
www.allitebooks.com

http://www.allitebooks.org

HOW TO
DESIGN

AND WRITE
WEB PAGES

TODAY

www.allitebooks.com

http://www.allitebooks.org

Recent Titles in
Writing Today

How to Write about the Media Today
Raúl Damacio Tovares and Alla V. Tovares

How to Write Persuasively Today
Carolyn Davis

www.allitebooks.com

http://www.allitebooks.org

HOW TO
DESIGN

AND WRITE
WEB PAGES

TODAY

Karl Stolley

Writing Today

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2011 by Karl Stolley

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, except for the inclusion
of brief quotations in a review, without prior permission in writing from the
publisher.

Library of Congress Cataloging-in-Publication Data

Stolley, Karl.
 How to design and write web pages today / Karl Stolley.
 p. cm. — (Writing today)
 Includes bibliographical references and index.
 ISBN 978-0-313-38038-9 (hardback) — ISBN 978-0-313-38039-6 (ebook)
 1. Web sites—Design. I. Title. II. Series.
 TK5105.888.S76 2011
 006.7—dc22 2010051317

ISBN: 978-0-313-38038-9
EISBN: 978-0-313-38039-6

15 14 13 12 11 1 2 3 4 5

This book is also available on the World Wide Web as an eBook.
Visit www.abc-clio.com for details.

Greenwood
An Imprint of ABC-CLIO, LLC

ABC-CLIO, LLC
130 Cremona Drive, P.O. Box 1911
Santa Barbara, California 93116-1911

This book is printed on acid-free paper

Manufactured in the United States of America

www.allitebooks.com

http://www.allitebooks.org

To Patricia Sullivan

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Series Foreword ix

Preface xi

Acknowledgments xxi

PART I. WHAT AM I WRITING?

Chapter 1 Why Write for the Web? 3

Chapter 2 Reading the Web 13

Chapter 3 Creating Web Content 25

Chapter 4 Standards-Based Web Pages 33

Chapter 5 Preparing to Write and Design 43

PART II. ISSUES AND CHALLENGES

Chapter 6 Accessibility 57

Chapter 7 Usability 69

Chapter 8 Sustainability 81

www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS

PART III. STRATEGIES FOR SUCCESS

Chapter 9 Structured Content: XHTML Overview 91

Chapter 10 Presentation and Design: CSS Overview 103

Chapter 11 Rapid Prototyping 121

Chapter 12 Writing with Source in a Text Editor 133

Chapter 13 Page Metadata 147

Chapter 14 Page Branding 159

Chapter 15 Navigation 177

Chapter 16 Text Content 189

Chapter 17 Page Layout 205

Chapter 18 Multimedia Content 225

Chapter 19 Performance and Interaction 235

PART IV. PROBLEMS AND SOLUTIONS

Chapter 20 Site Architecture 249

Chapter 21 Reusing and Dynamically Generating Content 257

Chapter 22 Dynamic Sites in WordPress 267

Chapter 23 Going Live 275

Chapter 24 Tracking Visitors, Sharing Content 281

Resources for the Future 289

Glossary 295

Index 299

www.allitebooks.com

http://www.allitebooks.org

SERIES FOREWORD

Writing is an essential skill. Students need to write well for their
coursework. Business people need to express goals and strategies clearly
and effectively to staff and clients. Grant writers need to target their
proposals to their funding sources. Corporate communications pro-
fessionals need to convey essential information to shareholders, the
media, and other interested parties. There are many different types
of writing, and many particular situations in which writing is funda-
mental to success. The guides in this series help students, profession-
als, and general readers write effectively for a range of audiences and
purposes.

Some books in the series cover topics of wide interest, such as how
to design and write Web pages and how to write persuasively. Others
look more closely at particular topics, such as how to write about the
media. Each book in the series begins with an overview of the types of
writing common to a practice or profession. This is followed by a study
of the issues and challenges central to that type of writing. Each book
then looks at general strategies for successfully addressing those issues,
and it presents examples of specifi c problems and corresponding solu-
tions. Finally, each volume closes with a bibliography of print and elec-
tronic resources for further consultation.

Concise and accessible, the books in this series offer a wealth of
practical information for anyone who needs to write well. Students at

www.allitebooks.com

http://www.allitebooks.org

x SERIES FOREWORD

all levels will fi nd the advice presented helpful in writing papers; busi-
ness professionals will value the practical guidance offered by these
handbooks; and anyone who needs to express a complaint, opinion,
question, or idea will welcome the methods conveyed in these texts.

PREFACE

The arts are made great, not by those who are without scruple in
boasting about them, but by those who are able to discover all of
the resources which each art affords.

—Isocrates, ca. 390 B.C.1

First, a disclaimer. This book will not teach you everything you need to
know about writing and designing for the Web.

No single book can.
But what this book will do is provide you with just about everything

you need in order to learn everything you need to know to write and
design for the Web.

The Web is unique among all forms of digital communication, in
that top to bottom, the Web is language. Language that you can learn
to read and write. From the visual designs of your pages, to the structure
of your pages, to the Web servers that deliver your pages to readers, the
Web is nothing but language. And those who wish to be rhetorically
successful on the Web must command the languages and accompany-
ing concepts behind the languages in order to best communicate with
the unique audience for any given Web site.

Contrary to how software companies market their products, the
ability to write and design and communicate effectively on the Web
is not determined by how much money you have, the software you
can afford to buy, or the whims of a particular computer company.

xii PREFACE

It is determined by how well you can command the languages of the
Web to best communicate with the audience you are hoping to reach
through your Web site and other forms of digital identity that you es-
tablish on the Web.

RHETORIC AND TECHNOLOGY
Even though, for most of us, the Web is a commonplace technology, it
is still tempting to think of it as an entirely new form of communica-
tion. But the challenges of writing for the Web are just a recent devel-
opment in the more than 2,500-year-old tradition known as the art of
rhetoric. And it is rhetoric—not technology alone—that has informed
and guided the writing and design advice in this book.

Now, you are probably more familiar with the word “rhetoric” in its
popular, negative usage: politicians in particular thoroughly enjoy at-
tacking one another for spouting “empty rhetoric” or “heated rhetoric.”
My PhD is in rhetoric, and I often tell my family and friends that it’s
the dirtiest word for which you can get a PhD. All joking aside though,
the popular usage of the word “rhetoric” is unfortunate, and there are
interesting historical reasons for why that negative sense of rhetoric is
so common, but suffi ce it to say that there are also positive meanings
of “rhetoric.”

Rhetoric, in its better sense, is a productive, generative art of com-
municating with other human beings. The art of rhetoric enables peo-
ple to discover, as it is expressed in Aristotle’s Rhetoric, the available
means for developing something to say, and for supporting what they
say.2 Rhetoric also suggests how to establish the best form to say some-
thing in, and to deliver the form appropriately for a particular audience
in a particular context of time, values, and beliefs.

All of these issues—development, form, audience, and context—
are central to maximizing the affordances, or available means, of Web
communication. And all of the Web’s affordances are derived from lan-
guage: the language of the content you post to the Web (your text, im-
ages, multimedia, even page design), of course. But the Web also has its
own languages, including the Extensible Hypertext Markup Language
(XHTML), Cascading Style Sheets (CSS), and ECMAScript, better
known as JavaScript. You can even use language to control Apache,

 PREFACE xiii

the world’s most popular Web server,3 to better deliver your content
across the Web.

DON’T CALL THEM, THEY’LL CALL YOU
But here’s the trick with the Web: you rarely get to actively contact
your audience, the way you do with an email or an instant message.
Most of the time, your audience has to fi nd you—usually through a
search engine, such as Google. But they might also fi nd you via your
Twitter account or a bookmark of your site that someone has posted
to Diigo. On the Web, we have to write so as to make sure that we
are found. And that means writing for other computers, like search
engines, in addition to writing for, and connecting with, human
beings.

Once a human being has found your site, though, your rhetorical
work has only just begun. You’ve been able to attract your audience’s
attention, but now you must work to maintain their attention: not just
for the length of their visit to your site, but for as long as you continue
to maintain your site. And that’s where the long-term challenge of
Web design lies. Anyone can post a site, and anyone can draw people
to that site; but providing an experience that merits return visits (or
job offers, or admission to school, or more customers for your business
or members of your club) is a matter of good content, good design, and
masterful use of the technologies that make up the Web.

In other words, it’s all a matter of good rhetoric.
But learning technologies apart from rhetoric will gain you nothing

more than technical profi ciency. Learning the rhetoric apart from the
technologies and languages will leave you at the mercy of whatever
technology you can afford (or person you can afford to hire) to build
your Web pages for you.

KNOWLEDGE AND VOCABULARY
Writing and designing for the Web is an important end in itself.
But the techniques and approaches that this book offers are also
grounded in a particular view of human relationships to technol-
ogy: writing and designing for the Web is not just about helping

xiv PREFACE

you to work differently with Web technologies, but about deepening
your understanding of them to change how you think, learn, and talk
about them, too.

One thing you will notice about this book is that it does not shy
away from the technical knowledge and vocabulary surrounding Web
writing and design. There is a very good reason for this: more than any
other form of digital writing, writing for the Web is a community activ-
ity. People work together to establish new practices and technologies
for communicating on the Web. Two examples of that are open-source
blogging software such as WordPress4 and the Microformats.org5 com-
munity, which is helping to make the information on Web pages easier
to share and use away from the Web.

But in order to join or even simply benefi t from the knowledge of
any community—whether photographers, football fans, carpenters,
knitters, poker players, medical doctors, or Web designers—you have
to know or be willing to learn the words that that community uses
in addition to engaging in photography, carpentry, poker, or whatever
activity the community is known for. Think for a moment about
your hobbies, your college major, or classes you have taken: in each
of those areas, you have acquired specialized knowledge and techni-
cal words to talk about different subjects in ways that are more so-
phisticated than someone outside of your hobby, college major, or
classroom.

Writing for the Web is no different: its terms may be unfamiliar and
technical, but you know technical terms from other domains already.
Web design and development is just another domain of knowledge.
This book does not expect that you know these terms already, but it
will help you learn them, search the Web for them, and use them to
talk and collaborate with others on Web projects.

ESSENTIAL TOOLS AND TECHNOLOGY
In addition to the knowledge and words, you have to know the tools
that a community uses: in the Web’s case, the tools are the languages—
particularly XHTML, CSS, and JavaScript—that people write with
when they write for the Web, and a few generic pieces of software: a
text editor, a search engine, and a Web browser.

 PREFACE xv

However, this book does not teach Web writing according to one
particular piece of software, and it outright discourages the use of what-
you-see-is-what-you-get (WYSIWYG) software packages, such as Mi-
crosoft FrontPage or Adobe Dreamweaver, because WYSIWYGs fail
Web writers at three important things:

• First, WYSIWYGs fail at supporting revisions to pages. Writ-
ing must always be revised. It never comes out perfectly the
fi rst time. And on the Web, things other than writing will also
need revision: for example, your design might work in one
Web browser, but not another. Web page creation is relatively
easy; Web page revision is not—unless you understand how
you wrote the page initially.

• Second, software packages for creating Web pages fail to pre-
pare you for other, more advanced forms of Web production.
If you want, for example, to build a custom template for a
WordPress site, you have to understand how to write with the
Web’s languages; there is no WYSIWYG system for WordPress
templates. (True, you can download a WordPress template of
someone else’s design, but that diminishes the rhetorical im-
pact your site would otherwise have if it featured your own
unique design.)

• Third, if you learn how to create Web pages only according to
one piece of software, then your abilities will be dependent on
the continued existence of that software. And even if the soft-
ware’s brand name continues to exist, the company behind it
may radically restructure the software’s interface and features—
and you’ll fi nd yourself a beginner all over again.

It was exactly those three problems that I encountered in my own Web
design work that led me to develop new methods to teach my students
to design Web pages the way I write about in this book.

That said, my philosophy toward learning digital communication
technologies is simple: learn them right and learn them well the fi rst
time. If you know or are willing to learn the languages of the Web—
XHTML, CSS, JavaScript—then you will always know how to build
Web pages, regardless of what software you have available. Learning

xvi PREFACE

the languages of the Web, coupled with the concepts for thinking and
talking about them, will make it even easier for you to pick up other
languages, or changes to existing ones, in the future.

The only tools you absolutely have to have to build a Web site are
a Web-friendly text editor, a search engine, and a good Web browser,
all of which are available as free downloads. There are suggestions for
each later in this book.

• A Web-friendly text editor is where you do your writing; it is
the view of your Web page where you do your work. But not
only are you writing the content of a page that someone else
will read, you are also writing, in the Web’s languages, about
your content. And when you learn to write in the Web’s lan-
guages, you can then begin to shape not just what but how
someone will read your pages. You may also fi nd, as I have, that
writing about your content in XHTML and CSS even helps
you refi ne the content itself to better reach your audience.

• A search engine is your portal to XHTML, CSS, and JavaScript
references and guides (so you don’t have to memorize every-
thing about those languages) and your means of discovering
the many communities of people who are devoted to the art of
writing and designing for the Web. A chapter toward the end
of this book lists some trustworthy references and helpful com-
munities to get you started.

• And fi nally, a good Web browser—I recommend Mozilla
 Firefox—is the last essential piece of technology you need. As
a solid development browser, Firefox will provide an initial
 real-world view of your Web pages and, with the help of some
add-ons (also free), will help you to refi ne your page’s construc-
tion and design before you test them on as many other browsers
and devices as you can. (However, the approaches to Web writ-
ing and design suggested in this book will help you to minimize
differences from browser to browser.)

I have also created a Rapid Prototyping Kit (RPK) that is available as
a free download from this book’s companion Web site. The RPK will
help you start building your site and its pages with confi dence, while

 PREFACE xvii

still giving you plenty of fl exibility to tailor your site for the specifi c
needs of your audience.

ORGANIZATION OF THIS BOOK
This book is a complete approach to Web writing and design: it takes
you from learning to read the Web like a writer and designer, up through
posting a complete, customized Web site—even a custom-designed
WordPress blog, if you’re interested. The book itself is organized into a
few key sections:

• “What Am I Writing?” looks at the rhetorical situation of the
Web, particularly why an online identity that you develop and
control is essential to have—and possible to establish even be-
fore you begin to build your Web site.

• “Issues and Challenges” presents the guiding principles for
making informed decisions about every component of your
site—from bits of text and images on individual pages to the
navigation and architecture of your entire site—with regard to
the issues of accessibility, usability, and sustainability. All three
issues are key to building a site that reaches the widest possible
audience while giving you the freedom to constantly revise and
improve (rather than simply maintain) your site over time.

• “Strategies for Success” covers essential techniques and strate-
gies that you need to write and design individual Web pages.
Because a Web site is basically a collection of pages, any suc-
cessful Web site will depend on the solid construction of indi-
vidual pages, including page elements such as branding, text
and media content, and navigation.

• “Problems and Solutions” moves to the challenges surround-
ing construction and maintenance of an entire Web site, such
as developing a site architecture and employing methods to
display repeated content (such as branding and navigation)
over multiple pages from a single fi le. It also looks at setting
up and customizing a popular open-source blog package, Word-
Press, to power your site. This section concludes with a chapter
on tracking visitors, using site statistics packages, and making

xviii PREFACE

 material that you post to your site easier to share with others on
Facebook and elsewhere, so as to broaden your identity across
the Web.

• And fi nally, “Resources for the Future” provides a topical list of
additional print and digital publications to consult to extend
your knowledge of writing and designing for the Web. It also
lists links to galleries of Web design to peruse for inspiration,
and some suggested Google search terms to help you discover
even more resources.

Because this book is about Web design, it will necessarily cover many
technical topics and terms. A glossary is provided to help you manage
the book’s many technical words and concepts.

A NOTE ABOUT SCREEN CAPTURES
To add visual interest and to illustrate certain concepts or techniques, I
have included screen captures of different views of Web pages through-
out the book. These are all of my own making, because I subscribe to
graphic designer Paul Rand’s view that

words about art and design are best explained in the presence of
the artist’s work. The reader, then, can more readily understand
what the writer is talking about, and whether opinions expressed
are based on empirical or theoretical values.6

The examples I’ve provided from my work are not necessarily great. In
fact, I’m just as likely to showcase something that I’ve done previously
that was bad design as I am to show off an example that was good. But
in all cases, because the examples are of my own making, I can talk
honestly and accurately about how they were made, and why.

The limitations of print being what they are, I encourage you to look
at the live versions of all screen captures, which are available via this
book’s companion Web site. In the “Resources for the Future” section,
as well as on the companion site, there are links to some amazing Web
design galleries that you should browse for examples that are far more
inspiring than mine.

 PREFACE xix

HOW (AND WHERE) TO READ THIS BOOK
I have written this book in an environment similar to what I hope you’ll
read it in: near the computer, with Web editor and Web site handy,
browser open, and ready to try new things, learning at every step. You
will also want to use your browser to open this book’s illustration- and
example-rich companion Web site at http://sustainableweb
design.com/book/. The companion site features

• a Rapid Prototyping Kit (RPK) for building your Web site,
• live versions of the examples in this book (plus others),
• up-to-date instructions for working with different technolo-

gies, and
• notes about any corrections or modifi cations to the content of

this book.

You can, of course, read this book straight through. But I suggest
you begin with the “What Am I Writing?” section. Next, read quickly
through the “Issues and Challenges” section, so that you at least expose
yourself to some of the key concerns of Web writing and design. Then,
download the RPK and, with your text editor and Web browser handy,
start working through the “Strategies for Success” section, planning
and building your own basic pages, fi xing any mistakes (we all make
them!), and sketching out page designs for your Web site. You might
want to revisit the “Issues and Challenges” section before moving on to
the early chapters of “Problems and Solutions.”

As you get down to the work of building your site, work through
Chapter 20 to learn how to develop an organized architecture for
your site. Refer also to the Web-available instructions mentioned
in that chapter for getting your own local Web server set up on a
USB drive, so that you can better test and design your pages before
going live.

If you’re enthusiastic about the idea of running your own WordPress-
driven site, read through Chapters 21 and 22; otherwise, save those
for later and look at Chapter 23 and how to go about publishing your
Web site to the open Web. Finally, Chapter 24 will guide you in ways
to both technologically and legally simplify how others may share your
content, extending your identity and reach across the Web.

www.allitebooks.com

http://www.allitebooks.org

xx PREFACE

NOTES
1. Isocrates, “Against the Sophists,” in vol. 2 of Isocrates, trans. G. Nordlin,

Loeb Classical Library (Cambridge: Harvard University Press, 1929), 169.
2. Aristotle, Rhetoric, in The Rhetoric and Poetics of Aristotle, trans. W. R.

Roberts (New York: The Modern Library, 1984).
3. “September 2009 Web Server Survey,” Netcraft.com (September 23,

2009), http://news.netcraft.com/archives/2009/09/23/september_2009_web_
server_survey.html

4. WordPress.org, http://wordpress.org
5. Microformats.org, http://microformats.org
6. Paul Rand, Design, Form, and Chaos (New Haven, CT: Yale University

Press, 1993), xii.

ACKNOWLEDGMENTS

This book is largely the product of teaching students who put an in-
credible amount of trust in the unorthodox thing I encourage them to
do: abandon the constraints of software and learn to write the Web by
hand; not as programmers, but as writers and designers.

I am still grateful, many years later, to the fi rst group of undergradu-
ate students to whom I taught standards-based Web design in a multi-
media writing course—and to David Blakesley, who encouraged me to
teach the course while I was a graduate student at Purdue University.
And I am also grateful to the graduate students in technical communi-
cation and information architecture at Illinois Institute of Technology,
who expressed enthusiasm and encouragement while reading the draft
form of this book in our Web design class. In particular, I offer special
thanks to Laurie Riley, Kelly Schaefer, and April Wedekind, who of-
fered thoughtful responses to this book’s earliest draft chapters, and to
Erica Dekker and Susan Mallgrave for their comments and corrections
when the book was nearly complete. I also thank my graduate assistant,
Freddrick Logan, for his work on this project.

Many thanks to the Mozilla Foundation for its policy allowing writ-
ers to reproduce screen captures of the Firefox Web browser and to
Frank Hecker for answering my questions about the Mozilla Founda-
tion’s policies. Thank you also to Chris Pederick (chrispederick.com)
for creating and maintaining the Web Developer Add-on for Firefox
and for permitting me to showcase it in screen shots throughout this

xxii ACKNOWLEDGMENTS

book. Many thanks also to Don Ho for his work on Notepad++ and for
likewise permitting me to use screen shots of Notepad++ to illustrate
Web writing.

I am grateful for the support of all of my colleagues at Illinois Insti-
tute of Technology in the Lewis Department of Humanities. And this
book would not have taken the shape it has without my many col-
leagues and friends across the fi elds of rhetoric, computers and writing,
and technical communication. Any list of names risks being incom-
plete, but you know who you are. See you on Facebook or Twitter.

I express my sincere thanks to George Butler, my editor at
Greenwood/ABC-CLIO, who approached me to write this book for
Greenwood’s Writing Today series and who was receptive to the idea
of a book that would take a rhetorical, software-neutral approach
to Web design. I am also grateful to Bill Hart-Davidson and Janice
Walker, who served as the manuscript’s reviewers, for their thoughtful
criticisms and encouraging feedback.

I am forever indebted to my mentor Patricia Sullivan, whose pio-
neering work in digital writing and rhetoric continues to inspire me to
pursue the line of research that led to this book. More than that, Pat is
a dear friend whose wisdom is matched only by her generosity and un-
wavering dedication to her students, past and present.

Nancy DeJoy has my profound gratitude for her constant encour-
agement and friendship. More than a few of this book’s chapters were
drafted in Nancy’s kitchen, where we both worked on our separate
projects, punctuating periods of quiet with spirited conversation as we
shared and responded to each other’s writing.

I also thank my brother, Colin Stolley, who answered my questions
about both computer science and the law and the intersection of the
two and offered invaluable suggestions and guidance throughout this
project.

I reserve my deepest thanks and gratitude to my wife, Amy, for her
love and her seemingly boundless capacity for patience and understand-
ing as both a partner and a collaborator.

 P A R T I

 WHAT AM I WRITING?

 This section prepares you to begin writing on the Web. As with all
other parts of this book, you will stand to benefi t most if you read with
a computer nearby so you can try some things out and learn in a more
hands-on way.

 On the Web, we write to be found—an idea the fi rst chapter explores
in depth, along with simple things you can do to immediately begin es-
tablishing or improving your Web presence. Reading is the counterpart
of writing, and the second chapter suggests approaches and tools for
reading the Web like a writer and designer.

 The remainder of this section involves preparing content for your
Web site, including a chapter with a brief history of how Web pages
were made in the past, and how they are made now according to what
are called Web standards , which guide the design advice in this book.

 Finally, this section concludes with a chapter about setting up your
own custom environment to write, design, and test your pages. As we
will see, building great Web pages is more than what any one piece of
software can do, and some of the best software for building Web pages
is available for free on the Web—thanks to many thousands of volun-
teers devoting their time and effort to building quality free and open-
source software.

 C H A P T E R 1

 Why Write for the Web?

 The fact that you are holding this book in your hands (or displaying it on
your screen) might tempt you to skip this chapter. You probably already
have reasons for writing for the Web. But this chapter offers some ideas
about writing for the Web that will help you strengthen and clarify your
own sense of purpose in establishing or improving your Web presence.

 WRITING TO BE FOUND
 Whether you are building a Web site for yourself, or for a business or
organization, there is no more important reason to write for the Web
than to build a stable, custom online identity that you control. It is no
secret that schools and employers search the Web for their applicants’
names as part of their admissions or hiring process. And yet for many
people, the results that show up in Google and other Web search results
are far from ideal in conveying an accurate, well-rounded identity.

 Do a Google search for yourself right now (also known as ego surf-
ing). Be sure and try variations on your name. If your name is Cath-
erine, for example, but you sometimes go by Cathy, search for both
(with your last name, of course!). You might even want to search for
alternate spellings of your name: in Catherine’s case, Katherine and
Kathy. When I ego surf, I also routinely search Google and Google’s
Blog Search for combinations such as:

 • Karl Stolley
 • "Karl Stolley" (with quotation marks, to search fi rst and

last names appearing in sequence)

4 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 • "Stolley, Karl" (with quotes, to search last name fi rst, as
some pages list names that way)

 What kinds of results appear for you? People with common names,
like Jim Smith, may see results for dozens, even hundreds of so-called
 Googlegängers: people with the same name, but vastly different (and
sometimes morally suspect) interests and backgrounds.

 People with multiple Googlegängers will want to whittle down the
results. Try adding to your name the city where you live, your employer,
job title, occupation or professional fi eld, or perhaps the school you at-
tend. For example, I will search for these variations:

 • Dr Stolley technical communication
 • Professor Stolley Illinois Institute of
Technology

 Even for people with uncommon names, the search results may not
be encouraging. There may be no results for your name at all. And if
there are results, they may be scattered, confusing, and downright goofy:
perhaps you were quoted in a story for a school or local news paper. You
might fi nd yourself on a missing classmates page in the alumni area of
a college or university Web site. Or perhaps you used your real name
when replying to an online forum about troubles with the type of car
you drive. You might even fi nd that some well-meaning relative tagged
you in an unfl attering photograph on Flickr.

 In all of those cases, the results do not point positively to one page or
another that fully and accurately represents you. As you look at the list ap-
pearing with your name, ask yourself: “What would a potential employer,
a potential college or graduate school think of these results?” If you’re
working on a Web site for a business or a club, and searching the Web for
its name, ask yourself what potential customers or members would think.

 Scattered, random results are frustrating. And if you have your own
Web site already, it might be even more frustrating to discover that it
does not appear as the number one ranking for your name search on
Google, or even in the top ten.

 The methods for writing and designing Web pages presented in this
book will help you to establish your Web presence and likely improve
your site’s ranking in Google and other search engines.

 WHY WRITE FOR THE WEB? 5

 WRITING TO ESTABLISH AN ONLINE IDENTITY
 Whether you have a Web site or not, one of the best fi rst steps for es-
tablishing an online identity is to begin microblogging. There are a
few sites that support this activity, although perhaps the most popular
is Twitter. 1 Twitter will help you to establish a Web presence by fre-
quently answering the question “What’s happening?” in 140 characters

STAYING SAFE ONLINE

 Everyone’s heard news stories of identity theft, stalking, and other horrors of life

on the Web. There’s no need to recount them here, or to let them act as a deter-

rent for building a Web presence. But there are some simple things you should

do to establish an online presence while keeping yourself safe:

 • Never post or reveal anything online that you wouldn’t want to appear on a

billboard next to a busy highway. (If that doesn’t bother you, then reword it as

“Never post or reveal anything that you wouldn’t want your mother to see.”)

 • Even more important, never post or reveal anything online about

 others —your friends, family, coworkers, colleagues—that they wouldn’t

want on a billboard or seen by their mothers. Just because Uncle Jimmy

willingly posed for that wacky picture at the family reunion doesn’t mean

that he wants his coworkers to see it on Facebook (and then print it and

hang it up all over the break room at work).

 • Don’t reveal information about yourself (or others) in Tweets or Face-

book status messages that could endanger you, your family, or your

property: “Walking home alone late at night along Lincoln Ave”; “Left the

kids at home by themselves”; or “New computer was left at the back door of

the house. Too bad I’m at work.”

 • Many sites—from banks to email providers—feature “security questions”

meant to aid you in accessing your account should you forget your username

or password. Be very careful about choosing security questions whose

answers are available online. If you have listed your hometown or high

school in an online profi le, avoid security questions like “What is your city

of birth?” or “What is your high school mascot?” If a site allows you to write

your own security questions, choose that option, and keep them obscure:

“What was your family language word for milk?” or “Where do you think you

lost your favorite toy in third grade?”

 • Visit http://www.onguardonline.gov to learn more about online

and computer safety.

6 HOW TO DESIGN AND WRITE WEB PAGES TODAY

or less. You can post to Twitter via its Web site, special add-ons to your
Web browser, or stand-alone clients like TweetDeck. 2 It is also possi-
ble to post to your Twitter account from just about any kind of mobile
phone. In Twitter-speak, to post is to tweet.

 Registration on Twitter is quick and free (see the “Controlling
Your Name” sidebar for help choosing a Twitter username). But Twit-
ter might seem ridiculous to those who haven’t tried it: What possible
good can 140-character microblog posts do for establishing an online

USERNAMES AND PASSWORDS

 One problem with using yourname for your usernames is that it’s not terribly

hard for anyone to guess (then again, neither are usernames that become part

of URLs, as they do on Twitter).

 To keep your accounts secure, then, you need to use very strong passwords.

It’s now conventional wisdom to avoid using dictionary words, the username

itself, or an all-number password. Here, though, is a strategy for creating rock-

solid passwords:

 • Use an acronym derived from song lyrics, a line in a poem, or some other

phrase that you’ll remember easily. “Yankee Doodle came to town, riding on

a pony” becomes ydcttroap .

 • Unlike usernames, which I prefer to keep all lowercase, mix in some upper-

case letters (I prefer to do this at the beginning or end of a password); “Yan-

kee Doodle” has uppercase built in: YDcttroap .

 • Swap out letters with numbers and symbols (note that some services disallow cer-

tain characters; adjust accordingly). YDcttroap might become YDc++r0ap ,

with plus signs replacing the Ts, and a zero replacing the lowercase O.

 • If you have no other nonalphanumeric symbols, throw in an exclamation mark

at the beginning or end: !YDcttr0ap

 The acronym will make the password easy to remember; but only time and

your own consistency (e.g., treating letter Os as zeros) will make number- and

 symbol-swapping memorable. This technique works well not only for Web services

like Twitter, but for securing online bank accounts, home wireless networks, and

computer account logins, too. Remember, too, that the longer the password, the

better.

 WHY WRITE FOR THE WEB? 7

identity? The answer lies in many little lessons that Twitter teaches
about Web writing in general:

 • Be interesting. Yes, you can announce to Twitter that you’re
eating a sandwich or walking the dog. But that’s not terribly
interesting. It’s much better to post your perspective on issues
you care about, or share the thinking side of your professional
work or even your hobbies.

 • Frequent activity is essential to any Web presence. Nothing
is more important to Web audiences than fresh content and
signs of life, or what I call living content. Pages that appear not
to have been updated for some time are suspect to Web audi-
ences and might seem to have been abandoned. With Twitter’s
140-character limit, it is easy to update often and without the
extended efforts required of full-on blogs or Web sites.

 • Get to the point, because no one has time. Brevity is key to
Web writing. No one has time, so maximum rhetorical impact
has to be achieved in few words. Frequent use of Twitter will
help you learn the art of minimal expression.

 • Write once, publish (just about) everywhere and often. Some
people use their Twitter account to update their Facebook sta-
tus, and many others use Twitter’s RSS feeds to publish their
latest Tweets to their own custom Web sites. Updating Twitter,
in other words, causes multiple sites to update simultaneously
for these individuals. A single act of writing keeps multiple
online presences fresh with living content.

 • There is more to connecting on the Web than linking to
pages. An essential part of Twitter is following others’ tweets
and, by posting interesting things, others following yours.
Building networks of connections with other humans, and not
just their Web pages, is an essential part of being found on the
Web and establishing an identity that is not an island unto
itself.

 In addition to Twitter, you might also consider establishing a Face-
book account. 3 Both Twitter and Facebook will make it easy for you
to announce your new or redesigned Web site when the time is right.

www.allitebooks.com

http://www.allitebooks.org

8 HOW TO DESIGN AND WRITE WEB PAGES TODAY

CONTROLLING YOUR NAME

 Control as many accounts and register as many domain names of your name or

your organization’s name as possible, even if they go unused. Sites like Namechk*

let you check the availability of usernames over hundreds of sites and services

all at once, but here is a starter list (I use yourname as an example; in my

case it would be karlstolley):

 • The .com , .org , and .net Top Level Domains (TLD) of your name (e.g.,

 yourname.com , yourname.org , yourname.net ; see Chapter 5)

 • Twitter (e.g., twitter.com/yourname)

 • Diigo (e.g., diigo.com/yourname)

 • Facebook (e.g., facebook.com/yourname)

 • Google (used with Gmail and other Google services, e.g., your.name@
gmail.com)

 • Yahoo! (used with Flickr and other Yahoo! services, e.g., fl ickr.com/
yourname ; note that Flickr and other services may require additional

steps to claim URLs/usernames)

 • MySpace, particularly “My URL” (e.g., myspace.com/yourname)

 Of course, if your name is common enough, yourname may not be available.

Consider these alternatives with the example name of Jane Amy Smith:

 • jane-smith (addition of a hyphen)

 • jane-a-smith (middle initial plus hyphens to improve readability)

 • jane-amy-smith (middle name plus hyphens)

 Notice that in all of those examples, “Jane” and “Smith” were parts of the URLs/

usernames. The reason is simple: a Web search for a particular person is going

to include a fi rst and last name; having both in the URL or username may very

well improve the ranking in search.

 Here are other guidelines for those unable to register yourname :

 • Don’t add numbers corresponding to your birthday or birth month/year (see

the “Staying Safe Online” sidebar).

 • Don’t include the place where you live (people move, after all).

 • For some, professions or job titles might makes sense (e.g., jane-smith-
plumber), but career changes are commonplace, too.

 Whatever variation you make, keep it readable and memorable.

 *Namechk, http://namechk.com

 WHY WRITE FOR THE WEB? 9

But Twitter will allow you to start establishing a presence in Google
search results immediately (provided you do not elect to protect your
Tweets).

 Beyond microblogging, there are other general categories of Web
sites where you can begin to establish your online presence by register-
ing and using an account:

 • Social bookmarking sites, such as Diigo, let you share book-
marks to things you fi nd on the Web

 • Social networking sites, such as LinkedIn, MySpace, in addi-
tion to Twitter and Facebook

 • Photo sharing sites, such as Picasa and Flickr
 • Video sharing sites, such as YouTube and Viddler

 WRITING TO CONNECT WITH PEOPLE
 A central idea in this book is that you write and design for the Web
in order to be found. But being found requires more than good search
rankings. You need to go out and fi nd others, too. Twitter, Facebook,

DO UNTO OTHERS . . .

 Simply stated, Don’t let your Web site or social media account (Twitter,

Flickr, MySpace) come to shape the identities of others who have not
 established their own Web presence.

 Once you begin to write and design for the Web, you may fi nd yourself refer-

ring to friends and colleagues by name. I have a simple rule about this: never

refer by full name to someone who does not have a Web site, or who is not

a public fi gure or published author. If someone blogs or Tweets under an alias,

refer to her by her alias, not her full name.

 It is also good practice to avoid referring to confl icts or sensitive situa-

tions in your family, school, or workplace, even if you withhold names. My

own preference is to avoid referring to family, school, or workplace entirely—

unless it’s the kind of news that someone could be given an award for and that

has been announced elsewhere fi rst.

 At the same time, if someone does have a Web site and you are positively

referring to him by name, be sure to link to his site. This helps strengthen the

other person’s Web presence; with luck, and your own kind treatment of others,

they will link back and do the same for you.

10 HOW TO DESIGN AND WRITE WEB PAGES TODAY

and other social Web sites allow you to do this through direct “follow”
or “friend” relationships.

 There are less structured ways of connecting with others, too. Just
as you searched for your own name in Google and other search engines
above, you can search for the names of your friends, peers, and col-
leagues, too. Some of them may have Web sites and blogs. Finding new
people is as simple as searching for interests, professions, or careers and
the words “personal Web site” or “blog.”

 Blogs, in particular, present terrifi c opportunities for connecting
with others, particularly through comment functions available in most
blogging software. Comments allow readers to add reactions and indi-
cate interest in others’ writing, and on many blogs, to share the address
to their own Web sites.

 If you don’t yet have a Web site that you control, you can always
share your Twitter address when you comment on a blog post. When
you do have your own URL, add it to your Twitter profi le. Readers in-
trigued by your comment on someone’s blog, and interested by your
Tweets, could easily follow the link in your profi le to your Web site.

 And once you have your own Web site, particularly if it includes a blog
component (see Chapter 22), regularly linking to others’ sites or blog
posts and portfolio items helps you to establish even more connections
with other people. (Chapter 24 will talk about server statistics and other
means for getting a sense of who is visiting and linking to your site.)

 NEXT STEPS
 On the Web, we write to be found. Twitter is a great fi rst step to estab-
lishing an online presence, as are other social media sites that allow
you to connect with other people. But such sites are just a start; a cus-
tom Web site is still a crucial component of your online identity and
presence. Once you have a custom Web site, your many other online
presences—Twitter, Facebook, Diigo—can be used for lifestreaming: 4
announcing new content, site changes, and so on at your Web site, to
audiences you share a closer connection with already.

 The next chapter will address the important rhetorical skill of read-
ing the Web, which will help you see how others have worked to estab-
lish an identity for themselves.

 WHY WRITE FOR THE WEB? 11

 NOTES
 1 . Twitter, http://twitter.com
 2 . TweetDeck, http://tweetdeck.com
 3 . Facebook, http://www.facebook.com
 4 . Paul McFedries, “Lifestreaming,” Word Spy, http://www.wordspy.com/

words/lifestreaming.asp

 C H A P T E R 2

 Reading the Web

 Every view of the Web is unique, depending on such technological
conditions as the type of computer, the fonts it has installed, the reso-
lution of its screen, and certainly its Web browser. Someone viewing a
Web site on an Apple computer with the Safari Web browser will see a
very different view of a Web page compared to someone on a Windows
computer using Internet Explorer. Someone using a mobile phone to
view the Web will see still another view. And a person with low vision
might not even see the Web, but will hear it read aloud instead.

 For new and seasoned Web writers and designers alike, this is the
most important lesson to learn: every view of the Web is unique, and
every view of the Web should be unique. This is not a failure of the
Web, but rather one of its strengths. The goal of every Web writer and
designer should be to capitalize on the differences and needs of a wide
range of readers to make each unique view as great as possible. (That
means abandoning any attempts to make all experiences of a Web site
exactly the same.)

 Much of this book consists of guidance for writing and designing to
those differences. But the purpose of this chapter is to help you learn to
view and read the Web not as a casual user, but as a writer and designer.
It is important that Web writers and designers appreciate just how dif-
ferently a page may appear under certain circumstances. Understand-
ing these differences from a reader’s perspective will make you a much
more effective writer and designer when it comes to creating pages that
work optimally in many different browsing environments.

14 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 READING WITH MULTIPLE BROWSERS
AND DEVICES

 Many people access the Web using the browser that came installed
on their computers: for Windows users, this means Microsoft Inter-
net Explorer; for Mac users, Safari. But Web writers and designers
need to go beyond their own habitual browser use and look at the
Web in many different ways, using multiple browsers (see the sidebar
“A Web-Reading Toolkit”).

 A WEB-READING TOOLKIT

 To read the Web (and later to test your own designs) in as many ways as pos-

sible, install some or all of the following free browsers and tools:

 All Users (Windows, Mac, and Linux)

 • Mozilla Firefox (http://www.mozilla.com/fi refox)

 • Chris Pederick’s Web Developer Add-on for Firefox (https://addons
.mozilla.org/fi refox/addon/60)

 • Google Chrome (http://www.google.com/chrome/)

 • Opera browser (http://www.opera.com/)

 Windows Users

 • Internet Explorer 8 or above (IE)

 • Microsoft Expression Web SuperPreview (For testing multiple versions of IE)

(http://expression.microsoft.com/en-us/dd565874
.aspx)

 • Safari for Windows (http://www.apple.com/safari/download/)

 • Lynx for Windows (http://home.pacifi c.net.sg/~ken neth
kwok/lynx/)

 Mac Users

 • Lynx for OS X (http://www.apple.com/downloads/macosx/
unix _ open _ source/lynxtextwebbrowser.html)

 If you cannot install software, try a Google search for “browser emulator” to

fi nd sites that offer approximations of the views provided by different browsers.

 READING THE WEB 15

 Try making yourself use a different browser every day for a week
or so. Try alternating between, say, Mozilla Firefox, Google Chrome,
Opera, and Internet Explorer, particularly with sites you visit every day.
You may even fi nd that different browsers are better for different activi-
ties. On Windows computers, I prefer Chrome for most of my daily use:
reading my Gmail account, posting to Twitter, and managing my Web
sites. On Mac, I prefer Safari (whose WebKit engine is also used in
Chrome). And on all computers, I rely on Firefox for Web design and
development. Because Firefox is open source, people have built many
excellent Web design add-ons for it, such as Chris Pederick’s Web De-
veloper Add-on that’s used throughout this book.

 Many Browsers, Few Engines, One Web
 There are dozens and dozens of Web browsers available: Mozilla Firefox
and Opera are two browsers that can be used on Windows, Mac OS X,
and Linux operating systems. Mozilla Firefox is also what is known as an
open-source browser: Firefox’s source code is openly available to everyone.
It is also developed and tested by a large group of volunteers and a smaller
group of paid individuals working for the Mozilla Foundation. Opera,
like Microsoft’s Internet Explorer and Apple’s Safari browser, is a propri-
etary browser, meaning that most of its code is kept secret and is devel-
oped almost exclusively by each company’s employees.

 But unlike Firefox and Opera, some browsers are designed for only
one or two operating systems. Internet Explorer has only been available
on Windows machines since its version 6. Konqueror is a Linux-only
browser. Safari has both its native Mac OS X version and a Windows
version. A look at the Wikipedia page that lists Web browsers will give
you a rough idea of just how many browsers there are, and which are
unique to different operating systems and mobile devices. 1

 The good news for adventurous readers of the Web is even better
news for Web designers: most Web browsers use one of three rendering
engines: Mozilla’s Gecko engine, 2 the WebKit engine (used in Apple
Safari and Google Chrome), 3 and Microsoft’s Trident engine. In many
respects, browsers based on Gecko and KHTML/WebKit generally dis-
play Web pages very similarly. Firefox and Chrome, for example, tend
to display pages the same way; although depending on the operating
system (Windows, Mac OS X, Linux), each browser will have access

16 HOW TO DESIGN AND WRITE WEB PAGES TODAY

to different fonts (see Chapter 10). The Trident engine, which tends
to be the most unpredictable, is used in Internet Explorer and AOL
Explorer.

 If you regularly change up your browser use, you will see that some
Web sites take a hostile approach to readers who aren’t using a specifi c
browser. It’s not uncommon to encounter Web sites ranging from bank-
ing sites to university and corporate intranet/Web portals that demand
that visitors use a specifi c Web browser. People attempting to view the
site with the “wrong” browser may be greeted with nothing more than
a message stating, “Your browser is not supported.” Gee, thanks.

 The approaches to Web design in this book emphasize designing in
a browser-neutral way. The technology and standards exist for browser-
neutral design (see Chapter 4), but it is an eye-opening experience to
see just how many Web sites are still designed to work only on specifi c
browsers.

 ASSESSING PURPOSE AND CONTEXT
 Like any other piece of writing (or design), successful Web sites have
some type of general, controlling purpose. The purpose of a port-
folio Web site, for example, is to promote its creator’s work. A collab-
oratively written blog may have the purpose of advancing views on a
particular topic, from graphic design to a specifi c political position or
issue.

 Yet as obvious as a site’s controlling purpose might be, there are often
other purposes at work. The controlling purpose of the Gmail or Hot-
mail sites is to enable people to access and read their email accounts.
But such sites also have the purpose of generating ad revenue and alert-
ing users of other services on the site. A personal blog may have the
controlling purpose of offering its author a platform for expressing her
views, but it also, through links to blogs that she reads, has the purpose
of establishing her as part of a particular community on the Web.

 A site’s purpose is always situated in many contexts: a charitable or-
ganization’s Web site is situated in a broad context of interested sup-
porters and of other Web sites maintained by similar organizations.
Sometimes a site’s authors deliberately inject their site into a particu-
lar context, even through design. For example, if a particular charity

 READING THE WEB 17

supports high school athletes from underprivileged backgrounds, it
might design its site to look something like ESPN.com. Such a design
choice would help to put the organization in the context of sports and
sport Web sites. (Whether that design choice would increase donations
is another matter. An overly lavish Web site design could conceivably
hurt a charitable organization if it appears that donations are all spent
on Web design!)

 When reading a Web site, challenge yourself to identify its purpose
and context. Sometimes the purpose is expressed in the site’s content:
writing, images, and other media. Design also plays a role in conveying
purpose and context, as does the performance of the site. The next sec-
tions offer lists of questions to consider for reading according to con-
tent, design, and performance.

 KEEPING A DESIGN JOURNAL

 It’s a good idea to maintain a record of sites that you’ve visited and found to be

instructive and inspiring. But design ideas and inspiration can come from many

places. Magazines, billboards, even DVD menus and title sequences to movies

and television shows can all be sources of ideas. Consider keeping one or more

of the following kinds of design journals as you read and, later, as you design

and write:

 • A blank, bound sketchbook. These can be found for cheap at most book-

stores. They’re very useful for cutting and pasting ideas from printed mat-

ter, sketching out your own ideas, and keeping notes about designs that you

fi nd.

 • A Diigo or other social bookmarking account. This is great for keeping

track of inspiring sites. I use a dedicated “design inspiration” tag in my ac-

count. The short notes area that Diigo offers for posts is a good way to briefl y

summarize why the site is enjoyable or inspiring.

 • An HTML or word processor fi le stored on your computer. I never post

negative comments about people’s sites on Diigo, but I’m brutally honest in

the HTML fi le that I store on my computer. A digital fi le helps you keep notes

about ideas that didn’t work, including screenshots and clickable links back

to the site, when that is helpful.

www.allitebooks.com

http://www.allitebooks.org

18 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Reading for Content
 Reading for content is the most obvious way to read the Web. It’s prob-
ably how you read it already. Content is the most important aspect of
any site; readers may tolerate terribly designed Web sites if the site’s
content is still good. Here are some more specifi c questions to guide
you in thinking about the effectiveness of different Web sites’ writing
and design choices:

 • Text: How long are the chunks of text on the site? Does the
site make use of headings and bulleted or numbered lists? Are
the sentences punchy and direct, long and complex, or some
mixture of the two? Does the site offer contextual links in its
text? Are the links to other places in the site? Or to external
sites?

 • Photographs: What kinds of photographs or other images are
presented on the site? Do the photographs appear to be part of
the site’s content? Or are they part of the overall design? If the
photographs are meant as content, are they presented in a way
that makes their content clear or interesting? Are they highly
compressed? Pixelated? Distorted? Do small, thumbnail-sized
photographs link to larger versions of the same image?

 • Video and Media: If a site includes video or animations and
other media, consider the same questions as for the photo-
graphs above. Also, does the video or animation run smoothly,
or does it appear choppy? Is it paced in such a way that it can
be read (if it includes text) or comprehended? If the media
includes sound, does the sound sync with the moving image? Is
the sound too loud or too soft? Distorted or crystal clear?

 • Controls: Are the labels on the site’s navigation area(s) accu-
rately descriptive of the pages they link to? Are the functions
of other page controls, such as those for printing or emailing
the page, made clear? Does the site use icons or text links for
controls, or both?

 • Layout and Design: Layout and design are a kind of content,
too. Are text, photos, and media arranged in a way that makes
sense for the site’s purpose and context? What impressions do
the site’s colors convey? Does the design seem to support the

 READING THE WEB 19

content of the site—or to contradict it? Does the design affect
how credible you believe its author/designer to be?

 Reading for Design
 Effective Web sites carefully knit their designs and content together.
On such sites, the design is clearly much more than a simple container
for holding content. Rather, it reinforces or adds interest to the site’s
content. Users might tolerate sites with solid content but poor design,
but they will love well-designed sites with great content.

 • Text: Are pieces of text presented in a way that is inviting,
that makes you want to read? Are fonts sized and colored ap-
propriately to ensure the text is readable? Does the text stretch
across large areas of the screen? Or is it contained to narrower
columns?

 • Photographs: Are photographs and other art part of the site’s
design? Do they compete for attention with the rest of the site’s
content? Are the photographs presented in true-to-life color? Or
are they monochromatic? Do colors in the photographs appear in
other site design elements—font colors, borders, shaded areas?

 • Video and Media: Have the edges of video and media been
 integrated with the design of the site? Or are they simply placed
on the page with a stark border between the video/media
 content and the page design? Are there buttons for pausing/
playing the media? Do they match the rest of the site design in
terms of their shape and color?

 • Controls: What is it about the site’s controls that make them
clear (or not) as navigation? Do the site’s controls stand out
from the rest of the design and content, or are they integrated?
If there are icons or buttons on the site, do their colors, shape,
and texture seem to fi t with the rest of the design?

 • Layout and Design: Is the design inviting? Does it encourage
you to explore the site’s other content? Would you estimate that
the design is original or a template taken from somewhere else?
Does it seem like the site’s designer had content in mind while
making the design? If the design appears to be custom, do you
think that its creator spent a great deal of time on it?

20 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Reading for Performance
 Some sites are absolutely striking to gaze at on the screen. But where
they reveal their weaknesses is often in performance: pages and/or im-
ages that take a long time to load, navigation and other controls that
behave unpredictably, or slow-moving animations that seem to stop
time itself and make the whole site feel like it’s made of molasses. High
performance rarely reveals itself the way poor performance does, sim-
ply because readers expect pages to load quickly, text to be readable,
and so on.

 • Text: Is the text readable, both in length and in screen pre-
sentation? Has the text been overstyled with bold, italic, and
underline all at once? Are there typos or plain old bad writing
that slow down your reading? Do contextual links take you to
misleading places?

 • Photographs: Are photographs sized appropriately? Are they
worth the download time? Does the site have physically small
photographs that seem to take forever to load? Do the photo-
graphs have an appropriate amount of detail and clarity for the
subject matter that they convey?

 • Video and Media: Do video and media elements stream? Or
must you wait for the whole fi le to download before it begins
to play? Do Flash movies contain some sort of preloader to in-
dicate download activity while you wait for the movie? Are
there any media elements, particularly sounds, that play auto-
matically when you load a page? Are there controls for starting,
stopping, or skipping any media elements? Does the presence
of media elements make other actions, like scrolling down the
page, seem choppy or slow?

 • Controls: Do site navigation controls behave predictably? If
there are any movements or pop-ups involved, is it easy to control
them with your mouse? Are the movements or pop-ups distract-
ing? Or do they clarify events that are happening as you use the
site? Do links open up in new windows, or the same window?

 • Layout and Design: How quickly does the page content ap-
pear with its full layout? As the page loads, do items appear
one place on the screen, and then jump into place elsewhere?

 READING THE WEB 21

As you move from one page to another in the same site, does it
take a long time for the page to be “redrawn,” or does the design
appear to be almost static, with only the content changing?

 Reading by Breaking
 In addition to looking at sites in modern, graphical browsers like Fire-
fox, Safari, and Opera, it is instructive to view sites in the Lynx browser
or a Lynx emulator, which provide text-only views of a site. Viewing a
site as text only will give you a sense of what will be read aloud to low-
vision readers, and in what order, when they visit a site. Lynx will also
reveal what some mobile phone browsers may render.

 For a more nuanced way of looking at a site with certain features dis-
abled, install the Web Developer Add-on for Firefox. With it, you can
choose to disable any JavaScript on a site, disable the display of images,
and even disable the page’s CSS.

 “Breaking” a page in those ways gives you more than a view similar to
users without JavaScript, image display, or CSS. It also gives you hints
as to how a page has been made: if you turn off CSS, for example, and
the page’s design barely changes, it means the page’s author used out-
dated, HTML-based methods for designing the pages (see Figures 2.1
and 2.2). With CSS off, there should be no design other than default
browser styles (see Figures 2.3 and 2.4). If JavaScript is disabled and
content disappears, the site’s author probably uses JavaScript to gen-
erate content rather than placing the content directly in the HTML
where it belongs.

 • Text: Do the site’s headings and lists still appear to be headings
and lists in default styling in Lynx or with CSS disabled? Are
all contextual links still clickable and usable in the absence of
JavaScript? Does the text refer to any missing photographic
or media content in a way that makes the site confusing or
 unusable?

 • Photographs: Does alternate text appear for missing photo-
graphs? Is the text a meaningful alternative, one that would be
useful to someone without the ability to view the site’s images?

 • Video and Media: Is there any alternate content offered for
video and other media, particularly when the site is viewed

22

 Figure 2.2. The same design as Figure 2.1, but with CSS disabled. Because
the design used outdated HTML properties, it is virtually identical when CSS
is disabled.

 Figure 2.1. An old course Web site that I created with HTML-based design.
Figure 2.2 has CSS disabled, but the design is basically the same.

23

 Figure 2.3 A course Web site that I created with CSS-based design, about a
year after the one in Figures 2.1 and 2.2. Figure 2.4 has CSS disabled, leaving
no traces of the design.

 Figure 2.4. The same design as Figure 2.3, but with CSS disabled. All that is
left is the default browser styling—evidence of a modern, CSS-based design.

24 HOW TO DESIGN AND WRITE WEB PAGES TODAY

in Lynx? Does disabling JavaScript cause Flash movies to no
longer display/load? Are there links to download the media for
viewing/hearing outside of the browser?

 • Controls: If JavaScript is disabled, is it still possible to navigate
the site? Do any page functions cease to operate in terms of
printing, sharing, and so on? Are image galleries still browse-
able? If images are disabled, do you see alternate text for but-
tons or other controls?

 • Layout and Design: Even in Lynx, are headings, paragraphs,
and lists clear? Or does text run together or seem to be spaced
in strange ways? When disabling CSS, is a page still useful in
terms of the order the content appears in? Is the page useful/
navigable in mobile devices, or when using the “Small-Screen
Rendering” in the Web Developer Add-on (found under the
Miscellaneous menu)?

 NEXT STEPS
 There is no one best way to write a site’s content, create its design, or
ensure its performance. But reading a variety of Web sites—the ones
you use everyday, plus some of the gallery sites suggested at the end of
this book—will help you to develop a sense of the range of approaches
to building Web sites. Reading a variety of sites for design and perfor-
mance will also help you get inspired to start working on your own
design.

 But content is still the most important aspect of a site. In the next
chapter, we will look at how you can begin gathering and creating con-
tent for your Web site while you begin to learn the Web writing and
design technologies covered in “Strategies for Success.”

 NOTES
 1 . Wikipedia, “List of Web Browsers,” http://en.wikipedia.org/wiki/

List_of_web_browsers
 2 . Mozilla Developer Center, “Gecko,” https://developer.mozilla.org/en/

gecko
 3 . The WebKit Open Source Project, http://webkit.org/

 C H A P T E R 3

 Creating Web Content

 The content for your site is essential to have on hand when design-
ing Web pages. Although you can work with dummy content, such as
 Lorem ipsum text, 1 stock photographs, and so on, site designs emerge
more organically from their real content. Designs, in turn, will shape
how your content is prepared: if you have a content area that is a cer-
tain number of pixels wide, that will guide the dimensions for sizing
your images.

 This chapter is an overview to preparing content for the Web. Spe-
cifi c aspects of content creation and revision will be explored in greater
detail throughout the rest of the book. But the ideas here will help you
to start gathering, creating, and preparing the written, photographic,
audio, and video content for your Web site immediately, in formats
that are Web friendly.

 WRITTEN CONTENT
 The written content of your site is crucial to your site being found and
accessible. Even if you are a photographer or a visual artist, search
engines index and allow people to search the writing of your page.
Image searches aren’t image searches at all, but rather searches on
“captions, descriptions, and other contextual information.” 2 Written
content can also be read aloud or presented as Braille, and therefore
made accessible to readers requiring assistive technologies. That is
why all media elements—image, audio, and video—should have text
equivalents.

26 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Web audiences typically expect a Web site’s written content to
be direct and to the point, with plenty of headings and lists to make
the content navigable. Posting to Twitter is a great way to learn to write
more directly: How expressive can you be in 140 characters or less? In
addition to a direct style, written content should be rich with keywords
that you think your intended audience might plug in to search engines.
Writing teachers always teach students to write with thick, rich de-
scription. That approach to writing pays big dividends on the Web: it
helps your ranking in Web searches on key terms, while also helping
you to better communicate with your readers.

 Although I prefer to compose most Web content directly in my
text editor, there is nothing wrong with composing your text (but not
your XHTML or CSS) in a word processor. (Just be sure that you use
the Unicode character set, UTF-8, in your XHTML; see Chapter 9.)

 OPEN-SOURCE SOFTWARE FOR IMAGES, AUDIO, AND VIDEO

 Software for editing photos, audio, and video can cost hundreds, even thou-

sands, of dollars. The good news is that there are many good free and open-

source alternatives to expensive software. All of the software listed here rival or

best commercial-grade software, and work on Windows, Mac, and Linux:

 • Image editing with GIMP: The unfortunately named GIMP stands for GNU

Image Manipulation Program. It is a solid, surprisingly feature-rich and cus-

tomizable graphics package. (http://www.gimp.org/)

 • Audio editing with Audacity: A fully featured audio editor. I personally prefer

Audacity to all but professional-grade audio products. It requires a plugin to

output audio to MP3, but otherwise has everything necessary for preparing

audio for the Web. (http://audacity.sourceforge.net)

 • Video editing with Avidemux: A simple, straightforward video editor. While

it doesn’t have a lot of effects or bells and whistles, that can be a plus if

you’re just learning to cut and edit video. (http://fi xounet.free
.fr/avidemux/). (Your computer may also come with video editing

software, such as Windows Movie Maker or Apple’s iMovie.)

 A Google search for these and other open-source media applications will also

point you to portable versions that can be run on a USB drive, if you don’t have

your own computer.

 CREATING WEB CONTENT 27

Keep in mind the following if you decide to write in your word
processor:

 • Do not waste time doing a lot of formatting in the word pro-
cessor. You’ll be pasting your text directly into XHTML, which
has no visual properties of its own, so any formatting is going
to be lost anyway. An empty line of space between headings,
paragraphs, and lists is more than enough formatting.

 • Separate headings and list items with extra lines of empty
space by using the Enter key. Lines of white space will be use-
ful when you go to add your XHTML markup later. If the visual
formatting in the word processor helps you write, use it. But be
careful of copying bulleted lists from word processors, though,
as the bullet itself often gets translated to an asterisk (*) when
it’s pasted into a text-only environment, like a Web editor.

 • Paste any word processor text into the “code view,” if you are
using a WYSIWYG Web editor. Some WYSIWYGs try to be
helpful by retaining markup to the text copied from word proces-
sor documents, but that markup can be a real pain to edit later.

 • Do not import images into your word processor documents.
Images must be treated in a particular way for the Web (see
Chapter 18). However, if you know of an image you want to
accompany your text, you might make a note of it in your word
processor fi le for future reference.

 • Do not post word processor documents on your site. If you are
creating a portfolio or thinking of posting forms for a small busi-
ness Web site, you might be tempted to post and link directly to
a word processor document. In most cases, it is better to publish
word processor documents in Portable Document Format (PDF),
and then post the PDF to your Web site. Mac users can create
PDFs using the built-in features of the OS X operating system;
Windows users need either the full Adobe Acrobat software, or
an open-source alternative like PDFCreator. 3 (See Chapter 6 for
more information about accessible Web fi le formats.)

 Regardless of where you write, prefer direct sentences and para-
graphs and make good use of headings and lists. Headings and lists help

www.allitebooks.com

http://www.allitebooks.org

28 HOW TO DESIGN AND WRITE WEB PAGES TODAY

readers navigate a page quickly to get a sense of its content, or help
them fi nd the specifi c content returned by a Google search.

 CONTENT IMAGES
 Content images, including photographs, scans, and illustrations, can
help a Web site’s content spring to life. Like all media content, images
must be prepared for the Web in particular ways.

 Preparing images for the Web is a compromise between the size, in
 bytes, of an image fi le and its quality. Image quality is a matter of the

 ESSENTIAL EQUIPMENT

 Capturing images and perhaps audio and video is key to developing original

media content for your Web site. Here is a list of essential equipment that you

should consider purchasing. You may even discover that your school or public

library has some of this equipment available for your use:

 • A digital camera. The quality that even cheap digital cameras provide is

often more than enough for Web purposes. Look for cameras that have a high

optical zoom (3× or above; digital zoom is not terribly useful), a recharge-

able battery, and removable memory cards. But in a pinch, even a cell phone

camera or a Web cam can get you started.

 • A scanner. Good scanners are available for around $100, especially if they

aren’t bundled with a printer/fax machine. For Web purposes, a low-quality

scanner is more than enough for scanning in artwork and printed matter. If

you only have a few things to scan, try to fi nd a scanner at your school or

library.

 • A digital video camera. Many digital still cameras come with some sort

of limited video capability. There are also inexpensive video cameras avail-

able, some of which plug directly into your computer with an onboard USB

connection.

 • A good quality microphone. Computers are very good at capturing audio

that sounds great, provided you have a quality microphone. Stores that cater

to musicians usually have a better selection of microphones available than

electronics retailers. For recording the human voice, look into purchasing a

condenser microphone that comes with its own power source, usually an on-

board battery (just remember to power it off when you’re done recording).

 CREATING WEB CONTENT 29

dimensions (in pixels) of an image and in the case of JPEG (.jpg) im-
ages, a matter of image compression, which removes some data from an
image to reduce its fi le size.

 Always keep copies of your original photographs and scans. Pho-
tographs and images that come off of a digital camera or scanner are
almost never Web ready; they must be resized, compressed, and other-
wise edited fi rst. But keep all of the original image fi les, in case you ever
need to re-edit them.

 Here are some basic approaches to preparing your images for the
Web, which should be saved in either JPEG or PNG format (see Chap-
ter 18 for more about loading media onto your pages):

 • Learn to use the crop and resize functions in your image
editor. Most image editors have fi lters for all sorts of visual
effects, and all of them have controls for adjusting the con-
trast, brightness, and other visual properties of images. But
to start, the two most important features you should learn are
cropping, which helps you cut off the edges of a photograph,
and resizing (sometimes called resampling), which reduces the
dimensions of an image to Web-appropriate sizes.

 • Images for the Web display according to their actual pixel di-
mensions, so coordinate those with your layout. Most image
editors have dots per inch (DPI) or pixels per inch (PPI) settings
alongside their resize function. But Web images display indepen-
dently of any DPI or PPI setting: 72dpi or 96dpi are both com-
mon settings for Web images, but the setting only has an effect
when the image is printed. What matters in the screen display
of Web images is actual pixel dimensions: an 800-pixel-wide by
600-pixel-tall image will display in a Web browser as 800 by 600
regardless of whether the fi le’s DPI is set to 300 or even 1.

 • Different photographs will look best at different compres-
sion rates. When you go to save your image, most image edi-
tors offer some type of slider that varies the compression of
JPEG images. High compression means lighter fi les and faster
downloads, but at the expense of image quality. And image
quality varies under the same compression rate: a picture of the
sky, which has a large area of roughly the same color, will get
ugly, rectangular splotches at high compression rates. Images

30 HOW TO DESIGN AND WRITE WEB PAGES TODAY

with high contrast details, like black letters on a white street
sign, will get little “sparklies” and other compression artifacts
around the high-contrast area. Get to know your image editor
and the way it compresses different images.

 You can fi nd examples of image treatment at the book’s companion
Web site, http://sustainablewebdesign.com/book/ .

 MEDIA CONTENT: AUDIO AND VIDEO
 The focus on this book is textual content and images; however, here
are some rough guidelines for working with audio and video. See the
book’s companion Web site for recommended reading about audio
and video.

 Audio Content
 Audio content destined for the Web should be prepared in MP3 for-
mat; while MP3 is a proprietary fi le format, it is also widely used in all
sorts of desktop and portable digital audio players.

 Preparing MP3 audio fi les is a complex matter, but here are some
basic settings that you should use: output your fi les as 8-bit stereo sound.
Perhaps the most important setting on MP3 fi les is their bit rate; for
voice applications, 64 kilobits per second (kbs) will provide adequate
sound quality, although 128 kbs often sounds noticeably better. How-
ever, the higher the bit rate, the larger the sound fi le.

 Be sure also to record and prepare your MP3 audio at a 44.1 kHz
sample rate, simply because that sample rate is supported by Flash and
other players, and there are no savings in fi le size with MP3s when you
lower the sample rate. For a technical but all-in-one discussion of this,
see http://www.blogarithms.com/index.php/mp3secrets/ .

 Video Content
 Video content is the most complicated material to prepare for the Web.
In addition to shooting and editing your video, it is essential that sound
syncs with motion. For most purposes, posting video on YouTube is an
ideal solution (Chapter 18 lists other, similar sites for video hosting).
First, the videos are stored and transferred from YouTube’s servers, not

 CREATING WEB CONTENT 31

yours. This keeps you from expending large amounts of bandwidth, or
the amount of data your server can serve at any one time, on your own
server. YouTube also does a generally outstanding job of behind-the-
scenes compression and resizing of video, though be sure to consult
their documentation on making and posting videos. 4 Finally, maintain-
ing a YouTube account is yet another way to establish your presence on
the Web. Because YouTube allows you to set up a profi le that can in-
clude a link to your Web site, you may be able to attract YouTube users
to your site.

 The only problem with YouTube is that the code it provides for em-
bedding videos on your Web site does not adhere to Web standards.
(See Chapter 18’s discussion of JavaScript and the SWFObject 2.0,
which addresses this issue.) For testing purposes, though, there is noth-
ing wrong with cutting and pasting the YouTube code. You can swap it
out with the JavaScript-based solution before your site goes live, or as
a future improvement.

 NEXT STEPS
 The work of writing and designing your pages depends on the real con-
tent of your site. Now that you have some idea of how to prepare for the
Web the content you should be gathering and writing, it’s time to look
at what a Web page is, the history of how pages have been made, and
why standards for Web writing and design are so important.

 NOTES
 1 . Lorem ipsum, http://www.lipsum.com/
 2 . Google Web Search Help, “Getting Started: About Google Images,”

http://www.google.com/support/websearch/bin/answer.py?answer=112512
 3 . PDFCreator, http://sourceforge.net/projects/pdfcreator/
 4 . YouTube.com, “Making and Optimizing Your Videos,” http://www.you

tube.com/t/howto_makevideo

 C H A P T E R 4

 Standards-Based Web Pages

 So far we’ve looked at reasons for writing on the Web and a few
approaches to reading the Web with a designer/writer mindset. In
Chapter 3 we covered some of the basics of creating and gathering
content for your site.

 This chapter covers the guiding principles behind well-built pages
to deliver your content according to Web standards. Web standards
are guidelines issued by the World Wide Web Consortium (W3C), an
inter national organization of people associated with technology com-
panies and universities. Its aim is to make the use of Web languages and
protocols uniform across different user agents (UAs), a fancy phrase for
Web browsers and other devices that access the Web.

 Now, the idea of “standards” may seem contradictory to an activity
as creative as Web design. If everyone is to follow Web standards, is
there any room for creativity?

 The answer, of course, is “Yes.” In fact, not only do Web standards
not stifl e creativity, they actually encourage it. Think for a moment
about some of the standards that people have come to rely on. You can
buy any kind of electronic device you want—a blender, a television set,
a guitar amplifi er—and not have to worry that its plug won’t work in
the socket where you live. That one standard frees you to make mojitos
or milkshakes, watch trash TV or high-brow documentaries, and play
blues or heavy metal.

 The design of electrical sockets is standardized, just as are the threads
for light bulb fi xtures, traffi c signals and signage, and the USB connec-
tors on computers. We also have standardized weights and measures,
standards for television and radio signals, and even some standards for

34 HOW TO DESIGN AND WRITE WEB PAGES TODAY

spoken and written language: This is a standard sentence. Standard this
sentence is not (unless Yoda you are).

 If you had to install a different kind of electrical outlet for every de-
vice you own, learn different traffi c-signal patterns from city to city, or
learn to speak a different language for each individual human in your
neighborhood, you’d probably be a hermit who’d never leave the soli-
tary, candlelit comforts of home.

 WHAT YOU WON’T LEARN IN THIS BOOK

 Here is a brief list of Web design practices that you won’t learn in this book.

These are practices as outdated as the belief that the sun revolves around

Earth; run, don’t walk, away from anyone who suggests any of the following:

 • HTML tables to design pages. Used for their intended, structural purpose,

HTML tables are good for one thing: marking up tabular data. Tables for lay-

out present signifi cant accessibility issues and make a page harder to re-

purpose or redesign later. Instead of HTML tables, use CSS layout techniques

(see Chapter 17).

 • Frames and framesets. Another accessibility nightmare, frames are arti-

facts from an era before Web servers could easily include content shared over

multiple pages. Instead of frames, use server-side includes (see Chapter 21).

 • Invisible GIF image spacers. Often used in tandem with HTML tables, invis-

ible GIF spacers are the chewing gum and chicken wire of shoddy Web design.

Instead of image spacers, use CSS layout techniques (see Chapter 17).

 • “Save As HTML . . .” in a word processor. Just because the option is there

doesn’t mean it should be used. Word processors are great for their intended

purpose of word processing, but they are as appropriate for building Web

pages as chainsaws are for fi xing eyeglasses.

 • Adobe Flash for site design. Treat Flash like a chef treats an extremely hot

chili pepper: used in moderation in the right dishes for the right people, it

adds layers of excitement and complexity. But always give people the option

to omit it, and never allow the Flash chili pepper to be eaten by itself (see

Chapter 18).

 For a crash course in these and other problem practices on the Web, visit

 http://www.webpagesthatsuck.com/ .

 STANDARDS-BASED WEB PAGES 35

 WEB PAGES ARE SETS OF INSTRUCTIONS
 Like many digital formats, Web pages are made up of content and sets
of instructions for presenting content.

 However, writers and designers don’t often have to think about the
instructions that present digital content. When you write a word pro-
cessor document or even an email, the blank box or page you type in
lends itself to the impression that what you write is all that there is to
your document. Software dubbed as “What You See Is What You Get”
reinforces this impression.

 But below the deceptively simple surface of a blank email or docu-
ment is an entirely different kind of writing: computer language. That
language does things like ensure that the email address in the To: box
is where the email is ultimately sent, or that when you hit the bold but-
ton in your word processor, the text displays as bold and is saved and
printed that way.

 Most of us rarely think about that language beneath the surface.
We write our documents, print them out, and hand them off; we send
emails or instant messages, or post on Facebook and Twitter, and never
give the underlying code a second thought.

 Or at least that’s what we do until something goes wrong.

 Web Design: A Pessimist’s View
 Everyone has a story about a digital fi le that gets messed up: a word
processor document that mysteriously puts a bullet point next to what
ought to be a paragraph. An email message whose punctuation appears
as question marks. Although it is tempting and sometimes the most
logical thing to assume that the software has simply gone crazy, those
errors and thousands like them often originate in the instructions that
get passed to a program to read the contents of a digital fi le.

 In the case of most word processors, email programs, photo editors,
and many other kinds of software and the fi les the software generates,
there is no hope for a human who wants to fi x the fi le’s instructions
herself. In many cases, both the software and the document it produces
is closed source, meaning that its code cannot be viewed or edited di-
rectly by a human being.

 By contrast, Web pages in HTML and CSS are all open source: go
to your favorite Web browser and chose View > Source, and you will

36 HOW TO DESIGN AND WRITE WEB PAGES TODAY

see the instructions that cause any given page to display as it does. And
not only can you view open source, but you can edit it, too—although
your changes will only appear if the page is yours and you have access
to the server where it is stored.

 Don’t Send a Machine to Do a Human’s Work
 Unfortunately, choosing View > Source on many Web pages is not
a comforting, feel-good experience (see Figure 4.1). It’s usually just
horrifying: miles and miles of unintelligible code appear on even the
simplest-looking Web sites. But in many such cases, the code that
makes up a site has been created by a computer, not a human being.

 Computers are tireless. They are not unlike the broom in The Sor-
cerer’s Apprentice : give computers a set of instructions, and they will
continue to carry out those instructions without complaint or sign of
fatigue. The trouble is, when computers misbehave or do something
that someone does not intend (like adding mysterious bullet points to a
document), digital writers may have no choice other than to start their
projects over from the beginning. Open-source, standards-based Web
design helps you avoid ever having to start over like that.

 Figure 4.1. Source from an old Web page of the author’s. Don’t stare at it too
long; but take heart: Web pages no longer have to be this complicated.

 STANDARDS-BASED WEB PAGES 37

 DESIGNING TO STANDARDS, NOT
SOFTWARE OR BROWSERS

 Many of the bad habits that make for poor Web design (see the sidebar
“What You Won’t Learn in This Book”) originated with Web designers
designing with bad software or to a specifi c browser. The rest originated
with limited or nonexistent support for Web standards, particularly
Cascading Style Sheets (CSS). But these bad habits continue because
some Web designers (and their teachers) are unaware of advances in
how the Web can now be written and designed.

 These advances in Web design fall under the umbrella term of “Web
standards,” a term promoted by a grassroots movement formed in 1998
called the Web Standards Project (WaSP). 1 WaSP, a group of infl u-
ential Web designers who had had enough of browser-based design
 practices, pressured Netscape and Microsoft to adopt the W3C’s speci-
fi cations for the Web’s many languages and protocols in the design of
their browsers. The idea behind Web standards is that no one company
or browser manufacturer controls XHTML, CSS, or any other Web
language. At the same time, all browser manufacturers should support
those standards in their browsers (and all modern browsers do, to vary-
ing degrees). That means a Web page can be authored in a browser-
neutral way, and designers can be relatively certain that their pages will
display and function acceptably in any browser. Note that “acceptably”
is very different from “exactly the same,” which will be an important
distinction when you begin to work with CSS.

 Certain standards have been well supported since the beginning
of the Web, including the Hypertext Transfer Protocol (HTTP) be-
hind the http:// string that appears with Web addresses. Without
HTTP, it would be impossible to reliably transmit a Web page from
a server to a Web browser. The trouble is that what the WaSP calls
“standards” are actually issued under the term “recommendations” by
the W3C. In the heated battle between Microsoft and Netscape in the
1990s known as the “browser wars” (see Berners-Lee for a history 2), the
term “recommendation” had limited infl uence. Representatives from
both Netscape and Microsoft served on the committees, or “working
groups,” that wrote the W3C “recommendations” for XHTML, CSS,
and other key standards. 3 Yet both companies often ignored the stan-
dard specifi cations that they had helped to write.

www.allitebooks.com

http://www.allitebooks.org

38 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 WaSP changed all of that through years of tireless activism. With the
stable releases of Internet Explorer 6 (IE6, in 2001) and Netscape Nav-
igator 6 (NN6, in 2002), both leading browsers provided viable support
for W3C standards, including XHTML and CSS, among other stan-
dards. Web designers could begin to design and write Web pages to the
“recommendations” of the W3C. That is not to say that IE6 and NN6
implemented Web standards precisely. (Even now, no browser follows
all W3C standards to the letter, though some browsers are more stan-
dards compliant than others.) But by 2002, both browsers followed the
W3C’s specifi cations for HTML and CSS closely enough that browser
targeting and browser-specifi c pages should have become a thing of the
past. Should have. Unfortunately, despite improvements in Web browsers’
standards compliance, some Web designers continued to rely on old-
fashioned practices (see the sidebar “What You Won’t Learn in This
Book” for examples).

 VALIDATE THIS!

 One interesting benefi t to designing your pages according to Web standards is

that there is an external, nonvisual method of assessing just how compliant your

Web pages are with the standards. This method is known as validation, which

involves using a validator to check the code of your Web pages against the rules

for the languages you have used, including XHTML and CSS. There are two vali-

dators that you should use throughout your project’s development:

 • The W3C Markup Validation Service (http://validator.w3.org/).

This service, offered by the W3C, allows you to validate your HTML either by

inputting a URL, uploading an HTML fi le, or even copying and pasting your

HTML directly into the validator.

 • The W3C CSS Validation Service (http://jigsaw.w3.org/css-
validator/). As with the Markup Validation Service, the CSS Validation

Service gives you multiple options for checking your CSS.

 As you are writing and designing, if something strange or unexpected happens

when viewing your Web pages in a browser, the fi rst thing you should do is vali-

date your XHTML (even if you suspect a problem with your CSS). If the XHTML is

valid, then validate the CSS. You will learn more about working with the valida-

tors in the “Strategies for Success” portion of this book.

 STANDARDS-BASED WEB PAGES 39

 WEB STANDARDS: A THREE-PART APPROACH
 Later in the book, you will learn exactly what the rules of XHTML are,
and how CSS works to add striking designs to structured content. But
for now, it is only necessary that you understand that standards-based
Web design consists of three primary components. Web standards guru
Jeffrey Zeldman describes these components as structure (XHTML),
presentation (CSS), and behavior (JavaScript). 4 JavaScript is formally
known as ECMAScript, as the standard is issued by ECMA (formerly
the European Computer Manufacturers Association, but which now
goes only by the acronym ECMA). But JavaScript is the generic name
that Web designers use (also, people confuse this point often: “Java” is
not short for JavaScript, but an entirely different language).

 A standards-based Web page, then, is made up of three separate
parts:

 • Structured content in pure XHTML (e.g., a hyperlink in a site’s
navigation)

 • Visual (and even audible) design in CSS (e.g., the styling of
the hyperlink in the site’s navigation)

 • Advanced functionality and enhancement in JavaScript (e.g.,
providing a short preview of the page the navigation hyperlink
links to)

 The JavaScript component that Zeldman labels “behavior” I prefer
to call “performance.” I do this because how a Web page performs, both
with and without JavaScript, is an essential part of solid Web design.
And page performance includes factors such as user viewing prefer-
ences and computer speeds, which tend to fall outside of what would
normally be considered “behavior.” So the three-pronged approach to
Web design described in subsequent chapters emphasizes structure, pre-
sentation, and performance.

 Structure: The XML Recommendation and the
Birth of XHTML
 In February 1998, the W3C issued the fi rst recommendation for Ex-
tensible Markup Language (XML). 5 XML is one of the more widely

40 HOW TO DESIGN AND WRITE WEB PAGES TODAY

supported standard Web languages in existence. But despite being
called a language, XML is actually a standard set of rules for creat-
ing other languages (called “applications,” in XML-speak) that enable
people and computer applications to share structured content with one
another.

 The most important XML application for Web purposes is XHTML
1.0, which appeared as a W3C recommendation in January 2000. 6
XHTML is the HTML language rewritten according to XML’s rules.
In many ways, HTML and XHTML are the same language. But XML’s
rules are much simpler and more consistent than SGML’s, the language
from which the original HTML was created.

 This book promotes the use of XHTML (specifi cally, XHTML 1.0
Strict) and only refers to “HTML” in historical senses (although see
the sidebar “HTML5”).

 In addition to drawing upon XML’s simplicity and consistency,
XHTML also refl ects the spirit of XML, which is to provide structured
information, free from any visual presentation. Old practices in writing
HTML resulted in messes like:

 <FONT face="Arial, Helvetica, sans-serif"
color=#cc6600 size=7>
 The World Wide Web

 HTML5

 There is a new specifi cation for HTML in development, called HTML5.* It is in-

tended to be the successor to HTML 4.01. What is interesting about HTML5 is that

its specifi cation originated in 2004 outside of the W3C by a group that dubbed

itself the Web Hypertext Application Technology Working Group (or WHATWG).

Although it is possible to write pages in HTML5, the specifi cation is still largely

in development.** Learning XHTML 1.0, as this book advocates, will prepare

you to pick up HTML5 later, if you decide to use it rather than XHTML 1.0. There

are also HTML5 resources on this book’s companion site, http://sustain
ablewebdesign.com/book/ .

 *W3C, “HTML5: A Vocabulary and Associated APIs for HTML and XHTML,” http://www.w3.org/
TR/html5/
**WHATWG, “FAQ,” http://wiki.whatwg.org/wiki/FAQ

 STANDARDS-BASED WEB PAGES 41

 Here it is, rewritten according to the rules of XHTML:

 <h1>
 The World Wide Web

</h1>

 XHTML is used to do nothing more than provide meaningful structure
to all of a page’s text content and any media elements such as images,
audio, and video. The “Strategies for Success” portion of this book of-
fers guidance in building structured content in XHTML.

 Presentation: Widespread Browser Support for CSS
 Visual design used to be handled in nonstandard HTML “tag soup,”
as seen above. To add the fonts, color, and size from the old “tag soup”
HTML, Web designers now write with the CSS design language, often
in a separate fi le:

 h1 {
 color: #C60;
 font-family: Arial, Helvetica, sans-serif;
 font-size: x-large;
}

 One thing that makes CSS a better alternative to HTML-based
design is that CSS can completely change the look of a site without a
designer having to rewrite the site’s XHTML. The most famous dem-
onstration of this is the CSS Zen Garden. 7 The Zen Garden is a show-
case of CSS-based designs, all of which use the exact same XHTML.
Have a look; you’ll be amazed.

 CSS also allows you to control the look of your entire site from one
CSS fi le. Changes to that fi le—for example, changing headings to ap-
pear in purple rather than red—are instantly refl ected across your en-
tire site. To redesign a site involves nothing more than changing the
CSS fi le. This also makes sites load faster: the CSS instructions only
have to be downloaded once, which helps Web browsers build your
pages in the browser window very quickly.

 And CSS can change more than just the visual design of a page on
screen. CSS can also be used to specify how a page looks when printed,
removing needless items like site navigation or making visible detailed
copyright information. CSS can be used for assistive technologies, too.

42 HOW TO DESIGN AND WRITE WEB PAGES TODAY

Special CSS properties exist for changing how a Web page sounds when
it is read aloud. That is why CSS can be said to handle “presentation,”
which includes the more specifi c term “visual design.” However, in this
book, CSS is limited primarily to visual design for screen and print. For
more on CSS, see Chapter 10.

 Performance: JavaScript and the DOM
 In standards-based Web design, JavaScript works primarily with the
Document Object Model (DOM) to change what happens when a link
is clicked, to reveal hidden parts of a navigation bar, or even to change a
page design for extremely widescreen views of pages. JavaScript coupled
with the DOM is often called “DOM Scripting,” a term that this book
will use. For more about JavaScript and the DOM, see Chapter 19.

 NEXT STEPS
 Now that you have some sense of where Web standards came from and
why they are necessary for Web designers to know, the next chapter
prepares you to write and design by helping you set up a custom writing,
design, and publishing environment that supports writing and design-
ing with Web standards.

 NOTES
 1 . The Web Standards Project, http://webstandards.org
 2 . Tim Berners-Lee with Mark Fischetti, “Competition and Consensus,”

 Weaving the Web: The Original Design and Ultimate Destiny of the World Wide
Web (New York: HarperBusiness, 2000), 103–21.

 3 . Berners-Lee, Weaving the Web , 91–93.
 4 . Jeffrey Zeldman, Designing with Web Standards , 2nd ed. (Berkeley, CA:

New Riders, 2007), 53–57.
 5 . W3C, “Extensible Markup Language (XML) 1.0,” http://www.w3.org/

TR/1998/REC-xml-19980210
 6 . W3C, “XHTML™ 1.0 The Extensible HyperText Markup Language

(Second Edition): A Reformulation of HTML 4 in XML 1.0,” http://www
.w3.org/TR/xhtml1/

 7 . CSS Zen Garden, “The Beauty in CSS Design,” http://www.csszengar
den.com/

C H A P T E R 5

Preparing to Write and Design

Designing and writing Web pages isn’t a job for one piece of software;
instead, you will want to set up an entire environment for building
your site. Although you will have to purchase a domain name and Web
hosting, almost everything else you need to start writing and designing
Web pages can be downloaded from the Internet for free.

But don’t let the free price tag fool you into thinking that “free”
means lower quality than expensive software. Some of the best Web
development tools—such as the Firefox Web Developer Add-on,1 the
Notepad++ editor,2 and the XAMPP Web server,3 all of which you can
run on a USB drive—are available for free and are better than their for-
pay counterparts. Or, as with the Web Developer Add-on, simply have
no for-pay counterparts.

SELECTING A WEB-FRIENDLY TEXT EDITOR
To write text content and XHTML, CSS, JavaScript, and later PHP
 requires nothing more than a text editor. Windows comes with a text
editor called WordPad (it has Notepad, too, but never use this to edit
fi les for the Web), just as Mac OS X comes with its own editor, TextEdit.
Although either of these can be used in a pinch, they are not well suited
to writing XHTML and CSS, mostly because WordPad and TextEdit
lack syntax highlighting, meaning that they display all text in black.

Here, then, are features to look for when choosing a Web-friendly
text editor; there is also a list of editors that I recommend at the end
of this section.

44 HOW TO DESIGN AND WRITE WEB PAGES TODAY

• Syntax highlighting, or functionality that recognizes XHTML
tags and other language features, and colors them according to
their purpose. Different editors highlight XHTML and CSS in
different ways, using different colors. The colors do not mat-
ter, but the coloring does: it makes XHTML and CSS easier to
read, and much easier to fi nd errors in your code.

• Line numbering, which displays a line number next to each
line in your XHTML and CSS (note that the numbers are not
part of your XHTML and CSS fi les, though). This feature is
very useful for correcting errors discovered in XHTML and CSS
validators, which report errors by the line they appear on.

• Function reference/completion is a feature not available in all
Web editors, but it suggests XHTML tags and CSS properties
as you type or on a particular key command. Note, however,

PORTABLE APPLICATIONS

If you work with different computers at home and at work, or even if you have no

computer of your own but rely on school or public libraries for computer access,

portable applications enable you to use the same applications wherever you go.

Portable applications are software programs that you can run on a USB drive

(sometimes called a “thumb” or “jump” drive) or even an iPod. A 2GB or larger

USB drive provides suffi cient space to install your own set of applications and

take them wherever you go.

There are numerous Web sites that list portable applications that you can

download, but these two sites offer extensive lists:

• For Windows, PortableApps.com (http://portableapps.com/)

lets you download an entire suite of applications, or via the Applications

page, download individual applications. PortableApps.com lists portable ver-

sions of just about every kind of software you need to do Web development:

image editors, audio editors, text editors, and so on.

• For Mac, the best collection of portable applications that I have found

is housed at FreeSMUG.org (http://www.freesmug.org/
portableapps/).

(Note that if you switch between Mac and Windows computers, you might have

to keep two copies of each application, one for each operating system.)

 PREPARING TO WRITE AND DESIGN 45

that some Web editors with this feature may suggest nonstan-
dard tags, so always have a Web-available language reference
with you as you work (see Chapters 9, 10, and 19).

• A built-in File Transfer Protocol (FTP) or Secure File Trans-
fer Protocol (SFTP) client makes it easier to move fi les from
your computer or USB drive to your hosted Web space. Not
all editors have an FTP client built in, but there are plenty of
stand-alone FTP/SFTP clients available.

With those features in mind, here are the free and open-source Web
editors and FTP/SFTP clients I recommend to my students:

• Windows: Notepad++ makes writing XHTML and CSS very
simple through syntax highlighting and other features. It has
a built-in FTP client, but if your Web host requires SFTP, try
WinSCP.4 If you plan to use the lunch hour at work to do Web
development and/or if you want to use the program on a public
computer in a library or a cyber cafe, Notepad++ can be
run from your USB drive (see the “Portable Applications”
sidebar).

• Mac OS X: TextWrangler is a great free editor, also with a
built-in FTP client.5 A solid stand-alone FTP/SFTP program
for Mac is CyberDuck.6

You are not limited to these, of course; there are hundreds more that
a Google search for Web text editor and SFTP client will turn up. Just keep
in mind the features listed above if you choose to use a different one.

NAMING AND ORGANIZING FILES AND FOLDERS
File naming and organization is essential to keep yourself sane while
developing your Web site, and to make sure that you have meaning-
ful URLs on your site that are easy to share. Follow these rules to make
your fi les and folders Web ready:

• Show fi le extensions in your operating system. This is critical.
Many operating systems (Windows, Mac, and Linux) hide fi le

46 HOW TO DESIGN AND WRITE WEB PAGES TODAY

extensions by default. So rather than seeing myfi le.htm listed
in your folder, you’ll see only myfi le. You might also think
you’re saving a fi le as myfi le.htm, when in reality it’s been
saved as myfi le.htm.txt! Do a Google search for “show fi le
extensions” and the name of your operating system to learn
how to reveal fi le extensions on your computer.

• Use only lowercase letters, numbers, and the hyphen. Most
Web servers are case-sensitive, meaning that MyFile.htm is
different from myfi le.htm. By always using lowercase letters,
you and your audience never have to guess the capitalization
on your site’s URLs: there is none. Numbers are safe, as are
hyphens. Do not use any other symbols or punctuation in your
fi le names, as almost all of them (?, &, +, =, etc.) have special
meaning to Web servers.

• Never use spaces in fi le and folder names. All operating sys-
tems allow spaces in fi le and folder names. But spaces cause
trouble on the Web. A fi le saved as research interests.
htm on a computer translates to research%20inter

ests.htm in a Web browser. Instead of spaces, use hyphens:
 research-interests.htm

• Make fi le and folder names as short, direct, and memorable
as possible. resume.htm is preferable to my-complete-
 resume.htm or even my-resume.htm. You want to be able
to tell someone, My resume is at myname dot com slash resume
dot htm.

• Never use “new,” “old,” “current,” or other references to
time or versions in fi le names. new-photos.htm will one
day not be new.

• Use numbers with one or more leading zeros. Serialized
fi le or folder names should begin with one leading zero (e.g.,
photo01.jpg, photo02.jpg) if you expect less than 100
items, or two leading zeros (e.g., photo001.jpg) if you expect
less than 1,000 items. That helps organize the listing of serial-
ized fi les in FTP clients and other fi le and folder views on your
computer.

• Use .htm or .html fi le extension, but not both. Consistency
is key to staying sane. I recommend using .htm on XHTML

 PREPARING TO WRITE AND DESIGN 47

fi les, but if you opt to use .html, always use .html. CSS fi les
should all end in .css; JavaScript fi les should all end in .js.
Again, set your operating system to show fi le extensions.

Be sure to follow those rules for your XHTML and CSS fi les and
your image, audio, and other media fi les, too. One shorthand summary:
name fi les and folders as though you have no shift key or space bar.

SELECTING A BASELINE DEVELOPMENT BROWSER
The next most important piece of equipment in your custom Web
 design setup is a baseline development browser. I recommend Mozilla
Firefox. Because Mozilla Firefox runs on Windows, Mac, and Linux
systems, it is available to everyone. It doesn’t have more advanced

ESSENTIAL FOLDERS

Keeping organized is essential to managing the many components of a Web site.

The Rapid Prototyping Kit (see Chapter 11) uses these folders:

• css: A folder for storing all of your site’s .css fi les.

• gfx: A folder inside of css, which is for storing all of the graphics for your

site. By “graphics,” I mean images that are part of the design and referred to

in the CSS. Photographs and other content images are stored in the media

folder (below).

• js: A folder for storing all of the JavaScript fi les for your site.

• media: A folder for storing all of the media content on your site. The media

folder contains fi ve different folders to help you keep your content organized,

specifi cally:

• audio: A folder for storing any audio content for your site.

• img: A folder for storing any photographs and other content images. The

folder is called img as a reminder to you that these are images used with

the XHTML (image) tag (see Chapter 18).

• pdf: A folder for storing any PDF fi les that your site’s pages link to.

• swf: A folder for storing any published Flash movies that appear on your

site.

• video: A folder for storing any video content that appears on your site.

www.allitebooks.com

http://www.allitebooks.org

48 HOW TO DESIGN AND WRITE WEB PAGES TODAY

standards support, particularly for CSS3, that Mac’s Safari has, but it is
free of the odd bugs that Microsoft’s Internet Explorer is notorious for
(see QuirksMode.org7).

And because Firefox is an open-source Web browser, a large devel-
oper community has developed all kinds of add-ons for Firefox. Many
of these add-ons, like Chris Pederick’s Web Developer Add-on, are tai-
lored specifi cally for Web development (see Figure 5.1).

Note that using Firefox as a baseline development browser does not
mean a return to designing for one specifi c browser. Rather, Firefox is
the Goldilocks choice: not too advanced, not too buggy, but just right.
Web development is a complex activity; limiting early development to
one good browser is a wise choice. My experience has been that Safari
will handle everything that Firefox will, in terms of CSS and DOM
Scripting. Internet Explorer’s oddities are easily and sustainably fi xed
using conditional comments to load a few additional CSS styles (see
Chapter 23).

Figure 5.1. Pederick’s Web Developer Add-on lets you do things like edit CSS
and see your changes instantly in the browser.

 PREPARING TO WRITE AND DESIGN 49

SETTING UP MULTIPLE BROWSERS FOR TESTING
Although Firefox’s popularity is growing (with about 24% mar-
ket share compared to IE’s 60% share in 2010, according to Net
Applications’ Net Market Share statistics8), there are many other
browsers in the world. Once your site is almost ready for posting
to the Web, you will want to have multiple browsers available to
check your site in. (See the sidebar “A Web-Reading Toolkit” in
Chapter 2.)

The one key problem for Web designers who use Macs is that there
is no way, short of running Windows on the Mac itself, to test Internet
Explorer. However, Windows computers are everywhere. Check with
your local library or even your friends and family. Someone is bound
to have a Windows machine. In a pinch, you can look into certain
 browser-compatibility services, which provide a snapshot of how your
page appears in IE browsers. While most services cost money, there are
a few free ones, such as IE NetRenderer.9

BUYING A DOMAIN NAME AND WEB HOSTING
The last key component of a Web setup is your domain and Web
hosting. These are two very different things, but they are often
confused.

• Your domain name is sort of like a welcome mat for a house.
Anyone can go to the hardware store and order a mat that
reads “The Smiths.” But throwing it in front of a random door
doesn’t get you the house!

• Your Web hosting, then, is more like the house. It is the actual
server space where your fi les are stored and perhaps where you
run blogging software like WordPress. With most hosts, your
site is located at a numeric address, or perhaps a URL created
by the hosting company. Neither a numeric address nor a host-
ing company’s URL is particularly memorable, though, so that
is why it’s important to buy the “welcome mat”—the domain
name—that you want to use to direct people to your “house”—
the contents of your Web site.

50 HOW TO DESIGN AND WRITE WEB PAGES TODAY

There are numerous domain name registration sites on the Web. I
will not recommend one particular site over another, but do consider
the following cautions when choosing a company to register your
 domain name:

SCHOOL/BUSINESS WEB ACCOUNTS

Many colleges and universities, and even some high schools and businesses,

provide free Web accounts to students and employees. Avoid these. Thank the

school or business for their generosity, but buy your own domain and hosting.

Here’s why:

• Your Web identity should be independent of your school or employer.

People graduate or change schools, and they certainly leave their jobs. When

that happens, your identity should no longer be associated with the school or

employer (they will probably delete your account and along with it, the iden-

tity you’ve established in search engines). When you own your own domain

name and your own hosting, changing schools or jobs will not impact your

Web identity.

• Free Web accounts rarely have advanced Web server features. You can

usually only store XHTML, CSS, JavaScript, and media fi les on free accounts

(and sometimes, only a few megabytes’ worth); most do not make a database

available to you, and many do not even allow you to run PHP or other server-

side scripts.

• The URLs are ugly and are a pain to work with. The URLs of free

Web accounts tend to be something like http://example
.edu/~yourusername/. That makes using root-relative paths impos-

sible (see Chapter 20), and sometimes the tilde (~) gets encoded by other Web

sites or email programs as %7E, making the URL even uglier, e.g, http://
example.edu/%7Eyourusername/.

• Universities may change the URL structure for accounts at a moment’s no-

tice, or disable certain features. This happened to me when I was in gradu-

ate school; my university one day stopped supporting certain features that

I’d been suggesting to colleagues and students, all of whom had their sites

break. When you purchase hosting, the host wants to keep your business, so

those types of unpleasant surprises are almost unheard of.

If you do anything with a free account, limit yourself to posting a nice standards-

compliant page linking to the site you host at your own domain.

 PREPARING TO WRITE AND DESIGN 51

• Never pay much more than $10 a year for each of the .com,
.org, or .net top-level domains (TLDs) that you buy—and
do buy all three of those TLDs together, if you can afford it.

• Never opt in to any promises of search engine optimization
or other services that registration (or hosting) companies may
offer. Register your domain, and that’s it.

• Buy your domain name from one company, and your hosting
from another. Many Web hosting companies invite you to regis-
ter your domain name with them or to transfer registration for a
domain you purchased elsewhere. My suggestion is to avoid this;
buying your domain name from your Web host might make it
diffi cult for you to move to other hosts in the future. Keep those
two transactions separate, and you will never have to worry
about losing your domain name to a bad hosting company.

There are also thousands of Web hosting companies to choose from.
Here are some general things to know as you select a Web host:

• Hosting generally runs between $5 and $20 a month. Most
reputable hosting will be somewhere within that range. Beware
of hosting that’s cheaper than $5 a month; the old rule of “You
get what you pay for” applies.

• Large or unlimited storage is not necessarily a good thing. A
terabyte of storage might sound like a good thing, but it invites
abuse from people posting huge music or photo collections,
which may slow down the same server your site is on. Unlim-
ited storage might also be used to defl ect customers’ attention
from less attractive features of the hosting service. Generally,
anywhere from 1 to 10 gigabytes (GB) of storage is more than
suffi cient.

• Unlimited transfer or traffi c can also be a bad thing. Again, it
invites abusive customers; 500GB of transfer a month is plenty
for most sites—and fi nd out in advance how much the company
charges for overage fees beyond your allotted data transfer.

Most Web hosts showcase Web sites that are hosted on their servers.
Look through those sites: note how fast they load in particular. While

52 HOW TO DESIGN AND WRITE WEB PAGES TODAY

slow-loading pages on one or two of the sites may not necessarily be
the host’s fault, if all of their featured sites load slowly, look for hosting
elsewhere.

So what features do you look for? Here are some baseline hosting fea-
tures for the long-term growth of your site:

• Linux or Unix-based servers; this information can be hard to
determine for some hosts, so look hard. A Google search for
the hosting company’s name and “operating system” can often
help you discover this information.

• MySQL 5.1 database. Be sure you can have at least three data-
bases. These will be useful if you decide to run blogging or wiki
software.

• Secure Shell access (also known as SSH). Some hosts enable
this by default, but most require you to ask for it. Shell ac-
cess lets you access your server to run certain commands and
is important to have for setting up certain blogging, wiki, or
content management system software.

• SFTP access. Hosts generally offer FTP access, but FTP
 transmits your password in the clear (without encryption),
which can be a security risk to your site. SFTP stands for
“ Secure FTP,” and is often found with hosts that also grant
SSH access.

• PHP 5. Watch out for hosts that are still only offering PHP 4;
good hosts will offer PHP 4 and 5, but encourage you to use 5.

• The Apache Web server with support for per-directory
 confi guration fi les using .htaccess. This feature lets you
customize certain aspects of how your Web site and Web server
function.

Depending on your needs, you might also consider whether a host
offers:

• Log fi les and server statistics; these can help you see who’s
linking to your site, or what search terms they used to fi nd it
(see Chapter 24).

• Email accounts (most hosts offer this).

 PREPARING TO WRITE AND DESIGN 53

• Email lists (essential for business and organizational Web
sites).

• Secure socket layer (SSL), which is essential for e-commerce.
• Hosting multiple domain names; this will allow you to host

your own Web site and perhaps another, such as a community
organization you belong to.

NEXT STEPS
Now that you have an idea of the basic tools and services required for
Web writing and design, know that you’ll discover your own preferences
as you write and design your pages. The great thing about standards-
based Web design is that switching text editors, baseline development
browsers, and even Web hosts will not harm your site (although you
may have to relearn some things). Finding a setup that works for you
and that you’re comfortable with is essential. At the same time, give
yourself time to learn all about the setup you choose. No one under-
stands these things immediately.

In the next few chapters, we will look at accessibility, usability, and
sustainability—a trio of important concerns that everyone writing and
designing for the Web needs to consider.

NOTES
1. Chris Pederick, Web Developer Add-on for Firefox, https://addons

.mozilla.org/en-US/fi refox/addon/60
2. Notepad++, http://notepad-plus.sourceforge.net/
3. XAMPP, http://www.apachefriends.org/en/xampp.html
4. WinSCP, http://winscp.net/
5. TextWrangler, http://www.barebones.com/products/TextWrangler/
6. CyberDuck, http://cyberduck.ch/
7. QuirksMode.org, http://www.quirksmode.org/
8. Net Applications, Net Market Share, “Browser Market Share,” http://

marketshare.hitslink.com/browser-market-share.aspx?qprid=0&qptimeframe=Y
9. IE NetRenderer, http://ipinfo.info/netrenderer/

 P A R T I I

 ISSUES AND CHALLENGES

 Accessibility, usability, and sustainability. Those are the three overarch-
ing and interrelated issues that largely determine the rhetorical success
of a Web site. While having an accessible, usable, and sustainable site
is no guarantee of rhetorical success, having an inaccessible, unusable,
and/or unsustainable site is usually a recipe for rhetorical disaster.

 All three issues are often treated as matters of assessment (is this site
accessible? usable? sustainable?) and are therefore considered only after
the completion of a site. However, accessibility, usability, and sustain-
ability provide powerful guides to the choices you will have to make
throughout the process of Web writing and design. Rather than simple
matters of assessment, all three concerns present long-term, ongoing
challenges.

 The writing and design advice given in this book urges you to con-
sider access, use, and sustainability in every choice that you make, at
every step of the process. And as we will see, making a site accessible,
usable, and sustainable does not have to be a thankless chore, but can
actually help you clarify your work to yourself as you write and design.

 Here is a brief overview of each of the three concerns:

 • Accessibility. Although accessibility is often discussed in terms
of addressing only the needs of disabled people, accessibility is
about equitable access for all, regardless of physical abilities or
means of access. Contemporary Web sites must work on fast
and slow Internet connections, on ultra widescreen desktop
computers and miniature cell phone screens, with keyboards,

56 HOW TO DESIGN AND WRITE WEB PAGES TODAY

touchpads/touchscreens, and mice. Sites must also be accessible
to search engines, or your content will never be found or in-
dexed for others to fi nd in a Web search.

 • Usability. Usability is often associated with “usability testing,”
where trained experts observe targeted users interacting with
a Web site. But usability can also inform your approach to de-
signing for site performance and user expectations. A site that
takes forever to load or otherwise performs poorly makes its use
diffi cult or impossible. If user expectations are not met, as when
site navigation has confusing or even misleading buttons, users
may become frustrated with the site and leave. Beyond sim-
ply ensuring that users can complete a task, usability helps you
earn the good will and attention of your audience. But usability
is not function alone: people like things that function well,
but they like fun and pleasing things even more—Web sites
included.

 • Sustainability. A site that is accessible and usable today must
continue to be so. Digital technologies change quickly and
without much notice, it is true. Still, there are certain design
practices and choices that will better future-proof your Web
site. Sustainability is also about the access and use of a site as
the site grows, or scales. Certain writing and design choices
may be accessible and usable on a site of only fi ve pages. But
what if the site grows to 50 pages? Or 500?

 Each of those issues will be treated in the next three chapters. Refer
to them often as you work on the design of your site, and as you work
through some of the technical matters in the chapters in “Strategies for
Success.”

 C H A P T E R 6

 Accessibility

 Some Web designers dislike the word accessibility , because it can easily
be misunderstood as forcing unacceptable limits on artistic creativity
or even promoting a bleeding-heart political agenda. But this chapter
reframes accessibility in a much broader scope and shows that acces-
sibility can actually encourage creativity, not limit it. We will also see
that accessibility is not beholden to any political agenda, but rather a
rhetorical one: accessibility maximizes the potential size and range of a
Web site’s audience.

 WHAT IS ACCESSIBILITY?
 Accessibility is a Web standard, similar to XHTML and CSS (see
Chapter 4). The World Wide Web Consortium has a group dedicated
to accessibility: the Web Accessibility Initiative (WAI). The WAI’s in-
troduction to accessibility declares that “Web accessibility means that
people with disabilities can use the Web.” 1

 That’s a very limited defi nition. And if a Web designer believes that
disabled people do not use the Web, or that disabled people represent
such a small minority of users that their needs aren’t worth taking the
time to design for, odds are that designer will skip over accessibility
matters entirely. But a remarkable study from 2004 found that some
57 percent of working-age adults in the United States benefi t from ac-
cessible technology, and that this percentage is all but certain to increase
as the population ages. 2 The fact is that 57 percent is no minority.

 Accessible design addresses the needs of disabled users, yes, but
as a product of serving the needs of all people. The accessibility and

58 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 accessible design techniques presented below aim to make sites avail-
able to all users, “without special adaptation or modifi cation” and re-
gardless of their computer equipment or physical ability. 3

 Accessible design accounts for the full range of conditions of user
access. User access is determined both by human conditions, such as
physical or sensory abilities, as well as technological conditions, such
as computer equipment, network connection speeds, and so on. In cer-
tain cases, human and technological conditions are closely related, as
when a particular human condition (such as low vision) necessitates a
technological condition in the form of an assistive technology (such as
a screen reader).

 ACCESSIBILITY STANDARDS

 There are three key resources for accessibility on the Web. Although primarily

oriented toward addressing the needs of disabled people, it is worth your time

to explore each of these:

 • Web Accessibility Initiative (WAI) (http://www.w3.org/WAI/): The

WAI, an organization that publishes a wealth of information on accessibility,

is one of the primary advocates for Web accessibility.

 • Web Content Accessibility Guidelines (WCAG) (http://www.w3.org/
WCAG/): Released as W3C Recommendation WCAG 2.0 in December 2008,

WCAG is a very technical document. Because of this, the design commu-

nity has reacted quite negatively to it, as in Joe Clark’s article “To Hell with

WCAG 2.”*

 • Section 508 (http://www.section508.gov/): “Section 508” refers

to a 1998 amendment to the Rehabilitation Act of 1973, which was meant to

end discrimination based on physical ability within the federal government

and federally funded agencies. Section 508 is specifi cally about information

technologies, such as government Web sites. While Section 508 is not ap-

plied as law to nongovernmental Web sites, the Section 508 guidelines and

technical standards (http://www.access-board.gov/sec508/
standards.htm) are still useful to consider when building an acces-

sible Web site.

 *Joe Clark, “To Hell with WCAG 2,” A List Apart: For People Who Make Web Sites , No. 217 (May 23, 2006),
http://www.alistapart.com/articles/tohellwithwcag2

 ACCESSIBILITY 59

 But in almost all cases, conditions of access—both human and
 technological—are nonnegotiable. They are states. Web designers, no
matter how talented, cannot leverage the technologies of the Web to
transform the computer someone uses to read the Web, any more than
they can change someone’s physical or sensory abilities. Access condi-
tions are states that design should account for, but cannot alter.

 ACCESSIBILITY AS UNIVERSAL DESIGN
 I prefer to treat accessibility as synonymous with a design approach
known as universal design. Universal design, in its best forms, attempts
to serve the needs of all users through a single design—rather than
through multiple designs tailored to different users. The Center for
Universal Design’s Universal Design Defi nition reads:

 The design of products and environments to be usable by all peo-
ple, to the greatest extent possible, without the need for adapta-
tion or specialized design. 4

 One classic example of universal design is a sidewalk that gently slopes
into the curb, down to street level. Not only does that design serve
the needs of people in wheelchairs, but also parents pushing strollers,
travelers pulling roller luggage, and klutzy people (like me) who tend
to trip a lot.

 Certain cities enhance sloping sidewalks with special materials that
both signal the sloping sidewalk’s approach and prevent slipping and
falling in icy weather. In Chicago, where I live, reddish cement plates
with large round bumps are embedded into the slopes; those bumps
are a lifesaver during icy Chicago winters. As an added effect, because
of their red color, the plates add a little visual interest to what would
other wise be the drab gray of city sidewalks.

 But sidewalks are a physical medium and therefore bound to the limi-
tations of the physical world, where one design serves all and is the same
for all. In the digital medium, the Web is in a class by itself in terms of
supporting design techniques that lend themselves to universal design:
one single page or one site serves the needs of all users, but it serves each
user differently. If the sloping sidewalk example were like a universally

60 HOW TO DESIGN AND WRITE WEB PAGES TODAY

designed Web site, the sidewalk would actually change its properties,
automatically, to best accommodate the needs of each pedestrian.

 So while you may encounter advice from accessibility advocates who
suggest creating separate, specialized versions of pages that are geared
for particular devices, for printing, or for people with specifi c disabili-
ties, standards-based Web design enables you to create a single page
that anticipates and addresses the access conditions of all users.

 ACCESSIBLE DESIGN APPROACHES BEGIN
WITH FILE FORMATS

 The Web is an equal-opportunity storehouse, in that you can post just
about any type of digital fi le you’d like to the Web. But just because you
can post any type of fi le does not mean you shouldn’t be thoughtful and
selective about what you do post.

 What has become known as Postel’s Law can guide, among other
things, your choice of digital formats for the Web: 5 Be conservative in
what you do, be liberal in what you allow others to do . 6

 “Be liberal in what you allow others to do” is a foundational user-
centered principle for Web writers and designers: people should be able
to visit your site with whatever browser or device they choose, using
whatever assistive technology they need, and according to any personal
preferences (no JavaScript, no Flash plugin, having text enlarged). To
be liberal in your treatment of site visitors, though, you as a Web de-
signer must be conservative in how you build your site.

 In terms of fi le formats and content, to be conservative in content
construction, build pages with the following:

 • Content structured in XHTML. On the Web, text presented
in well-structured XHTML is the only content that you can rely
on to be accessible, because XHTML is the only format that all
Web browsers, Web-enabled devices, and assistive technolo-
gies can render. That does not mean that designers are limited
only to XHTML and text, but rather that any content must be
presented in XHTML (or another fl avor of HTML).

 • Images presented as JPEGs, PNGs, or GIFs. Most graphics
packages can save images in dozens and dozens of formats. But

 ACCESSIBILITY 61

there are only three that work reliably in all Web browsers.
JPEG and PNG images are generally preferable to GIFs, as
GIFs are limited to 256 colors. (See Chapters 3 and 18 for ad-
ditional information about image formats.) All content images
should have alternative text in XHTML, too.

 And that is it for the conservative list, as far as content goes.
 What’s missing from this list? Plenty, including some very popular

formats, such as word processor documents and PDFs, sound and video
fi les, and Adobe Flash.

 It’s not that your site cannot use those formats; countless Web
sites do. However, anything beyond XHTML text and the three com-
mon image formats must be treated carefully. The challenge is that
no content other than XHTML text and common image formats can
be viewed directly in most browsers without the use of a plugin (e.g.,
the Flash Player) or other third-party application (e.g., Adobe Ac-
robat Reader). If a mobile phone does not have a word processor ap-
plication on it, it will be unable to access word processor documents
posted to the Web. The same problem affects PDFs, Flash, and audio
and video fi les, too: without the appropriate application, or without
a certain level of sight or hearing, people may not be able to access
those formats.

 If you must post PDFs or word processor documents, be sure to alert
users which links point to those kinds of fi les, perhaps by placing the
fi le format in parentheses. You should also include links to download
the Flash Player, Acrobat Reader, or other software required to view
your fi les. Remember, though, not all users will be able to install soft-
ware. So keep your crucial content in XHTML.

 BUILD FROM ACCESSIBILITY, NOT BACK TOWARD IT
 One of the mistakes both beginning and advanced Web designers
make is to delay accessibility considerations until a design is almost
completed. I have learned from observing students in my Web design
classes that this is probably why some designers see accessibility as such
a pain: if addressed only after a design is otherwise in place and ready to
go, building back toward accessibility only slows you down and, worse,

62 HOW TO DESIGN AND WRITE WEB PAGES TODAY

might force you to scrap design components that represent a signifi cant
investment of time and effort.

 Particularly among Web designers who work with DOM scripting
(see Chapter 19), there are two related concepts that are instructive
for building from accessibility, and not back toward it: progressive en-
hancement and its user counterpart, graceful degradation. 7

 • Progressive enhancement is the design approach: each com-
ponent of a Web page builds on another: rather than putting
design instructions directly in XHTML, for example, you build
a really solid structure for your content in XHTML. Then the
design component, written in CSS and kept in its own sepa-
rate .css fi le, is layered by capable Web browsers on top of
the XHTML.

 • Graceful degradation is the corresponding user experience:
all browsers read XHTML; most read CSS. Users with CSS-
enabled browsers have a progressively enhanced experience.
But users with XHTML-only browsers are not punished by the
presence of CSS if the site “degrades” to XHTML-only pre-
sentation. Note that an XHTML-only device, such as a screen
reader, will not provide what seems to a user to be a degraded
experience. Rather, graceful degradation enables an optimal
experience for an XHTML-only device.

 Let me share an example of graceful degradation: After redesigning
a major online writing lab Web site, I received an email from a blind
student who wished to express her gratitude that the new site contained
no design images. (The old site had many, and made it diffi cult for her
to use.) In truth, there were actually plenty of design images on the
site; the difference was that the new site presented them in such a way
that they would improve the experience of users who can benefi t from
a graphical display, without punishing users who cannot. That the stu-
dent thought there were no design images on the site is exactly what
she should have thought (content images, however, are a different mat-
ter; users must be made aware of those if they cannot view them). Fig-
ures 6.1 and 6.2 show how a design-image rich site (Figure 16.1) de-
grades gracefully for text-only display.

 Figure 6.1. A fl yer the author created to promote a course. The page makes
extensive use of CSS background images.

 Figure 6.2. The same page as Figure 6.1, but viewed in Lynx. All of the con-
tent is there, with no intrusion by the graphics in 6.1.

64 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Progressive enhancement, then, is how you should design: start with
a solid foundation of content marked up in XHTML; add design in
CSS; and fi nally, add any advanced functionality that your site needs
using unobtrusive JavaScript (see Chapter 19). Progressive enhance-
ment returns us to Postel’s Law from the last section: Be conservative
in what you do, be liberal in what you allow others to do . In many ways,
what I advocate in terms of accessible design is a very conservative ap-
proach: it is not about using some trendy method to design pages. But
it is a very liberal approach in its view of what users should be able to
do: let them view the page in whatever browser or assistive technology
they have available.

 Once you have designed with progressive enhancement in mind,
graceful degradation is what you should test for: view your site in Lynx,
or in Firefox with the Web Developer Add-on, which allows you to
disable images, CSS, JavaScript, or any combination thereof. (We saw
those accessibility tests in action in Chapter 2; apply them to your own
site, too.) If the site content and controls are still accessible under all
of those conditions, congratulations: your site gracefully degrades, and
your visitors should have few problems accessing it. Continue to test
your site over time, and consider providing your email address or an-
other means for visitors to contact you in case they encounter acces-
sibility problems.

 GOING FURTHER: ACCESSIBLE ENHANCEMENT
 So far, this chapter has looked at fi le formats and a general, progressive
enhancement approach to design. While this chapter has discussed
them in the abstract, later chapters will treat fi le formats and progres-
sive enhancement much more concretely. Here, though, are some
 additional, concrete features you can add to pages to increase their ac-
cessibility: in-page navigation, accessibility attributes in XHTML, and
accessibility-minded uses of CSS and JavaScript.

 In-Page Navigation
 For people who routinely browse the Web on desktop and laptop com-
puters, moving through the contents of a single Web page is usually a
simple matter of using the scrollbars on the browser, the scrollwheel on
a mouse, or in certain cases, the touch pad on a laptop.

 ACCESSIBILITY 65

 On certain devices, such as screen readers and some mobile phones,
scrolling down long pages might be diffi cult or time-consuming. To ac-
count for this, it’s preferable to design sites that have a short accessible nav-
igation area near the top of each page that allows users to jump to major
sections of the page, such as the main content area or the site navigation.

 In the Rapid Prototyping Kit (RPK, see Chapter 11), the header
area of the XHTML includes an unordered list with a class of
 accessibility . There are two links that allow a device to jump
 either to the page content or the site navigation. These accessible links
save users with screen readers from having to listen to all of a page’s
content before they can access the navigation or, conversely, to jump
to the content without having the navigation read aloud fi rst.

 In the RPK, the content area immediately follows the accessible nav-
igation; given that, it might seem silly to have a “Skip to Content” link.
However, the idea behind including it is to inspire confi dence in users,
whether of assistive or mobile devices, that they can control their brows-
ing experience and get right to the part of the page that they seek.

 For graphical browsers, CSS can be used to hide the accessible navi-
gation from view, using a technique discussed in Chapter 14. Sites that
use that technique enable assistive technologies to read aloud the con-
tents of the accessible navigation, while keeping the page from being
cluttered by another navigation element that would be unnecessary for
people experiencing the page graphically on a desktop browser.

 Accessibility Attributes
 The most well-known accessibility attribute in HTML and XHTML
is alt , which provides alternate text for content images loaded in the
image tag, . Your XHTML will not validate if you do not have
an alt attribute on all of your images (attributes and other parts of
XHTML are discussed in Chapter 9). However, alt text is supposed to
be limited to 100 characters. 8 Given the old cliché says that a picture
is worth a thousand words, well, you can see the issue here: 100 charac-
ters (not words) will not come close. (That’s 40 fewer characters than
a Twitter post allows.)

 There are some different options to addressing the limitation of alt ;
the fi rst is the title attribute. It, too, is very limited in length; most
browsers will display title attribute text as a tooltip, but some may limit

66 HOW TO DESIGN AND WRITE WEB PAGES TODAY

the text to 85 characters. There is another attribute, long description
(longdescrip), which allows devices to follow a link to a com-
plete Web page with a longer description. Maintaining separate pages
of description for each of your images is not a very manageable solu-
tion, though, especially given that not all assistive devices support it.
 Chapter 18 suggests other ways to prepare images and other media with
additional text for all users.

 The image tag is not the only XHTML tag with special accessibil-
ity attributes. There are two attributes that can be added to the anchor
tags to assist users in activating page navigation and other important
links: tab index and accesskey .

 • tabindex helps change the order in which links are activated
by using the Tab key on the keyboard; my preference is to run
the tab index on the navigation items, although arguments
could be made in favor of eliminating this entirely.

 • accesskey is an attribute that allows someone to use a key-
board combination to activate a particular link, usually in the
navigation area.

 See the book’s companion Web site at http://sustainableweb
design.com/book/ for examples of using those two attributes to in-
crease the accessibility of your links and navigation.

 CSS and JavaScript to Enhance Accessibility
 CSS and JavaScript do not have to be stumbling blocks to accessibil-
ity. Used appropriately in the right circumstances, CSS and JavaScript
can actually enhance the accessibility of a Web page for users with
capable browsers. For example, CSS enables you to design text to be
far more readable than the default styling Web browsers apply. And
JavaScript allows you to add simple mechanisms that, for example, in-
crease the font size on your pages. I use JavaScript in tandem with CSS
on my course Web sites for just this purpose (see Figures 6.3 and 6.4):
it makes it easy to enlarge the text for projecting during class. But that
enhancement also serves any low-vision students who need an easy way
to view the site in larger font sizes. It’s also possible to refer to alternate
CSS fi les on your pages, a technique that’s mentioned in Chapter 10

 Figure 6.3. The course site for the author’s Web design course.

 Figure 6.4. DOM Scripting makes the course site more accessible for low-
vision visitors, but also aids in projecting content in the classroom. Notice the
sidebar disappears in this mode.

68 HOW TO DESIGN AND WRITE WEB PAGES TODAY

and presented with examples at the book’s companion site, http://
sustainablewebdesign.com/book/ .

 NEXT STEPS
 Accessibility and universal design form the foundation for a rhetori-
cally effective Web site, but ensuring equitable access to a site is only
the fi rst step. Designers and writers must also be concerned about how
and under what conditions users use Web sites, too. In the next chap-
ter, we will look at usability-driven design approaches for creating
usable sites.

 NOTES
 1 . W3C Web Accessibility Initiative, “Introduction to Web Accessibil-

ity,” http://www.w3.org/WAI/intro/accessibility.php
 2 . Microsoft PressPass, “New Research Shows 57 Percent of Adult Com-

puter Users Can Benefi t from Accessible Technology,” http://www.microsoft
.com/presspass/press/2004/feb04/02-02AdultUserBenefi tsPR.mspx

 3 . William Lidwell, Kritina Holden, and Jill Butler, Universal Principles of
Design (Gloucester, MA: Rockport Publishers, 2003), 14.

 4 . The Center for Universal Design, “Universal Design Principles,” http://
www.design.ncsu.edu/cud/about_ud/udprincipleshtmlformat.html

 5 . Ironick, “My History of the (Internet) Robustness Principle,” Ironick:
Contingency, Irony, and Solidarity (2005), http://ironick.typepad.com/ironick/
2005/05/my_history_of_t.html

 6 . Information Sciences Institute, Internet Protocol (1979), http://www
.postel.org/ien/txt/ien111.txt

 7 . Jeremy Keith, DOM Scripting: Web Design with JavaScript and the Docu-
ment Object Model (Berkeley, CA: Friends of Ed/Apress, 2005), 85–86.

 8 . W3C, “HTML Test Suite for WCAG 2.0: Test 3—Image Alt Text Is
Short” (2005), http://www.w3.org/WAI/GL/WCAG20/tests/test3.html

 C H A P T E R 7

 Usability

 In the last chapter, we saw that accessibility is a matter of designing to
account for states or conditions of user access. By contrast, usability is
a matter of designing to account for user behaviors. But it is futile to
design for usability if a site is inaccessible; usability builds on accessibil-
ity. For example, an architect might design the rooms of a building to
be maximally usable to people in wheelchairs by making wide doorways
and placing light switches lower on the wall. But if the only way to get
into that building is by a staircase, all of the usability features in the
individual rooms are essentially pointless.

 Access is about conditions. Usability is about conscious (and un-
conscious) actions that a user can or might take on a Web page or
Web site. Examples of actions are users following links or navigation
buttons to fi nd material on your site or even resizing a browser win-
dow to view other applications (like an email program) while looking
at your site.

 However, the primary usability concerns of basic Web sites come
down to fi ndability and wayfi nding. Findability is a user’s ability to fi nd
relevant information, whether by a result for your site in a search en-
gine or through your site’s navigation and contextual links. Wayfi nding
enables users to establish a sense of where they are in your site, and how
to get to other areas, if necessary.

 To determine whether Web sites are usable involves usability test-
ing, where usability specialists observe actual users interacting with a
site. For individuals designing Web sites on their own, a formal, ex-
tended usability test may not be feasible. But as Steven Krug suggests,

70 HOW TO DESIGN AND WRITE WEB PAGES TODAY

testing your site on even one user—a friend, a family member—is bet-
ter than testing it on none; 1 Jakob Nielsen notes that most serious site
usability problems can be discovered by testing on fi ve users. 2 (The end
of the chapter will suggest ways for you to conduct your own mini
usability tests.)

 Testing has its place. However, usability and usable design principles
can inform how you write and design for the Web from the very earli-
est stages.

 WHAT IS USABILITY?
 Usability, in its most general sense, concerns an interface’s ease of use
and methods for improving ease of use. 3 The key questions usability
experts ask is whether a design is easy for its intended users to use, and
whether it does something useful or valuable for those users.

 But usability can also include emotional dimensions of a Web site.
As usability and emotional design expert Donald Norman has observed,
“Usable designs are not necessarily enjoyable to use.” 4 Designers should
aim to build a site that not only supports the easy accomplishment of a
meaningful or valuable action—commenting on a blog post, locating
an informational page about a site—but that makes the user’s experi-
ence of actions enjoyable. Users perceive designs that are beautiful or
fun as being easier and faster to use, even if laboratory experiments
reveal that a utilitarian design and an emotional design allow people
to accomplish the same task in the same amount of time, or the same
amount of effort. 5

 DESIGNING FOR ACTIVITIES, ACTIONS,
AND OPERATIONS

 I’ll come right out with an embarrassing truth: Web writers and de-
signers (including me) build sites with a wild fantasy in mind. The
fantasy goes something like this: Visitors will open their browsers and
go straight to my Web site, maximizing their browser windows to re-
ally immerse themselves, experiencing the site as the sole focus of their
attention. They will turn off their music and close their instant mes-
senger clients. Nothing will interrupt or otherwise come between them

 USABILITY 71

and a pure experience of this incredible Web site. These imaginary
visitors will thoughtfully consider the site’s craftsmanship, pausing to
refl ect on the gorgeous photographs and stunning design choices. They
will read the pure poetry of every single word, follow every link with
deep interest and fascination, and basically spend as much time reading
and thinking about the site as I spent writing and designing it.

 That never happens. But designing to that fantasy seems to happen
a lot, judging by writers and designers who unselectively post tons of
content and design poor navigation. Designers operating under that
fantasy incorrectly assume that everything on the site will be found
eventually, simply because they also assume their users will look at
everything.

 To develop a more realistic picture of why users visit a site, what
they do there and how, we can use a framework that’s become popular
in human-computer interaction, called activity theory. 6

 A basic component of activity theory is a fl exible, three-tiered hier-
archy for thinking about user behaviors:

 • At the top of the hierarchy is the user’s activity , which is al-
ways motivated by some objective (e.g., using the Web to fi nd
the best price on a DVD, a chili recipe for dinner, or Professor
Smith’s offi ce hours).

 • Activities are carried out through the next level of the hierar-
chy, individual actions (searching on Google, exploring rele-
vant results, reading pages on promising sites closely). Actions
always have a particular goal: returning search results, clicking
a link to explore a result, reading to decide whether the result
is relevant.

 • And individual actions themselves are often executed in part
at the lowest level of the hierarchy, operations (typing, clicking,
scrolling), which are normally carried out unconsciously.

 I have seen many beginning Web designers struggle with thinking
about user activity. Most often, beginners are focused only on generat-
ing content. They may have a lot of really good ideas for the content
they want to present, and some equally interesting ideas for their de-
sign and interfaces. But the points they sometimes forget to consider

72 HOW TO DESIGN AND WRITE WEB PAGES TODAY

are who their users are, what tasks those users will want to complete,
and the broader activity that the users are engaged in that leads them
to a particular site.

 ACTIVITY: WHO ARE YOUR USERS? WHY
ARE THEY AT YOUR SITE?

 Users rarely show up at any Web site randomly, unless they’re using a
site such as StumbleUpon, which exists to show users random but po-
tentially interesting Web sites. 7 And even if they do use such a site,
they are still engaged in a specifi c activity (fi nding new and interesting
Web sites) that might lead them to your site. Activities are defi ned by
the broad objective that people are looking to accomplish when they
visit your Web site.

 For example, an employer looking to hire qualifi ed candidates in
your area of expertise might turn up your resume in a Google search.
A potential member of your club might enter your URL from a fl yer or
postcard. A new customer might fi nd your site by following a link from
an online review of your businesses. More randomly, you might have
written a blog post about a problem and fi x for the mobile phone you
own, which attracts the attention of someone else looking to fi x the
same problem.

 In each of those cases, arriving at your Web site is a product of some
broader activity: a job search, joining a club, hiring a business profes-
sional, or just trying to fi x a phone.

 To arrive at user activities unique to your site, though, it’s essential
to develop a realistic list of groups of your site’s potential visitors. The
more specifi c the list of people, the better; it’d be great if everyone in the
world fl ocked to your Web site. But they won’t. And it would be impos-
sible to design a site that appeals to everyone while still meeting your
own goals for the site. So “everyone” is not a useful category of users.

 For individual portfolio sites and blogs, more concrete groups of peo-
ple might include employers, school admission committees, or even fel-
low hobbyists or colleagues in your profession/fi eld. For businesses, the
list would include customers, shareholders, and even employees. Clubs
and organizations would list current and potential members, donors,
and so on.

 USABILITY 73

 From that list, you will want to think about the explicit objective
that each kind of visitor might have and develop an action list with
items like:

 • Potential employers fi nding my resume
 • Like-minded hobbyists contacting me
 • School admission committees seeking a list of my recent proj-

ects
 • Customers viewing how much our business charges for prod-

ucts and services
 • New club members printing and mailing membership and pay-

ment forms

 Just like the “everyone” audience category, it’s tempting to say, “Em-
ployers looking at every last page of my Web site.” But that rarely, if
ever, happens. Keep your list to specifi c and reasonable objectives.

 ACTIONS: WHAT ARE YOUR USERS DOING?
 Activities are always made up of individual actions. The individual ac-
tions a site visitor takes is the primary concern of usability. And the
most common actions that occur on a Web site can be broken down
into Morville and Rosenfeld’s four general types of information-seeking
behaviors: fi nding everything, fi nding a few quality things, fi nding a
specifi c thing, and refi nding something found before. 8

 Finding Everything That There Is
 Again, this type of behavior is pretty rare, like the fantasy scenario
above. Google and other search engines are left to handle this type
of search, and then individual users search on what the search en-
gines have found. Unless you have a very small site (or a stalker),
do not bank on anyone looking at every single thing on every single
page.

 Some Web sites include a site index page, which is an alphabeti-
cal hyperlinked listing of every single page on the site. A site index
might be useful as a last resort for someone trying to fi nd something
or to see a list of everything. Other sites duplicate the spirit of a site

74 HOW TO DESIGN AND WRITE WEB PAGES TODAY

index by linking to every single page from the navigation area. On
small sites, linking to every page from the navigation may not be an
issue. But on sites with more than a few pages, trying to cram every-
thing into the navigation often results in fl y-out or pop-up menus
that try (and often fail) to manage the information overload. Chap-
ters 15 and 20 will present approaches to simplifying navigation and
building a shallow architecture that make those kinds of workarounds
unnecessary.

 Besides, because fi nding everything is such a rare user goal, it is better
to concentrate your design efforts to address more common behaviors.

 Finding a Few Quality Things
 Finding a few quality things is a more typical behavior. Even photog-
raphy enthusiasts rarely want to see every photograph someone’s ever
taken—just a few compelling ones. Customers don’t have the time or
interest to see every single item that an online electronics shop sells,
and instead prefer a few that fi t their needs and price range. That type
of information-seeking behavior is especially common when users are
not exactly sure what they’re looking for, but have at least a vague
idea.

 Designing for this kind of user behavior can help determine what to
include in your site navigation. For example, you might have a naviga-
tion item that links to an overview of your portfolio; rather than list-
ing every item in the portfolio as part of your navigation, you lead users
to that particular area of your site. Once there, users might encounter
a compelling overview page that uses thumbnail images and persua-
sive written descriptions that entice users to click. As part of provid-
ing wayfi nding, which is key to supporting the goals of browsing-like
behavior, you might visually highlight the Portfolio item on your site
navigation whenever someone is viewing any page related to your port-
folio (see Chapter 15).

 By providing wayfi nding devices such as visual cues in your naviga-
tion, you can encourage users to explore other areas of your site simply
because they can be confi dent of where in your site they are. Finding a
few quality things is, in large part, an exploratory behavior. But a one-
or two-word navigation item, “Resume” or “Design Portfolio,” may not
be enough to entice otherwise curious users to click. A compelling,

 USABILITY 75

hyperlinked image—such as a sample from your design portfolio, if
you’re a designer—elsewhere on your page might be more appealing,
simply because the content of the image may fi t better with the vague
idea of what a visitor to your site is looking for.

 A site with attractive previews and promotional content may even
alter a user’s actions; visitors to a business’s Web site might discover
a product or service that they didn’t even realize that they wanted or
needed previously.

 Finding a Specifi c Thing
 Users are sometimes looking for a specifi c thing. Creating a usable de-
sign for that kind of behavior involves helping users to fi nd what they
know (or reasonably expect) appears on a given Web site. Web site
statistics, which many Web hosts provide (see Chapter 24), sometimes
reveal that this behavior begins with a Web search; I often fi nd that
people have searched Google for my name plus “vita” or “curriculum
vitae,” which are the words for an academic resume.

 Other examples of known items that users often expect include
About and Contact pages. An About page may be a history or biogra-
phy that offers more information about the person, business, or orga-
nization a Web site represents. Users also expect some means for con-
tacting the person or people behind a Web site. Links to these kinds
of specifi c pages should appear in most sites’ navigation areas. A home
page may even have a brief About Us or About Me blurb that links to
the full About page.

 Sometimes users will be so moved and interested by site content that
they will share it as a link on Twitter or Facebook; that may result in a
new user visiting your site on someone else’s recommendation. Such a
user might want to move back up to your site’s overview pages or home
page. A site navigation that uses wayfi nding devices to indicate the
general area of your site that a visitor is in provides a necessary sense
of You are here (see Chapter 15). A link to your home page on every
page, usually in your site’s branding (see Chapter 14), may also benefi t
curious users. The presence of site navigation and home links (and a
compelling design) may actually transform visitor behavior from seek-
ing a specifi c thing, even something recommended by someone else, to
fi nding a few more quality things.

76 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Finding a Thing Found Before
 There is a reason that most Web browsers have a bookmarking function,
and that sites like Diigo are so popular: when someone fi nds something
useful on the Web, they bookmark it to return for future reference.

 Not always, though. We’ve all had the frustrating experience of
vaguely remembering a really interesting page or site, but not having
any exact record of what or where it was.

 This is where whole-page design and especially site branding comes
into play (see Chapters 14 and 17). A strong visual design can help
to cue users as to whether they have been to your site or a particular
page on your site before. Visual cues, such as a memorable image or
color scheme, can also help users to remember a page previously vis-
ited. (That is why I advise against things like randomly displaying one
of a set of images on a page. It’s a fun thing to design, but it is probably
more fun for the designer to create than the user to experience on re-
turn visits.)

 OPERATIONS: HOW DO YOUR USERS
DO WHAT THEY DO?

 Clicking on contextual links, thumbnail images, and navigation items.
Entering text in a text box. Using the Tab key to move through the
links on a page. Each of those are examples of the unconscious op-
erations that support actions on a page. Add to that list more passive
operations, like being able to comfortably read the text of a page (see
Chapter 16), or see an image clearly because it’s not overly compressed
or run at a dinky size (see Chapters 3 and 18).

 When an item is diffi cult to click or simply not clickable, or when
text is diffi cult to read because it’s too small or not run in a high enough
contrast with a background color or image, users experience a break-
down. In a breakdown, something that usually happens more or less un-
consciously suddenly requires concentration and mental effort. Every-
one’s had the experience of going to a site whose navigation required
very precise mouse positioning and clicking—either to activate a de-
sired link or, because of a densely packed navigation, to avoid clicking
the wrong link. Given an information-seeking behavior like fi nding a
few quality things, a diffi cult-to-click navigation bar might be enough
to make a user leave a site.

 USABILITY 77

 The easiest way to build a site that’s usable on the operational level
is to let users be sloppy. Prefer large, clickable areas on links, naviga-
tion items, and images. (A test I often do is to see if I can mouse over
page controls by moving my mouse with my elbow, which offers less
control than my hand.) Provide high-contrast text run in a comfort-
ably large font, with the ability to increase the font size further with-
out breaking the page’s layout, perhaps by employing DOM script-
ing (see Chapter 19). If users can be sloppy—that is, if they aren’t
constantly encountering breakdowns—they can better focus on their
goals and actions.

 FOUR QUICK BUT USEFUL MINI USABILITY TESTS
 Stephen Krug’s book Don’t Make Me Think! is a great resource for
 conducting your own basic usability tests (I especially recommend his
chapter “Usability on 10 Cents a Day”). One of the things that Krug
recommends is iterative testing; don’t just test once, but test, make
changes, and test again (even if it’s on the same friend or colleague
who’s agreed to help you out). 9 It’s also important to test throughout
your design process, if possible. With your improvements, a second
(and third and fourth) round of testing will reveal other issues that
were missed the fi rst time around.

 Here are some simple usability tests, which are oriented around the
four information-seeking behaviors above:

 • Finding everything that there is. Most usability tests begin by
showing a user the site you want to test. But the usability of a
site, particularly for an everything-seeking behavior, actually
begins in a search engine. This test, which is only effective on
sites that have been indexed by Google and other search en-
gines, asks users to begin from a Web search. Provide a few dif-
ferent scenarios for users: “You’re an employer seeking resumes
of people in my profession”; “You’re a college freshman look-
ing for information about the chess club.” Watching what sites
they click on, and asking why, can provide insight for how you
should structure your pages, and key terms that you should in-
clude in your site’s text. If you want to limit your test user’s re-
sults in a Google search, have them add site:example.com

78 HOW TO DESIGN AND WRITE WEB PAGES TODAY

along with the search terms to limit results to a specifi c site
(e.g., vita site:karlstolley.com).

 • Finding a few quality things. This test begins on your site it-
self. You might ask a user to fi nd items from your portfolio, or
information about your club, its membership, and how to be-
come a member. You can also conduct a more open-ended test,
perhaps with a scenario like, “If you were a potential customer,
what would you look at to decide whether to buy from us?”

 • Finding a specifi c thing. Have your test users locate your re-
sume, an About page, or a Contact page. Have your users fi nd
something a little more specifi c, like a particular item in your
portfolio. With this type of test, time might be important, so
casually keep an eye on the clock of your computer or phone
(do not use a stopwatch, though; its presence might unneces-
sarily stress your test users, as though taking a long time is their
fault—not your site’s).

 • Finding a thing found before. If you’re working with someone
who tested your site previously, try repeating the test. Other-
wise, have your test users fi nd a few different, specifi c things
and then—assuming that fi rst test didn’t go disastrously—have
them refi nd the fi rst thing you asked them to.

 TIPS FOR YOUR TESTS

 • Explain that your site is a work in progress (regardless of what
stage it’s in; sites are always, to some extent, works in progress)
and that you need help to improve it. If your test users are close
friends or colleagues, they may not want to criticize the site for
fear of hurting your feelings. But if you make it clear that you
know there are issues to be improved, your test users will likely
understand that they can help you more by sharing suggestions
and criticisms than by telling you how awesome your site is
(although that’s nice to hear, too).

 • Modify the tests above to match your specifi c site. If yours
is a portfolio site, think about your expectations of why users
would come to your site in the fi rst place, and what they would
do there.

 USABILITY 79

 • Ask the people you have try out your site to talk aloud.
Listen to what they say, but also watch what they’re doing.
Among usability professionals, it’s common knowledge that
what users say and what they do are often quite different.
But what they say aloud—“I expected a navigation button
for that”; “I’m surprised that image isn’t clickable”; “This
heading really grabbed my attention, but the writing below
it doesn’t seem to be what I want”—can be especially help-
ful for you to reconsider some of your design and writing
decisions.

 • Try doing quick revisions while the test users are with you,
at least once you get more skilled writing and designing pages,
and have them examine or try out your revised designs. You
might even fi nd that some people will share design suggestions
as you work. You shouldn’t necessarily follow the suggestions
exactly, but you might think about their subtext. For example,
someone might say, “I really think you should have a big pho-
tograph of yourself on your site.” Unless you’re a model, a the-
ater major, or a newscaster, that’s probably not essential, but
what your test user might be implying is that your site needs to
be more personal somehow, more uniquely you. A photograph
may or may not be the way to achieve that particular goal. Re-
gardless, asking test users one question—“Why?”—can usu-
ally help you determine why they’re offering the advice that
they are.

 To do a certain kind of long-term, anonymous usability testing of all of
your site’s users, have a look at some of the sections on click tracking
and other analytic tools in Chapter 24.

 NEXT STEPS
 Designing a usable site means accounting for different user activities,
actions, and operations, all built on a solid foundation of accessibility.
In the next chapter, we look at sustainability, which concerns acces-
sibility, usability, and other writing and design issues over time and as
your site grows.

80 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 NOTES
 1 . Steven Krug, Don’t Make Me Think! A Common Sense Approach to Web

Usability , 2nd ed. (Berkeley, CA: New Riders/Peachpit Press, 2006), 134.
 2 . Jakob Nielsen, “Why You Only Need to Test with 5 Users” (March 19,

2000), http://www.useit.com/alertbox/20000319.html
 3 . Jakob Nielsen, “Usability 101: Introduction to Usability,” http://www

.useit.com/alertbox/20030825.html
 4 . Donald A. Norman, Emotional Design: Why We Love (Or Hate) Every-

day Things (New York: Basic Books, 2004), 8.
 5 . Norman, Emotional Design , 17–18.
 6 . Victor Kaptelinin and Bonnie A. Nardi, Acting with Technology: Activity

Theory and Interaction Design (Cambridge, MA: The MIT Press, 2006).
 7 . StumbleUpon, http://www.stumbleupon.com/
 8 . Peter Morville and Louis Rosenfeld, Information Architecture for the

World Wide Web , 3rd ed. (Sebastopol, CA: O’Reilly Media, 2006), 35–38.
 9 . Krug, Don’t Make Me Think! , 135.

 C H A P T E R 8

 Sustainability

 Accessibility requires designing for conditions. Usability requires de-
signing for behaviors. Sustainability considers designing for conditions
and behaviors in two dimensions: time and scale.

 Unlike accessibility and usability, which are inherently user-focused
in that your own ability to access and use your site is only one small
part of a broader picture, sustainability determines how well and how
easily you are able to develop and refi ne your site over time. However,
a sustainable site also ultimately benefi ts users: the content, accessibil-
ity, and usability of a sustainable site are easier to revise and improve,
ensuring the best content and experience for site users.

 WHAT IS SUSTAINABILITY?
 Sustainability is often referred to in the context of the natural environ-
ment. One of the more widely quoted defi nitions of sustainability comes
from the 1987 meeting of the World Commission on Environment and
Development, also known as the Brutland Commission. Their defi ni-
tion of sustainability reads:

 Development that meets the needs of the present without compro-
mising the ability of future generations to meet their own needs. 1

 It is not a major effort to rework this statement with regard to Web de-
sign: sustainable Web design meets present needs of a site’s creator and
users, without compromising their future needs. Going a step further,
one might say that sustainable Web design meets present needs while
also planning for future needs.

82 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Unfortunately, people who write and design for the Web (and other
digital media) have tended to ignore sustainability at every turn, opting
to follow fads and trends or the easy path of using a WYSIWYG editor
to build pages. It is not enough for a page or site to be built (a present
need); it should also conform to Web standards and be easy to revise
and improve the page over time and as a site grows (future needs).

 IS A SUSTAINABLE WEB SITE EVEN POSSIBLE?
 That all might sound good in theory. And yet everyone has had ex-
periences with the relentless change surrounding digital technologies.
From fi le formats to computers themselves, there does not seem to be
anything about digital technologies that approaches the kind of stabil-
ity and permanence that “sustainable Web design” seems to imply.

 However, sustainable Web design should not be misconstrued as a
guarantee of indefi nite stability and permanence. It’s actually more of an
attitude toward inevitable change: sustainable design involves making
choices that will work now, and likely into the future—while also provid-
ing plenty of room for writers and designers to make adjustments to their
sites in the future as the conditions on the Web continue to evolve.

 More than anything, designing a sustainable site requires careful
planning and organization. Thoughtful choices are essential, even for
something as basic as carefully naming fi les and folders as described in
Chapter 5. So are choices that help develop a sound site architecture,
as described in Chapter 20. Writing XHTML that describes the struc-
ture of your content, and not its visual presentation, contributes to the
long-term sustainability of your site: the structure of content is gener-
ally more stable than its visual design. A heading is always a heading;
whether that heading appears big and purple or small and gray is an-
other matter.

 A sustainable Web site is possible, but it is not necessarily something
that can be built intuitively. And a sustainable site certainly cannot
be built without planning for the future. The advice in this chapter
and the rest of this book is intended to help you to make your site sus-
tainable by making it maximally useful over scale and time. Sustain-
able Web design does not resist change; rather, it prepares your site for
change.

 SUSTAINABILITY 83

 SUSTAINABLE DESIGN TECHNIQUES
 The rest of this chapter consists of practical approaches to building a
sustainable site: keeping records of your work, naming and organizing
all of the elements of your site, favoring directly editable content, and
reusing content as much as possible. It concludes by looking at the role
of standards and open-source libraries in further pursuit of a more sus-
tainable site.

 Keep a Record of What You’ve Done
 What was I thinking? That’s the question that I often ask myself when
preparing to redesign a Web site from a past course or project. Remem-
bering what you’ve done on a site or a page is crucial to sustainable
design. But of all of the things in life that are worth committing to
memory, the details about Web sites that you have created are certainly
not among them.

 Some early Web logs, or what we now call blogs, were little more
than a record of changes to a Web site. While that particular use for
blogging does not seem to be as common anymore, any sustainable
site should have a record of its development over time, regardless of
whether the record appears on the site itself or in a notebook some-
where. In cases where you are collaborating with multiple people on a
site, a record also serves the purpose of keeping everyone informed of
everyone else’s changes.

 There are two basic things that you should do to help yourself re-
member what you’ve done on your site:

 • Keep a wiki, a text or word processor fi le, or even a notebook
where you make notes of your design activity and choices (also
consider using a content versioning system; see the sidebar
“Using a Content Versioning System (CVS)”).

 • Use the comment syntax in XHTML, CSS, and JavaScript to
describe what you have written (see Chapters 9, 10, and 19).

 Retracing your steps and being able to answer for why you made a par-
ticular design choice helps you to keep your site consistent, while pre-
venting you from having to reinvent the wheel when an old challenge
surfaces that you already fi gured out how to solve.

84 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 In addition to keeping a log of your site’s changes, it’s very impor-
tant to write comments in your XHTML, CSS, and JavaScript source.
Not only does this help preserve your own sanity, but it can help to
teach others who are impressed by your site and want to learn how to
do something the way that you have. Chapter 12 describes some basic
commenting practices, and the Web-available examples that support
this book at http://sustainablewebdesign.com/book/ are also
fi lled with comments, in case you are looking for additional examples
of commenting.

 Call It Like It Is
 Whether you are choosing a domain name, naming fi les and folders, or
writing classes and IDs in your XHTML, the best thing that you can
do is to name things to refl ect what they are, and maintain a consistent
naming style across all of your site’s elements, including XHTML and
CSS fi les, plus images and other media.

USING A CONTENT VERSIONING SYSTEM (CVS)

A type of software known as a content versioning system can extend your

 record-keeping of changes to your site over time. There are a number of systems

available, although one of the more fl exible of these is Git.* Essentially, a CVS

such as Git establishes a repository of the fi les for a Web site or other digital

project, and allows you to build a record of the changes you make. A CVS does

not do this automatically, but rather requires you as the writer to periodically

commit changes to the repository. If you make a mistake, or wish to return to an

earlier version of your project, Git and other CVS software lets you do that in a

few keystrokes. You can see the Git repository and history for this book’s RPK at

http://github.com/karlstolley/rpk/.

I have written a basic tutorial for using Git,** including instructions for in-

stalling Git on different types of computers. Some of my graduate students and

I are also working on a more in-depth guide to Git, called “Git for Writers,”***

which is both an introduction to Git and an approach for using Git to collaborate

with others on Web sites and other projects.

*Git: The Fast Version Control System, http://git-scm.com
 **Karl Stolley, KarlWiki, “Git Tutorial” (October 16, 2009), http://wiki.karlstolley.com/GitTutorial
 ***Gewgaws Lab, “Git for Writers” (April 21, 2010), http://gewga.ws/git-for-writers/

 SUSTAINABILITY 85

 As the fi le-naming advice offered in Chapter 5 suggests, it’s never
good practice to use words like “new” in fi le names, as nothing remains
new over time. But it’s also not good practice to truncate or abbreviate
fi le and folder names; little is gained by calling your resume page res.
htm ; call it resume.htm .

 Both for you as the creator of a site and your visitors, fi le names in
URLs provide additional clues to whether something should be clicked
on, or where something is with respect to the rest of your site. If the
URL reads http://example.com/contact.htm , it is reasonable to
expect that the page will have information or the means (such as a
form) for contacting the site’s owner or organization. So be sure, too,
that the content of a page matches what its fi le name suggests.

 In terms of scale, any numbered, or serialized, fi le names should begin
with leading zeros, such as photo001.jpg , photo002.jpg , photo003.
jpg . This helps keep the listings of serialized fi les more readable when
you are managing your site’s fi les. Otherwise, photo10.jpg will be listed
next to photo1.jpg , photo20.jpg near photo2.jpg , and so on.

 When it comes to the structure of your XHTML pages, the “call it
like it is” rule also applies. Even on a basic tag level, tag headings with
heading tags, lists with list tags, and so on. Take extra care in nam-
ing classes and IDs, too. What in your current design is a big purple
box may not be in a redesign. So rather than naming a class or ID
something like big-purple-box , name it promotional-content
or some other name that describes the content’s structure and purpose,
not its design (see Chapter 9).

 A Place for Everything, and Everything in Its Place
 Being able to quickly fi nd a fi le that you need to edit helps you simplify
your work toward a sustainable Web site. Take the time to develop a
good site architecture (see Chapter 20), and discipline yourself in its
maintenance by saving fi les in their designated places.

 It is important that your URLs remain constant and functional over
time; in basic Web sites, URLs are created based on folder structure and
fi le names. You want your site to be found, and you want people to link
to your site—but if pages move or disappear without warning when you
move or rename fi les, it refl ects poorly on the person doing the linking,
not to mention it refl ecting poorly on your own site.

86 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 For example, if you choose to post a vague folder or fi le name, like
 stuff/ or res.htm and later opt to rename it to something more
meaningful, you risk making links to the older name obsolete, so be
sure to both name things and place things in a thoughtful, sensible
place the fi rst time around.

 There are some advanced techniques, such as using the Apache Web
server’s URL rewrite module, 2 to redirect old URLs to new and active
ones. While those techniques are outside of the scope of this book, they
do add a degree of fl exibility for handling links to old URLs should you
need to construct a new architecture for your site. See this book’s com-
panion site for additional information, http://sustainableweb
design.com/book/ .

 Favor Content That You Can Edit Directly
 There are certain types of fi les, such as Flash and PDF, that you can-
not edit directly (at least not to a great extent); instead, you must do
your editing in one software program or fi le, republish it as the .pdf
or .swf , and post that published fi le to the Web. Again, this is a matter
of scale: one or two PDFs may not be too much to manage, but dozens
or hundreds pose a serious sustainability problem.

 With XHTML, CSS, JavaScript, and all other plain-text-based fi les,
you only need access to a text editor to do your edits before moving
them to your Web server. If you use a content management system
(CMS), such as WordPress (see Chapter 22), to maintain a dynamic
site, you can edit your content using any good Web browser. However,
if you rely on fi le uploads of PDFs or word processor documents, using a
CMS will not make maintaining the content in those fi les much easier.
The fi les will have to be changed on your computer and then uploaded
through the CMS.

 Don’t Repeat Yourself
 The idea behind CSS is that you can keep all of the design instruc-
tions for all of the pages on your site in one fi le (see Chapter 10). To
maintain a consistent design across your site, you just connect all of
your site’s XHTML pages to one shared CSS fi le. Making a site-wide
change to the design is then only a matter of editing that one CSS fi le;

 SUSTAINABILITY 87

 publishing an entirely new design is accomplished by replacing your
old CSS fi le with a new, redesigned one.

 Like your design, any content that you repeat over pages—your
heading, navigation, even brief “About Me” text—can also be kept in
a single fi le, and then repeated over multiple pages using a server-side
language like PHP (see Chapter 21).

 But even the page-specifi c content you mark up in XHTML should
also appear only in one place; using CSS and the media attribute,
you can style one XHTML page to display differently on different de-
vices or when the page is printed. There’s no need, in other words,
to have one XHTML fi le for print, one XHTML fi le for screen, and
so on. As soon as you introduce multiple copies of the same content,
you increase the labor involved in even the smallest changes. If you
fi nd a typo, you have to fi x it in as many different fi les as you maintain
copies.

 Follow Web Standards
 The Web design advice in this book adheres to standards for XHTML
1.0 Strict; Cascading Style Sheets 1, 2, and the stable parts of 3; the
Document Object Model and other technologies whose specifi cations
are maintained by the World Wide Web Consortium (W3C).

 Following standards is an important practice that advances sustain-
ability. Even when new versions of standardized languages appear, the
older versions can continue to be used. You can, for example, still write
in HTML 4.01—and even as HTML5 stabilizes, XHTML 1.0 Strict
will still be going strong. The Web is unique in its standards’ longevity;
many software programs will stop reading previous versions of their own
fi le types over time. (And here’s a little trivia: by learning XHTML 1.0
Strict, as in this book, you’re also actually learning parts of HTML5,
too. See the book’s companion Web site at http://sustainable
webdesign.com/book/ for more information on HTML5.)

 The alternative to following standards (and it’s not really an alter-
native, if a site is to be accessible and sustainable) is to follow the quirks
of a particular browser or piece of Web-authoring software. But that
introduces accessibility issues, both for users of other browsers and, in
the future, for yourself, should you want to make a change or should the
Web-authoring software company go out of business.

88 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Build on Top of Open-Source Libraries
 Another way to keep a site sustainable is to build on top of actively
developed open-source frameworks and code. The Rapid Prototyping
Kit (RPK) is one example of this. And even the RPK builds on other
libraries: for handling DOM scripting, the RPK builds on the jQuery
JavaScript library (see Chapter 19). Among other things, jQuery does
things like make your JavaScript work uniformly across all modern
browsers—while also protecting users whose old browsers might man-
gle advanced features of your pages. In other words, rather than you
writing the JavaScript that does that kind of work, you entrust that
work to the developers of jQuery.

 And so long as you keep your copies of any libraries or software, such
as WordPress, up-to-date, your site itself improves, thanks to the work
of hundreds, even thousands, of people who are constantly working to
improve the library or framework.

 NEXT STEPS
 Sustainable Web design isn’t magic. It just requires thinking carefully
about a lot of choices, such as naming things, that are easily overlooked
and taken for granted. In the next section of the book, “Strategies for
Success,” we will see the issues of accessibility, usability, and sustain-
ability in action as you get down to the work of building your site.

 NOTES
 1 . Report of the World Commission on Environment and Development,

“Towards Sustainable Development,” Our Common Future (1987), http://
www.un-documents.net/ocf-02.htm

 2 . Apache HTTP Server Version 2.2, “Apache Module mod_rewrite”
(2009), http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

 P A R T I I I

 STRATEGIES FOR SUCCESS

 This section of the book covers the construction and design of indi-
vidual Web pages.

 So far, we’ve looked at Web writing and design concerns at a fairly
high level, in a somewhat abstract way. This section invites you to dive
in and work on your own writing and design. And that will involve
learning to write with the languages of the Web: XHTML, CSS, and
JavaScript.

 But it would be a mistake to think that writing with the Web’s lan-
guages is a separate category, or even a separate activity, from what
is more traditionally considered writing. XHTML and CSS are actu-
ally languages that describe writing. XHTML describes the structure of
writing and allows writers to specify which pieces of text are headings,
paragraphs, or items in a list. XHTML also enables writers to load an
image or a piece of multimedia (often with the aid of JavaScript) and
to provide supplementary textual content both for search engines and
low-vision users. CSS complements the structural descriptions you
write in XHTML by helping you describe the appearance of writing:
the colors and sizes of headers, the line-spacing of paragraph text, and
even the position of an item on the screen or the printed page.

 Although the form of a book requires ordering chapters, know that
Web writing and design is never a linear, step-by-step process. Changes
in content may inspire you to change your design, and vice versa;
changes to one part of your design, such as the navigation, may cause
you to change another part, such as the content area. The key to creat-
ing your pages is fl exibility; be ready to make changes.

 C H A P T E R 9

 Structured Content:
XHTML Overview

 If a Web page were a house, then XHTML would be its foundation and
structural walls. CSS would be the house’s design and decorations. And
JavaScript would be the house’s appliances.

 Content structured in XHTML is the most crucial part of any Web
page: it is the framework that supports both the design and interactiv-
ity of a page. You might have a beautiful picture to hang on the wall
where you live, but if the walls are so weak that they crumble when you
try to hammer in a nail, hanging the picture will be impossible, regard-
less of its beauty.

 This chapter introduces the basic concepts behind writing your con-
tent in XHTML and the global structure of the <html> , <head> , and
 <body> tags that all XHTML pages require. The chapter also looks at
two attributes— class and id —that you can use to provide additional
structure that describes content that’s unique to your pages.

 XHTML DESCRIBES THE STRUCTURE OF WRITING
 XHTML is an acronym for Extensible Hypertext Markup Language.
XHTML is a language that does nothing but describe the structure of
writing and the location of media content. You can’t use XHTML to
calculate the answers to math problems or to instruct robots to attack
your enemies. XHTML can only describe the structure of a Web page’s
content.

 The key idea behind XHTML is that content should be described
structurally, using a language that is separate from visual presentation

92 HOW TO DESIGN AND WRITE WEB PAGES TODAY

and design. This allows your structured content to be interpreted and
reused by Web browsers and other devices and, using multiple media-
specifi c style sheets, presented in different ways for different devices and
people. Structured content can, for example, refer to different CSS fi les
so as to display on screen one way, and in print another. Screen readers
and other adaptive technologies can use XHTML to provide a mean-
ingful experience for low-vision users, without the interference that vi-
sual design might bring if design were blended in with the XHTML.

 XHTML is challenging to write only because we are used to thinking
about the structure of writing in visual ways. When you fl ip through a
magazine, you recognize headings, paragraphs, bulleted lists, and other
common structural features because of their visual design. Headings
are often large, bold, and distinguishable from running paragraph text.
Lists feature bullets, numbers, or even images next to short chunks of
text, which might be indented differently from paragraphs.

 That is a common way of thinking when we write, too. A word pro-
cessor allows writers to highlight a piece of text and change its appear-
ance: making it bold, changing its font and size, and adding color. The
idea that a combination of design choices adds structure to the docu-
ment may never enter a writer’s mind.

 But on the Web, structure is essential to making a Web page maxi-
mally accessible, even to nonvisual devices such as search engine spi-
ders and screen readers. For that reason, structure on the Web is not
indicated visually in XHTML. Yet as we will see, structured XHTML is
essential to creating CSS-based design and adding page enhancements
with JavaScript.

 XHTML, like the XML rules it is based on (see Chapter 4), provides
writers with tags to describe the structure of their writing. Headings
are marked with heading tags (<h1> through <h6>); paragraphs are
marked with paragraph tags (<p>); items in a list are marked with list
item tags () and list items are grouped as either unordered (bul-
leted) lists () or ordered (numbered) lists ().

 TAGS ARE LIKE QUOTATION MARKS
 An easy way to understand how XHTML tags structure writing is to
compare tags to quotation marks.

 STRUCTURED CONTENT 93

 Quotation marks do not make text especially beautiful; they func-
tion only to indicate structure. A quotation mark sets off text to indi-
cate structural differences in writing: the speech or writing of another
person, the title of a magazine article, or perhaps an unfamiliar word
or phrase.

 Quotation marks also appear in predictable ways, adjacent to the
material they mark and without any spaces:

 I said, "XHTML tags are a lot like quotation marks."

 Not

 I said, " XHTML tags are a lot like quotation marks. "

 Once a quotation mark opens, it also must close, or the text becomes
confusing:

 "The Road Not Taken by Robert Frost is one of
 America's most beloved poems.

 And if single quotation marks appear within double quotation marks,
there is another important rule: the single quotation marks must close
before the doubles:

 "Tonight I will read you a poem by Robert Frost,
'The Road Not Taken.'"

 Quotation marks also look the same regardless of the content they
mark:

 "The Road Not Taken"

 "Ask not what your country can do for you; ask what
you can do for your country."

 Despite quotation marks looking the same, literate humans usually
can distinguish whether the quotation marks are structuring a title
(“The Road Not Taken”) or a line from a famous speech (“Ask not . . .”).
We rely on context and prior knowledge to make such distinctions.

 Computers and Web browsers are not nearly as smart as humans.
They must be told exactly what something is: the purpose of XHTML
tags is to describe the structure of writing.

 XHTML tags obey the same rules as quotation marks. XHTML, at
least on its surface, can be seen as a set of fancy quotation marks that

94 HOW TO DESIGN AND WRITE WEB PAGES TODAY

lets writers explicitly describe the structure of writing. If I write an ar-
ticle as a Web page and its title is “Simple Rules for Using XHTML,”
I might structure the title as a fi rst-level heading (<h1>):

 <h1>Simple Rules for Using XHTML</h1>

 Structurally, this text is a fi rst-level heading regardless of whether the
CSS designs it to appear big and purple or little and green, in Times
New Roman or Arial, or whether it even appears visibly on the page at
all. Regardless of how the heading is visually designed, in other words,
its structural meaning will always be the same.

 THE SIX RULES OF XHTML
 There are only 6 rules that you must follow when writing XHTML. All
of these rules will become clearer over the course of this chapter and
the rest of the book. It’s also good practice to keep an XHTML refer-
ence handy, such as the one at HTML Dog 1 or SitePoint. 2 But briefl y,
the rules of XHTML are:

 1. Every valid XHTML document’s fi rst line must be a DOC-
TYPE declaration. This helps markup validators understand the type
of XHTML that you write on your Web pages. The DOCTYPE declara-
tion also prevents Web browsers from rendering a page in quirks mode,
which is reserved for older, nonstandard Web pages. For XHTML 1.0
Strict, the DOCTYPE declaration is:

 <!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
 strict.dtd">

 It’s not necessary to understand what all of that means; just be sure it ap-
pears as the fi rst line of all of your XHTML documents. (The XHTML
fi les in the Rapid Prototyping Kit, RPK, all use the XHTML 1.0 Strict
DOCTYPE.)

 2. Every tag that opens must close. If <p> opens, a closing tag,
</p> must follow. (Just like quotation marks.) Some tags, such as the
line break (
) and image () tags, do not surround text
and are therefore self-closing: rather than having an opening and clos-
ing tag, they self-close with a space and a (forward) slash: /> .

 STRUCTURED CONTENT 95

 3. Tags close in the opposite order that they open, just like single
quotation marks inside of doubles:

 <p>To structure text that will be bold, use the
strong tag.</p>

 (<p> opens, then ; closes, then </p> .)

 4. All tag elements and attributes, and some attribute-values,
must be lowercase letters. Here’s an illustrative, nonsense bit of
XHTML that illustrates the element, attribute, and value parts of
the tag:

 <element attribute="value">

 So in this example,

 <address class="offi ce">

 the element, or tag name, is address ; it has one attribute, class , and
that attribute’s value is offi ce . offi ce can also be called an attribute-
value . Not all attribute-values must be lowercase. For example, all <img
/> (image) tags require an alt attribute for alternative text that users
will see or hear on devices that cannot display images. The attribute
value for the alt attribute should actually be a descriptive phrase or a
sentence:

 <img src="apple-pie.jpg" alt="Photograph of the
 apple pie I baked." />

 As that example also shows, tags sometimes have multiple attributes
(in that case, src and alt), which are separated by a space.

 5. All attribute-values must appear in quotation marks, immedi-
ately following the equals sign. There should also never be a space
between the equals sign and the opening quotation mark; spaces are
used to separate elements from attributes, and attributes from other
attributes:

 <h1 class="running-head">

 6. All class and id values must begin with a letter, and must
not contain spaces. Never begin a class or id value with a number
or punctuation. Except for special values, such as microformats, 3 you

96 HOW TO DESIGN AND WRITE WEB PAGES TODAY

must invent class and id values yourself, in ways that describe the
content (not the visual design) of your pages:

 <ul id="navigation" class="active">

 Classes and IDs also should only contain lowercase letters and the
 hyphen. Other characters are allowed, including capital letters. But
keeping everything lowercase will do good things for your sanity, par-
ticularly when you are writing CSS to design your XHTML: by consis-
tently using only lowercase letters, you’ll be certain that you’ve named
your class navigation , not Navigation .

 Also, some attributes allow writers to specify multiple values, each of
which is separated by a space. For example, a paragraph tag could have
the classes of “fi rst” and “summary”:

 <p class="fi rst summary">

 For that reason, you cannot use spaces when creating class names (or
IDs).

 Keeping those six rules in mind (refer back to them if you need a re-
fresher later), let’s examine the global structure of all standard XHTML
pages.

 THE GLOBAL STRUCTURE OF WEB PAGES
 The chapters that follow look more closely at the function and struc-
ture of the different components of XHTML page structures. But strip-
ping away everything else, including the <!DOCTYPE> declaration,
XHTML source looks like this:

 <html>
 <head></head>
 <body></body>
</html>

 Each of those tags can appear only once per page. Let’s walk through
these so that you can begin to build a mental model of the structural
blocks required for all XHTML pages.

 The Root Tag: <html>
 Except for the DOCTYPE declaration, XHTML pages are entirely con-
tained by the <html> tag. While there are some important attributes

 STRUCTURED CONTENT 97

that should appear in the <html> tag, its primary structural function is
to serve as the tag that groups both the <head> and <body> tags. Be-
cause of this, the <html> tag is sometimes referred to as the root ele-
ment of all Web pages. It is the tag that contains all others.

 But page content does not appear immediately inside the <html>
tag. Instead, <html> is divided into two parts: <head> and <body> .

 Metadata in the <head> Tag
 Appearing before the <body> tag of every XHTML Web page is a
 <head> tag. At minimum, the <head> must contain two basic but im-
portant tags (both of which appear in the RPK’s XHTML fi les).

 The fi rst tag is <title> ; this is the tag that contains the title for the
Web page. Whatever you write there appears in the title bar or tabs of
most Web browsers, and as the label for pages that people bookmark,
either in their browser or in a service like Diigo. It is also the click-
able, hyperlinked text for your page that will appear in a list of search
results. Note that it’s not uncommon to see sloppily constructed Web
pages whose title reads Untitled Document. Be sure to always include
a meaningful title (see Chapter 13).

 The second tag that must appear in the <head> is a <meta> tag
with a particular set of attribute-values:

 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />

 The fi rst attribute-value pair of http-equiv describes the page’s con-
tent type to search engines and browsers. This helps browsers to accu-
rately render the type of content that your XHTML page contains. In
this case, the content attribute tells search engines and Web browsers
that the page content that follows is of a particular type, text/html ,
and that it uses the character set utf-8 . We will look at these and
other <meta> tags in subsequent chapters on metadata (Chapter 13)
and sharing (Chapter 24).

 Page Content in the <body> Tag
 All of the content of a page that you expect to be visible in a brows-
er’s viewport must appear inside the <body> tag. Most of the work
of writing and building the content of your pages happens inside the

98 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 <body> tag. Subsequent chapters break down the typical contents of
Web pages to help you better organize and design your page content
inside of <body> .

 ADDING ADDITIONAL STRUCTURE
THROUGH ID AND CLASS

 The basic XHTML tag set goes a long way to establishing meaningful
structure for your page content (see Chapter 16). But sometimes, you
need to describe your content’s structure more specifi cally than just as
headers, paragraphs, and lists. XHTML includes two structural attributes
for additional structural description: id and class . class and id both
serve the same basic purpose of providing additional structural informa-
tion, but they are used in different contexts and follow different rules.

 Uniquely Identifying Pieces of Structure with id
 A particular id value, or unique ID, can only be used once per page.
IDs are often used for describing a page’s major structural features: navi-
gation, header, footer, content, often in conjunction with the division
tag, <div> . Consider this XHTML fragment:

 <body>
 <h1>John Smith's Home Page</h1>
 <h2>Portfolio Overview</h2>
 <p>Read all about my
 portfolio...</p>
 <h2>Latest Projects</h2>
 <p>Read all about my
 latest projects...</p>

 Home
 Resume
 Contact

 <p>All site content is licensed for use under a
 <a rel="license" href=
 "http://creativecommons.org/licenses/by/3.0/us/">

 STRUCTURED CONTENT 99

 Creative Commons Attribution 3.0 United States
 License.
 </p>
</body>

 In that basic, structural form, there is nothing indicating the different
content areas of the page, such as a page header, a main content area, a
site navigation (the unordered list), or a footer (the Creative Commons
license). With the addition of some <div> tags, whose purpose is to
group page content into divisions, and structurally named id attributes
to distinguish the different sections, the page’s source might look like:

 <body>
 <div id="header">
 <h1>John Smith's Home Page</h1>
 </div>
 <div id="content">
 <h2>Portfolio Overview</h2>
 <p>Read all about my
 portfolio...</p>

 <h2>Latest Projects</h2>
 <p>Read all about my latest projects
 ...</p>

 </div>

 <ul id="navigation">
 Home
 Resume
 Contact

 <div id="footer">
 <p>All site content is licensed for use
 under a <a rel="license"
 href="http://creativecommons.org/licenses/by
/3.0/us/"> Creative Commons Attribution 3.0
United States License. </p>

 </div>
</body>

100 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Note that in some cases, <div> tags have to be added to structurally
group areas of your page; however, because the tag on the site
navigation already groups the list item tags, I put the id attribute di-
rectly on the tag. The lesson here, which will be made clearer in
Chapter 16’s treatment of XHTML tags for page content, is never to use
or add a <div> tag if there is a more suitable structural tag available.
The less XHTML you write, the easier your pages will be to maintain.

 Also note that you can use add the hash (#) followed by a unique
ID in your URL to point a visitor to a particular part of your page.
For example, to point someone’s browser to the site navigation in
the example above, we could write a URL like http://example
.com/#navigation . Most browsers will scroll to the hash-referenced
area of the page automatically.

 Associating Similar, Repeated Structures with class
 Once an id value has been used on an XHTML page, regardless of the
tag it has been used with, it cannot be used again. For structural ele-
ments that might appear more than once, use the class attribute to add
additional structure. For example, it has become conventional to use
the <cite> tag to structure titles of materials that you refer to or quote
from. Suppose you cite different types of materials in your page and want
to structurally identify the types of material (perhaps so that you can
style them differently in CSS). You might invent a class called fi lm and
another called book , adding the relevant class to the <cite> tag:

 <p>
 I enjoyed Peter Jackson's
<cite class="fi lm">Lord of the Rings</cite>
fi lms, especially
<cite class="fi lm">The Two Towers</cite>, but I do
not think that they were as good as the original
<cite class="book">Lord of the Rings</cite>
books by J. R. R. Tolkien.
</p>

 Like unique IDs, you can add classes to any tag requiring more specifi c
structure. Note that the class and ID names do not appear in a browser
view of your Web page, but as we will see in the coming chapters, they

 STRUCTURED CONTENT 101

can be very useful when applying additional CSS styles and advanced
DOM Scripting.

 Naming Classes and IDs
 When naming classes and IDs, always opt for structurally descriptive
names: e.g., supporting-content instead of sidebar or blue-
box . The content’s presentation as a sidebar, or as a blue box, may
change if the CSS and design changes; but its structural function as
supporting the page’s main content will not change.

 Classes and IDs always begin with a letter, and are best limited to
lowercase letters a-z and the hyphen. Your XHTML will not validate if
you begin a class or ID name with a number.

 Div-itis and Class-itis
 It’s all too easy to get carried away and start adding <div> tags and
classes all over a page. It’s best to use <div> tags sparingly, and only to
group more structurally descriptive block tags (headings, paragraphs,
and lists; see Chapter 16). Some sites are made up almost entirely of
 <div> tags—even for marking up headings, paragraphs, and lists—a
practice that completely misses the point of using structural XHTML.
 <div> has no structural value other than to group related pieces of
XHTML content into divisions. If you catch yourself writing some-
thing like <div class="heading-one"> , stop, think, and use the
 <h1> tag instead.

 Class-itis, too, results in too much meaningless or redundant markup.
For example, writers sometimes write markup like:

 <li class="favorite-foods">Pizza
 <li class="favorite-foods">Cheeseburgers
 <li class="favorite-foods">Cake

 In that case, rather than adding the class to every single list item, it would
be better to add it on the tag that groups all of the list items:

 <ul class="favorite-foods">
 Pizza

102 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Cheeseburgers
 Cake

 That will keep the page’s markup lighter, easier to read, and easier to
revise. I’ll say it again: the less XHTML you write, while still being de-
scriptive of your content, the better.

 NEXT STEPS
 This chapter has covered the basic rules of XHTML, and the major
structural features of every XHTML page. The next chapter will intro-
duce CSS, which you can begin to write while you develop your skills
with XHTML. See also the chapters in the “Issues and Challenges” sec-
tion to review XHTML’s importance to the accessibility, usability, and
sustainability of Web sites.

 NOTES
 1 . HTML Dog, “HTML Tags,” http://htmldog.com/reference/htmltags/
 2 . SitePoint, “HTML Reference,” http://reference.sitepoint.com/html
 3 . Microformats.org, http://microformats.org

 C H A P T E R 1 0

 Presentation and Design:
CSS Overview

 Cascading Style Sheets (CSS) enable the visual presentation and de-
sign of Web pages. From typography to color, page layout to textural
and other design images, CSS controls the look of content structured
in XHTML. While you can look at an XHTML fi le directly in a Web
browser, which will provide default styling (Figure 10.1), CSS cannot be
viewed directly (all you’ll see is the CSS source itself); a browser has to
layer CSS over an XHTML fi le. That means you must have your struc-
tural XHTML in place before you can test your design work in CSS.

 A primary capability of CSS is inheritance, which refers to the abil-
ities of certain style properties to transfer from parent elements (e.g.,
the <body> tag) to their children (e.g., <p> inside of <body> ; famil-
ial relationships are covered later in this chapter). A good CSS refer-
ence will let you know whether a given property is inherited or not,
although the majority of inherited properties are text- and font-related.
If, for example, you want all of your text on a page to be in Arial
font, you do not need to specify Arial for each and every tag; because
the CSS font-family property is inherited, you can just specify
it on the <body> tag, which is the parent (or ancestor) element of
all content on an XHTML page. The “cascade” in CSS refers to the
ability of styles to come from multiple sources (fi les, selectors, plus
the default browser styling—which should be removed using a reset
CSS fi le; see Chapter 11), with the more specifi c style being applied.
Figure 10.2 shows the default browser styling, with the exception

Figure 10.2. The same sample as Figure 10.1, but with Arial font on the body
selector in CSS.

Figure 10.1. A sample of XHTML, with the browser’s default styling.

 PRESENTATION AND DESIGN 105

of this style declaration for the <body> tag—which is inherited by all
text on the page:

 body { font-family: Arial, sans-serif; }

 CSS STYLE DECLARATIONS
 A CSS fi le is nothing more than a list of styles, or style declarations. A
Web browser then attempts to match those styles to the structures in your
XHTML document. CSS styles comprise three parts: selectors, which de-
termine what structural parts of the XHTML document will be styled, and
 properties and values, which determine what style property (e.g., text
color, font) will be set and what value it will be set to (e.g., blue, Verdana).
Some properties take a single value, while others can take multiple values.
Properties and values are all grouped with a selector using curly braces, { } ,
and each property-value combination ends with a semicolon, ; .

 The basic form of a CSS style declaration, then, is something similar
to this pseudo-code (using selector , property , and value to show
their positions in the style declaration):

 selector {
 property: value;
 /*For styles that take a single value, e.g.,
 color: blue;
 */

 property: value, value, value;
 /*Commas separate values ordered by
 preference, e.g.,
 font-family: Verdana, Arial, sans-serif;
 */

 property: value value value;
 /*For styles that take multiple values, e.g.,
 border: 10px solid red;
 */
}

 Style declarations, as above, can contain many different property-value
combinations.

106 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 BASIC SELECTORS
 Selectors in CSS describe the XHTML structure that will be styled.
Using the house metaphor from the XHTML chapter, CSS selectors
are like instructions to interior decorators for what they should deco-
rate: “the fi replace,” “the upstairs bathroom,” “the closets in the master
bedroom.” Except instead of referring to rooms in a house, CSS selec-
tors refer to tags and tag relationships in your XHTML source.

 Element Selectors
 The most basic CSS selectors are XHTML tag elements (sometimes
called type selectors). The only thing to remember is that while
XHTML puts the element in angle brackets, like <body> or <p> , in
CSS the element appears by itself: body or p . Any XHTML tag can be
a selector in CSS, and the selector will style that particular tag the way
you specify, wherever it appears on your page.

 For example, to set all paragraph text to appear in blue, you’d write
in CSS:

 p { color: blue; }

 ID and Class Selectors
 IDs and classes can also be selectors. Class selectors begin with a . (dot)
and ID selectors begin with a # (hash). For example, to set the back-
ground color of your footer to gray (and assuming your document has
 <div id="footer">), your CSS would be either:

 #footer { background: gray; }

 or

 div#footer { background: gray; }

 Either method works; I prefer to put the element with the ID, just to
help myself remember more about what I’m styling.

 If you had a class called “warning” (e.g., <p class="warning">),
perhaps on a site with instructions for doing something that might be
potentially dangerous (such as operating a power saw), you could style
that class as either

 .warning { color: red; }

 PRESENTATION AND DESIGN 107

 or

 p.warning { color: red; }

 Adding the tag element to the class selector can give you fi ner-grained
control over the look of your page, particularly if you use the same class
on different XHTML tags, but want to style the class differently, de-
pending on the tag the class appears on.

 RELATIONSHIP SELECTORS
 CSS selectors can also be formed based on the relationships between
elements in XHTML pages. CSS (like the DOM, see Chapter 19) relies
on relationships in terms you already know from your family tree: par-
ents, children, siblings; as well as ancestors and descendants.

 Descendant Selectors
 Descendant selectors are formed by a list of at least two elements or
classes/IDs, each separated by a space. The selector styles the last ele-
ment listed. For example, to style all of the anchor tags (links) in the
navigation so that they are not underlined (Figure 10.3), you could
write a descendant selector:

 ul#navigation a { text-decoration: none; }

 All anchor tags (<a>) inside of <ul id="navigation"> will appear
without the default underlining of hyperlinks. Other links on the page
will still have an underline. To remove underlining from all links, you
could just refer to the a element selector:

 a { text-decoration: none; }

 Child Selectors
 Child selectors are a more specifi c form of descendant selector in-
tended to style an element only if it is a child, or direct descendant, of
the parent element. The child selector is most useful for noninherited
CSS properties, such as list-style-type . Child selectors are writ-
ten by putting an angle bracket between two elements. The following
selector will style all child tags of <ul id="navigation"> ,

108 HOW TO DESIGN AND WRITE WEB PAGES TODAY

but not the tags of any more deeply nested lists (which would be
descendants, but not children; see Chapter 16):

 ul.colors > li { list-style-type: none; }

 You can see in Figure 10.4 that the immediate children of <ul
class="colors"> have no bullet points, but the grandchildren still do.

 Sibling Selectors
 Sibling selectors target adjacent XHTML elements that share a parent.
For example, if someone wanted a paragraph appearing immediately
following a heading two (<h2>) tag to run in bold, the sibling selector, + ,
accomplishes this:

 h2 + p { font-weight: bold; }

 One limitation of the sibling selectors is that you can only target the
sibling appearing after the fi rst. That is, if this were the XHTML:

 <div id="content">
 <h2>My Header Two Tag</h2>
 <p>My paragraph text.</p>

</div>

Figure 10.3. In this example, only the anchor tags that are descendants of the
navigation list have their default underlining removed.

 PRESENTATION AND DESIGN 109

SELECTORS AND SPECIFICITY

The “cascade” in Cascading Style Sheets refers to the method by which a

browser applies one of a competing set of styles. Multiple selectors can refer to

the same elements; for example,

a { color: blue; }
a.external { color: red; }
ul#navigation a { color: green; }

The fi rst selector styles all link text blue; the second styles links with an

 external class as red, while the third styles links in the navigation green. But

given that all three styles ultimately refer to <a> in the XHTML, how does a Web

browser know to style the external links red and all other links blue—given that

the selector in the fi rst style is supposed to style all of the links on the page?

Selectors have different levels of specifi city in CSS. Andy Clarke has a fasci-

nating blog post that uses Star Wars characters to illustrate selector specifi city

visually.* Along with that, Clarke’s post refers to a point system for calculating

specifi city; essentially, elements in a selector get one point, classes in selec-

tors get 10 points, and IDs in a selector get 100 points. When multiple selectors

match the same element, the selector with the most points determines how the

element is styled. So in the examples above, the fi rst selector gets one point, the

second gets 11 points (element plus class), and the third gets 102 points (an

element plus an ID plus another element).

The more specifi c style—that is, the style with the most points in this

system—is the one that gets applied to the matching XHTML structure. That’s

why the navigation items in the list of styles above will appear green, not

blue—even if there were an match within

<ul id="navigation">; to style that would require a selector like

ul#navigation a.external { /*Styles here*/ }

whose point value would be 112 (two elements, one class, and one ID) and there-

fore more specifi c.

 *Andy Clarke, “CSS: Specifi ty Wars,” Stuff and Nonsense, http://www.stuffandnonsense.co.uk/
archives/css_specifi city_wars.html

 the sibling selector would allow us to style the paragraph element,
but not the heading-two element. That is, we can say in CSS “style
paragraphs appearing immediately after heading-two” but not “style
 heading-twos appearing before a paragraph.” That’s just a limitation of

110 HOW TO DESIGN AND WRITE WEB PAGES TODAY

CSS; but there are always other solutions. To style that heading two, it
might just be better to add a class to it in your XHTML when it appears
before paragraphs (if there is something structurally special about the
heading two in that situation).

 Universal Selector
 One fi nal selector worth mentioning is the universal selector, * , some-
times called the wildcard selector. Used by itself, it will style all ele-
ments on the page; for example,

 * { color: green; }

 will style all text on the page to make it appear green. (However, be-
cause color is inherited, it is generally better to set it using the body
element selector.) For both class and ID selectors, the wildcard selector
is implied. That is, there is no difference between

 .warning { color: red; }

 and

 *.warning { color: red; }

Figure 10.4. Using the child selector, only the fi rst children of this list appear
without bullets; more deeply nested lists still have their bullets.

 PRESENTATION AND DESIGN 111

 The wildcard selector is at its most useful in relationship selectors.
For example, if a page contained the following XHTML:

 <p>
 This is an example of
 styling the text in
 this strong tag as well
 as this strong tag.

</p>

 only the fi rst tag (marking “an example”) is a child of <p> .
The other two are children of other tags (<a> and). To style the
strong tags that aren’t children of <p> , use the wildcard selector:

 p * strong { /*Style information*/ }

 That would style all strong tags that are grandchildren of paragraphs:
meaning, there must be one or more descendant elements between p
and strong for this style to be applied. We could also use the child
selector, rather than the descendant selector, for more specifi c parent-
child relationships (e.g., that only one element appears between p and
 strong):

 p > * > strong { /*Style information*/ }

 However, in those two cases, both selectors would apply the same styles
to the XHTML above.

 Combining Selectors
 You can write selectors as descriptively and specifi cally as you like, so
long as they match actual familial relationships and structural com-
ponents in your XHTML. A match is what triggers a Web browser to
apply the style. For example, to style a paragraph that is an adjacent
sibling of a heading-two tag that is a child of <div id="content"> ,
provided that div#content is not a child of the body tag, the CSS
selector would look like:

 body * div#content > h2 + p { /*Style information*/ }

 However, you’ll probably be relieved to know that it’s rare to have to
write such complicated selectors. Rare, but possible. (See the “Selectors

112 HOW TO DESIGN AND WRITE WEB PAGES TODAY

and Specifi city” sidebar above, which will be useful knowledge if you
have to write complex selectors.)

 Grouping Selectors
 There are times when you might want multiple structural features in
your XHTML to be styled the same way; for example, both the
(bold) and tag might be styled as bold by your CSS. The
long way to do that would be to write two separate style declarations:

 b { font-weight: bold; }

strong { font-weight: bold; }

 But by using the comma, both selectors can be styled together. The
comma enables designers to style many additional elements to appear
in bold, such as all of the headings:

 b, strong, h1, h2, h3, h4, h5, h6 {
 font-weight: bold;

}

 Then, any distinct styles for a given selector could be handled by ad-
ditional selectors in the same style sheet; for example, h1 has already
been styled bold, but to make it purple (as well as bold) requires only
another style declaration that contains only the color property:

 h1 { color: purple; } /*Already made bold above.*/

 Pseudo-Class Selectors
 CSS provides fi ve special pseudo-class selectors, which are most often
used for styling link text appearing inside the <a> tag:

 • :link styles a link in its unvisited state
 • :visited styles a link that has been visited
 • :hover styles a link that is being moused over, and should usu-

ally be combined with
 • :focus , which styles a link that has been, for example, tabbed

to by a keyboard
 • :active styles a link during the brief moment that it has been

activated by a mouse click or pressing the Return key on the
keyboard

 PRESENTATION AND DESIGN 113

 So to make links green and no underline, hovered/active links under-
lined and green, and visited links red, a style sheet might have a cluster
of styles like:

 a,a:link { color: green; text-decoration: none; }
a:visited { color: red; }

a:hover,a:active { text-decoration: underline; }

 :hover and :focus also work on XHTML elements in forms for en-
tering user information.

 COMMON CSS PROPERTIES AND VALUES
 There are hundreds of properties in CSS for designing the look of
XHTML pages. References at HTML Dog 1 or Sitepoint 2 are essential to
have on hand as you write CSS; but here are some of the more common
properties to get you started, once you’ve begun to design your site.

 Fonts and Text
 A basic capability of CSS is styling text. CSS properties enable you to
change fonts and font sizes, as well as setting styles such as bold, italic,
and color. You can also set the amount of space between lines of text.

 • font-family : The font-family property takes a list of fonts;
the Web browser will keep moving through the list until it
fi nds a match on the user’s system. If no match is found, it will
use whatever it has to match the generic font style mentioned
at the end of the list. For example, if the style is

 font-family: "Times New Roman", Times, serif;

 the Web browser will display Times New Roman (which is
placed in quotation marks because of the spaces in the font’s
name, but place the comma outside the quotation marks); if the
computer the browser is running on does not have Times New
Roman but does have Times, it will use Times; if it doesn’t have
Times either, it will display whatever serif font is available on
the system. For accessibility purposes, always be sure to specify
a generic font alternative at the end of all lists of fonts: serif ,

114 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 sans-serif , or monospace . You can fi nd a current list of
commonly available fonts at this book’s companion Web site,
 http://sustainablewebdesign.com/book/ .

 • font-size : Font sizes can be set in a number of different
units; points (pt) are used for print style sheets. Screen style
sheets can use keywords, such as small , medium , and large ;
pixels (px); percentages (%); or ems (em).

 • font-weight : Font weight can be specifi ed as a number in
multiples of 100, but is more often specifi ed as bold , which
makes the font appear bold, or normal , which makes the font
appear normal (not bold). Normal is often used to reset a bold
style inherited from another selector; if the strong tag, by itself,
is set to bold, strong { font-weight: bold; } , but you
don’t want bold on strong inside of an anchor tag, you’d write:

 a strong { font-weight: normal; }

 • font-style : Font style is usually either set to italic , for
italics, or normal for nonitalic text.

 • color : The color property specifi es text color. You can write
color keywords like those found in small boxes of crayons (e.g.,
 red , blue , or green). To gain better control over color, write
the hexadecimal number for a color (e.g., #FFFFFF for white)
or the RGB value using rgb(255,255,255) , which would
also produce white.

 • line-height : Line height can be expressed as numbers
without a unit; for example, line-height: 1.5; makes
text one-and-a-half-spaced, line-height: 2; makes text
double-spaced. You can also use pixel units, although that may
cause problems if a user tries to resize the text on your site.

 • text-indent : To indent the fi rst line of text, use the text-
indent property and a value in pixels or ems. To mimic a
hanging indent (see Figure 10.5), run a negative number
for text- indent and then the same but positive value for
 padding-left . For example,

 ul.citation li {
 text-indent: -50px;
 padding-left: 50px;
}

 PRESENTATION AND DESIGN 115

Figure 10.5. Example of a hanging indent on a paragraph at the bottom of the
screen; ordinarily, references or works cited should be in list items in ordered or
unordered lists.

 Boxes: Borders, Padding, and Margin
 Block level elements—such as headings, paragraphs, lists, list items,
and divisions—are by default displayed as boxes; that is, they are as tall
as the content they contain, but block-level elements always take up
the entire width of the screen regardless of their content. Although we
will look more closely at the CSS box model in Chapter 17, for now
it’s important to know that border and padding will add to the size
of a box whose width or height you specify, while margin will move
the box away from other elements on the page, or from the edge of the
browser window.

 • border : Border is a shorthand property for specifying the
width, style, and color of a border. To set only the borders
of one edge, use border-top , border-right , border-
bottom , or border-left .

 • padding : Padding increases the distance between the content
in an element and the edge of the element. Padding can take a
single value to add the same amount of padding to all sides of

116 HOW TO DESIGN AND WRITE WEB PAGES TODAY

the content, or it can take four values in “trouble” order: Top
Right Bottom Left (TRBL).

 • margin : Margin increases the distance between the element
and other elements on your page, or from the edge of the
browser viewport. Without a background color or background
image, margin and padding appear to do the same thing (in-
creased space), but margins are transparent.

 • height : It is possible to set the height on an element. This is
usually done in image replacement situations (see Chapters 14
and 17). The problem with height is that some browsers will
maintain the height you specify, even if the content is longer/
taller, whereas other browsers will expand the height to fi t the
content.

 • width : By contrast, width is specifi ed quite often, especially to
help build page layouts. It is usually best practice to set widths
on a containing division or ordered or unordered list, rather

COLOR AND CSS

There are three common methods to specify colors in CSS, whether you are col-

oring text, a background, or a border.

The fi rst method is to use color keywords, which give you very limited con-

trol of color; they are like small boxes of crayons, allowing you to specify red,

blue, yellow, green, and other basic colors in your CSS.

The second method is to use hexadecimal numbers for red, green, and blue

(RGB) color values. This method works very well across operating systems and

Web browsers; a hexadecimal value is made up of six hexadecimal, or hex, num-

bers. (Hex numbers run 0–9 and continue A–F.) The fi rst two numbers are the

red value, the second two the green value, and the third two are the blue value.

So to set a color to the brightest purple (red and blue), a hex value of #FF00FF

would be required. A Google search for hexadecimal color palette will turn up

dozens of pages that show the hex values for colors; you will also see a 216-color

“Web-safe” palette. Designers used to be restricted to those 216 colors, but can

now use any of the millions of color combinations enabled by hex colors.

The third method, which is supported in all contemporary browsers, is to

specify RGB color in decimal numbers (0 to 255); instead of using the hash (#)

as on hex numbers, RGB requires this form: rgb(255,0,255);

 PRESENTATION AND DESIGN 117

than individual elements. As with height, elements that have
their width specifi ed will add any padding to the total width.
So for example,

 ul#navigation {
 width: 200px;
 padding: 20px;
}

 will result in the navigation appearing 240 pixels wide (200
width + 20 left padding + 20 right padding = 240).

 Layout and Positioning
 The most advanced use of CSS is to create entire page layouts, which
were once created with HTML tables. CSS layouts are much more fl ex-
ible than tables, because they are layered over a page’s structure—not
part of it, as tables were. Chapter 17 looks at building CSS layouts
using these properties:

 • position : There are three common values for positioning
 elements: static , which is the default position of elements as
they appear in source order and therefore the document fl ow;
 absolute , which removes an item from the document
fl ow; and relative , which is usually specifi ed for setting a
 positioning context other than the whole browser window for
absolutely positioned items.

 • top , right , bottom , left : Each of these four values can
place an absolute- or relative-positioned element a certain
distance from the top, right, bottom, or left of either the
browser window or its positioning context. Negative values
can also be used, sometimes to the effect of moving things
off screen (such as a navigation intended for users of screen
readers).

 • fl oat : Some Web sites use fl oats to create their layouts; how-
ever, positioning is a much better alternative. But fl oats do
come in handy for some forms of horizontal navigation bars,
or when you have images or other media that you want other
content to fl ow around.

118 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 • display : Display is a versatile property for setting how and
whether an item displays. display: none; causes the item
to disappear from view (potentially also to assistive technolo-
gies, which may be an accessibility issue). display: block;
causes an item to appear as a block element, while display:
inline; will make an item appear like an inline element,
such as or usually appear.

 Design Images and Textures
 Background colors help you to add visual interest to your pages. Design
images let you put the fi nishing touches on a design. But unlike images
loaded in the XHTML tag, CSS background images keep de-
sign images independent of your page content; redesigning your site,
even its design images, is just a matter of changing your CSS.

 • background-color : Like color , background-color can
be specifi ed using color keywords, hexadecimal numbers, or the
RGB numbers. You can specify a background color on any ele-
ment, as well as <body> and even <html> to set a background
color for your entire page. Just be sure you have high enough
contrast between your text and background to keep your pages
readable (see Chapter 6).

 • background-image : You can also specify a background image
on any element; for background images that are textures suit-
able for appearing behind text, it’s also a good idea to specify a
similar background color to the image, so as to keep text read-
able in the absence of images, or while the image loads.

 • background-repeat : By default, background images tile hor-
izontally and vertically to fi ll an entire element. However, you
can set background-repeat: no-repeat; for an image to
appear only once, or to background-repeat: repeat-x;
to tile horizontally, or background-repeat: repeat-y; to
tile only vertically.

 • background : You can also use the shorthand background
property; to set only a color, specify the color: background:
green; . To specify a background image (and a color for im-
ageless devices), the shorthand is background: green url

 PRESENTATION AND DESIGN 119

('tiled-leaves.jpg'); . Again, be sure to have a CSS
reference nearby, especially for shorthand properties like
 background and border .

 NEXT STEPS
 Now that you’ve had an introduction to CSS and have a list of some
(but certainly not all) of CSS’s properties, it will be easier to see how
both XHTML and CSS can be used to build different parts of your
pages: the branding, navigation, content, and so on. To get started,
we will get to work with the Rapid Prototyping Kit (RPK) and, in
 Chapter 12, explore writing with source in a text editor.

 NOTES
 1 . HTML Dog, "CSS Properties," http://htmldog.com/reference/

cssproperties/
 2 . SitePoint, “SitePoint CSS Reference,” http://reference.sitepoint

.com/css

 C H A P T E R 1 1

 Rapid Prototyping

 One of the better ways to stay motivated to complete your Web site is
to make visible progress on it quickly. The Rapid Prototyping Kit (RPK),
available as a free download at http://sustainablewebdesign
.com/book/ , will aid you in building a site with solid, standards-
compliant pages.

 This chapter looks at the benefi ts of rapid prototyping and the basic
steps of building a Web page using the RPK: gathering content, sketch-
ing out a rough layout, structuring content in XHTML, and adding de-
sign features in CSS. Those steps will be explored further in subsequent
chapters. But consider this chapter part road map, part crash course.

 BENEFITS OF RAPID PROTOTYPING
 Some books advise you to spend long stretches of time developing wire-
frames, sketches, mockups, and other kinds of throwaway prototypes
that aren’t part of the fi nal project. While those types of development
tools have their place and their benefi ts, my preference is to get to the
work of actually building a site as quickly as possible. It’s better to avoid
throwing away work, and better still to be doing things that directly
reveal the possibilities (and limitations) of Web design with XHTML
and CSS.

 Keep in mind that a Web site is never really fi nished; there are just
periods of time when it may not change as much. Rather than trying
to draft the perfect site before going live with it, it’s better to get some-
thing together that works basically the way you want it to. Then you

122 HOW TO DESIGN AND WRITE WEB PAGES TODAY

can devote yourself to the site’s ongoing improvement and expansion
over time.

 As Chapter 3 urged, have some content on hand and ideas in mind
as you begin to rapidly prototype your Web site. The best preparation
for building a Web site is to gather and create as much of the site’s con-
tent as possible (knowing, of course, that content will change over time
and based on your design). It is actual content that drives the design
of your site.

 THE COMPONENTS OF RAPID PROTOTYPING
 One of the reasons that WYSIWYG Web editors are so popular is that
they enable people to build pages quickly, and serve as all-in-one de-
velopment environments. The pages that WYSIWYGs spit out may
not be standards-compliant, lightweight, or easily revised, but they are
pages.

 But handwritten, standards-compliant pages can be written quickly,
too, and edited and revised even more quickly, which is why I have cre-
ated the RPK: a collection of fi les and folders to help you build rapid
prototypes for your Web site. These fi les and folders will help you tran-
sition from the sketching and planning aspects of your site develop-
ment to full-on site creation. I call it prototyping , but this activity builds
more than a throwaway prototype like you would get from wireframing
or mockups. This is the real work of building your site. What makes it
prototype-like is your attitude: if something doesn’t work, modify it.
Otherwise, throw it away and start anew.

 Put another way, when I am building a new site, I often keep in mind
the words of Eric Raymond: “You often don’t really understand the
problem until after the fi rst time you implement a solution.” For this
reason, “be ready to start over at least once.” 1

 Rapid prototyping requires three things:

 • The RPK, which is a fl exible, skeletal shell for putting together
almost any type of Web site; I have released the RPK under a
permissive open-source license, so you are free to use it for any
kind of site, including commercial sites.

 RAPID PROTOTYPING 123

 • A development environment, which should be comfortable
for you to use but experimented with as part of learning (see
Chapter 5).

 • A long-term attitude toward writing and designing for the
Web, which expects only steady progress and learning (and
lots of mistakes), not perfection or instant mastery.

 THE RAPID PROTOTYPING KIT
 The Rapid Prototyping Kit is nothing but a small collection of fi les and
folders for quickly building a Web site (see Figure 11.1). You can open,
manipulate, and customize the kit on any operating system (Windows,
Mac OS, Linux) using any good text editor. You can download it from
the Web site as a ZIP fi le (.zip); most operating systems have a built-in
utility for unzipping fi les. But if you’re looking for an open-source pro-
gram for creating and extracting ZIPs and other compressed/archived
fi les, you might consider 7-Zip. 2 Although 7-Zip is a Windows program
in origin, there are versions available for Linux and Mac, too.

 (Because I use the RPK in my own Web design work, I frequently
make subtle improvements to it. The companion site at http://sus
tainablewebdesign.com/book/ notes any changes, although the

EATING MY OWN DOG FOOD

Many open-source projects try to live by a phrase that I have come to love:

“Eat your own dog food.” The idea behind this phrase is that people who create

digital materials (software, templates, plugins, etc.) for others should use the

materials themselves.

That is actually how the RPK came to be: instead of reinventing the wheel for

each of my Web projects, I started working to build a kit that would put a lot of

things in place that I would otherwise be writing from scratch.

So in all of my XHTML sites, including the site that supports this book, I have

eaten my own dog food: they are all based on the RPK, with modifi cations as

necessary (which is exactly the point of the RPK: it’s a start, but you will still

have to modify it to suit your own needs).

124 HOW TO DESIGN AND WRITE WEB PAGES TODAY

version of the RPK used in this book will always be available. Below is
a rough outline of the RPK as of the writing of this book.)

 The Rapid Prototyping Kit Folders
 Once you extract the RPK’s ZIP fi le, you will fi nd a folder called
htdocs/ (named for easy use with the XAMPP Web server, which is
discussed in Chapter 20).

 The htdocs/ folder is a root Web folder , which contains all of
the fi les and folders that make up a Web site. Depending on your Web
host, you might need to transfer the contents of this folder to www/ ,
 httpdocs/ , or even html/ once you get to the point of uploading
your site (see Chapter 23). But for development and experimenting
 purposes, htdocs/ will be fi ne, especially if you build and test your
site using the XAMPP Web server (see Chapter 20).

 In addition to two XHTML fi les, which are described below,
 htdocs/ contains several folders as listed in the “Essential Folders”
sidebar in Chapter 5. In short, the Rapid Prototyping Kit includes
folders for every kind of site content that you might wish to post.

Figure 11.1. You can browse the RPK’s fi les on the Web; this is a view of the

contents of the htdocs/ folder.

 RAPID PROTOTYPING 125

(Chapter 20 provides guidance for adding your own folders to struc-
ture and organize your site architecture.) The RPK’s folder structure
can be changed as needed; but if you are new to Web design, it pro-
vides workable solutions to keep the contents of your site organized.

 The Rapid Prototyping XHTML Files
 In addition to a folder structure intended to help you organize your
site’s content, the RPK includes an XHTML fi le containing a global
structure for all site pages. This fi le is named prototype.htm . (There
is also a fi le, prototype-with-comments.htm , that has the same
structure but that explains in detail all of the prototyping features.)
Composed mostly of <div> tags and some accessibility features,
 prototype.htm is what will help you begin to structure your site’s
page content immediately, and enable you to build CSS over the top
of that structure for a standards-compliant page design.

 Most Web pages, regardless of their purpose, share a few common
areas:

 • A header with the site name and branding
 • A content area that may consist of one or more subdivisions of

content
 • A navigation bar or menu to help users fi nd their way to other

pages on the site
 • A footer area with copyright and licensing information and

other information about the page or site

 The next several chapters are devoted to breaking down and consid-
ering the purpose and potential design approaches to those structures,
which are shared across all pages in your site.

 The prototype.htm fi le also refl ects a sensible source order ,
meaning its ordering of content divisions—header, content, naviga-
tion, footer—would make sense and be useful even if there were no
design elements on the page, or if the page were being read aloud to a
low-vision user (see Figure 11.2).

 For example, it may surprise you that the navigation appears so far
down in the source order of the page. After all, most Web sites feature
their navigation areas near the top of the page. With CSS positioning,

126 HOW TO DESIGN AND WRITE WEB PAGES TODAY

however, it is possible to place the navigation wherever you would like
it to appear on the page—while keeping the source order friendly to
search engines and low-vision, text-only users (who can jump down
the page to the navigation using special accessibility links discussed in
Chapter 14).

 The Rapid Prototyping CSS Files
 One of the reasons I’ve found that beginners struggle with CSS de-
sign is that it’s often a toxic mix of designing for a page, but against
the browser. When you view a plain XHTML fi le, without any of your
own CSS styles, the Web browser itself is actually styling the page with
its own built-in set of CSS styles (see Figure 11.3). And as luck would
have it, every browser is a little different in its default styles. And that
makes cross-browser CSS design unnecessarily frustrating, even for
simple things like styling text.

 That is why the RPK contains the Yahoo! Reset Min CSS fi le
(reset.css), 3 which has the effect of removing any styles that might
be added by a Web browser (Figure 11.4). It gets rid of all the margin

Figure 11.2. A part of prototype.htm visible in the Notepad++ editor,
revealing the fi le’s source order.

Figure 11.3. This is what prototype.htm looks like without any styles of its
own, and therefore styled by the Firefox’s default CSS styles.

Figure 11.4. The same page as Figure 11.3, but with the Reset CSS in place.

128 HOW TO DESIGN AND WRITE WEB PAGES TODAY

and padding around elements, removes all of the font sizes on the dif-
ferent headings, and even removes bold and italic styling from tags that
would otherwise be bold and italic in most browsers.

 To account for that, the RPK also includes CSS at the top of
 screen.css that adds back some of the common styles that the Reset
CSS removes (see Figure 11.5). Specifi cally, it puts bold back on the
headings and the bold and strong tags; italics back on the italic, em-
phasis, and cite tags; and puts a dotted border back on the acronym
and abbreviation tags. If you do not wish to use the base styles, remove
or adjust them. The basic lesson from the Reset CSS is that you have
to specify everything about your design—even things like bold on tags
where you would expect bold.

 Everything else is completely unstyled: there is no space around any
of the headings, paragraphs, or lists, which also lack even bullets. The
idea behind this is that you are now free to style your page exactly as
you want it to appear. If you need bullets next to your unordered lists,
for example, you have to specify them in your CSS. It’s potentially

Figure 11.5. The same page as Figures 11.3 and 11.4, but with some base CSS
styles added back in after applying the Reset CSS. This is how prototype.
htm will look when you fi rst open your own copy.

 RAPID PROTOTYPING 129

extra work to add bullets, yes, but only if you want those and other
design features to appear. If, for example, you want no bullets next to
your navigation list, no problem. They’re not there anyway. But if you
do want bullets, you can be more confi dent that they will appear as you
intend across standards-compliant Web browsers.

 For adding those and other custom styles, there is a screen.css fi le
that is empty except for the base styles mentioned above and some use-
ful selectors (see Chapter 10) for styling particular content areas and
structural features found in prototype.htm .

 Rapid Prototyping JavaScript Files
 There are two JavaScript fi les in the RPK: the jQuery JavaScript
library, 4 which has its own folder, jquery/ , inside of the js/ folder
and a JavaScript fi le, site.js , where you can write the JavaScript for
your own site. I have included some functions in site.js that are use-
ful for all kinds of sites and that are explained in Chapter 19.

 WRITING AND DESIGNING WITH THE RPK
 Chapters 12 through 18 cover the specifi cs of working with different
parts of your pages, but here is a rough outline of how to proceed in your
Web writing and design using the RPK. Note that this is rarely a linear
process; for example, your content may force you to rethink your page
design, and vice versa. Still, every writer should address each of these
tasks as part of Web writing and design, with or without the RPK:

 • Generate and gather your text and image content. You will
need to have structured XHTML available before you can test
your design work in CSS; so drafting your page content, and
preparing some images and media (see Chapter 3), will allow
you to accurately describe the structure of your page content as
discussed in Chapters 16 and 18.

 • Set up your basic metadata, branding and rough navigation.
Edit the prototype.htm fi le according to the guidance in the
metadata, branding, and navigation chapters (Chapters 13, 14,
and 15) and save it as my-prototype.htm so that you can

130 HOW TO DESIGN AND WRITE WEB PAGES TODAY

create pages based on your own starter page that has most of
your shared page features in place. (See Chapter 21 for build-
ing a more dynamic, reusable set of shared content features.)

 • Develop a representative page from your site. The urge that
most designers have is to start with the home page, but it is
often very different from the content pages of a site. I recom-
mend starting with an “About Me”–type page; not only will
that likely be representative of your site’s other pages, but its
contents will also help you to fi gure out what other pages to
include in your site.

 • Mark up your text and image content in XHTML. Once
you have a rough draft of your content, start tagging it with
XHTML, particularly its headings, paragraphs, and lists (see
Chapter 16).

 • Begin to develop site typography. Choosing fonts and font
sizes, as well as line heights, will help you to get your page into
a shape that makes it readable and lead you to creating a site
style guide for text (see Chapter 16). A current list of fonts
that are safe to use on the Web is available at http://sus
tainablewebdesign.com/book/ ; just because a font is on
your computer does not mean it will be available on others. Be
prepared to adjust your typography later on to maximize read-
ability according to your page layout.

 • Sketch out a rough layout for your site. This is mostly about
geography, not the site’s actual look: Where will the header and
footer appear? The navigation? Your content and subcontent
areas? Your rough sketch will guide your work in Chapter 17
on page layout.

 • Use CSS to position your page elements. As Chapter 17 dem-
onstrates, CSS layouts are basically illusions, sort of like the
little slider puzzles you may have had as a child, where there
were nine spots for eight pieces of an image to go, and you had
to slide things around in order to get the picture to look the
way it’s supposed to.

 • Use an image editor to build in textures and background im-
ages, and fi nalize dimensions, particularly widths, for the dif-
ferent elements on your page. This is where you work to really

 RAPID PROTOTYPING 131

build the look and feel of your pages. Once you know you are
able to get your page elements to roughly where you want them,
you can use your image editor to create a striking design.

 Cultivating a Long-Term Attitude toward
Site Development
 A Web site is, to some extent, always in draft form. You will want to
make changes to your content as your career progresses, or as your busi-
ness or organization develops over time. Your design might start to look
dated, and you will want to update it, too. Here are some basic habits
to cultivating a long-term attitude toward site development (see also
Chapter 8 on sustainability):

 • Write as little source as possible. Beginners in my Web design
classes tend to write way more XHTML markup and CSS styles
than are necessary. I think this happens because they are ner-
vous about working in these new languages, and expect that
interesting pages will have lots of markup and CSS styles. That
is not true. The guidance in the chapters that follow will show
you how to write lean source, which makes a site much easier
to revise and maintain.

 • Think about relationships between your page elements. One
of the strengths of both CSS and JavaScript is their leverage
of relationships between page elements. For example, perhaps
there is a paragraph you want to display entirely in bold, so you
write something like this:

 <p>This paragraph’s text is all in
 bold.</p>

 But when you see that kind of markup, where two or more tags
mark the same content, it’s time to rethink your strategy. One
alternative to that use of the tag is to add a class to
the paragraph, like <p class="important"> and then in
the CSS specify p.important { font-weight: bold; } .
Don’t forget to remove the unnecessary tags from
your markup, though.

132 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 • Think about the general, then move to the specifi c. The
advice above suggests to begin site design by working with
a representative content page from your site; this helps you
think about what most pages will include structurally and how
they will be designed. From that, you can design pages that are
slightly different, such as the home page. Chapter 13 suggests
using a class on the body tag to give you a hook to style differ-
ent types of pages, while maintaining lean source and a single
CSS fi le.

 • Devote a little time every week or so to improve something
on your site. Like any other skills, your Web writing and design
skills depend on your exercising them every so often. Coming
back to your site regularly, as your schedule allows, will keep
your current skills fresh—and help you to learn new ones (see
the “Resources for the Future” section for material that will
advance your abilities beyond this book and keep you current
on the latest and best approaches to Web design).

 NEXT STEPS
 To build and edit your pages with the RPK requires only a simple text
editor, which the next chapter discusses. If you’re comfortable working
with a text editor, you may want to skip ahead to Chapter 13.

 NOTES
 1. Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary , revised and expanded ed. (Sebas-
topol, CA: O’Reilly Media, 2001), 25.

 2. 7-Zip, “Download,” http://www.7-zip.org/download.html
 3. Yahoo! Developer Network, “YUI 2: Reset CSS,” http://developer

.yahoo.com/yui/reset/
 4. jQuery.com, jQuery: The Write Less, Do More JavaScript Library , http://

jquery.com/

 C H A P T E R 1 2

 Writing with Source in
a Text Editor

 If you’re used to writing in a word processor or a WYSIWYG Web edi-
tor, one of the fi rst things that may strike you about writing in a simple
text editor like TextWrangler or Notepad++ is the relative lack of but-
tons and other screen clutter (see Figure 12.1). At fi rst, this lack of
buttons can be disorienting, even alarming: word processors and even
email programs have conditioned us to write with a lot of machine as-
sistance, particularly for formatting.

 But the text editor’s simplicity is actually a good thing. In a text edi-
tor, what matters most is what you write yourself. And that’s what you
do in an editor: you write.

 The important thing about a text editor, like the Web pages that you
create with it, is that there are no hidden mysteries. The WYSIWYG
acronym’s popular usage aside, in an editor, what you see really is what
you get—at least in terms of the sets of instructions that browsers turn
into Web pages.

 If you’ve ever used a word processor, you know that sometimes, weird
things happen. For no apparent reason. A paragraph gets a bullet point
next to it, and nothing you do to appease and reassure the software
seems to remove the bullet point. A paragraph changes font right in
the middle, but again with no apparent or apparently fi xable reason.
Most people confronted with such a situation will just start a new docu-
ment from scratch—or live with the weirdness.

 In the text editor, nothing you write and nothing about your Web
pages is hidden from view. And that means that, with even a little bit

134 HOW TO DESIGN AND WRITE WEB PAGES TODAY

of source literacy, you have maximum control over your pages. More
important, when something is wrong with one of your pages, you can
be certain that it’s something you can fi x.

 ONE PAGE, MANY VIEWS
 To understand why someone would want to roll back to a piece of
software as primitive as a text editor, it’s important to understand that
there are many different views of the same Web page. The text editor
is very good at managing its particular view of the page’s source. But
there are three views to monitor as you write your pages and build your
site:

 • File View: The listing of fi les and folders provided by your
computer’s operating system, or on your Web server via an
FTP program, is the fi le view; that is, the list of fi les that
make up your Web page or Web site (see Figure 12.2). It is
best practice, in most situations, to separate the languages
that make up your pages into individual fi les: CSS in .css

Figure 12.1. The Notepad++ editor, open and empty.

 WRITING WITH SOURCE IN A TEXT EDITOR 135

fi les, JavaScript in .js fi les, and so on (be sure that you have
confi gured your operating system to show all fi le extensions;
see Chapter 5). The fi le view also guides you in how to write
URLs so that when you write a reference from one fi le, like an
XHTML page, to another fi le, like an image, the link between
the two actually works (see the discussion of links and paths
in Chapter 20).

 • Source View: When you use your editor to open up an XHTML
or CSS fi le, you are looking at the fi le’s source view (see Fig-
ure 12.3). You can also access the source view of any page on
the Web by choosing something like View > Source from
within a Web browser. Looking at the source of other pages on
the Web is a great way to learn how other people build pages.

 • Browser View: This is how we usually experience Web pages;
the browser view is how pages display or render in a browser
itself (see Figure 12.4). However, each browser or mobile or
adaptive device provides a different, unique view of a given
Web page, as discussed in Chapter 2.

Figure 12.2. The fi le components of a simple page, as displayed by the operat-
ing system: in this case, an XHTML fi le, a CSS fi le, and a PNG image fi le.

Figure 12.3. The source view of an XHTML fi le, which links to the CSS fi le
on Line 6 and the image fi le on Line 17.

Figure 12.4. The browser pulls all the fi les together, thanks to the instructions
in the XHTML fi le, which references the CSS and image fi les. The image fi le is
actually a screen shot of the fi le view in the Ubuntu Linux operating system.

 WRITING WITH SOURCE IN A TEXT EDITOR 137

 Each view—fi le, source, and browser—will be slightly different,
 depending on details such as your operating system (Mac OS, Windows,
Linux), your editor (TextWrangler, Notepad++), and your browser
(Firefox, Chrome, Safari). Available fonts, screen resolutions, and even
display types (LCD panels or older CRT displays) all affect views. But
regardless of those details, what each view represents in terms of your
site’s fi les, source, page rendering is the same.

 SYNTAX HIGHLIGHTING
 Good text editors can provide more than views of source in simple
black and white text, though. Colorized text, better known as syntax
highlighting, makes writing XHTML, CSS, JavaScript, and your con-
tent more comfortable and effi cient.

 Despite their general lack of features, one feature that any good text
editor will have is syntax highlighting. Syntax highlighting provides
a set of visual cues about the contents of your fi les. Good editors will

Figure 12.5. A missing angle bracket on line 16 causes Notepad++’s syntax
highlighting to colorize all of the following text as though it were a tag. To fi x
these kinds of errors, watch for the line at which they start, then study your
source more closely.

138 HOW TO DESIGN AND WRITE WEB PAGES TODAY

display XHTML fi les, for example, with tags colored differently from
the text content that the tags structure. Attributes and attribute-values
may be colored differently from the tag element, and so on.

 The colors for syntax highlighting vary from editor to editor (e.g.,
coloring tags blue, green, or purple); the individual colors do not mat-
ter. What does matter is the differences in color from one feature of your
source (e.g., tags, attributes) and another (e.g., text content). For ex-
ample, if you forget to put a closing angle bracket on a tag, or a closing
quotation mark on an attribute-value, the colors for tags or attribute-
values will colorize everything that follows as a tag or attribute-value
(see Figure 12.5).

 This is an important way to track down the simplest and most com-
mon errors that most of us create when we write Web pages. If the
syntax highlighting of a page suddenly stops changing over a large
stretch—or otherwise looks different from other, similar areas of the
page—look for the spot at which the change begins. It’s more than
likely that you will fi nd the source of the problem nearby.

 SOURCE FORMATTING
 Unlike word processors, which format text to a particular printed page
size, text editors have no associated page or screen size. If you begin
typing a paragraph or long sentence in an editor, it will often continue
on the same line for as long as you keep typing, without breaking the
text onto the next line.

 Source formatting, or the style of line breaks and indentation you
use to keep your source readable, is a necessary skill that you will de-
velop over time as you work with your editor.

 Line Breaks
 There are a couple of different options for handling line breaks. Some
editors will create so-called soft breaks, which visually wrap text onto
new lines in your text editor’s particular view of the fi le. But soft breaks
are not saved with the fi le itself. If you view the fi le’s source in a browser,
it will appear as one 10-mile-long line.

 The other option is to create hard breaks by hitting the Enter/ Return
key on your keyboard. Hard breaks are special characters that are stored

 WRITING WITH SOURCE IN A TEXT EDITOR 139

in a fi le; these break the lines of your source for anyone viewing it (in-
cluding people who choose the View > Source option in their Web
browser).

 It is tradition to put hard breaks in source fi les after 80 characters,
but running out to 100 characters is fi ne, too. Line length is, in source
formatting as in page design, a matter of reading comfort. Your editor
can probably set up a visual onscreen guide to show you where the 80-
or 100-character mark is, so you know when to hit Return.

LF, CR+LF, AND CR: THE MOST BORING
SIDEBAR IN THE BOOK

So I have been telling a little bit of a lie so far. There is one thing that you cannot

see in a text editor—or that you usually don’t see, unless something has gone

very wrong: the special character that different operating systems put in text

editors when you hit the Enter key for a line break.

This is primarily a Windows issue; the details are below, but suffi ce it to say

that the preferred break for fi les destined for the Web is the linefeed character,

LF. It is preferable because it works well across all operating systems, including

and especially the Linux or Unix-like operating system that will probably be run

by your Web host, as Chapter 5 suggested.

Most Windows editors, including Notepad++, allow you to specify what char-

acter should be used for new lines. In Notepad++, go to Settings > Preferences

and then fi nd the New Document/Default Directory tab. Make sure you choose

Unix as the default format. If you open up older fi les, you can always choose

Edit > EOL Conversion, and change the current fi le to Unix. (EOL means “end of

line.”) Doing so will make work easier for you and your collaborators if you move,

or might move, between Windows, Mac OS, and Linux.

If you’re struggling to stay awake, you can skip back to the main text. But if

you’re interested in a little history/trivia, here goes: Carriage Return and Line Feed,

or CR+LF, is the double character inserted by Windows editors; what it results in

most often is text fi les appearing double-spaced on LF systems, such as OS X and

Linux. (CR by itself is basically ancient, although if you want to fi re up your old

Apple II or even a Mac OS 9 machine, you’ll fi nd a piece of living history.)

For those troubled few who fi nd this discussion fascinating, consult the

Wikipedia page for Newline: http://en.wikipedia.org/wiki/
Newline

140 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 You can also put in breaks whenever it helps make your source more
readable. Except in a very specifi c instance (the <pre> tag), white
space (spaces, tabs, hard breaks) in XHTML source (Figure 12.6) is not
refl ected in the browser’s rendering of your page (Figure 12.7). (This
means that inserting a tab or fi ve spaces at the beginning of a para-
graph will not indent your paragraph; to indent paragraphs, use the
CSS text-indent property.) Format your source in the source view
of your editor however you’d like, it will render the same in a browser
view.

 Indentation
 Another means for making source more readable is to use indenta-
tion. Some text editors will insert multiple spaces for each strike to the
Tab key, while others will insert actual tab characters. Look through
your editor’s preferences, as you can change this to whatever you wish.
Tab characters are easier to delete and reformat than a whole bunch
of spaces—plus it’s usually possible to tell the text editor how wide to

Figure 12.6. The same paragraph, formatted three different ways using tabs,
spaces, and line breaks in the source.

 WRITING WITH SOURCE IN A TEXT EDITOR 141

Figure 12.7. Despite the differences in source formatting shown in Fig ure 12.6,
all three paragraphs display exactly the same in the browser view.

CHARACTER ENCODING: UTF-8 WITHOUT
THE BYTE ORDER MARK (BOM)

Another invisible matter your text editor will handle is your text fi le’s encod-

ing; while you should specify UTF-8 as the encoding in the metadata for your

XHTML pages (see Chapter 13), you must make sure that your text editor is

actually encoding UTF-8 (not ANSI or ASCII, which are common default encod-

ings), and without a pesky little creature called the Byte Order Mark (BOM).

Most editors, such as Notepad++, have an Encoding menu. Watch carefully,

though; Notepad++ has an option for “Encode in UTF-8,” which sounds right,

except you should actually choose “Encode in UTF-8 without BOM.” Check

also for setting up the default encoding of your fi les in some kind of Prefer-

ences menu in your editor; if you accidentally save a fi le with the wrong en-

coding, most editors provide some way to convert encoding to UTF-8 without

the BOM.

142 HOW TO DESIGN AND WRITE WEB PAGES TODAY

display a tab. But you can fi nd passionate, almost religious discussions
across the Web where people debate indents-as-spaces versus indents-
as-tabs. (The RPK is indented using spaces, by the way.)

 Whether by tab characters or spaces, indentation makes XHTML
more readable by making nested tags even more clear; here is a heading
two and paragraph tag nested inside of a division tag:

 <div class="tip">
 <h2>Indentation Makes Source Readable</h2>
 <p>
 However, some text editors require you to
 do your indentation manually.
 </p>

</div>

 Likewise, indentations and line breaks can help make CSS source
more readable:

 body {
 font-family: Helvetica, Arial, sans-serif;
 font-size: small;
}

 Some Web designers even like to indent selectors to visually track
which styles appear within other styles:

 div#content { width: 500px; }
 div#content h2 { font-size: 26px; }
 div#content p { font-size: 14px; }
 div#content p a { color: green; }

 How your format the source for your XHTML, CSS, and JavaScript is
up to you, because in most cases, it has no impact on how your pages
display. But it will have a major impact on your ability to collaborate
with others, and even how easily you are able to read and understand
your own source later.

 COMMENTING ON YOUR SOURCE
 Another feature that has no effect on page display, but that makes
source more readable and understandable over time, is comments.

 WRITING WITH SOURCE IN A TEXT EDITOR 143

 Every computer language has some sort of syntax for writing com-
ments that is meant for humans, not computers. To help make your
pages more sustainable, it’s wise to get into the habit of commenting on
your source. Not only will comments make it easier for you to edit your
pages in the future, but it will also help you to think through what you
are doing. If you describe, in the comments, what your source means
and what you intend it to do, you will deepen your understanding of
how Web languages work.

 So in addition to formatting your source for readability using line
breaks and indentation, you can also write comments to your source. In
XHTML, comments begin with <!-- and end with --> . For example:

 <!--Here is a comment in XHTML.-->

 XHTML comments are not rendered on your page in the browser, nor is
the browser affected by their contents. (However, it is actually the two
hyphens, -- , that close the comment, so do not use a double- hyphen
in your comment text itself. This is a hard habit to break for those of us
who use two hyphens in email to mimic an em dash.)

 CSS and JavaScript both use a slash-star (/*), star-slash (*/) pat-
tern to start and end comments:

 /*Here is a comment in CSS*/

 /*Here is a comment in JavaScript*/

 Writing Useful Comments
 Writing useful comments is an art of writing all its own. When written
well, comments can explain aspects of your source (you can also throw
in line breaks and tabs on your comments, too):

 a.skip { display: none; } /*For fully graphical
screen displays, hide

 links that are used
to skip to different

 page sections*/

 Here are some general tips for writing useful comments:

 • Write comments as though you were trying to teach or explain
what you’re doing to someone else. Many teachers will tell you
that they never really learn a subject until they’ve taught it to

144 HOW TO DESIGN AND WRITE WEB PAGES TODAY

others. Writing comments that attempt to teach and explain
will help others who might look at the source of your pages—
and it will help your future self, who will probably have forgot-
ten why some feature of the page was written to begin with.

 • Provide human-readable information to accompany infor-
mation for the computer. In CSS, for example, you usually
specify colors by numbers—either hexadecimal or RGB (see
Chapter 10). But few of us can remember that #FF3399 is hot
pink. Some designers even write color references at the top of
their CSS so they know which numbers to write:

 /*
Colors in this Design:
#339900 – Deep Green
#FFCC33 – Sandy Orange
#993300 – Deep Red
*/

 • Be careful about referring to line numbers in your comments.
Consider a comment like:

 <!--This closes the <div> tag from line
15:-->
</div>

 It will only be true so long as no lines are added or removed
before line 15. A better approach is to refer to actual structural
features that can be found using a text editor’s search function:

 <!--This closes the <div id="gallery">
tag from above:-->
</div>

 • Ask questions or set to-do lists for yourself or others you are
working with. Having a question or to-do item in with your
source is just more convenient than having it stashed away in
a notebook or an email.

 <!--
Can someone please check the XHTML

 WRITING WITH SOURCE IN A TEXT EDITOR 145

below? It's not validating for some
 reason, but I don't understand the
error output from the validator.
-->

 • When you update the source, update the comments. Like
all commenting practice, it can be time-consuming to update
the explanation that goes with each change you make. But the
long-term benefi ts to your sanity outweigh the inconvenience.
Trust me.

 Commenting Out Problem Code
 Comments can also be used if you have some sort of problem with your
pages, and you’re trying to isolate the problem. Comments can contain
source code just as easily as human-readable messages; their effect is the
same: to hide the content from the browser, the validator, or any other
machine reading the source:

 p { width: 100px; /*padding: 50px;*/ }
 /*The padding is changing the width,
 so I've commented it out for
 testing purposes.*/

 Yes, you could just delete the problem source. But by just comment-
ing it out, you prepare for testing and possibly further revision, while
keeping the Web browser from reading problem source as you test. (Al-
though eventually, if you determine that the source you’ve commented
out will never be revised, it’s probably better if you delete it.)

 NEXT STEPS
 Working with your text editor is, like all aspects of Web writing and de-
sign, an ongoing process of learning. As you work on your pages and read
through the remainder of this book, keep in mind the practices suggested
in this chapter—particularly indenting and formatting your source, and
using comments to explain to yourself what it is that you have written.

 The remaining chapters in this section of the book get into the spe-
cifi cs of individual components of page writing and design. We will set

146 HOW TO DESIGN AND WRITE WEB PAGES TODAY

up and inspect some basic page metadata before delving into page con-
tent and text styles. The chapter on branding will look at the headers
and footers that appear on all of your pages and some interesting CSS
techniques for image replacement and hiding elements. In the naviga-
tion chapter, we look at how to build a usable site navigation (you will
also want to revise it as you work through the site architecture chapter,
Chapter 20). The chapter on page layout brings the content, branding,
and navigation elements together, and the chapters on multimedia and
performance and interaction will look at ways to enhance your pages
for cutting-edge devices—while still meeting the accessibility needs of
all users.

 C H A P T E R 1 3

 Page Metadata

 Well-written XHTML pages include a variety of metadata, which is
 information about the contents of each of your pages. Search engine
spiders, Web browsers, and even sites like Facebook and Diigo can
make use of your pages’ metadata, which in turn improves your site
visitors’ experience.

 This chapter looks at essential metadata for describing the contents
and construction of your site’s pages; there are some additional, ad-
vanced metadata topics for sharing your content in Chapter 24.

 DESCRIBING THE CONTENTS OF YOUR PAGES
 As we saw in the basic rules of XHTML in Chapter 9, every page should
begin with a DOCTYPE declaration; those that don’t trigger what is
known as quirks mode rendering in browsers. This book advocates the
XHTML 1.0 Strict DOCTYPE, which is used in the RPK’s XHTML
fi les and appears at the very top of each XHTML page. (It does not,
however, appear in CSS or JavaScript fi les; that should be obvious—
but I’ve seen more than a few beginners put DOCTYPE declarations in
their fi rst CSS fi les.)

 The <html> tag in XHTML strict should have three attributes; one,
 xmlns which specifi es the XHTML namespace using the XHTML
specifi cation’s URL as its value; and two tags that specify the language
of the page: xml:lang , which newer browsers understand, and lang ,
which all browsers understand. For English-language Web pages, both
of these attributes take the value of en . (The Library of Congress has a

148 HOW TO DESIGN AND WRITE WEB PAGES TODAY

page that lists all of the language codes according to the two-letter ISO
639-1 and three-letter ISO 639-2 standard, if you are writing a page
in a language other than English. 1 If both two-letter and three-letter
codes are listed for the language you are writing in, the W3C specifi es
that you must use the two-letter code. 2)

 So, a metadata-rich <html> tag opening a Web page written in En-
glish will look like:

 <html xmlns="http://www.w3.org/1999/xhtml"

 xml:lang="en" lang="en">

 The RPK contains one additional attribute-value pair on the <html>
tag: a unique ID whose value should be the domain name of your Web
site. For example, my Web site’s domain is karlstolley.com ; on all
of my site’s pages, I add a unique ID of karlstolley-com , replacing
the dot with a hyphen, as dots are not allowed in ID or class names. So,
my completed <html> tag looks like:

 <html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en" id="karlstolley-com">

 Adding that unique ID, known as a CSS signature, 3 on each of your
pages will allow visitors to write custom CSS to change how they view
your site, often by using a browser plugin such as Stylish for Firefox. 4

 THE HEAD AREA: PAGE METADATA
 Although none of the content in the <head> area of a page is dis-
played in the browser viewport, the head affects the display of page
content in the <body> area. The most important metadata to in-
clude in the <head> specifi es the character set of your text content,
the title of your pages, and the links to your site’s CSS and JavaScript
fi les.

 Specifying the Content Type
 Almost every kind of fi le, from Word documents to JPEG images,
has a particular Multipurpose Internet Mail Extension, or more sim-
ply, MIME type. (Search the Web for lists of MIME types; the Web
site Webmaster Toolkit maintains a very good list. 5) Web servers share

 PAGE METADATA 149

MIME type information with other computers and software, such as
Web browsers, so that content can be displayed correctly and by the
appropriate software application.

 The basic HTML MIME type is text/html and can be used with
XHTML. (Note that in XHTML, the content type should actually be
 application/xml+xhtml ; however, because certain browsers do not
understand that content type, the content type must remain text/
html for the time being.)

 Your Web pages should all have a <meta> tag that reads:

 <meta http-equiv="Content-Type"

 content="text/html; charset=utf-8" />

 The other crucial value in that tag, in addition to the text/html
MIME type, is the UTF-8, or Unicode, character set, or charset .
Older Web editors often set a default character set of ISO-8859-1,
which is a limited set of characters used by older computers (see Fig-
ure 13.1). UTF-8 is a much larger character set and lets you use fancy

Figure 13.1. Mismatched character sets cause special punctuation marks and
symbols to display as clusters of garbage characters.

150 HOW TO DESIGN AND WRITE WEB PAGES TODAY

typographer’s quotes (instead of straight quotes), em dashes, and other
character enhancements that word processors often add to text (see
Figure 13.2). UTF-8 also makes it possible to write special characters
from languages other than English.

 MISMATCHED CHARACTER SETS

 If you’ve ever gone to a Web site where most of the punctuation appears as

question marks or empty boxes, like

 Welcome to Jim?s Web site

the root of the problem is usually a mismatched character set. Specify utf-8

as described in this chapter, and your site should not have any problems like

that. See Chapter 12 for a discussion of setting your text editor to encode your

text fi les as UTF-8 without the Byte Order Mark (BOM), which must be done in

addition to specifying utf-8 in your XHTML documents.

Figure 13.2. By specifying the UTF-8 character set and setting your editor to
properly encode the XHTML fi le (UTF-8 without the Byte Order Mark, BOM),
you can include text with special characters without having to use XHTML
entities.

 PAGE METADATA 151

 Character Entities
 The XHTML specifi cation allows for particular character entities,
which a browser will display as a special character. To display a copy-
right symbol in the browser, for example, you could write the XHTML
entity © .

 However, XHTML entities are worth avoiding for a few reasons:
fi rst, they are not easy to remember. With a good entity reference, 6 that
may not be a problem. But entities may make your content less porta-
ble, particularly if you are reposting your content as an RSS feed. RSS
is limited to a much smaller collection of entities; any XHTML entities
beyond that collection will probably cause your feed to malfunction.

 With the UTF-8 character set, you do not need to use XHTML en-
tities except the three listed below. You can just use the character di-
rectly in your source; most word processing programs will create these
characters automatically (such as typographer’s quotes, or even the
copyright symbol if you type (c)). For other characters, you can go to
the character map or other listing of characters on your computer.

 The only case where you must use entities is for angle brackets,
which would be interpreted as part of XHTML tags, and the amper-
sand, because it is used to indicate the start of an entity (using the am-
persand by itself with throw an error in the XHTML validator, too).
These, then, are the three characters for which you must use entities:

 < to display <
 > to display >
 & to display &

 There are also entities for straight double quotation marks, " , and
the straight apostrophe, ' . You rarely need to use those, although
they are essential for use in JavaScript or in your <meta> tags for shar-
ing (see Chapter 24) unless you use the typographer’s (sometimes called
“smart”) quotation marks—along with the UTF-8 character set.

 SPECIFYING A PAGE TITLE
 The fi rst piece of human-readable content on your pages is written
in the <title> tag. The text you write there appears in the title
bar on most browsers, on browser tabs (on browsers that support

152 HOW TO DESIGN AND WRITE WEB PAGES TODAY

tabbed browsing), and in browser bookmarks. The content of the
 <title> tag is also the clickable link in the results list of most search
engines.

 The title tag should contain both the specifi c title of each Web
page plus the name of your site. Which order you put them in (page
title then site, or site title then page) is a matter of personal prefer-
ence. I prefer to put the unique page title fi rst, followed by the site
name:

 <title>Title Bar Example – Sustainable Web Design

 </title>

 The reason for the page-before-site order is that the contents of
 <title> tags may be shortened in browser tabs, and I prefer to
have the unique part of the page title visible, particularly if someone
were to have more than one tab opened to a page on my site. Not
that that happens with my site, but it’s important to dream. (See
Figure 13.3.)

Figure 13.3. The contents of the <title> tag appear in Firefox’s title bar
and on the tab.

 PAGE METADATA 153

 LINKING TO A SHORTCUT ICON OR “FAVICON”
 If you fi nd that you prefer to put a unique page title before your site
name in your <title> tag, you run into the problem of identifying
your site uniquely to someone with multiple tabs open in her browser,
or with your page listed in a series of browser bookmarks. In addition to
branding your pages with your site’s name in the <title> tag, you can
also specify a shortcut icon, or what’s more commonly referred to as a
 favicon (pron. “fave icon”). A favicon is a small image that provides a
branded icon for your site. These often appear in browser address bars
and, more recently, on the tabs of some tabbed browsers.

 It is possible to specify a favicon that is in any number of formats:
the original ICO format or common image formats including GIF,
JPEG, and more recently, PNG. However, Internet Explorer—even as
of version 8—only displays the ICO format. (If you wish to use ICO,
you may have to use some kind of conversion utility if your graphics
editor will not save as .ico .)

 When creating your favicon, it is important to save the fi le at 16px
by 16px. However, it is diffi cult to design a good favicon at that size,
so most Web designers will create the icon at 32px by 32px, or even
64px by 64px, and reduce the image dimensions down to 16px by 16px.
Both 32px and 64px work well because they are multiples of 16, which
means that their reduction down to 16px will be clear and crisp.

 While it is possible to store favicons in a default location and in
a default format that will be picked up by some Web browsers, my

 DON’T DESIGN TITLES WITH PUNCTUATION

 Web writers sometimes use punctuation to visually separate the title of the page

from the site name. Some symbols, such as the pipe (|), the double-angle quote

(»), or sets of colons (::) can be trouble for users of screen readers, which may

pronounce or describe the symbols. Writing titles with a single colon or a hyphen

is a more accessible way to subdivide the portions of the content you put in the

 <title> tag.

 See http://www.webaim.org/techniques/screenreader/

for other tips on designing pages that will work with screen readers.

154 HOW TO DESIGN AND WRITE WEB PAGES TODAY

preference is to specify the location explicitly in the link tag. Favicons
are important enough to site branding that I prefer not to leave their
appearance to default browser behaviors and therefore to chance. So
to explicitly state the location and type of your favicon, your <head>
should include the full URL to your icon in a <link> tag:

 <link rel=" icon" href="http://example.com/
 favicon.png" type="image/png" />
<!--For Internet Explorer; no type must be specifi ed-->
<link rel="shortcut icon" href="http://example.com/
 favicon.ico" />

 If you opt to use PNG or another format, it must have the proper MIME
type associated with it, e.g., image/gif for GIF fi les.

 LINKING TO CSS AND JAVASCRIPT FILES
 XHTML pages are only the structured content of your site. To design
and enhance XHTML pages with CSS and JavaScript, you must use
XHTML to refer to your CSS and JavaScript. The <head> area of your
XHTML pages provides two different methods for enhancing your site
with CSS and JavaScript.

 One method is to use the <script> tag for JavaScript and the
 <style> tag for CSS in the <head> area of your Web pages. Those
allow you to write JavaScript or CSS code directly in your XHTML
fi le. Although that method can be helpful for quick drafts and tests, it
traps the CSS and JavaScript in individual XHTML fi les. That method
therefore fails to scale with your site—and makes revisions to design
and scripting more time-consuming and repetitive.

 A better method (and the one advised in this book) is to keep your
JavaScript and CSS in separate fi les, and link to them from the <head>
area of each of your XHTML pages. There are two important advan-
tages to linking to JavaScript and CSS fi les:

 • Changes to a shared .js or .css fi le will be refl ected across
your entire site; this keeps pages uniform and revisions to your
design a simpler activity than if you write the same JavaScript
or CSS in each XHTML page.

 • By sharing the same set of .js and .css fi les across your pages,
your site visitors’ Web browsers only have to download each

 PAGE METADATA 155

fi le once, no matter how many pages on your site they view.
Once the .js or .css fi le has been downloaded, the browser
 caches the fi le—meaning it makes a copy on the visitor’s com-
puter. That speeds up the performance of your site, because
only the XHTML and content of subsequent pages have to be
downloaded. On slow Internet connections or mobile devices,
shared design and scripting fi les dramatically improve your
site’s performance.

 However, even though the concept behind linking to CSS and
JavaScript fi les is the same, they each use different XHTML.

 Linking to CSS
 Links to CSS are created using the self-closing <link /> tag with
some special attributes: rel="stylesheet" tells the browser the link
is to a style sheet and type="text/css" specifi es that the style sheet
contains CSS instructions (and yes, text/css is the MIME type for
CSS). The href attribute points to the style sheet’s location, while the
 media attribute allows you to specify whether the style sheet is for the
screen, for printing, or other formats. A complete link to a style sheet
for screen design looks something like:

 <link rel="stylesheet" type="text/css"

 href="/css/style.css" media="screen" />

 Note that you can load multiple style sheets on a single XHTML
page just by adding additional link tags in the <head> ; for example,
the Rapid Prototyping Kit (RPK) loads three different style sheets for
the screen using this method (see Chapter 11).

 Linking to JavaScript
 Linking to JavaScript fi les is done using the <script> tag (as with
the on-page method of writing JavaScript described above). However,
when linking to external scripts, the <script> tag opens and closes
but remains empty. Like the <link /> tag for CSS, it is essential to
tell browsers what type of script you’re linking to. In one of the little
idiosyncrasies of XHTML, however, to link to the script, you must use
the src (source) attribute instead of href :

156 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 <script type="text/javascript" src="/js/site.js">

</script>

 Again, note that there are opening and closing tags for <script> ,
even though they surround no content.

 THE BODY TAG
 One last piece of valuable metadata is a class on the <body> tag, which
holds all of the visible content of your page. A class on the body tag
gives you an extra structural hook to design pages in major parts of your
site differently.

 For example, on the home page of a site, you could add a class of
 home or overview : <body class="home"> . Then, if there were
something special that you wanted to do stylistically, such as present a
larger branding header on the home page, your CSS can use the home
class as a hook (see Chapter 14):

 div#header { /*Styles for header on all pages*/ }
body.home div#header { /*Styles for header on the

 home page*/ }

 You can also use the different elements from the navigation as
classes for other site pages. For example, a resume page would probably
be linked from a Resume item in the site navigation; that page could
take <body class="resume"> ; if your site has a portfolio area, all
of those pages could take <body class="portfolio"> . Chapter 15
notes that you can even use body classes as part of wayfi nding (see
Chapter 7) by styling the navigation according to which area of your
site a user is viewing.

 Chapter 19 will also show how JavaScript can automatically add
additional classes on the <body> tag; the RPK adds a hasjs class to
 <body> if a user has JavaScript enabled:

 body { /*Body styles for all CSS-enabled users*/ }
body.hasjs { /*Body styles for CSS- and JavaScript-

 enabled users*/ }

 You can also use JavaScript to add other classes for users viewing
sites on wide screens; that class can be yet another selector in CSS that

 PAGE METADATA 157

enables you to style your page to take advantage of wide screens or other
viewing conditions. Remember, though, that it’s always best practice to
design your pages to be accessible and usable without JavaScript. Once
you have done that, you can go back and progressively enhance your
pages, so long as they degrade gracefully (see Chapter 6).

 NEXT STEPS
 This chapter has covered some of the basic metadata that should appear
in your XHTML’s <head> area, as well as a class on the <body> tag.;
Chapter 24 looks at a few additional things to place in the <head> to
make your content easier to share. In the next chapter, though, we will
get to writing something more interesting: the visible content of your
pages, beginning with the branding shared across all of your pages.

 NOTES
 1. Library of Congress, “Codes for the Representation of Names of Lan-

guages,” http://www.loc.gov/standards/iso639-2/php/English_list.php
 2. W3C, “Language Tags in HTML and XML,” http://www.w3.org/Inter

national/articles/language-tags/RFC3066.html
 3. Eric A. Meyer, “CSS Signatures” (September 28, 2002), http://archi

vist.incutio.com/viewlist/css-discuss/13291
 4. Jason Barnabe, “Stylish,” Add-ons for Firefox , https://addons.mozilla.org/

en-US/fi refox/addon/2108
 5. Webmaster Toolkit, “MIME Types,” http://www.webmaster-toolkit.com/

mime-types.shtml
 6. Elizabeth Castro, “Character Entity References in HTML 4 and XHTML

1.0,” HTML, XHTML, and CSS , 6th ed. (2002), http://www.elizabethcastro
.com/html/extras/entities.html

 C H A P T E R 1 4

 Page Branding

 Branding identifi es a page as belonging to your site. Although branding
is usually associated with logos and color schemes, the branding of Web
pages also depends on the structure and design of the whole page, includ-
ing headers and footers that are consistent from page to page. Navigation
(covered in the next chapter) also plays a role in branding, both visually
and by representing your site as having a sensible, usable architecture.

 The terms “header” and “footer” come from print design, where they
typically refer to the very top (header) and bottom (footer) of a page.
However, while structurally your header appears at the beginning of
your XHTML source and the footer at the end, CSS enables you to cre-
ate page designs that display the header and footer in other places.

 Regardless of their location on a designed page, the header and
footer serve important and unique branding functions:

 • The header is the place to provide a consistent label for your
pages, usually by writing your site name in an <h1> tag. The
header is also a place to offer a logo or logotype (your site’s
name presented in a unique font, perhaps as an image) and to
have that logo link back to the home page of your site. Most
sites also clarify their purpose to visitors by including a short
description of the site, also known as a tagline. Finally, to aid
accessibility, the header should provide a list of links for visitors
using devices with limited or no visual display to skip to the
navigation and perhaps other areas of your pages. These links
make the page more accessible on mobile and assistive devices,
but might be hidden from view on fully graphical browsers.

160 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 • The footer often features site credits and perhaps a link to a
Creative Commons license, which makes it easier (and legal)
for people to share and reuse your content, and therefore build
your reputation and identity across the Web (see Chapter 24).
The footer may also be used to provide links to validate your
XTHML and CSS and perhaps to promote any libraries or soft-
ware you use to create and maintain your site.

 For strong branding, your header and footer should be structurally and
perhaps visually identical across all of your pages. Some Web pages may
have CSS that presents a more prominent header area, such as on the
home page of a site. But it’s generally a good practice to design most, if
not all, pages’ headers and footers the same.

 THE HEADER
 The most basic page header will include the title of the site, a description
or tagline, and accessibility links for jumping to different areas on the page.

 <div id="header">
 <h1>
 Site
 Title
 </h1>
 <p class="tagline">Site Description</p>
 <ul class="accessibility">
 Jump to Navigation

 Jump to Content

</div>

 In the Rapid Prototyping Kit, the header appears in <div
id="header"> , which is the fi rst major structural unit of the XHTML
source inside the <body> and <div id="page"> tags.

 Site Title
 The site title belongs in an <h1> tag and should probably be the only
use of the <h1> tag on your site. For all other headings, use <h2> ,
and <h3> for subheadings (see Chapter 16). If you are building a
site to promote yourself, your name is a great choice for a site title.

 PAGE BRANDING 161

However, if you are primarily running a blog on your site, you might use
the title you’ve given to your blog (see Chapter 22). If you’re creating a
page for a business, club, or other organization, then use that name for
the site title. It’s unnecessary to add obvious phrases like “Home Page
of . . .” or “Web site for . . .” to the site title.

 Placing your name or that of your organization or business in a
 heading-one tag may also help your rankings on Google searches for
your name or organization. The site title in the header area comple-
ments the <title> tags in your pages’ <head> area, while adding a
visible title on your page, too.

 In addition to the <h1> tag, it’s an established convention on the
Web to also link the text of the site title to the home page of your
site. Usually, this link will include the full URL to your home page.
Anyone who wants to return to your home page can simply click on
your site title in the branding area. So for example, on my Web site,
I have:

 <h1>Karl Stolley

 </h1>

 This is one of the only cases where writing a link with your full site
URL is necessary, as it lets you do some unique things with your
site title, such as add additional information about its home page.
For example, you can use the rel-home microformat to indicate that
the link on your site title points to your home page: 1

 MICROFORMATS

 XHTML describes the structure of content, but XHTML on its own has no ca-

pacity for expressing the meaning of content. For example, a link to a Creative

Commons license is indistinguishable from any other kind of link that appears

in .

 Microformats change that. A link to a Creative Commons license can include

 rel="license" in the <a> tag, indicating to search engines and com-

puters that understand the rel-license microformat that the link not only takes

someone to another destination, but that it actually means that the page where

the link appears is licensed under a specifi c Creative Commons license.

You can learn about many other types of microformats at Microformats.org.

162 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 <h1>

 Karl Stolley</h1>

 Site Description or Tagline
 A tagline briefl y conveys your site’s content or purpose to visitors.
Whether you’re building a personal or professional site for yourself or
a site to promote your club, a tagline is useful to include. It may even
help you clarify your own sense of purpose and guide how you select
and organize appropriate content for your site.

 The RPK suggests writing the tagline inside of a paragraph tag with a
class of tagline , <p class="tagline"> , in the header area of your
XHTML document.

 On personal sites, the tagline should be a description of you: “Pro-
fessional photographer in Seattle, Washington”; “Engineering student
at State University”; “Salt water aquarium enthusiast and consultant.”
A professional site may instead use your job title as the tagline:
“ Associate Mechanical Engineer at High Tech, Inc.”; “Assistant
to the regional manager for Dunder-Miffl in, Inc.” Be wary, though,
about including your company name: some companies have restrictive
 policies about employee Web sites, not to mention that a search on the
company name may return your site. If those are concerns, or if you
are using your site to support your job search, consider describing your
line of work or expertise, rather than your job title and company.

 For blog sites, a tagline can clarify the purpose and content of the
blog: “Tracking news and views of interest to greater Chicagoland area
residents”; “Fishing tips and tricks for the weekend warrior”; “A blog
about knitting for fun and profi t.”

 Business and organizational Web sites might describe their business/
organization and clientèle or membership: “Serving the insurance
needs of Northern Wisconsin”; “An online community for sharing the
best barbecue recipes”; “The offi cial computer club for students at Big
Brain University.”

 Accessibility Links
 Because the RPK places the site navigation in the list <ul
id="navigation"> (see Chapter 15) and page content in <div
id="content"> (see Chapter 16), the accessibility links in the RPK

 PAGE BRANDING 163

header point to #navigation and #content . Those links, known as
fragment identifi ers, allow mouseless users (such as people on mobile
phones) as well as users relying on screen readers to quickly jump to
different areas of your page—without having to scroll through or to
listen to unnecessary information.

 One of the features of unique IDs is that you can reference them in
URLs that instruct Web browsers to automatically scroll to a specifi c
part of the page. So, for example, if you have your navigation marked
with id="navigation" , the URL http://example.com/home
.htm#navigation will instruct a Web browser to scroll to that por-
tion of the page (see Figures 14.1 and 14.2).

 STYLING THE HEADER
 Even with the simple contents of a site title and tagline, you can
design your page header to spark visual interest in your page and vi-
sually establish strong branding. As Chapter 17 will show, page ele-
ments are usually best designed together, echoing and refl ecting one
another, but here are some simple styling techniques that you can try

Figure 14.1. Accessibility links are important in mouseless, text-only
 environments, as in this view of a page as displayed in Lynx.

164 HOW TO DESIGN AND WRITE WEB PAGES TODAY

out as you learn to design with CSS while you craft the branding for
your site.

 Styling the Accessibility Links
 The fi rst thing to do in styling any part of your pages is to hide anything
you don’t wish to appear for users of graphical browsers, such as acces-
sibility links (see Figure 14.3), which you can hide from view with a
little CSS in your screen.css fi le.

 One method to hide the links is to use display: none; :

 ul.accessibility { display: none; }

 The trouble with that method is that display: none; may also hide
the links from screen readers. An alternative method to hide the ac-
cessibility links from screen view (while keeping them accessible to
screen readers) is to position the accessibility links absolutely, which
removes them from the document fl ow (see Figure 14.4; Chapter 17
provides additional discussion of document fl ow). Then, setting the
 left: property to an extremely large negative pixel value basically

Figure 14.2. Activating the “Jump to Navigation” link takes Lynx users
straight to the navigation.

Figure 14.3. The accessibility navigation is outlined here in black, just to
show the space that it fi lls by default.

Figure 14.4. Positioned absolutely, the accessibility link area shrinks to fi t
the text of the links, and the rest of the page jumps up to where the accessibil-
ity links were.

166 HOW TO DESIGN AND WRITE WEB PAGES TODAY

moves the accessibility links way off to the left of the screen, hiding
them from view (see Figure 14.5):

 ul.accessibility {
 position: absolute; /*Remove from document fl ow

 and prepare for positioning*/

 left: -10000px; /*Move way off to left;
browser will not create a
horizontal scroll bar*/

}

 Styling the Whole Header Area
 The <div id="header"> tag that contains your site title and tagline
provides a block for styling the overall look of your header. Adding a
border on the bottom of div#header , for example,

 div#header { border-bottom: 5px solid black; }

 is a very basic way to add the smallest bit of visual interest, while dis-
tinguishing the header from the rest of your page (see Figure 14.6).

Figure 14.5. A large negative left value effectively hides the accessibility nav-
igation from view and does not affect the remaining visible page elements.

 PAGE BRANDING 167

You might echo this simple design choice by adding a border to the top
of the footer area, as described below.

 Another simple design choice is to specify a background color on
 div#header and, if needed, a contrasting color on the text:

 div#header {
 background-color: #000; /*Set the background to
 black*/
 color: #FFF; /*Set the text to white*/
}

 As you can see in Figure 14.7, because no specifi c background color has
been set on the site title or tagline, they appear as transparent—sharing
the black background set on div#header .

 There is nothing wrong with using borders and background colors
to design a basic header; but sites that want to establish an even more
unique design often employ background images, which behave very
similarly to background colors in that descendant elements (like the
site title and tagline in the header) appear to have transparent back-
grounds. Figure 14.8 shows the header with a simple background image

 Figure 14.6. Adding a border to the header adds a bit of visual interest and
distinguishes the header from the rest of the page.

168 HOW TO DESIGN AND WRITE WEB PAGES TODAY

that is only a few pixels wide, but that is tiled horizontally to fi ll the
entire width of the header, e.g.,

 div#header {
 background-image: url('gfx/header-tiled-
 background.png'); /*Load the image*/
 background-repeat: repeat-x; /*Tile the image
 horizontally only*/
 background-position: bottom left; /*Always show the
 image at the very bottom*/
 background-color: black; /*Background color in case
 image is ever broken*/
 color: white; /*Text color set to white;*/
}

 Even more complex effects can be achieved by designing background
images that anticipate other content areas; as of CSS 2.1, only one back-
ground image can be attached per XHTML element, so to have, for

 Figure 14.7. A background color on the header appears to be shared by the
site title and tagline, which are transparent (unless assigned their own back-
ground color).

 PAGE BRANDING 169

example, a unique top and bottom image on the content area, use other el-
ements and some of the CSS positioning tricks discussed in Chapter 17.

 Styling the Site Title
 Because the site title is usually a link, it will appear the same as all other
links on the page. This is usually not desirable, particularly if your links
are just blue and underlined. Using its structure as a child of h1 inside
of #header , you might write:

 div#header h1 a {
 color: inherit; /*Share the color set to the rest
 of #header*/
 text-decoration: none; /*No underline*/
}

 Then, to size the text to appear larger, just work with the h1 descen-
dant selector of div#header :

 div#header h1 { font-size: 200%; }

 Figure 14.8. The border at the bottom of this version of the header is achieved
by tiling a background image horizontally. In Chapter 17, it will be clear why
this is done with an image, rather than a CSS border property.

170 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Figures 14.6 and 14.7 show those styles as they appear on the site title.
 Of course, with something as unique and important as the site title,

simple styles like this are often not enough to uniquely and memorably
brand your pages. To add a logo or logotype, you can use one of a num-
ber of CSS image replacement techniques.

 What image replacement does is use CSS to set a background
image on an XHTML element together with some method of hid-
ing the XHTML text from view. One way to do this is to load
the image in CSS, set height and width of the XHTML element
it’s loaded on to match the image (in the RPK’s case, using the
 div#header h1 a selector, so that the image is clickable), and
then set the CSS text-indent property to a large negative num-
ber to effectively pull the text off the screen (see Figure 14.9).
That approach should keep the text accessible to screen readers.
For example,

 div#header h1 a {
 background-image: url('gfx/logotype.png');
 background-repeat: no-repeat; /*Don't tile*/
 display: block; /*Show anchor as a block*/
 text-indent: -10000px; /*Pull text off of screen*/
}

 CSS IMAGE REPLACEMENT

 CSS provides an alternative to loading images with the XHTML tag.

When an image is part of your content, that is, if you use it in the sense of “Have

a look at this picture of something” and would have it appear in all cases—

including when your page is printed—the tag is your best choice.

 But when an image is a part of your design, it’s generally better to use

 background-image: or the shorthand background: property to

have CSS load your image as the background of one of your XHTML elements.

 Dave Shea, of CSS Zen Garden fame, maintains an exhaustive list of image

replacement techniques at http://www.mezzoblue.com/tests/
revised-image-replacement/ that show the many ways you can

replace XHTML text with images.

 PAGE BRANDING 171

 Styling the Tagline
 In the RPK, the tagline is the only paragraph inside of div#header ,
although it also includes a tagline class. You can style it as you would
any other paragraph text (see Chapter 16); in Figure 14.10, it has been
run in italics. Figure 14.10 also shows the tagline styled using a left mar-
gin to suggest a second column adjacent to the image-replaced header.

 You might also hide the paragraph from view, using the method for
the accessibility links above, and include the tagline text as part of your
header image.

 THE FOOTER
 Closing out the RPK’s branding XHTML is <div id="footer"> .

 <div id="footer">
 <p class="credits">
 Site information, credits, license.
 </p>

 Figure 14.9. Image replacement on the site title; a large negative text indent
pulls the XHTML text off of the screen, leaving the background image unob-
structed. Note the tagline text running along the bottom; it will be fi xed in the
next section.

172 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 <!--These links only work on live,
 web-available sites:-->
 <ul class="validators">
 <a href="http://validator.w3.org/check?
 uri=referer" title="Validate this page's
 XHTML">XHTML
 <a href="http://jigsaw.w3.org/css-validator/
 check/referer" title="Validate this page's CSS">
 CSS

</div>

 It’s useful to include information in your footer about the design and
content of your pages. A line such as “Page design and content by Jane
Smith.” may be added. If you wish to allow others to use your content
or design, you can also add a link to a particular Creative Commons
license (see Chapter 24). For information about copyright statements,
you should read Chapter 4 of Title 17 of the United States Code 2 and

 Figure 14.10. Adjusting the left margin and top padding on the site tagline
gives it a more prominent place in the header.

 PAGE BRANDING 173

Chapter 37 of the Code of Federal Regulations 3 and consult with a lawyer
for additional details.

 STYLING THE FOOTER
 A simple way to style the footer is to make it the inverse of your header:
in the border-only example from above, you might just put a border-
top: 1px solid black style on your div#footer . You can even
reuse your header image and fl ip it upside down in your image editor,
and reuse it on the footer (see Figure 14.11).

 Styling the Site Credits
 You can style your site credits however you would like, of course; one
suggestion is to style it as a kind of fi ne print, which might echo the tag-
line styling of your site.

 If you choose to license your content under Creative Commons,
you can choose from a number of images that Creative Commons
provides for showing that your content is licensed. These images can
be loaded either in your CSS or in an XHTML image tag; the benefi t

 VALIDATE WHILE YOU WORK

 The RPK includes validation links for XHTML and CSS, although note that these

only work when your pages are posted to a live URL on the Web (they will not

work in a localhost environment, in other words). Before you post your site and as

you revise, use the Validate By File Upload feature at http://validator
.w3.org/ for XHTML and http://jigsaw.w3.org/css- validator/

for CSS.

 Alternatively, Pederick’s Web Developer Add-on for Firefox will upload your

fi les for you; choose to Validate Local CSS or Validate Local HTML in the Tools

menu.

 For information about handling validator errors that you encounter, see Chap-

ter 16 and this book’s companion site, http://sustainablewebde
sign.com/book/ .

 Figure 14.11. Reusing the border image from the header ties the page to-
gether nicely.

 Figure 14.12. The Creative Commons license image is loaded in XHTML’s
image tag, but CSS controls its presentation by displaying it as a block on its
own line.

 PAGE BRANDING 175

of opting for an image tag is that the image will print along with your
content (by default, background images will not print—and some
browsers do not allow background image printing at all). A printed
license icon would help clarify how your content is licensed, even in
paper form.

 Even when images are loaded in XHTML, CSS allows you to con-
trol their position with respect to other elements. In Figure 14.12, the
comparatively large CC license icon is offset from the rest of the footer
content using a little bit of CSS (see Chapter 17).

 NEXT STEPS
 Once you have written your header and footer, save your my-proto
type.htm fi le and screen.css if you’ve also written styles for your
work so far. The content and structure of your header and footer should
remain more or less the same across all of your pages, although you can
use a class on the <body> tag, as Chapter 13 suggested, as a hook to
style any differences on particular pages. The next chapter will cover
another piece of content that should be consistent from page to page
across your site: the navigation.

 NOTES
 1. Microformats.org, “rel-home,” http://microformats.org/wiki/rel-home
 2. Copyrights , U.S. Code 28, §§ 401 et seq.
 3. “Patents, Trademarks, and Copyrights,” Code of Federal Regulations , title

37, § 202.2.

 C H A P T E R 1 5

 Navigation

 Navigation is a key feature found on almost every Web site. Although
structurally it is nothing more than a list of links, site navigation can be
designed many ways so long as it simplifi es how users move around the
different areas of your site. And even if users do not click on every item
in your navigation, it should still give them a sense of what your site
contains and how its contents are organized. It can also contribute to
wayfi nding, by highlighting the navigation element that represents the
section of the site a user is currently viewing. While it may be tempting
to build a navigation that includes a link to every single page on your
site, if you have too many items in your navigation, it may become less
usable for your users.

 One way to begin thinking about the design of your navigation area
is to compare a Web site’s navigation to the signs over the aisles at your
local supermarket. Supermarkets don’t list every single item for sale in
the aisle, but rather general types of items (soup, pasta) or categories of
items (cleaning supplies, baking). If the signs did list every single item,
it would probably take shoppers longer to read all of the signs in the
store than it would to walk the aisles, one by one.

 But there is another important lesson about navigation that can be
learned from supermarkets: signage on their aisles probably does not do
much to entice shoppers to buy things. Neither do navigation areas en-
courage visitors to explore your Web site. To get people to shop beyond
their lists or habits, supermarkets often feature sale displays at the end
of aisles and even place staple groceries, such as milk, at the very back
of the store. It’s important to complement your site’s navigation area

178 HOW TO DESIGN AND WRITE WEB PAGES TODAY

with features like promotional sidebars to encourage exploration; even
a well-designed navigation area may not be enough to interest all visi-
tors to look around.

 STRUCTURING AND NAMING YOUR
NAVIGATION ITEMS

 As Chapter 20 urges, sites should strive for a shallow architecture,
which can be complemented by a corresponding simple navigation
area that suggests how your site is organized and what kinds of content
the site includes (rather than a massive navigation area with links to
every single page).

 There are two basic challenges to writing and designing your site
navigation. The fi rst challenge is to come up with brief labels for each
item, considering how the navigation as a whole represents the content
on your site. The second challenge is to develop a visual design that is
easy for users to scan with their eyes and that does not take a lot of fi ne-
grained effort to click on.

 In XHTML, site navigation is nothing more than a list of links. That
is exactly how you would write your navigation in XHTML, regardless
of how you want it to appear. Yes, by default, lists display vertically, but
with CSS, you can design the lists to display horizontally, too, as we’ll
see below.

 The XHTML for a very basic navigation area for a personal site
might look something like this:

 <ul id="navigation">
 Home
 <a id="nav-resume"
 href="/resume.htm">Resume
 <a id="nav-portfolio"
 href="/portfolio.htm">Portfolio

 <a id="nav-about"
 href="/about.htm">About

 <a id="nav-contact"
 href="/contact.htm">Contact

 NAVIGATION 179

 Note that in that example, with the exception of Home, the naviga-
tion labels match the fi le names in the links. Navigation item labels
that match your fi le names will help keep your navigation manageable
as you build your site. But they will also inspire your visitors’ confi -
dence that the label in the navigation is refl ective of the page it links
to. The anchor tags in the navigation also have unique IDs that match
the labels but are prefi xed with nav- . Those will be used with the CSS
to enhance wayfi nding in conjunction with classes on the <body> ,
which Chapter 14 suggested including.

 Whenever I design Web sites, I make it a personal challenge to try
and develop single-word navigation labels. Single words are easier to
style, particularly in horizontal navigation areas, because you can pack
navigation items closer together. Navigation labels with multiple words
necessarily have spaces between the words, so the space between indi-
vidual navigation items must be noticeably larger.

 Sometimes multiple words are unavoidable. But it’s always possi-
ble to avoid pronouns that often appear in navigation items, such as

ONE NAVIGATION AREA IS ENOUGH

I’ve sometimes seen my Web design students replicate their navigation at the

top and the bottom of every page. They seem to do this especially if their pages

get really long.

One navigation area is enough, though. One could even argue that two navi-

gation areas, particularly if they contain a lot of items, may confuse users, who

may not immediately understand that both navigation areas contain the same

items.

If you are concerned that scrolling up to your navigation will be a prob-

lem for your visitors, add an anchor link to the end of your content that

scrolls to the navigation of your page (e.g., if your navigation is at the top,

Back to Top, or <a href=
"#page"> to take people to the very top of the page, if you use <div
id="page">, as in the RPK). However, if your pages are getting so long that

you feel it necessary to include a link that scrolls back to the top, it might be time

to revise your page for length—or split its content up over multiple pages.

180 HOW TO DESIGN AND WRITE WEB PAGES TODAY

“my,” “us,” “our,” and so on. “My Resume” is redundant, if it’s your
resume on your site; “Resume” will suffi ce. For groups and businesses,
“About” and “Contact” will imply an “us,” making “Contact Us” simi-
larly redundant.

 For a personal Web site, navigation might include links to key pages,
such as a resume, a portfolio of work, an about/biography page, and per-
haps a page of contact information. And in addition to a home page
link on your logo or branding (see the previous chapter), it’s never a bad
idea to include a navigation link to the main page of your site. Whether
you label this “Home,” “Overview,” or “Main” is up to you, but “Home”
is short and sweet and something of a convention on the Web.

 Business Web sites will want to include their core products or services
in the navigation, as well as an About and Contact page. Contact pages
on business sites are not just for new or potential customers, but also for
current customers who may have some sort of issue that needs to be re-
solved. Make it easy for all customers to contact you by placing a link
right in the navigation—rather than off of a page deeper in the site.

 DESIGNING THE LOOK AND FEEL OF YOUR
NAVIGATION

 Another challenge is designing the visual look and feel of your navi-
gation, including whether you will design a vertical menu or a tabbed/
horizontal navigation bar. Even though an unordered list displays ver-
tically by default, with a little CSS, you can design your navigation to
appear horizontally, perhaps mimicking a set of tabs.

 Maximizing the Clickable Area
 Regardless of whether your navigation will be designed horizontally or
vertically, it’s always important to maximize the clickable area of your
individual navigation items.

 By default, the anchor tag only makes clickable the actual text in
the link. If you stick with single-word navigation items, that reduces
the total area that is clickable and makes clicking on a link an unnec-
essarily delicate action. It’s not uncommon to see Web sites that have
navigation like that in Figure 15.1, where there is a large box with a
comparatively small clickable area for each item.

 NAVIGATION 181

 By increasing the padding on anchor tags (and by displaying anchor
tags as blocks rather than their default inline display), it is possible to
create much larger clickable areas:

 ul#navigation li a {
 display: block; /*Treat links as blocks*/
 padding: 20px; /*Padding is also clickable*/
 background-color: gray;
}

 Larger clickable areas make using your site navigation less labor-
 intensive for visitors, because they can be much sloppier with their
clicking. In Figure 15.2, you can see that hovering the mouse changes
the entire box’s color.

 That change in background color is achieved with the :hover
 pseudo-class; by adding the :focus pseudo-class to your selector, the
hover effect should be visible for keyboard users tabbing from link to
link, too:

 ul#navigation li a:hover,
ul#navigation li a:focus {
 background-color: white;
}

POP-UP NAVIGATION: JUST SAY NO

It’s far easier for users to browse with their eyes than their mice. Pop-up

navigation—that is, navigation that reveals additional items on a mouse

over—may seem to be a great choice on the surface: present basic catego-

ries of navigation, and when those categories are clicked on or hovered over,

show more options. The problem is, that makes the work of browsing a page

more labor-intensive; people generally don’t mind scanning with their eyes,

but requiring a mouse is probably a bit much to ask—and may make your

navigation inaccessible to mouseless users. That includes users of the Apple

iPad and other touch screens.

Furthermore, you have entire pages to engage people’s attention; an overly

complex navigation may keep users focused on only one small (and uninterest-

ing) part of your pages.

Figure 15.1. Even though there is a generous box for each navigation item,
only the text is clickable.

Figure 15.2. Using CSS, each navigation item has a much larger clickable
area, and is therefore much more permissive in terms of where users can click.

 NAVIGATION 183

 Wayfi nding Made Simple
 If you include a class on the <body> tag for different pages or areas of
your site, such as home , about , and resume , and if you put a unique
ID on each link in your navigation, you can use descendent selectors to
style the link in the navigation that matches that area of the site. You
will often see Web sites that duplicate the hover/focus state of their
navigation as the normal link state for the link on a given page. In
other words, the “About” link in the navigation appears styled on the
“About” page the way it appears when hovered over on other pages.

 Adding to the hover/focus styles above, your CSS can include a style
declaration like this:

 ul#navigation li a:hover,
ul#navigation li a:focus,

EASY ON THE :HOVER STYLES

Don’t go crazy adding a lot of styles to the :hover selector. Mouse pointers

already change over links, so there is already some indication that an element

is clickable.

At the same time, hover properties are helpful in two situations. The fi rst is

when clickable elements are very close to one another, such as in a navigation

bar; a hover effect can clarify which navigation item will actually be activated

upon clicking. The second is when someone is using a keyboard to navigate

links, and therefore does not benefi t from a pointer that changes to indicate

whether an item is clickable. (Some browsers will provide a dotted border to

indicate clickable items for keyboard users, but the border is sometimes dif-

fi cult to see.)

Hover properties that change text or background colors generally work well,

as do hovers that change background images by altering the background-
position: property (see the book’s companion Web site, http://sus
tainablewebdesign.com/book/).

What you should avoid at all costs are hover properties that change the size

or width of contextual link text or navigation elements; this includes not just

font sizes, but bold and italics as well as border widths, padding, and margins.

Those shifts may cause all of your page content to jump around, particularly for

contextual links in your site’s content.

184 HOW TO DESIGN AND WRITE WEB PAGES TODAY

body.home ul#navigation li a#nav-home,
body.about ul#navigation li a#nav-about,
body.resume ul#navigation li a#nav-resume {
 background-color: white;
}

 The links in that navigation will still have a white background when
moused over or focused via the keyboard. But on the home page, the
link to home in the navigation will always have a white background;
on the about page, the about link’s background will be white, and on
the resume page, the resume link’s background will be white. In each
case, the design simply tells users “You are here” through a tiny vi-
sual enhancement, using bits of XHTML structure that are already in
place.

 You can see this technique in action on the navigation at this book’s
companion site, http://sustainablewebdesign.com/book/ .

 Designing Vertical Navigation
 Vertical navigation can easily accommodate an expanding navigation
area—whether the navigation expands by the addition of more items
or if a visitor wants to increase the size of the text on your site.

 Because the RPK suggests that you structure your navigation as an
unordered list, items display vertically by default; your design tasks—
other than maximizing the clickable area as described above—are
mostly about integrating the navigation with the rest of your design, a
topic that is covered in Chapter 17.

 Designing Horizontal Navigation
 It is not uncommon to encounter Web sites that present navigation
as a horizontal bar or set of tabs. For sites with only a few navigation
items, a horizontal navigation can be ideal—particularly on designs
that need to have content areas as wide as possible (such as photog-
raphy portfolios) and therefore can’t spare the horizontal space that a
vertical navigation would occupy.

 The limitation to horizontal navigation is that it can only contain
a few items before it becomes confusing: it’s generally easier to scan a
vertical list of items than a horizontal one. And running horizontal

 NAVIGATION 185

navigation onto a second line is usually disastrous: readers don’t know
whether to move their eyes horizontally or vertically, and they may
wonder whether the items in the second line of navigation are less
important.

 If you only have a few navigation elements, say three or four, and
they all use very short words, they will display nicely horizontally, on
a single line. But if you wish to add many more navigation elements, a
second line may becomes necessary—and will take a visitor even lon-
ger to scan.

 There are a number of methods for displaying list items in a hori-
zontal line; the simplest and most fl exible is to use fl oats. When an el-
ement fl oats in CSS, it remains part of the document fl ow, but allows
other elements to appear next to it horizontally. By fl oating all of the
items in a navigation list and maximizing the clickable area, a simple
horizontal navigation can be built in CSS like this:

 /*Horizontal Navigation, Float Method, Automatic
Width*/
ul#navigation {
 overfl ow: hidden; /*Necessary style for best

 handling fl oats*/

}

 ul#navigation li {
 fl oat: left; /*Float items to the left*/
 display: inline; /*Fix a fl oat issue in older

 IE browsers*/
 margin-right: 5px; /*Put some space between

 items*/

}

 ul#navigation li a {
 display: block; /*Maximize clickable area*/
 padding: 5px 10px 5px 10px; /*Generous padding

 on top and bottom, less on right and left*/
 background-color: #CCC; /*Background color for

 the items*/
}

186 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 That particular method will create items or buttons (as they appear)
of varying width, depending on how long the name of the label is
(Figure 15.3). For uniformly sized clickable areas, one can adjust the
example above by adding a fi xed width to the ul#navigation li
selector (see the rendering in Figure 15.4):

 /*Horizontal Navigation, Float Method, Fixed With*/
ul#navigation li {
 width: 100px; /*All buttons 100px wide*/
 fl oat: left;
 display: inline;
 margin-right: 5px;
}

 By adding text-align: center; to the style declaration for
 ul#navigation li , you can regain the centered-text appearance of
the variable-width buttons from Figure 15.3, as in Figure 15.5

 One word of caution regarding fl oated, horizontal lists, though: if
your layout is fl exible, or if someone increases the text size on a page,

Figure 15.3. A horizontal navigation bar with buttons of different widths,
 depending on the length of the label text.

Figure 15.4. A horizontal navigation bar with buttons of the same width, and
the text aligned left by default.

Figure 15.5. A horizontal navigation bar with buttons of the same width and
centered text.

188 HOW TO DESIGN AND WRITE WEB PAGES TODAY

your navigation links may be broken onto a second line, making your
navigation less usable by reducing how quickly someone can scan it
with their eyes. Be sure to test your navigation under a variety of con-
ditions, including multiple screen and font sizes, and on different op-
erating systems.

 NEXT STEPS
 Navigation is a simple list of links—and styling that list is itself not too
diffi cult. By maximizing the clickable area of a short list of items that
refl ect your site’s content and organization, you will have the founda-
tion for visitors to move quickly through your site.

 With your branding and navigation drafted, you should now have
the essential, repeated parts of your page in your my-prototype.htm
fi le. Rather than starting from scratch, you can now start writing each
new page of your site with your branding and navigation ready to go;
just open my-prototype.htm and choose Save As. . . and immedi-
ately name it about.htm or index.htm or whatever page it is that
you’re about to build. (See Chapter 21 for ways to repeat your branding
and navigation dynamically across all of your pages, in case you need to
make changes to them.)

 The next chapter turns to writing the text content of your pages, in-
cluding how you can develop your own style guide for writing markup
to make writing with XHTML simple and even fun. Unlike branding
and navigation, of course, content differs from page to page, and so it
requires a writing approach that is more fl exible, but that a style guide
can make more consistent.

C H A P T E R 1 6

Text Content

Once you have established the XHTML structures for your page
 branding and navigation, you can reuse them across all of the pages of
your site, perhaps changing the class on the <body> tag (Chapter 21
shows how to dynamically repeat the branding and navigation across
all of your pages, to simplify site-wide changes to them).

Where you spend most of your time creating new markup for your
pages is in the content portion of your page. Branding and naviga-
tion can be structurally and visually constant across pages, but the
 structure of text content is almost always unique (unless you’re writing
a Web site full of fi ve-paragraph essays—and please don’t). This chap-
ter walks through approaches to marking up your content in XHTML.
It also suggests developing some basic site typography for your pages
using CSS to create a site style guide to simplify your markup and
design.

DEVELOPING A SITE STYLE GUIDE
XHTML is meant to be fl exible enough to allow you to mark up most
common structural elements of Web content, particularly headings,
paragraphs, and lists. You can mark up in XHTML as you write, or
mark up your existing writing with XHTML. But it is useful to cre-
ate a style guide for your site, especially when you begin to add classes
and other special pieces of structure to your page content. A style
guide is even more important when you are collaborating with others

190 HOW TO DESIGN AND WRITE WEB PAGES TODAY

on a site, so that pieces of content are marked up consistently and
uniformly.

The simplest way to write your style guide is to put together a page
that includes all of the structural elements you use to mark up your
page content, and provide a sample rendering using the site’s actual
CSS by linking to the site’s CSS fi le. Then, any changes to your CSS
will also change the style guide’s appearance. Save your style guide’s
XHTML fi le as style-guide.htm for easy reference.

While you can use Lorem ipsum text to show off the examples, it’s
good practice to use the sample text to convey what kind of content
should be marked up as paragraphs, lists, or any other structural pages
for your site. That will help it serve as a refresher for your memory—
and as guidance for any collaborators. The example style guide in
 Figure 16.1 also shows the XHTML markup required for each site style.
 Different pieces of this example style guide will be shown in fi gures
throughout the chapter.

Figure 16.1. A site style guide can remind you and your collaborators of the
available content styles, and even what the XHTML is to achieve them.

 TEXT CONTENT 191

MARKING UP CONTENT: HEADINGS, PARAGRAPHS,
AND LISTS (OH MY!)

You can build a really solid Web page using only headings, paragraphs,
and lists. Why? Well, most writing is made up of headings, paragraphs,
and lists.

Conveniently enough, there are three basic types of structural blocks
in XHTML for marking up written content: headings, paragraphs,
and lists. Blocks are nothing more than text that, in the absence of
any fancy formatting (such as a plain text email), would probably be
 separated by empty lines:

Primary Colors

There are three primary colors that occur in nature.

They are:

Red
Yellow

Blue

Marked up in XHTML, that little chunk of text could be described
accurately with the heading, paragraph, and list tags:

<h1>Primary Colors</h1>

<p>There are three primary colors that occur in

 nature. They are:</p>

 Red
 Yellow
 Blue

Let’s look at each type of block piece by piece.

Headings
There are six levels of headings in XHTML. <h1> is a top-level heading;
<h2> a subheading; <h3> a sub-subheading, and so on. Stylistically, it’s

192 HOW TO DESIGN AND WRITE WEB PAGES TODAY

usually better to limit your use of <h1> to once or twice a page; <h2>
can be used often, as can <h3>, provided that <h3> is used for subhead-
ings that separate content under an <h2>.

When using headings, though, remember that their purpose is to break
up long stretches of text with meaningful labels. <h1> might provide
the site title (as in the RPK). <h2> can mark up the titles of individual
pages, whose major sections are subdivided by <h3> tags; the sections la-
beled by <h3> tags could then be broken up further by <h4> tags.

Consider a concrete example. Imagine that John Smith used head-
ings to mark up his resume; if we took away all of the content and left
only the headings in his resume, we might see something like:

<h2>Resume for John Smith</h2>
 <h3>Objective</h3>
 <h3>Work Experience</h3>
 <h4>Industry</h4>
 <h4>Government</h4>
 <h3>Software Skills</h3>

Now it’s important to note that the indentations are only to enhance
readability of the XHTML source code (see Chapter 12). Particularly
for the two <h4> tags, indents also illustrate that the heading tags are
used for further subdividing content, not for enumeration. (I once had
an undergraduate student who kept adding more and more numbers
to his headings each time he used one. When I told him there was no
such thing as an <h27> tag, he took the news pretty hard. The most
minor subheading in XHTML is <h6>.) Figure 16.2 shows a sample
style guide’s styling of <h3>.

Paragraphs
There is only one paragraph tag in XHTML: <p>. You should use the
paragraph tag to describe actual paragraphs of text—and nothing else.
If something is structurally a heading, do not use the paragraph tag.
I also often see beginners misuse the paragraph tag like this:

<p><h2>This is So Wrong</h2></p>

I’m not quite sure why beginners tend to do that. I suspect it may be
due to word processors displaying the paragraph mark, ¶, after every

 TEXT CONTENT 193

break (including headings and lists). But reason it out, XHTML-
style: if something is a heading, it’s a heading—not a paragraph.
Paragraph tags should appear only when you have a need to describe
content whose structure is an actual paragraph, not a heading or
a list.

Lists
Lists are an extremely useful structural element in XHTML. In addition
to helping readers quickly read through content, lists are also useful for
marking up site features such as navigation and menus, and even for
postal addresses and contact information.

There are three types of lists in XHTML: ordered (), unordered
(), and defi nition (<dl>) lists. Individual items in ordered and
unordered lists are marked up with list item tags ():

Red
Yellow
Blue

Figure 16.2. This sample style guide runs <h3> tags in Georgia font (the rest
of the body text is Arial) with a bottom border for visual interest.

194 HOW TO DESIGN AND WRITE WEB PAGES TODAY

A good approach to marking up lists is to begin with the list items
fi rst. Then, determine whether there is any specifi c order to the items:
for example, if they are steps in a process, or an enumerated list of
things, they should be grouped using the (ordered list) tag. If
the items are more or less in random order or if their order does not
matter, as with the primary colors, group the list items with the
(unordered list) tag:

 Red
 Yellow
 Blue

Because the RPK loads the reset.css fi le in the XHTML,
 unordered and ordered lists appear without bullets or numbers, so you
must specify them directly using the list-style-type: property on
the individual items within the list, as shown in Figure 16.3. Consult

Figure 16.3. This sample style guide shows bullets on unordered lists and
 decimal numbers and uppercase letters on ordered lists.

 TEXT CONTENT 195

your favorite CSS reference to learn about the many different types of
bullets and numbers that can be applied to lists.

Nested Lists
Lists can also be nested in XHTML, meaning that individual list items
can contain their own sublists (not unlike an outline for a term paper).
But nested lists must be structured in a particular way. Nested lists are,
in XHTML, considered structurally to be a part of a parent list item.
Taking the primary color example, we could nest lists with synonyms
for each color:

 Red

 Crimson
 Scarlet

 Yellow

 Lemon
 Gold

 Blue

 Navy
 Cobalt

Notice that on Red, the list item opens, the word Red appears and then
a nested unordered list opens, with two list items of its own: Crimson
and Scarlet. Then, that unordered list closes, and fi nally the list item
tag that opened before Red closes. As Figure 16.4 shows, you can create
additional styles for nested lists, including when ordered lists are nested
inside of unordered lists and vice versa.

196 HOW TO DESIGN AND WRITE WEB PAGES TODAY

VALIDATION ERRORS, AND HOW TO FIX THEM

As you are writing your XHTML pages, it is important to regularly upload

your fi les and check them against the W3C Markup Validator at http://
validator.w3.org/. Don’t wait until your pages are completely fi nished;

errors are easier to catch if you get into the habit of validating after small sets

of changes to your XHTML.

And don’t be surprised if you get errors. The important thing about validator

output, particularly when there is an error on your page, is to worry only about

the fi rst error that’s listed. Early errors (like forgetting to close a tag near the top

of the page) have a snowball effect on the validator, causing it to report dozens,

sometimes hundreds, of errors—even if there’s only a single one on the page.

The validator is just a machine, after all. So do not assume that the number of

errors the validator reports refl ects the reality of your page. Look for the fi rst error

it reports, try and fi x it, and then revalidate. Five times out of seven, you’ll fi nd

that your page only had an error or two, particularly if you were cautious as you

were writing the page to begin with—and checked them often in the validator.

See the companion site for this book for additional help with validators,

http://sustainablewebdesign.com/book/.

Figure 16.4. This sample style guide shows a few different styles for nested
lists, particularly ordered and unordered lists nested inside ordered lists.

 TEXT CONTENT 197

STRUCTURED PHRASES: ANCHOR, STRONG,
EMPHASIS, AND CITE

Of course, not all writing is structured in blocks: some structure is
 limited to words and phrases. XHTML has a number of tags for struc-
turing phrases within blocks.

Anchor Tags
The anchor tag, <a>, is behind the Web’s signature feature: the hyper-
link. The anchor tag is used to turn phrases of text into links that can
be activated to take a user to another page on your Web site or any
other place on the Web.

The anchor tag has one required—and very important—attribute:
href, or “hypertext reference.” The value of href is the address of the
Web site or Web page that you want your text to link to. For example,

<p>
 Read the news at
 the Google

News portal.
</p>

will create a hyperlink out of “the Google News portal” that can be
clicked on or otherwise activated by a user. Whenever you are link-
ing to a Web site other than your own, you must include the http://
 prefi x to the full URL.

However, when you link to pages in your own site, you need not
include the full URL, but merely the path to the fi le. The path is
 everything that comes after the domain name; so, for example, if your
domain is http://example.com/, the path is everything that comes
after .com. If you have a home page at http://example.com/
index.htm and your resume is at http://example.com/resume
.htm, you can link to your resume from the home page in one of two
ways. The fi rst is to use a relative link:

<p>View my resume.</p>

The second way is to use a root-relative link:

<p>View my resume.</p>

198 HOW TO DESIGN AND WRITE WEB PAGES TODAY

The difference? A relative link uses the linking document as its start-
ing point; a root-relative link uses the site root as its starting point;
 Chapter 20 will examine different kinds of links in greater depth.
But other than on your site title (see Chapter 14), avoid using the
full URL (also known as an absolute link, e.g., http://example
.com/ resume.htm) when linking to Web pages that are part of your
own site.

Strong, Emphasis, and Cite
By default, Web browsers use the tag to display text as bold
text, and the (emphasis) tag to display text as italic. However,
their structural names will also allows screen readers to read text in
a strong voice or an emphatic voice (what, exactly, the difference is
 between those two remains a matter of some dispute in the Web design
community).

For titles of works, use the <cite> tag, e.g.,

<p>Read the online Web magazine <cite>A List Apart
</cite> for the latest developments in Web design.</p>

Figure 16.5. This sample style guide uses fairly common styles for phrase
elements.

 TEXT CONTENT 199

By default, the <cite> tag will appear in italic text; but as with
, , and any other tag, its display is ultimately dictated
by CSS, not XHTML. The screen.css fi le in the RPK establishes
the typical styles for strong, emphasis, and cite, but you can change
them to appear however you wish. Figure 16.5 shows a sample style
guide’s visual design of phrase tags.

INHERITED STYLES
Cascading Style Sheets enable certain styles to be inherited. One basic
example of this is using the <body> tag as a selector to set the base
fonts and font sizes for your entire page, for example:

body {
 font-family: Arial, sans-serif;
 font-size: small;
}

Figure 16.6 shows all of the text rendering in Arial, except in the
header (which was styled more specifi cally in Chapter 14). Inheritance

Figure 16.6. Setting the Arial font on the body tag causes all of the text on
the page to appear in Arial—except the tagline in the header, which has its own
style elsewhere in the style sheet.

200 HOW TO DESIGN AND WRITE WEB PAGES TODAY

works on other selectors besides the body and can help you keep your
styles short and lean. Remember that it’s always better to write as little
source as possible.

For example, if you wish to have a shared line height on all of the
text in the content area on your page (see Figure 16.7), you can set that
on div#content:

div#content { line-height: 1.6; }

Not only will that keep all of your text looking uniform across the con-
tent area, but it also makes changing the line height a matter of fi xing
that one line of CSS (as opposed to having to change the line height
on every style).

If you fi nd that you want to alter styles that are inherited, perhaps
by setting a shorter line height on your supporting content text, the
browser rendering your CSS will replace the inherited style with the
new, more specifi c style.

div#supporting-content { line-height: 1.2; }

Figure 16.7. The line height is inherited by all text in the content division.

 TEXT CONTENT 201

With that style applied, all of your supporting content will have 1.2 for
its line height, rather than 1.6 (see Figure 16.8).

Descendant Selectors and Inheritance
Descendant selectors provide better control over inheritance, so that
you set the styles for only specifi c areas of your page content. Think
about the paragraph tag; while you will probably use it in your content
area, it may also be in your header and footer, too (as it is in the RPK).
So rather than styling the paragraphs for your page content area using
the p selector, write a more specifi c selector, such as

div#content p { text-indent: 20px; }

Figure 16.9 shows that the descendant selector applies (in that case)
the text indent only to paragraphs inside of div#content. (Odds are
you wouldn’t want to indent paragraphs in your header and footer;
you’d move them with margin or padding instead.) The screen.css
fi le in the RPK has many descendant selectors for the content area al-
ready written for you to use.

Figure 16.8. The line height on the supporting content (in the darker area)
has been set to be tighter than in the rest of the content division, whose line
height would otherwise have been inherited.

202 HOW TO DESIGN AND WRITE WEB PAGES TODAY

SPECIAL STYLES
You can go a long way marking up blocks of content with headings,
paragraphs, and lists. But sometimes, you will have unique pieces of
content that should be treated differently from an ordinary heading,
paragraph, or list.

Block Quotes
The <blockquote> tag is an example of adding a bit of structure to
paragraphs or long stretches of material quoted from another source.
For example,

<p>The United States Constitution opens with:</p>
<blockquote>
 <p>We the People of the United States, in

Order to form a more perfect Union, establish
 Justice, insure domestic Tranquility, provide
for the common defence, promote the general

Figure 16.9. Using the descendant selector, paragraphs in the content area
are indented—in this case, a paragraph showcasing phrase tags as we saw in
Figure 16.4—but the paragraph marking site credits in the footer is not in-
dented.

 TEXT CONTENT 203

Welfare, and secure the Blessings of Liberty
to ourselves and our Posterity, do ordain and
establish this Constitution for the United
States of America.</p>

</blockquote>

The <blockquote> tag requires that some other block-level tag
 appear inside of it (headings, paragraphs, or lists). Using CSS, you can
style blocks of quoted material:

blockquote {
 border: 1px dotted black; /*Dotted border*/
 padding: 20px; /*Padding adds space between

 the text and border*/

}

If you have reason to style a paragraph within a block quote differently
from your other paragraphs, the descendant selector again comes in
handy; simply refer to blockquote p in your CSS.

Classes
As we have seen in earlier chapters, XHTML allows you to write a
class (or even multiple classes) on any tag. This structural fl exibility
is useful for marking up page content, because it allows you to specify
 additional, unique structural features for your content that can be
styled using CSS.

A class can be called anything you like (though review the naming
rules covered in Chapter 9), but the more structurally you name a
class, the better. Suppose you wanted pull quotes, which are usually
bits of text pulled from your own writing, to appear on text-heavy pages
to add visual interest. You might want to style those paragraphs as a
big box, but <p class="big-box"> may not accurately describe
 future designs (or the page as it appears when printed). Opting for
<p class="pullquote"> is the better, more sustainable choice.
CSS can make it as big and boxy as you’d like (see the rendering of
both block quotes and pull quotes in Figure 16.10):

p.pullquote {
 font-size: x-large;

204 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 border: 1px dotted black;
 padding: 20px;
}

NEXT STEPS
Marking up text content is just a matter of being honest: if something
is a paragraph, mark it as a paragraph; if it’s a list, mark it as a list.
Thinking about the general types of content on your site will help you
to develop your own style guide, which can help you keep your markup
consistent—even when you collaborate with others.

Once you have some content together and your branding and navi-
gation drafted, you can start to position all of the elements of your site
to create the layout for the whole page, which is what the next chapter
will cover.

Figure 16.10. The sample style guide’s treatment of block quotes and pull
quotes.

C H A P T E R 1 7

Page Layout

Put together your page’s branding, navigation, and content and you
have your whole page. And while so far those elements have been
 discussed mostly in isolation, an appealing page layout must arrange all
of the page elements in harmony. This chapter looks at building page
layouts in CSS over well-structured XHTML.

PREPARING FOR PAGE LAYOUT IN CSS
In the past, Web designers relied on HTML tables for page design,
because that was the only reliable cross-browser technique to create
page layouts. That is no longer good practice, as tables for layout can
introduce accessibility problems in addition to adding more markup
to a page. Tables also lock page content into a particular design, and
make creating alternate designs—such as for mobile phones—diffi cult
or impossible.

Web designers now use CSS positioning to create fl exible layouts
over well-structured XHTML, such as you have been writing in the
previous chapters with the RPK. By default, all block-level elements
(such as the various <div> and <ul id="navigation"> tags that
form the major page areas in the Rapid Prototyping Kit) are displayed
in the same order as they appear in the XHTML source, and take up
the entire width of the screen (see Figure 17.1).

The first step to page layout in CSS, then, is to determine
which page elements must move far away from where they appear

206 HOW TO DESIGN AND WRITE WEB PAGES TODAY

by default. The second step is to move those elements into place,
using CSS positioning, before finally moving other elements out of
the way of positioned ones in order to create the illusion of a page
 layout. And that is really what CSS page layout is: an illusion of col-
umns created by moving some things, and moving other things out
of their way.

ROUGH SKETCHES AND MOCKUPS
Rough sketches done on scrap paper are more than enough to start
you thinking about page design. They do not have to be works of art;
sketches only have to provide a rough representation of the content
where you would like it to appear your page. Once you have done
some sketching on paper, it may be helpful to create a mockup of
your page in an image editor, so that you can get a better sense of
how big things will appear on screen in actual pixel dimensions (see
Figure 17.2).

Figure 17.1. Adding illustrative background colors to each major division of
the document reveals that browsers display blocks to the full width of the screen
and in source order.

 PAGE LAYOUT 207

Start with a Typical, Representative Content Page
Although designers might begin page designs by starting with the
home page, the home page is often different from the other pages in a
site. Designing by thinking fi rst about a more typical content page will
help you develop a design that works for most of your pages. From that
 general idea, you can work to build a home page that is different from
(but complementary to) the typical pages of your site (see the sidebar
“Modifying Designs for Special Pages”).

As has been mentioned throughout this section of the book, you
can almost never go wrong following this rule of Web design: begin
by building things that represent a typical page or feature on your site.
Whether that’s sizing images, determining a text content area’s width,
or deciding to include JavaScript for an audio player in the <head>
area of your pages, design to the general fi rst—and to the specifi c
later.

With a representative content page sketched, you can turn
the focus of your work to the home page and any overview pages
that your site has. For example, you might have a portfolio as

Figure 17.2. A rough mockup of a page, created using an image editor.

208 HOW TO DESIGN AND WRITE WEB PAGES TODAY

one part of your site that comprises an overview of your portfo-
lio, which links to individual projects. You can even add unique
classes such as class="home" or class="overview", or even
class="portfolio-overview" on the <body> tag to help you
make specifi c home- and overview-page adjustments in your CSS
later. (See Chapter 20 for help making these kinds of architectural
choices for your own site.)

DESIGNING WITH A GRID
Grids can provide a solid foundation for any design, even if ele-
ments violate the rigid columns on the grid to add visual interest.
I often urge Web design students to focus on the rough, geographic
areas of a page first, placing elements like the header, footer, navi-
gation, and content and subcontent areas in relationship to each
other. From there, thinking more carefully about the design of con-
tent in the different areas through sketching, image editor mock-
ups, and prototyping will help you with additional details for your
design.

MODIFYING DESIGNS FOR SPECIAL PAGES

Chapter 13 suggested placing a class on the body tag to distinguish different

pages. If your home page’s body opens with <body class="home">, you

can use that class as a hook in your CSS to create special home page styles. For

example, if your header is 150 pixels tall on most of your pages, but you want it

300 pixels tall on home, your CSS might read:

div#header { height: 85px; } /*85px tall on all pages*/
body.home div#header { height: 300px; } /*300 tall
 on home page*/

There’s no need, in other words, to modify the structure of an individual

page element (e.g., by writing a special header ID for the home page XHTML)

or to create a separate style sheet for the home page; all the styles can live in

one CSS fi le, using the body class as a hook to target the appropriate pages

automatically.

 PAGE LAYOUT 209

Even if you decide to try a simple two-column layout consisting of
a 475-pixel-wide area for your content, and a 200-pixel-wide area for
your navigation, separated by 25 pixels of space (as in this chapter’s
example), a column structure will help guide you in your image
 editor mockup—particularly if you opt to enhance your pages with
 background images to give it a unique look and feel. Figure 17.3 shows
an image-editor mockup of the page for this chapter; different areas
were sliced from it and saved as separate image fi les to create the back-
ground images in the actual page.

Note that the 700-pixel width of the design for this chapter was
chosen only because it would work well for images in this book;
as in Smith’s 960 Grid System (see “Grid Systems” sidebar), it’s
common to build fixed-width pages that are closer to 1000 pixels
across.

GRID SYSTEMS

Do a Google search for Web design grid system and you will fi nd links to the work

of many different Web designers who have released their own grid system that

others may use.

One of my favorite grid systems is Nathan Smith’s 960 Grid System,

which includes templates for 12- and 16-column grids in the formats of a

number of different image editors. It also includes a PDF file for printing out

ready-made grid pages to sketch on. As Smith, the 960 Grid System creator,

notes:

“All modern monitors support at least 1024 × 768 pixel resolution. 960 is

divisible by 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96,

120, 160, 192, 240, 320 and 480. This makes it a highly fl exible base number

to work with.”*

Although the 960 Grid System and others like it include XHTML and CSS,

they are usually not structurally meaningful the way the RPK is. So try working

with some of the sketch sheets and column layouts, but stick to writing your own

XHTML and CSS.

*Nathan Smith, 960 Grid System, http://960.gs

210 HOW TO DESIGN AND WRITE WEB PAGES TODAY

CSS POSITIONING
CSS includes the position property, which is often used in conjunc-
tion with properties for dimensions (especially widths) and left-, right-,
top-, and bottom-offsets to produce all kinds of page layouts from the
same XHTML structure.

By default, block elements are positioned by the browser statically
(position: static;). Two other position values, relative and
absolute, are what provide designers the ability to create compelling
page designs.

When you need to position something far away from where it
 appears by default, such as the navigation in this chapter’s examples,
position it absolutely. Absolute positioning removes the element
from the document fl ow—meaning that the rest of the page’s content
 behaves as though, for example, the navigation is simply gone (see
Figure 17.4).

To determine what needs to be positioned absolutely, compare where
it appears in the normal fl ow of things (as in Figure 17.1) with where it

Figure 17.3. Another image-editor mockup, with images that can be used for
the actual design.

 PAGE LAYOUT 211

needs to appear (as in the sketches in Figures 17.2 and 17.3). Because
this chapter’s example header is 85 pixels tall, and the design speci-
fi es a space of 10 pixels between the header and the navigation (and
 content), we write a style like:

ul#navigation {
 width: 200px; /*200px wide navigation area*/
 position: absolute; /*Pull from fl ow to

 position*/
 left: 0px; /*Keep with left edge of design*/
 top: 95px; /*Appear 10px below 85px-high

 header*/
}

At this point, though, the page is a mess; the navigation and the
content appear layered over the top of one another. So the next task
is to move other elements out of the navigation’s way. In Figure 17.5,
some left margin on the content area is all that it takes. This margin
will also be the only sizing on the content area (that is, no width will

Figure 17.4. The navigation positioned absolutely, and over the content,
which must be moved out of the way.

Figure 17.5. With the content pushed out of the way, a two-column layout
begins to develop.

Figure 17.6. To create a layout with right-hand navigation is just a matter of
a few CSS adjustments.

 PAGE LAYOUT 213

need to be specifi ed for div#content; it will become clear why in a
moment):

div#content {
 margin-left: 225px; /*200px nav + 25px between

 nav and content*/

}

The great thing about CSS-based layouts is that they are easily
 revised. Figure 17.6 shows roughly the same layout as Figure 17.5, but
with the navigation on the right rather than the left (and with the
 content moved off to the right).

Refi ning the Whole Page Design
With the navigation and content areas looking roughly as they should,
it’s possible to move on to the less drastic CSS to make the page design
work.

The rough sketch called for a 700-pixel-wide design; to achieve that,
the CSS just needs div#page { width: 700px; }. With everything
appearing inside the page division, the whole page is now 700 pixels wide.
The content area, which is offset from the left by 225 pixels, automati-
cally fi lls the remaining space (575 pixels wide, if you are keeping count);
that’s why there is no need to specify a width on div#content.

Because 700 pixels is a rather narrow design, it might appear better
on larger screens if the page were centered horizontally, an effect
achieved by adding margin: 0 auto; to the div#page style. But
Figure 17.7 reveals a problem with that style: everything is centered
 except the navigation, which is still at left: 0px and therefore hug-
ging the edge of the browser window.

Here is where relative positioning becomes useful. The reason the
navigation appears all the way to the left despite the centered page
division is that, lacking a positioning context, the navigation is
positioned with regard to the browser window. By adding position:
relative; to the div#page style declaration, navigation will then
be positioned with regard to the page division—not the window.
That is, because the page division is now positioned, it becomes the
 positioning context for the navigation, meaning that the navigation’s
left: 0px property will be the 0px position relative to the relatively
positioned container (Figure 17.8).

Figure 17.8. The navigation positioned absolutely, but with the container
 division as its positioning context.

Figure 17.7. Centering the page works for all of the nonpositioned elements;
the navigation, which is positioned, is stuck on the left, though.

 PAGE LAYOUT 215

Designing the Content Area
Suppose someone wanted to design this page’s supporting content as a
second column within the content area, by making another 200-pixel-
wide column for the supporting content and positioning it absolutely
(see Figure 17.9).

While it would be possible to position the supporting content 95
pixels from the top, a more easily modifi ed design would come from
 setting the content area itself as a positioning context:

div#content { position: relative; }

That way, any changes to the content area’s design (particularly its
width and distance from the top of the page) would be refl ected on the
supporting content as well; see Figure 17.10.

A corrective measure to the supporting content spilling over the
footer would be to add more text or media content to the content
area. But assuming some pages might need to be short, a designer could

Figure 17.9. Supporting content positioned absolutely; its positioning con-
text should be the content area, rather than the page.

216 HOW TO DESIGN AND WRITE WEB PAGES TODAY

add a minimum height of 500 pixels to the main content area in this
design:

div#main {

 padding-right: 210px;
 /*Move content out of the way of supporting,
 but use padding to keep background color*/

 min-height: 500px;
 /*The main content area should be
 at least 500 pixels tall*/

}

Figure 17.11 shows the page with the spill-over problem corrected. If
there is more than 500 pixels worth of content, the area will automati-
cally expand.

Figure 17.10. Supporting content positioned absolutely, but with the content
area as its positioning context. Note that the supporting content now spills over
the footer.

 PAGE LAYOUT 217

Figure 17.11. A minimum height on the main content area keeps supporting
content from spilling over the footer. Additional content in the main area would
have the same effect.

CONDITIONAL COMMENTS

Internet Explorer has a feature, known as conditional comments, that enables

you to target XHTML markup to particular versions of IE. If, for example, you need

to load a style sheet that corrects some of the idiosyncrasies of IE, conditional

comments enable IE to load it; other browsers will see the content as just another

XHTML comment. The form of conditional comments looks something like:

<!--[if IE]>
<link rel="stylesheet" type="text/css"
 href="screen-ie.css" />
<![endif]-->
Visit QuirksMode.org* for additional information on targeting IE using condi-

tional comments.

*QuirksMode.org, “Conditional Comments,” http://www.quirksmode.org/css/condcom.html

218 HOW TO DESIGN AND WRITE WEB PAGES TODAY

Note that because of a problem with min-height in Internet
 Explorer (IE) prior to version 8,1 you would have to add div#main
{ height: 500px; } to an IE-only style sheet loaded via condi-
tional comments (the RPK details their use in its screen-ie.css fi le;
see also the “Conditional Comments” sidebar). IE expands the value
specifi ed for height to fi t longer content, but other browsers, such as
Firefox, cut the content off. But that is an acceptable workaround for
IE’s inability to understand the min-height property.

FINISHING TOUCHES WITH BACKGROUND IMAGES
Background images help to make a design really shine beyond simple
boxes. Once your positioning is more or less in place, you can begin to
experiment adding in background images.

Figure 17.12 shows the positioned page along with the branding and
navigation styles from previous chapters. The design looks very boxy
and does not seem to fi t together very well.

One of the easier ways to pull a design together is to tile an image
on the background that anticipates, for example, the content area. The

Figure 17.12. Positioned page with the branding and navigation styles from
previous chapters.

 PAGE LAYOUT 219

Figure 17.13. A background image to tile on the body to help pull the design
together. (The space around the image is due to how Firefox displays images
directly.)

use of gradients, or areas of color that shift from one color to another,
is just one means for bringing one area (such as the header) into a
polished-looking relationship with another area (such as the content);
Figure 17.13 shows the background image that will tile horizontally on
the example design in this chapter.

Remember that, by default, background images tile horizontally and
vertically; to limit an image tiling on the horizontal axis only, be sure
to include background-repeat: repeat-x; in your CSS style
 declarations that use tiled images (to tile vertically, use the repeat-y
value). This one background image addition helps pull the design
 together, as in Figure 17.14.

Fixing What Doesn’t Work
The major problem with Figure 17.14 is the supporting content; the
content area itself is too narrow to accommodate a second column.
With a few revisions to the CSS (including another background image
with a gradient on the content area), the supporting content now
 appears beneath the main content (see Figure 17.15).

Figure 17.15. A revised layout on the content area, plus a gradient on the
content area itself and a darker background color on the supporting content,
further improve the page.

Figure 17.14. The page design with the background image from Figure 17.13
appears less boxy and more complete.

 PAGE LAYOUT 221

Figure 17.16. The footer as styled in previous chapters; it looks unfi nished.

That is a strength of CSS-based design: it’s possible to experiment
with these kinds of revisions without ever touching the XHTML of a
page. Tools like Chris Pederick’s Web Developer Add-on for Firefox
also let you experiment with the design right in your browser window.

The footer also looks unfi nished still; like the header before the addition
of the background image on the body, it still looks boxy in Figure 17.16.

Remember that there can only be one background image loaded per
element in CSS 2; while one has been added to the <body> tag, the
<html> tag has none. So here’s a bit of CSS trickery to get the same
effect from the header and body to work on the footer.

First, position the footer absolutely:

div#footer { position: absolute; }

All this does is pull the footer out of the document fl ow, and in this
case, cause the <body> area to behave as though the footer no longer
exists. Because of that, the footer now appears over the <html> area
of the page.

Next, we can add a background image—actually the same back-
ground image as the original footer—to the html selector in CSS, and

222 HOW TO DESIGN AND WRITE WEB PAGES TODAY

have the image positioned at the bottom of the <html> element and
repeated on the horizontal, fi lling the entire page width just like we
did for the header (see Figure 17.17). (Once that’s been done, remove
the background image from the div#footer style declaration.) To
make sure the image on html displays on longer pages, it’s necessary
to put some padding on its bottom. The complete style looks like:

html {
 background-image: url('gfx/footer-
 background.png');
 background-repeat: repeat-x; /*Tile horizontally*/
 background-position: left bottom;
 /*Show image at bottom of html element*/

 padding-bottom: 110px;
 /*Make room for the footer, and ensure that the
 html area always displays, even on longer
 pages*/
}

Figure 17.17. The footer positioned absolutely puts it over the top of the tiled
image on the html area.

 PAGE LAYOUT 223

Figure 17.18. The page looks incomplete because of the white area at the
bottom.

The Large-Screen Problem
When designing CSS layouts, it is important to test them on a variety
of screen sizes. As Figure 17.18 shows, the page looks incomplete on
larger screens, as the bottom of the page is white.

The fi x for this is an easy one. Although we could use the trick from
earlier and set a min-height on the page, effectively pushing the html
area to the bottom of even very large screens, that would cause scroll bars
to appear on smaller screens—falsely suggesting content below (when
in fact only empty space would appear). So a better fi x here is to set a
background color of black on the html selector, so the entire page back-
ground matches the black on the tiled background image. Just to be safe,
add a different background color (in this case, white) to the body selec-
tor, as the majority of the body area should be white (see Figure 17.19):

html { background-color: black; }

body { background-color: white; }

Chapter 19 will look at how DOM scripting can be used to alter your
design for larger screens.

224 HOW TO DESIGN AND WRITE WEB PAGES TODAY

NEXT STEPS
Using CSS to position elements into a layout is a matter of creating the
illusion of columns and boxes. Remember, also, when you work with
background images that they sometimes work better on elements other
than the element you’re actually trying to style, as with the header and
footer examples in this chapter. You can fi nd additional positioning
techniques and solutions at the book’s companion Web site, http://
sustainablewebdesign.com/book/.

The next chapter looks at adding images, video, and other media
to your pages. But expect to return to your page layout often to make
adjustments, particularly as you work to include media like images and
video that might need a wider area than your layout accounts for.

NOTE
1. Microsoft Developer Network, “CSS Compatibility and Internet

 Explorer,” http://msdn.microsoft.com/en-us/library/cc351024(VS.85).aspx

Figure 17.19. A simple background color fi x makes the page look more
 complete, even on large screens.

 C H A P T E R 1 8

 Multimedia Content

 Chapter 3 provided an overview of gathering and preparing multimedia
content, including images, audio, and video. This chapter looks at how to
display those media elements and integrate them with the design of your
page. Particularly for audio and video, there are many different ways to
load media elements on your page; this chapter will suggest only the most
accessible and sustainable methods for doing so. But because the precise
details of those methods change frequently and are a little too complex
to go into here in the book, they are available at the book’s companion
Web site, http://sustainablewebdesign.com/book/ .

 The Rapid Prototyping Kit (RPK) includes a media folder with sub-
folders for images, audio, and video, as well as for Flash movies and Porta-
ble Document Files (PDFs). If you decide to host media content on your
own server (versus, for example, using YouTube for video hosting, as this
chapter recommends), take advantage of the RPK’s folders or a structure
like them to keep your media content organized and manageable.

 CONTENT IMAGES
 All content images—that is, all images that appear on your pages when
you mean, “Have a look at this!”—should be loaded in the XHTML
image tag, . In addition to the tag being self-closing,
there are two important attributes that it must include, src and alt .

 • src : the path to and name of your image fi le; remember that
Web-friendly formats include JPEG fi les (.jpg , sometimes

226 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 .jpeg), PNG fi les (.png), and GIF fi les (.gif , though usu-
ally .png is preferable to .gif). Never try and load TIFF fi les,
or the native fi les from your image editor (e.g., the .psd fi les
from Adobe Photoshop).

 • alt : the short alternate text for your image; I prefer to include
the text “A photo of . . . ,” or “An illustration of . . . ,” or even
“A pie graph showing . . .” to describe the nature of the image,
as well as a few words to describe its content. Web accessibility
guidelines suggest that alt text be less than 100 characters, so
do keep it brief. Also, it is good practice to include descriptive
text somewhere on your page, such as in captions, to clarify the
purpose of your images. Markup such as:

 <p class="caption">
 Photo caption:
 We took this photograph of the Thomas

Jefferson memorial during our visit to
 Washington, D.C. in November of 2010.

</p>

OUTSOURCING MEDIA HOSTING

While it is possible to host all of your multimedia content on your own site, you

might consider outsourcing your media hosting—particularly video—to a third-

party service such as YouTube. The benefi t to this is not limited to reduced load on

your server for transferring big video fi les. By using YouTube or some of the other

services listed below, you also establish an account that provides yet another way

to build your identity on the Web, and another place to link back to your Web site.

Explore these and other video-hosting sites (just do a Google search for video

hosting), and try them out for picture, quality, sound sync, video length or size

limits, and, most important, the ability to load videos into your own Web pages:

• Viddler, http://www.viddler.com/
• Vimeo, http://www.vimeo.com/
• YouTube, http://www.youtube.com/

Always check the terms of service for these and other video sites; some sites

prohibit commercial uses for free accounts—meaning that you probably cannot

promote your business using them.

 MULTIMEDIA CONTENT 227

 and accessible CSS for hiding the access label, such as:

 .access-label {
 display: block;

 /*Display as a block for positioning*/
position: absolute; /*Pull from document fl ow*/
left: -10000px;
 /*Move way left of the screen*/

 }

 can provide additional image descriptions for all users, while hiding
(if you’d like) the obvious “Photo caption” label that would be made
clearer in your design.

 The tag should also include height and width attributes for
your images. The values are in pixels, but you do not put the pixel unit
in the value. For example, a 200-pixel-wide by 300-pixel-tall image
would be specifi ed with width="200" height="300" . While height
and width attributes are not required, they tell the Web browser to save
the space for your images, even before the image is done loading. That
can keep your page content from moving around as the images load.

 Note that you should never resize images with the height and width
attributes; do that with your image editor’s resize or resample function
instead. The height and width attributes on your tags should
always match the actual pixel dimensions of the images that they load.

 Developing a Consistent and Attractive
Image Presentation
 The tag must appear in some sort of block-level element; that
is, according to the XHTML specifi cation, cannot be a child
of the <body> tag. The content divisions in the RPK address this issue,
but you can go a step further to structure and display your images with
an attractive, consistent design.

 One approach to designing around your images is to create a little
chunk of XHTML markup for reuse each time you want to present an
image. For example:

 <div class="photograph">
 <img src="" height="300" width="400" alt="Add

alt text"/>

228 HOW TO DESIGN AND WRITE WEB PAGES TODAY

<!--Note the space before :-->
<p class="caption>
 Photo caption:

 Image description....

 </p>
</div>

 A little bit of CSS can turn that chunk of markup into a design
that complements the photograph and its caption. This example (see
Figure 18.1) uses the CSS fl oat: property to enable caption text to
 appear alongside and, if the text is long enough, wrap around the image:

 div.photograph {
 background: #333; /*Photos often show up well

 against darker backgrounds.*/
 color: #FFF; /*White text*/
 width: 678px; /*Allow for padding and border

 to total 700px*/
 padding: 10px; /*Add a bit of padding*/
}
div.photograph img {
 border: 1px solid black; /*Give defi nition to

 lighter edges of photos*/
 fl oat: left; /*Float image to allow text to

 appear alongside of it*/;
 margin-right: 10px; /*Keep text away from the

 image*/
 margin-bottom: 10px; /*Also away from the

 bottom, should the text wrap around.*/
}
div.photograph p.caption {
 font-size: medium;
 font-weight: bold;
}

 As with video, images and their presentation elements (a containing
division, a caption) must be sized to work with page layout; this particular

 MULTIMEDIA CONTENT 229

example image presentation would require at least a 700-pixel-wide con-
tent area. For this reason, work with your images as you develop your
page design (see Chapter 17) until you have reached a design and an
element-sizing scheme that are in harmony with each other. Images
should be large enough to be worth loading and looking at—while text
content in the same area should not be so wide as to be diffi cult to read.

 Additionally, it is essential to provide accessible, alternative content
on all forms of media, usually in the form of descriptive text but also,
in the case of sound and video, transcripts of any narration or dialogue.
There are examples of embedding accessible content in the <object>
tag (for audio and video, covered next) at this book’s companion Web
site, http://sustainablewebdesign.com/book/ .

 SOUND
 Perhaps more than any other media element, sound must be treated
with care if you’re not going to drive your audience away with it. For

Figure 18.1. Even minor design enhancements, such as background colors
and borders, can improve the presentation of photographs and other media—
especially if they are used consistently.

230 HOW TO DESIGN AND WRITE WEB PAGES TODAY

that reason, here is a list of the Three Deadly Sins of misusing sound
on the Web:

 • Deadly Sin #1: Sound that plays automatically when some-
one loads a page. People view Web sites at work, in their of-
fi ces, or other places where sound would be embarrassing or
unwelcome if it started playing unannounced. Other people
prefer to have music playing on their computers while brows-
ing the Web. If sound starts automatically, it creates either em-
barrassment or an unnerving fi eld of sonic chaos—introducing
the potential for people to justifi ably hate your site.

 • Deadly Sin #2: Sound that cannot be stopped once it begins
playing. If the only way to stop sound on a Web site is to close
it or go to another site, that is exactly what site visitors will do.
And they will be very wary of listening to any sound on your
site in the future, should they ever come back. It’s also best to
provide some mechanism to pause sound, rather than just stop
it, in case someone needs to step away from the computer but
would want to pick up where the sound left off.

 • Deadly Sin #3: Sound that is recorded at low levels. Sound
that is recorded at low levels (that is, sound that is very
quiet relative to other sounds, including music and system
sounds) will force visitors to turn up their speakers as high
as they can. Such an accommodating move can just about
send people out of their minds with fright when music or
operating-system sounds—like a new email alert—play at
their higher levels. Pretty self-explanatory; computers will
play other sounds besides yours, and with the audio cranked,
poor old Uncle Ed’s ticker doesn’t stand a chance if he re-
ceives a new email or logs off his computer. Refer to the
audio section in Chapter 3 and this book’s companion Web
site at http://sustainablewebdesign.com/book/ to
learn more about ensuring proper sound levels when you
 record and edit sound fi les.

 There are many different plugins and players for sound (see “Audio
Players” sidebar), but the best players will build unobtrusively over

 MULTIMEDIA CONTENT 231

links to your audio fi les. That is, to include sound on your page, just
link to the fi le, for example, <a href="/media/audio/mysound.
mp3"> . That will, at the very minimum, allow someone to download
the sound fi le and play it on whatever media player the person has
available.

 Going a step further, there are a few good choices for unobtrusive
JavaScript-based audio players that use Flash: the Yahoo! Media Player
is probably the easiest to add. You only have to link to it from the
 <head> area of your XHTML pages, and it will detect all of the audio
fi les you link to, put a play button next to them, and add a playlist and
customizable player to the bottom of your page. 1

 VIDEO AND FLASH
 Depending on the region of the world, Flash is reportedly installed on
more than 90 percent (and up to 99%) of all desktop computers. 2 That
has made Flash a very popular platform for delivering video; not surpris-
ingly, YouTube, Viddler, Vimeo, and many other video-hosting services

AUDIO PLAYERS

Somewhat remarkably, there is no reliable way to play audio natively in most

Web browsers (however, HTML5 will eventually change that; see the book’s com-

panion Web site at http://sustainablewebdesign.com/book/).

But in addition to enabling your users to download your audio for use on their

own MP3 players, you can try out a number of audio players for your site that

work using ordinary links to audio fi les. All of these players require the Flash

player and JavaScript, but they also leave links to your audio intact, so that

JavaScript-less users can still download your audio fi les and listen to them on

their own players:

• Yahoo! Media Player, http://mediaplayer.yahoo.com/
• WordPress Audio Player, http://wpaudioplayer.com/
• 1 Bit Audio Player, http://1bit.markwheeler.net/

Even as HTML5 continues to gain in popularity, it will likely be necessary to

provide audio players such as those for users of older Web browsers.

232 HOW TO DESIGN AND WRITE WEB PAGES TODAY

use Flash to deliver video content. However, new mobile devices are
challenging the use of Flash, so it is likely that other methods for deliv-
ering video—probably coupled with HTML5—will become more im-
portant to learn in the future. Again, refer to this book’s companion
site for the latest information.

 As with images, you’ll need to determine the dimensions that you
want your videos to appear at; sites like YouTube will give you differ-
ent options along these lines, but note that there are two different as-
pect ratios that are common to video. The old ratio is 4:3, which is
shared with older television sets; the newer ratio is 16:9, sometimes
16:10, which is the ratio of widescreen televisions. The aspect ratio
matters because a 4:3 video run at 640 pixels wide will be 480 pixels
tall, whereas a 16:9 video that is 640 pixels wide will appear only 360
pixels tall. That matters if you are adding additional XHTML structure
and CSS, including background images, to increase the visual appeal
of your videos.

 You can also, if you have access to the proper software, author your
own Flash animations for inclusion in your Web pages. (However, as
Chapter 19 shows, you can accomplish animation by using JavaScript
and a library such as jQuery, especially for interface elements such
as the navigation.) Regardless of whether you’re loading Flash-based
video or a Flash movie of your own construction, SWFObject is one
of the better open-source JavaScript libraries for embedding Flash
content in a way that is browser-neutral and standards-compliant.
SWFObject is included with the RPK.

 The SWFObject markup is too involved to show here in the book,
but there are excellent tutorials available on, for example, using
SWFObject to load YouTube videos. 3 I also have provided examples
and detailed instructions at this book’s companion Web site.

 NEXT STEPS
 This chapter has covered some of the core concepts and challenges
of loading media content into your Web pages. The next chapter
looks at page performance and interaction enhanced by unobtrusive
JavaScript.

 MULTIMEDIA CONTENT 233

 NOTES
 1. Yahoo! Media Player, “How to Link,” http://yahoomediaplayer.wikia

.com/wiki/How_to_link
 2. Adobe, “Flash Player Version Penetration,” http://www.adobe.com/

products/player_census/fl ashplayer/version_penetration.html
 3. Heidi Cool, “Embedding YouTube Videos the Standards Compli-

ant Way—SFWobject 2.0” [sic], http://www.heidicool.com/blog/2008/04/20/
embedding-youtube-videos-the-standards-compliant-waysfwobject-20/

 C H A P T E R 1 9

 Performance and Interaction

 Enhancing the performance of your Web pages by adding behavior and
interaction using JavaScript and the Document Object Model (DOM)
is known as DOM scripting. DOM scripting is one of the more com-
plex areas of Web design, but it makes possible the sort of rich Web ap-
plications and functionality that users have come to expect from sites
like Facebook and Gmail. This chapter covers only the most introduc-
tory, general approaches to working with DOM scripting; to go deeper
in this area, I encourage you to read Jeremy Keith’s DOM Scripting and
other DOM-scripting materials listed in “Resources for the Future.”

 To help you begin to understand the capabilities of DOM scripting,
this chapter explains the principles of unobtrusive JavaScript through
approaches to writing with the jQuery JavaScript library (which is in-
cluded with the Rapid Prototyping Kit, RPK). The chapter introduces
three basic but useful tasks that DOM scripting can be used for on
your site: manipulating the DOM when JavaScript is present, enhanc-
ing pages for wide screens, and handling external links on your site
differently from internal links. Additional and more complex exam-
ples can be found on the book’s companion site at http://sustaina
blewebdesign.com/book/ .

 In each of the chapter’s examples, however, all of the relationships
that this book emphasizes remain the same: XHTML still structures
content and CSS handles all design matters; JavaScript performs minor
adjustments to the structure of the XHTML, via the DOM. In more ad-
vanced uses of DOM scripting, JavaScript may play a more active role
in controlling CSS; we will see a small example of this by using jQuery

236 HOW TO DESIGN AND WRITE WEB PAGES TODAY

to animate the margins on a site navigation’s links in response to the
mouse hovering and leaving the links.

 DOM SCRIPTING WITH A JAVASCRIPT LIBRARY
 Some books, like Keith’s DOM Scripting , will teach you to write unob-
trusive JavaScript completely from scratch. 1 JavaScript by itself pro-
vides a number of language features for writing scripts to enhance your
pages, but it requires writing a lot of code for some of the more common
things that Web designers often want to do, such as selecting some
unique element from your page. Additionally, while there is a stan-
dard form of JavaScript, known as ECMAScript, certain Web browsers
implement it differently. For that reason, scripts written from scratch

JAVASCRIPT LIBRARIES

There are a number of high-quality JavaScript libraries available under permis-

sive open-source licenses. While jQuery (http://jquery.com/) is the li-

brary I refer to in this book and in the RPK, there are other libraries out there that

you might wish to explore:

• MooTools: http://mootools.net/
• Prototype: http://www.prototypejs.org/

A key benefi t of using a JavaScript library (sometimes also called a framework)

is that it does the heavy lifting for the scripting of your site, leaving you to write

leaner, high-level code. Libraries that are updated frequently can also improve

the performance of your site over time.

Also, you can elect to host your own copy of your library at your site, or you

can use a service like the Google Libraries API* and pull in the library that the

service hosts. While it is usually benefi cial to have your own copy of the library

while you’re doing Web development on your computer (if only because you can

work without an Internet connection), using the Google Libraries copy may make

your live site load faster if someone has already visited another site that also

loads the library. And depending on how you load the script from Google,* they

can manage updates to the library for you, too.

 *Google Code, “Google Libraries API— Developer’s Guide,” http://code.google.com/apis/libraries/dev
 guide.html

 PERFORMANCE AND INTERACTION 237

often have to employ certain tricks to get all browsers to interpret the
JavaScript the same way.

 While writing JavaScript entirely from scratch is a useful skill, for
the purposes of this book, we will skip ahead to writing DOM scripts
that are built using a JavaScript library called jQuery.

 Libraries like jQuery simplify DOM scripting because they are de-
veloped and tested extensively on many different browsers. That usu-
ally makes cross-browser compatibility much easier to achieve in your
scripts. Additionally, JavaScript libraries simplify DOM scripting by of-
fering an application programming interface (API) to build your own
custom scripts.

 If you think of a library as being something like a DVD player, the
library’s API is like the buttons on a DVD player: you probably don’t
need to know how, for example, the play or pause buttons on the player
work—but you know what they should do when you press them. You
also know that buttons only work in certain situations or under certain
conditions: if a DVD is stopped, for example, the pause button will not
do anything. And just as a DVD player comes with an owner’s manual
that documents its functionality, the jQuery library’s general documen-
tation is at http://docs.jquery.com/ and its API is thoroughly
documented at http://api.jquery.com/ .

 ANATOMY OF DOM SCRIPTING
 The DOM is how a Web browser represents the structure and contents
of an XHTML document to itself. JavaScript can then manipulate the
browser’s representation, or model. Take a familiar example: when you
write CSS styles, particularly more complex selectors like div#header
h1 , you rely on the browser to have a model or representation of <h1>
inside of <div id="header"> so that the style you write in the CSS
appears correctly when the browser displays the page.

 jQuery scripts work best when run as soon as the DOM has fi nished
loading; jQuery provides a method for doing that called the ready
event, which is attached to the document object:

 /*JavaScript*/
$(document).ready(function()

238 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 {
 /*Scripts are written here to run
 once the DOM has been loaded*/
 }
);

 Those lines translate as, “When the document object is ready, do all
of the things listed here.” Using that event and keeping JavaScript
out of your XHTML are the most important factors in keeping your
JavaScript unobtrusive. (The examples in the remainder of the chapter
must appear inside the ready event.) If JavaScript isn’t available in a
visitor’s browser, the script never runs, but the site must still be acces-
sible to the JavaScript-less site visitor.

 jQuery makes certain DOM scripting functions possible using selec-
tors that are identical, or at least very similar, to CSS. If, for example,
we wanted to use DOM scripting to put the text “DOM Scripting Is
Awesome” in the <h1> tag inside of <div id="header">, we could
use jQuery and write a line of JavaScript like this, inside the ready
event shown in the source above:

 /*JavaScript inside the ready event*/

$('div#header h1').html('DOM Scripting Is Awesome');

 What that would do in the browser is fi rst select all matching el-
ements from the document (thanks to the jQuery dollar function,
 $();). It completes the match using a descendant selector that we
know from CSS (div#header h1), which will fi nd all of the <h1>
elements inside of <div id="header"> . (However, there should be
only one match for <h1> on pages constructed according to the guid-
ance in this book.) The <h1> tag’s text will then read “DOM Scripting
Is Awesome,” regardless of what text the tag contained before.

 Provided that that structure appears in your XHTML, the element
selected by $('div#header h1') is returned as an object by jQuery
and the Web browser. In computer languages, objects have two basic
features: methods and properties. Methods are particular things that
either object can do or can have done to it: by passing text to the
 html() method, we can set (rather than just read) the <h1> element’s
contents. Properties are information about the object—the example
above refers to the html() method; used by itself, that method will

 PERFORMANCE AND INTERACTION 239

read a specifi c property: the text and any XHTML tags that <h1>
contains.

 Under most circumstances, we would not use DOM scripting to set
the text of XHTML elements; you would write the text as you’d want it
to appear directly in the XHTML itself. In the more practical examples
that follow, DOM scripting will be limited to manipulating classes on
XHTML elements, which are then styled differently according to rules
in the CSS. In one example, we will also preview the animation capa-
bilities of JavaScript by progressively enhancing the link states on site
navigation.

 This may be all a bit much and confusing. But whether or not you
are ready to agree that DOM scripting is awesome, the concepts should
become clearer in the working examples below.

 DOM SCRIPTING: IS JAVASCRIPT AVAILABLE?
 In most of my sites that use DOM scripting, I write a simple function
that adds a class of hasjs (short for has JavaScript) to the <body> tag
(again, this line goes inside of the ready event):

 /*JavaScript inside the ready event*/

$('body').addClass('hasjs');

 That line uses the dollar-sign function to select the <body> tag on a
page (In a compliant page, there should be only one <body> tag, of
course.) The script then uses jQuery’s addClass method to add the
 hasjs class to <body> .

 Assuming that JavaScript is available and that the user’s browser
understands the DOM (which jQuery checks for automatically), the
 <body> tag of that document will have the hasjs class once the script
has run. (You can check that the class has been added by choosing
the View Generated Source menu from the Pederick Web Developer
Add-on for Firefox.)

 Used alone, that line of JavaScript is not very exciting; because it’s
only adding a class, you’d not even notice that the script has done
anything—unless the class then becomes a hook for any advanced
CSS styles that should appear in JavaScript environments. For a purely
illustrative example with little practical value, if I wanted all paragraph

240 HOW TO DESIGN AND WRITE WEB PAGES TODAY

text to appear in red when JavaScript is available, but black otherwise,
my CSS fi le would include:

 p { color: black; } /*Display paragraphs black*/
body.hasjs p { color: red; } /*Display paragraphs as

 red if JavaScript is available*/

 DOM SCRIPTING FOR USER CONDITIONS:
WIDE SCREENS

 A native object in almost all Web browsers is window , which can be
used to determine—among other things—how large a visitor’s browser
view-port is. (Of course, that depends on the visitor having JavaScript
enabled.)

 As was discussed briefl y in the layout chapter (Chapter 17), a problem
with wide fi xed layouts is that they create an irritating horizontal scroll-
bar on low-resolution screens. A parallel problem presents itself for wide
screens when it comes to liquid layouts, which may not be easy to read
on very wide screens because lines of text run out over very long lines.

 One solution to designing for both screen sizes is to develop two
different layouts: one either a liquid (with widths specifi ed as percent-
ages) or narrower fi xed layout (with widths specifi ed in pixels) for small
screens, and another a fi xed layout for wide screens. Then, using a lit-
tle progressive enhancement in JavaScript, style the widescreen layout
for large screens by using another hook on the <body> to deliver the
widescreen layout via CSS.

 The low-resolution layout should be the default; it seems safe to as-
sume that someone with a low-resolution screen may be less likely to
have JavaScript. Beyond that, a low-resolution layout (particularly a fi xed
one) will obviously be fully visible on a high-resolution screen. In other
words, it would be a poor choice to have the default site layout geared for
wide screens and use JavaScript to prepare a small-screen version.

 This little function, available in the sites.js fi le in the RPK, de-
termines the width of the browser’s viewport using the window object
and jQuery:

 /*JavaScript*/

function rpkwidescreen() {

 var rpkwidth = $(window).width();

 PERFORMANCE AND INTERACTION 241

 if(rpkwidth>1100) { $('body').addClass('widescreen'); }

 else { $('body').removeClass('widescreen'); }

 }
 We can then refer to that function inside of the ready event by

writing:

 /*JavaScript inside the ready event*/

rpkwidescreen();

 What that function does is determine the width of the window (width),
in pixels; if it is greater than 1100 pixels, the script manipulates the
DOM to add a widescreen class to <body> . Coupled with the “has
JavaScript” function, widescreen views of the site will have a body tag
that looks like <body class="hasjs widescreen"> once the page
is loaded and the lines of the script have run.

 Perhaps the site specifi ed a default layout, using the div#page selec-
tor in CSS, that is 700 pixels wide, as in the example from Chapter 17
(see Figure 19.1):

Figure 19.1. The layout as it would appear without JavaScript active (or Java-
Script enhancement).

242 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 /*CSS*/

div#page { width: 700px; }

 Just below that style, one could write a widescreen style, using the
 widescreen class as a hook:

 /*CSS*/

body.widescreen div#page { width: 1000px; }

 Depending on how the rest of the page is designed in CSS, that simple
addition may be enough to improve the site’s appearance. In the case of
the example from Chapter 17, the style declaration on the descendant
selector with the widescreen hook is indeed all it takes to change the
design (see Figure 19.2).

 There is one problem, however: in its current form, the
 rpkwidescreen(); function is run only once, when the page is
loaded. Suppose someone changes the size of his browser window while
looking at the site—either using the maximize button or dragging the
corner of the browser window to make it larger or smaller. Either way,
the window size has changed—perhaps to a wide screen size, perhaps to

Figure 19.2. Using the widescreen class that a bit of DOM Scripting
adds to the body, the layout can be adjusted in the CSS to suit larger screens.

 PERFORMANCE AND INTERACTION 243

a small screen size. To account for changes in the browser window size,
an additional line of JavaScript would be necessary:

 /*JavaScript inside the ready event*/
rpkwidescreen(); /*Check the window size when the
 DOM is ready*/
 $(window).resize(rpkwidescreen);
/*Check again, whenever the window is resized*/

 Using another event (resize), the rpkwidescreen(); function
will run every time the browser window changes size. Resizes that are
greater than 1100 pixels wide will result in the widescreen class
being added to <body> (or being left on, if it already was added). If
the window is less than 1100 pixels wide, the widescreen class will
be removed if it had been added previously. The browser should auto-
matically redraw the layout, if there is a change in size/class, using the
appropriate instructions in the CSS.

 DOM SCRIPTING FOR PAGE CONTENT:
EXTERNAL LINKS

 Suppose you wanted to use CSS to style contextual links differently
when they point to pages outside of your Web site. That can be done
manually with each external link by giving it a class like ext in the
XHTML. However, that is time-consuming and tedious work. (CSS 3
has a selector for this, but it is not well supported on all browsers; al-
though jQuery will let us use that selector, as we will see below.) So a
DOM scripting solution might be worth exploring.

 One thing that distinguishes external links from internal links is
that external links must all be prefi xed with the HTTP protocol string,
 http:// ; without that, Web browsers will actually ask the Web
server for a fi le on your site. For example, <a href="www.google
.com"> will cause a browser to look for a fi le named www.google
.com on your site; to write the external link correctly so that it points
to the Google home page, the href attribute-value would need to be
 href="http://www.google.com/" .

 DOM scripting excels at looking for and sorting out values in at-
tributes; jQuery simplifi es that process by supporting selectors found
in CSS 3—even in browsers (such as Internet Explorer) that don’t yet

244 HOW TO DESIGN AND WRITE WEB PAGES TODAY

support them for use in CSS. So rather than write a special class for
each external link in the XHTML, we could write a bit of DOM script-
ing that looks for all anchor tags whose href attribute begins with
 http:// , and then add the ext class to each external link the script
fi nds. Because contextual links are probably limited to the main con-
tent area (div#content), this script will use the descendant selector
coupled with an attribute selector that looks for href values beginning
with http:// :

 /*JavaScript inside the ready event*/

$('div#content a[href^=http://]').addClass('ext');

 Adding a style declaration to the CSS could then color external
links red by referring to the ext class that DOM scripting adds:

 /*CSS*/

a.ext { color: red; }

 Users without JavaScript will not experience any difference in your
links, so if you think that it is critical for all users to be able to visually
distinguish between internal and external links, the manual route of
putting class="ext" on your external links in your XHTML source
would be the better way to go.

 DOM SCRIPTING AND ANIMATION
 The uses of jQuery we have seen so far have show only a little of the
library’s ability. This fi nal example will preview a bit more of its ability
in handling simple animations. (To go even further with animation,
you should investigate the offi cial jQuery UI library. 2)

 What we will do in this example is animate the margin-right:
property on a navigation area’s links to make them appear wider when
moused over. A pure CSS approach to this would have a simple :hover
selector that reduces the margin-right: from, for example, 30 pixels
to 0 pixels, resulting in the effect of the navigation item expanding
when it’s moused over:

 ul#navigation a { margin-right: 30px; }

ul#navigation a:hover { margin-left: 0px; }

 PERFORMANCE AND INTERACTION 245

 In fact, to progressively enhance your pages, you would want to leave
that in place, so that JavaScript-less users would see an indication of
which link they’re hovering over.

 But to enhance the hover effect, we can use the hover(); and an-
imate(); methods in jQuery to provide a smooth animation. Rather
than the CSS jumping from 30 pixels to 0 pixels of righthand margin
in the blink of an eye, we can tell jQuery to make the transition over a
period of time, using either keywords such as fast or slow, or a specifi c
time value in milliseconds (one second is equal to 1,000 milliseconds).
The DOM scripting for this looks like:

 /*JavaScript inside the ready event*/
$('ul#navigation a').hover(
function() {
 $(this).animate({ "margin-right": 0 } ,

"slow");
},
function() {
 $(this).animate({ "margin-right": 30 } ,

"slow");
 }
);

 What those lines accomplish are fi rst to select all of the anchor tags in-
side of <ul id="navigation"> and then add a hover event to them.
The hover event in jQuery can take two functions: the fi rst specifi es
what happens when a mouse moves over the element and the second
specifi es what happens when the mouse moves out and away from the
element. The $(this) selector refers to the element selected origi-
nally (ul#navigation a), and it takes the animate(); method,
which can animate any numerical property in CSS (such as widths,
heights, margins, padding, and opacity but not—importantly—colors;
you’d need to use the jQuery UI library or another plugin to animate
colors).

 With that script in place, anyone mousing over the elements in this
navigation who also has JavaScript will see the navigation buttons
slowly become wider when they are moused over and slowly shrink

246 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 FINDING SCRIPTS

 You can fi nd all kinds of freely downloadable JavaScript code on the Web. But be

very cautious of using just any old JavaScript, as many use outdated practices.

A safer way to search for scripts is to look for ones that run with your JavaScript

library of choice. Certain libraries, including jQuery, even host plugin libraries

that you can browse.* But be judicious and test any plugins well on multiple

browsers; the quality of scripts written by others varies widely.

 *jQuery.com, jQuery Plugins , http://plugins.jquery.com/

 back to normal when the mouse moves away. Have a look at the work-
ing example at http://sustainablewebdesign.com/book/ .

NEXT STEPS
 This chapter concludes the strategies for success for building individual
pages. The next steps are for you to build in the rest of the pages of your
site and prepare it for going live—topics that are covered in the next
section, “Problems and Solutions.”

 NOTES
 1. Jeremy Keith, DOM Scripting: Web Design with JavaScript and the Docu-

ment Object Model (Berkeley, CA: Friends of Ed/Apress, 2005).
 2. jQuery UI, “jQuery UI,” http://jqueryui.com/

 P A R T I V

 PROBLEMS AND SOLUTIONS

 This section of the book covers the problems and possible solutions
that impact the architecture and launch of your live site. It also intro-
duces some of the dynamic approaches and systems (specifi cally Word-
Press) that you can use to help build and maintain your Web site. The
section concludes with a chapter on tracking visitors to your site and
making it easier for them to share and repurpose your content in order
to establish your reputation further across the Web, beyond the borders
of your own site.

 C H A P T E R 2 0

 Site Architecture

 The architecture of a Web site is the organization of all its pages, and
how the pages relate to one another. A good site architecture matters
to you as a site’s designer, as it helps you to easily locate and edit your
pages, and link them to one another.

 Site architecture is equally important to your site’s visitors. A sen-
sible URL structure and a site navigation that reveals the general con-
tents of your site increase the likelihood that users will understand
what’s on your site, how to fi nd it, and where they are relative to the
rest of your site.

 To build a manageable Web site involves developing a thoughtful,
scalable architecture for its pages—and a Web-like environment to test
it in. This chapter looks at some of the choices you will have to make
in developing your site’s architecture once you have a local Web server
running to test it in.

 SETTING UP XAMPP FOR LOCAL DEVELOPMENT
 If you open a Web page directly in a browser using File > Open, you’ll
see the address bar display a long URL like this one, on Windows:

 fi le:///C:/Documents%20and%20Settings/username/

website/htdocs/index.htm

 That causes serious problems for root-relative links (described
below), which will go all the way back to the hard drive, C:/ . The fi le
URL also makes things needlessly confusing when it comes to designing

250 HOW TO DESIGN AND WRITE WEB PAGES TODAY

your URLs. And if you are using any PHP (see Chapter 21), you also
cannot test it in the simple fi le view, because running a Web server is
required to interpret PHP in your pages.

 The solution to those problems is to set up a little Web server that
runs on your computer—or even on a USB drive. One of the easiest
ways to set up your own Web server for development and testing is to
install XAMPP. 1 XAMPP is a distribution of the Apache Web server, as
well as MySQL and PHP (which are necessary for running WordPress).
Although the word server may bring to mind a gigantic computer, a
Web server is actually software, like XAMPP, which can run on your
own computer while you work up your site’s architecture as well as its
design and content. (XAMPP is not designed to host your live site,
however.)

 I have posted on this book’s companion Web site instructions
for setting up XAMPP (see http://sustainablewebdesign
.com/book/), but on Windows you basically only need to download
XAMPP, unzip it to a USB drive, and click the xampp_start ap-
plication in the xampp/ folder to have a fully operational local Web
server. You can then access your pages from your Web browser using a
special URL, http://localhost/ , provided that you put your site
in XAMPP’s root web folder, htdocs , which is inside of the xampp/
folder. (There is an htdocs/ folder that comes with XAMPP; you can
just rename it to htdocs-original/ , in case you need it later, be-
fore creating your own htdocs/ folder or copying the htdocs/ folder
from the RPK.)

 When you go to upload your site (see Chapter 23), your actual do-
main’s URLs should function the same when you, for example, click on
your links as the http://localhost/ URLs in your XAMPP instal-
lation. You can think of localhost as a placeholder for your actual
domain name.

 SITE ARCHITECTURE
 Chapter 5 and the Rapid Prototyping Kit (RPK) offer a folder structure
for the different design and media components of your site. But the
pages that make up your site require an architecture, too.

 SITE ARCHITECTURE 251

 There are three types of architectures that are commonly used on
Web sites:

 • File-oriented architecture, which places all of the XHTML
pages of a site in the root Web folder

 • Folder-oriented architecture, which places related pages into
separate folders off of the root Web folder

 • Data-driven architecture, which typically relies on databases
and the Web server to mimic fi le and folder references

 Each of these types of architectures has its benefi ts and appropriate
applications, depending on the size and type of site that uses them.

 Simple: File-Oriented Architecture
 The most basic site architecture is created by saving all of your XHTML
fi les right into the root of your Web folder. This keeps your URLs short
and simple, in a pattern like http://example.com/mypage.htm .

 Having all of your XHTML fi les located in the root of a site may not
be a problem if there are only a dozen or so pages on your site. But if the
site grows to several dozen or more, having a massive list of all of the
 .htm fi les may make it diffi cult to fi nd the page you want to edit.

 Scale presents another problem for a designer who dumps all pages
into the root of a site, regardless of the site’s size. Pages that are related
to one another, such as pages for individual portfolio items, will not
necessarily be grouped together in fi le listings, which are ordered alpha-
betically or by modifi cation date.

 With a fi le-oriented architecture, users may become needlessly dis-
oriented as well. That is, if all of your pages are kept in the root Web
folder, but there are distinct areas of your site, a fi le-only URL does not
reveal anything about the user’s location within the larger structure
of your site—or the context of a given page. (Navigation might help
suggest context—but you shouldn’t put everything in the navigation,
either.) Consider the difference between http://example.com/
fruit.htm and http://example.com/paintings/fruit.htm ;
which page can you better guess the contents of? The latter provides
more than a hint and is the product of a folder-oriented architecture.

252 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Complex and Scalable: Folder-Oriented Architecture
 One alternative method for controlling the clutter of individual fi les in
your root Web folder while also helping users orient themselves within
your site is to create folders for each of your major site areas.

 For example, rather than having a portfolio overview located at
 http://example.com/portfolio.htm , your portfolio can be lo-
cated at http://example.com/portfolio/ , thanks to the magic
of the index fi le (see “The Index File” sidebar). Then, all of your port-
folio items, like a company newsletter that you designed, can be stored
in the portfolio folder, and accessed at URLs like http://example
.com/portfolio/company-newsletter.htm .

 The benefi t of folders is that users can cut down the URLs to move
up to higher levels in a site. In other words, visitors to your site can
go to the address bar in their browsers and delete the fi le name off of

 THE INDEX FILE

 Most Apache Web servers are confi gured to serve index.htm when either

the root of a site or a folder is requested (e.g., http://example.com/ or

 http://example.com/contact/). If you save a fi le named index.
htm in your root, but still see a listing of fi les, you may need to confi gure your

Web server by adding a line that looks something like this to your .htaccess

fi le:

 DirectoryIndex index.htm index.html index.php

 If the server fi nds index.htm , it will display that; otherwise, it looks for

the .html or .php versions of index .

 If you do not create your own index fi le, your Web server might list all of the

fi les and folders in a given directory. To prevent your Web server from doing that

in indexless folders (such as your media folder), add this line to your .htac-
cess as well:

 Options -Indexes

 That should prevent people from snooping the fi les on your site, in case you

forget to save an index fi le in a folder where you have fi les that aren’t quite

ready for the world. There are additional .htaccess directives available at

this book’s companion site, http://sustainablewebdesign.com/
book/ .

 SITE ARCHITECTURE 253

the end of the URL and come upon, for example, an overview page at
 http://example.com/portfolio/ .

 And that is what is meant by a shallow architecture and naviga-
tion: a long URL like http://example.com/portfolio/design/
newsletters/ represents a deep architecture, presumably (or ideally)
with overviews or landing pages at each level. Representing those in
navigation or promotional links becomes a challenge—as does sharing
URLs in email and elsewhere. Being selective of materials for a site and
coming up with a shallow architecture help prevent a site from becom-
ing needlessly complex.

 That being said, even for areas of your site that might have only one
page, you can still use a shallow folder-style architecture. You might
save your resume, for example, as index.htm and place it in a resume
folder, resulting in a URL for the resume like http://example.com/
resume/ .

 Dynamic: Data-Driven Architecture
 If you decide to build a site using WordPress or another blogging or
content management system (CMS), your site’s architecture with that
system can be entirely dynamic. For example, http://example
.com/resume/ on a WordPress site would not point to a resume
folder; instead, WordPress uses the resume/ part of the URL to pull
your resume out of its database. (See Chapter 22 for information about
confi guring WordPress and your Web server to use these so-called
pretty URLs.)

 However, if you’re not yet ready to make the leap to WordPress,
opting for a consistent, folder-oriented structure may make it eas-
ier for you to transfer your site to WordPress or another CMS’s con-
trol later. To Google and to your users, a URL is a URL, whether it
points to actual fi les and folders, or later to an abstract reference in
a database.

 ARCHITECTURE, PATHS, AND NAVIGATION
 Site architecture matters also when it comes time to start linking your
pages together, whether through site navigation or contextual links in
your site’s content. To link to resources within your site requires an

254 HOW TO DESIGN AND WRITE WEB PAGES TODAY

understanding of URL paths, which instruct the browser to load differ-
ent resources from your site onto a page (images or other media, as well
as CSS and JavaScript fi les), or to take visitors to different pages.

 Absolute, Relative, and Root-Relative Paths
 There are three types of paths that you can write for your links: ab-
solute, relative, and root-relative. To keep Web sites portable and to
make their development easier (especially using an XAMPP installa-
tion’s http://localhost/ URL), it’s generally preferable to use rel-
ative or root-relative links.

 Absolute Links
 Absolute links (sometimes called absolute URLs or absolute paths) in-
clude your full domain name and the name of the page/resource. For
example, the absolute link to your resume might be http://exam
ple.com/resume.htm . Absolute URLs are what people commonly
share in email and what must be used to link one Web site to another.

 However, aside from the absolute link to your Web site’s home page
in the header area of your pages (see Chapter 14), it’s usually not a
good idea to use absolute links to pages within your own site: not only
are they longer, but if you should switch domain names or set up ar-
chives of your site at a subdomain, for example, http://archive
.example.com/resume.htm , any absolute http://example.com/
URLs in your links will no longer refer to items within the same ver-
sion of the site.

 Relative Links
 To make sites more portable, you can use relative links, which are
links created relative to the current document’s place in the site
architecture.

 In a site with a fi le-oriented architecture, where all fi les exist directly
in the root Web folder, relative links are very easy to write: to link from
any page in the site to, for example, your resume, you would just write
 view my resume .

 But if your portfolio were in one folder and your resume in another
(and saved as index.htm) , to link to your resume from a page in your

 SITE ARCHITECTURE 255

portfolio folder, you would have to write
or . The ../ tells the server to
move up one folder (out of portfolio/ and up to the Web root) and
then down into the resume folder. To move up two folders would be
 ../../ , three would be ../../../ and so on. It gets confusing pretty
quickly; so let relative links serve as another argument against a deep
architecture, and perhaps against relative links themselves.

 Root-Relative Links
 I prefer to write root-relative links in most situations; root-relative
links always begin with a slash (/), representing the root Web folder,
and proceed to the full path relative to the root of the site. Root-
relative links will work from anywhere in a site, even if you have a
very complex architecture: can be used
anywhere; because it starts from the root, it can always be found—
provided that resume/ is in the root Web folder. (However, root-
relative links will only work during the development and testing of
your site if you use something like XAMPP to run a Web server on
your local computer.)

 There is one case where you cannot write root-relative links begin-
ning with a slash, though. If you are using a Web account like you
might get through your school or business and it has a URL structure
like http://university.edu/~yourusername/ , you’d need to
prefi x all of your links with /~yourusername/ to make them root-
relative—otherwise, the root-relative links will point to (nonexistent)
fi les and folders off of university.edu/ . And, of course, once you
have added /~yourusername/ to your links, they will no longer be
portable if you decide to purchase your own domain name. So add the
root-relative link issue to the list of reasons why Chapter 5 urged you to
buy your own domain name, rather than relying on hosting from your
school or employer.

 NEXT STEPS
 As you begin to build a site architecture and test your pages using
XAMPP, you move closer to creating a site that is ready for posting to

256 HOW TO DESIGN AND WRITE WEB PAGES TODAY

the open Web. The next two chapters look at PHP and WordPress; if
you aren’t interested in those for the time being, skip ahead to Chap-
ter 23, which talks about transferring your Web site to the server space
that you’ve purchased from your Web host.

 NOTE
 1. Apache Friends, “XAMPP,” http://www.apachefriends.org/en/xampp

.html

 C H A P T E R 2 1

 Reusing and Dynamically
Generating Content

 One advantage to styling your Web site using a single CSS fi le is that
your design instructions are shared over multiple XHTML pages, which
all load the same CSS fi le in the <link> tag. A change to one CSS fi le
changes the design of your entire site.

 But what about content? If you have a site with 20 pages, and you
need to make a change to your navigation, you face the unhappy task
of changing your navigation 20 times. While you could try and use a
search-and-replace function across your fi les, you’re still left with up-
loading all 20 fi les to your live Web site (not to mention placing a lot
of faith in search and replace).

 As you begin to develop your site’s pages, you will no doubt notice
that there are many structural features in addition to the navigation—
the <head> area of your XHTML and your branding, for two
examples—that are the same or almost the same from page to page.

 Rather than rewriting the same content on every page, an alter-
native solution is to have a file that contains the repeated content
and share it with all pages. Such content reuse, however, would
require a different kind of design from the static XHTML pages
that we have looked at so far. Static XHTML files (plus CSS and
JavaScript) are rendered directly in the browser. To reuse con-
tent or otherwise make your pages more dynamic involves some
kind of preparation on the server, otherwise known as server-side
scripting.

258 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 When you purchase Web hosting, you’re not just purchasing storage
space: you’re purchasing access to a Web server, which can do much
more than simply transfer fi les down to a visitor’s Web browser. The
metaphor that I like to use is that Web sites made up of static XHTML
pages are sort of like vending machines, whereas dynamic sites are more
like fast-food restaurants. If you post an XHTML fi le to your Web site,
and someone accesses it, the page on their machine is identical to the
one on your server—not unlike when you see a candy bar in a vend-
ing machine, put in your money, and hit the button for the candy bar.
Nothing changes about the candy bar when it falls from its little slot
and into your hands.

 Dynamic pages, however, are prepared by the Web server; it’s a
process that’s instantaneous, but what lives on your server is not
the complete fi le as it will be seen by visitors, but rather some mix
of dynamic and static content. When you go to a burger joint, they
don’t (I hope) hand you a bun, ketchup, and a wad of raw meat;
they take those ingredients, prepare them, and then hand them to
you. Take that example to a Web server offering dynamic content:
the server can assemble dynamic content from a number of differ-
ent fi les before sending what appears to be a complete, static page
to your visitors.

 From the visitor’s point of view, there is no difference between a dy-
namic page and a static one: a dynamic page still appears in the browser
as XHTML, CSS, and JavaScript. And that’s important to remember,
and why this book has looked at XHTML, CSS, and JavaScript so
closely: no matter what you have going on behind the scenes on your
server, you are still offering XHTML, CSS, and JavaScript for users to
experience your Web site.

 PHP, a recursive acronym that stands for PHP Hypertext Pre-
processor, is a widely used open-source server-side scripting lan-
guage. 1 PHP is great for building simple dynamic XHTML Web
pages. In fact, it is the language that WordPress (see Chapter 22)
and many other open-source Web software packages are written in.
In this chapter, we will look at some basic uses of PHP that will
prepare you to learn how to create and modify your own WordPress
templates.

 REUSING AND DYNAMICALLY GENERATING CONTENT 259

 WRITING PHP
 By default on most Web servers, any fi les containing PHP must be
named with a .php fi le extension (though see the “Parsing PHP in
 .htm Files” sidebar).

 To call PHP into action requires using PHP tags; these are not the
same as XHTML tags. PHP tags open with <?php and close with ?> ,
and they allow you to jump in and out of static XHTML. The server
will interpret, or parse, the PHP code appearing between the PHP tags.
For example, to output the current year, a fi le might contain:

 <p>The current year is <?php echo date('Y'); ?>.</p>

 which during the year 2011 would appear in the browser’s source view as

 <p>The current year is 2011.</p>

 Again, from the visitor’s point of view, the page is nothing but
XHTML. Unless there is something wrong with the Web server,

 PARSING PHP IN .HTM FILES

 By default on most Web servers, any fi les with PHP that you want the server to

parse must have a .php extension.

 If you have a site with lots of .htm or .html pages, but you decide to

include PHP in them, you don’t have to rename the fi le extensions from .htm

to .php . Different Web hosts require different instructions for parsing PHP in

 .htm or .html pages, but usually you must edit the .htaccess fi le in

your site’s root Web folder so that it contains a line such as:

 AddHandler application/x-httpd-php .php .htm
.html

 (This line is included in the RPK’s .htaccess fi le; remove the hashes in

front of it to use.)

 Check the specifi c documentation for your Web host as to what lines you

must put into .htaccess for this purpose. This is an example of why Chap-

ter 5 suggested purchasing Web hosting from hosts that enable confi guration

with .htaccess fi les; there will be other examples of .htaccess in the

chapter on WordPress.

260 HOW TO DESIGN AND WRITE WEB PAGES TODAY

visitors will never be able to detect which parts of your pages are static
XHTML and which parts are created dynamically by PHP. (As you will
see when you begin to work with WordPress templates, you can jump
in and out of PHP as many times as you’d like. Just be sure to open and
close your PHP tags.)

 Anatomy of PHP
 The majority of basic PHP involves writing or working with functions.
Functions are made up of the function name, followed by open and
closing parentheses where you would write any information, known as
arguments, that the function needs. For example, if we had a function
called greet(); and it took the argument of the name of someone to
greet, say Tom, we would write greet("Tom"); , which might out-
put Hello, Tom! , depending on how the function itself was written.
PHP has both built-in functions, like the date(); function above,
and mechanisms to write your own functions. We will look at examples
of both below.

 PHP also has what are known as language constructs; they are sort
of like functions, but use a different syntax—one that doesn’t use
parentheses. The most common construct is echo , which outputs
any text you’d like, as though you’d typed it into your Web pages

 PHPINFO

 PHP has a special built-in function that will give you all sorts of information

about your Web server. Simply write this in a blank text fi le:

 <?php phpinfo(); ?>

 and save it as mysiteinfo.php . Pull it up in your Web browser (e.g., at

http://localhost/mysiteinfo.php), and you’ll see all kinds of

information about your Web server or XAMPP development environment (see

Chapter 20).

 That page can help you determine what your server has installed and whether

it meets the requirements for running software like WordPress. PHPInfo doesn’t

make for thrilling reading; just know that it’s there if you have a question about

your Web server’s environment or confi guration.

 REUSING AND DYNAMICALLY GENERATING CONTENT 261

yourself. (You will sometimes see a practically synonymous con-
struct, print ; the differences between the two are subtle, but for me
it comes down to laziness: “echo” is faster to type than “print.” It’s
one less character, and I don’t have to inconvenience my pinky to
type “p.”)

 In XHTML, you would type:

 <h1>Site Overview</h1>

 In PHP, you could write something similar to this:

 <?php
echo "<h1>Site Overview</h1>";

?>

 Their appearance in a user’s browser would be identical.

 Escaping
 echo relies on quotation marks (single or double) to specify the
contents of a string, which is just a collection of characters, as
far as PHP is concerned. However, when writing plain old English
prose, it’s common to use quotation marks and apostrophes. When
quotation marks appear inside of a string marked by quotation marks,
for example, they need to be escaped with a backslash, \ .

 <?php
echo "I've just read \"The Road Not Taken\" by
Robert Frost.";

?>

 In the browser, someone will see

 I've just read "The Road Not Taken" by Robert Frost.

 Escaping the quotation marks just keeps PHP from being confused that
the string is ending earlier than you intend.

 Sometimes, as when you are writing your own functions, you need to
insert the contents of a variable into an echo statement. To do this, you
need to use concatenation, a very fancy word for the unfancy task of
simply joining strings and variables together. In PHP, you concatenate
using dots. For example, if a script had a variable called $username

262 HOW TO DESIGN AND WRITE WEB PAGES TODAY

(variables in PHP always begin with a dollar sign), it could be output as
part of a greeting by writing:

 <?php
$username = "Tom";
echo "Hello there, " . $username . "! It is good to
see you again.";
?>

 Viewed in a browser, that short PHP script would output

 Hello there, Tom! It is good to see you again.

 The include(); Function
 One of the most basic but useful features in PHP is its include();
function, which will add the contents of any fi le you include to the
page where you call include(); from. If the fi le you include is a
 .php fi le, any PHP instructions in it will also be executed by the
server.

 The trick with include(); is that by default, it looks for paths rel-
ative to your server root, not your root Web folder. For this reason, it’s
convenient to put fi les you want to include in their own folder, perhaps
off of the Web root, called includes . Then, in your include function,
you’d use a PHP variable called $_SERVER["DOCUMENT_ROOT"] ,
which contains the location of your root Web folder, followed by the
includes folder and the fi le you wish to include. So, for example, if you
had a folder called includes/ with a fi le that contained only your
navigation, navigation.php , you’d write

 <?php
 include($_SERVER["DOCUMENT_ROOT"].

"/includes/navigation.php");

?>

 wherever you want your navigation to appear.
 That looks a little ugly, but by using the PHP document root vari-

able, your include instructions should transfer easily from your devel-
opment environment to your live Web site.

 REUSING AND DYNAMICALLY GENERATING CONTENT 263

 WRITING YOUR OWN FUNCTIONS
 include(); will go a long way to making your sites more manageable
by repeating shared content. However, used the way it was above with
the navigation fi le, it can only output the complete content of the fi le.
To repeat content without including multiple fi les, as well as offer con-
tent that is slightly different from page to page, you can write a single
PHP fi le that contains your own custom functions for each piece of re-
peated content.

 You’ll still need to use include(); to load your functions fi le, but
you’ll only need to use the include function once, probably at the very
top of your page. An important part of functions is that, unlike simple
included fi les, they allow you to specify arguments , or bits of unique
information, to use the function in a custom way on your pages. For
example, let’s say you wanted to write a function to display the <head>
area on all of your pages. (You could write this function in a fi le you
name functions.php .) To write custom functions in PHP, you must
write function followed by the name you want to give the function.
The contents of the function itself are written between curly braces.
To prevent your custom functions from confl icting with the functions
built in to PHP, prefi x the names of your custom functions with your
initials, or perhaps initials of your domain, and an underscore. I have
written some custom functions in the RPK, all of which are prefi xed
with rpk_ .

 One of the elements in the head area of every page is the <title>
tag, which should have text that provides a unique title for each page
of your site. That can be handled by specifying an argument, $title ,
that must be specifi ed when you actually call the function in your
pages:

 /*PHP*/
function rpk_head($title) {
echo "<head>
 <meta http-equiv=\"Content-Type\" content=

\"text/html; charset=utf-8\" />
 <title>" . $title . " – Example.com</title>
 </head>";
}

264 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Then, to actually call the rpk_head(); function on your XHTML
page, you’d write something like:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
 <html>
 <!--The <head> gets loaded in a dynamically in
PHP-->
<?php
 include($_SERVER["DOCUMENT_ROOT"] . "/includes/
functions.php");
rpk_head("Overview");
 ?>
 <!--End PHP; resume static XHTML-->
<body>

 A more complete function might also output the DOCTYPE
declaration and any other repeated elements as part of the func-
tion rather than in the static XHTML as in the example above;
the very basic <head> area here is only intended as a simplified
example.

 You can fi nd additional functions in the RPK; see http://sus
tainablewebdesign.com/book/ .

 PHP AND SUSTAINABILITY
 PHP is an open-source language and, while not as consistent or elegant
as some other languages that are gaining popularity on the Web, par-
ticularly Ruby, 2 PHP is widely used and can contribute to your site’s
overall sustainability.

 However, it is important that you review any custom PHP that you
have written from time to time, and check any functions you’ve used
against the reference at PHP.net. Functions occasionally become dep-
recated, meaning that they are no longer advisable to use, and may
eventually be removed from the language entirely. However, other
functions will take their place—and the PHP.net documentation is
very good about making replacement functions clear. That being said,

 REUSING AND DYNAMICALLY GENERATING CONTENT 265

you can pretty much count on echo and include(); to be around
well into the future.

 NEXT STEPS
 This chapter has only scratched the surface of PHP, but it is enough
to help you start work with the content in the next chapter on Word-
Press. WordPress is written in PHP and has many of its own functions
available that you can use to build or edit a WordPress template.

 NOTES
 1. PHP.net, http://php.net/
 2. Ruby Programming Language, http://www.ruby-lang.org/en/

 C H A P T E R 2 2

 Dynamic Sites in WordPress

 As we have seen, Web sites can be a collection of XHTML fi les, per-
haps enhanced with PHP. One benefi t of keeping a site as a collection
of fi les like that is that the site’s content will require minimal mainte-
nance, as it is delivered more or less as-is to site visitors.

 But there are drawbacks to sites that are collections of fi les: you
have to have access to an FTP or SFTP client to upload changed
fi les to your site, and that’s not always possible to set up on comput-
ers that aren’t your own. The required FTP or SFTP access to a site
may also complicate collaboration, if you are building a site together
with other people—unless you trust them with your SFTP password
(and you shouldn’t; they’ll goof something up and it’ll be your prob-
lem to fi x).

 Collections of fi les also become more diffi cult to revise and im-
prove if a site grows to hundreds or thousands of pages; fi le- and
folder-based architectures have trouble supporting that kind of
growth. Finally, unless you are using PHP or another server-side lan-
guage to include repeated page elements, such as site navigation,
even minor changes to all of your site’s pages can become needlessly
time-consuming.

 This chapter looks at WordPress, a popular open-source blogging
and content management system (CMS). While WordPress’s primary
function is as a blogging system, it can also be used to create, manage,
and revise the kinds of pages found on many different kinds of portfo-
lio, organizational, or business sites.

268 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 One word of caution, though: if you opt to run your Web site with
WordPress, you need to make a commitment to regularly update your
copy of WordPress so that you always have the latest, most secure version.
You should also check before you purchase Web hosting that your host-
ing company regularly updates its PHP, MySQL database, and Apache
Web server and that the hosting company’s advertised versions meet the
current WordPress requirements for PHP, MySQL, and Apache.

 UNDERSTANDING WORDPRESS AND
SITE ARCHITECTURE

 Like many content management systems, WordPress does not store
your content in separate fi les (as you do when you create XHTML
pages). Instead, WordPress keeps your content organized in a database.
In addition to storing site content, WordPress also uses its database to
store confi guration settings and site preferences. The only exception

 OPEN-SOURCE PROJECTS

 WordPress is an example of an open-source software project.

 A key idea behind open-source software is that its source is available for

viewing and, if released with a permissive license, also for modifi cation and

extension.

 In the case of WordPress, not only is the source available, but there is a large

community of people who are actively working on the software. That means

that WordPress is more refl ective of the blogging community that uses it, and

also that bugs and potential security issues are usually found and fi xed very

quickly.

 Even as a user of WordPress, you can contribute to the community by re-

porting problems, contributing to the documentation, or even—if you get good

enough—working on the WordPress source itself. The techniques for WordPress

templating in this chapter are a good fi rst step in that direction.

 To read more about the open-source movement, visit the Open Source Initia-

tive at http://opensource.org/ . You might also want to read Eric Ray-

mond’s book The Cathedral and the Bazaar .*

 *Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary , revised and expanded ed. (Sebastopol, CA: O’Reilly Media, 2001).

 DYNAMIC SITES IN WORDPRESS 269

to that is the wp-confi g.php fi le, which is where it stores information
about connecting to your database and some other information about
your Web server and Web site (wp-confi g.php is set up the fi rst time
that you install WordPress, although you can edit it in your text editor
later, if necessary).

 So when people access blog posts or pages in WordPress, the URLs
are actually instructing WordPress to retrieve records from a database.
By default, WordPress has a URL scheme that looks like http://ex
ample.com/?q=21 , where “21” refers to some record in the database.
But if your Web host has enabled Apache’s mod_rewrite module (most
do, but check before you purchase hosting), 1 you can set up WordPress
to generate “pretty” URLs, like http://example.com/about/ . (See
the sidebar “PHPInfo” in Chapter 21 for determining your Web host’s
server confi guration.)

 Understanding that URL scheme requires a bit of a conceptual shift,
though. So far, we have seen that a pattern like http://example
.com/about/ usually indicates the presence of a folder called about/
in your root Web folder. Not so with WordPress and mod_rewrite, which
let you write URLs that are independent of fi les and folders. You can

 THE DOCUMENTATION: WORDPRESS CODEX

 The documentation for WordPress is called the Codex, and it is available at

 http://codex.wordpress.org/ . Although the Codex includes a search

function, I often fi nd it easier to search the Codex using Google, using Google’s

 site: syntax and the Codex URL. For example, to search for pages in the Codex

that talk about template tags, I’d go to Google and search:

 template tags site:codex.wordpress.org

 Here are some other tips for reading the Codex:

 • Have PHP.net open to consult on the particulars of PHP.

 • Use your browser’s Find function (Ctrl or Cmd + F) to wade through long

pages.

 • If you are working to fi x a problem with your site or template, do not ignore

posts in the WordPress forums; the odds are that someone has had the same

problem or question as you at some point.

270 HOW TO DESIGN AND WRITE WEB PAGES TODAY

even confi gure WordPress to automatically generate URLs according to
particular patterns for different types of content, although you still retain
the option to edit the URLs on each blog post or page that you create. 2

 INSTALLING WORDPRESS
 WordPress is constantly revised and improved, so in addition to the
installation suggestions at http://sustainablewebdesign.com/
book/ , be sure to consult WordPress’s instructions. 3

 However, here are some general points to consider when installing
WordPress:

 • If you only want to use WordPress for a blog, and not for the
rest of your site’s pages, consider installing WordPress in a dedi-
cated folder, such as blog/ , so that your WordPress blog would
be accessed at http://example.com/blog/ .

 • If you want to use WordPress to manage your entire site, you
can install it in the site’s root Web folder. However, I have
found that it is much easier to later update WordPress when it’s
stored in its own folder off of the site root, such as wp/ . You’ll
have to move the WordPress .htaccess and index.php fi le
into your site root, but keeping the core WordPress fi les in their
own directory makes updates easier, and keeps your site root
folder more tidy.

 • If you set up WordPress so that you can upload images and
other media, consider using the media/ folder from the RPK,
perhaps with a wp/ subfolder where WordPress can keep your
media uploads organized. By default, WordPress stores uploads
inside of the wp-content folder, but that can make upgrading
WordPress tricky if you want to start with a clean installation
on each upgrade (discussed at the end of this chapter).

 • If you allow comments on your blog, be sure to obtain an API
Key from Wordpress.com (the hosting site of Wordpress.org), 4
which will let you set up the Akismet plugin that comes with
WordPress. 5 It does an outstanding job of catching spam com-
ments, saving you the headache of fi ltering literally thousands
of spam comments by hand.

 DYNAMIC SITES IN WORDPRESS 271

 TEMPLATING WORDPRESS
 WordPress has a system for building custom templates. I have also cre-
ated a starter WordPress template based on the Rapid Prototyping Kit
(RPK). It uses the same structural blocks as the XHTML version of the
RPK, so the good news is that if you have used the RPK for designing
your XHTML pages, building a WordPress template from your design
may be very easy: you may not have to touch the PHP templating fi les
at all; simply copy your CSS fi les into the correct place in the RPK
template folder. (The complete details of the RPK WordPress tem-
plate are at this book’s companion site, http://sustainablewebde
sign.com/book/ .)

 The Template File Hierarchy
 To customize the content and look of your WordPress site, it’s im-
portant to understand WordPress’s template hierarchy, which is the
order of fi les that WordPress checks in your theme folder to decide
which template to display for a given page. The hierarchy moves
from specifi c to general. For example, if WordPress is trying to display
a page, it looks for the specifi c page.php fi le; absent that, Word-
Press will simply use the generic index.php fallback as it does for
all pages.

 There is a “Visual Overview” of the template hierarchy at the
Codex, 6 but here is a basic description of what you will fi nd in the
WordPress version of the RPK:

 • page.php , for displaying individual pages
 • single.php , for displaying individual posts, with comments

and a comment form
 • archive.php , for displaying per-date, per-category, or per-tag

listings of posts
 • search.php , for displaying the results of searches
 • 404.php , for alerting users to a missing page
 • index.php , for displaying the home page of your site

 The template hierarchy provides mechanisms for specifying additional
templates, but this is the basic set for a baseline template.

272 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Additionally, there are fi les that are used to build the header, footer,
and sidebar across all templates and display a custom comment form
when necessary:

 • header.php includes the head area and header branding.
Some of the information, such as the site title and URL, will
be pulled from your WordPress database; the rest you can copy
from your RPK prototype fi le.

 • footer.php includes the footer area, which uses essentially
the same XHTML markup from the footer area of the RPK’s
 prototype.htm fi le.

 • sidebar.php includes the navigation and room for any wid-
gets you’d like your site to include.

 • comments.php handles the list of blog post comments and
the comment form.

 • functions.php handles any miscellaneous custom site func-
tions in PHP that you wish to include (see Chapter 21).

 As you will discover by working with the fi les, templating for Word-
Press is not a whole lot different from working with the regular RPK—
except that there is PHP intermingled throughout. It’s also helpful to
enter a few blog posts in WordPress and/or a few pages, and compare
their output in the browser (using View > Source) with the template
fi les as they appear in your text editor. You may also fi nd it useful to
open the WordPress Edit Post page to edit an already-published post, so
you can see where the items in the WordPress Edit Post interface (the
post title, the post body, the date, and so on) appear in the published
post as viewed in the browser.

 Editing and designing the CSS is no different from editing the CSS
for static pages (although the RPK WordPress template does include
some additional <div> tags for you to work with). Remember that,
no matter what system is running on the Web server, the browser still
receives XHTML that you can experiment styling using the Pederick
Web Developer Add-on or other in-browser development tools. And
because the RPK WordPress templates use the same structure as the
plain XHTML version, your CSS from a static site built in the RPK
should transfer quite easily.

 DYNAMIC SITES IN WORDPRESS 273

 UPGRADING WORDPRESS
 If you run WordPress or another blog/CMS package to power your
Web site, it is essential to keep your site updated with the latest ver-
sion. Although WordPress has an automated upgrade system, I fi nd
it preferable to upgrade manually so as to retain control over and see
fi rsthand the changes to my WordPress sites. See the next chapter,
“Going Live,” to learn about connecting to your hosting account and
uploading fi les.

 Assuming you followed the recommendation above of keeping
WordPress in its own directory and the suggestions at the book’s com-
panion site, upgrading WordPress is not too painful of a process.

 First, you want to go to your administration panel in WordPress and
disable all of your plugins.

 Second, back up your wp-content folder; this is where, among
other things, your fi le uploads may appear (although if you specify an
alternate location for the uploads, outside of the WordPress directory,
this is not an issue). Pull a copy of wp-content down from your Web
site using your FTP or SFTP client for archival purposes (that allows
you to restore your WordPress installation, should something go wrong
with the upgrade). You should also be sure to download copies of your
 wp-confi g.php fi le and index.php where you modifi ed the path to
WordPress.

 Third, it’s important to back up your database. If you have SSH ac-
cess, you can do this by running

 mysqldump -umyusername -pmypassword wpdatabase >

wpdatabase.sql

 replacing myusername and mypassword with your database user-
name and password (though keep the –u and –p) and wpdatabase
with the name of your WordPress database. If you don’t have SSH ac-
cess, locate the database administration tool provided by your Web
host to dump/export your database for backup.

 Finally, I prefer to delete all of the WordPress fi les on my server be-
fore uploading fresh copies. Using your FTP program, you can delete
the remote folders wp-admin and wp-includes , as well as all of the
 .php fi les that begin with wp- . You can also delete xmlrpc.php ; a
new copy will be uploaded with your upgrade.

274 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Download a new copy of WordPress to your computer and drag in
your custom theme, plugin, and upload folders (if they are not stored
outside of the WordPress folder) to their appropriate locations in wp-
content . Copy over your wp-confi g.php and index.php fi les, too.
Then, upload the whole set of fi les to your server.

 NEXT STEPS
 WordPress enables you to maintain a dynamic, database-driven Web
site. But it requires you do regular maintenance and upgrades over
time, including uploading copies of the WordPress site to your hosting
space. The key details on moving your site—whether it’s a collection of
static fi les or a WordPress installation—are covered in the next chap-
ter, “Going Live.”

 NOTES
 1. Apache HTTP Server Version 2.0, “Apache Module mod_rewrite,”

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
 2. Wordpress.org, “Using Permalinks,” http://codex.wordpress.org/Using_

Permalinks
 3. Wordpress.org, “Installing WordPress,” http://codex.wordpress.org/In

stalling_WordPress
 4. Wordpress.com, “API Keys,” http://en.wordpress.com/api-keys/
 5. Wordpress.org, “Plugins/Akismet,” http://codex.wordpress.org/Plugins/

Akismet
 6. Wordpress.org, “Template Hierarchy,” http://codex.wordpress.org/Tem

plates_Hierarchy

 C H A P T E R 2 3

 Going Live

 Once you have designed and tested your site locally using XAMPP
(see Chapter 20) and it’s working to your satisfaction, it’s time to pub-
lish your site to the Web by copying the fi les from your computer or
USB drive to the space provided by your Web host. Assuming that you
have been thoughtful in developing your site architecture by keeping
everything in your htdocs/ folder, going live should be a relatively
painless task of copying the contents of htdocs/ to the root Web
folder provided by your host. This chapter offers some checklists to run
through before and after you upload your site.

 BEFORE YOU UPLOAD: A CHECKLIST
 Before you upload your site to your Web server, here is a list of things
to check in all of the fi les that make up your site:

 • Check that you haven’t written any links that refer to your
testing URL, http://localhost/: Make sure that you have no
domain names in links that point to your own pages (except for
the link to your home page in the <div id="header"> area
of your document, which should be your actual domain name
and not http://localhost/ , if you have been using that for
testing purposes.

 • Check for links or images loaded from folders outside of your
Web root folder and its subfolders: When you’re working on
your own computer, you can link to pages or images anywhere

276 HOW TO DESIGN AND WRITE WEB PAGES TODAY

on your computer. These links, however, will not work on the
open Web, so be sure that you have moved all of your images
into a folder inside of your Web root, and that links from your
pages point there.

 • For WordPress sites: Make sure that you have specifi ed your
actual URL inside of the WordPress administrative interface
and that you have also made any necessary changes in wp-
confi g.php to refer to the database that you have set up with
your Web host, including the database’s name and the user-
name and password to access it.

 Also, if you have purchased your domain name from someone other
than your Web host (as was recommended in Chapter 5), you will need
to go to your domain-name registrar’s Web site and log into the con-
trol panel they provide for managing your domain. Once logged in, you
will enter your Web host’s nameservers for your domain (nameserv-
ers are usually in the form of ns1.example.com and ns2.example.
com ; additionally, some registrar’s require each nameserver’s IP address,
which your host should provide for your information). That’s how you
ensure that your domain name points to your site at your hosted server
space. Google for “nameservers” and the name of your Web host and
“specify different nameservers” and the name of your domain provider
to determine how to do this. Once you have changed the nameservers
that your domain uses, it may take some time (around 24 hours) before
your domain points to your actual site.

 Locating FTP/SFTP Instructions for Your Web Host
 Every Web host is a little different in terms of how you access your
account to upload fi les. Make sure that you fi nd, read, and follow the
host’s instructions carefully. Some require setting a “passive” FTP mode,
for example, so you’ll need to select an FTP client that supports passive
mode. Do a Google search.

 If you have a host that offers SFTP, use that rather than FTP (even if
the host offers both); FTP transfers your password without any encryp-
tion, which makes it easy for someone to break into your site. Make
sure, also, that you select a client that supports SFTP (see the “Select-
ing an FTP/SFTP Client” sidebar).

 GOING LIVE 277

 Finally, you need to check the address you need to upload your fi les
to. Sometimes this is a generic address for your host (such as ftp.
webhost.foo), but that passes your fi les to your account based on
your username. Sometimes you get an FTP address in the form of ftp.
example.com that uses your own domain name. If you’re using SFTP,
though, you usually just specify your domain name for the address:
 example.com . You will need to specify the correct address in your
FTP/SFTP client.

 GETTING YOUR FILES TO THE RIGHT PLACE
 Every Web host specifi es a root Web folder where you must place
your fi les in order for them to be viewable at your URL. You’ll need
to check your host’s documentation to determine where that folder
is; just like htdocs/ was the root Web folder in your XAMPP Web
server (see Chapter 20), different hosts may specify www/ , http-
docs/ , or even html/ as their root Web folder. You want to make
sure that you transfer your fi les from htdocs to your host’s root Web
folder. (But do not transfer htdocs itself, unless you want people to
access your Web site at http://www.example.com/htdocs/ . And
nobody wants that.)

SELECTING AN FTP/SFTP CLIENT

 It is essential to select an FTP/SFTP client that meets the requirements of your

Web host. Here are some fl exible clients that you might try to use; they are all

free and open source.

 • WinSCP (http://winscp.net/) is an excellent choice for Windows

users and can handle almost any kind of FTP/SFTP connection that your Web

host requires.

 • CyberDuck (http://cyberduck.ch/) is a very versatile FTP/SFTP

client for Mac OS X. Better still, it acts just like another OS X folder window,

so copying fi les from your computer to your server is no harder than copying

fi les from folder to folder on your computer itself.

 • FileZilla (http://fi lezilla-project.org/) offers a free and

open-source FTP/SFTP client for Windows and Mac, as well as Linux.

278 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 FILE AND FOLDER PERMISSIONS

 Early in the book, I suggested purchasing Web hosting from a company that

uses Linux servers and that grants you secure shell (SSH) access. Setting fi le

and folder permissions is one area where SSH access is essential. It offers a

straightforward mechanism for seeing and changing which users on a system,

including the user the Web server runs as, can read and write fi les.

 There are two parts to permissions: the username of the fi le or folder’s owner

and the owner’s group and what the fi le or folder’s owner, associated group,

and everyone with server access can do to the fi le (read, write, and/or execute).

In order to enable browser uploads in WordPress, for example, you may have to

change the permissions on your uploads folder to allow the Apache Web server

user to write fi les there. And sometimes, you also have to make sure that your

own user, the one you access the server with to transfer fi les, can in turn down-

load browser-uploaded fi les over FTP/SFTP.

 Details on determining and setting fi le permissions are available at this

book’s companion site, http://sustainablewebdesign.com/book/ .

 AFTER YOU UPLOAD: A CHECKLIST
 Depending on how large your site is, and how fast your Internet con-
nection speed is (even high-speed connections are usually slower for
uploads than they are for downloads), it may take a little while to
upload your site.

 But once your FTP/SFTP client indicates that your fi les have been
uploaded, it’s time to check out your live site for the fi rst time by point-
ing your browser to your actual domain name’s URL in the form of
 www.example.com or example.com , depending on whether you’ve
elected to use www. or not (see the “WWW, or No WWW?” sidebar).

 Check your live site for the following potential problems:

 • Do your pages load? This is the most obvious check; you want
to see your own work when you go to your own domain name.
If you do not see your own work there, try reloading the page.
Many Web hosts will put a temporary index.html fi le in your
root Web folder, so you may need to use your FTP client to
delete that if your own index.htm fi le does not appear. Also,
if you see a page that appears to be from your domain registrar,

 GOING LIVE 279

WWW, OR NO WWW?

Some Web sites, like http://www.google.com/ force the use of www.

in their URL (if you try to go to http://google.com, Google’s server will

add the www. onto the URL for you).

My attitude, shared with the people behind http://no-www.org/ is that www.

is superfl uous for Web sites. That’s why my site forces http://karlstolley.com.

Anyone using www. to access the site will be automatically sent to the correct,

www-less URL.

However, there is an alternate view, expressed by the community at http://

www.yes-www.org/ who urge the use of www. in Web URLs.

Whether you use www. or not, or allow users to use both, is up to you; just

make sure that, www. or not, people can access your site at either one. Here

are some instructions to put in an .htaccess; these are available in the RPK

.htaccess fi le; uncomment the lines to use no-www or www on your Web

server (these may cause problems on an XAMPP installation):

• Force no www:

RewriteEngine On
RewriteCond %{HTTP _ HOST} ^www\.(.+)$ [NC]
RewriteRule (̂.*)$ http://%1/$1 [R=301,L]

• Force www:

RewriteEngine On
RewriteCond %{HTTP_HOST} !^www\.(.+)$ [NC]
RewriteRule ^(.*)$ http://www.%1/$1 [R=301,L]

you will have to set up your domain to use your host’s name-
servers as described above. If you’ve done that already, try your
site again in a few hours.

 • Do your images and CSS fi les load? If you are seeing your XHTML
pages, but not your design, you need to fi rst check that the fi les
were uploaded. This can be as easy as pointing your browser
to, for example, http://example.com/css/screen
.css and seeing if your CSS fi le’s source displays. If it doesn’t,
go back to your FTP client and upload it again. If the CSS fi le’s
source does display, you need to check the paths that load it in
your XHTML fi le (see Chapter 20).

280 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 • Are your XHTML pages and CSS fi les validating? Particularly
if you’ve included validation links in the footer, try them out and
make sure that everything is validating. If they fail to validate,
make the necessary corrections and re-upload any problem fi les.

 UPDATING FILES
 Unless you do a major overhaul of your site, it’s usually only necessary
to upload your entire site once. Thereafter, you only need to upload
fi les that you’ve made changes to. That should be as easy as fi nding your
computer’s copy of the fi le, and uploading it to the proper location on
your Web server with your SFTP client. Always keep both a local and
a remote version of your site; CD-ROM or other backups are also smart
to maintain in the event that both your own computer and your Web
server crash. You don’t want to lose your work!

 Making Copies of Browser Uploads
 If you use WordPress or another content management system, you
likely also have the ability to upload fi les via your Web browser. It is
important to regularly download copies of these fi les using your FTP/
SFTP client. Be sure to preserve the same folder structure the fi les are
stored in on the server (WordPress, for example, will create its own set
of folders to keep things organized) so that you can restore your site in
the event of a server crash.

 NEXT STEPS
 “Going live” sounds a lot more interesting than it actually is! Copying
fi les is pretty yawn-worthy—though it should be exciting to see your
site at your own URL that you can share with the rest of the world.
You’ll use these same steps into the future, editing fi les on your own
computer, checking them, and then uploading them before checking
them again on the live site. (If changes don’t appear after you upload
them, try clearing your Web browser’s cache.) The fi nal chapter of the
book will help you learn how to develop a picture of who’s visiting your
site and how you can share your content to increase the reach of your
identity across the Web.

 C H A P T E R 2 4

 Tracking Visitors, Sharing
Content

 To monitor and improve the growth of your site and online identity,
you will want to track your site’s usage over time after it’s been up-
loaded and indexed by Google and other search engines. This chapter
looks at some of the popular tools for tracking site visits. But tracking
visits is only part of the picture of building your identity on the Web.
To maximize the reach of the content you post on your site, you should
make it possible for users to access your content away from your site,
and perhaps even allow them to republish your site’s content.

 TRACKING VISITORS
 You can hang a poster up someplace but not have any idea who, if
anyone, has looked at it. The Web is very different in this way. Each
time someone accesses a page on your site, most Web servers record
certain information about the visit: the page being accessed, the visi-
tor’s IP address (a unique number that identifi es each computer on the
Internet), the Web browser the visitor used, and the date and time of
the visit.

 In addition to your Web server’s logging activity, you can set up
third-party services—such as Google Analytics—to track visits to
your site. 1

 Before you get too invested in site statistics, though, realize that visit
numbers and page views are only one metric—and it some ways, the
 least important metric—of the impact your site has on your identity. A
well-designed site with few visitors but that helps to land someone a

282 HOW TO DESIGN AND WRITE WEB PAGES TODAY

job is much more rhetorically successful than a site that boasts tens of
thousands of visitors but has little impact on them.

 Nevertheless, it does not hurt to have a picture of who is accessing
your site, and what they are looking at and even clicking on while they
are there.

 Hosted Statistics Programs: Webalizer
 Many Web hosting companies will provide you with Web site statistics
programs; one common program hosts install is Webalizer, which is free
and open source. 2 (These programs can be tricky to set up yourself, so if
you’re very concerned about statistics, be sure to purchase hosting from
a Web host that provides a statistics program for you.)

 Webalizer automatically analyzes the log fi les on your server, as often
as every day. The log fi les are written to by your Web server each time
someone tries to access something on your Web site. Webalizer reports
users by their IP address and uses that information to try and deter-
mine, among other things, the country from which the visitor accessed
your site. It also reports search engine terms people used to arrive at
your site, and the top pages that people enter and exit on.

 Webalizer also reports hits, fi les, and pages on your site. The differ-
ence between these three can be somewhat confusing. But essentially:

 • A hit is any request for a fi le from your site. If you have a page
XHTML (one hit) that loads one CSS fi le (one hit) and three
image fi les (three hits), one person’s access of that one page
will be recorded as fi ve hits. So “hits” should not be confused
with number of visits, visitors, or page views, but rather the
total number of fi les requested. (Even more confusing, if some-
one tries to access something on your server that doesn’t exist,
that, too, will be recorded as a hit.)

 • A fi le is counted the same way as a hit, except that the fi le
count does not include attempts to access fi les on your server
that do not exist. So hits are all of the requests; fi les are only
the successful requests.

 • A page differs depending on how Webalizer is confi gured, but
generally all .htm , .html , and .php fi les are treated as pages
(depending on the confi guration of Webalizer, word processor

 TRACKING VISITORS, SHARING CONTENT 283

or PDF fi les may also be counted as pages, though not necessar-
ily). The number of pages accessed, then, is the closest metric
to actual pages that are looked at on your site.

 But it’s not even that simple: Part of the problem with Webalizer—
as with most statistics packages—is that it is limited in its ability to
distinguish between an actual human being visiting your site and a
search engine robot crawling your site to index it. That makes it dif-
fi cult to know whether you are racking up visits from people or search
engines.

 Remote Statistics: Google Analytics
 Google Analytics is one remote alternative to hosted statistics pro-
grams, such as Webalizer. To use Google Analytics, you only need to
have an account with Google (such as for Gmail); once you set up
your site with Google Analytics, it will provide you with a small piece
of JavaScript to place at the very bottom of each of your pages. (This
is one more reason why using WordPress or PHP with includes makes
managing your site easier—you can just add the Google Analytics code
to your template or include fi le; see Chapters 21 and 22.) One limita-
tion to Google Analytics is that it only works when JavaScript is en-
abled; so any visitors coming to your site with JavaScript disabled will
not appear in your Google Analytics reports.

 Google Analytics reports are growing more interesting and complex
all of the time; Google provides documentation for them, and you can
fi nd additional information about Google Analytics on this book’s com-
panion Web site, http://sustainablewebdesign.com/book/ .

 Tracking User Interaction
 Both Webalizer and Google Analytics provide information that users
are visiting your site. However, they do not provide information about
what their activity looks like. For example, you might know that people
are visiting your resume page, but how are they arriving there? A but-
ton in your navigation bar? A contextual link in your home page text?

 One solution to answering those kinds of questions are services
that track the geographic location of clicks on pages of your Web
site. There is a for-pay service called CrazyEgg that does this, 3 though

284 HOW TO DESIGN AND WRITE WEB PAGES TODAY

there are open-source alternatives that you can run yourself, includ-
ing ClickHeat. 4 (Also, shortly before this book went to press, Google
Analytics added a beta version of a limited click-tracking service
called In-Page Analytics; however, at that time, it only listed click
percentages in little balloons next to particular hyperlinked items
on a page, as opposed to the heat maps provided by Crazy Egg and
ClickHeat.)

 What these types of services do is offer you a visual map of where on
your page users are clicking. Over time, a picture emerges of where in
your design users seem most likely to click—your navigation, contex-
tual links, and other areas. One of the more useful things you can learn
through click tracking are elements that aren’t clickable but that users
are clicking on anyway. That kind of information is helpful in improv-
ing a design: either make the element (photographs especially seem to
draw clicks) clickable, or come up with a design that does not invite
clicking on nonclickable elements.

 How to Use Visitor Tracking Information
 Whether you’re running Webalizer, Google Analytics, ClickHeat, or
some combination of all three (and others), it’s important to remem-
ber that statistics are not the whole picture of the impact your site has.
Still, here are some things to watch for:

 • What pages are drawing the most visits? Pages that are getting
a lot of attention are worth looking at closely. Did you write
some interesting content that others are fi nding useful? Is there
something unusual about the design or visual content of the
page? There are often lessons to be learned about your audi-
ence by popular pages. Consider what might make those pages
attractive, and use those observations to think about how you
might revise and improve your other, less popular pages.

 • What happens when you post new content? That 537 people
visited your site on January 10 is interesting; but what happened
on January 8 and 9 (and 11)? Did you add some new content or
make a blog post? Did you self-promote on Twitter? Keeping a
log of your activity (or using the annotation feature on Google
Analytics charts), and watching how that activity impacts site

 TRACKING VISITORS, SHARING CONTENT 285

visits, can be very helpful to making your site grow—and help
you to reach more of your potential audience.

 • Where are people coming from? Webalizer and Google Ana-
lytics both track where your visitors came from; if someone has
linked to your site, go check out their page. Why are they refer-
ring to your site? You might also notice that users are arriving
from Facebook, Twitter, and other social media sites.

 • Are people coming back? Google Analytics offers some very
helpful tools to help you track return visits (though these are lim-
ited to visits from the same computer; a single public computer
at a library may actually represent many different visitors, each
of whom came to your site for the fi rst time). Try and determine
whether people are coming back to the same content, or to new
content—such as blog posts—and use that information to reward
return visits to your site by regularly posting new material.

 SHARING CONTENT
 Knowing more about who’s visiting your site is interesting and helpful,
but the reach of your identity on the Web should be about more than
page views on your site itself. Enhancing your online identity is some-
thing you can do by making it easy for visitors to share your content.

 At fi rst glance, that may seem counterintuitive: people who write
Web sites should greedily want as many visits to their own site as possi-
ble, right? Not necessarily. Think back to the fi rst chapter of this book,
when you did Google searches on your name. One of the ideas there
was to use Google to establish a picture of who you are on the Web.
Your site is one part of that, but if you make it easy for others to use your
content (and give you credit for the content, and a link back to your
site), your reputation extends across the Web—even if visits to your site
do not increase measurably (though they certainly might).

 Once your site is live on the Web, you can start to take advantage of
the ability to share content. Part of sharing content is a matter of con-
tent licensing, perhaps under Creative Commons licenses, which allow
people to repost, and perhaps modify, your content. But the other part
of sharing content is publishing it to your site with enhancements that
makes it easy to share on social media Web sites.

286 HOW TO DESIGN AND WRITE WEB PAGES TODAY

 Licensing Content
 One way to share content is a legal move: licensing your content under
some form of content license. Creative Commons licenses are one op-
tion to alert your visitors as to what they can and cannot do with your
content. 5

 The basic idea behind Creative Commons is that you gain more by
being more permissive with your content. If you take a great photo-
graph, or write some interesting text, and someone wants to use it, by
licensing your content under Creative Commons, you can give people
specifi c guidelines as to how your content may be used. In the words
of the Creative Commons Web site, the licenses “help you keep your
copyright while allowing certain uses of your work—a ‘some rights re-
served’ copyright.” 6

 All Creative Commons licenses specify that people republishing or
building on your work must give you attribution; on your Web site, you
might additionally specify that they need to provide a link to your site.
Additional Creative Commons license permissions include the ability
to remix or alter your content, and to do so for commercial purposes.

 There are four basic features of Creative Commons licenses, and you
can pick and choose which features accompany how you license your
work using the Creative Commons licensing tool: 7

 • Attribution: All Creative Commons licenses require that
someone using your work give you credit for your work. You
can specify how you would like attribution given to you (e.g.,
with your name hyperlinked back to your Web site) somewhere
on your Web site.

 • Derivative Works: You can license your work so that it can be
used only in its original form (no derivatives) or that people
can alter, remix, or build upon your work.

 • Share Alike: You can specify that anyone using or building
upon your work (if you allow them to make Derivative Works)
must, in turn, license that derived work under the same license
as your original work.

 • Commercial Use: Finally, you can specify whether your con-
tent may be used for commercial purposes, for example, to sell
goods and services or to be sold itself.

 TRACKING VISITORS, SHARING CONTENT 287

 So the most restrictive Creative Commons license would stipulate
that nobody is allowed to make derivatives of your work, and that it
may not be used for commercial purposes. The most permissive Cre-
ative Commons license would allow derivative works and allow your
work to be used for commercial purposes.

 If you have questions about Creative Commons or other licenses,
however, you should speak to an attorney.

 Metadata for Sharing Content
 Another way to make your content shareable involves particular tech-
nological moves. Really Simple Syndication (RSS) is one form of this
and is often a feature built into CMSs such as WordPress. To be maxi-
mally fl exible, you should license the content in your RSS feed under
Creative Commons. RSS enables other sites to repost or aggregate your
content or individuals to read your content from a centralized location,
like Google Reader. 8

 But RSS is not the only option for sharing content. You can also
enable your visitors to share your pages, or links to them, on Face-
book and other social media services. A de facto standard of sorts has
emerged for this, called Facebook Share. 9 Facebook Share specifi es a
few additional meta tags added to the <head> of your XHTML docu-
ment: one for the title of the page (which should probably match the
contents of the <title> tag in your <head>), a description tag, and
an optional <link> tag that refers to a thumbnail image of your page
or, more simply, of your site.

 So Facebook Share metadata on a page titled “Please Share This”
whose description reads “I want you to share this page” and has a
thumbnail of thumbnail.jpg would look like:

 <meta name="title" content="Please Share This" />
<meta name="description" content="I want you to
 share this page." />
<link rel="image_src" href="http://example.com/media/
 img/thumbnail.jpg" />

 Someone can then easily post your page to Facebook, or a social
bookmarking service like Magnolia (which uses Facebook Share), and
the shared or bookmarked item will have exactly the title, description,

288 HOW TO DESIGN AND WRITE WEB PAGES TODAY

and thumbnail that you specify. (These metatags are available in the
RPK; just uncomment to use them. The RPK WordPress template pre-
populates the title and description, though you must add your own
thumbnail.) You can even add a Facebook Like button to each of your
pages for sharing content directly on Facebook. 10 Other sites, such as
AddThis, 11 provide buttons for your site that enable one-click sharing
of your content on a variety of different social media Web sites.

 FINAL STEPS? THERE ARE NO FINAL STEPS
 This is the end of the book, but only the beginning of your own activity
developing an identity on the Web. As has been stressed throughout
this book, building a Web site is an ongoing process—and the material
covered here only scratches the surface on any given topic. Be sure to
consult the “Resources for the Future” section of this book for suggested
materials to learn more about Web design, and watch the companion
site to this book, http://sustainablewebdesign.com/book/ ,
for updates and changes.

 NOTES
 1. Google Analytics, http://www.google.com/analytics/
 2. The Webalizer, http://www.mrunix.net/webalizer/
 3. CrazyEgg, http://crazyegg.com/
 4. Labsmeida, “ClickHeat,” http://www.labsmedia.com/clickheat/index

.html
 5. Creative Commons, http://creativecommons.org/
 6. Creative Commons, “What Is CC?,” http://creativecommons.org/about/

what-is-cc
 7. Creative Commons, “License Your Work,” http://creativecommons.org/

choose/
 8. Google Reader, http://www.google.com/reader
 9. Facebook Developers, “Facebook Share,” http://developers.facebook

.com/docs/share
 10. Facebook Developers, “Like Button,” http://developers.facebook.com/

docs/reference/plugins/like
 11. AddThis, http://www.addthis.com

 Resources for the Future

 There are countless books and resources on Web design, but it can
be diffi cult to know which are worth your time to read. Below is a
list of my favorites, many of which I consult regularly in my own
Web writing and design work. Most are written for advanced audi-
ences, but the techniques and approaches in How to Design and Write
Web Pages Today will prepare you to engage with these additional
resources.

 CSS DESIGN GALLERIES
 There are many excellent CSS design galleries available on the Web;
do a Web search for “CSS design galleries” to fi nd more.

 CSS Elite: CSS Gallery and Website Development Resources, http://www
.csselite.com/

 CSS Elite is one of many CSS galleries that is updated quite regularly; it has
a browsable showcase of the latest designs, and also provides tags in categories
such as “colorful” or “clean” to help you browse other designs for inspiration.

 CSS Zen Garden: The Beauty in CSS Design, http://www.csszengarden
.com/

 The CSS Zen Garden is not updated much anymore, but it is a rich and
inspiring example of the design possibilities of changing only the CSS over an
HTML page.

290 RESOURCES FOR THE FUTURE

 Unmatched Style, http://ww.unmatchedstyle.com/
 Another fi ne CSS gallery that also features audio podcasts and a good

blog.

 WEB DESIGN MAGAZINES AND BLOGS
 The best way to stay current in your Web design and writing practices
is to read magazines and blogs by leading Web designers. A Web search
for “web design blog” will turn up more like these.

 A List Apart , http://www.alistapart.com/
 A List Apart is one of the fi nest Web magazines out there; issues are pub-

lished on the Web every other week. Topics range from standards documents
to design practices.

 Shea, Dave. Mezzoblue , http://www.mezzoblue.com/
 Shea is one of many excellent designer-bloggers; he is also the caretaker of

the CSS Zen Garden.

 37 Signals. Signal vs. Noise , http://37signals.com/svn/
 Signal vs. Noise is a very infl uential blog on work practices, industry, and the

big picture of Web design and development activity.

 COMMUNITIES
 Before posting to any community forums, be sure you familiarize your-
self with their posting policies—and that you’ve done your research
(including searching their forums for a same or similar question as yours
someone might have posted previously.

 CSS Beauty, SkillShare Forum , http://cssbeauty.com/skillshare/
 A quiet and generally welcoming community of Web professionals and

amateurs.

 SitePoint, SitePoint Forums , http://cssbeauty.com/skillshare/
 A large and active community, covering topics from hardcore development

to design basics; do your homework before posting a question.

 WordPress.org, WordPress > Support Forums , http://wordpress.org/support/
 The best community to turn to in all matters for WordPress installation,

use, and templating.

 RESOURCES FOR THE FUTURE 291

 WEB STANDARDS
 Cederholm, Dan. Bulletproof Web Design . 2nd ed. Berkeley, CA: New

Riders, 2007.
 A favorite of beginning and advanced Web designers, this book looks at

building sites that work best under a wide range of conditions.

 Keith, Jeremy. HTML5 for Web Designers . New York: A Book Apart, 2010.
 A compact but complete introduction to HTML5 that will be immediately

accessible for anyone with knowledge of XHTML.

 Zeldman, Jeffrey. Designing with Web Standards . 3rd ed. Berkeley, CA:
New Riders, 2009.

 The defi ning, classic book on standards-based Web design.

 ACCESSIBILITY AND USABILITY
 Clark, Joe. Building Accessible Websites . Berkeley, CA: New Riders/

Peachpit Press, 2002.
 A classic text in accessible Web design; the principles are good, although

some of the examples are aging a bit.

 Krug, Steven. Don’t Make Me Think! A Common Sense Approach to Web
Usability . 2nd ed. Berkeley, CA: Peachpit Press/New Riders, 2006.

 An extremely popular and useful book on Web usability.

 Pilgrim, Mark. Dive into Accessibility . http://diveintoaccessibility.org/
 A book, also available as a free PDF or set of HTML fi les, that covers a

range of approaches to accessibility.

 SITE ARCHITECTURE
Morville, Peter, and Louis Rosenfeld. Information Architecture for the

World Wide Web. 3rd ed. Sebastopol, CA: O’Reilly Media, 2006.
A classic work in information architecture and a must-read for creators of

large Web sites.

 Walter, Aaron. Building Findable Websites: Web Standards, SEO, and
Beyond. Berkeley, CA: New Riders, 2008.

 Covers a range of topics in site architecture as related to search engine
optimization (SEO) and fi ndability.

292 RESOURCES FOR THE FUTURE

 CSS DESIGN
 Clarke, Andy. Transcending CSS: The Fine Art of Web Design . Berkeley,

CA: Peachpit Press/New Riders, 2007.
 A follow-up, in some respects, to Shea and Holzschlag’s Zen of CSS Design ,

this book pushes the envelopes of CSS design and is one of the best for explor-
ing the practices behind CSS positioning.

 Shea, Dave, and Molly E. Holzschlag. The Zen of CSS Design: Visual
 Enlightenment for the Web . Berkeley, CA: Peachpit Press/New
Riders, 2005.

 An excellent (if advanced) guide to CSS design, using examples from the
CSS Zen Garden.

 JAVASCRIPT AND DOM SCRIPTING
 Castledine, Earle and Craig Sharkie. jQuery: Novice to Ninja . Collingwood,

Australia: SitePoint, 2010.
 A thorough introduction to jQuery, including the jQuery UI library.

 Keith, Jeremy. DOM Scripting: Web Design with JavaScript and the Docu-
ment Object Model. Berkeley, CA: Friends of Ed/Apress, 2005.

 One of the very best introductions to DOM scripting and object-oriented
uses of JavaScript.

 Resig, John. Secrets of the JavaScript Ninja . Greenwich, CT: Manning
Publications, 2010.

 An advanced and thorough treatment of JavaScript by the author of the
popular jQuery JavaScript library.

 TEACHING AND LEARNING
 Opera Software, Opera Web Standards Curriculum , http://www.opera.com/

company/education/curriculum/
 A free, thorough curriculum in standards-based Web design.

 Web Standards Project (WaSP) Interact, Curriculum , http://interact.web
standards.org/curriculum/

 Another free curriculum that goes into advanced topics of server-side
 development and user science—from the perspective of Web standards.

 RESOURCES FOR THE FUTURE 293

 VISUAL DESIGN
 Elam, Kimberly. Grid Systems: Principles of Organizing Type . New York:

Princeton Architectural Press, 2004.
 A treatment of grid-based design, specifi cally aimed at typography.

 Lidwell, William, Kritina Holden, and Jill Butler. Universal Principles of
Design . Gloucester, MA: Rockport Publishers, 2003.

 The title says it all: a treasure of different, essentially universal design
principles.

 Samara, Timothy. Making and Breaking the Grid: A Graphic Design
Layout Workshop. Gloucester, MA: Rockport Publishers, 2002.

 An outstanding treatment of grid-based design in print and digital media.

 Wilde, Judith, and Richard Wilde. Visual Literacy: A Conceptual Approach
to Graphic Problem Solving . New York: Watson-Guptill, 2000.

 A fun book of different visual design problems, with discussion and prin-
ciples of visual design.

 Glossary

 Here are brief defi nitions of the most frequently used technical and
design terms used in the text. Additional terms can be found at the
book’s companion Web site http://sustainablewebdesign.com/
book/ .

 attribute: In XHTML, attributes provide metadata on tags; common
 attributes include class and id .

 attribute-value: In XHTML, values assigned to attributes can be called
attribute-values; in <div id="navigation"> , navigation is the
attribute- value.

 byte: A measurement of fi le size; usually as kilobytes (about 1,000
bytes), megabytes (about 1,000 kilobytes), and gigabytes (about 1,000
megabytes).

 child: The immediate tags nested inside a parent XHTML tag. In
 <p>Example</p> , strong is a child of p .

 class: An XHTML attribute for adding additional structure that can be
shared among a group of elements.

 client-side scripting: Scripting languages, such as JavaScript, that run in
a Web browser (the client side, versus the server side).

 CSS, Cascading Style Sheets: Standards-based Web design’s design lan-
guage, which the browser builds over the top of structural XHTML.

296 GLOSSARY

 descendant: Any tag nested inside of any other tag, no matter how
deeply; a more generic version of child.

 DOM, Document Object Model: The browser’s representation of an
XHTML page, which is often manipulated and enhanced through
JavaScript (see Chapter 19).

 DOM scripting: JavaScript that manipulates the DOM, versus older
uses of JavaScript that were inserted directly into XHTML.

 element: The alphabetic contents of an XHTML tag, which can also be
a selector in CSS; in the <p> tag, p is the element (and a valid CSS
element selector).

 id: An XHTML attribute for adding additional structure to a unique
element, once per page.

 JavaScript (ECMAScript): A common scripting language for adding
 enhanced features to Web pages; can be combined with the DOM and
referred to as DOM Scripting .

 method: A function that an object in object-oriented programming is
cable of performing or being the target of.

 object: The primary unit in object-oriented programming; objects have
both properties and methods.

 parent: The immediate tags in which others are nested. In <p>
Example</p> , p is the parent of strong .

 PHP, PHP Hypertext Preprocessor: A common server-side language for
creating dynamic Web content (see Chapter 21).

 pixel: A common unit of measurement in Web design; refers to an in-
dividual square of light on a monitor.

 positioning context: In CSS, the positioning context determines what
an element is positioned with regard to. By default, the positioning
context is the browser window, but parent elements that are positioned
absolutely or relatively become the positioning context for any descen-
dant elements.

 property: In CSS, a property is the visual aspect that a style will change;
 color , font-family , and width are all examples of properties.

 GLOSSARY 297

 root Web folder: The folder on a Web host that holds the site fi les; a
fi le named mypage.htm in the root Web folder can be accessed at
 http://example.com/mypage.htm .

 selector: In CSS, a selector is what the CSS style will affect; to change
all list items inside of the navigation list, the selector would be
 ul#navigation li .

 server-side scripting: Scripting languages, such as PHP and Ruby, that
run on the server before being sent to the browser (client).

 sibling: In XHTML, siblings are any adjacent tags that share a parent.

 source order: In XHTML, source order refers to the arrangement of
 contents in the source, for example, header, followed by content,
 followed by navigation, followed by a footer.

 style declaration: A unit of CSS including the selector to be styled, and
the properties and values the selector will be styled as.

 syntax highlighting: An essential function of good text editors, which
colorize the text of different components of a language (and any textual
content) to make source easier to read.

 validator: A service for checking XHTML and CSS fi les against the
rules for their use.

 value (CSS): The setting for a given property; for example, to set
text color to red, the color property should be set to the red value:
 p { color: red; } .

 viewport: The part of the browser window where a Web page displays.

 Web standards: A collection of technological specifi cations issued by
the World Wide Web Consortium, ECMA International, and the
 International Organization for Standardization (ISO) used to guide the
design of accessible and sustainable Web sites.

 XAMPP: An open-source, portable Web server for testing purposes (see
Chapter 20).

 XHTML, Extensible Hypertext Markup Language: A common, standard
language for structuring content on the Web.

 <a> tag, 107, 109, 112 – 13, 161,
197 – 98. See also Paths

 About pages, 75, 78, 183 – 84
 Absolute positioning, 117, 164,

210 – 13, 215, 221. See also
Document fl ow

 Accessibility: CSS and, 34, 66 – 68,
113 – 14, 118; defi nitions, 55 – 59;
design, 61 – 68; links for, 126,
159 – 60, 162 – 66; universal design
and, 59 – 60; user conditions, 58,
60, 69; XHTML and, 65 – 66, 92,
125, 226

 Activity theory: actions, 71,
73 – 76; activities, 71, 72 – 73;
breakdowns, 76 – 77; hierarchy,
71 – 72; operations, 71, 76 – 77

 Adobe Flash, 20, 24, 30, 34, 47, 61,
86, 225, 231 – 32

 alt attribute, 65, 95, 225 – 27. See
also Attributes (XHTML)

 Analytics. See Site statistics
 Apache rewrite module

(mod_rewrite), 86, 269, 279
 Apache Web server, 52, 86, 250,

252, 268 – 69, 278
 Assistive technologies, 25, 41 – 42,

58 – 60, 64 – 65, 118, 159
 Attributes (XHTML): accessibility,

64 – 66, 226 – 27; on <html> ,

INDEX

96 – 97, 147 – 48; use, 95 – 96. See
also specifi c attribute names

 Attribute-values (XHTML), 95, 97,
148, 243

 Avidemux, 26
 Audacity (audio software), 26
 Audience, 7, 26, 56 – 57, 229 – 30,

284 – 85. See also Users
 Audio content, 25 – 26, 28, 30, 41,

47, 61, 225; plugins and players,
207, 230 – 31; three deadly sins,
230

 Background images: designing
with, 130 – 31, 167 – 70, 183, 209,
218 – 24; loading in CSS, 118 – 19;
versus tag, 175. See also
Image replacement

 <blockquote> tag, 202 – 3
 Blogging software, 10, 49, 52, 253.

 See also WordPress
 Blogs, 7, 10, 16, 72, 83, 162
 <body> tag, 97 – 98, 103 – 5, 199,

221; structural hooks on, 129,
156 – 57, 175, 183 – 84, 189, 208,
239 – 43

 Box model (CSS), 115 – 17.
See also Cascading Style Sheet
(CSS) properties: boxes and
borders

300 INDEX

 Branding: features, 75 – 76, 125,
129 – 30, 146, 153 – 54, 159 – 60,
218; footer, 160, 171 – 75; header,
156 – 57, 159 – 71, 208; repeating,
257 – 58, 272

 Browser. See Web browser

 Cascading Style Sheets (CSS):
accessibility, 66 – 68; browser
defaults, 21, 66, 103, 126;
comment syntax, 143;
inheritance, 103 – 5; language
references, 103, 113, 119, 195;
linking to, 154 – 55, 217, 257;
selector specifi city, 109; shared,
86 – 87, 132, 257; signature,
148; style declarations, 105 – 12,
183 – 84; W3C recommendation,
41 – 42

 Cascading Style Sheet (CSS)
properties, 42, 105, 113 – 19;
backgrounds and images, 118 – 19;
boxes and borders, 115 – 17; fonts
and text, 113 – 15; hover, 183 – 84;
layout and positioning, 117 – 18,
210 – 18

 Cascading Style Sheet (CSS)
selectors: complex, 111 – 12;
element, 105 – 6; ID and class,
106 – 7; pseudo-class, 112 – 13,
183 – 84; relationship, 107 – 10;
specifi city, 109; universal, 110 – 11

 Center for Universal Design, 59
 Character encoding: metadata,

149 – 50, 151; text fi les, 141
 Character entities, 151. See also

Character encoding; Unicode
character set (UTF-8)

 Chrome (Web browser). See Google
Chrome

 <cite> tag, 198 – 99
 Clark, Joe, 58
 Clarke, Andy, 109
 class : class-itis, 101 – 10; naming,

84 – 85, 95 – 96, 101; structural
use, 100 – 101, 203 – 4

 ClickHeat, 284
 Click tracking, 79, 283 – 84

 CMS. See Content management
system (CMS)

 Color: CSS keywords, 114, 116;
hexadecimal, 116; references in
CSS source, 144; rgb() syntax,
116

 Comments in source code, 83 – 84,
142 – 45

 Conditional comments, 48, 217 – 18
 Contact pages, 75, 78, 180
 Content. See Audio content;

Images: as content; Text content;
Video content

 content attribute, 97
 Content management system

(CMS), 86, 253, 267, 275
 Content versioning system (CVS),

83, 84
 Copyright, 172 – 73
 Creative Commons licensing,

160 – 61, 172, 173 – 75, 286 – 87
 CSS. See Cascading Style Sheets

(CSS)
 CSS layouts. See Page layout
 CSS Zen Garden (Web site), 41, 175
 CyberDuck, 45, 277

 Design inspiration, 17
 Development environment, 43 – 45,

47 – 49, 122 – 23, 260, 262
 Digital cameras, 28 – 29
 Digital identity: establishing, 3 – 10,

285; impact on others, 5, 9;
usernames, 5 – 8

 Diigo, 8 – 10, 17, 76, 97, 147
 Disability. See Disabled people
 Disabled people, 55 – 59. See also

Accessibility
 <div> tag, 98 – 100, 101 – 2, 125,

205, 272
 DOCTYPE declaration, 94, 96, 147,

264
 Document fl ow, 117, 164 – 66, 185,

210 – 11, 221
 Document Object Model, 42,

87, 235 – 36. See also DOM
scripting

 DOM. See Document Object Model

 INDEX 301

 Domain names: choosing, 8;
hosting and, 53, 276 – 77;
purchasing, 49 – 51; URLs and,
250, 254, 278 – 79

 DOM scripting: described, 42, 62,
77, 235 – 36; detecting JavaScript,
239 – 40; external links, 243 – 44;
JavaScript libraries and, 88,
236 – 37; widescreens and,
240 – 43. See also jQuery

 Dots per inch (DPI), 29
 Dynamic content, 86 – 87, 253,

257 – 59

 ECMAScript. See JavaScript
 Ego surfi ng, 3 – 4
 tag, 111, 198 – 99
 Emotional design, 70
 Errors: isolating problem code,

44, 138, 145; mismatched
character sets, 150; validator,
101, 151, 173, 196

 Extensible Hypertext Markup
Language (XHTML): comment
syntax, 143; global structure,
96 – 98; purpose, 91 – 92; rules,
92 – 96; sustainability, 82; W3C
recommendation, 39 – 41

 Extensible Markup Language
(XML), 39 – 41, 92

 Facebook, 5, 7 – 10, 75, 285 – 88
 Favicon, 153 – 54
 File extensions, 45 – 47, 134 – 37
 File formats, 25, 60 – 61, 86
 Files and folders: consistency, 84 – 85;

essential, 47, 124 – 25; naming and
organization, 45 – 47, 82; upload-
ing and updating, 277 – 80

 FileZilla, 277
 Findability, 69. See also Navigation;

Site architecture; Wayfi nding
 Firefox. See Mozilla Firefox
 Flash. See Adobe Flash
 Floats (CSS), 117, 185 – 88, 228
 Fonts: alternatives in CSS,

113 – 14; available, 13, 16, 114; size
units, 114

 Frames and framesets, 34
 FTP/SFTP, 45 – 46, 52, 134, 267,

273, 276 – 80

 GIMP. See GNU Image
Manipulation Program

 Git, 84
 GNU Image Manipulation Program

(GIMP), 26
 Google Analytics, 281, 283 – 85
 Google Chrome, 14 – 15, 137
 Google Libraries API, 236
 Google Web search, 3 – 4, 9 – 10,

72, 161. See also Search engine
optimization

 Graceful degradation, 62, 64,
157. See also Progressive
enhancement

 Grids and grid systems, 208 – 10

 <head> tag, 97, 148 – 50, 151 – 56
 Heading tags, 92, 94, 101, 112, 160,

191 – 92
 Home page, 207 – 8
 <h1> tag, 160 – 62. See also

Heading tags
 Hover styles. See Cascading

Style Sheet (CSS) properties:
hover

 href attribute, 155, 197 – 98,
243 – 44. See also <a> tag; <link>
tag; Paths

 .htaccess , 52, 252, 259,
270, 279. See also Apache Web
server

 htdocs/ . See Root Web folder
 HTML entities. See Character

entities
 <html> tag, 96 – 97, 147 – 48,

221 – 24
 HTML5, 40, 87, 231, 232
 HTTP. See Hypertext Transfer

Protocol (HTTP)
 Human-computer interaction

(HCI), 71
 Hyperlinks. See <a> tag
 Hypertext Transfer Protocol

(HTTP), 37

302 INDEX

 id (XHTML): CSS signature,
148; naming, 95 – 96, 101;
structural use, 98 – 100; in URLs,
162 – 63

 Image replacement, 116, 170 – 71
 Images: accessibility, 60 – 61;

compression and, 29 – 30; as
content, 62, 225 – 29; CSS design
and 28 – 30, 62; formats, 29;
preparation for Web, 29; size
and quality, 28 – 29

 tag, 225 – 26, 227 – 29
 Index fi le (index.htm , index
.php), 73 – 74, 252, 278

 Information architecture. See Site
architecture

 Inheritance (CSS), 103 – 5, 110,
114, 199 – 202

 International Organization for
Standardization (ISO): 8859-1
standard, 149; 638-1 and 639-2
standards, 147 – 48

 Internet Explorer. See Microsoft
Internet Explorer

 ISO. See International Organization
for Standardization (ISO)

 JavaScript: accessibility, 66 – 68;
 <body> tag and, 156 – 57; dis-
abling, 21, 24, 64; libraries, 236,
246; unobtrusive, 64, 154 – 56. See
also DOM scripting

 jQuery, 88, 232, 235, 236 – 37; ani-
mation, 244 – 46; custom func-
tions, 240 – 41, ready event,
237 – 39. See also DOM scripting;
JavaScript

 Keith, Jeremy, 235 – 36
 Krug, Steven, 69 – 70, 77

 tag. See List tags:
 Line breaks, 138 – 40, 142 – 43
 Link paths. See Paths
 <link> tag, 154, 257, 287. See also

 <a> tag
 Linux, 14 – 15, 26, 45, 52, 123, 137,

139, 278

 List tags: , 193 – 94; nested,
195 – 96; , 194; , 194 – 95

 localhost , 173, 250, 254, 260,
275. See also XAMPP Web server

 Lorem ipsum text, 25, 190
 Lynx, 14, 21, 24, 52, 64

 Mac OS X, 14 – 15, 26 – 27, 43 – 45
 media attribute, 87, 155. See also

Cascading Style Sheets (CSS):
linking to

 Media content. See Audio content;
Video content

 <meta> tag, 97, 148 – 50, 151
 Metadata: <body> tag and, 156 – 57;

contents of pages, 141, 147 – 48;
 <head> tag and, 97, 148 – 56;
sharing, 287 – 88

 Microblogging, 5 – 9. See also Twitter
 Microformats, 95, 161 – 62
 Microphones, 28
 Microsoft Internet Explorer, 13 – 15,

38, 48 – 49, 153 – 54, 217 – 18, 243.
 See also Conditional comments

 Microsoft Windows, 13 – 15, 27,
43 – 45, 49, 123, 137, 139,
249 – 50, 277

 MIME type. See Multipurpose
Internet Mail Extension type
(MIME type)

 mod_rewrite . See Apache rewrite
module

 MooTools, 236
 Morville, Peter, 73
 Mozilla Firefox, 14 – 15, 21, 47 – 48,

64, 173, 218
 MP3 audio, 30, 230 – 31
 Multimedia content. See Audio

content; Images: as content;
Video content

 Multipurpose Internet Mail
Extension type (MIME type),
148 – 49, 154, 155 – 56

 MySQL database, 52, 250, 268

 Nameservers, 276 – 79
 Navigation: design, 77,

180 – 84; horizontal, 184 – 88;

 INDEX 303

information-seeking and, 73 – 76;
in-page, 64 – 65, 125 – 26, 160,
162 – 63, 164 – 66; pop-up menus,
74, 181; structure, 178 – 80

 Netscape, 37 – 38
 Nielsen, Jakob, 70
 Norman, Donald, 70
 Notepad++, 43 – 45, 133 – 34, 137,

139, 141

 tag. See List tags:
 1 Bit Audio Player, 231
 Open source: libraries and

projects, 88, 268; media software,
26; Mozilla Firefox as, 16; Web
languages and, 35 – 36; WordPress
and, 267 – 68

 Open Source Initiative, 268
 Opera (Web browser), 14 – 15, 21
 OS X. See Mac OS X

 <p> tag, 192 – 93
 Page layout: centered designs,

213 – 14; concept, 205 – 6;
liquid and fi xed, 240; sketches
and mockups, 206 – 8; wide
screens, 240 – 43

 Paths: absolute, 198, 254; relative,
198, 254 – 55; root-relative, 198,
249, 255

 PDF. See Portable Document
Format

 Pederick, Chris, 14, 15. See also
Web Developer Add-on for
Mozilla Firefox

 Performance, 235 – 36
 PHP Hypertext Preprocessor, 52,

258 – 61; custom functions,
263 – 64; escaping strings, 261 – 62;
 include(); function, 262 – 63;
language reference, 264, 269

 Portable applications, 44
 Portable Document Format (PDF),

27, 47, 61, 86, 225, 283
 Positioning. See Cascading Style

Sheet (CSS) properties: layout
and positioning

 Postel’s Law, 60, 64

 Progressive enhancement, 62 – 64,
157, 239 – 40, 245. See also
Graceful degradation

 Quirks mode, 48, 94, 147, 217

 Rapid prototyping: attitudes
toward, 122, 123, 131 – 32;
benefi ts, 121 – 23; components,
122 – 23, 129 – 30

 Rapid Prototyping Kit (RPK):
contents, 47, 123 – 29; CSS fi les,
126 – 29, 155; JavaScript fi les, 88,
129, 235, 240 – 41; WordPress
template fi les, 271 – 72; XHTML
fi les, 65, 94, 125 – 26, 147 – 48,
155, 160, 205

 Raymond, Eric, 122, 268
 Reading: breaking pages, 21 – 24;

content, 18 – 19; design, 19;
multiple browsers, 14; for
performance, 20 – 21; purpose and
context, 16 – 17; views and, 13

 Really Simple Syndication (RSS),
7, 151, 287

 Redesign. See Site redesigns
 Rehabilitation Act of 1973, 58
 Relative positioning, 213 – 16
 Reset CSS. See Yahoo! Reset Min

CSS fi le (reset.css)
 Revision, 79, 81 – 82, 102, 122, 146,

173, 179, 213, 267, 270, 284
 Rhetoric, 7, 10, 55, 57, 68, 281 – 82
 Root tag. See <html> tag
 Root Web folder, 124, 249 – 52,

254 – 55, 259, 262, 269 – 70, 275 – 78
 Rosenfeld, Louis, 73
 RPK. See Rapid Prototyping Kit

(RPK)
 RSS. See Really Simple Syndication

(RSS)

 Safari (Web browser), 13 – 15, 21,
48, 137

 Sample rates for audio, 30
 <script> tag, 154 – 56
 Search engine optimization, 4, 8 – 9,

26, 161, 284

304 INDEX

 Search results: confusing, 4;
improving site ranking, 4, 26, 161

 Section 508, 58
 Secure shell (SSH), 52, 273, 278
 Security: challenge questions, 5;

FTP/SFTP, 45, 52; online safety, 5;
open source and, 268;
passwords, 6

 Server-side scripting, 257 – 59. See
also PHP Hypertext Preprocessor

 Server statistics. See Site statistics
 7-Zip, 123
 Sharing: links, 75; metadata, 285,

287 – 88. See also Creative
Commons licensing

 Shea, Dave, 170
 Shortcut icon. See Favicon
 Site architecture, 82, 249, 250 – 51,

275; data-driven, 253, 268 – 70;
fi le-oriented, 251; folder-oriented,
252 – 53

 Site redesigns, 7, 34, 41, 83 – 87, 118
 Site statistics, 10, 52, 75, 281,

282 – 85
 Smith, Nathan, 209
 Sound. See Audio content
 Source formatting: indentation,

140 – 42; lines, 138 – 40; tabs
versus spaces, 140, 142

 Source literacy, 133
 Source order, 117, 125 – 26. See also

Document fl ow
 src attribute, 95, 155 – 56, 225 – 27.

 See also tag; Paths;
 <script> tag

 SSH. See Secure shell (SSH)
 tag, 198 – 99
 Style guide, 130, 189 – 90, 204
 <style> tag, 154 – 56
 Subheadings. See Heading tags
 Sustainability: attitudes and, 82;

defi nition, 56, 81 – 82; design
techniques, 83 – 88, 131 – 32;
libraries and languages, 264 – 65

 SWFObject, 31, 232
 Syntax highlighting, 43 – 45,

137 – 38

 Tables (XHTML), 34, 117, 205
 Tagline, 159 – 60, 162 – 63, 166 – 68,

171 – 73
 Tags (XHTML): nesting, 108, 142,

195; references, 45, 94;
self-closing, 94, 155, 225;
writing, 45, 91 – 96. See also
specifi c tag names

 Text content, 41, 43, 189, 191 – 99,
204, 207, 229

 Text editors, 133 – 34;
features, 43 – 45; writing in, 26,
86, 133 – 44. See also Source
formatting

 TextWrangler, 45, 135, 137
 <title> tag, 97, 151 – 53, 161, 263,

287
 Top-Right-Bottom-Left

(TRBL/“trouble”) order,
115 – 16

 Twitter, 5 – 10, 26, 35, 65, 75, 285
 type attribute, 154 – 56. See also

Multipurpose Internet Mail
Extension type

 tag. See List tags:
 Unicode character set (UTF-8), 26,

97, 141, 148 – 51
 Uniform Resource Locator (URL):

hosting and, 49 – 50, 173;
structuring, 45 – 46, 85, 100, 135,
161, 197, 249 – 55; sustainability,
85 – 86; usernames in, 6, 8, 10;
 www and, 279

 Unique ID (XHTML). See id
 Universal design, 59 – 60, 68
 URL. See Uniform Resource

Locator (URL)
 Usability: defi nitions, 56, 69 – 70;

designing for, 70 – 77; testing, 56,
77 – 79

 Users: activities, 72 – 73;
information-seeking
behaviors, 19, 69, 73 – 76,
77 – 78, 177 – 80

 UTF-8. See Unicode character set
(UTF-8)

 INDEX 305

 Validators, 38, 44, 94, 160, 172 – 73,
196, 280. See also Errors

 Viddler, 9, 226, 231
 Video content, 9, 18 – 21, 25 – 26,

28, 30 – 31, 47, 225, 231 – 32
 Views: different browsers, 15 – 16;

multiple, 134 – 37; uniqueness and
the Web, 13

 Vimeo, 226, 231

 Wayfi nding, 69, 74 – 76, 156,
177 – 78, 183 – 84

 Web Accessibility Initiative (WAI),
57 – 58

 Webalizer, 282
 Web browser: browser-neutral

design, 16, 126 – 28; for
development, 47 – 49; render-
ing engines and, 14 – 16; View >
Source, 35 – 36, 135, 139, 272;
viewport, 144

 Web Content Accessibility
Guidelines (WCAG), 58

 Web Developer Add-on for Mozilla
Firefox, 14, 15, 21 – 24, 43, 48, 64,
173, 221, 239, 272

 Web hosting: documentation, 276;
features, 52 – 53; purchasing, 49,
51 – 53; uploading to, 275 – 78

 Web standards: 33, 35 – 36, 37 – 41, 87
 Web Standards Project (WaSP),

37 – 38
 What-you-see-is-what-you-get

(WYSIWYG), 27, 82, 122, 133
 Widths in CSS. See Box model
 Wikipedia, 15, 139
 Windows (operating system). See

Microsoft Windows
 WinSCP, 45, 277

 WordPress: Codex, 269, 271;
hosting requirements, 268;
installation and upgrades, 270,
273 – 74; templating, 271 – 72

 WordPress Audio Player, 231
 Word processors, 27, 34, 35, 133,

138, 150, 192
 World Commission on Environment

and Development, 81
 World Wide Web Consortium

(W3C), 33, 37 – 38, 39 – 40, 87,
148

 Writing: accessibility and, 25;
connecting with others, 3 – 4,
9 – 10; establishing identity and,
4 – 9; source comments, 143 – 45;
style, 26, 27 – 28; Web languages,
89

 W3C. See World Wide Web
Consortium (W3C)

 WYSIWYG. See What-you-see-is-
what-you-get (WYSIWYG)

 XAMPP Web server, 43, 124,
249 – 50, 254 – 56, 260, 275, 277,
279

 XHTML. See Extensible Hypertext
Markup Language

 XML. See Extensible Markup
Language

 Yahoo! Media Player, 231
 Yahoo! Reset Min CSS fi le

(reset.css), 126 – 28, 194
 YouTube, 9, 30 – 31, 225 – 26,

231 – 32

 Zeldman, Jeffrey, 39

 About the Author

 KARL STOLLEY earned his doctorate from the Rhetoric and Com-
position program at Purdue University in West Lafayette, IN, where he
was Webmaster of the world-renowned Purdue Online Writing Lab
(OWL). As assistant professor of technical communication at the
Illinois Institute of Technology in Chicago, IL, he teaches graduate
courses on Web design, information architecture, and the rhetoric of
technology. He also directs Gewgaws Lab (http://gewga.ws), an open-
source design and development research group. His publications have
appeared in such journals as IEEE Transactions on Professional Commu-
nication , Journal of Business and Technical Communication , and Kairos:
A Journal of Rhetoric, Technology, and Pedagogy . He has also served as
interface editor for Kairos and led its redesign, which was awarded the
Council of Editors of Learned Journals’ Best Journal Design Award in
2009—the fi rst Web-based journal to receive such a distinction.

 Stolley maintains a Web presence at http://karlstolley.com/ and is on
Twitter @karlstolley.

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Series Foreword
	Preface
	Acknowledgments
	Part I: What Am I writing?
	Chapter 1: Why Write for the Web?
	Chapter 2: Reading the Web
	Chapter 3: Creating Web Content
	Chapter 4: Standards-Based Web Pages
	Chapter 5: Preparing to Write and Design

	Part II: Issues and Challenges
	Chapter 6: Accessibility
	Chapter 7: Usability
	Chapter 8: Sustainability

	Part III: Strategies for Success
	Chapter 9: Structured Content: XHTML Overview
	Chapter 10: Presentation and Design: CSS Overview
	Chapter 11: Rapid Prototyping
	Chapter 12: Writing with Source in a Text Editor
	Chapter 13: Page Metadata
	Chapter 14: Page Branding
	Chapter 15: Navigation
	Chapter 16: Text Content
	Chapter 17: Page Layout
	Chapter 18: Multimedia Content
	Chapter 19: Performance and Interaction

	Part IV. Problems and Solutions
	Chapter 20: Site Architecture
	Chapter 21: Reusing and Dynamically Generating Content
	Chapter 22: Dynamic Sites in WordPress
	Chapter 23: Going Live
	Chapter 24: Tracking Visitors, Sharing Content

	Resources for the Future
	Glossary
	Index

