
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Head First Rails
by David Griffiths

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Editors: Brett D. McLaughlin, Louise Barr

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Brittany Smith

Proofreader: Matt Proud

Indexer: Julie Hawks

Page Viewers: Dawn Griffiths, Friski the Wi-fi Bunny

Printing History:
December 2008: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Rails, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No stick figures were harmed in the making of this book.

ISBN: 978-0-596-51577-5

[M]

Dawn Griffiths

Friski the Wi-fi bunny

This book uses RepKover™,  a durable and flexible lay-flat binding.TM

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Rich
Text Box
David Griffiths

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

this is a new chapter 307

XML and multiple representations8

It all looks
different now...

You can’t please everyone all of the time. Or can you?
So far we’ve looked at how you can use Rails to quickly and easily develop web

apps that perfectly fit one set of requirements. But what do you do when other

requirements come along? What should you do if some people want basic web

pages, others want a Google mashup, and yet more want your app available as

an RSS feed? In this chapter you’ll create multiple representations of the same

basic data, giving you the maximum flexibility with minimum effort.

Heavens - you’ve really
changed, Dorothy.

308 Chapter 8

user-centered design

Head First Climbers is a web site for mountaineers all over the world.
Climbers report back from expeditions to record the locations and times
of mountains they have climbed, and also to report dangerous features
they’ve discovered, like rock slides and avalanches.

The information is obviously very important for the safety of other
climbers, and many climbers use mobile phones and GPS receivers to
read and record information straight from the rock face. Used in the
right way, the system will save lives and yet—somehow—the web site’s
not getting a lot of traffic.

Climbing all over the world

So why isn’t it popular?
The application is very basic. It’s simply a scaffolded version
of this data structure:

Incident
mountain string

latitude decimal

longitude decimal

when datetime

title string

description text

Create a scaffolded application
that matches this data structure.

Do this!As you’ve noticed by now, scaffolding is a great way to start an application,
but you’ll almost always need to modify the code to change the generic
scaffolding code into something that’s more appropriate for the problems
your users are trying to solve.

So what needs to change about this application?

id mountain latitude longitude when title description

1 Mount Rushless 63.04348055... -150.993963... 2009-11-21 11:... Rock slide Rubble on the ...

2 Mount Rushless 63.07805277... -150.977869... 2009-11-21 17:... Hidden crev... Ice layer cove...

3 Mount Lotopaxo -0.683975 -78.4365055... 2009-06-07 12:... Ascent Living only on...

4 High Kanuklima 11.123925 72.72135833... 2009-05-12 18:... Altitude si... Overcome by th...

xml and multiple representations

It doesn’t take too long to find out why the web site isn’t popular: the
user interface.

The system is used to manage spatial data—it records incidents that
happen at particular places and times around the world. The location
information is recorded using two numbers:

The users hate the interface!

The users can record their data OK: they just read the latitude and
longitude from GPS receivers. But they have a lot of trouble reading
and interpreting the information from other climbers.

Think about the data that the application needs to display. How would
you display the information? What would be the best format to make
the information easily comprehensible for the climbers who need it?

 The latitude. This is how far North or South the location is.

 The longitude. This is a measure of how far West or East a location is.

So people can add data to the application, but they can’t understand
the data they get from it. That’s cutting the number of visitors, and the
fewer visitors there are the less information is getting added... which
causes even less people to use the app. It’s a real downward spiral.

Something needs to be done or the web site will
lose so much business it has to close down.

I’m sure that dangerous
rock slide is supposed to
be some place near here...

you are here 4 309

HighPhone

310 Chapter 8

map location data

The system records geographic data and it should be displayed on a map.

The correct data is being stored, and the basic functions (create, read,
update, and delete) are all available. The problem is presentation. The
location is stored as two numbers—the latitude and longitude—but that
doesn’t mean it has to be displayed that way.

Instead of seeing this...

The data needs to be on a map

...climbers need to see something like this:

Now this is obviously going to be a pretty big change to the interface,
so the web site guys have decided that rather than change the whole
application, they are going to run a small pilot project to create a version
of the page that displays an incident and get it to display a map. But they
have no idea what to do, and need your help.

What’s the first thing YOU would do?

http://localhost:3000/incidents/1
Incidents: show

http://localhost:3000/incidents/1
Incidents: show

you are here 4 311

xml and multiple representations

We can create the page template by copying the app/views/
incidents/show.html.erb file. What will the new file be called?

We don’t want to change the existing code—we only want to add to it.
Until we are sure that the new interface works, we don’t want to upset
any of the existing users. After all, there aren’t that many left...

So we’ll add a new action called show_with_map. At the moment,
someone can see one of the incidents using a URL like this:

We need to create a new action

http://localhost:3000/incidents/1

http://localhost:3000/incidents/map/1

map.connect 'incidents/map/:id', :action=>'show_with_map', :controller=>'incidents'

This way, the pilot users only need to add /map to get the new version
of the page. We’ll use this for the route:

We’ll create a new version of the page at:

The incidents controller will need a new method to read the appropriate Incident model object and store it
in an instance variable called @incident. Write the new method below:

Remember to add this as the first route in your config/routes.rb file.

312 Chapter 8

test your new action

We can create the page template by copying the app/views/
incidents/show.html.erb file. What will the new file be called?

The incidents controller will need a new method to read the appropriate Incident model object and store it
in an instance variable called @incident. Write the new method below:

app/views/incidents/show_with_map.html.erb

def show_with_map
 @incident = Incident.find(params[:id])
end

show_with_map is the
name of the action.

The new action seems to work...
If you now look at the two versions of the incidents page, we see that they
both display the correct data. What do you notice?

Both versions of the incidents page look identical—and that’s a problem.

http://localhost:3000/incidents/1
Incidents: show

http://localhost:3000/incidents/map/1
Incidents: show_with_map

This is the original
scaffolded page.

This is the version
that calls the new
show_with_map
action.

This version has a different URL.

Both versions show the same data.

This will be the id
number from the URL.

Create the page template and
the new controller method now.

Do this!

you are here 4 313

xml and multiple representations

But of course we don’t want the new version of the page to look the same. We
want to add a map.

So how will we do that? There’s no way we’re going to build our own mapping
system. Instead we’ll create a mashup. A mashup is a web application that
integrates data and services from other places on the web.

Most of the mapping services allow you to embed maps inside your own web
application, but we’ll use the one provided by Google. Google Maps give you
a lot of flexibility. Not only can you embed a map in a web page, but you can
also, without too much work, add your own data onto the map and program
how the user interacts with the map and data.

Here’s a high-level view of how it will work:

The new page needs a map... that’s the point!

The map will be displayed at the approximate location of the recorded incident,
and a symbol mark the exact point.

The Head First Climbers application will generate the code to call the map, and
the data to display on it, but the map itself, and the bulk of the code that allows
the user to do things like drag the map or zoom in and out, will come from the
Google Maps server. Even though Google will provide the bulk of the code, we
still need to provide two things:

So what will the map code look like?

 The HTML and JavaScript to call the map. This will be a little complex,
so we will put the HTML and JavaScript we need in a separate partial
that we can call from our page template.

 The data we need to display on the map. To begin with we will use an
example data file to make sure the map’s working.

The page is
generated by
the Head First
Climbers server.

The map comes
from the Google
Maps server.

314 Chapter 8

get your google key

We need to have the following code in a partial called _map.html.erb:

So what code do we need?

<%

 google_key='ABQIA
AAAnfs7bKE82qgb3Zc2

YyS-oBT2yXp_' +

 'ZAY8_ufC3CFXhH
IE1NvwkxSySz_REpPq-

4WZA27OwgbtyR3VcA'

 full_page ||= fal
se

 show_action ||= n
il

 new_action ||= ni
l

 data ||= nil

%>

<div id="map"

 align="right"

 style="border: 1p
x solid #979797;

 min-width: 400px;

<% if full_page -%>

 min-height: 800px;

 height: 800px;

<% else -%>

 min-height: 400px;

 height: 400px;

<% end -%>

 background-color:
#FFFFFF;

 border: 1px solid
#999999;

 padding: 10px;"></
div>

...

app

incidents

_map.html.erb

views

There’s not enough space to
display all of the partial code here,
but you can download the file at
http://tinyurl.com/hfrailsmap

Download It!

So what does this code do? First of all it calls some JavaScript on the
Google Maps server that will generate a map on the web page. The map
will have all of the basic drag and zoom functions built in.

But the basic Google code doesn’t do everything we need. It doesn’t load
and display any of our local data. So the code in the _map.html.erb
partial also loads location data from a file, which it uses to move the map
to the correct place and display an icon at a given point.

But there’s a little complication with the code...

This key makes the map work for ‘localhost’

you are here 4 315

xml and multiple representations

The code will only work for localhost
Google places a restriction on the use of the code. They
insist that you say which host you’re going to use it on. That
means before you can use it on www.yourowndomain.com,
you need to tell Google about it. In order to make sure
that people comply with this condition, the code will only
run if you provide it with a Google Maps key. The key
is generated for a particular host name, and if you try to
embed a Google map into a page coming from anywhere
else, the map will refuse to run.

But for now, there’s not a problem. The _map.html.erb
partial we’re going to use has the Google Maps key for
localhost—so as long as you run the code on your own
machine it will be fine. But remember, you’ll need to apply
for your own key before running the code anywhere else.

Geek Bits

If you want to embed Google Maps in your
own web apps, you need to sign up with
Google. To do this, visit the following URL:
http://tinyurl.com/mapreg

You need to include the map partial in the show_with_map.html.erb
template. We need to pass a local variable called data containing the path
to the map data. We’ll use a test file for this at /test.xml.

Write the code to call the partial.

316 Chapter 8

send data to google

<%= render (:partial=>‘map’, :locals=>{:data=>‘/test.xml’}) %>

Now we need the map data
Before we can try out the embedded map, we need to provide
it with map data. To begin with we will just use the test.xml
test file. This is what it looks like:

<data>

 <description>This
 is an example desc

ription</descriptio
n>

 <latitude>63.0434
805555556 </latitud

e>

 <longitude>-150.9
93963888889</longit

ude>

 <title>Test Data<
/title>

</data>

The mapping data provides the latitude and longitude of the
test incident. When the Google map loads, our map partial
will pass it the contents of this file and the incident should be
displayed and centered.

public

test.xml

You need to insert th
is line of

code in the
show_with_map.html.erb file

To save you typing in the long
numbers, you can download the
test.xml file from
http://tinyurl.com/maptest

Download It!

You need to include the map partial in the show_with_map.html.erb
template. We need to pass a local variable called data containing the path
to the map data. We’ll use a test file for this at /test.xml.

Write the code to call the partial.

you are here 4 317

xml and multiple representations

Test Drive
So what happens if we go to a URL like:

http://localhost:3000/incidents/map/1

The map works! But what if we go to a different URL?

Every map looks exactly the same, regardless of the data. That’s because each
map is using the same data: the contents of the test.xml file.

In order to make the map display the location of a given
incident, we need to generate a data file for each page.

318 Chapter 8

generate your xml

What do we need to generate?
We’re passing XML data to the map, and the XML data describes the
location of a single incident. The location is given by the latitude, the
longitude, the title, and the description. We need to generate XML like
this for each incident.

So the system will work something like this:

If this is starting to feel familiar, good! The Google Map is actually using
Ajax to work. Remember how we used Ajax to download new version of
the seat list in the previous chapter? In the same way, the Google Map
will request XML data for the location of an incident.

So the next thing is to generate the data. Where will
we get the data from?

The Google map
asks for the XML
data file for the
current incident.

The server generates
the XML for the
incident and returns it.

The map displays the location of the incident in the map.

Give me the XML
data for incident #7.

<incident>
 ...
</incident>

you are here 4 319

xml and multiple representations

<data>

 <description>This
 is an example desc

ription</descriptio
n>

 <latitude>63.0434
805555556 </latitud

e>

 <longitude>-150.9
93963888889</longit

ude>

 <title>Test Data<
/title>

</data>

We’ll generate XML from the model
The data for the generated XML will come from the Incident model.
We’ll be using just four of the attributes, the latitude, longitude, title,
and description.

Incident
mountain string

latitude decimal

longitude decimal

when datetime

title string

description text

But how do we generate the XML? In a way, this is a little like
generating a web page. After all, XML and HTML are very similar.
And just as web pages contain data from the model, our XML files will
also contain data from the model.

So one option would be to create a page template containing XML
tags instead of HTML tags:

app

incidents

show_with_map.html.erb

views

????

That way would work, but there’s a better way...

We could create a page template specifically to generate
the XML data. But should we?

320 Chapter 8

let your model generate xml

A model object can generate XML
Model objects contain data. XML files contain data. So it
kind of makes sense that model objects can generate XML
versions of themselves. Each model object has a method
to_xml that returns an XML string:

mountain

latitude

longitude

when

title

description

@incident

But creating the XML is only half the story. The other half
is returning that XML to the browser. We’re not using a page
template, so the whole job will have to be handled by the
controller rendering the XML...

@incident.to_xml

to_xml

This is the incident model object.

XML string

The to_xml method
returns an XML string.

The to_xml method returns an XML
string representing the model object.

'<incident>
...
</incident>'

you are here 4 321

xml and multiple representations

What will the controller code look like
We can amend the show_with_map method to output the XML:

def show_with_map

 @incident = Incident.find(params[:id])

 render :text=>@incident.to_xml

end

The render method returns the XML to the browser. We’ve seen the
render method before, but this is a slightly different version. Most of
the time you use render to generate a web page from a template or
partial. But you can also just pass it a string object—and that’s what
we’re doing here.

Geek Bits

To make your life simpler, the Rails folks
also allow you to pass a parameter to
the render method called :xml

render :xml=>@incident

If the render method is passed an
object using the :xml parameter, it will
call the to_xml method on the object
and send that back to the browser. The
:xml version of the render command
will generate the same content as the
render command in our controller,
but it will also set the mime-type of
the response to text/xml. But for now,
we will use the :text version above.

This is the incident object we were already reading.
This will create an XML string
that describes the incident object.The render method

returns the XML. The text parameter says what

we’ll be returning to the br
owser.

Q: Remind me, what does the render method do again?

A: render generates a response for the browser. When
your browser asks for a page, that’s a request. render
generates what gets sent back.

322 Chapter 8

test drive

Test Drive
So what do we get now if we go to:

http://localhost:3000/incidents/map/1

The controller is now returning XML containing the data from the
incident object with id = 1.

But is there a problem? The XML we’re generating looks sort of the same
as the example XML, but there are a few differences:

 We’re generating too many attributes. The
example data file only contained information
about the latitude, longitude, title, and
description. But this piece of XML contains
everything about an incident, even the date and
time that the incident record was created.

 The root of the XML file has the wrong name.
The generated XML takes its root name from the
variable we were using, <incident>. But we
need the XML to have a root named <data>.

<data>

 <description>This
 is an example

 description</de
scription>

 <latitude>63.0434
805555556 </latitud

e>

 <longitude>-150.9
93963888889</longit

ude>

 <title>Test Data<
/title>

</data>

The XML is almost in the right format, but not quite.

We need to modify the XML that to_xml produces.

you are here 4 323

xml and multiple representations

Code Magnets
The to_xml method has some optional parameters that let us
modify the XML that it returns. See if you can work out what the
values of the parameters should be:

def show_with_map

 @incident = Incident.find(params[:id])

 render :text=>@incident.to_xml(

 =>[, , ,],

 =>)

end

:id

:except

:updated_at

"change"

"xml"

:xml

:only

:longitude

:title
:description

:latitude

:root

"data"

324 Chapter 8

modify the xml

def show_with_map

 @incident = Incident.find(params[:id])

 render :text=>@incident.to_xml(

 =>[, , ,],

 =>)

end

Code Magnets Solution
The to_xml method has some optional parameters that let us
modify the XML that it returns. See if you can work out what the
values of the parameters should be:

:id

:except

:updated_at

"change"

"xml"

:xml

:only :longitude :title :description:latitude

:root "data"

Because we’re using the
 render :text=>...
version of the render

 command we

can use the options in
 to_xml and

modify the output.

Q: Shouldn't we generate the XML in the model?

A: You could, but it's not a good idea. You may need to generate different XML in different situations. If you
added code to the model for each of those XML formats, the model would quickly become overloaded.

you are here 4 325

xml and multiple representations

Test Drive
Now when we go to:

http://localhost:3000/incidents/map/1

we get XML that looks a little different.

You’ve managed to modify the XML so that it only displays the data we
need and has a properly named root element. It looks a lot closer to the
example XML file.

The to_xml method doesn’t allow you to make a lot of changes to the
XML it produces, but it’s good enough for most purposes... including
sending the XML to Google for some custom mapping.

With very little work, to_xml gave us exactly the XML
we wanted.

326 Chapter 8

climbers need websites, too

Meanwhile, at 20,000 feet...

Some people on the pilot program have a problem.
The web pages have disappeared! Before the last amendment a URL like:

http://localhost:3000/incidents/map/1

generated a web page. The trouble is, now that URL just returns XML,
instead of a nice Google map.

Hey! Where did
my web page go?!!!

Before your latest changes:

After your latest changes:

HighPhone

Before the amendment, we had a web
page showing our data on a Google map.

After the amendment, all we got back was this XML.

you are here 4 327

xml and multiple representations

We need to generate XML and HTML
The show_with_map action originally generated a web page with
the show_with_map.html.erb page template. But once we
added a render call to the controller method, Rails ignored the
template and just generated the XML:

def show_with_map

 @incident = Incident.find(params[:id])

 render :text=>@incident.to_xml(

 :only=>[:latitude,:longitude,:title,:description],

 :root=>"name")

end

Of course, that makes sense, because there’s no way an action can
generate XML and HTML at the same time.

But we still need a web page to display the map, and the map still
needs XML map data. So what do we do?

We need some way of calling the controller in one
way to generate HTML, and calling the controller in
another way to generate XML.

show_with_map.html.erb

Hmm, that render call
looks like I’m generating
XML. I’d better skip the
page template.

328 Chapter 8

multiple representations

Generating XML and
HTML should be easy. We just
create another action.

Laura BobMark

Mark: Another action?

Bob: Sure. One to generate XML and another to generate HTML.

Laura: Well that’s not a great idea.

Bob: Why not?

Laura: That would mean duplicating code. Both methods would
have code to read an incident object.

Bob: Whatever. It’s only one line.

Laura: Well now it is. But what if we change things in the future?

Mark: You mean like if the model changes?

Laura: Or if it we get the data from somewhere else, like a web
service.

Bob: It’s not such a big deal. Let’s worry about the problems we
have right now, okay?

Mark: I don’t know. Laura, what would you do?

Laura: Simple. I’d pass a parameter to the action. Tell it what
format we want.

Mark: That might work.

Bob: Come on, too much work.

Laura: Less work than creating another action.

Mark: But one thing...

Laura: Yes?

Mark: Doesn’t the URL identify the information we want?

Laura: So?

Mark: Shouldn’t we use the same URL for both formats?

you are here 4 329

xml and multiple representations

XML and HTML are just representations
Although the HTML and XML look very different, they are really visual
representations of the same thing. Both the HTML web page and the XML
map data are both describing the same Incident object data. That incident
is the core data, and it’s sometimes called the resource.

A resource is the data being presented by the web page. And the web page
is called a representation of the resource. Take an Incident object as an
example. The Incident object is the resource. The incident web page and
the map data XML file are both representations of the resource.

Thinking about the web as a set of resources and representations is
part of a design architecture called REST. REST is the architecture
of Rails. And the more RESTful your application is, the better it will
run on Rails.

But how does this help us? Well, to be strictly RESTful, both the XML
data and the web page should have the same URL (Uniform Resource
Locator) because they both represent the same resource. Something
like this:

But to simplify things, we can compromise the REST design (a little
bit) and use these URLs for the two representations:

http://localhost:3000/incidents/maps/1

http://localhost:3000/incidents/maps/1.xml

http://localhost:3000/incidents/maps/1.html
One URL returns the XML data; the
other returns the HTML.

mountain
latitude

longitude

when
title

description

@incident

Here’s the resource.

The same resource
has different
representations.

330 Chapter 8

choose your own format

How should we decide which format to use?

This code does more or less the same thing. The format object is
a responder. A responder can decide whether or not to run code,
dependent upon the format required by the request. So if the user asks
for HTML, the code above will run the code passed to format.html.
If the user asks for XML, the responder will run the code passed to
format.xml.

So why don’t Rails programmers just use an if statement? After all,
wouldn’t that be simpler code? Well, the responder has hidden
powers. For example, it sets the mime type of the response. The
mime type tells the browser what data-type the response is. In general,
it is much better practice to use respond_to do to decide what
representation format to generate.

But that’s not how most Rails applications choose the format to generate.
Instead they call a method called respond_to do and an object called
a responder:

if params[:format] == 'html'

 # Generate the HTML representation

else

 # Generate the XML representation

end

respond_to do |format|

 format.html {

 }

 format.xml {

 }

end

http://localhost:3000/incidents/map/1.xml

format is a ‘responder’ object.

The code to generate a web page goes here.

The code to generate the XML goes here.

 map.connect 'incidents/map/:id.:format', :action=>'show_with_map',
 :controller=>'incidents'

If we add an extra route that includes the format in the path:

we will be able to read the requested format from the XML and then
make decisions in the code like this:

http://localhost:3000/incidents/map/1.html

This extension will be stored
in the :format field.

This will record the
format

from the extension
.

you are here 4 331

xml and multiple representations

The show_with_map method in the controller needs to choose whether it should generate
XML or HTML. Write a new version of the method that uses a responder to generate the correct
representation.
Hint: If you need to generate HTML, other than reading a model object, what else does the
controller need to do?

The show_with_map.html.erb page template currently calls the map partial and passes it the /test.xml
file. What will the partial call look like if it is going to call the generated XML file?

332 Chapter 8

respond_to do the right thing

def show_with_map
 @incident = Incident.find(params[:id])
 respond_to do |format|
 format.html {
 }
 format.xml {
 render :text=>@incident.to_xml(
 :only=>[:latitude,:longitude,:title,:description],
 :root=>“name”)
 }
 end
end

The show_with_map method in the controller needs to choose whether it should generate
XML or HTML. Write a new version of the method that uses a responder to generate the the
correct representation.
Hint: If you need to generate HTML, other than reading a model object, what else does the
controller need to do?

The show_with_map.html.erb page template currently calls the map partial and passes it the /test.xml
file. What will the partial call look like if it is going to call the generated XML file?

<%= render(:partial=>‘map’, :locals=>{:data=>“#{@incident.id}.xml”}) %>

Nothing! When generating
HTML we can leave Rails to
call the
show_with_map.html.erb
template

We can leave this empty - Rails
will call the template for us

Q: If the format.html section doesn't need any code, can we just skip it?

A: No. You still need to include format.html, or Rails won’t realize that it needs
to respond to requests for HTML output.

you are here 4 333

xml and multiple representations

Test Drive
If we look at the XML version of the page at:

http://localhost:3000/incidents/map/1.xml

we get an XML version of the incident:

It works. Now different incidents show different maps. But before we
replace the live version of the code, we better make sure we understand
exactly how the code works.

So what really went on here?

So what about the HTML version: http://localhost:3000/incidents/map/3.htmlhttp://localhost:3000/incidents/map/1.html

334 Chapter 8

which format gets requested?

How does the map page work?
Let’s take a deeper look at what just happened and how the HTML page
is rendered.

The controller spots that an HTML page is needed.
The browser points to the HTML version of the page. The controller realizes
that HTML rather than XML is required, and so calls
show_with_map.html.erb. HTML is sent back to the client browser.

1

JavaScript requests the Google Map.
JavaScript within the web page requests map data from the Google Maps
server. The Google Maps server returns it.

2

show_with_map.html.erb

Aha, I see you need HTML.
That means you need
show_with_map.html.erb.

Hey, I need a
Google Map. Think
you can oblige?

Google Maps server

Controller

<h1>incident list</h1>
<table>
<tr>

you are here 4 335

xml and multiple representations

Q: You say that a resource should
always have the same URL. Why is that?

A: It doesn’t have to, but REST—Rails’
main design principle—says it should.

Q: But if the format is in the URL,
doesn’t that mean that different URLs are
used for the same resource?

A: Yes, sure does. Adding the format to
the URL compromises the RESTfulness of
the design... a little bit. But it’s a common
trick. It’s simple, and works well.

Q: So there’s no way to use the same
URL for different formats?

A: There is a way to do it. If the request
contains an “Accepts:” header say—for
example—that the request is for “text/xml”,
the responder will run the code for the XML
format.

Q: Is there a way of listing the
attributes you don’t want to include in
to_xml output?

A: Yes. Instead of using the :only
parameter, you can use the :except
parameter. Rails is remarkably consistent
and you will found several places where calls
in Rails have optional :only parameters.
In all cases you can switch them for
:except parameters to say which things
you don’t want.

Q: Is there some way that the
controller can tell the difference between
an Ajax request from JavaScript and a
browser request?

A: Sort of. The expression
request.xhr? usually returns ‘true’ for
Ajax requests and ‘false’ for simple browser
requests. The problem is that while it works
for the requests generated by the Prototype
library, it doesn’t work with all Ajax libraries.

Q: Why do I have to call render
sometimes and not others?

A: If you are happy to run the default
template (the one whose name matches the
action), you can omit the render call.

Q: You say that the generated
XML and the HTML are different
representations, but they don’t contain
the same information, do they?

A: That’s true—they don’t. The XML
generated for a single incident contains
a smaller amount of data than the HTML
representation. But they both present
information about the same resource, so
they are both representations of the same
thing.

JavaScript requests the incident XML.
JavaScript within the page requests XML for the incident from the
controller. It then displays it on the map.

3

<data>
 ...
</data>

336 Chapter 8

let’s get some climbers climbing

Q: If the route disappeared, how did
the right format get chosen?

A: The map.resource route sets up a
whole set of routes. These routes all include
the format.

Q: How come the index page went
to “/incidents/1” instead of “/incidents/1.
html”? How did Rails know it was going
to be HTML?

A: If the format isn’t given, Rails assumes
HTML... which we used to our advantage.

Q: What does map.resources mean?

A: That generates the standard set of
routes used by scaffolding.

The code is ready to go live
Our new version of the location page works well, so let’s replace the
scaffolded show action with the show_with_map code.

Remove the routes.
We created custom routes for the test code, so we
need to remove them from the routes.rb file:

1

Rename the show_with_map method in
the controller.
show_with_map is going to become our new
show method. So delete the existing show method
and rename show_with_map to show.

2

Then rename the show_with_map.html.
erb template.
That means we need to delete the existing
show.html.erb and replace it with the
show_with_map.html.erb template.

3

config

routes.rb

controllers

incidents_controller.rb

app

Delete the show method in
the controller, then rename
show_with_map as show.

app

incidents

show.html.erb

views

show_with_map.html.erb

Delete show.html.erb, and rename show_with_map.html.erb as show.html.erb.

ActionController::Routing::Routes.draw do |map|

 map.connect 'incidents/map/:id', :action=>'show_with_map', :controller=>'incidents'

 map.connect 'incidents/map/:id.:format', :action=>'show_with_map', :controller=>'incidents'

 map.resources :incidents

Get rid of these lines.

you are here 4 337

xml and multiple representations

Test Drive
Now the the mapped pages have replaced the default

“show” action. So now the main index page links to the
mapping pages, not the text versions.

One thing though - isn’t that index page
kind of... boring? Especially compared to
all those nice visual map pages!

http://localhost:3000/incidents/
Incidents: index

338 Chapter 8

improve the index page

The users have asked if the index page can display a whole set of all the incidents that have
been recorded, and fortunately the _map.html.erb partial can generate multiple points if
it is given the correct XML data.

This is the existing index method in the incidents controller. Rewrite the method to generate
XML from the array of all incidents. You only need to change the root element to “data”.

 def index

 @incidents = Incident.find(:all)

 respond_to do |format|

 format.html # index.html.erb

 format.xml { render :xml => @incidents }

 end

 end

controllers

incidents_controller.rb

app

you are here 4 339

xml and multiple representations

<h1>Listing incidents</h1>

<table>
 <tr>
 <th>Mountain</th>
 <th>Latitude</th>
 <th>Longitude</th>
 <th>When</th>
 <th>Title</th>
 <th>Description</th>
 </tr>

<% for incident in @incidents %>
 <tr>
 <td><%=h incident.mountain %></td>
 <td><%=h incident.latitude %></td>
 <td><%=h incident.longitude %></td>
 <td><%=h incident.when %></td>
 <td><%=h incident.title %></td>
 <td><%=h incident.description %></td>
 <td><%= link_to 'Show', incident %></td>
 <td><%= link_to 'Edit', edit_incident_path(incident) %></td>
 <td><%= link_to 'Destroy', incident, :confirm => 'Are you sure?',
 :method => :delete %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New incident', new_incident_path %>

The index page will need to include a map. Write the code to insert the map at the given point.
You will need to pass the path of the XML version of the index page as data for the map.

app

incidents

index.html.erb

views

340 Chapter 8

map your arrays

The users have asked if the index page can display a whole set of all the incidents that have
been recorded and fortunately the _map.html.erb partial can generate multiple points if
it is given the correct XML data.

This is the existing index method in the incidents controller. Rewrite the method to generate
XML from the array of all incidents. You only need to change the root element to “data”.

 def index

 @incidents = Incident.find(:all)

 respond_to do |format|

 format.html # index.html.erb

 format.xml { render :xml => @incidents }

 end

 end

 def index

 @incidents = Incident.find(:all)

 respond_to do |format|

 format.html # index.html.erb

 format.xml {

 render :text=>@incidents.to_xml(:root=>“data")

 }

 end

 end

controllers

incidents_controller.rb

app

you are here 4 341

xml and multiple representations

<h1>Listing incidents</h1>

<table>
 <tr>
 <th>Mountain</th>
 <th>Latitude</th>
 <th>Longitude</th>
 <th>When</th>
 <th>Title</th>
 <th>Description</th>
 </tr>

<% for incident in @incidents %>
 <tr>
 <td><%=h incident.mountain %></td>
 <td><%=h incident.latitude %></td>
 <td><%=h incident.longitude %></td>
 <td><%=h incident.when %></td>
 <td><%=h incident.title %></td>
 <td><%=h incident.description %></td>
 <td><%= link_to 'Show', incident %></td>
 <td><%= link_to 'Edit', edit_incident_path(incident) %></td>
 <td><%= link_to 'Destroy', incident, :confirm => 'Are you sure?',
 :method => :delete %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New incident', new_incident_path %>

<%= render (:partial=>‘map', :locals=>{:data=>“/incidents.xml"}) %>

The index page will need to include a map. Write the code to insert the map at the given point.
You will need to pass the path of the XML version of the index page as data for the map.

app

incidents

index.html.erb

views

342 Chapter 8

a very graphical index

Test Drive
Now when users go to the front page, they see the incidents in
a list and on the map. When an incident is clicked, the details
are displayed, as well as a link to the incident’s own page.

All of the incidents are now plotted on the map.

The map uses the
XML generated by
the index method
of the controller to
create the points.

The information window contains a link to the incident’s own “show” page.

you are here 4 343

xml and multiple representations

Most web sites now provide RSS news feeds to provide easy
links to the main resources on a site.

But what does an RSS news feed look like?

Hey, there’s so much data now! I’d
really like to know about the incidents
that have been posted in the last 24
hours. How about a news feed?

344 Chapter 8

rss is just xml

RSS feeds are just XML
This is what an RSS feed file would look like for the climbing site:

This is just an XML file. If you use an RSS news reader, or if your
browser can subscribe to RSS news feeds, they will download a file just
like this, which contains a list of links and descriptions to news stories.

So how can WE generate an RSS feed like this?

<rss version="2.0">

 <channel>

 <title>Head Fir
st Climbers News</t

itle>

 <link>http://lo
calhost:3000/incide

nts/</link>

 <item>

 <title>Rock s
lide</title>

 <description>
Rubble on the ledge

 tumbled, and just
missed us.</descrip

tion>

 <link>http://
localhost:3000/inci

dents/1</link>

 </item>

 <item>

Do any of the tags in the RSS look particularly surprising or
unclear? What do you think channel does? What about link?

you are here 4 345

xml and multiple representations

We’ll create an action called news
Let’s create a new route as follows:

Write the controller method for the new action. It needs to find
all incidents with updated_at in the last 24 hours. It should
then render the default XML by calling to_xml on the array of
matching incidents.

Hint: The Ruby expression Time.now.yesterday returns a
date-time value from exactly 24 hours ago.

map.connect '/incidents/news', :action=>'news', :controller=>'incidents', :format=>'xml'

346 Chapter 8

render your rss

Write the controller method for the new action. It needs to find
all incidents with updated_at in the last 24 hours. It should
then render the default XML by calling to_xml on the array of
matching incidents.

Hint: The Ruby expression Time.now.yesterday returns a
date-time value from exactly 24 hours ago.

 def news
 @incidents = Incident.find(:all, :conditions=>[‘updated_at > ?’, Time.now.yesterday])
 render :xml=>@incidents
 end

You could have also used :text=>@incidents.to_xml.

you are here 4 347

xml and multiple representations

Test Drive
This is the XML that is generated by the news action:

We’ve generated XML for the correct data, but it’s not the sort of XML we need for
an RSS news feed. That’s OK though, we had that problem before. When we were
generating XML data for the location data it was in the wrong format, and we were
able to adjust it then.

We just need to modify this XML in the same way... don’t we?

Is there a problem converting the XML to match the structure of the RSS news feed?

Remember - this is
time dependent so
incidents will only
appear if they've
been modified in
the last 24 hours

348 Chapter 8

take control of your xml

We have to change the structure of the XML
The to_xml method allows us to make a few simple changes to the
XML it produces. We can swap names and choose which data items to
include. But will it give us enough power to turn the XML we have into
the XML we want?

We need more XML POWER
The news feed XML can’t be generated by the to_xml method. While
to_xml can modify XML output slightly, it can’t radically change XML
structure. For instance, to_xml can’t move elements between levels. It
can’t group elements within other elements. to_xml is designed to be
quick and easy to use, but that also makes it a bit inflexible.

For true XML power, we need something more...

<?xml version="1.0"
 encoding="UTF-8"?>

<incidents type="ar
ray">

 <incident>

 <created-at typ
e="datetime">2008-1

1-21T11:59:31Z</cre
ated-at>

 <description>Ru
bble on the ledge t

umbled, and just mi
ssed us.</descripti

on>

 <id type="integ
er">1</id>

 <latitude type=
"decimal">63.043480

5555556</latitude>

 <longitude type
="decimal">-150.993

963888889</longitud
e>

 <mountain>Mount
 Rushless</mountain

>

 <title>Rock sli
de</title>

 <updated-at typ
e="datetime">2008-1

1-21T11:59:31Z</upd
ated-at>

 <when type="dat
etime">2009-11-21T1

1:55:00Z</when>

 </incident>

 <incident>

 <created-at typ
e="datetime">2008-1

1-21T12:03:52Z</cre
ated-at>

<rss version="2.0">

 <channel>

 <title>Head First Climbe
rs News</title>

 <link>http://localhost:3
000/incidents/</link>

 <item>

 <title>Rock slide</tit
le>

 <description>Rubble on
 the ledge tumbled, and just

 missed us.</description>

 <link>http://localhost
:3000/incidents/1</link>

 </item>

 <item>

This is what we have...

... but this is what we want.

you are here 4 349

xml and multiple representations

So we’ll use a new kind of template:
an XML builder
If we created another HTML page template, we could generate whatever
XML output we like. After all, HTML is similar to XML:

<rss version="2.0">

 <channel>

 <title>Head First Climbe
rs News</title>

 <link>http://localhost:3
000/incidents/</link>

 <% for incident in @inci
dents %>

 <item>

 <title><%= h incident.
title %></title>

 <description><%= h inc
ident.description %></descri

ption>

But Rails provides a special type of template that is specifically designed to
generate XML; it’s called an XML Builder Template.

XML Builders live in the same directory as page templates, and they are
used in a similar way. If someone has requested an XML response (by
adding .xml to the end of the URL), the controller only needs to read the
data from the model, and Rails will automatically call the XML builder
template. That means we can lose a line from the news action:

app

incidents

show.html.erb

views

news.xml.builder

Page
templates
generate
HTML.

XML builder templates generate XML.

This actually looks a whole lot like HTML...

 def news

 @incidents = Incident.find(:all, :conditions=>['updated_at > ?', Time.now.yesterday])

 render :xml=>@incidents

 end

This is the “new" method from the incidents controller.

This code will now just read the data from the model and the XML bulder
template will do the rest.

So what does an XML builder look like?

350 Chapter 8

xml builders

XML Builders Up Close

Page templates are designed to look like HTML files with a little Ruby
sprinkled in. XML builders are different. They are pure Ruby but are
designed to have a structure similar to XML. For example, this:

might generate something that looks like this:

So why did the Rails folks make a different kind of template? Why
doesn’t XML Builder work just like a Page Template? Why doesn’t it
use Embedded Ruby?

Even though XML and HTML are very similar—and in the case of
XHTML, they are technically equal—the ways in which people use
HTML and XML are subtly different.

xml.sentence(:language=>'English') {

 for word in @words do

 xml.word(word)

 end

}

<sentence language="English">

 <word>XML</word>

 <word>Builders</word>

 <word>Kick</word>

 <word>Ass!</word>

</sentence>

 Web pages usually contain a lot of HTML markup to make the page
look nice, and just a little data from the database.

 Most of the content of the XML, on the other hand, is likely to come
from the data and conditional logic and far less from the XML markup.

Using Ruby—instead of XML—as the main language, makes XML
Builders more concise and easier to maintain.

Elements

Attribute

you are here 4 351

xml and multiple representations

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
not use the same snippet more
than once, and you won’t need
to use all the snippets. Your goal
is to complete the XML builder

template that will generate RSS.

Note: each thing from
the pool can only be
used once!

end
@incidents

:version=>"2.0"

"Head First Climbers News"
incident.description

title

incident.id

xml.rss

} xml.description

 () {

 xml.channel {

 xml.title()

 xml.link("http://localhost:3000/incidents/")

 for incident in

 xml.item {

 xml. (incident.title)

 ()

 xml.link("http://localhost:3000/incidents/#{ }")

 }

}

app

incidents

views

news.xml.builder

352 Chapter 8

use an xml template

 () {

 xml.channel {

 xml.title()

 xml.link("http://localhost:3000/incidents/")

 for incident in

 xml.item {

 xml. (incident.title)

 ()

 xml.link("http://localhost:3000/incidents/#{ }")

 }

}

Pool Puzzle Solution
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
not use the same snippet more
than once, and you won’t need
to use all the snippets. Your goal
is to complete the XML builder

template that will generate RSS.

end

@incidents

:version=>"2.0"

"Head First Climbers News"

incident.description

title

incident.id

xml.rss

}

xml.description

app

incidents

views

news.xml.builder

you are here 4 353

xml and multiple representations

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitiona
l//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitio
nal.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">

<head>

 <meta http-equiv="content-type" content="text/html;cha
rset=UTF-8" />

 <title>Incidents: <%= controller.action_name %></title
>

 <%= stylesheet_link_tag 'scaffold' %>

 <%= auto_discovery_link_tag(:rss, {:action=>'news'}) %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>

</html>

Now let’s add the feed to the pages
But how will users find the feed? Browsers sense the presence of a news
feed by looking for a <link... /> reference within a page.

The folks at Head First Climbers want the news feed to appear on every
page, so we will add a reference to the RSS feed in the incidents
layout file, using the auto_discovery_link helper:

This should create a link like this:

But to see if it works, we need to fire up our
web browser again.

<link href="http://localhost:3000/incidents/news.xml"

 rel="alternate" title="RSS" type="application/rss+xml" />

app

layouts

incidents.html.erb

views

354 Chapter 8

rss, anyone?

Test Drive
Now, when a user goes to the web site, an RSS feed icon
appears in their browser:

Different browsers have different ways of showing they have found a news feed.

And if they subscribe to the feed, or simply read it, they
will see links to incidents that have been posted in the
previous 24 hours.

xml and multiple representations

On top of the world!
One of the first news items on the web site is posted by our intrepid
climber, and thousands of climbers hear of the good news.

I made it! I’m at
the top! Hooray!

you are here 4 355

356 Chapter 8

rails toolbox
CH

AP
T

ER
 8

Tools for your Rails Toolbox
You’ve got Chapter 8 under your
belt, and now you’ve added the

ability to use XML to represent your
pages in multiple ways.

Rails Tools
 to_xml generates an

XML for any model object

 :only and :roo
t parameters allow you to modify the

to_xml format

 respond_to creates a _
responder_ object that w

ill help

you generate m
ultiple represen

tations for a r
esource

 XML builder templates are like
page templates for

creating XML

 XML builder templates give you
 more flexibility

than by

simply using to_xml

 responders set
 the response m

ime-type and also

decide whether to call
page templates or XML builder

templates

	Head First Rails
	Advanced Praise for Head First Rails
	Author of Head First Rails
	Intro
	Chapter 1. Getting Started
	Chapter 2. Beyond Scaffolding
	Chapter 3. Inserting, Updating, and Deleting
	Chapter 4. Database Finders
	Chapter 5. Validating Your Data
	Chapter 6. Making Connections
	Chapter 7. Ajax
	Chapter 8. XML and Multiple Representations
	Chapter 9. REST and Ajax
	Chapter 10. Real-World Applications
	Leaving Town...

