseKey = valueRange.mappedTo([roseStart, 

         roseStart+roseWidth]);
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    // Assign colors to each group, which is a number 0-4 in the data.

    var roseColorKey = new aperture.Ordinal('Groups', 

        [0,1,2,3]).mappedTo(['rgb(0,138,138)', 'rgb(139,69,19)', 

        'rgb(189,74,0)', 'rgb(120,114,97)'

    ]);

    

    // Add the layer

    var outRose = nodeLayer.addLayer( aperture.RadialLayer );

    outRose.map('opacity').asValue(0.9);

    outRose.map('sector-count').asValue(numSectors);

    outRose.map('series-count')

        .from('rose.linksOut.series.length');

    outRose.map('base-radius')

        .from('rose.linksIn.totals.sectorMax').using(roseBaseKey);

    outRose.map('radius')

        .from('rose.linksOut.series[].sectors[]').using(roseOutKey);

    outRose.map('ill')

        .from('rose.linksOut.series[].group').using(roseColorKey);

    //...

Add a second layer for the links coming into each state, but with its scale inverted 

and its base ofset by one to leave a gap representing the anchor line.

    //...

    // The inward rose inverts the scale and shifts the base one pixel

    var roseInKey = valueRange.mappedTo([0, -roseWidth]);

    var roseInBaseKey = valueRange.mappedTo(

        [roseStart-1, roseStart + roseWidth - 1]);

    

    // Add the layer

    var inRose = nodeLayer.addLayer( aperture.RadialLayer );

    inRose.map('opacity').asValue(0.35);

    inRose.map('sector-count').asValue(numSectors);
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    inRose.map('series-count')

        .from('rose.linksIn.series.length');

    inRose.map('base-radius')

        .from('rose.linksIn.totals.sectorMax').using(roseInBaseKey);

    inRose.map('radius')

        .from('rose.linksIn.series[].sectors[]').using(roseInKey);

    inRose.map('ill')

        .from('rose.linksIn.series[].group').using(roseColorKey);

    // Grow the labels a bit by state totals

    var labelKey = valueRange.mappedTo([18, 48]);

    

    // Add label layer

    var label = nodeLayer.addLayer( aperture.LabelLayer );

    label.map('font-weight').asValue('bold');

    label.map('font-outline').asValue('white');

    label.map('font-outline-width').asValue(3);

    label.map('text').from('id');

    label.map('ill').from('group').using(roseColorKey);

    label.map('font-size')

        .from('rose.linksIn.totals.sectorMax').using(labelKey);

    // Draw it all

    usa.all().redraw();

}

Execute the code and you will see the rose diagram shown in Figure 13-7. To create 

the diagram shown in Figure 13-6 (which represents only the sum total of low using 

a single color), remove the mapping of series-count in the radial layers, and replace 

references to series value data with totals. If you want to focus more exclusively on the 

proportion of regional transport to the whole, a middle-ground option is to show one 

colored series only from the second example for low local to the group, and another for 

the remainder in the gray tone used in the irst example. 
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Now that you have a visual summary of transport between states, it would be useful 

to have a method of getting detail for a single focused one. It is clear to which states 

many of the sectors point, but not all. One option would be to show the subset from 

each of the other nodes that involves the focused node and fade out the rest. A simpler 

approach would be to show links for the focused node. 

One advantage of using links is that the scale can be made relative to the focused 

state, which will ensure that details are easy to see for smaller nodes as well. At the bot-

tom of your construct function add an empty link layer, as shown here:

    // ...

    var linkLayer = usa.addLayer( aperture.LinkLayer );

    linkLayer.map('link-style').asValue('arc');

    linkLayer.map('source')

        .from('source');

    linkLayer.map('source-offset')

        .from('rose.linksIn.totals.sectorMax').using(labelKey);

    linkLayer.map('target')

        .from('target');

    linkLayer.map('target-offset')

        .from('rose.linksIn.totals.sectorMax').using(roseBaseKey);

    linkLayer.map('stroke')

        .from('other.group').using(roseColorKey);

    linkLayer.map('stroke-width')

        .from('weight').using(new aperture.Scalar('weight',[0,1])

            .mappedTo([0,20]));

    linkLayer.map('opacity').from(function() {

        return this.other === this.target? 0.9 : 0.35;

    });

    // ...
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Next, add the interaction functions. On click, hide the rose representations, add 

the links for that node, and then redraw. When the viewer clicks of, restore the 

original state. 

    // ...

    var selected = null;

    

    inRose.map('visible').ilter(function() {return !selected;});

    outRose.map('visible').ilter(function() {return !selected;});

    nodeLayer.on('click', function(event) {

        if (selected !== event.data) {

            selected = event.data;

            

            linkLayer.all(event.data.links);

            usa.all().redraw();

        }

        return true;

    });

    jQuery('body').click(function(event) {

        if (selected) {

            selected = null;

            

            linkLayer.all([]);

            usa.all().redraw();

        }

    });

    // ...

Figure 13-8 shows an example result of clicking on Texas. Curved links always low 

in a clockwise direction, so here it is clear that Louisiana receives far more goods from 

Texas than it sends. his more general trend between Texas and other Southern states 

can be seen in the link rose visualization as well, but interactions reveal variance in the 

pattern across speciic states.
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FIGURE 13-8: Adding interactions enables the viewing of details for a single state. Here, shipments in 
and out of Texas by value of goods are shown, revealing a relative imbalance of flow with other Southern 
states. Use of curved links reduces overlap and expresses flow in a clockwise direction.

ROUTE PATTERNS

Routes can be an important dimension of spatial networks. Sometimes you may simply 

want to ind the optimal path between two nodes, as in the subway map example shown 

earlier in Figure 13-2. Other times you may be looking for meaningful patterns in paths 

traveled across the entire network. In some cases, those paths may have a spatial dimen-

sion in the data. 

For example, transportation vehicles for a postal delivery service may use a global 

positioning system (GPS) to record tracks followed over time and upload them to a 

central database, contributing to information about frequency of routes traveled and ei-

ciency of routes at various times of day. Other times, just an origin and destination may 

be available for each trip. For example, the same postal delivery service may record the 

time and location of pickup and delivery of each item, including every distribution center 

along the way. his would contribute to statistics on the number and type of items trans-

ported between each location, and time taken to reach each stop. Analyzing patterns in 

route data can provide valuable insights into delivery optimization, where increased ei-

ciency can have a signiicant impact on proitability.

Passenger airlines form one of the most universally relevant transportation networks 

for businesses that operate nationally or internationally. If you ly frequently for work, you 
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probably have travel eiciency down to a science, minimizing time wasted waiting for 

departures, connections, security, luggage, and ground transportation. Contending with 

delays, missed connections, and canceled lights is not only extremely frustrating, but it is 

exceedingly costly. A 2010 study led by researchers at the University of California, Berke-

ley, put the estimated annual cost of light delays to U.S. passengers at more than $16 bil-

lion, with an additional $4 billion impact on the GDP. For the business traveler, “time is 

money,” and for a high-level company executive, that time can be worth a lot. 

As a frequent traveler, you will likely have formed opinions about the reliability of 

certain airlines and lights based on personal experience, which have since informed your 

light preferences. Typically, little other consideration is given to the likelihood of travel 

delays when planning lights. In reality, however, these delays tend to form patterns, and 

factoring patterns into the choice of a light route (the same way you would for your drive 

to work) can further maximize the chances of a smooth light. 

his example takes you through the exercise of examining patterns in light delays 

across the United States using another data set from the Bureau of Transportation Statis-

tics (BTS). A single month of BTS on-time performance data was combined with avia-

tion support tables and subsequently aggregated in Excel using pivot tables.

he data collected and combined includes the number of lights between each ori-

gin and destination and the average delay in arrival. hese will form links in the graph 

between each airport node.

Origin,Destination,Flights,Avg Arrival Delay (min)

BOI,SUN,1,0

SFO,SUN,20,14

SLC,SUN,137,19

ATL,SAT,332,9

BNA,SAT,57,15

...

For each airport the number of arrivals and departures was computed, along with 

average arrival and departure delays. Since location is central to understanding routes 

and patterns, latitude and longitude was also included for each airport:

Airport,Arrivals,Departures,Flights,Avg Arrival Delay (min),Avg 

     Departure Delay (min),Airport Name,Latitude,Longitude

ATL,31894,31887,63781,15,14,Hartsield-Jackson Atlanta International,...

DFW,23763,23752,47515,17,19,Dallas/Fort Worth International,

     32.89694444,...



PART 3 Visual Analysis of Graphs410

LAX,19060,19052,38112,14,14,Los Angeles International,

     33.9425,-118.4080556

DEN,19028,19006,38034,21,25,Denver International,

     39.86166667,-104.6730556

...

Visualizing Route Segments

For a data set of this scale, Gephi is a good option for rapid analysis. Use GDF again to 

import your data. Copy the node data into a new ile, and insert the nodedef> tag, label-

ing the airport code column as name. Next, assign a type to each column—VARCHAR for 

text and DOUBLE or FLOAT for numbers. Append the link data to the node data and repeat 

a similar process, beginning with an edgedef> tag. Change the name of the Flights col-

umn to weight so that Gephi will recognize it, and save it as uslightdata-dec-2013.gdf.

nodedef>name VARCHAR,Arrivals DOUBLE,Departures DOUBLE,Flights 

     DOUBLE,Avg Arrival Delay (min) DOUBLE,Avg Departure Delay (min) 

     DOUBLE,Airport Name VARCHAR,Latitude FLOAT,Longitude FLOAT

ATL,31894,31887,63781,15,14,Hartsield-Jackson Atlanta International,...

DFW,23763,23752,47515,17,19,Dallas/Fort Worth International,

     32.89694444,...

LAX,19060,19052,38112,14,14,Los Angeles International,

     33.9425,-118.4080556

DEN,19028,19006,38034,21,25,Denver International,39.86166667,

     -104.6730556

...

edgedef>Origin VARCHAR,Destination VARCHAR,weight DOUBLE,Avg 

     Arrival Delay (min) DOUBLE

BOI,SUN,1,0

SFO,SUN,20,14

SLC,SUN,137,19

ATL,SAT,332,9

BNA,SAT,57,15

...
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Open the GDF ile in Gephi, choosing the default directed graph option and let-

ting Gephi rescale the weighted links to reasonable widths. Once the graph data ile is 

opened, the irst step is to arrange the airport nodes according to location. 

Choose the Geo Layout and review the options a little more closely this time. 

For this data, geography will be preserved with more accuracy. he layout should 

discover the latitude and longitude columns and select them automatically. he pro-

jection determines how coordinates on the spherical earth are lattened into a two- 

dimensional representation. he default Mercator projection will work ine for the U.S. 

data here, as will the other defaults. If you were instead mapping global data, consider 

an alternate projection that has less spatial distortion at the poles. 

Click Run to arrange the nodes geographically. Next, use the drag tool with a rel-

atively large-diameter drag dot to pull in states and territories outside of the mainland 

United States (such as Alaska and Hawaii) for more eicient use of space, as shown in 

Figure 13-9. Move Guam from the far right of the map to the Paciic Ocean on the west, 

near Hawaii.

FIGURE 13-9: Use of Geo Layout provides an accurate geospatial projection of  
nodes in Gephi. Some of the states and territories in this case are spread out too  
far to see without zooming out. Use the drag tool with a large diameter to move  
Alaska and the islands closer to the mainland.
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You now have a basic map of airports to work with. However, very large and very 

small airports are represented by the same basic circle representation. It would be truer 

to the data if the size of each node relected the size of the airport, and because the data 

conveniently contains familiar three-letter airport codes, it would be intuitive to use 

these instead of circles. 

Using the Ranking tab and the Label controls at the bottom of the window, make the 

nodes small. hen, turn on labels and map them to the number of lights through each 

airport, adjusting the size until you achieve a reasonable range. Some labels will overlap, 

especially if they are from the same city. To spread them apart you will use the Label 

Adjust layout again, but before you do, save your work in case you need to return to 

the previous layout and try again until you are happy with the result. Once the graph is 

saved, apply the Label Adjust layout for a second or two to push apart overlapping labels 

a bit for better readability. 

If you switch to the Preview task mode, you should see a basic view of light patterns 

across the country. he size of the labels indicates the size of airport by number of domes-

tic lights, and thickness of links indicates the number of lights between airports. You 

may need to select the rescaled option on links and increase their thickness to a higher 

value (such as 4 or 6) to better see the results. Turn the arrow heads of by reducing their 

sizes to zero. Similarly, remove nodes from the view by setting their opacity to zero.

It’s inally time to map light delay visually to the representation. For this, you will be 

using color. Return to the Overview task mode and, using the Ranking tab, assign aver-

age light delay to the default color scheme. Do this for both nodes and links. Back in the 

Preview task mode, select the label color option, which inherits the original node color, 

and give the labels a thick border of ive black pixels. Refresh the preview to see the in-

ished result, as shown in Figure 13-10.

Viewing the visualization, you can immediately see best and worst performers, as well 

as some overall geographic patterns. Among the worst are the two main Chicago area 

airports, O’Hare (ORD) and Midway (MDW), along with Denver (DEN) and New-

ark (EWR). A seasoned traveler might recognize these as airports that experience light 

delays with more regularity. Areas around Chicago and Denver seem to be similarly sus-

ceptible to slowdowns, implying perhaps overcrowded airspace, or weather-related delays. 

hese are December statistics after all. However, Newark, seemingly an area anomaly, 

is not so easily explained. Interestingly, though, one of the worst-performing East Coast 

airports in this data appears to be Trenton-Mercer (TTN), a small airport also located  

in New Jersey.



CHAPTER 13 Spatial Networks 413

FIGURE 13-10: Visualizing average flight delays geospatially across all airports reveals interesting 
patterns. Here, label size indicates the size of airport, and red indicates greater average delay for 
December 2013.

As of this writing, Gephi did not yet have controls for sorting nodes or links 

back to front, nor was it controlled by the data. To draw airports and routes 

with higher delays over the top of those with less, the authors wrote a quick 

Gephi plug-in in Java. The popularity of Gephi among researchers (along with 
the somewhat organic, unplanned feel of the user interface) can be attributed 

in no small part to its extensive plug-in architecture. 

Examining some of the best-performing airports closely like Seattle (SEA), Portland 

(PDX), and Salt Lake City (SLC), you may notice that the few incoming lights that do 

tend to be delayed involve airports where the issue is much more prevalent. Overall, sev-

eral broad trends also emerge. 

N
O

T
E
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One is that the middle of the country, north to south, is delayed more frequently than 

either the East Coast or West Coast. his is a more prevalent trend even than the general 

pattern of improving performance as you move southward, which you might imagine 

could be attributed to weather. 

Another trend that seems apparent is that larger airports seem a bit more likely to 

be delayed than smaller airports. his is particularly evident on the West Coast and the 

area around Florida. One explanation might be that larger volumes of air traic tend to 

be more susceptible to congestion. However, given that this phenomenon seems fairly 

exclusive to areas where lights are often on time, a more likely reason might be that the 

smaller airports in these areas do not have as many light connections to airports that 

tend to incur delays.

Track Aggregation

So far, you have analyzed light delays as a consumer. You may have concluded that you 

are best of by booking connections along coastal routes and avoiding particular airports. 

Taking it further, you might gather additional data to analyze time of day and seasonal 

diferences, and correlate with weather patterns, or compare patterns between particular 

airlines or aircraft types. Given the observations made, you could develop algorithms to 

forecast the best light options when booking and use visualization to help explain why 

certain routes are better than others. 

However, as a consumer, you only need to optimize your choice of light segments, 

similar to how you might choose roads to take to work, but with fewer options. From the 

perspective of an airline or airport air traic controllers, routing decisions are decidedly 

more complex. An optimal path through airspace can, in theory, be diferent for each 

light, each day.

When route data is not bound to path segments but rather is tracking freely across 

a spatial ield, it is often more feasible to aggregate the data in the form of a two- 

dimensional (2D) or three-dimensional (3D) ield. Aircraft and ship tracks are good 

examples of this kind of data. 

Figure 13-11 shows a visualization of ship tracks by frequency over a little more 

than a year. his aggregation technique lends itself well to a tiled, multi-resolution visu-

alization approach with zooming and panning, similar to what you would expect of an 

online map.
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FIGURE 13-11: Aggregation in the form of a 2D or 3D spatial ield is a useful technique for track data and 
scales well for large data sets. Here, ship position reports are plotted using a luminance scale, revealing 
the relative frequency of routes.

SUMMARY

his chapter covered various strategies for efective visualization of spatial networks, 

including schematic layout, link rose summaries, grouping of small worlds, and track 

aggregation. Each of these techniques is useful for a certain type of data and not appro-

priate for others. For example, small world grouping is appropriate for a graph that 

includes clear small world phenomenon, and a link rose diagram is appropriate for a 

graph with low across many internal links. 
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he last section of this chapter on track aggregation touched briely on the challenge 

of large-scale data. Chapter 14 covers this subject in detail. Big Data presents scalability 

challenges, not only with respect to computing at speeds that support human interaction 

but also with respect to the limits of human perception. As with the problems presented 

in this chapter and with all graph problems, solutions for Big Data vary with the nature 

of the data and the questions being asked of it.



Advanced 
 Techniques
The chapters in this book have thus far dealt with the ap-

plication of fundamental graph techniques, with an em-

phasis on venturing outside the boxed conines of classic 
approaches to ind the most effective solution to a partic-

ular problem. This chapter covers issues on the frontier 

of research and development of graph technologies and 

tools, as well as core principles to consider when execut-

ing graph design. These are also areas of particularly keen 

interest to the authors. Table P3-1 provides a summary of 

topics covered in the following chapters.
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TABLE P3-1: Advanced Graph Techniques

TOPIC EXAMPLE DESCRIPTION

Big Data 

(Chapter 14)

Standard in-memory graph approaches quickly break down 
with Big Data. Unique technologies and techniques are 
required, guided by a clear vision of what the goals are. Chap-
ter 14, ūBig Data,Ŭ describes how graph databases and query 
languages can be used to dynamically retrieve and analyze 
speciic subgraphs of interest. Equally important techniques 
for exploring massive graphs visually are also discussed.

Dynamic 
Graphs 

(Chapter 15)

Understanding graph change is a dificult problem for which 
graph tools often provide little support. Use of animation to 
evolve a graph from one state to another can be viscerally 
compelling but dificult to extract sensible information from. 
Chapter 15, ūDynamic Graphs,Ŭ offers several helpful techniques 
for seeing how a graph evolves over time. It also looks at rela-
tional patterns between entities. Examples show how transac-
tional aspects (which are relatively common in graph data) can 
be expressed in ways that reveal patterns of behavior. 

Design

(Chapter 16)

Graph design is both an art and a science. Much of this book is 
dedicated to the choice of forms and approaches based on the 
nature of the data and the questions being asked of it. Detailed 
design decisions, however, are also extremely important to the 
success of a graph analysis application. Chapter 16, ūDesign,Ŭ 
focuses on core design principles that apply across all forms 
of graphs.
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14
BIG DATA

Big Data has been at the center of much of the innovative 
research and development in the ield of graph analytics 
and visualization. With so many of our social, consumer, 
and other exchanges occurring online, the amount of data 
being collected every day, as well as opportunities to link 
across data sets, stretches the limits of our ability to take 
full advantage of it. For businesses, the central problem is 
no longer getting better data, but getting better information 
out of data. 

he term “Big Data” can mean diferent things to diferent people, but deining  

issues are generally agreed to include the four V’s—volume, velocity, variety, and verac-

ity. Simply put, challenges exist with the size of data, how rapidly it is streaming in, how 

extremely multi-faceted it has become, and how uncertain some of the source or derived 

data can be. Big Data is not strictly deined by how big it is, but by the fact that it is large 

and complex enough that it deies management and analysis using traditional systems 

and approaches.

Traditional systems often store structured data in table form on a server. Queries are 

then used to slice and dice along dimensions for subsequent analysis. Analysis is done 

in the memory of a single machine, typically with facets displayed independently in 

separate views. In some of the more advanced tools, iltering and interactive cross-view 
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highlighting provide the capability to explore relationships one at a time with dimensions 

that are outside the view of a single facet. 

By contrast, Big Data is often rightly associated with alternative data structures and 

distributed systems, where processing and management tasks are spread across a cluster 

of computers. In reality, however, an extremely wide variety of technologies are involved 

that may, at times, include traditional systems such as relational databases. Because the 

data is often complex, so are the back-end processes and systems for exploiting it.

Big, complex data also tends to defy traditional approaches to visualization and anal-

ysis. Slice-and-dice approaches, though often useful for understanding overall charac-

teristics of data and discovering broad patterns across one or two dimensions, provide a 

view of only one facet at a time. Interactively discovering correlations across additional 

dimensions can require painstaking exploration time, not to mention a bit of good luck. 

Moreover, not being able to see what is often a much richer picture in the whole makes it 

diicult to understand the broader narrative. 

he nature of the approach itself also tends not to lend itself well to certain kinds 

of analysis. If you are looking for proverbial needles in the haystack, there is a limit to 

clues that can be gleaned from high-level views of facets of the haystack. As shown in 

Figure 14-1, inventive approaches to displaying and navigating Big Data, coupled with 

analytics, are needed for analysts to more easily access essential information.

LESS TIME
REQUIRED
to acquire

insights

MORE INFORMATION AVAILABLE
to make an effective decision

REPORT
Static

snapshot

DASHBOARD
Basic charts

assembled
through

drag and drop

Unstructured
toolbox of widgets

for data exploration

DASHBOARD
Basic charts

assembled
through

drag and drop

REPORT
Static

snapshot

Unstructured
toolbox of widgets

for data exploration

FIGURE 14-1: Creative approaches are needed to make insights  
in Big Data more accessible to analysts, with less effort.
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Graph approaches to structuring, analyzing, and visualizing data have been a signif-

icant area of interest for application to Big Data. Graphs are well-suited to expressing 

complex interconnections and clusters of highly related entities. 

his chapter begins with an overview of back-end graph systems for Big Data using a 

practical example and then examines visualization techniques and technologies.

GRAPH DATABASES

A system for dynamic interactive analysis of graphs begins with a data storage and access 

solution. Relational databases like Oracle or SQL Server have many points of strength 

but, contrary to the term itself, are not particularly eicient for exploring the complex 

relations or relatively noisy heterogeneous data typical of large graphs. Data within a 

table must conform to rigid pre-deined schemas, and linking data across many tables 

requires complex and expensive joins that limit query speed. 

A signiicant amount of research has been invested in providing relational database 

functionality on distributed systems. For example, Google Big Query provides cloud-

based data storage and query using a core subset of SQL. Cloudera Impala is similarly a 

SQL query engine for Hadoop that has progressed to the point where it may no longer 

be necessary to copy subsets of data from the Hadoop Distributed File System (HDFS) 

to local relational databases in order to achieve interactive performance for analysis. 

he beneit of carrying SQL forward with these solutions is a well-known, time-tested 

interface language that provides relatively straightforward migration from traditional 

databases.

In parallel, work has been ongoing for alternatives to tabular storage and SQL, 

known broadly as NoSQL or “Not only SQL.” Architectural approaches include 

 column-based, document-based, and key-value stores. In addition, a number of graph 

databases such as Neo4J and Titan have emerged, which represent data in a fundamen-

tally diferent way. Instead of storing and representing data as a regular set of dimen-

sioned structures, data is represented as a property graph where elements are nodes, and 

relations between elements are represented as links. 

Figure 14-2 shows a notional example of product data for two Blu-ray discs. he 

products are associated by a single common categorization, but also share reviewers. Both 

nodes and links in a property graph can include properties. In this example, each review 

relation includes a rating from one to ive stars.
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Categorization

Categorization

review
rating: 6

review
rating: 5

review
rating: 5

review
rating: 4

review
rating: 3

review
rating: 5

review
rating: 4

Categorization

Categorization

Categorization

Ivan

Joe

Rahim

Spiderman

The Notebook

FIGURE 14-2: Graph databases represent data using property graphs, where links are used to  
express relations between entities. In this case, movies are categorized at varying levels for  
sale and have been reviewed by customers.

One of the fundamental diferences when working with large graph databases as 

opposed to many of the graphs shown previously in this book is that frequently the 

goal is to display graph properties of only a relatively small subgraph of interest. In that 

respect, graph databases provide a critical function, which is a method of eiciently que-

rying for the information of interest when the graph is too large to it in memory.

A Product Marketing Example

Online product and customer data provides the basis for an excellent case study illus-

trating how a graph database can be used to explore associated interests for the purposes 

of product marketing. In a conventional retail setting, an experienced salesperson may 
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observe and use any number of demographic, social, and behavioral cues to instinctually 

guide consumers to products they might be interested in buying. 

Contrastingly, in online retail, what is known about customers is often limited to 

behaviors that amount to expressions of interest, like clicking links to view products or 

authoring reviews. Although this can sometimes be like the experience of the proverbial 

blind men and the elephant, observed interest in even one product can be used to inform 

the choice of associated products to highlight to a consumer in the hopes of maximizing 

sales. One of the luxuries of online product marketing is that the choice of products to 

try to cross-sell or up-sell can be made dynamically in response to observed interests. In 

business, the science of product interests is called ainity analysis.

his example uses public Amazon product data collected in 2003 by Jure Leskovec 

and published by the Stanford Network Analysis Project (SNAP) for scientiic research. 

he data includes product data such as title, group classiication, and sales rank, as well 

as various ways in which the product is hierarchically categorized for browsing. Also 

included is a reference to the ive most “similar” products and reviews by customers. Sim-

ilar products are deined as those most often purchased at the same time: “Customers 

who bought this item also bought…”

Id:   6

ASIN: 0486220125

  title: How the Other Half Lives: Studies Among the Tenements of 

       New York

  group: Book

  salesrank: 188784

  similar: 5  0486401960  0452283612  0486229076  0714840343  0374528993

  categories: 5

   |Books[283155]|Subjects[1000]|Arts & Photography[1]

        |Photography[2020]|Photo Essays[2082]

   |Books[283155]|Subjects[1000]|History[9]|Americas[4808]

        |United States[4853]|General[4870]

   |Books[283155]|Subjects[1000]|History[9]|Jewish[4992]|General[4993]

   |Books[283155]|Subjects[1000]|Noniction[53]

        |Social Sciences[11232]|Sociology[11288]|Urban[11296]

   |[172282]|Categories[493964]|Camera & Photo[502394]|Photography 

         Books[733540]|Photo Essays[733676]
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  reviews: total: 17  downloaded: 17  avg rating: 4

    1997-7-4  cutomer:  ATVPDKIKX0DER  rating: 5  votes:  12  

         helpful:  11

    1998-10-11  cutomer:  AUEZ7NVOEHYRY  rating: 5  votes:  13  

         helpful:  12

    1999-4-15  cutomer:  ATVPDKIKX0DER  rating: 5  votes:  18  

         helpful:   7

    2000-1-4  cutomer:  AJYG6ZJUQPZ9M  rating: 4  votes:  14  helpful:

         10

    ...

Data was made available at http://snap.stanford.edu/data/ by the SNAP 

project and is published with the following source citation: J. Leskovec, L. 
Adamic and B. Huberman. The Dynamics of Viral Marketing. ACM Transactions 

on the Web (ACM TWEB), 1(1), 2007.

Prior to analysis for use in this book, the data was imported into a Titan database. 

Titan is a leading open source graph database that can be distributed across a multi- 

machine cluster to achieve claims of scalability on the order of hundreds of billions of 

nodes and links. It can also easily be installed and run locally on a single machine for 

comparatively small graphs like this one on the order of tens of millions.

Titan is documented and made available for download on GitHub at https://

github.com/thinkaurelius/titan/wiki.

Creating and Populating a Graph Database

he original source data used in this example was formatted for easy reading by humans 

rather than computers, so the authors have done the time-consuming parsing for you and 

exported the result in GraphML format. Before proceeding, download the compressed 

data ile from this book’s companion website and extract it for importing into Titan. It’s 

N
O

T
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T
IP
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a large data set, so expect that it will take more time to download than other iles in this 

book. If you haven’t already done so, you will also need to download and install Titan. 

he examples in this chapter were used with version 0.4.4.

Once you have the data, you are ready to create the database. he irst step in mak-

ing a new Titan database is to conigure its storage. To take advantage of advanced text 

search on select properties, it is also important to conigure an index for Lucene or Elas-

tic Search. Create a productdb.properties ile with content similar to the following, 

altering the two directory paths as appropriate. You will use this to initially create the 

database and to reopen it each time after.

storage.backend=local

storage.directory= storage

storage.index.search.backend=lucene

storage.index.search.directory= storage/lucene

he next step is to deine schemas for the data. In Titan this is simply a matter of 

deining any properties of nodes and links that will be used, indicating which should be 

indexed for fast lookup. he quickest way to do this is to use a script. Create the follow-

ing makeproductdb.groovy ile, entering the irst line listed to open the database. File 

paths in the script should be modiied to relect actual locations. Relative paths will typi-

cally be evaluated relative to the Titan bin directory.

graph = TitanFactory.open('productdb.properties')

Next begin to deine the schema for product nodes. Make a key that will be used to 

distinguish all nodes by type, followed by keys for the speciic properties of products. 

When deining the productno key, add an index for fast lookup by product number. Add 

an index to title as well, but this time use the Lucene index declared earlier in the prop-

erties ile.

graph.makeKey('type').dataType(String.class).make()

graph.makeKey('productno').dataType(String.class)

     .indexed(Vertex.class).unique().make()

graph.makeKey('title').dataType(String.class)

     .indexed('search', Vertex.class).make()

graph.makeKey('salesrank').dataType(Integer.class).make()

graph.makeKey('group').dataType(String.class).make()
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graph.makeKey('status').dataType(String.class).make()

graph.makeKey('reviews').dataType(Integer.class).make()

graph.makeKey('avgrating').dataType(Float.class).make()

Now that the keys for products are deined, specify the keys for customer and cate-

gory nodes. Index all three for fast lookup by exact match.

graph.makeKey('customerno').dataType(String.class)

     .indexed(Vertex.class).unique().make()

graph.makeKey('categoryno').dataType(Integer.class)

     .indexed(Vertex.class).unique().make()

graph.makeKey('categoryname').dataType(String.class)

     .indexed(Vertex.class).make()

Next, deine the property keys for links, starting with reviews and categorizations. 

Reviews link customers to products, and categorizations link products to categories. he 

speciicity key is a value from 0 to 1 that relects how speciic the categorization was 

relative to others in the category hierarchy for that product.

date = graph.makeKey('date').dataType(Long.class).make()

votes = graph.makeKey('votes').dataType(Integer.class).make()

rating = graph.makeKey('rating').dataType(Integer.class).make()

helpful = graph.makeKey('helpful').dataType(Integer.class).make()

speciicity = graph.makeKey('speciicity').dataType(Float.class).make()

Finally, declare the links themselves as labels, associating them with the keys you just 

made. Products are linked if they are similar, and linked to customers through review. 

Categories are linked to parent categories, and from products by categorization. Com-

mit the graph when all the keys and labels have been deined.

graph.makeLabel('similar').make()

graph.makeLabel('review').sortKey(date).sortOrder(Order.DESC)

     .signature(votes, rating, helpful).make()

graph.makeLabel('parent').manyToOne().make()

graph.makeLabel('categorization').sortKey(speciicity).make()

graph.commit()
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Now that you have deined properties of nodes and links, the database can be popu-

lated from the GraphML ile. Add the following inal lines to the script, save it, and exit.

reader = new GraphMLReader(graph)

reader.inputGraph('productdb.graphml')

he script is now ready to be executed in a command-line shell from the directory 

where you installed Titan. If you have a 64-bit operating system and the memory avail-

able, it’s a good idea to make use of the JAVA_OPTIONS environment variable to grant 

more to the import process you’re about to run. Setting the options and running the 

script will look something like this, depending on your operating system and location of 

the iles. Be prepared for it to take some time. 

> export JAVA_OPTIONS=-Xmx4096m 

> cd titan-all-0.4.4/bin

> gremlin.sh ../../productdb/makeproductdb.groovy

GRAPH QUERY LANGUAGES

Once the graph database has been populated, you are ready to start querying it for infor-

mation. here is a good chance that you are familiar with SQL. SQL is the standard 

query language for pretty much anything that resembles a relational database. Graph 

databases, however, have unique structures that require unique query languages, so, 

unfortunately, SQL will not get you very far here. You will need to spend some amount 

of time learning a new language. Luckily, a little basic knowledge will go a long way. 

Two of those most universal standards are SPARQL and Gremlin. Titan 

supports both. 

SPARQL Protocol and RDF Query Language (SPARQL) is supported by many 

graph databases for querying Resource Description Framework (RDF). RDF is a for-

mal standard for knowledge representation that was born out of the “Semantic Web” 

movement, the goal of which is to provide structured representations of the vastly 

unstructured data available on the Internet. SPARQL is a standard query language 

for RDF-encoded information and bears some resemblance to SQL in both name and 
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syntax. he following is an example of a query that you might use to retrieve all categori-

zations of product 44:

SELECT ?category WHERE

  tg:44 tg:categorization ?category

}

To try out SPARQL on a massive RDF collection of knowledge statements 
extracted from Wikipedia, visit DBpedia at http://wiki.dbpedia.org/. 

Gremlin is a distinctly diferent and elegant graph-traversal–oriented language for 

query, analysis, and manipulation of graphs. Gremlin can be a little cleaner and more 

intuitive in some cases, and less so in others. For example, the same query for data on 

product 44 would look like this in Gremlin:

g.v(44).out('categorization');

Because SPARQL looks more like SQL and Gremlin is closer to a  programming-style 

grammar, you may ind one more natural than the other, depending on your previous 

experience. Personally, the authors ind Gremlin a little more intuitive for interactive 

querying, especially if link traversal is involved. Gremlin is used for the examples in this 

chapter.

Gremlin for Graph Queries

he best way to learn Gremlin is to try it out. Launch a Gremlin shell from the bin 

directory of your Titan folder again, and issue a command to reopen the database, 

assigning the result to a variable that you will use to reference the graph. 

> bin/gremlin.sh

         \,,,/

         (o o)

-----oOOo-(_)-oOOo-----

gremlin> g = TitanFactory.open('../productdb/productdb.properties')

T
IP
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Next, try a query. If you are reading this book, you (hopefully) have an interest in 

graphs, so look for any books in the product catalog that contain the word “graph” in 

their titles. Type the following command, where g is the reference to the graph stored in 

the last statement, and V is shorthand for vertices:

gremlin> g.V.has('title',CONTAINS,'Graph')

==>v[871604]

==>v[1449164]

==>v[1894568]

==>v[1974620]

==>v[2621360]

...

Gremlin will return a long list of vertices represented by their internal IDs enclosed 

in square brackets, with a v to indicate that they are vertices. Unless you have a brilliant 

memory for numbers, it’s diicult to tell which products have been selected. Repeat 

the same query, but ask for the title property of each result to be shown instead, as 

shown here:

gremlin> g.V.has('title',CONTAINS,'Graph').title

==>Algorithmic Graph Theory

==>Algebraic Graph Theory

==>Schaum's Outline of Graph Theory: Including Hundreds of Solved 

     Problems

==>Introductory Graph Theory

==>Graph Theory

==>Math Skills Made Fun: Great Graph Art Multiplication & Division 

     (Grades 3-4)

==>Graph-Theoretic Concepts in Computer Science: 21st International 

     Workshop, Wg '95 Aachen, Germany, June 20-22, 1995 : Proceedings 

     (Lecture Notes in Computer Science)

==>Introduction to Graph Theory (2nd Edition)

==>LightWave 3D 7 : Motion Graph Modiiers & Expressions - Class on 

     Demand Video Training Tutorial DVD

...
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he irst eight books are mathematical books on graph theory, which may or may not 

be your cup of tea. But notice that the ninth product down is a DVD. You were looking 

for graph books, but you did not restrict the query to the book group. Most Gremlin 

commands are pipelines of input, and output ilters can be chained together. Type the 

following to select only book vertices, and then search them for the titles of interest:

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').title

Review the list again, and notice that the DVD is no longer included. So, how many 

books are left in the list? You could count them yourself, or just ask Gremlin to do it, as 

shown here:

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').count()

==>39

So far, the queries have focused on narrowing down a list of books, which are repre-

sented in the graph as vertices. he list now has 39 books in it, many of which seem to be 

mathematical in nature. To narrow down the list even further, you can add another crite-

rion to look for “Visualization” in the title. However, you may also want to see what the 

reviews are like for those books. Reviews, if you recall, are represented as edges pointing 

from the reviewer to the product. he following query looks for books on graph visual-

ization and outputs the rating of incoming review edges:

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').has('title', 

     CONTAINS,'Visualization').inE('review').rating

==>1

==>4

==>3

==>5

he output of the query is a list of review ratings. A list of titles with reviews would 

be more useful. You can use the transform step to output multiple ields for each result, 

and before doing so, you can use an order step to sort them in order of most helpful to 

least helpful. Note that you must call next() on inV, the vertex with the link incoming, 

because any traversable property will return a pipeline rather than the object itself.

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').has('title', 

     CONTAINS,'Visualization').inE('review').order{it.b.helpful <=> 

     it.a.helpful}.transform{[it.inV.next().title, it.rating, 

      it.helpful]}
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==>[Graph Drawing: Algorithms for the Visualization of Graphs, 3, 36]

==>[Graph Drawing: Algorithms for the Visualization of Graphs, 1, 5]

==>[Graph Drawing: Algorithms for the Visualization of Graphs, 4, 4]

==>[Graph Drawing: Algorithms for the Visualization of Graphs, 5, 0]

he queries have so far found nodes and output incoming edges. One of the more 

central and powerful design features of Gremlin, however, is a grammar for traversing 

links to other nodes. For example, the following query will ind books that are linked 

by similarity to the graph-drawing algorithms book. he term both() here selects both 

outgoing and incoming edges, accounting for cases when the book is either the subject or 

object of similarity.

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').has('title', 

     CONTAINS,'Visualization').both('similar').title

==>Algorithms on Strings, Trees, and Sequences: Computer Science and 

     Computational Biology

==>Computational Analysis of Biochemical Systems : A Practical Guide 

     for Biochemists and Molecular Biologists

==>Drawing Graphs : Methods and Models (Lecture Notes in Computer 

     Science)

==>Computational Modeling of Genetic and Biochemical Networks 

     (Computational Molecular Biology)

==>Introduction to Graph Theory (Dover Books on Advanced Mathematics)

==>Drawing Graphs : Methods and Models (Lecture Notes in Computer 

     Science)

Finally, notice that, because you gathered nodes linked in both directions, there is 

a duplicate reference to the Drawing Graphs book, indicating that each book is listed as 

being similar to the other. If the title is any indication, they are also the most similar in 

subject. You can use the dedup() step to eliminate duplicates, as shown here:

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').has('title', 

     CONTAINS,'Visualization').both('similar').dedup().title

Alternatively, you can use the groupCount() step to count instances of each. Process-

ing the results of grouping requires more advanced Gremlin and shows how Gremlin 

tends to become more complex when the output of a step is not easily expressed as a sim-

ple list of single elements. To output a list of counts by book, the cap statement used in 
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the following code moves back one step in the pipeline output (which is otherwise a list 

of counts) to the map produced as a side efect. he scatter() step then unrolls the map 

into a list of key/value entries, and transform is used to output each entry with its title.

gremlin> g.V('group','Book').has('title',CONTAINS,'Graph').has('title', 

     CONTAINS,'Visualization').both('similar').groupCount().

     cap.scatter().transform(){[it.value, it.key.title]}

==>[1, Computational Modeling of Genetic and Biochemical Networks

     (Computational Molecular Biology)]

==>[2, Drawing Graphs : Methods and Models (Lecture Notes in 

     Computer Science)]

==>[1, Introduction to Graph Theory (Dover Books on Advanced 

     Mathematics)]

==>[1, Computational Analysis of Biochemical Systems : A Practical 

     Guide for Biochemists and Molecular Biologists]

==>[1, Algorithms on Strings, Trees, and Sequences: Computer Science and

     Computational Biology]

Using Graph Queries to Extract Neighborhoods

Now that you know a few of the basics of Gremlin syntax and you’ve explored the struc-

ture of the data a little, it’s time to put it to use. he goal of this exercise is to analyze 

product associations represented by co-purchasing and reviews to gain insights that 

will be useful for marketing and advertising around a particular book. A subgraph of 

products representing the neighborhood of interest will be output for visualization and 

analysis.

Customers link products through reviews, and, unlike co-purchasing, similarity links 

for the list are not limited to ive. You’ll start with a single product, extract related prod-

ucts and edges between them, and export the resulting subgraph for visualization and 

further analysis. For this exercise, you focus on associated interests for one of Edward 

Tufte’s seminal visualization books, Envisioning Information (Cheshire, CT:1990, 

Graphics Press).

Begin by inding the book and storing a reference to it. Note that one of the limita-

tions of using the Lucene index in Titan is that each term is indexed separately, making 
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it necessary here in common syntax to query separately for “Envisioning” and “Informa-

tion.” Because the output of Gremlin steps are lists, add a call to next() to store a refer-

ence to the book itself, the irst item in the list.

gremlin> tufteBook = g.V.has('title',CONTAINS,'Envisioning').has

     ('title', CONTAINS,'Information').next()

==>v[4745708]

Before collecting related nodes, it’s a good idea to do a quick sanity check on the 

counts of products that are linked through co-purchasing or co-review, being careful not 

to count the same nodes twice.

gremlin> tufteBook.both('similar').dedup().count()

==>25

gremlin> tufteBook.in('review').dedup().out().dedup().count()

==>124365

Clearly, something unusual is going on here. he count of products linked through 

reviews is more than 100,000, a ifth of the entire product catalog. Use the transform 

function to stop the pipeline earlier, and write out the number of reviews that each cus-

tomer has made.

gremlin> tufteBook.in('review').dedup().transform

     {it.outE.count()}

==>164

==>2

==>86

==>1

==>176

==>203

==>327

==>9

==>1

==>140

==>22

==>1

==>15

==>6



PART 4 Advanced Techniques434

==>10

==>42

==>13

==>1

==>945065

==>1

==>21

==>5

==>2

==>1

==>51

==>185

==>1

One customer has been responsible for almost a million reviews, which is impossibly 

high. It seems someone has found a way to artiicially submit reviews. hose edges will 

need to be excluded. 

he inal step is to create a new subgraph, adding copies of the neighboring nodes 

and any edges that connect them (but no others), and then write the result to ile. Begin 

by creating an in-memory TinkerGraph and declare two helper functions that will copy 

nodes and links, as shown here: 

gremlin> sg = new TinkerGraph()

==>tinkergraph[vertices:0 edges:0]

gremlin> def addNode(v, sg){

  sg.addVertex(v.id, ElementHelper.getProperties(v))

}

==>true

gremlin> def addLink(e, sg) {

  outv = sg.getVertex(e.outV.next().id); 

  if (outv != null) {

    inv = sg.getVertex(e.inV.next().id);

    if (inv != null) {
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      sg.addEdge(e.id, outv, inv, e.label, ElementHelper.getProperties

     (e))

}}}

==>true

Add linked customers and products, being sure to ilter out the false customer, and 

eliminate any duplicate nodes. Use store to cache the list of products for the next step, 

which will be to add the edges.

gremlin> products = []

gremlin> tufteBook.in('review').ilter{it.outE.count() < 5000}.dedup

     ( ).sideEffect{addNode(it,sg)}.out().or(tufteBook.both('similar')).

     dedup( ).sideEffect{addNode(it,sg)}.store(products)

Use the products list to add a copy of all incoming edges. he vertex check in the 

addLink function you deined earlier ensures that only edges with both ends in the graph 

will be added. he populated subgraph will have a little more than 1,000 nodes and 

2,000 links. Write it out somewhere as a GraphML ile.

gremlin> products._().inE.sideEffect{addLink(it,sg)}

==>...

gremlin> GraphMLWriter.outputGraph(sg, new FileOutputStream

     ('tufte.graphml'))

ANALYZING NEIGHBORHOODS

Import the tufte.graphml ile into Gephi for visualization and analysis. As a irst step, 

plot the graph and highlight diferent types of products to get a sense of what the data 

looks like. Apply the ForceAtlas2 layout and use the Partition tab to color the nodes. 

Recall that this example has only two types of nodes—products and customers—and 

that nodes of diferent types have diferent properties. Products have a group property.

he group value will be null for customers, so assign the color black to null to distin-

guish the relatively few customers from types of products, and view the result in the 

 Preview tab. Map link color to the target of the link.

As shown in Figure 14-3, displaying the result reveals distinct clusters of associated 

products, often surrounding a single customer. Looking more closely, you can see many 
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products within those clusters are linked to each other, indicating that products reviewed 

by the same people are also often purchased together. his seems to conirm that reviews 

are an efective complement to purchasing in relecting customer interest. 

FIGURE 14-3: Associated products of interest are shown by co-purchase and co-review.  
Customers here are shown in black. Green products are books, red are music, blue and  
purple are movies. The large node is the root product, Tufte’s Envisioning Information.

Another clear pattern that emerges is that product type is correlated with interests. 

Both music and movies tend to be clustered together. his is not only true in the global 

sense, but also at the subcluster level. Also interesting is that music tends to be more 

interesting to purchasers of this book than movies and that, in several cases, music prod-

ucts link clusters of interest.
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It may also be useful to see if any patterns exist in customer rating of products with 

respect to interests. Using the Ranking tab, map node color to avgrating. Use a spec-

trum where green is a good rating, red is a bad rating, and gray is a neutral rating. 

As shown in Figure 14-4, when you view the result, you see that there is no strong 

correlation between product interest and rating, other than the products with the worst 

reviews tend to be clustered together, and the very worst of them are clustered around 

Tufte’s book where the least proliic reviewers are. hose customers were seemingly 

passionate enough about Tufte’s book to review it, but also compelled to rate the poorly 

reviewed books as well. In contrast, the most proliic reviewers don’t seem to take the 

time to review unpopular books.

FIGURE 14-4: Mapping color from customer ratings here reveals little correlation  
with clusters of interest, except that products with exceptionally poor reviews at  
the red end of the spectrum tend to be clustered together.
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Color alone is enough to observe some overall patterns in the data, but it is diicult to 

get a sense of the character of clusters of interest. 

Turn on node labels and map them from product titles. More than 1,000 titles makes 

for a lot of words, so a little work is required for them to be useful. Ideally, the most 

important titles would be featured in various clusters, and the others would be small 

enough not to obscure the structure of the graph. Run the Eigenvector Centrality sta-

tistic on the nodes in the graph, and map it to node size as well as intensity of color to 

highlight the most central nodes. Use a brief application of LabelLayout to reduce occlu-

sion so that more of the labels are readable. Use the Preview tab to ensure that labels are 

turned on and proportional to node size before viewing the result.

Visualizing the graph with labels creates something akin to a word cloud for each 

cluster, as shown in Figure 14-5. hough it is not possible to read many of the labels, 

enough of the larger ones are visible to lend a sense of the characteristics of each cluster. 

FIGURE 14-5: Mapping label size from centrality helps to characterize clusters of related products.
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To begin with, the most highly related and central books by co-purchasing and co- 

review appear to also be highly related by subject. In fact, several of Tufte’s other books 

are clustered around the central book of interest. he video cluster in the upper right 

seems to favor superhero movies. he cluster on the upper left is dominated by both mar-

keting and higher-level software development process books, whereas the small cluster 

on the middle bottom left features programming books. he cluster to the left of Tufte 

central is dominated by design books, and below it the music cluster seems to be mostly 

alternative. Finally, the biggest and most spatially distant cluster, separated strangely 

enough by a number of romantic drama novels, is dominated by books on statistics, data 

analysis, and computational modeling. 

Putting all of that together, you might conclude that buyers of this book are also 

interested in design, computer science, data science, the software business, alternative 

music and sci-i action movies. If you are a fan of the book, judge for yourself, but you 

might ind that conclusion to be surprisingly accurate.

he observations thus far about product relationships are purely based on co-interest. 

It would be interesting to see to what degree the categorizations applied to this book 

relect the same associations. 

Back in a Gremlin console, query for all of the category names, as shown here: 

gremlin> tufteBook.out('categorization').categoryname.dedup().order

==>

==>Amazon.com Stores

==>Art & Music

==>Arts & Photography

==>Books

==>Business & Finance

==>Business & Investing

==>Business & Investing Books

==>Business Life

==>Communication

==>Communications

==>Computer & Internet Books

==>Computer Science & Information Systems
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==>Computers & Internet

==>Design

==>Digital Business & Culture

==>General

==>Graphic Arts

==>Graphic Design

==>Graphics & Illustration

==>Graphics & Visualization

==>HTML, Graphics, & Design

==>Home & Ofice

==>Humanities

==>Internet

==>Mathematics

==>New & Used Textbooks

==>Noniction

==>Project Management

==>Reference

==>Sciences

==>Social Sciences

==>Specialty Stores

==>Statistical Computing

==>Statistics

==>Studio Art

==>Subjects

==>Web Development

==>Web Graphics

==>Words & Language

he categories seem to be a pretty close match to interests. Even categorizations 

such as business and project management (which are otherwise inexplicable) are relec-

tive of interest, implying that this may be exactly the kind of data that is used to inform 

categorizations.
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Topic Word Clouds

Categorizations were not included in the subgraph used for neighborhood analysis, but 

they provide a promising alternative for summarizing associated interests. Showing cate-

gories by count of products in the neighborhood of Tufte’s book will provide a weighted 

summary of topics. 

he following Gremlin queries reuse variables and functions declared earlier. he 

count of products for each category is calculated and stored in a map. In the next step, 

the categories and parentage edges are added to the new subgraph. hen, the Tufte cate-

gorizations are marked. In the last step, a root node is added to parent the top-level cate-

gories before writing out the graph. 

gremlin> cg = new TinkerGraph()

gremlin> cmap=[:]

gremlin> products._().out('categorization').sideEffect{nv=cmap.get(it); 

     cmap.put(it,nv==null?1:1+nv)}.count()

gremlin> cmap.each{k,v-> nv=cg.addVertex(k.id, ElementHelper.

     getProperties(k)); nv.setProperty('productcount',v)}

gremlin> cmap.keySet()._().outE('parent').sideEffect{addLink(it, cg)}

gremlin> tufteBook.out('categorization').dedup().sideEffect{ 

     cg.getVertex(it.id).setProperty('own',true)}

gremlin> root = cg.addVertex(0, [categoryname:'all', productcount: 0])

gremlin> cg.V.ilter{it.outE.count() == 0 && it != root}.sideEffect

     { cg.addEdge(null,it,root,'parent'); root.productcount+= it.

     productcount}

gremlin> GraphMLWriter.outputGraph(sg, new FileOutputStream

     ('topics.graphml'))

Import the topics graph into Gephi and size the nodes based on productcount. 

Apply the OpenOrd layout to cluster, and then use ForceAtlas2 with the option to 
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prevent overlap to ine-tune. Use iltering to reduce the graph to categories to which 

Tufte’s book belongs, and apply a green range of colors to those nodes. hen, reverse the 

iltering and apply blue to the others. 

Figure 14-6 shows what the data looks like. Category size is relatively uniform, and 

there are a lot of them. he book’s own categories represent a small portion of the total, 

but the counts in those categories are higher than average.

FIGURE 14-6: The number of categories linked by interest is high and relatively uniformly structured. 
The categorizations of Tufte’s own book shown in green represent a small percentage but contain more 
products than most.
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Showing labels for so many categories will make this diicult to read. Because they 

are hierarchical, with each parent summarizing its children, this is a good opportunity 

to use ilters to remove smaller categories until the graph is easy to read but still detailed 

enough to describe the distribution of topics. Map labels to category names, and then 

use dynamic iltering on product count until you ind a good threshold for displaying the 

right level of categorization.

Figure 14-7 shows how a display of most-signiicant product categories in the neigh-

borhood of Tufte’s book can be used to form a word cloud relecting topic interest. he 

somewhat surprising categorization under business management is validated here because 

interest in those products is strong. However, one of the revelations here is that although 

there is some representation of statistics in the categorization of the book, it is not cata-

loged in the dominant categories of that nature, suggesting a missed sales opportunity.

Using node-link representations of products and customer interests, this example has 

shown how graph databases and queries are used to extract valuable, focused business 

insights from Big Data. he next section examines methods for analyzing all of the data 

and the situations in which that has value.

FIGURE 14-7: Filtering categories and mapping size to the number of products in each forms a topic 
word cloud reflective of related consumer interests surrounding Envisioning Information. Categoriza-
tions of the book itself are highlighted in green, highlighting the fact that although it is surprisingly iled 
under business management categories, it is not iled under the statistics-related categories that many 
related books are. 
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PLOTTING NETWORK ACTIVITY

he dominant type of analysis in very large graphs is to branch outward from focus 

nodes of interest and to analyze properties of the resulting subgraph. However, some-

times you may ind it useful to analyze the graph as a whole. Physical networks are one 

such case. Chapter 13, “Spatial Networks,” provided an example of ship routes, where 

plotting all of the data reveals an informative picture of all traic. his approach can be 

useful for simple graph structures as well. 

Figure 14-8 shows how plotting a very large graph of brain data using Aperture Tiles 

reveals hot paths of activity. A multi-level tiled approach achieves exploratory scalability 

in a similar way to Google Maps. Aperture Tiles provides a framework for computing 

tile-based analytics using the Apache Spark engine for large-scale data processing and, 

similar to Titan, can be run locally on a Hadoop cluster to scale.

FIGURE 14-8: Multi-scale plots of network data with Aperture Tiles provides interactive  
pan and zoom exploration of very large graphs like the brain data shown here. A tiled  
approach similar to Google Maps is used to achieve massive scalability.
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You can ind information on downloading and using Aperture Tiles at http://
aperturetiles.com/.

he same multi-level pan-and-zoom approach can be applied to visualizing geospa-

tial networks, such as the one shown in Figure 14-9. Here, consecutive tweets by the 

same user are linked by location to represent travel. Millions of Twitter users sending 

hundreds of millions of tweets in this data set form a picture of travel patterns layered 

on a map. he binned batch aggregation approach is a natural it for cloud computing 

platforms, providing scalability to much larger data sets. Tiles are rendered dynamically 

to provide runtime iltering and color scale control and can be layered, as in the case here 

where nodes and links are controlled and rendered as separate tile sets.

he tiled examples show how spatial plotting of all network data can be used to show 

hot spots and paths, overall patterns that portray the big picture. Aperture Tiles also 

supports annotation layers, so, for example, the most important nodes identiied by page 

rank can be layered on the view.

FIGURE 14-9: Tiled geospatial network plots are a seamless it with map systems. Here, Twitter activity 
of millions of users is overlaid on a map, where graph links represent user travel to different locations.

T
IP
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COMMUNITY VISUALIZATION

Another case when depicting all of the data in a very large graph is useful is for under-

standing communities. his is, in fact, a primary use case for graphs on the scale of thou-

sands of nodes as well, as relected in many of the examples in this book. Community 

visualization is a signiicant challenge at large scales. It is diicult see communities even 

at a basic level without extensive interaction. 

An efective approach for community visualization is to use community detection 

algorithms to aggregate nodes hierarchically by community. Figure 14-10 shows how 

the use of sized rings that represent the distribution of community members can portray 

more about the nature of a community and its relationships than would a traditional plot 

of all nodes. In this Aperture JS example, anonymous communities of donors shown in 

green represent those who contribute to communities of charities shown in purple. Each 

community is subdivided by the proportion of members in each level of “wealth” (how 

much they send or receive). More intensity in the color indicates greater wealth.

FIGURE 14-10: Community rings visually express characteristic distribution of their members. Here, 
anonymous donor and charity communities reflect size and makeup with links expressing flow of funds 
between them. When you click communities, you see additional information about their geographic 
makeup and inancial activity in linked panes on the right.
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Preserving the representation of the distribution of members provides a clear view of 

communities and their boundaries. It also makes it easier to interact with them and see 

characteristics of the links between them. In Figure 14-10, the links represent low of 

money. You can click a community to explore more information—in this case, showing 

its geographic makeup on a map and low of money over time. Efective visualization 

techniques can overcome the hairball problem common to large graphs that causes 

breakdown of traditional approaches as scale increases. 

Versions of the modularity-based community detection algorithm used in earlier 

Gephi-based examples are available in distributed form for cloud platforms, provid-

ing the same functionality for larger graphs. Figure 14-11 shows community detection 

applied to the full product ainity graph analyzed earlier in this chapter, containing 

millions of nodes and links. he analytic approach here is to use Aperture Tiles to draw 

all nodes and links while still providing highlighting and drill-down interactions at the 

community level.

FIGURE 14-11: Community detection analytics can work in concert with visualization at massive scale. 
Here, Aperture Tiles is used to provide interactive exploration of a product afinity graph with millions of 
nodes and links. Zooming into communities reveals subcommunities of products at 14 levels of detail.
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SUMMARY

his chapter introduced the challenges of Big Data and described strategies for common 

types of analysis. Graph databases and query languages provide a powerful and scalable 

interface for selecting nodes of interest and exploring characteristics of the surrounding 

neighborhood. 

You can extract subgraphs for visualization and further analysis. You can use tiled 

approaches for situations in which there is beneit in seeing all of the data (for example, 

to analyze paths in network data). Finally, you can use community-detection algorithms 

coupled with expressive visualization to provide scalable views of communities in large-

scale graphs, along with capabilities for exploratory analysis.

Chapter 15 examines the aspect of time and change in graph data. Dynamic graphs 

are a unique Big Data problem, requiring unique solutions. Several approaches are dis-

cussed, beginning with animation (which is the most common response to the problem) 

and progressing to alternative techniques.
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15
DYNAMIC GRAPHS

Dynamic graphs represent data where nodes and links 
are created or removed from one point to another. Some 
such graphs are only concerned with viewing a snapshot 
of the graph at a single point, or collapse time to include 
all nodes and links from start to end. his time focuses 
on the other cases, when change in time or scenario is an 
important dimension of the story being portrayed. 

Representing a time dimension can be particularly challenging with graphs. In sci-

entiic circles it is generally accepted that simultaneous representations of states over 

time are more informative than sequential representations. For example, a time series bar 

chart is much better at communicating behavior over time than animating changes to a 

single bar. In the latter case, scrolling the animation back and forth through time repeat-

edly would be a means of getting the gist of change but would not be as instantly accessi-

ble as a time series, as accurate for comparison, or as easy to spot correlations in behavior. 

Being able to see values over time at the same time is more efective. However, it may not 

be immediately obvious how to apply that principle to graphs. 

In a graph, like a map, the horizontal and vertical dimensions are reserved for the 

fundamental representation itself, so they cannot be used to portray time. his presents 

a challenge when using both types of representations. However, things get even more 

challenging when using graphs. he spatial location of nodes on a map has meaning in 
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relation to a ixed geographic frame of reference across time, whereas the spatial location 

of nodes in a graph has meaning only in a dynamic frame of reference, which is their 

relation to other linked nodes. Having no constant frame of reference when comparing 

graph states makes it diicult to understand the pattern of change. 

his chapter looks at the problem of representing change and behaviors in graphs and 

walks you through approaches to best serve particular kinds of analyses.

GRAPH CHANGES

One of the most common goals in analyzing dynamic graphs is to be able to understand 

how network members and connections change over time or between diferent scenarios. 

For example, looking at the product ainity data from Chapter 14, “Big Data,” it might 

be interesting to see the evolution of interest in associated products over time. 

You may recall that, in the ainity example of the Envisioning Information book 

(Cheshire, CT:1990, Graphics Press) from Chapter 14, most associated products are 

linked through co-review and that each review has a date, ranging from Christmas 1998 

to the summer of 2001. Narrowing the window of time and including only those reviews 

and co-reviewed products that fall within it will reveal what the neighborhood of associ-

ated products looked like at that time. Scrolling the window of time will lend a taste of 

how the market has evolved over the years.

his section examines several methods of visualizing changes between windows of 

time in the ainity data set, giving a sense of the relative strengths of each technique. 

Organic Animation

In many ways, organic animation (where the beginning and end states look exactly as they 

would if treated independently, and the organic evolution between states is animated) is 

the most obvious technique for portraying change in graphs. 

Gephi includes a dedicated capability for dynamic graphs where each graph state in 

a series of states is speciied in full and associated with a time. A time slider is then pro-

vided to view the graph state over time. If the end goal is to produce a inished animation 

of evolution over time, this capability would be the irst step in doing so. However, for 

the purposes of the exercises in this chapter, time is better spent exploring simpler and 

more lexible approaches to achieve a similar efect.



CHAPTER 15 Dynamic Graphs 451

Return to the subgraph of product interest associated with Tufte’s Envisioning Infor-

mation book extracted in Chapter 14. Open it in Gephi, and select the Filters pane to the 

right. Filters provide a means of constraining the set of visible items to those that fulill 

speciic criteria. Filters in Gephi can be chained together by assembling them hierarchi-

cally. When assembled in this way, the ilter at the lowest level of the hierarchy is evalu-

ated irst. he items that fulill the criteria are then passed upward for evaluation to the 

next ilter in the hierarchy, until the root ilter is reached. 

In this case, the root ilter (to be evaluated last) should constrain the visible graph to 

those items that are linked in two degrees to Tufte’s book. Because all product nodes in 

the subgraph are within two degrees of Tufte’s book, the root ilter will have no immedi-

ate efect, but once links begin to be removed by date, it will serve to hide nodes that are 

no longer connected.

Find Ego Network under the topology ilter grouping and drag it to the Queries pane 

below it. he Ego Network ilter constrains the set of visible nodes to those connected to 

the speciied focus node within a speciied number of hops. Enter the ID of Envisioning 

Information, and choose two as the depth of the ego network, indicating a constraint of 

two degrees. You can ind the ID of the book by clicking it with the edit selection tool to 

view its properties or by selecting it in the Data Laboratory pane.

You will often see the term queries or dynamic queries used interchangeably 

with ilters in academic visualization literature and products. Dynamic que-

ries is an old-school term that abstractly describes an interactive, on-the-fly 

subselection of currently viewed data based on criteria, in contrast to normal 

queries that select and retrieve data from a data store based on the same. In 

practice, this is more easily understood as iltering.

Expand the Ego Network ilter so that its subilter drop target is showing. Locate the 

Range ilters under Attributes, and drag a date constraint into the Queries pane, adding 

it as a child of the Ego Network constraint. Turn on the ilter using the button below the 

pane to hide those linked nodes that do not fall within the time range, as shown in Fig-

ure 15-1.

N
O

T
E
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FIGURE 15-1: You can use ilters to constrain the visible graph to a speciic 
time window. Here, a Gephi Range ilter is combined with an Ego Network ilter 
to constrain the set of visible products to only those that are linked roughly 
within the irst 8 of 32 months. Note that dates here are being represented as 
milliseconds since the epoch, a common standard for computers.

Activate the Force Atlas 2 layout and let it run. Use the Range (date) ilter slider to 

adjust the start and length of the time window, and observe how the graph organically 

animates from one state to the other like a living thing. Playing with the slider should 

give you a taste of how mesmerizing graph animation can be and how well it can some-

times communicate the gist of change. It should also give you a sense of how diicult it 

can be to follow what is happening in any great detail. 

Once you have a sense of how the slider works, constrain the date range to the irst 

quarter of the time period. Let the layout settle a bit, and then expand the range to the 

irst half of the time period, about 16 months. Figure 15-2 shows how the graph com-

pares from the 8-month mark to the 16-month mark. Additional ilters were applied to 

constrain labels to the more signiicant nodes. At the 4-month point, two larger clusters 
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are visible, one at the bottom that contains a book about interpreting numbers, and one 

at the top near another of Tufte’s books, Visual Explanations (Cheshire, CT: Graphics 

Press, 1997). At the 8-month mark, it is clear that the lower cluster has grown. However, 

the cluster at the top has dispersed, and it is not clear exactly how. 

FIGURE 15-2: Applying time range ilters shows the evolution of the co-interest neighborhood of the 
book Envisioning Information from the 8-month (1) to the 16-month (2) mark. The cluster at the top has 
clearly dispersed, but it is dificult to get a handle on the nature of the change.

he diiculty of following what happens to the upper cluster in this relatively small 

example illustrates the challenge of organic animation. As a graph gets bigger, it becomes 

increasingly impossible to maintain a suicient number of markers in the graph (such as 

labels) to track and fully grasp the meaning of the movement of nodes. Although the live 

morphing of the graph is undeniably mesmerizing, to be truly informative, a ixed frame 

of reference is needed.
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Full Time Span Layout

One of the most efective strategies for visualizing graph change is to apply layout to the 

sum of all nodes and edges across the full time span and maintain the layout through 

time. Fixing the layout provides a consistent frame of reference, making it easier to spot 

change. Applying the layout to all of the nodes ensures that space is reserved for each 

node to appear. 

he product ainity data example already spans the full date range, making it easy to 

apply layout across time. When data instead describes the graph separately at each point 

in time, you must compute an aggregated graph that includes all nodes and links. Assign 

nodes their maximum size over time to reserve space for them to reach their full scale. 

Returning to the graph in Gephi, turn of the date range iltering, and apply the 

Force Atlas 2 layout with overlap prevention on until the graph resolves itself, and then 

turn it of. Re-apply the date range iltering to restrict the visible graph to the irst quar-

ter of the time range. Export the resulting image for comparison, and then repeat the 

same process for the other three quarters.

As of this writing, Gephi does not have a good method for viewing multiple 

graph snapshots at once. To experiment with viewing snapshots side by side, 

paste the images into a presentation tool like PowerPoint.

Figure 15-3 illustrates the result of viewing multiple snapshots in time using a ixed 

layout. he three Tufte books that appear in each of the four views provide consistent 

markers that anchor each view, and clearly when nodes do not move, changes are more 

easily understood. Unlike the previous example, here it is apparent that the cluster that 

seemed to disperse in fact disappeared, while new nodes appeared nearby.

To be able to see change at the node level more clearly, even more labels have been il-

tered out, leaving only those that are referenced most often. At a high level, the story told 

here (albeit with a very small sample of data) is of interest irst by the design community 

appearing in the second time interval, then by statisticians in the third interval, and by 

software architects in the inal interval.

N
O

T
E
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FIGURE 15-3: Snapshots of the graph over four successive periods show how communities appear over 
time in this sample, starting with designers (2) and followed by statisticians (3) and software architects 
(4). Fixed layout provides a consistent frame of reference for understanding change.

Ghosting

Although the four snapshots provide a crisp picture of each time period, the degree of 

change from frame to frame requires back and forth comparative inspection in some 

cases to igure out whether a node or cluster of nodes has disappeared in the subsequent 

frame. Without the constant central markers anchoring each view, it would be even more 

diicult to compare. he strength of the frame of reference varies depending on how 

many nodes carry over from the previous frame.

A second strategy for graph comparison is to carry over nodes that no longer exist and 

represent them in ghost form in the subsequent view. Ghosting is a faint or translucent 
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“barely there” rendering. In Gephi, you can do this by using operation ilters to identify 

the set of nodes that exists before the current time span, but are not in the current time 

span, and resetting their colors to something close to the background color. his is a bit 

of a tricky one-of process in Gephi, but the results indicate the value of this graphical 

technique.

he four frames of Figure 15-4 show the current graph in full color at successive 

times, with the nodes and links that are no longer part of the graph shown in light gray. 

Ghosting a previous state provides the perfect frame of reference for understanding 

change. he added advantage of this approach in a live context is that you can interact 

with the still-present ghosted nodes to make sense of the changes.

FIGURE 15-4: Ghosting past nodes clearly shows the state of the current graph in relation to previous 
states.
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Fading

Ghosting past nodes enables you to continue to use color in the graph to express other 

characteristics. However, the visualization of time using this technique is limited to two 

states: before and after. When you need a richer understanding of evolution over time, 

you can use fading. 

Fading uses transparency or color to progressively ghost representations of past nodes 

based on the length of time since they dropped out of the graph. hough it is theoreti-

cally possible to apply fading using transparency while color continues to express other 

properties, in practice this works only with a very limited number of colors. Age can be 

expressed more clearly if color is reserved for that purpose. 

Figure 15-5 shows the same graph, where black nodes and links represent the current 

graph, and past nodes and links are shown in a fading metallic color. 

FIGURE 15-5: Fading past nodes over time provides greater characterization of the evolution of the 
graph and is a good choice if color is dedicated to this purpose. Here, linked black products are current 
and past nodes, and links shown in metallic color fade over time.
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Using this technique, you can summarize the evolution of the graph over time in 

a single view. You can also use color to emphasize new nodes in the same context, as 

shown in Figure 15-6, where green nodes are new, and black nodes carry over from the 

previous frame.

FIGURE 15-6: Using color, you can also highlight new nodes, while old nodes are faded out. Here, new 
co-referenced products predominantly about software are shown in green, and carry-over products are 
shown in black.

Community Evolution

So far, the examples in this chapter have provided evidence of how ixed layouts are 

ideal for understanding graph change. You can use color to understand how commu-

nities change by gaining and losing members over time. But what if, instead of seeing 

change to communities, you want to see change of communities? Communities in 

this chapter’s examples so far take form through layout, which is computed across all 

time. In some data sets, however, community structure may change dramatically in 

that span. New communities may form, and old ones break apart. In certain cases, it 

is valuable to compare communities in the current state of the graph to communities 

from another state.
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Comparing community structures requires a diferent visual approach. Often, you 

can use layout alone (if the graph does not resolve into a hairball) or layout reinforced 

with color to visualize communities. To compare community structure, however, one 

of layout and color should depict the same structure in both views, while the other is 

applied independently to each. Fixing layout and coloring independently for computed 

communities in each view is one of the options. But a more efective choice is to com-

pute communities for one of the views, map it to color in both views, and let both views 

lay out naturally to express community structure in each.

Returning to the Gephi product ainity graph, turn of iltering to see communities 

across all time. Run the modularity statistic to compute them, and use the partition pane 

to assign color to each community. Export a snapshot of the result in the Preview tab. 

his image will represent the inal state of product communities, taking into account the 

full history of reviews. Return to the Overview tab, toggle iltering back on, and restrict 

the date range to the irst part of the time period. Run the force-directed layout again. 

Export a second image, representing the initial state of product communities, and com-

pare the results, as shown in Figure 15-7.

Comparing the images clearly reveals the nodes in the initial community at  

top, which eventually migrate to neighboring communities. In this data set, commu-

nities do not tend to change dramatically over time, but the example demonstrates 

how you can use the technique to see changes in community structure, however big  

or small.

Notice that the pink community computed on the inal graph (which spatially 
does not look like a cluster) actually seems more cohesive in earlier states. 

Also note that a few of the nodes in some of the spatial clusters are of a dif-

ferent color. Cluster computation and clustering layout can involve a degree 

of randomness and variability at the detailed level, but at the broad-strokes 

level, will produce consistent results.

N
O

T
E
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FIGURE 15-7: Computing communities and assigning them colors that carry over to previous views 
shows how they evolved from previous communities. Here, members of the top-most product commu-
nity split into neighboring clusters, and, surprisingly, the pink community computed in the later view is 
actually more cohesive in previous views.
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TRANSACTION GRAPHS

In the product ainity data set used in the examples thus far, a link represents a customer 

product interest, the nodes of interest are products, and the goal with respect to time 

is to understand how associated product interests change over time. Change in product 

interest is manifested visually by the appearance and disappearance of product nodes. An 

understanding of related product interests is a valuable source of information for market-

ing decisions. Knowing that customers interested in visualization design books are also 

interested in software development is an indication that cross-advertising should help 

improve sales.

Similarly valuable would be an understanding of customer purchasing patterns over 

time by customer and customer proile. For example, knowing that customer experience 

with certain books triggered increased follow-on sales would be reason to put more 

marketing emphasis on those books. Patterns like purchasing, which involve a series of 

transactions over time, would not be readily visible using the approach taken thus far. 

Links in a graph indicate relationships between entities. A series of graphs portrays 

the overall pattern of relationships at each point in time and can be compared using the 

techniques described earlier in this chapter. Transaction graphs go one step deeper and 

articulate the series of events within each relationship in the graph for the purposes of 

understanding patterns of behavior. Unique approaches to visualization and interaction 

are required to support transaction graph analysis.

Clustered Transaction Analysis

he immediate challenge presented by transaction graphs is one of scale. Many dynamic 

graphs already represent a Big Data problem, but given that transaction graphs involve 

the addition of a whole new dimension, they virtually always do. Efective visualization 

and navigation of transaction graphs requires strategies to deal with scale. Hierarchical 

clustering and aggregation of linked nodes is one such strategy. Chapter 14, “Big Data,” 

introduced these concepts. his chapter will illustrate how they can also be applied with 

a time dimension, using Inluent. 

Inluent is an open source tool for transaction analysis designed for enterprise data 

system integration. Inluent is web-based, and, conveniently, a number of live demonstra-

tions are available for exploration online using public transaction data sets. his example 
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uses the small microloan demo available for download on the Inluent website. he  

demo uses an anonymized sample of data published by Kiva, and subsequently curated 

for research use.

You can ind Influent documentation, demos, and download online at http://
inluent.org. To ind out more about the Kiva organization, including how 
you can participate, visit http://kiva.org.

Kiva is a leading non-government organization that facilitates the international 

crowd-sourcing of microloans, primarily to individuals in second- and third-world coun-

tries. Participants fall into three classes: 

 ■ Borrowers who apply for a loan

 ■ Partners, which are the inancial institutions that administer the loan locally, dis-

pensing and collecting payments

 ■ Lenders who contribute to loans 

Each loan has a single partner, acting as a local broker. Loans almost always have 

many lenders collectively contributing the funding. Lenders typically give small amounts 

of money to each of many loans.

To protect the system from abuse and encourage the trust of lenders, Kiva’s policy 

is that all inancial transaction activity of borrowers and partners be an open book. In 

addition to transaction activity, detailed descriptive information is published about both 

borrowers and partners. Lenders also self-publish information about themselves and the 

loans they support as endorsement and encouragement for others to do the same.

he Kiva data set is typical of many inancial transaction data sets in nature and scale. 

Kiva has millions of participants and hundreds of millions of transactions, making for an 

ideal test case for approaches to understanding patterns of behavior. 

Although the loans that each lender in the demo contributes to are based on 

real data, the individual transactions of lenders are simulations only, and par-

ticipants have been anonymized.

N
O
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he worklow in Inluent starts similarly to that of the graph database example in 

Chapter 14, with one or more focal nodes of interest. Like Titan, Inluent supports 

Lucene-backed free text or criteria-based search, in this case using Solr. A graph node in 

Inluent is an account, represented by a card. In the example shown in Figure 15-8, Far-

rah Sorenson is the initial node of interest, found by a search. 

FIGURE 15-8: In Influent, a card represents an account showing key attributes using icons, and activity 
over the selected time period using a time series chart. Bars above and below indicate incoming and 
outgoing transactions.

he card for Farrah Sorenson’s account shows that she is a lender (indicated by the 

icon of a person in a business suit), and that she lives in the United States (indicated by 

the geographic icon). Icons in Inluent are selected for each application or data set to rep-

resent the most important summary attributes of an account holder. 

Farrah’s account activity from July 1, 2011, to October 31, 2012, is represented by 

a time series chart. Bars above the middle line indicate the pattern of deposits into her 

account each month, and bars below indicate withdrawals. As you might expect, the 

money loaned by Farrah exits her account in lump sums (indicated by the two longer 

bars on the bottom), and repayments enter her account in smaller increments at regular 

monthly intervals. Cards visually communicate chosen account attributes and activity in 

an eicient compact form.

Like many of the examples in Chapter 12, “Flows,” transaction low in Inluent is 

left to right. Clicking the branch button on the right of Farrah’s card retrieves all linked 

accounts that receive money from Farrah, as shown in Figure 15-9. he stacked card 

representation with the number 5 in the corner indicates a cluster of ive such accounts. 

Clusters are aggregated for scalability, and aggregate volume of transaction low for the 

selected period is relected by a Sankey representation. he icons on the stack depict the 

strongest characteristics of those accounts, where the bar underneath the icon indicates 
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what proportion of the cluster shares those characteristics. In this case, all ive accounts 

are held by partners (indicated by the multi-person business icon), are in Indonesia, and 

were lagged with a conigured annotation. Hovering over an icon produces a tooltip 

with more information.

FIGURE 15-9: Branching right on one or more accounts shows linked recipient accounts, which, in this 
case, are ive partner inancial institutions that receive funds from Farrah.

he stack of partner accounts has a paper clip in the upper-left corner. Clicking 

the paper clip expands the cluster, revealing its member accounts, where the amount 

of money lowing to each account is indicated by the width of the link, as shown in 

Figure 15-10. 

FIGURE 15-10: Expanding a stack reveals members of the cluster, which, in this case, are ive loan 
accounts administered by the same partner. Width of line indicates how much Farrah lends to each.
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In this case, each of the accounts belongs to the same partner. Because partners act 

as brokers, where all fund transfers are associated with one particular loan, there is an 

account for each loan. In this case, all ive loans that Farrah gives to are apparently man-

aged locally by the same partner. Because Farrah is the highlighted account (outlined in 

orange), the subset of transactions that involve her in the linked accounts to the right are 

also highlighted in orange. Highlighting is a way of seeing the pattern of activity across 

links, in the context of all of the activity for that account.

he pattern of activity for partners should look symmetrical. Partners simply bro-

ker payments between lenders and borrowers, so asymmetry would suggest something 

unusual. It’s diicult to tell, however, if this is the case, because bars are being clipped, 

indicated by the black caps.

Clicking the highlight low button on the top partner card makes it the focus, as 

shown in Figure 15-11. In addition to highlighting low to adjacent accounts, high-

lighting an account scales all activity charts to it. Now that they have been rescaled, the 

charts reveal that the pattern of transactions is indeed symmetrical, albeit sometimes 

with a minor delay in processing repayments. Flow lines and cards provide a rapid means 

of understanding transaction activity between entities, as well as scanning for abnormal 

patterns.  

FIGURE 15-11: Highlighting a card shows the subset of transactions involving that account in other 
accounts and scales other charts to it.
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Collapsing the partner stack using the paper clip and highlighting it scales the charts 

to the sum of all transactions for that cluster. Clicking the branch button on the right 

side of it retrieves all accounts that receive money from it, as shown in Figure 15-12. 

here are two stacks to the right. A stack of ive loans is represented by the plain per-

son icon. Because lenders receive repayments that partners pass along, all contributing 

lenders to the ive loans appear here as well, including Farrah. Now that members of the 

cluster come from diferent countries, it is clear how the bars underneath each icon work 

to indicate the proportion of members that share that attribute. In this case, almost half 

of the lenders live in the United States. 

FIGURE 15-12: Branching right on partner accounts here shows all loans and lenders that receive pay-
ments. For each cluster of accounts, bars beneath the icons show the proportion of members that share 
that deining characteristic.

Expanding the cluster of ive loans reveals their transaction patterns, as shown in 

Figure 15-13. Diferent types of accounts have diferent patterns of normal activity. For 

loans, you might expect “normal” to be a lump-sum loan dispersal, followed by repay-

ments on a regular schedule. Looking at the charts here, that pattern holds for most of 

them, with the exception of one, which seems to show a lump-sum repayment. One of 

the accounts also shows no activity for the current time period, indicating that the loan 

was taken out earlier or later.
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FIGURE 15-13: Expanding a cluster of loans reveals the pattern of activity for each. Most receive a 
lump sum and follow a monthly repayment schedule, with the exception of one, which seems to pay the 
money back in a lump sum. Making activity visible makes it easy to spot anomalies.

If you expand the larger cluster of lenders as shown in Figure 15-14, you see that 

clustering is hierarchical. When the number of accounts exceeds a manageable number 

for viewing, it is clustered again. he attributes on which an account is clustered are con-

igurable. Here, you can see that after type of account, they are clustered geographically. 

he irst set of lenders is from the Americas, mostly from the United States, and the next 

set is from Europe. he width of the links leading to each indicates the amount of money 

lowing to each cluster.
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FIGURE 15-14: Clustering is hierarchical. Unstacking using the paper clip reveals the next level down 
in the hierarchy. In this case, accounts are clustered by type, then by geography at several levels, 
and eventually by name. Clustering occurs on each level of expansion until a manageable number of 
accounts exist for viewing.

Time series charts and selective use of icons chosen to suit a particular data set pro-

vide compact summary visualization of key account characteristics. Tailored ensemble 

clustering provides scalability and allows for a much richer representation of nodes in 

large numbers than a single-colored dot per node. Aggregating nodes and links, as well 

as using a left-to-right layout, ensures that the visualization does not turn into an inde-

cipherable hairball. Rich representations and drill-down capabilities ensure that valuable 

details are not lost through aggregation.
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Spatial Transaction Analysis

Dynamic spatial networks present a unique challenge. When spatial location is an 

important part of the story, options for expressing time visually are limited. Not only do 

transactions occur between entities in the network over time, entities themselves move. 

For example, courier services may track their vehicles by GPS to manage routing and 

delivery, and opportunities for package transfer may occur if routes cross at the same time.

When nodes are in motion over the course of a time span being analyzed, the most 

natural way to visualize it is to draw a line through their path, forming a trail. Fig-

ure 15-15 shows a simple example of the route of two taxis in the San Francisco Bay 

Area using this technique. One of the limitations of this approach, however, is that 

time is not actually a visible dimension. Sequences are visible, but not when things 

happen or the rate at which they happen. For example, you cannot see here when the 

taxis started and ended their routes, how fast they were driving, or how long they 

stopped in any one place. 

FIGURE 15-15: Trails are a natural method of expressing a path through space and a sequence, but lack 
a time dimension. Although this visualization of taxi routes could potentially be improved by varying 
saturation by age, it wouldn’t be enough to see if and when a meeting occurred.
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he lack of a time dimension also limits the expression of transactions between enti-

ties. Viewing the taxi example in this case would not answer the question of whether the 

two taxis met to exchange an item, and, if so, where and when. As was the case in the 

inancial transaction data set, you need a time dimension to be able to see behaviors. In 

this case, the solution is to escape latland.

Figure 15-16 shows the same data in 3-D using GeoTime. he third dimension in this 

case is time, where things that happened most recently are closest to the ground. Interac-

tively rotating the view around helps you to see where the lines are steep, indicating speed 

of travel, and when they are latter. More importantly, whereas the 2-D view indicated that 

they crossed paths many times, only in the 3-D view is it clear that they may have met in the 

Oakland area. A time dimension makes it possible to see when events occur and provides a 

way to see an entire series of events, enabling an analyst to understand the whole story.

FIGURE 15-16: Using a third dimension allows movements and events to be expressed in time, telling 
the whole story. Unlike in the previous 2-D example, visualizing taxi routes here in 3-D using GeoTime 
shows a meeting could not have occurred anywhere but in Oakland.
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You can ind information about GeoTime and additional examples at  
http://geotime.com.

Visualization of behaviors may be complemented by computational pattern inding. 

Both Inluent and GeoTime include capabilities for matching patterns of activity. Fig-

ure 15-17 shows a simple example of how you can use an algorithm to ind close proxim-

ity intersections of routes in space and time and highlight them visually.

FIGURE 15-17: You can use computational analytics to ind and highlight patterns of behavior, like the 
GeoTime meeting inder here, which looks for close proximity encounters in space and time.

N
O
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E
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SUMMARY

Dynamic graphs represent a unique and challenging aspect of the Big Data problem. 

he addition of time adds an order of magnitude to the data needing representation. his 

chapter covered strategies for seeing and making sense of the evolution of the world of 

entities and relationships represented by graph structure. It also covered strategies and 

tools for visualization and analysis of transaction patterns between entities that share a 

relationship, in both abstract and spatial contexts. 

Two of the lessons of this chapter and of this book as a whole are that a graph can 

take many forms and that the best approach is highly dependent on the questions you are 

seeking to answer. Chapter 16 condenses the strategies presented thus far into a struc-

tured design guide to help with your decision-making when approaching a new problem.
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16
DESIGN

Great visualization requires design. he use of standard 
forms and visual mappings can deliver reasonable results, 
but you can achieve greater efectiveness by tailoring visual 
representations to the data and the information sought. 

Many people make the mistake of thinking that design is simply the cosmetic process 

of taking something and making it pretty. Great visualization design is about maximiz-

ing human performance. Efectiveness of visualization is about communicating the best 

possible information more fully, more clearly, and more quickly. Diferent forms are ideal 

for diferent problems. Choosing visual representations and interactions for data elements 

can make a signiicant diference in how accurately, easily, and quickly the viewer can 

perceive information. Information visualization design is the art of making those choices. 

Design is both an art and a science. For example, many of the decisions made in design-

ing an opera house involve a great deal of science about how humans interact with and in a 

built environment. Yet, no two opera houses look the same, and it would be inconceivable to 

think of fully automating the design of one. hat’s where the art of design comes in. 

Visualization design is guided by principles of human perception and cognition, the 

speciic information-seeking goals and experience of a user community, and the charac-

teristics of data. Synthesis of a system that satisies all of these complex factors is an art. 

Many of the tools for graph visualization and analysis in this book ofer very little in 

the way of design support. hey tend to ofer a lot in the way of low-level customization, 

but very little in the way of higher-level patterns and structures. Choosing graph type 

and layout were covered earlier in this book. his chapter consolidates principles and 
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techniques used in previous chapters and assembles them in a concise, structured form as 

a reference that you can use to help you design a graph. 

NODES

Nodes are the most important elements of a graph. hey are the subjects between which 

you are looking to ind relationships. No facet of information is complete without them. 

A rich and informative graph visualization begins with expressive nodes. he world of 

possibilities is much bigger than with colored circles. Application of even the least bit of 

creative thinking about node expression can increase graph efectiveness immensely.

Because nodes are more important than links, they should be drawn in a layer above 

them. he one exception is if a subgraph is highlighted in the context of a larger graph, 

in which case links in the subgraph should be drawn above nodes that are not. For exam-

ple, Figure 16-1 shows how lights in and out of William P. Hobby airport in Houston 

(HOU) might be highlighted in the context of larger graphs to look for light routes with 

high average delays.

FIGURE 16-1: Draw links over the top of nodes only when the links belong to a highlighted subgraph, and 
the nodes do not. In this flight delays example, routes in and out of Houston are highlighted in the con-
text of the full network of airports.
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Links should be drawn in a layer under nodes, except when they are part of a 

highlighted subgraph, in which case they should be drawn above nodes that 

are not highlighted.

Node Shape

Virtually all graph visualization tools support some choice of shape. Circles are used far 

more than any other option. Of the abstract shapes, circles centered on the node coordi-

nate are the perfect choice. Knowing the radius of each node, links drawn to that same 

distance from each coordinate can be guaranteed to end at the edge of the node at perfect 

right angles. 

Circles form an ideal relationship with their links, which helps when visually deci-

phering which links and nodes are connected. his is especially helpful in a more densely 

connected graph where links cross nodes in their path. 

Circles easily outperform other shapes like squares and triangles as shown in Fig-

ure 16-2. However, the airline network visualization shown in Figure 16-1 serves as an 

illustration of the value of using symbols over abstract shapes altogether. Using airport 

codes in this case makes each of them immediately identiiable while maintaining a rela-

tively compact shape.

FIGURE 16-2: Circles centered on the node coordinate outperform all other abstract shapes. They are 
easily perceived as discrete shapes, unlike the squares here, and their clear centroid and equidistance 
from it forms a perfect graphic relationship with links, making it clear what connects to what.

T
IP
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Symbols

Striving for “recognition rather than recall” (as phrased by usability expert Jakob Niel-

son in 1995) is a fundamental strategy for improving visualization. It is also one that is 

often overlooked. For example, the use of arbitrary colors and abstract shapes is common 

practice but requires an analyst to learn and recall the unrelated mapping between visual 

and real-world elements to decode a visualization. his can be a signiicant source of fric-

tion in comprehension. Legends are useful and important, but they are not a cure-all for 

poor design.

he use of symbols increases the chance that an analyst will immediately recognize 

what’s being presented, improving the analyst’s ability to perceive information. Even in 

cases when recognition is not immediate, symbols provide a mnemonic for more easily 

remembering the mapping. For example, in Figure 16-1, you might not immediately rec-

ognize the airport symbol MCO, but once informed, it is easier to remember that MCO 

represents the Orlando International Airport than it would be by location alone.

Use of all caps for a letter-based symbol helps to ensure that each symbol ills a more 

consistent block of pixels and is equally weighted left to right, making for better spatial 

harmony in the visualization. A condensed font where letters are not as wide can help 

to keep the symbol more square in shape, which tends to work better in a typical graph 

layout.

Avoid the use of abstract shapes like squares and triangles to communicate 

information. Use simple circles if the graph is large enough that nodes are 

extremely small or dense. Otherwise, use symbols that can leverage recogni-

tion or aid recall.

Icons

Letter-based symbols are a great choice in many cases, but if nodes are too small or 

densely grouped, it becomes diicult to read them. Sometimes icons are a better option. 

Icons can often be recognized more universally across languages, which is why they are 

often heavily used in applications like airport signage. hey also can be more compact 

than letters, allowing for greater density of use. 

T
IP
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Icons can also work in combination with colors to better tell types apart when the 

number of unique colors required is high enough that there is potential for confusion. 

hey can also be used inside of circles if the nodes are large enough (and, by implication, 

if the graph is small enough). Figure 16-3 shows a portion of the same graph of National 

Basketball Association (NBA) fan communities by gender previously shown in Chap-

ter 11, “Communities” (Figure 11-8), this time with iconic shapes instead of circles. By 

using standard icons, you make it immediately clear what the nodes represent, without 

the need to refer to a legend.

FIGURE 16-3: Icons provide a compact shape that can help to tell a story more clearly. Universally 
recognizable standards like the ones used here are best, but relatively rare.
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Icons provide a compact symbol for representing types in a graph. If pat-

terns by type are most important, symbols can be used in combination with 

color to enhance the capability to distinguish and understand types.

One thing to be careful about when using icons or any other shape is not to rely solely 

on shape as a means for the analyst to spot patterns. In the gender icon example, it is 

really still color that is crucial to seeing trends. Shape adds clarity to the representation 

by color, but it does not replace it. 

Icons help bring a story to light by adding clarity and depth but do not rely on 

icons or any other shape alone to see broad patterns in dense data.

When you use icons as the primary shape as shown in Figure 16-3, they can be deci-

phered at relatively small scales. However, they do not have the ideal relationship with 

links that circles do, and they include small variations in area that make indication by 

size a little less precise. If the graph is small enough that nodes can be drawn at a larger 

scale, you could embed the icon in a circle as an enhancement to it, gaining some of the 

best of both worlds. Figure 16-4 shows a small portion of the graph using this approach. 

his technique can work when both icon and color are encoding the same thing as shown 

here, but it can also work if mapped to diferent properties like age and gender.

Icons like the one you see when you want to save a ile have become universally 

recognizable standards—so recognizable that they can outlive the object or concept 

that they model (like the loppy disk icon that indicates Save functionality). Other icons 

become standards in a particular industry. Standards serve as a useful shared lexicon to 

leverage for recognition.  

Wherever possible, you should use (or reference) standard symbols when 
choosing or creating icons to facilitate recognition. 

T
IP
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FIGURE 16-4: If the graph is small enough and nodes are large enough, icons can be embedded  
inside of circles, enhancing or complementing what is being shown by color.

Standard iconic symbols are an ideal choice but seldom available for the types in the 

data being represented. Fortunately, to be useful, symbols do not need to be immediately 

recognized by everyone. he reality is that the representation of only a small percentage 

of icons is instantly clear, such as the gender icons used here. Most icons require some 

degree of interpretation. Interpretation of an icon typically involves basic knowledge of 

the nature of the data, as well as inference as to what the symbol might map to in that 

context. 

Interpretation of an icon also depends on being able to see other icons in the same 

context. Icons do not work in isolation. hey operate as a family. Even in the gender 

icon case here (where the symbolic mapping seems obvious), the clarity of interpreta-

tion depends heavily on the presence of both icons. As a pair, the symbols have become 
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a standard for signifying female and male, but the symbol used for male works only in 

contrast to female. On its own, it is likely to simply signify a person. For that reason, it is 

important to consider whether an icon will appear in isolation, and, if so, an accompany-

ing label will be important. 

Symbols work together as a family to facilitate interpretation. Consider that 

icons used in isolation are more ambiguous. 

Icons can also serve as mnemonic tokens to help cognition, even when there is little 

hope that they will be recognized immediately by a new viewer. he game Monopoly 

serves as a simple illustration of this phenomenon. 

Monopoly is a game for up to eight players, an unusually high number for a board 

game. Most board games are designed for four or six players, and, in the majority of 

those, each player is represented by a distinct color that distinguishes his or her piece on 

the board. Monopoly instead uses physical tokens like a wheelbarrow, a hat, a car, and an 

iron. A token is replaced every so often, but what does not change is that the tokens have 

nothing to do with the theme of the game—real estate. 

In fact, there is no theme at all to the tokens used. he pieces chosen have only two 

common traits. Each represents a simple, easily recognized and memorable concept, and 

that concept is distinctly diferent from every other. Contrast that with the use of color 

(the choice of many games with four to six players), which becomes more diicult to dis-

tinguish in higher numbers.

Distinct icons can be more easily recognized than distinct colors if more than seven 

or so types are represented. Icons can also have a stronger character or identity on the 

whole, making it easier to remember what they represent. 

For example, the Monopoly pieces have no thematic relation to the game, but they 

have a strong conceptual identity. Players don’t generally rationalize their choice of 

token, but if Mom chooses the wheelbarrow, you might remember that by associating 

the piece with her love of gardening, or if Tim chooses the top hat, you might associate it 

with his passion for acting. here is no right or wrong interpretation of a choice of repre-

sentation. It simply serves as a device for remembering which tokens represent whom. In 

the same way, icons serve a useful function even when the mapping to data is not imme-

diately self-evident.

T
IP
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A conceptually strong and distinct icon serves as a mnemonic device, even 

when the data it represents is not immediately self-evident.

So, if icons don’t always need to be immediately self-evident to be useful, where can 

you go wrong when using them? Icons can destroy a perfectly good visualization in a 

number of ways. he irst and most obvious one is through confusion. Icons need to not 

only be conceptually and visually distinct from each other, but they also need to be dis-

tinct from types (or expected types) in the data that they do not represent. If an analyst is 

regularly confusing the mapping of an icon with a diferent data type, it will continually 

be a source of frustration.

More common pitfalls have to do with the visual design execution of an icon. he 

irst is an icon that is too intricate and overly complicated. An icon should have a clear 

and recognizable dominant shape. It should not look like a series of chicken scratches. 

Related to that, it should have a ill area of reasonable size, and that ill area should be 

relatively consistent across the family of icons. he amount of “ink” that an icon is given 

to show meaning (that is, its perceptual budget) should be the same as other icons drawn 

at the same scale. Icons should generally also be designed to be relatively square—that is, 

their width and height should be similar.

Design icons with a recognizable dominant shape that is relatively close in 

width and height. Use a relatively uniform ill density across icons.

Misuse of color is also a common issue. You should not use color for icons except to 

represent data. You should not use color to communicate the construct used as the sym-

bol. Use of color creates too much visual “noise,” interfering with display of other more 

important information. Some of the best icons often use only one color for ill. If there is 

a chance that the background will include the same color as the ill, a contrasting outline 

is also important. 

T
IP

T
IP
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Avoid icons with color except when communicating properties of the data. 

Use of complex colored icons is a common way to wreck visualization.

Icon Libraries

Icon design is a time-consuming task that requires both skills and software programs 

that many people don’t have. So, what are the best sources for icons, and how can they be 

integrated into a visualization? In keeping with the theme of this book, here are a num-

ber of open source options that highlight the diferent approaches.

Unicode is the standard map of character codes to font glyphs, which enables the same 

text to appear correctly in any font. As shown in Figure 16-5, Unicode includes many 

code blocks for symbols. he musical symbol used in some of the visualizations in Chap-

ter 11 is an example of a Unicode symbol. 

FIGURE 16-5: Unicode includes code blocks for thousands of icons, such as the weather and transporta-
tion icons shown here in the Segoe UI Symbol font. Few fonts, however, include these characters.

he great thing about Unicode is that it can take advantage of symbols that are 

already present on your computer system and are coded consistently across fonts. he 

drawback, however, is that Unicode is far too big for any one font to support in entirety, 

so relatively few fonts include these characters, and the quality of those that do can vary 

widely. he other limitation is that the set of deined Unicode symbols is inite and not 

particularly well-curated.

he second option is to use a specially crafted font that contains only symbols, where 

the symbols are inserted in place of normal character codes in the font, like the letter “a” 

or “q.” his is a longstanding trick that came back into fashion in web design with the 

introduction of browser support for dynamically supplied web fonts, enabling them to be 

reliably supplied as a component of the page that uses them, rather than depending on 

them being already resident on a user’s computer. 

W
A

R
N

IN
G



CHAPTER 16 Design 483

An example of a symbol font is Font Awesome, which was used for the gender icons 

in the previous examples. he potential disadvantage of using a symbol font stems from 

it being a bit of a hack of a system designed for something else. he character-to- symbol 

mapping is unique to the font used, so if the characters appear in any other font, the 

result will be incomprehensible. 

Use of web fonts ensures that the right font will be used in a browser. However, prob-

lems can still occur in desktop visualizations with regularity if, for example, graph iles 

are opened on another computer. If the tool does not support embedding fonts in the ile 

and the font is missing from the system (which is very often the case), the intended sym-

bols will not be displayed.

It can also be a bit tricky to get the characters into the visualization. With a graph 

visualization tool like Gephi, the typical method would be to code the icon text values 

directly into the source data, which works but is essentially a blind process. he values 

will not be intelligible in any view of the source data. If the visualization tool supports it, 

the best solution is instead to specify the icon abstractly through the use of a type name 

and have the tool map that to the appropriate character code. As shown in Figure 16-6, 

this is essentially the approach that Font Awesome provides for web-based visualization 

through use of CSS class names.

FIGURE 16-6: Specialized symbol fonts like Font Awesome as shown here provide custom icon libraries 
in a relatively convenient and eficient form.

Common advantages of font-based icons in a web browser include simple potential 

for eiciency of loading. Downloading one font ile is much more eicient than down-

loading a similar number of symbols individually. Another advantage universal to both 

web and desktop includes support for mapping ill or outline to data-driven colors to 

visualize properties of the data. 

Disadvantages include alignment headaches when you are trying to center symbols at 

diferent scales, and wasted bandwidth and load time if only a few icons are used. Fonts 

also do not support more than one ill color per character, which can present a challenge 

when it comes to achieving clarity at small sizes. Sometimes that constraint can be a 

good forcing function for better design, but, in reality, plenty of poor results still happen.



PART 4 Advanced  Techniques484

he third icon library option is the most obvious one, which is to supply the icons 

as images. In addition to traditional image formats like JPEG or PNG, which deine 

the image as a grid of pixels, modern web browsers support images in Scalable Vector 

Graphics (SVG) format, which, similarly to fonts, describes shapes in vector form. SVG 

images perfectly scale to any size but difer from fonts in that they can include more than 

one color and transparency, which can help to disambiguate similar shapes. 

he Aperture JS icons used in Chapter 12, “Flows,” and shown in Figure 16-7 are 

examples of SVG format icons. Like fonts, any image-based set of icons can also be pro-

vided as one ile for eicient loading in a web environment, using Cascading Style Sheets 

(CSS) to draw from the correct area of the image. hey can also be embedded directly 

in the source for a web page. he downside of image-based icons is diiculty in mapping 

color dynamically from data. If required, it is easier and more optimal to do that with 

font-based icons.

FIGURE 16-7: SVG image icons like the Aperture JS icons shown here provide support for subtle use 
of color to complement differentiation by shape but can still scale to any size. Colors can be styled 
through CSS.

Symbol fonts provide a fast and eficient source of icon shapes for coloring 
dynamically from data. SVG icons provide a source for icons that use shad-

ing or color to enhance the use of shapes in clearly distinguishing types.

Node Size

Node shape is only one dimension of graph expression, but clearly it is an important 

and highly nuanced one. Node size is another, and comparatively, it is dead simple. You 

should generally use node size in any reasonably large graph. Node size emphasizes 

what’s most important in a graph when there is a lot to take in.

he irst rule of node size is hopefully a rather obvious one, which is that size should 

only be mapped from magnitudes, with larger sizes indicating greater magnitude. Often, 

node size is mapped from a derivate graph data value like degree, which is the number 

T
IP
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of links attached to it, or a more sophisticated (but computationally expensive) measure 

of signiicance (like betweenness centrality). he minimum node size in a large graph 

is typically related to the number of pixels required to display the node shape with suf-

icient clarity. A node should also be a little bigger than its widest link. he maximum 

node size is typically related to the number of nodes in the graph. 

A smaller graph can aford a greater range in node size, whereas, in a very large 

graph, the range of size must be minimal. Even a size diference of a few pixels in each 

direction, however, can make for a perceptible, informative diference.

Technically, to be perceptually correct, the area and not the radius or height and 

width of a node should be linearly proportional to the value it represents. However, in 

graph visualization, very often this is less useful than a rule of thumb about the overall 

distribution of node size. 

Because the function of node size in a graph is to communicate relative signiicance 

of nodes and signiicance is a fuzzy measure, it is more important to be able to see size 

relative to others than it is to be able to visually decode it precisely to a value. A reason-

able rule of thumb is that the number of irst-class nodes that can be easily perceived to 

be most important is 25 or less, and the number of perceptible second-class nodes is not 

much more than 100. he goal is to be able to make out the key nodes individually in 

the general mass context of communities. To achieve the target distribution, you can use 

non-linear scales.

Use node size to emphasize nodes that are most signiicant in the graph. You 
can use non-linear scales to create several visible levels of signiicance, start-
ing with a small number of nodes that are most important.

Node Labels

Labels are a critical part of virtually all forms of graphs. Geographic maps are an exam-

ple of a highly evolved form of visualization that uses sophisticated systems of labeling. 

Compare that to a graph, where, unlike in a map, location of elements cannot be learned 

over time. Yet, labeling is notoriously poor in graph tools. Labeling everything in a 

medium- to large-sized graph quickly becomes too cluttered. In those cases, use graph 

analytics to identify the most important nodes and label those. 

T
IP
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You should draw labels over the top of nodes, and, in most cases, you should give 

them an outline so that they can draw on top of each other on occasion without ren-

dering the topmost label unreadable. Try to keep labels short. If the data contains long 

names, add a shortened version for display, and make the full version accessible through 

selection or hover.

LINKS

Links are what makes a graph a graph. But what they tell us, they tell us about nodes. 

Nodes are the principal subject of a graph visualization, and so, accordingly, node per-

ception is more important than link perception. 

To use an audio analogy, if links begin to interfere with the ability to read nodes, they 

should be dialed down to be visually quieter so that the nodes can be heard. For example, 

you should draw links behind nodes and not use fully saturated, attention-grabbing colors. 

Often, transparency is useful in displaying links because they will naturally then blend 

with the background color, making them less visually noisy. As an added bonus, transpar-

ency allows the overlapping of links to be more easily seen. In most cases, you should either 

draw links in neutral colors or interpolate between colors of the nodes at either end.

Link Shape

Links are almost always represented as lines but, like nodes, can also vary in form. One 

common variation is that you can draw them as either curved or straight lines. 

Straight lines point directly from one node to the other, which makes it a little easier 

to see where they are headed when focused on or zoomed into one of the nodes. In a 

geographic layout, for example, this can imply a destination, even when the destination 

cannot be seen. Straight lines can also be drawn more quickly, so in a graph with a lot of 

links, straight lines will perform better. 

Curved lines, on the other hand, are less likely to completely obscure each other. A 

short line and long line in the same path will be easier to see because their arcs will fol-

low a diferent path. Curved lines also communicate directionality, if the links have a 

direction. Typically, you use a clockwise arc, so clockwise swoops indicate the direction 

of low. A link from A to B and one from B to A will also disentangle nicely when they 

are curved, providing the capability for you to express diferent weights in each direction.
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Try curved links unless the number of them is so high that drawing them 

all is too slow. Unless the graph is geospatial, this will almost always pro-

duce clearer results, and the curved links can be used to communicate 

directionality. 

Directional Indication

Clockwise arcs are a great base-level indication of direction. You can also add arrow-

heads for clearer self-expression, but only when you have few links to display. Otherwise, 

they will create too much visual clutter. A third option is to use tapered links, which 

resemble arrowheads that span the complete distance from source to destination node. 

Tapered links can indicate direction along their whole length. 

However, it’s good to keep in mind that if directionality is important in a graph and 

the graph is big enough that arrows are no longer easily perceived, you should consider 

techniques other than link representation, like those documented in Chapter 12. More 

often, directionality is present in large graph data but is not as important to see as com-

munities are. In these cases, typically curved links are suicient.

Offsets

When links become dense, it can be diicult to see whether a link passes through a node 

or terminates at it. A small link ofset of a few pixels around the node in a small- or 

medium-sized graph can help to clarify where the link begins or ends. Ofsets are par-

ticularly important if arrows are used. Ofsets give arrowheads enough space to display 

comfortably next to each other. he lower graph image in Figure 16-8 demonstrates the 

use of ofsets on the target end of the link for exactly this purpose.

Line Styles

Line styles can sometimes be used to indicate diferent types of links, if diferentiation by 

type is important. Geographic maps have a longstanding tradition of using line style for 

features such as rail lines and borders. However, several principles are at play in making 

these successful, and these principles apply to graphs as well. 

T
IP
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FIGURE 16-8: Curved links show directionality using clockwise arcs and naturally deconflict, as evident 
here with incoming flow of goods to California, which are obscured in the straight-line version below it. 
Extra spacing and offsets are used in the straight-line version to make room for arrowheads.

he irst is that the style used, in most cases, refers to a physical property of the fea-

ture. A rail line has regular ticks along a solid line (which refer to railway ties at regular 

intervals along rails), and borders are dashed (indicating an intangible feature). To an 
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extent, like icons, these are learned vocabularies, but their form reminds the analyst 

physically of what they represent. 

he second principle is that application of line style is rarely combined with applica-

tion of color. Railway lines and borders are drawn in gray, operating as a second order  

to the principle order of roads, which use color to diferentiate levels of hierarchy within 

the network. 

he exception to the rule of not combining line style and color (and the third princi-

ple) is that dotted lines virtually always refer to an insubstantial version of the same class 

of item shown in solid, whether that is because they are planned but not yet made or 

because they are highly uncertain or unreliable.

You can use line styles in gray that use symbolic reference to hint at what is 

being represented as a complement to the use of color in differentiating link 

types. You can use dotted lines to indicate uncertain or otherwise insubstan-

tial links.

Line Width

Line width is an obvious choice for indicating strength of relation or volume of low, 

depending on the data being represented. Similar to node size, line width should only be 

mapped to magnitude values. 

Line width igures signiicantly in the visualization of flows. Chapter 12 is 
devoted to flow-focused graphs, including Sankey diagrams.

Unless a Sankey diagram is the form of choice, the variation in line width will need 

to be relatively small. With only a few pixels to work with, if it is informative to do so, 

line widths can be quantized to represent ranges of data. For example, if links represent 

cash low from $1 to $100,000, rather than simply scaling line width linearly based on 

amount, you can choose line widths categorically based on the range that values fall 

into—$1 to $25,000; $25,000 to $50,000; or $50,000 to $100,000. 

T
IP
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Whereas scaled lines portray a fuzzy impression of magnitude, quantized line choices 

enable the viewer to know immediately whether a link value falls above or below mean-

ingful thresholds.

In any graph where flow is being represented and expression of link weights 

is constrained to a few pixels, quantize line widths to represent meaningful 

ranges that the viewer can quickly decode.

Relational Nodes

In most cases, a relation between two nodes (where nodes are the subject of interest) is 

expressed as a single link. In certain cases, however, it can be useful to break out relation 

types into their own nodes. 

For example, if your goal is to identify communities in a social network, a view of 

three people who are related as real-life neighbors can beneit from having links loop 

through an address relation node of “20-27 Harper Lane,” or a view of three nodes 

that share a phone number might be improved by looping through a common node, 

“1-800-899-2121.” 

Breaking down shared relations into relational nodes enables a single label to express 

the relation and helps nodes that share that relation to be drawn together in layout. his 

approach is often referred to as a shared attribute graph. Figure 16-9 shows an example.

When nodes are used to express relations, it is important to visually express them 

diferently from subject nodes. Relational nodes should be perceptually recessive relative 

to primary nodes and should blend seamlessly with the links they are articulating. You 

can think of relational nodes as stepping stones in links, and they should be expressed 

accordingly.

Use relational nodes to break out and express common relations when there 

is a wide variety of relationship types, and the goal is to understand com-

munities in a social network. Treat them visually as a second order of nodes 

using a palette consistent with the links they are associated with.

T
IP

T
IP
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FIGURE 16-9: A shared attribute graph extracts commonalities as relational nodes to reveal associ-
ations between entities. Here, a common neighborhood and shared Twitter feed imply a community. 
Relational nodes should use a different representational vocabulary, making it clear that their function 
is to join primary nodes.

Link Labels

Link labels are seldom advisable. Use them only in small graphs and in cases when they 

can independently and fully express a concept. 

For example, a link from the nodes “Wardrobe” to “Forest” that is labeled “Lucy 

enters Narnia” is self-expressive. A link from “Lucy” to “Edmund” labeled “sister of ” 

may have use in other disciplines but is a poor communication device. Do not require 

the viewer to piece together fragmented concepts across links. Consider using a system 

of relational nodes instead, where the link representation simply indicates a shared attri-

bute. For example, in this case, Lucy and Edmund might be linked to a secondary node 

labeled “Pevensie Child,” where all links of this type are represented the same way and 

understood to be attributes. 
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COLOR

Color is an important dimension of any visualization. he diference between a visualiza-

tion with good color choices and one with poor choices is enormous. Poor color palettes 

can render a visualization incomprehensible. Color choice is undoubtedly an art, but 

there is a great deal of science behind it that has to do with how we see and perceive. 

he principles involved provide a framework for approaching color choices and, at the 

very least, should be a basis for recognizing when poor choices are being made. Principles 

are by no means prescriptive, however. Within the guidelines presented here, there is still 

plenty of room for creative artistry.

Color Palettes

One primary principle of color choice is that colors come loaded with import. Colors 

have both cultural and natural associations that inluence interpretation. If you choose a 

palette that intuitively its expectations, the visualization will be easier to interpret. Pal-

ettes that go against the grain of expectation will cause endless frustration. 

Color associations are irstly cultural and, as such, are subject to a certain amount of 

variation in cultural expectations. For example, in most business cultures (not least of 

which, inance), red signiies loss or bad, and green signiies gain or good. In military 

circles, red signiies enemies (also bad), but green signiies neutral parties, and blue indi-

cates the good guys. 

Table 16-1 lists a number of broad color associations to consider when mapping to 

data. Notice that one of the themes evident in this list is that although colors have cul-

tural import, meanings are often rooted in natural associations.

Two important and related principles of color were alluded to in reference to red in 

Table 16-1. Firstly, colors have certain optical properties that make them more or less 

noticeable than others, and secondly, this depends a great deal on the color ield sur-

rounding it. Red is the most salient color on light-colored backgrounds, but the heat 

map of shipping traic shown in Figure 16-10 shows how this changes on a black back-

ground. No legend is needed to know that green, yellow, and white are all clearly repre-

senting higher volumes. Your eye is naturally drawn to areas that are brightest. 
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TABLE 16-1: Common Mappings of Color

COLOR MAPPINGS COMMENT

Red Loss, negative, alert, 
trouble, enemy, heat, 
volatility

Red has one of the most consistent set of expectations 
for meaning of any color in Western culture. It holds the 
status of being the most alarming and action-inducing of 
colors. Red is the color of blood, which is plenty alarming, 
but another likely explanation for the association has to 
do with how we see. Red is the most salient of colors on 
a common white background, making it the most likely to 
gain immediate attention. Fire and heat, as well as vola-
tile and powerful forces, are also associated with red.

Orange, yellow Highlight, warning Orange and yellow are one and two steps down the heat 
scale from red and, as such, are most often used to indi-
cate things that warrant attention once immediate ires, if 
any, are put out.

Light green Gain, growth, health, 

impartiality
Green indicates growth and health, as well as impartiality 
in conflict. These are all things you might naturally asso-
ciate with plant life, also green. 

Cyan, blue Positive action or 
force, selection, cold

Like green (or any cool color, for that matter), blue gener-
ally indicates reason for conidence. Unlike green, however, 
which suggests organic change, blue communicates 
controlled action. Blue is the color of uniformed oficers. 
In computer interfaces, it is also the standard color of 
selection. Ice and cold are also associated with blue, and 
expressions like ūice in his veinsŬ and ūkeeping her coolŬ 
would suggest a further connection with controlled action.

he shipping traic visualization uses a spectrum of ive hues spaced at  perception- 

derived intervals and ordered by luminance, based on a concept from visualization and 

perception expert Colin Ware. his is actually a much truer representation of heat than 

a standard heat map would use. However, as you might imagine, white hot on a white 

background doesn’t have quite the same efect as it does on black. In fact, clearly the 

efect is entirely opposite. Use of white or of-white backgrounds (the color of traditional 

paper) has had a great deal of inluence over traditional palette choices.
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FIGURE 16-10: On a black background, this ship trafic map uses a luminance spectrum  
because brightness naturally demands attention, whereas on white, red stands out most.
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Another principle closely related to optical properties making colors more notice-

able is that diferent backgrounds (light or dark) perform better or worse in diferent 

mediums. White backgrounds are a better choice for paper, where pigments are applied 

for foreground elements. Dark backgrounds tend to perform a little better on computer 

screens, where light is invoked for foreground elements. 

However, this is highly dependent on the quality of the display device. Dark back-

grounds tend to perform poorly on a digital projector because the maximum luminance is 

so much lower that it becomes diicult to see small or thin objects below a certain level 

of brightness. here simply isn’t enough strength in the light being pushed through such 

a small window. White backgrounds have a diferent issue with projectors in that the 

amount of bright white tends to wash out color depth, but the result is not a total loss. 

Because white backgrounds print better and have less catastrophic issues with display 

projection, it is often wiser to base a palette on a white or light background.

Start all palettes by irst choosing a background color. Dark backgrounds 
work well on a computer screen. Visualizations with white backgrounds print 

better and do not suffer as badly from loss of small items when digitally pro-

jected, though color depth will be lost.

he last set of principles is about neutral colors, saturation, and brightness. Color 

neutrality is a spectrum, where grays are the most neutral of all. Gray plays an important 

role in visualization. Color in visualization is loaded with meaning, so unless a color is 

coded to information, it should generally be a shade of gray. Sometimes the meaning 

being encoded is neutral, in which case it should also be a shade of gray (for example, an 

unchanged value in the spectrum of loss and gain). 

An important quality of neutral grays is that they are also visually recessive. hey need 

to be quiet enough to let the important information sing. his need also applies to the 

use of colors to represent the information itself. he intensity of color needs to be applied 

judiciously based on the size of area that will be occupied by the color. Large swathes of 

full-intensity colors are like a room full of shouting people. Sensory overload makes it very 

diicult to perceive anything at all. Full-intensity colors should be used only in very small 

doses, if at all. Another aspect to keep in mind is that intensity maps intuitively to magni-

tude, so when color gradients are used, diminishing values should approach neutrality.

T
IP
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he Hue, Saturation, Brightness (HSB) model for color deinition, also known as HSV 

(where V stands for Value), is the most useful of common color models. Hue is what we 

typically think of as color, the spectrum of the rainbow. Saturation is the degree of color, 

where a saturation of zero deines the grayscale spectrum. he brightness of a color is a 

range from black to full color. 

Saturation of zero and brightness of one is white. A simple rule of thumb for a visual-

ization with a white background is to lower saturation to approach neutrality, and for a dark 

background to lower brightness. his has the efect of blending more with the background 

color in each case. Decreasing opacity has exactly the same efect, except when translucent 

items also blend with other items that they overlap. Sometimes varying opacity is a better 

choice. But oftentimes, using saturation or brightness to achieve the same efect produces 

less confusion from color mixing that occurs from overlapping elements of diferent hues. 

Brightness can be varied a bit on a white background, and saturation can be varied 

on a black background. But in either case, these should be close to full value when you 

encode information. Stay away from dark color sets on white, or pastels on black.

SUMMARY

Design is essential to getting the most relevant information out of data. he art of 

designing an efective graph, however, can seem like a mystical process with an over-

whelming number of options. An understanding of core underlying principles of visu-

alization design can go a long way toward demystifying the process and developing a 

framework for making design decisions.

Nodes are the most critical elements of a graph. Choosing the right shapes and size 

mappings are important factors in success. Symbols help signiicantly in bringing informa-

tion to life. Links need to tell a story about nodes, not compete with them for attention. 

Principled choices of form and color will ensure that the visualization operates efectively.

Hopefully you have found inspiration in this chapter and the rest of this book as to 

how graph analysis can be applied in your business and to think creatively about graph 

forms when choosing the right solution. Applying the principles and approaches used in 

this book will help you make efective choices. 

Graph analysis is a rapidly rising and evolving area of technology development for busi-

ness. Many of the world’s biggest and most innovative companies are invested in exploring 

the potential of this ield. Enjoy experimenting with the current state of the art in open 

source graph tools, and look forward to exciting advances in product development to come.
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GLOSSARY

Acyclic Graph

A graph that contains no cycles if links 

are followed from any node through any 

others.

Adjacency Matrix

A table where all nodes are assigned both a 

row and column, and a non-zero value in a 

cell represents a link between the row node 

and column node.

Adjacent Nodes

Two nodes that are directly linked.

Betweenness Centrality

A measure of the importance of a node 

relecting the number of times it is 

involved in the shortest path between each 

of the nodes in a graph.

Bipartite Graph

A graph where one class of nodes only ever 

links to a second class of nodes, and vice 

versa. For example, in consumer purchase 

data, customers may connect only through 

common products, never directly to each 

other, and the same may apply for products.

Breadth-First Search (BFS)

An algorithm that starts with a node and 

traverses each adjacent node in turn before 

descending another degree out, until the 

target node or nodes are reached.

Centrality

he importance of a node in the graph 

based on its connections.

Chord Diagram

A graph visualization technique for data 

with asymmetric bidirectional low where 

nodes are arranged in a circle and joined 

by bands of varying thickness at each end. 

Clique

A subgraph where each node is connected 

to every other node in the subgraph.

Closeness Centrality

A speciic computational measure of the 

importance of a node in a graph based 

on shortness of path distance to all other 

nodes. In this form of centrality, a node 

is most important if it can reach all other 

nodes in the shortest number of steps.

Clustering

Grouping by relative relatedness. Graph 

clustering is a speciic class of cluster-

ing that evaluates links when computing 

relatedness.

Community

A cluster of closely connected nodes in  

a graph.
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Decision Tree

A tree in which each node represents a 

decision, starting with the root node, and 

branches relect criteria for following one 

path or another.

Degree

When used in the singular form, degree 

commonly refers to node degree, the count 

of link connections for a node. In plural 

form the term refers to path degree, mean-

ing the number of steps out from a node to 

other nodes when following links.

Degree Centrality

A simple measure of the importance of a 

node in a graph based on the number of 

links it has.

Depth-First Search (DFS)

An algorithm that starts with a node and 

traverses each branch in turn as far as pos-

sible before backtracking and descending 

down to the next branch, until the target 

node or nodes are reached.

Directed Acyclic Graph (DAG)

A directed graph that contains no cycles 

(paths that link back to a node already on 

the path).

Directed Graph

A graph where links have direction (in 

other words, a start and end that would 

mean something diferent if reversed).

Disconnected Graph

A graph with two or more subgraphs that 

are not connected.

Edge

A relationship between nodes, typically 

represented with a line. An edge is more 

commonly known as a link.

Ego Network

he subgraph around a node consisting 

of its linked nodes and any links between 

them. An ego network can also be called 

a neighborhood. Ego networks may be 

deined by degrees. 

Eigenvector Centrality

A speciic computational measure of the 

importance of a node in a graph based on 

transitive inluence. In this form of cen-

trality, a node is most important if other 

important nodes link to it.

Force-Directed Layout

A class of graph layout that uses repelling 

forces between nodes and attracting forces 

along links to spatially cluster related 

nodes.

Incident Links

A link is incident to a node if it connects 

to it.

Isolated Node

A node with no links.
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Leaf Node

A node with incoming links, but no outgo-

ing links.

Link

A relationship between nodes, typically 

represented as a line. In graph theory, a 

link is more often referred to as an edge.

Loop

A link in which both the start and end are 

connected to the same node. Also known 

as self-loop.

Modularity

A measure of community strength, 

or, more often, a reference to the 

 community-detection algorithm based  

on computation of that measure.

Network

Another name for a graph, where each 

node typically represents a physical entity, 

rather than something more abstract or 

conceptual.

Page Rank

A variant of Eigenvector Centrality that 

formed the foundation of Google’s irst 

search algorithm. Page Rank was used to 

weigh the relevance of a web page by the 

aggregate weight of other relevant web 

pages that linked to it. Despite the impli-

cation of the name, the algorithm can be 

used for any type of graph data to estimate 

the importance of nodes.

Path

A series of links traversed to reach one 

node from another.

Planar Graph

A graph that can be drawn without links 

crossing.

Neighborhood

he subgraph around a node consisting 

of its linked nodes and any links between 

them. In social networks, an ego network 

is a neighborhood. Neighborhoods may be 

deined by degrees.

Node

An entity (or “thing”) linked to other enti-

ties (or things). In graph theory, a node is 

typically referred to as a vertex.

Sankey Diagram

A visualization technique where nodes are 

arranged in columns, and links of varying 

size low in one side and out the other.

Self-Loop

A link in which both the start and end are 

connected to the same node.

Shortest Path

he minimal path or distance between two 

nodes.

Spanning Tree

A subgraph that includes all connected 

nodes but only the minimal set of links 

needed to connect them, thus forming  

a tree. 
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Spatial Network

A graph in which node locations relect 

intrinsic spatial attributes of the elements 

represented, rather than relationships to 

other nodes. 

Subgraph

A subset of nodes and links in a graph.

Tree

A graph that contains no circular paths 

and has only one path between any two 

nodes. A hierarchy is an example of a tree.

Undirected Graph

A graph in which link direction is not 

meaningful (such as links that represent 

mutual relationships like friendships). 

Vertex

An entity (or “thing”) linked to other enti-

ties (or things). A vertex is more commonly 

known as a node.

Weight

Weight refers abstractly to the strength 

or importance of a link or node relative to 

other links or nodes. Link weight typically 

maps directly from an underlying property 

of the relationship it represents, whereas 

node weight often maps from a derived 

measure like centrality. In both cases, 

weight is often normalized and is most 

often relected visually by size.
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A
actors, 286–290

acyclic graphs, 497

DAG (Directed Acyclic Graph), 107–108

Adjacency Matrix, 115–117

Excel, 190–193

adjacency matrix, 497

Adjacency Matrix layout, 98

adjacent nodes, 497

ainity analysis, 423

aggregation, 414–415

analysis, description, 7

animation, organic, 450–454

annotation, 159, 181–183

APIs (application programming interfaces), 6

arrows, 128

asset mix, optimization, 18–20

attraction/repulsion ratio in force-directed 

layouts, 103–104

attributes. See also visual attributes

average degree, 91

average path length, 90

B
beer and diapers story, 160

behavioral factor tree, 384–386

betweenness centrality, 93, 96

betweennesscentrality, 497

BFS (breadth-irst search), 497

Big Data

databases

creating, 424–427

populating, 424–427

product marketing, 421–424

low data sets, 10–11

overview, 419–421

bigraphs, 290–292

bipartite graphs, 64, 290–292, 497

bitmap images, 184

borders

color, 128

nodes, 150–151

broadcast communicators, 147

bundled edges, 128, 148

C
centrality, 93, 497

betweenness, 93, 96

betweenness centrality, 497

closeness, 93, 96

closeness centrality, 497

degree, 93, 96

degree centrality, 498

Eigenvector, 93

eigenvector centrality, 498

Katz, 93

PageRank, 93

charts

D3 chord chart, 42–43

organizational charts, 34–35, 293–297

pie charts, hierarchical, 118

sunburst, 35–36, 118

Chord Diagram, 114, 497

construction, 369–370

data modeling, 372–376

data preparation, 370–371

data visualization, 376–382

page structure, 371–372
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processing data, 372–376

low and, 367–369

interactions, 382–384

Chord Diagram layout, 98

clean step, 55, 85

invalid data, 71

links

duplicate, 70

to nonexistent nodes, 70

nodes

duplicates, 70

isolated, 70

name inconsistency, 69–70

self-loops, 70

units, 71

cleaning data, Python, 225–226

clique, 342, 497

social media, 343–344

closeness centrality, 93, 96, 497

clustering, 318–319, 497

color and, 326–328

communities, 330–333

communities, 329

color and, 330–333

layouts, 323–325

transaction graphs, 461–468

codes, hierarchy codes, 66

collect step, 55, 85

data sets, 58–59

data sources, 57–58

links, records, 59–60

transaction records, 60

color

borders, 128

categories, 135–136

Chord diagrams, 368–369

clusters and, 326–328

communities, 330–333

color blindness, 136–137

design, color palettes, 492–496

edges, 127, 144

labels, 141

magnitude, 132–134

nodes, 127

positive/negative values, 134–135

quantitative color scale, 132

sequential color scale, 132

communities, 22–25, 36, 315–317, 497

cliques, 342

social media, 343–344

clustering, 318–319

color and, 330–333

overlapping clusters, 329

compute time, 329

convex hulls, 345–348

criteria, 329

deinition, 317–318

detection, 328–330

dynamic graphs, 458–460

low and, 364–367

link weight, 329

linking, 37–38

nodes, similarity, 329

sentiment classiication, 338–341

social media

Gephi and, 320–323

NodeXL and, 320–323

social networks, case study, 319–320

topic analysis, 334–337

visualization and, 446–447

components, 89–90

computing graphs, 73–75

connect step, 55, 71–72, 85

graph computing, 73–75

convex hulls, 345–348

coordinates, parallel, 118–121

correlations, 28, 29–30

CRM (customer relationship  

management), 282
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CSV (Comma Separated Value) iles, 76–77

GDF iles and, 394

Python, 228–229

CSV-to-JSON converter, 256

curved edges, 145–146

customer life cycle, 312

Cytoscape, 188

force-directed layouts, 103

importing data, 210–212

layouts, 209

networks, 208

plug-ins, 218

visual attributes, 212–217

visual mapping, 128

D
D3, 242–243

chord chart, 42–43

graphs and, 250–256

diferent data, 256

explanations, 263–264

interaction, 263

layout, 256–258

visual attributes, 258–262

library, 252

springy layout, 264–265

code, 268–272

labels, 267–268

nodes, 266

SVG and, 242–243

data and, 246–250

DAG (Directed Acyclic Graph), 107–108, 

498

dashes, 146

data, unstructured, 61–62

data access

cut and paste, 68

downloading, 67

programming, 67

report data, 67

tools, 67

data cleaning, Python, 225–226

data iles

exporting, 184

formats, 75–76

CSV iles, 76–77

GDF iles, 77–80

Python, opening, 226

data sets, 58–59

data sources, 57–58

bipartite graphs, 64

data sets, 58–59

data types, multiple, 64

hierarchies

codes, 66

lattened, 65–66

as indentations, 66–67

links within nodes, 65

link records, 59–60

matrices, 63

sequence data, 61

statistical correlation, 63–64

transaction records, 60

unstructured data, 61–62

data stories, sequencing, 178–179

data types, multiple, 64

databases

Big Data, product marketing, 421–424

graph databases, 241

creating, 424–427

Gremlin, 428–432

neighborhood extraction, 432–435

populating, 424–427

query languages, 427–428

Titan, 424

topic word clouds, 441–443

decision tree, 32–34, 306–309, 498

lows, 41

degree centrality, 93, 96, 498

degrees, 3, 498

average, 91
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graph statistics, 90, 91–93

maximum, 91–92

deletion, 159, 174–175

dense graphs, 88–89

density, 88–89

design

color, palettes, 492–496

links, shape, 486–491

nodes, 474–475

labels, 485–486

shape, 475–484

size, 484–485

overview, 473–474

DFS (depth-irst search), 498

diameter of graph, 90

directed graphs, 58, 498

directed links, e-mail transformation, 236

disconnected graphs, 498

distributions, data story and, 179

dot notation, 252

downloading

iles, 67

Python, 224

drag, 159

drawing

D3, 242–243

SVG, 242–243

hierarchies, 300–306

SVG, 242–243

dynamic graphs

communities, 458–460

fading, 457–458

full time span layout, 454–455

ghosting, 455–456

organic animation, 450–454

overview, 449–450

transaction graphs

clusters, 461–468

spatial transactions, 469–471

dynamic queries, 451

E
edges, 3, 56, 498

arrows, 144

bundled, 128, 148–149

color, 127, 144

curved, 145–146

dashes, 146

directed graphs, 58

size statistics and, 88

types, 127

undirected graphs, 58

weight, 127, 143

ilters and, 167

ego networks, 174–175, 498

Eigenvector centrality, 93, 498

e-mail

address book, 282

content analysis, 282

relationships, 282–283

spatial separation, 283–285

transformation to graph, 233–234

directed links, 236

distribution list, 234–235

node creation, 235–236

results, 237–241

undirected links, 237

enhanced graph data, exporting, 184

Envisioning Information (Tufte), 5

Euler, Leonhard, 7–8

Excel, 187, 188

links, summarizing, 188–189

nodes, extracting, 190

NodeXL, 193–194

menu, 196

ribbon toolbar, 196

social network features, 196–201

worksheets, 194–195

time series correlations, 190

VBA (Visual Basic for Applications), 192

visualization, Adjacency Matrix, 190–193
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explanation sequence, 159

exploratory data analysis, 166

exporting, 159

data iles, 184

image iles, 184

report data, 67

F
factor trees, 385

fading, 457–458

ile downloads, 67

iltering, 158, 166–168

Gephi, 204

lattened hierarchies, 65–66

low, 40–41

behavioral factor tree, 384–386

Chord diagrams, 367–384

community layouts, 364–367

data sets, 10–11

decision tree, 41

low graphs, 42–43

Sankey diagram, 41–42, 352–355

nodes, 362–364

fonts, 128

labels, 138–139

for loop (Python), 229

Force Atlas layout algorithm, 101–102

Force-Directed layouts, 97, 99–101, 103, 264, 

498

Force, 103

Organic, 103

Prefuse, 103

settings, 104–105

attraction/repulsion ratio, 103–104

edge weight, 104

gravity, 104

SOM, 103

Spring, 103

Fruchterman Reingold layout algorithm, 

101–102

full time span layout, 454–455

G
GDF iles, 77–80, 394

genealogy, 20–22

charts, 297

geographic layouts, 112–113

geospatial accuracy, spatial networks and, 

390–393

Gephi, 25, 188, 201–202

data issues, 205–206

iltering, 204

interface issues, 206–207

layouts, 202–203

nodes, 202–203, 205

identiication, 207

overview mode, 204

plug-ins, 208

preview mode, 204

social media and, 320–323

workspaces, 169

ghosting, 455–456

Gladwell, Malcom, he Tipping Point, 36

GML (Graph Modeling Language), 81

Google Analytics, Sankey diagrams, 353–354

gradients, 128

graph clustering. See clustering

graph databases, 241

creating, 424–427

neighborhoods, 435–440

extraction, 432–435

populating, 424–427

query languages, 427–428

Gremlin, 428–432

neighborhood extraction, 432–435

Titan, 424

topic word clouds, 441–443

graph statistics

centrality, 93–94

components, 89–90
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degrees, 90, 91–93

density, 88–89

Gephi, 203–204

layouts

Adjacency Matrix, 98, 115–117

Chord Diagram, 98, 114

geographic, 112–113

hierarchical, 107–112

Hierarchical Pie, 98

hierarchical pie charts, 118

Maps, 98

node only, 106–107

node-and-link, 97

Parallel Coordinates, 98

parallel coordinates, 118–121

time oriented, 107–108

Treemap, 98

treemaps, 117–118

maps, 112–113

paths, 90–91

size, 88

viral marketing and, 95–96

graph theory, 3

GraphML, 81–82

graphs. See also speciic graph types

acyclic, 497

bipartite, 64, 497

in business, 7–9

anomalies, 9–11

asset mix optimization, 18–20

communities, 22–25

organizational charts, 21

risk patterns, 15–17

social hierarchies, 20–22

computing, 73–75

data ile formats, 75–76

CSV iles, 76–77

GDF iles, 77–80

deinition, 3

degrees, 3

directed, 58, 498

disconnected, 498

edges, 3

links, 3

nodes, 3

planar, 499

spatial, 9

subgraphs, 500

undirected, 58, 500

Gremlin, 428–432

grouping, 159

small worlds, 397–398

H
hashmaps, nodes, Python, 229–232

hierarchical layout

DAG (directed acyclic graph), 107–108

pie charts, 118, 303

radial hierarchy, 111–112

top-down, 109–110

Hierarchical Pie layout, 98

hierarchies

codes, 66

decision trees, 306–309

dense graphs, 89

drawing, 300–306

lattened, 65–66

genealogy charts, 297

as indentations, 66–67

links within nodes, 65

node-and-link layout, 304–305

organizational charts, 34–35, 293–297

small word networks, 299

social, 20–22

sunburst charts, 35–36

treemaps, 300–303

trees, 32–34, 297–300

website trees, 309–314

HTML, D3 and graphs, 250–256
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I
identify, 158, 164–165

images, 128

bitmap, 184

exporting, 184

nodes, 149–150

vector, 184

importing, Cytoscape, 210–212

incident links, 498

indentations, hierarchies as, 66–67

interactions

annotate, 159

Chord diagram, 382–284

D3 and, 263

delete, 159

deletion, 174–175

drag, 159

explanation sequence, 159

export, 159

iltering, 158, 166–168

group, 159

grouping, 176

identify, 158, 164–165

isolate, 159

isolation, 168–171

iterative analysis, 176

legend, 159

modify, 159

move, 159

neighbors, 159, 171–172

pan, 158, 162–164

paths, 159, 173–174

rotate, 162–164

scale, 162–164

zoom, 158, 162–164

interactive layouts, 105

interfaces, Gephi, 206–207

interference, visual attributes, 152–153

isolated node, 70, 89–90, 498

isolation, 159, 168–171

iterative analysis, 176

data story, 179

J
JavaScript

D3 and, 242–243

SVG, 243–250

method chaining, 245

JSON (JavaScript Object Notation), 82–84

CSV-to-JSON converter, 256

Sankey diagrams, 356

K
Kapler, homas, 5

Katz centrality, 93

Königsberg problem (Euler), 7–8

L
Label Adjust layouts, 105

labels, 137–138

attributes, 126

color, 141

D3 springy layout, 267–268

fonts, 138–139

legibility, 140–142

link color, 140

links, 491

node color, 140

node position, 140

ofset, 128

position, 140–141

reinforcing, 142

short, 139–140

size, 142

width, reduction, 138–140

landmarks, spatial separation, 283

layouts

Adjacency Matrix, 98, 115–117

Chord Diagram, 98, 114

clustering, 323–325
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Cytoscape, 209

D3 and graphs, 256–258

springy layout, 264–265

D3 springy layout, 266

Force Atlas algorithm, 101–102

example, 102

Fruchterman Reingold algorithm, 101

example, 102

full time span, 454–455

geographic, 112–113

Gephi, 202–203

hierarchical

DAG, 107–108

pie charts, 118

radial hierarchy, 111–112

top-down, 109–110

Hierarchical Pie, 98

Maps, 98

treemaps, 117–118

node only, 106–107

node-and-link, 97, 122

Force-Directed, 99–106

NodeXL and, 199–200

Parallel Coordinates, 98

parallel coordinates, 118–121

redoing, 168–171

time oriented, 107–108

Treemap, 98

treemaps, 117–118

Yifan Hu algorithm, 102

example, 102

leaf node, 91, 303, 499

legends, 159, 180

links, 3, 56, 499

actors, 286–290

attributes, 126

communities, 37–38, 329

data sets, 58–59

node extraction, 227–229

directed, e-mail transformation, 236

duplicate, 70

Excel, summarizing, 188–189

link rose technique, 46

spatial networks and, 398–408

within nodes, 65

nodes and, 290–292

to nonexistent nodes, 70

records, 59–60

relationships and, 276–277

insurance fraud examples, 277–279

security and, 279–281

shape, 486–487

direction, 487

labels, 491

line styles, 487–489

line width, 489–490

ofsets, 487

relational nodes, 490–491

social hierarchies, 20

undirected, e-mail transformation, 237

London Underground map, 390–393

loops, 499

self-loop, 70

M
Map layout, 98

mapping, properties mapper, 128

maps, 112–113

treemaps, 117–118

market basket analysis, 18–20, 60

dense graphs, 89

interactions, 160–161

matrices, 63

Adjacency Matrix, 115–117

adjacency matrix, 497

scatterplot, 28–29

matrix layouts, 84

maximal clique, 342

maximum degree, 91–92

method chaining, 245
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Microsoft Windows, 6

Minard, Joseph, 9–10

mix-and-match layouts, 105

modify, 159

modularity, 499

communities and, 317

move, 159

movies, 286–290

N
names, nodes, inconsistency, 69–70

NASDAQ MarketSite, 6

negative color values, 134–135

neighborhoods, 499

analysis, 435–440

extracting, 432–435

neighbors, 159, 171–172

networks, 499

activity plotting, 444–445

Cytoscape, 208

ego networks, 498

managing, 11–15

small world networks, 299

spatial networks, 45–48, 500

node only layout, 106–107

node-and-link layouts, 97, 122

Force-Directed, 99–101

attraction/repulsion ratio, 103–104

edge weight, 104

Force, 103

Force Atlas algorithm, 101–102

Fruchterman Reingold algorithm, 

101, 102

gravity, 104

interactive layout, 105

Label Adjust layout, 105

mix-and-match layouts, 105

Organic, 103

Prefuse, 103

settings, 104–105

SOM, 103

Spring, 103

Yifan Hu algorithm, 102

hierarchies, 304–305

Node-Only layouts, 97

nodes, 3, 499

adjacent, 497

attributes, 126

borders, 150–151

color, 127

categories, 135–136

color blindness, 136–137

magnitude, 132–134

positive/negative values, 134–135

community, 329

D3 springy layout, 266

data sets, 58–59

degrees, 91

duplicates, 70

edges, 56

Excel, extracting, 190

extracting, 59–60

Gephi, 202–203, 205

identiication, 207

images, 149–150

isolated, 70, 89–90

labels, 485–486

leaf node, 91, 499

links, 56

within, 65

from links, 290–292

names, inconsistency, 69–70

nonexistent, links to, 70

overlap, 131

Python

e-mail transformation, 235–236

extracting from link data set, 227–229

hashmap, 229–232

relational, link design, 490–491

self-loop, 70



Index510

shape, 475

icon libraries, 482–485

icons, 476–481

symbols, 476

size, 127, 129, 484–485

accuracy, 130

area, 130

minimum, 131

relative, 131

size statistics and, 88

social hierarchies, 20

NodeXL, 67, 187, 193–194

images, 198

layouts, 199–200

menu, 196

ribbon toolbar, 193, 196

social media and, 320–323

social networks

analytics, 197

data acquisition, 196–197

tooltips, 198

template spreadsheet, 193

visualization window, 193

worklow, 198–199

worksheets

column ilters, 195

formulas, 194–195

O
organic animation, 450–454

Organic force-directed layout, 103

organizational charts, 21, 34–35, 293–297

OrgVue, 34–35

orthogonal hierarchies, 109–110

P
page rank, 499

PageRank centrality, 93

pan, 158, 162–164

parallel coordinates, 118–121

Parallel Coordinates layout, 98

partition and ranking, 128

path analysis, 173–174

paths, 159, 173–174, 499

average length, 90

graph diameter, 90

graph statistics, 90–91

shortest path, 499

patterns, risk patterns, identifying, 15–17

pie charts, hierarchical, 118, 303

planar graphs, 499

plug-ins

Cytoscape, 218

Gephi, 208

point-and-click tools, 187–188

Cytoscape, 208–218

Gephi, 201–208

yEd, 218–221

point-to-point communicators, 147

populating databases, 424–427

positive color values, 134–135

Prefuse force-directed layout, 103

presentations, data story and, 179

Programmer's Notepad, 224

properties mapper, 128

Python

CSV library, 228–229

data cleaning, 225–226

data iles, opening, 226

downloading, 224

e-mail data transformation, 233–234

directed links, 236

distribution list, 234–235

node creation, 235–236

results, 237–241

undirected links, 237

graph databases, 241

for loop, 229

nodes

extracting from link data set, 227–229

hashmap, 229–232
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regular expressions, 225

Unicode, 225

unique keys, 229

Q
quantitative color scale, 132

queries, dynamic queries, 451

query languages, databases, 427–428

Gremlin, 428–432

neighborhood extraction, 432–435

R
radial hierarchy, 111–112

Radial layouts, 97

RDF (Resource Description Format), 286

records

link records, 59–60

transaction records, 60

redundant encoding, 142

regular expressions, Python, 225

relational nodes, link design, 490–491

relationships, 28–32

actors, 286–290

e-mail, 282–283

spatial separation, 283–285

links and, 276–277

insurance fraud examples, 277–279

security and, 279–281

reports, data export, 67

ribbon toolbar (NodeXL), 193, 196

risk patterns, identifying, 15–17

rotate, 162–164

routes, 408–410

aggregation, 414–415

segments, 410–414

S
Sankey diagram, 41–42, 352–355, 499

construction, 356

data modeling, 358

page structure, 357

processing data, 358

data visualization, 358–362

scale, 162–164

scatterplot matrix, 28–29

schematic layout, spatial networks and, 

390–397

schematics, spatial networks, 45–46

security, 279–281

self-loop, 70, 499

sentiment classiication, communities, 

338–341

sequence data, 61

sequencing of data story, 178–179

sequential color scale, 132

SGI (Silicon Graphics International), 5

shadows, 128

shapes, 128, 148–149

short labels, 139–140

shortest path, 499

six degrees of separation, 3

size statistics, 88

small world networks, 299

small worlds, 397–398

social hierarchies, 20–22

social media

cliques, 343–344

Gephi and, 320–323

NodeXL and, 320–323

social networks, case study, 319–320

SOM (Self Organizing Map), 103

SOM force-directed layout, 103

sources, data, 57–58

spanning tree, 297, 499

SPARQL (SPARQL Protocol and RDF 

Query Language), 228, 286, 427–428

sparse graphs, 89

spatial graphs, 9
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spatial networks, 45–48, 500

link roses, 398–400

diagram building, 401–408

relationships, 392

routes, 408–410

aggregation, 414–415

segments, 410–414

schematic layout, 390–397

small worlds, 397–398

spatial transactions, 469–471

Spring force-directed layout, 103

spring layout. See Force-Directed layout

springy layout (D3), 264–265

code, 268–272

labels, 267–268

nodes, click-and-drag, 266

statistical correlation, 63–64

statistics, 122

subgraphs, 500

exporting, 184

Sublime Text, 224

sunburst chart, 35–36, 118, 303

supply chain visualization, 8–9

supply chains, management, 11–15

SVG, 243–244

data and, 246–250

drawing and, 242–243

T
template spreadsheet (NodeXL), 193

time oriented layouts, 107–108

time series correlations, Excel, 4

Time-Oriented layouts, 97

timeseries, correlations, 64

he Tipping Point (Gladwell), 36

Titan databases, 424

top-down hierarchies, 109–110

Top-Down layouts, 97

topics

communities, 334–337

word clouds, 441–443

transaction graphs

clusters, 461–468

spatial transactions, 469–471

transaction records, 60

transparency, 128

Treemap layout, 98

treemaps, 117–118, 300–303

trees, 32–34, 500

behavioral factor tree, 384–386

decision trees, 32–34, 306–309

factor trees, 385

organizational charts, 34–35

spanning trees, 297

undirected, 297

website trees, 309–314

Tufte, Edward, Envisioning Information, 5

U
undirected graphs, 58, 500

undirected links, e-mail transformation, 237

undirected trees, 297

Unicode, Python, 225

unique keys, 229

unstructured data, 61–62

V
VBA (Visual Basic for Applications), Excel, 

192

vector images, 184

vertex, 500

viral marketing, graph statistics and, 95–96
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