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Foreword

Doug Cutting, April 2009
Shed in the Yard, California

Hadoop got its start in Nutch. A few of us were attempting to build an open source web
search engine and having trouble managing computations running on even a handful of
computers. Once Google published its GFS and MapReduce papers, the route became
clear. They’d devised systems to solve precisely the problems we were having with Nutch.
So we started, two of us, half-time, to try to re-create these systems as a part of Nutch.

We managed to get Nutch limping along on 20 machines, but it soon became clear that to
handle the Web’s massive scale, we’d need to run it on thousands of machines, and
moreover, that the job was bigger than two half-time developers could handle.

Around that time, Yahoo! got interested, and quickly put together a team that I joined. We
split off the distributed computing part of Nutch, naming it Hadoop. With the help of
Yahoo!, Hadoop soon grew into a technology that could truly scale to the Web.

In 2006, Tom White started contributing to Hadoop. I already knew Tom through an
excellent article he’d written about Nutch, so I knew he could present complex ideas in
clear prose. I soon learned that he could also develop software that was as pleasant to read
as his prose.

From the beginning, Tom’s contributions to Hadoop showed his concern for users and for
the project. Unlike most open source contributors, Tom is not primarily interested in
tweaking the system to better meet his own needs, but rather in making it easier for
anyone to use.

Initially, Tom specialized in making Hadoop run well on Amazon’s EC2 and S3 services.
Then he moved on to tackle a wide variety of problems, including improving the
MapReduce APIs, enhancing the website, and devising an object serialization framework.
In all cases, Tom presented his ideas precisely. In short order, Tom earned the role of
Hadoop committer and soon thereafter became a member of the Hadoop Project
Management Committee.

Tom is now a respected senior member of the Hadoop developer community. Though he’s
an expert in many technical corners of the project, his specialty is making Hadoop easier
to use and understand.

Given this, I was very pleased when I learned that Tom intended to write a book about
Hadoop. Who could be better qualified? Now you have the opportunity to learn about
Hadoop from a master — not only of the technology, but also of common sense and plain
talk.
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Preface

Martin Gardner, the mathematics and science writer, once said in an interview:

Beyond calculus, I am lost. That was the secret of my column’s success. It took me so long to understand what I

was writing about that I knew how to write in a way most readers would understand.[]

In many ways, this is how I feel about Hadoop. Its inner workings are complex, resting as
they do on a mixture of distributed systems theory, practical engineering, and common
sense. And to the uninitiated, Hadoop can appear alien.

But it doesn’t need to be like this. Stripped to its core, the tools that Hadoop provides for
working with big data are simple. If there’s a common theme, it is about raising the level
of abstraction — to create building blocks for programmers who have lots of data to store
and analyze, and who don’t have the time, the skill, or the inclination to become
distributed systems experts to build the infrastructure to handle it.

With such a simple and generally applicable feature set, it seemed obvious to me when I
started using it that Hadoop deserved to be widely used. However, at the time (in early
2006), setting up, configuring, and writing programs to use Hadoop was an art. Things
have certainly improved since then: there is more documentation, there are more
examples, and there are thriving mailing lists to go to when you have questions. And yet
the biggest hurdle for newcomers is understanding what this technology is capable of,
where it excels, and how to use it. That is why I wrote this book.

The Apache Hadoop community has come a long way. Since the publication of the first
edition of this book, the Hadoop project has blossomed. “Big data” has become a

household term.[2] In this time, the software has made great leaps in adoption,
performance, reliability, scalability, and manageability. The number of things being built
and run on the Hadoop platform has grown enormously. In fact, it’s difficult for one
person to keep track. To gain even wider adoption, I believe we need to make Hadoop
even easier to use. This will involve writing more tools; integrating with even more
systems; and writing new, improved APIs. I’'m looking forward to being a part of this, and
I hope this book will encourage and enable others to do so, too.
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Administrative Notes

During discussion of a particular Java class in the text, I often omit its package name to
reduce clutter. If you need to know which package a class is in, you can easily look it up in
the Java API documentation for Hadoop (linked to from the Apache Hadoop home page),
or the relevant project. Or if you’re using an integrated development environment (IDE),
its auto-complete mechanism can help find what you’re looking for.

Similarly, although it deviates from usual style guidelines, program listings that import
multiple classes from the same package may use the asterisk wildcard character to save
space (for example, import org.apache.hadoop.io.*).

The sample programs in this book are available for download from the book’s website.

You will also find instructions there for obtaining the datasets that are used in examples
throughout the book, as well as further notes for running the programs in the book and

links to updates, additional resources, and my blog.
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What’s New in the Fourth Edition?

The fourth edition covers Hadoop 2 exclusively. The Hadoop 2 release series is the current
active release series and contains the most stable versions of Hadoop.

There are new chapters covering YARN (Chapter 4), Parquet (Chapter 13), Flume
(Chapter 14), Crunch (Chapter 18), and Spark (Chapter 19). There’s also a new section to
help readers navigate different pathways through the book (What’s in This Book?).

This edition includes two new case studies (Chapters 22 and 23): one on how Hadoop is
used in healthcare systems, and another on using Hadoop technologies for genomics data
processing. Case studies from the previous editions can now be found online.

Many corrections, updates, and improvements have been made to existing chapters to
bring them up to date with the latest releases of Hadoop and its related projects.
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What’s New in the Third Edition?

The third edition covers the 1.x (formerly 0.20) release series of Apache Hadoop, as well
as the newer 0.22 and 2.x (formerly 0.23) series. With a few exceptions, which are noted
in the text, all the examples in this book run against these versions.

This edition uses the new MapReduce API for most of the examples. Because the old API
is still in widespread use, it continues to be discussed in the text alongside the new API,
and the equivalent code using the old API can be found on the book’s website.

The major change in Hadoop 2.0 is the new MapReduce runtime, MapReduce 2, which is
built on a new distributed resource management system called YARN. This edition
includes new sections covering MapReduce on YARN: how it works (Chapter 7) and how
to run it (Chapter 10).

There is more MapReduce material, too, including development practices such as
packaging MapReduce jobs with Maven, setting the user’s Java classpath, and writing
tests with MRUnit (all in Chapter 6). In addition, there is more depth on features such as
output committers and the distributed cache (both in Chapter 9), as well as task memory
monitoring (Chapter 10). There is a new section on writing MapReduce jobs to process
Avro data (Chapter 12), and one on running a simple MapReduce workflow in Oozie
(Chapter 6).

The chapter on HDFS (Chapter 3) now has introductions to high availability, federation,
and the new WebHDFS and HttpFS filesystems.

The chapters on Pig, Hive, Sqoop, and ZooKeeper have all been expanded to cover the
new features and changes in their latest releases.

In addition, numerous corrections and improvements have been made throughout the
book.



What’s New in the Second Edition?

The second edition has two new chapters on Sqoop and Hive (Chapters 15 and 17,
respectively), a new section covering Avro (in Chapter 12), an introduction to the new
security features in Hadoop (in Chapter 10), and a new case study on analyzing massive
network graphs using Hadoop.

This edition continues to describe the 0.20 release series of Apache Hadoop, because this
was the latest stable release at the time of writing. New features from later releases are
occasionally mentioned in the text, however, with reference to the version that they were
introduced in.



Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLS, email addresses, filenames, and file extensions.
Constant width

Used for program listings, as well as within paragraphs to refer to commands and
command-line options and to program elements such as variable or function names,
databases, data types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

NOTE
This icon signifies a general note.
TIP
This icon signifies a tip or suggestion.
CAUTION

This icon indicates a warning or caution.




Using Code Examples

Supplemental material (code, examples, exercise, etc.) is available for download at this
book’s website and on GitHub.

This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hadoop: The Definitive Guide, Fourth
Edition, by Tom White (O’Reilly). Copyright 2015 Tom White, 978-1-491-90163-2.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.


http://hadoopbook.com
https://github.com/tomwhite/hadoop-book/
mailto:permissions@oreilly.com

Safari® Books Online

NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.
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https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/hadoop_tdg_4e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Meet Hadoop

In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a log, they didn’t try to grow a
larger ox. We shouldn’t be trying for bigger computers, but for more systems of computers.

— Grace Hopper



Data!

We live in the data age. It’s not easy to measure the total volume of data stored
electronically, but an IDC estimate put the size of the “digital universe” at 4.4 zettabytes in

2013 and is forecasting a tenfold growth by 2020 to 44 zettabytes.[2] A zettabyte is 102!
bytes, or equivalently one thousand exabytes, one million petabytes, or one billion
terabytes. That’s more than one disk drive for every person in the world.

This flood of data is coming from many sources. Consider the following:!4!

The New York Stock Exchange generates about 4-5 terabytes of data per day.
Facebook hosts more than 240 billion photos, growing at 7 petabytes per month.
Ancestry.com, the genealogy site, stores around 10 petabytes of data.

The Internet Archive stores around 18.5 petabytes of data.

The Large Hadron Collider near Geneva, Switzerland, produces about 30 petabytes of
data per year.

So there’s a lot of data out there. But you are probably wondering how it affects you. Most
of the data is locked up in the largest web properties (like search engines) or in scientific
or financial institutions, isn’t it? Does the advent of big data affect smaller organizations
or individuals?

I argue that it does. Take photos, for example. My wife’s grandfather was an avid
photographer and took photographs throughout his adult life. His entire corpus of
medium-format, slide, and 35mm film, when scanned in at high resolution, occupies
around 10 gigabytes. Compare this to the digital photos my family took in 2008, which
take up about 5 gigabytes of space. My family is producing photographic data at 35 times
the rate my wife’s grandfather’s did, and the rate is increasing every year as it becomes
easier to take more and more photos.

More generally, the digital streams that individuals are producing are growing apace.
Microsoft Research’s MyLifeBits project gives a glimpse of the archiving of personal
information that may become commonplace in the near future. MyLifeBits was an
experiment where an individual’s interactions — phone calls, emails, documents — were
captured electronically and stored for later access. The data gathered included a photo
taken every minute, which resulted in an overall data volume of 1 gigabyte per month.
When storage costs come down enough to make it feasible to store continuous audio and
video, the data volume for a future MyLifeBits service will be many times that.

The trend is for every individual’s data footprint to grow, but perhaps more significantly,
the amount of data generated by machines as a part of the Internet of Things will be even
greater than that generated by people. Machine logs, RFID readers, sensor networks,
vehicle GPS traces, retail transactions — all of these contribute to the growing mountain
of data.

The volume of data being made publicly available increases every year, too. Organizations
no longer have to merely manage their own data; success in the future will be dictated to a
large extent by their ability to extract value from other organizations’ data.

Initiatives such as Public Data Sets on Amazon Web Services and Infochimps.org exist to
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foster the “information commons,” where data can be freely (or for a modest price) shared
for anyone to download and analyze. Mashups between different information sources
make for unexpected and hitherto unimaginable applications.

Take, for example, the Astrometry.net project, which watches the Astrometry group on
Flickr for new photos of the night sky. It analyzes each image and identifies which part of
the sky it is from, as well as any interesting celestial bodies, such as stars or galaxies. This
project shows the kinds of things that are possible when data (in this case, tagged
photographic images) is made available and used for something (image analysis) that was
not anticipated by the creator.

It has been said that “more data usually beats better algorithms,” which is to say that for
some problems (such as recommending movies or music based on past preferences),
however fiendish your algorithms, often they can be beaten simply by having more data

(and a less sophisticated algorithm).[®!

The good news is that big data is here. The bad news is that we are struggling to store and
analyze it.
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Data Storage and Analysis

The problem is simple: although the storage capacities of hard drives have increased
massively over the years, access speeds — the rate at which data can be read from drives
— have not kept up. One typical drive from 1990 could store 1,370 MB of data and had a

transfer speed of 4.4 MB/s,!®! so you could read all the data from a full drive in around
five minutes. Over 20 years later, 1-terabyte drives are the norm, but the transfer speed is
around 100 MB/s, so it takes more than two and a half hours to read all the data off the
disk.

This is a long time to read all data on a single drive — and writing is even slower. The
obvious way to reduce the time is to read from multiple disks at once. Imagine if we had
100 drives, each holding one hundredth of the data. Working in parallel, we could read the
data in under two minutes.

Using only one hundredth of a disk may seem wasteful. But we can store 100 datasets,
each of which is 1 terabyte, and provide shared access to them. We can imagine that the
users of such a system would be happy to share access in return for shorter analysis times,
and statistically, that their analysis jobs would be likely to be spread over time, so they
wouldn’t interfere with each other too much.

There’s more to being able to read and write data in parallel to or from multiple disks,
though.

The first problem to solve is hardware failure: as soon as you start using many pieces of
hardware, the chance that one will fail is fairly high. A common way of avoiding data loss
is through replication: redundant copies of the data are kept by the system so that in the
event of failure, there is another copy available. This is how RAID works, for instance,
although Hadoop’s filesystem, the Hadoop Distributed Filesystem (HDFS), takes a
slightly different approach, as you shall see later.

The second problem is that most analysis tasks need to be able to combine the data in
some way, and data read from one disk may need to be combined with data from any of
the other 99 disks. Various distributed systems allow data to be combined from multiple
sources, but doing this correctly is notoriously challenging. MapReduce provides a
programming model that abstracts the problem from disk reads and writes, transforming it
into a computation over sets of keys and values. We look at the details of this model in
later chapters, but the important point for the present discussion is that there are two parts
to the computation — the map and the reduce — and it’s the interface between the two
where the “mixing” occurs. Like HDFS, MapReduce has built-in reliability.

In a nutshell, this is what Hadoop provides: a reliable, scalable platform for storage and
analysis. What’s more, because it runs on commodity hardware and is open source,
Hadoop is affordable.



Querying All Your Data

The approach taken by MapReduce may seem like a brute-force approach. The premise is
that the entire dataset — or at least a good portion of it — can be processed for each
query. But this is its power. MapReduce is a batch query processor, and the ability to run
an ad hoc query against your whole dataset and get the results in a reasonable time is
transformative. It changes the way you think about data and unlocks data that was
previously archived on tape or disk. It gives people the opportunity to innovate with data.
Questions that took too long to get answered before can now be answered, which in turn
leads to new questions and new insights.

For example, Mailtrust, Rackspace’s mail division, used Hadoop for processing email
logs. One ad hoc query they wrote was to find the geographic distribution of their users. In
their words:

This data was so useful that we’ve scheduled the MapReduce job to run monthly and we will be using this data to
help us decide which Rackspace data centers to place new mail servers in as we grow.

By bringing several hundred gigabytes of data together and having the tools to analyze it,
the Rackspace engineers were able to gain an understanding of the data that they
otherwise would never have had, and furthermore, they were able to use what they had
learned to improve the service for their customers.



Beyond Batch

For all its strengths, MapReduce is fundamentally a batch processing system, and is not
suitable for interactive analysis. You can’t run a query and get results back in a few
seconds or less. Queries typically take minutes or more, so it’s best for offline use, where
there isn’t a human sitting in the processing loop waiting for results.

However, since its original incarnation, Hadoop has evolved beyond batch processing.
Indeed, the term “Hadoop” is sometimes used to refer to a larger ecosystem of projects,
not just HDFS and MapReduce, that fall under the umbrella of infrastructure for
distributed computing and large-scale data processing. Many of these are hosted by the
Apache Software Foundation, which provides support for a community of open source
software projects, including the original HTTP Server from which it gets its name.

The first component to provide online access was HBase, a key-value store that uses
HDFS for its underlying storage. HBase provides both online read/write access of
individual rows and batch operations for reading and writing data in bulk, making it a
good solution for building applications on.

The real enabler for new processing models in Hadoop was the introduction of YARN
(which stands for Yet Another Resource Negotiator) in Hadoop 2. YARN is a cluster
resource management system, which allows any distributed program (not just
MapReduce) to run on data in a Hadoop cluster.

In the last few years, there has been a flowering of different processing patterns that work
with Hadoop. Here is a sample:

Interactive SQL

By dispensing with MapReduce and using a distributed query engine that uses
dedicated “always on” daemons (like Impala) or container reuse (like Hive on Tez), it’s
possible to achieve low-latency responses for SQL queries on Hadoop while still scaling
up to large dataset sizes.

Iterative processing

Many algorithms — such as those in machine learning — are iterative in nature, so it’s
much more efficient to hold each intermediate working set in memory, compared to
loading from disk on each iteration. The architecture of MapReduce does not allow this,
but it’s straightforward with Spark, for example, and it enables a highly exploratory
style of working with datasets.

Stream processing

Streaming systems like Storm, Spark Streaming, or Samza make it possible to run real-
time, distributed computations on unbounded streams of data and emit results to
Hadoop storage or external systems.

Search

The Solr search platform can run on a Hadoop cluster, indexing documents as they are
added to HDFS, and serving search queries from indexes stored in HDFS.

Despite the emergence of different processing frameworks on Hadoop, MapReduce still
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has a place for batch processing, and it is useful to understand how it works since it
introduces several concepts that apply more generally (like the idea of input formats, or
how a dataset is split into pieces).



Comparison with Other Systems

Hadoop isn’t the first distributed system for data storage and analysis, but it has some
unique properties that set it apart from other systems that may seem similar. Here we look
at some of them.

Relational Database Management Systems

Why can’t we use databases with lots of disks to do large-scale analysis? Why is Hadoop
needed?

The answer to these questions comes from another trend in disk drives: seek time is
improving more slowly than transfer rate. Seeking is the process of moving the disk’s head
to a particular place on the disk to read or write data. It characterizes the latency of a disk
operation, whereas the transfer rate corresponds to a disk’s bandwidth.

If the data access pattern is dominated by seeks, it will take longer to read or write large
portions of the dataset than streaming through it, which operates at the transfer rate. On
the other hand, for updating a small proportion of records in a database, a traditional B-
Tree (the data structure used in relational databases, which is limited by the rate at which
it can perform seeks) works well. For updating the majority of a database, a B-Tree is less
efficient than MapReduce, which uses Sort/Merge to rebuild the database.

In many ways, MapReduce can be seen as a complement to a Relational Database
Management System (RDBMS). (The differences between the two systems are shown in
Table 1-1.) MapReduce is a good fit for problems that need to analyze the whole dataset in
a batch fashion, particularly for ad hoc analysis. An RDBMS is good for point queries or
updates, where the dataset has been indexed to deliver low-latency retrieval and update
times of a relatively small amount of data. MapReduce suits applications where the data is
written once and read many times, whereas a relational database is good for datasets that

are continually updated.Z]
Table 1-1. RDBMS compared to MapReduce

Traditional RDBMS MapReduce
Data size Gigabytes Petabytes
Access Interactive and batch Batch
Updates Read and write many times Write once, read many times
Transactions ACID None
Structure Schema-on-write Schema-on-read
Integrity High Low
Scaling Nonlinear Linear

However, the differences between relational databases and Hadoop systems are blurring.
Relational databases have started incorporating some of the ideas from Hadoop, and from
the other direction, Hadoop systems such as Hive are becoming more interactive (by
moving away from MapReduce) and adding features like indexes and transactions that
make them look more and more like traditional RDBMSs.

Another difference between Hadoop and an RDBMS is the amount of structure in the



datasets on which they operate. Structured data is organized into entities that have a
defined format, such as XML documents or database tables that conform to a particular
predefined schema. This is the realm of the RDBMS. Semi-structured data, on the other
hand, is looser, and though there may be a schema, it is often ignored, so it may be used
only as a guide to the structure of the data: for example, a spreadsheet, in which the
structure is the grid of cells, although the cells themselves may hold any form of data.
Unstructured data does not have any particular internal structure: for example, plain text
or image data. Hadoop works well on unstructured or semi-structured data because it is
designed to interpret the data at processing time (so called schema-on-read). This provides
flexibility and avoids the costly data loading phase of an RDBMS, since in Hadoop it is
just a file copy.

Relational data is often normalized to retain its integrity and remove redundancy.
Normalization poses problems for Hadoop processing because it makes reading a record a
nonlocal operation, and one of the central assumptions that Hadoop makes is that it is
possible to perform (high-speed) streaming reads and writes.

A web server log is a good example of a set of records that is not normalized (for example,
the client hostnames are specified in full each time, even though the same client may
appear many times), and this is one reason that logfiles of all kinds are particularly well
suited to analysis with Hadoop. Note that Hadoop can perform joins; it’s just that they are
not used as much as in the relational world.

MapReduce — and the other processing models in Hadoop — scales linearly with the size
of the data. Data is partitioned, and the functional primitives (like map and reduce) can
work in parallel on separate partitions. This means that if you double the size of the input
data, a job will run twice as slowly. But if you also double the size of the cluster, a job will
run as fast as the original one. This is not generally true of SQL queries.

Grid Computing

The high-performance computing (HPC) and grid computing communities have been
doing large-scale data processing for years, using such application program interfaces
(APIs) as the Message Passing Interface (MPI). Broadly, the approach in HPC is to
distribute the work across a cluster of machines, which access a shared filesystem, hosted
by a storage area network (SAN). This works well for predominantly compute-intensive
jobs, but it becomes a problem when nodes need to access larger data volumes (hundreds
of gigabytes, the point at which Hadoop really starts to shine), since the network
bandwidth is the bottleneck and compute nodes become idle.

Hadoop tries to co-locate the data with the compute nodes, so data access is fast because it

is local.[8] This feature, known as data locality, is at the heart of data processing in
Hadoop and is the reason for its good performance. Recognizing that network bandwidth
is the most precious resource in a data center environment (it is easy to saturate network
links by copying data around), Hadoop goes to great lengths to conserve it by explicitly
modeling network topology. Notice that this arrangement does not preclude high-CPU
analyses in Hadoop.

MPI gives great control to programmers, but it requires that they explicitly handle the
mechanics of the data flow, exposed via low-level C routines and constructs such as
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sockets, as well as the higher-level algorithms for the analyses. Processing in Hadoop
operates only at the higher level: the programmer thinks in terms of the data model (such
as key-value pairs for MapReduce), while the data flow remains implicit.

Coordinating the processes in a large-scale distributed computation is a challenge. The
hardest aspect is gracefully handling partial failure — when you don’t know whether or
not a remote process has failed — and still making progress with the overall computation.
Distributed processing frameworks like MapReduce spare the programmer from having to
think about failure, since the implementation detects failed tasks and reschedules
replacements on machines that are healthy. MapReduce is able to do this because it is a
shared-nothing architecture, meaning that tasks have no dependence on one other. (This is
a slight oversimplification, since the output from mappers is fed to the reducers, but this is
under the control of the MapReduce system; in this case, it needs to take more care
rerunning a failed reducer than rerunning a failed map, because it has to make sure it can
retrieve the necessary map outputs and, if not, regenerate them by running the relevant
maps again.) So from the programmer’s point of view, the order in which the tasks run
doesn’t matter. By contrast, MPI programs have to explicitly manage their own
checkpointing and recovery, which gives more control to the programmer but makes them
more difficult to write.

Volunteer Computing

When people first hear about Hadoop and MapReduce they often ask, “How is it different
from SETI@home?” SETI, the Search for Extra-Terrestrial Intelligence, runs a project
called SETI@home in which volunteers donate CPU time from their otherwise idle
computers to analyze radio telescope data for signs of intelligent life outside Earth.
SETI@home is the most well known of many volunteer computing projects; others
include the Great Internet Mersenne Prime Search (to search for large prime numbers) and
Folding@home (to understand protein folding and how it relates to disease).

Volunteer computing projects work by breaking the problems they are trying to solve into
chunks called work units, which are sent to computers around the world to be analyzed.
For example, a SETI@home work unit is about 0.35 MB of radio telescope data, and takes
hours or days to analyze on a typical home computer. When the analysis is completed, the
results are sent back to the server, and the client gets another work unit. As a precaution to
combat cheating, each work unit is sent to three different machines and needs at least two
results to agree to be accepted.

Although SETI@home may be superficially similar to MapReduce (breaking a problem
into independent pieces to be worked on in parallel), there are some significant
differences. The SETI@home problem is very CPU-intensive, which makes it suitable for

running on hundreds of thousands of computers across the world!2! because the time to
transfer the work unit is dwarfed by the time to run the computation on it. Volunteers are
donating CPU cycles, not bandwidth.

MapReduce is designed to run jobs that last minutes or hours on trusted, dedicated
hardware running in a single data center with very high aggregate bandwidth
interconnects. By contrast, SETI@home runs a perpetual computation on untrusted
machines on the Internet with highly variable connection speeds and no data locality.


http://setiathome.berkeley.edu/

A Brief History of Apache Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text
search library. Hadoop has its origins in Apache Nutch, an open source web search engine,
itself a part of the Lucene project.

THE ORIGIN OF THE NAME “HADOOP”

The name Hadoop is not an acronym; it’s a made-up name. The project’s creator, Doug Cutting, explains how the
name came about:

The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and pronounce, meaningless, and
not used elsewhere: those are my naming criteria. Kids are good at generating such. Googol is a kid’s term.

Projects in the Hadoop ecosystem also tend to have names that are unrelated to their function, often with an elephant
or other animal theme (“Pig,” for example). Smaller components are given more descriptive (and therefore more
mundane) names. This is a good principle, as it means you can generally work out what something does from its

name. For example, the namenode10] manages the filesystem namespace.

Building a web search engine from scratch was an ambitious goal, for not only is the
software required to crawl and index websites complex to write, but it is also a challenge
to run without a dedicated operations team, since there are so many moving parts. It’s
expensive, too: Mike Cafarella and Doug Cutting estimated a system supporting a one-
billion-page index would cost around $500,000 in hardware, with a monthly running cost

of $30,000.111] Nevertheless, they believed it was a worthy goal, as it would open up and
ultimately democratize search engine algorithms.

Nutch was started in 2002, and a working crawler and search system quickly emerged.
However, its creators realized that their architecture wouldn’t scale to the billions of pages
on the Web. Help was at hand with the publication of a paper in 2003 that described the
architecture of Google’s distributed filesystem, called GFS, which was being used in

production at Google.l121 GFS, or something like it, would solve their storage needs for
the very large files generated as a part of the web crawl and indexing process. In
particular, GFS would free up time being spent on administrative tasks such as managing
storage nodes. In 2004, Nutch’s developers set about writing an open source
implementation, the Nutch Distributed Filesystem (NDFS).

In 2004, Google published the paper that introduced MapReduce to the world.l13! Early in
2005, the Nutch developers had a working MapReduce implementation in Nutch, and by
the middle of that year all the major Nutch algorithms had been ported to run using
MapReduce and NDFS.

NDFS and the MapReduce implementation in Nutch were applicable beyond the realm of
search, and in February 2006 they moved out of Nutch to form an independent subproject
of Lucene called Hadoop. At around the same time, Doug Cutting joined Yahoo!, which
provided a dedicated team and the resources to turn Hadoop into a system that ran at web
scale (see the following sidebar). This was demonstrated in February 2008 when Yahoo!
announced that its production search index was being generated by a 10,000-core Hadoop

cluster.[14]




HADOOP AT YAHOO!

Building Internet-scale search engines requires huge amounts of data and therefore large numbers of machines to
process it. Yahoo! Search consists of four primary components: the Crawler, which downloads pages from web
servers; the WebMap, which builds a graph of the known Web; the Indexer, which builds a reverse index to the best
pages; and the Runtime, which answers users’ queries. The WebMap is a graph that consists of roughly 1 trillion

(1012) edges, each representing a web link, and 100 billion (1011) nodes, each representing distinct URLs. Creating
and analyzing such a large graph requires a large number of computers running for many days. In early 2005, the
infrastructure for the WebMap, named Dreadnaught, needed to be redesigned to scale up to more nodes. Dreadnaught
had successfully scaled from 20 to 600 nodes, but required a complete redesign to scale out further. Dreadnaught is
similar to MapReduce in many ways, but provides more flexibility and less structure. In particular, each fragment in a
Dreadnaught job could send output to each of the fragments in the next stage of the job, but the sort was all done in
library code. In practice, most of the WebMap phases were pairs that corresponded to MapReduce. Therefore, the
WebMap applications would not require extensive refactoring to fit into MapReduce.

Eric Baldeschwieler (aka Eric14) created a small team, and we started designing and prototyping a new framework,
written in C++ modeled and after GFS and MapReduce, to replace Dreadnaught. Although the immediate need was
for a new framework for WebMap, it was clear that standardization of the batch platform across Yahoo! Search was
critical and that by making the framework general enough to support other users, we could better leverage investment
in the new platform.

At the same time, we were watching Hadoop, which was part of Nutch, and its progress. In January 2006, Yahoo!
hired Doug Cutting, and a month later we decided to abandon our prototype and adopt Hadoop. The advantage of
Hadoop over our prototype and design was that it was already working with a real application (Nutch) on 20 nodes.
That allowed us to bring up a research cluster two months later and start helping real customers use the new
framework much sooner than we could have otherwise. Another advantage, of course, was that since Hadoop was
already open source, it was easier (although far from easy!) to get permission from Yahoo!’s legal department to work
in open source. So, we set up a 200-node cluster for the researchers in early 2006 and put the WebMap conversion
plans on hold while we supported and improved Hadoop for the research users.

— Owen O’Malley, 2009

In January 2008, Hadoop was made its own top-level project at Apache, confirming its
success and its diverse, active community. By this time, Hadoop was being used by many
other companies besides Yahoo!, such as Last.fm, Facebook, and the New York Times.

In one well-publicized feat, the New York Times used Amazon’s EC2 compute cloud to
crunch through 4 terabytes of scanned archives from the paper, converting them to PDFs

for the Web.[15] The processing took less than 24 hours to run using 100 machines, and the
project probably wouldn’t have been embarked upon without the combination of
Amazon’s pay-by-the-hour model (which allowed the NYT to access a large number of
machines for a short period) and Hadoop’s easy-to-use parallel programming model.

In April 2008, Hadoop broke a world record to become the fastest system to sort an entire
terabyte of data. Running on a 910-node cluster, Hadoop sorted 1 terabyte in 209 seconds

(just under 3.5 minutes), beating the previous year’s winner of 297 seconds.®! In
November of the same year, Google reported that its MapReduce implementation sorted 1

terabyte in 68 seconds.Z) Then, in April 2009, it was announced that a team at Yahoo!
had used Hadoop to sort 1 terabyte in 62 seconds.!18!

The trend since then has been to sort even larger volumes of data at ever faster rates. In the
2014 competition, a team from Databricks were joint winners of the Gray Sort benchmark.
They used a 207-node Spark cluster to sort 100 terabytes of data in 1,406 seconds, a rate

of 4.27 terabytes per minute.[X2!

Today, Hadoop is widely used in mainstream enterprises. Hadoop’s role as a general-



purpose storage and analysis platform for big data has been recognized by the industry,
and this fact is reflected in the number of products that use or incorporate Hadoop in some
way. Commercial Hadoop support is available from large, established enterprise vendors,
including EMC, IBM, Microsoft, and Oracle, as well as from specialist Hadoop
companies such as Cloudera, Hortonworks, and MapR.



What’s in This Book?

The book is divided into five main parts: Parts I to III are about core Hadoop, Part IV
covers related projects in the Hadoop ecosystem, and Part V contains Hadoop case studies.
You can read the book from cover to cover, but there are alternative pathways through the
book that allow you to skip chapters that aren’t needed to read later ones. See Figure 1-1.

Part I is made up of five chapters that cover the fundamental components in Hadoop and
should be read before tackling later chapters. Chapter 1 (this chapter) is a high-level
introduction to Hadoop. Chapter 2 provides an introduction to MapReduce. Chapter 3
looks at Hadoop filesystems, and in particular HDFS, in depth. Chapter 4 discusses
YARN, Hadoop’s cluster resource management system. Chapter 5 covers the I/O building
blocks in Hadoop: data integrity, compression, serialization, and file-based data structures.

Part II has four chapters that cover MapReduce in depth. They provide useful
understanding for later chapters (such as the data processing chapters in Part IV), but
could be skipped on a first reading. Chapter 6 goes through the practical steps needed to
develop a MapReduce application. Chapter 7 looks at how MapReduce is implemented in
Hadoop, from the point of view of a user. Chapter 8 is about the MapReduce programming
model and the various data formats that MapReduce can work with. Chapter 9 is on
advanced MapReduce topics, including sorting and joining data.

Part III concerns the administration of Hadoop: Chapters 10 and 11 describe how to set up
and maintain a Hadoop cluster running HDFS and MapReduce on YARN.

Part IV of the book is dedicated to projects that build on Hadoop or are closely related to
it. Each chapter covers one project and is largely independent of the other chapters in this
part, so they can be read in any order.

The first two chapters in this part are about data formats. Chapter 12 looks at Avro, a
cross-language data serialization library for Hadoop, and Chapter 13 covers Parquet, an
efficient columnar storage format for nested data.

The next two chapters look at data ingestion, or how to get your data into Hadoop.
Chapter 14 is about Flume, for high-volume ingestion of streaming data. Chapter 15 is
about Sqoop, for efficient bulk transfer of data between structured data stores (like
relational databases) and HDFS.

The common theme of the next four chapters is data processing, and in particular using
higher-level abstractions than MapReduce. Pig (Chapter 16) is a data flow language for
exploring very large datasets. Hive (Chapter 17) is a data warehouse for managing data
stored in HDFS and provides a query language based on SQL. Crunch (Chapter 18) is a
high-level Java API for writing data processing pipelines that can run on MapReduce or
Spark. Spark (Chapter 19) is a cluster computing framework for large-scale data
processing; it provides a directed acyclic graph (DAG) engine, and APIs in Scala, Java,
and Python.

Chapter 20 is an introduction to HBase, a distributed column-oriented real-time database
that uses HDFS for its underlying storage. And Chapter 21 is about ZooKeeper, a
distributed, highly available coordination service that provides useful primitives for
building distributed applications.



Finally, Part V is a collection of case studies contributed by people using Hadoop in
interesting ways.

Supplementary information about Hadoop, such as how to install it on your machine, can
be found in the appendixes.
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Figure 1-1. Structure of the book: there are various pathways through the content



[3] These statistics were reported in a study entitled “The Digital Universe of Opportunities: Rich Data and the
Increasing Value of the Internet of Things.”

[4] All figures are from 2013 or 2014. For more information, see Tom Groenfeldt, “At NYSE, The Data Deluge
Overwhelms Traditional Databases”; Rich Miller, “Facebook Builds Exabyte Data Centers for Cold Storage”;
Ancestry.com’s “Company Facts”; Archive.org’s “Petabox”; and the Worldwide LHC Computing Grid project’s
welcome page.

(5] The quote is from Anand Rajaraman’s blog post “More data usually beats better algorithms,” in which he writes
about the Netflix Challenge. Alon Halevy, Peter Norvig, and Fernando Pereira make the same point in “The
Unreasonable Effectiveness of Data,” IEEE Intelligent Systems, March/April 2009.

(6] These specifications are for the Seagate ST-41600n.

[Z11n January 2007, David J. DeWitt and Michael Stonebraker caused a stir by publishing “MapReduce: A major step
backwards,” in which they criticized MapReduce for being a poor substitute for relational databases. Many
commentators argued that it was a false comparison (see, for example, Mark C. Chu-Carroll’s “Databases are hammers;
MapReduce is a screwdriver”), and DeWitt and Stonebraker followed up with “MapReduce II,” where they addressed
the main topics brought up by others.

(8] Jim Gray was an early advocate of putting the computation near the data. See “Distributed Computing Economics,”
March 2003.

EIEN January 2008, SETI@home was reported to be processing 300 gigabytes a day, using 320,000 computers (most of
which are not dedicated to SETI@home; they are used for other things, too).

[10] In this book, we use the lowercase form, “namenode,” to denote the entity when it’s being referred to generally, and
the CamelCase form NameNode to denote the Java class that implements it.

[11] See Mike Cafarella and Doug Cutting, “Building Nutch: Open Source Search,” ACM Queue, April 2004.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” October 2003.

[13] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” December 2004.
[14] “yahoo! Launches World’s Largest Hadoop Production Application,” February 19, 2008.

[15] Derek Gottfrid, “Self-Service, Prorated Super Computing Fun!” November 1, 2007.

[16] owen O’Malley, “TeraByte Sort on Apache Hadoop,” May 2008.

[17] Grzegorz Czajkowski, “Sorting 1PB with MapReduce,” November 21, 2008.

(18] Owen O’Malley and Arun C. Murthy, “Winning a 60 Second Dash with a Yellow Elephant,” April 2009.

[19] Reynold Xin et al., “GraySort on Apache Spark by Databricks,” November 2014.
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Chapter 2. MapReduce

MapReduce is a programming model for data processing. The model is simple, yet not too
simple to express useful programs in. Hadoop can run MapReduce programs written in
various languages; in this chapter, we look at the same program expressed in Java, Ruby,
and Python. Most importantly, MapReduce programs are inherently parallel, thus putting
very large-scale data analysis into the hands of anyone with enough machines at their
disposal. MapReduce comes into its own for large datasets, so let’s start by looking at one.
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A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors collect
data every hour at many locations across the globe and gather a large volume of log data,
which is a good candidate for analysis with MapReduce because we want to process all
the data, and the data is semi-structured and record-oriented.

Data Format

The data we will use is from the National Climatic Data Center, or NCDC. The data is
stored using a line-oriented ASCII format, in which each line is a record. The format
supports a rich set of meteorological elements, many of which are optional or with
variable data lengths. For simplicity, we focus on the basic elements, such as temperature,
which are always present and are of fixed width.

Example 2-1 shows a sample line with some of the salient fields annotated. The line has
been split into multiple lines to show each field; in the real file, fields are packed into one
line with no delimiters.

Example 2-1. Format of a National Climatic Data Center record

0057

332130 # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # observation date

0300 # observation time

4

+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)

FM-12

+0171 # elevation (meters)

99999

V020

320 # wind direction (degrees)

1 # quality code

N

0072

1

00450 # sky ceiling height (meters)

1 # quality code

C

N

010000 # visibility distance (meters)

1 # quality code

N

9

-0128 # air temperature (degrees Celsius x 10)
1 # quality code

-0139 # dew point temperature (degrees Celsius x 10)
1 # quality code

10268 # atmospheric pressure (hectopascals x 10)
1 # quality code

Datafiles are organized by date and weather station. There is a directory for each year
from 1901 to 2001, each containing a gzipped file for each weather station with its
readings for that year. For example, here are the first entries for 1990:

% 1s raw/1990 | head
010010-99999-1990.9z
010014-99999-1990.9z
010015-99999-1990.9z
010016-99999-1990.9z
010017-99999-1990.9z
010030-99999-1990.9z
010040-99999-1990.9z
010080-99999-1990.9z


http://www.ncdc.noaa.gov/

010100-99999-1990.9z

010150-99999-1990.9z
There are tens of thousands of weather stations, so the whole dataset is made up of a large
number of relatively small files. It’s generally easier and more efficient to process a
smaller number of relatively large files, so the data was preprocessed so that each year’s
readings were concatenated into a single file. (The means by which this was carried out is
described in Appendix C.)



Analyzing the Data with Unix Tools

What’s the highest recorded global temperature for each year in the dataset? We will
answer this first without using Hadoop, as this information will provide a performance
baseline and a useful means to check our results.

The classic tool for processing line-oriented data is awk. Example 2-2 is a small script to
calculate the maximum temperature for each year.

Example 2-2. A program for finding the maximum recorded temperature by year from
NCDC weather records

#1/usr/bin/env bash
for year in all/*
do
echo -ne “basename $year .gz "\t"
gunzip -c $year | \
awk '{ temp = substr($0, 88, 5) + 0;
g = substr($0, 93, 1);
if (temp !'=9999 && q ~ /[01459]/ && temp > max) max = temp }
END { print max }'
done
The script loops through the compressed year files, first printing the year, and then
processing each file using awk. The awk script extracts two fields from the data: the air
temperature and the quality code. The air temperature value is turned into an integer by
adding 0. Next, a test is applied to see whether the temperature is valid (the value 9999
signifies a missing value in the NCDC dataset) and whether the quality code indicates that
the reading is not suspect or erroneous. If the reading is OK, the value is compared with
the maximum value seen so far, which is updated if a new maximum is found. The END
block is executed after all the lines in the file have been processed, and it prints the

maximum value.

Here is the beginning of a run:

% ./max_temperature.sh

1901 317
1902 244
1903 289
1904 256
1905 283..

The temperature values in the source file are scaled by a factor of 10, so this works out as
a maximum temperature of 31.7°C for 1901 (there were very few readings at the
beginning of the century, so this is plausible). The complete run for the century took 42
minutes in one run on a single EC2 High-CPU Extra Large instance.

To speed up the processing, we need to run parts of the program in parallel. In theory, this
is straightforward: we could process different years in different processes, using all the
available hardware threads on a machine. There are a few problems with this, however.

First, dividing the work into equal-size pieces isn’t always easy or obvious. In this case,
the file size for different years varies widely, so some processes will finish much earlier
than others. Even if they pick up further work, the whole run is dominated by the longest
file. A better approach, although one that requires more work, is to split the input into
fixed-size chunks and assign each chunk to a process.

Second, combining the results from independent processes may require further processing.



In this case, the result for each year is independent of other years, and they may be
combined by concatenating all the results and sorting by year. If using the fixed-size
chunk approach, the combination is more delicate. For this example, data for a particular
year will typically be split into several chunks, each processed independently. We’ll end
up with the maximum temperature for each chunk, so the final step is to look for the
highest of these maximums for each year.

Third, you are still limited by the processing capacity of a single machine. If the best time
you can achieve is 20 minutes with the number of processors you have, then that’s it. You
can’t make it go faster. Also, some datasets grow beyond the capacity of a single machine.
When we start using multiple machines, a whole host of other factors come into play,
mainly falling into the categories of coordination and reliability. Who runs the overall job?
How do we deal with failed processes?

So, although it’s feasible to parallelize the processing, in practice it’s messy. Using a
framework like Hadoop to take care of these issues is a great help.



Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express our
query as a MapReduce job. After some local, small-scale testing, we will be able to run it
on a cluster of machines.

Map and Reduce

MapReduce works by breaking the processing into two phases: the map phase and the
reduce phase. Each phase has key-value pairs as input and output, the types of which may
be chosen by the programmer. The programmer also specifies two functions: the map
function and the reduce function.

The input to our map phase is the raw NCDC data. We choose a text input format that
gives us each line in the dataset as a text value. The key is the offset of the beginning of
the line from the beginning of the file, but as we have no need for this, we ignore it.

Our map function is simple. We pull out the year and the air temperature, because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reduce function can do its
work on it: finding the maximum temperature for each year. The map function is also a
good place to drop bad records: here we filter out temperatures that are missing, suspect,
Oor erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004. . .9999999N9+00001+99999999999. ..
0043011990999991950051512004. . .9999999N9+00221+99999999999. ..
0043011990999991950051518004. . .9999999N9-00111+99999999999. ..
0043012650999991949032412004. . .0500001N9+01111+99999999999. ..
0043012650999991949032418004. . .0500001N9+00781+99999999999. ..

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004..9999999N9+00001+99999999999...)

(106, 0043011990999991950051512004..9999999N9+00221+99999999999...
(212, 0043011990999991950051518004..9999999N9-00111+99999999999...
(318, 0043012650999991949032412004..0500001N9+01111+99999999999...
(424, 0043012650999991949032418004..0500001N9+00781+99999999999...

~— N

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text), and
emits them as its output (the temperature values have been interpreted as integers):

(1950, 0)

(1950, 22)

(1950, -11)

(1949, 111)

(1949, 78)
The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs by

key. So, continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22, -11])

Each year appears with a list of all its air temperature readings. All the reduce function has
to do now is iterate through the list and pick up the maximum reading;:



(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later in
this chapter when we look at Hadoop Streaming.

input | map | shuffle | reduce > output
0067011990... ( 0, 0067011990..) (1950, 0)
0043011990.. (106, 0043011990..) (1950, 22)
0043011990... }=--p| (212, 0043011990..) p=--p| (1950, -11) |=p Eiggg‘ [0 Enjiﬂﬁ I 2 Eiggg’ 1;;; iggg’gl
0043012650... (318, 0043012650..) (1949, 111) 2GR 2 2
0043012650... (424, 0043012650..) (1949, 78)

cat * | map.xrb | sort | reduce.rb > output

Figure 2-1. MapReduce logical data flow
Java MapReduce

Having run through how the MapReduce program works, the next step is to express it in
code. We need three things: a map function, a reduce function, and some code to run the
job. The map function is represented by the Mapper class, which declares an abstract
map () method. Example 2-3 shows the implementation of our map function.

Example 2-3. Mapper for the maximum temperature example
import 7

import ’
import ’
import ’

import ’

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();

String year = line.substring(15, 19);
int airTemperature;

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);
if (airTemperature != MISSING && quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));

3
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The Mapper class is a generic type, with four formal type parameters that specify the input
key, input value, output key, and output value types of the map function. For the present
example, the input key is a long integer offset, the input value is a line of text, the output
key is a year, and the output value is an air temperature (an integer). Rather than using
built-in Java types, Hadoop provides its own set of basic types that are optimized for
network serialization. These are found in the org.apache.hadoop.io package. Here we



use LongWritable, which corresponds to a Java Long, Text (like Java String), and
IntWritable (like Java Integer).

The map () method is passed a key and a value. We convert the Text value containing the
line of input into a Java String, then use its substring() method to extract the columns
we are interested in.

The map () method also provides an instance of Context to write the output to. In this case,
we write the year as a Text object (since we are just using it as a key), and the temperature
is wrapped in an IntWritable. We write an output record only if the temperature is
present and the quality code indicates the temperature reading is OK.

The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.

Example 2-4. Reducer for the maximum temperature example
import 7

import ;
import ;
import ;

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int maxvValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxVvalue));

}
}
Again, four formal type parameters are used to specify the input and output types, this
time for the reduce function. The input types of the reduce function must match the output
types of the map function: Text and Intwritable. And in this case, the output types of the
reduce function are Text and Intwritable, for a year and its maximum temperature,
which we find by iterating through the temperatures and comparing each with a record of
the highest found so far.

The third piece of code runs the MapReduce job (see Example 2-5).

Example 2-5. Application to find the maximum temperature in the weather dataset

import ;

import ;

import ;

import ;

import ;
import ;

public class MaxTemperature {

public static void main(String[] args) throws Exception {
if (args.length = 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");



FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

b
b

A Job object forms the specification of the job and gives you control over how the job is
run. When we run this job on a Hadoop cluster, we will package the code into a JAR file
(which Hadoop will distribute around the cluster). Rather than explicitly specifying the
name of the JAR file, we can pass a class in the Job’s setJarByClass() method, which
Hadoop will use to locate the relevant JAR file by looking for the JAR file containing this
class.

Having constructed a Job object, we specify the input and output paths. An input path is
specified by calling the static addInputPath() method on FileInputFormat, and it can be
a single file, a directory (in which case, the input forms all the files in that directory), or a
file pattern. As the name suggests, addInputPath() can be called more than once to use
input from multiple paths.

The output path (of which there is only one) is specified by the static setOutputPath()
method on FileOutputFormat. It specifies a directory where the output files from the
reduce function are written. The directory shouldn’t exist before running the job because
Hadoop will complain and not run the job. This precaution is to prevent data loss (it can
be very annoying to accidentally overwrite the output of a long job with that of another).

Next, we specify the map and reduce types to use via the setMapperclass() and
setReducerClass() methods.

The setoutputKeyClass() and setOutputvalueClass() methods control the output types
for the reduce function, and must match what the Reduce class produces. The map output
types default to the same types, so they do not need to be set if the mapper produces the
same types as the reducer (as it does in our case). However, if they are different, the map
output types must be set using the setMapoutputKeyClass() and
setMapOutputValueClass () methods.

The input types are controlled via the input format, which we have not explicitly set
because we are using the default TextInputFormat.

After setting the classes that define the map and reduce functions, we are ready to run the
job. The waitForCompletion() method on Job submits the job and waits for it to finish.
The single argument to the method is a flag indicating whether verbose output is
generated. When true, the job writes information about its progress to the console.

The return value of the waitForCompletion() method is a Boolean indicating success
(true) or failure (false), which we translate into the program’s exit code of 0 or 1.



NOTE

The Java MapReduce API used in this section, and throughout the book, is called the “new API”; it replaces the older,
functionally equivalent API. The differences between the two APIs are explained in Appendix D, along with tips on
how to convert between the two APIs. You can also find the old API equivalent of the maximum temperature
application there.

A test run

After writing a MapReduce job, it’s normal to try it out on a small dataset to flush out any
immediate problems with the code. First, install Hadoop in standalone mode (there are
instructions for how to do this in Appendix A). This is the mode in which Hadoop runs
using the local filesystem with a local job runner. Then, install and compile the examples
using the instructions on the book’s website.

Let’s test it on the five-line sample discussed earlier (the output has been slightly
reformatted to fit the page, and some lines have been removed):

% export HADOOP_CLASSPATH=hadoop-examples.jar

% hadoop MaxTemperature input/ncdc/sample.txt output

14/09/16 09:48:39 WARN util.NativeCodelLoader: Unable to load native-hadoop
library for your platform.. using builtin-java classes where applicable

14/09/16 09:48:40 WARN mapreduce.JobSubmitter: Hadoop command-line option
parsing not performed. Implement the Tool interface and execute your application
with ToolRunner to remedy this.

14/09/16 09:48:40 INFO input.FileInputFormat: Total input paths to process : 1
14/09/16 09:48:40 INFO mapreduce.JobSubmitter: number of splits:1

14/09/16 09:48:40 INFO mapreduce.JobSubmitter: Submitting tokens for job:
job_local26392882_0001
14/09/16 09:48:40 INFO
http://localhost:8080/
14/09/16 09:48:40 INFO

mapreduce.Job: The url to track the job:

mapreduce.Job: Running job: job_local26392882_0001
14/09/16 09:48:40 INFO mapred.LocalJobRunner: OutputCommitter set in config null
14/09/16 09:48:40 INFO mapred.LocalJobRunner: OutputCommitter is
org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter

14/09/16 09:48:40 INFO mapred.LocalJobRunner: Waiting for map tasks
14/09/16 09:48:40 INFO mapred.LocalJobRunner: Starting task:
attempt_local26392882_0001_m_000000_0

14/09/16 09:48:40 INFO mapred.Task: Using ResourceCalculatorProcessTree :
14/09/16 09:48:40 INFO mapred.LocalJobRunner:

14/09/16 09:48:40 INFO mapred.Task: Task:attempt_local26392882_0001_m_000000_0
is done. And is in the process of committing

14/09/16 09:48:40 INFO mapred.LocalJobRunner: map

14/09/16 09:48:40 INFO mapred.Task: Task 'attempt_local26392882_0001_m_000000_0'
done.

14/09/16 09:48:40 INFO mapred.LocalJobRunner:
attempt_local26392882_0001_m_000000_0
14/09/16 09:48:40 INFO mapred.LocalJobRunner:
14/09/16 09:48:40 INFO mapred.LocalJobRunner:
14/09/16 09:48:40 INFO mapred.LocalJobRunner:
attempt_local26392882_0001_r_000000_0
14/09/16 09:48:40 INFO mapred.Task: Using ResourceCalculatorProcessTree :
14/09/16 09:48:40 INFO mapred.LocalJobRunner: 1 / 1 copied.

null

Finishing task:

map task executor complete.
Waiting for reduce tasks
Starting task:

null

14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO
segments left of total
14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO
segments left of total
14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO
is done. And is in the
14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO

mapred.Merger: Merging 1 sorted segments

mapred.Merger: Down to the last merge-pass, with 1
size: 50 bytes

mapred.Merger: Merging 1 sorted segments

mapred.Merger: Down to the last merge-pass, with 1
size: 50 bytes

mapred.LocalJobRunner: 1 / 1 copied.

mapred.Task: Task:attempt_local26392882_0001_r_000000_0
process of committing

mapred.LocalJobRunner: 1 / 1 copied.

mapred.Task: Task attempt_local26392882_0001_r_000000_0

is allowed to commit now

14/09/16 09:48:40 INFO

'attempt..local26392882_

output.FileOutputCommitter: Saved output of task
0001_r_000000_0"' to file:/Users/tom/book-workspace/

hadoop-book/output/_temporary/0/task_local26392882_0001_r_000000

14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO

mapred.LocalJobRunner: reduce > reduce
mapred.Task: Task 'attempt_local26392882_0001_r_000000_0'



done.
14/09/16 09:48:40 INFO mapred.LocalJobRunner: Finishing task:
attempt_local26392882_0001_r_000000_0
14/09/16 09:48:40 INFO mapred.LocalJobRunner: reduce task executor complete.
14/09/16 09:48:41 INFO mapreduce.Job: Job job_local26392882_0001 running in uber
mode : false
14/09/16 09:48:41 INFO mapreduce.Job: map 100% reduce 100%
14/09/16 09:48:41 INFO mapreduce.Job: Job job_local26392882_ 0001 completed
successfully
14/09/16 09:48:41 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=377168
FILE: Number of bytes written=828464
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=5
Map output records=5
Map output bytes=45
Map output materialized bytes=61
Input split bytes=129
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=61
Reduce input records=5
Reduce output records=2
Spilled Records=10
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=39
Total committed heap usage (bytes)=226754560
File Input Format Counters
Bytes Read=529
File Output Format Counters
Bytes Written=29

When the hadoop command is invoked with a classname as the first argument, it launches
a Java virtual machine (JVM) to run the class. The hadoop command adds the Hadoop
libraries (and their dependencies) to the classpath and picks up the Hadoop configuration,

too. To add the application classes to the classpath, we’ve defined an environment variable
called HADOOP_CLASSPATH, which the hadoop script picks up.

NOTE

When running in local (standalone) mode, the programs in this book all assume that you have set the
HADOOP_CLASSPATH in this way. The commands should be run from the directory that the example code is installed in.

The output from running the job provides some useful information. For example, we can
see that the job was given an ID of job_local26392882_0001, and it ran one map task and
one reduce task (with the following IDs: attempt_local26392882_0001_m_000000_0 and
attempt_local26392882_0001_r_000000_0). Knowing the job and task IDs can be very
useful when debugging MapReduce jobs.

The last section of the output, titled “Counters,” shows the statistics that Hadoop generates
for each job it runs. These are very useful for checking whether the amount of data
processed is what you expected. For example, we can follow the number of records that
went through the system: five map input records produced five map output records (since
the mapper emitted one output record for each valid input record), then five reduce input
records in two groups (one for each unique key) produced two reduce output records.

The output was written to the output directory, which contains one output file per reducer.
The job had a single reducer, so we find a single file, named part-r-00000:

Iwww .al litebooks.cond
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% cat output/part-r-00000

1949 111

1950 22
This result is the same as when we went through it by hand earlier. We interpret this as
saying that the maximum temperature recorded in 1949 was 11.1°C, and in 1950 it was

2.2°C.



Scaling Out

You’ve seen how MapReduce works for small inputs; now it’s time to take a bird’s-eye
view of the system and look at the data flow for large inputs. For simplicity, the examples
so far have used files on the local filesystem. However, to scale out, we need to store the
data in a distributed filesystem (typically HDFS, which you’ll learn about in the next
chapter). This allows Hadoop to move the MapReduce computation to each machine
hosting a part of the data, using Hadoop’s resource management system, called YARN
(see Chapter 4). Let’s see how this works.

Data Flow

First, some terminology. A MapReduce job is a unit of work that the client wants to be
performed: it consists of the input data, the MapReduce program, and configuration
information. Hadoop runs the job by dividing it into tasks, of which there are two types:
map tasks and reduce tasks. The tasks are scheduled using YARN and run on nodes in the
cluster. If a task fails, it will be automatically rescheduled to run on a different node.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, or
just splits. Hadoop creates one map task for each split, which runs the user-defined map
function for each record in the split.

Having many splits means the time taken to process each split is small compared to the
time to process the whole input. So if we are processing the splits in parallel, the
processing is better load balanced when the splits are small, since a faster machine will be
able to process proportionally more splits over the course of the job than a slower
machine. Even if the machines are identical, failed processes or other jobs running
concurrently make load balancing desirable, and the quality of the load balancing
increases as the splits become more fine grained.

On the other hand, if splits are too small, the overhead of managing the splits and map task
creation begins to dominate the total job execution time. For most jobs, a good split size
tends to be the size of an HDFS block, which is 128 MB by default, although this can be
changed for the cluster (for all newly created files) or specified when each file is created.

Hadoop does its best to run the map task on a node where the input data resides in HDFS,
because it doesn’t use valuable cluster bandwidth. This is called the data locality
optimization. Sometimes, however, all the nodes hosting the HDFS block replicas for a
map task’s input split are running other map tasks, so the job scheduler will look for a free
map slot on a node in the same rack as one of the blocks. Very occasionally even this is
not possible, so an off-rack node is used, which results in an inter-rack network transfer.
The three possibilities are illustrated in Figure 2-2.

It should now be clear why the optimal split size is the same as the block size: it is the
largest size of input that can be guaranteed to be stored on a single node. If the split
spanned two blocks, it would be unlikely that any HDFS node stored both blocks, so some
of the split would have to be transferred across the network to the node running the map
task, which is clearly less efficient than running the whole map task using local data.

Map tasks write their output to the local disk, not to HDFS. Why is this? Map output is
intermediate output: it’s processed by reduce tasks to produce the final output, and once



the job is complete, the map output can be thrown away. So, storing it in HDFS with
replication would be overkill. If the node running the map task fails before the map output
has been consumed by the reduce task, then Hadoop will automatically rerun the map task
on another node to re-create the map output.

node

Iﬁ{
1100CREN

Map task
I HDFS block

data center

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

Reduce tasks don’t have the advantage of data locality; the input to a single reduce task is
normally the output from all mappers. In the present example, we have a single reduce
task that is fed by all of the map tasks. Therefore, the sorted map outputs have to be
transferred across the network to the node where the reduce task is running, where they
are merged and then passed to the user-defined reduce function. The output of the reduce
is normally stored in HDFS for reliability. As explained in Chapter 3, for each HDFS
block of the reduce output, the first replica is stored on the local node, with other replicas
being stored on off-rack nodes for reliability. Thus, writing the reduce output does
consume network bandwidth, but only as much as a normal HDFS write pipeline
consumes.



The whole data flow with a single reduce task is illustrated in Figure 2-3. The dotted
boxes indicate nodes, the dotted arrows show data transfers on a node, and the solid
arrows show data transfers between nodes.

merge

» HDFS
replication

Figure 2-3. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In The Default MapReduce Job, you will see how to choose the
number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating one
partition for each reduce task. There can be many keys (and their associated values) in
each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner — which buckets keys using a hash function — works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4. This
diagram makes it clear why the data flow between map and reduce tasks is colloquially
known as “the shuffle,” as each reduce task is fed by many map tasks. The shuffle is more
complicated than this diagram suggests, and tuning it can have a big impact on job
execution time, as you will see in Shuffle and Sort.
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Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a few
examples are discussed in NLineInputFormat). In this case, the only off-node data transfer
is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays to
minimize the data transferred between map and reduce tasks. Hadoop allows the user to
specify a combiner function to be run on the map output, and the combiner function’s
output forms the input to the reduce function. Because the combiner function is an
optimization, Hadoop does not provide a guarantee of how many times it will call it for a
particular map output record, if at all. In other words, calling the combiner function zero,
one, or many times should produce the same output from the reducer.
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Figure 2-5. MapReduce data flow with no reduce tasks

The contract for the combiner function constrains the type of function that may be used.
This is best illustrated with an example. Suppose that for the maximum temperature
example, readings for the year 1950 were processed by two maps (because they were in
different splits). Imagine the first map produced the output:

(1950, 0)

(1950, 20)
(1950, 10)

and the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:
(1950, [0, 20, 10, 25, 15])
with output:

(1950, 25)

since 25 is the maximum value in the list. We could use a combiner function that, just like
the reduce function, finds the maximum temperature for each map output. The reduce
function would then be called with:



(1950, [20, 25])

and would produce the same output as before. More succinctly, we may express the
function calls on the temperature values in this case as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

Not all functions possess this property.[22) For example, if we were calculating mean
temperatures, we couldn’t use the mean as our combiner function, because:

mean(©, 20, 10, 25, 15) = 14

but:

mean(mean(®, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. (How could it? The reduce
function is still needed to process records with the same key from different maps.) But it
can help cut down the amount of data shuffled between the mappers and the reducers, and
for this reason alone it is always worth considering whether you can use a combiner
function in your MapReduce job.

Specifying a combiner function

Going back to the Java MapReduce program, the combiner function is defined using the
Reducer class, and for this application, it is the same implementation as the reduce
function in MaxTemperatureReducer. The only change we need to make is to set the
combiner class on the Job (see Example 2-6).

Example 2-6. Application to find the maximum temperature, using a combiner function for
efficiency
public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperaturewWithCombiner <input path> " +
"<output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTemperaturewithCombiner.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

3
b

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full dataset. This is the point of
MapReduce: it scales to the size of your data and the size of your hardware. Here’s one
data point: on a 10-node EC2 cluster running High-CPU Extra Large instances, the

program took six minutes to run.[2!



We’ll go through the mechanics of running programs on a cluster in Chapter 6.



Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard streams as
the interface between Hadoop and your program, so you can use any language that can

read standard input and write to standard output to write your MapReduce program.[22]

Streaming is naturally suited for text processing. Map input data is passed over standard
input to your map function, which processes it line by line and writes lines to standard
output. A map output key-value pair is written as a single tab-delimited line. Input to the
reduce function is in the same format — a tab-separated key-value pair — passed over
standard input. The reduce function reads lines from standard input, which the framework
guarantees are sorted by key, and writes its results to standard output.

Let’s illustrate this by rewriting our MapReduce program for finding maximum
temperatures by year in Streaming.

Ruby

The map function can be expressed in Ruby as shown in Example 2-7.

Example 2-7. Map function for maximum temperature in Ruby

#1/usr/bin/env ruby

STDIN.each_line do |line]|

val = line

year, temp, q = val[15,4], val[87,5], val[92,1]

puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)
end

The program iterates over lines from standard input by executing a block for each line
from STDIN (a global constant of type 10). The block pulls out the relevant fields from

each input line and, if the temperature is valid, writes the year and the temperature
separated by a tab character, \t, to standard output (using puts).

NOTE

It’s worth drawing out a design difference between Streaming and the Java MapReduce API. The Java API is geared
toward 