
Tom Barker

High
Performance
Responsive
Design
BUILDING FASTER SITES ACROSS DEVICES

www.allitebooks.com

http:///
http://www.allitebooks.org

DESIGN/ WEB DESIGN

High Performance Responsive Design

ISBN: 978-1-491-94998-6

US $34.99 CAN $36.99

Twitter: @oreillymedia

facebook.com/oreilly

Yes, you can use responsive web design to create high

performance, compelling websites. With this practical

book, author Tom Barker demonstrates that responsive

design is not just a frontend-only approach, but also

a philosophy for taking advantage of the entire web

stack. Responsive design patterns and anti-patterns,

derived from heavily used real-world sites, are guiding

principles throughout the book.

Ideal for frontend-focused web developers, this book

shows you how to incorporate responsiveness and

performance into your project plan, use Node.js for

device-specific functionality on the backend, and

write automated tests for a continuous integration

environment. You’ll explore many useful tools and

responsive frameworks, and gain useful insights from

Barker’s own experience with responsive design along

the way.

 ■ Get a primer on web performance concepts,

web runtime performance, and performance

tracking tools

 ■ Write functionality with Node.js that serves

up a device-speciic experience to the client

 ■ Explore client-side solutions, such as lazy

loading entire sections of a page—including

images, styling, and content

 ■ Validate service level agreements (SLAs) by

writing automated tests with PhantomJS

 ■ Examine several responsive frameworks,

including the author’s server-side framework,

Ripple

Tom Barker, a software engi-

neer, engineering manager, and

solutions architect, is Director

of Software Engineering and

Development at Comcast, and an

adjunct professor at Philadelphia

University.

www.allitebooks.com

http:///
http://www.allitebooks.org

Beijing · Cambridge · Farnham · Köln · Sebastopol · Tokyo

High Performance
Responsive Design
Building Faster Sites Across Devices

Tom Barker

www.allitebooks.com

http:///
http://www.allitebooks.org

High Performance Responsive Design
by Tom Barker

Copyright © 2015 Tom Barker. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://safaribooksonline.com). For more information,

contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mary Treseler and Nick Lombardi

Production Editor: Melanie Yarbrough

Copyeditor: Octal Publishing Services

Proofreader: Jasmine Kwityn

Indexer: Deadline Driven Publishing

Cover Designer: Eleanor Volkhausen

Interior Designers: Ron Bilodeau and

Monica Kamsvaag

Illustrators: Rebecca Demarest

Compositor: Melanie Yarbrough

November 2014: First Edition.

Revision History for the First Edition:

2014-11-04 First release

See http://oreilly.com/catalog/errata.csp?isbn=0636920033103 for release details.

he O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High Performance

Responsive Design and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,

was aware of a trademark claim, the designations have been printed in caps or initial caps.

Although the publisher and author have used reasonable care in preparing this book, the

information it contains is distributed “as is” and without warranties of any kind. his book

is not intended as legal or inancial advice, and not all of the recommendations may be

suitable for your situation. Professional legal and inancial advisors should be consulted,

as needed. Neither the publisher nor the author shall be liable for any costs, expenses, or

damages resulting from use of or reliance on the information contained in this book.

978-1-491-94998-6

[TI]

www.allitebooks.com

http:///
http://www.allitebooks.org

 iii

[contents]

Preface . v

Chapter 1 State of the Industry of Responsive Design 1

The Problem with Responsive Design 1

Summary .20

Chapter 2 Primer on Performance of Web Applications21

The Basics of Measuring Performance 21

Tools to Track Web Performance .30

Web Runtime Performance. .40

Summary .48

Chapter 3 Start with a Plan .49

A Journey Down the Slippery Slope49

Project Plans .50

Summary . 61

Chapter 4 The Backend .63

The Web Stack . 63

Web Application Stack .69

Responding on the Server Side . 70

Implications of Cache .83

Edge Side Includes .84

Summary .86

Chapter 5 The Frontend . 87

Working with Images. .87

Lazy Loading .95

Summary .105

www.allitebooks.com

http:///
http://www.allitebooks.org

iv  |   CONTENTS

Chapter 6 Continuous Web Performance Testing 107

Maintaining a Steady Course .107

Automating Responsive Web Performance Testing . .108

Continuous Integration .116

Summary .128

Chapter 7 Frameworks .129

Looking at the State of Responsive Frameworks129

Twitter Bootstrap .131

ZURB Foundation .135

Skeleton .139

Semantic UI .143

A Comparison of Frontend Frameworks 148

Ripple .150

Summary .152

Index .153

www.allitebooks.com

http:///
http://www.allitebooks.org

v

[Preface]

Even though responsive design is a fairly ubiquitous term at

this point, it is still considered mainly a frontend concern. In the

minds of most developers, responsive design is also tightly coupled

with media queries. With this book, however, I propose that respon-

sive design is more of a philosophy rather than a technology: an ideal

that can be approached from many different angles, from the tradi-

tional frontend-only approach, but also that there is enough informa-

tion passed to the web server in each HTTP request to be responsive on

the backend. And, in some cases, it is a better performing solution to

push our responsiveness to the backend.

I originally intended to write this book because although I was see-

ing designers and engineers around me running with the ideas of pro-

ducing responsive websites, I also saw business and product owners

souring from the idea because they were keenly aware of the web per-

formance costs even when we weren’t always. By focusing only on the

responsiveness of the client side and not looking for more performant

options, we were slowly disillusioning our stakeholders on the benefits

of responsiveness, and even our own effectiveness.

As I got under way with this book, it began to take on a life of its own.

After we are paying attention to the performance of our responsive

websites, how do we plan for that in our grooming sessions? If we are

creating service-level agreements (SLAs) for the performance of our

pages, how do we test that performance during development, in a con-

tinual integration environment?

I look to answer each of those questions in this book.

www.allitebooks.com

http:///
http://www.allitebooks.org

vi  |   PrEfaCE

INTENDED AUDIENCE

I wrote this book specifically with web developers in mind, specifically

frontend-focused web developers who might not have ventured onto

the backend yet. It’s for this reason why I didn’t rehash all of the exist-

ing frontend performance best practices for CSS that you can find any-

where else. That is also the reason I kept JavaScript as the primary lan-

guage used in the book, especially NodeJS for all of the backend code

samples.

With that said, there are enough introductory materials and explana-

tory notes that designers, technology leaders, and developers of every

experience level and specialization should be able to benefit from the

information within this book.

CHAPTER DESCRIPTIONS

In Chapter 1, I use the top 50 most trafficked sites as a sample dataset

to derive common design patterns and anti-patterns in use for respon-

sive design. These patterns and anti-patterns will be guiding principles

for us throughout the book. We also look at the idea of mdot sites, and

discuss their pros and cons.

Chapter 2 presents a primer on web performance concepts, web

runtime performance, as well as tools to track performance. This is

intended as an introduction if you aren’t already familiar with web per-

formance concepts. It’s also a good refresher on concepts that aren’t

talked about as frequently, such as memory consumption on the client

side.

Chapter 3 explores incorporating responsiveness, specifically an SLA

for specifying performance of our responsive websites, into the plan-

ning and grooming phases of our projects.

Chapter 4 looks at implementing performance-responsive concepts

to the backend. We use NodeJS to write functionality that serves up

a device-specific experience to the client. We also look at using third-

party device libraries to give greater context of client capabilities rather

than just examining the User Agent string and deriving device capa-

bilities ourselves.

In Chapter 5, we look at frontend solutions to implement the perfor-

mance design patterns that we identified in Chapter 1. We look at the

picture element, and the secret attribute to only load device-specific

www.allitebooks.com

http:///
http://www.allitebooks.org

 PrEfaCE   |  vii

images. We also look at the concept of lazy loading both images and

whole chunks of a page based on client capabilities. Finally, we explore

client-side device library APIs to determine form factor.

Chapter 6 uses PhantomJS to write automated tests to validate our per-

formance SLAs and integrate these tests into a Jenkins continuous

integration environment.

We close out the book with Chapter 7, in which we look at and evaluate

the current frameworks available to build responsive web pages, using

such criteria as how easy they are to use, what patterns and anti-pat-

terns they use, what dependencies they have, and how much they add

to the overall page payload. We also walk through Ripple, the serv-

er-side boilerplate framework that I open sourced based on the code

examples from Chapter 4.

NOTES

When writing any technology book, the pace of technology will always

be faster than the pace at which we can write, edit, and publish to

scale—though I have to say that O’Reilly does a great job of getting

the content of their books in reader’s hands as quickly as possible with

their Early Access program. That said, the case study of the Alexa top

50 sites in the United States presented in Chapter 1 was conducted back

in December of 2013, and since then, there are new sites in the Alexa

list, the remaining sites have updated their pages, and several browser

iterations with updated handling of resource loading and preloading

have come out. The same is true for any proposed standards that I

talk about; by the time you read this, they might have been updated or

altered before being finalized.

That progress occurs is an inevitability; however, the ideas and con-

cepts behind the tactical implementations are what are most important.

ACKNOWLEDGMENTS

I want to thank my beautiful wife, Lynn, for her patience with me as I

spent the majority of a year writing this book at night and over week-

ends. The same goes for my children—I tried to only write late at night

when they were asleep, but I wasn’t always successful with that, and so

I appreciate their patience and understanding.

www.allitebooks.com

http:///
http://www.allitebooks.org

viii  |   PrEfaCE

I want to thank Mary Treseler for giving the book a chance and for

her feedback. I want to express my gratitude to Colleen Lobner, Nick

Lombardi, Melanie Yarbrough, and Dianne Russell for help getting it

over the finish line. I also want to thank Ilya Grigorik, Lara Swanson,

Clarissa Peterson, and Jason Pamental; their feedback was vital to the

completion of the book.

www.allitebooks.com

http:///
http://www.allitebooks.org

1

[1]

State of the Industry of
Responsive Design

The Problem with Responsive Design
I was sitting in a roadmap planning session with one of my

teams and our product person, and we were discussing a redesign

of our video section when my team lead started talking about how we

were planning to make the video experience for our website respon-

sive. We described having one page that would load our default HTML5

video player but would resize and load assets and playlists of different

video types depending on what devices our users used to view the page.

It was going to be beautiful, all encompassing, and open our video

viewership up to a range of devices that had previously been locked out

of the video experience that we offered.

Our product owner wrinkled her nose and said, “Well about that, we

have somewhat of a bad taste about the idea of responsiveness after how

the responsive home page turned out.”

That took me by surprise. What was wrong with our responsive home

page? I started doing some research.

The impression from the product team was that it was heavy and slow

to load. When it was demonstrated for them on developer laptops, it

looked great, but when they tried to show it on actual devices for their

executives, it took a long time to load—too long.

http:///

2  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

I took a look at waterfall charts1 for both the desktop and the smart-

phone rendering of the home page. What I saw was something that in

time I began noticing in a lot of other websites when I became aware

of what to look for.

The smartphone rendering loaded all of the same assets as the desk-

top version, plus an additional CSS and sprite file. Figure 1-1 illustrates

that this made the payload of the smartphone rendering slightly larger

than the desktop version (1.2 MB versus 952 KB), and it added two addi-

tional HTTP requests.

FIGURE 1-1

a waterfall chart of the home page, rendered for smartphone

Notice in Figure 1-1 that the total payload transferred is 1.2 MB from

134 HTTP requests. But this is the smartphone version; it should be a

smaller payload. And yet it’s not, as illustrated in Figure 1-2.

Observe how the total payload for the desktop is 952 KB from 132 HTTP

requests. Clearly the smartphone version is loading all of the same con-

tent as the desktop version, plus an additional two files. It goes with-

out saying that this is not responsive to the bandwidth concerns of the

mobile experience.

This is completely contrary to our intention in creating a mobile page.

1 Waterfall charts are data visualizations that show the HTTP requests, the time it took to
load the resources requested, and the payload or file size of each request that make up a
web page. A much more in-depth discussion of waterfall charts concepts is presented in
Chapter 2.

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  3

FIGURE 1-2

a waterfall chart of the home page rendered for desktop

And we weren’t alone. I opened up a browser on my laptop and con-

sulted HTTPWatch on my iPhone, and I went through the Alexa.com

top 50 sites to do some competitive analysis. What I found was that 30%

of the websites had a larger mobile payload than their desktop equiva-

lent—technology companies, banks, and retailers alike.

Beyond my own research, a number of notable reports also reflected

similar results. The Search Agency (a global digital marketing agency)

analyzed the top 100 retail sites as well as the Fortune 100 companies’

sites and produced the following reports:

• “Multichannel Retailers” (http://bit.ly/1vqYUPh)

• “Fortune 100 Companies” (http://bit.ly/1r1SDlA)

[ TIP ]

To access these reports, you will need to give The Search agency your

email address, and it will then send the reports to you.

Among its results is the chart in Figure 1-3, which shows that websites

that used (or more accurately, misused) responsive design took an aver-

age of 1.91 seconds longer to load than plain, vanilla desktop websites.

Most egregious of all, these same websites took 10.74 seconds longer

than dedicated mobile sites.

http://bit.ly/1vqYUPh
http://bit.ly/1r1SDlA
http:///

4  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 1-3

The Search agency’s comparison of average load times for responsive sites

versus dedicated mobile and dedicated desktop sites

Guy Podjarny, CTO at Akamai, also wrote up a piece on his blog detail-

ing his findings from running similar tests. He compared page sizes

across a number of resolutions and found little difference between

them. You can find his write-up at http://bit.ly/1tBv6cT.

Were we all missing the point of creating a responsive experience?

OBSERVATIONS FROM COMPETITIVE ANALYSIS

My own observations from the Alexa list yielded some interesting data,

as well. Among other things, I noticed the following:

• Of the top websites for the United States, 47% still used dedicated

mdot sites.2 Think about that number for a minute. These are the

most trafficked websites on the Internet, arguably the leaders of

their respective industries, with members including YouTube,

eBay, and Target, and they are foregoing a responsive site in favor

of a standalone segmented site.

2 An mdot site is a dedicated website created just for the mobile experience that has its own
URL, usually following the convention of using “m” as a subdomain (e.g., m.comcast.net
or m.homedepot.com). There are even more recent derivations of the mdot for tablets, for
which “t” is a subdomain for a dedicated tablet experience (e.g., t.homedepot.com).

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  5

• On average, these dedicated sites were 55% smaller than respon-

sive sites. The mean size of the subset that used mdots was 383

KB, whereas the responsive sites had a mean size of 851 KB (see

Figure 1-4). This speaks to a gross discrepancy between intention

and implementation.

FIGURE 1-4

Mean ile size for dedicated versus responsive websites (in KBs)

• The payload of responsive websites has a long-tailed distribution

that stretches out into 4 MB, whereas mdot sites are all distrib-

uted across ranges less than 1 MB. In fact, mdots are most thickly

grouped into the 0 to 200 KB and 200 to 400 KB ranges. I created

histograms to look at the distribution of file sizes between mdot

sites and responsive sites, which you can see in Figures 1-5 and 1-6.

http:///

6  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 1-5

Distribution of ile sizes for dedicated mobile sites (in KBs)

Note the scale of the x-axis in each histogram. The three outli-

ers for the dedicated experiences were up against 1 MB. For the

responsive sites, 1 MB is the second largest grouping and the tail

keeps going out to 4 MB.

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  7

FIGURE 1-6

Distribution of ile sizes for responsive sites (in KBs)

• Of the responsive websites, 43 percent had nearly the same or

slightly more HTTP requests for their smartphone experiences

compared to their desktop experiences. Contrast this to the 1.5

percent of the dedicated sites that had the same or higher HTTP

requests for their smartphone experience compared to their desk-

top experience. Figures 1-7 and 1-8 depict this breakdown.

http:///

8  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 1-7

Grouped bar chart of HTTP requests for desktop and smartphone experiences

on responsive sites

In Figure 1-7, notice that in each grouping, the blue bar represents

the number of HTTP requests for a page served for the desktop

experience, whereas the yellow bars represent the number of

HTTP requests served for the same page served to a smartphone.

FIGURE 1-8

Grouped bar chart of HTTP requests for desktop and smartphone experiences

on dedicated mdot sites

Again, note that for each grouping, the blue bar represents the num-

ber of HTTP requests for a page served for the desktop experience;

the yellow bars show the number of HTTP requests for a smartphone.

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  9

Clearly there is an issue with how we implement responsive design.

Also, there is a discernable advantage to be gained from serving a ded-

icated experience, at least in terms of total number of HTTP requests

and total payload delivered to render a page (though it is important to

note that mdots do come with their own set of problems, which we

will discuss shortly). My thesis and a recurring theme that you should

notice throughout this book is that responsive design and a dedicated

experience are not mutually exclusive implementations but are instead

aspects of the same philosophy.

In addition to the preceding metrics, I also observed a number of

anti-patterns3 and patterns that the websites which I audited seemed

to follow.

Anti-patterns

As I looked at each website on the Alexa list there were some common

issues that they shared, anti-patterns that they each utilized. Let’s iden-

tify and look at these anti-patterns in the following subsections.

Load the same content for all devices

Some of the sites loaded the exact same assets for both smartphone and

desktop rendering. They loaded the same CSS file across experiences,

which contained media queries that handled all of the breakpoints in

resolution. They loaded the same images across experiences that are just

downscaled when the browser detects that the resolution warrants it.

Evidence for this offense is in the HTTP traffic. Websites that had the

exact same number of HTTP requests between experiences most likely

were doing this. This solution doesn’t scale when we begin to talk about

displays of larger resolution such as the Retina display from Apple and

Ultra HD TVs.

Load additional assets

Although loading the same set of assets for all devices ignores the

intrinsic differences between devices, loading additional assets on top

of the common set just for the smartphone experience is completely

3 Anti-patterns are commonly used solutions to problems that are inefficient, ineffective, or
counterproductive. They are the opposite of design patterns, which are tested and reliable
solutions to common problems.

http:///

10  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

contrary to everything we know about the mobile experience. These

additional assets generally were an additional CSS file and an addi-

tional sprite file.

Websites that had more HTTP requests and a larger payload for the

mobile experience than the desktop one were exhibiting this behav-

ior. As previously noted, this was the anti-pattern that my own site was

using.

Load images at twice the size

The greatest offense was that some sites were loading an additional set

of images for the smartphone version that were sized at twice the size

of the desktop images. This is in addition to the regular set of images

for the desktop.

The intent of loading larger images and then resizing them is that they

appear sharper at the smaller size. The unfortunate side effect of this

practice is that it produces websites that have mobile payloads roughly

30 percent larger than their desktop equivalents.

All of these issues had several philosophical points in common:

• They were clearly seeing the desktop version as the base upon

which elements were altered or added, instead of working from the

smallest version up.

• They were not exploiting the benefits or being mindful of the lim-

itations of each platform.

• They were trying to solve the problem exclusively from the client

side.

Patterns

Not all of the sites on the Alexa list were doing it wrong—some clearly

had great experiences that were optimized for the devices and resolu-

tions that they were targeting. Let’s look at some of the design patterns

that they employed.

www.allitebooks.com

http:///
http://www.allitebooks.org

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  11

Load device-appropriate assets

Instead of loading images twice the size of desktop images for the

mobile view, some websites loaded images that were half the size of

their desktop counterparts. Figures 1-9 and 1-10 show an example of

this.

FIGURE 1-9

Loading device-speciic images for the mobile experience, sized at 120 x 72

pixels and 2 KB (seen in Chrome Developer Tools)

FIGURE 1-10

Loading device-speciic images for the desktop experience, sized at 120 x 180

pixels and 8.8 KB (seen in Chrome Developer Tools)

Notice that the image in Figures 1-9 and 1-10 are the same; they’re

just resized to take into consideration the resources of the client

environment.

http:///

12  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

In the same way, some websites loaded device-specific sprites and CSS

only—not the desktop set plus additional sets for other devices. This

appropriately takes into consideration the bandwidth limitations and

costs of cellular networks. Unfortunately, most of the websites that on

the Alexa list that did this were dedicated mdot sites. But we can utilize

this pattern for responsive sites as well, as you can see in Chapter 4.

Serve a dedicated experience from the backend

The best experiences of all were the websites that served a completely

dedicated experience. Some were separate mdot sites but others had

device-specific layouts and assets written to the page from the server

side. This solution is sometimes called RESS (Responsive Design +

Server-Side Components), but is really just combining the same logic

that we used to segment traffic into an mdot site to load the appropriate

content for a predefined resolution breakpoint. We discuss this solution

in greater detail in Chapter 4.

For a better idea of the architecture of this solution, take a look at the

sequence diagram outlining it in Figure 1-11.

Note that the websites that delivered a dedicated experience gener-

ally had the smallest payload and biggest boost to performance. This

is most likely why 47 percent of the top websites still serve dedicated

content.

Lazy load dedicated experience from the frontend

Some of the sites lazy loaded4 not just images but entire modules of

content, both above and below the fold. In this way, they were able to

avoid loading the content for each breakpoint and instead intelligently

load only the content that would be necessary for the experience that is

appropriate for the capabilities of the client. But instead of determin-

ing all of this at the backend, it’s determined on the client side. We talk

about this tactic in Chapter 5.

4 Lazy loading is a design pattern whereby initialization of an object or downloading of a
resource is deferred until it is actually needed.

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  13

FIGURE 1-11

Sequence diagram serving device-appropriate experience from the backend

Figure 1-12 presents a sequence diagram detailing this approach.

http:///

14  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 1-12

Loading device-appropriate content from the client side

HOW DID WE NOT NOTICE THIS?

I described earlier in the chapter how we demonstrated our responsive

home page to our product owners. During a sprint review, we opened

the page on one of our laptops, projected our desktop to a screen,

and resized our browser window to reflect the different breakpoints.

Although it was fun to watch the page reflow and resize on the fly, it

completely missed the point of responding to different devices.

We displayed it the same way that we developed it, on a Macbook

Pro using the corporate network. Of course, the performance looked

fine to us. We weren’t working off of a predetermined performance

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  15

agreement (i.e., a service-level agreement, or SLA).5 We weren’t using

an actual mobile device on a cellular network. At the time, we hadn’t

even acquired any devices for testing, outside of our own personal ones.

Most important, we also were not working against a performance SLA.

Parity with our existing home page was an acceptable target and didn’t

set off any red flags in our existing performance monitors. We talk at

length about this problem in Chapter 3.

HOW DID WE GET HERE?

In the long ago days of 2008 or thereabouts, before responsive design,

we would maintain two URLs: mysite.com and of course m.mysite.com

(our mdot site). Each website could be different pages in the same web

app, or could even be different apps, possibly even maintained by dif-

ferent teams of people. But this would have been the case only if we

were really forward thinking and even had mobile sites to begin with,

which at the time was somewhat rare.

Then, in 2011, The Boston Globe website relaunched, and the terms

responsive design and progressive enhancement became the topic of every

blog post and brainstorming session. We all read the articles coming

out about how to create sites that are responsive to the capabilities of

the user’s device, and we all played with these concepts and became

enamored with the idea. There were curmudgeons who remembered

creating fluid layouts with relative heights and widths back in the early

2000s; they didn’t see the difference at first, but after seeing how font

sizes and images could be scaled as well, even they were turned on to

the idea.

Books were written, speaking engagements were arranged, and every-

one started making responsive websites. We all began talking about

and using media queries to encapsulate the styles for different screen

sizes. And we experimented with different ways to scale our images.

5 SLAs define the terms of a service contract. This definition can be as formal or informal
as needed. It could apply to an application programming interface (API) provider agreeing
that their API will maintain a certain amount of uptime and respond in a predetermined
amount of time. It could also apply to an engineering or product team agreeing that they
will fix bugs discovered in their product in a certain amount of time.

http:///

16  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

When the time came to try out these new ideas in the office “for real,”

we all knew that we should be starting with the smallest screen first and

progressively enhance based on that. In reality, however, stakeholders

wanted to see the “complete” version (i.e., the desktop version) of what

they would be showing to their executives, so the design teams priori-

tized that work, and we all ended up building those versions first. But we

could craft media queries to hold the CSS for the breakpoints and degrade

the visual experience from there, so it all seemed to work out, right?

Our base CSS and JavaScript files ended up being the desktop versions

(in all likelihood several hundred kilobytes in size), and we would layer

on the smartphone and tablet CSS and JavaScript files after we deter-

mined client capabilities on the frontend. After that was complete, we

could demonstrate the projects for stakeholders, they would demon-

strate for their executives, and the project would go to production.

Inevitably, one or two developers would bring up that we really should

think about refactoring, because our base CSS is the desktop CSS, and

oh yeah, all of our links connected out to desktop versions anyway. Yet,

there was never any appetite to refactor, because the project worked,

and there was no time anyway given that the next project would be

starting soon, for which we needed all hands on deck to groom.

The project worked, but the problem was that we were all looking only

at the frontend. Media queries and scaling images looked cool, but

focusing only on those intrinsically missed the point of tailoring the

holistic experience for the device that the user is currently using. It was

the appearance of responsiveness without really being responsive.

We didn’t just focus on how the frontend appeared; we also put all of

our logic on the frontend. Relying solely on media queries to handle

different device resolutions, or capability testing in JavaScript on the

frontend, meant that we were already downloading unnecessary assets

to the client side. This is the behavior that led to the anti-patterns that

we have already identified. Figure 1-13 shows a sequence diagram that

exhibits all of the anti-patterns that we identified earlier.

Differences between devices, including network infrastructure, pro-

cessing power, battery life, and on-board memory, are ignored when

we focus only on the frontend or only on how the page looks. In reality,

these are all factors that you would need to include in any response.

They are the reasons why a good percentage of the major players on the

Web are still maintaining dedicated mdot sites.

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  17

FIGURE 1-13

a sequence diagram of anti-patterns

http:///

18  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

WHY NOT USE AN MDOT?

With all this talk about the benefits of mdot sites, you might be won-

dering why I’m not instead writing about why we all should start using

them, instead. Make no mistake; I’m not endorsing mdots. Although

they do have a performance advantage over how people are currently

using responsive design, they have several downsides.

Resource overhead

When I created my first mdot website in the early 2000s, I had to staff

an entire new team of engineers to create and maintain it. This was

mainly because our product team did not want to sacrifice the velocity

on the main site to set up this mobile experience. It was also because

mobile sites were—and still can be—extremely laborious endeav-

ors because they support not just the mainstream iOS and Android

devices, but an enormous array of feature phones which have different

screen sizes and capabilities, including lack of JavaScript, or even sup-

port of only a subset of JavaScript functionality.

Even if you don’t maintain a separate team, you would still need to

track work for the mdot website as a separate body of work from your

main site work; in fact, some features might not even be possible on

certain feature phones.

Segmented source code

Maintaining a separate website most likely means that you need to

maintain a separate web app and separate code base. Maintaining par-

ity between code bases is an age-old problem, solved mainly through

vigilance and supervision, which means that eventually it will suc-

cumb to entropy and get out of sync. When the code bases fall out of

sync, the experiences will differ between websites, and more effort will

be needed to update in the future.

Segmented URL

Having a separate mdot website means creating and maintaining a

separate URL. This is contrary to the entire idea of URLs being a sin-

gle location for a resource. An mdot is a second location for your site.

Moreover, where is the line drawn for what goes to the mdot site? Do

you set it at feature phones? Smartphones? Do tablets go as well? And

http:///

 1. STaTE Of THE INDuSTry Of rESPONSIVE DESIGN   |  19

what about phablets? Do they all go to the same mdot website, or do you

maintain separate sites based on screen size and capability? You see

how this segmentation can quickly become cumbersome.

Pointless redirects

Having physically separate URLs also means adding in a redirect for

the client to step through. Adding a redirect technically adds unneeded

latency to your experience because the server has to respond back to the

client with a 302 or a 304 status code, and the client must then make an

additional request for the new location, as is illustrated in Figure 1-14.

FIGURE 1-14

Separate urLs for a mobile site introduce HTTP redirects

THIS MATTERS BECAUSE OF SCALE

So far, we have been talking mainly about the smartphone and desk-

top experience, because those, along with tablets, are the main devices

that people are thinking about right now. But the industry is constantly

changing and growing, and the past few years have seen a number of

new devices with their own resolutions, network infrastructure, and

sets of client-side assets to include.

http:///

20  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

For example, when Apple’s new Retina display came out, we had to

work with the design team to create unique images to include that

would look great on devices using that display. This trend will con-

tinue as web development begins to show up on television guides and

apps, and television displays continue to increase with 4K and 8K Ultra

HDTVs.

As Google Glass becomes more pervasive, we will need to think about

what the Glass experience for our websites will be. Right now, Google

provides an API called the Mirror API and makes available client-side

libraries to interact with the Mirror API (http://bit.ly/1rXkSpb).

These are just some of the new form factors that are on the leading

edge. There are many more beyond that.

If we continue treating responsive design as a frontend tool, we will see

the problem of bloated pages just continue to grow worse. Or we will

see more companies going back to mdot sites.

Summary
The industry is slowly turning against responsive design. Almost half

of the sites that I audited are using dedicated experiences—the same

solutions that we came up with in the early 2000s—instead of provid-

ing responsive sites.

Responsive design is not a flawed methodology; it is only when it is

misused and treated as an add-on instead of an overarching philosophy

that it can result in a bloated and counterintuitive experience. Likewise,

it is only when we focus on a single aspect of responsiveness, specifi-

cally the frontend, that we lose sight of the performance of our respon-

sive sites. Yet, performance is an aspect of responsiveness and needs to

be part of the conversation, starting in planning and design. It needs to

be baked into how we architect our solutions.

We have identified some design patterns in this chapter to build perfor-

mance into responsiveness. We will explore these patterns, and more,

in the coming chapters.

If we don’t do this and build performance into our responsive solu-

tions, the problem will only worsen as new products and devices with

greater and greater resolutions are introduced along with new form fac-

tors that will require unique client interactions.

www.allitebooks.com

http://bit.ly/1rXkSpb
http:///
http://www.allitebooks.org

21

[2]

Primer on Performance
of Web Applications

The Basics of Measuring Performance
If you are reading this book, the chances are good that you have an

idea of what performance is, or at the very least, you have had some dis-

cussion around the performance of your web applications. But before

we go any further, let’s make sure we are on the same page with respect

to terminology.

If this is your first time hearing the term web performance optimization,

quickly go pick up a copy of Steve Souders’s books High Performance

Web Sites and Even Faster Web Sites (both from O’Reilly). These are

the standards in web performance, and they represent the base level of

knowledge that all web developers should have.

The goal of this chapter is not to cover every nuance of performance.

There is an enormous corpus of work that already achieves that goal,

starting with the aforementioned publications of Steve Souders. Rather,

the goal of this chapter is to give an overview of performance, both web

performance and web runtime performance, including some of the

tools used to measure performance. This way, when we reference these

concepts in later chapters, there should be no confusion or ambiguity.

When talking about the performance of websites and web applications,

we are speaking either of web performance or runtime performance. We

define web performance as a measurement of the time from when an end

user requests a piece of content to when that content is available on the

user’s device. We define runtime performance as an indication of how

responsive your application is to user input at runtime.1

1 Runtime is when an application is running or executing.

http:///

22  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

Being aware of, quantifying, and crafting standards around the perfor-

mance of your web applications is a critical aspect of application owner-

ship. Both web performance and runtime performance have indicators

that you can empirically measure and quantify. In this chapter, we will be

looking at these indicators and the tools that you can use to quantify them.

[ NOTE ]

Performance indicators are measurable objectives that organizations use

to deine success or failure of an endeavor. They are sometimes called key

performance indicators, or KPIs for short.

The types of performance indicators that we will be talking about in

this chapter are as follows:

Quantitative indicator

An objective that can be measured empirically (think quantity of

something)

Qualitative indicator

An objective that cannot be measured empirically (think quality of

something)

Leading indicator

Used to predict outcomes

Input indicator

Used to measure resources consumed during a process

WHAT IS WEB PERFORMANCE?

Think about each time you’ve surfed the Web. You open a browser, type

in a URL and wait for the page to load. The time it takes from when you

press Enter after typing the URL (or clicking a bookmark from your

bookmark list, or clicking a link on a page) until the page renders is the

web performance of the page you are visiting. If a site is performing

properly, this time should not even be noticeable.

The quantitative indicators of web performance are numerous enough

to list:

• Page load time

• Page file size

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  23

• Number of HTTP requests

• Page render time

The qualitative indicator of web performance can be summed up much

more succinctly: perception of speed.

Before we look at these indicators, let’s first discuss how pages make

it to the browser and are presented to our users. When you request a

web page by using a browser, the browser creates a thread to handle the

request and initiates a Domain Name System (DNS) lookup at a remote

DNS server, which provides the browser with the IP address for the

URL you entered.

Next, the browser negotiates a Transmission Control Protocol (TCP)

three-way handshake with the remote web server to establish a

Transmission Control Protocol/Internet Protocol (TCP/IP) connection.

This handshake consists of synchronize (SYN), synchronize-acknowl-

edge (SYN-ACK), and acknowledge (ACK) messages that are passed

between the browser and the remote server.

After the TCP connection has been established, the browser sends an

HTTP GET request over the connection to the web server. The web

server finds the resource and returns it in an HTTP response, the sta-

tus of which is 200 to indicate a good response. If the server cannot

find the resource or generates an error when trying to interpret it, or

if it is redirected, the status of the HTTP response will reflect these as

well. You can find the full list of status codes at http://bit.ly/stat-codes.

Following are the most common of them:

• 200 indicates a successful response from the server

• 301 signifies a permanent redirection

• 302 indicates a temporary redirection

• 403 is a forbidden request

• 404 means that the server could not find the resource requested

• 500 denotes an error when trying to fulfill the request

• 503 specifies the service is unavailable

• 504 designates a gateway timeout

http://bit.ly/stat-codes
http:///

24  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

Figure 2-1 presents a sequence diagram of this transaction.

FIGURE 2-1

The negotiation process between a browser and web server

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  25

Keep in mind that not only is one of these transactions necessary

to serve up a single HTML page, but your browser needs to make

an HTTP request for each asset to which the page links—all of the

images, linked CSS and JavaScript files, and any other type of external

asset. (Note, however, that the browser can reuse the TCP connection

for each subsequent HTTP request as long as it is connecting to the

same origin.)

When the browser has the HTML for the page, it begins to parse and

render the content.

The browser uses its rendering engine to parse and render the content.

Modern browser architecture consists of several interacting modules:

The UI layer

This draws the interface or GUI for the browser. These are items

such as the location bar, the refresh button, and other elements of

the user interface (UI) that is native to the browser.

The network layer

This layer handles network connections, which entails tasks such

as establishing TCP connections and handling the HTTP round

trips. The network layer handles downloading the content and

passing it to the rendering engine.

The rendering engine

Rendering engines are responsible for painting the content to the

screen. Browser makers brand and license out their render and

JavaScript engines, so you’ve probably heard the product names

for the more popular render engines already. Arguably the most

popular render engine is WebKit, which is used in Chrome (as a

fork named Blink), Safari, and Opera, among many others. When

the Render engine encounters JavaScript, it hands it off to the

JavaScript interpreter.

The JavaScript engine

This handles parsing and execution of JavaScript. Just like the

render engine, browser makers brand their JavaScript engines

for licensing, and you most likely have heard of them. One pop-

ular JavaScript engine is Google’s V8, which is used in Chrome,

Chromium, and as the engine that powers Node.js.

You can see a representation of this architecture in Figure 2-2.

http:///

26  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

FIGURE 2-2

Modern browser architecture split into module components

Picture a use case in which a user types a URL into the location bar

of the browser. The UI layer passes this request to the network layer,

which then establishes the connection and downloads the initial page.

As the packets containing chunks of HTML arrive, they are passed to

the render engine. The render engine assembles the HTML as raw text

and begins to perform lexical analysis—or parsing—of the characters

in the text. The characters are compared to a rule set—the document

type definition (DTD) that we specify in our HTML document—and

converted to tokens based on the rule set. The DTD specifies the tags

that make up the version of the language that we will use. The tokens

are just the characters broken into meaningful segments.

Here’s an example of how the network layer might return the follow-

ing string:

<!DOCTYPE html><html><head><meta charset="UTF-8"/>

This string would be tokenized into meaningful chunks:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8"/>

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  27

The render engine then takes the tokens and converts them to

Document Object Model (DOM) elements (the DOM is the in-memory

representation of the page elements, and the API that JavaScript uses

to access page elements). The DOM elements are laid out in a render

tree over which the render engine then iterates. In the first iteration,

the render engine lays out the positioning of the DOM elements; in the

next iteration, it paints them to the screen.

If the render layer identifies a script tag during the parsing and tokeni-

zation phase, it pauses and evaluates what to do next. If the script tag

points to an external JavaScript file, parsing is paused, and the network

layer is engaged to download this file prior to initializing the JavaScript

engine to interpret and execute the JavaScript. If the script tag contains

inline JavaScript, the rendering is paused, the JavaScript engine is ini-

tialized, and the JavaScript is interpreted and executed. When execu-

tion is complete, parsing resumes.

This is an important nuance that impacts not just when DOM elements

are available to JavaScript (our code might be trying to access an ele-

ment on the page that has not yet been parsed and tokenized, let alone

rendered), but also performance. For example, do we want to block the

parsing of the page until this code is downloaded and run, or can the

page be functional if we show the content first and then load the page?

Figure 2-3 illustrates this workflow for you.

Understanding how content is delivered to the browser is vital to under-

standing the factors that impact web performance. Also note that as a

result of the rapid release schedule of browser updates, this workflow

is sometimes tweaked and optimized and even changed by the browser

makers.

Now that we understand the architecture of how content is delivered

and presented, let’s look at our performance indicators in the context of

this delivery workflow.

http:///

28  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

FIGURE 2-3

a worklow describing the loading and rendering of content in the browser

Number of HTTP requests

Keep in mind that the browser creates an HTTP request when it gets

the HTML page, and additional HTTP requests for every asset to which

the page links. Depending on network latency, each HTTP request

could add 20 to 200 milliseconds to the overall page load time (this

number changes when you factor in browsers being able to parallel

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  29

load assets). This is almost negligible when talking about a handful of

assets, but when you’re talking about 100 or more HTTP requests, this

can add significant latency to your overall web performance.

It only makes sense to reduce the number of HTTP requests that your

page requires. There are a number of ways developers can accomplish

this, from concatenating different CSS or JavaScript files into a sin-

gle file,2 to merging all of their commonly used images into a single

graphic file called a sprite.

Page payload

One of the factors impacting web performance is the total file size of

the page. The total payload includes the accumulated file sizes of the

HTML, CSS, and JavaScript that comprise the page. It also includes all

of the images, cookies, and any other media embedded on the page.

Page load time

The number of HTTP requests and the overall page payload by them-

selves are just input, but the real KPI to focus on for web performance

is page load time.

Page load time is the most obvious performance indicator and the eas-

iest to quantify. Simply stated, it is the time it takes a browser to down-

load and render all of the content on the page. Historically, this has

been measured as the elapsed time from page request to the page’s

window onload event. More recently, as developers are becoming more

adept at creating a usable experience before the page has finished load-

ing, that end point has been moving in or even changing completely.

Specifically, there are certain use cases in which you could load content

dynamically after the window.onload event has fired—as would be the

case if, for instance, content is lazy loaded—and there are use cases in

which the page can be usable and appear complete before the window.

onload event has fired (such as when you can load content first, and

load ads afterward). These cases skew the usefulness of tracking spe-

cific page load time against the window.onload event.

2 Per Ilya Grigorik’s excellent book High Performance Browser Networking (O’Reilly), this
practice, although useful in HTTP 1.1, becomes an anti-pattern in HTTP 2 and SDPY.

http:///

30  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

There are some options to circumvent this dilemma. Pat Meenan, who

created and maintains WebPageTest, has included in WebPageTest a

metric called Speed Index that essentially scores how quickly the page

content is rendered. Some development teams are creating their own

custom events to track when the parts of their page that they determine

as core to the user experience are loaded.

However you choose to track it, page load (i.e., when your content is

ready for user interaction) is the core performance indicator to monitor.

Tools to Track Web Performance
The most common and useful tool to track web performance is the

waterfall chart. Waterfall charts are visualizations that you can use

to show all of the assets that make up a web page, all of the HTTP

transactions needed to load these assets, and the time it takes for each

HTTP request. All of these HTTP requests are rendered as bars, with

the y-axis being the name or URL of the resource; sometimes the size

of the resource and the HTTP status of the response for the resource

are also shown in the y-axis. The x-axis, sometimes shown explicitly,

sometimes not, portrays elapsed time.

The bars of a waterfall chart are drawn in the order in which the

requests happen (see Figure 2-4), and the length of the bars indicates

how long the transaction takes to complete. Sometimes, we can also see

the total page load time and the total number of HTTP requests at the

bottom of the waterfall chart. Part of the beauty of waterfall charts is

that from the layout and overlapping of bars we can also ascertain when

the loading of some resources blocks the loading of other resources.

FIGURE 2-4

a waterfall chart generated from firebug

www.allitebooks.com

http:///
http://www.allitebooks.org

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  31

These days, there are a number of different tools that can create water-

fall charts for us. Some browsers provide built-in tools, such as Firebug

in Firefox, or Chrome’s Developer Tools. There are also free, hosted

solutions such as webpagetest.com.

Let’s take a look at some of these tools.

The simplest way to generate a waterfall chart is by using an in-browser

tool. These come in several flavors, but at this point have more or less

homogenized, at least in how they generate waterfall charts (some

in-browser tools are far more useful than others, as we will see when

we begin discussing web runtime performance).

Firebug was the first widely adopted in-browser developer tool. Available

as a Firefox plug-in and first created by Joe Hewitt, Firebug set the stan-

dard by not just creating waterfall charts to show the network activity

needed to load and render a page, but also to give developers access to

a console to run ad hoc JavaScript and show errors, and the ability to

debug and step through code in the browser.

If you aren’t familiar with Firebug, you can install it by visiting http://

mzl.la/1vDXigg. Click the “Add to Firefox” button and follow the

instructions to install the add-on.

[ NOTE ]

firebug is available for other browsers, but generally in a “lite” version that

doesn’t provide the full functionality that’s available for firefox.

FIGURE 2-5

The firebug download page

http://mzl.la/1vDXigg
http://mzl.la/1vDXigg
http:///

32  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

To access a waterfall chart in Firebug, click the Net tab.

The industry has evolved since Firebug first came out, and now most

modern web browsers come with built-in tools to measure at least some

aspects of performance. Chrome comes with Developer Tools, Internet

Explorer has its own developer tools, and Opera has Dragonfly.

In Chrome, to access Developer Tools, click the Chrome menu icon,

select Tools, and then, click Developer Tools on the menu that opens,

as demonstrated in Figure 2-6.

FIGURE 2-6

accessing Developer Tools in Chrome

In Internet Explorer, you click Tools and then select Developer Tools.

Even mobile devices now have HTTPWatch as a native app that can run a

browser within the app and show a waterfall chart for all of the resources

that are loaded. HTTPWatch is available at http://bit.ly/1rY322j. Figures

2-7 and 2-8 give you a glimpse of HTTPWatch in action.

http://bit.ly/1rY322j
http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  33

FIGURE 2-7

resources loading in HTTPWatch on iOS 7

http:///

34  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

FIGURE 2-8

Web performance information from HTTPWatch on iOS7

In-browser tools are great for debugging, but if you want to start look-

ing at automated solutions that can work in your continuous integration

(CI) environment, you need to start expanding your range of options to

include platform or headless solutions.

[ TIP ]

We talk at great length about headless testing and CI integration in Chapter 6.

As mentioned earlier, one of the leading platform solutions is

WebPageTest (www.webpagetest.org), which was created and continues

to be maintained by Pat Meenan. WebPageTest is available as a hosted

solution or open source tool that you can install and run on your net-

work as a local copy to test behind your firewall. The code repository to

download and host is available at http://bit.ly/1wu4Zdd.

http://www.webpagetest.org
http://bit.ly/1wu4Zdd
http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  35

WebPageTest is a web application that takes a URL (and a set of config-

uration parameters) as input and runs performance tests on that URL.

The amount of parameters that we can configure for WebPageTest is

enormous.

You can choose from a set of worldwide locations from which your tests

can be run. Each location comes with one or more browsers that you

can use for the test at that location. You can also specify the connection

speed and the number of tests to run.

WebPageTest provides a wealth of information about the overall perfor-

mance of a website, including not just waterfall charts but also charts

to show the content breakdown of a given page (what percentage of the

payload is made up of images, what percentage JavaScript, etc.), screen-

shots to simulate the experience of how the page loads to the end user,

and even CPU usage, which we will discuss in more detail later in this

chapter.

Best of all, WebPageTest is fully programmable. It provides an API that

you can call to provide all of this information. Figure 2-9 presents a

waterfall chart generated in WebPageTest.

But when looking at web performance metrics, the ideal numbers to

look at are the results from real user monitoring (sometimes called

RUM) harvested from your own users. For a fully programmable solu-

tion to achieve this, the World Wide Web Consortium (W3C) has stan-

dardized an API that you can use to capture and report in-browser per-

formance data. This is done via the Performance DOM object, an object

that is native to the window object in all modern browsers.

In late 2010, the W3C created a new working group called simply the

Web Performance Working Group. According to its website, the mis-

sion for this working group is to provide methods to measure aspects

of application performance of user agent features and APIs. What that

means in a very tactical sense is that the working group has developed

an API by which browsers can expose to JavaScript key web perfor-

mance metrics.

http:///

36  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

FIGURE 2-9

a waterfall chart generated by WebPageTest

Google’s Arvind Jain and Jason Weber from Microsoft chair this work-

ing group. You can access the home page at http://bit.ly/1t87dJ0.

The Web Performance Working Group has created a number of new

objects and events that we can use to not only quantify performance

metrics, but also optimize performance. Here is a high-level overview

of these objects and interfaces:

The performance object

This object exposes several objects, such as PerformanceNavigation,

PerformanceTiming, MemoryInfo, as well as the capability to record

high resolution time for submillisecond timing

The Page Visibilty API

This interface gives developers the capability to check whether a

given page is visible or hidden, which makes it possible to optimize

memory utilization around animations, or network resources for

polling operations.

http://bit.ly/1t87dJ0
http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  37

If you type window.performance in a JavaScript console, you will see

that it returns an object of type Performance with several objects and

methods that it exposes. As of this writing, the standard set of objects is

window.performance.timing for type PerformanceTiming and window.

performance.navigation for type PerformanceNavigation. Chrome

supports window.performance.memory for type MemoryInfo. We will

discuss the MemoryInfo object in the “Web Runtime Performance” sec-

tion later in this chapter.

It is the PerformanceTiming object that is most useful for monitoring of

real user metrics; see Figure 2-10 for a screenshot of the Performance

object and the PerformanceTiming object in the console.

FIGURE 2-10

The Performance object viewed in the console with the Performance.Timing

object expanded

Keep in mind that the purpose of real user monitoring is to gather

actual performance metrics from real users, as opposed to synthetic

performance testing, which generates artificial tests in a lab or with an

agent following a prescribed script. The benefit of RUM is that you cap-

ture and analyze the real performance of your actual user base.

http:///

38  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

Table 2-1 lists the properties in the PerformanceTiming object.

TABLE 2-1. The PerformanceTiming object properties

PrOPErTy DESCrIPTION

navigationStart Captures when navigation begins, either
when the browser starts to unload the pre-
vious page if there is one, or if not, when it
begins to fetch the content. It will either con-
tain the unloadEventStart data or the fetch-
Start data. If you want to track end-to-end
time, you will often begin with this value.

unloadEventStart/unloadEventEnd Captures when the browser begins to unload
and inishes unloading the previous page (if
there is a previous page at the same domain
to unload).

domainLookupStart/domainLookupEnd Captures when the browser begins and com-
pletes the DNS lookup for the requested
content.

redirectStart/redirectEnd Captures when the browser begins and com-
pletes any HTTP redirects.

connectStart/connectEnd Captures when the browser begins and in-
ishes establishing the TCP connection to the
remote server for the current page.

fetchStart Captures when the browser irst begins to
check cache for the requested resource.

requestStart Captures when the browser sends the HTTP
request for the requested resource.

responseStart/responseEnd Captures when the browser irst registers and
inishes receiving the server response.

domLoading/domComplete Captures when the document begins and in-
ishes loading.

domContentLoadedEventEnd/
domContentLoadedEventStart

Captures when the document’s
DOMContentLoaded event begins and inishes
loading, which corresponds to when the
browser has completed loading all of the con-
tent and running all of the included scripts on
the page.

domInteractive Captures when the page’s Document.ready
State property changes to 'interactive',
causing the readystatechange event to be
ired.

loadEventEnd/loadEventStart Captures directly before the point at which
the load event is ired and right after the load
event is ired.

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  39

Figure 2-11 shows the order in which these events occur.

FIGURE 2-11

The performance timing events

You can craft your own JavaScript libraries to embed in your pages and

capture actual RUM from user traffic. Essentially, the JavaScript cap-

tures these events and sends them to a server-side endpoint that you

can set up to save and analyze these metrics. I have created just such a

library at https://github.com/tomjbarker/perfLogger that you are wel-

come to use.

http:///

40  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

Web Runtime Performance
As we’ve been discussing, web performance tracks the time it takes to

deliver content to your user. Now it’s time to look at web runtime per-

formance, which tracks how your application behaves when the user

begins interacting with it.

For traditional compiled applications, runtime performance is about

memory management, garbage collection, and threading. This is because

compiled applications run on the kernel and use the system’s resources

directly.

Running web applications on the client side is different from running

compiled applications. This is because they are running in a sandbox,

or to put it more specifically, the browser. When they are running, web

applications use the resources of the browser. The browser, in turn, has

its own footprint of pre-allocated virtual memory from the kernel in

which it runs and consumes system resources. So, when we talk about

web runtime performance, we are talking about how our applications

are running on the client side in the browser, and making the browser

perform in its own footprint in virtual memory. Figure 2-12 offers a

diagram of a web app running in the browser’s footprint within resi-

dent memory.

FIGURE 2-12

a web application running in the browser’s pre-allocated footprint in resident

memory

Following are some of the factors we need to consider that impact web

runtime performance:

www.allitebooks.com

http:///
http://www.allitebooks.org

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  41

Memory management and garbage collection

One of the first things we need to look at is whether we are clog-

ging up the browser’s memory allocation with objects that we don’t

need and retaining those objects while creating even more. Do we

have any mechanism to cap the creation of objects in JavaScript

over time, or will the application consume more memory the more

and longer it is used? Is there a memory leak?

Garbage collecting unneeded objects can cause pauses in render-

ing or animation that can make your user experience seem jagged.

We can minimize garbage collection by reducing the amount of

objects that we create and reusing objects when possible.

Layout

Are we updating the DOM to cause the page to be re-rendered

around our updates? This is generally due to large-scale style

changes that requires the render engine to recalculate sizes and

locations of elements on the page.

Expensive paints

Are we taxing the browser by making it repaint areas as the user

scrolls the page? Animating or updating any element property

other than position, scale, rotation or opacity will cause the render

engine to repaint that element and consume cycles. Position, scale,

rotation, and opacity are the final properties of an element that

the render engine configures, and so will take the least amount of

rework to update these.

If we animate width, height, background, or any other property,

the render engine will need to walk through layout and repaint

the elements again, which will consume more cycles to render or

animate. Even worse, if we cause a repaint of a parent element, the

render engine will need to repaint all of the child elements, com-

pounding the hit on runtime performance.

Synchronous calls

Are we blocking user action because we’re waiting for a synchro-

nous call to return? This is common when you have checkboxes or

some other way to accept input and update state on the server, and

wait to get confirmation that the update happened. This will make

the page appear sluggish.

http:///

42  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

CPU usage

How hard is the browser working to render the page and execute

our client-side code?

The performance indicators that we will be looking at for web runtime

performance are frames per second and CPU usage.

FRAMES PER SECOND

Frames per second (FPS) is a familiar measurement for animators,

game developers, and cinematographers. It is the rate at which a system

redraws a screen. Per Paul Bakaus’s excellent blog post “The Illusion

of Motion” (http://bit.ly/1ou97Zn), the ideal frame rate for humans to

perceive smooth, life-like motion is 60 FPS.

There is also a web app called Frames Per Second (http://frames-per-

second.appspot.com) that demonstrates animations in a browser at dif-

ferent frame rates. It’s interesting to watch the demonstration and dis-

cern how your own eyes react to the same animations at different frame

rates.

FPS is also an important performance indicator for browsers because it

reflects how smoothly animations run and the window scrolls. Jagged

scrolling especially has become a hallmark for web runtime perfor-

mance issues.

Monitoring FPS in Google Chrome

Google is currently the leader in creating in-browser tools to track run-

time performance. It has included the ability to track FPS as part of

Chrome’s built-in Developer Tools. To see this, click the Rendering tab

and then check the “Show FPS meter” box (see Figure 2-13).

FIGURE 2-13

Enabling the fPS meter in Chrome Developer Tools

http://bit.ly/1ou97Zn
http://frames-per-second.appspot.com
http://frames-per-second.appspot.com
http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  43

This renders a small time series chart at the upper right of the browser

that shows the current FPS as well as how the number of frames per

second have been trending, as depicted in Figure 2-14. Using this, you

can explicitly track how your page performs during actual usage.

FIGURE 2-14

Chrome’s fPS meter, in the upper-right corner of the web page

Although the FPS meter is a great tool to track your frames per second,

the most useful tool, so far, to debug why you are experiencing drops

in frame rate is the Timeline tool, also available in Chrome Developer

Tools (see Figure 2-15).

Using the Timeline tool, you can track and analyze what the browser is

doing as it runs. It offers three operating modes: Frames, Events, and

Memory. Let’s take a look at Frames mode.

Frames mode

In this mode, the Timeline tool exposes the rendering performance

of your web app. Figure 2-15 presents the Frames mode screen layout.

You

can see two different panes in the Timeline tool. The top pane displays

the active mode (on the lefthand side) along with a series of vertical

bars that represent frames. The bottom pane is the Frames view, which

presents waterfall-like horizontal bars to indicate how long a given

action took within the frame. You can see a description of the action in

the left margin; the actions correspond to what the browser is perform-

ing. At the far right side of the Frames view is a pie chart that shows a

breakdown of what actions took the most time in the given frame. The

actions included are the following:

• Layout

• Paint Setup

http:///

44  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

• Paint

• Recalculate Style

• Timer Fired

• Composite Layers

FIGURE 2-15

Chrome’s Timeline tool in frames mode

Figure 2-15 shows that running JavaScript took around half of the time,

525 milliseconds out the 1.02 second total.

Using the Timeline tool, in Frame mode, you can easily identify the

biggest impacts on your frame rate by looking for the longest bars in

the Frame view.

MEMORY PROFILING

Memory profiling is the practice of monitoring the patterns of mem-

ory consumption that our applications use. This is useful for detecting

memory leaks or the creation of objects that are never destroyed—in

JavaScript, this is usually when we programmatically assign event han-

dlers to DOM objects and forget to remove the event handlers. More

nuanced than just detecting leakages, profiling is also useful for opti-

mizing the memory usage of our applications over time. We should

intelligently create, destroy, or reuse objects and always be mindful of

scope to avoid profiling charts that trend upward in an ever-growing

series of spikes. Figure 2-16 depicts the JavaScript heap.

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  45

FIGURE 2-16

Objects in the JavaScript heap

Although the in-browser capabilities are much more robust than they

have ever been, this is still an area that needs to be expanded and stan-

dardized. So far, Google has done the most to make in-browser mem-

ory management tools available to developers.

The MemoryInfo Object

Among the memory management tools available in Chrome, the first

that we will look at is the MemoryInfo object, which is available via the

Performance object. The screenshot in Figure 2-17 shows a console

view.

FIGURE 2-17

The MemoryInfo object

You can access the MemoryInfo object like so:

>>performance.memory
MemoryInfo {jsHeapSizeLimit: 793000000, usedJSHeapSize:
37300000, totalJSHeapSize: 56800000}

Table 2-2 presents the heap properties associated with MemoryInfo.

http:///

46  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

TABLE 2-2. MemoryInfo object properties

OBJECT PrOPErTy DEfINITION

jsHeapSizeLimit The upper boundary on the heap size

usedJSHeapSize The amount of memory that all of the current objects in the heap
are using

totalJSHeapSize The total size of the heap including free space not used by
objects

These properties reference the availability and usage of the JavaScript

heap. The heap is the collection of JavaScript objects that the inter-

preter keeps in resident memory. In the heap, each object is an inter-

connected node, connected via properties such as the prototype chain

or composed objects. JavaScript running in the browser references the

objects in the heap via object references. When you destroy an object in

JavaScript, what you are really doing is destroying the object reference.

When the interpreter sees objects in the heap with no object references,

the garbage collection process removes the object from the heap.

Using the MemoryInfo object, we can pull RUM around memory

consumption for our user base, or we can track these metrics in our

lab to identify any potential memory issues before our code goes to

production.

The Timeline tool

In addition to offering the Frames mode for debugging a web appli-

cation’s frame rate, Chrome’s Timeline tool also has Memory mode

(shown in Figure 2-18) to visualize the memory used by your applica-

tion over time and exposes the number of documents, DOM nodes,

and event listeners that are held in memory.

FIGURE 2-18

The Chrome Timeline tool in Memory mode

http:///

 2. PrIMEr ON PErfOrMaNCE Of WEB aPPLICaTIONS   |  47

The top pane shows the memory profile chart, whereas the very bot-

tom pane shows the count of documents, nodes, and listeners. Note

how the blue shaded area represents memory usage, visualizing the

amount of heap space used. As more objects are created, the memory

usage climbs; as those objects are destroyed and garbage collected, the

memory usage falls.

You can find a great article on memory management from the Mozilla

Developer Network at http://mzl.la/1r1RzOG.

Firefox has begun to expose memory usage as well, via an “about:mem-

ory” page, though the Firefox implementation is more of a static infor-

mational page rather than an exposed API. As such, because it can’t

be easily plugged into a programmatic process and generate empiri-

cal data, the about:memory page is tailored more toward Firefox users

(albeit advanced users) rather than being part of a developer’s toolset

for runtime performance management.

To access the “about:memory” page in Firefox, in the browser’s location

bar, type about:memory. Figure 2-19 shows how the page appears.

FIGURE 2-19

firefox’s about:memory page

Looking at Figure 2.19, you can see the memory allocations made by

the browser at the operating system level as well as heap allocations

made for each page that the browser has open.

http://mzl.la/1r1RzOG
http:///

48  |   HIGH PErfOrMaNCE rESONSIVE DESIGN

Summary
This chapter explored web performance and web runtime performance.

We looked at how content is served from a web server to a browser and

the potential bottlenecks in that delivery as well as the potential bottle-

necks in the rendering of that content. We also looked at performance

indicators that speak to how our web applications perform during run-

time, which is the other key aspect of performance: not just how fast we

can deliver content to the end user but also how usable our application

is after it has been delivered.

We looked at tools that quantify and track both types of performance.

Most important, we level-set expectations with respect to concepts that

we will be talking about at length throughout the rest of this book. As

we talk about concepts such as reducing page payload and number of

HTTP requests or avoiding repainting parts of a page, you can refer

back to this chapter for context.

Chapter 3 looks at how you can start building responsiveness into your

overall business methodology and the software development life cycle.

http:///

49

[3]

Start with a Plan

A Journey Down the Slippery Slope
I remember the first time I started a project that had aspira-

tions of being responsive. Everyone on the team bought in: the prod-

uct owner, the design group, engineering. We groomed and groomed,

exploring together what our collective ideas of what being responsive

meant. We were excited about the possibilities and giddy with the taste

of something new.

Until that point, we maintained an mdot website with a separate devel-

oper dedicated to keeping it current and aligned with the main site. In

engineering, we were looking forward to folding that developer back

into the main team, and we were enjoying the collaboration we were

experiencing with the design group.

We were a few weeks in and had nothing yet to demonstrate or even

show to the executive team, but we nonetheless glowed about what

a great learning experience we were having. Naturally, the executive

team wasn’t glowing quite as brightly and wanted to have something

concrete that they could talk about with their leadership team and their

peers. A section of the design team was split off from the working team

to mock up what the website would look like on the desktop, just as a

talking point. Of course, after that mock-up was shown around, it was

approved and suddenly became the final design from which we had to

work and on which we had to base an end date.

Even though we conceptually knew that we should have started with

the mobile view first and layered on from there, we quickly deferred all

intentions to craft the small view for a later iteration and began to focus

on creating the vision of the final product. It was only a year later that

we started to craft what the experience on other devices might be, but

http:///

50  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

by then the main desktop experience had become so feature rich that

it was slow going, and it became a pet project that spanned months to

mock up what the responsive site could be.

By then, it was too late; the mockup had about the same page payload as

the desktop version, but it performed poorly when displayed on actual

devices. The site remained a desktop-only experience.

How closely does that mirror your own experiences, either with previ-

ous projects or current ones? How did it all go wrong? I thought on this

for a while: what learnings could I carry out from this to benefit future

projects?

At a high level, we did ourselves in. From within the team, it all appeared

to be fun exploration and collaboration, feeling out the boundaries of

something that was new to us. From outside the team, it looked as if

we had no plan and no end goal in sight—which was true. In the long

term, our lack of planning undermined the executive team’s trust in

the working team, and set the precedent that we needed intervention

and an end goal outlined for us.

In this chapter, I outline how to craft a plan for your team so that you

can quickly create deliverables that can become talking points for the

leadership team, all while still sticking to the goals of having a respon-

sive, high-performing site.

Project Plans
Responsive projects really are no different from any other project, in

so much as they generally will benefit from having a project plan. In

program and project management literature, there are several flavors of

project plans, depending on methodology, organization, business sec-

tor, and whom you ask (among other factors), but in general, project

plans will consist of the following steps:

1. Assess/summarize the overall task

2. Establish rough milestones and timelines

3. List dependencies and risks

4. List key performance indicators (KPIs) that measure success

www.allitebooks.com

http:///
http://www.allitebooks.org

 3. STarT WITH a PLaN   |  51

The only difference with a responsive project is that requirements

which speak to the various device experiences should be explicit in

each of the aforementioned steps. Let’s look at each of these steps in

greater detail.

ASSESSING AND SUMMARIZING THE OVERALL TASK

Assessing the overall task involves collecting requirements and deter-

mining the content strategy for your project. This could mean having

a discussion with your stakeholders or product manager to establish

the philosophy or vision of your site and the intended use cases that

you are developing for. This could also mean working with them to do

extensive user testing and competitive analysis to determine the con-

tent strategy.

Part of assessing the task is to answer certain relevant questions. For

example, are you trying to re-create the viewing experience of a 10-foot

video screen, or are you trying to serve textual content? Are you creat-

ing a companion experience to a television product, or are you crafting

an intranet experience available to a locked-down set of users.

Does your project even need to be responsive? A number of years ago I

worked on a web app project that aimed to assist construction manag-

ers in identifying obvious hazards such as upturned dirt that was not

surrounded by silt fences. By the very nature of this single use case, the

project never needed a desktop experience, so we built for the smart-

phone dimensions and just let the size of the page naturally scale up for

desktop experiences (there were no tablets back then).

The use cases and overall project vision should explicitly answer the

question: what are the viewports that I am targeting for this project?

These viewports should be part of your requirements, and as we prog-

ress through each step in the project plan, we will refer back to them,

but again the very first step is to identify which ones we are explicitly

targeting. Figure 3-1 depicts a sampling of potential viewports that you

might target as well as their relative size differences.

http:///

52  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 3-1

a sample of viewports ranging from smartphones, tablets, laptops, and

HDTVs, covering diferences not only in size, but also orientation

Beyond just the difference in size, you also need to consider the differ-

ence in viewing distance, battery life, and network speed and reliability

for each device experience.

Studies have revealed that the average distance from a user’s face to

the screen for smartphones is only 12.6 inches.1 Compare this to an

average of 25 inches for laptops,2 and 96 inches for televisions.3 (See

Figure 3-2.)

1 http://bit.ly/1upRIDu

2 http://bit.ly/10pmjDm

3 http://bit.ly/1x32EG6

http://bit.ly/1upRIDu
http://bit.ly/10pmjDm
http://bit.ly/1x32EG6
http:///

 3. STarT WITH a PLaN   |  53

FIGURE 3-2

average viewing distance by device, in inches

These variations in viewing distances mean differences in, among

other things, image and font sizes, each of which require different CSS

rules and potentially different images for each experience. You need to

account for these when assessing the size of the overall tasks.

Average network speeds are equally staggered across mediums.

According to Akamai’s 2013 report “State of the Internet” (http://bit.

ly/1tDGysM), the average broadband connection speed in the United

States was 11.6 megabits per second (Mbps), whereas the average

mobile connection speed was 5.3 Mbps. See Figure 3-3.

http://bit.ly/1tDGysM
http://bit.ly/1tDGysM
http:///

54  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 3-3

average connection speeds (Mbps) in the united States in 2013

This discrepancy in connection speed obviously speaks to the issue of

how long it will take to deliver and render content to a device. This

means that you need to plan your feature set and your performance

budget accordingly.

Establishing rough milestones and timelines

Don’t plan in a vacuum; after you have established the target view-

ports, you should perform competitive analysis. Make the effort to

research internal and external applications that serve similar functions

and come up with a performance baseline for each device experience

http:///

 3. STarT WITH a PLaN   |  55

based on this competitive analysis. Intelligently plot out what the cur-

rent landscape is for performance and make an intentional decision of

where in that landscape you want your application to be.

Figure 3-4 presents the results of a theoretical competitive analysis of

page load times for mobile experiences. In this theoretical data set, we

can see that the majority of our internal and external competitors fall in

the 500-millisecond to 1-second range. Is that an acceptable range for

our web application, or do we want to be performance leaders and aim

for the sub–500-millisecond tier? What sort of features do the sites in

that range have, and are we OK paring down our feature set to get our

page load times that low?

FIGURE 3-4

Histogram of result from theoretical analysis of competitor page load times

http:///

56  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

In Figure 3-4, note the outliers that take up to 3.5 seconds. This deci-

sion—this line in the sand—is where you are intentionally position-

ing your application in the performance baseline. This is your perfor-

mance service-level agreement.

Determining a performance service-level agreement

A service-level agreement (SLA) is a commitment of quality from a ser-

vice provider, traditionally stipulating aspects such as response times,

up times, and error rates. As owners of a website, that site is a ser-

vice we are providing and we should feel compelled to provide an SLA

to our end users as well as internal stakeholders for how our website

performs.

Your performance SLA should be explicit both in what it is stating and

in how it will be measured. A good performance SLA might read as

follows:

for the 95th percentile, the page load times of our website will be 1

second or less on a small screen experience, and 3 seconds or less on a

large screen experience, measured via synthetic testing.

When you determine your performance SLA, this decision should

influence what features you put on each experience and how you show

them. You should also publish this SLA in your documentation to

make it available to your team and stakeholders.

CRAFTING ROUGH MILESTONES AND TIMELINES

Now that you have an understanding based not only on what the prod-

uct request is, but also of what it would really involve from a perfor-

mance perspective, you can begin to flesh out its implementation. This

can be as rich and complex as a hierarchical tree structure of user sto-

ries, to as high level as a spreadsheet of T-shirt sized steps.4

But all of your device/resolution/viewport–specific states are explicitly

called out and accounted for as milestones in the overall timeline, as

illustrated in Figure 3-5.

4 T-shirt sizing is a way to practice agile estimating. Estimates are bucketed in small-,
medium-, or large-sized efforts, relative to each other. Rally has a write-up on the practice
here: http://bit.ly/1w02oGt.

http:///

 3. STarT WITH a PLaN   |  57

FIGURE 3-5

a sample of high-level plan with milestones built in for each resolution and

device targeted

To be clear, the high-level stories that we are indicating in Figure 3-5

(Create 1024 × 768 view, Create 2560 ×1440 view) are not assuming that

these are distinct pages or anything of the sort—this is just a collection

of milestones that will be accomplished (objectives, if you will); the tac-

tics of how to accomplish that are not implied.

[ NOTE ]

radu Chelariu wrote a great article for Smashing Magazine that outlines

a broad swath of resolutions by device. you can read it at http://bit.ly/

ZqcGub.

Oh, one more thing: because we have committed to adhering to a per-

formance SLA, we should be sure to include high-level stories that

define the setup of the infrastructure and process for monitoring our

SLA. Let’s add these supporting stories to our existing list, as shown

in Figure 3-6.

http:///

58  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 3-6

Our high-level story list, updated to account for tracking our SLa

LIST DEPENDENCIES AND RISKS

After we have the high-level stories mapped out with time estimates for

each one, we can begin to flesh out the risks and dependencies for each

story. These should be fairly straightforward and commonsensical, but

you still need to call them out both to properly account for the steps

needed to accomplish the stories and to show your stakeholders that

those steps are being taken. Figure 3-7 is a continuation of the previous

example, this time fleshed out with dependencies and risks.

Figure 3-7 illustrates how we can see that the dependencies have the

designs or wireframes, have environments set up, and have a defined

performance SLA. By calling these out explicitly, we can see what sto-

ries need to be predicated by other stories. It also makes it possible for

us to craft a meaningful timeline by staggering these stories.

http:///

 3. STarT WITH a PLaN   |  59

FIGURE 3-7

Dependencies and risks outlined in the overall project story plan

Crafting timelines

Now that we know the steps that will be involved in completing the

task, we can construct very rough timelines. By using high-level T-shirt

sizes for each task we can group them in a meaningful manner and lay

them horizontally across a timeline.

For this example, let’s assume that we have two-week iterations.

Assuming that we know our team’s velocity, we can construct a very

rough swag of what would fit in each iteration. We can group all of the

research and set up stories into a single iteration. Then we can group a

handful of stories into another iteration, and the remainder of the sto-

ries into a third iteration.

http:///

60  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

With the following methodology, we can see that the task is probably

at least a six-week project, if not longer, as demonstrated in Figure 3-8.

FIGURE 3-8

Our high-level stories laid out across very rough timelines

The important thing to note here is that these are very rough timelines.

A moment ago, I intentionally used the word “swag,” which stands for

Scientific Wild-Ass Guess. In slightly more polite society, it’s some-

times called a guesstimate, or back of the napkin calculation. As long

as you are clear with your stakeholders that this timeline is subject to

change as you find out more information, and you continue to commu-

nicate as new developments arise, you should be good.

KPIS THAT MEASURE SUCCESS

We have so far assessed the task, created rough timelines around it,

and listed dependencies involved in achieving those timelines. Next,

we need to ensure that we have clearly defined criteria for success. In

truth, the KPIs that measure the success of the project should already

exist before our product or business team come to us with the ask, but

we need to work with them to ensure that first these KPIs are visible

and obvious to the entire team, and second that our solution to the ask

actually is aligned to satisfy the intended criteria.

If KPIs are not determined at this point, we need to collaborate with

our stakeholders to establish them. How else will we know if our proj-

ect is a success, and how else will we be able to iterate to improve on

those results?

www.allitebooks.com

http:///
http://www.allitebooks.org

 3. STarT WITH a PLaN   |  61

KEEP TO YOUR PERFORMANCE SLA

We now have a plan of what we need to get done, we have identified

milestones, and we are communicating when we will have each mile-

stone complete. We have a performance SLA for each experience; we

are ready to start the work.

But during development it is imperative to stick to our performance SLA.

You need to ensure that performance testing is a part of your continu-

ous integration workflow and that you have alerts go off when you violate

your SLA. We talk at length about how to do this in Chapter 6.

Use your SLA as a discussion point when evaluating new features. Will

these new features impact your performance? Will slight alterations in

the business rule result in a higher-performing product?

Summary
The purpose of this chapter was not to cover how to manage a project,

but to discuss a way to incorporate responsiveness and performance

into a project plan. With a responsive project plan we can communicate

meaningful milestones to our stakeholders, without sacrificing all of

the device experiences that we want to cover as part of our final product.

http:///

http:///

63

[4]

The Backend

The thesis of this chapter—and really that of the entire book—is that

to think about responsive web design as a frontend-only skill set is to

limit the scope of what you can do and what tools are available to you.

We are web developers, and as such we should be able to take advantage

of the entire web stack in everything that we do. This chapter outlines

how we can start thinking responsively from the backend.

The Web Stack
Before we begin, I should define what the web stack is, because it is in

fact a collection of several stacks. And, as we are talking about the Web,

let’s start with the network stack.

THE NETWORK STACK

The network stack is a collection of protocols that outline how net-

worked systems communicate. It is made up of the following layers:

Data link layer

This usually corresponds the standard way that hardware connects

to the network. For our purposes, this is either via Ethernet, specif-

ically the IEEE 802.3 standard for physically interconnected devices

(http://bit.ly/ethernet-standards), or via WiFi, specifically the IEEE

802.11 standard for wirelessly interconnected devices (http://bit.

ly/1p8UW6P).

Network layer

This layer corresponds to the standards that define communication

and identification of nodes on a network, specifically the protocol IP,

or Internet Protocol. It is through the Internet Protocol that nodes

are identified via IP addresses and data is sent via packets between

these hosts. The standard for Internet Protocol is maintained in

IETF RFC 794, which you can read at http://bit.ly/11j3ouQ.

http:///

64  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Transport layer

This usually corresponds to TCP, or Transmission Control Protocol,

defined in IETF RFC 793 (http://www.ietf.org/rfc/rfc793.txt).

TCP is the protocol used to establish connections between hosts.

Whereas IP handles transmitting the data as packets, TCP divides

the packets into segments, attaches headers to each segment to

identify the destination IP address of the segment, and re-assem-

bles and verifies the segments upon delivery.

Application layer

This top layer corresponds to HTTP, or Hyper Text Transport

Protocol. The standard for HTTP is IETF RFC 2616, which you

can see at http://tools.ietf.org/html/rfc2616. HTTP is the language

of the Web, made up of verbs that make up the request/response

structure.

Together this stack represents the steps that are traversed when send-

ing and receiving data over the Internet, as illustrated in Figure 4-1.

FIGURE 4-1

a user sending a request down the TCP/IP stack, and the same request

traversing up the TCP/IP stack to make it to the web application residing on a

remote server

http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc2616
http:///

 4. THE BaCKEND   |  65

THE APPLICATION LAYER

Knowledge of all of the stacks is important, but for our purposes, as

web developers, the primary layer with which we interface and have

programmatic control is in the application layer, specifically HTTP.

Chapter 2 shows that an HTTP transaction happens within a TCP con-

nection. It consists of a request from a client and a response from a

server, but let’s take a deeper dive into what constitutes a request and

a response.

The HTTP Request

An HTTP request is made up of two parts: a request line, and a set of

request headers. The request line specifies the HTTP method, or verb,

used in the request as well as the URI of the requested resource; or

more plainly, it specifies what action I am looking to perform (get a file,

send a file, get information about a file) and where I am looking to per-

form this action (the location of the file or resource). The following are

some of the methods that are supported in HTTP 1.1:

OPTIONS

Queries the HTTP request methods that a server will support.

GET

Requests a remote resource. This becomes a conditional GET when

you specify If-Modified-Since, If-Unmodified-Since, If-Match,

If-None-Match, or If-Range in the HTTP header section, at which

point the server will only return the resource if it has satisfied those

requirements. Usually, you use conditional GETs when checking

whether to retrieve a new asset or use the asset currently in cache.

HEAD

Requests only the HTTP header of a remote resource. This is used

mainly to check the last modified date or to confirm that a URI is

valid.

POST

Requests that the server update or modify an existing resource.

PUT

Requests that the server create a new resource.

DELETE

Requests that the server remove a resource.

http:///

66  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

The request header allows the client to specify parameters that aug-

ment the request, similar to how you can pass in parameters to a func-

tion. The following are some of the more interesting request headers:

Host

The domain name specified in the URI.

If-Modified-Since

This instructs the server to return the asset only if it has been

updated since the date specified in this request header field. If the

asset has been updated the server should respond with the asset

and a status of 200; if it has not, the server simply responds with a

status of 304.

User-Agent

A string that identifies characteristics of the client making the

request. This is the header that we will make the most use of this

chapter.

By using network tracing tools such as Charles or Fiddler, you can

inspect the contents of an HTTP request. The following example shows

an HTTP request:

GET /style/base.css HTTP/1.1
Host: www.tom-barker.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7;
rv:27.0) Gecko/20100101 Firefox/27.0
Accept: text/css,*/*;q=0.1
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://www.tom-barker.com/blog/?p=x
Connection: keep-alive

The HTTP Response

When the server receives and processes a request, it sends a response

to the client that issued the request. Just like the HTTP request, the

HTTP response is made up of two parts: the status line and the header

fields.

The status line lists the protocol version (HTTP 1.1), the status code,

and a textual phrase that describes the status of the request.

http:///

 4. THE BaCKEND   |  67

The status codes consist of three-digit numeric values that are broken

up into five distinct high-level categories of response. The first digit of

the status code indicates its category. Per the W3C’s HTTP specifica-

tion, which you can reference at http://bit.ly/rfc-http, the categories are

the following:

1xx: Informational

Request received, continuing process

2xx: Success

The action was successfully received, understood, and accepted

3xx: Redirection

Further action must be taken to complete the request

4xx: Client Error

The request contains bad syntax or cannot be fulfilled

5xx: Server Error

The server failed to fulfill an apparently valid request

The header fields are much like the request headers in that they are

passed name-value pairs with which the server can specify additional

information about the response. Here are some of the more interesting

response headers are:

Age

Denotes the server’s estimate of the amount of time since the

requested resource was created or update.

ETag

Lists the entity tag identifier that the server assigns to a resource.

This is useful for conditional matching.

Vary

Indicates what request headers should be used to determine if a

request can be served by cache. Later in the chapter, we look at

sending different responses from the server based on user agent

information. The Vary header is important because it allows us

to specify the User-Agent request header to be part of the cache

evaluation.

http:///

68  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Here’s a sample HTTP response:

HTTP/1.1 200 OK
Date: Sat, 29 Mar 2014 19:53:24 GMT
Server: Apache
Last-Modified: Sat, 05 May 2012 22:11:12 GMT
Content-Length: 2599
Keep-Alive: timeout=10, max=100
Connection: Keep-Alive
Content-Type: text/css

CHARLES

There are a number of tools available for inspecting your network traf-

fic. There are the in-browser developer tools (covered in Chapter 2), but

there are also more in-depth traffic analysis tools; one of the favorites

among web developers is Charles (see Figure 4-2).

Charles is an HTTP monitoring tool that you can use to watch and edit

HTTP traffic over the network. Charles is also an HTTP proxy that you

can use to throttle the bandwidth and latency of connections, inter-

cept requests, spoof DNS calls, and even map local files to appear as if

they are part of a remote website. Charles is available to download from

http://www.charlesproxy.com/.

FIGURE 4-2

The Charles home page

http://www.charlesproxy.com/
http:///

 4. THE BaCKEND   |  69

Figure 4-3 depicts the Charles interface. This particular screenshot is

showing all of the transactions that were recorded in a given section,

in sequence; note the fields that are exposed, including HTTP status,

HTTP method, host, payload of the transaction, and duration.

FIGURE 4-3

HTTP transactions recorded in Charles

Web Application Stack
So far, we’ve talked about the underlying infrastructure and network-

ing protocols on which our web applications run. Let’s make sure we

understand the software stack that our web applications run on.

Most, if not all, web applications operate in a client-server model,

which is just a distributed computing methodology in which, if I were

to describe it in grossly oversimplified terms, clients request data from

servers. Servers process the requests and respond; oftentimes, these

servers are distributed across a network for the sake of scalability.

In the interest of giving concrete examples of this model, let’s assume

that a browser is a client, and a web server is a server. When I say web

server, I can be referring to either a piece of software such as Apache

http:///

70  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

(https://httpd.apache.org/) or Microsoft’s Internet Information Server

(http://www.iis.net/), or I can be referring to the actual hardware on

which the software runs on.

Continuing with our example scenario, the web servers listen on cer-

tain ports—application endpoints denoted by number—for HTTP

requests to come in; HTTP requests come in on port 80, and HTTPS

requests come in on port 443. When the web server gets a request it

routes the request to the appropriate resource.

The resource could be code that is evaluated and interpreted on the

server side, as in the case of Ruby or PHP, or it could be static content

such as an HTML page. Either way, the routed request is met with a

response from the server that goes back to the client.

In the case of a response that has an HTML document as its body,

the HTML is parsed and rendered on the client device. If there is any

JavaScript on the page, that is interpreted on the client side as well.

FIGURE 4-4

an example of a client-server transaction

Responding on the Server Side
Now that you understand the protocol and software stacks in the web

stack, the first thing you should establish is the earliest point in the

stack at which you can determine client capabilities. Right now, the

norm for responsive design is to determine client capabilities on the cli-

ent side after the server has sent the HTTP response and the client has

received, parsed, and rendered contents of the response. Architecturally,

that looks like Figure 4-5, in which the browser requests the page; the

web server receives the request at port 80 and passes it to the web appli-

cation, the web application processes the request and responds, the

https://httpd.apache.org/
http://www.iis.net/
http:///

 4. THE BaCKEND   |  71

client receives the response, parses the page, renders the page, runs

the code on the client device to determine capabilities, and then finally

reacts appropriately based on those capabilities.

FIGURE 4-5

Determining capabilities on the client side

Even just describing all of that in written words feels overly and unnec-

essarily complicated.

But what we can glean from the HTTP request description is that the

user agent is passed to the web server and the web application, and that

the user agent describes the client. We could instead push the logic

to determine client capabilities to our backend, our server side. This

would make it possible for us to streamline what we send to the cli-

ent, sending device-specific code instead of all of the code for all of the

devices (see Figure 4-6 for what that amended architecture would look

like).

http:///

72  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 4-6

Determining client capabilities on the server-side and responding with device

appropriate content

To understand how we determine client capabilities based on the User

Agent, let’s first take a look at the User Agent.

INSPECTING THE USER AGENT

The specification for the User Agent field is defined in section 14.43

of RFC 2616, the HTTP specification, which you can read at http://bit.

ly/1tDGOZ0.

The User Agent is a string that is composed of different tokens that

describe the browser, browser version, and system information such as

operating system and version. Some example User Agent strings are

presented in Table 4-1.

http://bit.ly/1tDGOZ0
http://bit.ly/1tDGOZ0
http:///

 4. THE BaCKEND   |  73

TABLE 4-1. Sample user agent strings by browser type

BrOWSEr USER AGENT STRING

Chrome 34 on a Mac Mozilla/5.0 (Macintosh; Intel Mac OS X
10_7_5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/34.0.1847.116 Safari/537.36

Safari on an iPhone running OS 7 Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like
Mac OS X) AppleWebKit/537.51.1 (KHTML, like
Gecko) Version/7.0 Mobile/11A465 Safari/9537.53

Safari on an iPad running OS 6 Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS
X) AppleWebKit/536.26 (KHTML, like Gecko)
Version/6.0 Mobile/10A5355d Safari/8536.25

Chrome on an android phone
running Ice Cream Sandwich

Mozilla/5.0 (Linux; U; Android 4.0.3; ko-kr;
LG-L160L Build/IML74K) AppleWebkit/534.30
(KHTML, like Gecko) Version/4.0 Mobile
Safari/534.30

You can fairly easily parse the string and pull out the relevant infor-

mation by using regular expressions. As an example, you could craft a

function to determine an idea of the client device, and from there estab-

lish an idea of client capabilities. A simple example, using JavaScript, of

a function that checks for mobile devices might look like the following:

function detectMobileDevice(ua){
 var re = new RegExp(/iPhone|iPod|iPad|Android/);
 if(re.exec(ua)){
 return true;
 }else{
 return false;
 }
}

Note that we pass the User Agent into the detectMobileDevice()

function, search through the User Agent with a regular expression for

instances of the strings iPhone, iPad, or Android, and return true if

any of those strings are found.

This is a fairly rudimentary example that only cares about the platform

or operating system of the client device. A much more robust example

would check for capabilities, such as touch support, and for the maxi-

mum size that a device would support.

Both Google and Apple publish their User Agent string standards at

http://bit.ly/1u0cHqv and http://bit.ly/ZXVAhT, respectively

http:///

74  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

A word of caution about the reliability of User Agent strings: when

reading the specification, you will notice that clients SHOULD include

the User Agent information with their request. That is a very explicit

declaration in the spec, in fact SHOULD is listed as a keyword by the

IETF and there is a specification around what keywords mean, which

you can see at http://tools.ietf.org/html/rfc2119. The specification for

the word SHOULD states the following:

… there may exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and care-

fully weighed before choosing a diferent course.

Stated plainly, this just means that clients are not obligated to use the

User Agent field, or even to correctly represent themselves with the

correct User Agent. Users can spoof their User Agent if they choose

to, bots or spiders can and often will give unexpected results. But these

are the exceptions, and when developing for the general public there

is nothing wrong with trusting what you get as the User Agent. The

biggest pain point with User Agents is keeping current with all of the

new ones as they come out, and being able to correlate User Agents to

a known feature and capability set. Which is why we may want to use a

device detection service.

DEVICE DETECTION SERVICES

The previous example is great if we only care to establish that our cli-

ents are coming from a known set of devices, but what if we wanted

to instead check for the capabilities and size of the devices? We could

either use the User Agent to look up a table of our own design that lists

User Agents and client capabilities, or we could take advantage of a ser-

vice that provides that table and look-up capability for us.

There are several such services, called device detection services, to which

we can pass the request to ascertain the client’s capabilities for us.

The architecture for such a solution is depicted in Figure 4-7, where

client requests come over the Internet, are received by our server, and

at the server level we make a back door call out to the device detection

service.

http://tools.ietf.org/html/rfc2119
http:///

 4. THE BaCKEND   |  75

FIGURE 4-7

using a device detection service from the server side

One of the oldest and widely used device detection services is theWurfl.

The Wurfl

Prior to 2011, the Wurfl, which stands for Wireless Universal Resource

FiLe, was an open and freely available XML file that listed devices and

capabilities. It looked something like the following:

<device id="generic_android_ver3_0" user_agent="DO_NOT_MATCH_
ANDROID_3_0" fall_back="generic_android_ver2_4">
 <group id="product_info">
 <capability name="is_tablet" value="true"/>
 <capability name="device_os_version" value="3.0"/>
 <capability name="can_assign_phone_number" value="false"/>
 <capability name="release_date" value="2011_february"/>
 </group>
 <group id="streaming">
 <capability name="streaming_preferred_protocol" val-
ue="http"/>
 </group>
 <group id="display">
 <capability name="columns" value="100"/>
 <capability name="physical_screen_height" value="217"/>
 <capability name="dual_orientation" value="true"/>
 <capability name="physical_screen_width" value="136"/>
 <capability name="rows" value="100"/>
 <capability name="max_image_width" value="980"/>
 <capability name="resolution_width" value="1280"/>
 <capability name="resolution_height" value="768"/>
 <capability name="max_image_height" value="472"/>
 </group>
 <group id="sms">
 <capability name="sms_enabled" value="false"/>
 </group>
 <group id="xhtml_ui">
 <capability name="xhtml_send_mms_string" value="none"/>
 <capability name="xhtml_send_sms_string" value="none"/>
 </group>
 </device>

http:///

76  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Since 2011, however, the founders of the Wurfl formed the company

Scientiamobile to provide services based around the Wurfl and ceased

supporting the open document for individual consumption. They

instead provide a series of products around the Wurfl, including Wurfl

Cloud, which provides access to the device database via an API; Wurfl

Onsite, which is a local install of the device database; and Wurfl Infuze,

which makes the Wurf database available via environmental variables

on the server side.

In theory, the best performing solution should be Wurfl Infuze because

there would be no file I/O or transactional latency costs involved when

querying for device data. But the solution with the lowest barrier to

entry—because it involves no internal hosting, no infrastructure setup,

and even has a free option—is the Wurfl Cloud. As such, we will look

at how to integrate with the Wurfl Cloud in this chapter.

To begin, take a moment and go to the Scientiamobile home page at

http://www.scientiamobile.com/, which you can see in Figure 4-8.

FIGURE 4-8

Scientiamobile home page

http://www.scientiamobile.com/
http:///

 4. THE BaCKEND   |  77

From there, we can click on the Wurfl Cloud link at the bottom of the

page, which takes us to a pricing page. We can click on the Sign Up link

under the free option, which takes us to the page we can see in Figure

4-9, where we create our account. This screen is available at http://bit.

ly/1x34Psg.

FIGURE 4-9

Signing up for an account

After you have set up an account, you need to get an API key. You can

do this on the Account Settings page, shown in Figure 4-10.

http://bit.ly/1x34Psg
http://bit.ly/1x34Psg
http:///

78  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 4-10

Coniguring our account in the account settings page

From the Account Settings page, you can also choose what device capa-

bilities you will want to be able to test for (the free account offers only

five capabilities). To choose capabilities, drag them from an available

capabilities list to your own selected capabilities list. The names of the

capabilities will also be how you reference them in your code, as you

can see in Figure 4-11.

FIGURE 4-11

Selecting capabilities that you are checking for from the Wurl Cloud

http:///

 4. THE BaCKEND   |  79

The final step you will need to take will be to download the Wurlf

Cloud client code for the language that you will be using and then start

to code your solution. As of this writing, the Wurfl Client code is avail-

able for the following languages and technologies:

• Java

• PHP

• Microsoft .Net

• Python

• Ruby

• Node.js

• Perl

Figure 4-12 depicts the Wurfl Cloud client download page.

FIGURE 4-12

Choosing the Wurl Cloud client that is right for you

The Wurfl Cloud client downloads as a ZIP file and contains classes

that you can use in your projects to interface with the Wurfl Cloud.

Sample Code

Let’s next take a look at how we can create an application that uses

the Wurfl Cloud. Before we dive into the code, let’s first cover some

assumptions.

http:///

80  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

You will use Node.js and have downloaded the Wurfl Cloud client for

Node.js. The Wurfl Cloud client comes in a ZIP file that you just have

unzipped and placed somewhere that is accessible to the Node.js appli-

cation. Like most Node.js applications, you already have a server.js that

listens for incoming requests and a router.js that routes requests appro-

priately. You already have an index.js file that pulls together your server.js

and application logic (from a file named responsiveApp.js that you will be

creating shortly). Here’s the content of index.js:

var server = require('./server/server.js');
var router = require('./server/router.js');
var responsiveApp = require("./responsiveApp.js");

var handle = {}
handle["/"] = responsiveApp.start;
handle["/start"] = responsiveApp.start;
handle["/favicon.ico"] = responsiveApp.favicon;

server.start(router.route, handle);

The index.js file loads the server.js and router.js files, as well as the respon-

siveApp.js file (even though you haven’t yet created it). It creates an object

that you call handle and then pass into the server to instruct it how to han-

dle paths that could be called; in this example, we just map all requests

(except the favicon request) to the start function in the responsiveApp.js

file. And finally, you call the server.start function to get started.

The server.start function just creates an event handler that fires

whenever HTTP requests come in. The event handler passes requests

to router.js, which examines the request, compares it to the handler

object, and calls the appropriate function.

Exploring a deep dive into Node.js is beyond the scope of this book, if

you would like further reading to learn more about Node.js definitely

check out Learning Node by Shelley Powers (O’Reilly).

OK, let’s create the application logic that will reside in the responsive-

App.js file. First, load the HTTP module. Then load the two main files

that came with the download (i.e., WurflCloudClient.js and Config.js):

var http = require('http');
var wurfl_cloud_client = require("./NodeWurflCloudClient/Wurfl
CloudClient");
var config = require("./NodeWurflCloudClient/Config");

http:///

 4. THE BaCKEND   |  81

Next, we’ll create the start function, but we will have it just call a func-

tion that we will create called getCapabilities. We will also create our

favicon function to respond with our favicon file if we have one:

function start(response, request) {
 getCapabilities(response, request);
}

function favicon(response) {
 response.writeHead(200, {
'Content-Type': 'image/x-icon'
});
//write favicon here
 response.end();
}

Now let’s get to the meat of the functionality. We’ll create our get-

Capabilities function. Remember that the start function passes the

response and request objects into this function:

function getCapabilities(response, request) {

}

We’ll begin by creating two variables: one an object that called

result_capabilities, and the other an array that we’ll call request_

capabilities. The request_capabilities array lists out the capa-

bilities for which we want to check—the same capabilities that you

configured in your Wurfl account earlier in the chapter:

function getCapabilities(response, request) {
 var result_capabilities = {};
 var request_capabilities = ['is_smartphone','is_tablet',
'is_touchscreen', 'is_wireless_device']

Create a variable called api_key in which you enter the API key that you

got from the Wurfl Account Configuration screen. We will also create a

variable called configuration that will hold the configuration object that

is returned when we call config.WurflCloudConfig with the API key:

 var api_key = "XXXXX ";
 var configuration = new config.WurflCloudConfig(api_key);

We will next instantiate an instance of wurfl_cloud_client.

WurflCloudClient with the configuration object (with the API key)

and the request and the response objects all passed in. Call this object

WurflCloudClientObject.

http:///

82  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

This object is the key to accessing the capabilities from the Wurfl. We

need to call the detectDevice method of that objet, pass in the request,

request_capabilities, and an anonymous function that will be fired

when the results of our query return:

WurflCloudClientObject.detectDevice(request, request_capabili-
ties, function(err, result_capabilities){

Within that anonymous function, we will put our logic to render the

correct HTML, CSS, and JavaScript tailored for that experience. In our

simplified example, we are just calling functions that will output the

correct data (drawSmartphoneHomepage, etc.), but with the idea being

that instead of putting all of our device- or experience-specific code in

media queries and as part of client-side interpretation, we instead have

the server output only the device- or experience-specific code in this

branching logic:

 if(err!=null){
 console.log("
Error: " + err + "
");
 }
 else{
 if(result_capabilities['is_smartphone']){
 drawSmartphoneHomepage(response);
 }else if(result_capabilities['is_tablet']){
 drawTabletHomepage(response);
 }else{
 drawDesktopHomepage(response);
 }

 }

For reference, the complete code example looks like the following:

var http = require('http');
var wurfl_cloud_client = require("./NodeWurflCloudClient/Wurfl
CloudClient");
var config = require("./NodeWurflCloudClient/Config");

function start(response, request) {
 getCapabilities(response, request);
}

function favicon(response) {
 response.writeHead(200, {
'Content-Type': 'image/x-icon'
});
//write favicon here
 response.end();
}

http:///

 4. THE BaCKEND   |  83

function getCapabilities(response, request) {
 var result_capabilities = {};
 var request_capabilities = ['is_smartphone','is_tablet',
'is_touchscreen', 'is_wireless_device']
 var api_key = "XXXXX ";
 var configuration = new config.WurflCloudConfig(api_key);
 var WurflCloudClientObject = new wurfl_cloud_client.Wurfl-
CloudClient(configuration, request, response);
 WurflCloudClientObject.detectDevice(request, request_capa-
bilities, function(err, result_capabilities){
 console.log(result_capabilities);
 if(err!=null){
 console.log("
Error: " + err + "
");
 }
 else{
 if(result_capabilities['is_smartphone']){
 drawSmartphoneHomepage(response);
 }else if(result_capabilities['is_tablet']){
 drawTabletHomepage(response);
 }else{
 drawDesktopHomepage(response);
 }
 }

 });
}

exports.start = start;
exports.favicon = favicon;
exports.getCapabilities = getCapabilities;

Implications of Cache
When you develop websites for an enormous scale, you tend to rely very

heavily on cache to minimize the hits to your origin servers. The dan-

ger here is that when we move our responsiveness to the server side but

we are caching our responses, we serve the cached version of whatever

our last response was, regardless of what the User Agent information

being passed in from the client is.

To get around this, we can use the Vary HTTP response header when

sending our responses from the server. This informs the cache layers

that the server does some negotiating based on the User Agent string,

and to cache responses based on the User Agent field when requests

come in.

http:///

84  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

[ TIP ]

as of this writing, most content delivery networks (CDNs) will not cache

responses that use the Vary response header. If this is the case for your

CDN, you should be able to work with it for alternate solutions, potentially

moving the user agent detection to the CDN’s edge layer by using Edge

Side Includes.

Edge Side Includes
Using CDNs such as Akamai to serve your content cached from the

edge is a great strategy to reduce traffic to your origin servers. This

lessens the amount of hardware that you need to maintain, and makes

it possible for you to deliver content to your end users much faster.

Figure 4-13 provides a high-level overview of what this architecture

might look like.

FIGURE 4-13

Serving cached content from an edge network

http:///

 4. THE BaCKEND   |  85

As just stated a moment ago, the problem we could run into with this

architecture is that if the CDN provider doesn’t allow us to cache User

Agent–specific content (again by using the Vary HTTP header), all of

our clients will get the same cached content, not device-specific content.

A solution around this is to use Edge Side Include (ESI) language. ESI

was created by a consortium of companies, including Akamai and

Oracle, and submitted to the W3C. You can read the specification for

ESI at http://bit.ly/1rY5WUO.

ESI is a mark-up–based language that is embedded inline in an HTML

document. The edge servers have an ESI processor that reads the ESI

tags, interprets the logic, and renders the output inline in the HTML.

ESI functions very much like a server-side scripting language such as

PHP that can be interpreted on the server side and output inline in the

HTML. Just like PHP, the ESI tags are not shown to the client; only

their output is rendered.

The following code is an example of an ESI script that looks at incom-

ing User Agent data and loads appropriate content:

<html>
<head></head>
<body>
<esi:choose>
 <esi:when test="$(HTTP_USER_AGENT{'os'})=='iPhone'">
 <esi:comment text="Include iPhone specific resources
here" />
 …
 </esi:when>
 <esi:when test="$(HTTP_USER_AGENT{'os'})=='iPad'">
 <esi:comment text="Include iPad specific resources here"
/>
 …
 </esi:when>
 <esi:when test="$(HTTP_USER_AGENT{'os'})=='Android'">
 <esi:comment text="Include Android specific resources
here" />
 …
 </esi:when>
 <esi:otherwise>
 <esi:comment text="Include desktop specific resources
here" />
 …
 </esi:otherwise>
</esi:choose>
</body>
</html>

http://bit.ly/1rY5WUO
http:///

86  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Summary
This chapter widened the lens through which we look at our appli-

cations. We explored the protocol and software stack on which our

applications reside, and over which transactions to and from our appli-

cations need to traverse. With this larger perspective, we asked this

question: how soon from the user’s initial request can we know the

capabilities of the client device, and most important, how soon can we

begin to act upon that request?

To answer that question we looked at inspecting the User Agent field

of the incoming HTTP request, and even utilizing a third-party device

detection service such as the Wurlf.

One potential pitfall of this solution is how to handle highly cached con-

tent. One solution is to use the Vary HTTP response header to instruct

our cache servers that responses should be cached differently based on

the User Agent. Another solution is to push the device or capabilities

detection logic from our origin servers out to our CDN edge servers by

using ESI.

Whatever our solution, if we can push our responsiveness upstream

in the HTTP transaction, to the server (or edge) and not have it all

take place on the client side, we can avoid the anti-patterns of serving

double the content or extraneous content in our payload to the client,

instead serving a more streamlined tailored response that perform bet-

ter because it is respectful of both the bandwidth, battery life, and CPU

limitations of the end user’s device.

http:///

87

[5]

The Frontend

Chapter 4 explores how to migrate the responsiveness para-

digm from the client side to the backend. The concept is two-fold:

first, load device-appropriate content and serve a dedicated experience

from the backend; second, avoid the anti-pattern of loading the content

for all devices. This lowers the overall payload of the page, and reduces

what the client device has to do to finally render a page.

But what if your infrastructure, business model, or team’s skill set

aren’t conducive to a server-side solution? In this case, there are ways

to achieve similar performance gains from purely client-side solutions.

In this chapter, we direct our focus back to the frontend and discuss

other ways to facilitate the same patterns.

Working with Images
As Steve Souders shows us via his Interesting Stats page in the HTTP

Archive, the biggest contributor to page payload are the images on a

page (see Figure 5-1). Thus, arguably the biggest impact we can have on

responsive performance from the client side is to optimize the delivery

of images to mobile clients.

Responsive images in the past have been looked at as needing to scale

with a page as the viewport shrinks. Chapter 1 presents a competitive

analysis that illustrates how this has usually been achieved by either

just resizing images via CSS, or saving images twice as large as neces-

sary and then scaling them down via CSS. But again, these solutions

are actually performance anti-patterns: loading the same assets for all

devices, and loading assets at twice the size.

For a site to be truly responsive to users’ performance needs—includ-

ing bandwidth constraints, battery life, pixel density, and viewport

size—we must instead follow the pattern of loading device appropriate

assets.

http:///

88  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 5-1

from the HTTP archive, accounting for how page payload is distributed across

resource types

This aspect of responsiveness, specifically responsive images, is clearly

an area in need of standardization, as evidenced by the proposed solu-

tions currently in working-draft status. Let’s take a look at these, as well

as some other options.

THE SRCSET ATTRIBUTE

One of the current options in draft to serve responsive images is the

srcset attribute for the tag, recently added by the W3C. The

draft for the srcset attribute is available at http://bit.ly/1tDH5Lr. At a

high level, the srcset attribute is an update to the tag by which

you can specify different images to use for the different pixel ratios of

client devices. Let’s take a look at what exactly that means.

Device Pixel Ratio

Looking at the preceding source code, you can see that a default image,

1x.jpg, is specified in the src attribute of the tag. The default is there

for backward compatibility, in case the browser doesn’t support srcset.

Then, you set the srcset attribute and point to a different image—in this

case, 2x.jpg—that the browser should use if the device pixel ratio is 2.

Device pixel ratio is the ratio between physical pixels and device-inde-

pendent pixels on a device. The classic example is of an iPad Retina dis-

play being 1,024 physical pixels wide, but because it is a Retina display,

http://bit.ly/1tDH5Lr
http:///

 5. THE frONTEND   |  89

it packs more informational pixels, or device-independent pixels, so it

has an actual pixel width of 2,048. So, the calculation to determine the

device pixel ratio for a Retina display iPad would be the following:

[device independent pixels] divided by [physical pixels]

or

2,048/1,024 = 2

If you’d like to read more about this, try Peter-Paul Koch’s in-depth

Quirksmode.org article at http://bit.ly/1uBP6R1.

The value of a device’s pixel ratio is exposed to the browser via the win-

dow.devicePixelRatio property. Figure 5-2 offers a screenshot of our

srcset example, in which we see Google Chrome emulating a Motorola

Droid Razr HD, which has a devicePixelRatio of 1.

FIGURE 5-2

Emulating a Motorola Droid razr HD

The Droid Razr HD has a 720 × 1280 resolution display and a

devicePixelRatio of 1, causing our 1x image to be loaded. Here is the

User Agent string:

Mozilla/5.0 (Linux; U; Android 2.3; en-us; DROID RAZR 4G
Build/6.5.1-73_DHD-11_M1-29) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1

http:///

90  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Figure 5-3 shows Chrome emulating an iPad 4 which has a Retina dis-

play and a devicePixelRatio of 2.

FIGURE 5-3

Emulating an apple iPad 4

The Apple iPad 4 has a resolution of 2,048 × 1,536 and a devicePixel

Ratio of 2, causing our 2x image to be loaded. Following is the User

Agent string for the iPad:

Mozilla/5.0 (iPad; CPU OS 7_0 like Mac OS X) AppleWebKit/
537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11A465 Safari/
9537.53.

In both of the previous examples, we can see on the Network tab in

Developer Tools that only the required image file is downloaded. Also

note in both screenshots that these are emulated devices. Full support

for the srcset attribute is still being rolled out, and you are advised to

check your usage logs to get a list of your top devices and test on those

devices to ensure that they support the srcset attribute.

http:///

 5. THE frONTEND   |  91

The downside of using the srcset attribute is that you are sending extra-

neous bytes in the payload by specifying all of the different images we

might need. If you’re interested in optimizing even further, Ilya Grigorik,

author of High Performance Browser Networking (O’Reilly), outlines an

elegant way to move the mapping of the device pixel ratio to the backend,

which you can see at http://bit.ly/1qnPSeY.

The upside of the srcset attribute, aside from making it possible for

you to specify multiple images to use for device-specific requirements

and not needing to download multiple images, is that it is starting to

be supported in modern browsers unlike our next topic of discussion,

the picture element.

THE PICTURE ELEMENT

Another part of the proposed option for handling responsive images is

the <picture> element. You can view the working draft from the W3C

at http://www.w3.org/TR/html-picture-element/.

The <picture> element is a new element to be added to HTML5.

Conceptually, it is a container element that holds different source tags that

specify images to use based on device constraints, viewport width, and

pixel density. It can also hold an tag that allows for graceful fallback.

The <source> element supports a media attribute that specifies the

media type and CSS property that you can target, and a src element

that you can specify an image to download for that targeted media type

and CSS property.

If you were to re-create the earlier srcset example in which we targeted

high pixel density tablets and phones, using the <picture> element, it

would look similar to the following:

<picture>
 <source media="(min-width: 640px, min-device-pixel-ratio:
2)" src=" hi-res_small.jpg ">
 <source media="(min-width: 2048px, min-device-pixel-ratio:
2)" src=" hi-res_large.jpg ">

</picture>

http://www.w3.org/TR/html-picture-element/
http:///

92  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

What makes the <picture> element really interesting is that is also sup-

ports the srcset attribute. The combination of the two would look like

the following:

<picture>
 <source srcset="big.jpg 1x, big-2x.jpg 2x, big-3x.jpg 3x"
type="image/jpeg" media="(min-width: 40em)" />
 <source srcset="med.jpg 1x, med-2x.jpg 2x, med-3x.jpg 3x"
type="image/jpeg" />

</picture>

Both the srcset attribute and the <picture> element are interesting

potential solutions. If we were to compare the two solutions from a

performance perspective, in theory they both should only download

the appropriate resource based on the client capabilities, but the <pic-

ture> element is clearly more verbose than simply using the tag

with the srcset attribute. If we were to quantify that statement, just in

the examples that we’ve used so far in this chapter, the image with the

srcset attribute used 95 bytes, whereas the <picture> element example

used 231 bytes—the srcset example used 60 percent less bytes than

the <picture> element. Figure 5-4 presents a side-by-side comparison.

When viewed by themselves, the numbers 95 and 231 bytes seem fairly

innocuous. But that’s for a single tag. Take a moment to review

the data set for the Alexa top site in Chapter 1. If we were to use that

data set of websites, and pull just the tags from all of those sites,

the data on the byte size would look like that shown in Table 5-1 (note

that those numbers are in kilobytes).

TABLE 5-1. Summary of byte size data set

MIN. 0.000

1ST QuarTILE 0.305

MEDIaN 3.650

MEaN 56.507

3rD QuarTILE 62.125

MaX 371.100

http:///

 5. THE frONTEND   |  93

FIGURE 5-4

Diference in byte size from the examples of using the IMG tag with the srcset

attribute versus using the <picture> element to achieve the same ends

At the maximum, that is 371 kb just in tag text, not counting

any other HTML, CSS, or JavaScript on the page. Granted, some of

that file size is most likely tracking beacons and spacers that wouldn’t

require multiple versions for different devices, but if we extrapolate

those numbers, we get the performance implications shown in Figure

5-5 just for using the <picture> element instead of the element.

http:///

94  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 5-5

Extrapolation of byte size diference

With this extrapolation, the summary of our data using the <picture>

element now looks like Table 5-2.

TABLE 5-2. Summary of extrapolated byte size data set

MIN. 0.000

1ST QuarTILE 0.488 (+0.183 KB)

MEDIaN 5.840 (+2.19 KB)

MEaN 90.411 (+33.904 KB)

3rD QuarTILE 99.400 (+37.275 KB)

MaX 593.760 (+222.66 KB)

http:///

 5. THE frONTEND   |  95

So, pragmatically, the increase in size for 75 percent of sites tested was

smaller than if we were to load an additional image, but it’s in the out-

liers that the concern could lie. Just look at our maximum size from

the data set—it is now almost 600 KB! Clearly, although the <picture>

element—at one time fully supported by modern browsers—will offer

a robust way to load responsive images, because of its impact on file

size of the page delivered, it should be treated as a potential solution for

evaluation, not the default go-to solution for every responsive image.

It is important to note though that the trade-off of using the <picture>

element in these examples would be additional tens of bytes of markup,

whereas not using the picture element would be additional hundreds

and thousands of bytes of images. Also, you can use compression to

negate much of this impact to the payload.

Lazy Loading
Thus far, we’ve touched upon images in this chapter. Let’s now step

back and look at how we might take a client-side approach to employ-

ing a strategy of only loading device-appropriate assets for the page that

is being rendered. Chapter 1 demonstrates that from the perspective of

the client-side, this solution would involve lazy loading.

With lazy loading, you load content only when it is actually needed. A

familiar example of lazy loading is infinite scroll: only the content that is

needed to draw “above the fold” (the content that is actually in view on a

device) is brought in on page load, and more content is downloaded and

rendered to the screen as a user scrolls. For our purposes, we might

load in a bare-bones HTML skeletal structure with semantically struc-

tured content, determine the client capabilities, and then lazy load the

associated CSS and JavaScript.

The architecture would look like Figure 5-6.

http:///

96  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 5-6

Lazy loading device appropriate content from the client-side

Let’s take a look at an example. To begin, we’ll start with our base

HTML skeletal structure. We’ll include only the bare minimum, no

formatting, and only <div>s that have ids that indicate what content we

will be loading into them (head, body, and footer, respectively):

<html>
<head></head>
<body>
<h2>Lazy Loading Example</h2>
<div id="head">
</div>
<div id="body">
 Loading Content
</div>
<div id="footer">
</div>
</body>
</html>

http:///

 5. THE frONTEND   |  97

We will next make a <script> tag at the bottom of the body and create a

function named determineClient(). Within determineClient, we will

create an object named client that has its own object named sectio-

nURLs, with the properties head, body, and footer, all named after the

<div>s that we have on the page:

<script>
function determineClient(){
 var client = {
 sectionURLs: {
 head: "/components/head/",
 body: "/components/body/",
 footer: "/components/footer/"
 }
 };
}
</script>

The idea is that we will populate these properties with the URLs to the

device- or experience-specific content after we have determined what

those should be. We will create the object with default data in case we

aren’t able to determine capabilities.

Now, we’ll add in some branching logic to test window.innerWidth and

window.devicePixelRatio and populate the sectionURLs accordingly.

For our example, we are assuming that we have directory structures set

up based on sizes, such as those shown in Figure 5-7.

In Figure 5-7, there are directories with content for each viewport width,

including directories for pixel-dense devices. Also note that each high-

level section directory (head, body, footer) has its own index.htm files

so that default content can be loaded. Of course, these don’t need to

be physical files as they are in the diagram; they can be Apache mod_

rewrite rules or any other sort of URL manipulation that you want to

implement.

http:///

98  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 5-7

Directory structure of the example website

After our branching logic populates the client object, the determine-

Client() function returns the client, as demonstrated here:

<script>
function determineClient(){
 var client = {
 sectionURLs: {
 head: "/components/head/",
 body: "/components/body/",
 footer: "/components/footer/"
 }
 };

http:///

 5. THE frONTEND   |  99

 if(window.innerWidth == 320){
 client.sectionURLs.head = "/components/head/320/";
 client.sectionURLs.body = "/components/body/320/";
 client.sectionURLs.footer = "/components/footer/320/";
 }else if(window.innerWidth == 640){
 if(window.devicePixelRatio == 1){
 client.sectionURLs.head = "/components/head/640/";
 client.sectionURLs.body = "/components/body/640/";
 client.sectionURLs.footer = "/components/foot-
er/640/";
 }else if(window.devicePixelRatio >=2){
 client.sectionURLs.head = "/components/head/640/
retina/";
 client.sectionURLs.body = "/components/body/640/
retina/";
 client.sectionURLs.footer = "/components/footer/
640/retina/";
 }
 }else if((window.innerWidth == 1024) || (window.innerWidth
== 1440)){
 client.sectionURLs.head = "/components/head/1024/";
 client.sectionURLs.body = "/components/body/1024/";
 client.sectionURLs.footer = "/components/footer/
1024/";
 }else if(window.innerWidth == 2048){
 if(window.devicePixelRatio ==2){
 client.sectionURLs.head = "/components/head/2048/
retina/";
 client.sectionURLs.body = "/components/body/2048/
retina/";
 client.sectionURLs.footer = "/components/foot-
er/2048/retina/";
 }
 }
 return client;
}
</script>

If we were to output our client object to the console, it would look like

the following:

Object {sectionURLs: Object}
sectionURLs: Object
body: "/components/body/1024/"
footer: "/components/footer/1024/"
head: "/components/head/1024/"

http:///

100  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Next, we create a function named loadSection into which we pass the

client object as well as a parameter that specifies the <div> that we

will be targeting. This function is pretty much standard boilerplate

XMLHttpRequest object code; to load in content from the server, our

main customizations are the following:

• We create a section property on the xhr object ad hoc and assign

it to the section parameter that has been passed into the function.

• In the callback function called when the data is loaded, we over-

write the innerHTML of the element with the ID that matches the

section data with the responseText in our xhr object:

function loadSection(section, client){
var xhr = new XMLHttpRequest();
xhr.open("get", client.sectionURLs[section], true);
xhr.section = section;
xhr.send();
xhr.onload = function(){
 document.getElementById(xhr.section).innerHTML = xhr.
responseText;
 }
}

All that is left at this point is to wire all of this logic together. We will cre-

ate a function that will execute when the window.load() event occurs,

and this function will act as our controller, creating a variable to hold

the client object passed out of our determineClient() function call,

and then calling our loadSection() function for each section we have:

window.onload = function(){
 var client = determineClient();
 var sections = ["head", "body", "client"];
 for(var n=0;n<sections.length(),n++){
 loadSection(n, client);
 }
}

When we run this in a web browser, the Network tab should look sim-

ilar to Figure 5-8.

Note that the base page loads and renders in 171 ms, whereas the lazy

loaded content took an additional 131 ms to load.

http:///

 5. THE frONTEND   |  101

FIGURE 5-8

Waterfall chart showing the head, body, and footer being lazy loaded after the

page load

Following is the complete code example, which you can download from

http://tom-barker.com/demo/hprd/lazyload.htm:

<html>
<head></head>
<body>
<h2>Lazy Loading Example</h2>
<div id="head">
</div>
<div id="body">
 Loading Content ...
</div>
<div id="footer">
</div>
<script>

window.onload = function(){
 var client = determineClient();
 var sections = ["head", "body", "client"];
 for(var n=0;n<sections.length(),n++){
 loadSection(n, client);
 }
}

 function loadSection(section, client){
 var xhr = new XMLHttpRequest();
 xhr.open("get", client.sectionURLs[section], true);
 xhr.section = section;

http://tom-barker.com/demo/hprd/lazyload.htm
http:///

102  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

 xhr.send();
 xhr.onload = function(){
 document.getElementById(xhr.section).innerHTML =
xhr.responseText;
 }
 }

 function determineClient(){
 var client = {
 sectionURLs: {
 head: "/components/head/",
 body: "/components/body/",
 footer: "/components/footer/"
 }
 };
 if(window.innerWidth == 320){
 client.sectionURLs.head = "/components/head/320/";
 client.sectionURLs.body = "/components/body/320/";
 client.sectionURLs.footer = "/components/footer/
320/";
 }else if(window.innerWidth == 640){
 if(window.devicePixelRatio == 1){
 client.sectionURLs.head = "/components/
head/640/";
 client.sectionURLs.body = "/components/
body/640/";
 client.sectionURLs.footer = "/components/foot-
er/640/";
 }else if(window.devicePixelRatio >=2){
 client.sectionURLs.head = "/components/
head/640/retina/";
 client.sectionURLs.body = "/components/
body/640/retina/";
 client.sectionURLs.footer = "/components/foot-
er/640/retina/";
 }
 }else if((window.innerWidth == 1024) || (window.inner-
Width == 1440)){
 client.sectionURLs.head = "/components/
head/1024/";
 client.sectionURLs.body = "/components/
body/1024/";
 client.sectionURLs.footer = "/components/foot-
er/1024/";
 }else if(window.innerWidth == 2048){
 if(window.devicePixelRatio ==2){
 client.sectionURLs.head = "/components/
head/2048/retina/";
 client.sectionURLs.body = "/components/
body/2048/retina/";

http:///

 5. THE frONTEND   |  103

 client.sectionURLs.footer = "/components/foot-
er/2048/retina/";
 }
 }
 return client;
 }

</script>
</body>
</html>

[ NOTE ]

This is an extreme example in which we are lazy loading formatting as well

as content. In some cases, you might just need to lazy load formatting or

functionality. But there will also be some cases for which you will ind it

useful to lazy load content as well. Maybe you are experimenting with new

image formats, such as WebP or JPEG Xr, that are not yet fully supported

by all browsers, so you load your lighter content only for the browsers

that support it. Maybe, like one of my teams has been doing lately, you are

developing web content for a television set-top box, and diferent boxes

support diferent video playback formats. In that case, you might lazy load

only the videos available for that supported format on that particular box.

Something else to keep in mind: the browser will automatically lazy

load CSS background images; if the display is set to none, the back-

ground image will not be loaded until the element is made visible. This

can be another tactic to lazy load certain images on the page.

DEVICE DETECTION LIBRARIES

Testing capabilities is natural and easy on the client side, but it’s still

difficult determining form factor and the exact device. You could make

the argument that as long as we know the capabilities, we don’t need

to know the form factor, but that doesn’t take into consideration things

such as network reliability. We could parse the User Agent to deter-

mine the form factor, but then we’d have to keep a look-up table to cor-

relate tokens from the User Agent to specific devices and form factors.

What if instead of maintaining that look-up table, we wanted to rely on

a third party to do that? Relying on a third party would make it possi-

ble for us to accurately target specific form factors such as TVs without

having to maintain our own User Agent to device database. We could

http:///

104  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

again look to the world of device-detection databases. Both Wurfl and

Device Atlas have client-side libraries that expose device capabilities

within native JavaScript libraries. Device Atlas bundles its JavaScript

library with its client download. Scientiamobile has a site, http://wurfl.

io/, dedicated to distributing their client-side solution: wurfl.js. Figure

5-9 depicts the home page of wurfl.io.

FIGURE 5-9

Scientiamobile’s wurl.io web page

To use the wurfl.js, simply include a link to the hosted JavaScript file:

<script type='text/javascript' src="http://wurfl.io/wurfl.js">
</script>

http://wurfl.io/
http://wurfl.io/
http:///

 5. THE frONTEND   |  105

This creates an object in the global scope named WURFL. If you output

the WURFL object to the console, it looks similar to the following:

>WURFL
Object {is_mobile: true, complete_device_name: "Apple iPad",
form_factor: "Tablet"}

As you can see, the WURFL object identifies whether a client is on a

mobile device, the name of the device, and the device’s form factor.

Clearly this isn’t a full capabilities list as much as it is an augmentation

of the information we already have on the frontend.

The downside, of course, is that it involves an additional external call

that our page needs to make, thus increasing the potential page payload

and latency in delivering the page to our end users.

Summary
This chapter focused your attention on the frontend of the web software

stack. We first talked about the issue of responsive images and looked

at new working drafts to the HTML5 standard to address responsive

images. We compared the new srcset attribute in the tag with

the upcoming <picture> element and looked at the page payload impli-

cations of using them.

We then pulled back and looked at lazy loading entire sections of a page

to avoid downloading unneeded styling and content. This was very

much like the examples in Chapter 4 in which we employ the strategy

of only loading device-appropriate content and formatting. But whereas

Chapter 4 achieved this from the backend, the example in this chapter

did so from the frontend.

There are advantages and disadvantages to either approach. When

parsing the experience from the backend you need to be very aware

and careful of your cache semantics because different experiences will

be coming from the same URI. When parsing the experience from the

frontend, you are at the mercy of the client device being able to run your

code, and maintaining the network connection to load your additional

assets.

In Chapter 6, we delve into continuous integration and talk about how

to include checking responsiveness and the performance of our respon-

sive sites into our continuous integration environment.

http:///

http:///

107

[6]

Continuous Web
Performance Testing

Maintaining a Steady Course
As any student of systems theory knows, when you’ve made a pos-

itive change to a system, you can maintain that change via feedback

loops to check state and course correct as necessary. This is as true for

a thermostat regulating the temperature of an area as it is to keep the

web performance metrics of a website within range of an SLA during

new feature development.

Essentially, feedback loops are tools used in control systems to assess

the output of the system and thus correct the system’s course if needed.

At a very high level, they work like the flow shown in Figure 6-1, in

which the output of a process is evaluated, giving feedback which

becomes input that then feeds the process again.

FIGURE 6-1

Basic feedback loop diagram

For software engineering, one of the most effective procedural feed-

back loops is the practice of continuous integration. Continuous inte-

gration (CI) is essentially having mechanisms in place that build your

http:///

108  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

code as new code is committed, check for different success criteria,

and break the build—effectively putting a stop to check-ins and deploy-

ments—until the success criteria is again satisfied. Figure 6-2 depicts

the feedback look diagram updated to represent a continuous integra-

tion workflow.

FIGURE 6-2

a CI feedback loop

At this point, you most likely have a CI environment set up in your

department that is running automated tests against your builds. Maybe

you use Jenkins or Anthill Pro or any other number of CI tools avail-

able. But I would bet that right now your automated test suite does not

check for web performance or for web performance at different view-

port sizes and different experiences. Let’s change that.

Automating Responsive Web Performance Testing
If we were talking web development 5 to 10 years ago, the concept of

web–test-driven development was barely known. But over the last five-

plus, years the idea of what is possible and what is mainstream around

web–test-driven development has exploded.

Unit testing frameworks such as Jasmine from Pivotal Labs came out,

and web developers began unit testing the logic in their JavaScript.

Then, headless web browser1 testing frameworks came out and demon-

strated what could be done with integration testing.

1 A headless web browser is a web browser without a graphical user interface. With a
headless web browser we can programmatically access web pages for tasks like testing and
automation.

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  109

For the purposes of responsive web performance testing, headless web

browsers are perfect because they do the following:

• Allow scripting of a browser from a terminal

• Integrate into CI software

• Allow automated resizing of the viewport

• Allow programmatic User Agent assignment

• Give insight into what assets are being loaded on a page

One of the most popular headless browser–testing libraries available is

PhantomJS (http://phantomjs.org). PhantomJS is a JavaScript API cre-

ated by Ariya Hidayat that exposes programmatic access to WebKit (or

to be very specific, QtWebKit). Best of all, you can run PhantomJS from

a command line, so you can integrate your tests into your CI workflow.

Let’s take a look at how you can use PhantomJS to test website perfor-

mance at different viewport sizes and with different User Agents.

AUTOMATED HEADLESS BROWSER TESTING

First, you need to install PhantomJS. To do this, simply go to the con-

sole or terminal and type the following command:

sudo npm inst
all -g phantomjs

This installs PhantomJS at the global level so that we can run it no

matter what directory we happen to be in. To ensure that PhantomJS

is installed, check the version number from the command line, like so:

phantomjs --version
1.9.7

The core workflow when using PhantomJS is to create a page object and

use that page object to load and analyze a web page:

 var page = require('webpage').create();
 page.open('http://localhost:8080/', function (status) {
});

The way to run this with PhantomJS is to save your code to a file and

run the file from the command line:

>phantomjs filename.js

http://phantomjs.org
http:///

110  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Functionality in PhantomJS is broken out into API modules that pro-

vide distinct areas of focus. The modules built into PhantomJS include

the following:

The System module

This module makes it possible to, among other things, pull argu-

ments from the command line so that you can make your scripts

more generalized and simply pass in parameters such as lists of

URLs (or viewport sizes, or paths to User Agent lists) instead of

hard coding them in the script. We can also use the system module

to access environmental variables and operating system informa-

tion. To access the System module type the following:

var system = require('system');
console.log(system.args, system.env);

The Web Page module

Using this module, you can download and evaluate web pages. The

beauty of the Web Page module is that in addition to giving you the

ability to inspect a page and the network transactions that it took to

create the page, you can also inject content into the page as well as

insert HTTP header information when requesting the page. Here’s

how to access it:

var page = require('webpage').create();
page.open('http://localhost:8080/', function (status) {
});

The Web Server module

Use this module to listen and proxy transactions between the web

page and remote resources. You can also use the Web Server mod-

ule to output to a local port. Use the following to access it:

var webserver = require('webserver');
var server = webserver.create();
var service = server.listen('127.0.0.1', function(request,
response) {
 });

The File System module

The File System module gives you access to local file system func-

tionality such as reading and writing files and directories. To access

this module, type the following:

var fs = require('fs');
var file = fs.open('[local file] ', '[Open mode]')

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  111

You can find the full API documentation for PhantomJS at http://bit.

ly/13DeMD2.

With this in mind, here are a couple of things you would want to test

by using PhantomJS:

• Are the appropriate assets being loaded based on the client

capabilities?

• Are the payloads for each experience within our determined SLA?

Let’s take a look at how you can use PhantomJS to achieve this.

Evaluate experiential resource loading

The first test case we’ll look at is ensuring that our page is loading

the correct assets. We’ve already talked at length about why we want

to serve only the assets that are appropriate to a given client device

(to reduce size payload, account for different bandwidth qualities and

levels of availability, and accommodate different viewport sizes), and

we’ve looked at ways to accomplish this both from the backend and the

frontend, but now we will look at how to programmatically verify that

this is happening.

We can do this by spoofing the viewport size and or User Agent of our

headless browser and then evaluating specific assets that are loaded on

the page. In the example that follows, we will use the Web Page mod-

ule to create a simulated page, set the viewport property (which accepts

a JavaScript Object Notation (JSON) object for width and height val-

ues), and assign the userAgent property to make the web page and web

server that is serving up the web page think that an iPhone 5 is making

the request:

var page = require('webpage').create();
 //simulating an iPhone 5
 page.viewportSize = {
 width: 640,
 height: 1136
 };
 page.settings.userAgent = 'Mozilla/5.0 (iPad; CPU OS 4_3_5
like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko)
Version/5.0.2 Mobile/8L1 Safari/6533.18.5';
 page.zoomFactor = 1;
 page.open('http://localhost:8080/', function (status) {

 });

http://bit.ly/13DeMD2
http://bit.ly/13DeMD2
http:///

112  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

We want to validate that the page is rendering as it should and with the

appropriate content. We can do this several ways:

• Take a screenshot of the rendered page to visually confirm, usu-

ally in a manual fashion, that the expected layout is rendered. The

code snippet that follows opens a web page, checks to ensure it

was opened successfully, and saves a screenshot by using the page.

render function:

 page.open('http://localhost:8080/', function
(status) {
 if(status == 'success'){
page.render('./screenshots/iPhone5.png');
}
 });

• Programmatically examine the page elements to see if the assets

that we expect to be rendered are actually rendered. In the code

snippet that follows, on successful page loading, the page.evalu-

ate function retrieves the URI in the src attribute of the element

that has an id of description-image. Assuming we are still eval-

uating the iPhone 5 experience, we then check this URI to see if it

is being loaded from the directory that we know holds the size-ap-

propriate resources:

page.open('http://localhost:8080/', function (status) {
 if(status == 'success'){
var image_source = page.evaluate(function(s) {
 return document.querySelector(s).src;
 }, 'description-image');
 if (image_source){
…

}
}
 });

• Inspect the network requests that the web page makes to validate

that the expected resources, and only the expected resources, are

being downloaded. In the code snippet that follows, we create call-

back functions to capture HTTP requests that the page is making.

Assuming we are still validating only the iPhone 5 scenario, each

request fires off an anonymous function that will inspect the path

to the resource to check to see if it is coming from a path that is

known to hold images that are device inappropriate; for example,

does the path contain the directory /nav/320/?

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  113

 page.onResourceRequested = function (request) {
 //check request to see if the requested resource is
coming from a known device
// inappropriate directory
 };

page.open(address, function (status) { … });

Validate web performance

So far, we’ve just looked at validating that what we are expecting to be

downloaded and rendered in the page is actually there. Next, we will

look at capturing the web performance of our web page in each experi-

ence. There are several ways we could do that:

• Within Phantom, measure how much time elapses between

requesting a page and when the page completes rendering. The

following code snippet takes a snapshot of the current time before

calling the page. When the page is loaded, it takes another snap-

shot of the time and subtracts the start time from that to determine

the page load time:

var startTime = Date.now(),
 loadTime;

page.open(address, function (status) {
if (status == 'success') {
 loadTime = Date.now() - startTime;
 console.log("page load time: " + loadTime + "ms")
 }
});

• Use YSlow for PhantomJS to generate a YSlow report. Yahoo! has

created their own PhantomJS JavaScript file to make their YSlow

services available from the command line. It is called yslow.js and is

available at http://yslow.org/phantomjs/. Using yslow.js we can pass

in specific User Agents to use, as well as viewport sizes. We can

also pass in the format that we want the data to be output as well

as the level of detail in the data. Figure 6-3 presents a screenshot of

the succinct help section for yslow.js.

Figure 6-3 shows all of the arguments that the script accepts and even

some example usage. This Help screen is also available at the com-

mand line by typing phantomjs yslow.js –help.

http://yslow.org/phantomjs/
http:///

114  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 6-3

The Help section for ySlow.js

To continue with our example of testing our iPhone 5 experience, let’s

pass in our User Agent and viewport height and width, as shown in the

following example:

> phantomjs yslow.js --info stats --format plain --vp 640x1136
--ua 'Mozilla/5.0 (iPad; CPU OS 4_3_5 like Mac OS X; en-us)
AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mo-
bile/8L1 Safari/6533.18.5' http://localhost:8080
version: 3.1.8
size: 846.4K (846452 bytes)
overall score: B (86)

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  115

url: http://localhost:8080/
of requests: 46
ruleset: ydefault
page load time: 187
page size (primed cache): 10.2K (10290 bytes)
of requests (primed cache): 1
statistics by component:
 doc:
 # of requests: 1
 size: 10.2K (10290 bytes)
 css:
 # of requests: 8
 size: 154.7K (154775 bytes)
 js:
 # of requests: 20
 size: 617.0K (617056 bytes)
 cssimage:
 # of requests: 6
 size: 32.6K (32694 bytes)
 image:
 # of requests: 10
 size: 14.0K (14095 bytes)
 favicon:
 # of requests: 1
 size: 17.5K (17542 bytes)
statistics by component (primed cache):
 doc:
 # of requests: 1
 size: 10.2K (10290 bytes)

Note the level of detail exposed: we get total payload of the page, the

number of HTTP requests, and then a breakdown of number of HTTP

requests and total payload by content type.

There are other alternatives to YSlow.js that work in much the same

manner (e.g., James Pearce’s confess.js, which you can get at http://bit.

ly/1ofAru5).

In both use cases, remember that the intent would be to run through

all of the different experiences for which we are accounting. Imagine

for a moment that the tests that we just talked about were built in to

your CI workflow, and your team was alerted every time a change was

made that broke your service-level agreement. Let’s make that a reality

by next looking at how we can work these verification steps into a CI

workflow.

http://bit.ly/1ofAru5
http://bit.ly/1ofAru5
http:///

116  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

Continuous Integration
CI is the practice of real-time merging and testing of code check-ins.

CI originally started life as a tenet of Kent Beck’s Extreme Programming

methodology, but it has spread to become the de facto practice of inte-

grating changes within teams of developers. It follows the same prin-

ciple as Beck’s other best-known (and equally as ubiquitous) practice—

test-driven development—in that moving the feedback loop closer to

the resolver (in both cases the developer checking in code) saves both

time and effort downstream in the process.

The core workflow of CI is to check in code and then follow these steps:

1. Confirm that the project builds (ensure that it compiles, or that the

static content gets minified and gzipped, or that assets are renamed

with a timestamp fingerprint for cache busting); if it does not, the

build breaks

2. Run the integration and unit tests, and if they fail, break the build

Breaking the build should involve messaging out to the team and would

require a code check-in to fix the cause of the build breakage. Figure

6-4 illustrates this workflow.

There are a number of software solutions that exist today to manage the

workflow shown in Figure 6-4. One of the most popular among them

is Jenkins. The beauty of Jenkins is that it is open source and easy to

install and configure. A little later in this chapter, we will look at inte-

grating our PhantomJS scripts into the CI workflow by using Jenkins.

First, however, we will take the concepts we just covered and make a

script that we can run from Jenkins.

AN EXAMPLE PHANTOMJS SCRIPT

To integrate your performance tests into Jenkins, we need to do several

things. To begin, you must create a JavaScript file that will evaluate

your performance SLAs. This file will output by using the JSUnit XML

format, which Jenkins can easily read in. Jenkins will run this script

and generate the XML file during each build, and it will read in the

XML file as the test results after each build.

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  117

FIGURE 6-4

a CI work low

http:///

118  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

[ TIP ]

Before we begin creating the script, we are going to add async.js to our

project, which will make it possible for us to run our tests asynchronously.

When we try to capture how long a page takes to load while we add up the

byte size of each asset as they get downloaded, the act of interfacing with

assets as they are downloading would add latency to the overall page load

time and give us inaccurate results for that particular test.

To install async.js, go to the project directory and type npm install

async.

This creates the directory structure shown in Figure 6-5 within our

project and makes async available to our code.

FIGURE 6-5

Tree view of the async module in the project directory

OK, let’s begin. First, we’ll create the variables that we will be using.

We will load async into a variable that we will call async. Next, we’ll

create an array named testsToRun with the names of the tests that we

will be running—for this example, rendertime and payload. Finally,

we will create an object named results that will hold the values of each

of the tests, including the human-readable display name for each test,

the threshold for each test, and the actual results of the tests.

For readability purposes, this example hard codes several items. For an

actual production script, you would seek to move all of the hardcoded

values to be configurable and read in at runtime. Let’s look at the code:

var async = require('async'),
 testsToRun = ["rendertime","payload"],
 results = {
 testnames:{
 rendertime:"Time to Render",
 payload: "Total Page Payload"
 },

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  119

 threshold: {
 rendertime: 500,
 payload: 1000
 },
 actual: {
 rendertime: 0,
 payload:0
 },
 test_results: {
 rendertime: "fail",
 payload: "fail"
 }
 }

Next, create a function called test. This will encapsulate all of the tests

that we will be running. We will pass in the test type and a callback

function. We pass in the test type so that we can determine which tests

to run at a given invocation. We pass in the callback function so that we

can call it after our tests are complete; this way, async knows that the

function invocation is complete.

Within the test function, first declare some variables and values. We

will capture a snapshot of the current time, load the WebPage module

into a variable named page, and we will hardcode the viewport as well

as the User Agent. Again, the hardcoded values would normally be con-

figurable at runtime, but for the sake of having an example that is easy

to follow, they are hardcoded here:

function test(testType, callback){
 var startTime = Date.now(),
 loadTime;
 var page = require('webpage').create();
 page.viewportSize = {
 width: 640,
 height: 1136
 };

 page.settings.userAgent = 'Mozilla/5.0 (iPad; CPU OS
4_3_5 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like
Gecko) Version/5.0.2 Mobile/8L1 Safari/6533.18.5';
 page.zoomFactor = 1;
}

Next, within the test function, create the onResourceReceived event

handler for the page object. This executes when remote resources that

have been requested are received. Within this function, we will check

http:///

120  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

to see whether any other tests to measure the page payload are under

way (so that we don’t add latency to those other tests), and if so, we then

increment the payload property in the results.actual object:

page.onResourceReceived = function (resp) {
//increment the payload by the size of the resource received
 if(testType == "payload"){
 if(resp.bodySize != undefined){
 results.actual.payload += resp.bodySize
 }
 }
};

While still within the test function, call the page.open function to load

the web page that is being performance tested. For our purposes, we

will hardcode a local address, but in reality this should also be con-

figurable at runtime. After the page is loaded, we capture the current

time, and subtract the start time from that to establish the actual ren-

der time. We then call a function which we will define momentarily

that uses the name calculateResults. Finally, we close the page and

call the callback function to signal async that the function is complete:

page.open('http://localhost:8080/', function (status) {
if(status == 'success'){
 results.actual.rendertime = Date.now() - startTime;
}
calculateResults()
page.close();
callback.apply();
});

Before we leave the test function, let’s define calculateResults. In this

function, we’ll us testType as the index and compare the actual test

results with the threshold and then assign a passing or failing grade to

the results property:

function calculateResults(){
if(results.actual[testType] <= results.threshold[testType]){
 results.test_results[testType] = "pass";
}
}

OK, returning to the root of our script, let’s add the controller logic.

Using async.each, we asynchronously call the test function with each

value in the testsToRun array. When the function calls are complete,

the anonymous function that we pass in as the third parameter to

asynch.each executes. This function calls a function formatOutput

that we will define shortly, and then exits PhantomJS:

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  121

async.each(testsToRun,test,
 function(err){
 formatOutput();
 phantom.exit();
 }
);

Finally, let’s define a function called formatOutput. This function

formats our output to adhere to the JUnit XML format that Jenkins

accepts. We can find the XSD for this format at http://bit.ly/Ze98o9.

For the purposes of this exercise, we’ll just create a suite for all of our

tests and then a test case for each test that ran. We’ll map a function

to the array testsToRun to create test case nodes for each test. After we

have the output assembled, we’ll output it to the console:

function formatOutput(){
 var output = '<?xml version="1.0" encoding="utf-8"?>\n'+
 '<testsuite tests="'+ testsToRun.length +'">\n'
 testsToRun.map(function(t){
 output += '<testcase classname="'+ t +'" name="'+
results.testnames[t] +'">\n'
 if(results.test_results[t] == "fail"){
 output += '<failure type="fail"> threshold: '+
results.threshold[t] + ' result: '+ results.actual[t] +' </
failure>\n'
 }
 output += '</testcase>\n'
 })
 output += '</testsuite>'
 console.log(output)
}

Following is the complete code for this example (you can also find it

on GitHub at https://github.com/tomjbarker/HP_ResponsiveDesign):

//simulating an iPhone 5
var async = require('async'),
 testsToRun = ["rendertime","payload"],
 results = {
 testnames:{
 rendertime:"Time to Render",
 payload: "Total Page Payload"
 },
 threshold: {
 rendertime: 500,
 payload: 1000
 },

https://github.com/tomjbarker/HP_ResponsiveDesign
http:///

122  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

 actual: {
 rendertime: 0,
 payload:0
 },
 test_results: {
 rendertime: "fail",
 payload: "fail"
 }
 }

function test(testType, callback){
 var startTime = Date.now(),
 loadTime;

 var page = require('webpage').create();
 page.viewportSize = {
 width: 640,
 height: 1136
 };

 page.settings.userAgent = 'Mozilla/5.0 (iPad; CPU OS
4_3_5 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like
Gecko) Version/5.0.2 Mobile/8L1 Safari/6533.18.5';
 page.zoomFactor = 1;

 page.onResourceReceived = function (resp) {
 //increment the payload by the size of the re-
source received
 if(testType == "payload"){
 if(resp.bodySize != undefined){
 results.actual.payload += resp.bodySize
 }

 }
 };

 page.open('http://localhost:8080/', function (status)
{
 if(status == 'success'){
 results.actual.rendertime = Date.now() - start-
Time;
 }
 calculateResults()
 page.close();
 callback.apply();
 });

 function calculateResults(){
 var output = "";
 if(results.actual[testType] <= results.thresh-
old[testType]){

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  123

 results.test_results[testType] = "pass";
 }
 }
}

function formatOutput(){
 var output = '<?xml version="1.0" encoding="utf-8"?>\n'+
 '<testsuite tests="'+ testsToRun.length +'">\n'
 testsToRun.map(function(t){
 output += '<testcase classname="'+ t +'" name="'+
results.testnames[t] +'">\n'
 if(results.test_results[t] == "fail"){
 output += '<failure type="fail"> threshold: '+
results.threshold[t] + ' result: '+ results.actual[t] +' </
failure>\n'
 }
 output += '</testcase>\n'
 })
 output += '</testsuite>'
 console.log(output)
}

async.each(testsToRun,test,
 function(err){
 formatOutput();
 phantom.exit();
 }
);

Save the script to a file named iphone5test.js and run it from the

Terminal. You should see output similar to that shown in Figure 6-6.

FIGURE 6-6

Our script running in the Terminal (notice the output in Junit XML format)

Next, we will install Jenkins and get our script running in the build

process for a project.

http:///

124  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

JENKINS

Jenkins started life as Hudson, an open source CI tool created by

Kohsuke Kawaguchi while at Sun Microsystems. After Oracle pur-

chased Sun, the Jenkins CI project split off from Hudson. Hudson

would continue under Oracle’s stewardship (Oracle eventually trans-

ferred the project to the Eclipse Foundation), whereas Jenkins CI would

continue on through the contributions of the community.

Jenkins is available from http://jenkins-ci.org/, where you can, among

other things, download the latest build, create your own copy, register

a bug, or read documentation around Jenkins. Figure 6-7 presents the

Jenkins CI home page.

FIGURE 6-7

The Jenkins CI home page

From the Jenkins home page, you can download a native package to

install. In Figure 6-8, you can see the installer for Mac OS.

http://jenkins-ci.org/
http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  125

FIGURE 6-8

The Jenkins Mac OS installer

After you’ve completed installation, Jenkins is available locally at http://

localhost:8080/, as demonstrated in Figure 6-9.

FIGURE 6-9

The Jenkins home page following a fresh installation

http://localhost:8080/
http://localhost:8080/
http:///

126  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

For this example, we will assume that the GitHub plug-in is installed (if

it isn’t, go to Manage Jenkins, click Manage Plugins, and then install it)

and that we are using GitHub as our source control.

To begin, we need to have a project in Jenkins. To create a new project,

on the Jenkins home page, click New Item. A window similar to that

depicted in Figure 6-10 opens. For our example, we will create a free-

style project and give it a name.

FIGURE 6-10

Creating a new project in Jenkins

Now, it’s time to configure the new project. On the Source Code

Management page, choose Git as the source code management tech-

nology and type the location of our project in GitHub, as depicted in

Figure 6-11.

Next, we add a build step to execute our PhantomJS script, with the out-

put piped to an XML file called results.xml (see Figure 6-12). This runs

our script and generates a new XML file every time the project is built.

Finally, while still on the Source Code Management page, add a post-

build action to publish the JUnit test result report, or specifically the

results.xml file that we created with our script (see Figure 6-13).

http:///

 6. CONTINuOuS WEB PErfOrMaNCE TESTING   |  127

FIGURE 6-11

Pointing our Jenkins project to our GitHub project

FIGURE 6-12

running our PhantomJS script from the shell during the build process and

piping the output to an XML ile

FIGURE 6-13

reading in the XML that was generated during the build as a post-build test

http:///

128  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

From here, we can manually kick off builds from Jenkins, and our

script is run and the report is generated. If we want our project to build

every time we push a change to GitHub, we would need to configure a

web hook in GitHub to POST to our Jenkins installation.

After the build runs, we can see the for the web performance test in

Jenkins. Figure 6-14 shows the results.

FIGURE 6-14

results of our tests output in Jenkins!

With this flow in place, we can now get real-time feedback as changes

we make in the code base impact our web performance.

Summary
This chapter explored continuous web performance testing. We looked

at using PhantomJS to create headless browser tests. We talked at

length about how to verify that the patterns of best practice that we

established in previous chapters were being maintained, from load-

ing only device-specific assets, to maintaining a page payload and ren-

der-time SLA.

Finally, we looked at incorporating that logic into a CI workflow using

Jenkins.

Chapter 7 takes a survey of the current state of frameworks addressing

the issues of performant responsive websites.

http:///

129

[7]

Frameworks

Looking at the State of Responsive Frameworks
So far, we have looked at web performance patterns and anti-patterns

in the world of responsive design. We’ve looked at crafting our own solu-

tions to implement these patterns of best practices, both from the client

side and the server side. Chapter 6 shows how to create automated tests

via PhantomJS to verify the adherence to our performance-responsive

design patterns and include them in a continuous integration (CI) work-

flow using Jenkins. In this chapter, we will explore some of the frame-

works that are available, and analyze how they handle web performance.

Different types of responsive frameworks exist: there are boilerplates

that give predetermined page layouts; there are grid systems that just

define responsive grid layouts; and then there are complete solutions

that include different page layouts with reusable modules, web fonts,

and JavaScript functionality.

If you look at the overall landscape of frameworks, the first thing you’ll

note is that they are all implemented for the frontend. In these frame-

works, there will generally be predefined CSS that describes the styl-

ing of a module such as a button or a grid, or even complex UI ele-

ments such as accordions and sliders and guided navigation. You can

use these modules by assigning their classes to elements on your page.

Some frameworks have a JavaScript API with which you can program-

matically create styled elements on your page.

As of this writing, the biggest names in frameworks are Twitter’s

Bootstrap and Foundation from ZURB. In fact, when we look at Google

Trend to compare relative search interest in Bootstrap and Foundation

to other frameworks, we need to create two different charts because the

interest in Bootstrap is a full order of magnitude greater than interest in

the other frameworks, which is amply illustrated in Figures 7-1 and 7-2.

http:///

130  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-1

Comparing relative search interest between Twitter Bootstrap and ZurB’s

foundation framework

FIGURE 7-2

Comparing relative search interest in ZurB’s foundation, Skeleton, and

Semantic uI

http:///

 7. fraMEWOrKS   |  131

In Figures 7-1 and 7-2, note the difference in scale between the two

Google Trend images, with Foundation being the common link

between the two charts (the blue line in both charts).

We will begin by establishing criteria that we will be using to evaluate

these frameworks.

Our criteria will be the following:

What patterns and/or anti-patterns does the framework use?

How easy is it to use?

What is the size of the framework, including dependencies?

What, if any, dependencies does the framework have, including depen-

dencies on other frameworks or libraries?

Let’s commence the evaluation by first looking at Twitter’s Bootstrap.

Twitter Bootstrap
Bootstrap is a frontend, open source framework created in 2011 by

Mark Otto and Jacob Thornton at Twitter and is available at http://get-

bootstrap.com/. Figure 7-3 shows the Bootstrap home page.

Bootstrap’s base installation comes with predefined CSS and JavaScript

to implement a set of frontend components that have responsiveness

built in to them. These components include buttons, tabs, progress

bars, grid systems, patterns for alerts, and even specific page layouts.

http://getbootstrap.com/
http://getbootstrap.com/
http:///

132  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-3

The Bootstrap homepage

http:///

 7. fraMEWOrKS   |  133

The install consists of the directory structure, which you can see in

Figure 7-4.

FIGURE 7-4

The core Bootstrap installation

Using Bootstrap is as simple as including the core CSS and JavaScript

files on your page, and then you begin using predefined components.

Also note that Bootstrap requires JQuery:

 <link href="css/bootstrap.min.css" rel="stylesheet">
 <script src="js/bootstrap.min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/
1.11.1/jquery.min.js"></script>

It’s easy to see why Bootstrap is so popular: in around 20 minutes,

using the built-in components and styles from Bootstrap, I was able to

construct the website shown in Figure 7-5 (it’s available at http://tom-

jbarker.github.io/).

http://tomjbarker.github.io/
http://tomjbarker.github.io/
http:///

134  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-5

an example website created in Bootstrap

http:///

 7. fraMEWOrKS   |  135

EVALUATION

Take a look at Table 7-1 to see how Bootstrap fared in our evaluation.

TABLE 7-1. Evaluating Bootstrap

PaTTErNS/aNTI-PaTTErNS Out of the box, Bootstrap will load the same assets for
each experience. Images will be resized on the client
side to it the viewport. There are JQuery plug-ins that
you can use to somewhat address this. a popular one is
HiSrC (available at https://github.com/teleject/hisrc),
that loads a smaller, mobile-friendly image irst and
then, depending on the connection speed and the client
device pixel ratio, loads additional larger images. Though
this ixes the small-screen scenario, in that it loads a
device-speciic asset, it then must load additional assets
for larger screen experiences.

EaSE Of uSE using existing Bootstrap modules and styling, I was
able to construct a responsive website in less than 20
minutes.

DEPENDENCIES JQuery

SIZE Of THE fraMEWOrK

(aND DEPENDENCIES)

The minimum installation requires Bootstrap’s CSS and
JavaScript as well as JQuery. as of this writing, the totals
for these are:

bootstrap.min.css: 107 KB

jquery.min.js: 82.6 KB

bootstrap.min.js: 31KB

Grand total: 220.6 KB

Keep in mind that this is just the minimum installation.
There are themes and web fonts that you might also
want to use which would add to that total.

ZURB Foundation
The next framework we will evaluate is Foundation by ZURB, a design

firm from California. Foundation was created and made available as

open source in 2011. You can download it from http://foundation.zurb.

com/. Figure 7-6 depicts the Foundation home page.

https://github.com/teleject/hisrc
http://foundation.zurb.com/
http://foundation.zurb.com/
http:///

136  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-6

The home page for ZurB foundation

http:///

 7. fraMEWOrKS   |  137

Downloading and unzipping the framework creates the directory struc-

ture shown in Figure 7-7.

FIGURE 7-7

Tree view of the foundation installation

Just like Bootstrap, Foundation comes with prestyled components,

including media queries to handle different viewport sizes. Also, like

Bootstrap, pages are arranged in rows and columns with CSS classes

assigned to <div>s to specify explicit grid structure and which compo-

nent to load.

Using the built-in components from Foundation, I constructed the

website presented in Figure 7-8. You can look at the site at http://bit.

ly/10RjT1n. Table 7-2 provides the evaluation data.

http://bit.ly/10RjT1n
http://bit.ly/10RjT1n
http:///

138  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-8

a website created by using foundation

http:///

 7. fraMEWOrKS   |  139

Let’s look at how Foundation fared, see Table 7-2.

TABLE 7-2. Evaluating foundation

PaTTErNS/aNTI-PaTTErNS Same assets loaded for every experience, images resized
client-side

EaSE Of uSE Same as Bootstrap, using the prepackaged modules

DEPENDENCIES Modernizr, JQuery

SIZE Of THE fraMEWOrK

(aND DEPENDENCIES)

foundation.css: 153.6 KB

modernizr.js: 11 KB

jquery.js: 82.6 KB

foundation.js: (miniied) 89.9 KB

Grand total: 337.1 KB

Skeleton
Skeleton was created and released in 2011 by Dave Gamache, formerly

of Twitter. You can download it from http://www.getskeleton.com/.

Figure 7-9 shows the Skeleton home page.

http://www.getskeleton.com/
http:///

140  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-9

The Skeleton home page with instructions and inline code examples

http:///

 7. fraMEWOrKS   |  141

If you download and unzip the Skeleton framework, you can see that

it is more of a boilerplate, with an index.html page for us to edit and an

existing directory hierarchy with the necessary CSS and images that

the code references. Figure 7-10 illustrates the unzipped Skeleton direc-

tory tree structure.

FIGURE 7-10

Skeleton website boilerplate, unzipped

Whereas Bootstrap comes with prestyled components such as the

Jumbotron, Skeleton takes a much more minimalist approach. There is

barely any styling to speak of; mainly it offers just buttons, forms, and

typography, along with layout definitions. The idea is to use Skeleton

for minimal layout and layer your own styles on top of it.

Using the included boilerplate, you can construct a website similar in

structure to the previous examples, styled in in the minimalist vein of

Skeleton, as shown in Figure 7-11. You can obtain Skeleton at http://

tomjbarker.github.io/skeleton/.

http://tomjbarker.github.io/skeleton/
http://tomjbarker.github.io/skeleton/
http:///

142  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-11

a website created by using Skeleton

http:///

 7. fraMEWOrKS   |  143

EVALUATION

Let’s see how Skeleton fared in our evaluation criteria, see Table 7-3.

TABLE 7-3. Evaluating Skeleton

PaTTErNS/aNTI-PaTTErNS Skeleton loads the same assets for all device experi-
ences. The upside is that there is so little to the frame-
work that it is the smallest possible footprint anyway.

EaSE Of uSE Easy-to-use, baked-in styles, but if you want to have any
sort of styling you must add your own.

DEPENDENCIES None

SIZE Of THE fraMEWOrK

(aND DEPENDENCIES)

Skeleton really is a minimal install. We only need two
of the CSS iles that come with the install, base.css and
skeleton.css. These iles don’t come miniied, but for my
example I miniied them. The totals for these, at the time
of this writing, are:

base.css: (miniied) 6.1 KB

skeleton.css: (miniied) 5.4  KB

layout.css: 1.7 KB

Grand total: 13.2 KB

Keep in mind that this doesn’t count any styling we
might want to layer on top of Skeleton. and, unless you
want the bare minimum of design (any you might actu-
ally want that), you will need to add additional styling.

Semantic UI
Semantic UI is another web framework, again implemented on the

frontend, that provides prestyled UI components with client-side

responsiveness built in. It is available at http://semantic-ui.com/.

Figure 7-12 presents a screenshot of the Semantic UI home page.

http://semantic-ui.com/
http:///

144  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-12

The Semantic uI home page

http:///

 7. fraMEWOrKS   |  145

From the home page, you can download a ZIP file that contains the

directory structures that shown in Figure 7-13. There is an examples

directory that contains a couple of sample pages that demonstrate how

to use the framework, a less directory that contains individual LESS files

for each component, a minified directory that holds individual mini-

fied CSS files for each component. There is also a packaged directory

that contains all of the UI components and the JavaScript API aggre-

gated into a single CSS and JavaScript file (plus the minified version of

these packaged files). Figure 7-14 shows the contents of the packaged

directory. Finally, there is an uncompressed directory that contains all

of the individual components as (uncompressed) CSS files.

FIGURE 7-13

Tree view of the directories in the Semantic uI download

http:///

146  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-14

Tree view of the packaged iles from the Semantic uI download

In Figure 7-14, observe that the download also included CSS files for

individual components so that we can choose to only utilize the files for

the modules that we are using

Using the packaged CSS and based on the homepage.html example

from the download, I was able to construct the example website dis-

played in Figure 7-15. The example is available at http://tomjbarker.

github.io/semantic/.

http://tomjbarker.github.io/semantic/
http://tomjbarker.github.io/semantic/
http:///

 7. fraMEWOrKS   |  147

FIGURE 7-15

a website created using Semantic uI

http:///

148  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

EVALUATION

Let’s see how Semantic UI fared in our evaluation criteria (Table 7-4).

TABLE 7-4. Evaluating Semantic uI

PaTTErNS/aNTI-PaTTErNS again, Semantic is a frontend framework that has all of
the same anti-patterns with which we are all too familiar.

EaSE Of uSE Same as Bootstrap and foundation

DEPENDENCIES JQuery

SIZE Of THE fraMEWOrK

(aND DEPENDENCIES)

semantic.css: (miniied) 231 KB

jquery.js: 82.6 KB

semantic.js: (miniied) 134.4  KB

Grand total: 448 KB

A Comparison of Frontend Frameworks
When you compare the raw numbers, you can see that from the pool

of frameworks that we’ve looked at, Semantic is the heaviest of the

group—if you are using the packaged files and not cherry-picking com-

ponents to include. Figure 7-16 provides a side-by-side comparison of

the sheer size of the frameworks.

Figure 7-16 illustrates clearly that the sizes vary drastically, from 13 KB

for Skeleton, up to 448 KB for Semantic UI. Taking this a step further,

if you then look at the example websites using these frameworks—all

with the same exact content—and look at the total payload for each site,

breaking out the total payload for each asset type, you can see that the

page size gets inflated from 460 KB, in the case of our Skeleton exam-

ple, up to 907 KB for our Semantic UI example. Figure 7-17 depicts this

break out.

http:///

 7. fraMEWOrKS   |  149

FIGURE 7-16

framework payload comparison

What is evident in Figure 7-17 is how the size of the frameworks impact

the size of the overall page payload, where the red segments represents

the size of the frameworks, whereas the blue segments represents the

size of the HTML needed to create the pages, and the yellow segments

represent the size of the images used in the pages. Notice that all the

pages use the same images, and require roughly the same amount of

HTML (within a 2 KB difference) to implement.

http:///

150  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

FIGURE 7-17

The impact of framework sizes on page payload

Ripple
When I surveyed the landscape of responsive frameworks, it became

clear to me that they are all frontend frameworks, and with the excep-

tion of Skeleton, they are not designed with performance in mind.

Armed with this knowledge, I decided to create a bare-bones boiler-

plate using NodeJS to set up a full-stack responsive website using the

principles that we have been discussing in this book. I named the boil-

erplate Ripple, and made it available for you at https://github.com/tom

jbarker/Ripple. Following is the source code for Ripple:

https://github.com/tomjbarker/Ripple
https://github.com/tomjbarker/Ripple
http:///

 7. fraMEWOrKS   |  151

var http = require("http");
var url = require("url");

var handle = {}
handle["/"] = checkUA;
handle["/favicon.ico"] = favicon;

var uaViewPortCategories = {
 "320": new RegExp(/Nexus S|iPhone|BB10|Nexus 4|Nexus 5|
HTC|LG|GT/),
 "640": new RegExp(/Nexus 7/),
 "1024": new RegExp(/Silk|iPad|Android/)
};

var assetPath = {
 "css": "assets/css/1024/",
 "img": "assets/img/1024/",
 "js": "assets/js/1024/"
};

var serv = http.createServer(function (req, res) {
 var pathname = url.parse(req.url).pathname;
 route(pathname, res, req);
});

function route(path, res, req){
 console.log("routing " + path)
 handle[path](res, req);
}

function checkUA(res, req) {
 var ua = req.headers["user-agent"]
 var re = new RegExp(/iPhone|iPod|iPad|Mobile|Android/);
 if(re.exec(ua)){
 getMobileCapabilities(ua, res);
 }
 renderExperience(res);
}

function getMobileCapabilities(ua, res){
 res.writeHead(200, { "Content-Type": "text/html" });
 var viewPortWidth = 1024;
 if(uaViewPortCategories["320"].exec(ua)){
 viewPortWidth = 320
 }else if(uaViewPortCategories["640"].exec(ua)){
 viewPortWidth = 640
 }else if(uaViewPortCategories["1024"].exec(ua)){
 viewPortWidth = 1024
 }

http:///

152  |   HIGH PErfOrMaNCE rESPONSIVE DESIGN

 assetPath.css = "assets/css/"+viewPortWidth+"/";
 assetPath.img = "assets/img/"+viewPortWidth+"/"
 assetPath.js = "assets/js/"+viewPortWidth+"/"
}

function renderExperience(res){
 res.writeHead(200, { "Content-Type": "text/html" });
 res.write(assetPath.css + "
");
 res.write(assetPath.img + "
");
 res.end(assetPath.js);
}

function favicon(res, req){
 res.writeHead(200, {
'Content-Type': 'image/x-icon'
});
 res.end();
}

serv.listen(80);

To run the boilerplate, simply download the project from GitHub,

change directory into the project directory, and then run the engine.js

file from node, as follows:

node engine.js

The engine file checks the User Agent from the HTTP request, runs a

series of regular expressions against the User Agent to determine the

client, and based on the determination creates paths to static assets that

are appropriate to the viewport size of the client device.

Summary
As of this writing, all of the frameworks available are frontend frame-

works. With the exception of Skeleton, most are heavy—some would

say bloated—and all follow the same anti-patterns of loading the same

assets for every device experience.

Again, as of this writing, there are no mainstream server-side frame-

works or boilerplates available; if you are interested in what you’ve read

so far and want to explore the concepts further, I hope you will check

out Ripple and begin exploring the performance benefits that can be

gained from focusing on responsiveness from the server side.

http:///

153

experiential resource load-
ing, 111–113

PhantomJS modules, 110
validating web performance, 113–

115

B
backend, responsive design

edge networks, 84–85
implications of cache, 83–84
server-side response, 70–83

device detection services, 74–
78

inspection of User Agent, 72–
74

sample code, 79–83
Web Application Stack, 69–70
Web Stack, 63–69

Charles (inspecting network
traffic), 68–69

network stack, 63–64
Bakaus, Paul, 42
bar charts, HTTP requests, 8
boilerplates

Ripple, 150–152
Skeleton, 141

Bootstrap (Twitter), 131–135
evaluation, 135
home page, 132
installation, 133
sample website, 134

browsers
architecture, 25–26
negotiations with web server, 24

C

cache, backend responsive de-
sign, 83–84

callback function, 120

[Index]

Symbols
1xx: Informational (HTTP re-

sponse), 67
2xx: Success (HTTP response), 67
3xx: Redirection (HTTP re-

sponse), 67
4xx: Client Error (HTTP re-

sponse), 67
5xx: Server Error (HTTP re-

sponse), 67

A
Account Settings page (Scientiamo-

bile), 77–78
ACK (acknowledge) messages, 23
acknowledge (ACK) messages, 23
active mode (Timeline tool), 43
Age (HTTP response header), 67
Alexa, competitive analysis, 3
anti-patterns, competitive analysis

observations, 9–10
Application layer (network

stack), 64–67
HTTP requests, 65–66
HTTP Responses, 66–68

apps (Web)
continuous performance testing

automated headless browser
testing, 108–115

CI (Continuous Integra-
tion), 116–128

feedback loops, 107–108
performance

measuring, 21–30
runtime performance, 40–47
tracking tools, 30–39

assessment of task, planning respon-
sive design, 51–56

async variable, 118
automated headless browser test-

ing, 108–115

http:///

154  |   INDEX

feedback loops, 107–108
CPU usage, impact on runtime per-

formance, 42

D
Data Link layer (network stack), 63
dedicated experience (pattern), 12
dedicated sites, responsive sites

versus, 5–7
DELETE method, 65
dependencies, planning responsive

design, 58–60
design (responsive). See responsive

design
detection services, 74–78
Developer Tools, Chrome, 31–32

FPS Monitor, 42–43
Timeline tool, 43–44

device detection libraries, 103–105
device detection services, 74–78
device pixel ratio, 88–91
devices, average viewing distance, 53
directories, Semantic UI, 145
directory structure, lazy loading, 98
distribution of file size, dedi-

cated sites vs responsive
sites, 5–7

DNS (Domain Name System)
lookup, 23

Document Object Model (DOM) ele-
ments, 27

document type definition (DTD), 26
domainLookupEnd property (Perfor-

manceTiming object), 38
domainLookupStart property (Perfor-

manceTiming object), 38
Domain Name System (DNS)

lookup, 23
domComplete property (Perfor-

manceTiming object), 38
domContentLoadedEventEnd prop-

erty (PerformanceTiming
object), 38

domContentLoadedEventStart prop-
erty (PerformanceTiming
object), 38

DOM (Document Object Model) ele-
ments, 27

domInteractive property (Perfor-
manceTiming object), 38

CDNs (Content Delivery Net-
works), 84

Charles (HTTP monitoring
tool), 68–69

Chrome (Google), Developer
Tools, 31–32

FPS Monitor, 42–43
Timeline tool, 43–44

CI (Continuous Integration), 116–
128

feedback loop, 108
Jenkins, 124–128
sample PhantomJSScript, 116–

123
work flow, 117

client-server transaction, 70
code, backend server-side re-

sponse, 79–83
comparison of frontend frame-

works, 148–150
competitive analysis, 1–11

anti-patterns, 9–10
patterns, 10–13

Config.js file, 80
connectEnd property (PerformanceT-

iming object), 38
connection speeds, 53–54
connectStart property (Perfor-

manceTiming object), 38
content delivery networks

(CDNs), 84
Continuous Integration (CI), 116–

128
feedback loop, 108
Jenkins, 124–128
sample PhantomJSScript, 116–

123
work flow, 117

continuous Web performance testing
automated headless browser test-

ing, 108–115
experiential resource load-

ing, 111–113
PhantomJS modules, 110
validating web perfor-

mance, 113–115
CI (Continuous Integra-

tion), 116–128
Jenkins, 124–128
sample PhantomJSS-

cript, 116–123

http:///

INDEX   |  155

frameworks
comparison of frontend frame-

works, 148–150
Ripple, 150–152
Semantic UI, 143–148

directories, 145
evaluation, 148
homepage, 144
sample website, 147

Skeleton, 139–143
evaluation, 143
homepage, 140
sample website, 142
website boilerplate, 141

state of frameworks, 129–131
Twitter Bootstrap, 131–135

evaluation, 135
homepage, 132
installation, 133
sample website, 134

ZURB Foundation, 135–139
evaluation, 139
homepage, 136
installation, 137
sample website, 138

frontend, responsive design
images, 87–95

picture element, 91–95
srcset attribute, 88–91

lazy loading, 95–105
functions

callback, 120
formatOutput, 120
page.open, 120
test, 119

G
Gamache, Dave, 139
garbage collection, impact on run-

time performance, 41
GET method, 65
Github plug in, 126
Google Chrome, Developer

Tools, 31–32
FPS Monitor, 42–43
Timeline tool, 43–44

Google Glass, 20
Google V8, 25
Grigorik, Ilya, 91
grouped bar charts, HTTP re-

quests, 8

domLoading property (Perfor-
manceTiming object), 38

DTD (Document Type Descrip-
tion), 26

E
edge networks, backend responsive

design, 84–85
Edge Side Include (ESI) language, 85
ESI (Edge Side Include) language, 85
ETag (HTTP response header), 67
evaluations

experiential resource loading, 111
Semantic UI, 148
Skeleton, 143
Twitter Bootstrap, 135
ZURB Foundation, 139

Even Faster Websites (italic), 21
event handlers, onResourceRe-

ceived, 119
expensive paints, impact on runtime

performance, 41
experiential resource loadiong, 111

F
feedback loops, continuous Web per-

formance testing, 107–108
fetchStart property (PerformanceTi-

ming object), 38
file size, dedicated versus responsive

sites, 5–7
File System module (Phantom-

JS), 110
Firebug (Firefox), 31–32
Firefox, Firebug, 31–32
formatOutput function, 120
Fortune 100 Companies (quotes)

report, 3
Foundation (ZURB), 135–139

evaluation, 139
home page, 136
installation, 137
sample website, 138

FPS (Frames Per Second) Moni-
tor, 42–44

Frames mode (Timeline tool), 43–44
Frames Per Second (FPS) Moni-

tor, 42–44
Frames Per Second web app, 42
Frames view (Timeline tool), 43

http:///

156  |   INDEX

ZURB Foundation, 137
Interesting Stats page (HTTP Ar-

chive), 87
issues with responsive design, 1–20

J
Jain, Arvind, 36
Jasmine (Pivotal Labs), 108
JavaScript engines, 25
JavaScript heap, 44–45
JavaScript Object Notation (JSON)

object, 111
Jenkins, 124–128

creating a new project, 126
home page, 124–125
Mac OS installer, 125
test result output, 128

jsHeapSizeLimit property (Memory-
info object), 46

JSON (JavaScript Object Notation)
object, 111

K
Kawaguchi, Kohsuke, 124
key performance indicators

(KPIs), 50, 60–61
KPIs (Key Performance Indica-

tors), 50, 60–61

L
layout, Web runtime perfor-

mance, 41
lazy loading, 95–105

dedicated experiences from the
frontend, 12

device appropriate content from
client side, 96

directory structure, 98
waterfall chart, 101

leading indicators, 22
lexical analysis, text characters, 26
loadEventEnd property (Perfor-

manceTiming object), 38
loadEventStart property (Perfor-

manceTiming object), 38
loading

additional assets (anti-pat-
tern, 9–10

device-appropriate assets (pat-
terns), 11

H
header fields (HTTP Responses), 66
headless browser testing, 108–115

experiential resource load-
ing, 111–113

PhantomJS modules, 110
validating web performance, 113–

115
HEAD method, 65
Hewitt, Joe, 31
Hidayat, Ariya, 109
High Performance Browser Network-

ing (italic), 91
High Performance Websites

(italic), 21
history, responsive design, 15–17
home pages

Jenkins, 124–125
Scientiamobile, 76
Semantic UI, 144
Skeleton, 140
Twitter Bootstrap, 132
ZURB Foundation, 136

Host request header, 66
HTTP requests, 65–66

as performance indicator, 28–29
HTTP requests, grouped bar

charts, 8
HTTP Responses, 66–68
HTTPWatch, 32–34
Hudson, 124

I
If-Modified-Since request header, 66
images, frontend responsive de-

sign, 87–95
picture element, 91–95
srcset attribute, 88–91

implications of cache, backend re-
sponsive design, 83–84

index.js, 80
indicators, Web app perfor-

mance, 22–23
number of HTTP requests, 28–29
page load time, 29–30
page payload, 29

input indicators, 22
inspection of User Agent, 72–74
installation

PhantomJS, 109
Twitter Bootstrap, 133

http:///

INDEX   |  157

Network layer, 63
Transport layer, 64

O
observations, competitive analy-

sis, 1–11
anti-patterns, 9–10
patterns, 10–13

onResourceReceived event han-
dler, 119

Opera, 25
OPTIONS method, 65
Otto, Mark, 131

P
page load time, performance indica-

tor, 29–30
page.open function, 120
page payload

comparison of frontend frame-
works, 150

performance indicator, 29
Page Visibility API, 36
paints, impact on runtime perfor-

mance, 41
parsing text characters, 26
patterns, competitive analysis obser-

vations, 10–13
payload

comparison of frontend frame-
works, 149

responsive sites versus dedicated
sites, 5

perception of speed, 23
performance

continuous Web performance
testing

automated headless browser
testing, 108–115

CI (Continuous Integra-
tion), 116–128

feedback loops, 107–108
SLAs (Service Level Agree-

ments), 14–15
Web applications

measuring, 21–30
runtime performance, 40–47
tracking tools, 30–39

Performance DOM objects, 35
performance indicators, Web app

performance, 22–23, 28–30

images at twice the size (anti-
pattern), 10

same content for all devices (anti-
pattern), 9

M
Mac OS installer, Jenkins, 125
mdots, 18–20

pointless redirects, 19–20
resource overhead, 18–19
segmented source code, 18
segmented URLs, 18

mean file size, dedicated vs respon-
sive sites, 5

measuring Web app perfor-
mance, 21–30

number of HTTP requests, 28–29
page load time, 29–30
page payload, 29

Meenan, Pat, 30
MemoryInfo object, 45–46
memory management, impact on

runtime performance, 41
Memory mode (Timeline tool), 46–

47
memory profiling, 44–47
methods

DELETE, 65
GET, 65
HEAD, 65
OPTIONS, 65
POST, 65
PUT, 65

milestones, planning responsive
design, 56–58

Mirror API (Google Glass), 20
modern browser architecture, 25–26
modules, PhantomJS, 110
Multichannel Retailers (quotes)

report, 3

N
navigationStart property (Perfor-

manceTiming object), 38
Network layer (network stack), 63
network speeds, 53–54
network stack, 63–64

Application layer, 64–67
HTTP requests, 65–66
HTTP Responses, 66–68

Data Link layer, 63

http:///

158  |   INDEX

backend
edge networks, 84–85
implications of cache, 83–84
server-side response, 70–83
Web Application Stack, 69–70
Web Stack, 63–69

continuous Web performance
testing

automaterd headless browser
testing, 108–115

CI (Continuous Integra-
tion), 116–128

feedback loops, 107–108
frameworks

comparison of frontend frame-
works, 148–150

Ripple, 150–152
Semantic UI, 143–148
Skeleton, 139–143
state of frameworks, 129–131
Twitter Bootstrap, 131–135
ZURB Foundation, 135–143

frontend
images, 87–95
lazy loading, 95–105

history of, 15–17
issues with responsive de-

sign, 1–20
mdots, 18–20

pointless redirects, 19–20
resource overhead, 18–19
segmented source code, 18
segmented URLs, 18

observations from competitive
analysis, 1–11

project plans, 49–61
assessment and summariza-

tion of task, 51–56
crafting rough milestones/

timelines, 56–58
dependencies and risks, 58–60
KPIs (Key Performance Indica-

tors), 60
SLAs (Service Level Agree-

ments), 61
scale, 19–20
Web application performance

measuring, 21–30
runtime performance, 40–47
tracking tools, 30–39

Responsive Design + Server-Side
Components (RESS), 12

performance object, 36–38
PerformanceTiming object, 37–39
PhantomJS

installation, 109
modules, 110
sample script, 116–123

picture element, 91–95
Pivotal Labs, Jasmine, 108
planning responsive design, 49–61

assessment and summarization of
task, 51–56

crafting rough milestones/time-
lines, 56–58

dependencies and risks, 58–60
KPIs (Key Performance Indica-

tors), 60
SLAs (Service Level Agree-

ments), 61
pointless redirects, mdots, 19–20
POST method, 65
properties

Memoryinfo object, 46
PerformanceTiming object, 38–39
userAgent, 111

PUT method, 65

Q
qualitative indicators, 22–23
quantitative indicators, 22

R
real user monitoring (RUM), 35
redirectEnd property (PerformanceTi-

ming object), 38
redirectStart/ property (Perfor-

manceTiming object), 38
rendering engines, 25
request headers (HTTP Re-

quests), 65, 66
request line (HTTP Requests), 65
requestStart property (PerformanceT-

iming object), 38
resource loadiong, 111
resource overhead, mdots, 18–19
responseEnd property (Perfor-

manceTiming object), 38
responseStart property (Perfor-

manceTiming object), 38
responsive design

absence of SLAs (Service Level
Agreements), 14–15

http:///

INDEX   |  159

Speed Index (WebPageTest), 30
speed, perception of, 23
srcset attribute, 88–91
state of responsive frameworks, 129–

131
state of the industry

absence of SLAs (Service Level
Agreements), 14–15

history leading to current
state, 15–17

issues with responsive de-
sign, 1–20

mdots, 18–20
pointless redirects, 19–20
resource overhead, 18–19
segmented source code, 18
segmented URLs, 18

observations from competitive
analysis, 1–11

scale, 19–20
status codes (HTTP responses), 23
status line (HTTP Responses), 66
summarization of task, planning

responsive design, 51–56
SYN-ACK (synchronize-acknowledge)

messages, 23
synchronize-acknowledge (SYN-ACK)

messages, 23
synchronize (SYN) messages, 23
synchronous calls, impact on run-

time performance, 41
SYN (synchronize) messages, 23
System module (PhantomJS), 110

T
TCP/IP (Transmission Control

Protocol/Internet Protocol)
connections, 23

TCP (Transmission Control Protocol)
three-way handshake, 23

test function, 119
testing Web performance

automated headless browser test-
ing, 108–115

CI (Continuous Integra-
tion), 116–128

feedback loops, 107–108
testsToRun array, 118
Thornton, Jacob, 131
timelines, planning responsive de-

sign, 56–60

responsive sites, dedicated sites
versus, 5–7

RESS (Responsive Design + Server-
Side Components), 12

Ripple, 150–152
risks, planning responsive de-

sign, 58–60
rsponsive sites

dedicated sites versus, 5
RUM (real-user monitoring), 35
runtime performance (web

apps), 40–47
Frames per second (FPS), 42–44
memory profiling, 44–47

S
Safari, 25
Scientiamobile home page, 76
Search Agency, 3–4
segmented source code, mdots, 18
segmented URLs, mdots, 18
Semantic UI, 143–148

directories, 145
evaluation, 148
home page, 144
sample website, 147

sequence diagrams
anti-patterns, 17
negotiation between browser and

web server, 24
serving device-appropriate experi-

ence, 13
server-side response, backend, 70–83

device detection services, 74–83
inspection of User Agent, 72–74
sample code, 79–83

Service Level Agreements
(SLAs), 14–15, 61

serving a dedicated experience (pat-
tern), 12

Skeleton, 139–143
evaluation, 143
home page, 140
sample website, 142
website boilerplate, 141

SLAs (Service Level Agree-
ments), 14–15, 61

Souders, Steve, 87
Source Code Management page (jen-

kins), 126
source element, 91

http:///

160  |   INDEX

home page, rendered for smart-
phone, 2

lazy loading, 101
Web Application Stack, 69–70
Weber, Jason, 36
WebKit, 25
Web Page module (PhantomJS), 110
WebPageTest, 30, 34–35
web performance optimization

continuous performance testing
automated headless browser

testing, 108–115
CI (Continuous Integra-

tion), 116–128
feedback loops, 107–108

measuring, 21–30
runtime performance, 40–47
tracking tools, 30–39

Web Performance Working
Group, 35–36

Web Server module (Phantom-
JS), 110

Web Stack, 63–69
Charles (inspecting network traf-

fic), 68–69
network stack, 63–64

Application layer, 64–67
Data Link layer, 63
Network layer, 63
Transport layer, 64

Wireless Universal Resource FiLe
(Wurfl), 75–79

work flow, CI (Continuous Integra-
tion), 117

Wurfl Cloud, 76–79
WurflCloudClient.js file, 80
Wurfl (Wireless Universal Resource

FiLe), 75–79

Y
YSlow reports (PhantomJS), 113

Z
ZURB Foundation, 135–139

evaluation, 139
home page, 136
installation, 137
sample website, 138

Timeline tool (Google Chrome), 43–
44, 46–47

totalJSHeapSize property (Memory-
info object), 46

tracking tools, Web app perfor-
mance, 30–39

PerformanceTiming object, 37–39
waterfall charts, 30–36
Web Performance Working

Group, 35–36
Transmission Control Protocol/

Internet Protocol (TCP/IP)
connections, 23

Transmission Control Protocol (TCP)
three-way handshake, 23

Transport layer (network stack), 64
Twitter Bootstrap, 131–135

evaluation, 135
home page, 132
installation, 133
sample website, 134

U
UI layer, browser, 25
unit testing frameworks, 108
unloadEventEnd property (Perfor-

manceTiming object), 38
unloadEventStart property (Perfor-

manceTiming object), 38
usedJSHeapSize property (Memory-

info object), 46
User Agent

inspection, 72–74
strings, 73

userAgent property, 111
User-Agent request header, 66

V
validating web performance, 113–

115
variables, async, 118
Vary (HTTP response header), 67
viewing distance, average distances

for various devices, 53
viewports, 52

W
waterfall charts, 30–36

home page, rendered for desk-
top, 3

http:///

[About the Author]

Tom Barker has been a sotware engineer since the ’90s,
focusing on the full stack of web development. Currently,
he is Director of Sotware Development and Engineering at
Comcast, an adjunct professor at Philadelphia University,
a husband, a father, an amateur power liter and armchair
philosopher. He is obsessed with elegant sotware solutions,
continual improvement, reining process, data analysis, and
visualization.

http:///

http:///

http:///

http:///

http:///

http:///

	Preface
	Chapter 1: State of the Industry of Responsive Design
	The Problem with Responsive Design
	Summary

	Chapter 2: Primer on Performance of Web Applications
	The Basics of Measuring Performance
	Tools to Track Web Performance
	Web Runtime Performance
	Summary

	Chapter 3: Start with a Plan
	A Journey Down the Slippery Slope
	Project Plans
	Summary

	Chapter 4: The Backend
	The Web Stack
	Web Application Stack
	Responding on the Server Side
	Implications of Cache
	Edge Side Includes
	Summary

	Chapter 5: The Frontend
	Working with Images
	Lazy Loading
	Summary

	Chapter 6: Continuous Web Performance Testing
	Maintaining a Steady Course
	Automating Responsive Web Performance Testing
	Continuous Integration
	Summary

	Chapter 7: Frameworks
	Looking at the State of Responsive Frameworks
	Twitter Bootstrap
	ZURB Foundation
	Skeleton
	Semantic UI
	A Comparison of Frontend Frameworks
	Ripple
	Summary

	Index

