
H
L7

 B

iz
T
a

lk

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword ...xiii

About the Authors ... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Chapter 1: BizTalk and HL7 ■ ..1

Chapter 2: HL7 Message Encoding ■ ..9

Chapter 3: Understanding the HL7 Accelerator ■ ...27

Chapter 4: The HL7 Accelerator in Action ■ ..61

Chapter 5: HL7 Advanced Topics ■ ...91

Chapter 6: Future Directions ■ ..139

Chapter 7: Best Practices for HL7 with BizTalk ■ ...149

Appendix 1: HL7 Definitions ■ ..165

Appendix 2: HL7 Basic Message Construction Rules ■ ..167

Appendix 3: HL7 Version 2.x Data Types ■ ...169

Appendix 4: HL7 Version 2.6 ■ ..175

Index ...183

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

BizTalk and HL7

Although most of this book is primarily about the BizTalk Accelerator, you first need to understand what the HL7 is
and what the HL7 standards are all about. This chapter will serve as an introduction to these standards and will also
provide you with a foundation that will make it easier for you to understand the topics in all the chapters.

Before you take a look at the HL7 standards, you should know a little bit about HL7 (Figure 1-1). Since HL7 can
do a better job describing itself then we can, the following sections contain excerpts from the HL7 web site
(www.hl7.org/about/index.cfm?ref=nav).

What Is HL7?
Health Level Seven International (HL7) is a not-for-profit, ANSI-accredited, standards-developing organization.
HL7 is dedicated to providing a comprehensive framework and related standards for the exchange, integration,
sharing, and retrieval of electronic health information. HL7 supports clinical practice and the management,
delivery, and evaluation of health services.

What Does HL7 Mean?

“Level Seven” refers to the seventh level of the International Organization for Standardization (ISO)
seven-layer communications model for Open Systems Interconnection (OSI) - the application level.

From www.hl7.org/about/index.cfm?ref=nav

Figure 1-1. HL7 International logo

www.allitebooks.com

http://www.hl7.org/about/index.cfm?ref=nav
http://www.hl7.org/about/index.cfm?ref=nav
http://www.allitebooks.org

CHAPTER 1 ■ BIZTALK AND HL7

2

What Is the Open Systems Seven-Layer Communications Model?

The HL7 organization describes this model as follows:

The application level interfaces directly to and performs common application services for the
application processes. Although other protocols have largely superseded it, the OSI model remains
valuable as a place to begin the study of network architecture.

From www.hl7.org/about/index.cfm?mode=2

Introduction to HL7 Standards
HL7 and its members have worked over the years to provide world-wide healthcare with a framework that includes
related standards. The standards are for the exchange, integration, sharing, and retrieval of electronic health
information.

The HL7 standards define how this information is packaged and communicated from one •฀
party to another.

The HL7 standards also set the language, structure, and data types that are required to provide •฀
a seamless integration between systems.

HL7 standards provide support for the following:•฀

Clinical practice of health services•฀

Management of health services•฀

Delivery of health services•฀

Evaluation of health services•฀

The HL7 standards are recognized as the most commonly used in the world.•฀

Seven Referenced Categories
HL7 standards are grouped into seven reference categories or sections. The HL7 organization describes these
as follows:

•฀ Section 1: Primary Standards: The primary standards are the most popular standards integral
for system integration and interoperability.

•฀ Section 2: Foundational Standards: The foundational standards define the fundamental
tools and building blocks used to build the standards, and the technology infrastructure that
implementers of HL7 standards must manage.

•฀ Section 3: Clinical and Administrative Domains: Messaging and document standards for
clinical specialties and groups are found in this section.

•฀ Section 4: EHR Profiles: These standards provide functional models and profiles that enable
the constructs for management of electronic health records.

www.allitebooks.com

http://www.hl7.org/about/index.cfm?mode=2
http://www.allitebooks.org

CHAPTER 1 ■ BIZTALK AND HL7

3

•฀ Section 5: Implementation Guides: This section is for implementation guides and/or support
documents created for use in conjunction with an existing standard.

•฀ Section 6: Rules and References: These are technical specifications, programming structures,
and guidelines for software and standards development.

•฀ Section 7: Education & Awareness: You can find HL7’s Draft Standards for Trial Use (DSTUs)
and current projects here, as well as helpful resources and tools to further supplement
understanding and adoption of HL7 standards.

Source: www.hl7.org/implement/standards/index.cfm?ref=nav

We could describe these categories in more detail, but that is not what this book is all about. Besides, the HL7
organization does a much better job at it than we ever could. If you want to read more about these standards, you can
access the information directly at www.hl7.org/index.cfm?ref=nav.

The HL7 Versions
Although there are several versions published by the HL7 organization, we will be concentrating on HL7 Version 2
Product Suite of the HL7 Primary Standards. The HL7 Version 2 Product Suite is part of Section 1 of the HL7 standards.
The reason for the name primary standards is due to its popularity, since it is the most frequently used
standard today.

Note ■ Throughout this book I will be referring to HL7 Version 2 as HL7 Version 2.x. The “x” stands for the release

version, such as Version 2.5. In addition, there are subreleases, such as Version 2.5.1. At the time of writing this book,

Version 2.6 is the latest version supported by the BizTalk Server 2013 R2.

Many in the global healthcare industry say that “HL7’s Version 2.x (V2) messaging standard is the workhorse
of electronic data exchange in the clinical domain,” as stated in the HL7 – Standards – Master Grid documentation.
In addition, according to the HL7 – Standards – Master Grid documentation, several healthcare publications have
described HL7 Version 2.x as the “most widely implemented standard for healthcare in the world.”

It is designed to support the following:

A central patient care system•฀

A distributed environment where data resides in departmental systems•฀

A distributed environment where data resides in multiple repositories•฀

Note ■ The HL7 Version 2.X product suite targets both healthcare IT vendors and providers.

www.allitebooks.com

http://www.hl7.org/implement/standards/index.cfm?ref=nav
http://www.hl7.org/index.cfm?ref=nav
http://www.allitebooks.org

CHAPTER 1 ■ BIZTALK AND HL7

4

Key Benefits of Version 2.x
The key benefits provided by Version 2.x are the following:

Supports the majority of common interfaces used in the global healthcare industry.•฀

Provides a framework for negotiating what is not in the standard.•฀

Greatly reduces implementation costs.•฀

HL7 Version 2.x Message Structure
In the last two sections you were introduced to the HL7 organization and its standards and versions. Moving forward,
let’s take a high-level look at the HL7 Version 2.x message structure.

To help you understand the message structure, you need to take a closer look at the components that make up
the message structure:

Delimiters•฀

Segments•฀

Fields•฀

Data Types•฀

Escape Sequences•฀

Note ■ We refer to the parts of the message structure as components.

One of these key components is the segment. Let’s take a brief look at the segment.

Segment
A segment is a logical grouping of data fields that represents a collection of related and unique information. A HL7
Version 2.x message can contain multiple segments. Segments can also contain child segments, commonly referred to
as subsegments. These too can contain child segments.

Let’s take a look at a common message structure. Figure 1-2 shows the message structure for the
Admit/Visit Notification message type. This is a very commonly used message. You will be learning more about this
and other message types in Chapter 2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIZTALK AND HL7

5

At the top of the message structure is a MSH segment. This is the message header segment and is required in
all HL7 messages. Your knowledge of what is contained within this segment will make it easier to understand the
technical terminology used throughout this book. Going forward, we will refer to this segment using its three letter
identifier, MSH.

Contained within each segment are predefined data types. Let’s take a look at the data types for the
MSH segment.

The MSH Segment Data Fields

There are 21 data fields in the MSH segment. These are identified by a sequence number. Table 1-1 will make it easier
for you to understand what each sequence number represents. The values in the R/O/C column are R = Required,
O = Optional, and C = Conditional.

Figure 1-2. Admit/Visit Notification message structure

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIZTALK AND HL7

6

As you can see, the descriptions are fairly easy to understand. But there is more to the data fields.
The HL7 Version 2.x standard contains many different data types. There are both simple and complex types. You will
learn more about the data types in Chapter 2.

Tip ■ Chapter 5 contains a scenario mapping Version 2.x to the HL7 Version 3 CDA. This scenario describes the base

data types used in all segments. In addition, Appendix III provides more information on the data types.

Table 1-1. MSH Segment Data Fields (The source of the information contained within the table comes from the HL7
Version 2.x Standards Implementation Guide.)

Seq Description Length R/O/C

1 Field Separator 1 R

2 Encoding Characters 4 R

3 Sending Application 227 O

4 Sending Facility 227 O

5 Receiving Application 227 O

6 Receiving Facility 227 O

7 Date/Time of Message 26 R

8 Security 40 O

9 Message Type 15 R

10 Message Control ID 20 R

11 Processing ID 3 R

12 Version ID 60 R

13 Sequence Number 15 O

14 Continuation Pointer 180 O

15 Accept Acknowledgment Type 2 O

16 Application Acknowledgment Type 2 O

17 Country Code 3 O

18 Character Set 16 O

19 Principal Language of Message 250 O

20 Alternate Character Set Handling Scheme 20 O

21 Message Profile Identifier 427 O

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIZTALK AND HL7

7

Moving Forward
Now that you have learned a little bit about the HL7 Version 2.x message structure, let’s see what you will learn about
in the rest of the chapters.

As previously mentioned, in Chapter 2, you will learn all there is to know about HL7 Version 2.x message
encoding. You will also learn about the rest of the components that make up the HL7 Version 2.x message structure.

Tip ■ I recommend that you read Chapters 2 through 4 before reading Chapter 5. The content contained within these

chapters will make it easier to understand the advanced topics contained within Chapter 5.

In Chapter 3, you will learn all about the accelerator’s capabilities.
In Chapter 4, you will view a few scenarios that will show you how to use the accelerator.
As previously mentioned, in Chapter 5, you will be presented with three scenarios. One of these scenarios was

taken from a recently implemented solution.
In Chapter 6, you will get a preview of the new HL7 standard that the HL7 organization is currently working on.
Chapter 7 will provide you with best practices.

Summary
This chapter provided you with an introduction to HL7. You were also introduced to the HL7 Version 2.x standard. You
had a quick look at the HL7 Version 2.x message structure and learned a little about the MSH segment. And finally,
you had a glimpse of what the rest of the chapters are all about.

www.allitebooks.com

http://www.allitebooks.org

9

CHAPTER 2

HL7 Message Encoding

In the first chapter you were introduced to the HL7 standards. You were also introduced to the following:

HL7 Version 2.x Message Structure•฀

Segments•฀

The MSH Segment•฀

In this chapter, you will be concentrating on the message encoding for HL7 Version 2.x. Let’s start off by looking
at the HL7 V2.x message and the encoding types.

Tip ■ If you are already experienced with HL7 and are knowledgeable about HL7 message encoding, you can skip

ahead to the next chapter.

The HL7 Message
An HL7 message is used to transfer patient information from one system to another healthcare system. There are
various types of HL7 messages defined to carry different types of patient information; for example, the ADT message
type is used for patient’s patient administration information. The HL7 message structure defined by HL7 organization
is also referred to as HL7 message encoding, which we will talk about in this chapter.

Message Encoding Types
Message encoding types describe how an HL7 message is formatted to carry information from one system to another.
There are two different types of encoding for the HL7 2.x version:

•฀ Delimiter-based Encoding

•฀ XML Encoding

Delimiter-based Encoding
Delimiter-based encoding, as the name suggests, defines data fields of variable lengths and separates them using a
delimiter. In this encoding, five different delimiters are used to lay out the message structure; for example, a carriage
return delimiter is used to group message into different segments, a pipe (|) is used to group each segment into fields,
and so on. Listing 2-1 shows an HL7 message with delimiter-based encoding.

CHAPTER 2 ■ HL7 MESSAGE ENCODING

10

Listing 2-1. HL7 Message with Delimiter-based Encoding

MSH|^~\&|ADM|HUN|||201302260415||ADT^A01|125|P|2.2|||AL|NE
EVN||201302260250|||REG.RN^Name^Name^^^^|201302260250
PID|1||M123123123^^^^MR^HUN||Name^Name^^^^^L||19891203|F||W|126 LK^^HU
NK1|1|B^K^^^^|MO|2 Street^^City^State^Zip^Country^^^DES|Number CELL
PV1|1|P|F.ECC^^||||||YTU.FR^Y^F^R^^^MD|EDS||||||||ER||MCD||||||||||||||||
ZBC|1
ZCS|N|N^^UNKNOWN^UN^00000|N|||01371

You will learn more about the message structure and its details in the next sections.

Message Structure

The HL7 delimiter-based encoded message structure contains all the information within different components. There
are five components that make up the message structure.

Delimiters•฀

Segments•฀

Fields•฀

Data Types•฀

Escape Sequences•฀

Delimiters

Delimiters are the key components of the HL7 message. Delimiters allow you to identify these key components within
the HL7 message. Table 2-1 provides descriptions of the default delimiters.

Table 2-1. The Default Delimiters of an HL7 2.X Message

Delimiter Description

0D 0A hex (\r\n) Group message into segments

| Fields: Group data into different fields within segments

^ Subfields: Group field data into subfields

& Sub-subfields: Group subfields into sub-subfields

~ Indicates if a field is a repeatable field

These delimiters are found at the start of MSH segment, as shown in Listing 2-2.

Listing 2-2. Delimters in the MSH Segement

MSH|^~\&|ADM|HUN|||201302260415||ADT^A01|125|P|2.2|||AL|NE

CHAPTER 2 ■ HL7 MESSAGE ENCODING

11

These delimiters can be customized. For example, if you want # to be a field delimiter, then the code in Listing 2-2
will look like the code in Listing 2-3.

Listing 2-3. Customized Field Delimter

MSH#^~\&#ADM#HUN###201302260415##ADT^A01#125#P#2.2###AL#NE

Note ■ In Listing 2-3, the \ character (backslash) before the & character is used as escape character to escape special

characters in the message.

Segments

In Chapter 1, you were introduced to the key segments (components) of an HL7 V.2.x message. As previously
mentioned, the HL7 message contains different segments; each segment represents specific information such as
patient information, patient visit, patient insurance, lab results, etc., and groups the information into different
data fields.

Each segment is separated using carriage return (•฀ \r on UNIX-based systems and \r\n on
Windows) and has a uniquely identified segment name, which is three characters in length.
These identifiers can be found at the beginning of the segment.

As per the HL7 messaging standard defined by HL7, a segment in a HL7 message may be •฀
required or optional, and also may or may not repeat depending on the message type.

There are hundreds of predefined segments as part of HL7 2.X specification. Each segment indicates the kind of
information it contains; for example, a patient admit HL7 message may contain segments as shown in Table 2-2.

Table 2-2. Sample List of Segments

Segment Name Description

MSH Message Header Segment Contains metadata about the message

PID Patient Identification Patient identification information such as name,
patient id, etc.

PV1 Patient Visit Patient visit information

IN1 Insurance Patient insurance information

Tip ■ A complete list of these segments and their definitions can be found as part of HL7 Standard documentation on

the HL7 web site at www.hl7.org/implement/standards/product_brief.cfm?product_id=185. Download a specific

version of HL7 2.x and refer to the Appendix.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

CHAPTER 2 ■ HL7 MESSAGE ENCODING

12

An HL7 2.X message is all about one or more segments. These segments divide the HL7 message into three
different parts, as shown in Figure 2-1:

One message header segment (MSH)•฀

One or more message body segments•฀

Z segments•฀

Let’s see what these segments contain.

 1. Message Header Segment (MSH): As the name suggests, this contains information about
the message, such as the message type, message event, version etc. It provides metadata
about the message. Later in this chapter we will discuss the MSH segment in more detail.

 2. Message Body Segments: Body segments are one or more segments containing the message
data; for example, for a patient administration (ADT) the message contains various
segments like PID, PV1, NK1, etc. The body of message may contain any segment as
specified in HL7 specification for a particular message type and message triggering event.

 3. Z Segments: Z segments are optional segments in a message. These segments are defined
for customized solutions based on need. Basically Z segments provide customization to
HL7 messages based on particular requirements. The HL7 organization has not or will not
define any segment with the letter Z.

Fields

Fields in an HL7 message contain message information; in the OOPS world, we would consider them as properties of
a class where the class is the segment. In this section, you will learn about following:

Field Identification•฀

Subfields•฀

Sub-subfields•฀

Repeatable Fields•฀

Figure 2-1. HL7 message parts

CHAPTER 2 ■ HL7 MESSAGE ENCODING

13

Field Identification

As you learned in the delimiter section, fields in an HL7 segment are identified using a delimiter, which is a pipe (|) by
default. Listing 2-4 shows how the delimiter is used.

Listing 2-4. Field Delimiter Sample

PID|1|123456|M123123123^^^^MR^HUN||Name^Name^^^^^L||19891203|F||W|126

Each field in the segment is referred to by its ordinal position in the segment; in Listing 2-3, the highlighted field
is referred to as PID1, PID2, and PID3, and the values are 1, 123456, and M123123123^^^^MR^HUN, respectively.

TIP ■ There is one exception to this. In the MSH, the field is still referred to by its ordinal position. However, the

ordinal position value is one more than the ordinal position of the other segments. In the following example, the first

field is referred to as MSH2 rather than MSH1. So where is MSH1? MSH1 is always a field separator, which in this

case is a pipe (|).

MSH|^~\&|ADM|HUN|||201302260415||ADT^A01|125|P|2.2|||AL|NE

In a HL7 message, if you want to make sure that the receiving application deletes the data in their data store
corresponding to the field, then the message should have the field value as “” e.g. |“”|. If the field is sent like ||, it will
indicate that no change is required to the data store.

Subfields (Components)

Subfields are referred as components in the HL7 message specification. Throughout this book we will refer to them as
subfields to make it easier to understand the relationship between fields and subfields.

A field can have subfields. You can find subfields within fields using the subfield delimiter, which is a caret (^) by
default. In the following example, PID3 has six subfields highlighted; these fields are referred as PID3.1, PID3.2,
and so on.

PID|1|123456|M123123123^^^^MR^HUN||Name^Name^^^^^L||19891203|F||W|126

Sub-subfields (Subcomponent)

A subfield can also have subfields; they are referred as subcomponents in the HL7 specification. We will refer to them
as sub-subfields.

Sub-subfields are separated by ampersand (&) within the subfield. In following example, SFT segment field 1,
subfield 6th has three sub-subfields referred to as SFT1.6.1, SFT1.6.2, and SFT1.6.3.

SFT|MEDITECH, Inc. ^L^^^^MEDITECH&1.3.6.1.4.1.24310&ISO^XX^^^MEDITECH|5.6.6

Repeatable Fields

The repeatable field is like an array of a field and is identified by repeat delimiter (~) in the field. In following example,
there are three PID3 fields:

PID|1||0266432^^^Test&Test^MR^.~151-22-5907^^^^SS^.~104475^^^^PI^.||

Each PID3 will have its defined subfields and so on.

CHAPTER 2 ■ HL7 MESSAGE ENCODING

14

Tip ■ Repeatable fields are not applicable for subfields or sub-subfields. They are only defined at field level. Defining

them at subfield or sub-subfield level will break the message structure.

Data Types

All fields (PID1, PID2, etc.) have data types defined as part of HL7 2.x standard. The data type definition includes
following key information:

 1. Position (SEQ): It defines the position of the field in the segment. This number is also used
to refer to the field, such as PID1.

 2. Length (LEN): It indicates the number of characters the data field may contain.

 3. Data Type (DT): Similar to any programming language variable data types, data types
represent the type of data field. Data types may be either primitive such as “text” or a
complex type mde of of primitive types.

 4. Optionality: A field may be required, or optional, or it may be required in a particular
condition in a segment. Conditionally required fields are either based on a triggered event
or on some other field.

 5. Repetition: For each field, repetition is defined to indicate whether the field can repeat or
not. In the HL7 specification, a field man not repeat, may repeat indefinitely, or may repeat
up to a specified number depending on the definition.

 6. Optionality: A field may be required, or optional, or may be required in a particular
condition in a segment. Conditionally required fields are either based on a triggered event
or on some other field.

 7. Name: Each field has a purpose, and its name in the segment is defined to indicate that
purpose (such as PID3).

 8. ID Number: It uniquely identifies the data item throughout the standard.

Tip ■ Appendix 3 contains the definitions of the data types currently supported in BizTalk.

Note ■ The ID Number in HL7 V2.1 is a placeholder for undefined data types.

Use of Escape Sequences

The escape sequence allows you to have special characters in the HL7 message text that are not allowed normally; for
example, delimiter characters can be included in the message field by using an escape sequence. An escape sequence
as defined by HL7 organization (www.hl7.org/implement/standards/index.cfm?ref=nav) consists of an escape
character which is defined in MSH.2, normally ‘\’, followed by an escape code ID of one character then zero or more
data characters, and another occurrence of the escape character, according to the spec. Table 2-3 shows the escape
sequences that are defined for delimiters and other characters.

http://www.hl7.org/implement/standards/index.cfm?ref=nav

CHAPTER 2 ■ HL7 MESSAGE ENCODING

15

Some examples of escape sequences are shown in the following sections.

Highlight Text

The escape sequence of \H\ can be used to format the text in many ways; for example, a receiving application
can display the highlighted text in bold or in red color. The message fragment "OBX| TOTAL \H\240*\N\ [90 -
200]" can be used by receiving application to display the text as "TOTAL 240* [90 - 200]" or
show the 240* in red.

Delimiter Escape Sequences

The HL7 messaging standard delimiters can be included in the message text by using the escape sequence of
“\F\, \S\, \R\, \T\, and \E\”. For example, the message fragment

OBX|25|TX||| \F\A\F\. PROCEDURE - WIDE RESECTION.||||||F|
OBX|26|TX||| B. TUMOR \T\ SITE - LEFT LOWER BACK.||||||F|

will be displayed as

|A|. PROCEDURE - WIDE RESECTION
B. TUMOR & SITE - LEFT LOWER BACK.

Usage and Examples of Formatted Text

Apart from the normal escape sequence, there are different commands that can be used alone or together with an
escape sequence to format the text especially for fields with the FT data type. Formatted text commands start with a
dot ‘ . ’ Table 2-4 shows different formatting commands available.

Table 2-3. The HL7 Specification Provides the Escape Sequence for These Characters
(Source: www.hl7.org/implement/standards/index.cfm?ref=nav)

Escape Sequence Description/Characters to Escape

\F\ Pipe “|”

\S\ Caret “^”

\T\ Ampersand “&”

\R\ Tilda “~”

\E\ Escape character “\”

\H\ Highlighting text start

\N\ Normal text (end highlighting)

\Xdddd. . .\ Hexadecimal data

\Zdddd. . .\ Locally defined escape sequence

http://www.hl7.org/implement/standards/index.cfm?ref=nav

CHAPTER 2 ■ HL7 MESSAGE ENCODING

16

Message Types

Message types (MSH9.1) in the HL7 2.x specification correspond to a group of real world events. For example, Patient
Administration has number of real world events, such as patient admit, patient registration, and many more. All such
patient administration messages are grouped into one message type, which is referred to as ADT. There are more than
100 message types defined within HL7 specification. Some of the most common message types are listed in Table 2-5.

TIP ■ A complete list of these message types and their definitions can be found as part of the HL7 standard’s

 documentation at on ay www.hl7.org/implement/standards/product_brief.cfm?product_id=185. Download a

specific version of HL72.x and refer to Appendix A.

Table 2-5. Most Common Message Types

Message Type Description

ADT Admit Discharge Transfer; used for patient administration

ORM Order Message; Order can be defined as a request of service, such as a lab
service request

ORU Observation Results, such as clinical lab results or imaging study results

DFT Detail Financial Transaction; used for patient account purposes

MDM Medical Document Management, helps manage medical records

Table 2-4. Commands for Formatted Text and Description

Command Description

.sp <n> Indicates the end of the current line and skips n number of spaces, where n is the
number of spaces to skip.

.br Indicates the beginning of a new line.

.fi Indicates the beginning of word wrap or fill mode.

.nf Indicates the beginning of no-wrap mode.

.in <n> Indicates that the text should be indented by n number of spaces.

.ti <n> Indents temporarily n number of spaces.

.sk <n> Skips <n> spaces to the right.

.ce Indicates the end of the current line and the center of the next line.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

CHAPTER 2 ■ HL7 MESSAGE ENCODING

17

Message Trigger Event

Each message contains one or more trigger events (MSH9.2), which correspond to real-world events in the healthcare
system. Some of the real world examples are the following.

 1. Patient is admitted.

 2. A request of service is created for lab.

 3. Patient is discharged.

 4. Patient appointment notification.

These real world events initiated the need for the HL7 2.x messaging standard to transfer information from one
system to another. These events are bundled into specific message types; for example, Patient Administration-related
events are bundled into message type ADT.

MSH|^~\&|ADM|HUN|||201302260415||ADT^A01|125|P|2.2|||AL|NE

The message type and trigger event has a one-to-many relationship, so one message type can have more than
one trigger event; however, one trigger event can only be part of one message type. The combination of message type
and trigger event governs the layout of the message, so which segments are required or optional all depends on this
combination. Table 2-6 is a partial list of message types and their events.

For each message type, a complete list of triggered events can be found in specific HL7 standard documents. If
you need to find all events for ADT messages, then look for the CH03_PatientAdmin document of the HL7 message
standard, which can be downloaded from: www.hl7.org/implement/standards/product_brief.cfm?product_id=185.

Message Version

A message also carries its HL7 2.x version to which it conforms within in message header MSH12 field. In the
following sample, the version of the message is 2.4:

MSH|^~\&|ADT1|MCM|LABADT|MCM|198808181126|SECURITY|ADT^A01|MSG00001|P|2.4

Table 2-6. Partial List of Message Types and Their Events

Message Type^Event Description

ADT^A01 Patient admit

ADT^A02 Transfer a patient

ADT^A04 Register a patient

ORM^O01 Order message

ORU^R01 Observation message

SIU^S12 Notification of new appointment booking

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

CHAPTER 2 ■ HL7 MESSAGE ENCODING

18

Message Control ID

The message control id (MSH10) field in the message header represents an identity for the message, which the
sending application should generate so that it is unique and can be used to correlate the message acknowledgment
sent by receiving application. In an enterprise, the message control id field should be used to track messages. The
following example shows how to create the message control id:

MSH|^~\&||COCFH|||201304210056||ADT^A08|FHGTADM.1.7230428|P|2.1

Tip ■ The format in a message control id can be anything as long it is unique for each message.

Message Acknowledgment

In an HL7 message exchange between two systems, the receiving application sends an acknowledgment of the
message received to the sending application. This way message delivery is guaranteed between two systems. Also,
the sending application does not send the next message until the acknowledgment is received from the receiving
application. Figure 2-2 shows an example of the acknowledgment message.

Key Elements of the Acknowledgement Message

There are few key elements of an acknowledgment message.

 1. Message Type (MSH9.1): The acknowledgement message type is ACK and it is same for all
other message types.

 2. Acknowledgment Code: MSA1 contains the acknowledgment code returned by the
receiving application, which lets the sending application know the status of message, such
as the receiving application has returned an error, rejected the message, or processed the
message successfully. Using these acknowledgment codes, the sending application can
decide the next step.

 3. Message Control ID (MSH10): Sent by the sending application, this is also returned in the
acknowledgment message, which makes it easier to correlate.

Figure 2-2. Message acknowledgment sample

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ HL7 MESSAGE ENCODING

19

Acknowledgement Modes

There are two modes that determine how an acknowledgment should be returned. They are the original and
enhanced modes.

Original Mode

In original mode, an application acknowledgment is returned, which means that before returning an
acknowledgment to sending application not only is the message received by the receiving application but also it is
processed successfully.

Tip ■ For original mode, both MSH15 (Accept Acknowledgment Type) and MSH16 (Application Acknowledgement Type)

in the MSH segment need to be null or not present.

The message processing by the receiving application may vary depending on the functional requirements of a
system; for example, a system can return the acknowledgment after storing the message in an input queue for later
processing.

Note ■ HL7 does not have any requirements for the design and architecture of a receiving application for processing of

the message.

Enhanced Mode

The enhancement mode breaks the acknowledgment into two parts:

•฀ Accept Acknowledgement: The receiving application sends the accept acknowledgment after
storing the message to safe storage for later processing.

•฀ Application Acknowledgment: Optionally, an application acknowledgment may also be
returned to indicate the final message status to the sending system.

Note ■ For enhanced mode, at least MSH15 (Accept Acknowledgment Type) and MSH16 (Application

Acknowledgement Type) in the MSH segment need to be present.

Acknowledgment Types

There are four acknowledgment types that can be used by the sending application in enhanced mode to request an
acknowledgment from the receiving application. Table 2-7 lists them.

CHAPTER 2 ■ HL7 MESSAGE ENCODING

20

These same acknowledgment type can be used for both MSH15 and MSH16 and accordingly the receiving
application sends the acknowledgment back.

Tip ■ MSH15 and MSH16 should only be used for enhanced mode acknowledgment and should not be used for

 original mode.

Acknowledgment Code

The Acknowledgment code (MSA1) in the acknowledgment message returns the acknowledgment code that indicates
the message status returned by the receiving application. Table 2-8 lists the acknowledgment codes.

ERR Segment

The error segment (ERR) is used to return error information in the acknowledgment message when the returned
acknowledgment code is not AA or CA. One example of an acknowledgment with ERR segment is shown below:

MSH|^~\&|TEST2|MCM|TEST|MCM|20131226132358||ACK|10000GSM|P|2.5.1|||NE
MSA|AA|MSG00001
ERR||PID^1^5|102^Data type error^HL79999|E||||||||^^^^^^^^^^^
ERR||NK1^1^2|102^Data type error^HL79999|E||||||||^^^^^^^^^^^

As you can see, the ERR segment include details about the errors the receiving application sends in
acknowledgment. Some of the key fields of ERR segment are defined in Table 2-9.

Table 2-8. Acknowledgement Codes

Code Description

AA Application Acknowledgment; message has been processed successfully.

AE Application Error; there is some error with message content or validation errors.

AR Application Reject; if the message cannot be processed due to some issue, usually such messages
can be resent.

CA Commit Accept; Used in enhanced mode when the message is committed to safe storage.

CE Commit Error; validation error due to message content.

CR Commit Reject; message rejected due to commit issue with receiving application.

Table 2-7. List of Acknowledgement Types

Code Description

AL Always send the acknowledgment.

ER Send the acknowledgment only if there is any error or rejection.

NE Never send an acknowledgment.

SU Send acknowledgment only after successful completion.

CHAPTER 2 ■ HL7 MESSAGE ENCODING

21

XML Encoding
Using XML is an alternate encoding for an HL7 message that can be used where both the sender and receiver can
understand XML. The XML representation of HL7 Version 2.x messages is algorithmically derived directly from the
HL7 database. This is done to prevent work has to be done by hand, which often is susceptible to errors. Furthermore,
deriving the XML representation algorithmically allows generating schemas for future HL7 v2.x versions easily.

Message Structure

In XML encoding, message segment fields are represented as XML elements. Listing 2-2 shows an example of an HL7
acknowledgment message in both delimiter and XML encoding.

Listing 2-2. Sample Delimiter and XML Encoding

MSH|^~\&|TEST2|MCM|TEST|MCM|20131226132358||ACK|10000GSM|P|2.5.1|||NE
MSA|AA|MSG00001
ERR||PID^1^5|102^Data type error^HL79999|E||||||||^^^^^^^^^^^
ERR||NK1^1^2|102^Data type error^HL79999|E||||||||^^^^^^^^^^^

<?xml version="1.0" encoding="UTF-8"?>
<ACK>
 <MSH>
 <MSH.1>|</MSH.1><MSH.2>^~\&</MSH.2><MSH.3><HD.1>TEST2</HD.1></MSH.3>
 <MSH.4><HD.1>MCM</HD.1></MSH.4><MSH.5><HD.1>TEST</HD.1></MSH.5>
 <MSH.6><HD.1>MCM</HD.1></MSH.6><MSH.7><TS.1>20131226132358</TS.1>
 </MSH.7><MSH.9><MSG.1>ACK</MSG.1></MSH.9><MSH.10>10000GSM</MSH.10>

Table 2-9. Key fields for ERR Segment

Field Name Description

ERR2 Error Location This field contains details about the location of error in HL7 message.

ERR 2.1 Segment ID Segment Name where error occurred, such as PID.

ERR2.2 Segment Sequence This indicate which segment has the error; this is useful when one segment is
present multiple times in an HL7 message. If the segment is present only once,
then it will be 1.

ERR2.3 Field Position The field position where the error occurred.

ERR3 HL7 Error Code Identifies HL7 error code for the error. The HL7 standard defines standard error
codes for specific issues; for example, a Data Type Error relates to an issue where
a field data type does not match. These standard error code can be found in
Table 357 at www.hl7.org.

ERR 3.1 Identifier Identifier of the error code; for example, 102 represents data type error.

ERR 3.2 Text Error description.

ERR4 Severity Severity of error:

W - Warning

I - Information

E - Error

F - Fatal Error

http://www.hl7.org/

CHAPTER 2 ■ HL7 MESSAGE ENCODING

22

 <MSH.11><PT.1>P</PT.1></MSH.11><MSH.12><VID.1>2.5.1</VID.1></MSH.12>
 <MSH.15>NE</MSH.15>
 </MSH>
 <MSA>
 <MSA.1>AE</MSA.1><MSA.2>MSG00001</MSA.2>
 </MSA>
 <ERR>
 <ERR.2><ERL.1>PID</ERL.1><ERL.2>1</ERL.2><ERL.3>5</ERL.3></ERR.2>
 <ERR.3><CWE.1>102</CWE.1><CWE.2>Data type error</CWE.2><CWE.3>HL79999</CWE.3>
 </ERR.3><ERR.4>E</ERR.4><ERR.12><XTN.12> </XTN.12></ERR.12>
 </ERR>
 <ERR>
 <ERR.2><ERL.1>NK1</ERL.1><ERL.2>1</ERL.2><ERL.3>2</ERL.3></ERR.2>
 <ERR.3><CWE.1>102</CWE.1><CWE.2>Data type error</CWE.2><CWE.3>HL79999</CWE.3>
 </ERR.3><ERR.4>E</ERR.4><ERR.12><XTN.12> </XTN.12></ERR.12>
 </ERR>
</ACK>

Note ■ The above XML format has been changed to fit display the content properly.

Root Element—Message Structure IDs

In the HL7 Version 2.x standard, several trigger events share the same abstract message syntax. An example of this
could be an ADT message that is triggered by event A04, which the same message structure as ADT A01. In addition
to A04, other events like A05, A08, A13, A14, A28, and A31 share the same A01 message structure. Until Version 2.3.1,
there was no way to represent this in an HL7 message; however, with version 2.3.1, this fact became standardized and
represented as Message Structure ID in an HL7 message by adding a new field called MSH9.3 to the message type
MSH9 field. The following is an example of the ADT_A01 delimited message structure used by ADT A04 message event:

MSH|^~\&|ADT2||LAB||198808181121|SECURITY|ADT^A04^ADT_A01|MSG00001|P|2.4

The message structure ID is relevant for XML encoding since this is used as a root element in an XML instance
document, as shown:

<?xml version="1.0" encoding="UTF-8"?>
<ADT_A01>
 ...(Segment Elements)
</ADT_A01>

Segments

Message structures contain segments also represented as XML elements. Each segment name is three characters long,
similar to HL7 V2.x encoding; these names are used as an XML element. The following example shows a few segments
as an XML element:

<?xml version="1.0" encoding="UTF-8"?>
<ADT_A04>
 <MSH>
 ...(MSH Field Elements)
 </MSH>

CHAPTER 2 ■ HL7 MESSAGE ENCODING

23

 <PID>
 ...(PID Field Elements)
 </PID>
 <PV1>
 ...(PV1 Field Elements)
 </PV1>
 ...(Other Segment Elements)
</ADT_A04>

Segment Groups

One benefit of XML encoding is the ability to represent segment grouping easily. In a group, whether a segment is
optional or repeatable is represented using brackets [...] or braces { ... } in the standard. So segments [{ IN1, [IN2], [{ IN3
}], [{ ROL }] }] represent the INSURANCE group, where each group itself is optional or may repeat, and within the group
segment, IN1 is required, IN2 is optional, IN3 is optional or may repeat, and ROL is optional and may repeat as well.

The explicit grouping is one major difference between delimiter and XML encoding as there is no grouping in
traditional delimiter encoding.

Segment group naming includes upper case names. So ADT_A01.INSURANCE and the name itself represents the
purpose of the segment group. In other words, the “INSURANCE” group bundles all INx segments, and the “VISIT”
group bundles PV1 and PV2 segments, as shown in following example:

<?xml version="1.0" encoding="UTF-8"?>
<ADT_A04>
 <MSH>
 ...(MSH Field Elements)
 </MSH>
 <EVN>
 ...(EVN Field Elements)
 </EVN>
 <PID>
 ...(PID Field Elements)
 </PID>
 <ADT_A04.INSURANCE>
 <IN1>
 ...
 </IN1>
 <IN2>
 ...
 </IN2>
 <ROL>
 ...
 </ROL>
 </ADT_A04.INSURANCE>
</ADT_A04>

Note ■ Segment group naming includes the message structure id as a prefix, as shown in the above example, to

differentiate between different message structures, so the INSURANCE group can be found in ADT_A01 with different

cardinality.

CHAPTER 2 ■ HL7 MESSAGE ENCODING

24

Another way of grouping segments is by a choice; here a decision has to be made as to which set of segments
should be conveyed in a message: This is indicated in the HL7 standard documents by angle brackets: < and >. The
different options for a choice are then separated by a vertical bar. In the XML schema, the choice is represented using
the xsd: choice element.

Note ■ This vertical bar is independent from the vertical bar in the conventional encoding reflecting the standard

field delimiter.

Fields

In XML encoding, XML elements representing fields and their naming conventions are based on segment names and
the field positions in the segment. So the first field in PID segment is named PID.1, the second is PID.2, etc., like so:

...
<PID>
 <PID.1>1</PID.1>
 <PID.2>
 ...
 </PID.2>
</PID>

In delimiter-based encoding, empty fields are also required to be separated by a pipe; however, in XML encoding,
an element with no contents simply can be omitted (unless explicit use of the “” is required to force a data delete
action by the receiving application).

Data Types

The data types for the fields are defined similarly to that of delimiter-based encoding for each field. Please refer to the
“Data Types” section of the “Delimiter-based Encoding” section for more details.

Use of Escape Sequence

There are some basic differences in the escape sequence between delimiter- and XML-based encoding. These
differences are as follows:

In XML encoding, there is no use of a delimiter character escape sequence, as these are not •฀
used to form the message structure.

Instead of using “\” as an escape sequence character, XML encoding uses an XML element to •฀
define escape sequence, as shown in Table 2-10.

Table 2-10. Escape Characters in XML Encoding

Escape Characters as Defined Earlier Replacement for XML Encoding Description

\H\ <escape V=“H”/> Start highlighting text.

\N\ <escape V=“N”/> Normal text (stop highlighting).

CHAPTER 2 ■ HL7 MESSAGE ENCODING

25

Table 2-11. Formatting Comments in V2.x and Their Replacements in V2.xml

Escape Characters as Defined in the v2.x Standard v2.xml Encoding

\.br\ <escape V=“.br”/>

\.spn\ <escape V=“.spn”/>

\.in±n\ <escape V=“.in±n”/>

\.ti±n\ <escape V=“.ti±n”/>

Table 2-12. XML Schema (Source: www.hl7.org/implement/standards/index.cfm?ref=nav)

Schema File Description

MessageStructureID.html A set of many files in HTML format containing a short description of the message
and links to the corresponding schemas.

<MessageStructureID>.xsd A set of many schemas each containing the schema definitions for a specific
message structure specified by MessageStructureID. For example, ADT_A01.xsd
contains the definitions for the ADT A01 message structure, ADT_A02.xsd for ADT
A02, and so forth.

Segments.xsd Schema for all segment definitions, imports fields definitions.

fields.xsd Schema for all field definitions, imports data type definitions.

datatypes.xsd Schema for all data type definitions for v2.

batch.xsd Schema containing definition of batch.

Messages.xsd Schema containing all message definitions together.

Similarly, the command also indicates using XML elements, as shown in Table 2-11.

Message Header Segment

As mentioned before, with XML encoding there is no change to message semantics. All header properties and their
definitions remain as in delimiter-based encoding.

Message Acknowledgment

Both message acknowledgment modes, original and enhanced processing, remain the same in XML encoding, except
that validation of messages now includes well-formed and valid XML by the receiving system. This means sender
system must ensure that the HL7 message’s XML is well-formed and valid as per its schema.

XML Schemas

HL7 provides XML schemas for each version supported by HL7 Version 2.x.XML specification, as shown in Table 2-12.

http://www.hl7.org/implement/standards/index.cfm?ref=nav

CHAPTER 2 ■ HL7 MESSAGE ENCODING

26

An XML instance of a specific message should refer to the corresponding schema. The following code shows a
schema reference within a v2.XML XML message instance fragment:

<ADT_A04
 xmlns="urn:hl7-org:v2xml"
 xmlns:xsi="http://www.w3.org/2001/XmlSchema-instance"
 xsi:schemaLocation="urn:hl7-org:v2xml ADT_A04.xsd">

 <MSH>...
<ADT_A04>

Note ■ When you install the BizTalk 2013 R2 HL7 Accelerator (BTAHL7), the setup wizard creates the

<drive>:\ Program Files\Microsoft BizTalk 2013 R2 Accelerator for HL7\Templates\Schemas folder

structure that contains templates to support the events for HL7. Beneath this folder, a V2.X folder includes a subfolder for

each of the HL7 2.X versions: 2.1, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.5.1, and 2.6.

Summary
In this chapter, you took an in-depth tour of the HL7 message structure, encoding, and acknowledgment model.
Understanding these concepts is key to any implementation of healthcare-based system. In Chapter 3, you will learn
about the Microsoft BizTalk HL7 Accelerator and its capabilities for HL7 2.x message processing.

http://www.w3.org/2001/XmlSchema-instance

27

CHAPTER 3

Understanding the HL7 Accelerator

Introduction
The BizTalk HL7 Accelerator, commonly referred to as the BTAHL7, is an add-on capability provided by Microsoft
BizTalk Server to integrate diverse healthcare systems using HL7V2.x and HL7 V2.xml encoding standards. The add-on
is available as part of BizTalk media installation and provides various add-on components like pipelines, schemas,
adapter, utilities etc.

The BizTalk HL7 Accelerator provides all required components necessary to implement such scenarios and
includes the following in-built functionalities:

The MLLP Adapter to receive and transmit HL7 messages•฀

The ability to parse a HL7 V2.x-encoded message into XML or vice versa•฀

The ability to parse a HL7 V2.xml-encoded message•฀

Return acknowledgment to the sending application based on the mode•฀

Batch processing•฀

Validation of message•฀

Logging•฀

In addition to using the HL7 Accelerator’s built-in functionalities, you can use other BizTalk capabilities such as
Business Activity Monitoring, BizTalk Mapper, Business Rule Engine, etc. to build HL7-based solutions.

In this chapter, you are going to learn about all these capabilities and the components provided by the HL7
Accelerator for the development and runtime environment, such as project templates, the HL7 Disassembler, the HL7
Configuration Explorer, etc.

Architecture
Figure 3-1 shows the architecture diagram, which includes all HL7 Accelerator components. The diagram divides
components into two categories, the Development Environment and the BizTalk Runtime Environment, to help you
understand the components required to develop, build, test, and run HL7-based applications.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

28

Development Environment
Development environment includes visual studio artifacts such as schemas, project templates and other tools
required for developing HL7 solutions with BizTalk. All these artifacts are explained below.

HL7 V2.x XML Schemas

As you are aware, many BizTalk capabilities are dependent on XML schemas, which everyone defines for a solution.
The BizTalk HL7 Accelerator also needed a way to define schemas for the HL7 v2.x standard for working with HL7
messages and using BizTalk capabilities like transformation, orchestrations, etc. In order to define these schemas,
the BizTalk team used a Microsoft Access database to autogenerate these schemas and shipped them with the HL7
Accelerator installation. This Access database is maintained by the HL7 organization and is available for a cost on the
HL7 web site at www.hl7.org/store/viewitem.cfm?Item=ACCESS. This database includes all the details, including
field definition, segment definition, data types, message triggering events, etc.

Tip ■ The BizTalk 2013 R2 HL7 Accelerator provides schemas for version 2.1 to 2.6 and can be found at

%SystemDrive% \Program Files (x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\Templates\Schemas\V2.X

after the installation for 64-bit installations and in %SystemDrive% \Program Files\Microsoft BizTalk 2013

R2 Accelerator for HL7\Templates\Schemas\V2.X for 32-bit installations.

Figure 3-1. HL7 Accelerator architecture

www.allitebooks.com

http://www.hl7.org/store/viewitem.cfm?Item=ACCESS
http://www.allitebooks.org

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

29

These schemas use a naming convention based on a format of <Message Type>_<Trigger Event>_<HL7 V2.x
version>_GLO_DEF, so a patient admit triggering event in a healthcare system using HL7 messaging standard version
2.5.1 will map to a ADT_A01_251_GLO_DEF schema file name.

This essentially means that there is one schema defined for each triggering event of every message type of a
specific version.There are three other schemas for each version of schemas, as shown below. These schemas are used
by every message schemas using a XSD import and they define segment definition, element data types, and table
values for HL7 messages based on the standard.

datatypes_<version>•฀

segments_<version>•฀

tablevalues_<version>•฀

In addition to HL7 V2.x message schemas and data-type schemas, the HL7 Accelerator also provides three other
schemas. They are referred as message header and acknowledgment schemas.

MSH_25_GLO_DEF•฀

ACK_26_GLO_DEF•฀

ACK_25_GLO_DEF•฀

ACK_24_GLO_DEF•฀

These schemas are common to all HL7 V2.x versions of the schemas. MSH_25_GLO_DEF corresponds to the
MSH segment of message and the other three ACK schemas correspond to the HL7 acknowledgement.

Note ■ There can be only one message header and acknowledgment schema deployed in a BizTalk group.

Visual Studio Project Templates

The first step in the development environment to build any HL7-based solution is to add schemas to your BizTalk
project depending on the HL7 version, message type, and triggering event. To help with this, the HL7 Accelerator
provides Visual Studio project templates to create HL7V2.x schemas projects easily. Once the HL7 Accelerator is
installed, the following project templates are available in Visual Studio under BizTalk Projects:

•฀ BTAHL7V2XCommon: This project adds a message header and acknowledgment schemas to
your project.

•฀ BTAHL7V21XCommon - BTAHL7V251XCommon: There are eight of these project templates,
one for HL7 versions 2.1 to 2.6. These projects add datatypes, segments, and tablevalue
schemas for that version.

These two projects are added as first step in any HL7 solution development. Figure 3-2 shows the templates in
Visual Studio.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

30

Note ■ In Chapter 7, you will learn more about the best practices for organizing schema projects during development.

If you don’t see the HL7 project templates in Visual Studio after the installation of the HL7 Accelerator, most likely your

machine is missing the SQL Server Data Tools and Client Tools SDK. Install these from the SQL Server installation and

then reinstall the HL7 Accelerator to fix the issue.

Visual Studio Item Templates

The HL7 Accelerator also installs Visual Studio BizTalk project item templates, which allow you to add a message
schema based on a message type, triggering event, and versioning to your schema project just like you create/add a
new schema to any other BizTalk project. Once BizTalk projects using HL7 project templates are added, the specific
message schema can be added to your project using the Ctrl+Shift+A option and selecting the BTAHL7Schema.
Figure 3-3 shows the HL7 schema selector; this selector pops up as soon as you select BTAHL7Schema to add to
BizTalk project.

Figure 3-2. Visual Studio project templates

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

31

HL7 V2.xml XML Schemas

BizTalk does not provide any schemas for HL7 XML-encoded messages. These schemas are provided by the HL7
organization and can be used directly with the BizTalk HL7 Accelerator after a little modification. BizTalk provides a
utility called Update2XmlSchema.Exe to modify the schemas. You can download these schemas from www.hl7.org/
implement/standards/product_brief.cfm?product_id=214 and then use the utility to modify these schemas.

This utility places the modified schemas in the %SystemDrive% \Program Files (x86)\Microsoft BizTalk
2013 R2 Accelerator for HL7\Templates\Schemas\V2.XML folder for 64-bit installations and in the %SystemDrive%
\Program Files\Microsoft BizTalk 2013 R2 Accelerator for HL7\Templates\Schemas\V2.XML folder for 32-bit
installations.

MLLP Test Framework

The HL7 Accelerator also provides a MLLP test framework library which can be used along with Visual Studio Unit
Test Framework to test a MLLP-based solution. This library can be found in the %SystemDrive%\Program Files
(x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\SDK\MLLP Utilities folder. You can send and receive
HL7 messages within the test environment using this library. This will allow you to create unit tests for your solution
during development.

Runtime Environment
Runtime environment includes visual studio artifacts such as pipelines and other tools required to configure HL7
solution at runtime within BizTalk. Each of these are explained below:

HL7 Configuration Explorer

The HL7 Configuration Explorer allows you to configure parties for your HL7 message exchange. A party is not
required to be configured for a HL7 message exchange with BizTalk Server; however, party configuration provides
many flexibilities for the implementation. So what is a party? A party is often referred to as a “trading partner” or
a “trading party.” A trading partner is single business entity that can send or receive messages to or from any other

Figure 3-3. Visual Studio schema selector item templates

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=214
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=214

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

32

partner. BizTalk has full capabilities to manage trading partners from BizTalk Management Console (Option Parties),
which is prominently used for EDI message exchange; the HL7 Configuration Explorer is an enhancement on top of
the trading partner management.

Note ■ To learn more about trading partner management (TPM), please refer to

http://msdn.microsoft.com/en-us/library/bb259970.aspx.

Creating a Party

From the Parties option on the BizTalk Management Console, choose Create New Party with a Name. There are no
further details required, just the name.

Configuring a Party

After party is created, open the HL7 Configuration Explorer named “BTAHL7 Configuration Explorer” and there you
should see the party created, as shown in Figure 3-4.

Figure 3-4. HL7 Configuration Explorer

The Configuration Explorer allows you to configure following:

•฀ Batch Definition: If processing a batch HL7 message, on this tab you can configure details
about the batch, such as whether to split the inbound batch message.

•฀ Batch Schedule: For outbound batches, batch frequency, such as how many messages should
create one batch, can be configured on this tab.

•฀ Acknowledgment: On this tab, you can configure the acknowledgment modes you want to use
for message exchange (original or enhanced).

•฀ Validation: You can configure if you want to validate the message body while parsing the
message or not, and some other properties.

•฀ MSH Map: This tab allows you to override the MSH fields in the outgoing message, such as
when sending a message to a destination, MSH3 should always have a static value.

You will learn more about each of these configuration as you move on to different components and where these
configurations are relevant.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

33

Configuring Global Settings

Global settings applies to HL7 logging service globally and is not party specific. You will learn more about HL7 logging
service and its configuration options later in this chapter.

HL7 V2.x Receive and Send Pipelines

BizTalk provides custom pipelines to disassemble an HL7 V2.x messages into XML and to assemble the XML into
HL7 V2.x message. These pipelines are deployed to the BizTalk Application 1 application after the HL7 Accelerator
installation and can be used in BizTalk receive and send ports like any other pipelines. Receive and send pipelines use
a custom HL7 Disassembler (Microsoft.Solutions.BTAHL7.HL72fDasm) and Assembler (Microsoft.Solutions.BTAHL7.
HL72fAsm) pipeline components. These are the two key components used in any HL7 solution as they provide the
ability to convert an HL7 flat file message into XML. Let’s discuss each of these components in more detail.

HL7 Disassembler

The HL7 Disassembler pipeline component is one of the key components that implements the bulk of the HL7
standard’s functionality. Figure 3-5 shows the diagram of the components used by HL7 Disassembler to disassemble
an HL7 message into XML.

Figure 3-5. HL7 Disassembler architecture components

The HL7 Disassembler performs various task while disassembling the message, and each of these tasks are
explained in the following sections.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

34

Multipart Message

The HL7 Disassembler creates a multipart message with the following three parts on successful disassemble of
the message:

 1. MSHSegment: The HL7 Disassembler uses the MSH_25_GLO_DEF schema to disassemble
the HL7 message MSH segment.

 2. BodySegments: The HL7 Disassembler uses one of the message schemas based on the HL7
message type, message version, and trigger event to disassemble the body of the message.

 3. ZSegments: Any Z segments in the message are disassembled to this part as string data type.

In order to consume this message in an orchestration, you need to create a multipart message with the above
three parts.

Identifying a HL7 Party

The HL7 Disassembler identifies if there is a HL7 party configured for the incoming HL7 message. The HL7 party,
sometimes referred to as the “trading partner,” allows you to configure various options like acknowledgement,
validation, batching, etc. You can find more details on party configuration in the “HL7 Configuration Explorer” section
in this chapter.

The HL7 Disassembler uses a MSH3 value to find a corresponding HL7 party; so if the MSH3 value is
“HL7Source”, then HL7 disassembler will look for a party with the name of “HL7Source”, and if a party is found, it
will use the configuration as required. If not, then the HL7 Disassembler will try to disassemble the message with
default configurations. If in a message MSH3.1, MSH3.2, and MSH3.3 all are populated, then the HL7 Disassembler
concatenates all the three values and tries to find the matching party. You will see how party different configurations
are used by the HL7 Disassembler in future sections.

Disassembling a Message Header

The HL7 Disassembler disassembles the MSH segment to the MSHSegment part of the message. The message
schema MSH_25_GLO_DEF with default namespace http://microsoft.com/HealthCare/HL7/2X is used by the
Disassembler. If this schema is not present in the BizTalk, the message is failed with a parsing error and the following
error is logged in the event viewer:

Alternate Error Description: Schema http://microsoft.com/HealthCare/HL7/2X#MSH_25_GLO_DEF not found

Disassembling Other HL7 Segments to Message Body Schema

The HL7 Disassembler first tries to identify the message body schema based on MSH9.1 (Message Code), MSH9.2
(Trigger Event), and MSH12.1 (Version); for example, the message schema for a HL7 message with the following
message header will be ADT_A01_251_GLO_DEF. It concatenates all the values with underscore and suffixes it with
GLO_DEF.

MSH|^~\&|HL7Source|MCM|HL7Dest||199601121005||ADT^A01|000007|P|2.5.1

Message schema identification also depends on schema namespace. The default namespace for all schemas is
http://microsoft.com/HealthCare/HL7/2X, and at first the HL7 Disassembler uses the default schema namespace
to find the schema in BizTalk. You can override the default schema namespace by configuring a TPM Party and
overriding the namespace in the HL7 Configuration Explorer party validation tab, as shown in Figure 3-6.

http://microsoft.com/HealthCare/HL7/2X
http://microsoft.com/HealthCare/HL7/2X#MSH_25_GLO_DEF
http://microsoft.com/HealthCare/HL7/2X

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

35

If the HL7 Disassembler does not find the schema with matching namespace and schema name, it fails to parse
the HL7 message and logs the error in Event Viewer with the following description:

Alternate Error Description: Schema http://microsoft.com/HealthCare/HL7/2X#ADT_A01_231_GLO_DEF not found

Note ■ It’s not necessary to create a HL7 party for the HL7 Disassembler to identify the message schema. It uses the

default namespace and other configuration in case it does not find the party configured.

The message schema forms the message body (BodySegments) of the multipart message and contains the bulk of
the HL7 message segments.

Disassembling Z Segments

Z segments are custom-defined segments and are not part of the message body schemas. Z segments are
disassembled to the third part of a multi-part message as a string data type by the Disassembler. If there are no Z
segments in the message, then this part remains empty. You can include Z segments as part of the message body by
changing the default body schemas.

Optionally Validating the Message Body

The HL7 Disassembler by default validates the message body segments data from the message schema definition. The
validation include the data type and expected values for the field validations; for example, if the Marital Status field in
the PID segment expects to have only set of values, and in the message the value is outside that range, then a validation
error occurs. In case of a validation failure, the message fails to parse and an error is logged to the event viewer. The
error details returned by the HL7 Disassembler follow the HL7 standard and return the error in the following format:

Error happened in body during parsing
Error # 1
Segment Id: PID
Sequence Number: 1
Field Number: 16
Error Number: 103
Error Description: Table value not found
Encoding System: HL70396

Figure 3-6. Party configuration validation tab

http://microsoft.com/HealthCare/HL7/2X#ADT_A01_231_GLO_DEF

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

36

This error indicates that field PID16 (Marital Status) of first occurrence (sequence) of segment PID has an invalid
value. There can be multiple errors in one HL7 message body; all of them are repeated in event viewer logs.

Generating the Acknowledgment

The HL7 Disassembler also generates the acknowledgment as per the HL7 messaging standard. The HL7
Disassembler implements both acknowledgment modes, original and enhanced. In addition to original
and enhanced acknowledgment modes, the HL7 Disassembler also provides support for deferred and static
acknowledgment modes. All these modes can be configured using the Acknowledgment tab of the HL7 Configuration
Explorer, as shown in Figure 3-7.

Figure 3-7. Party Explorer Acknowledgment tab

In Figure 3-7, the acknowledgment type drop-down allows you to select one of the acknowledgment modes and
related properties to configure. These different modes are explained below.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

37

•฀ None: There is no mode defined; in this case, the Disassembler generates the acknowledgment
only if requested by the sending application by sending an acknowledgment type in MSH15
or MSH16.

•฀ Original Mode: In this mode, the Disassembler generates an application acknowledgment if
MSH15 and MSH16 are empty. If the sending application populates MSH15 or MSH16, then
it takes the precedence over party acknowledgment configuration. This mode also allows to
you to configure the MSH header fields for generated acknowledgment. These fields are used
when MSH15 and MSH16 are empty in the message.

•฀ Enhanced Mode: In this mode, unlike with original mode, the Configuration Explorer allows
you to modify MSH15 and MSH16 depending on the requirements and the Disassembler
generates the acknowledgment accordingly. Again, MSH15 and MSH16 in a message take
precedence if they’re not provided in-message. This mode similar to original mode as it allows
you to configure MSH header fields for a generated acknowledgment message, and if configured,
unlike original mode, acknowledgment is always generated using configured values.

•฀ Deferred Mode: This mode exists due to backward compatibility with the HL7V2.1 messaging
standard delayed acknowledgment mode. The acknowledgment is generated the same way as
original mode except that the generated acknowledgment also has a MSA5 field with a value of
D indicating a delayed acknowledgment.

•฀ Static: In this, a static acknowledgment can be configured in the Configuration Explorer
for both success and failure cases. The HL7 Disassembler use the exact text to return an
acknowledgment and ignores any value of MSH15 and MSH16 in the message header.

Note ■ In all acknowledgment modes, the key point is whether the message itself has MSH15 or MSH16, or both, and

if yes, any acknowledgment mode except static works like the enhanced mode.

Fragment Batch Messages

The HL7 Disassembler also identifies if an HL7 message is a batch or individual message. It can split the message into
individual messages if fragmentation is configured in the Configuration Explorer, as shown in Figure 3-8.

Figure 3-8. Party Explorer Batch Definition tab

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

38

Fragmentation should only be configured for a source party as it applies to inbound batch. A sample HL7 batch
message is shown below:

FHS|^~\&|HL7SourceBatch|A01O01A08|HISd2d5|HISdf2df6||fhs8|fhs9|batch21231Off|fhs11|fhs12
BHS|^~\&|bLABs2s3|bLABsf2sf3|bHISd2d3|bHISdf2df3||bhs8|bhs9|BatchComment10|BatchControlID11|Referen
ceBatchcontrolID12
MSH|^~\&|HL7SourceBatch|src4|HL7Dest|dest6|200307092343||ADT^A01^ADT_A01|msgidRx|P|2.5.1
EVN|A01|198808181318||01
PID|9|M11|M11||JOHN^DOE^A^JR||19310615|M||1002-5|303 ANY DRIVE^ANY
CITY^NA^27410|GL|(919)555-5555|(919)555-5555||M|A|M11|987654321|143257NC
NK1|1|HUSBAND
PV1|1|I|2000|A|||004777,SMITH,XXX,J.|||SUR|||||A0
MSH|^~\&|HL7SourceBatch|XYZ_ADMITTING|HL7Dest|XYZ_HOSPITAL$|200307092343||ADT^A02|msgidLAB|
P|2.5.1|||
EVN||200008161900||||200008161900
PID|||583085^^^ADT1||AAAD^BBBBN||19201102|M||1002-5|ONE ANY WAY^^ST. TOWN^NA^00130|||||||20-98-3085
PV1||E|ED||||1234^AAA^TXXX^P^^DR|5101^AAA^FRED^P^^DR|||||||||||V1085^^^AD
T1|||||||||||||||||||||||||200008161300
BTS|3|Batch,MessageCount,Comment,Totals|3
FTS|1|File,BatchCount,TrailerComment

As you can see, a batch message has both header (FHS and BHS) and trailer segments (BTS and FTS). These are
required for the HL7 Disassembler to successfully parse this message as a batch message.

Identify Batch Schedule

The HL7 Disassembler also checks if there is batch schedule configured and sends the message to batch orchestration
for batching in scenarios where incoming messages need to be batched before sending to the destination. The HL7
Disassembler uses the MSH5 value to identify if there is a batch schedule configured or not. The batch schedule can
be configured in the Configuration Explorer, as shown in Figure 3-9.

Figure 3-9. Party Explorer Batch Schedule

You will learn more about batching in the “Batch Orchestration” section of this chapter.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

39

HL7 Assembler

The HL7 Assembler pipeline component (Microsoft.Solutions.BTAHL7.HL72fAsm) assembles the HL7 disassembled
message into a flat HL7 V2.x message. The HL7 Assembler is a simpler component than the HL7 Disassembler
component and performs the tasks explained in the following sections.

Identifies the HL7 Party

Similar to the HL7 Disassembler, the HL7 Assembler identifies if there is a HL7 party configured for the outgoing
HL7 message. The HL7 Assembler uses the MSH5 value to find a corresponding HL7 party, so if the MSH5 value
is “HL7Dest”, then the HL7 Assembler will look for a party with the name “HL7Dest”, and if a party is found, it will
use the configuration as required. If not found, the HL7 Assembler will try to assemble the message with default
configurations. If in a message MSH5.1, MSH5.2, and MSH5.3 all are populated, then the HL7 Assembler concatenates
all three values and then tries to find the matching party.

Assembling the XML-to-HL7 V2.x Message

The HL7 Assembler main functionality is to convert the single BizTalk multipart HL7 message to a HL7 V2.x message.
Each part of the message is converted into the corresponding HL7 segment, so the MSHSegment part converts to
MSH segment, and BodySegments converts to all other HL7 segments.

The Assembler also handles the batched XML message and converts it into an HL7 batch message. An HL7
batch XML in BizTalk contains five message parts: FHS, BHS, BTS, FTS, and Messages. You will learn more about the
batching later in the section “Batch Orchestration.”

Optionally Validating the Body Message

Similar to the HL7 Disassembler, the HL7 Assembler optionally validates the outgoing message. By default, body
validation is not applied; in order to do it, the HL7 Assembler should be able to find a destination party with the
“Validate Body Segments” option checked on the Validation tab.

Updating the MSH Segment

The Assembler also overrides various MSH segment fields while assembling the message, if a destination party in
configuration explorer has MSH map defined as shown in Figure 3-10.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

40

The HL7 Assembler overrides the value of fields with the values defined in MSH map; in Figure 3-10, the MSH6
value is set to MSH6TEST for the HL7Dest party. When a message with MSH5 having a HL7Dest value arrives at a
send port, the send port updates the value of MSH6 to MSH6TEST irrespective of the original value, as shown below:

MSH|^~\&|HL7Source|MCM|HL7Dest|Tes|198808181126|SECURITY|ADT^A01|MSG00001|P|2.5.1|||NE|AL

MSH|^~\&|HL7Source|MCM|HL7Dest|MSH6TEST|198808181126|SECURITY|ADT^A01|MSG00001|P|2.5.1|||NE|AL

This is a very useful functionality in cases where destination systems want specific MSH segment fields.

Batch Orchestration

In many scenarios, you need to batch HL7 messages before sending them to the destination, so one destination
system requirement could be to receive batched HL7 message once a day. Batch orchestration provides the
functionality to create a batch message of individual HL7 messages before sending the message out.

This orchestration is installed in BizTalk Application 1 after the HL7 Accelerator is installed. Let’s learn how batch
orchestration works and is configured.

Orchestration Design

Batch orchestration design is based upon the BizTalk sequential convoy pattern. It gathers all the messages need to be
batched and, once a batch is complete, creates a batched HL7 message and sends it to the message box. Please go to
the MSDN article at http://msdn.microsoft.com/en-us/library/ms942189(v=bts.10).aspx for more details about
the pattern.

Figure 3-10. Party Explorer MSH Map

http://msdn.microsoft.com/en-us/library/ms942189(v=bts.10).aspx

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

41

Batch Orchestration Activation and Batch Schedule

The batch orchestration needs to be activated before it can start batching HL7 messages. This activation is basically
receiving the first message by orchestration via Batch Control Receive Port (BatchControlPort) in BizTalk Application 1.
The first message is sent during the configuration of the batch schedule from the HL7 Configuration Explorer, as shown
in Figure 3-11.

Figure 3-11. Party Explorer batch schedule

The batching scheduler allows you to configure a batch schedule for a destination party (MSH5). You can
configure how you want to batch the messages, such as whether you want to send a batch every few hours or once you
have created a batch of a specified number of messages.

Once you have configured the batch schedule, you need to start the schedule by pressing the Start Schedule
button. The Start Schedule button creates a batch activation message, shown below, and drops it into the
\Program Files (x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\CreateBatchFileDrop folder.

MSH|^~\&|||HL7Dest||20140222182257||BTAHL7^BatchActivation|361d5fe1-c7f4-4497-a454-
28711aa571c9|P|2.4^GLO^DEF
Bat|HL7Dest|0|8760000|2|true

This message is then parsed by the HL7 Disassembler like any other HL7 message; in addition, it also reads
the batch schedule configuration using the party and creates a message with three parts, a message with the
body containing all the schedule details including schedule time and message count as per party batch schedule
configruation. This message is then picked up by orchestration. See Figure 3-12.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

42

After being activated, orchestration uses correlation on the MSH5 and ToBeBatched context property values to
receive messages for batching. You can have number of batch orchestrations activated at the same time for different
batch schedules; the correlation makes sure that each batch orchestration receives the message it needs to batch.

Receiving Message for Batching

As you learned earlier, the HL7 Disassembler identifies whether an incoming HL7 message needs to be sent for
batching by checking the batch definition from the party configuration. Batch definition allows you to configure which
message types need to be batched, as shown in Figure 3-13.

Figure 3-12. Batch process

Figure 3-13. Party Explorer batch definition selected schemas

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

43

As you can see, an ADT A01 message is configured for batching under the Outbound Batch section. The Available
Messages section shows all of the HL7 message schemas deployed in the BizTalk environment.

Note ■ You need to make sure that the message schema assembly namespace starts with BTAHL7Schemas, otherwise

message schemas will not available under the list.

The HL7 Disassembler promotes the context property of ToBeBatched to True along with the MSH5 context
property when it finds that the corresponding message type schema is configured for batching. Figure 3-14 defines the
process we just described.

Figure 3-14. Batch orchestration process

You can also batch acknowledgement messages using the same process.

Batch Termination

You can terminate batch orchestration for a specific party at any point you want via the Configuration Explorer’s
Batch Schedule tab by pressing the Stop Schedule button. The termination process is same as the activation process: a
terminate message is sent to the folder, which is then sent to orchestration for termination. At this time, orchestration
creates batch for any pending messages before terminating.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

44

Batch Message

Once a batch is complete, based on the batch schedule, orchestration creates the HL7 batch message consisting of five
message parts.

 1. Bhs: Bhs corresponds to the batch header segment as defined by the HL7 V2.x standard.
This segment adds details about the whole batch, similar to a message header segment.

 2. Bts: Bts corresponds to the batch trailing segment as defined by the HL7 V2.x standard.
This segment is the second-to-last segment in the message containing details like the
message count in the batch.

 3. Fhs: Fhs corresponds to the file header segment as defined by the HL7 V2.x standard. This
segment is the first segment of the batch message containing header information about
the entire batch.

 4. Fts: Fts corresponds to the file trailing segment as defined by the HL7 V2.x standard. This
segment is the last segment in the message, ending the batch message.

 5. Messages: This is the last part of the multipart batch message containing all the HL7
messages of the batch.

This multipart message is of message type http://OutboundBatch.BatchMessages#BatchMessages and has
a couple of promoted properties that can be used for creating a subscription of batch messages. Some of these key
properties are defined below:

•฀ BTAHL7MessageType: The value of this property is set to OutboundBatch.

•฀ Party: The value of this property is set to the value of MSH5 of the message.

Note ■ The entire batching process is based upon MSH5 in the message. You can have different batch schedule for

different MSH5 values, which allows different destination messages to have different batching schedules.

MLLP Adapter

MLLP (Minimum Lower Layer Protocol) is the most commonly used protocol to transmit HL7 messages within a local
area network (LAN) such as a hospital network. The MLLP protocol uses TCP/IP sockets to transmit messages. Since
the TCP/IP protocol is a continuous transmission of data, the MLLP protocol wraps the HL7 message using header
and trailing characters to indicate the start and end of an HL7 message. These header and trailing characters are also
referred as block characters, as shown in Table 3-1.

Table 3-1. Block Characters

Element Characters Description

SB 0x0B Start of HL7 message

EB 0x1C End of HL7 message

CR 0x0D Carriage return after the End block

The BizTalk HL7 Accelerator provides a MLLP adapter, which implements MLLP protocol to facilitate HL7
message transfer. The MLLP adapter supports both one-way and two-way communication on both the receive and
send side. Table 3-2 lists the properties that can be configured for a MLLP adapter on the receive and send ports.

http://outboundbatch.batchmessages/#BatchMessages

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

45

Table 3-2. MLLP Adapter Properties

Property Send/Receive Description

<CR> Carriage Return Both One of the block characters described above; the default is 0d hex code.
The adapter allows you to configure the CR in case it is some other hex code.

<EB> End Block Both Configures the End Block characters; the default is 1c hex code.

<SB> Start Block Both Configures the Start Block characters; the default is 0b hex code.

Order Delivery Receive The MLLP adapter supports order delivery of messages. Configure this
property to True to submit messages in the order they are received in
your message box. Please note this does not guarantee the end-to-end
ordered delivery of messages; it only ensures messages are received in order
and submitted to message box in order.

Connection Name Both This is the name of the connection you are setting up as part of the
receive or send ports. The connection name is useful for performance
monitoring through performance counters, as counters are available per
connection.

Host Both For receive, this is the server IP on which you want to receive messages;
it should match with the BizTalk host instance server IP.
For Send, this is the server IP where you want to send the messages.

Port Both The server port on which you want to listen to messages or want to send
the messages.

Persistent
Connection

Both This property allows you to configure timeout on the receiving or sending
side of the connection. If this is set to True, there will be no socket
connection timeout; otherwise, the timeout is set as per the Receive or
Send Timeout property.

Receive Timeout Receive The connection timeout in milliseconds when the persistent connection
is set to False; otherwise it needs to be set to 0 to indicate no timeout.

Send Timeout Send Same as Receive Timeout.

Accept ACK Codes Send When sending a message to a destination, the destination can send
different types of acknowledgment codes. BizTalk can suspend the
message being sent if the acknowledgment code is not an expected
one. This property allows you to configure acceptable acknowledgment
codes for your applications. If an unacceptable acknowledgment code is
received, the message being sent will be suspended.

Use Direct
Synchronous
HL7 ACK

Receive The HL7 acknowledgment generated by the HL7 Disassembler is
submitted to the BizTalk Message Box before it is transmitted to the
sending application. This message box round trip introduces latency
in overall throughput, especially for the two-way receive port where
the sending application is waiting for acknowledgment before sending
another message. In order to reduce this latency and increase the
message throughput in a two-way scenario, you set this property to True.
In this case, the MLLP adapter takes responsibility for generating the
acknowledgment and returning the acknowledgment without submitting
it to message box. Please note this setting is ignored for one-way ports.

(continued)

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

46

Property Send/Receive Description

Use MLLP
Transport
Acknowledgment

Both Similar to Use Direct Synchronous HL7 ACK, this property enables the
adapter to send transport layer acknowledgment to sending application
without a message box round trip. There are few differences between
the two:

1) The transport layer acknowledgment format is different from the HL7
acknowledgment and looks like <SB><ACK/NAK><EB><CR> where
ACK = 0x06 hex code and NAK = 0x15 hex code characters. It’s only an
indicator whether the message has been successfully submitted to the
BizTalk message box or not.

2) This property only works for both receive and send ports; however,
both should only be one way. The send port should have Ordered
Delivery set to true in the Transport Advanced Options.

Suspend
Request Message
On MLLP
Transport NAK

Send This property allows you to configure whether you want to suspend the
messages sent to a destination in case the receiving system returns a NAK
MLLP transport acknowledgment. This configuration is used if you are
using a MLLP transport acknowledgment, otherwise it should remain false.

Solicit
Response Enabled

Send In order to receive HL7 acknowledgment sent by the destination
system on a one-way send port, set this property to true along with
the Submit Receive location URI. This configuration can be used to
achieve an asynchronous send operation and still allow you to receive
the acknowledgment message. For example, in an orchestration, if a
requirement is to send a message on a one-way port and you want to
make sure to save the acknowledgment sent by the destination system,
use this method.

Submit Receive
Location URI for ACK

Send If Solicit Response is enabled, you need to provide the URI (IP:Port) of
the receive location where you want to receive the acknowledgment.
As part of the HL7 Accelerator installation, a receive port called
“TwowayAckReceivePort” is created for this purpose; however, you can
create a new receive location as well. There is a limitation that for every
send host bound to MLLP send port, you need to have one receive location
running in the same host to receive acknowledgment. The send host should
only be running on one server.

Accept Missing <SB> Receive This is a new property added as part of BizTalk 2013 R2 to accept
messages without a Start Block character.

Do not Send <SB> Send The same as Accept Missing <SB> option on the Receive side, this
property is for Send, to send the messages without the Start Block
character.

Table 3-2. (continued)

Some of the usage of these properties depends on the scenarios you want to implement. We will discuss some of
these scenarios in Chapter 4.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

47

Note ■ The MLLP adapter, HL7 Disassembler, and HL7 Assembler all are 32-bit components, so make sure you

have a 32-bit host to run them for all BizTalk versions prior to the BizTalk 2013 R2 release. BizTalk 2013 R2 added

support for 64-bit.

HL7 Logging Service

The HL7 logging service is a windows service installed as part of the HL7 Accelerator installation. The purpose of
the HL7 logging service is to provide you with log events related to message processing. By default, the HL7 logging
service is configured to log events to the event viewer, and it logs events for all incoming messages on that server
including successfully received messages and messages with errors.

The HL7 logging service supports three different log stores, and it can write the events in parallel to all three log
stores. These log stores are the following:

•฀ SQL: As part of the HL7 Accelerator installation, a database called BTAHL7 is created, which
contains table called EventLog. If this option is turned on, the HL7 Accelerator log events to
this table.

•฀ WMI: The HL7 Accelerator allows you to write events to the WMI store. WMI events can be
used by monitoring tools such as System Center Operations Manager (SCOM).

•฀ Event Log: This is the default option selected and is the only option which allows you to filter
successful message events.

All these options can be configured from HL7 Configuration Explorer Global Settings tab, as shown in Figure 3-15.

Figure 3-15. Party Explorer global settings

SQL Logging Store

If you are logging to SQL Server, all the event information is inserted into the dbo.EventLog table. Table 3-3 shows the
fields contained within the dbo.EventLog table.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

48

Tip ■ One advantage of using the SQL Event Log table is that you can query the table to create reports. This can come

in handy if you need to provide information about a particular transaction to the sender or receiver.

WMI Event Logging Store

The Windows Management Instrumentation (WMI) Logging Store allows for the capturing of events. Table 3-4 shows
the properties available from the WMI Event Store.

Table 3-3. EventLog SQL Table

Field Name Type Nullable

ID bigint No

Data ntext Yes

CategoryNumber int No

EntryType int No

EventId int No

MachineName nvarchar(256) No

Message ntext No

Source nvarchar(212) No

TimeGenerated datetime No

UserName nvarchar(256) No

MsgGuid uniqueidentifier Yes

SvcGuid uniqueidentifier Yes

Artifact nvarchar(128) Yes

ArtType tinyint Yes

Operation tinyint Yes

MgmtServer nvarchar(256) Yes

MgmtDatabase nvarchar(256) Yes

Table 3-4. WMI Event Properties

Property Data Type

artifact String

artifactType SInt32

blob String

categoryNumber SInt32

entryType SInt32

(continued)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

49

WMI Event Reporting

You can create custom classes to view the events captured using WMI logging. The following samples show you how
to do this. Listing 3-1 and 3-2 show accessing WMI events on a local machine.

Listing 3-1. Asynchronous Method

using System;
using System.Management;
using System.Windows.Forms;

namespace WMIHL7Logging
{
 public class WMIReceiveEvent
 {
 public WMIReceiveEvent()
 {
 try
 {
 WqlEventQuery query = new WqlEventQuery("SELECT * FROM PackageEvent");

 ManagementEventWatcher watcher = new ManagementEventWatcher(query);
 Console.WriteLine("Waiting for an event...");

 watcher.EventArrived += new EventArrivedEventHandler(HandleEvent);

 // Start listening for events
 watcher.Start();

Table 3-4. (continued)

Property Data Type

eventId SInt32

machineName String

message String

messageInstance String

mgmgtDB String

mgmtServer String

operation UInt8

SECURITY_DESCRIPTOR UInt8

serviceInstance String

source String

TIME_CREATED UInt8

timeGenerated String

username String

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

50

 // Do something while waiting for events
 System.Threading.Thread.Sleep(10000);

 // Stop listening for events
 watcher.Stop();
 return;
 }
 catch(ManagementException err)
 {
 MessageBox.Show("An error occurred while trying to receive an event: " + err.Message);
 }
 }

 private void HandleEvent(object sender,
 EventArrivedEventArgs e)
 {
 Console.WriteLine("PackageEvent event occurred.");
 }

 public static void Main()
 {
 WMIReceiveEvent receiveEvent = new WMIReceiveEvent();
 return;
 }

 }
}

Listing 3-2. Synchronous Method

using System;
using System.Management;
using System.Windows.Forms;

namespace WMIHL7Logging
{
 public class WMIReceiveEvent
 {
 public static void Main()
 {
 try
 {
 WqlEventQuery query = new WqlEventQuery("SELECT * FROM PackageEvent");

 ManagementEventWatcher watcher = new ManagementEventWatcher(query);
 Console.WriteLine("Waiting for an event...");

 ManagementBaseObject eventObj = watcher.WaitForNextEvent();

 Console.WriteLine("{0} event occurred.", eventObj["__CLASS"]);

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

51

 // Cancel the event subscription
 watcher.Stop();
 return;
 }
 catch(ManagementException err)
 {
 MessageBox.Show("An error occurred while trying to receive an event: " + err.Message);
 }
 }
 }
}

Listings 3-3 and 3-4 show accessing events on remote machines.

Listing 3-3. Synchronous Method

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Management;

namespace WMIHL7Logging
{
 public class WMIReceiveEvent : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Label userNameLabel;
 private System.Windows.Forms.TextBox userNameBox;
 private System.Windows.Forms.TextBox passwordBox;
 private System.Windows.Forms.Label passwordLabel;
 private System.Windows.Forms.Button OKButton;
 private System.Windows.Forms.Button cancelButton;

 private System.ComponentModel.Container components = null;

 public WMIReceiveEvent()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

52

 private void InitializeComponent()
 {
 this.userNameLabel = new System.Windows.Forms.Label();
 this.userNameBox = new System.Windows.Forms.TextBox();
 this.passwordBox = new System.Windows.Forms.TextBox();
 this.passwordLabel = new System.Windows.Forms.Label();
 this.OKButton = new System.Windows.Forms.Button();
 this.cancelButton = new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // userNameLabel
 //
 this.userNameLabel.Location = new System.Drawing.Point(16, 8);
 this.userNameLabel.Name = "userNameLabel";
 this.userNameLabel.Size = new System.Drawing.Size(160, 32);
 this.userNameLabel.TabIndex = 0;
 this.userNameLabel.Text = "Enter the user name for the remote computer:";
 //
 // userNameBox
 //
 this.userNameBox.Location = new System.Drawing.Point(160, 16);
 this.userNameBox.Name = "userNameBox";
 this.userNameBox.Size = new System.Drawing.Size(192, 20);
 this.userNameBox.TabIndex = 1;
 this.userNameBox.Text = "";
 //
 // passwordBox
 //
 this.passwordBox.Location = new System.Drawing.Point(160, 48);
 this.passwordBox.Name = "passwordBox";
 this.passwordBox.PasswordChar = '*';
 this.passwordBox.Size = new System.Drawing.Size(192, 20);
 this.passwordBox.TabIndex = 3;
 this.passwordBox.Text = "";
 //
 // passwordLabel
 //
 this.passwordLabel.Location = new System.Drawing.Point(16, 48);
 this.passwordLabel.Name = "passwordLabel";
 this.passwordLabel.Size = new System.Drawing.Size(160, 32);
 this.passwordLabel.TabIndex = 2;
 this.passwordLabel.Text = "Enter the password for the remote computer:";
 //
 // OKButton
 //
 this.OKButton.Location = new System.Drawing.Point(40, 88);
 this.OKButton.Name = "OKButton";
 this.OKButton.Size = new System.Drawing.Size(128, 23);
 this.OKButton.TabIndex = 4;
 this.OKButton.Text = "OK";
 this.OKButton.Click += new System.EventHandler(this.OKButton_Click);

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

53

 //
 // cancelButton
 //
 this.cancelButton.DialogResult = System.Windows.Forms.DialogResult.Cancel;
 this.cancelButton.Location = new System.Drawing.Point(200, 88);
 this.cancelButton.Name = "cancelButton";
 this.cancelButton.Size = new System.Drawing.Size(128, 23);
 this.cancelButton.TabIndex = 5;
 this.cancelButton.Text = "Cancel";
 this.cancelButton.Click += new System.EventHandler(this.cancelButton_Click);
 //
 // MyQuerySample
 //
 this.AcceptButton = this.OKButton;
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.CancelButton = this.cancelButton;
 this.ClientSize = new System.Drawing.Size(368, 130);
 this.ControlBox = false;
 this.Controls.Add(this.cancelButton);
 this.Controls.Add(this.OKButton);
 this.Controls.Add(this.passwordBox);
 this.Controls.Add(this.passwordLabel);
 this.Controls.Add(this.userNameBox);
 this.Controls.Add(this.userNameLabel);
 this.Name = "MyQuerySample";
 this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;
 this.Text = "Remote Connection";
 this.ResumeLayout(false);

 }

 [STAThread]
 static void Main()
 {
 Application.Run(new WMIReceiveEvent());
 }

 private void OKButton_Click(object sender, System.EventArgs e)
 {
 try
 {
 ConnectionOptions connection = new ConnectionOptions();
 connection.Username = userNameBox.Text;
 connection.Password = passwordBox.Text;
 connection.Authority = "ntlmdomain:<DOMAINNAME>";

 ManagementScope scope = new ManagementScope(
 "\\\\<FullComputerName>\\root\\Default", connection);
 scope.Connect();

 WqlEventQuery query = new WqlEventQuery(
 "SELECT * FROM PackageEvent");

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

54

 ManagementEventWatcher watcher = new ManagementEventWatcher(scope, query);
 Console.WriteLine("Waiting for an event on <FullComputerName>...");

 watcher.EventArrived +=
 new EventArrivedEventHandler(
 HandleEvent);

 // Start listening for events
 watcher.Start();

 // Do something while waiting for events
 System.Threading.Thread.Sleep(10000);

 // Stop listening for events
 watcher.Stop();
 return;
 }
 catch(ManagementException err)
 {
 MessageBox.Show("An error occurred while trying to receive an event: " + err.Message);
 }
 catch(System.UnauthorizedAccessException unauthorizedErr)
 {
 MessageBox.Show("Connection error (user name or password might be incorrect): " +

unauthorizedErr.Message);
 }
 }

 private void cancelButton_Click(object sender, System.EventArgs e)
 {
 Close();
 }

 private void HandleEvent(object sender,
 EventArrivedEventArgs e)
 {
 Console.WriteLine("PackageEvent event occurred.");
 }
 }
}

Listing 3-4. Asynchronous Method

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Management;

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

55

namespace WMIHL7Logging
{
 public class WMIReceiveEvent : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Label userNameLabel;
 private System.Windows.Forms.TextBox userNameBox;
 private System.Windows.Forms.TextBox passwordBox;
 private System.Windows.Forms.Label passwordLabel;
 private System.Windows.Forms.Button OKButton;
 private System.Windows.Forms.Button cancelButton;
 private System.ComponentModel.Container components = null;

 public WMIReceiveEvent()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void InitializeComponent()
 {
 this.userNameLabel = new System.Windows.Forms.Label();
 this.userNameBox = new System.Windows.Forms.TextBox();
 this.passwordBox = new System.Windows.Forms.TextBox();
 this.passwordLabel = new System.Windows.Forms.Label();
 this.OKButton = new System.Windows.Forms.Button();
 this.cancelButton = new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // userNameLabel
 //
 this.userNameLabel.Location = new System.Drawing.Point(16, 8);
 this.userNameLabel.Name = "userNameLabel";
 this.userNameLabel.Size = new System.Drawing.Size(160, 32);
 this.userNameLabel.TabIndex = 0;
 this.userNameLabel.Text = "Enter the user name for the remote computer:";
 //
 // userNameBox
 //
 this.userNameBox.Location = new System.Drawing.Point(160, 16);
 this.userNameBox.Name = "userNameBox";
 this.userNameBox.Size = new System.Drawing.Size(192, 20);

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

56

 this.userNameBox.TabIndex = 1;
 this.userNameBox.Text = "";
 //
 // passwordBox
 //
 this.passwordBox.Location = new System.Drawing.Point(160, 48);
 this.passwordBox.Name = "passwordBox";
 this.passwordBox.PasswordChar = '*';
 this.passwordBox.Size = new System.Drawing.Size(192, 20);
 this.passwordBox.TabIndex = 3;
 this.passwordBox.Text = "";
 //
 // passwordLabel
 //
 this.passwordLabel.Location = new System.Drawing.Point(16, 48);
 this.passwordLabel.Name = "passwordLabel";
 this.passwordLabel.Size = new System.Drawing.Size(160, 32);
 this.passwordLabel.TabIndex = 2;
 this.passwordLabel.Text = "Enter the password for the remote computer:";
 //
 // OKButton
 //
 this.OKButton.Location = new System.Drawing.Point(40, 88);
 this.OKButton.Name = "OKButton";
 this.OKButton.Size = new System.Drawing.Size(128, 23);
 this.OKButton.TabIndex = 4;
 this.OKButton.Text = "OK";
 this.OKButton.Click += new System.EventHandler(this.OKButton_Click);
 //
 // cancelButton
 //
 this.cancelButton.DialogResult = System.Windows.Forms.DialogResult.Cancel;
 this.cancelButton.Location = new System.Drawing.Point(200, 88);
 this.cancelButton.Name = "cancelButton";
 this.cancelButton.Size = new System.Drawing.Size(128, 23);
 this.cancelButton.TabIndex = 5;
 this.cancelButton.Text = "Cancel";
 this.cancelButton.Click += new System.EventHandler(this.cancelButton_Click);
 //
 // MyQuerySample
 //
 this.AcceptButton = this.OKButton;
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.CancelButton = this.cancelButton;
 this.ClientSize = new System.Drawing.Size(368, 130);
 this.ControlBox = false;
 this.Controls.Add(this.cancelButton);
 this.Controls.Add(this.OKButton);
 this.Controls.Add(this.passwordBox);
 this.Controls.Add(this.passwordLabel);
 this.Controls.Add(this.userNameBox);
 this.Controls.Add(this.userNameLabel);

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

57

 this.Name = "MyQuerySample";
 this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;
 this.Text = "Remote Connection";
 this.ResumeLayout(false);

 }

 [STAThread]
 static void Main()
 {
 Application.Run(new WMIReceiveEvent());
 }

 private void OKButton_Click(object sender, System.EventArgs e)
 {
 try
 {
 ConnectionOptions connection = new ConnectionOptions();
 connection.Username = userNameBox.Text;
 connection.Password = passwordBox.Text;
 connection.Authority = "ntlmdomain:<DOMAINNAME>";

 ManagementScope scope = new ManagementScope(
 "\\\\<FullComputerName>\\root\\Default", connection);
 scope.Connect();

 WqlEventQuery query = new WqlEventQuery(
 "SELECT * FROM PackageEvent");

 ManagementEventWatcher watcher = new ManagementEventWatcher(scope, query);
 Console.WriteLine("Waiting for an event on <FullComputerName> ...");

 watcher.EventArrived +=
 new EventArrivedEventHandler(
 HandleEvent);

 // Start listening for events
 watcher.Start();

 // Do something while waiting for events
 System.Threading.Thread.Sleep(10000);

 // Stop listening for events
 watcher.Stop();
 return;
 }
 catch(ManagementException err)
 {
 MessageBox.Show("An error occurred while trying to receive an event: " + err.Message);
 }

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

58

 catch(System.UnauthorizedAccessException unauthorizedErr)
 {
 MessageBox.Show("Connection error (user name or password might be incorrect): "

+ unauthorizedErr.Message);
 }
 }

 private void cancelButton_Click(object sender, System.EventArgs e)
 {
 Close();
 }

 private void HandleEvent(object sender,
 EventArrivedEventArgs e)
 {
 Console.WriteLine("PackageEvent event occurred.");
 }
 }
}

Note ■ It’s important for this service to run all the time even if in global settings all logging settings are turned off.

HL7 V2.xml Receive and Send Pipelines

BizTalk provides custom pipelines to disassemble an HL7 V2.xml-encoded messages and to assemble the XML into
HL7 V2.xml-encoded messages. These pipelines are deployed to the BizTalk Application 1 application after the HL7
Accelerator installation and can be used in BizTalk Receive and Send Ports like any other pipelines.

Utilities
There are few utilities provided as part of the HL7 Accelerator installation in the %SystemDrive%\Program Files
(x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\SDK\MLLP Utilities folder for 32-bit installations and
%SystemDrive%\Program Files (x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\SDK\2XML Utilities
folders for 64-bit installations.

MLLPSend

The MLLPSend utility can be used to send an HL7 message to any location from the command prompt. This utility is
useful to test the HL7 message in local/test environment. Table 3-5 shows the parameter details.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

59

Following exmaple is sending message in c:\temp\hl7.txt to a IP 127.0.0.1 on port 11001 in a twoway communication.

e.g. mllpsend /I 127.0.0.1 /P 11001 /F C:\temp\hl7.txt /TWOWAY /SB 11 /EB 28 /CR 13

MLLPReceive

MLLPReceive can be used to create a host to receive HL7 messages. This utility is useful for sending a message from
BizTalk to a destination. MLLPReceive parameters detail are provided in Table 3-6.

Table 3-5. MLLPSend Parameters

Parameter Description

/I <IP> denotes the address to send to. The default is localhost.

/P <PORT> denotes the port number to send to. The default is 11000.

/F <File Name | Text> donates either the file full path of the message you want to send or hl7
message as text.

/REPEAT <n> Sends the message n number times.

/TWOWAY Waits for acknowledgment after sending the message. In case you use a file name to send,
the acknowledgment is saved in the <file name>.RESPONSE file.

/UseMLLPTransACK Waits for MLLP transport acknowledgment.

/SB Sets the ASCII value of the Start Block Delimiter Byte; the default is none. Its value usually is 11.

/EB Sets the ASCII value of the End Block Delimiter Byte; the default is none. Its value usually is 28.

/CR Sets the ASCII value of the Carriage Return Delimiter Byte; the default is none. Its value
usually is 13.

Table 3-6. MLLPReceive Parameters

Parameter Description

/I <IP> denotes the address where BizTalk can send data to.

/P <PORT> denotes the listening send port. The default is 12000.

/D The directory where all received messages will be stored; the default directory is %TEMP%.

/SPLIT Splits the received data in to separate messages based on delimiters SB, EB, and CR.

/STATICACK Sends a static acknowledgment to a sender.

/MLLPTransACK Sends a MLLP transport positive acknowledgment

/MLLPTransNAK Sends a MLLP transport negative acknowledgment

/HL7ACK <File Full Path> sends the HL7 acknowledgment as specified in file full path.

/SB Sets the ASCII value of the Start Block Delimiter Byte; the default is none. Its value usually is 11.

/EB Sets the ASCII value of the End Block Delimiter Byte; the default is none. Its value usually is 28.

/CR Sets the ASCII value of the Carriage Return Delimiter Byte; the default is none. Its value usually is 13.

CHAPTER 3 ■ UNDERSTANDING THE HL7 ACCELERATOR

60

Following example is creating a listner on local host port 21110. When a message arrives, message will be saved
to C:\Work\TestFiles\MLLPReceivedFiles folder and an acknowledgment from C:\Work\TestFiles\Acks folder will be
sent to the sender.

e.g. mllpreceive /I 127.0.0.1 /P 21110 /SB 11 /EB 28 /CR 13 /HL7ACK
C:\Work\TestFiles\Acks\ack.txt /D C:\Work\TestFiles\MLLPReceivedFiles

Update2XmlSchema

This utility is used to update HL7 V2.xml-encoded message schemas to modify them so that they can be used within a
BizTalk solution. This utility only supports version 2.3.1, 2.4 or 2.5. Table 3-7 shows the parameter details.

Table 3-7. Update2XmlSchema Parameters

Parameter Description

/s Full path of the original HL7 schemas
downloaded from the HL7 web site.

/v Version of HL7 2.3.1 or 2.4 or 2.5.

This utility updates the message schemas as required by BizTalk and moves the updated schemas to the
\Program Files (x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\Templates\Schemas\V2.XML folder.

Note ■ After running the utility and adding these schemas to the BizTalk project, make sure you change the Root

Reference property of schema; so for ADT_A01_25_GLO_DEF schema, change the root reference to ADT_A01.

Summary
In this chapter, you learned about the BizTalk HL7 Accelerator architecture, its various components, and how they
work together. Understanding these concepts is the key to any BizTalk implementation using the HL7 Accelerator.
In Chapter 4, you are going to see the HL7 Accelerator in action.

61

CHAPTER 4

The HL7 Accelerator in Action

In the previous chapter, you learned about the HL7 Accelerator architecture, including all the components of the
HL7 Accelerator. In this chapter, you will learn implementation of various scenarios using the HL7 Accelerator's
components. We will discuss the following scenarios:

Message exchange•฀

Simple message routing with default configurations•฀

Turning off message body validation•฀

Accepting messages with customized fields•฀

Customized acknowledgment behavior•฀

Message transformation•฀

Sending a HL7 message via the MLLP adapter•฀

Batching•฀

Message Exchange
In an HL7 message exchange, there are always two entities, the initiating and responding system. Each system is both
a sender and receiver of messages. The initiator system first sends then receives, and the responding system first
receives and then sends, as shown in Figure 4-1.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

62

The following are the steps for any message exchange between the initiating and responding systems.

 1. The message initiator sends the message to the responding system.

 2. The responding system receives the message and processes it.

 3. The responding system sends the acknowledgment message.

 4. The initiator receives the response message and process it.

Message processing on the responding system side depends on the acknowledgment mode used. How the
processing differs is detailed in upcoming subsections.

Message Processing—Original Mode
The responding system processing in original mode is shown in Figure 4-2.

Figure 4-1. Basic message exchange scenario

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

63

The responding system after receiving the message does at least the following validation in original mode.

 1. The value in MSH9 (message type) is one that is acceptable to the receiver.

 2. The value in MSH12 (version) is one that is acceptable for receiver.

 3. The value is MSH11 (processing ID) is appropriate for the application process handling
the message.

If any of the above validation fails, then the responding system returns an acknowledgment with
acknowledgment code AR to the sending system; in other words, it will reject the message.

If the above validation fails, then it moves to the following steps.

 4. It processes the message successfully, generating the acknowledgment with
acknowledgment code AA in MSA1.

 5. In case of an error, it sends the acknowledgment with acknowledgment code AE with
details of the error in ERR segment.

 6. It fails to process the message due to internal system issues like the system is down
or an internal error, it rejects the message, and it sends the acknowledgment with
acknowledgment code AR. In such a situation, the sending application should be able to
resubmit the message when the receiving system issue is resolved.

The acknowledgment with the appropriate code is returned to the sending system. Then the sending system
processes the response.

Figure 4-2. Responding system—original mode

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

64

Message Processing—Enhanced Mode
In enhanced mode, the message processing by the responding system is shown in Figure 4-3. As you know, the
message is committed to safe storage for further processing. The responding system determines, based on following
factors, whether message is good to commit to safe storage:

Availability of safe storage•฀

The syntactical correctness of the message, if the design of the receiving application includes •฀
such validation at this stage

The validation of MSH9, MSH11, and MSH12, if the design of the receiving application •฀
includes such validation at this stage

Figure 4-3. Responding system—enhanced mode

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

65

It then checks for MSH15 in the received message and sees if the initiating system requires an Accept
Acknowledgment; if it does, then a general acknowledgment is sent to the sending system with one of following
acknowledgment codes:

CA - If the message can be accepted for processing•฀

CR - If one of the values in MSH9, MSH11, and MSH12 is not acceptable to the receiving •฀
application

CE - If the message cannot be accepted due to any other reason•฀

After message processing, the receiving application checks MSH16 in the received message to see if the sending
application requires application acknowledgment. If it does, then the receiving application sends an application
acknowledgment. In such a case, the receiving application becomes the initiator and the sending application becomes
the receiving application, and the whole process of sending an application acknowledgment become any other
message exchange between two systems except that in application acknowledgment message cannot have MSH16.

Note ■ The original acknowledgment protocol is equivalent to the enhanced acknowledgment protocol with

MSH-15-accept acknowledgment type = NE and MSH-16-application acknowledgment type = AL, and with the

application acknowledgment message defined so that it never requires an accept acknowledgment (MSH-15-accept

acknowledgment type = NE).

Simple Message Routing
In this scenario, you will learn how to use the various HL7 Accelerator components together to build a simple
message routing application. As shown in Figure 4-1, you will implement a responding system using the BizTalk HL7
Accelerator and see how two different acknowledgment modes can be achieved.

Note ■ In order to implement this scenario, you will use HL7 version v2.5.1 ADT message type, with triggering event A01.

The implementation of simple message routing is same, irrespective of the acknowledgment mode you want to
use. You will see how to switch from one acknowledgment mode to another using configuration.

Building the Solution
The following are the steps you will take to create the BizTalk solution for this scenario.

Common Project

 1. Create a Visual Studio Blank Solution named HL7.Common.

 2. Create a new BTAHL7V2XCommon project in the solution with the name HL7.Common.
Schemas, as shown in Figure 4-4.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

66

Figure 4-5. Common project in Solution Explorer

Figure 4-4. Common project template

The project in Solution Explorer will look like Figure 4-5.

 3. Change the BizTalk Deployment properties to deploy this project to BizTalk under the HL7.
Common BizTalk application.

 4. Sign the project using a strong name key and deploy it.

Note ■ Message header (MSH_25_GLO_DEF.xsd) and acknowledgment (ACK_24_GLO_DEF and ACK_25_GLO_DEF)

message schemas can only be deployed once in BizTalk Group for all applications.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

67

Build HL7 Version Schemas Project

You will learn the steps to add specific HL7 message schemas to a BizTalk project. For this scenario, you will be adding
version 2.5.1 ADT message type with triggering event A01.

 1. Create a new Visual Studio blank solution with the name HL7.Chapter4.Scenarios.

 2. Create a BTAHL7V251Common project for the solution, as shown in Figure 4-6.

Figure 4-6. Segments, DataTypes, TableValues Project Template

 3. The above step will add datatypes_251, tablevalues_251, and segments_251 schemas.
Now add a new item to the project via Ctrl+Shift+A and select BTAHL7 Schemas as shown
in Figure 4-7.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

68

 4. Click Add, and don't worry about naming the file as next step overrides anything you select
here. Once you click Add, you get a new screen called HL7 Schema Selector where you
select the message type, triggering event, and version.

 5. Select the message class, version, message type, and trigger event as shown in Figure 4-8.
Once you click Create, it adds a schema named ADT_A01_251_GLO_DEF.xsd

Figure 4-7. Message Type Schema Template

Figure 4-8. HL7 Schema Type Selector

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

69

 6. By default, the message schema is expected to be added to a separate project because it
refers to segments_251 xsd from an assembly reference, as shown:

<xs:import schemaLocation="BTAHL7Schemas.segments_251"
namespace="http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments" />

 7. Since you added the schema to same project as segments_251 schema, change the schema

location to the following:

<xs:import schemaLocation="segments_251.xsd"
namespace="http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments" />

 8. The project in Solution Explorer will look like Figure 4-9.

Figure 4-9. Message Schema Project in Solution Explorer

 9. Sign, build, and deploy the project to BizTalk application HL7.Chapter4.Scenarios

This is all that is required to receive an ADT message and route it somewhere else. In this case, you will route it
to a folder.

http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments
http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

70

Configurations
Let's create the required receive and send ports to configure the deployed application using the following steps.

 1. Add a reference to BizTalk Application 1 application in the BizTalk admin console.

 2. Create a two-way MLLP receive port with the following configurations:

Property Value

Adapter Type MLLP

Receive Handler A 32-bit host

Receive Pipeline BTAHL72XReceivePipeline

Receive Pipeline->Enable Trailing Delimiter True

Send Pipeline BTAHL72XSendPipeline

MLLP->Use Direct Synchronous HL7 ACK True

MLLP->Connection Name Same as your receive location name

MLLP->Host 127.0.0.1

MLLP->Persistent Connection True

MLLP->Port 11001 (could be any available port)

MLLP->Receive Time Out 0

 3. Create one send port for successfully parsed messages to send them to a FILE folder using
following properties:

Property Value

Filter->BTAHL7Schemas.ParseError False

Filter->BTS.MessageType http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF

Send Pipeline BTAHL72XSendPipeline

Send Handler A 32-bit host

This port will send all successfully parsed ADT messages.

 4. Create one send port for failed messages with following filters:

Property Value

Filter->BTAHL7Schemas.ParseError True

Send Pipeline Passthrough

Send Handler Any host, 32-bit or 64-bit

This port will send messages that failed parsing by the HL7 Disassembler.

 5. Start the application and the host instances.

http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

71

Test the Scenario
For testing the scenario, you will use a sample ADT^A01 message (provided below for reference).

MSH|^~\&|ADTSource|MCM|ADTDestination|MCM|198808181126|SECURITY|ADT^A01|MSG00002|P|2.5.1|||AL|NE
EVN|A01|198808181123
PID|||PATID1234^5^M11||FN^LN^A^III||19610615|A||2106-3|Address line1^^City^State^Zip|GL|000-000-
0000|000-000-0000~000-000-0000||S||PATID12345001^2^M10|123456789|9-87654^NC
NK1|1|FN^LN^K|SPO|||||20011105
NK1|1|FN^LN^A|FTH
PV1|1|I|2000^2012^01||||004777^LEBAUER^SIDNEY^J.|||SUR||-||1|A0
AL1|1||^PENICILLIN||PRODUCES HIVES~RASH
AL1|2||^CAT DANDER
DG1|001|I9|1550|MAL NEO LIVER, PRIMARY|19880501103005|F||
PR1|2234|M11|111^CODE151|COMMON PROCEDURES|198809081123
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|FN^LN^ELLEN|199505011201
GT1|1122|1519|BILL^GATES^A
IN1|001|A357|1234|BCMD|||||132987
IN2|ID1551001|SSN12345678
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|KATE^ELLEN|199505011201

There are a couple of ways to send this message to your receive location in BizTalk. The MLLPSend utility
provided by the HL7 Accelerator discussed in Chapter 3 can be used as follows:

C:\Program Files (x86)\Microsoft BizTalk 2013 Accelerator for HL7\SDK\MLLP Utilities>mllpsend
/IP 127.0.0.1 /P 11001 /TWOWAY /SB 11 /EB 28 /CR 13 /F C:\Work\TestFiles\demo1.hl7

With this method, the message acknowledgment returned by the BizTalk connection will be saved in the
demo1.hl7.RESPONSE file in the C:\Work\TestFiles folder and the acknowledgment will look as follows:

MSH|^~\&|ADTDestination|MCM|ADTSource|MCM|20140318063809||ACK^A01^ACK|20000GSM|P|2.5.1
MSA|CA|MSG00002

If everything is set up correctly, you should get the above acknowledgment and the message should route to the
successfully parsed send port. If you stop your send port and notice the context properties of the suspended message,
there will be number context properties promoted by the HL7 Disassembler, which can also be used for routing. These
properties are defined in the HL7PropertySchema in BizTalk Application 1.

The second method to send HL7 messages to your receive location is a third-party tool referred to as 7Edit. This is
a very useful GUI tool as it provides easy mapping of a HL7 message to their segment and fields. You can download a
free trial from www.7edit.com/home/index.php.

Key Observations
Some of the key observations we want to highlight while creating and testing these scenarios are as follows:

There is no need to define a party to accept and parse the message successfully.•฀

The context properties promoted by the HL7 Disassembler, such as MSH3_1, MSH5_1, and •฀
ParseError, are useful for routing.

http://www.7edit.com/home/index.php

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

72

The MSA.1 code CA in the acknowledgment message indicates enhanced mode •฀
acknowledgment as requested using MSH15. If you change MSH15 to NE and MSH16 to
AL, then you will receive an original acknowledgment mode acknowledgment with code
AA. You can try changing the values of MSH15 and MSH16 in the message to see different
behavior. In some cases like where MSH15 = AL and MSH16 = AL, you will get a suspended
message in BizTalk because it will now generate two acknowledgments, one with code AA
and another with CA.

Change the message to make it invalid; for example, change PID8 value to A1 and resend the •฀
message. You will see message routing to Failed Message send port with parse error = true.
PID8 field has a predefined list of values which you can use, and A1 is not part of that list, so
the Disassembler fails in parsing the message. If in your message MSH15 = AL and MSH16
= NE, then the acknowledgment returned will have no error details; however, if you change
MSH15 = NE and MSH16 = AL, then the error is returned as part of the acknowledgment.

Change the message type MSH9 of the message to ADT^A02 and resend the message. You •฀
will see that an error is returned that the message schema for ADT A02 is not found and the
message is routed to the failed message send port.

Note ■ In this scenario, the HL7 Accelerator is using default configuration (message body validation,

acknowledgment mode).

Turning Off Message Body Validation
In many cases, the message you receive contains a lot of local customized data which does not conform to the HL7
messaging standard, and the requirement is to still accept the message and route it to the destination as required. In
such cases, you need to turn off the message body validation.

Build the Solution
As part of implementation, you are going to use exact same Visual Studio solution you used in previous scenarios and
expand it as required.

Configuration
In order to turn off message validation, you will perform following steps.

 1. Identify the MSH3 value in the message. In your sample ADT message, it is ADTSource.
Typically, this is an identifier of the message source.

 2. Create a party called ADTSource from the BizTalk Admin Console, as shown in
Figures 4-10 and 4-11.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

73

When creating the party, only give it a name and save it; no other configuration is required.

 3. Go to BTAHL7 Configuration Explorer, which is installed along with HL7 Accelerator.
As you open it, you should see the party ADTSource in left list box along with any other
parties available, as shown in Figure 4-12.

Figure 4-10. New party creation option

Figure 4-11. Party creation

Figure 4-12. BTAHL7 Configuration Explorer

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

74

 5. Restart the host on which you have configured your receive location.

 4. Go to the Validation tab and uncheck “Validate body segments” and check “Allow trailing
delimiters (separators)” as shown in Figure 4-13 and save the party.

Figure 4-13. BTAHL7 Configuration Explorer Validation tab

Note that the “Validate body segments” option is checked by default as shown below:

Figure 4-14. BTAHL7 Configuration Explorer Validation tab default values

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

75

Test the Scenario
If you now test the following sample message which has a body validation error in PID 8 (highlighted bold), you will
see that no error is raised by the HL7 Disassembler and the message is parsed successfully:

MSH|^~\&|ADTSource|MCM|ADTDestination|MCM|198808181126|SECURITY|ADT^A01|MSG00002|P|2.5.1|||NE|AL
EVN|A01|198808181123
PID|||PATID1234^5^M11||FN^LN^A^III||19610615|A1||2106-3|Address line1^^City^State^Zip|GL|000-000-
0000|000-000-0000~000-000-0000||S||PATID12345001^2^M10|123456789|9-87654^NC
NK1|1|FN^LN^K|SPO|||||20011105
NK1|1|FN^LN^A|FTH
PV1|1|I|2000^2012^01||||004777^LEBAUER^SIDNEY^J.|||SUR||-||1|A0
AL1|1||^PENICILLIN||PRODUCES HIVES~RASH
AL1|2||^CAT DANDER
DG1|001|I9|1550|MAL NEO LIVER, PRIMARY|19880501103005|F||
PR1|2234|M11|111^CODE151|COMMON PROCEDURES|198809081123
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|FN^LN^ELLEN|199505011201
GT1|1122|1519|BILL^GATES^A
IN1|001|A357|1234|BCMD|||||132987
IN2|ID1551001|SSN12345678
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|KATE^ELLEN|199505011201

Key Observations
 1. There is no development effort for switching off message body validation.

 2. If you receive a message from a different source (a different MSH3), you need a new party to be
created to turn off the message validation for each of them. This can become a maintenance
problem if the number of message sources is too many. You can avoid this by doing further
customization using pipeline components, which we will discuss later in this chapter.

 3. The host instance restart is always required after making any change to a party
configuration.

 4. Notice the behavior after turning on the validation again and you will see the same error
returned in acknowledgment.

Note ■ You have seen property called Allow Trailing Delimiter and you specifically checked it in the party configuration

and receive pipeline properties. This property means you can accept messages that have a trailing delimiter in the

message segment; in above sample, the DG1 segment has trailing delimiter. Notice the behavior if you uncheck it in the

party configuration; you will get the acknowledgment with an error on the DG1 segment.

Accept Messages with Customized Fields
There are a couple of scenarios where you need to accept messages with customized fields and as a result you need to
modify message schema. These scenarios are listed in the following sections

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

76

Z Segment
The HL7 standard allows customization for a message using Z segments. Using these segments you can add fields as
per specific system requirements. These Z segments by default are parsed by the HL7 Disassembler as string data type
as follows and as shown in Figure 4-15:

ZIN|1|SP|MCR WPS AB|Y|20130420|HX KPI8483||N|||||MCRABWPS

Figure 4-15. Z Segments data in message

If you add the above ZIN segment to your ADT sample and send the message, observer the Z Segments of parsed
message on a suspended message instance by stopping the send port.

In many cases, these ZSegments are required to be part of BodySegments so that they can be used in BizTalk
maps for transformation. In such cases, you need to change your ADT schema to include Z segment definition.

Standard Segment Field Customization
In addition to the Z segment addition to a schema, many times the source system generates extra segment fields in the
message. These extra segment fields, which are not defined in HL7 standard schemas, cause the HL7 Disassembler
to fail parsing even if body validation is turned off. This is a very common problem when parsing HL7 messages in
BizTalk. One example of such message is the following:

MSH|^~\&|ADTSource|MCM|ADTDestination|MCM|198808181126|SECURITY|ADT^A01|MSG00002|P|2.5.1|||NE|AL
EVN|A01|198808181123
PID|||PATID1234^5^M11||FN^LN^A^III||19610615|A||2106-3|Address line1^^City^State^Zip|GL|000-000-
0000|000-000-0000~000-000-0000||S||PATID12345001^2^M10|123456789|9-87654^NC
NK1|1|FN^LN^K|SPO|||||20011105
NK1|1|FN^LN^A|FTH
PV1|1|I|2000^2012^01||||004777^LEBAUER^SIDNEY^J.|||SUR||-||1|A0
AL1|1||^PENICILLIN||PRODUCES HIVES~RASH
AL1|2||^CAT DANDER
DG1|001|I9|1550|MAL NEO LIVER, PRIMARY|19880501103005|F||
PR1|2234|M11|111^CODE151|COMMON PROCEDURES|198809081123
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|FN^LN^ELLEN|199505011201
GT1|1122|1519|BILL^GATES^A
IN1|001|A357|1234|BCMD||||12345^11123|132987

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

77

IN2|ID1551001|SSN12345678
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|KATE^ELLEN|199505011201
ZIN|1|SP|MCR WPS AB|Y|20130420|HX KPI8483||N|||||MCRABWPS

In this example, IN1.8 field highlighted in bold causes parsing to fail with the following error:

MSH|^~\&|ADTDestination|MCM|ADTSource|MCM|20140320202627||ACK^A01^ACK|0000GSM2|P|2.5.1|||NE
MSA|AE|MSG00002
ERR||IN1^1^8|102^Data type error^HL79999|E||||||||^^^^^^^^^^^

The error exactly indicates which field of the segment has the issue. Such errors cannot be resolved even by
turning off body validation. The recommended approach to solve such an issue is to ask the message source system to
fix this; however, this is not always possible. In cases where you need to accept the message with extra fields, you need
to modify the message schema, as you will see shortly.

Build the Solution
In order to implement both scenarios, you will modify ADT message schema using following steps.

 1. Add a new BTAHL7V251Common Project to your previous scenario solution and name it
HL7.Chapter4.Scenarios.CustomizedSchemas.

 2. Add the ADT A01 schema to the project as you did in the previous scenario.

 3. In order to customize the schemas, you need to change the default target namespace of
all the schemas you added. The quickest way is to find http://microsoft.com/HealthCare/HL7/2X
and replace it with a new namespace like http://hl7.chapter4.scenario.
customization/schemas/hl7/2x.

 4. After the change, you should be able to open the ADT schema without any error.

 5. Now that you can modify your schemas as necessary, let's look for IN1 segment in
segments_251.xsd and go to field IN1_8_GroupNumber. Note that this is a simple type
accepting strings. To change it as per your sample message, you need to add a new
complex type in the datatypes_251.xsd schema.

<xs:element name="CustomIN1_8" type="CustomIN1_8" />
<xs:complexType name="CustomIN1_8"><xs:sequence><xs:element name="GroupNumber" type="ST" />
<xs:element name="GroupNumber_1" type="ST" /></xs:sequence></xs:complexType>

 6. Let’s go back to segments_251.xsd to change IN1_8_GroupNumber. Since this field is a

simple type, you need to delete it and replace it with a Record type and change its data
structure type to ns0:CustomIN1_8.

 7. Now let’s add a ZIN segment to segments_251.xsd as follows:

<xs:element name="ZIN" type="ZIN" />
<xs:complexType name="ZIN">
 <xs:sequence>
 <xs:element name="Field1" type="ns0:ST" />
 <xs:element name="Field2" type="ns0:ST" />
 <xs:element name="Field3" type="ns0:ST" />
 <xs:element name="Field4" type="ns0:ST" />
 <xs:element name="Field5" type="ns0:ST" />

http://microsoft.com/HealthCare/HL7/2X
http://hl7.chapter4.scenario.customization/schemas/hl7/2x
http://hl7.chapter4.scenario.customization/schemas/hl7/2x

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

78

 <xs:element name="Field6" type="ns0:ST" />
 <xs:element name="Field7" type="ns0:ST" />
 <xs:element name="Field8" type="ns0:ST" />
 <xs:element name="Field9" type="ns0:ST" />
 <xs:element name="Field10" type="ns0:ST" />
 <xs:element name="Field11" type="ns0:ST" />
 <xs:element name="Field12" type="ns0:ST" />
 <xs:element name="Field13" type="ns0:ST" />
 <xs:element name="Field14" type="ns0:ST" />
 </xs:sequence>
</xs:complexType>

 8. Now add the newly defined ZIN segment to the ADT A01 schemas by adding a child record

of data structure type ns0:ZIN.

 9. Your modifications to the schemas are complete. Now deploy the application to the HL7.
Chapter4.Scenarios.CustomizedSchemas BizTalk application.

Note ■ Changing the default target namespace of the schemas allows you to deploy both your original message and

modified schemas. Remember, you cannot modify the namespace for MSH and ACK message types.

Configuration
Receive and Send Ports

You will use your first scenario's receive and send port configurations to test this scenario, except one additional send
port is required to receive your modified schema. You will create this send port in application HL7.Chapter4.Scenarios
itself to keep all send ports together. The send port properties are as follows:

Property Value

Filter->BTAHL7Schemas.ParseError False

Filter->BTS.MessageType http://hl7.chapter4.scenario.customization/schemas/hl7/2x
#ADT_A01_251_GLO_DEF

Send Pipeline BTAHL72XSendPipeline

Send Handler A 32-bit host

Party

You will now create a new party named ADTSource_A. On the validation tab, make the following changes:

 1. Change the schema namespace to
http://hl7.chapter4.scenario.customization/schemas/hl7/2x.

 2. Uncheck body validation.

 3. Allow trailing delimiters.

The party configuration should look like Figure 4-16.

http://hl7.chapter4.scenario.customization/schemas/hl7/2x
http://hl7.chapter4.scenario.customization/schemas/hl7/2x

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

79

Save the party and restart the host instances.

Note ■ The only reason you created a new party is to keep both scenarios working and to showcase the difference

between the two. You can always modify your existing party to change the namespace.

Test the Scenario
In your sample message, change MSH3 to ADTSource_A to match the party name and test the message. Note now that
the message has been parsed successfully with the body having a ZIN segment and IN1_8 having two fields.

Key Observations
 1. Both message types with original schemas and modified schemas can coexist by changing

the target namespace.

 2. The same receive port can accept both messages using different MSH3 (if you change
MSH3 to ADTSource, the message default schema will be used by the Disassembler; if it is
ADTSource_A, then a customized schema will be used).

Customized Acknowledgment Behavior
As of now, you have used the default behavior of the HL7 Accelerator for acknowledgment, which means the
acknowledgment is generated based on the MSH15 and MSH16 value in the message. In many cases, the HL7 message
does not have both MSH15 and MSH16 values defined, and the sending application still wants an acknowledgment to
be returned. In such cases, with the default behavior on the two-way receive port, no acknowledgment is generated by
the HL7 Accelerator, and the two-way receive port instance is kept waiting for the acknowledgment.

Ideally, the sending application should be sending MSH15 and MSH16, requesting acknowledgment; however at
times messages don't have these field values. The HL7 Accelerator allows you to configure an acknowledgment mode
in such cases to generate the acknowledgment when MSH15 and MSH16 are not supplied in message.

Figure 4-16. Validation tab: BTAHL7 Configuration Explorer

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

80

Build the Solution
There is no change to the solution you have built so far.

Configurations
All you need to do to make this work is change the acknowledgment mode in the party configuration from "None" to
one of the modes you want, as shown in Figure 4-17.

Figure 4-17. Acknowledgment tab: BTAHL7 Configuration Explorer

If you use EnhancedMode, you can also override MSH15 and MSH16 depending on the requirement. You can
also override other MSH segment fields in the generated acknowledgment for modes other than StaticMode.

Note ■ All different acknowledgment modes defined on acknowledgment tab are only used when MSH15 and

MSH16 values are not present in message—except for StaticMode.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

81

Test the Scenario
If you remove the MSH15 and MSH16 values from the sample message and test it, you will see the exact behavior
configured on the party configurator.

Key Observations

 1. Use a different acknowledgment mode and notice the generated acknowledgment.
The acknowledgment is generated as per the configuration.

 2. Notice the behavior when MSH15 and MSH16 are also provided in the message
and the party configuration has an acknowledgment mode defined. In this case, the
acknowledgment mode provided within the party configuration is ignored unless the
acknowledgment is static.

Message Transformation
Message transformation is one of the key features of BizTalk. Message transformation for a HL7 message is same as
any other xml message transformation except that transformation requires an orchestration to be created because a
HL7 message is disassembled into a multipart message. This is a limitation of all multipart messages because a map
cannot be created and used without orchestration for such messages. In this scenario, you will learn how to consume
a HL7 multipart message in orchestration and use a map to transform it.

For this scenario, you will transform the incoming message ADT^A01 on message type http://microsoft.com/
HealthCare/HL7/2X#ADT_A01_251_GLO_DEF to ADT^A01 message of message type http://hl7.chapter4.scenario.
customization/schemas/hl7/2x#ADT_A01_251_GLO_DEF.

Build the Solution
You will use the same solution you have been using for other scenarios to build the maps and orchestration using
following steps.

 1. Add a new project called HL7.Chapter4.Scenarios.Orchestrations to the solution you built
and add a reference to the HL7.Common.Schemas assembly created in the first scenario.

 2. Add another reference to the schema project that contains the ADT^A01 message. You
also need to add a reference to the HL7 Accelerator property schema assembly called
Microsoft.Solutions.BTAHL7.HL7Schemas to add filters on the receive shape.

 3. Add a new multipart message type named HL7MessageType from the orchestration view
with three parts to it as follows:

Message Parts Body Part Type

Part 1-> MSHSegment False MSH_25_GLO_DEF, schema type referenced from HL7.
Common.Schemas assembly.

Part2->BodySegments True ADT_A01_251_GLO_DEF, schema type referenced from
HL7.Chapter4.Scenarios.Schemas project

Part3->Z Segments False System.String

http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF
http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF
http://hl7.chapter4.scenario.customization/schemas/hl7/2x#ADT_A01_251_GLO_DEF
http://hl7.chapter4.scenario.customization/schemas/hl7/2x#ADT_A01_251_GLO_DEF

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

82

 4. Add another multipart message type named HL7MessageOutType from the orchestration
view with three parts to it as follows:

Message Parts Body Part Type

Part 1-> MSHSegment False MSH_25_GLO_DEF, schema type referenced from HL7.
Common.Schemas assembly.

Part2->BodySegments True ADT_A01_251_GLO_DEF, schema type referenced from
HL7.Chapter4.Scenarios.CustomizedSchemas project

Part3->Z Segments False System.String

 5. Now create the input message variable named hl7MesageIn of a multipart message type
and use this message to receive an ADT message from the message box with a filter on
following filters:

BTS.MessageType = "http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF" And
BTAHL7Schemas.ParseError = false

 6. Create another message variable for output hl7MessageOut of the second multipart

message type HL7MessageOutType.

 7. In order to create the transformation, you also need to create two message variables of
your source and destination body schema types (HL7.Chapter4.Scenarios.Schemas.ADT_
A01_251_GLO_DEF and HL7.Chapter4.Scenarios.CustomizedSchemas.ADT_A01_251_
GLO_DEF).

 8. Create the transformation using the two message variables you created in step 7
and use the mass copy function to map everything from source to destination, as
shown in Figure 4-18.

Figure 4-18. Map

 9. In the construct shape, use the transformation to map the body and use the message
assignment shape to assign the other message parts.

http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

83

First assignment shape:

bodySegmentIn = hl7MessageIn.BodySegments;

Second assignment shape:

hl7MessageOut.BodySegments = bodySegmentOut;
hl7MessageOut.Z Segments = hl7MessageIn.Z Segments;
hl7MessageOut.MSHSegment = hl7MessageIn.MSHSegment;
hl7MessageOut(*) = hl7MessageIn(*);

 10. Send the output message, and name the logical send port operation to

SendTransformedMessage.

 11. The orchestration will look like Figure 4-19.

Figure 4-19. Orchestration sample

 12. Build and deploy the solution to the HL7.Chapter4.Scenarios application.

Configurations
The configuration will be same for other scenarios except you will add another send port called Send_
OrchestrationOutput to subscribe to the message output of orchestration using the BTS.Operation ==
SendTransformedMessage filter.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

84

Test the scenario
You will be using the sample ADT message that you have been using for all scenarios with MSH3=ADTSource. For
quick reference, the message is provided below:

MSH|^~\&|ADTSource|MCM|ADTDestination|MCM|198808181126|SECURITY|ADT^A01|MSG00002|P|2.5.1|||AL|NE
EVN|A01|198808181123
PID|||PATID1234^5^M11||FN^LN^A^III||19610615|A||2106-3|Address line1^^City^State^Zip|GL|000-000-
0000|000-000-0000~000-000-0000||S||PATID12345001^2^M10|123456789|9-87654^NC
NK1|1|FN^LN^K|SPO|||||20011105
NK1|1|FN^LN^A|FTH
PV1|1|I|2000^2012^01||||004777^LEBAUER^SIDNEY^J.|||SUR||-||1|A0
AL1|1||^PENICILLIN||PRODUCES HIVES~RASH
AL1|2||^CAT DANDER
DG1|001|I9|1550|MAL NEO LIVER, PRIMARY|19880501103005|F||
PR1|2234|M11|111^CODE151|COMMON PROCEDURES|198809081123
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|FN^LN^ELLEN|199505011201
GT1|1122|1519|BILL^GATES^A
IN1|001|A357|1234|BCMD||||12345|132987
IN2|ID1551001|SSN12345678
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|KATE^ELLEN|199505011201
ZIN|1|SP|MCR WPS AB|Y|20130420|HX KPI8483||N|||||MCRABWPS

In testing, you will see now that the message is sent to two send ports: the original message output and the
transformed message output. You can cross-check the output by stopping your send ports and checking the
suspended send ports message types.

Key Observations
 1. Implementation of orchestration and transformation of the HL7 multipart message is

simple, except the transformation can be complex due to the number of fields in the
message and depending on the requirements.

 2. It's not possible to use maps on the receive or send ports directly; this limitation is due to
the multipart message and requires orchestration to be built.

Send an HL7 Message via a MLLP Adapter
So far in all the scenarios, you have been using the FILE send adapter to send messages; however, in a real scenario,
you will mostly be using the MLLP adapter to send HL7 messages. In this scenario, you will learn how to configure
both one- and two-way MLLP send adapters.

Build the Solution
You will use your existing scenario solution. No change is required.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

85

Configuration
You will configure two send ports to configure the following two options:

Create a one-way send port and receive acknowledgment on different receive locations.•฀

Property Value

Adapter Type MLLP

Send Handler A 32-bit host

Send Pipeline BTAHL72XSendPipeline

Send Pipeline->Enable Trailing Delimiter True

MLLP->Acceptable Ack Codes All

MLLP->Connection Name Same as your send port name (could be any string
identifying the connection in performance counter)

MLLP->Host 127.0.0.1

MLLP->Persistent Connection True

MLLP->Port 21110 (could be any available port)

MLLP->Send Time Out 0

MLLP->Solicit Response Enabled Yes

MLLP->Submit Receive Location URI for ACK 127.0.0.1:65535 (This receive location is created
in BizTalk Application 1 after the HL7 Accelerator
installation. You can create any other one-way
receive location on a different port to receive the ack;
the key thing is that the host must be same for both
send port and receive location.)

Filters BTAHL7Schemas.ParseError == false And
BTS.MessageType == http://microsoft.com/
HealthCare/HL7/2X#ADT_A01_251_GLO_DEF

All other configurations should be left default.

http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF
http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

86

Create one two-way send port to receive the acknowledgment.•฀

Property Value

Adapter Type MLLP

Send Handler A 32-bit host

Send Pipeline BTAHL72XSendPipeline

Send Pipeline->Enable Trailing Delimiter True

Receive Pipeline BTAHL72XReceivePipeline

Receive Pipeline->Enable Trailing Delimiter True

MLLP->Acceptable Ack Codes All

MLLP->Connection Name Same as your send port name (could be any string
identifying the connection in performance counter)

MLLP->Host 127.0.0.1

MLLP->Persistent Connection True

MLLP->Port 21111 (could be any available port)

MLLP->Send Time Out 0

Filters BTAHL7Schemas.ParseError == false And
BTS.MessageType == http://microsoft.com/
HealthCare/HL7/2X#ADT_A01_251_GLO_DEF

All other configurations should be left default.

Now create a listener on port 21111 and 21110 to receive the message and send the •฀
acknowledgment. Listeners can be created either using the MLLPReceive utility provided by
the HL7 Accelerator or using the 7-Edit tool. Let's create it using MLLPReceive using following
command on the command prompt:

mllpreceive /I 127.0.0.1 /P 21110 /SB 11 /EB 28 /CR 13 /HL7ACK C:\Work\TestFiles\Acks\
ack.txt /D C:\Work\TestFiles\MLLPReceivedFiles\21110

and

mllpreceive /I 127.0.0.1 /P 21110 /SB 11 /EB 28 /CR 13 /HL7ACK C:\Work\TestFiles\Acks\
ack.txt /D C:\Work\TestFiles\MLLPReceivedFiles\21111

The following is the acknowledgment message sent to BizTalk:

MSH|^~\&|TEST2|MCM|TEST|MCM|20131226132358||ACK|10000GSM|P|2.5.1|||NEMSA|AE|MSG00001ERR||
PID^1^5|102^Data type error^HL79999|E||||||||^^^^^^^^^^^ ERR||NK1^1^2|102^Data type error
^HL79999|E||||||||^^^^^^^^^^^

You also need to create one send port to subscribe to the acknowledgment sent by •฀
MLLReceive to BizTalk. The send port you create is a FILE adapter with a filter on
BTS.MessageType == http://microsoft.com/HealthCare/HL7/2X#ACK_25_GLO_DEF

http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF
http://microsoft.com/HealthCare/HL7/2X#ADT_A01_251_GLO_DEF
http://microsoft.com/HealthCare/HL7/2X#ACK_25_GLO_DEF

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

87

Test the Scenario
Test the scenario using your sample ADT^A01 message. You will see that two messages are stored in each directory,
C:\Work\TestFiles\MLLPReceivedFiles\21110 and C:\Work\TestFiles\MLLPReceivedFiles\21111. Also, BizTalk
receives the acknowledgment and sends it to send port you created in your last step.

Key Observations
 1. Notice the use of a separate receive location in the send port to receive the

acknowledgment one way send port.

 2. Notice how even the acknowledgment with the error reached the acknowledgment send
port. If you change Accept Acknowledgment codes to AA or CA, then BizTalk will suspend
the original message if negative acknowledgment is received. You can test this behavior by
making a change to the send port configurations.

Batching
In this scenario, you will learn how to batch HL7 messages before sending them. Let's say you want to batch all of
messages you use to test these scenarios before sending them out. You'll configure a batch size of five message counts
(when five messages are received, a batch message will be created and sent out).

Build the Solution
There is no change required to your solution to implement batching.

Configurations
You need the following configurations to implement batching.

 1. So far in your scenarios, you have not configured party for destination application
(in other words, based upon a MSH5 value, batching requires you to set this up). In
your message, you have been using ADTDestination as MSH5, so create a party called
ADTDestination, and on the Batch Schedule tab, select Message count as 5 under the
Repeat Batch After section, and click the Start Schedule button. The batch schedule
should look like Figure 4-20.

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

88

 2. Make sure you have enabled the BatchControlLocation receive location and started batch
orchestration in BizTalk Application 1. The receive location and orchestration is created
by the HL7 Accelerator installation. After the start schedule, you should have your Batch
orchestration activated and ready to receive the messages you want to batch.

 3. On the Batch Definition tab of the ADTDestination party, select the ADT message schema
type, as shown in Figure 4-21.

Figure 4-20. Batch schedule: BTAHL7 Configuration Explorer

Figure 4-21. Batch definition: BTAHL7 Configuration Explorer

CHAPTER 4 ■ THE HL7 ACCELERATOR IN ACTION

89

 4. On the Validation tab, also uncheck the Validate body segment box and check the Allow
Trailing Delimiter box.

 5. Create a send port to subscribe the batched message using filter
BTAHL7Schemas.BTAHL7MessageType == OutboundBatch.

 6. Unlist all the other send ports and orchestration you have created in your scenarios so far.

 7. Restart the hosts.

Test the Scenario

For testing you will use same message you have been using and you will submit the same message five times. In order
to track each of them, you can change the MSH10 message control id every time you send the message. Once you have
sent the five messages, one batched message will be sent out to your send port. The output folder will have a batched
message containing all five messages. The message output will have FHS, BHS headers and BTS, FTS trailer segments
as required by HL7 specifications.

Key Observations

 1. In order to implement batching, you were not required to change your solution for this
simple scenario. You achieved batching with configurations only.

 2. Batching configuration was done only on the destination party (the MSH5 value).

Summary
In this chapter, you implemented basic scenarios to showcase BizTalk implementations using the HL7 Accelerator.
These scenarios allow you to understand more about the HL7 Accelerator and are key to implementing any real-world
scenarios, as you will see in Chapter 5.

91

CHAPTER 5

HL7 Advanced Topics

In the previous chapter, you were provided with several scenarios regarding the use of the HL7 Accelerator and
receiving HL7 Version 2.x messages. In this chapter, you are going to create and send these messages. Specifically,
you will learn how to do the following:

Map Version 2.x to the HL7 Version 3 CDA•฀

Meaningful Use for Immunizations•฀

Use HL7 V.2.5.1 queries•฀

Mapping Version 2.x to the HL7 CDA
CDA stand for HL7 Clinical Data Architecture. It is the standard XML format for clinical documents. The CDA is the
HL7 Version 3 Standard. If you are not familiar with HL7 CDA, you can find more information at the HL7 web site
(www.hl7.org/implement/standards/product_brief.cfm?product_id=186).

Note ■ The HL7 Version 3 CDA documentation uses the name “Component” for each element and attribute. Since we

deal with schemas and XML documents in BizTalk, we will use “element” or “attribute” throughout this topic.

The Steps
There are three steps you will use in your conversion. Figure 5-1 shows these steps.

Figure 5-1. Three steps

Before starting on your mapping, let’s take a look at a code example showing the minimum elements for the HL7
Version 3 CDA; see Listing 5-1. Table 5-1 shows the key that will make it easier for you to understand the structure
used throughout this topic.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=186

CHAPTER 5 ■ HL7 ADVANCED TOPICS

92

Listing 5-1. Minimum CDA Elements

<ClinicalDocument xmlns="urn:hl7-org:v3" xmlns:mif="urn:hl7-org:v3/mif"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:hl7-org:v3 CDA.xsd">
<typeId root="2.16.840.1.113883.1.3" extension="POCD_HD000040"/>

<id root="xxxx" extension="xxxx"/>

<code code="xxxx" codeSystem="xxxx" codeSystemName="xxxx" displayName="xxxx"/>

<effectiveTime value="xxxx"/>

<confidentialityCode code="x" codeSystem="xxxx"/>

<recordTarget>
 <patientRole>
 <id extension="xxxx" root="xxxx"/>
 <patient>
 <name>
 <given>xxxx</given>
 <family>xxxx</family>
 <suffix>xxxx</suffix>
 </name>
 <administrativeGenderCode code="x" codeSystem="xxxx"/>
 <birthTime value="xxxx"/>
 </patient>
 <providerOrganization>
 <id root="xxxx"/>
 </providerOrganization>
 </patientRole>
</recordTarget>

<author>
 <time value="xxxx"/>
 <assignedAuthor>
 <id extension="xxxx" root="xxxx"/>
 <assignedPerson>
 <name>
 <given>xxxx</given>
 <family>xxxx</family>
 <suffix>xxxx</suffix>
 </name>
 </assignedPerson>

Table 5-1. Key for Listing 5-1

<required

Fixed value

Optional

variableValue = xxxx

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 5 ■ HL7 ADVANCED TOPICS

93

 <representedOrganization>
 <id root="xxxx"/>
 </representedOrganization>
 </assignedAuthor>
</author>

<custodian>
 <assignedCustodian>
 <representedCustodianOrganization>
 <id root="xxxx"/>
 </representedCustodianOrganization>
 </assignedCustodian>
</custodian>

<documentationOf>
 <serviceEvent classCode="xxxx">
 <code code="xxx" codeSystem="xxx" codeSystemName="xxx" displayName="xxx"/>
 <effectiveTime>
 <low value="xxxx"/>
 <high value="xxxx"/>
 </effectiveTime>
 <performer typeCode="xxxx">
 <functionCode code="xxxx" codeSystem="xxxx"/>
 <time>
 <low value="xxxx"/>
 <high value="xxxx"/>
 </time>
 <assignedEntity>
 <id extension="xxxx" root="xxxx"/>
 <code code="xxxx" codeSystem="xxxx"
 codeSystemName="xxxx" displayName="xxxx"/>
 <addr>
 <streetAddressLine>xxxx</streetAddressLine>
 <city>xxxx</city>
 <state>xxxx</state>
 <postalCode>xxxx</postalCode>
 <country>xxxx</country>
 </addr>
 <telecom value="xxxx" use="xxxx"/> �
 <assignedPerson>
 <name>
 <prefix>xxxx</prefix>
 <given>xxxx</given>
 <family>xxxx</family>
 <suffix>xxxx</suffix>
 </name>
 </assignedPerson>
 </assignedEntity>
 </performer>
 </serviceEvent>
 </documentationOf>

CHAPTER 5 ■ HL7 ADVANCED TOPICS

94

nonXMLBody:

<component>
 <nonXMLBody>
 <text mediaType="xxxx/xxxx">
 <reference value="xxxx.xxx"/>
 </text>
 </nonXMLBody>
</component>

structuredBody:

<component>
 <structuredBody>
 <section>
 <code code="xxxx" codeSystem="xxxx" codeSystemName="xxxx" displayName="xxxx"/>
 <title>xxxx</title>
 <text>
 xxxx
<content styleCode="xxxx">xxxx</content>
 xxxx</text>
 </section>
 </structuredBody>
</component>

Note ■ For most of this topic we will use HL7 Version 2.5.1.

Common Message Types
Let’s look at a few message types that are common to both the Version 2.x Standard and the Version 3 Standard.

ORU - Unsolicited Transmission of an Observation Message

OBX Segments that appear in an ORU message can use both the single form found in MDM messages and the name/
value as in ADT messages. These are typically lab reports in a tabular format or diagnostic studies. A Narrative
element can also be included.

ORU messages allow for multiple OBX Segments that will be associated with a single OBR segment. In these
cases, each OBR can represent a single section of the CDA.

MDM - Medical Document Management
In MDM messages, a single OBX Segment often contains the entire document contents. The contents of this segment
can be plain, rich text, or any other format.

New lines are often represented by using repeated OBX-5 components. They can also be •฀
represented by a hexadecimal escape sequence, such as \XOD\ or \XOA\ or sometimes both.

Line breaks can be inserted to support a repeat character, such as a tilde (•฀ ~).

CHAPTER 5 ■ HL7 ADVANCED TOPICS

95

For formats other than plain text, the OBX-2 field will often use the HL7 Version 2 •฀
ED data type.

This data type, like the Version 3 data type, allows the contents to be base-64 encoded.•฀

The content of this document is represented in CDA as •฀ <NonXMLBody> element where <text>
content is the same form as the HL7 Version 2 message.

Some report forms are more structured and can contain multiple OBX Segments. You can see this in imaging
reports, where one OBX will record the impressions and another the recommendations. In this case, each OBX can be
recorded as a separate <section> in a <structuredBody> element in the CDA document.

ADT - Patient Administration

The ADT message is one of the most common message types. These messages are used to exchange patient state
within healthcare facilities. Like the ORU and MDM message types, the OBX Segment is used to represent data in a
name/value pair representation.

Some Message Segments Are Common to Both
There are a number of message elements that are common to different message types. These segments include the
following:

MSH - Message Header•฀

EVN - Event Type•฀

PID - Patient Identifier•฀

PV1 - Patient Visit•฀

PV2 - Patient Visit (Additional Information)•฀

OBX - Observation/Result•฀

Tip ■ Be careful with the OBX Segment because it is used differently in certain messages types.

HL7 V2 Segments to CDA Elements
Table 5-2 shows the mapping of the V2 Segments to CDA elements.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

96

The Data Types
Knowledge of the Version 2 and Version 3 data types is the key to your understanding how you are able to map
between both versions.

HL7 Version 2 to Version 3 Data Type Mappings
Table 5-3 shows the Version 2 data types and their Version 3 equivalents.

Table 5-3. HL7 Version 2 to Version 3 Data Type Mappings

Version 2 Version 3

AD ADDR

CE, CNE, CWE CD

CN II + PN

CK, CX, E1 II

DT, TS TS

ED ED

ID CS, CD

HD OID, UUID

NM REAL, PQ

PN, XPN PN

RP TEL

TN, XTN TEL

Table 5-2. V2 Segments to CDA Elements

Version 2 CDA XML Element

NK1 <participant>

PV1 <encompassingEncounter>

OBX <observation>, <nonXMLBody>

TXA <ClinicalDocument>

PID <recordTarget>

MSH <ClinicalDocument>

EVN <ClinicalDocument>

ORC <infulfillmentOf>

OBR <section>, <observation>

NTE <text>

SPM <specimen>, <procedure>

CHAPTER 5 ■ HL7 ADVANCED TOPICS

97

Mapping the HL7 Version 2.x Data Types

In this section you will see how to map the V2.x data types to the Version 3 CDA data types.

Note ■ All the code examples showing the CDA XML elements will show the V2.x data type as their value.

To make it easier to understand the code sample in this section, let’s take a look at some sample code. In the sample

below, the attribute values are in single quotes and are bolded. The value for the element is also bolded. All of these

values are capitalized.

<value xsi:type='ED' mediaType='ED.2/ED.3' extension='ED.4'>ED.5<value>

AD - Address

You will start with the AD - Address. Mapping this data type is rather simple. Listing 5-2 shows how to do this.

Listing 5-2. Address Mapping

<addr use='AD.7'>
 <streetAddressLine>AD.1</streetAddressLine>
 <streetAddressLine>AD.2</streetAddressLine>
 <city>AD.3</city>
 <state>AD.4</state>
 <postalCode>AD.5</postalCode>
 <country>AD.6</country>
 <county>AD.8</county>
</addr>

The seventh component of the HL7 2 data type is mapped to the <addr> use attribute.

CE - Coded Element, CNE - Coded No Exceptions, and CWE - Coded With Exceptions

The CE - Coded Element data type supports two identification codes, a primary, which should be universal, and
an alternate, which can be a local code. The CNE is an extension that adds the code system version along with the
original text components. The CWE data type is the same as the Version 2.x CNE data type. Listing 5-3 shows the
mapping of the CDA <code> element.

Listing 5-3. CE = Coded Element Code Sample

<code code='CE.1' displayName='CE.2' codeSystemName='CE.3' codeSystem='CE.3'
codeSystemVersion='CNE.7'>
<originalText>CNE.9</originalText>
<translation code='CE.4' displayName='CE.5' codeSystemName='CE.6' codeSystem='CE.6'
codeSystemVersion='CNE.8' />
</code>

CHAPTER 5 ■ HL7 ADVANCED TOPICS

98

CN - Composite ID Number and Name

The CN data type is used to identify the participations and roles of the person that is contained within the CDA
document. Besides the CN data type, there are also the XCN and PPN data types.

Let’s take a look at the XCN data type within the OBX-15 field and how it maps to the <assignedEntity>;
see Listing 5-4.

Listing 5-4. CN Composite ID and Name Code Sample

<assignedEntity>
 <id root='CK-4' extension='OBX-15.1'/>
 <assignedPerson>
 <name>
 <prefix>OBX-15.6</prefix>
 <given>OBX-15.3</given>
 <given>OBX-15.4</given>
 <family>OBX-15.2</family>
 <suffix>OBX-15.5</suffix>
 <suffix qualfier='AC'>OBX-15.7</suffix>
 </name>
 </assignedPerson>
</assignedEntity>

Looking at Listing 5-4, you will see <id root='CK-4'. The data type for the root attribute can be either the CK
or CX. This data type is an identifier for a person or organization in HL7 Version 2.x messages. It may or may not
contain a check digit. Its value will often come from a lookup table. Listing 5-5 shows this data type mapped to a CDA
id element.

Listing 5-5. CDA id Element Code Sample

<id root='CK-4' assigningAuthorityName='CK-4.1' extension='CK.1' />

DT - Date, TS – TimeStamp

The Date and TimeStamp data types can be used directly in the CDA document, the only difference being the format.

ED - Encapsulated Data

The Encapsulated Data type in Version 2 and Version 3 serve the same purpose. In the Version 3 document, the type
is set to ED. The second attribute of the value identifies the MIME type. The third identifies the MIME subtype, and the
forth is either A, Hex, or Base64, which identifies the encoding of the data.

Listing 5-6 shows how to map the Version 2 ED data type to the Version 3 ED data type.

Listing 5-6. ED - Encapuslate Data Code Sample

<value xsi:type='ED' mediaType='ED.2/ED.3' extension='ED.4'>ED.5<value>

EI - Entity Identifier

This data type is similar to the CK/CX data types. The only difference is it does not include a check digit. Listing 5-7
shows an example of its use.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

99

Listing 5-7. EI - Entity Identifier Code Sample

<id root='EI.3' assigningAuthorityName='EI-3.1' extension='EI.1' />

ID - Coded value, IS - Coded value for User Defined Tables

The Version 2 ID and IS data types are like the Version 3 CS data type. They are used to represent content with fixed
coding systems.

HD - Hierarchical Descriptor

The Version 2 data type is used to represent an assigning authority. The corresponding Version 3 data types are UUID
and OID.

NM - Numeric

The NM data type can be directly mapped to the Version 3 PQ data type. The value is a real number and can also be
mapped to Version 3 INT and REAL data types.

PN - Person Name

The mapping for the PN data type is the same as the Version 3 CN data type, except that the ID number component is
missing. Listing 5-8 shows an example.

Listing 5-8. Person Name Code Sample

<name>
 <prefix>CN-5</prefix>
 <given>CN-3</given>
 <given>CN-4</given>
 <family>CN-2</family>
 <suffix>CN-5</suffix>
 <suffix qualifier='AC'>CN-7</suffix>
</name>

RP - Reference Pointer

The Version 2 RP data type is used to access data by reference instead of using a value. Version 3 supports this type of
reference. The reference mapping needs to be to some form of URL. The data type for this value is set to ED, as you will
see in Listing 5-9.

Listing 5-9. Reference Pointer Code Sample

<value xsi:type='ED' mediaType='RP.2/RP.3'>
 <reference value='RP.1 and RP.2'/>
</value>TN - Telephone Number, XTN - Extended Telecommunications Number

The Version 2 TN Data Type is directly mapped to the Version 3 TEL data type.
The Version 2 XTN data type can contain an e-mail address as well as a telephone number. Listing 5-10 shows the

contents of the Version 3 TEL data type.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

100

Listing 5-10. Version 3 TEL Sample Code

<telecom value='tel:+CCxxxxxxxxxx;ext='xxxxx' use='XTN.2'/>

In Listing 5-10, the value is comprised of the characters CC, which represent the two digit country code (which is
required), the ten digit telephone number, and an optional extension (ext) of up to five digits.

Note ■ The tel:+ is the required prefix for the telecom value.

If the XTN also contains an e-mail address, it will be prefixed with “mailto:” as shown in Listing 5-11.

Listing 5-11. Version 3 TEL with E-mail Sample Code

<telecom value='mailto:XTN.4' use='XTN.2'/>

Mapping the OBX Segment

Now that you understand how the HL7 Version 2.x data types map the Version 3 data types, let’s take a look at
mapping from the OBX Segment to the Observation Results section.

Tip ■ The OBX Segment is a widely used segment. Its primary use, however, is for Observation/Result reporting

information contained within report messages. At times an OBX Segment may have an NTE Segment which is used to

provide notes and comments.

OBX - Observation Results

The HL7 Version 3 Observation Result Segment has many uses. It contains observations about the object of its parent
segment. Looking back at Listing 5-1, the OBX is a section within the structured body component. The Version 2.x OBX
consists of 25 sequences.

There can be multiple OBX Segments in a Version 2.x and a Version 3 - CDA Message. For example, in the VXU/RSP
it is associated with the RXA or Immunization record. The basic format within this message is a question (OBX-3) and
an answer (OBX-5).

Note ■ Since mapping rules differ in the message types that contain OBX Segments, we will not include these rules in

our examples.

OBX Forms

The OBX Segment comes in two different form types. They map closely to the CDA <section> element. These forms
types are named Narrative and Name/Value.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

101

Narrative Form Type

The Narrative includes a code in the OBX-3 that will describe the text in the OBX-5. The OBX-3 code maps to a <code>
element in the CDA <section> element. The text in the OBX-5 appears in the <text> element in the CDA <section>
element. Listing 5-12 is a code sample showing the mapping for the Narrative form type.

Listing 5-12. Narrative Form Code Sample

<component>
 <section>
 <code code='OBX-3'/>
 <text>OBX-5</text>
 272103_1_En
 <assignedAuthor>
 <id root='...' extension='OBX-16.1'/>
 <authorPerson>
 <name>OBX-16.2</name>
 </authorPerson>
 </assignedAuthor>
 </author>
 <entry>
 <observation>
 <code code='OBX-3' .../>
 <value xsi:type='OBX-2' value='OBX-5' unit='OBX-6/>
 <effectiveTime value='OBX-14'/>
 <interpretationCode code='OBX-8' codeSystem='2.16.840.1.113883.5.83' codeSystemName='Observation

Interpretation'/>
 <methodCode code='OBX-17'/>
 <author>
 <assignedAuthor>
 <id root='...' extension='OBX-16.1'/>
 <authorPerson>
 <name>OBX-16.2</name>
 </authorPerson>
 </assignedAuthor>
 </author>
 <preformer>
 <assignedEntity>
 <id root='...' extension='OBX-15.1'/>
 <assignedPerson>
 <name>OBX-15.2 - OBX15.8</name>
 </assignedPerson>
 </assignedEntity>
 </preformer>
 <referenceRange>
 <observationRange>
 <code code='OBX-10' .../>
 <value xsi:type='ILV_OBX-2' unit='OBX-6'/>
 <low value='OXB-7'/>
 <high value='OBX-7'/>
 </value>

CHAPTER 5 ■ HL7 ADVANCED TOPICS

102

 <observationInterpretation code='N' displayName='...'
 codeSystem='2.16.840.1.113883.5.83' codeSystemName=

'ObservationInterpretation'/>
 </observationRange>
 </referenceRange>
 </observation> </entry>
 </section>
</component>

Name/Value Form Type

The second OBX form type is the Name/Value form type. It includes a code in the OBX-3, but uses either a coded data
type, a numeric, or a timestamp that appears in the OBX-5. These map to the CDA <observation> element.

The OBX-3 code maps to a <code> element in the CDA <section> element. The value for the OBX-5 maps to the
<value> element in the CDA <observation> element. Listing 15-13 shows the mapping for the Name/Value form type.

Listing 15-13. OBX to CDA Name/Value Observation Mapping Sample

<observation>
 <code code='OBX-3' .../>
 <value xsi:type='OBX-2' value='OBX-5' unit='OBX-6/>
 <effectiveTime value='OBX-14'/>
 <interpretationCode code='OBX-8' codeSystem='2.16.840.1.113883.5.83' codeSystemName='Observation
 Interpretation'/>
 <methodCode code='OBX-17'/>
 <author>
 <assignedAuthor>
 <id root='...' extension='OBX-16.1'/>
 <authorPerson>
 <name>OBX-16.2</name>
 </authorPerson>
 </assignedAuthor>
 </author>
 <preformer>
 <assignedEntity>
 <id root='...' extension='OBX-15.1'/>
 <assignedPerson>
 <name>OBX-15.2 - OBX15.8</name>
 </assignedPerson>
 </assignedEntity>
 </preformer>
 <referenceRange>
 <observationRange>
 <code code='OBX-10' .../>
 <value xsi:type='ILV_OBX-2' unit='OBX-6'/>
 <low value='OXB-7'/>
 <high value='OBX-7'/>
 </value>

CHAPTER 5 ■ HL7 ADVANCED TOPICS

103

 <observationInterpretation code='N' displayName='...'
 codeSystem='2.16.840.1.113883.5.83' codeSystemName=

'ObservationInterpretation'/>
 </observationRange>
 </referenceRange>
 </observation>

Meaningful Use Certification for Immunizations
The task given was to build a BizTalk-based solution to report immunizations given to patients to comply with
Meaningful Use 2 guidelines so that Urgent Care facility clients could participate in the government’s Meaningful Use
2 program. This program is designed to compensate the facilities for the submission of data so the government, be it
state or federal, can track both the immunization history and ongoing immunization events of the general public.

Overall, based on the certification test cases, our solution was designed to report on all areas where
immunizations might occur. However, for our purposes, we will only be focusing on Urgent Care Immunizations,
since that is the solution we built. This results in passing a total of 3 test cases per scenario, with 7 scenarios in all,
resulting in 21 test cases total. These cases cover a wide array of situations, from vaccinations of toddlers, children and
adults to electing not to perform a vaccination due to immunity (perhaps the patient had the disease before or was
previously immunized for it) or because the patient, their parent, or guardian refused the immunity.

With these details in mind, the solution must be able to dynamically address the scenarios without manual
input from the user to direct the expected response, beyond making selections in the user interface that will then be
committed to the database tables. The idea was for this process to remain transparent to the user once the setting
to participate in the Meaningful Use 2 program was enabled, with the exception being any additional fields the user
needs to complete (if any) in the user interface to input the data necessary for Meaningful Use 2 credit.

Design
The initial task was to diagram the process as we expected it would be, understanding that details discovered along
the way would likely drive modifications of the process and thus render the initial diagram incomplete. The process,
once we consulted with the Development team working on the EMR software as well, ended up following the process
depicted in Figure 5-2.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

104

Figure 5-2. Initial design

Figure 5-2 is a high-level view of the process, but it displays most of the components that make up the
Immunization Registry. At the time of design and build, no endpoint had been determined for sending the data to
whichever government agency, be it state or federal, that would be compiling the database of the Immunization records.

We discovered that the easiest way to build the solution was to first identify the sections to complete by
diagramming the process, then build and test them individually as we went, and finally assemble and test them as a
completely assembled project.

When reviewing the project, we determined the best way to pull the data would be via a stored procedure that
could access multiple databases and tables. Once this was determined, we completed the initial list of tasks we
needed to build out for our project.

 1. Event Notification

 2. Stored Procedures

 3. Mapping

 4. Processing

 5. Error Handling

 6. Testing

CHAPTER 5 ■ HL7 ADVANCED TOPICS

105

Ideally we would have liked to begin with mapping, but since our stored procedures ultimately determined the
starting schema, we needed to address them first.

In the mapping process, there is almost inevitably a need to revisit the stored procedures and make
modifications, so these two steps are very much hand in hand. Also, while Testing was last on our list, we tested all
along the way—from validating maps and the stored procedure via their test output to validating the orchestration
and error handling functions as designed. We did this for every segment because getting to the end and assembling
the pieces and then testing makes it more difficult to determine the source of any errors that will inevitably arise.

Development
Development was split into two separate solutions. One handled the creation of the Immunization message and the
other handled the event notification.

Event Notification

We decided to take advantage of the WCf-SQL Adapter Notification Services. We utilized this to get notifications of
new records inserted into the ExternalMessageQueue table. Figure 5-3 shows the ExternalMessageQueue table.

Figure 5-3. ExternalMessageQueue table

Table 5-4. ExternalMessageQueue Fields

Column Description SQL Data Type

ExternalMessageQueuePK This column contains the value defining each row uniquely. Uniqueidentifer

BTSProcessingStatus This column contains the value that is updated as the
process runs, showing the status of the event for that
unique row at a given time.

Varchar

PatInfoPk This value uniquely identifies a patient in the system, and is
consistent across all tables in the system for that patient.

Uniqueidentifer

MessageType This column tells a process what the row being inserted is
used for it (the process) to address. The Immunization
Registry looks for rows with a value of zero (0) here.

Integer

DBServerName Name of the database server Varchar

DBName Name of the database Varchar

LogDetailPk Primary key for LogDetail table Uniqueidentifer

This table is also used by other applications. The columns of interest to us are defined in Table 5-4.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

106

The table was designed so that, upon the insertion of the row, the orchestration, which was receiving notifications
from this table for an insert, would wake up and check the Processing Status column for the NEW value. If it found any,
it would plug in the other values profiled above and run the GetUpdateExternalMessageQueue stored procedure. If
not, it went back to a dormant status, waiting for the insertion of another row.

GetUpdateExternalMessageQueue Stored Procedure

This procedure was fired when there was a new record inserted into the ExternalMessageQueue table. It returned the
values shown in ExternalMessageQueue fields shown above, which we needed to pass into the Immunization data
stored procedures.

Once the stored procedure returned the values profiled above, it had the keys necessary to differentiate the
records it needed from the various tables involved in the Immunization Registry event.

Stored Procedures

The stored procedures for this solution needed to touch two databases: TEST and COMMON. As the names suggest, TEST
contained all the TEST data that mirrors a production environment, while COMMON contained the information that TEST
and all the other databases have in common and share in everyday processes.

Immunization Data Stored Procedures

We used four stored procedures to get immunization data for a patient:

GetImmunizationData•฀

GetImmunizationNextOfKin•฀

GetImmunizationPatientInfoVaccine•฀

GetImmunizationVaccineTypes•฀

For our purposes, it made sense to use multiple stored procedures which would make finding the output data
easier. It also kept like sections of data that (mostly) pull their information from a few specific tables common to their
section of data.

•฀ GetImmunizationData: Patient Info contains select statements for what one would expect to
be patient-specific information, largely demographic in this exercise.

•฀ GetImmunizationNextOfKin: Patient Next of Kin contains select statements that result in
demographic information—if it exists in the system—for next of kin listed for the particular
patient specified in the primary keys we gathered from the ExternalMessageQueue table.

•฀ GetImmunizationPatientInfoVaccine: Patient Info Vaccine contains information about
the patient and vaccine administered as they pertain to the Immunization event itself, such
as the clinic where it was administered, the site on the patient’s body, the vaccine name,
manufacturer, lot number, etc.

•฀ GetImmunizationVaccineTypes: Contains some of the more hardcore vaccine information
from the system. Examples of the data gathered here include the vaccination description, CVX
code, VIS (vaccine information sheet) date, etc.

So we pulled the necessary identifying values from the initial table (ExternalMessageQueue) and used those
values to specify to the stored procedures what data we wanted from the system to create our Immunization Registry
file. Up until this part, this had been done using SQL-based work. But in order to effectively manipulate the data, we
needed to leverage the power of BizTalk.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

107

Mapping

In BizTalk, when working with HL7 data, the easiest way to manipulate the data is by using the maps. Because of the
scope of this project, we didn’t drill down to the node/field level for every field. But what is important is both the order
and use of the maps, because there is a purpose for how and why they are used as they are.

Keep in mind there are likely many ways to arrive at a solution for a project; our goal was to implement as many
best practices as possible to keep the project’s solutions as elegant as possible while simultaneously contributing
to the most sustainable model, which is in itself a best practice. We wanted to design this solution so that the
person interacting with it would not have to be a BizTalk power user, freeing up the BizTalk developers to focus on
development.

Source Schemas

As mentioned, the stored procedure holds the origins of the initial schema. The following are the steps we took.

CREATING OUR SOURCE SCHEMAS

We created a new BizTalk project.

We started off by right-clicking and choosing Add •฀ ➤ Add Generated Items ➤ Consume Adapter

Service.

Note ■ This exercise is familiar to anyone working with BizTalk who has interfaced with SQL.

The next screen, shown in Figure •฀ 5-4, is where we choose the binding (sqlBinding from the

pull-down) and profile the connection to our stored procedure which was the basis for our initial

schema.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

108

Figure 5-4. Consume Adapter Service

Once the connection credentials were entered and our stored procedure was selected, clicking •฀
OK resulted in not only the initial schema being created but also the sibling schemas.

Once created, we renamed our schema to VXUInternalExtended. This is the starting point for all •฀
of our maps; all of the data necessary to create the Immunization Registry file will need to come

through this schema.

VXUInternalExtended Schema

The schema itself initially would appear to have four equal sections, but over time we determined the correct
configuration for purposes of looping through the data was as shown in Figure 5-5.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

109

Figure 5-5. VXUInternalExtended schema

Figure 5-6. VIS Records structure

The reasons for this structure make sense; one would want to keep Patient info and the info of their Next of Kin
together, as well as the vaccination information. While it cannot be shown in Figure 5-6, the VISRecords node is a
child of the Vaccination record.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

110

This allows for looping when necessary, as is the case when a given vaccination is a multi-part vaccination and
contains multiple vaccine records for a single vaccination event. In that case, regardless of the fact that it was a single
vaccination event, the spec dictates each vaccine be profiled in the Immunization Registry output file.

In the initial schema we promoted some nodes as Distinguished Fields.

RecordCount, which will be needed at reassembly time.•฀

MessageType, which defines the type of message.•฀

ExternalMessageQueuePK, which is the unique identifier for the message.•฀

This project also makes use of canonical schemas, which serves as a basis to manipulate the data further. If the
data needed to be looped through or manipulated in any fashion, it is a best practice to perform these tasks in the
canonical maps. The goal is to have data in its final format and then if necessary, as it was in this project, stitch it all
back together into the valid HL7 format.

For our purposes, we broke each of the HL7 Segments out into its own canonical map and then mapped from our
initial stored proc-based schema to each canonical. Once these mappings were complete, we could use a single input
file which would simulate the data coming from the stored proc-based VXUInternalExtended schema to test the single
segment output. This would result in a more manageable initial test which would make tweaking the map easier.

Because of the size of the segments, we ended up with four initial “stored proc schema-to-canonical” maps:

ImmunizationsExtended_To_PID_PD1_NK1•฀

ImmunizationsExtended_To_RXA_Segment (which also included the RXR Segment)•฀

ImmunizationsExtended_To_ORC_Segment•฀

ImmunizationsExtended_To_OBX_Temp•฀

The ImmunizationsExtended_To_OBX_Temp map included the _Temp designation because the sheer size and
complexity of the catch-all OBX Segment suggested we would end up utilizing additional maps in the assembly process.

In these maps, the heavy lifting occurs to manipulate the data to the formats required by the HL7 2.5.1
specification. Whether it is date formatting or logic to tell the map to only create the field if data exists, it is all here.
While business rules could have been utilized for some of this, since our initial project was a base output designed for
Meaningful Use 2 certification, we elected to exercise the map-based logic for this portion.

Keeping in mind that the map is executed from the top down, we were careful in the placement of our functoids.
Also, it is a best practice to utilize the tabs at the bottom of the map to group the mappings so a minimum is shown on
the screen at a given time. Some of the HL7 Segments get very busy, and this cuts down on the traffic on the screen,
enabling edits to be more easily executed when modifying the maps. Figure 5-7 (the RXA/RXR map) is a very clean
looking map which is easier to understand.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

111

Once these maps were completed, we manipulated the data into a format acceptable for use by HL7. We knew
this by checking the examples provided by NIST which show the expected pipe-delimited output.

Our output was still in XML, but we could verify that the fields were being populated and confirm the format
of what was being pushed into each field. The main purpose of using a canonical is to limit the dirty work of data
manipulation to the maps using the canonicals as destinations, so the data being pushed to the HL7 Accelerator is
clean and in the right order, only relying on the Accelerator for final, minor changes and the final HL7 format.

Once the maps to the canonical versions were completed, the next map was to the final XML, non-HL7 version
of the file. The orchestration drove the usage of the individual canonical schemas to the destination schema (VXU_
V04_251_GLO_DEF.xsd) in the final map to stage them for assembly in the final map.

The transformation configurations for assembling the multiple canonical schemas to the final, HL7-friendly
schema (VXU_V04_251_GLO_DEF.xsd) are shown in Figure 5-8 and 5-9.

Figure 5-7. Easy-to-understand map

CHAPTER 5 ■ HL7 ADVANCED TOPICS

112

Figure 5-8. Source messages

CHAPTER 5 ■ HL7 ADVANCED TOPICS

113

Figure 5-9. Destination message

Keep in mind that this transformation was the initial mechanism to assemble the segments of data from the
canonical schemas into the final version the data assumed prior to its trip through the HL7 Accelerator. With this in
mind, it was important to test the output heavily so that we had an accurate expectation of the data and order of the
data the HL7 Accelerator finally assembled.

The initial collapsed appearance of the schemas involved in this transformation shows some of the organization
to the schemas. However, notice the tabs at the bottom to keep the segments separated and easier to work with, as
well as one that allows the necessary looping even on this final transformation to be isolated as well (see Figure 5-10).

CHAPTER 5 ■ HL7 ADVANCED TOPICS

114

Figure 5-10. Segments map

A partial expansion of the schemas shows more of the configurations of the schemas in this transformation.
Figure 5-11 shows a portion of the Target schema.

Figure 5-11. Segment expansion

In the final node shown above, Sequence, sit the nodes for the ORC, RXA, and RXR Segments, with another
Sequence node, under which exists the final segment, which in this case is the OBX Segment.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

115

As we show some additional detail in Figure 5-12 by expanding the sub-nodes of the Inline schema, notice the
RecordCount field for each repeating segment. This is critical to getting the final order correct in the final output.

Figure 5-12. Inline schema

Also take note of the nested/parent-child structure of these schemas; this is done for looping, which is necessary
because the nature of the data involved requires looping through multiple results, all of which are necessary for the
given Immunization Registry event.

Looking through these schemas one might have noticed the MSH Segment was missing from the maps; it is
created in the orchestration after the assembly of the canonical data into the integrated, almost-complete HL7
message by utilizing the expression shown in Figure 5-13.

Figure 5-13. MSH Segments

CHAPTER 5 ■ HL7 ADVANCED TOPICS

116

This expression defines the static values utilized in the MSH Segment. The rest was input via the HL7 Accelerator
BTAHL7 Configuration Explorer, enabling them to be driven by the party setup and allowing for dynamic assignment
setup to be automatically populated based on criteria dictated by the endpoint to which the information is being sent.
For example, if these were going to state agencies, we could assign a state-based set of criteria to drive what values
were populated in the dynamic fields by state.

Processing
Once the maps were determined, the orchestrations needed to be created to utilize the maps and the schemas
contained in the maps. Since the orchestrations contained the error handling, it seemed logical to include them in
this section as well. Ideally we would have liked to put everything into a single orchestration, but for this solution we
separated the mechanisms in this manner.

The initial process initiated the Immunization Registry file creation. The orchestration assembled the raw data for
the Immunization Registry file. The final orchestration created the true HL7 version of the Immunization Registry file.

Note ■ Since our solution for initiating the process was very software specific, we will focus on the orchestration that

picked up the input from the Event Notification application.

Orchestrations

We used three orchestrations for this part of the solution.

GetData•฀

CreateImmunizationHL7XMLMsg•฀

CreateHL7ImmunizationMsg•฀

GetData

The orchestration that began the true Immunization Registry creation process was the GetData orchestration, so named
because its overall purpose was to take the Distinguished Fields handed off to it and plug them into four separate stored
procedures to pull the data from the multiple tables and databases necessary for the Immunization Registry file.

In review, the variables that were defined in the “Immunization Data Stored Procedures” section are defined
again below:

•฀ ExternalMessageQueuePK: This column holds the values defining each row uniquely.

•฀ ProcessingStatus: This column holds the values that are updated as the process runs, showing
the status of the event for that unique row at a given time.

•฀ PatInfoPk: This value uniquely identifies a patient in the system, and is consistent across all
tables in the system for that patient.

•฀ MessageType: This column tells a process if the row being inserted is for it (the process) to
address. The Immunizations Registry looks for rows with a value of zero here.

The initial step in this orchestration took the values in the initial receive shape and used the filter in the
SetMsgQueue_Request shape, validating that only the values in rows with a MessageType = 0 were being utilized,
since these identify the row as being a request for an Immunization Registry file. Any other rows whose MessageType
was not equal to zero were ignored and left unmodified, which will become pertinent shortly.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

117

This initial part of the orchestration took shape as shown in Figure 5-14.

Figure 5-14. Initial part of orchestration

The filter for the SetMsgQueue_Request Receive shape was configured as shown in Figure 5-15.

Figure 5-15. Filter expression

CHAPTER 5 ■ HL7 ADVANCED TOPICS

118

Once these values were provided to the GetData orchestration, they were assigned to variables in the Expression
Editor shape for use further down in the orchestration. The expression we are used are shown in Figure 5-16.

Once these steps were executed, we had all the information to answer the first question in our orchestration,
which was whether or not what is being provided to us is truly an Immunization Registry message request. The
orchestration looked for that zero (0) value in the MessageType and as long as it was found, the process continued.
If not, it would terminate. The step was configured as shown in Figure 5-17.

Figure 5-16. Assigning to local variables

Figure 5-17. Terminate

GetImmunizationPatientInfo

The first step in our orchestration was to create the GetImmunizationPatientInfo request message. We used the map
shown in Figure 5-18.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

119

In this map, the ProcessStatus was set using an integer functoid set to 0. This data was used in calling the first
stored procedure.

The first stored procedure to utilize the variables defined in the map above was the
BizTalk.GetImmunizationPatientInfo stored procedure, which was used to pull patient-specific data for the
message being created. Since most of this data mapped to the initial segments (PID and PD1 segments) of the HL7
file, it was easier to align the sections by design to make mapping earlier, hence this being the first of the four stored
procedures. Figure 5-19 shows the orchestration scope for this process.

Figure 5-18. Construct_GetPatientInfo_Request Map

Figure 5-19. GetImmunizationData scope

CHAPTER 5 ■ HL7 ADVANCED TOPICS

120

The data was returned from the GetImmunizationPatientInfo request/response port, whose configuration is
shown in Figure 5-20.

Figure 5-20. GetImmunizationPatientInfo request/response port

Response Message Properties

When the values were returned from the stored procedure, the Get Return Value Expression shape contained the
code to write the step to the EventLog, as shown in Figure 5-21.

Figure 5-21. Response values

The three stored procedures that follow are all duplications of this theme, with their ports and code modified
to reflect the stored procedure being called. At times in the process, additional checks were performed to determine
whether or not data was being returned before the process continued. This step was performed because if at any time
there existed no data for a given stored procedure, there would be no reason to continue since the overall message being
created would be incomplete. An incomplete HL7 file should not be accepted by anyone expecting valid HL7 data.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

121

The Stored Procedures

Let’s now look at the other stored procedures involved.

BizTalk.GetImmunizationNextOfKin

The second stored procedure called in this orchestration was the BizTalk.GetImmunizationNextOfKin stored
procedure. Its data was mapped primarily to the NK1 Segment, which would be next in line in the HL7 file, and some
RXR & RXA fields. The data was requested and returned the same as the first stored procedure. We again see a step to
confirm that data was returned in this step.

BizTalk.GetImmunizationPatientInfoVaccine

Without exiting the branch in the orchestration, we next called the stored procedure named
BizTalk.GetImmunizationPatientInfoVaccine, whose data was subsequently mapped to the RXA, RXR, and ORC
Segments of the HL7 file. This was followed by the now standard method to update the EventLog with this step’s
success or failure.

After this, the orchestration performed another check to determine if data was returned. Assuming the last
stored procedure returned data successfully, we moved to the last part of the orchestration where we gathered and
assembled the data in an .xml format.

BizTalk.GetImmunizationVaccineTypes

The final stored procedure called was BizTalk.GetImmunizationVaccineTypes, whose data almost exclusively
ended up mapping the fields in the OBX Segments. A little later we will go into detail about these segments because
they greatly affect some of the work we had to do in order to get them to output correctly. As was the case with the
previous stored procedures, the step that followed the data being returned was a step to log the event’s success or
failure in the EventLog.

Creating the Final Map

The last true message building step in this orchestration was to essentially assemble the data mapped from the four
stored procedures into one cohesive XML-producing map. This step, Construct_VXUInternalExtendedResponse, was
configured as shown in Figure 5-22 and Figure 5-23.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

122

Figure 5-22. Construct_VXUInternalExtendedResponse source

Figure 5-23. Construct_VXUInternalExtendedResponse destination

CHAPTER 5 ■ HL7 ADVANCED TOPICS

123

The destination schema in this map was our canonical schema; the purpose for using this was to allow a map
where the transformations of data as needed would be done to prepare it for the final HL7 map XML format. The
schema appeared to be largely a 1:1 map, so the mappings were mostly straight across. This also made it an ideal place
for the transformations since the mapping was otherwise simple.

The map that came out of this transformation, which provided the base XML for mapping to our final HL7
schema, was very large. For that reason, we utilized the tabs at the bottom to group the mappings—in this case by
stored procedure results—as a matter of best practice. The resulting initial map was still very complex, as you can see
in Figure 5-24.

Figure 5-24. SQL_To_ Construct_VXUInternalExtendedResponse map

Notice the PatientInfo tab at the bottom, as well as the functoids checking for existence of data before any
transformation is performed. What is shown above is only one quarter of the processes we ran. The NextOfKin map
was next, as shown in Figure 5-25.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

124

Figure 5-25. NextOfKin map

Figure 5-26. Vaccinations and Vaccination messages

The remaining maps contained few transformations of data, just straight across data copies since the schema
both contain the same fields. The remaining two sections of the canonical schema grouped data as it would be
utilized by future maps, so they were named VaccinationInfo and Vaccination, as you can see in Figure 5-26.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

125

Note ■ The MessageType and ExternalMessageQueuePK nodes carried information through the maps, which was

critical to being able to report status of the process back to the original table for monitoring by the BizTalk Administrator.

The final tab on this map contained a transformation to carry forward values for the ExternalMessageQueuePK,
which was necessary for updating the ExternalMessageQueue table as progress was made.

 1. A hard-coding for the MessageType value to be modified to reflect the status in the process
at this step.

 2. A loop over the RecordCount from the initial stored procedure to keep track of how many
times the process has run.

Once this process completed, the modified XML file was sent to the next orchestration, which eventually molded
it into the HL7 file, the CreateImmunizationHL7XMLMsg.odx orchestration.

The remainder of the orchestration was designed to catch any exceptions thrown by the GetImmunizationdata
process and update the ProcessingStatus so the overall status of the process could be both updated and followed as it
ran. Those parts of the orchestration were configured as shown in Figure 5-27.

Figure 5-27. CatchException_GetImmunizationData

CHAPTER 5 ■ HL7 ADVANCED TOPICS

126

Note ■ At the end of each of these sections of the orchestration, a call was made to another stored procedure. In

this case, it was one that updated the ProcessingStatus in the ExternalMessageQueue table, part of an error logging and

system notification process we decided upon when this solution was designed.

Error Handling

The final Exception Catch section was configured as shown in Figure 5-28; following the steps from the previous
section, it performed much the same function. They both sent their data to the FaulMsgPort, where they were
consumed and published in the error reporting process. This section caught the exception thrown.

Figure 5-28. CatchExceptionThrown

CreateImmunizationHL7XMLMsg
While the GetData orchestration built the initial XML from the data gathered by the stored procedures, the
CreateImmunizationHL7XMLMsg orchestration was where we made it a true HL7 file. The nature of this file provided
two challenges over other HL7 files: there was looping over records to provide multiple iterations of segments, as well
as groupings of those segments in a very specific manner.

The first step of this orchestration took in the canonical-formatted file, set a variable (ExtMsgQueuePK = VXU_
Extended.ExternalMessageQueuePK), and told the orchestration how to make an entry in the Eventlog.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

127

The next section of the orchestration was where the transformations started to happen from the canonical XML
format to what was assembled into the final HL7 file. The steps in the orchestration are shown in Figure 5-29.

Figure 5-29. Transform segments

Each step took data in smaller bites, assembling it as we did before, but this time it went from the canonical
schema to the true HL7 fields. As each of these maps were completed, they were tested using the TestMap
functionality built into BizTalk. What we ended up with were segments of data ready for assembly into the HL7 format.
The maps can get very complex, which is another reason to employ the best practice of separating the data into
groups and assembling it once the data has been put into the final format.

An example of one of the more complex maps is the OBX Segment. Because of its multipurpose use, as well as the
need for looping through the data to create multiple iterations of the OBX Segment containing every changing data,
the map was very complex, as you can see in Figure 5-30.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

128

Notice the multiple tabs at the bottom of the map; there is an actual pattern to the HL7 Immunization file’s OBX
Segments, whether there is one or there are four, ten or twenty. The pattern is as follows:

•฀ OBX-1: This version of the OBX contains eligibility information of the person being
vaccinated.

•฀ OBX-2: This segment defines the type of vaccine being administered.

•฀ OBX-3: This version of the segment tells when the vaccine information given to the patient
was published.

•฀ OBX-4: This last type of OBX Segment defines when the vaccine information document was
presented to the patient.

As mentioned, sometimes in the test cases there were as many as ten OBX segments used to define vaccination
information for a single vaccination event. How would this be for a single vaccination? Some vaccinations contain
multiple vaccines; in the case of the vaccine DTaP, it would produce 10 OBX Segments. The first would tell the
eligibility of the patient, and the subsequent nine segments would profile each of the three vaccines that make up the
multi-vaccine vaccination. So the final makeup of the OBX portion of this Immunization Registry message would look
like Listing 5-14.

Figure 5-30. One tab of the canonical to OBX Segment map

CHAPTER 5 ■ HL7 ADVANCED TOPICS

129

Listing 5-14. OBX Segments

OBX|1|CE|64994-7^Vaccine funding program eligibility category^LN|1|V03^VFC eligible -
Uninsured^HL70064||||||F|||20120701|||VXC40^Eligibility captured at the immunization level^CDCPHINVS
OBX|2|CE|30956-7^vaccine type^LN|2|107^DTaP^CVX||||||F
OBX|3|TS|29768-9^Date vaccine information statement published^LN|2|20070517||||||F
OBX|4|TS|29769-7^Date vaccine information statement presented^LN|2|20120814||||||F
OBX|5|CE|30956-7^vaccine type^LN|3|89^Polio^CVX||||||F
OBX|6|TS|29768-9^Date vaccine information statement published^LN|3|20111108||||||F
OBX|7|TS|29769-7^Date vaccine information statement presented^LN|3|20120814||||||F
OBX|8|CE|30956-7^vaccine type^LN|4|45^Hep B, unspecified formulation^CVX||||||F
OBX|9|TS|29768-9^Date vaccine information statement published^LN|4|20120202||||||F
OBX|10|TS|29769-7^Date vaccine information statement presented^LN|4|20120814||||||F

Notice the OBX-2, OBX-5, and OBX-8 share identical formats if not much of the same data. The rest of the pattern
has OBX-3, OBX-6, and OBX-9 being much the same, and OBX-4, OBX-7, and OBX-10 matching in format as well. This
is shown to illustrate the grouping at the bottom of the map (“canonical to OBX Segment map”). This also makes it
easier to loop through the data that is returned from the stored procedures.

This also serves to illustrate the level of complexity with this solution. In addition to the OBX, the RXA, RXR, and ORC
Segments also came out as multiples that had to be grouped correctly.

Once each of these maps was created and the data was awaiting assembly, the next section of the orchestration
performed this assembly. However, with the level of complexity involved, we needed to utilize an XSLT style sheet
to perform some of the looping. It was created by first using the BizTalk mapper tool, and then modifying the
resulting XSLT file manually to enable both the necessary looping as well as the ordering of the segments, since the
groupings matter.

Final Steps

The section of the orchestration shown in Figure 5-31 shows the creation of the HL7-formatted XML, as well as the
step where this file was output to a folder for review. This step will likely be eliminated in Production, but it provided
valuable data when troubleshooting.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

130

Figure 5-31. Merge segments

The section labeled ConstructMessage_HL7MultiPartMsg was where the ExpressionEditor was used to define
the non-variable sections of the MSH Segment that was previously shown in this chapter; the rest was filled in by the
BizTalk Administration Console via Trading Partner data. The Business Rules Engine could also be used, but if we end
up sending this file to multiple endpoints, the Trading Partner functionality will enable this to stay manageable.

At this point, what we had was a large amount of HL7-formatted XML data. Getting this into the correct
pipe-delimited format was performed in the VXU HL7 Out Send port, via use of the send pipeline
BTAHL72XSendPipeline, which was configured in this case on the send port itself, as shown in Figure 5-32.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

131

The resulting output came out in sequence as a pipe-delimited file. Further configuration of the pipeline itself
allowed the file to be created with trailing empty fields, which is acceptable to the HL7 testing body. Since the port was
created using a binding file via the BizTalk Administration Console, that is where we configured the pipeline, as shown
in Figure 5-33.

Figure 5-32. Send port configuration

CHAPTER 5 ■ HL7 ADVANCED TOPICS

132

The balance of the orchestration consisted of exception handling. The first of the CatchExceptions was for
segment transformation, as shown in Figure 5-34.

Figure 5-33. Pipeline configuration section, accessed by ellipses next to the pipeline name

CHAPTER 5 ■ HL7 ADVANCED TOPICS

133

Figure 5-34. Exception handling

The Basic Configuration Is the Same

Construct the fault message, send the fault message, update the Status Update message, and then call the stored
procedure to commit the changes to the fault message info to ExternalMessageQueue table. Again, while not profiled
in detail, this table is what is monitored by the BizTalk solution for changes; any changes in the table result in it being
scanned for rows of data that meet the criteria that define that row as an Immunization Registry message event.

Testing
It goes without saying that testing at every point along the way in this project was critical. Waiting until final assembly
to try to ascertain where the problem lay is an invitation to a long day; the best practice, as was evident through this
solution’s development, was to test incrementally each and every step of the way. That included after building a
schema, a map, even a section of an orchestration—even if it meant including outputting to a hard file that would
eventually be removed from the process.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

134

For example, once the maps were finished, they were tested incrementally, utilizing the TestMap functionality
found in the properties section of the map’s profile (see Figure 5-35). In configuring the testing of the map, we initially
turned off the validation as we were simply looking to validate the basic output. We made manual tweaks to the maps
based on output, but if we turned on validation and the map failed, it would not produce an output against which we
could visually compare.

Figure 5-35. Validate TestMap Output settings

Figure 5-36. Test map

As seen in Figure 5-36, the TestMap Input and TestMap Output were profiled before right-clicking on the map
name and choosing Test Map.

As we ran through the map validation process, we determined that making corrections using this process was
much quicker than if we relied upon the built-in validation.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

135

Maps and schemas are tested easily enough via the properties in each. With an orchestration, in order to check
what was being created and passed outside the map, it really proved best to create a send port with a file output,
usually XML.

Once the project was migrated to the BizTalk Administration Console, testing needed to be performed again,
preferably with an end-to-end process. The advantages of testing through the console included access to the Windows
Event Viewer/EventLog, the BizTalk Group Hub, and in our case even the ESB Management Console. Each of these
can provide errors which can be worked through either locally or, if need be, via the BizTalk Use Groups.

Note ■ This real-life scenario was written and contributed by Tom Banaski. Tom is a BizTalk developer specializing in

healthcare data integrations. He was first exposed to BizTalk when it was shown in comparison to a competitor’s product.

For the last 13 years, Tom has worked with pharmacy and healthcare claims, and has been focusing on data integration

for the last 7 years. For the last 2 years, Tom has been working with BizTalk developing EDI & HL7 solutions for Practice

Velocity, Inc. One solution is for the government’s Meaningful Use program. He has also worked on non-standard BizTalk

solutions for proprietary client requests.

Using HL7 V.2.5.1 Queries
Besides sending HL7 Version 2.5.1 messages, there are occasions when we need to request patient and clinical data
from other systems. Let’s take a look at a few message types.

Query by Parameter Message Types
The Query by Parameter message types are the most common queries. Table 5-5 shows the Query by Parameter
message types and their events.

Table 5-5. QBP: Query by Parameter Message Types

Event Description Msg Structure

Q11 QBP - Query by parameter requesting an RSP segment pattern response QBP_Q11

Q13 QBP - Query by parameter requesting an RTB - tabular response QBP_Q13

Q15 QBP - Query by parameter requesting an RDY display response QBP_Q15

Q21 QBP - Get person demographics QBP_Q21

Q22 QBP - Find candidates QBP_Q21

Q23 QBP - Get corresponding identifiers QBP_Q21

Q24 QBP - Allocate identifiers QBP_Q21

Q25 QBP - Personnel Information by Segment Query QBP_Q21

Q31 DBP - Dispense History QBP_Q11

Z73 Information about Phone Calls QBP_Z73

Z75 Tabular Patient List QBP_Q13

(continued)

CHAPTER 5 ■ HL7 ADVANCED TOPICS

136

Table 5-5. (continued)

Event Description Msg Structure

Z77 Tabular Patient List QBP_Q13

Z79 Dispense Information QBP_Q15

Z81 Dispense History QBP_Q11

Z85 Pharmacy Information Comprehensive QBP_Q11

Z87 Dispense Information QBP_Q15

Z89 Lab Results History QBP_Q11

Z91 Who Am I QBP_Q13

Z93 Tabular Dispense History QBP_Q13

Z95 Tabular Dispense History QBP_Q13

Z97 Dispense History QBP_Q15

Z99 Who Am I QBP_Q13

We will take a look at the Query/Response transaction, QBP^Q11 - Query by Simple Parameter and
RSP^K11 - Segment Pattern Response.

QBP^Q11 - Query by Simple Parameter

This query message, which supports a Segment Pattern Response, contains these segments:

MSH - Message Header•฀

QDP - Query Parameter Definition•฀

RCP - Response Control Parameters•฀

DSC - Continuation Pointer•฀

This transaction is used to query for clinical data which can include Lab Results, Continuity of Care
Document (CCD), Pharmacy Dispense Information, and Alerts. Supported query parameters are Local Patient
identifier and demographic information, a date range, and the maximum number of records to be returned (specified
in the RCP Segment).

QPD Parameters

Table 5-6 shows the required query parameters.

CHAPTER 5 ■ HL7 ADVANCED TOPICS

137

Table 5-6. QPD Required Query Parameters

Seq Description Data Type Expected Value (examples)

QPD.1 Message Query Name CE If LABS then map value Z10^LABS^HL70471.
If RAD then map value Z10^RAD^HL70471.
If CCD then map value Z20^CCD^HL70471.
If ALERT then map value Z30^ALERT^HL70471.
If RDR then map value Z81^DispenseHistory^HL70471.

QPD.2 Query Tag ST Unique Identifier

QPD.3 User Parameters Varies Patient MRN

Listing 5-15 shows an example query that would return the Pharmacy Dispense Information (RDR) message.

Listing 5-15. Example of Query by Parameter Query Transaction with Pharmacy Dispense Information (RDR)
as the Expected Response

MSH|^~\&|PCR|Gen Hosp|PIMS||199811201400-0800||QBP^Z81^QBP_Q11|ACK9901|P|2.4||||||||
QPD|Z81^Dispense History^HL70471|Q001|555444222111^^^MPI^MR||19980531|19990531|
RCP|I|999^RD|

RSP^K11 - Segment Pattern Response to Query by Parameter

The Query Response message is based upon using the HL7 V2.5.1 ORU Transaction. The RSP^K11 supports a
Segment Pattern Response to the QBP^Q11 and contains the MSH, MSA, ERR, QAK, and QPD variable content
segments, and the DSC. A standard or site-defined response may use this trigger event or may specify a unique trigger
event value in its Conformance Statement. If a unique trigger event value is chosen for a site-defined response, that
value must begin with Z.

Listing 5-16 is an example of what the response might look like for the query in Listing 15-15.

Listing 5-16. Response Example for Query

MSH|^~\&|PIMS|Gen hosp|PCR||199811201400-0800||RSP^Z82^RSP_Z82|8858|P|2.4||||||||MSA|AA|ACK9901|
QAK|Q001|OK| Z81^Dispense History^HL70471|4|
QPD|Z81^Dispense History^HL7nnnn|Q001|555444222111^^^MPI^MR||19980531|19990531|
PID|||555444222111^^^MPI^MR||Everyman^Adam||19600614|M||C|2222 HOME STREET^^Oakland^CA^94612||^^^^^5
55^5552004|^^^^^555^5552004|||||343132266|||N|||||||||
ORC|RE||89968665||||||199805121345-0700|||77^Hippocrates^Harold^H^III^DR^MD||^^^^^555^ 5552104||||||
RXE|1^BID^^19980529|00378112001^Verapamil Hydrochloride 120 mg TAB^NDC |120||mgm|||||||||||||||||||
|||||||
RXD|1|00378112001^Verapamil Hydrochloride 120 mg TAB^NDC |199805291115-
0700|100|||1331665|3|||||||||||||||||
RXR|PO||||
ORC|RE||89968665||||||199805291030-0700|||77^Hippocrates^Harold^H^III^DR^MD||^^^^^555^555-5001||||||
RXE|1^^D100^^20020731^^^TAKE 1 TABLET DAILY --GENERIC FOR CALAN SR|00182196901^VERAPAMIL HCL ER TAB
180MG ER^NDC |100||180MG|TABLET SA|||G|||0|BC3126631^CHU^Y^L||213220929|0|0|19980821|||
RXD|1|00182196901^VERAPAMIL HCL ER TAB 180MG ER^NDC |19980821|100|||213220929|0|TAKE 1 TABLET DAILY
--GENERIC FOR CALAN SR||||||||||||

CHAPTER 5 ■ HL7 ADVANCED TOPICS

138

RXR|PO||||
ORC|RE||235134037||||||199809221330-0700|||8877^Hippocrates^Harold^H^III^DR^MD||^^^^^555^555-
5001||||||RXD|1|00172409660^BACLOFEN 10MG TABS^NDC|199809221415-0700|10|||235134037|5|AS
DIRECTED||||||||||||
RXR|PO||||
ORC|RE||235134030||||||199810121030-0700|||77^Hippocrates^Harold^H^III^DR^MD||^^^^^555^555-5001||||||
RXD|1|00054384163^THEOPHYLLINE 80MG/15ML SOLN^NDC|199810121145-0700|10|||235134030|5|AS
DIRECTED||||||||||||
RXR|PO

Summary
In this chapter, you took a look at three different topics. You learned about mapping Version 2.x to the HL7 CDA and
how you could leverage the HL7 V.2 data types. You were provided with a real-life scenario for creating meaningful
use Immunization messages. And you also learned about the basics of using the HL7 V.2.5.1 Request/Response
Query by Parameter.

In the next chapter, you will learn about implementing best practices for using the HL7 Accelerator.

139

CHAPTER 6

Future Directions

In the previous chapter, you learned about advanced topics with the HL7 Accelerator, including
HL7-Version-2-to-Version-3 conversion, Meaningful Use implementation, and using HL7 Version 2.x queries.

In this chapter, you are going to look into the near future and learn about HL7 FHIR, the newest HL7 standard
that is currently in Draft Standard for Trial (DSTU).

FHIR® in BizTalk
The HL7 organization is developing a new standard called Fast Health Interoperable Resources, commonly referred
to as FHIR and pronounced “fire.” It is the next generation standards framework, and it combines the best features
of HL7 Version 2, Version 3, and the CDA product lines. FHIR will leverage the latest web standards and apply a tight
focus on implementability. In this section, you are going to learn about Release 1.1 of FHIR.

Note ■ The source for some of the information contained within this chapter is hl7.org/fhir.

What is FHIR®
The following is an excerpt from Introducing HL7 FHIR.

FHIR solutions are built from a set of modular components called “Resources”. These resources can
easily be assembled into working systems that solve real world clinical and administrative problems
at a fraction of the price of existing alternatives. FHIR is suitable for use in a wide variety of contexts –
mobile phone apps, cloud communications, EHR-based data sharing, server communication
in large institutional healthcare providers, and much more.

Source: www.hl7.org/implement/standards/fhir/summary.html

http://www.hl7.org/implement/standards/fhir/summary.html

CHAPTER 6 ■ FUTURE DIRECTIONS

140

Why Is FHIR Better?
There are so many improvements over the existing standards. Some of these improvements are the following:

Provides for a •฀ strong focus on implementation, which makes it fast and easy to implement.

There are •฀ multiple implementation libraries and they include examples that will kick-start
development.

The •฀ FHIR specification is free for use. There are no restrictions.

Provides •฀ out-of-the-box interoperability. The base resources can be used as is. And they can
also be adapted for local requirements.

Provides for an •฀ evolutionary development path with HL7 Version 2 and CDA standards.
They can coexist and leverage each other.

Has a •฀ strong foundation in web standards, such as XML, JSON, HTTP, Atom, OAuth,
and more.

Provides support for •฀ RESTful architectures.

Provides for •฀ seamless exchange of information using messages or documents.

Concise and •฀ easily understood specifications.

You can read more about these and other improvements on the FHIR web site at www.hl7.org/implement/
standards/fhir/summary.html.

What Problems Does FHIR Solve?
If you are familiar with the HL7 Version 3 Product Suite, the HL7/ASTM Continuity of Care Document (CCD), and the
CDA, then you know about the complexity of working with them in BizTalk.

FHIR aims to satisfy the needs covered in the previous primary HL7 interoperability standards. These include
Version 2, Version 3, and the CDA. Let’s look at few of the key similarities for each.

HL7 Version 2

You can read more about the HL7 Version 2 to FHIR comparison on the FHIR web site at www.hl7.org/implement/
standards/fhir/comparison-v2.html.

FHIR provides support for event-driven messaging.•฀

FHIR provides for granularity.•฀

FHIR provides for update behavior.•฀

FHIR provides for optionality and profiles.•฀

HL7 Version 3 (and ISO 21090)

You can read the full HL7 Version 3 comparison on the FHIR web site at www.hl7.org/implement/standards/fhir/
comparison-v3.html.

FHIR uses codes for attributes.•฀

FHIR supports NULL flavors.•฀

FHIR supports context conduction.•฀

http://www.hl7.org/implement/standards/fhir/summary.html
http://www.hl7.org/implement/standards/fhir/summary.html
http://www.hl7.org/implement/standards/fhir/comparison-v2.html
http://www.hl7.org/implement/standards/fhir/comparison-v2.html
http://www.hl7.org/implement/standards/fhir/comparison-v3.html
http://www.hl7.org/implement/standards/fhir/comparison-v3.html

CHAPTER 6 ■ FUTURE DIRECTIONS

141

CDA

The complete comparison for the CDA can be found on the FHIR web site at www.hl7.org/implement/standards/
fhir/comparison-cda.html.

FHIR is clinical document-focused.•฀

FHIR supports both machine and human readability.•฀

Tip ■ The documentation for FHIR on the HL7 F\HIR web site is very compressive and very easy to understand. If you

want to learn more about FHIR and see the full comparison to the previous HL7 standards, it is highly recommended that

you browse through the documentation at http://hl7.org/implement/standards/fhir/.

What Does This Mean for BizTalk?
The HL7 FHIR Workgroup has removed the complexity of working with HL7 messaging. Besides easy to read and
understand documentation, there are FHIR schemas, samples of each message type, and a complete REST API. Let’s
start off with a look at the FHIR schemas.

FHIR Schemas

FHIR provides schemas that pertain to the following resources types. Each resource type has its own schema.

Note ■ You will see the term “resource” used throughout these sections. Resources are not schemas.

Clinical Resource Types

The following are some of the common clinical resources types.

General

AdverseReaction: Records an unexpected reaction suspected to be related to the exposure of •฀
the reaction subject to a substance.

AllergyIntolerance: Indicates the patient has a susceptibility to an adverse reaction upon •฀
exposure to a specified substance.

CarePlan: Describes the intention of how one or more practitioners intend to deliver care for a •฀
particular patient for a period of time, possibly limited to care for a specific condition or set of
conditions.

FamilyHistory: Significant health events and conditions for people related to the subject •฀
relevant in the context of care for the subject.

Procedure: An action that is performed on a patient. This can be a physical thing like an •฀
operation, or less invasive event like counseling or hypnotherapy.

Questionnaire: A structured set of questions and their answers. The questionnaire may •฀
contain questions, answers, or both. The questions are ordered and grouped into coherent
subsets, corresponding to the structure of the grouping of the underlying questions.

http://www.hl7.org/implement/standards/fhir/comparison-cda.html
http://www.hl7.org/implement/standards/fhir/comparison-cda.html
http://hl7.org/implement/standards/fhir/

CHAPTER 6 ■ FUTURE DIRECTIONS

142

Medications

Medication: Primarily used for identification and definition of medication, but also covers •฀
ingredients and packaging.

MedicationPrescription: An order for both the supply of the medication and the instructions •฀
for administration of the medicine to a patient.

MedicationAdministration: Describes the event of a patient being given a dose of a •฀
medication. This may be as simple as swallowing a tablet or it may be a long-running infusion.
Related resources tie this event to the authorizing prescription, and the specific encounter
between patient and health care practitioner.

Immunization: Immunization event information.•฀

ImmunizationRecommendation: A patient’s point-of-time immunization status and •฀
recommendation with optional supporting justification.

Administrative

The following are a few of the common administrative resource types.

Attribution

Patient: Demographic and additional administrative information about the person receiving •฀
care. This includes social services, dietary services, and the tracking of personal health and
exercise data.

RelatedPerson: Information about a person that is involved in the care for a patient, but who is •฀
not the target of healthcare, nor has a formal responsibility in the care process.

Practitioner: A person who is directly or indirectly involved in the provisioning of healthcare.•฀

Organization: A formally or informally recognized grouping of people or organizations formed •฀
for the purpose of achieving some form of collective action. Includes companies, institutions,
corporations, departments, community groups, healthcare practice groups, etc.

Workflow Management

Encounter: An interaction between a patient and healthcare provider(s) for the purpose of •฀
providing healthcare service(s) or assessing the health status of a patient.

Alert: Prospective warnings of potential issues when providing care to the patient.•฀

Supply: A request for something, and provision of what is supplied.•฀

Order: A request to perform an action.•฀

OrderResponse: A response to an order.•฀

This is but a small sampling of the resources available with FHIR. Let’s take a look at how the FHIR resources
relate to the schemas in BizTalk.

CHAPTER 6 ■ FUTURE DIRECTIONS

143

Patient Resource

Let’s take a closer look at the Patient resource (schema). Figure 6-1 shows the Patient schema.

Figure 6-1. Patient schema

Figure 6-2. Name record

In Figure 6-1, note that there is an id attribute and four sequence groups. Let’s take a closer look at the last
sequence group, which is expanded.

Note ■ All of the BizTalk FHIR schemas share the same structure. The only difference being the content contained

within the last sequence group.

As you can see, the sequence group consists of multiple records. If you expand the name record, as shown in
Figure 6-2, you will see more sequence groups.

CHAPTER 6 ■ FUTURE DIRECTIONS

144

The last sequence group is expanded. If you expand the records within this sequence group, as shown in
Figure 6-3, you will see that each record has an id attribute, sequence group, and value attribute.

Figure 6-3. Expanded view of name sequence group

The value attribute field in each record stores the value for the record; for example, the family record value
attribute contains the patient’s last name. This attribute field can have a restriction based upon the FHIR data types.
In the case of the patient’s last name, it would be the FHIR string data type.

Note ■ FHIR data types contain two categories; simple/ primitive types and complex types. You can learn more about

the FHIR data types by visiting http://hl7.org/implement/standards/fhir/datatypes.html.

Now that you have learned a little about FHIR resources, let’s take a look at the fhir-atom schema and how it is
used within BizTalk.

http://hl7.org/implement/standards/fhir/datatypes.html

CHAPTER 6 ■ FUTURE DIRECTIONS

145

The FHIR-ATOM Schema

This schema is what BizTalk will be receiving and sending to FHIR servers and client applications. The message can
either be JSON or XML. Figure 6-4 shows the fhir-atom.xsd. The root node is always named “feed”.

Figure 6-4. fhir-atom schema

Looking at Figure 6-4, you will notice that the payload is in the Choice group. The cardinality for this group is
minimum of three and unbounded for the maximum. If you expand the content record, you will see all the resources
defined in the FHIR Resource Index.

Tip ■ The complete FHIR Resource Index can be viewed on the FHIR web site at www.hl7.org/implement/standards/

fhir/resourcelist.html.

http://www.hl7.org/implement/standards/fhir/resourcelist.html
http://www.hl7.org/implement/standards/fhir/resourcelist.html

CHAPTER 6 ■ FUTURE DIRECTIONS

146

Content Record

Figure 6-5 shows the Patient resource, highlighting the content record.

Figure 6-5. Content record expanded

The fhir:Patient record shown in Figure 6-5 is the Patient schema. You could map a Patient record directly to
this record.

Moving On

Now that you know a little about the structure of the FHIR schemas in BizTalk, let’s create a simple BizTalk project for
the FHIR schemas. This will give you a chance to see the schemas first hand.

CHAPTER 6 ■ FUTURE DIRECTIONS

147

STEPS FOR CREATING A BIZTALK FHIR SCHEMA PROJECT

1. Create one Visual Studio solution named Fhir.POC with one BizTalk project.

2. The project, which will be named Fhir.Schemas, will contain the FHIR schemas.

a. Download the Schema Zip file from www.hl7.org/implement/standards/fhir/

downloads.html.

Tip ■ While you are at it, you can also download the FHIR Book (e-book), FHIR Specification, All Valuesets, and both

XML and JSON examples (having a local copy will make it easier to work with). If you want to see how to work with FHIR

in .Net, download the Reference Implementations

b. Extract the schemas from the zip file into the project.

c. You will need to make a few modifications to fhir-base.xsd in order to build the

schema project.

i. First, remove <xs:include schemalocation="fhir-all.xsd"/>Next, change

<xs:complextype name="Resource.Inline"> to the following:

<xs:complextype name="Resource.Inline">
<xs:sequence>
<xs:any processcontents="lax"/>
</xs:sequence>
</xs:complextype>

3. Sign and build the schema project.

Tip ■ If you decide you want to develop a complete FHIR application, you can use a public FHIR test server. The easiest

one to work with is Spark at http://spark.furore.com/.

The Spark server was developed by Furore (http://fhir.furore.com/). The FHIR-ATOM Schema can also be mapped to

both HL7 Version 2.x and Version 3 Schemas. This will provide you with backward compatibility.

It is my understanding that Microsoft Healthcare is starting to invest in the use of FHIR with BizTalk, along with Azure,

Office365, Healthvault, and CRM.

Summary
In this chapter, you were introduced to HL7 FHIR. You have learned how the FHIR schemas are structured. You also
created a BizTalk project for the FHIR schemas. In the next chapter, you will learn all about Best Practices for using
HL7 with BizTalk.

http://www.hl7.org/implement/standards/fhir/downloads.html
http://www.hl7.org/implement/standards/fhir/downloads.html
http://spark.furore.com/
http://fhir.furore.com/

149

CHAPTER 7

Best Practices for HL7 with BizTalk

In previous chapter, you learned about the future directions for HL7 with BizTalk. In this chapter, you will learn about
the best practices for working with HL7 in BizTalk, which help improve the design and maintenance of applications.
You will learn about best practices in the following areas:

Managing HL7 Message Schemas•฀

Dynamic Data Validation•฀

Managing Trading Partners•฀

Message Exchange Pattern•฀

Ordered Delivery•฀

Optimization for Performance•฀

Managing HL7 Message Schemas
BizTalk provides all HL7 message schemas as part of the HL7 Accelerator installation. The number of schemas is
dependent on the following three properties:

Message Type•฀

Message Trigger Event•฀

HL7 Messaging Standard Version•฀

For each of these properties, BizTalk has one message schema (XSD) defined. In addition to these schemas, there
are other schemas like the message header (MSH) and acknowledgment (ACK) message schemas. Managing so many
schemas in a BizTalk environment can be a very painful task, especially when you need to deal with different versions,
or different trigger events of one or more message types.

In order to manage these schemas in a more controlled manner and avoid deployment of all the schemas to a
BizTalk environment, you can follow the best practices covered in this chapter, which will not only reduce the number
of schemas deployed in your environment but will also help in maintaining them easily.

Deploying MSH and ACK Message Schemas to Their Own BizTalk Application
MSH and ACK message schemas are required to be deployed only once in entire BizTalk environment; in other words,
there can’t be two MSH or ACK message schemas for messages to parse successfully by the HL7 Disassembler. It is
a recommended practice to deploy and maintain these schemas in their own solution and BizTalk application. These
schemas are hardly ever touched after first deployment. Keeping them separate will allow you to not worry about
these while deploying and maintaining other message schemas.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

150

Using One HL7 Message Standard Version
The BizTalk HL7 Accelerator supports HL7 versions from HL7 V2.1 to V2.6. HL7 messaging standards with higher
versions are backward compatible with lower versions, so Version 2.6 is compatible with Version 2.1. So if you are
receiving messages of different versions in a BizTalk environment then it is recommended to only use higher versions
of a schema in BizTalk and use a pipeline component to change the version in the message header before passing the
message to the HL7 Disassembler.

Note ■ When creating HL7 messages, you should use the schema of the specific version you want to create the

message for, unless you are sure about the differences between the latest version and the version you want to create

the message for.

Using Minimum Required Message Trigger Event Schemas
Similar to different schema versions, there are also have many message trigger events for a particular message type.
BizTalk has a different schema for each trigger event of a particular message type; however, the message structure for
each of these schemas is nearly same. So all ADT message trigger events (A01- A62) can be managed with one or two
message schemas deployed. It is recommended to install and deploy only the minimum required message schemas and
use a pipeline component to change the trigger event before parsing the message. This reduces the number of schemas
to be deployed to a very low number, highly improving the maintenance of these schemas.

Changing Namespace for Customized Message Schemas
It’s highly unlikely that messages received will be in the exact format as defined by the HL7 messaging standard,
and some customization to BizTalk message schemas is always required. It is recommended to change the target
namespace of these customized schemas and use a trading partner to use these schemas. This allows you to isolate
the changes from the original message schemas and their namespace. Please refer to Chapter 4 to customize a
message schema.

Dynamic Data Validation
Dynamic data validation is about validating HL7 message content with dynamic data (the data that changes
frequently). Although the HL7 Accelerator provides the ability to validate message content and format it using a
message schema definition, this method of validation has following limitations:

This is a static validation because the schema definition once deployed can’t be changed •฀
dynamically at runtime. Any change to the schema requires redeployment of the
message schema.

Redeployment of artefacts affects time-to-market: it slows down the process of delivering the •฀
new requirements.

Many times HL7 messages received are not as per the HL7 messaging standard. Also, changing •฀
the message content is not feasible. In such cases, schema validation produces many more
errors, as anticipated.

These limitations are huge in a large and changing environment as there is much pressure to deliver the
ever-changing requirements quickly. To overcome these limitations, it is recommended to use the approach outlined
in the following sections.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

151

Resolving Message Structure Validation Issues
The HL7 Accelerator always performs message structure validation irrespective of whether message body validation
is turned on or not. Message structure validation validates the segment and the field’s structure, whether the expected
number of fields or subfields is present or not. For example, the OBX5 field by definition is a simple text (ST) format
data type, and if in a message the OBX5 field has subfields in it, then the message structure validation will fail with a
data type error. These data type errors can be difficult to find at times, and one of the best ways is to test the messages.
In order to resolve these issues, it is recommended to resolve all such message structure validation by either making the
message source change the message according to the definition or change the message schema to accommodate fields.

Using a Database to Maintain Dynamic Data
In order to maintain data that changes frequently, it is highly recommended to use a database to maintain such data,
which allows easy updates to the data at runtime without redeploying the artefacts. The dynamic data can also include
HL7 codes such as LOINC codes, SNOMED codes etc., against which you need to validate the message content.

Using Business Rules Engine (BRE) for Message Content Validation
This ensures that message content is valid as per your requirements by implementing business rule engine (BRE)
policies. BRE policies can be invoked from pipeline components or from orchestration to perform message content
validation. There are number of advantages of using BRE policies for message body validation:

BRE policies can use a database to refer to dynamic data that changes frequently, which allows •฀
you to add or change the data at runtime without any redeployment.

Validation will be based upon specific requirements rather than entire message content.•฀

In order to implement content validation using BRE, you need to turn off message body validation
from the HL7 Party Configuration Explorer and create a BRE policy referring to the database. Please refer to
http://msdn.microsoft.com/en-us/library/aa560118.aspx to create a BRE policy for accessing a database.
The BRE policy can be invoked from a pipeline component to return the validation errors as part of the message
acknowledgment or from an orchestration depending on the requirement.

Managing Trading Partners (Parties)
In a large environment, you may receive or send HL7 messages to and from many different trading partners, with each
of them having a different MSH3 or MSH5 in the HL7 message. As you learned in Chapters 3 and 4, you need to set
up a BizTalk trading partner (party) for many functionalities of the HL7 Accelerator with respect to MSH3 and MSH5
values. Setting up a trading partner for each and every sending or receiving application can be very unmanageable
especially if the environment is large. You can have smaller number of trading partners and manage them easily by
using the following best practice.

Group Trading Partners
Generally a trading partner is created for each different MSH3 (Sending Application) value in message you receive,
so if you receive HL7 messages having three different MSH3 values, you need to create three trading partners to apply
the configuration you need. If each of these sending applications sends messages of the same type or which require
similar customization and configuration, it is recommended to create only one trading partner and have one pipeline
component to change the MSH3 value in the component before passing the message to the HL7 Disassembler. This way
you can group the trading partners and reduce them significantly.

http://msdn.microsoft.com/en-us/library/aa560118.aspx

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

152

The same applies to trading partners created for the receiving application (MSH5). For example, if you need to
batch outgoing HL7 messages for different destinations, you must create a trading partner for each MSH5 to create the
required batch schedule. It is recommended to create one trading partner with one schedule and use the same trading
partner in MSH5 when sending the message.

Message Exchange Patterns
There are specific message exchange patterns for HL7 messaging. The following are the key patterns you use in HL7
in BizTalk.

Fire-And-Forget Pattern
In the fire-and-forget pattern, the sending application keeps sending the messages without waiting for the message
acknowledgment. This pattern performs better; however, it has the disadvantage that messages can’t be traced back
in case of any issues.

Request-Response Pattern
In Chapter 2, we discussed two message processing exchange patterns, original mode and enhanced mode.
Each mode differs in the way it sends acknowledgment to the sending application; however, the similarity is that in
both the sending application waits for acknowledgment before sending the next message. The message exchange
pattern is referred to as a request-response exchange.

It is recommended to use the request-response message exchange pattern, which ensures that you can trace the
message acknowledgment and does not send the next message until you receive acknowledgment. If you are the receiver,
you should use the request-response pattern with enhanced mode; in other words, use an intermediary storage to
store messages, such as MSMQ or SQL Server, and return the acknowledgment before processing the messages. Storing
messages in MSMQ or any other queuing system also helps in achieving ordered delivery of the messages.

Note ■ HL7 has transmission patterns. These patterns include specialized patterns called query, batch, polling, and

event replay. These HL7 patterns are equivalent to the MEP.

Example
In order to demonstrate the above best practices with an example, consider the following scenario:

BizTalk receives an ADT version 2.3 message with different trigger events.•฀

BizTalk validates the message and returns the acknowledgment.•฀

BizTalk stores the message in intermediate storage, such as MSMQ.•฀

The steps to implement this scenario are covered in the following sections. Some of these steps are similar to
those provided in the Chapter 4 scenario.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

153

Building a Common Project

The first step in implementing the scenario is to create a common project that contains a message header (MSH) and
acknowledgment (ACK) schema. This will only need to be done once in the BizTalk environment for all HL7-based
applications. You can skip this step if you already have MSH and ACK messages deployed to BizTalk.

 1. Create a Visual Studio blank solution and name it HL7.Common.

 2. Create a new BTAHL7V2XCommon project in the solution named
HL7.Common.Schemas, as shown in Figure 7-1.

Figure 7-1. Common project template

 3. The project in Solution Explorer will look like Figure 7-2.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

154

 4. Change the BizTalk Deployment properties to deploy this project to BizTalk under
the HL7.Common BizTalk application.

 5. Sign the project using a strong name key and deploy it.

Building a Message Schema (ADT) Project

The next step is to create BizTalk project to add ADT message type schemas and deploy it. You will use ADT V2.5.1
schemas even though you are going to receive a V2.3 message. This will help you maintain less BizTalk schemas.

 1. Create a new Visual Studio blank solution called HL7.Samples.

 2. Create a BTAHL7V251Common project to the solution, as shown in Figure 7-3.

Figure 7-2. Common project in Solution Explorer

Figure 7-3. Segments, DataTypes, TableValues project template

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

155

 3. The above step will add the datatypes_251, tablevalues_251, and segments_251 schemas.
Now add a new item to project by pressing Ctrl+Shift+A and select BTAHL7 Schemas, as
shown in Figure 7-4.

Figure 7-4. Message Type schema template

 4. Click Add, and don’t worry about naming the file as next step overrides anything you
select here. Once you click Add, you will get a new screen called HL7 Schema Selector to
select the message type, triggering event, and version.

 5. Select the message class, version, message type, and trigger event, as shown in Figure 7-5.
Once you click Create, it adds schema ADT_A01_251_GLO_DEF.xsd.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

156

 6. By default, the message schema is expected to be added to a separate project because
it refers to segments_251. xsd from an assembly reference, as shown below from the
schema file:

<xs:import schemaLocation="BTAHL7Schemas.segments_251"
namespace="http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments" />

 7. Since you added the schema to same project as the segments_251 schema, change the

schemaLocation as follows:

<xs:import schemaLocation="segments_251.xsd"
namespace="http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments" />

 8. The project in Solution Explorer will look like Figure 7-6.

Figure 7-6. Message schema project in Solution Explorer

Figure 7-5. HL7 schema type selector

http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments
http://microsoft.com/HealthCare/HL7/2X/2.5.1/Segments

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

157

 9. Change the default namespace from http://microsoft.com/HealthCare/HL7/2X
with namespace http://hl7.samples/schemas/hl7/2x in all .xsd files.

 10. Change the BizTalk deployment application to HL7.Samples in the project properties.

Building a Custom Receive Pipeline Component

This pipeline component changes incoming MSH segment fields to standardize the message before disassembling
the message. It changes three MSH segment fields as follows:

 1. The pipeline component changes MSH3 and MSH5 to HL7_Samples corresponding to the
HL7 party you will define.

 2. The pipeline component changes MSH8 to ADT^A01 always because A01 is the schema
you have deployed.

 3. The pipeline component changes MSH12 to 2.5.1 to standardize the message version.

The pipeline component code is shown in Listing 7-1.

Listing 7-1. Pipeline Code

public Microsoft.BizTalk.Message.Interop.IBaseMessage Execute(IPipelineContext pContext,
IBaseMessage pInMsg)
{
 if (pContext == null || pInMsg == null)
 throw new ArgumentNullException();

 IBaseMessageContext msgContext = pInMsg.Context;

 if (msgContext == null)
 throw new ArgumentNullException("pInMsg.Context");

 //wrap the stream into readonly seekable stream
 if (!pInMsg.BodyPart.GetOriginalDataStream().CanSeek)
 {
 ReadOnlySeekableStream seekableStream = new

ReadOnlySeekableStream(pInMsg.BodyPart.GetOriginalDataStream());
 // Set new stream for the body part data of the input message.

//This new stream will then used for further processing.
 // We need to do this because input stream may not support

//seeking, so we wrap it with a seekable stream.
 pInMsg.BodyPart.Data = seekableStream;
 pContext.ResourceTracker.AddResource(seekableStream);
 }

 Stream stream = pInMsg.BodyPart.GetOriginalDataStream();
 //preserve stream position
 long position = stream.Position;

http://microsoft.com/HealthCare/HL7/2X
http://hl7.samples/schemas/hl7/2x

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

158

 string message;
 StreamReader sr = new StreamReader(stream);
 message = sr.ReadToEnd();

 stream.Position = position;

 //1. replace MSH3 and MSH5 with a Party defined e.g. HL7_Samples
 //2. change MSH12 to 2.5.1
 //3. Change MSH8.2 to A01

 string[] segments = message.Split('\r');
 string[] mshSegment = segments[0].Split('|');

 //These are hard coded in pipeline for demo, can be used from //pipeline properties
 mshSegment[2] = "HL7_Samples";
 mshSegment[4] = mshSegment[2];

 mshSegment[8] = "ADT^A01";
 mshSegment[11] = "2.5.1";

 //aggregate the message segments back
 segments[0] = mshSegment.Aggregate((s1, s2) => s1 + "|" + s2);
 message = segments.Aggregate((s1,s2)=> s1 + '\r' + s2);

 //change the message
 MemoryStream ms = new MemoryStream(System.Text.Encoding.ASCII.GetBytes(message));
 pInMsg.BodyPart.Data = ms;
 pContext.ResourceTracker.AddResource(ms);

 return pInMsg;
}

After building the pipeline component, build and install the pipeline component to GAC (Global Assembly
Cache) and the C:\Program Files (x86)\Microsoft BizTalk Server 2013\Pipeline Components folder.

Building a Custom Receive Pipeline

This step creates a custom receive pipeline that uses the BizTalk HL7 Disassembler pipeline component in the
disassembler stage, along with your custom pipeline component created in the previous step at the decode stage, as
shown in Figure 7-7. Please add this pipeline to the project HL7.Samples.Pipelines in same solution.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

159

Figure 7-7. Receive Pipeline

Build the solution and deploy the projects to the HL7.Samples BizTalk application.

Configuration

After deploying the application, follow these steps to configure the application.

 1. Create a HL7 Party with the name HL7_Samples and change the acknowledgment mode to
original mode, uncheck the body validation, check the allow trailing delimiters checkbox,
and change the schema namespace to http://hl7.samples/schemas/hl7/2x.

 2. Create a two-way receive port, as shown in Figure 7-8.

http://hl7.samples/schemas/hl7/2x

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

160

 3. Configure MSMQ on the development machine if it’s not already available. You can check
the Windows Add Features to see if MSMQ is configured or not, as shown in Figure 7-9.

Figure 7-8. Two-way receive port

Figure 7-9. MSMQ

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

161

 4. In Computer Management or Server Manager, go to Services and Applications ➤ Message
Queuing. Create a private queue called hl7samples_adt with transaction set to true, as
shown in Figure 7-10.

Figure 7-10. MSMQ Queue HL7Samples_ADT

 5. Create a one-way send port to save the incoming message MSMQ with the configuration
shown in Figure 7-11.

Figure 7-11. One-way send port

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

162

Testing the Application

Once application is deployed and configured, you can test the scenario using the following sample message:

MSH|^~\&|ADT|MCM||MCM|198808181126|SECURITY|ADT^A01|MSG00001|P|2.3|||AL|NE
EVN|A01|198808181123
PID|||PATID1234^5^M11||J^WILL^A^III||19610611|M||2106-3|1 ELM STREET^^GREEN^NA^11111-
1020|GL|(111)111-1212|(111)111-3434~(111)111-3114||S||PATID12345001^2^M10|123456789|9-87654^NC
NK1|1|J^BA^K|SPO|||||20011105
PV1|1|I|2000^2012^01||||004777^LEBAU^SID^J.|||SUR||-||1|A0
AL1|2||^CAT DANDER
DG1|001|I9|1550|MAL NEO LIVER, PRIMARY|19880501103005|F||
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|K^SM^E|199505011201
GT1|1122|1519|BILL^GATES^A
IN1|001|A357|1234|BCMD|||||132987
IN2|ID1551001|SSN12345678
ROL|45^RECORDER^ROLE MASTER LIST|AD|CP|K^E|199505011201

As you can see, this message is of Version 2.3. When you test this message by sending it via MLLPSend or 7Edit to
your receive location, you will receive the accept acknowledgment and the message is moved to your MSMQ queue
with changed message version.

Note ■ In some cases, you need to revert the values back to the original values when sending the data out.

For such cases, you can revert them either in another pipeline component on the send side or in a transformation as

per requirement. The receive pipeline component can save the changed value to the message context.

Ordered Delivery
In a HL7 messaging solution, ordered delivery of some of the messages is important because the order of those
messages relates to real-life events that occur; for example, in patient administration, the patient admit (A01) event
occurs before the patient discharge (A03) event. In a system, ADT^A01 should flow before ADT^A03 for a single
patient, and this order should be maintained in all systems involved. The key point to note here is that for multiple
patients the data can flow through in parallel, but for single patient it should be in order. In order to maintain the
order delivery in BizTalk, use the following best practices.

Using Order Delivery on Receive Location
The input message should be received using adapters that support ordered delivery, such as MSMQ, MQSeries, and MLLP
in BizTalk. This ensures that messages are published in order to the message box.

Using the Send Port with Ordered Delivery
Set the ordered delivery along with “stop sending subsequent messages on current message failure” of MLLP send
ports from the transport advanced options. This will ensure that messages are delivered in order from the message
box.

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

163

Using the Ticket Dispenser and Gate-Keeper Orchestration Pattern
In case of a messaging scenario, the first two options allow you to process the messages in order. However, in cases
where you have multiple orchestrations to process the incoming messages before sending the message out, the
message order is not guaranteed for messages published from orchestration because each orchestration processing
may take a different amount of time to complete. In order to maintain the message order delivery in such scenarios,
you need to use a ticket dispenser and re-sequencing pattern in addition to above two steps. The pattern is defined
below on a high level.

Creating a Custom Pipeline

Create a custom pipeline component to assign each message a unique sequence number. This sequence is updated to
the message context before the message is published to the message box. This sequence number will be used by the
gatekeeper orchestration to re-sequence the outgoing messages.

Updating the Sequence Number in Orchestration

In business orchestrations, you can preserve the sequence number in outgoing messages by writing the sequence
number in the message context. These orchestrations should also promote a property to make these messages go to
gatekeeper orchestration, such as a destination property.

Implementing Gatekeeper Orchestration Using a Sequential Convoy

Implement a new orchestration that serves as gatekeeper for all outgoing messages. It receives all the messages and
correlates them based upon a destination property before messages go out. It checks whether the current message is
the next message to go out by checking the sequence number of the current message with last sent message sequence
number. If the current message is not the one to go out, orchestration keeps it in an in-memory queue. For more
details on the pattern, please go to:

http://msdn.microsoft.com/en-us/library/bb851740(v=bts.10).aspx

Optimization for Performance
HL7 message delivery usually takes place using the MLLP send adapter, which does not provide as good performance
as other adapters such as WCF-SQL, FILE, etc. This can become even slower if the destination system is not accepting
the messages at the rate you expect. This can create a bottleneck in BizTalk, and the BizTalk send host may start to
throttle, which will further slow down the message delivery.

If the message incoming rate does not slow down, very quickly you will see lots of messages build up in the
“Ready to Run” and “Active” states on the send host. Depending on the daily volume of the messages, this can be a huge
problem. In order to avoid this problem, you need to follow some best practices, outlined in the following sections.

Using MSMQ for Message Delivery
You should use MSMQ or another queuing system like MQSeries to store messages before the messages are sent out to
a specific destination. Using MSMQ is very simple and straightforward in BizTalk and does not require any additional
development. MSMQ allows you to easily control the message flow to the destination by enabling/disabling the MSMQ
receive locations whenever the destination system is not available.

http://msdn.microsoft.com/en-us/library/bb851740(v=bts.10).aspx

CHAPTER 7 ■ BEST PRACTICES FOR HL7 WITH BIZTALK

164

Using BizTalk Receive Host Throttling
BizTalk host throttling is great way to control the messages coming into BizTalk Message box in case the
destination message outgoing rate is slow. This works especially well in messaging-only scenarios. Use the host
throttling performance counters at http://msdn.microsoft.com/en-us/library/aa578302.aspx to determine
the right configuration settings for your environment.

Isolating MLLP Hosts
This is a standard BizTalk practice to isolate hosts at receive, send, and orchestration level; however, with HL7-based
solutions you may need to further isolate hosts depending on the volume, especially for MLLP send hosts. Since it’s
difficult to scale the MLLP send hosts on multiple server, you may need to create multiple MLLP send hosts. One criteria
to creating these hosts is based on message type, such as one MLLP send for ADT, one for ORM etc.

Using Messaging Scenario
Wherever possible you should use a messaging-based solution only without implementing orchestrations. For HL7
solutions, especially when you need ordered delivery, the complexity is increased with orchestration. Due to the
HL7 message being a multipart message, the only way to create and invoke transformation is through orchestration.
However, if transformation is simple and only requires few field changes, it is recommended to do it in
pipeline component.

Monitoring
Having the ability to monitor your HL7 implementations is extremely important. Without proper monitoring you
won’t know what is going on with your applications.

There are several monitoring tools on the market, but there is only one that stands out. This product provides you
with complete control of the entire HL7 environment. That product is BizTalk360 (www.biztalk360.com). BizTalk360
was developed by Saravana Kumar, who is also an Integrations MVP. There are too many features to list here, so it is
recommended that you visit the BizTalk360 web site and see them for yourself.

Note ■ You will be seeing new functionality being added to BizTalk360 to support HL7. One of these features will filter

response messages from an HL7 transmission and capture error information. It is recommended that you subscribe to

the BizTalk360 mailing list in order to be notified of new functionality.

Summary
In this chapter, you learned various best practices for HL7 solution implementation in BizTalk such as managing
schemas, the message exchange pattern, ordered delivery, and more. Implementing these best practices is important,
even essential, for any HL7 solution in order for it to perform better and to improve manageability. Lastly, you learned
about the need for monitoring.

http://msdn.microsoft.com/en-us/library/aa578302.aspx
http://www.biztalk360.com/

165

APPENDIX 1

HL7 Definitions

The following definitions are from the HL7 organization.

Message: A message is the entire unit of data transferred between systems in a single
transmission. It is a series of segments in a defined sequence, with a message type and
a trigger event.

Segment: A segment is a logical grouping of data fields. Segments within a defined message
may be required or optional, may occur only once, or may be allowed to repeat. Each
segment is named and is identified by a segment ID, a unique three-character code.

Field: A field is a string of characters. Each field is identified by the segment it is in and
its position within the segment; for example, PID-5 is the fifth field of the PID segment.
Optional data fields may be omitted. Whether a field is required, optional, or conditional
in a segment is specified in the segment attribute tables. The designations are R=Required,
O=Optional, C=Conditional on the trigger event or on some other field(s). The field
definition should define any conditionality for the field: X=Not used with this trigger event,
B=Left in for backward compatibility with previous versions of HL7. A maximum length
of the field is stated as normative information. Exceeding the listed length should not be
considered an error.

Component: A component is one of a logical grouping of items that comprise the
contents of a coded or composite field. Within a field having several components, not all
components are required to be valued.

Item number: Each field is assigned a unique item number. Fields that are used in more
than one segment will retain their unique item number across segments.

Null and empty fields: The null value is transmitted as two double quote marks (“”).
A null-valued field differs from an empty field. An empty field should not overwrite
previously entered data in the field, while the null value means that any previous value in
this field should be overwritten.

Data type: A data type restricts the contents and format of the data field. Data types are
given a two- or three-letter code. Some data types are coded or composite types with
several components. The applicable data type is listed and defined in each field definition.
Appendix 2 provides a complete listing of data types used in this document and their
definitions.

APPENDIX 1 ■ HL7 DEFINITIONS

166

Delimiters: The delimiter values are given in MSH-2 and used throughout the message.
Applications must use agreed-upon delimiters to parse the message. The recommended
delimiters for immunization messages are <CR> = Segment Terminator; | = Field Separator;
^ = Component Separator; & = Sub-Component Separator; ~ = Repetition Separator; and
\ = Escape Character.

Message syntax: Each message is defined in special notation that lists the segment
three-letter identifiers in the order they will appear in the message. Braces, {}, indicate that
one or more of the enclosed group of segments may repeat, and brackets, [], indicate that
the enclosed group of segments is optional.

Z segments: All message types, trigger event codes, and segment ID codes beginning
with Z are reserved for locally defined messages. No such codes will be defined within
the HL7 standard. The users of this guide have agreed to eliminate Z segments from their
implementations in order to produce a standard method that will be used nationally to
transmit immunization data.

167

APPENDIX 2

HL7 Basic Message Construction
Rules

The following information is provided directly from “Processing HL7 Messages” on Microsoft’s MSDN site. You can
access this and more information at http://msdn.microsoft.com/en-us/library/ee404922.aspx.

Encoding Rules for Sending Messages
Encode each segment in the order specified in the abstract message format.•฀

Place the Segment ID first in the segment.•฀

Precede each data field with the field separator.•฀

Encode the data fields in the order and data type specified in the segment definition table.•฀

End each segment with the segment terminator.•฀

Components, subcomponents, or repetitions that are not valued at the end of a field need not •฀
be represented by component separators. The following example shows that the data fields
are equivalent:

 ^XXX&YYY&&^ is equal to ^XXX&YYY^
 |ABC^DEF^^| is equal to |ABC^DEF|

Encoding Rules for Receiving
If a data segment that is expected is not included, treat it as if all data fields within were •฀
not present.

If a data segment is included that is not expected, ignore it; this is not an error.•฀

If data fields are found at the end of a data segment that are not expected, ignore them; this is •฀
not an error.

http://msdn.microsoft.com/en-us/library/ee404922.aspx

169

APPENDIX 3

HL7 Version 2.x Data Types

The following are the data types supported by the HL7 Accelerator in BizTalk 2013. Microsoft added support for
HL7 Version 2.6 in BizTalk 2013 R2. You can view the changes for the Version 2.6 data types in Appendix 4.

Note ■ All the information contained within these sections is from the HL7 Version 2.5.1 Standard Implementation Guide.

You can view the brief for this guide at www.hl7.org/implement/standards/product_brief.cfm?product_id=144.

Data Structure—Definition
Table A3-1 lists the complex data structures used in Version 2.5.1.

Table A3-1. Complex Data Structure Definitions

Data Structure Description

AD Address

AUI Authorization Information

CCD Charge Code and Date

CCP Channel Calibration Parameters

CD Channel Definition

CE Coded Element

CF Coded Element with Formatted Values

CNE Coded with No Exceptions

CNN Composite ID Number and Name Simplified

CP Composite Price

CQ Composite Quantity with Units

CSU Channel Sensitivity

CWE Coded with Exceptions

(continued)

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=144

APPENDIX 3 ■ HL7 VERSION 2.X DATA TYPES

170

Table A3-1. (continued)

Data Structure Description

CX Extended Composite ID with Check Digit

DDI Daily Deductible Information

DIN Date and Institution Name

DLD Discharge Location and Date

DLN Driver's License Number

DLT Delta

DR Date/Time Range

DT Date

DTM Date/Time

DTN Day Type and Number

ED Encapsulated Data

EI Entity Identifier

EIP Entity Identifier Pair

ELD Error Location and Description

ERL Error Location

FC Financial Class

FN Family Name

FT Formatted Text Data

GTS General Timing Specification

HD Hierarchic Designator

ICD Insurance Certification Definition

ID String Data

IS String Data

JCC Job Code/Class

LA1 Location with Address Variation 1

LA2 Location with Address Variation 2

MA Multiplexed Array

MO Money

MOC Money and Code

MOP Money or Percentage

MSG Message Type

NA Numeric Array

NDL Name with Date and Location

(continued)

APPENDIX 3 ■ HL7 VERSION 2.X DATA TYPES

171

Table A3-1. (continued)

Data Structure Description

NM Numeric

NR Numeric Range

NUL

OCD Occurrence Code and Date

OSD Order Sequence Definition

OSP Occurrence Span Code and Date

PIP Practitioner Institutional Privileges

PL Person Location

PLN Practitioner License or Other ID Number

PPN Performing Person Time Stamp

PRL Parent Result Link

PT Processing Type

PTA Policy Type and Amount

QIP Query Input Parameter List

QSC Query Selection Criteria

RCD Row Column Definition

RFR Reference Range

RI Repeat Interval

RMC Room Coverage

RP Reference Pointer

RPT Repeat Pattern

SAD Street Address

SCV Scheduling Class Value Pair

SI Sequence ID

SN Structured Numeric

SPD Specialty Description

SPS Specimen Source

SRT Sort Order

ST String Data

TM Time

TQ Timing Quantity

TS Time Stamp

TX Text Data

(continued)

APPENDIX 3 ■ HL7 VERSION 2.X DATA TYPES

172

Each of the above complex data structures contains multiple components. Let’s look at one of these.

Data Structure AD
This data structure defines what components are in the address data structure. Table A3-2 shows these.

Table A3-2. Address Components

Seq. Index Sec. Table Opt. Length Data Type

1 Street Address O 120 ST

2 Other Designation O 120 ST

3 City O 50 ST

4 State or Province O 50 ST

5 ZIP or Postal Code O 12 ST

6 Country 0399 O 3 ID

7 Address Type 0190 O 3 ID

8 Other Geographic
Designation

O 50 ST

Data Structure Description

UVC UB Value Code and Amount

varies Varies

VH Visiting Hours

VID Version Identifier

VR Value Range

WVI Channel Identifier

WVS Waveform Source

XAD Extended Address

XCN Extended Composite ID Number and Name for
Persons

XON Extended Composite Name and Identification
Number for Organizations

XPN Extended Person Name

XTN Extended Telecommunication Number

Table A3-1. (continued)

The last column in Table A3-2 lists the base data type for a component. An example of this is the street address.
The base data type for this is ST. This refers to string data.

APPENDIX 3 ■ HL7 VERSION 2.X DATA TYPES

173

Table A3-3 shows all the HL7 data types for the components used in the data structures.

Table A3-3. HL7 Data Types

Data Type Category Data Type Data Type Name

Alphanumeric

ST String

TX Text data

FT Formatted text

Numerical

NM Numeric

SI Sequence ID

SN Structured numeric

Identifier

ID Coded values for HL7 tables

EI Entity identifier

PT Processing type

Date/Time

DT Date

TS Time stamp

Code Values

CE Coded element

CF Coded element with formatted values

CK Composite ID with check digit

CN Composite ID number and name

CX Extended composite ID with check digit

XCN Extended composite ID number and name

Demographics

AD Address

PN Person name

TN Telephone number

XON Extended composite name and ID number for organizations

XTN Extended telecommunications number

APPENDIX 3 ■ HL7 VERSION 2.X DATA TYPES

174

Rules Applied to Components
HL7 Version 2.5 and higher have restrictions on the maximum lengths of data types. The following are the rules
that apply.

 1. The upper bound maximum length of a data type is the sum of the following:

a. The combined length of all components (including those not required) that are not
mutually exclusive.

b. The combined length of the largest set of mutually exclusive components.

c. The combined length of message delimiters that are required to construct the field.

 2. The lower bound maximum length of a data type is the sum of the following:

a. The combined length of all required components that are not mutually exclusive.

b. The combined length of the largest set of mutually exclusive required components.

c. The combined length of message delimiters that are required to construct the field.

Tip ■ The information contained in this appendix is just a sampling of the information about the HL7 Version 2.5

and above data types. You can find more information in The HL7 Implementation Guide for the HL7 version 2.x you

are using, by viewing the HL7 Product Brief for the Version 2 Product suite at www.hl7.org/implement/standards/

product_brief.cfm?product_id=185.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185

175

APPENDIX 4

HL7 Version 2.6

The release of Microsoft BizTalk 2013 R2 includes the HL7 Version 2.6 standard.

HL7 Version 2.6
If you compare Version 2.6 to Version 2.5.1, you will find that quite a few new events, segments, and messages have
been added. In addition to these, two new chapters have been added to the HL7 Version 2.6 standard. These are
Chapter 16 - Claims and Reimbursements and Chapter 17 - Materials Management.

Note ■ Much of the information contained within this appendix is directly from The HL7 Version 2.6 Standard Guide.

If you open the folder C:\Program Files (x86)\Microsoft BizTalk 2013 R2 Accelerator for HL7\
Templates\Schemas\V2.X\2.6, you will see what is included in Version 2.6 (also shown in Figure A4-1).

APPENDIX 4 ■ HL7 VERSION 2.6

176

Differences Between Version 2.6 and 2.5.1
Let’s take a brief look at some of the differences between Version 2.6 and Version 2.5.1.

Data Type Changes
Three of the Version 2.5.1 data types are affected.

The •฀ CE data type has been removed. It has been replaced with the CNE - Coded with no
exceptions and CWE - Coded with Exceptions data types. Figures A4-2 and A4-3 show the
components for these data types.

Figure A4-1. Folder heirarchy for Version 2.6

APPENDIX 4 ■ HL7 VERSION 2.6

177

The •฀ TS - Time Stamp data type is no longer used. It was replaced with the DTM data type,
which is equal to the TS data type, but without the second component.

The •฀ ED - Encapsulated Data data type uses a new table (table 0834). All the other tables
referenced by this data type have been refined. The values contained within this table are a
subset of W3C MIME types; audio, image, model, multipart, text, and video.

Segments
Two new segments have been added: UAC - User Authentication and ARV - Access Restrictions.

UAC - User Authentication

The UAC is an optional segment available in all the Version 2.6 messages. This segment provides user authentication
credentials for the receiving system. Your choices for credentials are the following:

•฀ Kerberos Service Ticket (http://technet.microsoft.com/en-us/library/
bb742516.aspx)

•฀ SAML Assertion (http://en.wikipedia.org/wiki/SAML)

Figure A4-2. CNE components

Figure A4-3. CWE Components

http://technet.microsoft.com/en-us/library/bb742516.aspx
http://technet.microsoft.com/en-us/library/bb742516.aspx
http://en.wikipedia.org/wiki/SAML

APPENDIX 4 ■ HL7 VERSION 2.6

178

The UAC segment includes two new fields:

•฀ UAC-1 - Credential Type Code, which is a CWE data type

•฀ UAC-2 - User Authentication Credential, which is an ED data type

ARV - Access Restrictions

According to Chapter 3 of The HL7 Version 2.6 Standard Guide, the ARV, which is a new segment, has been added to
all the ADT message types. Its main use is to specify access restrictions. Let’s say a person or patient objects to having
specific data exposed to family members or friends.

The ARV Segment has six fields. The key fields are ARV-2, which contains the Action Code (Add, Delete, and
Update), and the ARV-3 which contains the Access Restriction Value. The ARV-3 is used to identify what information
is restricted.

Mood Code
The Mood Code field has been added. The Mood Code is used to specify how the data contained within a particular
segment be processed by the receiving system. You will find that the Mood Code field has been added to the following
segments; OBX, RXO, PRB, GOL, PTH and PRD.

Tip ■ You can consider the Mood Code as the processing instruction for the segment. It is only allowed in new

messages.

A good example of its use would be if there is an OBX segment in the outbound message. This field can specify if
the OBX contains a result, or that the sender expects a result back.

In this sample, the Mood Code field is a CNE data type. These values are contained within the HL7 Version 2.6 - 0725
table. The components of the Mood Code are shown in Listing A4-1.

Listing A4-1. Mood Code Components

<Identifier (ST)> ^ <Text (ST)> ^ <Name of Coding System (ID)> ^ <Alternate Identifier (ST)> ^
<Alternate Text (ST)> ^ <Name of Alternate Coding System (ID)> ^ <Coding System Version ID (ST)> ^
<Alternate Coding System Version ID (ST)> ^ <Original Text (ST)>

Table A4-1 shows some common Mood Codes.

APPENDIX 4 ■ HL7 VERSION 2.6

179

Besides the values listed in Table A4-1, the 0725 table contains two additional values: “Criterion applying to Eve”
and “Eg Use in Care Plans.”

New Message Types
If you are working with veterinary medicine, then the addition of two new message types will be of interest to you.
These new message types have been added to the laboratory domain.

•฀ 037: OPL - Population/Location-Based Laboratory Order Message

•฀ 038: OPR - Population/Location-Based Laboratory Order Acknowledgment Message

You can read more about these message types in Chapter 4 of the HL7 Version 2.6 Standard Guide.

Two New Chapters
As previously mentioned, two new chapters have been added. Each chapter provides a new transaction set.

Note ■ There is quite a bit of information contained within these new chapters. We won’t go into too much detail here.

If you read the chapters in the HL7 Version 2.6 guide, you will find all you need to know about these new transaction sets.

Claims and Reimbursements Transaction Set

This transaction set is in Chapter 16 of the HL7 Version 2.6 Guide. It supports the communication of claims
information from a provider to payer or reimbursement authority.

Note ■ The Claims and Reimbursements Transaction Set is not used in the United States; HIPAA is used instead.

Table A4-1. Mood Codes (Source: HL7 Version 2.6 Standard Guide)

Value Description

APT Appointment

ARQ Appointment Request

EVN Event

EVN,CRT Event Criterion

EXP Expectation

INT Intent

PRMS Promise

PRP Proposal

RQO Request-Order

APPENDIX 4 ■ HL7 VERSION 2.6

180

Materials Management Transaction Set

This new transaction set supports supply chain management within a healthcare facility. Two new and distinct topics
are covered within this transaction set.

Inventory Item Master File Updates

This topic covers the exchange of common materials-related reference files. This files are also known in HL7 as master
files. Eight new segments are related to this topic. Table A4-2 describes these segments.

Table A4-2. Master File Segments

Identifier Description

IIM INVENTORY ITEM MASTER SEGMENT

ITM MATERIAL ITEM SEGMENT

STZ STERILIZATION PARAMETER SEGMENT

VND PURCHASING VENDOR SEGMENT

PKG PACKAGING SEGMENT

PCE PATIENT CHARGE COST CENTER EXCEPTION

IVT MATERIAL LOCATION SEGMENT

ILT MATERIAL LOT SEGMENT

In addition to the segments, two new types have been added. These are Placer Request and Filler Request.
You can read about these types in Chapter 17 of The HL7 Version 2.7 Standard Guide.

Sterilization and Decontamination

Sterilization and decontamination cover order-related information for an instrument tracking system and a sterilizer.
Four new segments have been added.

•฀ SCP - STERILIZER CONFIGURATION SEGMENT

•฀ SLT - STERILIZATION LOT SEGMENT

•฀ SDD - STERILIZATION DEVICE DATA SEGMENT

•฀ SCD - ANTI-MICROBIAL CYCLE DATA SEGMENT

Queries
There are a few more modifications. In Chapter 5 of the HL7 Version 2.6 standard, the query profile has replaced query
conformance statements. The reason for this is that the term “query conformance statements” was very misleading.

APPENDIX 4 ■ HL7 VERSION 2.6

181

Query Profile

The guide describes a query profile as

A declaration which sets forth the name of the query supported by the Server, the logical structure
of the information queried, and the logical structure of what can be returned.

Chapter 5, page 7 of the of the HL7 Version 2.6 Standard

Removed Message Types

Several query message types that exist in Version 2.5.1 have been removed. These are EQQ - embedded query language
query, RQQ - event replay query, SPQ - stored procedure request, and VQQ - virtual table query.

Tip ■ One thing you need to be aware of is that Version 2.6 has increased in size over the previous versions. Many new

artifacts have been added. There are well over 300 trigger events and more than 2,000 fields.

Summary
As you have seen, HL7 Version 2.6 is very different then Version 2.5.1. If you are planning on using it, then you should
review the complete standard. You can download it from www.hl7.org/implement/standards/product_brief.
cfm?product_id=145.

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=145
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=145

A���������
Accept acknowledgement, 19
Acknowledgement modes, 19
Acknowledgment code, 18
Admit/visit notiication message structure, 5
ADT message, 95
Application acknowledgment, 19

B���������
Batching, 87–89
Batch message, 44
Batch orchestration

activation and batch schedule, 42
batch message, 47
BizTalk environment, 43
design, 40
HL7 logging service, 49
HL7 V2.xml receive and send pipelines, 58
individual HL7 messages, 40
MLLPReceive, 59
MLLPSend, 58
process, 43
termination, 43
Update2XmlSchema, 60

BizTalk accelerator, 1
BizTalk.GetImmunizationNextOfKin, 121
BizTalk.GetImmunizationPatientInfoVaccine, 121
BizTalk.GetImmunizationVaccineTypes, 121
BizTalk HL7 accelerator

acknowledgment, 37
ADT message type schemas, 154–155, 157
architecture, 28
batch messages, 38
batch orchestration (see Batch orchestration)
batch schedule, 39
common project, 153–154
coniguration, 159–161

custom receive pipeline, 158–159
dynamic data validation, 150–151
healthcare systems, 27
HL7 coniguration explorer, 33
HL7 party, 34, 39
HL7 V2.xml XML schemas, 31
HL7 V2.x receive and send pipelines, 33
HL7 V2.x XML schemas, 29
in-built functionalities, 27
message body schema, 35
message exchange patterns, 152
message header, 34
message schemas, 149
MLLP test, 31
monitoring, 164
MSH segment, 39
multipart message, 34
optimization, 163–164
ordered delivery, 162–163
pipeline component code, 157–158
testing, application, 162
trading partners, 151
validation error, message body, 35–36, 39
visual studio artifacts, 28
visual studio item templates, 31
visual studio project templates, 30
XML-to-HL7 V2.x message, 39
Z segments, 35

BRE. See Business rule engine (BRE)
BTAHL7 coniguration explorer, 74
BTAHL72XSendPipeline, 130
Business rule engine (BRE), 151

C���������
CatchException_GetImmunizationData, 125
CatchExceptionhrown, 126
CDA. See Clinical Data Architecture (CDA)
Clinical Data Architecture (CDA), 141

Index

183

Construct_VXUInternalExtendedResponse, 121–123
CreateImmunizationHL7XMLMsg orchestration, 126
Customization

party coniguration, 78
receive and send ports, 78
scenarios, ADT message schema, 77–78
standard segment ield, 76–77
Z segments, 76

D���������
Delimiter-based encoding

acknowledgement message, 19
acknowledgment code, 20
components, 10
data types, 14
description, 10
enhanced mode, 20
ERR segment, 21
escape sequences, 16
ields, 14
HL7 message, 10
message control ID, 18
message trigger event, 17
message version, 17
original mode, 19
segments, 12

E���������
Encoding rules

receiving messages, 167
sending messages, 167

Error (ERR) segment, 21
ExternalMessageQueue ields, 105
ExternalMessageQueuePK, 116

F���������
FHIR®

attribution, 142
CDA, 141
clinical resources types, 141–142
content record, 146
description, 139
fhir-atom schema, 145
HL7 Version 2, 140
HL7 Version 3, 140
improvements, 140
patient resource, 143–144
structure, 146–147
worklow management, 142

Field delimiter sample, 13
Fields, HL7 message

classiication, 12
identiication, 13
repeatable ields, 14
subields, 13
sub-subields, 13

Fire-and-forget pattern, 152

G���������
GetImmunizationData, 106
GetImmunizationNextOfKin, 106
GetImmunizationPatientInfo, 118–119
GetImmunizationPatientInfo

request/response port, 120
GetImmunizationPatientInfoVaccine, 106
GetImmunizationVaccineTypes, 106
GetUpdateExternalMessageQueue

stored procedure, 106

H���������
Health Level Seven International (HL7)

description, 1
HL7 Versions, 3–6
International logo, 1
Open Systems Seven-Layer

Communications Model, 2
reference categories/sections, 2
world-wide healthcare with framework, 2

HL7 accelerator
acknowledgment mode, 79–81
batching, 87–89
customization, accept messages (see Customization)
message exchange, 61–62
message processing

enhanced mode, 64–65
original mode, 62–63

message routing, 65–69, 71
message transformation, 81–84
MLLP adapter, 84, 86
turn of message validation, 72, 74–75

HL7 assembler, 39
HL7 deinitions

component, 165
data type, 165
delimiters, 166
ield, 165
item number, 165
message, 165
message syntax, 166

■฀INDEX

184

null and empty ields, 165
segment, 165
Z segments, 166

HL7 disassembler, 33, 37
HL7 logging service, 47
HL7 message encoding

ADT message type, 9
delimiter (see Delimiter-based encoding)
description, 9
types, 9
XML encoding (see XML encoding)

HL7 Version 2.5.1
address components, 172–173
complex data structures, 169–171
maximum lengths, data types, 174
queries

QBP^Q11, 136–137
query by parameter message types, 135–136
RSP^K11, 137–138

HL7 Version 2.6
folder heirarchy, 175–176
vs. version 2.5.1

ARV-access restrictions, 178
data type changes, 176–177
master ile segments, 180
mood code, 178–179
new message types, 179
queries, 180
sterilization and decontamination, 180
transaction set, 179
UAC-user authentication, 177

HL7 Version 2.x
Address, 97
CDA, 91
CDA elements, 95
Coded Element, Coded No Exceptions

and Coded With Exceptions, 97
Composite ID Number and Name, 98
data types, 96
Date and TimeStamp, 98
Encapsulated Data, 98
Entity Identiier, 98
global healthcare industry, 3
Hierarchical Descriptor, 99
HL7 V.2.5.1 queries (see HL7 version 2.5.1)
message structure, 4
message types

ADT message, 95
MDM messages, 94
OBX Segments, 94
ORU messages, 94

minimum CDA elements, 92–93
Numeric, 99

OBX segment (see OBX segment)
Person Name, 99
primary standards, 3
Reference Pointer, 99
segments, 95
steps, 91
Version 3 data type mappings, 96

I, J, K, L���������
Immunization data stored procedures, 106
Immunization message

BizTalk-based solution, 103
BizTalk.GetImmunizationNextOfKin, 121
BizTalk.GetImmunizationPatientInfoVaccine, 121
BizTalk.GetImmunizationVaccineTypes, 121–126
BizTalk solution, 133
BTAHL72XSendPipeline, 130
CatchExceptions, 132
certiication test cases, 103
CreateImmunizationHL7XMLMsg, 126–129
design, 103, 105
engine, 130
event notiication, 105–106
GetData, 116–120
Immunization Registry ile creation, 116
mapping, 107–116
merge segments, 130
orchestrations, 116
pipeline coniguration section, 132
send port coniguration, 131
stored procedures, 106
testing, 133–135
vaccinations, 103

M���������
Medical Document Management (MDM) messages, 94
Message acknowledgment, 18, 25
Message body segments, 12
Message header segment (MSH), 5–6, 12
Message routing

common project, 65–66
conigurations, 70–71
HL7 schema selector, 68
message type schema template, 67
segments, data types and

table values project template, 67
solution explorer, 69
testing, scenarios, 71

MessageType, 116
Minimum CDA elements, 92–93
Minimum Lower Layer Protocol (MLLP), 47

■฀INDEX

185

MLLP. See Minimum Lower Layer Protocol (MLLP)
MLLPReceive, 59
MLLPSend, 58
MSH. See Message header segment (MSH)
MSH9 ield, 22

N���������
NextOfKin map, 124

O���������
OBX segment

HL7 Version 3, 100
name/value form type, 102–103
narrative form type, 101–102
OBX form types, 100

Orchestration, 83
Orchestration design, 40
ORU messages, 94

P, Q���������
Party creation, 73
PatInfoPk, 116
ProcessingStatus, 116

R���������
Repeatable ield, 13–14
Request-response pattern, 152

S���������
SQL logging store, 48

T���������
Trading partners, 151

U���������
Update2XmlSchema, 60

V, W���������
Visual studio project, 31
VXUInternalExtended Schema, 108

X, Y���������
XML encoding

data types, 24
delimiter, 22
escape sequence, 26
ields, 24
root element—message structure IDs, 22
segments, 24

XML schemas, 26

Z���������
Z segments, 12

■฀INDEX

186

HL7 for BizTalk

Howard Edidin

Vikas Bhardwaj

HL7 for BizTalk

Copyright © 2014 by Howard Edidin and Vikas Bhardwaj

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6764-5

ISBN-13 (electronic): 978-1-4302-6763-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Ewan Buckingham
Developmental Editor: Dominic Shakeshaft
Technical Reviewer: Mike Diiori
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

his book is dedicated to my two sons, Scott and Mark

—Howard S. Edidin

vii

Contents

Foreword ...xiii

About the Authors ... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Chapter 1: BizTalk and HL7 ■ ..1

What Is HL7? ...1

What Does HL7 Mean? .. 1

Introduction to HL7 Standards...2

Seven Referenced Categories ... 2

The HL7 Versions ...3

Key Benefits of Version 2.x .. 4

HL7 Version 2.x Message Structure ..4

Segment .. 4

Moving Forward ..7

Summary ...7

Chapter 2: HL7 Message Encoding ■ ..9

The HL7 Message ..9

Message Encoding Types... 9

Delimiter-based Encoding ... 9

XML Encoding .. 21

Summary ...26

■ CONTENTS

viii

Chapter 3: Understanding the HL7 Accelerator ■ ...27

Introduction ...27

Architecture ...27

Development Environment ... 28

Runtime Environment ... 31

Utilities ... 58

Summary ...60

Chapter 4: The HL7 Accelerator in Action ■ ..61

Message Exchange ...61

Message Processing—Original Mode ... 62

Message Processing—Enhanced Mode .. 64

Simple Message Routing ...65

Building the Solution ... 65

Configurations ... 70

Test the Scenario ... 71

Key Observations ... 71

Turning Off Message Body Validation ..72

Build the Solution .. 72

Configuration ... 72

Test the Scenario ... 75

Key Observations ... 75

Accept Messages with Customized Fields ..75

Z Segment ... 76

Standard Segment Field Customization .. 76

Build the Solution .. 77

Configuration ... 78

Test the Scenario ... 79

Key Observations ... 79

Customized Acknowledgment Behavior ..79

Build the Solution .. 80

Configurations ... 80

■ CONTENTS

ix

Test the Scenario ... 81

Key Observations ... 81

Message Transformation ...81

Build the Solution .. 81

Configurations ... 83

Test the scenario ... 84

Key Observations ... 84

Send an HL7 Message via a MLLP Adapter ...84

Build the Solution .. 84

Configuration ... 85

Test the Scenario ... 87

Key Observations ... 87

Batching ..87

Build the Solution .. 87

Configurations ... 87

Summary ...89

Chapter 5: HL7 Advanced Topics ■ ...91

Mapping Version 2.x to the HL7 CDA ...91

The Steps ... 91

Common Message Types ... 94

MDM - Medical Document Management ... 94

Some Message Segments Are Common to Both ... 95

HL7 V2 Segments to CDA Elements ... 95

The Data Types .. 96

HL7 Version 2 to Version 3 Data Type Mappings .. 96

Meaningful Use Certification for Immunizations ...103

Design .. 103

Development .. 105

Processing ... 116

CreateImmunizationHL7XMLMsg ... 126

Testing ... 133

■ CONTENTS

x

Using HL7 V.2.5.1 Queries ...135

Query by Parameter Message Types ... 135

Summary ...138

Chapter 6: Future Directions ■ ..139

FHIR® in BizTalk ...139

What is FHIR® .. 139

Why Is FHIR Better? ... 140

What Problems Does FHIR Solve? ... 140

What Does This Mean for BizTalk? .. 141

Summary ...147

Chapter 7: Best Practices for HL7 with BizTalk ■ ...149

Managing HL7 Message Schemas ..149

Deploying MSH and ACK Message Schemas to Their Own BizTalk Application ... 149

Using One HL7 Message Standard Version .. 150

Using Minimum Required Message Trigger Event Schemas ... 150

Changing Namespace for Customized Message Schemas .. 150

Dynamic Data Validation..150

Resolving Message Structure Validation Issues .. 151

Using a Database to Maintain Dynamic Data... 151

Using Business Rules Engine (BRE) for Message Content Validation .. 151

Managing Trading Partners (Parties) ...151

Group Trading Partners .. 151

Message Exchange Patterns ...152

Fire-And-Forget Pattern... 152

Request-Response Pattern .. 152

Example ... 152

Ordered Delivery..162

Using Order Delivery on Receive Location ... 162

Using the Send Port with Ordered Delivery ... 162

Using the Ticket Dispenser and Gate-Keeper Orchestration Pattern ... 163

■ CONTENTS

xi

Optimization for Performance ...163

Using MSMQ for Message Delivery ... 163

Using BizTalk Receive Host Throttling ... 164

Isolating MLLP Hosts ... 164

Using Messaging Scenario .. 164

Monitoring ...164

Summary ...164

Appendix 1: HL7 Definitions ■ ..165

Appendix 2: HL7 Basic Message Construction Rules ■ ..167

Encoding Rules for Sending Messages ...167

Encoding Rules for Receiving ..167

Appendix 3: HL7 Version 2.x Data Types ■ ...169

Data Structure—Definition ..169

Data Structure AD .. 172

Rules Applied to Components ...174

Appendix 4: HL7 Version 2.6 ■ ..175

HL7 Version 2.6 ...175

Differences Between Version 2.6 and 2.5.1 ..176

Data Type Changes .. 176

Segments .. 177

Mood Code ... 178

New Message Types .. 179

Two New Chapters ... 179

Queries .. 180

Summary ...181

Index ...183

xiii

Foreword

In its 14 short years, BizTalk Server has grown to serve as the premier integration solution for more than
12,000 companies around the world including 81 percent of the Fortune Global 100 companies in various industries
including many in healthcare.

Whether they are providers, payers, in clinical services or life sciences, organizations in the healthcare industry
face challenges caused by decades of niche systems, changing regulations, shrinking budgets, acquisitions as well as
disaggregation, and demanding consumers. Core to enabling this integration is the BizTalk Accelerator for HL7. It is a
highly versatile and performant complete health care solution for the exchange of data between health care computer
applications based on the Health Level Seven (HL7) standard. We think integrated hospitals ensure better and faster
care. BizTalk enables many scenarios in health care like integrating Electronic Health Records (EHR), digitizing
clinical dashboards, optimizing clinical supplies and automating patient scheduling.

In this recent release of BizTalk Server, Microsoft has made deep investments in performance improvements,
cloud and hybrid cloud scenarios.

An example to illustrate the scale we see speciically in the healthcare industry is with HCA, the leading provider of
healthcare services in the United States. HCA is a company composed of locally managed facilities that includes about
165 hospitals and 115 freestanding surgery centers in 20 states and England. Today, the system handles an average of
23,000,000 messages per day, average, with a high of 49.7 million message (at a rate of 266 messages per second).

We see continued investment with BizTalk in enabling complex on premise integration scenarios at scale and
enabling the hybrid cloud solutions in healthcare.

I am certainly delighted to be asked to write the forward for this book. Howard and I had the great opportunity to
collaborate at the quarterly HL7 Working Group meetings. Connectathons for the emerging standard FHIR are held
the weekends leading up to the working group meetings. Howard has been an early adopter in proving integration
scenarios using BizTalk, and Microsoft Online Services like O365 and Microsoft Azure and FHIR. You will be able to
gain practical insights from this book.

—Leslie Sistla
Director, Technology Strategy | Worldwide Health Industry

Leslie Sistla is a Director of Technology Strategist on the Worldwide Health
Industry Team. Leslie joined Microsoft Corp in 2000 bringing with her experiences
working for Oracle Corp and McKesson (HBOC).

At Microsoft, Leslie helps customers and partners around the world
understand how they can meet their privacy, security and regulatory compliance
obligations with solutions built on the Microsoft platform, both mobile and cloud.
She represents Microsoft at healthcare key Standards Development Organizations
working group meetings, like HL7, and IHE. Finally, she works with customers
and partners, helping design solutions framed by using a healthcare reference
architecture, the Connected Health Framework (CHF).

xv

About the Authors

Howard S. Edidin is an Integrations Architect specializing in enterprise application
integration. Howard runs his own consulting irm, Edidin Group, Inc, which is a
Gold Member of the HL7 International Organization. Howard’s irm specializes
in delivering HL7 and HIPAA healthcare solutions and providing guidance in the
use of HL7 with BizTalk. Howard is active in several HL7 Working Groups and is
involved with the development of a new HL7 standard. In addition to BizTalk,
Howard works with Azure, SQL Server, and SharePoint. Howard and
his wife, Sharon, live in a northern suburb of Chicago. Howard maintains the
biztalkin-howard.blogspot.com and fhir-biztalk.com blogs and can be
contacted directly at hedidin@edidingroup.net.

Vikas Bhardwaj is a Technical Architect at Syntel Inc. Vikas has 14 years of IT
experience with Microsoft technologies like BizTalk Server, .NET, C#, and SQL
Server. Vikas has implemented various integration solutions using BizTalk Server,
including one of the largest implementations of BizTalk and HL7. Vikas presently
lives in Nashville, Tennessee with his wife, Poonam, and two kids, Shivam and
Ayaan. You can check out Vikas’ blog at http://vikas15bhardwaj.wordpress.com
and Vikas can be contacted directly at vikas15.bhardwaj@gmail.com.

http://biztalkin-howard.blogspot.com
http://fhir-biztalk.com
http://hedidin@edidingroup.net
http://vikas15bhardwaj.wordpress.com
http://vikas15.bhardwaj@gmail.com

xvii

About the Technical Reviewer

Mike Diiorio is an architect and developer with MedVirginia. He has 14 years of
experience as a consultant specializing in web technologies, system integration,
and enterprise application development. Mike is a Microsoft Certiied Application
Developer and holds Microsoft Certiied Technical Specialist credentials in
.NET Web Development and BizTalk Server. His primary focus is in the area of
application integration based on the Microsoft .NET Framework including BizTalk
Server, Microsoft Azure, Windows Communication Foundation, and Windows
Worklow. He has also served as an Application Platform/BizTalk Specialist in
the Microsoft Virtual Technology Solution Program (V-TSP). Mike holds bachelor
degrees in Music Industry and Computer Information Systems from James Madison
University in Virginia. Mike maintains his blog at http://mikediiorio.net.

http://mikediiorio.net

xix

Acknowledgments

I am fortunate to have a wife who gave me her support and put up with me over the many months I spent writing this
book. My son Mark, who is following in my footsteps, provided quality feedback, for which I am grateful.

I especially would like to thank my co-author, Vikas Bhardwaj, for his support and dedication, and my good
friend and colleague Tom Banaski for his help in providing us excellent real-world content. My editor, Dominick
Shakeshaft of Apress, provided a number of suggestions that greatly improved the quality of the text, and Jill Balzano
of Apress kept us on track.

And inally, my thanks to Mike Diiorio, our technical reviewer, for his expertise and guidance. Without Mike, this
book would not be possible.

—Howard S. Edidin

First and foremost, I would like to thank my co-author Howard S. Edidin who continuously inspired me and provided
me quality feedback.

I would also like to thank Apress team especially the Editor Dominick Shakeshaft who provided feedback on
book readability and Jill Balzano who kept us on track and made sure book is delivered on time.

Last but not least I would like to thank my wife Poonam, who gave me all the support during her pregnancy
months while writing this book. Without her support this book would not have been possible. I dedicate this book to
my wife Poonam and my two son Shivam & Ayaan.

—Vikas Bhardwaj

	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments

