
www.allitebooks.com

http://www.allitebooks.org

IBM Lotus Domino: Classic Web Application
Development Techniques

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1180311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849682-40-4

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

About the Author

Richard G. Ellis currently works as a Domino developer supporting several
hundred classically crafted, web-enabled applications. He has held positions as a
programmer, systems administrator, technical manager, and IT director in major
commercial and university settings. He has taught undergraduate and graduate
level courses as well as numerous workshops on programming languages and other
computer-related subjects. He also provides quality assurance testing and technical
writing services for major commercial and educational institutions. Mr. Ellis is
certiied both as a Domino developer and administrator.

I very much appreciate the people at Packt Publishing for their
support and guidance, and the folks at IBM for building Lotus Notes
and Domino. I would also like to thank Anne Agee, Kevin Chick,
Jeff Clark, Adrienne Connolly, Al Cote, Eric Forte, Corey Kimball,
Debbie Magoon, Fred Sollars, and Kevin Suares for their support,
insight, and encouragement. Most of all I would like to thank my
long-time friend and mentor Mac Toedt for the many opportunities
and solid guidance he has given me over the years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Karen Hobert is an IT market research analyst and strategy consultant with
deep practical and market expertise in collaboration, communications, content
management, and social software technologies. Karen has over twenty years of
communication, collaboration, and social software platform expertise that she
uses to help organizations design and deploy shared information systems. She
has an extensive working knowledge of communication, collaboration, and
social technologies including technologies from Microsoft, IBM, Google, and other
best-of-breed vendors. Additional areas of expertise include collaborative application
design and web development platforms. Karen is a contributor on numerous
technical articles and is the author of courses and workshops on programming and
deploying web-based business process applications.

Karen is a technical reviewer for the IBM Lotus Notes 8.5 User Guide published
by Packt.

Mark Vincenzes is a software engineer at IBM, where he works on web
application servers. Over the past 30 years, Mark has contributed to projects
such as custom I/O and networking subsystems, database management systems,
object request brokers, and source control systems. Mark's past employers include
Burroughs, Xerox, Apollo, and Hewlett-Packard.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Preparation and Habits 7
Preparing yourself as a developer 7

Gather a list of public websites that use Domino 8
Get certiied in Lotus Notes / Domino application development 9
Use Domino Help 9
Consider using external editors and development tools 10
Create sandbox applications 10
Create a personal cookbook 11

Create a personal document library 11
Create a website 11

Adopt new language and terms 12
Pay attention to web programming developments and practices 12

Standardizing applications 12
Abide by your organization's web development guidelines 13

Usability 13
Style 14
Mechanics and process 14

Create libraries of common resources 16
Planning your work 17

Take notes 17
Use to-do lists 18

Keep a list of all active projects and tasks 18

Report your progress 18
Working the project 19

Work with users, not against them 19
Identify the champion and other players 20
Don't start without clear requirements 20
Understand the budget and timeline; provide an estimate 21
Avoid scope creep 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Assume that all Notes applications will be web-enabled in the future 22

Familiarize yourself with an unknown design 22
Assess an existing application for web enablement 23

Think like a user 24
Think like a developer 24
Write a report 25

Keep an issues log 26
Improve the application under the covers 27

Enhance performance wherever possible 27
Add error trapping 27
Add diagnostic and repair aids 27

Provide the customer with a summary of changes 28
Documenting your applications 28

Add comments to the code 28
Create internal developer notes 29
Add release notes to the About document 29
Include external documentation in the design as ile resources 29
Create user-oriented help pages 30

Summary 30

Chapter 2: Design and Development Strategies 31
Planning the design 32

Understand the scope of the project 32
Annotate the requirements document 33
Understand the worklow 33
Determine the need to access external databases 35
Decide on one database or several 35
Review existing designs 35
Copy the design of an existing application 37
Evaluate the security needs of the application 38

Using consistent naming conventions 39
Name databases so that URLs are easy to remember 39
Use standard versioning for design templates 40
Use standard versioning for major design elements 41
Use unique names for all major design elements 43

Name design elements sensibly 43
Name form ields consistently and appropriately 44

Create different versions of design elements for Notes and the Web 45
Name Domino groups and roles appropriately 46

Use Domino groups and roles appropriately 47
Name roles consistent with other applications 47

Attending to human factor issues 47
Create clean and lexible designs 47
Design for speciic display characteristics 48

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Design for accessibility 49
Add titles to pages, forms, and framesets 50
Optimize the use of images 50

Use image resources instead of pasted images 51

Using appropriate design elements and techniques 52
Consider alternate design strategies 52
Learn the Properties dialog box 52
Use hide-when formulas 52
Avoid using the Java applets 53
Avoid server refresh round trips 53
Conform to HTML standards 53

Avoid using non-standard, deprecated, and invalid HTML tags 54
Avoid using HTML formatting tags 54

Use coniguration documents 54
Developer testing 56

Add diagnostic and repair tools 57
Set up test IDs 57
Test with browsers used by your users 57
Clear the browser cache 58

Promoting the design from testing to production 58
Use a staging server for user acceptance testing 58
Segregate administrative and developer duties 59

Request that templates be signed by an authorized signing ID 59
Understand how templates are applied to production applications 59

Reviewing other sources of help 60
Read the Notes and Domino release notes 60

Summary 60

Chapter 3: Forms and Pages 61
Setting properties appropriately 62

Set the content type (MIME) property 62
Take full control with content type HTML 63

Leave the "Use JavaScript when generating pages" option enabled 65
Generate HTML for all ields 66

Opening forms and pages directly 67
Viewing the source in a browser to investigate anomalies 68
Composing and saving documents 69

Create documents 69
Edit documents 70
Save documents 71

Save documents using $$Return to specify the next page 72
Save documents using a WebQuerySave agent to specify the next page 73

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Improving the layout of design elements 74
Identify all HTML tags 75
Use view template forms to display views 77
Use framesets for layout 79
Use <div> tags to replace framesets 81
Align ields 83

Use tables to align ields 83
Use <div> and <label> tags to align ields 84
Use <ieldset> and <legend> tags to group related ields 86

Using computed text 87
Display a customized title bar 87
Display customized messages 87

Using hidden computed ields 88
Add ields to provide access to key document attributes 88
Access CGI variables 88
Improve @DbLookup and @DbColumn formulas 89

Using HTML to add value to a form or page 89
Use special ields 90
Convert between Notes and HTML 91

Creating pseudo Action Bars for the Web 91
Summary 92

Chapter 4: Navigation 93
General precautions 93

Do not hardcode URLs, ilenames, or UNIDs 94
Use @WebDbName 94
Use $Ref 95

Use a "go forward" navigational strategy on the Web 96
Avoid generating complex dynamic pages 97

Application launch options 98
Launch the About document 99
Launch a speciic homepage 100
Launch a frameset 100
Launch a view 101
Launch a form 102
Launch a graphical navigator 103
Launch documents in context using Auto Frame 104

Creating a custom application login form 105
Creating menus 107

Create Hotspots 108
Create menus with outlines 109
Create menus with tables 110

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[v]

Create menus with HTML and CSS 110
Create dynamic menus with views 112

Displaying a design element after exiting a document 115
Use $$Return to select a design element 116
Display the previous view 117
Display the parent document 117

Using response forms for interim worklow steps 118
Coding default error pages 119
Providing directions and help 120

Add meaningful labels and guidance text 120
Add titles to design elements 121
Link to the About and Using documents 121
Add customized help pages 122

Opening another application in a separate window or tab 122
Summary 122

Chapter 5: Cascading Style Sheets 123
Using CSS for styling design elements on the Web 123

Learn basic CSS coding 125
Associate CSS rules with design elements 126

Locating style rules in applications 128
Use a page design element 128
Use Style Sheet Resources 129
Add style (sparingly) to Properties 131
Minimize the use of internal and inline styling 131
Use common style sheets 132

Use a Domino application as a style sheet repository 132
Use the HTML directory on the server 133

Developing CSS rules 133
Work with an application rather than a template while writing CSS 134
Make sure you have control over the style of an element 135

Clear the browser cache 135
Remove HTML formatting 135
Remove conlicting inline and internal CSS rules 136
Use fully qualiied CSS selectors 136

Accommodate different browsers 137
Adding style to form and page elements 138

Use color effectively 138
Style text 139

Style headings and labels 140
Underline links in text but not in menus 140

Style ields 141
Highlight required ields 141

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vi]

Style buttons 142
Replace the default Action Bar buttons with hotspot buttons 142
Style the default Action Bar buttons 142

Style borders and margins 146
Work with images 146
Style menus 150
Style printed pages 152
Add more than one class to an element 153

Summary 153

Chapter 6: JavaScript 155
Using JavaScript in web applications 155

Keep it simple, comment the complex 156
Be alert for disabled JavaScript and other options in browsers 157
Be alert for inconsistent JavaScript behavior in different browsers 157
Use browser object detection 158
Use browser detection only when really necessary 160

Locating JavaScript in applications 161
Place functions in JavaScript libraries 161
Add JavaScript in the JS Header 163
Add JavaScript to web events 163
Use a page for JavaScript 165
Use a subform for JavaScript 168
Consolidate and co-locate JavaScript 169

Developing and debugging scripts 169
Use browser debugging tools 169
Validate JavaScripts 170

Using JavaScript to enhance forms and pages 171
Run JavaScript on load 171
Access CGI variables 173
Validating ields 173

Validate number ields 175
Use a date picker for date ields 177

Warn users before leaving an un-submitted form 178
Use Ajax calls to avoid server round trips 183

Summary 194

Chapter 7: Views 195
General guidelines 196

Create some diagnostic views 196
Display documents in a hierarchy 197
Display Replication or Save conlict documents 198

Specify a default view 198

Table of Contents

[vii]

Use view templates 199
Use the same view template for several views 199
Compute the view title 200

Exploring view options for the Web 200
Understand view Action buttons 202
Use Domino-generated default views 203

Include HTML tags to enhance views 204

Use the "Treat view contents as HTML" option 206
Structure HTML views as tables 207
Code links to open documents 208
Structure HTML views as lists 209
Set the view line count 211
Create Notes versions of HTML views 212

Use the View Applet (with caution) 212
Creating Action buttons 213

Provide view navigation buttons 214
Code next and previous navigation buttons 214
Code irst and last buttons 214
Let users specify a line count 215
Code expand and collapse buttons for categorized views 217

Co-locate and deine all Action buttons 218
Create your own Action buttons 218

Adding style to views 218
Style Domino default views 219
Style HTML views 221

Opening documents in a separate window 222
Adding view scrollbars dynamically 223
Summary 226

Chapter 8: Agents 227
General LotusScript agent guidelines 228

Give agents meaningful names and aliases 228
Structure and document agents 229
Use agent subroutines and LotusScript libraries 229
Harvest ideas from Designer Help 230

Setting agent attributes 230
Set who can view and run an agent 230
Set an agent's runtime context 231
Set an agent's runtime privileges 233
Hide unused agents 233

Developing agents 235
Use web safe @formulas and LotusScript 235
Include a basic error trap 236
Write messages to the browser as a web page 237

Table of Contents

[viii]

Write messages to the browser with a JavaScript alert 238
Write messages to an agent log ile 239

Working with documents 241
Use WebQuerySave 242
Access a document from an agent 242

Access a document open in the browser 243
Access a document not open in the browser 243

Detect the type of client invoking the agent 245
Detect whether a document is in Read or Edit mode 246
Prevent a document from being saved 246
Redirect the browser to the next page 246
Process selected documents in a view 248

Writing special purpose agents 252
Send e-mail notiications 252
Export data to a spreadsheet on the Web 254

Summary 256

Chapter 9: Security and Performance 257
Security 258

General guidelines 259
Plan your security 259
Manage Domino groups 260
Specify anonymous access 261
Set the maximum Internet access level 262
Manage the application ACL 263
Enable SSL 264
Prevent opening an application in a browser 265
Hiding is not securing—Use element access lists 266
Understand application backup and restore procedures 267

Add security to forms and documents 268
Understand the "Generate HTML for all ields" attribute 268
Prevent users from reading existing documents 269
Prevent users from editing existing documents 270
Prevent users from editing selected ields using a Controlled Access Section 271
Prevent users from editing selected ields using hide-when formulas 272
Do not use ield encryption 272
Track document changes 272
Make a form available to anonymous users 273

Control navigation options 274
Code an explicit logoff 274

Manage agent security 275
Performance 275

General guidelines 276
Listen to your users 276
Design for ease of use 277
Archive or delete old documents 278

Table of Contents

[ix]

Remove obsolete code and design elements 278
Clean up and optimize code 278
Use tools to assess response time 279

Improve forms 280
Limit the use of images 280
Use Ajax calls to retrieve data 281
Use simpler hide-when formulas 281
Validate ields with JavaScript 281

Improve views 281
Remove unused or redundant views from the design 281
Limit the data displayed in views 282
Remove unnecessary view column sorting 282
Minimize the use of view column formulas 282
Avoid time-based view column formulas 283
Create views as an alternative to common searches 283

Modify database properties 283
Investigate Domino server options 284

Summary 284

Chapter 10: Testing and Debugging 285
Testing 286

Test with different browsers 286
Test with different user privileges 287
Craft the staging environment to resemble the production environment 287
Engage other people for testing 288
Test every feature if possible 289
Test responsiveness 289
Create a written test plan 290
Track defects 292
Create detailed user documentation while testing 293
Require user sign-off 293
Monitor the application after Go Live 294

Debugging 294
General guidelines 294

Reproduce the problem 295
Isolate the failure 295
Code a $$ReturnGeneralError form 296
Check the Domino Log 296
Use the Web 297
Use Design Synopsis 297

Troubleshoot forms 298
Dynamically display hidden ields on the Web 299
Expire the cache 301
Debug CSS 301
Use browser-based debugging tools 303

Table of Contents

[x]

Troubleshoot agents 304
Incorporate dynamic debugging messages 305
Create troubleshooting tools—display scheduled agent information 306

Troubleshoot problems with data 309
View ield values in Document Properties 309
Create diagnostic views 310
Write document repair agents 310

Document problems and solutions 311
Keep a personal problem solving journal 311
Report back to the user 311

Summary 312

Index 313

Preface
Boss: I need some web pages up as soon as you can.

Developer: No problem. I'll get you something before lunch.

Creating web pages was fairly straight-forward—in the early 1990's. Today, there
are many, often competing technologies available for creating a web experience.
Remarkably, all these differing technologies and strategies interoperate in a
relatively seamless way to serve the billions of people who use the World Wide Web
and the Internet.

IBM's Lotus Notes and Domino product set—the subject of this book—is a feature-
rich, application development technology that has been used to create web-enabled
applications since the late 1990's. Since then, it has evolved substantially through
several major software versions, and it will continue to advance into the foreseeable
future, adapting to the changing web landscape and incorporating new technologies
and methods as appropriate.

One of the delightful aspects of Domino is its backwards compatibility. With few or
no changes, applications written with previous versions of the software, untouched
for a decade or more, will run as expected on the newest Domino server.

It is also important to understand that useful applications can be crafted and
deployed on a wide range of platforms with relatively little work. A simple
application can be cobbled together and rolled out in less than an hour. It
would not be a complex application, of course, but it might sufice for basic data
collection or an informational website. After that irst version rolls to production,
providing immediate beneit to users, features and improvements could be added
incrementally with little or no downtime.

Preface

[2]

Quickly-crafted applications are probably not polished applications in terms of
look-and-feel or function. This author has worked with a number of these earlier,
rapidly-developed applications; they are still functional, but by contemporary web
standards, they are not pretty.

Improving an existing, web-enabled application comes with a number of challenges.
How can the design be upgraded without impacting users or disturbing the data?

It was in facing the challenge of working with some of these older applications that I
irst began making notes which led to this publication.

Getting started
If you are a developer new to Lotus Notes and Domino, you face a substantial
learning curve. If you are already a Domino developer, but are new to working with
Domino applications on the Web, then the learning curve is not so steep.

As a Domino developer, you must master the Notes and Designer clients, and you
must achieve some level of coding competence with Formula Language, LotusScript,
HTML, CSS, JavaScript, and possibly Java. In addition, you must embrace the
Domino way of doing things. You must understand its security features, design
templates, replication, worklow, and so on. In a web application, all of these
elements work together to achieve some desirable business purpose.

What this book covers
Topics in these chapters offer tips, suggestions, and code snippets to help you
understand and resolve speciic problems you may encounter when working with
Domino applications for the Web. You will likely encounter problems not covered
within these pages, but the tips provided here should save you some puzzlement,
aggravation, and research time.

Many techniques covered in these pages are now referred to by the Domino
community as "classic" or "traditional" web development techniques. Not covered
here are XPages and other development strategies that were introduced in Domino
8.5 and later. If you need such information, you must seek it elsewhere.

My overarching intent was to bring together in one place some useful tips and
techniques that are otherwise scattered across the Web. Ideas offered here derive
from experience, mine and others. Code samples are for illustration only and should
not be interpreted as a guarantee of performance or suitability for a speciic situation.
Everything covered should be useful for versions of Domino 6.5 and later. Domino
Designer 8.0 was used to develop and verify all the sample code.

Preface

[3]

Keep in mind that there are often several ways to create a feature or to solve a
problem. While classic techniques work with current and older versions of Domino,
the preferred way to create new applications is to use the latest techniques such
as XPages. However, even in an up-to-date Domino environment, it may not be
practical to redesign an existing application to take advantage of them. If you cannot
take advantage of those newer techniques for whatever reason, then certainly use
techniques catalogued in this volume. Use what makes sense to you and what works
for you. Test thoroughly.

Chapter 1, Preparation and Habits, provides suggestions for developers seeking
to improve their knowledge, skill, and productivity. Issues related to executing
development projects are discussed.

Chapter 2, Design and Development Strategies, provides recommendations for planning
development projects and for developing applications.

Chapter 3, Form and Pages, illustrates selected design choices related to forms and
pages, including properties, composing and saving documents, improving layout,
using view templates, incorporating HTML tags, and using hidden ields and
computed text.

Chapter 4, Navigation, illustrates selected navigational strategies, including
application launch options, custom login forms, menus, default error pages, and
providing direction and help.

Chapter 5, Cascading Style Sheets, illustrates how CSS rules can be incorporated into
applications to style forms and pages for the Web.

Chapter 6, JavaScript, illustrates how client-side JavaScript can be incorporated into
applications for such purposes as validating ields, changing element style, enabling
a date picker, providing a warning before leaving a form if changed data has not
been saved, and retrieving data with Ajax.

Chapter 7, Views, illustrates design choices for displaying views on the Web.

Chapter 8, Agents, illustrates how to incorporate agents in web applications,
including setting properties and security, adding error traps, accessing documents,
processing selected documents in a view, sending e-mail notiications, and extracting
data to a spreadsheet.

Chapter 9, Security and Performance, discusses security planning, implementing
security features, tracking document changes, and designing for good performance.

Chapter 10, Testing and Debugging, discusses testing strategies, test plans, tracking
issues, and selected debugging techniques.

Preface

[4]

What you need for this book
To explore the techniques discussed and illustrated in this book, readers should
have access to Lotus Notes, Domino Designer, and a web browser. Ideally,
readers are able to save sandbox applications to a Domino server for
experimentation and testing.

Who this book is for
This book is for novice to moderately experienced Domino developers who are new
to the task of web-enabling traditional Domino applications. Readers should be
familiar with using Domino Designer to develop applications for the Lotus Notes
client. It is also assumed that readers have, or can acquire, at least rudimentary
knowledge of HTML, CSS, and JavaScript.

Conventions
In this book, you will ind a number of styles of text that distinguish different
kinds of information. Here are some examples of these styles, and an explanation
of their meaning.

Code within text is shown as follows: "The styleActionBar JavaScript function in
the ActionBar.js JavaScript library contains just a few lines."

A block of code is set as follows:

function styleActionBar() {

 var form = document.forms[0] ;

 var tables = form.getElementsByTagName("TABLE") ;

 var actionbar = tables[0] ;

 actionbar.className += " actionbar" ;

 return true ;

 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Dim doc As NotesDocument

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preparation and Habits
A fresh start is invigorating, a chance to look forward with high expectations and new
resolve. It's a time to put into practice all the lessons you have learned and to put behind
you the issues and problems which previously bogged you down. Take advantage of
every fresh start. Look forward to and accept every new challenge and opportunity.

Especially when starting a new job, it is important to take stock of your skills, both
technical and non-technical. If you succeeded wildly at your last job or project, then
hooray for you! Do it again! But if you fell short in some ways, resolve to do better.

The topics in this chapter address the human and organizational context within
which you will develop your Domino applications. Most of these suggestions are
relatively non-technical, as they deal with how you might organize yourself and
your time and how you might work more effectively with your customers. Topics
focus on these key issues:

•	 Preparing yourself as a Domino developer

•	 The importance of using standards and guidelines

•	 Planning your work

•	 Handling a development project

•	 Documenting your design

Preparing yourself as a developer
A craftsman is only as good as his tools, and in a very real sense, you are your
tools. To remain capable and versatile, you should commit to the life-long task of
continually acquiring knowledge and skills—people-skills as well as technical skills.

As you begin your work on a new project, keep in mind the larger picture. This new
project will be followed by others. One polished application will lead to another. One
happy and satisied customer will spread the word about how good you are.

Preparation and Habits

[8]

Gather a list of public websites that use
Domino
While you browse the Web, gather ideas about what makes web pages look good.
Great websites should inspire you. Inspect the layout, the use of images and color,
and the navigational strategies. If you see an interesting control, peek under the
covers and take notes about how it was coded. But be sensitive to intellectual
property and copyright laws—not everything published on the Web is free.

In particular, collect links to public websites that use Domino and show it to good
advantage. Relatively speaking, only a smaller number of public-facing websites
are served by Domino. But browse around; you will ind hundreds of them in short
order. This collection of websites can become a marketing and public relations tool
for you as you sell your ideas to your customers.

Too often Domino web applications crafted in the past were functional, but not
pretty. That might have been okay ten years ago, but no longer. Today's customers
expect the same kind of functionality from your applications that they see elsewhere
on the Web. And there really is no reason why you can't provide it to them.

Take some time and build yourself a small application to hold the links. Eventually,
roll this application to the Web so that the links can be shared readily with customers
and others who are interested.

In this sample Domino Websites application, details about each website are stored
in a separate document. The blue hotspots link to views which display lists of
Commercial, Consultants, Government, and Other Sites. With suficient privileges
to the database, a user can add, edit, and delete these documents with the Notes
client or with a browser.

Chapter 1

[9]

Get certiied in Lotus Notes / Domino
application development
Honing your skills by doing is essential. The more applications you build and the
more time you spend on this work, the better you should become at it. Experience is
a great teacher.

But you do not have time to igure everything out yourself. So you must read and
study what others have done, which is especially easy today with a fast connection
to the Internet. Set aside some time every week (or each day if you can swing it) and
graze the web landscape.

Commit yourself to preparing for, taking, and passing certiication exams in
Lotus Notes / Domino application development. If possible work through the
Administrator exams as well. Effortful and extensive preparation should make it
easier to pass the exams the irst time. More importantly, preparation for the exams
will broaden your understanding of Domino and teach you about features and
techniques that you might not otherwise stumble upon by yourself.

And, of course, holding this certiicate looks good on the resume.

Use Domino Help
Experienced developers rely on Domino Help. Be aware that there are separate help
databases for each of the clients: Notes, Administrator, and Designer.

The Lotus Domino Designer 8 Help database contains over 9,000 documents. In it,
you will ind extensive information about features, language syntax, classes, limits,
errors, tips, and code examples.

The code examples can be particularly useful. If you ind some code that looks
just like what you need, simply copy it into your application, and then modify
it as necessary.

Preparation and Habits

[10]

Especially if you are new to Domino, spend enough time with Help to be
comfortable with where things are and how to ind information on speciic topics.
The Contents view organizes the information like a book, by general subject area.
Use the Index if you know what you are looking for—the syntax of a speciic @
function, for example. Use the Search feature when you are not quite sure for what
you are looking. Beware of searching too broadly. Search for the term "web" and you
will ind over a thousand documents!

Once you are comfortable with Designer Help, try Designer's context sensitive help,
which is invoked by opening or highlighting a design element and then pressing F1.
Display forms in the Work pane and press F1—help on designing forms displays.
Select a tab in a Properties box and press F1—help on that tab displays, and so on.

Consider using external editors and
development tools
Designer provides basic editing for text, so for the most part, you can develop
applications without using external editors. However, dedicated editors for HTML,
JavaScript, Java, and CSS will provide you with conveniences such as syntax
checking, color coding, validation, and ready-made functions which may appeal to
you. If you develop code in an external editor, you will have to import the iles as
resources into your application or copy/paste the text into appropriate locations in
your design.

You can reasonably get on without external text editors, but learning to use an image
editor may be well worth the time it takes, especially if you do not have access to a
graphic designer or a library of images. Almost any image editor will do as long as it
saves images as JPEG or GIF iles. (Designer can accommodate other graphic types,
but JPEG and GIF iles are natively compatible with the Web.) Although it may take
some effort to learn, the open source program GIMP is a no-cost, feature-rich image
editor. Find more information at the GIMP website: http://www.gimp.org.

In this book, except where noted, examples rely on only the native capabilities
of Designer.

Create sandbox applications
New ideas for solving problems constantly present themselves. But introducing
a new, untried technique into an existing application may result in many more
problems than it solves due to unintended consequences and side-effects.

Chapter 1

[11]

Create one or more sandbox applications in which to try out new ideas. Constraining
new development this way facilitates isolating and resolving problems speciically
related to the new technique. And if, at the end of the day, the technique does not
live up to its promise, then nothing needs to be removed from the real application
design on which you are working.

Create a personal cookbook
Solutions discovered or invented for one application inevitably ind their way into
other applications. Code snippets, strategies, and even entire agents are often reused
to save development time and effort.

Keeping track of such ideas may be dificult over a period of years, especially if you
work on dozens of applications or move from job to job. It might be inappropriate
(ethically or legally) to keep personal copies of designs created for previous
employers without permission, but it is certainly reasonable to keep detailed
personal notes in one form or another. The tools are readily available: paper
notebook, lash drive, optical disk.

Keep your notes organized and periodically review items in your cookbook.
Revise and annotate. Include variations and caveats. As it is impossible to
remember in detail all the code you will ever write, you will ind your notes to
be an invaluable resource.

Create a personal document library
As a Notes developer, you should always have access to the Notes and Designer
clients, so creating a personal document library or a simple Notes application is
certainly an option. You can use the standard Lotus Document Library template or
you can simply create your own application with whatever features work for you.

One database might contain notes and descriptions. A second database might
contain working examples of many techniques—a private code library if you will.

Create a website
The Web is a wonderful repository of ideas. Consider keeping a website (blog or
Wiki) on which you can post code and ideas that may be helpful to others. Of course
this approach may entail some expense and extra effort, but it is also a great way to
contribute to the development community. And if you are a freelance consultant, it is
also a way to market your skills.

Alternatively, consider contributing ideas to existing websites with blog entries or
even entire development projects.

Preparation and Habits

[12]

Adopt new language and terms
Over time, the language of Notes and Domino changes, as do the tools. At one time,
the Domino Directory was called the Name and Address Book or NAB. The ile that
contains design elements and documents was called a database and is now referred
to as an application. In Designer, the Design Pane became the Application Navigator.
Of course, you will come across references that use the older language and some
developers who continue to use deprecated terms out of habit or stubbornness.

Be alert for these changes of terms and the deinitions which go with them. Be
mindful of the old names, but use contemporary and correct vocabulary, just as you
should use contemporary development techniques.

Pay attention to web programming
developments and practices
Domino applications intended to be accessed with a web browser can take
advantage of many contemporary web technologies like Ajax, CSS, and XML. In fact,
support for these standards has been included in Domino for many years. As web
technologies evolve, so does Domino.

So pay attention to non-Domino web technologies and strategies. Web-enabled
Domino applications should be crafted using the best web programming practices.

Standardizing applications
Application development is part engineering and part art. Building some pieces of an
application is fairly routine, while other aspects call for inventiveness and creativity.

Domino caters to developers to some extent by enabling applications to be built with
any of the several programming languages. It also supports many web technologies
which can be pieced together in an unlimited number of ways. This lexibility
enables programmers to work the way they want to work. But this same lexibility
makes it all too easy to ignore organizational standards.

Standardizing applications makes it easier to develop new ones since reusable
components may already exist. And if applications look and operate in a similar
manner, then users of new applications will need less training and will be more
willing to use them.

Chapter 1

[13]

Abide by your organization's web
development guidelines
If your organization has written web development guidelines, ind out what they
are and try to embrace them in your own applications. The set of web applications
deployed by your organization is probably much larger than just the Domino
applications. If they exist, these development guidelines and standards deine
stylistic and functional commonality that your organization determined to be
beneicial. Someone above your pay grade approved those standards, so abide
by them!

Web application development guidelines can provide several beneits. They promote
an organizational identity or brand through a common look and feel. They improve
the effectiveness and the usability of web applications as a whole by standardizing
how features and functions operate. And from a developer's point of view, they
speed the deployment of new applications and simplify the maintenance and
enhancement of existing ones.

If your organization has no written standards, consider discussing this issue with
management. Consider taking on the task yourself.

The number of speciic development standards can easily number in the hundreds,
depending upon how detailed they are. Whoever determines these standards must
understand to some extent the entire universe of options, and then must select
those guidelines which make sense and which can be implemented within the
existing development environment. Many guidelines turn out to be "nice to have"
suggestions that are not practical to implement within the conines of budget and
project deadlines.

Development guidelines can be classiied roughly into three kinds:

•	 Usability guidelines

•	 Stylistic guidelines

•	 Mechanical or process guidelines

Usability
Guidelines that address the usability of an application or website concern themselves
with issues of effectiveness, eficiency, learnability, and overall user satisfaction.
How well does this application achieve its goals? How easy is it to learn to use?
How well do users like it? Usability inluences how willing people are to use an
application, which can have a dramatic impact on whether they choose your solution
or go somewhere else for assistance.

Preparation and Habits

[14]

Usability guidelines focus on what things make a website easy to use from the end
user's point of view. Examples of usability considerations include the following:

•	 Content organization

•	 Headings and labels

•	 Page and form layout

•	 Features and functions

•	 Accessibility

•	 Navigation

•	 Images

Explore this topic in greater detail. One online reference which you might consider
reviewing is the http://usability.gov website maintained by the U.S. Department
of Health and Human Services.

The Guidelines documents at this site were written based on the extensive research.
They can serve as a good starting point for understanding usability issues.

Style
Guidelines which address style concern themselves with issues of look and feel,
and sometimes function. An organization's font preferences and color palette can be
identiied. Layouts and menu styles can be deined. Acceptable logos and images can
be speciied, as can boilerplate text for Copyright, Privacy, and other notices. Very
speciic guidelines might address issues such as whether or not to underline links or
how wide margins should be.

Beyond simply specifying preferences, an organization might codify style
requirements into common style sheets. The guidelines would then provide
information about how to link to and incorporate those style sheets into applications.
Details such as style class names for headings and labels would be included.

Mechanics and process
Guidelines which address issues of coding and application deployment can be
extensive and no small task to gather together.

Chapter 1

[15]

Because Domino web applications can include so many different technologies,
coding guidelines could address various options, including the use of these
design tools:

•	 HTML

•	 CSS

•	 JavaScript and JavaScript frameworks

•	 LotusScript

•	 Java

•	 Images

Other guidelines might specify requirements for the following design aspects:

•	 The About and Using documents

•	 Element naming conventions

•	 Form and page layout

•	 Navigation

•	 E-mail notiications
•	 Data import and extract

•	 Context sensitive help

•	 Agent error handling

•	 Security and access control

Still other guidelines might concern themselves with the general way in which
applications are designed, tested, and rolled into production:

•	 How development work is requested and prioritized

•	 How applications are named and sponsored

•	 The use of templates

•	 The use of shared code and resource libraries

•	 The use of roles

•	 The use and management of Domino groups

•	 Application signing

•	 Replication

•	 Testing and approval

•	 Migration to production

•	 Documentation and user training

www.allitebooks.com

http://www.allitebooks.org

Preparation and Habits

[16]

Some developers might ind coding and process guidelines to be onerous and
overly constraining. Inevitably, there will be requests for exceptions to the rules,
so organizations must be prepared to deal with the issues of exceptions and
non-compliance.

Clearly, an extensive effort is required to compile standards and guidelines that are
appropriate to application development within the context of a speciic organization.
Additional effort will be required periodically to review, update, and reapprove
those guidelines.

Create libraries of common resources
Organizations should consider creating common repositories of reusable objects. The
most obvious kinds of libraries (not surprisingly supported natively by Designer)
would contain standard design elements such as:

•	 Images

•	 Java code

•	 JavaScript code

•	 LotusScript code

•	 Style sheets

Images can be organized into common types as follows:

•	 Arrows and lines

•	 Banners and logos

•	 Buttons

•	 Patterns

•	 Photos

•	 Squares and other common shapes

•	 Watermarks

Other repositories might include standard or approved "boilerplate" text:

•	 Copyright notice

•	 Disclaimers and caveats

•	 Error messages

•	 Privacy notice

Chapter 1

[17]

Common repositories enable developers to work more rapidly and to create products
which conform to organizational standards. Organizational management must
address the following issues:

•	 Who will create and maintain the repositories?
•	 What process will be used to approve, add, and deprecate repository objects?
•	 Will applications be reviewed to assure the use of the approved objects?
•	 How will developers (especially new developers) be informed about the

repositories and how to use them?

Common repositories, like development standards in general, can seriously
boost productivity, but they also require ongoing maintenance and commitment.
If your organization has such repositories, learn to use them. If no such collections
yet exist, speak to management about instituting common repositories for approved
design resources.

Planning your work
Volumes have been written about planning, and even more volumes have been
written about how to become and stay organized. Here are just a few simple ideas
that can be enormously powerful in keeping you personally on task.

Take notes
When you are young and brilliant, your mind might be as sharp as a tack and your
memory as long as the Great Wall of China. But as your responsibilities increase,
as your projects become larger, as you attend more meetings and deal with more
customers—as you get older—your infallible memory will become fallible.

Take notes. Write things down. Some people prefer to use a laptop or PDA.
Personally, after many years of trying several methods, I've come to appreciate the
simple notebook. I jot notes all day long at my desk, in the car, at a meeting, in bed at
night. It contains my list of tasks, my key contacts, notes from meetings, to-do lists,
and timestamps. It is my work-life in a compact, lightweight, versatile package—and
it works without electricity.

Preparation and Habits

[18]

Use to-do lists
It is a simple fact that people who make lists of things they must do, tend to get more
things done. This is true on a personal level as well as on the job.

Start each day by making a list of tasks you will work on, meetings you will attend,
and phone calls you must make. Keep that list nearby and refer to it often. If things
come up during the day, add them to your to-do list. As you inish an item, check it
off or scratch it out.

At the end of the day, review what you achieved and what is still undone. Create a
new to-do list for the next day. Prioritize each item either in terms of how important
it is to do or in terms of when you will do it. This simple activity will help you focus,
and when you focus, you accomplish more.

If you are not used to working with to-do lists, it will take some self-discipline. You
might also consider creating weekly, monthly, quarterly, or annual to-do lists as
well. As you plan each day, consult the lists which deal with the longer timeframes
and incorporate all relevant items on the daily to-do. The adage "Plan the work and
work the plan" can be fulilled easily with the simple to-do list.

Keep a list of all active projects and tasks
You should maintain a current list of all your active and pending projects, tasks, and
commitments. Each item should include a rough estimate of how long it takes or will
take, when you might start and inish it, and who the key contacts are for each item.

Inevitably, you will be asked to undertake new tasks, join committees, attend
meetings, and perform services which take time. People easily become overbooked
because, with an eagerness to please or to start something new, they simply do not
estimate well how much time tasks take to do. Keeping a list of projects and tasks to
which you can refer will help you and your boss allocate your time more effectively.

Report your progress
Developers and other technicians are often loath to spend time documenting,
especially writing progress reports to managers. Managers, on the other hand, really
do need to understand what their employees are doing. Well-informed managers
can make better decisions when authorizing new work, prioritizing current tasks,
handling contrary customers, reporting accomplishments to their managers, and
requesting budget for the coming year.

Chapter 1

[19]

As a developer, you should submit a summary of your work on a regular basis. Your
organization may have a prescribed format for this activity. If not, here is a simple
outline for weekly e-mail which can work satisfactorily:

•	 Highlights from this week

•	 Tasks for next week

•	 Issues and other items

•	 Pending projects

Add bulleted items in each section. Be concise, clear, and plain-spoken. Your goal
is to convey a sense of your activities and progress to your (possibly non-technical)
manager. Send this summary to him or to a project leader at the end of each work
week when the information is fresh. Do not embellish, don't minimize. Use this
report also to help plan the week ahead.

Working the project
The right way to begin any project is to plan it. That means taking a decent amount
of time to think about what needs to be done, to make lists of requirements and
notes about issues, to talk over the effort with customers, to create a project plan, to
estimate the time it may take to do the work, and to get all of this approved. Many
youthful developers fail to see much value in all that paperwork. They jump right in
to begin crafting the prototype. Occasionally, this approach might work, but more
often a lack of planning will lead to a lot of rework, missed requirements, and less
than happy customers.

Prototyping is of course a great way to prove or present an idea, but do not make
the mistake of deploying a prototype. Consider how long it might take to create the
production version of your application, and get management's buy-in. Otherwise,
you may get stuck supporting a lot of incomplete applications and handling many
user complaints.

Work with users, not against them
Some users will tell you exactly what to do and how to do it; others are reluctant
to ask for any changes whatsoever. Some developers would rather not speak with
customers at all, believing they "know" what the customer needs.

The best circumstance is that in which the developer and the customer work together
to advance a project. They share ideas and come to a common understanding of what
needs to be done.

Preparation and Habits

[20]

Lotus Notes and the Web are very visual environments. As a developer, you need all
the help you can get to craft a good-looking and functional application which helps
and pleases the customer. Engage with the customer early and often.

It may be dificult to convey in words what a screen will look like or how a
worklow will progress. Early in the project, develop a prototype which includes
approximations of the forms, pages, views, and other visual elements of the design.
Take screenshots and paste those images into an e-mail or a document, and send
them along to the customer. Ask for feedback.

If possible, sit with the customer in front of a computer and show him what you
want to do. A picture can convey meaning clearly and eficiently, and worklow can
be demonstrated really only by trying it out. Do this several times. The customer
will share ownership of the project and will offer suggestions to improve the inal
product. Take notes and take heed. Be a hero.

Identify the champion and other players
With most projects there is one person who will really drive the effort. Identify this
champion. He will know the requirements deeply or he will know who knows. He
will address resource issues, especially the issue of inding time for customer testing.

Often the most important people are the line staff who will use your application.
Find time to discuss with them how they see the new application helping them.

During the planning phase, identify as many people as possible who are interested in
the project or who will use the fruits of your labor. Find time to talk with all of them.
Your product will be richer and more on-target for the effort.

Don't start without clear requirements
Once in a while you might be required to begin a project without clear, well-written
requirements. Resist!

Some customers are notoriously unable to think clearly through and write down
what it is they want you to do. They may be willing, but they just do not work that
way. Your customer may have an excellent plan in his head, but he just can't get it
down on paper.

You may end up writing the speciications yourself and then seeking your customer's
approval. So be it. Sit with him, watch what he does on the screen, take notes, and
make diagrams. When everything is inally written down, have him sign off on this
requirements document. This is the working agreement for the project, and it becomes
the arbiter if what you deliver is not what he is expecting.

Chapter 1

[21]

Understand the budget and timeline; provide an
estimate
Requirements identify what the customer wants. You are the resource with the talent
who will do whatever needs to be done to satisfy the requirements. But you also
must operate within budget and time constraints. How much time, hours or days
or weeks, are you authorized to work on this project? Are there any hard deadlines
which must be met?

Most likely, before work begins, you will be asked to provide a time estimate for
your work on the project. Study the requirements in detail and make notes. Estimate
how long each task is likely to take. Be as realistic as possible with each estimate.

If you are familiar with the application, then the project will move along more
rapidly. If you must discover the application—learn about it from scratch—then time
must be allotted to that effort as well.

Include time in your overall estimate for the following work:

•	 Planning and setup (time to create development and test databases)

•	 Discovery (familiarization with the current design, if there is one)

•	 Development (all the fun stuff)

•	 Developer testing (once the coding is done)

•	 Working with customers to test the changes (including code corrections)

•	 End-user training

•	 Rollover to production

•	 Documentation (including suggestions for the next release)

Estimate the work in as detailed a manner as possible, and then roll-up the details
into a grand total. Some people suggest adding a contingency factor, perhaps 10-
20%, for unknowns. Remember, this is the actual time on the task that you anticipate
will be required. It does not take into account non-project commitments, vacations,
sick time, and so on.

Avoid scope creep
As the project moves forward, the customer will likely ask for additional features or
changes that were not included in the original requirements document. It is tempting
to agree to make changes, but such scope creep can be costly in terms of time and
money. On the other hand, if the changes are sensible, consider including them.
Discuss all such changes with the formal project coordinator or with your manager.

Preparation and Habits

[22]

Assume that all Notes applications will be web-
enabled in the future
Many times the Web is the irst target for a new deployment, but sometimes a
customer does not request web-enablement for an application. All well and good,
but barring some unexpected international catastrophe, the trend towards moving
applications to the Web should continue into the foreseeable future. So assume that
a request will come along eventually to make that new "Notes only" application
accessible from the Web. And assume also that older Notes applications, if they are
not replaced, will in time be web-enabled as well.

With this in mind, it makes sense to focus on using only techniques that are directly
transferable to the Web or that have highly comparable correlates. So as you develop,
don't rely on techniques (like Environment variables and @Picklist) that have no
direct counterpart for web applications. Check the Designer Help iles for the lists of
features that do and do not work on the Web. Keep this list handy.

Familiarize yourself with an unknown design
If the task at hand involves enhancing or web-enabling an existing application,
then one of your irst tasks is to familiarize yourself with the application as it exists
already. If there is any existing documentation, read it. If not, you will have to
undertake the discovery process on your own.

Start by taking a copy of the design. If there is an archived authoritative design,
request a copy of it. If there is no authoritative design, don't trust any copies you
may ind on the development or staging servers. Previous developers may have left
pre-production changes lying around that never made it to production before they
moved onto something else. Ask for Editor access to the production database and
take the design from there.

Examine the agents in the current design. If any of them are enabled and scheduled,
make notes about which ones are enabled and then disable them. It may well be that
some of these agents send e-mail notiications to people as part of a worklow. Other
agents may automatically download or upload data to other databases. Until you
know what the agents do, disable them.

Determine if there is a version or release designation for the production design. If
not, assign it one. Then set the designation for the new version you are about to craft
(for example, "Version 1.3").

Chapter 1

[23]

Create a development database from the production design on your development
server. You will be accessing this database with a web browser, so placing it on a
server provides you with a more realistic view of how the application is accessed (or
will be accessed) by your customers.

If you can copy documents from production without compromising security, then
do so. Otherwise, copy some documents from another non-production database or
simply create your own documents with the current design.

Examine the Access Control List (ACL) of the production database. Take note of which
groups are listed and what privileges and roles each is assigned. Adjust the ACL of
your development database if necessary to assure you have Manager access to it. This
level of access enables you to modify the ACL if your design changes require it.

Open the application with Notes and look around. Read the About and Using
documents. Look to see if there is any other internal documentation which may be
helpful in understanding the design. Open the views and a document or two. Look
over the agents.

Open your web browser and create a bookmark to the development database. Try
to open it. If the database fails to open properly, re-open it with Notes and look
for a "coniguration" view and document of some sort. A coniguration document
or application proile may require changes before the database will open properly
on the Web—perhaps the coniguration document lists the wrong server name or
database ile path. Make changes and try again. Once you have the application open
in a browser, explore it. Begin to think about what you must change in order to
implement the requested changes.

Assess an existing application for web
enablement
A customer may inquire about web-enabling an existing Notes application. As a irst
step you may be called upon to assess the condition of the application as it currently
exists and to provide a work estimate for the uplift.

The irst task, assessing the application as it currently exists, might best be
undertaken by a quality assurance tester or by a power user who will "think like
a user" rather than like a developer. On the other hand, if someone like that is not
available, you may be tasked to perform the assessment.

Preparation and Habits

[24]

Think like a user
Understanding an application from a user's perspective is an important part of
designing a good application. Take off your developer's hat for a time, and do not
think about how this or that feature might be coded. Experience the application. Is
the navigation intuitive? Do the forms look good? Is it clear what needs to be done?

Make at least two passes through the application before drafting a proposal. During
the irst pass access the application with Notes to understand what the application
is supposed to do. Reviewing the application with Notes provides a baseline of
expectations and may also uncover anomalies which warrant ixing.

Then access the application from the Web to see how it already compares (favorably
or unfavorably) to the Notes version. Start at the beginning—when the application
irst launches—and proceed in an orderly fashion through all the features. Make
notes. Take screenshots.

Think like a developer
Once the initial functional and UI assessment takes shape, go back through the
application with Designer to get some ideas about what needs to be done to correct
the application and to get it ready for the Web.

Especially if the application is several years old, there may be many opportunities to
spruce it up by making relatively modest changes that won't break the bank and that
may greatly improve customer satisfaction. After all, older "out of the box" Domino
applications can look dated compared to contemporary websites and well-crafted
web applications. Here are some cosmetic, "low hanging fruits" to consider. Some of
these issues are covered in more depth in later chapters:

•	 Change to web-oriented fonts like Verdana or Tahoma, rather than fonts
which are more suitable to the printed page

•	 Add accent color

•	 Adjust ield alignment and layout
•	 Convert styling to CSS (Cascading Style Sheets) for maximum lexibility and

styling options

•	 Standardize the size and color of buttons

•	 Try using tabbed tables

•	 Style Action Bar buttons or remove the Action Bar altogether

•	 Use some visually interesting HTML, like the <fieldset> and
<legend> tags

Chapter 1

[25]

Write a report
The end product of the assessment should be a report with plenty of screenshots
which demonstrate the current state of the design. Here is a simple outline which can
be used for such an assessment report:

Title Page

Business owner name and contact information

Developer name and contact information

Table of Contents

Summary

Purpose of the application

Summary table (information about the application: name, owner, location,
size, replication, indexing)

General recommendations

Notes

Screenshot upon opening the application

Testing notes

Errors encountered

Deiciencies noted
Other observations

Web Browser

Screenshot upon opening the application

Testing notes

Errors encountered

Deiciencies noted
Other observations

Developer Recommendations

Each observation and recommendation can be assigned a speciic number
and title using the form in this example.

APP-01: There is no obvious way to create a new document

www.allitebooks.com

http://www.allitebooks.org

Preparation and Habits

[26]

The assessment report can be used in discussions with the customer to illustrate how
features currently work (or do not work) on the Web. Screenshots can help to set
customer expectations about how much work is required.

The outcome of the general assessment would be a decision whether or not to
allocate resources for refreshing and upgrading the Domino application.

Keep an issues log
Issues arise during the course of development, and even during routine maintenance
tasks. There are decisions to make, problems to investigate, code to ix, tests to run,
and documents to write. Typically, there are too many items to keep in your head,
and jotting notes on scraps of paper, frankly, does not work well when there are
many issues or when several people are involved in a project.

Keep an active log of items in a spreadsheet, in Team Room documents, or even in
outline form with a word processor. Read and prioritize this list regularly. Review
items with your project team, manager, and customer as appropriate. The issues log
will help to keep you focused and moving forward. Fewer issues will fall through
the cracks.

Track information about each issue in a consistent way. Keep enough information
about each item to answer questions that arise, but do not overdo it. Create the
issues log which you need for your project. Here are a few key items which might be
tracked. Add to or subtract from this list as appropriate to your needs:

•	 Item number

•	 Title or subject

•	 Status

•	 Short description

•	 Date reported

•	 Who reported

•	 Dependencies

•	 Assigned developer

•	 Assigned tester

•	 Comments

Chapter 1

[27]

Improve the application under the covers
Customers are concerned with look and feel and with functionality. These are aspects
of an application which they can see and about which they may have opinions or
demands. They assume that applications will perform well and lawlessly, and
therefore considerations like good response time and effective error trapping are
unlikely to make it to their requirements list.

However, these are things which developers should care about in great detail. A
good looking, feature-rich application which is slow or which hangs, or displays
many error messages, such an application is a failure.

Here are some things to consider. Each of these topics is elaborated in later chapters.

Enhance performance wherever possible
Web applications require signiicantly more server and network resources
than do comparable Notes applications. Reduce this performance hit by using
strategies known to help. For example, use Ajax calls to refresh a pick list rather
than re-compute the entire form with a round-trip to the server. Compile a list of
performance techniques and implement them.

Add error trapping
Nothing is more annoying than seeing an HTTP 500 error displayed in a browser.
This and related error messages are generic; they provide little value in determining
what went wrong. Aggravated, the user calls the Help Desk to complain, a ticket is
issued, the developer interrupts his current task to attend to the user's problem.

Thorough testing will uncover the majority of error conditions, but never all of
them. Again, compile a list of error handling techniques and implement them
in your applications.

Add diagnostic and repair aids
Views that display data in ways that simplify troubleshooting can be invaluable
when tracking down obscure data issues. Small agents that repair various problems
within documents can also be added. It might be best to allow these tools to be seen
and used only by the application administrators and developers.

Preparation and Habits

[28]

Provide the customer with a summary of
changes
Prior to or coincident with rolling a new application or a design upgrade to
production, prepare a somewhat detailed Summary of Changes for the new
version or release. In this document, identify for each change the following things:

•	 An identiier and a title
•	 A statement of the customer requirement fulilled by the change
•	 The design elements that were added or modiied
•	 Screenshots before and after if appropriate

•	 Other notes

•	 Test that were run to verify the change

The Summary of Changes is the inal report of the project, a clear statement of what
was done. You may wish to include a list of suggestions for the next design upgrade.

Documenting your applications
Application documentation provides a more detailed record of what was done and
why. Months or years later, you will appreciate such notes when you revisit the code
to make modiications. And it is certainly a professional courtesy to other developers
to provide insight about why some aspect of an application works the way it does.

There may be an organizational requirement to document applications in a certain
way, and if so, do so. Consider going beyond the minimum requirements. In any
case, leave tracks.

Add comments to the code
If you took a programming class somewhere along the way, you were told to add
comments to your code. This admonition is still valid today. Comment complex or
obscure code in a plain way so that future developers can more readily grasp the
associated technical implementation.

Every agent should include a summary of what it does, how it is called, what calls
it makes, and how and when it was revised. A complex @ formula or JavaScript
function should likewise include statements describing what it does. Sometimes
hidden text placed on forms also can be helpful.

Chapter 1

[29]

Create internal developer notes
Developers generally write too little documentation, and what is written is often
found in documents external to the Notes application itself. Months or years later, no
one can ind the external documentation. A new developer begins discovery of the
application all over again.

Instead of writing external documents, use the Page design element to record
developer documentation. Maintain a consistent naming scheme, and identify them
as 'Developer Notes' in the Comment ield on the Page Info tab of Page Properties.
Keep these pages within the design template. They will take little space, and they
will always be there for the next developer.

Add release notes to the About document
In addition to the application owner and developer contact information, an
application's About document often includes release notes. Details about a speciic
release can be included in a separate collapsible section that lists changed elements.

Consider organizing release notes in an outline form. Here is a sample:

•	 Summary of Changes

•	 Developer(s)

•	 Database as a whole

•	 Framesets

•	 Pages

•	 Forms, and so on

Add numbered or bulleted items in each section with speciic information about the
changed design elements.

Include external documentation in the design as ile
resources
Word processing documents, spreadsheets, presentations, and so on created during
the course of a project can be imported into the design template as ile resources. In
this way, relevant external documents are never lost and remain with the design for
future reference.

Preparation and Habits

[30]

Create user-oriented help pages
Application discovery is a great time to make notes about how an application works.
If little or no useful user-oriented documentation exists, consider saving notes and
screenshots on pages in a separate user help database. Work out a simple, common
navigational menu for each page. Once the collection of pages is complete, deploy it
for customer use as well as your own.

Summary
Application development is about more than mastering a set of technical skills. It is
also about you, the developer, and your customers. It involves strategies for staying
organized, gathering information and requirements, estimating how long work
will take, and reporting progress. It also involves going the extra mile to enhance
performance, harden applications against unexpected failures, and documenting
what you did and why. This chapter has provided general suggestions which may be
applied to any development project.

Design and Development
Strategies

An application enhancement or development task can be daunting depending upon
your experience and the size of the task. In practice Domino developers can play
several project roles: analyst, architect, programmer, coder, tester, technical writer,
and often database administrator, trainer, and help desk as well. New developers may
be assigned modest enhancement assignments while the more experienced tackle the
more challenging projects. But you may not have a choice in the matter; you may be
the only Domino developer in your organization and a part-time one at that.

Your goal is to align the application design with the business, to make users more
productive—more effective, accurate, and timely. The more you know about the
business jargon, processes, priorities, and problems, the better positioned you are to
interpret user requirements, and to offer suggestions for enhancing an application.

Your application should satisfy user requirements and launch as defect-free as
possible, as defects and errors impact productivity and create rework for users,
developers, administrators, and managers. Good planning, design, development,
and testing will ferret out most issues before the code reaches production.

Topics in this chapter focus upon general design and development considerations
which apply to most projects:

•	 Planning the design

•	 Applying standard practices

•	 Attending to human factors

•	 Using appropriate design elements and techniques

•	 Testing and promoting the design to production

Design and Development Strategies

[32]

Planning the design
Time spent planning means less time spent debugging and reworking the application
later on. Resist the "newbie" tendency to jump right to the programming. Take some
time to think, to write, to plan.

Identify your key user contacts and strike up relationships. Your customers will
clarify their requirements, offer suggestions, and weigh in on decisions about the
design. They will approach and test the application from different perspectives,
which will highlight issues you had not considered.

Understand the scope of the project
From the requirements that you have, determine what kind of project this is. Are
you changing the design of an existing application? Web-enabling an application? Or
crafting an entirely new design? The answer to this question will in part tell you how
much planning effort is required; the larger the task, the more planning that should
be done.

Classify the project and its requirements. Here is a straight-forward taxonomy:

•	 Bug ixes
•	 Modiications to existing features
•	 Feature addition or removal

•	 Web-enablement

•	 New design

Decompose each requirement into one or more units of work. A unit of work may
be quite limited, such as adding a ield to a form, or more complex such as revising
the way an application's search process works. It helps to think about each unit of
work as a feature or change involving one or more design elements. Subdividing
requirements this way helps to focus on one issue at a time.

How many changes are there? While you are assessing the requirements, set about
discovering the application. For each requirement, investigate which major design
elements are likely to be involved and what needs to be changed. Think about the
order in which you might handle each item; are there any dependencies? Think
about how you might test each change to assure that it does what it is supposed to
do. Take notes.

Chapter 2

[33]

Annotate the requirements document
It can be very helpful to restate and clarify each user requirement in a new working
document, your developer notes or the changes document. This annotated requirements
document should include the set of tasks you have identiied, the design elements
that should be reviewed and modiied, and the test plan.

If a requirement is extensive, or if the assignment involves designing a new
application, your planning must be much more extensive. The following list is
intended to illustrate the kinds of questions you should ask:

•	 How many new forms will there be? Containing what information?
•	 What new views are required with what columns?
•	 Upon launch, what will be displayed irst?
•	 How will users navigate between views?
•	 How will documents be created, edited, or deleted?
•	 What worklow is required?
•	 What roles are needed? With what privileges and responsibilities?
•	 Should security features be modiied in some way?
•	 How will required changes impact other parts of the application?
•	 Will data in existing documents need updating to support the changes?
•	 Will users require additional training?
•	 What types of documentation are required?

Sketch or mock up forms and pages, draw worklow diagrams, make lists of issues, jot
down any related notions or concerns. Of course all this writing takes time! But this is
the essence of planning, and planning will save you time over the life of the project.

Understand the worklow
The concept of worklow can be dificult to understand, even though all of us
routinely participate in worklow whenever we ill out a form or request a service.
Volumes have been written about process analysis and modeling, and it is not my
intent to do those subjects justice here.

In essence, worklow in a Domino context consists of a set of actions performed on
documents by people over a period of time. Documents themselves are often the end
product of a worklow process. But a document can also be a record of work that is
done external to the application; the state (or status) of a document mirrors the state
of the external work.

Design and Development Strategies

[34]

Work is initiated, assigned, performed, reviewed, and approved or rejected. A
worklow application that tracks tasks from initiation to completion will offer
some means of identifying the state of the work. It may also generate automated
notiications through e-mail and provide reports of one sort or another. How all of
this is instantiated in an application is up to the developer.

Here are some questions the answers to which will provide a general understanding
of the worklow in (or required of) an application:

•	 What is the business process which this application's worklow will support?
•	 Who uses the application? Are there classes of users or actors? What do

they do?
•	 Who originates or composes a document, and why?
•	 What is the life cycle of a document or task tracked by the application? In

what states can a document or task exist (for example, New, Assigned, In
Process, Approved, Complete)?

•	 What are the allowable sequence of states? What states can precede and
follow other states? What sequence of states is not allowed?

•	 What must happen for a document or task to move from one state to
another? What triggers a state change? What information must be recorded
or who must do what?

•	 What conditions must exist for a document or task to be considered
as complete?

Once you understand the gist of the worklow, drill down for additional information:

•	 What deined Domino groups are used or required? With what privileges?
What roles are assigned? Is anonymous access required?

•	 What actions do each role and group perform?
•	 How is the state of a document known? (for example, what status values

are used?)
•	 What agents are involved? Are they scheduled or triggered? What do they do

to which documents?
•	 Are users notiied that work has been assigned to them? Is anyone notiied

when a task is completed? How is this done?

Document your understanding of the application's worklow. Use the language that
your customers use; do not use unfamiliar terms or jargon, even if your words are
more "correct". Share your notes with your key contacts and ask for veriication that
the worklow processes work the way you think they do.

Chapter 2

[35]

Determine the need to access external
databases
Find out if the existing application or the new requirements rely upon an external
data source to feed data into the Domino application or to receive data from the
application. You may need to look into technologies like DECS, LEI, Notrix, Web
Services, and so on. You may also need to engage an expert in Oracle, DB2, or some
other database technology with which you are unfamiliar. These kinds of issues must
be factored into the overall plan.

Decide on one database or several
Probably a large majority of Domino applications consist of one NSF ile. But
applications exist that consist of more than one NSF ile, perhaps a few, perhaps
dozens of interoperating and interdependent components. If you are dealing with
an existing design, become familiar with the collection of components and how they
interoperate. If you are creating a design from scratch, consider how best to organize
the features. For example, you might architect an application with these NSF iles:

•	 Main application

•	 Coniguration and keywords database
•	 Log ile
•	 Archive database

Consider the pros and cons of splitting an application into separate iles. For
example, an application consisting of several NSF databases may be a bit harder to
manage, but it does facilitate multiple developers working in concert on different
pieces, and it may actually be simpler to introduce incremental changes since each
component is less complicated.

Review existing designs
IBM provides a few ready-made database templates which are usually installed
along with Notes and Domino. If you are new to working with templates, this is
a good way to practice creating databases with templates. And it is a good way to
review the capabilities of some basic out-of-the-box applications.

www.allitebooks.com

http://www.allitebooks.org

Design and Development Strategies

[36]

For the most part, the IBM templates are used to create containers for documents;
some, like Team Room, include a bit of worklow. Look at these templates
in particular:

•	 Document Library

•	 Domino Blog (may be located on a server)

•	 Personal Journal

•	 Team Room (may be located on a server)

Which templates are available to you and where they are located depends of course
upon your installation.

To create a new instance of an application from a template with the Notes client,
open the following dialog through the menu File | Application | New:

To identify the new application, perform the following steps:

1. Select the host computer that will house the application (your local
workstation or a server).

Chapter 2

[37]

2. Enter a title for the new application.

3. Enter a ilename (the ilename extension has to be .nsf).

4. Select a target directory or folder.

To identify the source template, perform the following:

1. Select a template server.

2. Select a template name.

3. Click on the OK button.

The new application is created.

You might ind suitable or inspiring templates on the Web. One popular site for
projects is http://www.openntf.org.

Copy the design of an existing application
Applications already deployed in your organization also can provide you with a
design which its—or nearly its—the requirements. Using an existing application
design as a starting point for building a similar application can save considerable
time and effort. If an existing application might satisfy the majority of customer
requirements, consider copying and reviewing that design with an eye towards
repurposing it.

Copying a design is relatively straightforward. You must have Editor or higher
access rights to the source application. Locate the application and bookmark it. Select
the bookmark and open the following dialog using the menu File | Application |
New Copy…:

Design and Development Strategies

[38]

Perform the following steps:

1. Select a target server.

2. Enter a title for the new application or template.

3. Enter a ilename (the ile extension should be .nsf for an application or .ntf
for a template).

4. Select a target directory or folder.

5. Select Application design only.

6. Uncheck Access Control List.

7. Click on the OK button.

The design of the existing application is extracted and copied into the new
"template" ile.

There is a downside to repurposing existing designs. Too often unused design
elements, features, and code remain in the new template, cluttering it up, and
consuming resources. This "developer debris" can linger for years and migrate from
design to design, serving no purpose. Future developers will puzzle over these
abandoned elements until someone takes the time to delete them. Take some time
towards the end of the development cycle to clear out unused elements.

Evaluate the security needs of the application
Domino security is multi-layered. Many options exist to protect the database,
the documents, and the design elements within the application. Discuss security
concerns and requirements with your customers early in the design phase of the
project. In a new design, or a major redesign, building in the necessary controls early
in development will save considerable rework later on. Here are some questions that
can help to clarify security needs. Some of these questions may have been answered
during your assessment of the application's worklow:

•	 What classes of users will there be? Administrators, editors, authors, readers?
•	 What privileges and restrictions will apply to each class?
•	 Are there any features which should be restricted or denied to classes

of users?
•	 Who can create new documents in the database?
•	 What data should be captured and then never changed?
•	 Are there any restrictions about who can edit certain ields on forms?
•	 Are there ields or text on forms which should be hidden from certain users?

Chapter 2

[39]

•	 What restrictions are there on who can perform the worklow actions?
•	 Are there any buttons, menu items, views, reports, or help pages that should

be restricted in some way?

These kinds of issues should be discussed early in the project and then reconirmed
during development and testing. Getting security right is very important.

Using consistent naming conventions
If you have only a few things to keep track of—your children, for example—then
it probably makes little sense to worry about a consistent naming strategy. But
as a developer, you will create or modify hundreds or even thousands of objects
(ields, forms, views, roles, databases) over a period of years. Consistent naming
conventions will help you to reduce errors and to be more productive.

The name of a ile or design element should convey some human meaning about
its purpose. Elements which belong together should be named in some common
manner. If a design element provides a space for comments, use it to further clarify
the purpose of the element.

Name databases so that URLs are easy to
remember
Meaningful and non-cryptic URLs are easier to remember and less likely to be
mistyped by users. When you create an application, use simple and meaningful
titles and ilenames. Filenames like the following are easier to remember:

•	 Resumes.nsf

•	 ProcessingErrors.nsf

•	 TechNotes.nsf

•	 YearEnd2012.nsf

Using a consistent directory structure will also make URLs easier to use:

•	 http://prod01.mycompany.com/ENG/TechNotes.nsf

•	 http://prod01.mycompany.com/HR/Resumes.nsf

•	 http://prod01.mycompany.com/IT/ProcessingErrors.nsf

•	 http://prod01.mycompany.com/FIN/YearEnd2012.nsf

Design and Development Strategies

[40]

Use standard versioning for design templates
It is good practice to archive a copy of the current production design template before
beginning to modify that design. If code management tools are installed in your
organization, use them and adhere to local development standards. However, if you
are on your own to handle your design templates, then use a consistent procedure
for managing them. For example, archive templates in an organized fashion in a
restricted location on a server that is routinely backed up to an offsite location.

Keep copies of the previous design(s). There will be times when you will want to
review how something was done before you changed it. And in the case of a major
problem with the new design, it may be required to reapply the old design to the
staging or production databases.

A simple naming strategy adds a version number to the title and to the ilename of
a new template and a new development database. This version identiier should be
recorded with the design's release notes, perhaps in the application's About document.

In this example, the application is entitled "ABC Change Management". Using a
speciic versioning scheme, the following titles and iles might exist. (Files with the
ntf extension are templates; iles with the nsf extension are applications).

The current and some previous design templates may be stored on the development
server. By way of illustration, here is a set of templates; the application titles are
followed by the ilenames (title / ile name):

ABC Change Management 2.3 Template / ABCChangeManagement23.ntf

ABC Change Management 2.4 Template / ABCChangeManagement24.ntf

ABC Change Management 2.5 Template / ABCChangeManagement25.ntf

ABC Change Management 2.6 Template / ABCChangeManagement26.ntf

 Also on the development server, one or two test databases might exist; the
database ilenames are matched easily with the associated templates. Consistency
in naming is important:

ABC Change Management 2.5 / ABCChangeManagement25.nsf

ABC Change Management 2.6 / ABCChangeManagement26.nsf

When a design moves from a development server to a staging server where the users
will test the application, the version identiier should be removed. This enables a user
to establish a single URL bookmark that will still work even as the design is upgraded.

ABC Change Management / ABCChangeManagement.nsf

Chapter 2

[41]

On the production server, the title, directory, and ilename mirror those on the
staging server. Again, this scheme simpliies a user's transition from testing to
production.

ABC Change Management / ABCChangeManagement.nsf

The template from the development server is applied to the existing database on the
staging server. After user acceptance testing is complete, the template is then applied
to the production server. If for any reason the application's design must be rolled
back, the previous design template is still available on the development server.

This example is intended to illustrate how templates can be easily versioned.
Other factors should be taken into account when setting up your code
management practice.

Keep in mind that design elements on the development server are signed by the
developer who last updates them. Designs migrated to staging and production
servers are generally signed with a speciic organizational signing ID by the Domino
administrator. It is not a good practice for users to run code signed by developers.

Use standard versioning for major design
elements
Enhancing an existing application generally means changing one or more major
design elements, perhaps a form or view or an agent. In addition to versioning
the design template, developers should consider versioning design elements
within a template.

A simple versioning strategy for major design elements would include the
following steps:

1. Make a copy of the design element from the Work Pane or Design List.

2. Open the copied element and then open Properties.

3. Rename the copy to include the date the copy was last changed.

4. Rename the Alias, if one exists.

5. Add a Comment indicating that the element can be deleted in the future.

6. Uncheck all Display options.

7. Save and close the element.

8. Hide the design element from all clients from the Work Pane or Design List.

Design and Development Strategies

[42]

Set most of these attributes on the Info tab of Properties. For a form, here's what it
might look like:

To hide a design element, follow these steps:

1. Select the element in the Work Pane or Design List.

2. Open Design Properties from the context menu.

3. Hide the element from the all clients on the Design tab.

Chapter 2

[43]

In this example, the Customer form was versioned. It was last changed on September
25, 2009. The old form is hidden from all clients, while the new form is available on
the Web. A comment indicates that the old form can be deleted in the future:

Use unique names for all major design
elements
If two major design elements share a common name, Domino may select the wrong
element, leading to incorrect and confusing results.

In the following example, a view and a form are each named XML1. The intent of the
URL is to link to an attachment stored in a document.

Opening the document from the XML1 view was successful, but then opening
the attachment in that document was unsuccessful:
http://server/path/database.nsf/XML1/document-unid/$file/filename.ext.

The browser displayed an error message: HTTP 500.

The Domino log entry contained an error message:
HTTP Web Server: Lotus Notes Exception – Note Item not Found.

Changing the name of the view to XML1vw solved the problem:
http://server/path/database.nsf/XML1vw/document-unid/$file/filename.

ext.

Uniquely naming all major design elements will avoid some rather
obscure problems.

Name design elements sensibly
Design element names should relect their purpose. These element names
convey meaning:

•	 AttendanceRecord (a form)

•	 Resumes by Skill (a view)

•	 ReportOverdueTasks (an agent)

Design and Development Strategies

[44]

These element names are less meaningful:

•	 HRATT1 (a form)

•	 Skills (a view)

•	 agent007 (an agent)

Using Title Case (capitalizing each word within a name) is a good way to make
design elements easier to read. Compare these two names:

•	 CreatedOnDate

•	 createdondate

Another convention recommends including a preix or sufix which identiies the
element type in the element's alias. Consider these aliases for a form, page, and view:

•	 foAttendanceRecord

•	 pgIntroduction

•	 vwResumesBySkill

Name form ields consistently and appropriately
Admittedly, it is dificult to plan for all the ields that may be required on a form. As
designs evolve, the number of ields seems to expand. Be kind to the next developer
and try to name ields in an orderly manner and with common sense.

If an application contains several forms or subforms, and those elements collect the
same information, then name the ields the same. Views which include documents
from multiple forms will be easier to create and will generally perform better. But if
there is no commonality, consider naming the ields on a speciic form or subform in
a way that identiies those ields as belonging together. An "Action Item" form might
contain ields named such as the following:

•	 AISubject

•	 AIProblemText

•	 AIAssignee

Sometimes it is desirable to allow one class of users to edit a ield while another class
of users can only view the information. One solution to this problem is to provide the
same information in two ields, one editable and one computed. Name these ields in
a manner that clearly indicates their relationship:

•	 DueDate

•	 DueDateREAD or DueDateDISPLAY

Chapter 2

[45]

As with design element names in general, Title Case enhances the readability of the
ield names.

Create different versions of design elements
for Notes and the Web
At one time it was estimated that 70-80% of Notes functionality translated well to
the Web. Personally, I think that estimate is a bit high, especially for earlier versions
of Domino. Design elements (forms, pages, views) can be crafted to look reasonably
good both in the Notes client and in web browsers, but at some point, particularly
with regard to styling, you simply cannot achieve what you want to achieve with
a single dual-purpose design element. When HTML, CSS, and JavaScript are fully
supported by the Notes client, this issue may become moot. Until then you may want
to develop two versions of a design element, one for Notes and one for the Web, to
achieve the results you desire.

Beyond styling, other issues should be considered, such as:

•	 Certain UI features and techniques are available only in one environment or
the other, but not both.

•	 Navigation between views and forms in Notes is relatively simple, while on
the Web, somewhat more complex techniques are required.

•	 The WYSIWYG styling techniques used in the Designer to style for Notes
often take precedence over CSS rules attached to those same elements when
they are viewed on the Web.

•	 Techniques used in agents vary somewhat depending upon whether the
document context is Notes or a browser.

Simply create two forms (or views, and so on) with the same name. Use Design
Properties to hide one form from Notes and the other from web browsers. In this
example, two forms share the same name. Comments remind us which form is for
the Web and which is for Notes:

www.allitebooks.com

http://www.allitebooks.org

Design and Development Strategies

[46]

You may be tempted to complete a development task for Notes, which is often the
simpler environment to develop within, and then to see how the design works on
the Web. I would recommend working both sets of enhancements more or less at the
same time.

For example, if you have several forms and views to update, start with one form and
make sure that it works well in both environments. You may ind that some of your
basic assumptions about how a feature will translate to the Web just don't work out.
Lessons learned earlier in a project can shorten the development effort for similar
design elements later on.

Name Domino groups and roles appropriately
Domino groups are deined in the Domino directory. Each group contains a list
of Notes IDs. When a group name is added to an application's ACL, individuals
included in the group are permitted access to the application; privileges group
members receive are also deined in the ACL. Creating a group is a task for the
Domino administrator. Naming that group may be a task for you, the developer.

Consider deining unique Domino groups for each application or suite of related
applications. Use names that can be readily identiied with the application they
support. Use a consistent naming convention. For a "Help Desk" application, the
following names might be appropriate:

•	 HelpDeskAdmins

•	 HelpDeskConsultants

•	 HelpDeskUsers

•	 HelpDeskManagers

Use the Comments ield in a Domino Directory group document to provide more
information about the use of the group, especially which applications use it:

Chapter 2

[47]

Document the groups associated with an application in the application's About or
Using documents. Down the road there will be fewer questions about which groups
belong to which applications.

Use Domino groups and roles appropriately
In general, groups should be added to the ACL of an application to specify who
can access it and with what privileges and roles. Rarely should a group name be
hardwired into a design. Use roles instead, which are considerably more lexible.
Deine roles in the ACL and assign one or more roles to the groups. In your design
formulas and elsewhere, reference the roles.

Name roles consistent with other applications
If at all possible, deine roles within an application in a manner which is consistent
with the way roles are named and used in other applications. It simply makes the
application harder to understand if the same kinds of privileges and authorities are
assigned to the "Administrator" role in one application and to the "Chief" or "Lead",
or "Director" roles in other applications. Be consistent.

Attending to human factor issues
Application usability considerations were noted in Chapter 1, Preparation and Habits.
Consideration should be given also to other aspects of your applications that will
make them easier to use or to change later on.

Create clean and lexible designs
Keep in mind that your application will likely be enhanced or modiied in some way
in the future. If your design is convoluted and uses clever but dificult to understand
algorithms or techniques, you do a disservice to future developers. Cleaner, more
straight-forward designs are easy enough to create and certainly easier to rework.

As you learned in your irst programming class, comment your code and otherwise
document it.

Use shared elements like subforms, image resources, and script libraries to minimize
the number of design elements that may have to be modiied in the future.

Limit the scope of the JavaScript functions, and LotusScript functions and
subroutines. Simpler functions and subroutines are easier to understand and repair
or change. On the other hand, creating dozens and dozens of simple functions as
primitives may not be a good choice either. Achieving a balance here is important.

Design and Development Strategies

[48]

Remove developer debris: unused design elements and sections of code that are
commented-out.

Design for speciic display characteristics
It can be challenging to craft applications that work optimally for all users
because computer monitors differ, personal computer operating systems differ,
and network speeds differ. With Web applications, screen resolution is certainly
an important issue.

When this is being written, the most common screen resolution seen on the Web is
1024 x 768 pixels, with 1280 x 800 and 1280 x 1024 in second and third place, both
with respectable percentages of Web trafic. One website that tracks these and other
Web trends is the NetmarketShare website at http://marketshare.hitslink.com.

If the application is intended for speciic devices—handheld devices or speciic
screen sizes—then use those speciications. But if the target screen is unknown,
adopt organizational standards or develop towards the most currently used screen
resolution.

You might experiment a bit with liquid designs (using Cascading Style Sheets) that
can work well as screen resolutions change, but sometimes Notes elements do not
low or scale the way you might want them to regardless of what you do.

In previous years, developers were more concerned about color palettes, since many
personal systems displayed only 256 colors, and the quality of displayed images was
impacted both by how they were created and how they rendered on the screen. Of
course, perceived color is also determined by the quality of the computer monitor,
something over which the developer has no control.

Although color may not be of as much concern as it once was, two color palettes are
available to you, the default Notes palette and the "Web-safe" Web palette which is
intended to display colors that should work well in Web pages. If you are having
trouble inding the exact color that a previous developer applied to an element, check
the Web palette.

Enable the Web color palette with User Preferences. In Notes 8, the Preferences
dialog is opened from the menu File | Preferences.

On the Basic Notes Client Coniguration tab, in the Additional options list, check
the Use Web palette option:

Chapter 2

[49]

The Web palette then displays whenever you use the color picker:

Design for accessibility
In reviewing the application requirements or in discussions with the intended users,
you may become aware of individuals who might have dificulty using a typical
web application. Such individuals may not see well or may be color-blind; they may
have dificulty reading or making sense of text; they may not easily understand the
local language. These and other challenging personal circumstances can inluence the
design choices you make. For example, you might decide to use icons as well as text
for certain features, to use larger fonts for onscreen text, or to utilize special HTML
tags and attributes.

Whether due to knowledge of your users or due to laws and regulations in your
service area, if you ind yourself faced with the need to make a design more
accessible, delve more deeply into the subject during the design phase of the
project. As a starting point, take a look at the W3C Recommendation,
Web Content Accessibility Guidelines 2.0 at
http://www.w3.org/TR/WCAG20/.

Design and Development Strategies

[50]

You might also look through IBM's accessibility website at
http://www-03.ibm.com/able/.

Add titles to pages, forms, and framesets
A frameset title overrides the titles of embedded elements, but it is a good practice
to provide a title for every major design element that supports one. Titles dress up
the browser title bar. The irst following title bar shows the default, a basic URL. The
second title bar displays a more pleasing title:

Optimize the use of images
Logos and graphics are good for website or application branding, and sometimes for
location awareness within a complex application. Used correctly, images dress up a
page pleasantly and facilitate user productivity. But images are costly in terms of the
resources required to create, store, manipulate, and download them. On the Web,
especially with a slower Internet connection, image-heavy pages can be very slow
to load.

Use images sparingly. Unless there is a good reason to do otherwise, use smaller,
well thought out graphics that serve a meaningful and obvious purpose. Use
organizationally approved images if they exist. Rarely use large graphics.

Do not downsize images within Designer. Doing so does not really reduce the size
of images within the application, and transmitting forms or pages containing those
images to a browser will take longer than it has to. With GIMP or another image
manipulation tool, optimize photos and graphics by cropping and rescaling them
before importing them into a template.

Some numbers might be interesting here. Compare the results of manipulating a
1600 x 1199 JPG photograph both inside and outside Designer. The images were
inserted into a page.

Page with full-sized photo 214,177 bytes

Page with photo resized by Designer to 25% 214,179 bytes

Page with photo resized by GIMP to 25% 103,353 bytes

Chapter 2

[51]

The second and third pages rendered identically in the browser, but as you can see,
fewer than half the bytes were transmitted to the browser in the third case to achieve
the exact same result.

Use image resources instead of pasted images
When Domino serves out pages with pasted or embedded images, those images
must be converted to GIF or JPG images by the server before transmission to a
browser; this takes time and resources. Import an image into a template as an image
resource and then insert that resource into pages or forms that require it. Pasting the
same image directly onto a number of pages or forms simply inlates the size of the
template and slows down the overall responsiveness of the application.

Load optimized images into your design as image resources:

Design and Development Strategies

[52]

Using appropriate design elements and
techniques
Understand that not all design elements work on the Web. Native @Prompt or
@PickList functions, for example, do not translate to the Web. Refer to Designer
Help for a list of @Functions and @Commands that do not translate to the Web.

On the other hand, some Web techniques do not work within Notes. For example, if
you build a process which relies on CGI variables, that process will not work in the
Notes client.

Consider alternate design strategies
After your irst project or two, you will begin to see that there are usually several
ways to build a feature. Designer enables you to use several coding and mark up
languages, several kinds of images, several ways to control layout, several strategies
for validating input, and so on. You are free to mix and match techniques within
an application.

Topics in later chapters often suggest alternate ways of doing something. Typically
every technique offers beneits and limitations. As you dive into development,
consider alternate strategies; experiment with different solutions in your sandbox
applications. Do not code something a certain way just to be clever. Keep in
mind each idea's impact on the performance, usability, and maintainability of the
application over time.

Learn the Properties dialog box
Only if you are a fresh newbie in the world of Domino development should you
have to be told to learn to use the Properties dialog box, also sometimes called the
Infobox. A complicated control, whose style and contents change with each version
of Domino, this is the irst place you should look to set properties and otherwise
manipulate design elements.

Use hide-when formulas
If you have not worked much with hide-when formulas, take some time to learn
what they are and how they work. Such formulas, which can be quite complex,
determine whether or not design elements like buttons or guidance text display on
the screen. Topics in later chapters provide examples of how using this feature can
solve many problems.

Chapter 2

[53]

Avoid using the Java applets
Java applets are a convenience, but they can be slow to initialize and problematic to
work with. The performance of the View applet, for example, can degrade with large
views. And any of the applets may not initialize properly depending upon a user's
JVM, network proxy settings, and so on. Troubleshooting such issues can be dificult.

Designs that incorporate the Java applets require extensive testing in the users'
environment. If a design works well without them, great! If you really do need their
functionality on the Web, then test and test often.

Avoid server refresh round trips
Some application elements that work well and quickly in the Notes environment
are annoying and problematic on the Web. For example, if a ield on a form is set to
refresh the form whenever the ield's value is changed, then the form is refreshed
from the server. The changed value is transmitted to the server; the server re-computes
the form, translates the form to HTML, and sends the result back to the browser; the
browser receives and renders the page.

There is a noticeable delay during the server round trip, and then, to make matters
worse, the form is repositioned on the screen, usually with the changed ield at the
top of the browser window, and text recently entered into some ields may be lost.
Behavior like this gives Domino applications a bad reputation.

In applications designed with XPages, this server refresh behavior should be a thing
of the past. Existing applications that are not being rewritten to take advantage of
the newer functionality can be modiied to use Ajax and other JavaScript-based
techniques with dramatic, customer-pleasing results. Topics in later chapters discuss
some of these strategies.

Conform to HTML standards
Best practices recommend that well-formed pages be coded properly. Web browsers
are often forgiving of HTML coding errors, such as missing end tags. The version of
Domino serving out your application may not produce standards-compliant HTML,
but you should assure that any HTML you code is written correctly.

Abide by the XHTML standards to minimize problems that may be encountered
with current and future browsers. Attend to the following guidelines:

•	 Element names should be written in lower case.

•	 Element attributes should be quoted.

•	 Element end tags should be used if they exist.

Design and Development Strategies

[54]

Avoid using non-standard, deprecated, and invalid
HTML tags
Non-standard HTML tags like <blink> and <marquee> provided interesting
behavior in the early days of Web designing, but they are now obsolete and may
not be supported by all browsers.

Deprecated HTML tags like <center>, , and <u> are those tags that were
at one time part of the standards but are now out-of-favor and should not be used.
Although browsers do render these elements today, in the long term they may
become invalid and dropped from support altogether. If you ind these tags in the
older applications—and you will—take steps to remove them.

Avoid using HTML formatting tags
Still seen on forms and pages in older templates are HTML formatting tags,
especially <p>,
, and . At one time these tags were used to achieve certain
effects like blank lines, blank columns, and indenting.

These older techniques clutter up pages and forms in the Designer and can actually
limit the styling available with CSS. So remove all of these formatting tags or at least
as many as possible. Remove blank table rows and columns. Use CSS classes and
other styling techniques instead. Topics in the later chapters illustrate how to use
CSS within a design.

Use coniguration documents
Not uncommonly, it is desirable to change certain global aspects of an application
without changing the design. This is true, for example, when the same template
is used to create several instances of an application for different departments or
groups. Instance-speciic information might include items such as the following:

•	 Displayable title for forms

•	 Enabled and disabled features

•	 Options for dialog lists

•	 Application messages

•	 URLs of related applications (for example, an archive or agent log)

•	 URLs of a departmental website or external support sites

•	 Contact information

Chapter 2

[55]

Designing an application with hard-coded, instance-speciic information would
result in a new template for each instance of an application. Another (bad) alternative
is to apply design changes directly to an application instance with Designer. Both of
these options require a developer to make changes, and neither option enables an
application administrator to handle routine coniguration tasks.

A common technique implemented to address this issue is to create an application
coniguration document or application proile which contains key instance-speciic
information. Formulas on pages and forms then look up values on this document
as needed.

To create a coniguration document, irst create the coniguration form. Follow these
general steps:

1. Create a form containing a table with two or three columns; one column
contains the ields and the other column(s) contain explanations and
examples of required information.

2. Secure the form with a Readers ield, enabling all users to access the values,
and an Authors ield that allows only the application administrators (for
example, those assigned the [Admin] role) to edit ields on the form.

3. Alternatively, allow only the [Admin] role to edit the ields; display
read-only ields to non-privileged users.

Create a coniguration view that selects the coniguration document by form name:

•	 While not strictly necessary, column one should contain a key value, such as
the word 'Coniguration'. This key value is referenced by lookup formulas.

•	 Sort column one in ascending order. Even though there may only ever
be one application coniguration document, the column must be sorted
for @DbLookup formulas.

•	 Optionally, add columns to the view to display values from the coniguration
document. This enables coniguration values to be selected according to
column number, which is a bit faster than retrieving those values from the
coniguration document itself. On the other hand, once the coniguration
view columns are set, it becomes problematic to rearrange the columns if
@DbLookup formulas retrieve data by column number.

Pages and forms access coniguration document ield values with
@DbLookup formulas.

www.allitebooks.com

http://www.allitebooks.org

Design and Development Strategies

[56]

LotusScript agents access coniguration document ield values with code such as the
following. In this example, the view is named ConfigurationView:

Dim session As New NotesSession

Dim db As NotesDatabase

Dim configView as NotesView

Dim configDoc as NotesDocument

Dim stringVariable as String 'depends on field type

Set db = session.CurrentDatabase

Set configView = db.GetView("ConfigurationView")

Set configDoc = configView.GetFirstDocument

stringVariable = configDoc.fieldname(0) 'use actual field name

If there is no coniguration view, use code similar to the following:

Dim session As New NoteSession

Dim db As NotesDatabase

Dim dc As NotesDocumentCollection

Dim configDoc as NotesDocument

Dim formula As String

Dim stringVariable as String 'depends on field type

Set db = session.CurrentDatabase

formula = "Form=""Configuration"""

Set dc = db.Search(formula,Nothing,0)

Set configDoc = dc.GetFirstDocument

stringVariable = configDoc.fieldname(0) 'use actual field name

In addition to a single application coniguration document, there also may be a
need for multiple coniguration-like documents or proiles that describe keywords,
processes, organizations, or worklow rules. These "behind the scenes" documents
are typically editable only by the application's administrator or the developer.

Developer testing
As you develop, you will continually test the design as you implement features
and make other changes in accordance with the requirements. At the end of the
development phase, and before you turn the application over for user acceptance
testing, spend some time seriously challenging the revised application. See if you
can break it.

Chapter 2

[57]

Add diagnostic and repair tools
Especially for existing applications with which you are unfamiliar, create some
diagnostic and repair tools that do not interfere with or depend upon any functional
components. For example, views that display documents in ways that help you to
understand the data can be extremely helpful during development and testing, and
also afterward when the design is in production. If test cases fail to produce expected
results, diagnostic views can help you locate incorrect documents and provide
insight into what went wrong.

If you are aware of data errors which exist in some of the documents, code some
agents to repair those documents. You may want to restrict these views and repair
tools to users with the [Admin] or [Developer] roles. Topics in later chapters provide
additional suggestions and examples.

Set up test IDs
It is important to set up two or more Tester IDs with which you can challenge the
application. As the developer, you have Manager or Designer access to the application
on the development server. These higher privileges enable to you to do things in the
application that someone with Author access, for example, is not able to do. If you only
test the application only with elevated privileges, you will likely miss errors.

Use the Tester IDs to simulate the end users. Make one Tester an application
administrator, and assign to that ID the [Admin] or other privileged roles. Make
another Tester a regular user who will create documents and participate in the
worklow. If other real users are authorized only Reader access in the application,
then set up a Tester ID as a reader. Your goal is to work with the application in
exactly the same ways as would all your classes of users.

Test with browsers used by your users
You may work in an organization which restricts the browsers that employees
can use. This is good, as it limits the amount of testing you should do. But if the
organization allows many different browsers, and several versions of each browser,
then the testing phase is that much more complicated.

While the situation is getting better, all browsers do not render pages identically, nor
do they always support JavaScript or CSS consistently. The only way to determine if
your application will work satisfactorily for all end users is to test it with a number
of browsers.

Design and Development Strategies

[58]

Find out which browsers and which versions of those browsers are installed in the
organization. Then set up virtual machines or individual workstations such that each
testing station provides a different browser. Ideally, you should test each role with
each browser.

Clear the browser cache
It may seem a bit odd to include a comment here about clearing the browser cache,
but I have found, both in development and in QA testing, that clearing the browser
cache solves a lot of puzzles. Clear the cache frequently, especially if you are
recoding CSS or JavaScript functions. Nothing is more frustrating than puzzling over
why an obvious CSS rule change does not work, only to ind that clearing the cache
removed the old rule so that the new rule can do its magic.

Promoting the design from testing to
production
An experienced QA Tester can be invaluable to your project. Engage one if possible
to challenge your application before you turn it over for customer testing.

Once the application is turned over for customer testing, engage your users early and
often to discuss progress and indings. Several customers are better than one. They
will discover things you don't ind because they will challenge the application in
ways you did not consider.

Provide your testers with test scripts and suggestions appropriate to speciic design
changes or features. Remind them that only after they sign off can the new design
move to production.

Use a staging server for user acceptance
testing
A staging server should be conigured as if it were a full production server. You and
your customers should have the same privileges on the staging server as you do on
the production server, no more, no less. Identical privileges and conditions will tend
to root out many residual problems.

Take care of scheduled agents. Understand what they do and what will happen
when they ire off. If e-mail notiications are automatically sent out, make sure
recipients are alerted to the possibility of test messages to which they need
not respond.

Chapter 2

[59]

Segregate administrative and developer
duties
It is a considered a best practice to segregate Domino administrator and Domino
developer duties. Developers build applications and work with data issues.
Administrators control the servers and the introduction of design changes into
production. Segregation of duties pleases the auditors and the security professionals.

At the same time, it is very helpful if developers understand what administrators
do, and vice versa. Developers with the chance to administer a development server
should take that opportunity to learn as much as they can about what the other half
of the Domino team does for a living.

Request that templates be signed by an authorized
signing ID
A new or revised template should be signed by an authorized signing ID set up for
that purpose. During development, every design element saved by the developer
is signed with the developer's ID. Those signatures should be changed when the
application design rolls over to the staging server, and "signing the design" is one of
those tasks generally delegated to the Domino administrators.

When using the Notes client, the signing ID is allowed, through the client's Execution
Control List or the ECL, to perform various actions on behalf of the applications. On
a Domino server, the signing ID is often allowed to run scheduled agents, so when
an application ires off an agent in the middle of the night, it runs with the authority
of the signing ID.

Depending upon how the developer deines them in a web application, agents may
run as the signing ID or as the currently active web user. If agents run with the
authority of the signing ID, then that ID should be authorized to the application
through its ACL.

Understand how templates are applied to
production applications
The Designer task runs at night and updates all applications on the server that are
associated with speciic master templates. In this way, applying a new design to
several databases can be accomplished with a minimum of human intervention.

Forms and Pages
A web-enablement or application modernization project should probably start
by considering what can be done to update forms and pages. As you familiarize
yourself with an application assigned to you, you may identify any number of
aspects that could be done better. Some of those aspects have to do with look of the
application, the fonts used, the color schemes, how ields are placed on the forms,
and so on. You may notice other issues, such as lack of validation for a ield, poorly
stated error messages, or a less-than-contemporary navigational strategy.

Domino Designer provides many techniques for creating and styling forms and
pages within an application. Unfortunately, there are times when design strategies
that work well in Notes work less-well on the Web. And the reverse is also true;
some techniques are very suitable for the Web, but fall short (or are unsupported) in
the Notes client.

This chapter addresses selected issues and problems you may encounter while
crafting forms and pages for the Web. In some cases, several ways to do the same
thing are presented, not necessarily because all techniques are equally good, but
because you may run into these strategies as you root around in older applications.
Older applications naturally would use older techniques, and which techniques were
used was generally due to the preferences and knowledge of previous developers.
If you come across an unfamiliar way of doing something, ask yourself whether
you know something those previous developers did not know, or did they know
something you don't know.

Topics in this chapter focus upon design and development considerations for forms
and pages. Keep in mind the primary difference between a form and a page—forms
can contain ields into which information can be entered, and pages do not. The
following topics are covered in this chapter:

•	 Setting appropriate properties

•	 Using the rendered source

Forms and Pages

[62]

•	 Editing and saving documents (forms only)

•	 Improving layout

•	 Using computed text

•	 Using hidden ields
•	 Adding HTML tags

•	 Creating pseudo action bars

Setting properties appropriately
A few key properties affect the way Domino generates forms and pages. Setting these
properties correctly for your application is important, since setting them incorrectly
can result in wasted time spent tracking down seemingly obscure problems.

Set the content type (MIME) property
Forms and pages should be identiied regarding the kind of content contained in
them because Domino generates different HTML code (in a browser, the "source")
depending upon how the content type is set. Specifying the content type is most
important when creating pages that contain CSS, JavaScript, or something even
more exotic.

Set the Content type on the form Defaults tab or the page Info tab of the
appropriate Properties.

For most forms, the default Notes should be ine.

For a form or page containing only HTML, set the Content type to HTML. Forms
set to HTML that include Designer-inserted ields generate an HTTP 500 error when
opened for edit. You may need to code your own <input> tags (to represent the
ields) or convert the ields to HTML.

Chapter 3

[63]

The following screenshot shows the setting for a page containing just CSS rules:

The following screenshot shows the setting for a page containing just JavaScript:

Take full control with content type HTML
Sometimes the HTML for a page already exists external to your Domino application;
you can copy that HTML onto a page element as is. And of course, you can write
your own page completely in HTML.

For pages that contain just HTML (and perhaps some computed text), you can use
either the Notes or HTML content types. However, these settings generate different
HTML code. For example, here is a simple page as seen in Designer, with the HTML
tags marked as Pass-Thru HTML.

Chapter 3

[65]

With the content type set to HTML, you take full control of the contents of the page.
If the DOCTYPE declaration and other HTML tags are desired or required, they can be
added to the page in Designer.

Note that if HTML is selected as the content type for a page, there is no need to mark
HTML tags as Pass-Thru HTML.

Leave the "Use JavaScript when generating
pages" option enabled
Today client-side JavaScript is ubiquitous on the Web, and we code with it to
implement form and page behavior. Unless your requirements include designing
for browsers that do not support JavaScript or for environments where JavaScript
support is disabled due to security concerns, code your application to use JavaScript.

By default, Domino generates JavaScript for some design elements (for example,
Action Bar buttons) in order to provide web functionality. The Use JavaScript when
generating pages property can be disabled (not a good idea) on the Database Basics
tab of Database Properties.

With this property disabled, certain active elements of a form are not available on
the Web. For example, Action Bar buttons that are coded only with @Formulas may
not display. In addition, a form may load more slowly, certain @Commands do
not work, and Domino either inserts a Submit button at the bottom of the form or
converts the last button on a form to a Submit button.

Forms and Pages

[66]

This property does not disallow your use of JavaScript with design elements in the
application. Even with this property unchecked, if you code a button to run some
JavaScript, then clicking that button will run the JavaScript. If you code JavaScript to
run in the JS Header, it will run when the page loads.

In general, if you are building web applications, you should leave this application
property enabled. Domino then provides the JavaScript required by your buttons,
collapsible sections, and other elements.

Generate HTML for all ields
The option Generate HTML for all ields on the Defaults tab of Form Properties
determines whether hidden ields are passed to the browser. Please note that this
does not work if the content type is set to HTML.

With this property enabled, hidden ields on the form are passed as "hidden" ields
to the browser; the page source contains appropriate tags and values. These hidden
ields then can be accessed by JavaScript. Here is what the page source might look
like with a document in Edit mode.

<input name="Field1" value="Dexter">

<input name="Hidden1" type="hidden" value="John">

Both hidden and viewable ields are passed to the browser as hidden ields when a
document is in Read mode.

<input name="Field1" type="hidden" value="Dexter">

<input name="Hidden1" type="hidden" value="John">

If this property is disabled, then hidden ields are not passed to the browser.
JavaScript that relies on values in these ields will fail. If formulas and scripts are not
working as they should, it may be because referenced hidden ields are not available.

Be aware of the security exposure here. If all hidden ields are transmitted to the
browser, then a user may be able to see the values of those ields by viewing the
form's source. Hidden ields are extremely useful in Domino web applications, but
hiding ields is not a security measure to be relied upon.

Chapter 3

[67]

Opening forms and pages directly
You can save some development time by bookmarking and linking directly to the
form or page on which you are currently working. Browse directly to a design
element with the following syntax:

http://server-name/directory/database.nsf/formname?openform

http://server-name/directory/database.nsf/pagename?openpage

If major design elements are uniquely named, the shorter forms should work as well.

http://server-name/directory/database.nsf/formname

http://server-name/directory/database.nsf/pagename

Opening design elements directly like this is referred to as URL open, and by default
it is enabled in applications. This capability can be disabled (for security reasons),
but doing so prevents an application from being opened on the Web. If URL open is
disallowed for an application, trying to open that application or to link directly to a
form or page results in an HTTP 500 error (not authorized).

To disable URL open, check Don't allow URL open on the Basics tab of
Database Properties.

Forms and Pages

[68]

Viewing the source in a browser to
investigate anomalies
This suggestion rightfully belongs in the troubleshooting chapter, but it is inserted at
this point because of how useful it can be when debugging forms and pages.

On occasion, a form or page looks ine in Designer, but the rendered results are not
correct. This can happen because Domino sometimes generates HTML code that you
may not expect. Or perhaps an error message displays indicating that some ield or
variable is undeined.

If rendered results are anomalous or if the behavior of a form is not what you expect,
it can be helpful to look at the web page source for clues, either with a simple editor
or with a browser's developer tools. For example, here is a simple page consisting of
a heading and an image. The HTML is marked as Pass-Thru HTML:

Here the computed text @formula supplies part of the source value for the image that
displays on the page. There are other ways to include images on pages, of course.
This construction is intended primarily to illustrate what can happen if Domino
inserts erroneous HTML when composing a page for the Web.

Initially the page renders properly, but then we decide to add some color to the text.
In Designer, we select all the text on the page and apply red and bold formats.

Chapter 3

[69]

Now, part of the page fails to render as expected.

Here is the HTML source that displays the heading and the image. Note the
malformed tag. Domino inserts bold and font tags around the computed text,
which results in clearly invalid HTML.

Views Can be Styled with CSS!

<img src="/ellisits/websandbox03.nsf

/05 Styled View Using Template.jpg" /></form>

Removing bold and color formats from the computed text in Designer results in
cleaner source and a properly rendered page.

Views Can be Styled with CSS!

<img src="/ellisits/websandbox03.nsf/05 Styled View Using Template.

jpg"/>

Composing and saving documents
As you start to look at older applications that were not intentionally enabled for the
Web, you may ind some that provide no way to create a new document or to toggle
an existing document into Edit mode. In such cases, you will have to create buttons
or hotspots to provide these features.

Please note that the @Command alternatives illustrated in this section work on the
Web only if the application property Use JavaScript when generating pages is
enabled, as discussed in a previous topic.

Create documents
In a web application, a new document can be created when a user clicks a button or
hotspot whose formula includes an appropriate @Command. Here "Customer" is the
name of the form.

@Command([Compose];"Customer")

Alternatively, a blank form can be opened with a URL attached to a button
or hotspot.

http://192.168.1.210/ellisits/websandbox03.nsf/customer?openform

Forms and Pages

[70]

The URL can be computed using an @Command, JavaScript, or even LotusScript
(running in an agent). This example uses an @Command to compute a URL.

@URLOpen("/" + @WebDbName + "/customer?openform")

Assuming that an open document contains a ield named webdbname whose value
is the ile path of the application, then this JavaScript formula opens a new form
named customer2.

var f = document.forms[0];

location.href="/" + f.webdbname.value + "/customer2?openform";

A LotusScript agent running on a server can also open a new form in the browser.

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Set db = session.CurrentDatabase

 Print "[/" & db.FilePath & "/customer2?openform]"

Edit documents
Existing documents opened from views typically open in Read mode. To toggle an
existing document from Read mode to Edit mode, create a button on the form and
attach this familiar command to it.

@Command([EditDocument])

You can toggle a document into Edit mode also with JavaScript, but more coding is
involved. Here is one way to do this. First, add three hidden Computed for display
ields to the form with these values.

•	 docID: @Text(@DocumentUniqueID)

•	 viewname (assumes the view alias contains only alphanumerics):@Subset(@
ViewTitle; -1)

•	 webdbname: @WebDbName

Then add the following or similar JavaScript to the onClick event of a button
on the form:

var f = document.forms[0] ;

var a = f.webdbname.value ;

var v = f.viewname.value ;

var d = f.docID.value ;

location.href="/" + a + "/" + v + "/" + d + "?editdocument" ;

Chapter 3

[71]

Save documents
Data collected in ields on a form is usually saved into the database for later
processing. Entered data is usually validated in some way, either at the ield
level or at the form level, before the document is saved. This topic is taken up
in a later chapter.

After a document is saved, a new page is presented to the user. Post-save navigation
is treated here briely in the context of saving documents; additional options are
considered in more detail in a later chapter.

Several techniques can be used to save a document and display the next page; here
are three variations.

A simple way to save a document is to rely on @Formulas. Designer Help
recommends adding these commands to a button on a form.

@Command([FileSave]) ;

@Command([CloseWindow]) ;

In the Notes client, clicking a button coded with this @formula saves and closes
the document; UI focus returns to the previous view (or other design element).
But clicking this same button on the Web results in a different user experience.
The @Commands do indeed submit the document to the database, but then the
following default page displays:

The default Form processed page contains no buttons or other indicators about what
to do next. A user must click on the browser's Back button to return through the
previously edited document to ind a useful page. But relying on the browser's Back
button for any purpose is not recommended. Here is a clear and simple case that
illustrates how important it is to design good user navigation into a web application.

If the requirement is to save a document and then to return to it in Read mode, create
a button on the form with this formula to achieve that result. The last line of the
formula assures that the screen is refreshed with the newly saved information.

@Command([FileSave]) ;

@Command([EditDocument]) ;

@If(!@IsDocBeingEdited;@Command([RefreshWindow]);"") ;

Forms and Pages

[72]

If the requirement is to save a document and then to return to a speciic view or
another page, create a button with this formula to achieve that result. The last line of
the formula fetches and displays the view whose name or alias is allcustomers.

@Command([FileSave]) ;

@Command([FileCloseWindow]) ;

@URLOpen("/"+@WebDbName+"/allcustomers") ;

Save documents using $$Return to specify the next
page
In many cases, separating the logic for saving a document and specifying the next
page makes sense. One way to specify the next page is to use a special ield named
$$Return on the form, whose value is the URL of the next page. When a document is
saved, Domino redirects the browser to the location speciied in $$Return.

Think of $$Return not as a data input ield, but rather as container for information
that Domino uses to determine what to do after a document is saved. To implement
this simple technique, create a hidden Computed for display ield named $$Return.
In this example, the value of $$Return is the URL of the next page to be displayed:

After a document is saved, Domino redirects the browser to the allcustomers2
view within the application. The square brackets are required to identify the string
as a URL. If they are omitted, then the URL is simply printed to the browser window.

$$Return is often used in other ways, some of which can be problematic. Cautions
about using $$Return for other purposes are included in a later chapter.

Chapter 3

[73]

Save documents using a WebQuerySave agent to
specify the next page
The WebQuerySave form event provides a place to specify an agent that should run
before a document is saved. Considerable processing can be included in the agent,
depending upon the needs of the application. An agent intercepts documents and
then can manipulate ields, kick off email notiications, prevent documents from
being saved, and so on. The agent can also direct the browser to display a speciic
page after the document is saved. Here is the skeleton of how this works.

First, enter the name of the agent into the ToolsRunMacro @Command in the form's
WebQuerySave event. Here, the name of the LotusScript agent is SaveAgent:

Next, code the agent. Here is the bare-bones code for the SaveAgent agent. This
agent does no processing except to redirect the browser to the next page. Note that
SaveAgent requires the view name and the ile path information to be computed in
the viewname and webdbname ields on the form, as in the illustration. Also, note that
the agent tests for the existence of a view name. For new documents, the viewname
ield is blank because a new document is not yet associated with a view.

Sub Initialize

 Dim session As New NotesSession

 Dim doc As NotesDocument

 Set doc = session.DocumentContext

 If doc.viewname(0) = "" Then

 Print "[/" & doc.webdbname(0) & "]"

 Else

 Print "[/" & doc.webdbname(0) & "/" & _

 doc.viewname(0) & "?openview]"

 End If

End Sub

Forms and Pages

[74]

Finally, set the agent's Runtime properties on the Basics tab of Agent Properties.

When a document is saved, the agent runs and redirects the browser to display a
speciic view within the database.

This example shows the basic components required to use a WebQuerySave agent.
Such an agent would typically do more than simply redirect the browser to a new
page, but the example here is suficient to demonstrate how these features work
together and can be used as a starting point in building your own agent.

Improving the layout of design elements
Layout refers to the arrangement of design elements on forms and pages, and also to
the positioning of those major design elements within other design elements—pages
within framesets, for example. In many web applications, Designer options and raw
HTML coding are used synergistically to create a inal result.

The layout of a form or page has to do with the arrangement of text, ields, images,
buttons, and other elements. The layout affects not only the look of the form, but also
contributes to its usability. Here are some issues which should be taken into account.

•	 The grouping of related ields
•	 The alignment of ields
•	 The position of buttons and navigational hotspots

•	 The location of onscreen guidance text

•	 Margins and whitespace

Layout provides an overall structure to the application as displayed by a browser,
as well as to individual forms and pages. But layout and style are interdependent,
so the inal look and feel results from considering both. Styling with Cascading Style
Sheets(CSS) is discussed here when relevant; the subject is taken up in more detail in
a later chapter.

Topics in this section focus on key issues related to application design
element layout.

Chapter 3

[75]

Identify all HTML tags
HTML offers some interesting layout options that can be included on a form or
page by coding speciic HTML tags. Illustrations of some of these layout options are
presented a bit later in this chapter.

HTML tags provide information to a browser concerning how a page is to be
rendered. In order for Domino to construct a page properly, you have to identify
your HTML tags as such, so that Domino knows what is and what is not HTML.
There are two ways to do this.

•	 Surround the HTML with square brackets

•	 Select and mark the HTML tags as Pass-Thru HTML

Here is an example showing a form that uses both techniques. Heading 1 is
surrounded by HTML tags that are not identiied as such. The tags for Heading 2
are surrounded with left and right square brackets. The tags for Heading 3 have
been selected and marked as Pass-Thru HTML.

Here is the resulting rendered form. The tags for Heading 1 are not interpreted as
HTML because they have not been identiied as tags. Heading 2 and Heading 3
render identically.

Forms and Pages

[76]

Identify HTML tags with left and right square brackets or by marking them as Pass-
Thru HTML. Square brackets add a bit of clutter to a form, but they provide a precise
delineation of what is and what is not included with a tag. Tags marked as Pass-Thru
HTML are highlighted in gray and are easier to identify, but care must be taken not
to mark as Pass-Thru HTML any ields or nearby text; unexpected results can occur if
a ield or other text is marked as Pass-Thru HTML when it should not be.

Select and mark HTML tags as Pass-Thru HTML using the Text menu option
Pass-Thru HTML. To remove the attribute, select the HTML tags and unselect
the option using the Text menu.

Also, check Render pass through HTML in Notes on the Info tab of
Form Properties.

Note that not all layout HTML tags are interpreted by Notes.

Chapter 3

[77]

Use view template forms to display views
Here is an unadorned basic web view as provided by Domino. This view displays
some hotspots above and below the list of documents, the view title, and the
documents themselves. Many older applications displayed views similar to this one
whenever they were launched on the Web.

The default view is functional but not very inspiring, and it certainly does not
present Domino in a good light. The layout is the default layout for views. If you
see this kind of view in one of your older applications, you have found an excellent
candidate for rehabilitation. Several additional classic techniques for improving these
basic views are presented in a later chapter. Here we focus on using a special kind of
form called a view template.

A view template is a form that serves as a container for a view. Because the view
template is a form, additional buttons, text, and ields can be added to it. When
Domino prepares a view for display on the Web, it looks for an appropriate view
template, and if it inds one, it inserts the view in the template and then transmits the
template+view source to the browser for rendering.

If a single generic layout is suitable for all views, then create a single form with the
following name:

$$ViewTemplateDefault

To provide a layout for a speciic view, create a view template form and name it in
this manner, which includes the name of the view for which the template is deined.
In this case, allcustomers2 is the alias for the view.

$$ViewTemplate for allcustomers2

Forms and Pages

[78]

Somewhere on the view template form, deine a container for the view. There are
two ways to do this:

•	 Create a ield named $$ViewBody
•	 Create an Embedded Element / View

In Designer, a view template with a $$ViewBody ield might look similar to the
following example:

Rendered in a browser, the template+view includes all elements of each. The view
template's action buttons are included at the top of the form. If the view also contains
action buttons, they also display at the top of the form in the same row.

If an embedded view is placed in a view template as the container for the view,
enable the property Choose a View based on a formula. Leave the formula
blank or null.

Chapter 3

[79]

An embedded view control can use either HTML or the Java View applet to
display the view in the browser. Each of these options offers some advantages and
disadvantages, discussed at greater length in a later chapter. View templates can be
styled either with CSS or with Properties.

Use framesets for layout
Framesets were at one time a common technique used to display multiple panes in a
browser window. A top frame might contain a banner and some hotspots. The left-
hand frame might contain a menu of links. The rest of the screen might contain the
view or another page.

The use of framesets lost favor due to the way earlier browsers handled frame
printing and navigation, and also because of dificulties presented to screen reader
technologies. Contemporary browsers handle these issues more satisfactorily, so
framesets are not as problematic as once they were. If your existing application
already uses a frameset, then you may have no choice but to stick with it. But if you
are crafting a new application, and if the application can be done without a frameset,
then you might consider designing without one.

If you use a frameset, be sure to provide a frameset title.

Forms and Pages

[80]

To designate the frameset as the initial element to be displayed when the
application opens, select the Open designated Frameset option on the Launch
tab of Database Properties.

In this example, a basic three-frame frameset forms the basis for the application. A
banner page is attached to the top frame. A page with a menu of links is attached
to the left-hand frame. A view is attached to the main frame. Since a view template
is deined for this view, the main frame contains the template+view. Note that a
Customer form was previously deined and several test documents were created to
better understand how this layout might look with data in it. Prototypes like this can
be built very quickly in Designer.

Chapter 3

[81]

Further work is needed, of course, to create other required forms, to style the design
elements, and to extend the navigational features; but the basic layout for the
application is now deined.

Use <div> tags to replace framesets
It is possible to achieve a good layout without framesets by using HTML <div>
tags and some CSS positional styling. This example is intended to demonstrate how
<div> tags and CSS can be used to create a sectioned page without a frameset.

First, create a new page with some Pass-Thru HTML and some hotspot links to other
design elements. Note the use of three HTML divisions. Each division simulates a
frame in a frameset. Hotspot links to views and to the About and Using documents
are included.

Forms and Pages

[82]

To establish the window position for each division (and some other styling), CSS
rules are written as a page element named CSS Rules | websandbox03.css saved
in the application template. In the rules, note the position, top and left declarations
in particular. These are the attributes that ix the divisions on the page in speciic
locations. Please keep in mind that CSS is a rich language in its own right, and there
are other ways to achieve interesting layout results with it.

/* CSS Rules for ViewTemplate */

#banner {

 position: absolute;

 top: 25px;

 left: 0;

 width: 100%;

 border-bottom: solid 1px black;

 padding-left: 50px;

 padding-bottom: 20px;

 color: #7F0000;

 font-size: 20pt;

 }

#leftmenu {

 position: absolute;

 top:76px;

 left: 10px;

 height: 100%;

 border-right: solid 1px black;

 padding: 10px;

 color: #FF0000;

 }

#main {

 position: absolute;

 top:80px;

 left: 160px;

 padding: 20px;

 color: #0000FF;

 }

The linkage between the CSS page element and the main page is contained in the
@formula coded in the page's HTML Head Content area.

Chapter 3

[83]

Here is the result, rendered in a browser.

Alternatively, a view template with HTML divisions can be embedded in a
single-frame frameset, and the database launch property could be conigured
to launch that frameset, although this somewhat defeats our ambition of doing
away with framesets.

Align ields
Left alone, ields on forms generally do not line up the way you might like them to.
Here are three techniques which can be used to create a more orderly appearance.

Use tables to align ields
Add one or more tables to a form. For a single column of ields, place labels in the
left-hand column and ields in the right-hand column. Use Designer or CSS styling as
desired to remove cell and table borders, and to adjust cell width, padding, and other
characteristics. Using tables to align ields is easy to do, and tables are easy to style.
On the downside, the result is just rows and columns. More interesting layouts can
be achieved by nesting tables within tables and by merging cells.

Forms and Pages

[84]

Use <div> and <label> tags to align ields
A table-like arrangement of ields can be created with HTML tags and CSS styling.
The <label> tags enhance a form for users of screen readers. Each label / ield
combination is coded into its own division.

CSS rules can be written to style the labels and input ields.

div label {

 background-color: #DFE7F2;

 color: Black;

 float: left;

 font-family: Verdana;

 font-size: 10pt;

 padding-right: .25em;

 text-align: right;

 width: 10em;

 }

div input.txt {

 display: inline;

 float: left;

 width: 10em;

 }

Note that an ID equal to the name of the ield is entered on the HTML tab of Field
Properties. Likewise, the CSS class txt is entered for the Class attribute.

Chapter 3

[85]

Here is the result as rendered by a browser:

Adjust the size of any speciic ield by entering an HTML attribute for that ield:
size=50.

Or enter a CSS declaration into the Style attribute on the Field Extra HTML tab of
Field Properties: width: 30em.

Forms and Pages

[86]

Use <ieldset> and <legend> tags to group related
ields
Onscreen elements which naturally belong together should be co-located and
identiied in some way as belonging together. On the Web, try using <fieldset>
and <legend> tags for a sharp, professional look.

Deine CSS rules for the <fieldset> and <legend> tags.

fieldset {

 border-right: solid 2px #000;

 border-bottom: solid 2px #000;

 float: left;

 margin: 0;

 padding: 1em;

 width: 30em;

 }

legend {

 color: #7F0000;

 font-family: Arial;

 font-size: 110%;

 font-weight: Bold;

 margin-bottom: 1em;

 }

The result as rendered makes it clear that certain information belongs together.

Chapter 3

[87]

Using computed text
Using computed text with @formulas that resolve to lines of text is an easy way to
customize forms and pages.

Display a customized title bar
Add a simple formula to an element's Window Title property.

"Sandbox 1 - Time: " + @Text(@Now;"D1S1")

The computed text displays in the browser's title bar.

The result of a computation must be a text string. Here is computed text that fails to
display on the Web.

"It is now: " + @Now

This formula generates an HTTP 500 error because the value of @Now is not text.
Correct this by converting a non-text result with @Text.

"It is now: " + @Text(@Now)

Display customized messages
Customized messages can be presented on a form with computed text. Here is a
simple computed text formula:

"Welcome " + @Name([CN];@UserName)

If computed text Properties formatting attributes fail to affect the look of the
computed text in the browser, you can surround the computed text on the form
with tags and style attributes. Make sure to mark the tags as
Pass-Thru HTML.

<Computed Value>

Forms and Pages

[88]

Using hidden computed ields
Using hidden computed ields on a form is an easy way to provide information to
@formulas and JavaScript that run in support of a form. Normally, hidden ields are
collected at the top or the bottom of a form. Since some ields depend upon others,
the order of ields on the form may be important, with dependent ields positioned
after independent ones.

Hidden ields serve many purposes. Here is a sampling of how these ields can
be used.

Add ields to provide access to key document
attributes
Some document attributes can be retrieved by invoking @functions in formulas.
There are, however, situations in which you cannot rely on @functions and formulas
to return the correct information.

For example, the name of the form used to create a document is not available until
after the document has been saved. If the name of the form is important to either
a form formula, some JavaScript, or an agent invoked by the WebQuerySave event,
then create a hidden Computed when composed Text ield (for example, named
FormName) and set its value to the name of the form. Form formulas, JavaScript, and
agents can refer to this value instead.

Access CGI variables
Many CGI variables are available and can be used in @formulas and JavaScript
codes. See Designer help for a complete list of the CGI variables.

To access one of these variables, code a hidden Computed for display ield whose
name is identical to the CGI variable (for example, Server_Name). Provide a default
value for the ield that is also equivalent to the name of the CGI variable name.

If CGI variables are used routinely in web applications, consider creating a common
subform that lists all the CGI variables; copy this subform into all your applications
and insert it at the top of every form that needs it.

Chapter 3

[89]

Improve @DbLookup and @DbColumn
formulas
@DbLookUp and @DbColumn functions are powerful and often used to retrieve
data from views or documents by key. These functions access a view, locate one or
more documents containing the key (as displayed in the view), and retrieve either a
single value or a column of values. In web applications, especially in earlier versions
of Domino, errors in these formulas caused HTTP 404 errors, and forms would not
display. To prevent problems like this, consider using the [FailSilent] keyword
option on @DbLookup formulas.

Consider trapping errors dynamically if they do occur. A formula like this returns
either valid data or the error message.

rv := @If(!@IsDocBeingEdited;@Return(@Unavailable);@DbLookup(...));

@If(@IsError(rv); @Text(rv); rv)

Using HTML to add value to a form or
page
Adding HTML tags is sometimes necessary to dress up a page or to gain control
of form and page elements. But adding unnecessary HTML tags and attributes
clutters up a source page, takes longer to build and transmit, and may not add any
real value. If you can achieve layout or formatting effects with CSS, remove the
HTML tags.

HTML can be added to a form or page in many places. While this demonstrates the
lexibility of Designer, it also can make it dificult to rework a design, especially if the
HTML is tucked away in many places. Look for HTML tags and attributes in any of
these locations:

•	 The HTML Head Content area

•	 Forms or pages as Pass-Thru HTML

•	 The computed text

•	 The ield formulas
•	 The ield attributes
•	 The special $$ ields
•	 The properties of many elements

Forms and Pages

[90]

You need to be aware that HTML can also be found in other design elements,
especially in these locations:

•	 View headings and columns
•	 LotusScript Print statements

•	 JavaScript code

Unless you specify a form content type of HTML, Domino automatically adds
several HTML tags (and closing tags); you do not need to code any of the following:

•	 DOCTYPE

•	 html

•	 head

•	 body

•	 form (for the primary form)

•	 script (for JavaScript added in the JS Header or in ield events)

You could code the following HTML tags if appropriate to your application:

•	 script (in the HTML Head Content area to identify CSS rules and JavaScript
functions)

•	 form (on a form design element to identify a second form)

Here are two key recommendations:

•	 Avoid styling and formatting with HTML; use CSS instead

•	 Avoid using inline CSS and JavaScript; place CSS rules and JavaScript
functions on separate pages, in stylesheet resources or in JavaScript libraries

Use special ields
If you need to supply a custom DOCTYPE declaration for a form, create a Computed
for display ield named $$HTMLFrontMatter on your form with an appropriate
formula. Domino then will not automatically add a DOCTYPE statement; instead, it
will insert the result of your formula before the <html> tag.

If for some reason you need to add attributes to the <html> tag, you can create a
Computed for display ield named $$HTMLTagAttibutes on your form with an
appropriate formula. The result of your formula is included as <html> tag attributes.

Chapter 3

[91]

In a similar manner, you can create a Computed for display ield named $$HTMLHead
with an appropriate formula specifying items to be placed after the <head> tag.

•	 Title

•	 Metadata

•	 JavaScript global variables

•	 Links to CSS and JavaScript Libraries

These items can also be coded as the result of an @formula in a form or page HTML
Head Content area.

Domino supports adding a ield named HTML to a form. The value of the ield is an
@formula which results in valid HTML.

The primary value in using any of these special ields lies in the ability to use an
@formula to dynamically modify the HTML when a document is prepared for
transmission to the browser. If all HTML is static, coding tags as Pass-Thru HTML
directly on the form may be the more appropriate thing to do.

Convert between Notes and HTML
If you cannot view the HTML page source with a browser, then it may be useful to
look at the HTML code that Domino generates, while you are in Designer. Select a
button, ield or other element and then try the following menu command.

Edit | Convert to HTML

To revert, place the cursor in the middle of the HTML and try the following
menu command.

Edit | Convert to Notes Format

Be sure to save the form or page before doing a conversion, as you may lose idelity.

Creating pseudo Action Bars for the Web
Action Bars generated automatically by Domino for the Web reside at the top of
a form, page, or view, just as they do in the Notes client. By default, these buttons
are pretty basic, even unattractive. Here is an example of an Action Bar rendered
with HTML.

Navigation
Navigating from page to page or from view to form and back again presents some
challenges for Domino web developers. The browser menu and toolbars are of little
use to an application, and almost everything required for a page to make decisions
and to proceed to the next page must be contained on the page itself.

Navigation styles and strategies should be consistent within an application, and if
at all possible, the same styles and strategies should be implemented across related
applications. Consistency and familiarity facilitate user learning; experience with one
application transfers directly to a similar application, shortening the learning curve,
and improving user productivity. Development of new applications, of course, can
be hastened if similar strategies are consistently employed within the organization.

Topics in this chapter highlight a number of navigational issues and how these issues
can be addressed in Domino web applications:

•	 Launching an application

•	 Creating menus of links and hotspots

•	 Directing the browser after a document is submitted or cancelled

•	 Coding default error pages

•	 Providing directions and help

General precautions
Some design practices that seem expedient in the moment can be problematic in
the long term as they create problems for managing or using an application. It is
tempting to take shortcuts, especially if an application is needed quickly or if it is
expected to be of only temporary value. Resist such temptations.

Navigation

[94]

Do not hardcode URLs, ilenames, or UNIDs
It should go without saying that applications should never hardcode speciic URLs.
A link to a speciic website, server, directory path, or ilename is almost guaranteed
to break eventually, as applications move from server to server and from directory
to directory.

Use @WebDbName
Links from one design element to other elements within an application are typically
constructed as relative links, while links to external resources are naturally coded
as absolute links. Links attached to buttons or hotspots typically derive from
@formulas or JavaScript code. Of course, a button or hotspot formula also can do
some processing (for example, setting the value of a ield or saving a document)
before passing the link to the browser.

In older code, you may ind formulas that create relative links using various
constructions, some of which may become problematic as your network changes.
The most common problems of this sort are URLs which contain:

•	 Blanks (spaces)

•	 Backslashes

•	 Incorrect ile path casing (depends upon the server)

Here are some examples:

This formula extracts the directory path and ilename of the current database,
and then opens the default view. There is nothing inherently wrong with this
construction, unless the path name contains blanks or backslashes:

pathname := Subset(@DbName;-1);

@URLOpen("/" + pathname + "/$defaultview?OpenView");

To avoid any potential problems with ilenames containing blanks (for example,
Human Resources Records.nsf), developers can explicitly replace each blank in the
path name with the string %20 or a plus sign, which is an improvement:

pathname := @ReplaceSubstring(@Subset(@DbName;-1);" ";"+");

@URLOpen("/" + pathname + "/$defaultview?OpenView");

Chapter 4

[95]

The resulting path name contains no blanks, but it still may contain backslashes
if the application resides within a subfolder on the server. Domino is very
accommodating about serving URLs that contain backslashes, but some web
proxies and authentication servers may not be so forgiving. So developers can
account for both backslashes and blanks:

pathname := @ReplaceSubstring (@Subset(@DbName;-1) ; "\\":" " ;

 "/":"+");

@URLOpen("/" + pathname + "/$defaultview?OpenView");

In the older code, written before the @WebDbName function was introduced, you may
see this less elegant construction which replaces the blanks with plus signs and then
replaces backslashes with forward slashes:

pathname := @ReplaceSubstring(@ReplaceSubstring

 (@Subset(@DbName;-1);" ";"+");"\\";"/");

@URLOpen("/" + pathname + "/$defaultview?OpenView");

While these last two formulas address blanks and backslashes adequately, it is a
good idea to replace such formulas when you come across them. Use the @WebDbName
function, which should assure an acceptable web-encoded path name, regardless of
the characters used to name the directory or ile:

pathname := @WebDbName;

@URLOpen("/" + pathname + "/$defaultview?OpenView");

In a similar manner, avoid hardcoding references to the path and ilenames of
related databases (for example, a log ile). Should the location or name of the related
database change, the developer is forced to make design changes, which can interrupt
production while the changes are made, tested, and rolled out. To address this issue,
create a coniguration or application proile document with ields to hold the names of
those related databases; use @DbLookup formulas to retrieve those values as needed.
Record ile and application dependencies and provide that information to the Domino
administrators and other interested parties. See the topic Use coniguration documents
in Chapter 2, Design and Development Strategies, for other suggestions.

Use $Ref
If a parent document's UNID is available in a ield on a child document, then a
formula for a URL can be constructed to direct the browser back to the parent
document either by way of a $$Return ield or a button's Click event. The parent
document might be the desired "next page" if a child document is submitted or
otherwise exited.

Navigation

[96]

A somewhat obscure problem can arise when a response document permanently
records the UNID of its parent document. For example, if a response document
deines a ield with this formula, then the UNID of the parent document is saved in
the response document when the response document is saved:

@Text(@InheritedDocumentUniqueID)

Or a response document might be designed such that a ield inherits the UNID of
the parent from a ield on the parent document (the default value of the response
document ield is the name of the parent document ield). If the parent UNID is
stored in the parent document, then when the response document is created, the
parent UNID is copied into the corresponding response document ield.

The parent UNID is then included in a link formula on a button on the response
document, and all seems well. For example, if the response document ield ParUNID
contains the parent UNID, then the following formula should open the parent
document from the AllDocs view. And indeed it does in the original database:

@URLOpen("/" + @WebDbName + "/AllDocs/" + @Text(ParUNID))

But if the parent and response documents are at some future time copied to another
database, new UNIDs are assigned to the new parent and new response documents,
but the UNID values previously saved in parent and response document ields are
not changed. Clicking the response document's button fails because the link formula
now refers to a UNID which does not exist in the new database.

To avoid this problem, use the reserved ield $Ref which automatically contains the
UNID of the response document's parent. This value is updated properly if parent
and response documents are copied to another database. Replace the reference to the
ParUNID ield with a reference to $Ref as in the following link formula:

@URLOpen("/" + @WebDbName + "/AllDocs/" +@Text($Ref))

Use a "go forward" navigational strategy on
the Web
One of the most vexing navigational issues concerns the browser's Back button. In
simple browsing from page to page, the Back button works well in returning the
user to the previously viewed page, assuming that page is in the browser cache.
But in applications that include illing in and submitting forms, the browser 's Back
button presents a number of dificulties, including the likelihood of asking the user
to back through an editable version of a form and then through a read-only version
of the form that displays old data. At the very least, this can be confusing and
tedious. Were the changes saved or not?

Chapter 4

[97]

Several strategies were presented in Chapter 3, Forms and Pages, for determining
which page displays after a successful document submit or save, and several more
are presented in this chapter. None of these strategies rely on using the browser 's
Back button or JavaScript using the browser history to go back a page:

history.go(-1)

If the browser's Back button (or history.go(-1)) does exactly what you want it
to do, then okay. But as a rule a web application should implement a "go forward"
approach for every action, even if going forward means directing the browser to
display a previous page. Never require the user to click the browser's Back
button and do not rely on manipulating the browser history, as these provide
unreliable navigation.

Avoid generating complex dynamic pages
As discussed in Chapter 3, a $$Return ield is a good mechanism for specifying the
URL of the next page to be displayed in the browser. The text created by the @formula
in $$Return can be arbitrarily complex, and it is tempting to use the $$Return ield to
do more than simply direct the browser to the next page. For example, this @formula
added to a $$Return ield presents a small post-save message:

"<html><body>" +

"<h1>Success!</h1>" +

"<p>You have successfully saved this form.</p>" +

"<p>Please click on the following link the return to the home page.

</p>"+

"Home Page" +

"</body></html>";

When the document is saved, a "page" is displayed that presents a short message and
then provides a clickable link that returns to the application's launch element. Note
the use of the target= attribute on the link, which directs the browser to open the
link in the top-most window. This construction is useful when using framesets; if the
target is not speciied, unexpected results may occur, such as opening the homepage
of an application within a frame of the homepage!

$$Return formulas can be very elaborate, for example displaying a customized
menu of links derived from attributes of the document just saved. LotusScript agents
and JavaScript functions can be coded to create and display complex pages as well.

Compared to creating a normal form or page element, using dynamically generated
pages can be more dificult both to code and to debug. If you are unfamiliar with the
application design, troubleshooting is more problematic as you must irst determine
where the page is coming from ($$Return, LotusScript, JavaScript, Java).

Navigation

[98]

In general, if you need to display a page, create a real page element and open it with
@URLOpen or any of the other techniques previously discussed. If you need to present
customized messages, create a real response form that inherits values from the saved
parent and open that.

Application launch options
Every application opens to some major design element when launched—a page, a
frameset, the About document, and so on. Which Default Launch Element (DLE) to
use is a topic of some discussion. Tastes and requirements differ. Fortunately, several
choices exist for launching Domino applications.

Which element initially displays may depend upon organizational policy or
application objectives. By default the web client launch option is the same as the Notes
client launch option, but you can choose a different launch option for web users.

Check to see if there is a standard way to launch Domino applications in your
organization. If not, consider several options as discussed in this section.
There is no "right answer" here. Each option offers advantages and perhaps
some disadvantages.

Select a web launch option from the Launch tab of Database Properties:

Chapter 4

[99]

Launch the About document
The About document can present a copyright notice, organizational policy
statements, or release information about the current application.

Add some meaningful "link text" to the About document. Select that text and create a
Link Hotspot or an Action Hotspot. Select a design element or add a formula to the
hotspot to designate the design element that should open when the hotspot
is clicked:

To change the hotspot, place the cursor in the hotspot and select either the Hotspot
Properties or Edit Hotspot menu item (depending upon which type of hotspot you
deined) from the Hotspot menu.

Select the web launch option to open the About document in Database Properties.
When the application launches, the About document is displayed. The user clicks the
hotspot to open the designated element:

Navigation

[100]

Launch a speciic homepage
It might be appropriate to launch a traditional web homepage. Create the homepage.
Note the page alias in Page Properties:

Select the homepage as the web launch option in Database Properties:

Note that the page alias can also be used in the URL:

Launch a frameset
Framesets are sometimes frowned upon as they can be problematic for screen
readers, navigation, and printing. However, if the application uses (or requires) a
frameset, one can be designated as the web launch option:

Chapter 4

[101]

Launch a view
You may want to launch the application to a view. If you look at the list of web
launch options, launching to a view is not one of them. But there are ways this
can be accomplished.

View templates were discussed in Chapter 3 as a way to associate a form with a view.
If the view template is then attached to a frame within a single-frame frameset, the
application can be launched to that frameset, and the view + template will open.

Another way to launch a view is a little more complicated to set up, but it avoids
using a frameset.

First, create a blank Navigator element called index.html. Yes, this is really blank.

Second, create a form named $$NavigatorTemplate for index.html. Add an
embedded view and whatever other form elements (for example, headings, buttons)
might be required.

In the following example, a prominent heading displays at the top of the form
followed by some guidance text, Previous and Next buttons, and the embedded
view itself. Note that the embedded view is set to display Using HTML and that
only 10 rows display at a time. To advance to the second 10 lines, the user clicks the
Next button. This is the form as seen in the Designer:

Navigation

[102]

Finally, select the index.html navigator as the web launch option in
Database Properties.

Here's how this option looks in the browser:

Launch a form
Launching to an empty form for a survey, registration, or something similar might
be desirable, but there is no speciic web launch option for this. Here is one way to
launch a form without using a frameset, although there are drawbacks to this trick.

Create a blank page. In the HTML Head Content area of the page, add an @formula,
the result of which is a small JavaScript that redirects the browser to open a speciic
form. Here is a formula that opens the "Survey" form:

url := "/" + @WebDbName + "/Survey?OpenForm";

"<script type='text/javascript'>" +

 @NewLine +

"window.location = '" + url + "'" +

 @NewLine +

"</script>"

Select the page as the web launch option in Database Properties. When the
application opens, the page loads and immediately directs the browser to open
the form.

Chapter 4

[103]

One drawback to this approach is that the browser's Back button cannot be used to
return to a page before the application was opened. As soon as the Back button is
clicked, the page redirects the browser to display the form. Be sure to provide good
post-save and post-cancel navigation with the form.

A somewhat more complicated @formula introduces a 3,000 millisecond (3 second)
delay before the browser is redirected to the form. With this approach, the initial
page displays for a short time, allowing the user to use the browser's Back button:

url := "/" + @WebDbName + "/Survey?OpenForm";

"<script type='text/javascript'">" +

 @NewLine +

"window.setTimeout('window.location='" + url + " ',3000);" +

 @NewLine +

"</script>"

If you take this approach, treat the initial page like a splash screen and dress it
up with some text that explains what is going on. It is also good practice to add a
hotspot to the page that the user can click to proceed manually to the form in case the
JavaScript approach fails. A button with this simple @formula sufices:

@Command([Compose];"Survey")

Launch a graphical navigator
Graphical navigators, perhaps more than framesets, have fallen out of favor as entry
points for web applications, although they are still found in existing applications,
and some users like them. In essence, a navigator is a page-like element with images
or text hotspots. The hotspots link to or launch other elements, such as views, forms,
or framesets.

In general, graphical navigators are a bit harder to maintain than other design
elements, and they offer fewer design options. Being graphical, they are more
problematic for screen readers. As you can attach graphics and images to pages
and forms, you should think about replacing graphical navigators with other
design elements.

But if you choose to use one, be sure to enable the Web browser compatible attribute
on the Info tab of Navigator Properties. Otherwise, the navigator will not display on
the Web. Then select it as the web launch option in Database Properties.

Navigation

[104]

Launch documents in context using Auto
Frame
If you are using a frameset, you may want a document always to open inside a frame
within the frameset. As long as users open the application using the intended launch
element, things work as designed. But if a user bookmarks a speciic document or
perhaps receives e-mail with a URL pointing to a speciic document, then clicking
on that bookmark or URL may not open the document within the speciic frameset
as intended. To force a document to open within the frameset context, set the Auto
Frame options on the Launch tab of Form Properties. Select a frameset and a frame:

With this option enabled, opening a document launches the designated frameset
as well.

Unfortunately, if you are using a single form for both web and Notes clients, then
enabling Auto Frame will also launch the frameset in Notes. This may not be
desirable. If you want the frameset to open in a browser but not in Notes, create
two forms, one for Notes and one for the Web, and then set the Auto Frame options
differently for the two forms.

Chapter 4

[105]

Creating a custom application login form
If parts of an application are allowed to anonymous users and other parts are
reserved to authenticated users, you can implement your own "login" form. This
technique requires several components to work together.

First, the server must be enabled for HTTP Session authentication. This is a setting
on the server document in the Domino Directory. As a developer, you may not be
privileged to change server documents, so contact your Domino administrator for
assistance. Here is a sample of what the setting might look like:

Second, the application's ACL should include an entry for Anonymous with Author
access and any other privileges or roles that might be required:

Navigation

[106]

Third, create a customized login form. The following is an example of a login form as
it might look in the Designer. Below the image are several notes about the form:

Note that the Domino-generated form is closed with the irst </form> end tag, and
a new form with the name loginform follows. It is necessary to close the Domino-
generated HTML form in order to specify a different post action, in this case,
accessing the names.nsf application.

The hidden SaveOptions ield is set to "0" (with quotes) so that this form is not
saved. The hidden Server_Name ield is set to Server_Name (no quotes), which is a
CGI variable.

The Username ield is an Editable Text ield. The Password ield is a ield of
type Password.

The URLforLogin ield is a Computed for display ield with this formula:

"http://" + Server_Name + "/" + @WebDbName

The JavaScript at the bottom of the form sets the focus to the Username ield after the
form loads. Form elements can be styled with CSS.

Finally, add a login button or hotspot to your default launch element (for example,
the homepage) that launches the customized login form. Use a simple @formula. In
this example, the customized login form is called login:

@Command([Compose];"login")

Chapter 4

[107]

When the user clicks the login hotspot on the homepage, the login form displays
with the cursor set into the Username ield:

After entering a valid username and password, the user is redirected (in this
example) back to the homepage.

Control what is seen by Anonymous and what is seen by authenticated users
with hide-when formulas that test the value returned by the @Username function.
When an anonymous user logs in, his user name is "Anonymous". Here is a hide-
when formula that prevents associated text or another element from being seen by
Anonymous:

@If(@Name([CN];@UserName)="Anonymous";@True;@False)

Logging out from an application is even simpler than logging in. Provide an action
hotspot with an @formula similar to the following. In this example, the user is logged
out and returned to the homepage as an Anonymous user:

@URLOpen("/" + @WebDbName + "?Logout&RedirectTo=/" + @WebDbName)

Creating menus
Onscreen controls and menus of actions and links can be designed in very many
ways using several different strategies. A few techniques are illustrated in this
section as a starting point.

Navigation

[108]

Create Hotspots
Some people prefer to use buttons to initiate a process and underscored text to link to
another page. A Button Hotspot looks like a button, and clicking it runs an attached
@formula or JavaScript. An Action Hotspot looks like a link, but like a button,
clicking it executes a formula. A Link Hotspot looks and behaves like a traditional
link, and clicking it opens the associated URL or named element:

Create a button hotspot with the Create | Hotspot submenu. To deine an action or
link hotspot, select some text on the form or page and then access the same submenu.

Hotspots can be styled with Notes or CSS rules, so you can make them look the way
you want them to:

To display a screen tip when a hotspot is hovered with a mouse, add a Title on the
HTML tab of Hotspot Properties:

Chapter 4

[109]

Create menus with outlines
Embedded outline controls offer a lot of lexibility, but it takes effort (and some trial
and error) to get one looking the way you want it to. Here are the general steps to
this approach:

1. Create an outline design element. Outline entries are similar to hotspots in
that they can be links or actions. Add outline entries with links or actions to
the outline.

2. Create a page and embed the outline on it with the Create | Embedded
Element menu item.

3. With Embedded Outline Properties, choose to display the outline with
HTML or with the Java Applet. Also style the control.

4. Create a frameset and attach the page to a frame in the frameset.

5. Using Outline Entry Properties, Embedded Outline Properties, or Frame
Properties, direct links from the embedded outline to open in another frame.

Here is a sample outline displayed as HTML (essentially a clever table):

Here is the outline displayed with the Java Applet:

Navigation

[110]

While there are some drawbacks to using outlines in web applications—styling,
performance, and behavior are not always what you expect—they do provide a
relatively quick way to create menus.

Create menus with tables
Tables offer a convenient way to arrange hotspots on a form or page. Create a
single column table, for example, and then deine hotspots within each table cell.
Tables and table cells are relatively easy to style with CSS. In this example, the
table has a border, but the cells do not. CSS rules can be applied to cells and to
the hotspots themselves:

Create menus with HTML and CSS
A little more effort is required to create menus with HTML tags and CSS rules, but
this is a lexible technique with few drawbacks. In essence, hotspots are surrounded
with , <div>, or tags which are in turn styled with CSS. HTML tags are,
of course, marked as Pass-Thru HTML. Here is a simple illustration.

On a form or page, menu headings are surrounded with <div> tags. Menu items are
link hotspots surrounded by tags. CSS classes are attached to the <div> and
 tags to provide linkage to CSS rules:

Chapter 4

[111]

The CSS rules are contained on a separate page. Menu headings are rendered in a 12
point font. Links (anchor tags) are not underscored. And when the links are hovered
with a mouse, the text color and background color of the links change. A reference to
the CSS rules page is contained in an @formula in the HTML Head Content area of
the menu form or page, as illustrated in Chapter 3, Forms and Pages:

The resulting menu is basic but serviceable. In this image, the All Customers 2
hotspot is hovered with the mouse:

Depending upon how good your CSS is, you can craft some really wonderful menus
with this technique.

Navigation

[112]

Create dynamic menus with views
A view can be thought of as a menu where each item (row) acts like a hotspot
that opens a speciic document. As views include all documents that meet speciic
selection criteria (the View Selection formula), when qualiied documents are added
to the database, they are automatically added to the view and therefore added to the
view-as-menu.

Using a view as a dynamic menu may be appropriate in applications where
documents are informational: news stories, policies and procedures, meeting
minutes, and so on. Here is how this strategy can be implemented. In this example,
the application collects and displays help topics.

The solution consists of these design elements:

•	 A form to create the help topics (for example, HelpTopic form).

•	 A lookup view to index the help topic documents (for example,
LookupHelpTopics view).

•	 A page to contain the embedded lookup view menu (for example, Help
Menu page).

•	 A page with instructions which is presented after new help topics are saved
(for example, HelpTopic0 page). This is the default content page.

•	 A frameset with a left-hand frame for the menu and a right-hand frame for
the help topic documents (for example, Help Frameset).

First, create the HelpTopic form for the Help documents. This form consists of a
subject ield, a body ield, a $$Return ield, and three action buttons:

Chapter 4

[113]

The Cancel button contains an @formula that re-opens the default content page:

@URLOpen("/"+@WebDbName+"/HelpTopic0?Openpage")

The Save and Exit button contains this @formula:

@Command([FileSave]);

@Command([CloseWindow]);

The Edit button is equally straightforward:

@Command([EditDocument]);

The $$Return ield contains the same link used in the Cancel button:

"[/"+@WebDbName+"/HelpTopic0?Openpage]"

The Save and Exit and Edit action buttons on the form are protected with a hide-
when formula that relies on an ACL role (for example, HelpEditor) (add this role to
the application's ACL.):

@IsNotMember("[HelpEditor]";@UserRoles)

Next, create the LookupHelpTopics view to display text from the HelpSubject ields
from the HelpTopic documents. Select the documents with an appropriate view
selection formula. In this image, the left-most column is a blank (" ") to provide a
little margin when the view displays:

Create a new Help Menu page. Add a title and a New Topic button with the
following @formula:

@Command([Compose];"HelpTopic")

Navigation

[114]

Embed the lookup view on the Help Menu page. Adjust the attributes of the
embedded view using Embedded View Properties. The result should look
something like this in Designer:

Create the default content page HelpTopic0 with some instructions as appropriate.

Create a two frame frameset with a left-hand frame for the menu and a main content
frame for the help topics. Attach the Help Menu page (with the view menu) into the
left-hand frame, and set the target of links from the embedded view to open in the
main content frame. Attach the default content page HelpTopic0 to the main
content frame.

Chapter 4

[115]

Here is what the resulting application looks like in a browser:

Displaying a design element after exiting
a document
As discussed in Chapter 3, it is important to decide which design element (for
example, page, view, or frameset) displays after a document is saved or cancelled.
Several options were presented in that chapter including one that opens the
document in Read mode and one which displays a speciic view. This section
illustrates some additional "post-document" options.

There are several document states or conditions to be considered. Exiting a document
from each of these conditions must be handled by the application's navigation:

•	 New document saved

•	 New document cancelled

•	 Existing document in Read mode edited

•	 Existing document in Read mode cancelled

•	 Existing document in Edit mode saved

•	 Existing document in Edit mode cancelled

Navigation

[116]

Here are some general strategies:

•	 Always display the same default view or design element after a document is
saved or quit. The URL can be computed in a $$Return form ield.

•	 Use a frameset with a menu of views and links displayed in a navigational
frame, enabling the user to select a view or link regardless of what is
displayed in the main content frame. The URL of a common post-document
conirmation page can be computed in a form's $$Return ield and displayed
in the main content frame.

•	 On the form, code several action buttons, including possibly several
mutually-exclusive Cancel buttons. Associate each button with a speciic
document state and write formulas to process the document (edit, save) as
well as to determine which URL displays next. Use hide-when formulas to
show the correct buttons according to the state of the document.

•	 Display a post-document menu of link options on a new page or response
document. A user clicks a hotspot link to choose his next destination. This
menu can be arbitrarily complex, and it can be customized with computed
text and inherited ields. The URL of this post-document menu page or form
can be computed in the original form's $$Return ield.

Use $$Return to select a design element
As previously discussed, $$Return is a special form ield that can contain an
@formula that results in a URL to which the browser is directed after a document
is exited. $$Return should be deined as a Computed for display ield.

You may want to open one design element after a new document is submitted
for the irst time and a different element after an existing document is re-saved.
Unfortunately, you cannot use the @IsNewDoc function since by the time $$Return
is evaluated, the document is already saved and is no longer new. To get around
this problem, create a Computed ield (for example, HasBeenSaved) on the form and
assign it this value:

@If(@IsNewDoc;"N";"Y")

The irst time the document is saved, this ield contains an N, but upon subsequent
saves, the ield contains a Y. Using the value of HasBeenSaved we can write a
$$Return formula that works the way we want it to, displaying one page for new
documents and a different page for existing documents. The square brackets inform
Domino to redirect the browser to the enclosed URL:

@If(HasBeenSaved="N";

"[/" + @WebDbName + "/PostNewDocSave?OpenPage]";

"[/" + @WebDbName + "/PostEdit?OpenPage]");

Chapter 4

[117]

Presumably each of the post-save pages contains one or more hotspot links, perhaps
a little menu of them, that allow the user to select where he would like to go next.

Display the previous view
Existing documents are often shown in several views. Whichever view has focus
when you open a document is the "previous view." After looking at the document,
you can decide to close it without further action or you can choose to edit it and save
the changes. It seems reasonable, especially if you work in the Notes environment,
that after closing a document you would be returned to the previous view, regardless
of whether the document is new or existing, saved or not. But on the Web, however,
there is no "previous view" as such.

For an existing document, the previously displayed view can be determined with the
@ViewTitle function. For a new document, however, @ViewTitle returns nothing.
A new document is added to views only after it is saved, so determining which view
to show after saving or cancelling a new document is problematic.

The following @formula, added to an action button, opens the previous view for
existing documents and the application's default view for new documents. The irst
line of the formula relies on the value of the HasBeenSaved ield as discussed in the
previous topic. The second line extracts just the view title (not the alias) and assures
that any spaces are converted to "%20" strings so that the result is valid for inclusion
in a URL:

view := @If(HasBeenSaved = "Y"; @ViewTitle; "$defaultView");

view := @URLEncode("Domino"; @Subset(view;1));

@URLOpen("/" + @WebDbName + "/" + view + "?OpenView");

Slightly modiied, this formula can be set as the value of $$Return:

view := @If(HasBeenSaved = "Y"; @ViewTitle; "$defaultView");

view := @URLEncode("Domino"; @Subset(view;1));

"[/" + @WebDbName + "/" + view + "?OpenView]";

Display the parent document
Assuming the parent of a response document is included in the allcustomers view,
the following @formula, added to an action button on a response form, opens the
parent document:

@URLOpen("/" + @WebDbName + "/allcustomers/" + @Text($Ref) +

"?OpenDocument")

Navigation

[118]

Here is the slightly modiied form suitable for $$Return:

"[/" + @WebDbName + "/allcustomers/" + @Text($Ref) + "?OpenDocument]"

A somewhat more generalized (and more convoluted) approach requires that the
parent's @ViewTitle value be stored in the parent document and also inherited into
the response document. Deine a Computed text ield named viewtitle on the main
form and set its value to this formula:

@URLEncode("Domino"; @Subset(@ViewTitle;1))

Now create a response form that inherits values from the parent. Add a Computed
text ield named viewtitle to the response form and set its value to:

viewtitle

Assuming that the parent document is saved before the response document is
created, the parent document will contain the title of the view. When the response
document is created, it will inherit the viewtitle value from the parent document.
That value can then be used in a response form button formula or in $$Return to
reopen the parent document. Here is the $$Return formula:

"[/" + @WebDbName + "/" + viewtitle + "/" + @Text($Ref) +

"?OpenDocument]"

Using response forms for interim
worklow steps
Some applications use temporary forms to conirm choices or to collect additional
information from users. For example, suppose an application tracks work
assignments on main documents. When a speciic task is inished, the assigned
actionee records comments in the appropriate main document and submits it for
approval. When the manager opens that main document, an Approve button is
displayed. If the manager clicks the button, an Approval response form opens that
enables him to add comments and to conirm his approval. Clicking a button on the
Approval response form launches an agent that saves the comments and changes the
status of the main document.

These interim response documents inherit certain important values from a main
document, including the main document's UNID, which may be passed to an agent
for processing.

Chapter 4

[119]

If the response documents should be discarded, add a hidden Text ield named
SaveOptions to the response form, with the following default value:

"0"

Setting the SaveOptions ield to zero prevents documents from being saved.

Coding default error pages
You can create custom forms for handling error conditions. Forms using any of four
reserved names can be used to provide customized messages. If these forms exist
in the application, then they are displayed when conditions warrant. Otherwise,
Domino presents default server forms and messages:

$$ReturnAuthenticationFailure

$$ReturnAuthorizationFailure

$$ReturnDocumentDeleted

$$ReturnGeneralError

Create a form named with one of the reserved names. Include an editable Text ield
named MessageString which Domino uses to display error messages. Add other
guidance text and/or hotspots. In this example, the Try Again button re-launches
the application:

To exercise the form, code a bad @DbLookup formula on a button on some other form.
Something like this should sufice:

@DbLookup("":"";"";"xyzview";"badkey";"fieldname")

Navigation

[120]

Launch the application and click the button. The error form is displayed:

Note that $$ReturnAuthenticationFailure and $$ReturnAuthorizationFailure forms
do not work if Session Authentication is enabled on the server.

Providing directions and help
Every application should provide information about itself through self-help features,
and Domino applications offer several techniques to do this.

Help should answer questions and assist users in responding to features of the
application. The upside of application help is that with it users can igure out for
themselves what to do or what went wrong. The downside is that many of them
cannot—or will not—read the help.

Nevertheless, provide as much help and guidance as possible within the constraints
of the development effort. Make sure to spell and punctuate properly using words
and grammar suitably plain for your users. This is a good area to ask for assistance
from a technical writer, trainer, or publicist.

Add meaningful labels and guidance text
Just about every form shows labels and guidance text. Buttons, ields, column titles,
and links should be sensibly named. Use common, well-understood labels for
common functions (for example, "Save" instead of "Commit").

Onscreen guidance text should be simple and to the point. Use a pleasing font of
suficient size so that users need not strain to read the text. Use a color to distinguish
guidance text from ield labels and headings. When something is important, dress it
up with a strong color, bold weight, or a small graphic. Make it clear which ields
are required.

Where appropriate, consider using computed text to customize onscreen guidance.
Use hide-when formulas to display appropriate error messages and other text
depending upon the state of a document. Similar behavior can be implemented with
CSS and JavaScript.

Chapter 4

[121]

Add titles to design elements
Most design elements, from framesets to ields, provide for titles. Use them to
provide help. For ields, buttons, and other hotspots, add titles on the HTML
tab of Properties:

When a ield or hotspot is hovered with a mouse, its title is displayed as a screen tip:

Link to the About and Using documents
Perhaps the oldest way to provide written assistance within a design is with the
About and Using documents. The About document can provide a copyright notice,
a summary of the application, contact information and perhaps release notes. The
Using document can provide more lengthy explanations with drawings and images
where appropriate. Consider using collapsible sections in these documents to
separate content into meaningful units.

Provide hotspots to open these documents. For the About document, code this
@formula for the value of the URL link:

"/"+ @WebDbName + "/$about?OpenAbout"

A similar @formula is used for the URL link for the Using document:

"/"+ @WebDbName + "/$help?OpenHelp"

Navigation

[122]

Add customized help pages
If time permits and you are up to the task, create a little companion application
illed with pages of information about the application. This is a good exercise to do
while you are discovering an application or doing a signiicant overhaul. You should
write what you learn about the application in a way that users will ind helpful.
Many pages will deal with subjects of general interest. Other pages will deal with
application set up, coniguration, and administration. These notes form an invaluable
reference useful long after you've moved onto other projects.

Opening another application in a
separate window or tab
At times it may be useful to deine an action hotspot to open another application in a
separate tab or window. In this @formula example, the target URL is hardcoded. In a
real application, the target URL should be retrieved from a coniguration document
with an @DbLookup formula:

@SetTargetFrame("_blank");

@URLOpen("http://domino01.mycompany.com/application1.nsf");

Whether the second application opens in a tab or in a separate window depends,
of course, upon the browser being used and how it is conigured. Remember that
users may use different browsers with different settings, factors that can impact your
navigational strategy.

Summary
In all but the simplest applications, considerable care should be taken to design and
implement a robust navigational scheme. Crafting the navigational aspects of an
application requires understanding the overall architecture and worklow. Getting it
right early is very important since correcting fundamental navigational laws later on
can be time-consuming.

Work on navigation early in the project, using form, page, and view placeholders
that can be leshed out later on. Adhere to the "go forward" principle so that
buttons and hotspots clearly specify the next page or design element that should
be displayed. Anticipate, prevent, and trap error conditions. Provide as much
context-sensitive and other help as possible within the constraints of your project.

The suggestions and examples provided in this chapter should provide a good
understanding of fundamental navigational issues and techniques relevant to a wide
range of Domino web applications.

Cascading Style Sheets
Cascading Style Sheets (CSS) are used to style web pages, and this is the de facto
standard technology used for this purpose. CSS rules deine the way page elements
look and, to some limited extent, where they reside and how they behave. There are
many CSS techniques, most of which work with web-enabled Notes applications. As
soon as possible, developers should achieve moderate to excellent CSS skills.

Current conventional wisdom tells us that HTML is for structure (what an element
is), CSS is for styling (how an element looks), and JavaScript is for behavior (how
an element behaves). In practice, these three technologies work synergistically to
display and capture information. Oftentimes interesting effects are accomplished by
combining CSS rules with JavaScript code, so it is impossible to discuss some styling
strategies without discussing relevant JavaScript.

In this chapter, we look at how CSS is incorporated into classic web applications.
Examples illustrate the use of CSS rules in a Domino context. There are also general
recommendations regarding styling that may be of interest. Topics include:

•	 Incorporating CSS rules within an application design

•	 Using CSS to style ields, buttons, and menus
•	 Working with images

•	 Providing CSS rules for printing

Using CSS for styling design elements
on the Web
There are two strategies which you can use to apply style to design elements. You
can work with Designer-applied styles and you can work with CSS-applied styles.
Of course, you can also use both techniques on a form or page, although I would
generally recommend against doing so.

Cascading Style Sheets

[124]

With Designer features alone, you can add style to design elements. Text, for
example, can be colored, sized, aligned, and styled in several ways. The method is
straightforward—select the text and then select the style options with Text Properties.
Likewise, most design elements can be styled with Properties. For a Notes application,
Designer-applied styles work very well. They are simple to use and there are many
pleasant options. And in most cases, what you see is what you get.

Many Designer-applied style properties are translated into HTML formatting tags
and attributes when a design element is served to a web browser. As an example,
here is the HTML source generated by Domino for the title of a form. The text is
bold, colored blue-green, and set to the 12 point Times New Roman font:

This is a

Form Title

However, not all Designer-applied style attributes are translated for the Web.
Many style attributes, drop-shadows for instance, are not supported and are
therefore simply ignored when a form or page is composed for the Web. So
maintaining strict idelity between the "Notes version" and the "web version" of a
form can be dificult. The Notes version may look just right, but then the web version
turns out to be only an approximation of the Notes version. Oftentimes the web
version is just not good enough.

The other way to apply style to design elements is to use CSS which provides
extensive control over the look of design elements when displayed in a browser.
Stunning web pages can be created using relatively few rules. So using CSS to style
web pages is highly recommended.

Traditionally, CSS rules do not apply to design elements when they display in
the Notes client; rules applied to a form when it displays on the Web are ignored
when the form opens in Notes. Worse, if you add style to some design elements
with Designer (for example, text font size or color) then any CSS rules also applied
to those design elements are overridden by the Designer-applied styles (HTML
formatting tags) when a browser displays those design elements on the Web.
Worse yet, which styling technique takes precedence (HTML tags or CSS rules) is
inconsistent—sometimes HTML formatting tags have priority and sometimes CSS
rules win out. This is not so much an issue with Domino, but rather with the way
browsers render pages sent to them.

These fundamental incompatibilities between Designer-applied styles / HTML
formatting tags and CSS styles are mitigated in later versions of Lotus Notes
and Domino. If you do not face these issues, great. Otherwise, either stick with
Designer-applied styles or use CSS. The balance of this chapter assumes you
will use CSS for styling.

Chapter 5

[125]

Learn basic CSS coding
Web application developers must learn at least the basics of CSS, which is a standard
language for specifying how documents (composed with markup languages like
HTML and XML) are presented. Many good books and web-based tutorials about
this technology are readily available. This chapter highlights some key concepts, but
it is not intended as a CSS primer.

A CSS rule consists of a selector followed by one or more declarations. Each
declaration consists of a property and value(s) for that property.

Rules can be written for speciic HTML tags. For example, the following CSS rule
applies a speciic set of style characteristics to all <h1> HTML tags on a form or
page. Each property is assigned a speciic value. The selector in this case is called a
type selector:

h1 {

 color: red;

 font-family: Verdana;

 font-size: 16pt;

 font-weight: bold;

 }

A set of declarations can be associated with a class name. In CSS, a class name is
preceded by a period; the class name does not include the period. The class rule
itself consists of the declarations associated with the class name, and these property
values are applied to any design element assigned the particular class name. In this
example, two property values are associated with the requiredtext class selector:

.requiredtext {

 color: #7F0000;

 font-weight: bold;

 }

A set of declarations can be associated with an identiier or ID. A name preceded by
a hash or the pound sign is deined as an identiier. The property values associated
with an ID selector are applied to the one and only one design element assigned that
particular identiier:

#toprow {

 background-color: gray;

 color: white;

 }

If an identiier is assigned to a design element, then JavaScript programs can access
that element (by ID) and apply CSS style to it (or otherwise manipulate it).

Cascading Style Sheets

[126]

When writing CSS rules, punctuation matters (braces, colons, semicolons), but layout
and (most) spaces do not. The preceding declarations for the toprow element can be
laid out in other ways:

#toprow {background-color:gray;color:white;}

Code your CSS so that it is easy to read and understand.

Associate CSS rules with design elements
Assuming a set of CSS rules is available to a form or page, you must associate speciic
CSS rules with speciic design elements. There are two ways to do this. Most often you
will use design element properties, as in the next two illustrations. Sometimes you will
assign CSS classes and IDs directly to elements with Pass-Thru HTML.

Here the PhoneNumber ield is associated with the requiredtext CSS class on
the HTML tab of Field Properties. Note that only the class name is entered into
Properties (no preceding period):

In a similar manner, if the ID of a design element is set equal to a CSS ID selector,
then that element is styled according to the rules assigned to that CSS selector. From
the previous topic, recall that toprow is associated with two properties:

#toprow {

 background-color: gray;

 color: white;

 }

Chapter 5

[127]

Here, the ID of a single table cell (the top row) is set to toprow (the hash mark or
pound sign is omitted, since it is not part of the identiier). This table cell property
creates the linkage between the design element and the CSS rule:

Here is the rendered table cell:

If you are working directly with text on a form or with HTML elements that are not
design elements (for example, <fieldset>,), then you can link that text or
HTML to CSS rules with the HTML id and class attributes. Here is an example which
associates a ield label with a CSS class. The gray text is marked as Pass-Thru HTML:

Cascading Style Sheets

[128]

Locating style rules in applications
CSS rules can be coded in many places within an application, and in some ways that
is unfortunate. Several CSS rules that deine the same property can be targeted to the
same design element; the browser igures out which rule applies and then renders
the element accordingly. If an element is not styling the way you expect it to, you
may have to look in several places to ind the rogue rule. You will ind CSS easier to
work with if you co-locate all rules in the same place.

The following topics illustrate several ways in which CSS rules can be inserted into
forms and pages.

Use a page design element
A page design element can be used to store CSS rules. Create the page and use
Designer to edit the rules. The page name can be anything you like, but it is well to
name the page in a way that identiies it as containing CSS rules, as in this example:

Web Sandbox 05 CSS | websandbox05.css

It is critical to identify the content type of the page as text/css on the Page Info tab
of Page Properties. Otherwise, Domino will not serve the CSS rules page properly
and the rules will not be applied to forms or pages for which they are intended:

To make the CSS rules page available to other forms and pages, you must explicitly
code a linkage in the HTML Head Content area of those other forms and pages. This
linkage is coded as an @formula. In this example, the @Newline functions force the
resulting HTML onto its own line(s):

@NewLine+

"<link rel='stylesheet' type='text/css' "+

"href='/"+@WebDbName+"/websandbox05.css' />"+

@NewLine

The link to the CSS rules page is placed in the form's head section:

<link rel='stylesheet' type='text/css'

href='/ellisits/websandbox05.nsf/websandbox05.css' />

Chapter 5

[129]

CSS rules can be rather complex, so sometimes it might be easier to create several
CSS pages. There are many reasons why you might want to do this. For example,
you might want one style sheet just for Action Bars, a second for embedded views,
and a third for everything else. Or you might need to code different CSS rules for
different browsers. Or you may want to place rules for printing on a different page.

Add a comment to the top of each page to indicate the intent of the style sheet:

/* CSS Rules for Action Bars */

If several style sheets contain rules that apply to elements on a form or page, code a
link to each style sheet in the @formula in the element's HTML Head Content area. In
this example, two style sheets are included in the @formula:

@NewLine +

"<link rel='stylesheet' type='text/css' " +

"href='/" + @WebDbName + "/websandbox05.css' />" +

@NewLine +

"<link rel='stylesheet' type='text/css' " +

"href='/" + @WebDbName + "/datatable.css' />" +

@NewLine

Use Style Sheet Resources
External CSS editors offer several advantages to developers working with CSS style
sheets, and you may want to try out one or two of these tools; browse the Web for
options. CSS editors provide features such as automatic formatting, integrated help,
and syntax validation.

If you prefer to use an external CSS (or text) editor, create the CSS ile externally to
the Domino application and then import it as a Style Sheet Resource:

Cascading Style Sheets

[130]

To create the linkage between a form or page and a Style Sheet Resource, insert the
resource into the element's HTML Head Content area. Select the area, and then select
Insert Resource… from the context menu (right-click). Several style sheets can be
inserted into the HTML Head Content area as needed:

Select the resource from the list of available style sheets in the Insert Resource
dialog. The link to the Style Sheet Resource is placed in the head section of a page
like the following:

<link rel="stylesheet" type="text/css"

href="/ellisits/websandbox05.nsf/Sandbox.css?OpenCssResource">

You can also insert a Style Sheet Resource elsewhere on a form or page. Position the
cursor somewhere in the element, select Insert Resource… from the context menu,
and then select the speciic style sheet as before. The link to the style sheet is placed
in the body of the rendered page:

<style type="text/css">

@import url(/ellisits/websandbox05.nsf/Sandbox.css?OpenCssResource);

</style>

It is recommended that Style Sheet Resources be co-located toward the top of a form
or page to avoid rendering issues.

Chapter 5

[131]

Add style (sparingly) to Properties
Individual style rules can be added on the HTML tab of Properties. In this example,
a ield's CSS class is set to InputColor which deines the foreground color as 'Blue'.
Unfortunately, the color Red has been applied inline to this particular ield via the
Style attribute also in Properties. As styles cascade, the inline style takes precedence
and the input ield text is rendered in red:

The HTML composed for this ield includes both style and class attributes. Style
takes precedence over class:

<input name="Field1" value="" class="InputColor" style="color: Red">

In general, avoid using the Style property, especially if there exists the possibility of
conlicting CSS values in a style sheet. Sometimes during development you might
toss in an inline style like this as a quick test, perhaps as a way to adjust a margin.
But if you forget to remove the inline style, debugging later on can be frustrating.

Minimize the use of internal and inline styling
At the top of a form you might see internal CSS, marked as Pass-Thru HTML.
Internal CSS consists of CSS rules wrapped in <style> tags. Internal CSS is, of
course, limited in scope to the current form or page:

<style type="text/css">

h1 {

 color: Blue;

Cascading Style Sheets

[132]

 font-family: Tahoma;

 font-size: 24pt;

 font-style: Italic;

 }

</style>

As mentioned previously, inline CSS can be found as the value of the style
attribute coded on HTML tags:

Telephone Number

You might also ind internal or inline CSS in many other places including these:

•	 HTML Head Content area

•	 HTML ield
•	 $$Return ield

Scattering CSS rules all around like this can result in a confusing and dificult-
to-debug form. Do yourself and other future developers a great favor and avoid
internal and inline CSS.

Use common style sheets
If your organization supports the use of common style sheets for multiple
applications, by all means use them. Common style sheets promote a sense of
cohesiveness and brand identity. A pleasing, uniform style can contribute to user
productivity and satisfaction.

Use a Domino application as a style sheet
repository
Common Style Sheet Resources can be stored in a central repository. Because
applications link to style sheets in the repository, when a style sheet is updated,
then those dependent applications immediately take advantage of the changes. To
include a link to a common style sheet in another database, select the application and
resource from the Insert Resource dialog. Browse to another application if it is not
immediately available:

Chapter 5

[133]

Use the HTML directory on the server
Common style sheets can be stored in the HTML subfolder on the Domino server,
usually by the Domino administrator. To access a common style sheet, code an
@formula in an HTML Head Content area. Code a relative or absolute link, but do
not refer to the current database. In this example, the @formula results in a relative
link to a style sheet ile located on the same server as the current application:

@NewLine +

"<link rel='stylesheet' type='text/css' href='/Sandbox2.css' />" +

@NewLine

When composed for the browser, the link refers to the correct server-based ile:

<link rel='stylesheet' type='text/css' href='/Sandbox2.css' />

Developing CSS rules
Decide where to place the CSS rules for your application and then stay with that
strategy. Mixing strategies during development may be expedient, but failing to
clean up and standardize can lead to debugging issues down the road.

Cascading Style Sheets

[134]

Of course, the main reason to use CSS to style design elements is the ease with which
styles can be changed. CSS facilitates experimenting with different combinations of
attributes to achieve different looks. Once you settle on a speciic set of style attributes
for a feature, then applying those same attributes to another design element amounts
only to assigning the same CSS class name to that other design element.

Working with CSS can be quite satisfying, but also somewhat frustrating at times.
CSS is a forgiving language; incorrectly speciied rules are simply skipped. There are
no error messages or other indicators of what is wrong. What you wanted was not
what you got, and that's about it.

This section offers some suggestions that may reduce the frustration and hasten the
work of developing your style sheets.

Work with an application rather than a
template while writing CSS
Tweaking CSS rules is often an iterative process that can be very time-consuming.
If you normally design a template and then apply the template to a test application,
you will spend a lot of time unnecessarily manipulating the template. Instead,
consider working directly with the test application while you ine-tune the CSS page.

Try using this development sequence while working out the CSS rules:

1. Open the application in a browser.

2. Open the application in Designer.

3. Update the CSS rules page in the application and save.

4. Refresh the browser.

5. View the result.

When the CSS rules are done, complete the job by transferring the CSS page from the
application to the template:

1. Open the template.

2. Copy the CSS rules page from the application to the template.

3. Save the template.

4. Close the application from Designer.

Chapter 5

[135]

Make sure you have control over the style of
an element
Often enough when you irst start writing CSS rules for a design element, nothing
seems to work; rule changes are not relected in the look of the form or page. There
may be an error but you just don't see it right away.

When this happens, start by making sure you have control over the style of the
element, perhaps a ield or a cell in a table. If your browser includes developer tools,
take a look at the CSS applied (or not applied) to the problematic design element.
Otherwise, pick one attribute—I usually choose "color" because color is easy to
see—and write just one rule to change that one attribute. If the rule does not change
the element, you do not have control over the style of the element. Before you can
make any real progress, you must gain control.

Your irst step should be obvious: check spelling and punctuation for the rule. If the
rule is correctly coded, try these suggestions.

Clear the browser cache
CSS is cached. Just because you changed a CSS rule in the application and reloaded
the page, you have no guarantee that the most recent CSS rules are being applied.
Clearing the browser cache can be a quick way to reestablish control. Clear the cache
and reload the page. If the design element displays with the new rule, you have
control over the style of the element.

Remove HTML formatting
As mentioned previously, some Designer-applied styles are translated into HTML
formatting tags, such as and . If you apply any style with Designer, the
resulting HTML is likely to include HTML formatting tags, and these tags may take
precedence over CSS rules.

In this example, the CSS rule for <h1> tags speciies a green color for text. But the title
Meeting Topics was changed to red with Designer. The composed HTML contains
a tag with an attribute that overrides the CSS rule. As a result, the heading is
rendered red by the browser. (In this example, the <h1> tags were coded directly on
the original page and marked as Pass-Thru HTML.):

<h1>Meeting Topics</h1>

Cascading Style Sheets

[136]

Use Designer to create the structure of a form or page with design elements. Do not
style design elements if you intend to use CSS. If a design element is already styled
with Designer, then reset the styles to their defaults. The default text styles are
as follows:

•	 Default Sans Serif

•	 10 points

•	 Black

If text formatting is problematic, view the page source to identify the problem.
Setting the text formats back to their defaults clears out many undesirable HTML
format tags and allows CSS rules to rule.

Remove conlicting inline and internal CSS rules
Remember that CSS rules can be placed inline as attributes on an HTML tag and also
as the value of the Style property on the HTML tab of Properties. Inline rules take
precedent over rules coded on a CSS page or Style Sheet Resource. Likewise, internal
CSS rules coded on a form or page override external rules. If you do not have style
control over a design element, look for conlicting inline and internal CSS rules and
remove them.

Use fully qualiied CSS selectors
A CSS class name should stand alone as a selector, but on occasion it may be
necessary to more fully qualify a selector in order to gain control of an element. For
example, a simple selector like the following should be suficient to select table cells
within a table whose ID is actions:

#actions td

But if you cannot gain control over the subordinate element (<td> in this example),
then you might try fully qualifying the selector as follows:

table#actions td

You can fully qualify elements with class names as well:

table.actions td

Chapter 5

[137]

Accommodate different browsers
Even if your users all use the same browser, it is useful to view your forms and pages
in more than one browser to assure cross-browser functionality or to gain insight
into a styling problem. Certainly use one or more versions of Internet Explorer, as
that browser is widely installed. But also use Chrome, Firefox, Opera, Safari, or
another popular browser to verify results.

Historically, different browsers rendered certain CSS rules in slightly different
ways. So website developers learned different tricks or hacks to accommodate
these differences.

If your users work with different browsers and you discover that common CSS rules
do not render elements satisfactorily for all browsers, then you can elect to create a
separate CSS page for each browser. Each form or page in your application would
then detect the browser in use and load the appropriate CSS page(s). The
@BrowserInfo function can provide details about the browser being used.

Because Internet Explorer has been a problematic browser, Microsoft introduced
Conditional Comments as a technique that can be used to select one or another
CSS page for different versions of IE. Non-IE browsers should ignore conditional
comments; IE evaluates the comments and then includes or does not include
additional HTML speciied within the comment. For example, in this snippet, the
browser includes the statement Hello IE ! if the browser is IE. Otherwise, the
whole thing is ignored:

<!--[if IE]>

Hello IE !

<![endif]-->

In a similar manner, style sheet links can be selected with conditional comments. In
this example, two style sheet links are selected. The irst style sheet page, Sandbox.
css is always included; this is the primary CSS page and contains rules applicable
to all browsers. After that, three conditional comments provide alternate or
supplemental CSS pages for IE6 or earlier, IE7, and IE8. One and only one of these
additional pages will be selected, depending upon which version of IE is being used:

Cascading Style Sheets

[138]

An @formula in the HTML Head Content area of a form or page creates HTML with
conditional comments as shown in the previous illustration. Here is the code:

LTag := "<link rel='stylesheet' type='text/css' href='/"+

@WebDbName+"/";

"<!-- CSS Stylesheets, different css for IE -->"

+@Newline+LTag+"Sandbox.css' />"

+@Newline+"<!--[if lte IE 6]>"

+@Newline+LTag+"Sandbox-ie.css' />"

+@Newline+"<![endif]-->"

+@Newline+"<!--[if IE 7]>"

+@Newline+LTag+"Sandbox-ie7.css' />"

+@Newline+"<![endif]-->"

+@Newline+"<!--[if IE 8]>"

+@Newline+LTag+"Sandbox-ie8.css' />"

+@Newline+"<![endif]-->"

Note that at the time of this writing, if IE 8 is toggled into compatibility mode,
then conditional comments for IE 7 are honored and conditional comments for
IE 8 are ignored.

Over time, browsers and browser usage change. Web application developers should
keep an eye on browser usage trends by visiting web monitoring sites, such as that
provided by Net Applications: http://marketshare.hitslink.com.

Adding style to form and page elements
Most of the CSS rules you write for an application relate to design elements on forms
and pages. Suggestions and examples in this section just scratch the surface of CSS
possibilities. Browse the Web for additional ideas. Here we focus on the mechanics of
how elements are styled, rather than on speciic recommendations about what looks
good, which is largely a matter of taste.

Use color effectively
Use pleasing, complementary colors. If your organization requires a speciic set
of colors, then of course ind out what that palette is and conform to it as much as
possible. Color tastes change over the years, primary colors dominating at times and
lighter pastels in vogue at others. Here are a few generalities to consider:

•	 Use white or very light colors for backgrounds

•	 Use stronger colors such as dark red to make important elements stand out

•	 Use no more than three or four colors on a form

•	 Use black or dark gray text on a light background for lengthy text passages

Chapter 5

[139]

If you have paid little attention to the matter of color in your applications, do some
web work on the subject. Once you select a color scheme, provide some samples to
your customers for their opinions and suggestions.

Style text
Typography is a complex topic with a rich history and strong opinions. For web
application design purposes, consider using web safe fonts which are likely to be
available on most or all personal computers. If you use a font that is not available to
a browser, then text is rendered with a default font.

Fonts with serifs are usually considered easier to read on paper, and less so as web
page text. Experiment with the following fonts:

•	 Bookman Old Style

•	 Cambria

•	 Garamond

•	 Georgia

•	 Times New Roman

Common fonts without serifs (sans serif) are considered easier to read on the Web.
Some examples include:

•	 Arial

•	 Calibri

•	 Helvetica

•	 MS Sans Serif

•	 Tahoma

•	 Trebuchet MS

•	 Verdana

Mono-spaced fonts are useful when you want text to line up—columns of numbers
in a table, perhaps:

•	 Courier New

•	 Courier

Cascading Style Sheets

[140]

Establish a common font style with CSS rules applied to the body type selector or to a
main division using a type selector, a class selector, or an ID selector:

body {

 color: #555555;

 font-family: Verdana;

 font-size: 8pt;

 }

Style headings and labels
If headings and labels are bracketed with HTML heading tags (for example, <h1> or
<h2>), they can be styled with type selectors:

h1 {

 color: Blue;

 font-family: Arial;

 font-size: 18pt;

 font-weight: bold;

 }

If headings and labels are bracketed with tags, use CSS classes:

October News

Underline links in text but not in menus
When browsers and the Web irst appeared in the early 1990's, hyperlinks were
a novelty. To distinguish a link from normal text, the convention developed to
underscore the text containing the link, and often the link text was colored blue.
There is no magic associated with underscoring and making text blue—it was just
the convention adopted at the time.

Today links in text passages are usually distinguished from adjacent text with color,
weight or underscoring. In a menu, however, each item is understood to be a hotspot
link. Underscores and blue text are not required. So if you feel like underscoring a
link, do so if the link appears within some text, but don't underscore links in menus.

At the same time, refrain from highlighting important text with underscoring, which
implies that that text is a hyperlink. Use another highlighting technique; italics, bold,
or an alternate color work well for this purpose.

Chapter 5

[141]

Style ields
Fields can be styled with CSS either with the Style attribute in Field Properties or
with CSS rules. An example of using the Style attribute was shown previously in
this chapter.

The key to understanding how CSS rules can be applied to ields is to understand
that ields are translated to the Web using <input> tags. Here is how a simple text
ield translates into HTML:

<input name="FirstName" value="">

Here is how a radio button ield translates:

<input name="%%Surrogate_Gender" type="hidden" value="1">

<label><input type="radio" name="Gender" value="M">M</label>

<label><input type="radio" name="Gender" value="F">F</label>

CSS rules can be deined for the <input> tag, an ID, or a class. For example, assume
that a CSS class named requiredtext is deined. If that class name is entered in the
Class attribute of Field Properties, the resulting HTML might look like this:

<input name="FirstName" value="" class="requiredtext">

CSS style rules coded for the requiredtext class are applied to the ield.

Highlight required ields
Required ields are validated, most likely with JavaScript code, so that complete
and good data is saved into the database when a document is submitted. If entered
values fail validation, the user is presented with a message of some sort that
identiies the problem and requests correction.

Web forms typically identify which ields are required. Any of several techniques can
be used. Required ield labels can be styled with a more prominent color or a special
marker such as an asterisk or a checkmark can be positioned near the ield. Required
ields also can be co-located and set apart using the <fieldset> and <legend> tags.

If a ield value fails validation, it is common practice to provide an error message and
then to set the focus into the ield; the cursor is positioned in the ield to facilitate an
immediate correction. As the cursor can be dificult to spot on a busy form, it is also
possible to change the background color of the incorrect ield as a way of drawing
the user's attention to the ield. In this illustration, the background color of the ield
has been changed to yellow:

Cascading Style Sheets

[142]

Implementing this technique requires writing a small JavaScript function that
changes the background color of the ield, and then calling that function when ield
validation fails. This technique is leshed out in a later chapter.

Style buttons
Every form uses one or more hotspot buttons to initiate actions. The basic button
hotspot is not unattractive, but it can be styled as desired with CSS class or ID rules,
just like other design elements. But some buttons do need a little more work.

Replace the default Action Bar buttons with hotspot
buttons
Action Bar buttons added to forms or views work the same way on the Web as they
do in Notes, as long as the @Commands associated with the actions work on the Web.
By default, Domino-generated Action Bar buttons look like the following:

The Action Bar and Action buttons can be styled when displayed in Notes, but that
styling does not translate to the Web. Displaying the Action Bar with the Action Bar
Java Applet improves the look of the Action Bar somewhat, but the Java Applet can
be slow to load and may not initialize properly at times.

One alternative is to create a set of hotspot buttons, styled with CSS and arranged
in a table across the top of a form. The @formulas associated with the Action Bar
buttons are recoded to the hotspot buttons' click events. CSS classes (for example,
button and buttontable) can be deined and applied to these buttons and to the
table which contains them. The end result is more pleasing:

Style the default Action Bar buttons
A Domino-generated Action Bar displays on the Web as an HTML table, each cell
of which contains an Action button. It turns out that the Action Bar table is typically
the irst table on the form. That fact can be used to locate this table element in the
DOM. Once the Action Bar table is located, a CSS class name can be added to it
dynamically. CSS rules then style the table elements.

Chapter 5

[143]

Note that in Domino and Designer 8.5, a new option was added that simpliies this
technique somewhat by automatically adding class names into the HTML for the
Action Bar table and buttons. In Designer 8.5, check the Enable enhanced HTML
generation option on Basic Properties for the application:

With this option enabled, the class domino-actionbar is added to the <table>
tag, the class domino-action is added to the <td> tags, and the class domino-
actionbar-sep is added to the <hr> tag. CSS rules can then be styled for these
classes. View the page source to verify the class names attached to the Action Bar
table and other elements:

<table border="1" cellspacing="2" cellpadding="2"

class="domino-actionbar">

<td class="domino-action". . .

<hr class="domino-actionbar-sep" />

If you work with versions of the software prior to 8.5, here is a way to apply CSS
rules to the Action Bar. The solution described here consists of ive components.
If you are using Designer 8.5 in a Domino 8.5 environment, you can skip the steps
related to JavaScript, and use the Domino-generated class names instead of the class
names in the example. Here are the components required for this strategy:

•	 A CSS style sheet named ActionBar.css containing rules for an actionbar
class and other HTML tags

•	 A JavaScript library named ActionBar.js containing a JavaScript function
named styleActionBar that sets the Action Bar table class name property to
actionbar

•	 A link to the ActionBar.css style sheet in the form's HTML Head
Content area

•	 A link to the ActionBar.js JavaScript library in the form's JS Header

•	 A short JavaScript placed at the bottom of the form that invokes the
styleActionBar JavaScript function after the page loads

Cascading Style Sheets

[144]

Reshufling the parts, here is (roughly) how this works:

1. The form loads into the browser.

2. The last line of the form ires the styleActionBar JavaScript function
fetched from the ActionBar.js JavaScript library.

3. The styleActionBar function locates the Action Bar table at the top of the
form and sets its class name property to actionbar.

4. The browser restyles the Action Bar table according to the rules in the
ActionBar.css style sheet.

5. The form displays in the browser viewport.

The ActionBar.css page contains the following rules. Note that all rules apply
to a table whose class name is actionbar or to elements (for example, <td>)
within that table:

/* Rules for Action Buttons */

table.actionbar {

 border-collapse: collapse;

 border: none;

 margin: 0;

 padding: 0;

 }

table.actionbar td {

 background-color: rgb(0,0,128);

 border: solid 2px #555;

 border-top: solid 2px #DDD;

 border-left: solid 2px #DDD;

 font-family: Verdana;

 font-size: smaller;

 font-weight: normal;

 height: 2em;

 margin: 0;

 padding: 0;

 text-align: center;

 width: 11em;

 }

table.actionbar td a {

 color: White;

 float: left;

 padding: .5em 0;

 text-decoration: none;

 width: 100%;

 }

table.actionbar td a:hover {

 background-color: #DDD;

 color: red;

 }

Chapter 5

[145]

The styleActionBar JavaScript function in the ActionBar.js JavaScript library
contains just a few lines. An array of the form's tables is created, and then the
className property of the irst table in the array is set to actionbar, forming the
linkage between the Action Bar table and the aforementioned CSS rules:

function styleActionBar() {

 var form = document.forms[0] ;

 var tables = form.getElementsByTagName("TABLE") ;

 var actionbar = tables[0] ;

 actionbar.className += " actionbar" ;

 }

The link to the ActionBar.css page in the form's HTML Head Content area results
from a simple @formula:

@NewLine+

"<link rel='stylesheet' type='text/css' href='/"+

@WebDbName+"/actionbar.css' />"+

@NewLine

The link to the ActionBar.js JavaScript library in the form's JS Header results from
inserting that resource with the context menu:

The JavaScript added to the end of the form is marked as Pass-Thru HTML:

<script type="text/javascript">{styleActionBar();}</script>

Cascading Style Sheets

[146]

With these pieces in place, the default Action Bar buttons that look like this:

are restyled. Here the Edit button is shown in a mouse hovered state:

Style borders and margins
If you examine closely the CSS rules in the previous illustration, you can see how to
create borders with a three dimensional look. In the illustration, the table cells which
contain the "buttons" are styled with three border declarations. The irst declaration
sets all the borders to the same width and color (a dark gray). The second and third
declarations change the top and left-hand borders to a lighter color:

border: solid 2px #555;

border-top: solid 2px #DDD;

border-left: solid 2px #DDD;

Use the margin style properties of an element to adjust the whitespace between it
and other elements. Without CSS, the common way to create white space above a
table or between table rows was to insert HTML tags (<p>,
,). With CSS,
a margin or padding declaration does the trick. Here, a table is positioned 10 pixels
below the element above it on the page:

margin-top: 10px;

Note that adjacent elements share a margin, so you may have to adjust the margins
of both elements. Use the padding style properties to provide white space between
an element and its border or container.

Work with images
As discussed in Chapter 2, select, reine, and scale down images externally before
importing them into your application as shared image resources. You can of course
copy and paste an image directly onto a form or page, but this technique is not
recommended, especially if the image is used on more than one design element.

Chapter 5

[147]

Once in the template, you have several ways to incorporate images. The easiest
technique is to position the cursor on the form and then to select the menu item
Create | Image Resource… which opens the image selection dialog. Note that you
can browse to other Domino applications and even to the ile system:

Alternately, you can embed an image with an HTML tag marked as
Pass-Thru HTML:

But since this chapter is about using CSS, let's look at how CSS rules can be written
to attach images to design elements. Let's start by attaching an image (for example,
a watermark) to a form as a background. Assuming there is an imported cups2.jpg
image in the template, here is the relevant CSS rule:

body{

 background: url("cups2.jpg");

 }

The image serves as a background for the entire form or page. In this illustration,
note the use of Lorem Ipsum which often serves as a placeholder for real text during
the design process. Be mindful that placing text over an image may make the text
more dificult to read:

Cascading Style Sheets

[148]

You can attach an image as background to many elements. Here a somewhat more
pale cups3.jpg image is attached as background to a <div> element whose ID is
maintext. The text color is black in an attempt to provide more contrast between the
background image and the text:

#maintext {

 background: url("cups3.jpg");

 color: #000;

 font-family: Verdana;

 font-size: 12pt;

 }

Unfortunately, the value of an image can degrade behind text, so further adjustments
may be required:

Chapter 5

[149]

As a inal example, let's add an image to a button. The problem of background
images interfering with the readability of foreground text exists with buttons as well,
and it may take some inagling to achieve a reasonable result, especially with colorful
or busy images. Attaching the background image is fairly straightforward, as we
have seen in the previous examples.

It is important to assure that the size of the button (height and width) are less than
or equal to the size of the image. A too-large image is cropped when rendered, but a
too-small image will not ill the entire button. Unless the image is a pattern, it should
not repeat on the button. In this next illustration, the cups4.jpg image is 100 pixels
wide and 82 pixels high.

The real effort—which can take considerable experimentation—is in inding a good
set of properties for the button text. Color is most important, as the color of the text
should make it stand out clearly from the background image.

Here is the CSS rule for a button with an ID of sub. Note the inclusion of border
properties to achieve some sense of three dimensionality:

input#sub {

 background: url("cups4.jpg") no-repeat center center;

 border: solid 2px #555;

 border-top: solid 2px #DDD;

 border-left: solid 2px #DDD;

 color: #FFFF00;

 font-family: Verdana;

 font-size: 16pt;

 font-weight: bold;

 height: 40px;

 width: 100px;

 }

The button displays with a colorful background image dominated by greens, white,
and deeper blue. The text is a bright yellow. Altogether this is not a bad solution,
but the readability of the text is still not what it should be—there is too little contrast
between the letters and the objects in the picture:

Working with images is both pleasurable and frustrating. In general, try to work
with images whose internal colors are fairly similar, without a lot of contrast. Use
bright, grayscale images if at all possible since these will interfere less with dark
foreground text.

Cascading Style Sheets

[150]

Style menus
Chapter 4, Navigation, introduced the idea of creating menus with HTML tags and
CSS rules. This topic elaborates a bit on that earlier discussion.

If you browse the Web for CSS menus, you will ind many, many examples. You will
also ind menus created with CSS and JavaScript, jQuery, and any number of other
techniques. Getting a menu just right takes time. Here is one example, which should
whet your appetite. Walk through the example carefully to understand how all the
pieces work together.

In this example, there is a heading, and below the heading are three menu items,
each of which contains a link to a view. When hovered with a mouse, these menu
items change color as a visual cue to the user. The inal result looks like this:

The menu on the form is structured as an unordered list within an unordered list.
This arrangement of HTML elements is a bit more complicated than using just a
single unordered list, but it does enable us to apply some unique styling to the inner
list if we so desire.

The list item in the outer unordered list contains a link to itself. This convention
provides us with an <a> (anchor) tag that can be styled. Clicking the link does nothing.

The list items in the inner unordered list contain Hotspot Links to views. The
hotspots translate to the Web as <a> tags:

Chapter 5

[151]

Now the CSS rules are rather lengthy. Style is applied to each HTML element,
starting with the menuA division. In order, rules are laid out for the division, the
unordered lists, the list items, the anchor tag links, the outer list item anchor tag (the
menu heading), the inner list item anchor tags (the menu items), and inally the inner
list item anchor tags when hovered. Whew! Here it is:

#menuA {

 margin: 0;

 }

#menuA ul {

 list-style: none;

 margin: 0;

 padding: 0;

 }

#menuA li {

 width: 10em;

 }

#menuA a {

 display: block;

 font-family: Arial;

 font-weight: bold;

 padding: .25em;

 text-align: left;

 text-indent: .5em;

 text-decoration: none;

 width: 100%;

 }

#menuA li.item a {

 background: #CCC;

 border: solid 2px #555;

 color: #000;

 }

#menuA li.subitem a {

 background: #F00;

 border-top: solid 2px #AAA;

 border-right: solid 2px Maroon;

 border-bottom: solid 2px Maroon;

 border-left: solid 2px #CCC;

 color: #FFF;

 }

#menuA li.subitem a:hover, #menuA li.subitem:hover {

 color: #F00;

 background: #FFF;

 }

Cascading Style Sheets

[152]

The intent of this example is to demonstrate how CSS alone can be used to create
some simple yet stylish menus. Browse the Web for even more complex and
challenging examples.

Style printed pages
Styles appropriate for a web page are not necessarily the best choice for a printed
page. For example, fonts without serifs may be easier to read on a computer screen,
while fonts with serifs are generally more pleasing when printed on paper. A web
page with a dark background and light text might better print as black text on a
white background.

Then again, forms and pages often contain guidance text, buttons, menus and
hotspots—even whole sections—which are unnecessary when the form or page
is printed. To style elements differently when printed or to avoid printing certain
elements, create a second style sheet with alternate CSS rules. Alter the style of some
elements for printing and hide those elements that should not print at all. In this
example, text in the maintext division prints in a black, 10 point Times New Roman
font, and any element (for example, buttons and hotspots) assigned the NoPrint
class do not print:

#maintext {

 color; #000;

 font-family: "Times New Roman";

 font-size: 10pt;

 }

.NoPrint {

 display: none;

 }

In the form or page HTML Head Content area, code an @formula that includes both
the primary and the printing style sheets. The media attribute on the second <link>
tag signiies that the style sheet should be included only when the form or page
is printed:

@NewLine +

"<link rel='stylesheet' type='text/css' " +

"href='/" + @WebDbName + "/websandbox05.css' />" +

@NewLine +

"<link rel='stylesheet' type='text/css' href='/"+

@WebDbName+"/noprint.css' media='print' />"+

@NewLine

Chapter 5

[153]

Add more than one class to an element
If an element is already styled with a speciic class, you can simple add another class
to designate that the element should not print. In this example, a button is styled
with two classes, the second of which is the NoPrint class.

Summary
Contemporary web applications should look good as well as perform well.
Web-savvy users—that means just about everyone—expect well-styled pages,
and developers should attend to this aspect of applications, both new and old.

Expect to spend some time polishing and ine-tuning the layout and style of
forms and pages as your development or redesign project rolls toward completion.
Finding just the right balance of fonts, colors, images, borders, margins, and so on
can be challenging, but applying good-looking style to a design can really impress
your customers.

The suggestions and examples in this chapter provide a good understanding of
how CSS rules can be used to style and enhance design elements within Domino
web applications.

JavaScript
JavaScript is the programming language used to manipulate web pages in browsers.
It is the technology that puts the "dynamic" into Dynamic HTML. Learning
JavaScript is essential for anyone enhancing or developing web applications, and of
course, it is well integrated into the fabric of Domino web development.

If you already have a good grasp of JavaScript, your focus should be on how to
incorporate JavaScript into Domino applications. There is no special version of
JavaScript for Domino, but how you work with JavaScript in this environment may
seem a little foreign.

In classic Domino applications, JavaScript worked only in browsers. Version 8.5
changed this, and set the stage for using JavaScript in server-side agents. This
chapter focuses on using JavaScript in the classic sense, to manipulate form and page
elements in browsers. Code samples are intended to illustrate concepts and strategies
but not inished products. Use the samples as starting points for your own work, and
certainly go on to explore JavaScript frameworks like Dojo and JQuery.

This chapter includes these topics:

•	 Inserting JavaScript code into Domino applications

•	 Using JavaScript to enhance forms and pages

•	 Writing your own Ajax functions

Using JavaScript in web applications
JavaScript is used pervasively in web applications. Of course, you can write Domino
applications without coding a line yourself—Domino will insert the few lines it
needs anyway.

JavaScript

[156]

JavaScript provides another coding option for many tasks. Field validation, for
example, can be done with @formulas or with JavaScript. Unfortunately, not
everything you might want to do can be done with a single language, so web
applications end up as a mixture of @formulas, LotusScript (or Java), HTML, CSS,
and JavaScript.

Contemporary web applications use JavaScript extensively to improve performance
and page behavior, so if you don't know much about the language, grab a book
or look through one of the many online JavaScript tutorials. A few hours of study
should be enough to get you going. Full mastery of JavaScript will take considerably
longer as it is a rich and powerful scripting language.

It is also useful to grasp the essentials of the Document Object Model (DOM), which
is intended to represent and organize elements of a web page and also to provide
an API for accessing those elements with a programming language like JavaScript.
The structure and naming conventions for the DOM are fairly standard across all
browsers, but there are a few differences; some objects and methods are supported
by some browsers and not by others. A few illustrations of such differences are
presented in this chapter.

Also, spend a little time learning about the Browser Object Model (BOM), which is
similarly intended to represent the browser and to provide access to browser objects
(like the window object). Although there is good similarity here, browsers are less
standardized than we might like, and this can impact how you write your JavaScript.
For this reason, it is important to test your JavaScript with multiple browsers.

The primary purpose of this chapter is to focus on using JavaScript within a Domino
Designer context. The examples may help you to learn some JavaScript, but this
chapter is not intended as a primer for the language.

Keep it simple, comment the complex
Programming is half engineering and half art. Be kind to the next developer who has
to work with your code. Format your scripts with indentations, use sensible variable
names, and keep statements and functions relatively simple.

Also leave tracks. Add a few comments in your functions. Use a page within the
template to document complex strategies. Yes, it takes a bit of time, but it is the
professional thing to do.

Chapter 6

[157]

Be alert for disabled JavaScript and other
options in browsers
In the past, some users disabled JavaScript in their browsers, and older Domino
applications may have provided workarounds or notices that were displayed
whenever JavaScript support was disabled or unavailable. Those days are long gone;
enabled JavaScript support in browsers should be assumed.

Of course, there is always the possibility that someone has turned it off by mistake
or otherwise. If JavaScript is disabled, even basic functionality like opening an
application or toggling into the Edit mode may be lost. Also be aware that users
have considerable control over how their browsers operate; locally disabled browser
features can impact how well an application appears to function.

If you suspect a user has turned off support for JavaScript, have him look around
his browser for an appropriate setting with which to turn it back on. In this example,
JavaScript is disabled in Google's Chrome 8 browser:

Be alert for inconsistent JavaScript behavior
in different browsers
Except for browser extensions, JavaScript behavior should be consistent across all
major browsers, but this is not completely so. The following example walks through a
speciic example in which only minor changes are required to achieve a good result.

This simple script is attached to a button's onClick event:

alert(

 "Server Name:\tMY SERVER\r"+

 "Web DB Name:\tMY DATABASE\r"+

 "User ID:\t\tMY USERID")

JavaScript

[158]

IE 8 displays the alert this way, with the text lined up as expected:

Firefox 3.6 displays the alert unacceptably. It appears that Firefox does not handle
the carriage return escape code \r in the same way as does IE 8:

Here the script is tweaked. The carriage return (\r) escape codes are replaced with
new line (\n) escape codes, and extra spaces are added. The result is much better,
although still not entirely consistent:

alert(

 "Server Name: \tMY SERVER\n"+

 "Web Name: \tMY DATABASE\n"+

 "User ID: \tMY USERID")

This example illustrates that even simple scripts can behave quite differently in
different browsers. Inconsistent rendering and behavior across browsers has been a
problem for a long time, one which Domino web application developers must keep
in mind during development and testing. Minor tweaks may result in acceptable
behavior, but sometimes more effort is required to achieve the same result in
different browsers.

Use browser object detection
While recent browsers support common objects, methods, and properties, there are
exceptions. As much as possible, use techniques that behave the same way in all the
common browsers.

Chapter 6

[159]

There may be occasions, however, when you need to use features that are
implemented differently in different browsers. If so, use browser object detection
to determine whether or not a feature is supported by a browser; code an alternate
strategy if support is lacking.

Use the typeof operator to test for the existence of an object, method, or property.
Here is an example:

if (typeof document.implementation.createDocument != "undefined") {

alert("'document.implementation.createDocument' IS available.");

}

else {

alert("'document.implementation.createDocument' IS NOT available.");

}

IE 8 indicates that the feature is not available:

Firefox 3.6 supports the feature:

JavaScript

[160]

Use browser detection only when really
necessary
It is possible to detect a speciic browser, but since browser support for various
objects changes over time, it is better to detect the support for an object rather than a
speciic browser. But if there is a need to detect and accommodate Internet Explorer
(in the past, a more standards-deviant browser), here is a simple way to do it:

if (typeof window.ActiveXObject != 'undefined') {

 alert("Microsoft Browser") ;

 }

else {

 alert("Non-Microsoft Browser") ;

 }

If more speciic information about a browser is required, the navigator object can
be interrogated. Three properties contain the information you might need. Parse the
results as required:

alert (

 "navigator.appName:\n\n" + navigator.appName + "\n\n" +

 "navigator.appVersion:\n\n" + navigator.appVersion + "\n\n" +

 "navigator.userAgent:\n\n" + navigator.userAgent)

Here are details provided by Chrome:

JavaScript

[162]

To add a library, click the New Javascript Library button:

A page opens up. Enter well-formed JavaScript functions. Name and save the library
with Script Library Properties. If you have many functions, you may want to create
several libraries, each storing related functions:

To link a JavaScript library to a form or page, open the element's JS Header and
insert the JavaScript Library Resource from the context menu. Multiple JavaScript
Library Resources can be inserted into the JS Header:

Chapter 6

[163]

Now add function calls on your form or page wherever appropriate.

Add JavaScript in the JS Header
If a script should run when a form is irst loaded, perhaps to set some JavaScript
global variables, then you can add code directly into the JS Header. When the
header is loaded, the JavaScript executes. In this example, the variable greeting
becomes available throughout the form, including to any functions located in the
JavaScript libraries:

var greeting = "Welcome!" ;

Add JavaScript to web events
JavaScript can be added to ield, form, page, and button events, either as complete
scripts or as function calls. For ease of maintenance, code in these events only calls to
functions saved in JavaScript libraries. Have I said this enough by now?

Here are some of the web events that accept scripts. The scripts themselves are
entered in the Programmer's Pane:

•	 onHelp

•	 onLoad

•	 onUnload

•	 onClick

•	 onDblClick

•	 onKeyDown

•	 onKeyPress

•	 onKeyUp

•	 onMouseDown

•	 onMouseMove

•	 onMouseOut

•	 onMouseOver

•	 onMouseUp

•	 onReset

•	 onSubmit

JavaScript

[164]

Of these, onClick, onLoad, onUnload, onReset, and onSubmit may be the most
useful. Consider using the onMouseOver and onMouseOut events to add visual cues
and other dynamic behavior when an object is mouse hovered.

For example, suppose you want to add some guidance text that is displayed when a
form ield is mouse hovered.

First, add the ield and a message bracketed by tags . Remember to mark the
HTML tags as Pass-Thru HTML:

Next, in the onMouseOver event for the ield, code a call to a function containing this
JavaScript (or for demonstration purposes only, code this script in the onMouseOver
event itself):

var item = document.getElementById("addressmsg") ;

item.style.visibility = "visible" ;

Now in the onMouseOut event for the ield, code this JavaScript:

var item = document.getElementById("addressmsg") ;

item.style.visibility = "hidden" ;

Finally, code this CSS rule that sets the initial visibility attribute for the span:

#addressmsg {

 color: #7F0000;

 visibility: hidden;

 }

When the ield is mouse hovered, the message displays, and when the ield is exited,
the message disappears. The following screenshot shows the result with the mouse
hovered over the Address ield; the guidance text is displayed to the right. When the
mouse is moved away from the ield, the text is hidden:

JavaScript

[166]

To implement this strategy, create a page within the design to hold the JavaScript
variable assignment statements. Use computed text to supply values for the variables.

In this example, several global variables are deined on a page (startup.js).
Note that the terms on the right-hand side of the assignments include computed
text. The @formulas generally resolve to text strings, which are then surrounded by
quotation marks:

// startup.js

var NotesName = "<Computed Value>" ;

var NotesCName = "<Computed Value>" ;

var NotesRoles = "<Computed Value>" ;

var ServerName = "<Computed Value>" ;

var ServerDomain = "<Computed Value>" ;

var AppTitle = "<Computed Value>" ;

var WebDbName = "<Computed Value>" ;

Here is the computed text for each of these JavaScript variables. Most of these
@formulas should be familiar to you:

•	 NotesName:
@UserName

•	 NotesCName:
@Name([CN];@UserName)

•	 NotesRoles:
@Implode(@UserRoles)

•	 ServerName:
@ServerName

•	 ServerDomain:
svr := @ServerName ;

@DbLookup("":"";svr:"names.nsf";"($servers)";svr;"SMTPFullHost

Domain")

•	 AppTitle:
@DbTitle

•	 WebDbName:
@WebDbName

Chapter 6

[167]

By the book, the content type of a JavaScript page should be set to text/javascript
although as a practical matter, setting the Content type to HTML in Page Properties
seems to work as well:

Link a form to the JavaScript page with an @formula in the form's HTML Head
Content area. More than one JavaScript page can be included. Here is how a form
would link to a single JavaScript page:

"<script type='text/javascript' src='/" +

@WebDbName + "/startup.js?OpenPage' />" +

"</script>" +

@NewLine

To verify that the JavaScript global variables are, indeed, created and available to the
form, create a button on the form and add this JavaScript to its onClick event:

alert(

 "NotesName = \t" + NotesName + "\n" +

 "NotesCName = \t" + NotesCName + "\n" +

 "NotesRoles = \t" + NotesRoles + "\n" +

 "ServerName = \t" + ServerName + "\n" +

 "ServerDomain = \t" + ServerDomain + "\n" +

 "AppTitle = \t" + AppTitle + "\n" +

 "WebDbName = \t" + WebDbName + "\n"

);

Clicking the button displays the computed JavaScript variables:

JavaScript

[168]

Note that for this example, user Anonymous was granted Read access to names.nsf
on the server, which would normally not be allowed.

To assign a Domino Boolean value to a JavaScript variable as a Boolean value, use a
computed text formula that returns either the string true or the string false:

var JSSupport = <Computed Value> ;

The computed text in this example consists of an @formula that returns either true or
false, which are Boolean primitives in JavaScript:

@If(@BrowserInfo("JavaScript");"true";"false")

Computed text formulas on the JavaScript page can also include JavaScript
formatting characters (for displaying in an alert box) as in the following example
where new line escape codes are appended to each user role in the string that is
assigned to the JavaScript variable.

@Implode(@UserRoles;"\\n")

When this string is displayed in an alert, each user role is written to a separate line:

Use a subform for JavaScript
An alternative to placing JavaScript and computed text on a separate page is to place
the same JavaScript and computed text on a subform, which is then included with
each form. An advantage with this technique over the JavaScript page technique is
that it works with the Notes client.

There are two minor disadvantages, however. The subform—and consequently the
JavaScript—cannot be included on page elements. Secondly, the subform must be
inserted at the top of the form in order for other scripts on the form to access global
variables or functions deined on the subform.

Chapter 6

[169]

Make sure the JavaScript and the computed text coded on the subform is all marked as
Pass-Thru HTML. Also assure that the option Render pass through HTML in Notes
is selected on the Form Info tab of Form Properties.

Consolidate and co-locate JavaScript
Whenever possible during a design refresh, follow these guidelines:

•	 Convert most or all inline JavaScript into a JavaScript functions.

•	 Consolidate JavaScript functions into one or more JavaScript libraries in the
template and then insert those libraries into the JS Headers of forms and
pages as needed.

•	 If your application uses many JavaScript global variables, pull that code
together into a small JavaScript page or library and then add an appropriate
link to that page or library on forms and pages as needed.

With all inline JavaScript converted to functions, all functions tucked into script
libraries and all global variables co-located on one page, future developers need to
look in only a few places to make changes. And they may thank you for it.

Developing and debugging scripts
JavaScript code runs when browser events occur—typically in response to something
that the user does (for example, clicks a button). Developers should test all the scripts
by exercising all the functionality of the application. Sometimes the result of a script
is obvious because something moves or changes color. Sometimes nothing obvious
happens or perhaps an unexpected page not found error is displayed. Scripts can
fail without displaying error messages or any other indication of failure, and the
developer is left wondering where to start troubleshooting.

In addition to inserting JavaScript alert function calls into suspect scripts and
viewing the page source in the browser, here are two general techniques that can
help during script development.

Use browser debugging tools
Get to know your browsers' developer tools and other options. For example, IE
displays a warning icon (and sometimes a message) in the lower left-hand corner of
the browser window. Click the icon to display additional information:

JavaScript

[170]

Firefox provides some information with its Error console that provides a quick view
of detected errors:

Chrome provides some information in its Developer Tools frame:

Explore the browsers with which you work, along with developer aids and plug-
ins that are freely available on the Web. Such tools may save you considerable
development time.

Validate JavaScripts
JavaScript, like HTML and CSS, can be validated. Results may suggest improvements
to your code, which can prevent problems when the application goes into production.
One online validation service is located at: http://www.javascriptlint.com

Simply paste a script or script snippet into the text area and click the Lint button.
Detected errors are highlighted. The process is iterative, so changes can be made
directly in the Lint text area. When inished, copy the modiied JavaScript back
into your design element. Like all tools, use this with caution and circumspection.
Error messages, as in this example, may not be correct, but they can point you in
the right direction:

Chapter 6

[171]

Using JavaScript to enhance forms and
pages
As we have seen already, there are many ways in which JavaScript can be added into
web applications. In this section, we explore some additional ways that scripts can be
used to enhance forms and pages.

Run JavaScript on load
Not uncommonly, you may want to run some JavaScript when a form irst loads
into the browser. This can be a bit tricky since documents can open in Read or Edit
mode, and in Edit mode documents are often refreshed from the server. You may
want to run a script only with a document in Read mode or only in Edit mode. And
you probably want an initialization script to run only once even if the document is
refreshed from the server. These kinds of situations need to be addressed and tested
carefully to assure a good inal product.

JavaScript

[172]

There are some obvious places to insert JavaScript so that it runs when a form
irst loads:

•	 The JS Header

•	 The onLoad Event

•	 Inline on the form

Positioned in any of these locations, a script might possibly run before the document
is completely loaded, and depending upon what the script does, this could produce
erroneous results.

Another issue concerns the edit mode of the document. As mentioned, it may be
that a script should run when a document is in Edit mode, but not when it is in Read
mode. Here is a technique that can be used to address this issue:

At the bottom of the form, add some computed text with this @formula as a value:

mode := @If(@IsDocBeingEdited;"Edit" ; "Read") ;

"[<script type='text/javascript'>" +

"{" + "runOnLoad('" + mode + "');}"+

"</script>]"

As Domino composes the source for the form, the value for the Formula variable
mode is set to Read or Edit, and then the JavaScript code is composed with the
appropriate argument. Here is what the computed source looks like when the
document opens in Read mode:

script type='text/javascript'>{runOnLoad('Read');}</script>

When the form loads into the browser, the script runs and invokes a runOnLoad()
function with a single argument. Here is the skeleton of a runOnLoad() function,
with two alerts inserted for debugging purposes:

function runOnLoad(mode) {

 if (typeof mode == "undefined") { var mode = "Read" ; }

 if (mode == "Edit") {

 // Insert code here which runs if document is in Edit mode

 alert("Document is in Edit mode") ;

 }

 else {

 // Insert code here which runs if document is in Read mode

 alert("Document is in Read mode") ;

 }

 }

Variations can include tests for new or existing documents, or for any set of ield
values or attributes.

Chapter 6

[173]

Access CGI variables
A previous topic covered the idea of JavaScript global variables and how they
could be set when a document or form is opened. Another common set of global
variables are the CGI variables that are standard values available in web browsers.
CGI variables deine a number of web browser, page, and server properties. CGI
variables, like other JavaScript global variables, are available when a document is in
the Read mode as well as in Edit mode.

Typically, a subform is designed to hold all the CGI variables, and then that subform
is inserted at the top of forms as required. If the ields are named and initialized
properly, then Domino sets the variables for you. For example, here are three
relatively useful CGI variables:

•	 Path_Info

•	 Query_String

•	 Server_Name

If the CGI subform contains three ields with these names, and if the default value
for each ield is its own name, then those values become available when a document
opens. Because these are Domino ields, they can be referenced in @formulas. The
following @formula recreates the URL required to open a speciic document or form:

"http://" + Server_Name + Path_Info

CGI variables are available to JavaScript code as well. This JavaScript snippet creates
the same URL string as above:

var path = document.forms[0].Path_Info.value ;

var server = document.forms[0].Server_Name.value ;

var url = "http://" + server + path ;

Note that these variables are speciically available to web browsers, and not to the
Notes client. Provision must be made to handle missing values or JavaScript errors
when such documents or forms are opened with the Notes client. See Designer help
for more information, including a complete table of CGI variables that can be used.

Validating ields
Client-side JavaScript is perhaps most commonly used to validate values entered by
users into ields on a form. Validations can be done when a user exits a required ield
or when he submits the document. Field-level validations occur immediately upon
exiting a ield. Form-level validations occur when a user clicks a button (for example,
Submit) to save a document.

JavaScript

[174]

Consider the following general purpose function coded in a ield's onBlur event. In
this example, assume the ield is named Address and that it is required:

detectBlanks(this, "Address field is required.") ;

The irst argument in the function call's argument list refers to the ield itself; the
second argument is an optional message that is displayed if the ield is blank. When
the user tabs away from the ield or moves the cursor to another location with the
mouse, the onBlur event ires and the detectBlanks() function runs.

The detectBlanks() function contains logic to detect nothing (or blanks) in the
calling ield. In this case, if no address is entered, then the ield's background color is
set to yellow as a visual cue, and an alert is displayed:

function detectBlanks(field, message) {

 var string = field.value;

 if (typeof message == "undefined" || message == "") {

 message = "Blank field detected." ;

 }

 string = string.split(' ').join('') ;

 if (string=="") {

 field.style.backgroundColor = "Yellow" ;

 alert("Warning: " + message) ;

 return false ;

 }

 field.style.backgroundColor = "White" ;

 return true ;

 }

Some developers set the focus into a ield upon validation failure with the following
line of code. Here, fieldname is a placeholder for the real ield name:

document.forms[0].fieldname.focus() ;

By coding this line in a ield validation function, the cursor is set back into the
ield whose validation just failed; the user is essentially captive until he enters the
required information. I ind this behavior fairly annoying, so I do not recommend it.
Use this technique only if it is really, really necessary.

Validating all required ields upon submission is generally a good strategy. JavaScript
in the form's onSubmit event calls a general purpose ield validation function:

if(!validateForm()) { return(false); }

If the validation function fails (returns false), then the onSubmit event fails and the
document is not submitted.

Chapter 6

[175]

This sample validateForm() function validates only two ields and those only
for blanks; it can easily be expanded to analyze many more ields. Note that only a
single alert displays at the end:

function validateForm() {

 var message = "" ;

 var string ;

 f = document.forms[0] ;

 string = f.Address.value ;

 string = string.split(' ').join('') ;

 if (string == "") { message += "Address\n" ; }

 string = f.City.value ;

 string = string.split(' ').join('') ;

 if (string == "") { message += "City\n" ; }

 if (message != "") {

 alert("Please enter information for required field(s):\n\n" +

 message) ;

 return false ;

 }

 return true ;

 }

Field validations can be much more complex of course, but the basic strategy
presented here can be expanded to serve your own validation requirements.

Validate number ields
A ield on a Domino form intended to store numeric data can be deined as a number
ield rather than as a text ield. Using the Notes client, a user enters numeric text,
which is automatically converted to a true number before being stored in the
number ield.

On the Web, all values typed into ields are submitted to the server as text. If
non-numeric text (for example, "ten") is entered for a number ield and then the
document is saved, an error is detected by the server and the document is not saved.
Instead, a generic HTTP 500 message is displayed—not very helpful in determining
what is wrong:

JavaScript

[176]

The solution to this problem is to validate that the entered text is indeed numeric,
before allowing the form to be saved. Here a function call is added to the Age ield's
onBlur event:

detectNumber(this,"Age must be a number.")

This detectNumber() function is also relatively simple and straightforward. If non-
numeric text is entered into the Age ield, then a warning displays.

The irst argument in the function call's argument list refers to the ield itself; the
second argument is an optional message that displays if the ield is non-numeric or
blank. When the user tabs away from the ield or moves the cursor to another location
with the mouse, the onBlur event ires and the detectNumber() function runs.

The detectNumber() function contains logic that detects non-numeric text or
nothing or blanks in the calling ield. In this case, if no age is entered, then the ield's
background color is set to yellow as a visual cue, and an alert is displayed:

function detectNumber(field, message) {

 if (typeof message== "undefined" || message == "") {

 message = "Non-numeric data detected." ;

 }

 var data = field.value ;

 var b = isNaN(data) ;

 var string = data.split(' ').join('') ;

 if (b || string == "") {

 field.style.backgroundColor = "Yellow" ;

 alert("Warning: " + message) ;

 return false;

 }

 field.style.backgroundColor = "White" ;

 return true ;

 }

Numeric ield validations can be more complex—an entered value must be an
integer and within a certain range, for example.

Chapter 6

[177]

Use a date picker for date ields
A ield on a Domino form intended to store a date may be deined as a date ield.
Using the Notes client, a user enters text in a date format (for example, 01/01/2020),
and the text is automatically converted to a true date value before being stored in the
date ield. But on the Web, as mentioned previously, all values typed into ields on a
form are submitted to the server as text. If text is entered for a date ield, but that text
is not in an acceptable date format, then an error is detected by the server when the
document is submitted and the document is not saved. A generic HTTP 500 message
is displayed.

The best solution to this problem is to use a date picker rather than to allow manual
entry of dates.

The strategy explained in this topic refers to a date picker written by Julian
Robichaux and freely available at the following website. Search the site for
datepicker to locate the sample page.

www.nsftools.com

This date picker tool consists of ive components:

•	 A date ield on a form
•	 A button on the form that activates the date picker feature

•	 Several date picker global JavaScript variables

•	 Several date picker JavaScript functions in a JavaScript library

•	 A date picker CSS style sheet

Here's how the feature might look on a form. Note that a previously selected date
is displayed in the date ield to the right of the button. Clicking a date in the control
saves that new date to the ield and hides the control:

JavaScript

[178]

This should take about an hour or less to get running. Here are the steps required to
incorporate Julian's JavaScript datepicker into a form:

1. Browse to the website listed above and search for datepicker.

2. Select the sample date picker page and read the instructions.

3. View the source code of the sample datepicker page.
4. Copy the JavaScript global variables to a new DatePickerVars.js page, as

suggested in a previous topic, or to the HTML Head Content area of a form
as an @formula.

5. Copy the JavaScript functions to a new DatePicker.js JavaScript library.

6. Copy the CSS rules to a new DatePicker.css page.

7. As necessary, add links to the DatePickerVars.js and DatePicker.css
pages in the form's HTML Head Content area.

8. Insert the DatePicker.js JavaScript library into the form's JS Header.

9. Add a date ield to the form (for example, StartDate).

10. Add a button to the form with this JavaScript function call (where StartDate
is the name of the date ield):
displayDatePicker("StartDate")

In this particular case, there are options regarding how the date might be returned to
the date ield. Also, the CSS rules can be modiied to style the date picker elements as
desired. Comments in the source code provide additional details.

Explore the Web for other available datepickers.

And thank you, Julian Robichaux!

Warn users before leaving an un-submitted
form
One of the more frustrating web experiences is entering data into a form and then
losing it by browsing away from the document before the data is submitted. Here is
one partial solution to this issue, inspired by the write-up on this page:

http://www.webreference.com/dhtml/diner/beforeunload/bunload4.html

Chapter 6

[179]

This example can provide a good mechanism to warn users before they inadvertently
lose the data already entered into form ields. I want to emphasize that this is a
partial solution because there may be cases where it breaks down. You should check
the code in a variety of browsers and proceed accordingly. As of this writing, the
technique works with IE, Firefox, and Safari, while results with Chrome are mixed.

The technique relies on a browser's onbeforeunload event that ires whenever a user
begins to leave a page, perhaps by clicking a link to another page, by clicking the
browser refresh button, or by toggling into Read mode.

In this solution, when a ield loses focus, the onbeforeunload event is initialized
with a warning message. If the user then attempts to leave the page without saving
the data, then the warning conirmation is displayed. Firefox displays the message
like this:

There are a number of pieces to this solution. In summary, here are the steps:

1. Create a JavaScript library and add ive functions to it.
2. Link to the JavaScript library from the form's JS Header.

3. Add a hidden ield to the form (FormChanged).

4. Add a function call to the form's onLoad event.

5. Add function calls to the onClick events of form ields that refresh the form
automatically when changed.

6. Add function calls to the onBlur events of form ields that do not refresh the
form automatically when changed.

7. Add a function call to the form's Save or Submit button.

8. Set the value of the FormChanged ield to no before saving a document.

JavaScript

[180]

Here are the details:

Step 1: Create a JavaScript library.

Add these ive functions to the JavaScript library:

•	 SetFormChanged()

•	 GetbeforeunloadMsg()

•	 RefreshingForm()

•	 Setbeforeunload()

•	 Initbeforeunload()

Here is a summary of what each of these functions does:

The SetFormChanged() function sets the FormChanged ield to yes and that's
about it.

function SetFormChanged() {

 document.forms[0].FormChanged.value = "yes" ;

 }

The GetbeforeunloadMsg() function checks the value of the FormChanged ield and
returns a message if the ield's value is yes or returns null otherwise:

function GetbeforeunloadMsg() {

 var msg = "Any changes to the form will be lost." ;

 var chg = document.forms[0].FormChanged.value ;

 if (chg == "yes") { return msg ; }

 else { return null ; }

 }

The RefreshingForm() function sets the FormChanged ield to yes and then sets
the onbeforeunload event to null, which essentially gives the event nothing to do.
This function is added to the onClick events of ields that automatically refresh the
form when changed:

function RefreshingForm() {

 document.forms[0].FormChanged.value = "yes" ;

 window.onbeforeunload = null ;

 }

Chapter 6

[181]

The Setbeforeunload() function receives an argument, true or false, and then
either initializes the onbeforeunload event or sets it to null. If the argument is true, it
also calls SetFormChanged() to change the value of the FormChanged ield to yes:

function Setbeforeunload(onoff) {

 window.onbeforeunload = (onoff) ? GetbeforeunloadMsg : null ;

 if (onoff) { SetFormChanged() ; } ;

 }

The Initbeforeunload() function checks the value of the FormChanged ield. If
the ield is yes (indicating that one or more ields on the document were previously
changed) then this function calls the Setbeforeunload() function with the
argument of true and causes Setbeforeunload() to initialize the onbeforeunload
event. If the value of the FormChanged ield is no (indicating that the document is
loading for the irst time or it is being refreshed, but no ields have been changed),
then Initbeforeunload() calls the Setbeforeunload() function with the argument
of false and causes Setbeforeunload() not to initialize the onbeforeunload event:

function Initbeforeunload() {

 if (document.forms[0].FormChanged.value == "yes") {

 Setbeforeunload(true) ; }

 else { Setbeforeunload(false) ; }

 }

Step 2: Link the JavaScript library to the form.

Add a link in the form's JS Header to the JavaScript library by inserting the
JavaScript Library Resource, as discussed earlier in this chapter.

Step 3: Add a hidden, editable Text ield to the form.

Add to the form a hidden Text ield named FormChanged with no as its default value.
If this name is changed, then the JavaScript functions must be changed to match.

Step 4: Add a function call to the form's onLoad event.

Code the following function call in the form's onLoad event:

Initbeforeunload() ;

The result is that the onbeforeunload event is either initialized or it isn't, depending
upon whether ields on the document were previously changed. When a document
is loaded for the irst time, the value of the FormChanged ield should be no and the
function Initbeforeunload() therefore sets the onbeforeunload event to null. But
if a ield on the form caused the form to refresh, then the value of the FormChanged
ield should be yes in which case the function Initbeforeunload() initializes the
onbeforeunload event with a message.

JavaScript

[182]

Step 5: Add function calls to the onClick events of form ields that refresh the
form automatically.

For each ield that refreshes the form automatically when changed, code the
following function call in the ield's onClick event:

RefreshingForm();

The logic assumes that a clicked ield might have been changed.

Step 6: Add function calls to the onBlur events of form ields that do not refresh
the form automatically.

For each ield that does not refresh the form automatically when changed, code the
following function call in the ield's onBlur event:

Setbeforeunload(true) ;

The logic assumes that if the cursor was placed in the ield and then moved, then that
ield may have been changed.

Step 7: Add a function call to the form's Save or Submit button.

When a user clicks the Save or Submit button on the form, a warning message is
unwarranted. To prevent the warning, add this function call to one or more events
on the button:

Setbeforeunload(false) ;

In this example, the function is added to button events using the Other option of the
Button Extra HTML tab of Button Properties:

Chapter 6

[183]

The full value of Other sets values for both mouse clicks and key clicks:

onmouseup="Setbeforeunload(false)";

onkeypress="Setbeforeunload(false)"

Step 8: Set the value of the FormChanged ield to no before saving a document.

Set the value of the FormChanged ield to no before a document is saved. There are
several ways to do this. For example, the Save button's Click event might be coded
with this @formula:

@SetField("FormChanged";"no");

@Command([FileSave]);

@Command([FileCloseWindow]);

Use Ajax calls to avoid server round trips
Ajax is the name of a signiicant JavaScript technique used in the browser to retrieve
data from a server. Ajax calls can dramatically improve the performance and
behavior of forms on the Web, leading to a more satisfying end user experience.

(There is some debate about whether AJAX is an acronym or not. For those who
believe it is, it stands for Asynchronous JavaScript And XML.)

In traditional Domino applications, some action on the part of a user may require
data displayed in a form in the browser to be refreshed from the server. The server
re-computes the form and sends the new version to the browser. Unfortunately there
can be a noticeable time-delay while this happens. The screen may blink or jiggle up-
and-down, and often the form is repositioned in the browser window. The refresh
delay and form movement can be a bit annoying.

With Ajax calls, response is much, much quicker and the form does not move around
on the screen. An Ajax call retrieves only a relatively small amount of information
from the server, and that information is then inserted quickly into the visible
form as directed by JavaScript functions doing the work. The full form itself is not
recomputed or reloaded.

At a high level, let us say the user clicks a button that invokes a JavaScript function.
That function invokes several other scripts as needed. A request for speciic data
(perhaps a column of data from a view) is sent from the browser to an agent in the
application on the server. The agent performs a lookup for the required data and
sends that data back to the browser where another JavaScript function retrieves it.
The data is formatted as needed and inserted into the visible form where it may
appear as a drop-down list of options or in some other manner.

JavaScript

[184]

The key browser component that enables all this to work is called the
XMLHttpRequest Object. This object serves as a communication link between
JavaScript running in the browser and an agent running on the server. The low can
be summarized like this:

1. A script creates an instance of the request object and tell it what to do.

2. The request object sends the request to the agent on the server.

3. The agent returns data to the request object in the browser.

4. Another script receives data from the request object and then inserts it into
the current page.

Like any complex strategy, a number of components must be installed together for
this to work. There is a form with elements that call JavaScript functions; there are
several interdependent JavaScript functions which run in the browser; there is an
agent that runs on the server; and of course, there is a view or other data source in
the application that holds retrievable data.

Here are the components used in this example:

•	 A form used to create keyword documents

•	 A lookup view that indexes the keyword documents

•	 A form that interacts with the user in the web browser

•	 A button on the user form that initiates the request for data

•	 A target ield or location on the form where the retrieved data displays
•	 Hidden Computed for display ields that deine the location of a LotusScript

agent and the source of the data

•	 A wrapper function that requests data, formats the response into HTML, and
then inserts that HTML into the target ield or location on the form

•	 A function that manages the XMLHttpRequest Object

•	 Four primitive Ajax functions:

	° A function to create an XMLHttpRequest Object

	° A function to send the request for data

	° A function to receive the data

	° A function to delete the XMLHttpRequest Object

•	 A LotusScript agent that receives the request, fetches the data, and sends it
back to the browser

JavaScript

[186]

This is the name of the lookup view that indexes the keyword documents. In this
example, the name of the view is computed.

ColumnNo: "1"

This is the column in the lookup view from which the data is retrieved. In our
example, this is column one, computed as a string.

Add an Editable ield to the form that will receive the data. In this example, the ield
named Keyword1 is a checkbox ield whose value is computed from a formula.
Values saved in the ield appear as checked options when a document is reopened.
Here is the speciic formula for the choices:

@If(Keyword1="";"All Sports";Keyword1)

Also, surround the Keyword1 ield with the HTML tags marked as Pass-Thru
HTML. The retrieved data, with appropriate HTML tags, will be inserted into the
innerHTML property of this span.

Add a button to the form. Add this JavaScript function call to the button's
onClick event:

getDbColumnData() ;

The getDbColumnData() function resides in a JavaScript library. This script, along
with other scripts, retrieves data from the server, reformats it appropriately and
inserts it into the innerHTML property of the Keyword1 span, as mentioned above.

Insert a link the Ajax Functions library in the form's JS Header.

Add some Action buttons to cancel, edit, and save the document as appropriate.

Add a $$Return ield if necessary.

Here is what the user form should look like in Designer:

Chapter 6

[187]

Step 4: Create a wrapper function.

Create a JavaScript wrapper function in the Ajax Functions library. This function
requests data, wraps the returned data in HTML tags, and inserts the result into the
Keyword1 span:

function getDbColumnData() {

 var data ; var i ; var j = 0 ;

 var ihtml = "" ;

 var items = new Array ;

 // Retrieve the hidden field values from the user form

 f = document.forms[0] ;

 var AgentPathName = f.AgentPathName.value ;

 var ServerName = f.ServerName.value ;

 var DbPathName = f.DbPathName.value ;

 var ViewName = f.ViewName.value ;

 var ColumnNo = f.ColumnNo.value ;

 // Create a parameter string and full url

JavaScript

[188]

 var parms = "&server=" + ServerName + "&pathname=" + DbPathName +

 "&view=" + ViewName + "&column=" + ColumnNo ;

 var url = AgentPathName + parms ;

 // Retrieve the data and check for failure

 data = DbColumn(url) ;

 if (! data) {

 alert("Error: No data found.") ;

 return false ;

 }

 // Split the returned list into array elements

 items = data.split('\n') ;

 // Surround each list item with HTML tags

 for (i = 0; i<items.length; i++) {

 if (items[i] != "") {

 ihtml = ihtml + "<input type='checkbox' name='Keyword1'" +

 " value='"+items[i]+ "'>"+items[i]+"
" ;

 }

 }

 // Write the HTML into the Keyword1 SPAN

 document.getElementById("Keyword1").innerHTML = ihtml ;

 return;

 }

Take some time to look through this wrapper function. Your wrapper functions may
be similar. The key to making this useful is in wrapping the retrieved list items in the
proper HTML tags.

Step 5: Create a function to manage the Request Object.

This short JavaScript function is called by the wrapper function. Its job is to create the
XMLHttpRequest Object and to organize the data retrieval. The single argument it
receives consists of the reference to the LotusScript agent in the database along with
the parameters that tell the agent where to get the required data:

function DbColumn(url) {

 reqObject = false ;

 createXReq() ;

 sendXReq(url) ;

 var response = reqObject.responseText ;

 deleteXReq() ;

 return response ;

 }

Chapter 6

[189]

Step 6: Create functions to support the XMLHttpRequest Object.

These are the four scripts that create the request object, initiate the request to the
agent, receive the data back, and delete the request object.

The createXReq() function creates the XMLHttpRequest Object. Note that different
browsers instantiate this object with different syntax:

// Create an XMLHttpRequest object

function createXReq() {

 try { // most browsers

 reqObject = new XMLHttpRequest() ;

 }

 catch(ms1) {

 try { // newer Microsoft browsers

 reqObject = new ActiveXObject("Msxml2.XMLHTTP") ;

 }

 catch(ms2) {

 try { // older Microsoft browsers

 reqObject = new ActiveXObject("Microsoft.XMLHTTP") ;

 }

 catch(failed) {

 reqObject = false ;

 }

 }

 }

 return reqObject ;

 }

The sendXReq() function passes the request for data (as a URL string) to the
XMLHttpRequest Object. Note that the receiveXReq() function is set to ire
when the request object achieves the ready state—when it has received data back
from the agent:

// Send an XMLHttpRequest request

function sendXReq(url) {

 if(!url) {

 alert("No URL specified.") ;

 return false ;

 }

 reqObject.open("Get", url, false) ;

 reqObject.onreadystatechange = receiveXReq ;

 reqObject.send(null) ;

 return reqObject.responseText ;

 }

JavaScript

[190]

The receiveXReq() function waits for the XMLHttpRequest Object to receive data
back from the server.

// Receive an XMLHttpRequest request response

function receiveXReq() {

 if(reqObject.readyState != 4) {

 return ;

 }

 if (reqObject.status == 200) {

 return ;

 }

 return false ;

 }

The deleteXReq() function deletes the XMLHttpRequest Object:

// Delete an XMLHttpRequest object

function deleteXReq() {

 if (!reqObject) {

 alert("Cannot delete undefined XMLHttpRequest object.") ;

 return false ;

 }

 reqObject = null ;

 return true ;

 }

Step 7: Create a LotusScript agent.

Here is a LotusScript agent named XMLHttpResponseAgentdbColumn that is invoked
with the request from the XMLHttpRequest Object. Some code has been removed
for brevity, but the essential components are here. Note that the result of the query is
returned to the request object in the browser with Print statements:

Sub Initialize

%REM

Purpose: Simulates DbColumn for XMLHttpRequest from browser

Invoked: From an AJAX JavaScript

%END REM

 Dim msgPrefix As String

 msgPrefix = "XMLHttpResponseAgentdbColumn: "

 On Error Goto ErrorSection

 Dim session As New NotesSession

 Dim argstring As String

 Dim argarray As Variant

 Dim argcount As Integer

Chapter 6

[191]

 Dim column As String

 Dim errmsg As String

 Dim formula As String

 Dim parm As String

 Dim result As Variant

 Dim pathname As String

 Dim server As String

 Dim value As String

 Dim viewname As String

 Dim e As Integer, i As Integer

 ' Retrieve the arguments

 argstring = session.DocumentContext.Query_String(0)

 argarray = Split(argstring,"&",-1)

 argcount = Ubound(argarray)

 For i = 1 To argcount

 parm = argarray(i)

 e = Instr(parm,"=")

 value = Mid$(parm,e+1)

 parm = Left$(parm,e-1)

 Select Case Ucase(parm)

 Case "SERVER" : server = value

 Case "PATHNAME" : pathname = value

 Case "VIEW" : viewname = value

 Case "COLUMN" : column = value

 Case Else : errmsg = "Yes"

 End Select

 Next

 ' Print the headers

 Print "Content-Type:text/plain"

 Print "Cache-Control:No-Cache" 'attempting to avoid caching IE

 Print "Expires: -1" 'attempting to avoid caching in IE

 If errmsg="Yes" Or pathname="" Or viewname="" _

 Or column="" Or Not Isnumeric(column) _

 Then

 Print "Error detected in the agent parameter list."

 Goto ExitSection

 End If

JavaScript

[192]

 ' Convert %20 to blank

 formula = |@ReplaceSubstring('|+pathname+|';'%20';' ')|

 result = Evaluate(""+formula+"")

 pathname = result(0)

 ' Get the data from either the view column or the document

 server = |"|+server+|"|

 pathname = |"|+pathname+|"|

 formula = |@DbColumn("":"";|+|server|+|:|+|pathname|+|;"|+ _

 viewname+|";|+column+|)|

 result = Evaluate(""+formula+"")

 ' Send the results to the browser

 If Isscalar(result) Then

 If result = "" Then

 Print "Error detected."

 Print "Server: " & server

 Print "Pathname: " & pathname

 Print "Viewname: " + viewname

 Print "Column: " + column

 Print "Formula: " & formula

 Print "Result: " & result

 Else

 Print result

 End If

 Else

 i = 0

 Forall z In result

 Print Cstr(result(i))

 i = i + 1

 End Forall

 End If

 Goto ExitSection

'******************** E R R O R H A N D L I N G ************

ErrorSection:

 Msgbox(msgPrefix & "**** E R R O R **** "_

 & Cstr(Err()) & " at line: " + Cstr(Erl) + " : " + Error())

 Exit Sub

ExitSection:

End Sub

Chapter 6

[193]

The trickiest part about this script is in creating the formula that includes the
@DbColumn function call. It is more challenging than it appears to put quotation
marks in all the right places.

Step 8: Test the solution

The proof is in the pudding, as they say. Here is the user form before the Ajax call:

After the Get Choices button is clicked, more options are displayed:

If you choose to incorporate Ajax functionality into your applications, you can
indeed write your own functions as shown in this topic. But these more advanced
techniques require quite a bit of work to prepare and to debug. If you have the time,
go for it. You may want to play around with this example until you understand
basically how Ajax calls work, and then look for some canned functions in one of the
major JavaScript frameworks.

JavaScript

[194]

Summary
Learning basic JavaScript programming is not particularly dificult, but there are an
enormous number of ways in which scripts can be composed and used within the
context of a browser. This chapter has barely scratched the surface of possibilities.

If you are relatively new to JavaScript, expect to spend considerable time studying
the language and the ways in which it can be used to spruce up web applications.
Learn the basics and how to incorporate those basics in Domino applications.
Then continue to explore this technology with one or more of the script libraries or
frameworks: Dojo, ExtJs, jQuery, MooTools, Prototype, script.aculo.us, YUI. Of these,
Dojo may be more important in the context of Domino, although jQuery is by far the
most popular in general web applications.

The suggestions and examples in this chapter have introduced ways in which
JavaScript can be inserted into designs to improve performance and other behavior
of classic Domino web applications.

Views
Views serve as indexes to documents in a database. Virtually all Domino applications
that contain composed documents also contain one or more views that facilitate
locating and re-opening previously saved documents. Some views are intended
for users, and some views are intended to be used only by internal processes or by
formulas to look up values. Of course, you can use the same view for both users and
lookups, but doing so can be problematic.

As seen with the Notes client, views look and operate similarly. Clicking on a
document (a row) in the view opens the document, usually on a separate tab. The
view remains open. Closing the document returns focus to the view. Of course, on
the Web, things are not quite so simple.

In a standard non-categorized view, each row represents a document, and each
column contains data from the documents listed in the view. Overall a view looks
like a table, and on the Web that is how they are usually rendered—as HTML tables.
As the rows and cells of an HTML table can be styled with CSS and modiied with
JavaScript, the look and behavior of views can be improved using these standard
web technologies as well.

This chapter addresses issues related to displaying views on the Web. Crafting views
for the Web is challenging, as there are several options and many aspects to consider.
There is no right or perfect way to display a view on the Web; each option provides
beneits, but also comes with draw-backs. Understanding the options and
experimenting a little with them will help you to choose the most appropriate
techniques for your applications.

Topics in this chapter include the following:

•	 Creating diagnostic views

•	 Using view templates

Views

[196]

•	 Inserting HTML into views

•	 Styling views for the Web

•	 Creating view navigation buttons

General guidelines
Here are a few general guidelines that most web applications should follow. These
are not strictly necessary, of course, but you can improve your application and avoid
certain problems if you follow them.

Create some diagnostic views
Especially if you inherit maintenance responsibility for an existing application,
it may be a bit dificult at irst to understand the application just by examining it
with a browser. With the Notes client, look through the existing views to gain an
understanding of what documents exist and how they are organized.

If the existing views do not provide the answers you need, consider adding one or
more new views that present the documents in ways that are useful to you. These
diagnostic or troubleshooting views are intended only for you, and perhaps the
application administrator. Do not design them for the end user, and probably not
even for display on the Web. Do not use them for lookups or any other processing.
Identify them clearly. If you name these views with a hierarchical name, they will
cluster together in the Notes navigational pane:

Chapter 7

[197]

The views themselves should contain only data you ind useful. Here the Diagnostic
\ Documents by Form view is a categorized view that displays all documents
categorized by form name:

Categorizing a view by form name facilitates examining the documents created by
different processes within the application.

In this example, the Doc No column indicates how may documents exist for each
form. The column value is computed:

@DocNumber("")

Additional columns that display the document author, last modiied date, and key
values, such as title or status, can provide diagnostic insight not easily gained by
looking at the functional and lookup views.

Display documents in a hierarchy
If your application uses response documents, it may be useful to display the parent
and child documents in the natural hierarchy, with child documents displayed below
parent documents. You must set the view attribute Show response documents in a
hierarchy on the Options tab of View Properties:

Views

[198]

In this example, a keyword that exists on both forms serves as the category:

The column labeled #Child is computed:

@DocChildren

The column labeled UNID or $Ref is also computed. This computation displays the
parent's UNID if the document is a response document, and its own UNID if it is a
main document:

@If(@IsResponseDoc; @Text($Ref); @Text(@DocumentUniqueID))

A view like this might include other ields containing stored document IDs as well.

Display Replication or Save conlict documents
Another useful view highlights Replication or Save conlicts that might appear in
your application. Column headings and values will depend upon the ields in the
documents. The key to this type of view is setting the View Selection Formula:

SELECT @IsAvailable($Conflict)

Specify a default view
One view can be selected as the default view for the application. As such, it can serve
as a point of return after a new document is submitted or after errors are detected. If
the application does not know where to go next, it can always go to the default view.

Specify the default view on the Info tab of View Properties:

Chapter 7

[199]

Refer to the default view with a computed URL. An @formula like this will do:

@URLOpen("/" + @WebDbName + "/$defaultView?OpenView")

Note that a default view applies to both web and Notes clients. Check to see if this
view displays acceptably in Notes, and if not, consider hiding it from Notes users.

Use view templates
The technique of using view template forms as containers for displaying views
on the Web was introduced in Chapter 3, Forms and Pages. Here we extend
that discussion.

Use the same view template for several views
If your application includes a view template form named $$ViewTemplateDefault,
then all views use that view template by default. If you want to tailor a view
template for a speciic view, you create a speciic view template for that view, and
you name it appropriately. Here is the format for the name of the special view
template: $$ViewTemplate for name.

"Name" refers to the name or alias of the associated view. For example, a view
template for the Reports view would be named $$ViewTemplate for Reports. The
view name or view alias alone indicates a special relationship between the view and
the view template.

If a second view, for example a view named Files, requires something other than the
default view template, then another view template can be created for that second
view ($$ViewTemplate for Files). And so on.

But if the view templates for the Reports and Files views are identical (but different
from the default view template), then you need create only a single alternate view
template to serve both views. The trick here is to code one or more aliases for the
single view template. In this example, the special view template would be named
like this:

$$ViewTemplate for Reports | $$ViewTemplate for Files

Views

[200]

Code the name | alias values in the Info tab of Form Properties. Multiple aliases can
be included if appropriate:

Compute the view title
You may want to display the name of the view on the view template. If so, add some
computed text to the view template with a formula that includes the name of the
view but omits any aliases:

@Subset(@ViewTitle; 1)

Exploring view options for the Web
Views are important to most Domino applications. They provide the primary means
by which documents are located and retrieved. But working with views on the Web
is often more complicated or less satisfactory than using views with the Notes client.
Several classic view options are available for web applications, all of which have
draw-backs and implementation issues.

A speciic view can be displayed on the Web in several different ways. So it is helpful
to consider view attributes that inluence design choices, in particular:

•	 View content
•	 View structure
•	 How a view is translated for the Web

•	 How a view looks in a browser

•	 Whether or not a view template is used

•	 View performance
•	 Document hierarchy

Chapter 7

[201]

In terms of content, a view contains:

•	 Data only

•	 Data and HTML tags

In terms of structure, views are:

•	 Uncategorized

•	 Categorized

In terms of the techniques used by Domino to translate views for the Web, there are
four basic methods:

•	 Domino-generated HTML (the default)

•	 Developer-generated HTML (the view contains data and HTML tags)

•	 View Applet (used with data only views)
•	 XML (the view is transmitted to the browser as an XML document)

The irst three of these methods are easier to implement. Two options on the
Advanced tab of View Properties control which of these three methods is used:

•	 Treat view contents as HTML

•	 Use applet in the browser

If neither option is checked, then Domino translates the view into an HTML table
and then sends the page to the browser. If Treat view contents as HTML is checked,
then Domino sends the view to the browser as is, assuming that the developer has
encoded HTML table tags in the view. If Use applet in the browser is checked, then
Domino uses the Java View Applet to display the view. (As mentioned previously,
the Java Applets can be slow to load, and they do require a locally installed JVM
(Java Virtual Machine)).

Using XML to display views in a browser is a more complicated proposition, and we
will not deal with it here. Pursue this and other XML-related topics in Designer Help
or on the Web. Here is a starting point:

http://www.ibm.com/developerworks/xml/

Views

[202]

In terms of how a view looks when displayed in a browser, two alternatives can
be used:

•	 Native styling with Designer

•	 Styling with Cascading Style Sheets

In terms of whether or not a view template is used, there are three choices:

•	 A view template is not used

•	 The default view template is used

•	 A view template created for a speciic view is used
Finally, view performance can be an issue for views with many:

•	 Documents

•	 Columns

•	 Column formulas

•	 Column sorting options

Each view is indexed and refreshed according to a setting on the Advanced tab of
View Properties. By default, view indices are set to refresh automatically when
documents are added or deleted. If the re-indexing process takes longer, then
application response time can suffer. In general, smaller and simpler views with
fewer column formulas perform better than long, complicated and computationally
intensive views.

The topics in this section deal with designing views for the Web. The irst few topics
review the standard options for displaying views. Later topics offer suggestions
about improving view look and feel.

Understand view Action buttons
As you work with views on the Web, keep in mind that Action buttons are always
placed at the top of the page regardless of how the view is displayed on the Web
(standard view, view contents as HTML) and regardless of whether or not a
view template is used. Unless the Action Bar is displayed with the Java applet,
Action buttons are rendered in a basic HTML table; a horizontal rule separates
the Action buttons from the rest of the form. Bear in mind that the Action buttons
are functionally connected to but stylistically independent of the view and view
template design elements that display lower on the form.

Chapter 7

[203]

Use Domino-generated default views
When you look at a view on the Web, the view consists only of column headings and
data rows. Everything else on the page (below any Action buttons) is contained on
a view template form. You can create view templates in your design, or you can let
Domino provide a default form.

If Domino supplies the view template, the rendered page is fairly basic. Below
the Action buttons and the horizontal rule, standard navigational hotspots are
displayed; these navigational hotspots are repeated below the view. Expand and
Collapse hotspots are included to support categorized views and views that include
documents in response hierarchies. The view title displays below the top set of
navigational hotspots, and then the view itself appears.

If you supply a view template for a view, you must design the navigational hotspots,
view title, and other design elements that may be required.

View contents are rendered as an HTML table with columns that expand or contract
depending upon the width of cell contents. If view columns enable sorting, then
sorting arrows appear to the right of column headings. Here is an example of how
Domino displays a view by default on the Web:

In this example, clicking the blue underscored values in the left-most Last Name
column opens the corresponding documents. By default, values in the left-most column
are rendered as URL links, but any other column—or several columns—can serve this
purpose. To change which column values are clickable, enable or disable the Show
values in this column as links option on the Advanced tab of Column Properties:

Views

[204]

Typically a title, subject, or another unique document attribute is enabled as the link.

Out of the box default views are a good choice for rapid prototyping or for one-time
needs where look-and-feel are less important. Beyond designing the views, nothing
else is required. Domino merges the views with HTML tags and a little JavaScript to
produce fully functional pages.

On the down side, what you see is what you get. Default views are stylistically
uninspiring, and there is not a lot that can be done with them beyond some modest
Designer-applied styling. Many Designer-applied styles, such as column width,
are not translated to the Web. Still, some visual improvements can be made. In this
example, the font characteristics are modiied, and an alternate row background
color is added:

Include HTML tags to enhance views
Some additional styling and behavior can be coded into standard views using HTML
tags and CSS rules. Here is how this is done:

In this example, tags surround the column Title. Note the square brackets
that identify the tags as HTML:

Tags can also be inserted into column value formulas:

"[]" + ContactLast + "[]"

Chapter 7

[205]

When viewed with a browser, the new colors are displayed as expected. But when
the view is opened in Notes, it looks like this:

The example illustrates how to code the additional tags, but frankly the same effects
can be achieved using Designer-applied formatting, so there is no real gain here.
The view takes longer to code and the inal result is not very reader-friendly when
viewed with the Notes client.

That being said, there still may be occasions when you want to add HTML tags to
achieve a particular result. Here is a somewhat more complicated application of the
same technique. This next line of code is added to the Title of a column. Note the use
of <sup> and tags. These tags apply only to the message See footnote 1:

Last Name[^{]See footnote 1[}]

The result achieves the desired effect:

More challenging is styling values in view columns. You do not have access to the
<td> or tags that Domino inserts into the page to deine table cell contents.
But you can add tags around a column value, and then use CSS rules to style
the span. Here is what the column formula might look like:

"[]" + ContactLast + "[]"

Here is the CSS rule for the column1 class:

.column1 {

 background-color: #EEE;

 cursor: default;

 display: block;

 font-weight: bold;

 text-decoration: none;

 width: 100%;

 }

Views

[206]

These declarations change the background color of the cell to a light gray and the
pointer to the browser default. The display and width declarations force the span
to occupy the width of the table cell. The text underscoring (for the link) is removed
and the text is made bold.

Without the CSS rule, the view displays as expected:

With the CSS rule applied, a different look for the irst column is achieved:

Use the "Treat view contents as HTML" option
Setting the view option Treat view contents as HTML on the Advanced tab of View
Properties enables considerably more control over view headers, rows and columns,
but at a price. Once you select this option, you are responsible for the structure
and style of the view. While not strictly necessary, you should always create view
templates for this kind of view.

Remember that a view is typically translated into an HTML table when composed for
the Web. A little further on, an alternative to rendering a view as a table is illustrated.

Chapter 7

[207]

Structure HTML views as tables
On the view template, surround the $$ViewBody ield or the embedded view element
with <table> tags that have been marked as Pass-Thru HTML. Note here that the
border attribute has been coded:

Add <tr> and <th> (or <td>) tags and attributes into your column titles. It is not
necessary to identify the tags as HTML with square brackets. In this example, the
Last Name column title sets the width of the column to 90:

Often the <tr> tag is added to the title of the left-most column, and a corresponding
</tr> tag is added to the end of the title of the right-most column. Alternatively,
you can add additional left-most and right-most columns whose values are set to the
<tr> and </tr> tags respectively. Separating the row tags from the data columns in
this manner offers more lexibility in terms of rearranging columns in the view.

Next, change column values from simple ield names to computed strings that
include HTML tags. For example, the column value of the Last Name column would
usually be a simple referent to a document ield name:

ContactLast

But in an HTML view, you modify the simple column value formula to include the
required HTML tags:

"<tr><td>" + ContactLast + "</td>"

Again, if you added the left-most and right-most columns to accommodate the <tr>
and </tr> tags, code column value formulas for those columns appropriately and do
not include the <tr> tag in the Last Name column value formula.

Chapter 7

[209]

On the form, add a Computed Text ield (for example, docURLcell) with
this formula:

db := "/" + @WebDbName ;

vw := "/" + @Subset(@ViewTitle;1) ;

doc := "/" + @Text(@DocumentUniqueID) + "?OpenDocument" ;

link := db + vw + doc ;

"<td>" + ContactLast + "</td>"

In the view column formula, code just the name of the ield:

docURLcell

This is a much cleaner solution and will improve the view performance.

Structure HTML views as lists
In some cases, you may prefer to display a view as a list. On the view template,
surround the $$ViewBody ield or the embedded view element with or
tags that have been marked as Pass-Thru HTML. In this example, the tag also
includes a CSS class name:

Add and other HTML tags as needed to the column title(s) and to the column
value formula(s). Create CSS rules as appropriate and link to the page containing
those rules from the view template's HTML Head Content area.

In this example, the view contains two columns. The irst column is hidden, and
its value is the contactLast ield. This column is sorted in ascending order by last
name. The second column displays both the contactLast and contactFirst names,
and it is this column that displays to users.

A CSS class name is added to the title of the second column:

<li class='columntitle' >Contact Name

Views

[210]

The value of the second column references a Computed ield in the documents
named docURLItem. This ield's formula computes the URL to the document, as in
the previous topic. Note that in the formula the link (<a>) is enclosed by tags:

db := "/" + @WebDbName ;

vw := "/" + @Subset(@ViewTitle;1) ;

doc := "/" + @Text(@DocumentUniqueID) + "?OpenDocument" ;

link := db + vw + doc ;

"" +

"" + ContactLast + "" + ", " +

ContactFirst +

""

The view template links to a CSS page that includes the following CSS rules. The irst
rule applies to the list as a whole. The second rule applies to all tags within the
list. The third rule applies just to the column title:

ul.viewaslist {

 background-color: #EEEEEE;

 border: solid 1px black;

 font-family: Verdana;

 font-size: 10pt;

 padding: 10px;

 width: 15em;

 }

ul.viewaslist li {

 color: darkblue;

 list-style-type: none;

 }

li.columntitle {

 font-weight: bold;

 margin-bottom: 5px;

 }

The list displays in a browser as follows:

Chapter 7

[211]

Set the view line count
Using the $$ViewBody ield with HTML views works well, but the number of rows
that display may be quite large. If you need to limit the number of lines that are
rendered at one time, use an embedded view element on the view template instead
of a $$ViewBody ield.

Set several properties on the Info tab of Embedded View Properties. Especially, set
the Display option to Using HTML and set the Lines to display value to control
the line count. You will also need to include navigational buttons or hotspots on the
view template to enable users to page back and forth through the view, as described
later in this chapter:

Note that the default and maximum number of lines that are displayed in views
depend upon server settings controlled by the Domino administrator. Check
settings on the Domino Web Engine tab on the Internet Protocols tab on the server
document in the Domino Directory. In this example, the Default lines per view page
is set to 30, and the Maximum lines per view page is set to 1000:

Views

[212]

Create Notes versions of HTML views
An HTML view intended for the Web is dificult to read with the Notes client. Here
is what such a view might look like in Notes:

If the content of this view is useful to Notes users, you may want to create a second
view that includes all columns, but not the HTML tags. You can hide the views with
HTML from Notes clients using the Design tab of Design Properties for the view.
Likewise, you can hide the views without HTML from Web clients.

Use the View Applet (with caution)
The View Applet is intended to provide a view experience similar to that which
one gets with the Notes client. The view is displayed in a window on the form.
There may be scrollbars. Columns can be sorted by clicking on column headings.
Categories expand and collapse independently from one another. Some styling
options are available that can improve the look.

To use the View Applet, add an embedded view control to a view template and set
the Display option to Using Java Applet:

Chapter 7

[213]

You set the size of the applet window and other attributes with Embedded View
Properties. Some experimentation is likely to be required.

Using the View Applet, a view might render as follows:

There are several issues with the View Applet, so it might not be the best choice to
use. Issues include the following:

•	 If a JVM is not installed on the user's desktop, the applet will not load.
•	 The applet sometimes fails to initialize properly, requiring the page to be

refreshed or the browser to be restarted.

•	 The applet can be slow to load.

•	 Clicking too fast on an applet scrollbar can hang a browser, especially in
larger views.

•	 Styling options are limited.

The View Applet may be a good choice if you need something quick and short-term,
if you are prototyping an application, or if it provides you with a desirable feature
you cannot easily implement in another way. If you do use this option, let your users
know about the performance and functional issues that can arise.

Creating Action buttons
View templates are forms that can accommodate buttons, ields, and computed text
as needed to enhance your views. Most views include a few Action buttons, so this
section offers suggestions about including buttons on view templates.

Views

[214]

Provide view navigation buttons
Simple views intended to provide information (for example, a table of values) or
links to a limited number of documents can stand alone quite nicely, embedded
on a page or a view template. But if more than a handful of documents display in
the view, you should provide users a way to move forward and backward through
the view. If you use the View Applet, enable the scroll bars; otherwise add some
navigational buttons to the view templates to enable users to move around in it.

Code next and previous navigation buttons
If you set the line count for a view, only that number of rows is sent to the browser.
You need to add Action buttons or hotspots on the view template to enable users
to advance the view to the next set of documents or to return to the previous set of
documents—essentially paging backward and forward through the view.

Code a Next button with this formula:

@DbCommand("Domino"; "ViewNextPage")

Code a Previous button with this formula:

@DbCommand("Domino"; "ViewPreviousPage")

Code irst and last buttons
Buttons can be included on the view template to page to the irst and last documents
in the view. Code an @Formula in a First button's Click event to compute and open a
relative URL. The link reopens the current view and positions it at the irst document:

@URLOpen("/"+@WebDbName+"/"+@Subset(@ViewTitle;-1) +

"?OpenView&Start=1")

For a Last button, add a Computed for Display ield to the view template with
this @Formula:

@Elements(@DbColumn("":"NoCache"; "" ; @ViewTitle; 1))

The value for the ield (vwRows in this example) is the current number of documents in
the view. This information is used in the @Formula for the Last button's Click event:

url := "/" + @WebDbName + "/" + @Subset(@ViewTitle;-1) ;

@URLOpen(url + "?OpenView&Start=" + @Text(vwRows))

When Last is clicked, the view reopens, positioned at the last document.

Please note that for very large views, the @Formula for ield vwRows may fail because
of limitations in the amount of data that can be returned by @DbColumn.

Chapter 7

[215]

Let users specify a line count
As computer monitors today come in a wide range of sizes and resolutions, it may
be dificult to determine the right number of documents to display in a view to
accommodate all users. On some monitors the view may seem too short, on others
too long.

Here is a strategy you might adapt to your application, that enables users to specify
how many lines to display. The solution relies on several components working together:

•	 Several Computed for display ields on the view template
•	 A button that sets the number of lines with JavaScript

•	 Previous and Next buttons that run JavaScript to page through the view

The technique uses the Start and Count parameters, which can be used when you
open a view with a URL. The Start parameter, used in a previous example, speciies
the row or document within a view that should display at the top of the view
window on a page. The Count parameter speciies how many rows or documents
should display on the page. The Count parameter overrides the line count setting
that you may have set on an embedded view element.

Here are the Computed for display ields to be created on the view template. The
Query_String_Decoded ield (a CGI variable) must be named as such, but all the
other ield names in this list are arbitrary. Following each ield name is the @Formula
that computes its value:

•	 Query_String_Decoded:
Query_String_Decoded

•	 vwParms:
@Right(@LowerCase(Query_String_Decoded); "&")

•	 vwStart:
@If(@Contains(vwParms; "start="); @Middle(vwParms; "start=";

"&"); "1")

•	 vwCount:
@If(@Contains(vwParms; "count="); @Middle(vwParms; "count=";

"&"); "10")

•	 vwURL:
"/" + @WebDbName + "/"+ @Subset(@ViewTitle;1) + "?OpenView"

•	 vwRows:
@Elements(@DbColumn("":"NoCache"; ""; @ViewTitle; 1))

•	 countFlag:
"n"

•	 newCount:
"1"

Views

[216]

Add several buttons to the view template. Code JavaScript in each button's onClick
event. You may want to code these scripts inline for testing, and then move them to a
JavaScript library when you know they are working the way you want them to.

The Set Rows button's onClick event is coded with JavaScript that receives a line
count from the user. If the user-entered line count is not good, then the current line
count is retained. A lag is set indicating that the line count may have been changed:

var f = document.forms[0] ;

var rows = parseInt(f.vwRows.value) ;

var count = prompt("Number of Rows?","10") ;

if (isNaN(count) | count < 1 | count >= rows) {

 count = f.vwCount.value ;

 }

f.newCount.value = count ;

f.countFlag.value = "y" ;

The Previous button's onClick event is coded to page backward through the view
using the user-entered line count:

var f = document.forms[0] ;

var URL = f.vwURL.value ;

var ctFlag = f.countFlag.value ;

var oCT = parseInt(f.vwCount.value) ;

var nCT = parseInt(f.newCount.value) ;

var oST = parseInt(f.vwStart.value) ;

var count ;

var start ;

if (ctFlag == "n") {

 count = oCT ;

 start = oST - oCT ;

 }

else {

 count = nCT ;

 start = oST - nCT ;

 }

if (start < 1) { start = 1 ; }

location.href = URL + "&Start=" + start + "&Count=" + count ;

The Next button pages forward through the view using the user-entered line count:

var f = document.forms[0] ;

var URL = f.vwURL.value ;

var ctFlag = f.countFlag.value ;

var oCT = parseInt(f.vwCount.value) ;

var nCT = parseInt(f.newCount.value) ;

Chapter 7

[217]

var start = parseInt(f.vwStart.value) + oCT ;

if (ctFlag == "n") {

 location.href = URL + "&Start=" + start + "&Count=" + oCT ;

 }

else {

 location.href = URL + "&Start=" + start + "&Count=" + nCT ;

 }

Finally, if First and Last buttons are included with this scheme, they need to be re-
coded as well to work with a user-speciied line count.

The @formula in the First button's Click event now looks like this:

count := @If(@IsAvailable(vwCount); vwCount; "10") ;

parms := "?OpenView&Start=1&Count=" + count ;

@URLOpen("/" + @WebDbName + "/" + @Subset(@ViewTitle;-1) + parms) ;

The @formula in the Last button's Click event is also a little more complicated. Note
that if the ield vwRows is not available, then the Start value is set to 1,000. This is
really more for debugging since the Start parameter should always be set to the value
of vwRows:

start := @If(@IsAvailable(vwRows); @Text(vwRows); "1000") ;

count := @If(@IsAvailable(vwCount); vwCount; "10") ;

parms := "?OpenView&Start=" + start + "&Count=" + count ;

url := "/" + @WebDbName + "/" + @Subset(@ViewTitle;-1) ;

@URLOpen(url + parms) ;

Code expand and collapse buttons for categorized
views
Two other navigational buttons should be included on the view template for
categorized views or views that include document hierarchies. These buttons expand
all categories and collapse all categories respectively:

•	 The Expand All button's Click event contains this @Command:
@Command([ViewExpandAll])

•	 The Collapse All button's Click event contains this @Command:

@Command([ViewCollapseAll])

Views

[218]

Co-locate and deine all Action buttons
Action Bar buttons can be added to a view template as well as to a view. If Action
buttons appear on both design elements, then Domino places all the buttons together
on the same top row. In the following image, the irst button is from the view
template, and the last three are from the view itself:

If it makes more sense for the buttons to be arranged in a different order, then take
control of their placement by co-locating them all either on the view template or on
the view.

Create your own Action buttons
As mentioned previously, Action Bar buttons are rendered in a table placed at the
top of a form. But on typical Web pages, buttons and hotspots are located below
a banner, or in a menu at the left or the right. Buttons along the top of a form look
dated and may not comply with your organization's web development standards.

As discussed in Chapter 3, you can replace the view template and view Action
buttons with hotspot buttons placed elsewhere on the view template:

•	 Create a series of hotspots or hotspot buttons on the view template, perhaps
below a banner.

•	 Code @formulas for the hotspots that are equivalent to the Action Bar
button formulas.

•	 Deine a CSS class for those hotspots, and code appropriate CSS rules.
•	 Delete or hide from the Web all standard Action Bar buttons on the view

template and on the view.

Adding style to views
Views within an application ought to be styled consistently. Inconsistent styling
diminishes the user's experience and, to some extent, his productivity. If your views
are similar, use the same style rules.

Chapter 7

[219]

Style Domino default views
As previously noted, default views can be styled in Designer to some degree. With a
little effort, column headings and data rows can be improved.

But compared with CSS styling options, styling with Designer alone is limited,
indeed. Views can be improved dramatically with just a few CSS rules. Let us take a
look at how this might be done. Here is the inished product:

Here are the steps to style default views with CSS:

Step 1: Add HTML <div> tags and JavaScript to the view template.

As in the following illustration, add HTML <div> tags marked as Pass-Thru HTML
to the view template, along with some JavaScript at the bottom of the form. Division
tags enclose the view title and the embedded view itself. This is the complete view
template (not showing the Action buttons):

Views

[220]

Step 2: Create and link to a page containing CSS rules.

Create a CSS page and link to it from the view template's HTML Head Content area,
as described in Chapter 5, Cascading Style Sheets. Add these CSS rules to the CSS
style sheet:

/* ViewTemplate.css */

#viewtitle {

 color: #7F0000;

 font-family: Arial;

 font-size: 18pt;

 font-weight: bold;

 margin-bottom: 10px;

 padding-left: 10px;

 }

#embeddedview table {

 border-collapse: collapse;

 border-top: solid 4px #EEE;

 border-right: solid 4px #555;

 border-bottom: solid 4px #555;

 border-left: solid 4px #BBB;

 font-family: Verdana;

 font-size: 10pt;

 }

#embeddedview th {

 background-color: #DDD;

 border: none;

 border-bottom: solid 2px #7F0000;

 color: Blue;

 width: 8em;

 }

#embeddedview a {

 color: Red;

 text-decoration: none;

 }

#embeddedview a:hover {

 background-color: Red;

 color: White;

 }

Step 3: Style the Action Bar buttons.

To style the Action Bar, link to the ActionBar.css page in the view template's
HTML Head Content area, and insert the ActionBar.js JavaScript library into the JS
Header. Details about Action Bar styling were presented in Chapter 5.

Chapter 7

[221]

Style HTML views
HTML views can be styled with CSS rules as well. As the view template for an
HTML view already contains a <table> tag, simply add an ID attribute, in this
case dataTable:

In the view itself, add some class attributes to one or more of the column titles or
column value formulas. For the Age column, here is a modiied title including the
class attribute:

<th class="age">Age</th>

And here is the column value for the Age column, again with the class attribute:

"<td class='age'>" + CustAge + "</td>"

Code CSS rules on a CSS page and link to it in the view template's HTML Head
Content area. Note that the #dataTable ID name is used to qualify the <th> and
<td> rules. This assures that these rules are applied only to the view table and not to
other HTML tables that might exist on the view template:

#dataTable {

 border-collapse: collapse ;

 border: solid 2px black ;

 }

#dataTable th {

 background-color: yellow ;

 color: blue ;

 font-weight: bold ;

 padding: 3px ;

 text-align: left ;

 text-style: italic ;

 }

Views

[222]

#dataTable td {

 border: solid 1px black ;

 padding: 3px ;

 }

#dataTable th.age, td.age {

 text-align: center ;

 width: 4em;

 }

And inally, the rendered view begins to look a little more polished:

Opening documents in a separate
window
The main purpose of a view is to provide a list of documents that can be opened by
clicking on entries in the view. By default, documents open in the same browser tab
or window as the parent view. If you want documents to open in a new window or
tab, here is how this can be done:

If a view is displayed using the $$ViewBody ield on a view template, modify the
formula that creates the document links by adding the target attribute to the <a>
tag. Here, target='_blank' is added to the @formula for the Computed form ield
docURLItem as discussed in a previous topic:

db := "/" + @WebDbName ;

vw := "/" + @Subset(@ViewTitle;1) ;

doc := "/" + @Text(@DocumentUniqueID) + "?OpenDocument" ;

link := db + vw + doc ;

"" +

"" + ContactLast + "" +

 ", " + ContactFirst +

""

Chapter 7

[223]

If a view is displayed using an embedded view control, then specify _blank for the
Frame attribute on the Info tab of Embedded View Properties:

Adding view scrollbars dynamically
It is possible to add scrollbars to Domino views without using the View Applet.
This technique might be appropriate for views whose line count will not exceed the
Maximum lines per view page server setting discussed earlier. In other words, if the
server setting is 1000 and a view never exceeds 1,000 rows, then adding a scrollbar as
described here might work well.

Again, there are several pieces to this solution which must work together. (For the
purpose of this illustration, I simply duplicated records to create a larger number of
documents.). To begin, here's the inished product:

Views

[224]

Here are the steps to add scrollbars to a view:

1. Add <div> tags to the view template:

Add two HTML divisions to the view template. The embeddedview division
encloses the embedded view control, and the viewwrapper division encloses
the embeddedview division. The viewwrapper division is the container to
which the scrollbars attach. Here is the complete view template with HTML
marked as Pass-Thru HTML:

2. Code a CSS rule for the viewwrapper division:

Add this CSS rule to your CSS style sheet. The background color of the
viewwrapper division is set to a light gray (so that you can see it). The
overlow attribute turns on the scrollbars:

div#viewwrapper {

 background-color: #EEE ;

 padding: 0 ;

 overflow: auto ;

 }

Chapter 7

[225]

3. Set the line count for the embedded view:

Set the line count for the embedded view on the Info tab of Embedded View
Properties. Remember that this is the maximum number of rows that the
view should ever contain, and it must be no larger than the number allowed
by the server. In this example, the line count is set to 500:

4. Code a JavaScript function:

Add this function to the JS Header or to a linked JavaScript library. When
this function runs, it resets the height and width of the viewwrapper division
to account for how the user may have adjusted the size and shape of his
browser's window. Note that you may have to experiment a little with the
values for height and width that are applied to the viewwrapper division by
this function:

function resizeView() {

 var ch = document.body.clientHeight ;

 var vw = document.getElementById("viewwrapper") ;

 vw.style.height = ch-200+"px" ;

 vw.style.width = "400px" ;

 }

5. Code a JavaScript function call in the view template's HTML Body
Attributes area:

The onresize event ires whenever the user resizes the browser window.
In the view template's HTML Body Attributes area, code the following
@formula:

"onresize='resizeView()'"

6. Code a JavaScript function call in the onLoad form event:

In the view template's onLoad event, add the following JavaScript function
call. This sets the scrollbars in place when the view template irst loads:

resizeView()

Views

[226]

Summary
Crafting views for the Web can be simple or time-consuming. As we have seen
in this chapter, very little time is required to create basic, functional views. More
time—and some knowledge of CSS and JavaScript—can produce substantially better
looking views. There are many options to consider, and some experimentation is
required to achieve just the right results.

Topics in this chapter introduced several ways in which views can be designed,
rendered for the Web, and styled with properties in Designer or with CSS rules. Even
older default views can be dramatically enhanced with very little effort.

Agents
Web applications rely on agents for server-based work. Think of an agent as a
program that manipulates documents within and between applications. Agents can
be simple actions speciied with a wizard or they can consist of named lines of code
written in Formula Language, LotusScript, or Java. These programs are stored in
Domino applications and then run on-demand or automatically on a schedule. In
all cases, they run within the context of an application, and from a web application
point of view, they run on the server and not in the browser.

It has been said that you can do just about anything you can imagine with
LotusScript, from large tasks such as accessing every application on a server to
discrete tasks such as twiddling the bits in a design element's Properties. You should
develop a familiarity with LotusScript regardless of your personal programming
language preferences. Domino developers who came before you left a lot of this stuff
lying around, and you will be called upon to ix and enhance it from time to time.

An existing application can contain dozens of agents accumulated over the years as
the application design morphed and evolved. As you discover an application, pay
attention to the agents. In truth, this can be the most daunting task you face. Not
only do you need to learn the code, but this is where you see how those previous
developers solved problems.

Topics in this chapter focus primarily on how agents written in LotusScript can
provide functionality for web users, although some techniques are also appropriately
coded for use with the Notes client. Most of the sample agents are written in
LotusScript, and they illustrate various techniques and strategies. Experiment with
them, and then adapt them for your own purposes as you see it.

Agents

[228]

Topics in this chapter include these:

•	 General guidelines for LotusScript agents

•	 Setting appropriate agent attributes

•	 Trapping errors and writing messages

•	 Accessing documents with agents

General LotusScript agent guidelines
Before getting into the details of coding agents, here are a few suggestions that apply
to all agents:

•	 Give agents meaningful names and aliases

•	 Structure and document agents appropriately

•	 Use agent subroutines and libraries

•	 Harvest ideas from Designer Help

Give agents meaningful names and aliases
By now, it should be second nature to name design elements, including agents, so
that future developers can grasp the essential purpose of those elements right away.
For instance, the general intention of an agent named Repair Status Fields (Dev
Tool) is relatively easy to understand even without looking at the code.

Since an agent can be invoked with a URL, you may want to avoid problems with
spaces (and special characters) either by giving an agent a name with no spaces or by
adding an alias with no spaces:

Repair Status Fields (Dev Tool) | RepairStatusFields

If permitted in Agent Properties, the primary name of an agent displays in the Notes
Actions menu.

You can use the alias to invoke the same agent from a web page. Here are two
examples of how to launch an agent with @formulas attached to a web page button's
Click event:

@Command([ToolsRunMacro]; "RepairStatusFields")

@URLOpen("/" + @WebDbName + "/RepairStatusFields?OpenAgent")

Chapter 8

[229]

Structure and document agents
Most agents invoked from web pages are written in LotusScript, although Java and
Formula Language can be used, if appropriate. When you look at an existing script,
especially if it has been worked on by several developers over a period of years, you
may ind something that is hard to follow, full of commented-out code, and perhaps
overly complicated. Take some time to clean it up.

•	 Version the agent so that you retain a copy of the old code for
reference purposes

•	 Add a block of comments at the top of the agent and add good notes

•	 Co-locate all Dim statements below the comment block

•	 Remove unnecessary, commented-out lines of code

•	 Add a basic error trap, if the agent lacks one

•	 If a subroutine is very large, consider breaking it up into smaller subroutines

Use agent subroutines and LotusScript
libraries
By default, a LotusScript agent starts with two subroutines, Initialize and
Terminate. If the process is brief enough, then all the code can be placed in
the Initialize subroutine. However, if the process turns out to be lengthy,
you may want to break it up into multiple subroutines and use Initialize as
an organizing process, calling the other subroutines in order. Variables can be
passed by specifying them on Call statements or by declaring them in the module
level Declarations area.

You may also ind LotusScript subroutines and functions located in LotusScript
libraries. Libraries should be used for subroutines and functions that are called by
more than one agent. If you intend to add a new subroutine to a library, you will
need to code at least a stub in the library before a calling agent will compile. Also,
be sure to link to the library from the agent's module level Options area with a Use
statement identifying the LotusScript library.

Option Public

Use "Common Subs"

Agents

[230]

The important design consideration here has to do with how many individual
subroutines you create and where you put them. The more complicated you
make the code, the more dificult it will be for the next developer to work on the
application. Keep things as simple and as well-organized as possible. Place functions
and subroutines that do similar things together. Keep the size of each module,
subroutine, or function to a reasonable number of lines of code—not too many and
not too few. If an agent calls a library subroutine or function, leave a comment in the
agent identifying the library that contains the called code.

Harvest ideas from Designer Help
Don't be shy about harvesting ideas from Designer Help. As you know if you
have written LotusScript agents before, code samples can be copied directly from
Help, pasted into an agent, and then modiied. Designer Help also indicates which
techniques work on the Web and which do not. Short of calling an IBM support desk,
Help is the deinitive guide to how things (should) work.

Setting agent attributes
A number of attributes are set in Agent Properties that deine important agent
characteristics. Key properties are noted in this section.

Set who can view and run an agent
Who can view and run an agent is set on the Security tab of Agent Properties. By
default, All readers and above can see and run an agent. If you require that running
an agent be restricted to one or more entities listed in the application's ACL, then
uncheck the default and check one or more servers, groups, roles, or people who are
allowed to invoke the agent.

Agents

[232]

Also, take care to set the Runtime Target properly; you will most often set the Target
to None and code the agent to select which documents to process.

Note that if you select the Runtime Trigger, On event selection Action list selection,
then the agent is considered (somewhat) hidden, and you must surround the
name with parentheses when invoking it with a button or hotspot. Use either
of these commands:

@Command([RunAgent]; "(SecretAgent)")

@Command([ToolsRunMacro]; "(SecretAgent)")

Chapter 8

[233]

Set an agent's runtime privileges
Determining who can see and run an agent is not the same as determining what the
agent is allowed to do. When the agent runs, it runs with the privileges of someone.
You might think that an agent would run with the same privileges as the user who
invoked it, but that does not have to be the case. An agent can run with the authority
of the user who invoked it or with someone else's authority. There are three options:

•	 Run as the current web user

•	 Run as a speciic person, group, or role
•	 Run as the person (Notes ID) who signed the agent

When you set the authority to Run as web user, then the agent runs with the
application access and privileges of the user invoking the agent, as deined in the
application's ACL.

When you set the authority to Run on behalf of (and ill in the blank), then the agent
runs with the application access and privileges of the speciied group or person, also
as deined in the application's ACL. This may be an appropriate setting if the agent
does something requiring elevated privileges.

If you do not specify either of these options, then the agent runs with the privileges
granted in the application's ACL to the signer of the agent (could be the developer
or an authorized signing ID or a server). In this case, the signer (or a group of which
he is a member) must be granted access to the application or else the agent fails.
For example, if your application is signed by a speciic authorized ID before being
migrated to production, then that ID must be authorized to access the application in
order for the agent to run.

Hide unused agents
Normally, you should delete unused design elements to keep the design as clean as
possible. But you may want to hold onto agents more or less permanently, especially
if they served to repair or update documents in an application. Someday you may
be faced with the same or a similar problem, and being able to re-use or adapt an
existing agent can save you considerable time.

Agents

[234]

You can hide an agent with Design Document Properties. Checking the option Do
not show this design element in menus of R4 or later clients is a good choice, if you
have some other way to launch the agent, such as clicking a button. But the options
under Hide design element from: hide the agent from you as well, so you cannot
run the agent once these options are selected.

A slightly more involved strategy enables you to see and run the agent, but hides it
from everyone who should not see it. First, deine a special role in the application's
ACL. In this example, the "Developer" role is deined. In the ACL, assign this role to
whoever should be able to see the agent in the Actions menu and/or run it.

Next, adjust settings under the label Default access for viewing and running
this agent on the Security tab of Agent Properties. This is an agent access list.
Uncheck the default All readers and above, and select the special role (for example,
[Developer]) whose assignees are allowed to see and run the agent.

Chapter 8

[235]

Now, the agent displays in the Actions menu in Notes for anyone assigned the
Developer role and does not display for anyone else. On the Web, anyone logged in
with the Developer role can run the agent, while anyone without the Developer role
who tries to run the agent receives an HTTP error message:

HTTP Web Server: Couldn't ind design note

In a similar manner, you can deine a button to invoke the agent, and then secure the
button with a hide-when formula.

Developing agents
As you look at existing scripts or begin to code your own, keep in mind the general
suggestions highlighted in this section. These strategies apply to most agents. If
an existing agent does not include a basic error trap, for instance, then you should
consider putting one in when you work on the agent.

Use web safe @formulas and LotusScript
As you look to write a new agent or to web-enable an existing Notes application,
keep in mind that certain LotusScript classes, properties, and methods do not work
in server agents invoked from web applications. Check Designer Help for speciics.

For example, background agents written in LotusScript cannot use the UI classes, so
an agent that tries to use such a class fails when invoked from the Web.

 Dim workspace As New NotesUIWorkspace

 Call workspace.OpenPage("Page2")

Rewrite such agents. Here is one way to achieve the same result:

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Set db = session.CurrentDatabase

 url$ = "[/"+db.Filepath+"/Page2?OpenPage]"

 Print url$

Agents

[236]

Also, keep in mind that in existing Notes applications, you might ind LotusScript
coded in locations (for example, in a button's Click event) where it will not work
in web applications. For example, if a button's Click event were coded with this
LotusScript, the button would not display on the Web:

 Sub Click(Source As Button)

 Msgbox("Hello!")

 End Sub

Recode the function (if you can) to use web safe @formulas or JavaScript code.

Include a basic error trap
Any script can fail, so every script should contain code to handle errors gracefully.
When an error occurs in a script, control passes to a few lines of code for exception
processing. A simple error handler provides a useful error message and then quits.
More sophisticated error handlers might attempt to repair the error and continue.

Since an agent invoked from the Web runs on a server, an error message must be
sent somewhere. You have some choices:

•	 Write messages to the Domino Log

•	 Write messages to the browser as a web page

•	 Write messages to the browser as a JavaScript alert

•	 Write messages to an Agent Log

If you use the MessageBox statement or function, then the error message goes to the
Domino Log, which is a system ile to which Domino writes messages about events
transpiring on the server. You must be authorized to access the Domino Log on the
server in order to view the messages.

Here is a tiny agent with an error and a basic error handler. The error handler sends
a message to the Domino Log. The message contains the names of the application,
the agent, and the subroutine, as well as identifying the line of code that failed and
some information about the error itself. There is no attempt to recover from the error.
Every agent should include at least this kind of basic error trap.

Sub Initialize

 Dim msgPrefix As String

 msgPrefix = "Web Sandbox 08 / RepairStatusFields / Initialize "

 On Error Goto ErrorHandler

 Dim v As Variant

 Print v(0)

Chapter 8

[237]

 Exit Sub

'**** E R R O R H A N D L E R ****

ErrorHandler:

 Msgbox(msgPrefix & "**** E R R O R **** " _

 & Cstr(Err()) & " at line " & Cstr(Erl) & " : " & Error())

End Sub

To demonstrate this error handler, attach the following @formula to a button on
a web page, and then click the button. Remember to surround the name of the
agent with parentheses (if you enabled Action list selection on the Basics tab of
Agent Properties).

@Command([ToolsRunMacro];"RepairStatusFields")

When the agent runs, the error is detected and control transfers to the label
ErrorHandler:. The code then writes a message to Domino Log.

Interrogate the log ile to locate messages. There may be a delay before the message
is written, depending upon how busy the server is.

The irst of these next two messages comes from our agent, and it clearly indicates
which line of code failed. The second message indicates that the failing agent did not
attempt to recover from the error.

11/13/2010 09:56:32 AM HTTP Server: Agent message: Sandbox8 /
RepairStatusFields / Initialize **** E R R O R **** 184 at line 8 : Variant does not
contain a container

11/13/2010 09:56:32 AM HTTP Server: Agent 'Repair Status Fields (Dev Tool) |
RepairStatusFields' error: No RESUME

Write messages to the browser as a web page
Instead of writing error messages to the Domino Log, you may choose to write those
messages out to the web browser as a page for immediate feedback. If you do this,
provide suficient instructions so that an end user knows exactly what to do should
he encounter an error. Here is a modiied error handler that sends messages to the
browser. Note the inclusion of HTML tags in the Print statements.

'**** E R R O R H A N D L E R ****

ErrorHandler:

 Print "<html><body>"

 Print "<h2>Attention !</h2><p> An error occurred.</p>"

 Print "<p>Please send what you were doing to the Administrator.</p>"

 Print "<p>Sandbox8 / RepairStatusFields / Initialize</p>"

Agents

[238]

 Print "<p>Error at line " & Cstr(Erl) & " : " & Error() + "</p>"

 Print "<p>Use the back button to return to the application.</p>"

 Exit Sub

Here is the error message page displayed in a browser:

Instead of instructing the user to click the browser's back button, you might include a
clickable link that redirects him to some known point in the application.

Write messages to the browser with a
JavaScript alert
If you like, you can display error messages with the JavaScript alert() function.
In this version of the error handler, LotusScript Print statements send some
JavaScript to the browser. If an error occurs, then the alert displays, and when the
user clicks the OK button, the previous page displays. This technique is similar to
the previously discussed option, but it is a little trickier to code. Pay attention to the
punctuation on the Print statements. The outer double quotation marks are required
by the Print statements. The inner single quotation marks are required by the
JavaScript code in order to concatenate several short strings into a long message.

'**** E R R O R H A N D L E R ****

ErrorHandler:

 Print "<script type='text/javascript'>"

 Print "var errmsg = 'Attention!\n\nAn error occurred.' + "

 Print " ' \n\nPlease let the Administrator know what happened.' + "

 Print " ' \n\nSandbox8 / RepairStatusFields / Initialize' + "

 Print " ' \n\nError at line " & Cstr(Erl) & " : " & Error() + " ' +

"

Chapter 8

[239]

 Print " ' \n\nClick the OK button to return to the application.' ; "

 Print "alert(errmsg) ; "

 Print "history.go(-1) ; "

 Print "</script>"

 Exit Sub

The result is a bit more polished.

In addition to looking better, this JavaScript error handler can be a huge time saver.
If you are used to writing error messages to the Domino Log and then waiting a few
minutes to see what happened, try this JavaScript technique. Feedback about an error
condition is immediate. Your development productivity should improve dramatically.

Write messages to an agent log ile
Setting up an agent log ile is a bit more complicated, but doing so is an elegant way
of managing messages from your application. You can use an agent log only for error
messages or for other messages, if you like.

Agents

[240]

Begin by creating a log ile using the Agent Log advanced template.

In your agents, code some lines to open the log ile. Note that the On Error
statement must come after the log initialization statements. Also, note that the
format of the argument list for the OpenNotesLog() method as illustrated here is
appropriate when an agent is invoked from the Web, but it may not be appropriate if
the agent is invoked from the Notes client.

 ' Set up for agent log

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Dim agent As NotesAgent

 Dim appLog As NotesLog

 Dim e as Integer

 Set agent = session.CurrentAgent

 Set appLog = session.CreateLog(agent.Name)

 Call appLog.OpenNotesLog("", "EllisITS\WebSandbox08AgentLog.nsf")

 On Error Goto ErrorHandler

Chapter 8

[241]

The error handler composes a message, writes it to the agent log, and then closes
the agent log.

ErrorHandler:

 e = Err()

 errmsg = msgPrefix & "**** E R R O R **** " & _

 Cstr(Err()) & " at line " + Cstr(Erl) + " : " + Error()

 Call appLog.LogError(e, errmsg)

 Call appLog.Close

 Exit Sub

Opening the agent log reveals any logged messages.

Note that the agent must have suficient authority to write to the agent log. In this
example, Anonymous is allowed Editor access to the agent log and the agent is
running as the web user.

Of course, the agent log can be used to write normal messages as well at any time
during processing using the LogAction() method. Be sure to close the agent log
before exiting the agent.

 Call appLog.LogAction(msgPrefix & "*** Start ***")

 .

 .

 Call appLog.LogAction(msgPrefix & "*** Close ***")

 Call appLog.Close

 Exit Sub

Working with documents
Perhaps the majority of agents in an application are intended to manipulate one
or more documents. On the Web, agents can be invoked by clicking buttons or
hotspots on forms or pages. @Formulas coded to launch agents can take several
forms, including these. The second example illustrates how to open an agent with a
constructed URL.

@Command([ToolsRunMacro];"(TestAgent1)")

@URLOpen("/"+@WebDbName+"/TestAgent1?OpenAgent")

Agents

[242]

Agents are commonly run also as a result of loading or saving a document. Formulas
in the WebQueryOpen and WebQuerySave form events determine which agents run at
these points.

Topics in this section address issues related to creating agents to work with forms
and documents on the Web.

Use WebQuerySave
After a web form is submitted, but before the document is actually saved into the
database, an agent named in an @formula in the form's WebQuerySave event runs. If
an agent is not invoked in this event, then no agent runs.

Code the WebQuerySave event as in this illustration. Note that the Runtime,
On event selection Action list selection is selected, so that the agent's name,
SaveDocument, must be surrounded by parentheses.

Whatever processing needs to be done before the document is saved into the
application can be coded in the WebQuerySave agent. Processing might include
such things as computing a sequence number for the document, issuing e-mail
notiications, and writing messages to a log ile.

There is no need to save the document in the WebQuerySave agent. The document is
automatically saved after the agent inishes, unless the agent prevents the save.

Access a document from an agent
To retrieve ield values from a document, an agent must gain access to or link
to that document. In some circumstances, you can use the session document
context to achieve the link. In other circumstances, you must access the document
through its UNID.

Agents

[244]

This technique can be used to access the backend or database copy of a document
currently open in a browser. However, it cannot be used to access ield values of
the document as currently open in the browser. The agent cannot access unsaved
changed values in the browser; it will only be able to access the document as
currently stored in the database.

Here is one way to pass a document's UNID to an agent.

First, code a form button or hotspot whose Click event value is similar to the
following @formula. Note that parameter DOCID is included on the URL.

@URLOpen("/" + @WebDbName + "/GetDocValuesURL?OpenAgent" +

"&DOCID=" + @Text(@DocumentUniqueID))

In this example, the value of the DOCID parameter is the UNID of the document
currently displayed in the browser. The agent accesses the document as saved in the
database (and not the browser version).

Next, code the agent. Include a way to extract the value of the UNID from the query
string. In this example, the For Next loop parses out parameter-value pairs from the
query string.

Sub Initialize

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Dim doc As NotesDocument

 Dim argarray As Variant

 Dim argcount As Integer

 Dim argstring As String

 Dim aDOCID As String

 Dim errmsg As String

 Dim e As Integer, i As Integer

 argstring = session.DocumentContext.Query_String(0)

 argarray = Split(argstring,"&",-1)

 argcount = Ubound(argarray)

 For i = 1 To argcount

 parm = argarray(i)

 e = Instr(parm,"=")

 value = Mid$(parm,e+1)

 parm = Left$(parm,e-1)

 Select Case Ucase(parm)

 Case "DOCID" : aDOCID = value

Chapter 8

[245]

 Case Else : errmsg = "Yes"

 End Select

 Next

 Set db = session.CurrentDatabase

 Set doc = db.GetDocumentByUNID(aDOCID)

End Sub

Detect the type of client invoking the agent
An agent may provide functionality that is identical for users accessing the
application with the Notes client and with a browser. On the other hand, certain
agent logic might pertain only to one type of client and not the other. An agent can
detect which client is running using the following strategy.

First, add a hidden Computed for display ield to a form. In this example, the name
of the ield is ClientType and its value is the following @formula:

@BrowserInfo("BrowserType")

The key is to test for a client type of "Notes". Remember that an agent accessing a
document through the session context must be invoked with an @Command. Here is
a skeleton agent:

Sub Initialize

 Dim session As NotesSession

 Dim doc As NotesDocument

 Dim aType As String

 Set session = New NotesSession

 Set doc = session.DocumentContext

 aType = doc.ClientType(0)

 If atype = "Notes" Then

 Msgbox("You are running the Notes client.")

 Else

 Print "<p>You are running a " + aType + " browser."

 End If

End Sub

Agents

[246]

Detect whether a document is in Read or Edit
mode
If for some reason an agent needs to know whether a document open in the browser
is open in Read mode or in Edit mode, here is a strategy that can be used to detect
the state of the document.

As in the previous topic, add a hidden Computed for display ield to a form. In this
example, the name of the ield is EditMode and its value is the following @formula:

@If(@IsDocBeingEdited; "Edit"; "Read")

Now the agent can retrieve the value of the ield and do whatever it needs to do.

aEditMode = doc.EditMode(0)

Prevent a document from being saved
To prevent a document from being saved—perhaps it did not pass validations or
perhaps it was just a temporary document—add a hidden Computed ield named
SaveOptions to a form. In the WebQuerySave agent, code this line (assuming that
doc refers to the document) to prevent the document from being saved:

 doc.SaveOptions = "0"

If the document should never be saved, simply set the default value of the
SaveOptions ield to a text "0" on the form, and no documents composed with that
form will ever be saved.

Redirect the browser to the next page
Once an agent completes processing, you may want it to redirect the browser to a
new page rather than code the new location as the value of form ield $$Return,
which can also specify a URL. This is easily accomplished with a Print statement
that sends the URL to the browser. As in this example, surround the URL with
square brackets to indicate that the text should be treated as a URL:

 Print "[http://www.google.com]"

There are many ways to compose a valid URL within an agent. Here are
some samples:

Chapter 8

[247]

To redirect to the database itself, try the following lines:

 Dim dbpath As Variant

 dbpath = Evaluate("@WebDbName")

 Print "[/" + dbpath(0) + "]"

To redirect to the default view, or really to any view by name, try the following lines:

 Dim session As NotesSession

 Dim db As NotesDatabase

 Dim dbpath As String

 Dim tmp As Variant

 Set session = New NotesSession

 Set db = session.CurrentDatabase

 dbpath = db.filepath

 tmp = Split(dbpath,"\")

 dbpath = Join(tmp,"/")

 Print "[/" + dbpath + "/$defaultview?OpenView]"

In this case, backward slashes are converted to forward slashes programmatically,
as opposed to using the Evaluate("@WebDbName") function as in the preceding
example. Both transformations accomplish the same thing with regard to
backward slashes.

To redirect back to the same document in the default view, try the following lines:
(In this and the next example, the Dim statements for session, doc, and dbpath
are omitted.)

 Set session = New NotesSession

 Set doc = session.DocumentContext

 dbpath = Evaluate("@WebDbName")

 Print "[/" + dbpath(0) + "/$defaultview/" + doc.UniversalID + _

 "?OpenDocument]"

To redirect back to the document's parent view requires a couple of steps.
First, deine a Computed for display form ield named ViewTitle with the
following @formula:

@URLEncode("Domino";@Subset(@ViewTitle;1))

If the document already exists, the function @ViewTitle returns a value. If the
document is new, then @ViewTitle returns nothing.

Agents

[248]

Here are the lines of code for the agent. Note that the value of the ViewTitle form
ield is tested; if it is blank, then the default view is selected.

 Dim vwtitle As String

 Set session = New NotesSession

 Set doc = session.DocumentContext

 dbpath = Evaluate("@WebDbName")

 vwtitle = doc.ViewTitle(0)

 If vwtitle = "" Then vwtitle = "$defaultview"

 Print "[/" + dbpath(0) + "/" + vwtitle + "?Openview]"

Process selected documents in a view
It is sometimes convenient to enable users to process multiple documents at once.
With the Notes client, you select a set of documents in a view and then invoke an
agent (or some other action) to process all selected documents. You can include a
similar feature in a web application, and there are a couple of ways to do this. Here is
one way.

In this example, a document approval process is implemented.

Four design elements are required:

•	 A form used to create documents, which are to be modiied
•	 A view, which displays the documents along with checkboxes

•	 A temporary form, which embeds the view and provides a way to invoke
an agent

•	 An agent, which processes documents selected in the view

First, create a form with a ield named Status or something similar whose default
value is blank. Create some documents with the form.

Second, create a view which displays the documents. For Web Access, enable Allow
selection of documents on the Advanced tab of View Properties.

Chapter 8

[249]

Third, create an approval form. This form is used to select documents for approval,
but it is never saved. Remember to enable Generate HTML for all ields on the
Defaults tab of Form Properties. Here is a sample form as it appears in Designer:

Surprisingly, there is a lot going on with this form. Each form element deserves a
brief explanation.

•	 timestamp ield: The timestamp ield is a hidden Computed for display
ield, intended to minimize problems with caching the form. The value of the
ield is @Now.

•	 SaveOptions ield: The SaveOptions ield is a hidden Computed ield
intended to prevent the document from being saved. Its value is a text "0" as
discussed in a previous topic.

•	 $$SelectDoc ield: The $$SelectDoc ield represents the checkboxes that
Domino inserts to the left of the view entries when the view displays on the
Approval form. When the form is submitted to the agent for processing, this
ield contains a list of document UNIDs corresponding to the documents
selected on the form. The ield is an Editable Text ield. Enable Allow
multiple values on the Field Info tab of Field Properties.

Agents

[250]

In addition, add an HTML type attribute on the Field Extra HTML tab
of Field Properties as in the following image. Do not hide the ield using a
hide-when formula.

•	 Approve button: The Approve button's Click event contains the following
formula, which submits the form:

@Command([FileSave]);

@Command([FileCloseWindow]);

•	 Cancel button: The Cancel button's Click event contains the following
formula, which closes the Approval form and reopens the application:

@URLOpen("/" + @WebDbName)

•	 $$ViewBody ield: The $$ViewBody ield is the container that holds the view
showing the documents we may want to approve. The default value of this
ield is the name of the view.
"Documents Pending Approval"

•	 WebQuerySave event: The form's WebQuerySave event contains the following
formula, which invokes an agent to process the selected documents:

@Command([ToolsRunMacro];"(ApproveSelected)")

Chapter 8

[251]

Fourth (remember, creating the Approval form was "third" in this list), code the
agent invoked in the Approval form's WebQuerySave event. In this sample agent,
the list of selected document UNIDs is retrieved into variable selUNIDList; the
ContactStatus ield of each selected document is updated; the document saved;
and inally the browser is redirected back to the application's launch point.

Sub Initialize

 Dim session As NotesSession

 Dim db As NotesDatabase

 Dim doc As NotesDocument

 Dim selDoc As NotesDocument

 Dim selUNIDList As Variant

 Dim selUNID As String

 Dim i As Integer

 Set session = New NotesSession

 Set db = session.CurrentDatabase

 Set doc = session.DocumentContext

 selUNIDList = doc.GetItemValue("$$SelectDoc")

 i = 0

 Forall unid In selUNIDList

 If unid <> "" Then

 Set selDoc = db.GetDocumentByUNID(unid)

 If Not selDoc Is Nothing Then

 selDoc.ContactStatus = "Approved"

 Call selDoc.Save(False, False)

 End If

 End If

 End Forall

 Dim dbpath As Variant

 dbpath = Evaluate("@WebDbName")

 Print "[/" + dbpath(0) + "]"

 Exit Sub

End Sub

With all the design elements in place, add a button into your application to launch
the Approval form. Here's the @formula:

@URLOpen("/" + @WebDbName + "/ApprovalForm?Open")

Agents

[252]

Finally, click the button to open the Approval form. Here is how the form looks
before documents are selected and before the Approve button is clicked.

Writing special purpose agents
Undoubtedly, you will come across many, many agents as you discover applications
and tackle maintenance chores. What do agents do? Anything you like. Here are two
examples of processes you will likely encounter.

Send e-mail notiications
Applications can issue e-mail to notify users of events that transpire within the
application. Perhaps a new task has been assigned or an old one completed, and the
responsible parties are so informed. A notiication might be triggered when someone
changes a ield on a document, such as a status ield. Alternatively, a scheduled
agent might run periodically and issue notices for overdue items, and so on.

Notiication agents like this work pretty much the same way for Notes users or web
users, with one notable difference: for the web user, the notiication might include
a clickable URL which opens the browser directly to the document requiring his
attention. This kind of notiication is particularly important for users who do not use
Lotus Notes e-mail.

Chapter 8

[253]

Here is an example of an agent that issues a notiication including a URL. In the
agent, the temporary memo newMemo receives its SendTo and Subject values from
the document currently open in the browser; the SendTo value should be a proper
Notes name, of course. The Body of the memo is constructed in the agent.

Sub Initialize

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Dim doc As NotesDocument

 Set session = New NotesSession

 Set db = session.CurrentDatabase

 Set doc = session.DocumentContext

 Dim newMemo As NotesDocument

 Set newMemo = New NotesDocument(db)

 newMemo.Form = "Memo"

 newMemo.SendTo = doc.Actionee(0)

 newMemo.Subject = doc.Subject(0)

 Dim body As NotesRichTextItem

 Set body = New NotesRichTextItem(newMemo, "Body")

 Call body.AppendText("Greetings:")

 Call body.AddNewline(2)

 Call body.AppendText("You have been assigned an action item.")

 Call body.AddNewline(2)

 Call body.AppendText("Click this link to open the document.")

 Call body.AddNewline(2)

 Call body.AppendText(doc.HttpURL)

 Call newMemo.Send(False)

End Sub

The agent is invoked from a form with an @Command, which enables access to
document ields through the session document context.

@Command([ToolsRunMacro];"(SendEmail)")

Agents

[254]

And here is a sample e-mail generated by the agent (viewed with the Notes client).

Export data to a spreadsheet on the Web
Exporting data to a CSV ile, which can then be imported into a spreadsheet, is quite
straightforward with the Notes client. But many users of Domino web applications
do not have access to the Notes client. If this is the situation in your organization,
you should consider providing a way for users to extract data from web applications.

In older applications, you may ind that a report is written to a web page as an
HTML table; users then copy and paste that HTML table directly into a blank
spreadsheet created with an application such as Microsoft Excel. If this is the
technique provided by a previous developer, you can do better.

In this example, the full contents of a view are written to a spreadsheet in order
to illustrate how this can be done. In many cases, an agent instead creates a
document collection with documents that match certain criteria, and then provides a
spreadsheet containing that more limited data.

For this example, simply embed a view on a form, and then add a button to the form
to invoke the WriteToSpreadsheet agent. Here is the formula for the button:

@URLOpen("/" + @WebDbName + "/WriteToSpreadsheet?OpenAgent&viewname=" +

@Subset(@ViewTitle;1))

You can provide to the agent the name of the view to be exported in any way you
choose; in this example, the name of the view is coded at the end of the query string
of the URL that invokes the agent. The agent decodes the query string to extract the
name of the view, and then writes rows of data from that view to the spreadsheet.

Chapter 8

[255]

Here is an example of an agent that extracts data directly into a spreadsheet. Error
handling is omitted, but a few comments are included to aid in reading the code.

Sub Initialize

 Dim session As New NotesSession

 Dim db As NotesDatabase

 Dim view As NotesView

 Dim doc As NotesDocument

 Dim colcounter As Integer, currentcol As Integer

 Dim columnHeadings As String

 Dim fileName As String

 Dim formula As String

 Dim queryString As String

 Dim row As String

 Dim viewColumnCount As Integer

 Dim viewColumns

 Dim viewName As String

 ' Get the name of the view from the query string

 Set doc = session.DocumentContext

 queryString = doc.Query_String_Decoded(0)

 viewName = Strright(queryString,"viewname=")

 Set db = session.CurrentDatabase

 Set view = db.GetView(viewName)

 ' Create a list of view columns to include in the export

 viewColumnCount = view.ColumnCount - 1

 Redim viewColumns(0 To viewColumnCount) As Integer

 colcounter = 0

 currentcol = 0

 columnHeadings = ""

 Forall c In view.Columns

 formula = c.Formula

 ' Ignore columns with icons and constants

 ' Use this form to keep Computed columns

 If Not c.isICon And formula <> "1" And formula <> """1""" Then

 ' Use this form to remove Computed columns

 'If Not c.isICon And Not c.IsFormula Then

 viewColumns(colcounter) = currentcol

 columnHeadings = columnHeadings + "<th>" + c.Title + "</th>"

 colcounter = colcounter + 1

 End If

Agents

[256]

 currentcol = currentcol + 1

 End Forall

 Redim Preserve viewColumns(0 To colcounter-1) As Integer

 ' Open MS Excel and write out the column headings

 filename = db.Title + "-" + viewName + ".xls"

 Print |Content-Type:application/vnd.ms-excel|

 Print |Content-Disposition: Attachment; filename="| + fileName + |"|

 Print "<table border=0>"

 Print "<tr>"+columnHeadings+"</tr>"

 ' Write out the rows from the view to the spreadsheet

 Set doc = view.GetFirstDocument

 While Not (doc Is Nothing)

 row = "<tr>"

 Forall c In viewColumns

 row = row + "<td>" + Cstr(doc.ColumnValues(c)) + "</td>"

 End Forall

 Print row + "</tr>"

 Set doc = view.GetNextDocument(doc)

 Wend

 Print "</table>"

End Sub

When the spreadsheet is created, its gridlines are turned off by default. Turning
gridlines on results in a very usable ile.

Summary
Domino applications rely on agents to perform many tasks, both on-demand and
on-schedule. Most often agents are written in LotusScript, but they can also be coded
with Formula Language or Java. Topics in this chapter have introduced and explored
key techniques for coding agents and integrating them with other design elements in
Domino web applications.

Security and Performance
Domino provides many standard security features, most of which can be used in
web-enabled applications. Domino security is multilayered with controls to protect
the server, the application, application design elements, documents, and ields on
documents. You should develop a reasonably good understanding of these features,
how they are implemented, and how they can inluence the design of an application.

If you are discovering an existing application, learn about how security is
implemented in the design, especially how groups, roles, and readers and authors
ields are used. Map out how worklow and document state changes relate to the
security features. Understanding these relationships provides considerable insight
into how the application works and what you have to do to make changes.

If you are developing a new application, design it with security in mind. It is more
dificult to bolt on security later than to implement it during initial development.
Even if your requirements do not include such concerns, press your customer to
consider the matter early in the project.

Be mindful of how the application performs when it goes into production. While
it is true that applications generally run faster on fast hardware and over a fast
network, poor response time today can be the result of application issues rather than
infrastructure issues.

Application performance problems may not present themselves immediately.
Testing an application under normal and heavy load conditions may be dificult until
after it has migrated to production and accumulated a fair number of documents. So,
"tuning" an application during development is often more a matter of implementing
sensible design and following recommended best practices.

Security and Performance

[258]

Many topics in this chapter are relevant to applications developed for the Notes
client as well as for the Web, since most of the concerns are the same. Special
emphasis is placed on security aspects that are relevant only to web-enabled
applications. This chapter focuses on these topics:

•	 Planning security

•	 Managing Lotus groups and application ACLs

•	 Using the security features of design elements

•	 Measuring application responsiveness

•	 Improving application performance

Security
In most applications, security controls are implemented fundamentally to protect
data stored in documents against unauthorized access and against unauthorized
change or deletion. As the developer, you will need to know who accesses your
application, what they are allowed to see, and what they are allowed to do and when
they are allowed to do it.

Two key concepts can guide application security deliberations.

Layered security, also referred to as defense in depth, refers to the implementation
of several barriers that must be penetrated before a user is allowed to access speciic
data. Depending upon organizational and application requirements, these are the
kinds of controls that can be implemented:

•	 A user must have a Notes account and password to access the
Domino environment.

•	 A user must be authorized to access the server hosting the application.

•	 A user must be authorized to access the application.

•	 A user must be authorized to use certain design elements, such as views
and forms.

•	 A user must be authorized to access a speciic document.
•	 A user must be authorized to edit a speciic document.
•	 A user must be authorized to access speciic ields on a document.
•	 A user must have access to encryption keys that decrypt data in

encrypted ields.
•	 A user must be authorized to update data in ields.
•	 A user must be allowed to save changed data.

Chapter 9

[259]

As a developer, some of these decisions are made for you by the organization and
the Domino administrators. For example, you will likely not be involved directly
in establishing server-level security, unless your application is the only application
running on a server.

Note that for web applications, data stored in ields is typically not encrypted, since
encryption keys are stored in Notes ID iles, and web users do not have access to
those keys. However, if requirements call for some level of encryption, web trafic
between browsers and the application can be encrypted using technologies such as
SSL (Secured Sockets Layer).

The principle of least privilege governs the design by specifying that a user sees
only what he is allowed to see to perform his job, and nothing more. Security rules,
similar and related to the business rules that govern worklow, deine in a general
way who gets to do what. Knowing what security rules are implemented in a design
is extremely important to understanding how an application works.

General guidelines
Like other aspects of application design and development, working out the security
rules or proile for an application is often iterative, since some issues tend to
emerge only as development proceeds. In existing designs, if the security rules are
undocumented, it might be useful to write them down as you igure them out.

Here are a few suggestions to keep in mind as you work on the security aspects
of a design.

Plan your security
As much as possible, work with your customer to understand and deine the security
rules. Create a taxonomy of classes for real or potential users—Readers, Authors,
Analysts, Editors, Reviewers, Approvers, Administrators—whatever maps to the
way people intend to use the application. Consider the role Anonymous users
may play.

Consider what sets of privileges should be enabled for different user classes. Strive
for detail. To guide the discussion with your customer, formulate questions such
as these:

•	 In general, should access to the application and its data be limited to a
speciic group of users?

•	 Should a class of users be able to read only a subset of documents?
•	 Should a class of users be able to read but not edit all documents?

Security and Performance

[260]

•	 Who can create documents?
•	 Who can edit all documents?
•	 Who can assign actions to handle issues represented by documents?
•	 Who can edit documents, and at what stage in the worklow?
•	 What ields should be editable and by whom?
•	 Who can approve or reject documents?
•	 Who can complete, archive, or delete documents?
•	 Who is allowed to see which Action buttons and under what conditions?

Domino groups are created in the Domino Directory and then added to an
application's ACL to enable access to the application. Groups are granted certain
privileges in the ACL, and when a user is added to a group in the Directory, he gains
access to the application with the privileges assigned to the group. An individual's
Domino name can be added directly to an application's ACL to authorize application
access, but this is generally not recommended.

Roles can be deined in an ACL to reine the privileges granted to Domino groups.
The name given to a role is arbitrary, but it should relect the kind of work and
responsibilities expected of that role within the application. Role names like Admin,
NewsEditor, Advisor, and Approver convey meaning.

Access to an application is granted in the application's ACL. Privileges within the
application are instantiated using various features of design elements. Access lists
and hide-when formulas control who can see and use elements such as buttons,
views, and agents. Access to documents can be controlled with document Readers
and Authors ields. Very complex security rules can be implemented using these
standard Notes features.

Manage Domino groups
Domino groups are most often created by Domino administrators. But maintaining
those groups—adding and deleting members—can be delegated. Find out what your
organization's policy is with regard to who maintains the Domino groups. Several
options exist including these:

•	 Groups are managed by the Domino administrator.

•	 Groups are managed by the Help Desk.

•	 Groups are managed by the application developer.

•	 Groups are managed by the application administrator or owner.

Chapter 9

[261]

Whoever manages the Domino groups is the primary gatekeeper for who accesses
the application, and therefore he or she should be both trustworthy and reliable.
If the policy is not hard-and-fast, you might consider assigning this responsibility
to the application administrator or owner or another knowledgeable and
interested application user. If such a user understands that he is responsible for
administering an important component of the application's security, then he will
likely pay more attention to the matter, and this can help surface issues earlier in
the development process.

If a user maintains the Domino groups for his application, you may want to provide
him with written documentation about how to do this, from both the Notes client
and web browser perspectives. Modifying group membership may be an infrequent
task, and it is easy for users to forget how to do this.

Specify anonymous access
Anonymous access is unauthenticated access—a Notes ID ile and password are not
required. There may be occasions when this kind of access is appropriate, but in a
business setting, this would be somewhat unusual. For an application that collects
anonymous surveys or suggestions from the public, anonymous access makes sense,
but normally this should not be acceptable.

If your application truly requires anonymous access, then it must be enabled in the
server document controlled by the Domino administrator. The application's ACL
must also include an entry for Anonymous, with suficient privileges.

Check the status of anonymous access to the server in the Domino Directory. Look
at the server document, Ports tab / Internet Ports tab / Web tab. Find the Web
section and check the Authentication option for Anonymous. It should look
something like this:

Security and Performance

[262]

If anonymous access is allowed to the server, then your application's ACL must
grant suficient access privileges to either the Anonymous or Default entries. In this
example, Editor access is granted, but the access level might be set to Author, Reader,
Depositor, or No Access as required by the application.

Note that if there is no entry for Anonymous in the ACL, then unauthenticated users
receive the privileges granted to the Default entry. For web applications, set ACL
privileges for both entries.

If anonymous access is not required, add an entry for Anonymous anyway with no
access rights to the application. Guard against unauthorized access to the application.

If you need to allow everyone in the organization to access an application , but you
do not want to create and maintain a huge Domino group, then add a wildcard to the
ACL with an appropriate access level. Here is a wildcard that implements pseudo-
anonymous access for all authenticated users within an organization.

*/EllisITS

Set the maximum Internet access level
On the ACL's Advanced tab, assure a proper setting for Maximum Internet name
and password as shown at the bottom of the following screenshot:

Chapter 9

[263]

This setting may reduce a group's access level as granted in the ACL, but it cannot
increase it.

If the Maximum Internet name and password setting is lower than that required
by a group, users receive an unexpected login screen when they attempt to do
something that requires the higher level of access. Worse, there may be no way
to satisfy the login. For example, if the maximum Internet access level were set
to Reader, then composing a new document or editing an existing one becomes
problematic. In most cases, Editor access should work, and there may be little
practical reason to set this value to a higher level.

Manage the application ACL
Adhering to the principle of separation of authority, you as the developer may not
have Manager access to a production database, and therefore you may not be able to
change the application's ACL at will. Find out who has that authority and what is the
procedure required to make changes.

ACLs for the development, staging, and production instances of an application
should be synchronized. If it is not possible to keep settings identical, keep them
as close to each other as possible, especially the staging and production instances.
Inconsistent application behavior can result from inconsistent security; if security in
the staging environment is different from that in production, testing may not reveal
certain kinds of problems.

Security and Performance

[264]

Consider carefully whether or not it is a good idea for you as the developer to have
special privileges in the production application. On the one hand, with some "super
authority," you may be able to diagnose and ix problems more readily. On the other
hand, your extra privileges may give you a view of the application that is quite
different from that seen by users. A good compromise might be to request special
privileges when you need them, and otherwise to retain the same privileges as an
application administrator. One way to do this would be to add a troubleshooting
group with special privileges to the ACL. When you need extra privileges, add
yourself to that group.

Enable SSL
As mentioned previously, if network packets between browsers and the server must
be encrypted, then Secure Sockets Layer can be enabled. SSL requires the Domino
administrator to install an SSL certiicate on the server. Once that is installed, the
developer can require SSL encrypted communications by checking the Require SSL
connection option on the Database Basics tab of Database Properties.

Chapter 9

[265]

Prevent opening an application in a browser
If for some reason you need to deny access to an application from the Web, an easy
way to do so is to enable the Don't allow URL open property on the Database
Basics tab of Database Properties. Enabling this attribute effectively prevents the
application from being opened in a browser, regardless of all other settings.

Security and Performance

[266]

Hiding is not securing—Use element access lists
Hiding design elements with hide-when formulas does not necessarily provide
security. Hiding a hotspot link to a view, for example, keeps the link from displaying
on a page. But the view may still be opened by specifying a full URL in the browser
address bar.

http://192.168.1.210/ellisits/WebSandbox09.nsf/AppCands?OpenView

A design might also attempt to control who creates documents by hiding from
ineligible users a button that composes a new document. But someone can still create
a document by opening the form directly.

http://192.168.1.210/ellisits/WebSandbox09.nsf/Customer?Open

To provide better security, use view and form access lists. In the case of a view,
specify who can use the view on the Security tab of View Properties. Uncheck the
property All readers and above, and then check the roles or groups allowed access
to the view.

In the case of a form, specify who can use the form to create new documents on the
Security tab of Form Properties.

Chapter 9

[267]

Even more important is controlling Edit mode access to existing documents.
You may come across a design that hides an Edit button from anyone who is not
allowed to edit an existing document. This seems like a reasonable strategy, but the
"unscrupulous" user still may be able to open the document in the Edit mode.

When a document opens in the Read mode, its full URL may appear in the
browser address bar. In this example, the UNIDs of the view and the document
are clearly displayed.

http://192.168.1.210/ellisits/WebSandbox09.nsf/500e5c3691e04217852577

df0006029d/4d998ff18f40d57085257796005132a3?OpenDocument

If the view and document UNIDs do not display in the address bar, they generally
can be copied from the page source and then appended to the application's URL.
In either case, by changing the right-most component from ?OpenDocument to
?EditDocument, the document opens in Edit mode.

http://192.168.1.210/ellisits/WebSandbox09.nsf/500e5c3691e04217852577

df0006029d/4d998ff18f40d57085257796005132a3?EditDocument

The best way to control access to existing documents is to use Readers and Authors
ields, a topic touched upon later in the chapter.

Understand application backup and restore
procedures
Occasionally an application becomes corrupted. If this happens, the Domino
administrator can run Domino utilities like Fixup and Updall, which may correct
the problem. However, there are occasions when a database is not repairable and
must be restored from a backup copy—for example, a user may have inadvertently
deleted some documents.

The main point here is that you, as the developer and as a support agent for the
application, should be aware of how and when the database is backed up, who can
do a restore, how a restore is requested, and how long the restore is likely to take.
Most likely the Domino administrator will know the procedures to follow, but you as
the developer should understand them as well. If you do not do the restore yourself,
you will likely have to explain the process to your users and reassure them.

Obviously, if the application is not being backed up, there is a signiicant risk to the
data stored in the database. Take steps to correct this oversight.

It is also a good idea to practice the restoration process occasionally, if day-to-day
events or business continuity drills do not provide you with that opportunity.

Security and Performance

[268]

Add security to forms and documents
Forms provide the visible structure for displaying and entering data stored in
documents. Topics in this section highlight a few security issues related to working
with forms and documents on the Web.

Understand the "Generate HTML for all ields"
attribute
As discussed in Chapter 3, it is generally the case that JavaScript code running in
the browser should be able to access any ield on a form, those that display as well
as those that are hidden. Check the Generate HTML for all ields attribute on the
Defaults tab of Form Properties to instruct Domino to send all form ields to
the browser.

Be mindful, however, that a minimally savvy user can see hidden ields by viewing
the page source. With only a little effort, values of both hidden and displayed ields
can be viewed. In this example, the document is open in Read mode:

<input name="HideFields" type="hidden" value="Y">

<input name="Return" type="hidden"

value="[/EllisIts/Sandbox9.nsf/PostEdit?OpenPage]">

<input name="HasBeenSaved" type="hidden" value="Y">

<input name="ViewTitle" type="hidden" value="Customers">

<input name="ClientType" type="hidden" value="Microsoft">

<input name="EditMode" type="hidden" value="Read">

<input name="SaveOptions" type="hidden" value="1">

<input name="Server_Name" type="hidden" value="192.168.1.210">

<input name="WhoCanEdit" type="hidden" value="[Admin]">

<input name="Gender" type="hidden" value="Male">

<input name="SelectedMeals" type="hidden" value="Breakfast, Lunch">

<input name="Actionee" type="hidden" value="Jason Quinn/users/

EllisITS">

<input name="Subject" type="hidden" value="An Action Item has been

assigned to you.">

<input name="CustLast" type="hidden" value="ApeMan">

<input name="CustFirst" type="hidden" value="Tarzan">

Chapter 9

[269]

<input name="CustAge" type="hidden" value="52">

<input name="CustCity" type="hidden" value="JungleTown">

<input name="CustStatus" type="hidden" value="Active">

<input name="CustStatusDisplay" type="hidden" value="Active">

<input name="CustEmployer" type="hidden" value="State of Texas">

<input name="Status" type="hidden" value="">

<input name="CustIncome" type="hidden" value="50,000"></form>

Clearly, hiding ields provides no real conidentiality.

Prevent users from reading existing documents
If a user has at least Read access to an application, the assumption may be that he
can read all documents within it. But if application requirements dictate that certain
users, groups, or roles should not be allowed to view selected documents, then
those documents can be protected by including one or more Readers ield on them.
Readers ields govern who is allowed to view documents.

A Readers ield is deined as a (usually hidden), multi-valued Editable or Computed
ield of type "Readers" whose value can be static or changed programmatically. If a
user should be able to read a document, then his canonical name, his group, or a role
assigned to him is added to the list of values in the ield. A backdoor role should be
included in the list, or in a different Readers ield altogether, to assure that someone
can always read the document. In this example, the ield WhoCanRead is deined with
its default value computed as a list of roles.

"[Admin]" : "[Editor]"

Anyone assigned either the [Admin] role or the [Editor] role can read documents
created with this form. Anyone whose name is programmatically added to the ield
can also read the document.

@SetField("WhoCanRead";"[Admin]":"[Editor]":

@Name([Canonicalize];"Jason Quinn/users/EllisITS"))

Chapter 9

[271]

Prevent users from editing selected ields using a
Controlled Access Section
In classic applications, enabling a user to edit some ields on a form while preventing
him from editing other ields is cumbersome. Two strategies can be used.

The irst strategy involves using one or more Controlled Access Sections. Fields with
the same read-only or edit characteristics are placed within a Controlled Access
Section. A Computed access formula for the section deines who may edit ields in
the section.

To implement this strategy, deine a hidden, multi-valued Editable or Computed
Text ield on the form. In this example, the ield is named SectionEditors, and its
default value is set to [Editor]. As in the previous discussion of Authors ields, the
value of the SectionEditors ield can be changed programmatically in response
to changes in the state of the document. To enable Jason Quinn to edit ields in the
Controlled Access Section, his name is added to the SectionEditors ield.

@SetField("SectionEditors";"[Editor]":

@Name([Canonicalize];"Jason Quinn/users/EllisITS"))

When he is no longer allowed to edit the ields in the Controlled Access Section, his
name is removed from the SectionEditors ield.

@SetField("SectionEditors";"[Editor]")

What makes this work is the section's Access Formula, which is coded in the
Formula tab of Section Properties. This formula must resolve to a list of the roles,
groups, or user names allowed to edit ields in the section.

In this example, since the SectionEditors ield already contains a list, a role
and optionally a user name, the required Access Formula consists only of the name
of the ield.

Security and Performance

[272]

Prevent users from editing selected ields using
hide-when formulas
A second technique, used to enable a user to edit some but not all ields on a form,
consists of creating pairs of ields. The primary ield is an Editable ield that displays
if the user is allowed to edit it. The companion ield is a Computed for display ield
that takes its value from the primary ield and displays if the user is not allowed to
edit the primary ield.

The primary ield never displays in Read mode, while the companion ield always
displays in Read mode. Hide-when formulas govern which ield displays in Edit
mode. Such formulas can be quite complex depending upon the security rules
deined for the ields.

The primary advantage of using paired ields in this manner is that restricted ields
need not be co-located as they must be when using a Controlled Access Section as
discussed in the previous topic. The primary disadvantage to this technique lies in
the potential complexity and number of hide-when formulas that have to be written.

Do not use ield encryption
As mentioned before in this chapter, ield encryption typically should not be used
in web applications, since encryption keys are stored in Notes ID iles and web
users do not have access to those keys. See the previous topic on using SSL if
encryption is required.

Track document changes
For audit purposes, it may be important to record events that occur in the handling
of speciic documents. For example, management may want to know when
documents were submitted, who approved them, and when they were completed.
Applications sometimes use a combination of a document history ield and various
hidden date ields that record when certain worklow events occur.

Messages appended to a history ield on each document can provide a clear
understanding of when certain worklow events occurred. When a document
is created, a message initializes the ield. At each step in the worklow, another
message is appended to the ield. Messages should be time-and-date stamped and
should include the name of the person performing the function. Typically a history
ield displays in Read mode and is hidden in Edit mode to preclude tampering.

Chapter 9

[273]

There is no real magic about a document history ield. Here is an @formula
attached to a button that (among other things) appends a message to a document's
History ield.

@SetField("History"; History + @NewLine + @NewLine +

@Text(@Now) + " : " + @Name([CN];@UserName) +

" assigned this document to " + @Name([CN];Actionee) + "."

Although a simple history ield like this contains an easy-to-read summary of events,
the date-and-time stamps are fairly useless for performing any calculations (for
example, how long a task lingered between steps in the worklow). To provide this
kind of data for analysis, create some hidden date ields that are updated whenever
worklow events occur. A simple formula stores the date:

@SetField("DateAssigned"; @Now);

The time difference between the date ields provides the necessary information about
the worklow.

Make a form available to anonymous users
If your application requires anonymous users to complete and submit a form, but
otherwise to have no access to the application, use this strategy.

Design a form with whatever features are appropriate. At minimum, the form should
have these elements.:

•	 A Computed when Composed ield named $PublicAccess whose value is
set to a text "1"

•	 A button to save the document (either with an @formula or by invoking
an agent)

•	 A navigational redirection (either with a $$Return ield or through the
saving agent)

In addition, enable the attribute Available to Public Access users on the Security tab
of Form Properties.

Security and Performance

[274]

In the application's ACL, enable Anonymous to read and write public documents.

Provide a link from some other location (for example, a web page) that composes the
public access form.

http://192.168.1.210/ellisits/WebSandbox09.nsf/PublicDoc?Open

In general, it may be best to limit the functionality of an application with anonymous
requirements to those features required to collect the data. For additional processing,
consider moving the anonymously submitted documents to a more full-featured
application to which anonymous users have no access.

Control navigation options
Limiting the views and other features made available to users is generally a matter
of using hide-when formulas to control what displays on the screen. If links to
views do not display, then most users will not spend the effort trying to igure out
how to take a look at things they are not supposed to see. Hiding features is also
called obfuscation. Keep in mind that hiding hotspots and other features is not
true security.

Code an explicit logoff
An application can include an explicit logoff with redirection. This may be
particularly appropriate for applications used on common workstations or
in public settings.

Chapter 9

[275]

An @formula, attached to a hotspot, logs out from the application, and then presents
the default design element, perhaps the application's Welcome page.

"/" + @WebDbName + "?Logout&RedirectTo=/" + @WebDbName

Manage agent security
Agents can make changes to documents, and therefore it is important to control who
can invoke them and what they are allowed to do. See Chapter 8 for a discussion of
agent run-time context and privileges.

Performance
From a user's perspective, a web application performs well if it does what it is
supposed to do quickly and in a manner that requires a minimum of effort on
his part.

Responsiveness has to do with how quickly results appear after a button or hotspot
is clicked. Good design contributes to how easy it is to use and maintain the
application. Responsiveness and good design both contribute to good performance.

The responsiveness of an application running over the web can be erratic and
sometimes downright poor due to conditions on the network or on the host server.
Packets of information travel back and forth between the server and the browser,
and packets related to your application compete for time with all other applications
currently using the common digital pathways. If network trafic is high or network
bandwidth is low, users may perceive your application as responding slowly, even
though it is working as designed and the host server has ample capacity. If the
host server is bogged down with too many applications running simultaneously,
that too can negatively impact the responsiveness of your application. You have
little inluence over network and server constraints. On the other hand, if network
trafic is low and the server has ample capacity and your application still responds
sluggishly, then you have work to do.

The design of an application can be intuitive and easy to use or not. Designs
requiring unnecessary effort negatively impact user productivity, and that is not a
good thing. You as the developer do have considerable control over design issues.

Topics in this section highlight a few ways in which applications can be made more
eficient both from a processing standpoint and from a usability point of view. Some
of these suggestions pertain to the application, whether or not it is accessed from the
web. Other suggestions are more web-speciic. In the interest of space, only a few
suggestions are included here.

Security and Performance

[276]

General guidelines
Domino provides many, many design features and options, each useful in certain
circumstances. Some features consume processor and storage resources if included
or left active, so if a feature is not required for an application, then it should be
turned off or eliminated. Address the heavy hitters as a matter of course, but don't
forget about other opportunities to squeeze performance out of a system.

In many situations, spending a lot of time trying to ine-tune your application's
responsiveness may not be worth the effort. If network bandwidth is satisfactory
and the server has adequate capacity, spending hours and hours trying to save a
small fraction of second in response time is not worth it. On the other hand, if your
application is a high-volume or mission-critical utility, or if the infrastructure is
constrained, you may want to go well beyond the recommendations in this chapter.

This author's particular bias is toward applications that are as lean as they can be,
and at the same time easy to use and easy to maintain. It's all a matter of balance.

Listen to your users
Some users put up with poor performance and functionality for any number of
reasons. Others complain about anything and everything at the drop of a hat. One of
your jobs as a developer is to listen to what your users say about the application and
to correct the laws that they report.

When a user calls to complain about a web application's performance, a number of
questions should come to mind:

•	 Is network access to non-Domino resources also sluggish?
•	 Are other applications on the same server delivering poor response time?
•	 Are many people affected or only this one user?
•	 Is this an ongoing problem or a one-time occurrence?
•	 Is the application responding when accessed with the Notes client?
•	 Is the entire application slow or just particular features?
•	 Is the user complaining about how the application is put together rather than

about how it responds?

Asking these kinds of questions can help to narrow down the kind and scope of a
performance problem.

Chapter 9

[277]

If it does indeed appear that there is an issue with the application, see for yourself.
Log into the application as a user and try to reproduce what your customer was
doing. Often you will notice symptoms he does not see. If at all possible, visit with
the user and watch him while he works. Ask questions and take notes. At all times
listen attentively to what he says.

Design for ease of use
Chapter 2 discussed a number of issues related to application usability. Think about
how users interact with your application. If possible, sit with them and discuss which
features are easier and which are more dificult to use. A classic user complaint is
that programmers don't spend enough time asking them what works best.

Ask questions such as these:

•	 Does the application launch to the most useful page or view? Is it slow to
initialize?

•	 How readable are the onscreen fonts? Too small or too large? Good colors?
•	 Are headings, labels, and messages clear and understandable?
•	 Are hotspots and buttons located, labeled, and styled consistently

throughout the application?
•	 Does the typical user scroll up or down, or left or right, to view important

design elements?
•	 Are there too few or too many rows displayed in the views?
•	 Are form ields organized in a sensible manner? Lined up? Similar

information co-located?
•	 Are required ields clearly marked?
•	 Is there a good balance of white space and design elements?
•	 Are there unnecessary conirmation messages?
•	 Is there suficient onscreen guidance?

Simple improvements, such as clearly identifying required ields or eliminating
unnecessary conirmation dialogs, will improve user productivity and satisfaction.

Security and Performance

[278]

Archive or delete old documents
Work with the application owner to understand the potential for archiving
documents. Applications with large numbers of documents require more disk
storage and processing time. Functions that take longer with more documents
include these:

•	 Opening views

•	 Searching for documents

•	 Running agents to process all documents in the application

•	 Copying, backing up, and restoring the application

If unnecessary documents can be deleted or moved to an archive, then the primary
application should perform better. And don't forget to look at a related agent log.

Remove obsolete code and design elements
There may be little noticeable performance impact in keeping previous versions
of design elements in the template or in retaining features in the design that are
not needed or used. But unnecessary design elements do make a template more
cumbersome to work with and they contribute to application clutter. Version the
templates as a whole so that old design elements remain available to you, but then
remove unnecessary elements from the production design. At the very least, this
should make you more productive.

Clean up and optimize code
Especially when writing agents, developers focus on perfecting functionality irst
and foremost. Making an agent run faster is usually not a priority. Developers
know that things like re-initializing a constant within a loop are not good, but in the
interest of completing the agent quickly, such minor laws are left uncorrected.

It is unlikely that practicing programmers will have the time or skills required
to evaluate speciic coding practices in depth, but on the Web you can ind
results of studies where knowledgeable people have done just that. Spend some
time reviewing articles with speciic coding and other performance-related
recommendations. For example, you can ind results such as these, which pertain to
LotusScript:

•	 Using nested If statements can be 40 percent faster than using a single
complex If statement.

•	 For/Next loops can run 60 percent faster than Do loops.

Chapter 9

[279]

•	 The performance of nested loops can be improved by several hundred
percent by making the outer loop the one with the smaller bounds.

Other performance assertions relate to non-coding practices:

•	 Pages load up to 10 times slower when using SSL.

•	 WebQueryOpen agents slow the opening of forms.

•	 Retrieving data from a view is 10 percent faster than retrieving it from a
document.

It is reasonable to consider whether it is worth the effort to recode an agent or to
implement another performance recommendation when the application is running
well as-is. Certainly this is a judgment call; you may be able to estimate how much
time is required to make changes, but quantifying improvements in eficiency and
responsiveness may be dificult. In general, optimized code will deliver better
performance and consume fewer server and network resources. As time permits,
clean up the code.

Use tools to assess response time
If you are investigating a reported response time problem, you should take a look at
the Domino Log on the server. The log provides some information about application
processing and failures. If you can narrow down the timeframe of a reported
problem, the Log may provide additional clues and insight, especially about what
else was going on at the same time.

If web trafic logging is enabled on your server, you may ind some useful
information in those logs as well. To see if such logging is available, check the server
document in the Domino Directory. Look for this section on the Internet Protocols
tab / HTTP tab.

In this example, web trafic is being logged in the Domlog.nsf database, a system
ile on the server. The number of records in such a database can be very large, so
what is recorded may be limited by the Domino administrator. Errors and request
processing times are recorded, and this information provides some insight regarding
how well the server and application agents are working.

Security and Performance

[280]

You may have or be able to acquire performance monitoring tools for your
environment. Ask other developers or the Domino administrator about this. If such
tools are not installed locally, do some web research to see what is currently available
that may be of service to you.

Here is an example of output from a Firefox add-on called Tamper Data (or
tamperdata) that provides some insight about how long it takes for HTTP requests
to return pages to the browser. In contrast to the information in Domlog.nsf, this
information may be more representative of how the end-user sees response time.

Improve forms
Over time, as a form passes through the hands of several developers, a certain
amount of debris collects in it. Everything in the form is processed in one way
or another, and some elements may be sent to the browser unnecessarily. For
example, if the JS Header contains a thousand lines of JavaScript, then all that code
is transmitted to the browser every time a document using that form is opened. A
better design would move the JavaScript to a library from which the code would be
retrieved only when needed and then cached for future use.

In general, eliminate everything from a form that does not need to be on that form.

Limit the use of images
Forms and pages that include images take longer to load than comparable forms
and pages that do not include images, and larger images take longer to load than
smaller images. Eliminating images, or reducing their size, can improve application
responsiveness. See Chapter 2 for additional comments.

Chapter 9

[281]

Use Ajax calls to retrieve data
One of the more dramatic improvements that can be made to forms is to use Ajax
calls to retrieve options into checkbox, radio button, or keyword list ields. Adding
this functionality to classic applications takes some effort, but it is well-worth the
investment of time. Chapter 6 reviewed this technique in detail.

Use simpler hide-when formulas
Complex hide-when formulas take more time to process, so limit the complexity
as well as the number of such formulas. It may be appropriate to compute a hide-
when value in a hidden ield and then refer to that ield in the hide-when formulas
themselves. Maintenance of such formulas is simpler since a change need be made in
only one place.

Validate ields with JavaScript
If a form validates ields in a WebQuerySave agent, consider moving that validation
into JavaScript running in the browser. Validation then avoids a server round trip
and will seem instantaneous to users. See Chapter 6 for a fuller discussion of
this topic.

Improve views
Views present data to users in structured, predeined ways. In most Domino
applications views are indispensible since they are the primary means by which
documents are located and opened. Here are some general suggestions about views
that can inluence application responsiveness and ease of use.

Remove unused or redundant views from the
design
Views are re-indexed whenever an included document is saved or changed.
Re-indexing takes time and reduces the overall performance of an application.
Unused or redundant views provide no value, but they do continue to consume
resources. If there is a chance you might want to re-use a view or reference it at a
later date, go ahead and save it in an archived template, but remove it from the
production template.

Some views may no longer be required, or their usefulness (or lack thereof) becomes
apparent only after the application is in production for a while. Check with the
application owner to see if some views may be eliminated.

Security and Performance

[282]

If two views are similar, evaluate whether they might be combined into a single view
without adding too many additional columns.

Limit the data displayed in views
The more columns of data included in a view, the longer it takes the server to process
it, the longer it takes the network to transmit it, and the longer it takes the browser
to render the result to the screen. Performance can be improved by limiting the data
included in views.

Consider these options:

•	 Include columns only for required information; avoid throwing in extra
columns that "might be of interest". Remove columns that add no value for
users.

•	 Limit the amount of data included in a column; for example, display only the
irst 25 characters of a title or subject ield.

•	 Use the View Selection Formula to further limit the number of documents
included in the view.

Remove unnecessary view column sorting
View columns can be enabled for dynamic sorting, ascending or descending or both.
Such dynamic sorting is an alternative to presenting information in different orders
in separate views.

Enabling columns for sorting increases the time required to re-index a view, so keep
the number of sort-able columns to a minimum. Check with your users to see which
sorts are really needed and which were just thrown in for good measure.

Minimize the use of view column formulas
The contents of a column can be computed from values on the associated documents.
Column formulas take time to run, and each time a view is re-indexed, those
formulas run again.

Minimize the use of column formulas. Instead, add hidden Computed ields to
forms, and compute any derived values that are needed. When documents are saved,
those ields are computed once. Display values from the Computed ields in views.

This approach is especially useful if requirements can be anticipated before
documents are created. Adding or modifying such a view to an existing application
presents an obvious problem. Older documents do not include the new Computed
ields. All existing documents may have to be updated for satisfactory results.

Chapter 9

[283]

Avoid time-based view column formulas
Column formulas can include references to the current time and date. Time-based
column formulas can cause a view to be re-indexed every time it is accessed, whether
or not documents are changed. For frequently accessed views, this can result in a
serious performance degradation.

Avoid using @formula functions such as @Now.

Create views as an alternative to common searches
If users always search for documents, rather than using views to locate them, the
issue may be that the right views are not available. Searches are time-consuming and
therefore impact user productivity. Discuss this issue with your users and provide
more relevant views.

Modify database properties
A number of database attributes can affect performance in general. Many of these
options are enabled on the Advanced tab of Database Properties. Here is an example
of this tab. Note that more current versions of Domino offer additional options.

Security and Performance

[284]

If performance is a signiicant concern for your application and you have already
addressed issues discussed earlier in this chapter, investigate these advanced
application options in Designer Help to see which ones might be relevant or helpful.

Investigate Domino server options
Keep in mind that the Domino server also can be tuned to some degree to improve
application performance. Work with your Domino administrator to review and
possibly alter server coniguration settings. Look irst at settings that speciically
address caching and agents on the HTTP and Domino Web Engine tabs located on
the Internet Protocols tab.

Consult Domino Administrator Help for assistance in understanding the options.

Summary
Addressing the security and performance aspects of designs is perhaps not as
interesting as perfecting a set of views or styling forms with CSS or writing clever
agents. But these issues can be critical to fulilling development requirements
and delivering a secure product that enhances user productivity. These are also
challenging issues to be sure.

Topics in this chapter introduced a number of key considerations applicable to
most Domino applications. This information provides a good foundation for
understanding and actively managing the security and performance requirements of
web-enabled Domino applications.

Testing and Debugging
Testing applications and debugging them go hand in hand. Of course, developers
test during development, or they would not know if their codes work. But when the
development phase of a project is winding down, a more formal quality assurance
(QA) phase should be winding up. How thoroughly an application should be tested
depends in part upon how many features are changed or added. Obviously, more
extensive change requires more extensive testing.

If you are a less experienced Domino developer, you may be assigned the task of
testing applications written by other programmers. If so, you are one of the most
important people on the project; it is your job to assure that the application is
as issue-free as possible. The more bugs you ind during testing, the fewer bugs
your customers will ind after the application goes into production. Ask if your
organization provides any guidance on application testing. Study such guidance
thoroughly. Strive to develop good testing and documentation skills.

Things can go wrong with a Domino web application during development as well as
after the application migrates to production. Troubleshooting problems gets easier
the more problems you solve, the more knowledgeable you are about the technology,
and the more debugging tricks you have up your sleeve. Several troubleshooting
suggestions were made in previous chapters. Additional options that may be of use
are offered here. Many of these strategies are appropriate to all Notes development,
and others pertain particularly to web applications.

In this chapter, we cover a number of topics including the following:

•	 Test environments

•	 Engaging other people for testing

•	 Test plans

•	 Testing strategies

•	 Tracking defects

Testing and Debugging

[286]

•	 Debugging strategies

•	 Diagnostic views and repair agents

•	 Documenting problems and getting back to users

Testing
Application testing should ferret out code failures, features that do not work
correctly, navigational dead ends, usability issues, problems with data, security
holes, performance problems, and any issues concerning assumptions made earlier
in the project. Some organizations are more rigorous than others when it comes
to testing practices and documentation, and naturally you will work within such
guidelines, if they exist. In situations where you are left to your own devices, do as
much testing as is possible within the time and resource constraints of the project.

As a developer, you work on a series of projects over time, and every project requires
testing. Many aspects of QA are the same for every project. So setting up a rich
testing environment and a consistent testing protocol that can be used repeatedly
will save time over the long haul and will contribute to more uniform testing results.

Topics in this section cover some general strategies which you should consider. Follow
up these discussions by browsing some of the numerous resources on the Web.

Test with different browsers
Applications can behave differently in different web browsers, and Domino web
applications are not immune to browser idiosyncrasies. So start by identifying which
browsers your users use to access your web-enabled applications. This may be
more or less dificult to determine. In the simplest case, your application is accessed
only through an intranet, and organizational standards dictate the speciic browser
installed on every desktop. If this is your situation, then focus on which versions
of that browser are currently installed, and ind out when the next version will
be deployed.

On the other hand, if there are no standards or if your applications are used by the
public via the Internet, then your testing environment can be considerably more
complex. Make a list of the most likely browsers and browser versions. Check the
IBM Lotus website for a list of browsers supported for the version(s) of Domino
running in your installation.

Chapter 10

[287]

For each supported and likely browser, set up a test bed of some sort, either on a
discrete desktop or in a virtual machine. It is reasonable for a single desktop (or
desktop image) to host one version of Internet Explorer, one version of Firefox, and
perhaps a version of Chrome, Opera, or Safari. Another desktop can host a second
set of versions, and so on. If your community includes Macintosh or Linux desktops,
then test machines should be set up to mimic those environments as well. If your
applications are accessed by mobile devices, secure appropriate hardware.

Obviously, the more testing platforms there are, the more time-consuming will be
the actual testing. But don't short change this side of the development cycle. An
application feature may work perfectly well in all versions of IE but fail inexplicably
in some version of Firefox, or vice versa.

Test with different user privileges
It is important to use multiple Notes accounts for testing. As an application grows
more complex, it likely relies on ACL roles to grant certain privileges to some users
and not to others. Or perhaps the application implements a worklow where one
person creates documents and another approves them. Using a single Notes account
to "play both roles" will not assure that all your hide-when formulas and other
security measures work the way they are supposed to.

A good strategy is to use one test account for each unique role deined in the
application's ACL, plus one for the developer. That way, the developer can maintain
Manager privileges over the ACL, while assigning lesser privileges to other test accounts.

Of course, some organizations are restrictive about how many accounts employees
are allowed to have or to share, and you may work for an organization that is pretty
tight about this sort of thing. Take this book to your manager and security people,
and tell them that you absolutely cannot do your job to the best of your ability, if you
do not have two or more testing accounts with which to work.

Craft the staging environment to resemble the
production environment
The staging and production environments should resemble each other closely.
Applications should reside in the same ile path, for example.

If you hold a test account, then that account and your users' accounts should have
the same privileges in staging as they do in production. If you do not have a test
account, your developer account should have no more privileges in staging than do
your users. You must be able to see and interact with the application exactly as they
do. Elevated privileges can hide the very anomalies you seek to discover.

Testing and Debugging

[288]

Most likely, you will want to create some Domino test groups for your application
that include only users who agree to participate in testing. Using production groups
increases the possibility that users not involved with testing will receive erroneous
notiications from application agents.

Self-contained applications are easier to test than applications that access external
data, but if your application requires co-requisite applications, then those co-
requisite applications should reside in staging as well, so that your application refers
to the staging versions and not the production versions. If your application accesses
an external relational database, then a staging version of that database should exist
such that your application does not access or update the production database. You
may need help in setting up such external resources.

Engage other people for testing
When you develop code, you test it from your perspective and with your knowledge
of how it works internally. Your white box testing can give you insights about what
may fail under what conditions, and you can test for those conditions. At the same
time, you tend to interact with an application consistently because you know how it
is supposed to work—you may not interact with it the way other people would.

Especially with complex applications, where it is dificult or impossible for one
person to test exhaustively every option or every logical path, it is important
to engage other people to assist. Ideally, people who will use the application in
production will agree to give some time to the testing effort.

If a quality assurance testing department exists within your organization, ask for
their services at the appropriate time. Alternatively, it may be possible to engage an
outside QA tester or testing service, especially if the project has high visibility or is of
critical importance.

These black box testers, who know nothing about how the application works from
a programming point of view, can provide insights about features, usability, and
style that can help you polish the application. Implementing testers' suggestions will
inluence in a positive way user acceptance of and satisfaction with the product.

Chapter 10

[289]

Test every feature if possible
Testing should focus primarily on new and changed features. These are the parts of
the application that are most likely to fail—after all, the rest of the application may
have been working in production for some time. But you should always perform
regression testing to assure that errors or other unintentional changes have not been
introduced elsewhere into the application. Time constraints may limit the scope and
depth of regression testing, but review at least the basic functionality of all the major
parts. Pursue any intuitions or hunches which occur to you as well.

Pay special attention to the security requirements of an application. Work with
your testers to create scenarios or test cases so that security controls are exercised.
If Readers and Authors ields are used, make sure that eligible users can access
appropriate documents and that ineligible users cannot. Assure that features which
require elevated privileges can be used by testers with elevated privileges and not by
others. Don't assume that security works—demonstrate it.

It is very helpful to provide testers with a clear understanding of how an application
behaves, before and after it is changed. If a good user manual or help system is
available, descriptions and images in those references can provide a baseline of
expectations. In addition, it can be very helpful to enable side-by-side comparisons of
the current production design and the updated design. Provide this by creating two
instances of the application on the staging server, one with the old design and one
with the new. If at all possible, keep the same documents in both instances.

Ideally, every feature and every function is thoroughly tested with every client
option. Realistically, that's not likely to happen with most Domino applications due
to the time it would take. If in-depth testing is a project requirement, however, take
extra care to develop a detailed test plan, estimate the time it will take to run through
the test plan once, and then multiply that time by the number of clients (Notes and
browsers) for which testing is required. Share this information with the project
sponsor and with your manager so that they understand the resources and
time involved.

Test responsiveness
As discussed in the previous chapter, web application responsiveness can be
heavily impacted by constraints in the network or on the server. An ideal testing
environment consists of network and server components that are identical to
those used in production. It also enables introducing and eliminating competing
workloads so that applications can be assessed under various server and network
load conditions. Such an environment provides a better understanding of how
applications should respond when they move to production.

Testing and Debugging

[290]

Practically speaking, there are limits to how well an application's performance can be
tested. The following two factors are likely to hide issues related to load:

•	 Fewer realistic documents in the test database

•	 Fewer simultaneous users

Your organization may allow you to copy the entire production database to the
staging server. If so, this is an excellent strategy for resolving the issue of too few
realistic documents. However, there may be security or privacy concerns which
prevent you from doing this. As an alternative, consider writing an agent to
automatically create a large number of documents in your test instance.

Stressing the application with a suficient number of simultaneous users may also be
problematic, since it is unlikely that you will be able to enlist enough testers to work
on this project at the same time. After all, they have their own jobs to do.

If load testing is important, you might consider looking into automated testing tools.
Commercial and open source options exist that may work in your environment. Do
your homework here and perhaps seek expert advice from performance analysts
familiar with Domino. Start with an open source option, such as Apache JMeter, to
get your feet wet. Implementing automated testing tools takes time and possibly
money, and you want to be sure that the results you get are worth it.

Create a written test plan
Written test plans guide testers in a more formal way. They identify what is to be
tested and, by omission, what is not tested. Write up a test plan that speciically
targets the original requirements as provided to you, but which also generally tests
the application to assure that you have not unknowingly regressed any functions.
If the application has been reworked extensively, then develop a more
comprehensive plan.

Test plans can be lengthy and formal, or short and informal. In any case, they should
be written down and saved for future reference. Begin building the test plan during
the design and development phases.

For a more comprehensive test plan, start with an outline consisting of the
application's major features. For example:

•	 Initial page or frameset

•	 Navigation

•	 Views
•	 Forms

Chapter 10

[291]

•	 Reports

•	 Worklow
•	 Notiications
•	 Security

•	 Integrated help

•	 Dynamic coniguration options

Build out the outline until you have a good list of all the elements that should be
checked. Then for each element, write out speciic objectives. Identify which roles
can perform restricted operations. Write each objective as a task to be performed.

•	 Create and save a new Order document

•	 Edit an existing Order document

•	 Submit an Order document for processing

•	 Approve an Order ([Approver] role only)

•	 Archive an Order document ([Admin] role only)

If there are speciic actions or issues to be checked, add more detail including
expected results.

•	 Enter an invalid number in the Quantity ield (error message
should display)

•	 Select a weekend for the DateRequired ield (error message should display)
•	 Submit an Order without entering quantity (error message should display)

You may also want to organize testing in phases, with each phase probing
progressively deeper into the application. For example, during phase one, you might
focus just on basics. Test to assure that:

•	 The application launches correctly

•	 Navigational links work

•	 Required features work (for example, views open, new documents are
created)

•	 Element layouts and style are acceptable

•	 Spelling and punctuation are correct

•	 About and Using documents are complete

Testing and Debugging

[292]

During phase two, testers assess key features in more detail. Assure that:

•	 Form ields validate
•	 Documents can be saved and edited

•	 Error messages are appropriate

•	 Search features work

During phase three, testers assess worklow, scheduled agents, and security.
Assure that:

•	 Worklows are fully exercised with two or more actors
•	 Scheduled agents run and produce desired results

•	 Users with different roles can access only what they are privileged to access

Go over the test plan with the application owner and with your testers. Seek additional
suggestions and incorporate any that will enhance the testing effort. Encourage testers
to evaluate anything not included in the test script. Make assignments if appropriate
and set some deadlines for getting back to you with results.

Keep in mind that the more tests run and observations made, the higher will be
the owner's and your conidence that bugs have been found. The more you polish
the application, the higher the user satisfaction. On the other hand, be mindful of
how much time you have for testing and resolving any new issues, and pace
yourself accordingly.

Track defects
It is very important to establish a method for capturing and tracking issues during
testing. An issues log can be kept in a spreadsheet or project plan, in a Domino
Document Library or Wiki, or in a special application designed to track bugs. Browse
the Web for some options. Before you step gingerly into an external product, check
the requirements. Many of these products, even the free ones, require the installation
of a database, a web server, and one or more scripting languages.

Any and every problem or suggestion related to the project should be noted in the
issues log. Assign an identiier to each item and capture summary information.

•	 Identiier
•	 Version tested
•	 Title or subject

•	 Status

•	 Date submitted

Chapter 10

[293]

•	 Description and evidence / steps to reproduce

•	 Submitter's name

•	 Assignee name

•	 Action taken

•	 Date resolved

•	 Version resolved in
•	 Comments

The issues log becomes your to-do list as user testing continues. If changes are made,
roll the ixed application design to staging for additional testing. Continue this
process until you and the application owner are satisied that all known issues
are resolved.

Create detailed user documentation while
testing
User-oriented documentation may be thin or non-existent for an application. A period
of thorough testing offers an excellent opportunity to create a user guide. Good
documentation requires real focus and attention to detail, the same effort required
during testing. Inconsistencies and usability issues should pop out very quickly.

If possible, engage a tester who is also a good technical writer for this task. Have
the application owner or a power user review the resulting documentation for
clariications. As the project winds down, provide the owner with a copy of the
inished product, and store the master copy in the design template or in an approved
document repository.

Require user sign-off
If you are new to an organization, you may ind that previous developers did
not require user acceptance testing for any number of reasons. If so, it's time for a
change. The application owner or his delegate should accept responsibility for all
aspects of the application and actively participate in the planning and testing of it.
When the owner is satisied that the application works as it should, require him to
sign-off formally or via e-mail prior to migrating the design to production.

Testing and Debugging

[294]

Monitor the application after Go Live
After the design rolls to production, monitor the application closely for a few days.
There are always a few post-production tasks to complete.

•	 Monitor the Domino Log on the server hosting the application and look for
messages associated with the application

•	 Monitor the application's agent log, if one exists

•	 Register your application in whatever organizational registries may
be required

•	 Check with the application owner; don't assume he will contact you

•	 Complete all project-related documentation

•	 Create a list of suggested improvements that can be used as a starting point
for the next release

Debugging
It is possible to write some code which runs perfectly the irst time and does
exactly what it is supposed to do. It happened to me once, and I was quite
surprised. Without doubt, developers spend a good deal of time debugging and
troubleshooting. This aspect of development can be extraordinarily frustrating,
especially if you are under deadline or not very good at it. But successfully "shooting
a bug" can also be quite satisfying.

Troubleshooting skill is partly technique, partly knowledge, and partly intuition
born of experience. I suspect most developers would be hard-pressed to tell you how
they do what they do. But you should get better at it the more often you do it.

General guidelines
Like a detective, troubleshooting a problem is irst about gathering evidence or clues,
and then it's about putting those clues together to point to the source of the problem.
When presented with an issue, gather information from log messages, screen shots,
output iles—if you've been a developer for any length of time, you know basically
what to do.

Chapter 10

[295]

Reproduce the problem
A user can be a poor witness. Have him write down exactly what he was doing when
the problem occurred. Ask for screenshots. Ask what made the problem happen,
when it irst appeared, if it happens to everyone or just to him. Ask questions until
you have a clear picture of what it is that went wrong and how you can reproduce it.

Then reproduce the problem for yourself. For non-random problems, this should not
be too dificult. If you cannot reproduce it, troubleshooting becomes a lot harder, and
assuring that you ixed a problem is nearly impossible.

Follow the steps outlined by your user. If his report is incomplete, go to his location
and ask him to show you the problem and the steps to reproduce it. Observe
everything. Gather details about his operating system, browser settings, and his
JVM. Most likely, you will see clues that your user does not see.

Use the production system to gather symptoms, but do not experiment with the
production design. Reproduce the problem on your development system. Recreating
the exact conditions of the failure in a separate database may require some work.
If the problem exists with a limited number of documents, it may be possible to
copy those documents into a development database. Also, you may need to copy a
number of coniguration or keyword documents. So much depends on the nature
of an application's design that prescribing how to reproduce a problem without
knowing the application is not possible.

Isolate the failure
If you are fortunate to have access to more sophisticated debugging tools, then use
them. But if you are on your own, you can still ind the root cause of most problems
using simple and commonsense strategies.

Focus on isolating the problem to a speciic component, sequence of actions, or set of
circumstances. Alter the conditions of your interaction with the application to gather
additional information. If you can identify the speciic design element (for example, a
form or agent), then you are half-way to the solution, and in many cases this will be
readily apparent.

Testing and Debugging

[296]

With the major design element identiied, save a full copy of it and then start
modifying that element in order to determine which parts of it are working and which
parts are not. Exactly how you modify the design element depends upon what kind
of an element it is and what you suspect might be wrong with it. For example, with a
LotusScript agent, strategically place MsgBox functions into one or more subroutines,
run the agent, and then check the Domino Log or an Agent Log conigured for your
application to see what comes out (see Chapter 8, Agents, for a discussion of agent logs).
In a similar manner, insert alert functions into JavaScript code. Move the messages
around until you isolate the small segment of code that fails.

For a form which refuses to open on the Web, the problem could be with any
formula in any location. Look at your most recent modiications, but if that doesn't
help, start stripping out pieces of the form until it does display.

Keep narrowing your focus until the speciic problematic features or logic become
obvious. A brute force, divide and conquer strategy is not very elegant, but it usually
gets the job done.

Code a $$ReturnGeneralError form
As discussed in Chapter 4, Navigation, include a $$ReturnGeneralError form in your
application. If this form exists, Domino displays it for many detected errors. You can
code a single general-purpose form and then include it in each of your applications.
See the previous chapter for more details.

Check the Domino Log
The Domino Log on the server is a general repository for messages from Domino
tasks and application agents. It is also often a good source for clues about what is
going wrong with your application. Open the Log on your development server and
make a bookmark. When an unexpected result occurs during testing, immediately
check the time you experienced the problem. Then open the Log, Miscellaneous
Events. Select the bottom-most entry and double-click to open the latest document.

As mentioned previously, insert Msgbox functions at strategic locations in your
LotusScript agents and libraries, run the agents and then check the logs. Make
sure that all your agents include error traps with appropriate messages as
discussed in Chapter 8, Agents.

Depending upon how busy your server is, messages generated by your error or
debugging code may not be written to the Domino Log immediately. If the latest
time stamp in the Log is not later than your event, close the log document for a
minute or so and then try again.

Chapter 10

[297]

Use the Web
With a speciic error message or some precise keywords that describe the problem,
search the Web for additional insights. Don't "go it alone" for long. Use the collective
insight of fellow developers to help clarify what might be wrong. You may ind
a write-up that immediately provides a solution, or you may read about similar
problems that spark some ideas of your own.

If you are actively engaged in an IBM Forum or another active developer's blog
or website, you can post your problem and ask for suggestions. Do this only after
diligently searching for an existing write-up. Post clearly and succinctly, with sample
code if appropriate. But don't wait for someone else to solve your problem; help may
never come.

Use Design Synopsis
Especially, if you are working with an unfamiliar problematic application for the irst
time, try using Design Synopsis to locate references to speciic text. In most current
versions of Designer, locate this tool in the left-hand Design Pane.

Testing and Debugging

[298]

Open Design Synopsis, select design elements of interest, reine the output as you
see it, and click the OK button.

Results are written to a temporary document. Scroll through it or search for speciic
text. In larger applications, be prepared for a lengthy document.

Troubleshoot forms
Faulty forms may just not open on the Web, resulting in less than helpful Page Not
Found errors. These can be a bit tricky to troubleshoot. A common cause of this error
is a faulty @formula.

Forms can contain many @formulas, any one of which, if incorrect, can prevent the
form from displaying on the Web. Use REM statements to comment out potentially
faulty @formulas until you ind the one causing the problem.

Chapter 10

[299]

@Command([ToolsRunMacro];"(ApproveRequest)");

REM { @URLOpen("/"+@WebDbName) };

Even if a form displays, @formula values may be incorrect and dificult to reason out.
This is especially true with a complicated hide-when formula or a complex $$Return
formula. To see how a formula evaluates, insert some computed text on the form
whose value is the problematic formula.

If a button does not display, check the code in the Click and onClick events. If no
code exists in either of these events, then the button will not display on the Web.
Code the value of @True (@formula) in the Click event or true (JavaScript) in the
onClick event.

If a button displays but does nothing when clicked, assure that you are using
@formula functions compatible with the Web or that the library containing
JavaScript functions is properly linked to the form in the form's JS Header.

Dynamically display hidden ields on the Web
If your form is enabled to Generate HTML for all ields on the Defaults tab of Form
Properties, then you can view the page source to see the values of hidden ields.
Here is somewhat more convenient way to check these values.

First, place hidden ields and labels in a table. Do not format the table, labels, or
ields with Designer. Do not hide these ields or labels with hide-when formulas.
Assign an ID to the table in Table Properties.

Testing and Debugging

[300]

Add CSS rules for the table and the table cells. The rule for the table simply hides
the table when the form is irst loaded. The rule for the cells adds some style—your
preference.

table#hiddenfields {

 display: none;

 }

table#hiddenfields td {

 color: #FF0000;

 font-family: Verdana;

 font-size: 8pt;

 }

Add a button to the form with this JavaScript coded in the button's onClick event:

if (document.getElementById("hiddenfields").style.display != "block")

 document.getElementById("hiddenfields").style.display = "block";

else document.getElementById("hiddenfields").style.display = "none";

Also, you should probably code a hide-when formula on the button to hide it, if the
user is not assigned a special role.

@IsNotMember("[Developer]";@UserRoles)

Now when the form displays, the hidden ields do not display initially. But when the
button is clicked, the ields display. Clicking the button again hides the ields.

Chapter 10

[301]

Expire the cache
If stale data reappears in ields when a recently saved document is reopened in Read
mode, the problem may be cached data. One relatively effective strategy for handling
this problem involves the use of one or more <meta> tags coded into the form's
HTML Head Content area. Here is what the @formula might look like:

@NewLine+

"<META HTTP-EQUIV='expires' CONTENT='0'>"+

@NewLine+

Debug CSS
As noted in Chapter 5, Cascading Style Sheets, CSS rules can be added to a form in
many ways. Here, assume that you have co-located all your CSS rules onto one or
more page elements within the application.

A CSS problem is likely to result from one of these causes:

•	 The form or page does not link to the CSS rules page properly

•	 The content type of the CSS rules page is incorrect

•	 A CSS rule is not attached to a design element properly

•	 A CSS rule conlicts with HTML formatting
•	 One CSS rule is superseded by another CSS rule

•	 A CSS rule is incorrect

If none of your CSS rules is working, check the syntax of the link to the CSS page. For
example, check the @formula in a form's HTML Head Content area.

The purpose of the formula is to construct a valid HTML <link> tag with correct
attributes. The punctuation can be tricky. View the page source in your browser for
clues to any errors.

Testing and Debugging

[302]

If the link to the CSS rules page is correct, check the content type of the page itself on
the Page Info tab of Page Properties.

If some CSS rules are working, but a speciic CSS rule is not, check to see that the CSS
rule is properly attached to its design element. In this example, a button is not styled
correctly according to the rules we deined for the button class. We view the source,
but there is no class= attribute as expected.

<input type="button" value="Approve" id="Approve" style="button"

onclick="return

_doClick('85257811000A3799.ebbede74e813965e852577f80009ab44/$Body/0.

D2E',

this, null)">

The Button Extra HTML tab in Button Properties reveals that we did not enter the
class name properly. In this example, the button class is incorrectly entered as a
Style attribute rather than a Class attribute.

A problem like this could result also from a simple misspelling.

If you apply style and format with Designer, then those attributes may be translated
into HTML formatting tags and transmitted to the browser where the HTML tags can
override the CSS rules. In this example, the text Welcome Everybody! was formatted
in Designer as dark blue and bold. The HTML tags are marked as Pass-thru HTML.

Chapter 10

[303]

Note the extra HTML tags in the page source as seen in the browser.

Welcome

Everybody!

Removing the Designer-applied style from the text (reverting to the defaults) results
in cleaner HTML and proper styling with CSS.

Welcome Everybody!

As noted in Chapter 5, Cascading Style Sheets, multiple CSS rules can be applied to
the same design element. Inline rules supersede internal rules coded at the top of a
page; internal rules in turn supersede external rules in linked external iles. In this
example, the inline rule supersedes the same value as deined in the class. Avoid this
kind of issue by co-locating ALL your CSS rules on the same page.

Incorrect CSS gives incorrect style. There are no error messages or any other
indication of failure. CSS simply works or it doesn't. If you eliminate all the
possibilities discussed in this topic, then study your CSS rules. Look for spelling and
punctuation errors. Make sure you have used acceptable attributes. If you do not
have a CSS style guide handy, access one of numerous resources on the Web.

Use browser-based debugging tools
As your web applications become more complex, you should consider learning
to use web-oriented debugging tools that can give you insights into CSS,
JavaScript, the DOM, and so on. Firebug is a popular Firefox add-on, available
at the following location:

http://getfirebug.com/

Testing and Debugging

[304]

If your organization mandates the use of Internet Explorer, you may still ind value
in working with tools like Firebug, or you may ind some alternatives (for example,
Firebug Lite) which work directly with Internet Explorer.

Keep in mind that browsers interpret some CSS and JavaScript in subtly different
ways, so if you debug in Firefox, those results may not translate exactly to IE.

Troubleshoot agents
Debugging agents used in web-enabled applications is not dissimilar to debugging
agents for Notes applications. Some debugging strategies, such as inserting MsgBox
functions, work differently—messages are written to the Domino Log rather than
to the Client. And some options, like @Prompt, do not work at all since they are not
implemented on the Web.

In the case of simple messages, you can improve the immediacy of feedback when
a LotusScript agent runs by replacing a MsgBox statement with a few LotusScript
Print statements that send JavaScript to the browser.

Print "<script type='text/javascript'>"

Print "alert('ApproveRequest Agent Started')"

Print "history.go(-1) ;"

Print "</script>"

Chapter 10

[305]

When the agent runs, an alert is displayed:

If multiple alerts are included in the script, include the history.go(-1) statement in
only that last alert or else all alerts will not display.

Incorporate dynamic debugging messages
Messages intended to assist with debugging agents should not continue to be
issued after the application design is migrated to production. At the same time, it
would be useful to be able to turn on those messages in production to investigate
a reported anomaly. Here is a technique which can be used to accomplish these
contradictory objectives.

First, add a ield or two to a coniguration or application proile document, which is
indexed in a view. In this example, the Debugging ield is deined with the options
of Yes or No and is hidden if the user is not assigned the [Developer] role in the
application's ACL.

In an agent, retrieve the value of the Debugging ield with code similar to
the following:

Dim session As New NotesSession

Dim db As NotesDatabase

Dim configDoc As NotesDocument

Testing and Debugging

[306]

Dim configView As NotesView

Dim debugFlag As Variant

' Get the Debugging value from the Configuration document.

Set db = session.CurrentDatabase

Set configView = db.GetView("SysConfig")

Set configDoc = configView.GetFirstDocument

If configDoc.Debugging(0) = "Yes" Then

 debugFlag = True

Else

 debugFlag = False

End If

Now, add one or more debugging messages to an agent with logic dependent upon
the value of the Debugging ield in the coniguration document.

If debugFlag Then

 Msgbox("ApproveRequest **** S T A R T ****")

End If

Open the coniguration document in Notes and toggle on the debugging lag. When
the agent runs, messages are written to the Domino Log. Toggle the lag off, and
messages are not written to the Log. This simple scheme can be elaborated to provide
different levels of debugging messages, if necessary.

Create troubleshooting tools—display scheduled
agent information
It can be useful to create standalone troubleshooting tools that can be popped
into applications as appropriate. Restrict access to these tools to the application
administrators or developers with whatever security measures are appropriate.

In this example, an agent gathers information about scheduled agents and then writes
that information to a temporary form. This agent might be useful if the developer
cannot easily determine which scheduled agents are enabled in production.

The form contains only a few ields. Here is what it looks like in Designer:

Chapter 10

[307]

Here is the agent, minus error handling, debugging messages, and some
other niceties.

Sub Initialize

 Dim session As New NotesSession

 Dim workspace As New NotesUIWorkspace

 Dim db As NotesDatabase

 Dim uidoc As NotesUIDocument

 Dim agentCount As Integer, i As Integer, k As Integer

 Dim msgNames As String, msgStatuses As String

 Dim msgComments As String

 Dim newLine As String, newLine3 As String

 Dim server As String, target As String

 Set db = session.CurrentDatabase

 agentCount = Ubound(db.Agents)

 Redim agentsArray(agentCount) As NotesAgent

 i = 0

 Forall a In db.Agents

 Set agentsArray(i) = a

 i = i + 1

 End Forall

 msgNames = ""

 msgStatuses = ""

 msgComments = ""

 newLine = Chr(10)

 newLine3 = Chr(10) + Chr(10) + Chr(10)

 i = -1

Testing and Debugging

[308]

 For k = 0 To agentCount

 Set agent = agentsArray(k)

 If agent.Trigger = 1 Then ' Scheduled agent

 i = i + 1

 If i > 0 Then

 msgNames = msgNames + newline

 msgStatuses = msgStatuses + newline

 msgComments = msgComments + newLine

 End If

 msgNames = msgNames + agent.Name + newLine3

 If agent.IsEnabled Then

 msgStatuses = msgStatuses + "Enabled" + newLine3

 Else

 msgStatuses = msgStatuses + "Disabled" + newLine3

 End If

 If agent.ServerName = "*" Then

 server = "-Any Server-"

 Else

 server = agent.ServerName

 End If

 Select Case agent.Target

 Case 0 : target = "None"

 Case 1 : target = "All documents in database"

 Case 2 : target = "Unknown"

 Case 3 : target = "All new & modified documents"

 Case 4 : target = "All selected documents"

 Case 5 : target = "All documents in view"

 Case 6 : target = "All unread documents in view"

 Case 7 : target = "Unknown"

 Case 8 : target = "None"

 End Select

 msgComments = msgComments + _

 "C: " + Left$(agent.Comment,40) + _

 newLine + "L: " + Cstr(agent.LastRun) + _

 newLine + "S: " + server + _

 newLine + "T: " + target

 End If

 Next

 Set uidoc = workspace.ComposeDocument("","","Agent Information")

 Call uidoc.GotoField("SchedAgentNames")

 Call uidoc.InsertText(msgNames)

 Call uidoc.GotoField("SchedAgentStatuses")

 Call uidoc.InsertText(msgStatuses)

Chapter 10

[309]

 Call uidoc.GotoField("SchedAgentComments")

 Call uidoc.InsertText(msgComments)

 Call uidoc.GotoField("Comment")

End Sub

The agent is invoked from the Actions menu within Notes. Here's how it might
display with two scheduled agents.

Troubleshoot problems with data
Flaws in designs often result in incorrect data in documents. Even if the data is
correct, understanding that data can provide useful insights into how an application
functions and what it produces. Looking at the data as displayed in forms on the
Web does not always tell the whole story, especially if documents contain hidden
ields. Here are two suggestions for getting to know the data.

View ield values in Document Properties
One of the reasons to use Readers and Authors ields, of course, is to truly prevent
unauthorized users from viewing the data. Otherwise, they can ind the values in
documents with the Fields tab of Document Properties.

Testing and Debugging

[310]

Seeing the content of a ield is very useful. Checking the ield name and type also can
be helpful.

Create diagnostic views
While you are enhancing an application, anticipate that someday you will want
to look at any or all documents in the database in order to resolve a problem.
Views designed for normal application functionality may just not be suitable for
troubleshooting or discovering anomalies.

Create some simple diagnostic views that are unrelated to other features. Do not
use them for lookups or other purposes. Someday you may want to change what
displays in these views, and you do not want to concern yourself with impacting
other features of the design by doing so.

One view should list all documents by creation date and time. Another view should
show all documents categorized by form name. Other useful views may occur to
you. Don't go overboard here; remember that re-indexing views does take server
resources. But do build yourself these troubleshooting aids. Give them names which
clearly and succinctly indicate the purpose for which they exist.

See Chapter 7, Views, for additional suggestions.

Write document repair agents
Not infrequently ields in documents must be changed, perhaps due to a law in
the design, which introduced incorrect values, or due to a change in customer
requirements. Or perhaps new ields need to be added to old documents as part of
an upgrade.

Repair agents are often introduced as one-time or private agents. If they truly are
one-time agents, then they should be clearly marked as such and hidden or deleted
from the design after they are no longer useful.

Chapter 10

[311]

If an agent is written to repair data, then it is possible that that agent will be needed
again. Consider invoking such an agent from an action button included in a special
administrator's document repair view. Hide the view and/or the button from less
privileged users so as not to tempt them to "ind out what this does." Over time, add
additional repair utilities into the same view. And document these little gems.

Document problems and solutions
Troubleshooting can be very time consuming, and this time is lost time. Whenever
you resolve a nasty bug, make notes about it—what the symptoms were, how you
found the law, how you solved the problem.

If appropriate, update the Help Desk ticket promptly. Notify any interested parties
that the issue is resolved. Consider whether this problem is likely to occur in other
applications, and if so, alert fellow developers. Add notes to the application's test
plan for future reference.

Keep a personal problem solving journal
Where you keep your notes may not be as important as is the act of writing them—
which helps to solidify your understanding of the problem and the solution. If you
are browsing the Web and come across some really good ideas, add those ideas to
your collection.

Personally, I favor capturing such notes in a simple Domino database, which is
searchable and transportable. A Domino Document Library is a good repository for
notes, documents, and hyperlinks.

Report back to the user
Most users appreciate a response from you about problems they report. Make a
telephone call, send e-mail, or better yet, stop over and make a short report. Your
explanation should provide some detail in language suited to your audience. Don't
try to impress with techno-babble; be succinct and gracious. Thank them for their
help; encourage them to contact you if they have any questions. Reaching out in this
manner is good customer service. It will be noticed and it will enhance your standing
in your organization.

Testing and Debugging

[312]

Summary
While it may be tempting to rush an upgrade into production, it is by far the
better course of action to set aside adequate time to test features and functionality
before doing so. Engaging users in the testing cycle can be extremely important
in discovering bugs and usability issues, and getting customer signoff is also
very important.

Both during the testing phase and after the application migrates to production,
developers are called upon to troubleshoot and debug a wide range of problems.
Troubleshooting skills develop over time with practice and with increased
knowledge of the technologies in use.

Suggestions and examples in this chapter provide both a foundation for establishing
a testing discipline and an introduction to debugging strategies appropriate to all
Domino applications.

Index

Symbols

$Ref 96
$$Return

using, for saving documents 72
$$ViewBody ield 250
<a> tags 150
<div> tags

using, for frameset replacement 81-83
using, to align ields 84, 85

<ieldset> tag 141
 tag 69
<input> tags 141
<label> tags

using, to align ields 84, 85
<legend> tag 141
<link> tag 152, 301
@BrowserInfo function 137
@DbLookup formula 122
@IsNewDoc function 116
@Newline functions 128
@Now 283
@ViewTitle function 117
@WebDbName function

using 94

A

Action buttons
creating 213-218
view navigation buttons, providing 214

Action Hotspot 108
agent attributes

audience, setting 230
agent attributes setup

running 230

runtime context, setting 231, 232
runtime privileges, setting 233
unused agents, hiding 233-235

agent development
basic error trap, including 236, 237
LotusScript, using 235, 236
message writing, to browser as page 237,

238
message writing, JavaScript alert used 238,

239
message writing, to agent log ile 239-241
web safe @Formulas, using 235, 236

agents
about 227
aliases, naming 228
attributes, setting 230
data exporting, to spreadsheet on web 254,

256
Designer Help, harvest ideas 230
developing 235
document agents 229
e-mail notiications, sending 252, 254
LotusScript libraries, using 229
naming 228
structure 229
subroutines, using 229
suggestions 228

agents, troubleshooting
dynamic debugging messages,

incorporating 305, 306
standalone tools, creating 306-309

AJAX
about 183
calls, using 183-193

Ajax Functions 185
AjaxLookupView 185

[314]

Auto Frame options
setting 104

B
BOM 156

Browser Object Model. See BOM
Button Hotspot 108

C

Cancel button 250
Cascading Style Sheets. See CSS
className property 145
Click event 236
common style sheets, using

Domino application, using as style sheet
repository 132, 133

HTML directory using, on server 133
Computed Text

customized messages, displaying 87
customized title bar, displaying 87
using 87

Computed Text @Formula 68
content type property

HTML for page, writing into 63-65
setting up 62, 63

createXReq() function 189
CSS

about 123
basic coding 125
rules, associating with design elements 126,

127
using, for web design elements styling 123,

124
CSS rules

adding, on HTML tags 131
browser cache, clearing 135
common style sheets, using 132
developing 134
development sequence 134
different browsers, accommodating 137,

138
HTML formatting, removing 135
inline rules, removing 136
inline styling use, minimizing 131, 132
inserting, into forms 128-133

alert() function 238, 296
application enhancement 31
application launch

About document, launching 99
context documents launch, Auto Frame

using 104
form, launching 102, 103
frameset, launching 100
graphical navigator, launching 103
speciic homepage, launching 100
view, launching 101, 102

applications, documenting
about 28
comments to code, adding 28
external documentation, including 29
internal developer notes, creating 29
release notes, adding to About document

29
user-oriented help pages, creating 30

applications, improving
about 27
diagnostic, adding 27
error trapping, adding 27
performance, enhancing 27
summary of changes, providing 28

applications, standardizing
common resource libraries, creating 16, 17
design aspect, requirements 15
design tools, using 15
mechanical or process guidelines 14
style guidelines 14
usability guidelines 13
web development guidelines, abiding 13

appropriate design elements, using
alternate design strategies, considering 52
coniguration documents, creating 55, 56
coniguration documents, using 54, 55
hide-when formulas, using 52
HTML formatting tag usage, avoiding 54
Java applets usage, avoiding 53
non-standard HTML tag usage, avoiding

54
Properties dialog box 52
server refresh round trips, avoiding 53

Asynchronous JavaScript And XML. See
AJAX

[315]

database quantity, selecting 35
existing application design, copying 37, 38
existing designs, reviewing 35-37
external databases access, need for 35
new application, identifying 36
project scope 32
requirements document, annotating 33
source template, identifying 37
worklow 33, 34

design, promoting
about 58
administrative duties, segregating 59
developer duties, segregating 59
staging server, using 58
template application, to production 59
template signature by authorized signing

ID 59
detectBlanks() function 174
detectNumber() function 176
developer testing, performing

browser cache, clearing 58
browser, testing 57
diagnostic tools, adding 57
repair tools, adding 57
test IDs, setting up 57

diagnostic views
creating 196-198
documents displaying, in hierarchy 197,

198
Replication conlict documents, displaying

198
Save conlict documents, displaying 198

DLE 98
DocumentContext property 243
Document Object Model. See DOM
documents

$$SelectDoc ield, form element 249
accessing, from agent 242
approval process, implementing 248
browser redirecting, to next page 246, 247
creating 69, 70
editing 70
Edit mode, detecting 246
invoking client type, detecting 245
open browser documents, accessing 243,

244
opening in separate window 222, 223

internal rules, removing 136
internal styling use, minimizing 131, 132
page design element, using 128, 129
qualiied CSS selectors, using 136
spell check 135
Style Sheet Resources, using 129, 130

custom application login form
creating 105-107

D

data problems, troubleshooting
diagnostic views, creating 310
document repair agents, writing 310
ield values, viewing in Document

Properties 309, 310
datepicker 177
debugging

about 294
agents, troubleshooting 304, 305
data problems, troubleshooting 309
document problems 311
forms, troubleshooting 298
guidelines 294

default error pages
coding 119

Default Launch Element. See DLE

defense in depth. See layered security
design element

displaying, post document exit 115, 116
layout, improving 74
parent document, displaying 117, 118
previous view, displaying 117
selecting, $$Return used 116
styling, CSS used 123, 124
using, for CSS rules association 126, 127

design element layout
<div> tags, using for frameset replacement

81-83
ields, aligning 83
framesets, using 79-81
HTML tags, identifying 75, 76
issues 74
view template forms, using 77, 78

design, planning
about 32
application security needs, identifying 38

[316]

simpler hide-when formulas, using 281
forms, troubleshooting

browser-based debugging tools, using 303,
304

cache, expiring 301
CSS, debugging 301-303
hidden iles, displaying 299-301

G

GetbeforeunloadMsg() function 180
Get Choices button 193
getDbColumnData() function 186
GIMP

URL 10
guidelines, debugging

$$ReturnGeneralError form, coding 296
about 295
Design Synopsis, using 297, 298
Domino Log, checking 296
failure, isolating 295, 296
using 297
Web, using 297

guidelines, performance
code, cleaning up 278, 279
code, optimizing 278, 279
design elements, removing 278
designing 277
obsolete code, removing 278
old documents, archiving 278
old documents, deleting 278
response time assessing, tools used 279, 280
users, listening to 276

guidelines, security
ACL application, managing 263, 264
anonymous access, specifying 261, 262
application backup 267
Domino groups, managing 260, 261
element access lists, using 266, 267
maximum Internet access level, setting 262,

263
planning 259, 260
restore procedures 267
SSL, enabling 264, 265
web application access, denying 265

guidelines, views
default view, specifying 198

Read mode, detecting 246
SaveOptions ield, form element 249
save process, avoiding 246
saving 71
saving, $$Return used 72
saving, WebQuerySave agent used 73, 74
security, adding to 268
timestamp ield, form element 249
WebQuerySave, using 242
working with 241-252

DOM 156
Domino

security 257
Domino Designer 61
Domino developer

pre-requisites 7
Domino-generated default views, using

HTML tags, including 204-206
using 203, 204

Don't allow URL open property 265

E

Embedded View 78
event

onresize 225

F

ields, aligning
<div> tag, using 84, 85
<ieldset> tag, using 86
<label> tag, using 84, 85
<legend> tag, using 86
tables, using 83

ields, JavaScript
date picker, using for date ields 177, 178
number ields, validating 175, 176
validating 174, 175

forms
debugging 68
security, adding to 268

forms bookmarking
syntax 67

forms, improving
Ajax calls using, for data retrieval 281
ield validation, JavaScript used 281
image usage, limiting 280

[317]

J

JavaScript
about 155
Ajax calls, using 183-191
CGI variables, accessing 173
ields, validating 173-175
locating, in applications 161
running, on load 171, 172
user warning, giving 178-183
using, in web applications 155, 156

JavaScript, locating in applications
adding, in JS header 163
adding, to web events 163, 164
co-locating 169
consolidating 169
functions, placing in libraries 161, 163
locations 161
page element, using 165-168

JavaScript, using in web applications
about 155
behavior consistency, maintaining 157, 158
browser detection, using 160
browser object detection, using 158
comments, posting 156
JavaScript, disabling 157

Java View applet 79

K

key concepts, security
defense in depth 258
layered security 258

key properties
content type (MIME) property 62

L

layered security 258
Link Hotspot 108
liquid designs 48
LogAction() method 241
Lorem Ipsum

using 147

M

media attribute 152

diagnostic views, creating 196, 197
view templates, using 199

H

hacks 137
help

another application, opening in separate
window 122

customized help pages, adding 122
documents, using 121
guidance text, adding 120
link, adding to About 121
meaningful labels, adding 120
options 120
titles, adding to design elements 121

Help Menu page 114
hidden Computed ields

@DbColumn formulas, improving 89
@DbLookup formulas, improving 89
adding, for key document attributes access

88
CGI variables, accessing 88
using 88

Hotspots
Action Hotspot 108
Button Hotspot 108
Link Hotspot 108

HTML
converting, to Notes Format 91
special ields, using 90, 91
using, for adding form value 89, 90
using, for adding page value 89, 90

human factor issues
accessibility, designing for 49
clean design, creating 47
display characteristics, designing for 48
lexible designs, creating 47
image resources, using 51
image use, optimizing 50
titles, adding to framesets 50

I

Infobox 52
Initbeforeunload() function 181
Insert Resource dialog 130
issues log 292

[318]

page elements, styling
borders, styling 146
buttons, styling 142
color generalities 138
default Action Bar buttons, replacing with

hotspot buttons 142
default Action Bar buttons, styling 142, 143
ields, styling 141
headings, styling 140
images, working with 146-149
labels, styling 140
margins, styling 146
margin style properties, using 146
menus, styling 150, 152
multiple classes, adding to 153
padding style properties, using 146
printed pages, styling 152
required ields, highlighting 141
text links, underlining 140
text, styling 139

pages
debugging 68

performance
about 275
database properties, modifying 283, 284
Domino server options, investing 284
forms, improving 280
guidelines 276
views, improving 281

personal document library, creating
about 11
website, creating 11

precautions, navigation
@WebDbName, using 94, 95
$Ref, using 95, 96
complex dynamic pages generation,

avoiding 97
go forward strategy 96
hard-code URLs, avoiding 94

pre-requisites, Domino developer
development tools, using 10
Domino Help, using 9, 10
external editors, using 10
Lotus Notes / Domino application

development certiication 9
new languages, adopting 12
personal cookbook, creating 11

menus
creating 107

menus, creating
column table, creating 110
dynamic menus with views, creating 112-

115
Hotspots, creating 108
outline menus, creating 109, 110
with CSS 110, 111
with HTML 110, 111

method
LogAction() 241
OpenNotesLog() 240

MsgBox functions 296

N

naming conventions
for databases 39
for design templates 40
for Domino group 46, 47
for major design elements 41, 42
for roles 46, 47
version, creating for Notes 45
version, creating for Web 45

navigation
about 93
precautions 93

navigator object 160
NoPrint class 153
numeric text 175

O

onbeforeunload event 179
onClick event 299
onresize event 225
OpenNotesLog() method 240
other help sources

notes, reading 60
reviewing 60

overlow attribute 224

P

padding style 146
page bookmarking

syntax 67

[319]

personal document library, creating 11
public websites, searching 8
sandbox applications, creating 10, 11
terms, adopting 12
web programming developments, checking

out 12
principle of least privilege 259
project, working with

about 19
applications, improving 27
clear requirements, gathering 20
estimate, providing 21
existing application, assessing 23
issues log, keeping 26
people, identifying 20
prototyping 19
report, writing 25
scope creep, avoiding 21
unknown design, familiarizing 22, 23
users, working with 19

property setup
content type HTML, using 63-65
content type (MIME) property, setting up

62, 63
Generate HTML for all ields option 66
Use JavaScript when generating pages

option, using 65, 66
pseudo Action Bars

creating 91
displaying, Action Bar Java applet used 92

Q

Query-String-Decoded 215

R

receiveXReq() function 189, 190
RefreshingForm() function 180
requiredtext class selector 125
response forms

default error pages, coding 120
using, for interim worklow steps 118

runOnLoad() 172

S

scripts

browser debugging tools, using 169, 170
debugging 169
developing 169
JavaScripts, validating 170

Secured Sockets Layer. See SSL
security

about 258
agent security, managing 275
control navigation, explicit logoff 274
control navigation, options 274
control, types 258
guidelines 259
layered security 258
principle of least privilege 259

security, adding to forms
document changes, tracking 272
existing document edits, preventing 270
existing documents, read-only 269
ield encryption, avoiding 272
Generate HTML for all ields attribute 268,

269
making available, to anonymous users 273,

274
selected ield edits preventing, Controlled

Access section used 271
selected ield edits preventing, hide-when

formulas used 272
sendXReq() function 189
separation of authority principle 263
Setbeforeunload() function 181
SetFormChanged() function 180
SSL 259
styleActionBar function 144
style, adding to views

Domino default views, styling 219, 220
HTML views, style 221, 222

T

target attribute 222
testing

about 286
defects, tracking 292
detailed user documentation, creating 293
on features 289
people, engaging 288
post-production tasks 294

[320]

responsiveness 289, 290
staging and production environment,

resembling 287
user sign-off, requiring 293
with different browsers 286, 287
with different user privileges 287
written test plan, creating 290, 291

Treat view contents as HTML option
about 206
HTML link, using to open documents 208
HTML views, structuring as lists 209, 210
HTML views, structuring as tables 207
Notes versions, creating 212
View Applet, issues 213
View Applet, using 212, 213
view line count, setting 211

typeof operator 159
Typography 139

U

UNID 96
unique names, for major design elements

design elements, naming 43
form ields, naming 44
using 43

URL open
about 67
disabling 67

V

validateForm() function 175
view options, exploring

Domino-generated default views, using 203
steps 200-202
view Action buttons 202
view attributes 200
view translation, methods 201

views

about 195
guidelines 196
standard non-categorized view 195
style, adding to 218

view scrollbars
adding, dynamically 223-225

views, improving
creating, as common searches alternative

283
data display, limiting 282
redundant views, using 281
time-based view column formulas, avoiding

283
unused views, using 281
view column formula usage, minimizing

282
view column sorting, removing 282

view template
about 77
using, for multiple views 199, 200
views, displaying 77, 78
view title, computing 200

W

WebQuerySave agent 74
WebQuerySave event 88, 250, 251
WebQuerySave form event

using, for saving documents 73, 74
Web Safe fonts

using 139
work, planning

active projects list, tracking 18
notes, taking 17
progress, reporting 18
to-do lists, using 18

X

XMLHttpRequest Object 184

	Team rebOOk

