
www.allitebooks.com

http://www.allitebooks.org

Implementing Splunk: Big Data
Reporting and Development for
Operational Intelligence

Learn to transform your machine data into valuable
IT and business insights with this comprehensive
and practical tutorial

Vincent Bumgarner

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Implementing Splunk: Big Data Reporting and
Development for Operational Intelligence

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1140113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-328-8

www.packtpub.com

Cover Image by Vincent Bumgarner (vincent.bumgarner@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits
Author

Vincent Bumgarner

Reviewers
Mathieu Dessus

Cindy McCririe

Nick Mealy

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Charmaine Pereira

Varun Pius Rodrigues

Copy Editors
Brandt D'Mello

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Ruta Waghmare

Project Coordinator
Anish Ramchandani

Proofreader
Martin Diver

Indexer
Tejal Soni

Graphics
Aditi Gajjar

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vincent Bumgarner has been designing software for nearly 20 years, working in
many languages on nearly as many platforms. He started using Splunk in 2007 and
has enjoyed watching the product evolve over the years.

While working for Splunk, he helped many companies, training dozens of users to
drive, extend, and administer this extremely flexible product. At least one person at
every company he worked with asked for a book on Splunk, and he hopes his effort
helps fill their shelves.

I would like to thank my wife and kids as this book could not
have happened without their support. A big thank you to all of
the reviewers for contributing their time and expertise, and special
thanks to SplunkNinja for the recommendation.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mathieu Dessus is a security consultant for Verizon in France and acts as the
SIEM leader for EMEA. With more than 12 years of experience in the security
area, he has acquired a deep technical background in the management, design,
assessment, and systems integration of information security technologies. He
specializes in web security, Unix, SIEM, and security architecture design.

Cindy McCririe is a client architect at Splunk. In this role, she has worked with
several of Splunk's enterprise customers, ensuring successful deployment of the
technology. Many of these customers are using Splunk in unique ways. Sample
use cases include PCI compliance, security, operations management, business
intelligence, Dev/Ops, and transaction profiling.

Nick Mealy was an early employee at Splunk and worked as the Mad Scientist /
Principal User Interface Developer at Splunk from March 2005 to September 2010.
He led the technical design and development of the systems that power Splunk's
search and reporting interfaces as well as on the general systems that power Splunk's
configurable views and dashboards. In 2010, he left Splunk to found his current
company, Sideview, which is creating new Splunk apps and new products on top
of the Splunk platform. The most widely known of these products is the Sideview
Utils app, which has become very widely deployed (and will be discussed in Chapter
8, Building Advanced Dashboards). Sideview Utils provides new UI modules and new
techniques that make it easier for Splunk app developers and dashboard creators to
create and maintain their custom views and dashboards.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers and
more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Splunk Interface 7

Logging in to Splunk 7
The Home app 8
The top bar 11
Search app 13

Data generator 13
The Summary view 14
Search 16
Actions 17
Timeline 18
The field picker 19

Fields 19
Search results 21

Options 22
Events viewer 23

Using the time picker 25
Using the field picker 26
Using Manager 27
Summary 29

Chapter 2: Understanding Search 31
Using search terms effectively 31
Boolean and grouping operators 32
Clicking to modify your search 34

Event segmentation 34
Field widgets 34
Time 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Using fields to search 35
Using the field picker 35

Using wildcards efficiently 36
Only trailing wildcards are efficient 36
Wildcards are tested last 36
Supplementing wildcards in fields 37

All about time 37
How Splunk parses time 37
How Splunk stores time 37
How Splunk displays time 38
How time zones are determined and why it matters 38
Different ways to search against time 39
Specifying time in-line in your search 41
_indextime versus _time 42

Making searches faster 42
Sharing results with others 43
Saving searches for reuse 46
Creating alerts from searches 48

Schedule 49
Actions 51

Summary 52
Chapter 3: Tables, Charts, and Fields 53

About the pipe symbol 53
Using top to show common field values 54

Controlling the output of top 56
Using stats to aggregate values 57
Using chart to turn data 61
Using timechart to show values over time 63

timechart options 65
Working with fields 66

A regular expression primer 66
Commands that create fields 68

eval 68
rex 69

Extracting loglevel 70
Using the Extract Fields interface 70
Using rex to prototype a field 73
Using the admin interface to build a field 75
Indexed fields versus extracted fields 77

Summary 80

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Simple XML Dashboards 81
The purpose of dashboards 81
Using wizards to build dashboards 82
Scheduling the generation of dashboards 91
Editing the XML directly 91
UI Examples app 92
Building forms 92

Creating a form from a dashboard 92
Driving multiple panels from one form 97
Post-processing search results 104
Post-processing limitations 106

Panel 1 106
Panel 2 107
Panel 3 108
Final XML 108

Summary 110
Chapter 5: Advanced Search Examples 111

Using subsearches to find loosely related events 111
Subsearch 111
Subsearch caveats 112
Nested subsearches 113

Using transaction 114
Using transaction to determine the session length 115
Calculating the aggregate of transaction statistics 117
Combining subsearches with transaction 118

Determining concurrency 122
Using transaction with concurrency 122
Using concurrency to estimate server load 123
Calculating concurrency with a by clause 124

Calculating events per slice of time 129
Using timechart 129
Calculating average requests per minute 131
Calculating average events per minute, per hour 132

Rebuilding top 134
Summary 141

Chapter 6: Extending Search 143
Using tags to simplify search 143
Using event types to categorize results 146
Using lookups to enrich data 150

Defining a lookup table file 150

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Defining a lookup definition 152
Defining an automatic lookup 154
Troubleshooting lookups 157

Using macros to reuse logic 157
Creating a simple macro 158
Creating a macro with arguments 159
Using eval to build a macro 160

Creating workflow actions 160
Running a new search using values from an event 161
Linking to an external site 163
Building a workflow action to show field context 165

Building the context workflow action 165
Building the context macro 167

Using external commands 170
Extracting values from XML 170

xmlkv 170
XPath 171

Using Google to generate results 172
Summary 172

Chapter 7: Working with Apps 173
Defining an app 173
Included apps 174
Installing apps 175

Installing apps from Splunkbase 175
Using Geo Location Lookup Script 176
Using Google Maps 178

Installing apps from a file 178
Building your first app 179
Editing navigation 182
Customizing the appearance of your app 184

Customizing the launcher icon 185
Using custom CSS 185
Using custom HTML 187

Custom HTML in a simple dashboard 187
Using ServerSideInclude in a complex dashboard 188

Object permissions 191
How permissions affect navigation 192
How permissions affect other objects 192
Correcting permission problems 193

App directory structure 194

Table of Contents

[v]

Adding your app to Splunkbase 196
Preparing your app 196

Confirming sharing settings 196
Cleaning up our directories 197

Packaging your app 198
Uploading your app 199

Summary 200
Chapter 8: Building Advanced Dashboards 201

Reasons for working with advanced XML 201
Reasons for not working with advanced XML 202
Development process 202
Advanced XML structure 203
Converting simple XML to advanced XML 205
Module logic flow 210
Understanding layoutPanel 213

Panel placement 214
Reusing a query 215
Using intentions 217

stringreplace 217
addterm 218

Creating a custom drilldown 219
Building a drilldown to a custom query 219
Building a drilldown to another panel 222
Building a drilldown to multiple panels using HiddenPostProcess 224

Third-party add-ons 228
Google Maps 228
Sideview Utils 230

The Sideview Search module 231
Linking views with Sideview 232
Sideview URLLoader 232
Sideview forms 235

Summary 241
Chapter 9: Summary Indexes and CSV Files 243

Understanding summary indexes 243
Creating a summary index 244

When to use a summary index 245
When to not use a summary index 246
Populating summary indexes with saved searches 247
Using summary index events in a query 249
Using sistats, sitop, and sitimechart 251

Table of Contents

[vi]

How latency affects summary queries 254
How and when to backfill summary data 256

Using fill_summary_index.py to backfill 256
Using collect to produce custom summary indexes 258

Reducing summary index size 261
Using eval and rex to define grouping fields 262
Using a lookup with wildcards 264
Using event types to group results 267

Calculating top for a large time frame 269
Storing raw events in a summary index 273
Using CSV files to store transient data 275

Pre-populating a dropdown 276
Creating a running calculation for a day 276

Summary 278
Chapter 10: Configuring Splunk 279

Locating Splunk configuration files 279
The structure of a Splunk configuration file 280
Configuration merging logic 281

Merging order 281
Merging order outside of search 281
Merging order when searching 282

Configuration merging logic 283
Configuration merging example 1 284
Configuration merging example 2 284
Configuration merging example 3 285
Configuration merging example 4 (search) 288

Using btool 290
An overview of Splunk .conf files 292

props.conf 292
Common attributes 292
Stanza types 296
Priorities inside a type 298
Attributes with class 299

inputs.conf 300
Common input attributes 300
Files as inputs 301
Network inputs 306
Native Windows inputs 308
Scripts as inputs 309

transforms.conf 310
Creating indexed fields 310
Modifying metadata fields 312
Lookup definitions 315
Using REPORT 318

Table of Contents

[vii]

Chaining transforms 320
Dropping events 321

fields.conf 322
outputs.conf 323
indexes.conf 323
authorize.conf 325
savedsearches.conf 326
times.conf 326
commands.conf 326
web.conf 326

User interface resources 326
Views and navigation 326
Appserver resources 327
Metadata 328

Summary 331
Chapter 11: Advanced Deployments 333

Planning your installation 333
Splunk instance types 334

Splunk forwarders 334
Splunk indexer 336
Splunk search 337

Common data sources 337
Monitoring logs on servers 337
Monitoring logs on a shared drive 338
Consuming logs in batch 339
Receiving syslog events 340

Receiving events directly on the Splunk indexer 340
Using a native syslog receiver 341
Receiving syslog with a Splunk forwarder 343

Consuming logs from a database 343
Using scripts to gather data 345

Sizing indexers 345
Planning redundancy 348

Indexer load balancing 348
Understanding typical outages 349

Working with multiple indexes 350
Directory structure of an index 350
When to create more indexes 351

Testing data 351
Differing longevity 351
Differing permissions 352
Using more indexes to increase performance 353

Table of Contents

[viii]

The lifecycle of a bucket 354
Sizing an index 355
Using volumes to manage multiple indexes 356

Deploying the Splunk binary 358
Deploying from a tar file 359
Deploying using msiexec 359
Adding a base configuration 360
Configuring Splunk to launch at boot 360

Using apps to organize configuration 361
Separate configurations by purpose 361

Configuration distribution 366
Using your own deployment system 366
Using Splunk deployment server 367

Step 1 – Deciding where your deployment server will run 367
Step 2 – Defining your deploymentclient.conf configuration 368
Step 3 – Defining our machine types and locations 368
Step 4 – Normalizing our configurations into apps appropriately 369
Step 5 – Mapping these apps to deployment clients in serverclass.conf 369
Step 6 – Restarting the deployment server 373
Step 7 – Installing deploymentclient.conf 373

Using LDAP for authentication 374
Using Single Sign On 375
Load balancers and Splunk 376

web 376
splunktcp 376
deployment server 377

Multiple search heads 377
Summary 378

Chapter 12: Extending Splunk 379
Writing a scripted input to gather data 379

Capturing script output with no date 380
Capturing script output as a single event 382
Making a long-running scripted input 384

Using Splunk from the command line 385
Querying Splunk via REST 387
Writing commands 390

When not to write a command 390
When to write a command 392
Configuring commands 392
Adding fields 393
Manipulating data 394

Table of Contents

[ix]

Transforming data 396
Generating data 401

Writing a scripted lookup to enrich data 403
Writing an event renderer 406

Using specific fields 406
Table of fields based on field value 408
Pretty print XML 411

Writing a scripted alert action to process results 413
Summary 416

Index 417

Preface
Splunk is a powerful tool for collecting, storing, alerting, reporting, and studying
machine data. This machine data usually comes from server logs, but it could also be
collected from other sources. Splunk is by far the most flexible and scalable solution
available to tackle the huge problem of making machine data useful.

The goal of this book is to serve as an organized and curated guide to Splunk 4.3. As
the documentation and community resources available for Splunk are vast, finding
the important pieces of knowledge can be daunting at times. My goal is to present
what is needed for an effective implementation of Splunk in as concise and useful a
manner as possible.

What this book covers
Chapter 1, The Splunk Interface, walks the reader through the user interface elements.

Chapter 2, Understanding Search, covers the basics of the search language,
paying particular attention to writing efficient queries.

Chapter 3, Tables, Charts, and Fields, shows how to use fields for reporting,
then covers the process of building our own fields.

Chapter 4, Simple XML Dashboards, first uses the Splunk web interface to build our
first dashboards. It then examines how to build forms and more efficient dashboards.

Chapter 5, Advanced Search Examples, walks the reader through examples of using
Splunk's powerful search language in interesting ways.

Chapter 6, Extending Search, exposes a number of features in Splunk to help you
categorize events and act upon search results in powerful ways.

Preface

[2]

Chapter 7, Working with Apps, covers the concepts of an app, helps you install a couple
of popular apps, and then helps you build your own app.

Chapter 8, Building Advanced Dashboards, explains the concepts of advanced XML
dashboards, and covers practical ways to transition from simple XML to advanced
XML dashboards.

Chapter 9, Summary Indexes and CSV Files, introduces the concept of summary indexes,
and how they can be used to increase performance. It also discusses how CSV files can
be used in interesting ways.

Chapter 10, Configuring Splunk, explains the structure and meaning of common
configurations in Splunk. It also explains the process of merging configurations
in great detail.

Chapter 11, Advanced Deployments, covers common questions about multimachine
Splunk deployments, including data inputs, syslog, configuration management,
and scaling up.

Chapter 12, Extending Splunk, demonstrates ways in which code can be used to
extend Splunk for data input, external querying, rendering, custom commands,
and custom actions.

What you need for this book
To work through the examples in this book, you will need an installation of Splunk,
preferably a non-production instance. If you are already working with Splunk, then
the concepts introduced by the examples should be applicable to your own data.

Splunk can be downloaded for free from http://www.splunk.com/download, for
most popular platforms.

The sample code was developed on a Unix system, so you will probably have better
luck using an installation of Splunk that is running on a Unix operating system.
Knowledge of Python is necessary to follow some of the examples in the later
chapters.

Preface

[3]

Who this book is for
This book should be useful for new users, seasoned users, dashboard designers, and
system administrators alike. This book does not try to act as a replacement for the
official Splunk documentation, but should serve as a shortcut for many concepts.

For some sections, a good understanding of regular expressions would be helpful.
For some sections, the ability to read Python would be helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If a field value looks like key=value
in the text of an event, you will want to use one of the field widgets."

A block of code is set as follows:

index=myapplicationindex
(
 sourcetype=security
 AND
 (
 (bob NOT error)
 OR
 (mary AND warn)
)
)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<searchPostProcess>
 timechart span=1h sum(count) as "Error count" by network
</searchPostProcess>
<title>Dashboard - Errors - errors by network timechart</title>

Any command-line input or output is written as follows:

ERROR LogoutClass error, ERROR, Error! [user=mary, ip=3.2.4.5]

WARN AuthClass error, ERROR, Error! [user=mary, ip=1.2.3.3]

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Quickly
create a simple dashboard using the wizard interface that we used before, by
selecting Create | Dashboard Panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

The Splunk Interface
This chapter will walk you through the most common elements in the Splunk
interface, and will touch upon concepts that are covered in greater detail in later
chapters. You may want to dive right into search, but an overview of the user
interface elements might save you some frustration later. We will walk through:

• Logging in and app selection
• A detailed explanation of the search interface widgets
• A quick overview of the admin interface

Logging in to Splunk
The Splunk interface is web-based, which means that no client needs to be installed.
Newer browsers with fast Javascript engines, such as Chrome, Firefox, and Safari,
work better with the interface.

As of Splunk Version 4.3, no browser extensions are required. Splunk Versions 4.2
and earlier require Flash to render graphs. Flash can still be used by older browsers,
or for older apps that reference Flash explicitly.

The default port for a Splunk installation is 8000. The address will look like
http://mysplunkserver:8000 or http://mysplunkserver.mycompany.com:8000.
If you have installed Splunk on your local machine, the address can be some variant
of http://localhost:8000, http://127.0.0.1:8000, http://machinename:8000,
or http://machinename.local:8000.

The Splunk Interface

[8]

Once you determine the address, the first page you will see is the login screen.

The default username is admin with the password changeme. The first time you log in,
you will be prompted to change the password for the admin user. It is a good idea to
change this password to prevent unwanted changes to your deployment.

By default, accounts are configured and stored within Splunk. Authentication can be
configured to use another system, for instance LDAP.

The Home app
After logging in, the default app is Home. This app is a launching pad for apps
and tutorials.

Chapter 1

[9]

The Welcome tab provides two important shortcuts, Add data and Launch search
app. These links appear again on the second tab, Splunk Home.

The Splunk Interface

[10]

The Your Apps section shows the apps that have GUI elements on your instance
of Splunk.

App is an overloaded term in Splunk. An app doesn't necessarily have
a GUI at all; it is simply a collection of configurations wrapped into a
directory structure that means something to Splunk. We will discuss
apps in a more detailed manner in Chapter 7, Working with Apps.

Under Do more with Splunk, we find:

• Add data: This links to the Add Data to Splunk page. This interface is a
great start for getting local data flowing into Splunk. The new Preview data
interface takes an enormous amount of complexity out of configuring dates
and line breaking. We won't go through those interfaces here, but we will
go through the configuration files that these wizards produce in Chapter 10,
Configuring Splunk.

• Find more apps: This allows you to find and install more apps from
Splunkbase. Splunkbase (http://splunk-base.splunk.com/) is a
very useful community-driven resource where Splunk users and Splunk
employees post questions, answers, code snippets, and apps.

Manage Splunk takes the user to the Manager section of Splunk. The Manager
section is used to configure most aspects of Splunk. The options provided change
depending on the capabilities of the user. We will use the Manager section
throughout the book as we learn about different objects.

Getting started tutorial provides a quick but thorough overview of the major
functionality of Splunk.

Splunk documentation takes you to the official Splunk documentation.
The documentation, hosted at splunk.com, is truly vast.

Chapter 1

[11]

Two quick notes about the Splunk documentation:
To get to documentation for search and reporting commands, quick
help is provided while searching, and a link to the documentation
for that command is provided through the interface.
When working directly with configuration files, the fastest route to
the documentation for that file is to search for splunk name.conf
using your favorite search engine. The documentation is almost
always the first link.

Splunk answers goes to the Splunkbase site we just mentioned. Splunkbase and
Splunk Answers used to be different sites but were merged into one site.

The top bar
The bar across the top of the window contains information about where you are as
well as quick links to preferences, other apps, and administration.

The current app is specified in the upper-left corner.

Clicking on the Splunk logo or the text takes you to the default page for that app.
In most apps, the text next to the logo is simply changed, but the whole block can
be customized with logos and alternate text by modifying the app's CSS. We will
cover this in Chapter 7, Working with Apps.

The Splunk Interface

[12]

The upper-right corner of the window contains action links that are almost
always available:

• The name of the user that is currently logged in appears first. In this case,
the user is Administrator. Clicking on the username takes you to the Your
account page.

• The App menu provides quick links to installed apps and to app
administration. Only apps with GUI components that the current
user has permissions to see will be listed in this menu.

• The Manager link is always available at the top of the window. The availability
of options on the Manager page is controlled by the role of the user.

• The Jobs link pops up the Jobs window. The Jobs window provides a listing
of current and past search jobs that have been run on this Splunk instance.
It is useful for retrieving past results as well as determining what searches
are using resources. We will discuss this interface in detail in Chapter 2,
Understanding Search.

• Logout ends the session and forces the user to log in again.

The following screenshot shows what the Your account page looks like:

Chapter 1

[13]

This form presents the global preferences that a user is allowed to change.
Other settings that affect users are configured through permissions on objects
and settings on roles.

• Full name and Email address are stored for the administrator's convenience.
• Time zone can be changed for each user. This is a new feature in Splunk 4.3.

Setting the time zone only affects the time zone used to display the data.
It is very important that the date is parsed properly when events are
indexed. We will discuss this in detail in Chapter 2, Understanding Search.

• Default app controls where you first land after login. Most users will want
to change this to search.

• Restart backgrounded jobs controls whether unfinished queries should
run again if Splunk is restarted.

• Set password allows you to change your password. This is only relevant
if Splunk is configured to use internal authentication. For instance, if the
system is configured to use Windows Active Directory via LDAP (a very
common configuration), users must change their password in Windows.

Search app
The search app is where most actions in Splunk start.

Data generator
If you want to follow the examples that appear in the next few chapters, install the
ImplementingSplunkDataGenerator demo app by following these steps:

1. Download ImplementingSplunkDataGenerator.tar.gz from the code bundle
available on the site http://www.packtpub.com/support.

2. Choose Manage apps… from the Apps menu.
3. Click on the button labeled Install app from file.
4. Click on Choose File, select the file, and then click on Upload.

This data generator app will produce about 16 megabytes of output per day. The app
can be disabled so that it stops producing data by using Manage apps…, under the
App menu.

www.allitebooks.com

http://www.allitebooks.org

The Splunk Interface

[14]

The Summary view
The user is initially presented with the Summary view, which contains information
about what data that user searches by default. This is an important distinction—in a
mature Splunk installation, not all users will always search all data by default.

Let's start below the app name and discuss all the new widgets. The first widget is
the navigation bar.

On most pages we encounter from now on, you will see this navigation bar. Items
with downward triangles are menus. Items without a downward triangle are links.
We will cover customizing the navigation bar in Chapter 7, Working with Apps.

Chapter 1

[15]

Next we find the search bar. This is where the magic starts. We'll go into great
detail shortly.

The All indexed data panel shows statistics for all indexed data. Remember that this
only reflects indexes that this particular user searches by default. There are other
events that are indexed by Splunk, including events Splunk indexes about itself.
We will discuss indexes in Chapter 9, Building Advanced Dashboards.

The next three panels give a breakdown of your data using three important pieces of
metadata—source, sourcetype, and host.

A source in Splunk is a unique path or name. In a large installation, there may be
thousands of machines submitting data, but all data at the same path across these
machines counts as one source. When the data source is not a file, the value of the
source can be arbitrary, for instance the name of a script or network port.

A source type is an arbitrary categorization of events. There may be many sources
across many hosts in the same source type. For instance, given the sources /var/
log/access.2012-03-01.log and /var/log/access.2012-03-02.log on the
hosts fred and wilma, you could reference all of these logs with source type access
or any other name you like.

The Splunk Interface

[16]

A host is a captured hostname for an event. In majority of the cases, the host field is
set to the name of the machine where the data originated. There are cases where this
is not known, so the host can also be configured arbitrarily.

Search
We've finally made it to search. This is where the real power of Splunk lies.

For our first search, we will search for the word error. Click in the search bar, type
the word error, and then either press Enter or click on the magnifying glass on the
right of the bar.

Upon initiating the search, we are taken to the search results page.

Chapter 1

[17]

Note that the URL in the browser has changed to flashtimeline.
You may see references to flashtimeline from time to time. It is
simply another name for the search interface.

See the Using the time picker section for details on changing the time frame of
your search.

Actions
Let's inspect the elements on this page. Below the search bar itself, we have the event
count, actions icons, and menus.

Starting at the left, we have:

• The number of events matched by the base search. Technically, this may not
be the number of results pulled from disk, depending on your search. Also,
if your query uses commands, this number may not match what is shown in
the event listing.

• Send to background (), which sends the currently running search to the
background, where it will continue to run. Jobs sent to the background and
past jobs can be restored from the Jobs window.

• Pause (), which causes the current search to stop locating events but keeps
the job open. This is useful if you want to inspect the current results to
determine whether you want to continue a long running search.

• Finalize (), which stops the execution of the current search but keeps the
results generated so far. This is useful when you have found enough and
want to inspect or share the results found so far.

• Cancel (), which stops the execution of the current search and immediately
deletes the results.

• Job Inspector (), which opens the Search job inspector window, which
provides very detailed information about the query that was run.

• Print (), which formats the page for printing and instructs the browser
to print.

The Splunk Interface

[18]

• Save, which provides different options for saving the search or the results.
We will discuss this later in this chapter.

• Create, which provides wizard-like interfaces for building different
objects from this search. We will discuss these options in Chapter 4,
Simple XML Dashboards.

Timeline
Below the actions icons, we have the timeline.

Along with providing a quick overview of the event distribution over a period of
time, the timeline is also a very useful tool for selecting sections of time. Placing the
pointer over the timeline displays a pop up for the number of events in that slice of
time. Clicking on the timeline selects the events for a particular slice of time.

Clicking and dragging selects a range of time.

Once you have selected a period of time, clicking on Zoom to selection changes
the time frame and re-runs the search for that specific slice of time. Repeating this
process is an effective way to drill down to specific events.

Deselect shows all events for the time range selected in the time picker.

Zoom out changes the timeframe to a larger timeframe around the events
in the current timeframe.

Chapter 1

[19]

The field picker
To the left of the search results, we find the field picker. This is a great tool for
discovering patterns and filtering search results.

Fields
The fields list contains two lists:

• Selected fields, which have their values displayed under the search event
in the search results

• Interesting fields, which are other fields that Splunk has picked out for you

The Splunk Interface

[20]

The Edit link next to selected fields and the View all 30 fields link at the bottom
of the field picker both take you to the Fields window.

Chapter 1

[21]

Search results
We are almost through all of the widgets on the page. We still have a number of
items to cover in the search results section though, just to be thorough.

Starting at the top of this section, we have the number of events displayed. When
viewing all results in their raw form, this number will match the number above the
timeline. This value can be changed either by making a selection on the timeline or
by using other search commands.

Next, we have actions that affect these particular results. Starting at the left we have:

• Events List (), which will show the raw events. This is the default view
when running a simple search, as we have done so far.

• Table (), which shows a table view of the results. This is the default view
when any reporting commands are used. When looking at raw events, this
view will show a table with the time of the event, any selected fields, and
finally the raw event.

The Splunk Interface

[22]

• Results Chart (), which shows a chart, if the data allows. For simple
searches, charts don't make sense, but they are very useful for reporting.

• Export, which allows you to export these particular results to CSV,
Raw events, XML, or JSON. New to Splunk 4.3 is the ability to export
an unlimited number of results from the web interface.

• Options presents display options for the event viewer. See the following
section for a discussion about these options.

• To the right, you can choose a page of results and change the number of
events per page.

Options
The items presented in the options pop up deserve a short discussion.

Chapter 1

[23]

• Wrap results controls whether events are wrapped at the right edge of the
browser window.

• Display row numbers toggles the display of the row number to the left of
each event.

• Lines per event changes the maximum number of lines of an event displayed
in the browser per event. There are a few things to note here:

 ° All lines of the event are indexed and searchable
 ° If the value for this setting is too large, and if a search returns many

large messages, your browser may have trouble rendering what it is
told to display

 ° Events with many lines will have a link at the bottom to see more
lines in the event

• The most interesting option here is Event segmentation. This setting changes
what text is highlighted as you mouse over events. We will discuss this
further in Chapter 2, Understanding Search.

Events viewer
Finally, we make it to the actual events. Let's examine a single event.

Starting at the left, we have:

• The event number: Raw search results are always returned in the order "most
recent first".

• The event options menu (): This menu contains workflow actions, a few
of which are always available.

 ° Build Eventtype: Event types are a way to name events that
match a certain query. We will dive into event types in Chapter 6,
Extending Search.

 ° Extract Fields: This launches an interface for creating custom
field extractions. We will cover field extraction in Chapter 3,
Tables, Charts, and Fields.

 ° Show Source: This pops up a window with a simulated view
of the original source.

www.allitebooks.com

http://www.allitebooks.org

The Splunk Interface

[24]

 ° Next appear any workflow actions that have been configured.
Workflow actions let you create new searches or links to other
sites using data from an event. We will discuss workflow actions
in Chapter 6, Extending Search.

• Next comes the parsed date from this event, displayed in the time zone
selected by the user. This is an important and often confusing distinction.
In most installations, everything is in one time zone—the servers, the user,
and the events. When one of these three things is not in the same time zone
as the others, things can get confusing. We will discuss time in great detail
in Chapter 2, Understanding Search.

• Next, we see the raw event itself. This is what Splunk saw as an event.
With no help, Splunk can do a good job finding the date and breaking
lines appropriately, but as we will see later, with a little help, event
parsing can be more reliable and more efficient.

• Below the event are the fields that were selected in the field picker.
Clicking on the value adds the field value to the search. Each field
value also has a menu:

 ° Tag fieldname=value allows you to create a tag that can be used
for classification of events. We will discuss tags in Chapter 6,
Extending Search.

 ° Report on field launches a wizard showingv the values of this field
over time.

 ° Workflow actions can also appear in these field menus, allowing
you to create actions that link to new searches or external sites
by using a particular field value.

Chapter 1

[25]

Using the time picker
Now that we've looked through all of the widgets, let's use them to modify our
search. First we will change our time. The default setting of All time is fine when
there are few events, but when Splunk has been gathering events for weeks or
months, this is less than optimal. Let's change our search time to one hour.

The search will run again, and now we only see results for the last hour. Let's try a
custom time. Date is the first option.

If you know specifically when an event happened, you can drill down to
whatever time range you want here. We will examine the other options in
Chapter 2, Understanding Search.

The time zone used in Custom Time Range is the time zone selected
in the user's preferences, which is by default the time zone of the
Splunk server.

The Splunk Interface

[26]

Using the field picker
The field picker is very useful for investigating and navigating data. Clicking on any
field in the field picker pops open a panel with a wealth of information about that
field in the results of your search.

Looking through the information, we observe:

• Appears in X% of results tells you how many events contain a value for
this field.

• Show only events with this field will modify the query to only show
events that have this field defined.

• Select and show in results is a shortcut for adding a field to your
selected fields.

• Top values by time and Top values overall present graphs about the
data in this search. This is a great way to dive into reporting and graphing.
We will use this as a launching point later.

• The chart below the links is actually a quick representation of the top values
overall. Clicking on a value adds that value to the query. Let's click on mary.

This will rerun the search, now looking for errors that affect only the user
mary. Going back to the field picker and clicking on other fields will filter
the results even more. You can also click on words in the results, or values
of fields displayed underneath events.

Chapter 1

[27]

Using Manager
The Manager section, in a nutshell, is an interface for managing configuration files.
The number of files and options in these configuration files is truly daunting, so the
web interface concentrates on the most commonly used options across the different
configuration types.

Splunk is controlled exclusively by plain text configuration files. Feel free
to take a look at the configuration files that are being modified as you
make changes in the admin interface. You will find them in $SPLUNK_
HOME/etc/system/local/ and $SPLUNK_HOME/etc/apps/.
You may notice configuration files with the same name in different
locations. We will cover, in detail, the different configuration files, their
purposes, and how these configurations merge together, in Chapter 10,
Configuring Splunk. Don't start modifying the configurations directly until
you understand what they do and how they merge.

Clicking on Manager, on the top bar, takes you to the Manager page.

The Splunk Interface

[28]

The options are organized into logical groupings, as follows:

• Apps: This interface allows you to easily add new apps and manage apps that
are currently installed. If you installed the ImplementingSplunkDataGenerator
app, you have already seen this interface.

• Knowledge: Each of the links under Knowledge allows you to control one of
the many object types that are used at search time. The following screenshot
shows an example of one object type, workflow actions.

Let's cover the administration of each object type that we will cover in later chapters:

• System: The options under this section control system-wide settings.
 ° System settings covers network settings, the default location to

store indexes, outbound e-mail server settings, and how much
data Splunk logs about itself

 ° Server controls contains a single page that lets you restart Splunk
from the web interface

 ° Licensing lets you add license files or configure Splunk as a slave
to a Splunk license server

• Data: This section is where you manage data flow.
 ° Data Inputs: Splunk can receive data by reading files (either in batch

mode or in real time), listening to network ports, or running scripts
• Forwarding and receiving: Splunk instances don't typically stand

alone. Most installations consist of at least one Splunk indexer and
many Splunk forwarders. Using this interface, you can configure each
side of this relationship and more complicated setups (we will discuss
this in a more detail in Chapter 11, Advanced Deployments):

Chapter 1

[29]

 ° Indexes: An Index is essentially a datastore. Under the covers, it
is simply a set of directories, created and managed by Splunk. For
small installations, a single index is usually acceptable. For larger
installations, using multiple indexes allows flexibility in security,
retention, and performance tuning, and better use of hardware.
We will discuss this further in Chapter 10, Configuring Splunk.

• Deployment: The two options here relate to distributed deployments.
(we will cover these options in detail in Chapter 11, Advanced Deployments):

 ° Distributed Search: Any Splunk instance running searches can
utilize itself and other Splunk instances to retrieve results. This
interface allows you to configure access to other Splunk instances.

 ° Deployment: Splunk includes a deployment server component to
aid in distributing configurations to the many instances that can be
involved in a distributed installation. There is no need to use the
deployment server, particularly if you already have something to
manage configurations.

• Users and authentication: This section provides authentication controls
and an account link.

 ° Access controls: This section is for controlling how Splunk
authenticates users and what users are allowed to see and do.
We will discuss this further in Chapter 10, Configuring Splunk.

 ° Your account: We saw this earlier when we clicked on the name
of the user currently logged in on the top bar.

Summary
As you have seen in this chapter, the Splunk GUI provides a rich interface for
working with search results. We have really only scratched the surface and will
cover more elements as we use them in later chapters.

In the next chapter, we will dive into the nuts and bolts of how search works, so that
you can make efficient searches to populate the cool reports we will make in Chapter
3, Tables, Charts, and Fields, and beyond.

Understanding Search
To successfully use Splunk, it is vital that you write effective searches. Using
the index efficiently will make your initial discoveries faster, and the reports
you create will run faster for you and others. In this chapter, we will cover:

• How to write effective searches
• How to search using fields
• Understanding time
• Saving and sharing searches

Using search terms effectively
The key to creating an effective search is to take advantage of the index. Splunk's
index is effectively a huge word index, sliced by time. The single most important
factor for the performance of your searches is how many events are
pulled from disk. The following few key points should be committed to memory:

• Search terms are case insensitive: Searches for error, Error, ERROR,
and ErRoR are all the same thing.

• Search terms are additive: Given the search item mary error, only events
that contain both words will be found. There are Boolean and grouping
operators to change this behavior; we will discuss these later.

• Only the time frame specified is queried: This may seem obvious, but it's
a big difference from a database, which would always have a single index
across all events in a table. Since each index is sliced into new buckets over
time, only the buckets that contain events for the time frame in question
need to be queried.

• Search terms are words, not parts of words: A search for foo will not
match foobar.

Understanding Search

[32]

With just these concepts, you can write fairly effective searches. Let's dig a little
deeper, though:

• A word is anything surrounded by whitespace or punctuation: For instance,
given the log line 2012-02-07T01:03:31.104-0600 INFO AuthClass
Hello world. [user=Bobby, ip=1.2.3.3], the "words" indexed are 2012,
02, 07T01, 03, 31, 104, 0600, INFO, AuthClass, Hello, world, user, Bobby,
ip, 1, 2, 3, and 3. This may seem strange, and possibly a bit wasteful, but this
is what Splunk's index is really really good at—dealing with huge numbers of
words across huge numbers of events.

• Splunk is not grep with an interface: One of the most common questions is
whether Splunk uses regular expressions for search. Technically, the answer
is no, but most of what you would do with regular expressions is available
in other ways. Using the index as it is designed is the best way to build fast
searches. Regular expressions can then be used to further filter results or
extract fields.

• Numbers are not numbers until after they have been parsed at search time:
This means that searching for foo>5 will not use the index as the value of foo
is not known until it has been parsed out of the event at search time. There
are different ways to deal with this behavior, depending on the question
you're trying to answer.

• Field names are case sensitive: When searching for host=myhost, host must
be lowercase. Likewise, any extracted or configured fields have case sensitive
field names, but the values are case insensitive.

 ° Host=myhost will not work
 ° host=myhost will work
 ° host=MyHost will work

• Fields do not have to be defined before indexing data: An indexed field
is a field that is added to the metadata of an event at index time. There are
legitimate reasons to define indexed fields, but in the vast majority of cases
it is unnecessary and is actually wasteful. We will discuss this in Chapter 3,
Tables, Charts, and Fields.

Boolean and grouping operators
There are a few operators that you can use to refine your searches (note that these
operators must be in uppercase to not be considered search terms):

• AND is implied between terms. error mary is the same as error AND mary.

Chapter 2

[33]

• OR allows you to specify multiple values. error OR mary means "find any
event that contains either word".

• NOT applies to the next term or group. error NOT mary would find events
that contain error but do not contain mary.

• "" identifies a phrase. "Out of this world" will find this exact sequence of
words. Out of this world would find any event that contains all of these
words, but not necessarily in that order.

• () is used for grouping terms. Parentheses can help avoid confusion in logic.
For instance, these two statements are equivalent:

 ° bob error OR warn NOT debug

 ° (bob AND (error OR warn)) AND NOT debug

• = is reserved for specifying fields. Searching for an equal sign can be
accomplished by wrapping it in quotes.

• [] is used to perform a subsearch. We will discuss this in Chapter 5, Advanced
Search Examples.

You can use these operators in fairly complicated ways, if you want to be very
specific, or even to find multiple sets of events in a single query. The following are a
few examples:

• error mary NOT jacky

• error NOT (mary warn) NOT (jacky error)

• index=myapplicationindex (sourcetype=sourcetype1 AND ((bob
NOT error) OR (mary AND warn))) OR (sourcetype=sourcetype2
(jacky info))

This can also be written with some whitespace for clarity:

index=myapplicationindex
(
 sourcetype=security
 AND
 (
 (bob NOT error)
 OR
 (mary AND warn)
)
)
OR
(
 sourcetype=application
 (jacky info)
)

www.allitebooks.com

http://www.allitebooks.org

Understanding Search

[34]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.t

Clicking to modify your search
Though you can probably figure it out by just clicking around, it is worth discussing
the behavior of the GUI when moving your mouse around and clicking.

• Clicking on any word or field value will add that term to the search.
• Clicking on a word or field value that is already in the query will remove

it from the query.
• Clicking on any word or field value while holding down Alt (option on the

Mac) will append that search term to the query, preceded by NOT. This is a
very handy way to remove irrelevant results from query results.

Event segmentation
In Chapter 1, The Splunk Interface, we touched upon this setting in the Options dialog.
The different options change what is highlighted as you mouse over the text in the
search results, and therefore what is added to your query when clicked on. Let's see
what happens to the phrase ip=10.20.30.40 with each setting:

• inner highlights individual words between punctuation. Highlighted items
would be ip, 10, 20, 30, and 40.

• outer highlights everything between whitespace. The entire phrase
ip=10.20.30.40 would be highlighted.

• full will highlight everything from the beginning of the block of text as you
move your mouse. Rolling from left to right would highlight ip, then ip=10,
then ip=10.20, then ip=10.20.30, and finally ip=10.20.30.40. This is the default
setting and works well for most data.

• raw disables highlighting completely, allowing the user to simply select the
text at will. Some users will prefer this setting as it takes away any unexpected
behavior. It is also slightly faster as the browser is doing less work.

Field widgets
Clicking on values in the field picker or in the field value widgets underneath an
event will append the field value to a query. For instance, if ip=10.20.30.40 appears
under your event, clicking on the value will append ip=10.20.30.40 to your query.

Chapter 2

[35]

If a field value looks like key=value in the text of an event, you will
want to use one of the field widgets instead of clicking on the raw text
of the event. Depending on your event segmentation setting, clicking on
the word will either add value or "key=value". The former will not
take advantage of the field definition; instead, it will simply search for
the word. The latter will work for events that contain the exact quoted
text but not for other events that actually contain the same field value
extracted in a different way.

Time
Clicking on the time next to an event will change the search to only find events that
happened in that second.

To zoom in to a short time frame, one convenient approach is to click
on the time of an event to search only that second, then click on Zoom
out above the timeline until the appropriate time frame is reached.

Using fields to search
When we explored the GUI in Chapter 1, The Splunk Interface, you probably noticed
fields everywhere. Fields appear in the field picker on the left and under every event.
Where fields actually come from is transparent to the user, who simply searches for
key=value. We will discuss adding new fields in Chapter 3, Tables, Charts, and Fields,
and in Chapter 10, Configuring Splunk.

Using the field picker
The field picker gives us easy access to the fields currently defined for the results
of our query. Clicking on any field presents us with details about that field in our
current search results.

Understanding Search

[36]

As we go through the following items in this widget, we see a wealth of information
right away:

• Appears in X% of results is a good indication of whether we are getting the
results we think we're getting. If every event in your results should contain
this field, and this is not 100 percent, either your search can be made more
specific or a field definition needs to be modified.

• Show only events with this field adds fieldname="*" to your existing
search to make sure you only get events that have this field.

If the events you are searching for always contain the name
of the field, in this case network, your query will be more
efficient if you also add the field name to the query. In this case,
the query would look like this: sourcetype="impl_splunk_
gen" network="*" network.

• Select and show in results adds the field to the selected fields list at the top
of the field picker and displays the field value under each event.

• Charts contains the following links, which we will use as starting points for
examples in Chapter 3, Tables, Charts, and Fields:

1. Top values by time shows a graph of the most common values
occurring in the time frame searched.

2. Top values overall shows a table of the most common values for this
field for the time frame searched.

• Values shows a very useful snapshot of the top ten most common values.

Using wildcards efficiently
Though the index is based on words, it is possible to use wildcards when needed,
although some care must be taken.

Only trailing wildcards are efficient
Stated simply, bob* will find events containing Bobby efficiently, but *by or *ob*
will not. The latter cases will scan all events in the time frame specified.

Wildcards are tested last
Wildcards are tested after all other terms. Given the search: authclass *ob* hello
world, all other terms besides *ob* will be searched first. The more you can limit the
results using full words and fields, the better your search will perform.

Chapter 2

[37]

Supplementing wildcards in fields
Given the following events, a search for world would return both events:

2012-02-07T01:04:31.102-0600 INFO AuthClass Hello world. [user=Bobby,
ip=1.2.3.3]
2012-02-07T01:23:34.204-0600 INFO BarClass Goodbye. [user=Bobby,
ip=1.2.3.3, message="Out of this world"]

What if you only wanted the second event, but all you know is that the event
contains world somewhere in the field message? The query message="*world*"
would work but is very inefficient because Splunk must scan every event looking
for *world* and then determine whether world is in the field message.

You can take advantage of the behavior mentioned before—wildcards are
tested last. Rewriting the query as world message="*world*" gives Splunk
a chance to find all records with world, then inspect those events for the more
specific wildcard condition.

All about time
Time is an important and confusing topic in Splunk. If you want to skip this section,
absorb one concept—time must be parsed properly on the way into the index as it
cannot be changed later without indexing the raw data again.

How Splunk parses time
Given the date 11-03-04, how would you interpret this date? Your answer probably
depends on where you live. In the United States, you would probably read this as
November 3, 2004. In Europe, you would probably read this as March 11, 2004. It
would also be reasonable to read this as March 4, 2011.

Luckily, most dates are not this ambiguous, and Splunk makes a good effort. It is
absolutely worth the trouble to give Splunk a little help by configuring the time
format. We'll discuss the relevant configurations in Chapter 10, Configuring Splunk.

How Splunk stores time
Once the date is parsed, the date stored in Splunk is always stored as GMT epoch.
Epoch time is the number of seconds since January 1, 1970, the birthday of Unix. By
storing all events using a single time zone, there is never a problem lining up events
that happen in different time zones. This, of course, only works properly if the time
zone of the event can be determined when it is indexed. This numeric value is stored
in the field _time.

Understanding Search

[38]

How Splunk displays time
The text of the original event, and the date it contains, is never modified. It is always
displayed as it was received. The date displayed to the left of the event is determined
by the time zone of the Splunk instance or the user's preference as specified in
Your account.

How time zones are determined and why it
matters
Since all events are stored according to their GMT time, the time zone of an event
only matters at parse time, but it is vital to get it right. Once the event is written
into the index, it cannot be changed without re-indexing the raw data.

The time zone can come from a number of places, in this order of precedence:

• The time zone specified in the log. For instance, the date 2012-02-
07T01:03:23.575-0600, -0600 indicates that the zone is 6 hours
behind GMT. Likewise, Tue 02 Feb, 01:03:23 CST 2012 represents
the same date.

• The configuration associated with a source, host, or source type, in that
order. This is specified in props.conf. This can actually be used to override
the time zone listed in the log itself, if needed. We will discuss this in Chapter
10, Configuring Splunk.

• The time zone of the Splunk instance forwarding the events. The time zone is
relayed along with the events, just in case it is not specified elsewhere. This
is usually an acceptable default. The exception is when different logs are
written with different time zones on the same host, without the time zone in
the logs. In that case, it needs to be specified in props.conf.

• The time zone of the Splunk instance parsing the events. This is sometimes
acceptable and can be used in interesting ways in distributed environments.

The important takeaway, again, is that the time zone needs to be known at the time
of parsing and indexing the event.

Chapter 2

[39]

Different ways to search against time
Now that we have our time indexed properly, how do we search against time?
The time picker provides a neat set of defaults for relative time.

These options search back from the present to a relative point in time,
but sometimes, you need to search over a specific period of time.

The last option, Custom time…, provides an interface that helps specify
specific times.

• Date is the first option.

If you know specifically when an event happened, you can drill down to
whatever time range you want here. The time zone here is what you have
chosen in Your account, or the system default if you didn't change it. This
may not be the time zone of the events you are looking for.

Understanding Search

[40]

• Relative lets you choose a time in the past.

The end of the search will always be the current time. The Snap to option
lets you choose a unit to round down to. For instance, if the current time is
4:32 and you choose 2 for the Hour(s) ago option, and Hour for the Snap to
option, the earliest time for the search will be 2:00. Effective range will tell
you what time range is being searched.
Note the text under Search language equivalent. This is the way you express
relative times in Splunk. We will see this often as we move forward.

• Like Relative time, Real-time lets you choose a time in the past and shows
you the search language equivalent. A real-time search is different in that it
continues to run, continuously updating your query results, but only keeps
the events with a parsed date that is newer than the time frame specified.

Chapter 2

[41]

• Lastly, we have Advanced search language.

If you noticed, we have selected the 2 for the Hour(s) ago option, and Minute for the
Snap to option in the Relative tab. The search language equivalent for this selection
is -2h@m, which means "go back 2 hours (7,200 seconds) from this moment, and
then snap to the beginning of the minute that second falls in". So, given the time
15:11:23, the relative time would 13:11:00. The language is very powerful and
can be used whenever a search is specified.

Specifying time in-line in your search
You can also directly use relative and exact times in your searches. For instance,
given the search item bob error, you can specify directly in the search the time
frame you want to use, using the fields earliest and latest.

• To search for errors affecting bob in the last 60 minutes, use earliest=-60m
bob error

• To search for errors affecting bob in the last 3 hours, snap to the beginning of
the hour using earliest=-3h@h bob error

• To search for errors affecting bob yesterday, use earliest=-1d@d latest=-
0d@d bob error

• To search for errors affecting bob since Monday at midnight, use
earliest=-0@w1 bob error

Understanding Search

[42]

You cannot use different time ranges in the same query; for instance, in
a Boolean search, (earliest=-1d@d latest=-0d@d bob error)
OR (earliest=-2d@d latest=-1d@d mary error) will not
work. The append command provides a way of accomplishing this.

_indextime versus _time
It is important to note that events are generally not received at the same time as
stated in the event. In most installations, the discrepancy is usually of a few seconds,
but if logs arrive in batches, the latency can be much larger. The time at which an
event is actually written in the Splunk index is kept in the internal field _indextime.
The time that is parsed out of the event is stored in _time.

You will probably never search against _indextime, but you should understand that
the time you are searching against is the time parsed from the event, not the time
at which the event was indexed.

Making searches faster
We have talked about using the index to make searches faster. When starting a new
investigation, following a few steps will help you get results faster:

1. Set the time to the minimum time that you believe will be required to locate
relevant events. For a chatty log, this may be as little as a minute. If you don't
know when the events occurred, you might search a larger time frame and
then zoom in by clicking on the timeline while the search is running.

2. Specify the index if you have multiple indexes. It's good to get into
the habit of starting your queries with the index name, for example,
index=myapplicationindex error bob.

3. Specify other fields that are relevant. The most common fields to specify
are sourcetype and host, for example, index=myapplicationindex
sourcetype="impl_splunk_gen" error bob.

If you find yourself specifying the field source on a regular basis,
you could probably benefit from defining more source types. Avoid
using the sourcetype field to capture other information, for instance
datacenter or environment. You would be better off using a lookup
against host or creating another indexed field for those cases.

Chapter 2

[43]

4. Add more words from the relevant messages as and when you find them.
This can be done simply be clicking on words or field values in events or
field values in the field picker, for example, index=myapplicationindex
sourcetype="impl_splunk_gen" error bob authclass OR fooclass.

5. Expand your time range once you have found the events that you need, and
then refine the search further.

6. Disable Field discovery (at the top of the field picker). This can greatly
improve speed, particularly if your query retrieves a lot of events.
Extracting all of the fields from events simply takes a lot of computing
time, and disabling this option prevents Splunk from doing all of that
work when not needed.

If the query you are running is taking a long time to run, and you
will be running this query on a regular basis—perhaps for an alert
or dashboard—using a summary index may be appropriate. We
will discuss this in Chapter 9, Summary Indexes and CSV Files.

Sharing results with others
It is often convenient to share a specific set of results with another user. You
could always export the results to a CSV file and share it, but this is cumbersome.
Instead, to use a URL for sharing, start by choosing Save & share results… from
the Save menu.

www.allitebooks.com

http://www.allitebooks.org

Understanding Search

[44]

This opens the Save and Share Results panel.

The URL under Link to the results can be copied and sent to other users.
A user visiting this URL will see exactly the same results you did, assuming
the job has not expired.

The results are also available in the Jobs window. Clicking on the Jobs link in
the top bar opens the Jobs window.

Chapter 2

[45]

The App menu, Owner menu, Status menu, and search bar let you filter what jobs
are displayed.

The table has the following columns:

• Dispatched at is the time at which the search started.
• Owner is the user that started the job. Sometimes jobs will appear with

system as the user if the saved search is configured in an application but not
owned by a particular user.

• Application specifies the application in which the search was started. This is
useful for locating your searches as well as unfamiliar searches being fired off
by other apps.

• Size is the amount of disk space being used to store the results of this query.
• Events shows the number of events that were matched by the search. In a

complicated search or report, the results returned may be different from this
number.

• Run time is how long a search took to run or the elapsed time if the search is
still running.

• Expires is the time at which the results will be removed from disk.
• Status lets you see and sort searches based on whether they are still running.

One simple way to find running jobs is to change the Status
menu to Running and click the magnifying glass.

• Actions provides the following links to affect a search or its results:
 ° Inspect shows detailed information about the query. We will

cover the search job inspector in Chapter 5, Advanced Search Examples.
 ° Save keeps the search results indefinitely.
 ° Pause pauses the execution of a job.
 ° Finalize stops the execution but keeps the results located up to

this point.
 ° Delete removes the results from the disk immediately. It is generally

not necessary to delete search results as they will expire on their own.

• The search bar at the top of this window is useful for finding present and
past jobs.

Understanding Search

[46]

Saving searches for reuse
Let's build a query, save it, and make an alert out of it.

First, let's find errors that affect mary, one of our most important users. This can
simply be the query mary error. Looking at some sample log messages that match
this query, we see that some of these events probably don't matter (the dates have
been removed to shorten the lines).

 ERROR LogoutClass error, ERROR, Error! [user=mary, ip=3.2.4.5]

 WARN AuthClass error, ERROR, Error! [user=mary, ip=1.2.3.3]

 ERROR BarCLass Hello world. [user=mary, ip=4.3.2.1]

 WARN LogoutClass error, ERROR, Error! [user=mary, ip=1.2.3.4]

 DEBUG FooClass error, ERROR, Error! [user=mary, ip=3.2.4.5]

 ERROR AuthClass Nothing happened. This is worthless. Don't log this.
 [user=mary, ip=1.2.3.3]

We can probably skip the DEBUG messages; the LogoutClass messages look
harmless; and the last message actually says that it's worthless.

mary error NOT debug NOT worthless NOT logoutclass limits the results to:

 WARN AuthClass error, ERROR, Error! [user=mary, ip=1.2.3.3]

 ERROR BarCLass Hello world. [user=mary, ip=4.3.2.1]

For good measure, let's add the sourcetype field and some parentheses.

sourcetype="impl_splunk_gen" (mary AND error) NOT debug NOT worthless
NOT logoutclass

Another way of writing the same thing is as follows:

sourcetype="impl_splunk_gen" mary error NOT (debug OR worthless OR
logoutclass)

So that we don't have to type our query every time, we can save this search for
quick retrieval.

Chapter 2

[47]

First, choose Save search… from the Save menu.

The Save Search window appears.

Enter a value for Search name, in our case, errors affecting mary. The time
 range is filled in based on what was selected in the time picker. Share lets you
specify whether other users should be able to see this search in their menus.
Standard users will not have the ability to share their searches with others.

Understanding Search

[48]

The search is then available in the Searches & Reports menu under Errors.

Selecting the search from the menu runs the search using the latest data available.

Note the small square next to errors affecting mary. This indicates
that this search is not shared and is only viewable by its owner.

Creating alerts from searches
Any saved search can also be run on a schedule. One use for scheduled searches is
firing alerts. To get started, choose Alert… from the Create menu.

A wizard interface is presented, covering three steps.

Chapter 2

[49]

Schedule
The Schedule step provides the following options:

• Trigger in real-time whenever a result matches: This option will leave
a real-time search running all the time and will immediately fire an alert
whenever an event is seen.

This option will create an alert every time an event that matches your
search occurs. There is an important throttling option in the next step.

• Run on a schedule once every…: New options now appear below
the menu.

Understanding Search

[50]

 ° Schedule: You can choose to either run your search on a set schedule
or run your alert according to a cron schedule. Keep in mind that
the time frame selected in the time picker will be used each time the
query runs—you probably don't want to run a query looking at 24
hours of data every minute.

 ° Trigger if lets you choose when to trigger the alert.

• Number of results lets you build a rule based on the count. Is greater than 0
is the most commonly used option.

• A custom condition is met lets you use a bit of search language to decide
whether to fire the alert. If any events pass the search language test then the
rule passes and the alert is fired. For example, search authclass would test
each event for the word authclass, which in our example would pass one
event. In most cases, you would use a threshold value. The purpose is to test
the search results without affecting the search results that are handed along
to the defined action.

• Monitor in real-time over a rolling window of…: This is a very useful
option for generating alerts as soon as some threshold is passed. For instance,
you could watch the access logs for a web server, and if the number of events
seen in the last minute falls below 100, send an alert.

Working with our example data, let's set an alert to fire any time more than
five errors affecting the user mary are matched in the last 5 minutes.

Chapter 2

[51]

Actions
Once we've set all of our options, we can click on Next >> to proceed to Actions.

The Actions pane is where you decide what you want to do with the results of your
alert. There are several options under Enable actions, as follows:

• Send email: This is the most common action. Simply fill out the list of e-mail
addresses. The resulting e-mail will always contain a link back to this Splunk
server, directly to the search results. You can customize the Subject string
and optionally include the results of the search in the e-mail.

Understanding Search

[52]

• Run a script: This will run a script with the results of the search. Any script
must be installed by the administrator at $SPLUNK_HOME/bin/scripts/.
This is covered in Chapter 12, Extending Splunk.

• Show triggered alerts in Alert manager: The alert manager is a listing of
alerts populated by saved searches. The alerts window is a convenient way
to group all alerts without filling your mailbox. Use the Alerts link at the
top of the window.

The next two options determine how many alerts to issue:

• Execute actions on: Your options are All results and Each result. In most
cases, you will only want one alert per search (All results), but you could
treat each event independently and issue an alert per event, in special cases.
You should be cautious with Each result, making sure to limit the number
of results returned, most likely by using reporting commands.

• Throttling: This allows you to determine how often the same alert will
be fired. You may want to search for a particular event every minute, but
you probably don't want an e-mail every minute. With throttling, you can
tell Splunk to only send you an e-mail every half hour even if the error
continues to happen every minute.

If you choose Execute actions on each result, another input box appears to let you
throttle against specific fields. For instance, if host A has an error, you may not want
to know about any other host A errors for another 30 minutes, but if host B has an
error in those 30 minutes, you would like to know immediately. Simply entering
host in this field will compare the values of the host field.

The third screen simply lets you choose whether this search is available to other
users. Not all users will have permissions to make searches public.

Summary
In this chapter, we covered searching in Splunk and doing a few useful things
with those search results. There are lots of little tricks that we will touch upon
as we go forward.

In the next chapter, we will start using fields for more than searches; we'll build
tables and graphs, and then, we'll learn how to make our own fields.

Tables, Charts, and Fields
Up to this point, we have learned how to search for and retrieve raw events, but
you will most likely want to create tables and charts to expose useful patterns.
Thankfully, the reporting commands in Splunk make short work of most reporting
tasks. We will step through a few common use cases in this chapter. Later in the
chapter, we will learn how to create custom fields for even more custom reports.

About the pipe symbol
Before we dive into the actual commands, it is important to understand what the
pipe symbol (|) is used for in Splunk. In a command line, the pipe symbol is used
to represent the sending of data from one process to another. For example, in a
Unix-style operating system, you might say:

grep foo access.log | grep bar

The first command finds, in the file access.log, lines that contain foo. Its output is
taken and piped to the input of the next grep command, which finds lines that contain
bar. The final output goes wherever it was destined, usually the terminal window.

The pipe symbol is different in Splunk in a few important ways:

1. Unlike the command line, events are not simply text, but rather each is a set
of key/value pairs. You can think of each event as a database row, a Python
dictionary, a Javascript object, a Java map, or a Perl associative array. Some
fields are hidden from the user but are available for use. Many of these
hidden fields are prefixed with an underscore, for instance _raw, which
contains the original event text, and _time, which contains the parsed
time in UTC epoch form. Unlike a database, events do not adhere to a
schema, and fields are created dynamically.

www.allitebooks.com

http://www.allitebooks.org

Tables, Charts, and Fields

[54]

2. Commands can do anything to the events they are handed. Usually,
a command does one of the following:

 ° Modifies or creates fields — for example, eval, rex
 ° Filters events—for example, head, where
 ° Replaces events with a report—for example, top, stats

3. Some commands can act as generators, which produce what you might
call "synthetic" events, such as |metadata and |inputcsv.

We will get to know the pipe symbol very well through examples.

Using top to show common field values
A very common question to answer is, "What values are most common?" When
looking for errors, you are probably interested in what piece of code has the most
errors. The top command provides a very simple way to answer this question.
Let's step through a few examples.

First, run a search for errors:

source="impl_splunk_gen" error

Using our sample data, we find events containing the word error, a sampling of
which is listed here:

2012-03-03T19:36:23.138-0600 ERROR Don't worry, be happy.
[logger=AuthClass, user=mary, ip=1.2.3.4]

2012-03-03T19:36:22.244-0600 ERROR error, ERROR, Error!
[logger=LogoutClass, user=mary, ip=3.2.4.5, network=green]

2012-03-03T19:36:21.158-0600 WARN error, ERROR, Error!
[logger=LogoutClass, user=bob, ip=3.2.4.5, network=red]

2012-03-03T19:36:21.103-0600 ERROR Hello world. [logger=AuthClass,
user=jacky, ip=4.3.2.1]

2012-03-03T19:36:19.832-0600 ERROR Nothing happened. This is worthless.
Don't log this. [logger=AuthClass, user=bob, ip=4.3.2.1]

2012-03-03T19:36:18.933-0600 ERROR Hello world. [logger=FooClass,
user=Bobby, ip=1.2.3.4]

2012-03-03T19:36:16.631-0600 ERROR error, ERROR, Error!
[logger=LogoutClass, user=bob, ip=1.2.3.3]

2012-03-03T19:36:13.380-0600 WARN error, ERROR, Error! [logger=FooClass,
user=jacky, ip=4.3.2.1, network=red]

2012-03-03T19:36:12.399-0600 ERROR error, ERROR, Error!
[logger=LogoutClass, user=linda, ip=3.2.4.5, network=green]

Chapter 3

[55]

2012-03-03T19:36:11.615-0600 WARN error, ERROR, Error! [logger=FooClass,
user=mary, ip=1.2.3.4]

2012-03-03T19:36:10.860-0600 ERROR Don't worry, be happy.
[logger=BarCLass, user=linda, ip=4.3.2.1, network=green]

To find the most common values of logger, simply add | top logger to our
search, like so:

source="impl_splunk_gen" error | top logger

The results are transformed by top into a table like the following one:

From these results, we see that BarClass is logging significantly more errors than
any other logger. We should probably contact the developer of that code.

Next, let's determine whom those errors are happening to. Adding another field
name to the end of the command instructs top to slice the data again. For example,
let's add user to the end of our previous query, like so:

sourcetype="impl_splunk_gen" error | top logger user

The results might look like the following screenshot:

Tables, Charts, and Fields

[56]

In these results, we see that mary is logging the most errors from the logger
BarClass. If we simply wanted to see the distribution of errors by user,
you could specify only the user field, like so:

sourcetype="impl_splunk_gen" error | top user

Controlling the output of top
The default behavior for top is to show the 10 largest counts. The possible row count
is the product of all fields specified, in this case logger and user. In this case, there
are 25 possible combinations. If you would like to see more than 10 rows, add the
argument limit, like so:

sourcetype="impl_splunk_gen" error | top limit=100 logger user

Arguments change the behavior of a command; they take the form of
name=value. Many commands require the arguments to immediately
follow the command name, so it's a good idea to always follow
this structure.
Each command has different arguments, as appropriate. As you type in
the search bar, a help drop-down box will appear for the last command
in your search, as shown in the following figure:

Help takes you to the documentation for that command at splunk.com.
More >> provides concise documentation in-line.

Let's use a few arguments to make a shorter list but also roll all other results into
another line:

sourcetype="impl_splunk_gen" error
 | top
 limit=5
 useother=true
 otherstr="everything else"
 logger user

Chapter 3

[57]

This produces results like those shown in the following screenshot:

The last line represents everything that didn't fit into the top five. useother
enables this last row, while otherstr controls the value printed instead of the
default value "other".

For the opposite of top, see the rare command.

Using stats to aggregate values
While top is very convenient, stats is extremely versatile. The basic structure of a
stats statement is:

stats functions by fields

Many of the functions available in stats mimic similar functions in SQL or Excel,
but there are many functions unique to Splunk. The simplest stats function is
count. Given the following query, the results will contain exactly one row, with a
value for the field count:

sourcetype="impl_splunk_gen" error | stats count

Using the by clause, stats will produce a row per unique value for each field listed,
which is similar to the behavior of top. Run the following query:

sourcetype="impl_splunk_gen" error | stats count by logger user

Tables, Charts, and Fields

[58]

It will produce a table like that shown in the following screenshot:

There are a few things to notice about these results:

1. The results are sorted against the values of the "by" fields, in this case logger
followed by user. Unlike top, the largest value will not necessarily be at the
top of the list. You can sort in the GUI simply by clicking on the field names
at the top of the table, or by using the sort command.

2. There is no limit to the number of rows produced. The number of rows will
equal the possible combinations of field values.

3. The function results are displayed last. In the next example, we will add a
few more functions, and this will become more obvious.

Chapter 3

[59]

Using stats, you can add as many "by" fields or functions as you want into a single
statement. Let's run this query:

sourcetype="impl_splunk_gen" error
 | stats
 count avg(req_time) max(req_time) as "Slowest time"
 by logger user

The results look like those in the following screenshot:

Let's step through every part of this query, just to be clear:

• sourcetype="impl_splunk_gen" error is the query itself.
• | stats starts the stats command.
• count will return the number of events.

Tables, Charts, and Fields

[60]

• avg(req_time) produces an average value of the req_time field.
• max(req_time) as "Slowest time" finds the maximum value of the req_

time field and places the value in a field called Slowest time. The quotes
are necessary because the field name contains a space.

• by indicates that we are done listing functions and want to list the fields
to slice the data by. If the data does not need to be sliced, by and the fields
following it can be omitted.

• logger and user are our fields for slicing the data. All functions are actually
run against each set of data produced per possible combination of logger
and user.

If an event is missing a field that is referenced in a stats command, you
may not see the results you are expecting. For instance, when computing
an average, you may wish for events missing a field to count as zeroes
in the average. Also, for events that do not contain a field listed in the by
fields, the event will simply be ignored.
To deal with both of these cases, you can use the fillnull command to
make sure that the fields you want exist. We will cover this in Chapter 5,
Advanced Search Examples.

Let's look at another example, using a time-based function and a little trick. Let's say
we wanted to know the most recent time at which each user saw a particular error.
We can use the following query:

sourcetype="impl_splunk_gen" error logger="FooClass"
 | stats count first(ip) max(_time) as _time by user

This query produces the following table:

Chapter 3

[61]

Let's step through this example:

• sourcetype="impl_splunk_gen" error logger="FooClass" is the query
that will find all errors logged by the class FooClass.

• | stats is our command.
• count shows how many times each user saw this error.
• first(ip) gives us the IP address that was most recently logged for this

user. This will be the most recent event, since results are returned in the
order of the most recent first.

• max(_time) as _time returns the time at which each user most recently
saw this error. This takes advantage of three aspects of time in Splunk:

 ° _time is always present in raw events. As discussed in Chapter 2,
Understanding Search, the value is the number of seconds since
1970, UTC.

 ° _time is stored as a number and can be treated as such.
 ° If there is a field called _time in the results, Splunk will always

display the value as the first column of a table in the time zone
selected by the user.

• by user is our field to split results against.

We have only seen a few functions in stats. There are dozens of functions and
some advanced syntax that we will touch upon in later chapters. The simplest
way to find the full listing is to search with your favorite search engine for splunk
stats functions.

Using chart to turn data
The chart command is useful for "turning" data across two dimensions. It is useful
for both tables and charts. Let's start with one of our examples from stats:

sourcetype="impl_splunk_gen" error | chart count over logger by user

The resulting table looks like this:

Tables, Charts, and Fields

[62]

If you look back at the results from stats, the data is presented as one row per
combination. Instead of a row per combination, chart generates the intersection
of the two fields. You can specify multiple functions, but you may only specify
one field each for over and by.

Switching the fields turns the data the other way.

By simply clicking on the chart icon above the table, we can see these results in
a chart:

This is a bar chart, with Stack mode set to Stacked, and usenull set to false,
like so:

sourcetype="impl_splunk_gen" error
 | chart usenull=false count over logger by user

chart can also be used to simply turn data, even if the data is non-numerical.
For example, say we enter this query:

sourcetype="impl_splunk_gen" error
 | chart usenull=false values(network) over logger by user

Chapter 3

[63]

It will create a table like this:

Since there are no numbers, this cannot be directly made into an image, but it is still
a very useful representation of the data.

Using timechart to show values over time
timechart lets us show numerical values over time. It is similar to the chart
command, except that time is always plotted on the x axis. Here are a couple of
things to note:

• The events must have an _time field. If you are simply sending the results
of a search to timechart, this will always be true. If you are using interim
commands, you will need to be mindful of this requirement.

• Time is always "bucketed", meaning that there is no way to draw a point
per event.

Let's see how many errors have been occurring:

sourcetype="impl_splunk_gen" error | timechart count

The default chart will look something like this:

Tables, Charts, and Fields

[64]

Now let's see how many errors have occurred per user over the same time period.
We simply need to add by user to the query:

sourcetype="impl_splunk_gen" error | timechart count by user

This produces the following chart:

As we stated before, the x axis is always time. The y axis can be:

• One or more functions
• A single function with a by clause
• Multiple functions with a by clause (a new feature in Splunk 4.3)

An example of a timechart with multiple functions might be:

sourcetype="impl_splunk_gen" error
 | timechart
 count as "Error count"
 max(req_time) as "Max request time"

This would produce a graph like this:

Chapter 3

[65]

timechart options
timechart has many arguments and formatting options. We'll touch upon a few
examples of formatting, but they are too numerous to cover in detail. We will use
other chart types in later chapters. Let's throw a few options in and see what they do.

timechart bins=100 limit=3 useother=false usenull=false
 count as "Error count" by user

Let's step through each of these arguments:

• bins defines how many "bins" to slice time into. The number of bins
will probably not be exactly 100 as the time will be sliced into logical
units. In our example, this comes to 10 minutes per bin. To be more exact,
you can use span (for example, span=1h) for hourly slices, but note that if
your span value creates too many time slices, the chart will be truncated.

• limit changes the number of series returned. The series with the largest
values are returned, much like in top. In this case, the most common values
of user will be returned.

• useother instructs timechart whether to group all series beyond the limit
into an "other" bucket. The default value is true.

• usenull instructs timechart whether to bucket, into the group NULL,
events that do not have a value for the fields in the by clause. The default
value is true.

This combination of arguments produces a graph similar to this:

Tables, Charts, and Fields

[66]

Clicking on Formatting options above the graph gives us quite a few options to
work with.

This graph shows one of my personal favorite chart styles, the stacked column.
This graph is useful for showing how many events of a certain kind occurred, but
with colors to give us an idea of distribution. splunk.com has great examples of all
of the available chart styles, and we will touch upon more styles in future chapters.

Working with fields
All of the fields we have used so far were either indexed fields (such as host,
sourcetype, and _time) or fields that were automatically extracted from key=value
pairs. Unfortunately, most logs don't follow this format, especially for the first few
values in each event. New fields can be created either inline, by using commands,
or through configuration.

A regular expression primer
Most of the ways to create new fields in Splunk involve regular expressions.
There are many books and sites dedicated to regular expressions, so we will
only touch upon the subject here.

Chapter 3

[67]

Given the log snippet ip=1.2.3.4, let's pull out the subnet (1.2.3) into a new
field called subnet. The simplest pattern would be the literal string:

ip=(?P<subnet>1.2.3).4

This is not terribly useful as it will only find the subnet of that one IP address.
Let's try a slightly more complicated example:

ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+

Let's step through this pattern:

• ip= simply looks for the raw string ip=.
• (starts a "capture buffer". Everything until the closing parentheses is

part of this capture buffer.
• ?P<subnet> immediately inside a parentheses, says "create a field called

subnet from the results of this capture buffer".
• \d matches any single digit, from 0 to 9.
• + says "one or more of the item immediately before".
• \. matches a literal period. A period without the backslash matches

any character.
• \d+\.\d+ matches the next two parts of the IP address.
•) ends our capture buffer.
• \.\d+ matches the last part of the IP address. Since it is outside of the

capture buffer, it will be discarded.

Now let's step through an overly complicated pattern to illustrate a few
more concepts:

ip=(?P<subnet>\d+.\d*\.[01234-9]+)\.\d+

Let's step through this pattern:

• ip= simply looks for the raw string ip=.
• (?P<subnet> starts our capture buffer and defines our field name.
• \d means digit. This is one of the many backslash character combinations

that represent some sets of characters.
• + says "one or more of what came before", in this case \d.
• . matches a single character. This will match the period after the first

set of digits, though it would match any single character.

Tables, Charts, and Fields

[68]

• \d* means zero or more digits.
• \. matches a literal period. The backslash negates the special meaning of

any special punctuation character. Not all punctuation marks have a special
meaning, but so many do that there is no harm adding a backslash before
a punctuation mark that you want to literally match.

• [starts a character set. Anything inside the brackets will match a single
character in the character set.

• 01234-9 means the characters 0, 1, 2, 3, and the range 4-9.
•] closes the character set.
• + says "one or more of what came before", in this case the character set.
•) ends our capture buffer.
• \.\d+ is the final part of the IP address that we are throwing away. It is not

actually necessary to include this, but it ensures that we only match if there
were in fact four sets of numbers.

There are a number of different ways to accomplish the task at hand. Here are a few
examples that will work:

ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+
ip=(?P<subnet>(\d+\.){2}\d+)\.\d+
ip=(?P<subnet>[\d\.]+)\.\d
ip=(?P<subnet>.*?\..*?\..*?)\.
ip=(?P<subnet>\S+)\.

For more information about regular expressions, consult the man pages for Perl
Compatible Regular Expressions (PCRE), which can be found online at http://
www.pcre.org/pcre.txt, or one of the many regular expression books or websites
dedicated to the subject. We will build more expressions as we work through
different configurations and searches, but it's definitely worthwhile to have a
reference handy.

Commands that create fields
There are a number of commands that create new fields, but the most commonly
used are eval and rex.

eval
eval allows you to use functions to build new fields, much as you would build a
formula column in Excel, for example:

Chapter 3

[69]

sourcetype="impl_splunk_gen"
 | eval req_time_seconds=req_time/1000
 | stats avg(req_time_seconds)

This creates a new field called req_time_seconds on every event that has a
value for req_time. Commands after this statement see the field as if it were
part of the original event. stats then creates a table of the average value of
our newly created field.

There are a huge number of functions available for use with eval. The simplest way
to find the full listing is to search google.com for splunk eval functions. I would
suggest bookmarking this page as you will find yourself referring to it often.

rex
rex lets you use regular expressions to create fields. It can work against any existing
field but, by default, will use the field _raw. Let's try one of the patterns we wrote in
our short regular expression primer:

sourcetype="impl_splunk_gen"
 | rex "ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+"
 | chart values(subnet) by user network

This would create a table like this:

Tables, Charts, and Fields

[70]

With the addition of the field argument, we can work against the ip field that is
already being created automatically from the name=value pair in the event.

sourcetype="impl_splunk_gen"
 | rex field=ip "(?P<subnet>.*)\."
 | chart values(subnet) by user network

This will create exactly the same result as the previous example.

Extracting loglevel
In our examples, we searched for the raw word error. You may have noticed that
many of the events weren't actually errors, but simply contained the word error
somewhere in the message. For example, given the following events, we probably
only care about the second event:

2012-03-21T18:59:55.472-0500 INFO This is not an error
2012-03-21T18:59:42.907-0500 ERROR Something bad happened

Using an extracted field, we can easily create fields in our data, without re-indexing,
that allow you to search for values that occur in a specific location in your events.

Using the Extract Fields interface
There are several ways to define a field. Let's start by using the Extract Fields
interface. To access this interface, choose Extract Fields from the workflow
actions menu next to any event:

Chapter 3

[71]

This menu launches the Extract fields view:

In this view, you simply provide example values, and Splunk will attempt to build a
regular expression that matches. In this case, we specify ERROR, WARN, and INFO.

Under Sample extractions, we see that the values DEBUG, WARN, INFO, and
ERROR were matched. Notice that there are more values than we listed—the pattern
is looking for placement, not our sample values.

Under Sample events, we get a preview of what data was matched, in context.

Tables, Charts, and Fields

[72]

Finally, under Generated pattern, we see the regular expression that Splunk
generated, which is as follows:

(?i)^[^]* (?P<FIELDNAME>[^]+)

Let's step through the pattern:

• (?i) says that this pattern is case insensitive. By default, regular expressions
are case sensitive.

• ^ says that this pattern must match at the beginning of the line.
• [^]* says "any character but a space, zero or more times".
• The space is literal.
• (?P<FIELDNAME>[^]+) says to match anything that is not a space, and

capture it in the field FIELDNAME. You will have the opportunity to name
the field when you click on Save.

Edit presents a dialog to let you modify the pattern manually:

Test will launch a new search window with the pattern loaded into a very
useful query that shows the most common values extracted. In this case,
it is the following query:

index=main sourcetype="impl_splunk_gen"
 | head 10000
 | rex "(?i)^[^]* (?P<FIELDNAME>[^]+)"
 | top 50 FIELDNAME

Chapter 3

[73]

Save prompts you for a name for your new field. Let's call this field loglevel
and save it:

Now that we've defined our field, we can use it in a number of ways, as follows:

• We can search for the value using the fieldname, for instance,
loglevel=error

When searching for values by fieldname, the fieldname is case sensitive,
but the value is not case sensitive. In this case loglevel=Error would
work just fine, but LogLevel=error would not.

• We can report on the field, whether we searched for it or not. For instance:
sourcetype="impl_splunk_gen" user=mary | top loglevel

• We can search for only events that contain our field:

sourcetype="impl_splunk_gen" user=mary loglevel="*"

Using rex to prototype a field
When defining fields, it is often convenient to build the pattern directly in the query
and then copy the pattern into configuration. You might have noticed that the test in
the Extract fields workflow used rex.

Tables, Charts, and Fields

[74]

Let's turn the subnet pattern we built earlier into a field. First, we build the query
with the rex statement:

sourcetype="impl_splunk_gen" ip="*"
 | rex "ip=(?P<subnet>\d\.\d\.\d+)\.\d+"
 | table ip subnet

Since we know there will be an ip field in the events we care about, we can use
ip="*" to limit the results to events that have a value for that field.

table takes a list of fields and displays a table, one row per event:

As we can see, the rex statement doesn't always work. Looking at the pattern again,
you may notice that the first two instances of \d are now missing their trailing +.
Without the plus sign, only addresses with a single digit in both their first and
second sections will match. After adding the missing plus signs to our pattern,
all rows will have a subnet.

sourcetype="impl_splunk_gen" ip="*"
 | rex "ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+"
 | table ip subnet

We can now take the pattern from the rex statement and use it to build
a configuration.

Chapter 3

[75]

Using the admin interface to build a field
Taking our pattern from the previous example, we can build the configuration
to "wire up" this extract.

First, click on Manager in the upper-right corner. The Fields section contains
everything, funnily enough, about fields.

There are a number of different things you can do with fields via configuration,
but for now, we're interested in Field extractions.

After clicking on Add new to the right of Field extractions, or on the New button
after clicking on Field extractions, we are presented with the interface for creating
a new field.

Tables, Charts, and Fields

[76]

Now, we step through the fields:

• Destination app lets us choose the app where this extraction will live
and by default, where it will take effect. We will discuss the scope of
configurations in Chapter 10, Configuring Splunk.

• Name is simply a display name for the extraction. Make it as descriptive
as you like.

• Apply to lets you choose what to bind this extraction to. Your choices are
sourcetype, source, and host. The usual choice is sourcetype.

• named is the name of the item we are binding our extraction to.
• Type lets you choose Inline, which means specifying the regular expression

here, or Uses transform, which means we will specify a named transform
that exists already in configuration.

• Extraction/Transform is where we place either our pattern, if we chose a
Type option of Inline, or the name of a Transform object.

Once you click on Save, you will return to the listing of extractions. By default,
your extraction will be private to you and will only function in the application
it was created in. If you have rights to do so, you can share the extraction with
other users and change the scope of where it runs. Click on Permissions in the
listing to see the permissions page, which most objects in Splunk use.

The top section controls the context in which this extraction will run. Think about
when the field would be useful, and limit the extractions accordingly. An excessive
number of extractions can affect performance, so it is a good idea to limit the extracts
to a specific app when appropriate. We will talk more about creating apps in Chapter
7, Working with Apps.

Chapter 3

[77]

The second section controls what roles can read or write this configuration. The usual
selections are the Read option for the Everyone parameter and the Write option for
the admin parameter. As you build objects going forward, you will become very
familiar with this dialog.

Indexed fields versus extracted fields
When an event is written to an index, the raw text of the event is captured along with
a set of indexed fields. The default indexed fields include host, sourcetype, source,
and _time. There are distinct advantages and a few serious disadvantages to using
indexed fields.

First, let's look at the advantages of an indexed field (we will actually discuss
configuring indexed fields in Chapter 10, Configuring Splunk):

• As an indexed field is stored in the index with the event itself, it is
only calculated at index time, and in fact, can only be calculated once
at index time.

• It can make finding specific instances of common terms efficient.
See use case 1 in the following section, as an example.

• You can create new words to search against that simply don't exist
in the raw text or are embedded inside a word. See use cases 2–4 in
the following sections.

• You can efficiently search for words in other indexed fields. See the
Indexed field case 3 – application from source section.

Now for the disadvantages of an indexed field:

• It is not retroactive. This is different from extracted fields, where all events,
past and present, will gain the newly defined field if the pattern matches.
This is the biggest disadvantage of indexed fields and has a few implications,
as follows:

 ° Only newly indexed events will gain a newly defined indexed field
 ° If the pattern is wrong in certain cases, there is no practical way to

apply the field to already indexed events
 ° Likewise, if the log format changes, the indexed field may not be

generated (or generated incorrectly)

• It adds to the size of your index on disk.
• It counts against your license.

Tables, Charts, and Fields

[78]

• Any changes usually require a restart to be applied.
• In most cases, the value of the field is already an indexed word, in which case

creating an indexed field will likely have no benefit, except in the rare cases
where that value is very common.

With the disadvantages out of the way, let's look at a few cases where an indexed
field would improve search performance and then at one case where it would
probably make no difference.

Indexed field case 1 – rare instances of a common term
Let's say your log captures process exit codes. If a 1 represents a failure, you
probably want to be able to search for this efficiently. Consider a log that looks
something like this:

4/1/12 6:35:50.000 PM process=important_process.sh, exitcode=1

It would be easy to search for this log entry using exitcode=1. The problem is
that, when working with extracted fields, the search is effectively reduced to this:

1 | search exitcode="1"

Since the date contains a 1, this search would find every event for the entire day
and then filter the events to the few that we are looking for. In contrast, if exitcode
were defined as an indexed field, the query would immediately find the events, only
retrieving the appropriate events from the disk.

Indexed field case 2 – splitting words
In some log formats, multiple pieces of information may be encoded into a
single word without whitespace or punctuation to separate the useful pieces of
information. For instance, consider a log message such as this:

4/2/12 6:35:50.000 PM kernel: abc5s2: 0xc014 (UNDEFINED).

Let's pretend that 5s2 is an important piece of information that we need to be able
to search for efficiently. The query *5s2 would find the events but would be a very
inefficient search (in essence, a full table scan). By defining an indexed field, you
can very efficiently search for this instance of the string 5s2, because in essence,
we create a new "word" in the metadata of this event.

Chapter 3

[79]

Defining an indexed field only makes sense if you know the format of
the logs before indexing, if you believe the filed will actually make the
query more efficient (see previous section), and if you will be searching
for the field value. If you will only be reporting on the values of this
field, an extracted field will be sufficient, except in the most extreme
performance cases.

Indexed field case 3 – application from source
A common requirement is to be able to search for events from a particular web
application. Often, the only easy way to determine the application that created the
logs is by inspecting the path to the logs, which Splunk stores in the indexed field
source. For example, given the following path, the application name is app_one:

/opt/instance19/apps/app_one/logs/important.log

You could search for this instance using source="*/app_one/*", but this effectively
initiates a full table scan. You could define an extracted field and then search for
app="app_one", but unfortunately, this approach will be no more efficient because
the word we're looking for is not contained in the field _raw. If we define this field as
an indexed field, app="app_one" will be an efficient search.

Once again, if you only need this field for reporting, the extracted field is just fine.

Indexed field case 4 – slow requests
Consider a web access log with a trailing request time in microseconds:

[31/Jan/2012:18:18:07 +0000] "GET / HTTP/1.1" 200 7918 ""
"Mozilla/5.0..." 11/11033255

Let's say we want to find all requests that took longer than 10 seconds. We can easily
extract the value into a field, perhaps request_ms. We could then run the search
request_ms>10000000. This query will work, but it requires scanning every event
in the given time frame. Whether the field is extracted or indexed, we would face the
same problem as Splunk has to convert the field value to a number before it can test
the value.

What if we could define a field and instead search for slow_request=1? To do this,
we can take advantage of the fact that, when defining an indexed field, the value can
be a static value. This could be accomplished with a transform, like so:

REGEX = .*/(\d{7,})$
FORMAT = slow_request::1

Tables, Charts, and Fields

[80]

We will cover transforms, and the configurations involved, in Chapter 10,
Configuring Splunk.

Once again, this is only worth the trouble if you need to efficiently search for
these events and not simply report on the value of request_ms.

Indexed field case 5 – unneeded work
Once you learn to make indexed fields, it may be tempting to convert all of your
important fields into indexed fields. In most cases it is essentially a wasted effort and
ends up using extra disk space, wasting license, and adding no performance boost.

For example, consider this log message:

4/2/12 6:35:50.000 PM [vincentbumgarner] [893783] sudo bash

Assuming the layout of this message is as follows, it might be tempting to put
both userid and pid into indexed fields:

date [userid] [pid] action

Since the values are uncommon, and are unlikely to occur in unrelated locations,
defining these fields as indexed fields is most likely wasteful. It is much simpler
to define these fields as extracted fields and shield ourselves from the disadvantages
of indexed fields.

Summary
This has been a very dense chapter, but we have really just scratched the surface
on a number of important topics. In future chapters, we will use these commands
and techniques in more and more interesting ways. The possibilities can be a bit
dizzying, so we will step through a multitude of examples to illustrate as many
scenarios as possible.

In the next chapter, we will build a few dashboards using the wizard-style interfaces
provided by Splunk.

Simple XML Dashboards
Dashboards are a way for you to capture, group, and automate tables and charts into
useful and informative views. We will quickly cover the wizards provided in Splunk
4.3 and then dig into the underlying XML. With that XML, you can easily build
interactive forms, further customize panels, and use the same query for multiple
panels, among other things. We will also cover how and when to schedule the
generation of dashboards to reduce both the wait time for users and the load
on the server.

The purpose of dashboards
Any search, table, or chart you create can be saved and made to appear in the menus
for other users to see. With that power, why would you bother creating a dashboard?
Here are a few reasons:

• A dashboard can contain multiple panels, each running a different query.
• Every dashboard has a unique URL, which is easy to share.
• Dashboards are more customizable than an individual query.
• The search bar is removed, making it less intimidating to many users.
• Forms allow you to present the user with a custom search interface that only

requires specific values.
• Dashboards look great. Many organizations place dashboards on projectors

and monitors for at-a-glance information about their environment.
• Dashboards can be scheduled for PDF delivery by e-mail. This feature is not

the most robust, but with some consideration, it can be used effectively.

With all of this said, if a saved search is working the way it is, there is no strong
reason to turn it into a dashboard.

Simple XML Dashboards

[82]

Using wizards to build dashboards
Using some of the queries from previous chapters, let's make an operational
dashboard for errors occurring in our infrastructure. We will start by making
a query (note that this query relies on the loglevel fields we created in Chapter 3,
Tables, Charts, and Fields):

sourcetype="impl_splunk_gen" loglevel=error | timechart count as
"Error count" by network

This will produce a graph like this one:

To add this to a dashboard, we perform the following steps:

1. Choose Create | Dashboard panel….

Chapter 4

[83]

2. This opens a wizard interface that guides you through saving the query,
adding it to a dashboard, and then scheduling the search. First, we name
the search.

As you create more dashboards, you will end up creating a lot of
searches. A naming convention will help you keep track of what search
belongs to what dashboard. Here is one possible approach: Dashboard
– [dashboard name] – [search name and panel type].
When the number of dashboards and searches becomes large, apps
can be used to group dashboards and searches together, providing yet
another way to organize and share assets.

3. The next step is to create or choose an existing dashboard.

Simple XML Dashboards

[84]

4. Let's create a new dashboard called Errors. The next step is to add our new
saved search to our new dashboard in a new panel.

5. Panel title is the text that will appear above your new panel in the
dashboard. Visualization lets you choose a chart type and will default to the
type of chart you started with. We will discuss Schedule in the next section.

6. After clicking on Finish and saving our dashboard, it will now be available
in the Dashboards & Views menu.

Chapter 4

[85]

7. The dashboard with our first panel looks as follows:

Following the same steps, let's add a few pie charts showing this information broken
down in a few ways.

sourcetype="impl_splunk_gen" loglevel=error | stats count by user

This query produces the following chart:

Simple XML Dashboards

[86]

This gives us a breakdown of errors by user. Next, let's add a breakdown by logger.

sourcetype="impl_splunk_gen" loglevel=error | stats count by logger

This query produces the following chart:

With this breakdown, we can see that the main producer of errors is the
logger BarClass.

Let's learn another command, bucket. The bucket command is used to group sets
of numeric values and has special capabilities with the _time field. This example
will group the values of the field req_time in up to 10 evenly distributed bins.
bucket has some other cool tricks we will use later. The following query will
group req_time:

sourcetype="impl_splunk_gen" loglevel=error
 | bucket bins=10 req_time | stats count by req_time

The results produce the following pie chart:

Chapter 4

[87]

Using the wizard interface, step through the same actions to add these pie charts
to our dashboard, this time choosing Existing dashboard in step 2.

By default, each new panel is added to the bottom of the dashboard. Dashboards
allow you to have up to three panels distributed horizontally, which is a great
way to show pie charts.

After clicking on the On button for Edit, near the top of the dashboard, you can drag
the panels around the page, like so:

Simple XML Dashboards

[88]

You may have noticed the three new buttons that appeared at the top of the
dashboard after we clicked on the On button:

• Edit XML allows you to directly edit the XML underlying this dashboard.
We will use this later in the chapter.

• Edit permissions takes you to the standard permissions panel that we have
seen before.

• Clicking on New panel opens the following dialog to allow us to add new
panels directly:

Saved search lets you choose an existing saved search. This allows you to reuse
queries on different dashboards or build queries without a dashboard in mind.

Inline search string lets us build a query directly in the dashboard. This is often
convenient as many searches will have no purpose but for a particular dashboard,
so there is no reason for these searches to appear in the menus. This also reduces
external dependencies, making it easier to move the dashboard to another app.
Be sure to either specify an Earliest time value, or append | head to your query
to limit the number of results, or the query will be run over All time.

Chapter 4

[89]

In this case, we want to create an event listing. After clicking on Save, this panel is
added to our dashboard.

The default visualization type is Table, which is not what we want in this case.
To change this, choose Edit visualization on the panel.

Simple XML Dashboards

[90]

This presents us with an editor window where we can change the visualization type.

After saving and disabling the Edit mode, we see our event listing.

This panel is added to the bottom of the dashboard, which is just right in this case.

Chapter 4

[91]

Scheduling the generation of dashboards
As we stepped through the wizard interface to create panels, we accepted the default
value of Run search each time dashboard loads. If we instead select Run scheduled
search, we are given a time picker.

When the dashboard is loaded, the results from the last scheduled run will be used.
The dashboard will draw as quickly as the browser can draw the panels. This is
particularly useful when multiple users use a dashboard, perhaps in an operations
group. If there are no saved results available, the query will simply be run normally.

Be sure to ask yourself just how fresh the data on a dashboard needs to be. If you are
looking at a week's worth of data, is up to one-hour-old data acceptable? What about
four hours old? 24 hours old? The less often the search is run, the fewer resources
you will use, and the more responsive the system will be for everyone else. As your
data volume increases, the searches will take more time to complete. If you notice
your installation becoming less responsive, check the performance of your scheduled
searches in the Jobs or the Status dashboards in the Search app.

For a dashboard that will be constantly monitored, real-time queries are probably
more efficient, particularly if multiple people will be using the dashboard. New
in Splunk 4.3, real-time queries are first backfilled. For instance, a real-time query
watching 24 hours will first run a query against the previous 24 hours and then add
new events to the results as they appear. This feature makes real-time queries over
fairly long periods practical and useful.

Editing the XML directly
First let me take a moment to tip my hat to Splunk for the new dashboard editor
in Splunk 4.3. There are only of a couple of reasons why you would still need to
edit simplified XML dashboards: forms and post-processing data. I predict that
these reasons will go away in the future as more features are added to the
dashboard editor.

Simple XML Dashboards

[92]

The documentation for simplified XML panels can be found by
searching splunk.com for Panel reference for simple XML.

UI Examples app
Before digging into the XML behind dashboards, it's a very good idea to install
the app Splunk UI examples app for 4.1+, available from Splunkbase (see Chapter 7,
Working with Apps, for information about Splunkbase). The examples provided in
this app give a good overview of the features available in both simplified XML and
advanced XML dashboards.

The simplest way to find this app is by searching for examples in App | Find
more apps….

Building forms
Forms allow you to make a template that needs one or more pieces of information
supplied to run. You can build these directly using raw XML, but I find it simpler
to build a simple dashboard and then modify the XML accordingly. The other
option is to copy an example, like those found in the UI Examples app (see the
UI Examples app section, earlier in this chapter). We will touch on a simple use
case in the following section.

Creating a form from a dashboard
First, let's think of a use case. How about a form that tells us about errors for a
particular user? Let's start with a report for a particular user, our friend mary:

sourcetype="impl_splunk_gen" error user="mary"
 | stats count by logger

Chapter 4

[93]

Now let's create a simple dashboard using this query:

1. Quickly create a simple dashboard using the wizard interface that we
used before, by selecting Create | Dashboard Panel.

2. Select a destination for our new panel. In this case, we are making
a new dashboard.

Simple XML Dashboards

[94]

3. Select Table and give our panel a title.

4. On the final window, click on the title next to View dashboard.

Let's look at the XML for our new dashboard. Click on the On button near the Edit
label, then on Edit XML. The XML for our dashboard looks like this:

<?xml version='1.0' encoding='utf-8'?>
<dashboard>
 <label>Chapter 4 Form 1</label>
 <row>
 <table>
 <searchName>Dashboard - Chapter 4 Form 1 - error</searchName>
 <title>Dashboard - Chapter 4 Form 1 - error</title>
 </table>
 </row>
</dashboard>

Chapter 4

[95]

That's pretty simple. To convert this dashboard into a form, we have to do the
following things:

1. Searches need to be defined directly in the XML so that we can insert
variables into the searches. We can use the editor itself to change the
XML for us. Choose Edit search from the Edit menu on our table panel.

2. Then, click on Edit as an inline search followed by Save. This will convert
the XML defining the query for us. The changes are highlighted.
<?xml version='1.0' encoding='utf-8'?>
<dashboard>
 <label>Chapter 4 Form 1</label>
 <row>
 <table>
 <searchString>
 sourcetype="impl_splunk_gen" error user="mary"
 | stats count by logger
 </searchString>
 <title>Dashboard - Chapter 4 Form 1 - error</title>
 <earliestTime>-60m@m</earliestTime>
 <latestTime>now</latestTime>
 </table>
 </row>
</dashboard>

3. Change <dashboard> to <form>. Don't forget the closing tag.
<form>
 <label>Chapter 4 Form 1</label>
...
 </row>
</form>

Simple XML Dashboards

[96]

4. Create a <fieldset> tag with any form elements.
<form>
 <label>Chapter 4 Form 1</label>
 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 </fieldset>
 <row>

5. Add appropriate variables in <searchString> to reflect the form values.

<searchString>
 sourcetype="impl_splunk_gen" error user="$user$"
 | stats count by logger
</searchString>

When we're through, our XML looks like this:

<?xml version='1.0' encoding='utf-8'?>
<form>

 <label>Chapter 4 Form 1</label>

 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 </fieldset>

 <row>
 <table>
 <searchString>
 sourcetype="impl_splunk_gen" error user="$user$"
 | stats count by logger</searchString>
 <title>Dashboard - Chapter 4 Form 1 - error</title>
 <earliestTime>-60m@m</earliestTime>
 <latestTime>now</latestTime>
 </table>
 </row>

</form>

Chapter 4

[97]

Let's click on Save and then search for bobby.

We now have a useful form for seeing errors by logger for a particular user.

Driving multiple panels from one form
A single form can also be used to drive multiple panels at once. Let's convert a copy
of the Errors dashboard that we created earlier in the chapter into a form:

1. Choose Manage Views from Dashboards & Views, or select Manager |
User interface | Views.

2. To make a copy, click on Clone on the same row as errors.

Simple XML Dashboards

[98]

3. In the editor that appears next, the value of View name will actually be used
as the filename and URL, so it must not contain spaces or special characters.
Let's call it errors_user_form.

4. The name in the menu comes from the label tag inside the dashboard's
XML. Let's change that to Errors User Form:
 <label>Errors User Form</label>

5. Save the new dashboard and click on Open next to the dashboard.
6. Next, convert all of the searches to inline using Edit | Edit search | Edit

as inline search, as we did in the previous example.
7. Change <dashboard> to <form> and add the same <fieldset> block

as before.
8. Insert user="$user$" into each <searchString> tag appropriately.

The XML in the end will be much larger than what we saw before, but hopefully
still understandable. Lines changed manually are highlighted in the following
code snippet:

<?xml version='1.0' encoding='utf-8'?>
<form>

 <label>Errors User Form</label>

 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 </fieldset>

<row>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | timechart count as "Error count" by network

Chapter 4

[99]

 </searchString>
 <title>Dashboard - Errors - errors by network timechart</title>
 <earliestTime>-4h@h</earliestTime>
 <latestTime>now</latestTime>
 <option name="charting.chart">line</option>
 </chart>
 </row>

 <row>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket bins=10 req_time | stats count by req_time
 </searchString>
 <title>Error count by req_times</title>
 <earliestTime>-4h@h</earliestTime>
 <latestTime>now</latestTime>
 <option name="charting.chart">pie</option>
 </chart>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | stats count by logger
 </searchString>
 <title>Errors by logger</title>
 <earliestTime>-4h@h</earliestTime>
 <latestTime>now</latestTime>
 <option name="charting.chart">pie</option>
 </chart>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | stats count by user
 </searchString>
 <title>Errors by user</title>
 <earliestTime>-4h@h</earliestTime>
 <latestTime>now</latestTime>
 <option name="charting.chart">pie</option>
 </chart>
 </row>

 <row>
 <event>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 </searchString>
 <title>Error events</title>
 <earliestTime>-4h@h</earliestTime>
 <latestTime>now</latestTime>
 <option name="count">10</option>

Simple XML Dashboards

[100]

 <option name="displayRowNumbers">true</option>
 <option name="maxLines">10</option>
 <option name="segmentation">outer</option>
 <option name="softWrap">true</option>
 </event>
 </row>

</form>

After clicking on Save, we should be back at the dashboard, which is now a form.
Searching for bobby renders this:

Chapter 4

[101]

Let's make a few more changes:

1. Remove the Errors by user pie chart.
2. Add a time input to <fieldset>.
3. Remove the earliest and latest times from the queries. If a panel has time

specified, it will always take precedence over the time field specified in
<fieldset>.

Our XML now looks like this:

<?xml version='1.0' encoding='utf-8'?>
<form>

 <label>Errors User Form</label>

 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 <input type="time" />
 </fieldset>

 <row>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | timechart count as "Error count" by network
 </searchString>
 <title>Dashboard - Errors - errors by network timechart</title>
 <!-- remove time specifier -->
 <option name="charting.chart">line</option>
</chart>
 </row>

 <row>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket bins=10 req_time | stats count by req_time
 </searchString>
 <title>Error count by req_times</title>
 <!-- remove time specifier -->
 <option name="charting.chart">pie</option>
 </chart>

Simple XML Dashboards

[102]

 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | stats count by logger
 </searchString>
 <title>Errors by logger</title>
 <!-- remove time specifier -->
 <option name="charting.chart">pie</option>
 </chart>
 <!-- errors by user removed -->
</row>

 <row>
 <event>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 </searchString>
 <title>Error events</title>
 <!-- remove time specifier -->
 <option name="count">10</option>
 <option name="displayRowNumbers">true</option>
 <option name="maxLines">10</option>
 <option name="segmentation">outer</option>
 <option name="softWrap">true</option>
 </event>
 </row>

</form>

Chapter 4

[103]

Our dashboard now looks like this:

Simple XML Dashboards

[104]

There are several other form elements available, with many options to customize
their behavior. To find the official documentation, search splunk.com for Build
and edit forms with simple XML.

There are also many useful examples in the documentation and in the UI Examples
app (see the UI Examples app section, earlier in this chapter).

Post-processing search results
You may have noticed that, in our previous example, all of our queries started
with the same actual query:

sourcetype="impl_splunk_gen" loglevel=error user="$user$"

It is of course wasteful to run the same query four times. Using
<searchPostProcess>, we can run the query once and then run commands on
the results for each panel.

The first step is to move the initial query out of the panel to the top level of the XML.
The results from <searchTemplate> will be used by a panel if it has no query of its
own or will be used as the source for <searchPostProcess>.

One additional piece of information is needed—the fields that are needed by the
panels. We can get this by using table, like so:

<?xml version='1.0' encoding='utf-8'?>
<form>
 <searchTemplate>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | table _time _raw network req_time logger
 </searchTemplate>

table mandates what fields will be passed from this query. _time is needed
by the timechart command. _raw is used by the events listing panel at the
bottom. network, req_time, and logger are used in the by clauses of each
panel, respectively.

Let's edit our dashboard XML accordingly.

<?xml version='1.0' encoding='utf-8'?>
<form>

 <label>Errors User Form PostProcess</label>

 <searchTemplate>

Chapter 4

[105]

 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | table _time _raw network req_time logger
 </searchTemplate>

 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 <input type="time" />
 </fieldset>

 <row>
 <chart>
 <searchPostProcess>
 timechart count as "Error count" by network
 </searchPostProcess>
 <title>Dashboard - Errors - errors by network timechart</title>
 <option name="charting.chart">line</option>
 </chart>
 </row>

 <row>
 <chart>
 <searchPostProcess>
 bucket bins=10 req_time | stats count by req_time
 </searchPostProcess>
 <title>Error count by req_times</title>
 <option name="charting.chart">pie</option>
 </chart>
 <chart>
 <searchPostProcess>
 stats count by logger
 </searchPostProcess>
 <title>Errors by logger</title>
 <option name="charting.chart">pie</option>
 </chart>
</row>

 <row>
 <event>
 <!-- remove searchString and use the events from searchTemplate
-->
 <title>Error events</title>
 <option name="count">10</option>

Simple XML Dashboards

[106]

 <option name="displayRowNumbers">true</option>
 <option name="maxLines">10</option>
 <option name="segmentation">outer</option>
 <option name="softWrap">true</option>
 </event>
 </row>

</form>

This will work exactly like our previous example but will only run the query once,
drawing more quickly, and saving resources for everyone.

Post-processing limitations
When using <searchPostProcess>, there is one big limitation and several smaller
limitations that often mandate a little extra work:

1. Only the first 10,000 results are passed from a raw query. To deal with
this, it is necessary to run events through stats, timechart, or table.
Transforming commands such as stats will reduce the number of rows
produced by the initial query, increasing the performance.

2. Only fields referenced specifically are passed from the original events.
This can be dealt with by using table (as we did in the previous example)
or by aggregating results into fewer rows with stats.

3. <searchPostProcess> elements cannot use form values. If you need the
values of form elements, you need to hand them along from the initial query.

4. Panels cannot use form values in a <searchString> element if they
are referenced in the top level <searchTemplate> element. This can be
accomplished in advanced XML, which we will cover in Chapter 8, Building
Advanced Dashboards.

The first limitation is the most common item to affect users. The usual solution
is to pre-aggregate the events into a superset of what is needed by the panels.
To accomplish this, our first task is to look at the queries and figure out what
fields need to be handed along for all queries to work.

Panel 1
Our first chart applies this post-processing:

timechart count as "Error count" by network

Chapter 4

[107]

For this query to work, we need _time, count and network. Since _time is the
actual time of the event, we need to group the times to reduce the number of rows
produced by stats. We can use bucket for this task. Our initial query will now
look like this:

sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket span=1h _time
 | stats count by network _time

This query will produce results such as those shown in the following screenshot:

To actually use these results in our panel, we need to modify the contents of
<searchPostProcess> slightly. Since count expects to see raw events, the count
will not be what we expect. We need instead to apply the sum function to the count
field. We will also set the span value to match the span we used in the initial query:

timechart span=1h sum(count) as "Error count" by network

Panel 2
In the next panel, we currently have:

bucket bins=10 req_time | stats count by req_time

Since the bucket command needs to run against the raw events, we will add the
command to the original query and also add req_time to stats:

sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket span=1h _time
 | bucket bins=10 req_time
 | stats count by network _time req_time

Simple XML Dashboards

[108]

Our results will then look like this:

The panel query then becomes:

stats sum(count) by req_time

Panel 3
The last panel that we can add is the simplest yet.

stats count by logger

We simply need to add logger to the end of our initial query.

sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket span=1h _time
 | bucket bins=10 req_time
 | stats count by network _time req_time logger

We will also need to replace count with sum(count), thus:

stats sum(count) by logger

Final XML
What we have built is a query that produces a row for every combination of fields.
You can avoid this work by using table, but doing this extra work to reduce the
rows produced by the initial query can increase performance considerably.

Chapter 4

[109]

After all of these changes, here is our final XML. The changed lines are highlighted:

<?xml version='1.0' encoding='utf-8'?>
<form>

 <label>Errors User Form PostProcess</label>

 <searchTemplate>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket span=1h _time
 | bucket bins=10 req_time
 | stats count by network _time req_time logger
 </searchTemplate>

 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 <input type="time" />
 </fieldset>

 <row>
 <chart>
 <searchPostProcess>
 timechart span=1h sum(count) as "Error count" by network
 </searchPostProcess>
 <title>Dashboard - Errors - errors by network timechart</title>
 <option name="charting.chart">line</option>
 </chart>
 </row>

 <row>
 <chart>
 <searchPostProcess>
 stats sum(count) by req_time
 </searchPostProcess>
 <title>Error count by req_times</title>
 <option name="charting.chart">pie</option>
 </chart>
 <chart>
 <searchPostProcess>
 stats sum(count) by logger
 </searchPostProcess>
 <title>Errors by logger</title>
 <option name="charting.chart">pie</option>
 </chart>
</row>

 <!-- remove the event listing, as per limitation #4 -->
</form>

Simple XML Dashboards

[110]

Summary
Once again, we have really only scratched the surface of what is possible, using
simplified XML dashboards. I encourage you to dig into the examples in the UI
Examples app (see the UI Examples app section, earlier in this chapter).

When you are ready to make additional customizations or use some of the cool
modules available from Splunk and the community, you can use advanced XML
features, which we will look at in Chapter 8, Building Advanced Dashboards.

In Chapter 5, Advanced Search Examples, we will dive into advanced search examples,
which can be a lot of fun. We'll expose some really powerful features of the search
language and go over a few tricks that I've learned over the years.

Advanced Search Examples
In this chapter, we will work through a few advanced search examples in great
detail. The examples and data shown are fictitious, but hopefully will spark some
ideas that you can apply to your own data. For a huge collection of examples and
help topics, check out Splunk answers at http://answers.splunk.com.

Using subsearches to find loosely related
events
The number of use cases for subsearches in the real world might be small, but for
those situations where they can be applied, subsearches can be a magic bullet. Let's
look at an example and then talk about some rules.

Subsearch
Let's start with these events:

2012-04-20 13:07:03 msgid=123456 from=mary@companyx.com

2012-04-20 13:07:04 msgid=654321 from=bobby@companyx.com

2012-04-20 13:07:05 msgid=123456 to=bob@vendor1.co.uk

2012-04-20 13:07:06 msgid=234567 from=mary@companyx.com

2012-04-20 13:07:07 msgid=234567 to=larry@vender3.org

2012-04-20 13:07:08 msgid=654321 to=bob@vendor2.co.uk

From these events, let's find out who mary has sent messages to. In these events,
we see that the from and to values are in different entries. We could use stats
to pull these events together, and then filter the resulting rows, like this:

sourcetype=mail to OR from
 | stats values(from) as from values(to) as to by msgid
 | search from=mary@companyx.com

Advanced Search Examples

[112]

The problem is that on a busy mail server, this search might retrieve millions
of events and then throw most of the work away. We want to actually use the
index efficiently, and a subsearch can help us do that.

Here is how we could tackle this with a subsearch:

[search sourcetype=mail from=mary@companyx.com | fields msgid]
 sourcetype=mail to

Let's step through everything that's happening here:

1. The search inside the brackets is run:
sourcetype=mail from=mary@companyx.com

Given our sample events, this will locate two events:

2012-04-20 13:07:03 msgid=123456 from=mary@companyx.com

2012-04-20 13:07:06 msgid=234567 from=mary@companyx.com

2. | fields msgid then instructs the subsearch to only return the field msgid.
Behind the scenes, the subsearch results are essentially added to the outer
search as an OR statement, producing this search:
 ((msgid=123456) OR (msgid=234567)) sourcetype=mail to

This will be a much more efficient search, using the index effectively.

3. This new search returns the answer we're looking for:

2012-04-20 13:07:05 msgid=123456 to=bob@vendor1.co.uk

2012-04-20 13:07:07 msgid=234567 to=larry@vender3.org

Subsearch caveats
To prevent a subsearch from being too expensive, they are limited by a time and
event count:

• The default time limit for the subsearch to complete is 60 seconds. If the
subsearch is still running at that point, the subsearch is finalized, and only
the events located up to that point are added to the outer search.

• Likewise, the default event limit for the subsearch is 1,000. After this point,
any further events will be truncated.

Chapter 5

[113]

If either of these limits is reached, there is probably a better way to accomplish the
task at hand.

Another consideration is that the fields returned from the subsearch must be
searchable. There is a magical field called "search" that will be added to the
query as a raw search term, but you have to do a little more work. See "search
context" later in this chapter for an example.

Nested subsearches
Subsearches can also be nested, if needed. With mail server logs, it is sometimes
necessary to find all the events related to a particular message. Some fictitious log
entries are given, such as:

... in=123 msgid=123456 from=mary@companyx.com

... msgid=123456 out=987 subject=Important

... out=987 to=bob@vendor1.co.uk

We can see that the first event has the value of from, but there is no longer anything
in common with the event that contains the to field. Luckily, there is an interim
event that does contain out, and contains msgid, which we do have in the first event.

We can write a query like this to find our events:

[search sourcetype=mail out
 [search sourcetype=mail from=mary@companyx.com | fields msgid]
 | fields out]
 sourcetype=mail to

Here are the parts of the search, numbered according to the order of execution:

1. [search sourcetype=mail from=mary@companyx.com | fields
msgid]

2. [search sourcetype=mail out

 | fields out]

3. sourcetype=mail to

Let's step through this example:

1. The innermost nested search (1) is run:
sourcetype=mail from=mary@companyx.com | fields msgid

Advanced Search Examples

[114]

2. This is attached to the next innermost search (2), like this:
sourcetype=mail out
 (msgid=123456)
 | fields out

3. The results of this search are attached to the outermost search (3), like this:

(out=987)
 sourcetype=mail to

This is the final query, which returns the answer we are looking for:

... out=987 to=bob@vendor1.co.uk

Using transaction
The transaction command lets you group events based on their proximity
to other events. This proximity is determined either by ranges of time, or by
specifying the text contained in the first and/or last event in a transaction.
This is an expensive process, but is sometimes the best way to group certain
events. Unlike other transforming commands, when using transaction, the original
events are maintained and instead are grouped together into multivalued events.

Some rules of thumb for the usage of transaction are as follows:

• If the question can be answered using stats, it will almost always be
more efficient.

• All of the events needed for the transaction have to be found in one search.
• When grouping is based on field values, and all of the events need at least

one field in common with at least one other event, then it can be considered
as part of the transaction. This doesn't mean that every event must have
the same field, but that all events should have some field from the list of
fields specified.

• When grouping is based solely on startswith and endswith, it is important
that transactions do not interleave in the search results.

• Every effort should be made to reduce the number of open transactions, as
an inefficient query can use a lot of resources. This is controlled by limiting
the scope of time with maxspan and maxpause, and/or by using startswith
and endswith.

Let's step through a few possible examples of the transaction command in use.

Chapter 5

[115]

Using transaction to determine the session
length
Some fictitious events are given as follows. Assuming this is a busy server,
there might be a huge number of events occurring between requests from
this particular session:

2012-04-27T03:14:31 user=mary GET /foo?q=1 uid=abcdefg

...hundreds of events...

2012-04-27T03:14:46 user=mary GET /bar?q=2 uid=abcdefg

...hundreds of thousands of events...

2012-04-27T06:40:45 user=mary GET /foo?q=3 uid=abcdefg

...hundreds of events...

2012-04-27T06:41:49 user=mary GET /bar?q=4 uid=abcdefg

The definition of "huge" depends on the infrastructure that you have
dedicated to Splunk. See Chapter 11, Advanced Deployments, for more
information about sizing your installation, or contact Splunk support.

Let's build a query to see the transactions belonging to mary. We will consider
a session complete when there have been no events for five minutes:

sourcetype="impl_splunk_web" user=mary
 | transaction maxpause=5m user

Let's step through everything that's happening here:

1. The initial query is run, simply returning all events for the user mary:
sourcetype="impl_splunk_web" user=mary

2. | transaction starts the command.
3. maxpause=5m indicates that any transaction that has not seen an event

for five minutes will be closed. On a large dataset, this time frame might
be too expensive, leaving a huge number of transactions open longer
than necessary.

4. user is the field to use to link events together. If events have different values
of user, a new transaction will start with the new value of user.

Advanced Search Examples

[116]

Given our events, we will end up with two groupings of events:

Each of these groupings can then be treated like a single event.

A transaction command has some interesting properties as follows:

• The field _time is assigned the value of _time from the first event in the
transaction.

• The field duration contains the time difference between the first and last
event in the transaction.

• The field eventcount contains the number of events in the transaction.
• All fields are merged into unique sets. In this case, the field user would only

ever contain mary, but the field q would contain the values [1,2], and [3,4]
respectively.

With these extra fields, we can render a nice table of transactions belonging to mary
like this:

sourcetype="impl_splunk_web" user=mary
 | transaction maxpause=5m user
 | table _time duration eventcount q

This will produce a table like this:

Chapter 5

[117]

Combining transaction with stats or timechart, we can generate statistics about
the transactions themselves:

sourcetype="impl_splunk_web" user=mary
 | transaction maxpause=5m user
 | stats avg(duration) avg(eventcount)

This would give us a table, as shown in the following screenshot:

Calculating the aggregate of transaction
statistics
Using the values added by transaction, we can somewhat naively answer the
questions of how long the users spend on a site and how many pages they view
per session.

Let's create sessions based on the uid field for all events. Using stats, we will then
calculate the average duration value, the average eventcount value, and while
we're at it, we will determine the distinct number of users and session IDs.

sourcetype="impl_splunk_web"
 | transaction maxpause=5m uid
 | stats avg(duration) avg(eventcount) dc(user) dc(uid)

This will give us a table as shown in the following screenshot:

Transactions have an average length of 892 seconds, and 227 events.

For large amounts of web traffic, you will want to calculate transactions
over small slices of time into a summary index. We will cover summary
indexes in Chapter 9, Using Summary Indexes.

Advanced Search Examples

[118]

Combining subsearches with transaction
Let's put what we learned about subsearches together with transactions. Let's
imagine that q=1 represents a particular entry point into our site, perhaps a link
from an advertisement. We can use subsearch to find users that clicked on the
advertisement, then use transaction to determine how long these users stayed
on our site.

To do this, first we need to locate the sessions initiated from this link. The search
can be as simple as:

sourcetype="impl_splunk_web" q=1

This will return events like:

2012-04-27T07:13:19 user=user1 GET /foo?q=1 uid=NDQ5NjIzNw

In our fictitious logs, the field uid represents a session ID. Let's use stats to
return one row per unique uid:

sourcetype="impl_splunk_web" q=1
 | stats count by uid

This will render a table like this (the first 10 rows are shown):

We need to add one more command, fields, to limit the fields that come out
of our subsearch:

sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid

Chapter 5

[119]

Now we feed this back to our outer search:

[search
 sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid
]
 sourcetype="impl_splunk_web"

After the subsearch runs, the combined query is essentially as follows:

((uid=MTAyMjQ2OA) OR (uid=MTI2NzEzNg) OR (uid=MTM0MjQ3NA))
 sourcetype="impl_splunk_web"

From this combined query, we now have every event from every uid that clicked a
link that contained q=1 in our time frame. We can now add transaction as we saw
earlier to combine these sessions into groups:

[search sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid]
 sourcetype="impl_splunk_web"
 | transaction maxpause=5m uid

This gives us the following transactions:

Advanced Search Examples

[120]

Notice that not all of our transactions start with q=1. This means that this transaction
did not start when the user clicked the advertisement. Let's make sure our
transactions start from the desired entry point of q=1:

[search sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid]
 sourcetype="impl_splunk_web"
 | transaction maxpause=5m
 startswith="q=1"
 uid

startswith indicates that a new transaction should start at the time the search term
q=1 is found in an event.

startswith only works on the field _raw (the actual event text). In
this case, startswith="q=1", is looking for the literal phrase "q=1",
not the field q.

This will cause any occurrence of q=1 to start a new transaction. We still have a
few transactions that do not contain q=1, which we will eliminate next.

Chapter 5

[121]

To discard the transactions that do not contain q=1, add a search command:

[search sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid]
 sourcetype="impl_splunk_web"
 | transaction maxpause=5m startswith="q=1" uid
 | search q=1

Finally, let's add stats to count the number of transactions, the distinct values
of uid, the average duration of each transaction, and the average number of clicks
per transaction:

[search sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid]
 sourcetype="impl_splunk_web"
 | transaction maxpause=5m startswith="q=1" uid
 | search q=1
 | stats count dc(uid) avg(duration) avg(eventcount)

This gives us a table as shown in the following screenshot:

We can swap timechart with stats to see how these statistics change over time:

[search sourcetype="impl_splunk_web" q=1
 | stats count by uid
 | fields uid]
 sourcetype="impl_splunk_web"
 | transaction maxpause=5m startswith="q=1" uid
 | search q=1
 | timechart bins=500 avg(duration) avg(eventcount)

This produces a graph as shown in the following screenshot:

Advanced Search Examples

[122]

Determining concurrency
Determining the number of users currently using a system is difficult, particularly if
the log does not contain events for both the beginning and end of a transaction. With
web server logs in particular, it is not quite possible to know when a user has left a
site. Let's investigate a couple of strategies for answering this question.

Using transaction with concurrency
If the question you are trying to answer is "how many transactions were happening
at a time?", you can use transaction to combine related events and calculate
the duration of each transaction. We will then use the concurrency command
to increase a counter when the events start, and decrease when the time has
expired for each transaction. Let's start with our searches from the previous section:

sourcetype="impl_splunk_web"
 | transaction maxpause=5m uid

This will return a transaction for every uid, assuming that if no requests were
made for five minutes, the session is complete. This provides results as shown
in the following screenshot:

By simply adding the concurrency command, we can determine the overlap of these
transactions, and find out how many transactions were occurring at a time. Let's also
add the table and sort commands to create a table:

sourcetype="impl_splunk_web"
 | transaction maxpause=5m uid

Chapter 5

[123]

 | concurrency duration=duration
 | table _time concurrency duration eventcount
 | sort _time

This produces a table as follows:

From these results, we can see that as transactions begin, concurrency increases
and then levels off as transactions expire. In our sample data, the highest value
of concurrency we see is 6.

Using concurrency to estimate server load
In the previous example, the number of concurrent sessions was quite low, since
each transaction is counted as one event, no matter how many events make up that
transaction. While this provides an accurate picture of the number of concurrent
transactions, it doesn't necessarily provide a clear picture of server load.

Looking at the timeline of our events, we see a large spike of events at the beginning
of our log. This did not affect the previous example, because most of these events
belong to a single user session.

Advanced Search Examples

[124]

Some web logs provide the time it took to serve a request. Our log does not have this
duration, so we'll use eval to simulate a value for duration per request:

sourcetype="impl_splunk_web"
 | eval duration=2
 | concurrency duration=duration
 | timechart max(concurrency)

Here we have set the duration of each request to 2 seconds. concurrency will use
the value of duration, treating each event as if it were a 2-second long transaction.
The timechart looks like this:

As we can see, in our sample data, the large spike of requests at the beginning of
our log translates to high concurrency.

Later in this chapter, we will calculate events per some period of time, which will
provide a very similar answer more efficiently, but it's not quite the same answer,
as the count will be by fixed slices of time instead of a running total that changes
with each event.

Calculating concurrency with a by clause
One limitation of the concurrency command is that there is no way to
simultaneously calculate concurrency for multiple sets of data. For instance,
what if you wanted to know the concurrency per host, as opposed to concurrency
across your entire environment?

In our sample set of data, we only have one host, but we have multiple values for
the network field. Let's use that field for our exercise.

Chapter 5

[125]

Our fake concurrency example from the previous example looks like this:

sourcetype=impl_splunk_gen network="*"
 | eval d=2
 | concurrency duration=d
 | timechart max(concurrency)

First, let's rebuild this search using the streamstats command. This command will
calculate rolling statistics and attach the calculated values to the events themselves.

To accommodate streamstats, we will need an event representing the start and
end of each transaction. We can accomplish this by creating a multivalued field,
essentially an array, and then duplicate our events based on the values in this field.

First, let's create our end time. Remember that _time is simply the UTC epoch time
at which this event happened, so we can treat it as a number.

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2

Piping that through table _time network endtime, we see:

Next, we want to combine _time and our endtime into a multivalued field, which
we will call t:

sourcetype=impl_splunk_gen network="*"
 | eval endtime=_time+2
 | eval t=mvappend(_time,endtime)

Advanced Search Examples

[126]

Piping that through table _time network t, we see:

As you can see, we have our actual _time, which Splunk always draws according to
the user's preferences, then our network value, and then the two values for t created
using mvappend. Now we can expand each event into two events, so that we have a
start and end event:

sourcetype=impl_splunk_gen network="*"
 | eval endtime=_time+2
 | eval t=mvappend(_time,endtime)
 | mvexpand t

mvexpand replicates each event for each value in the field specified. In our case,
each event will create two events, as t always contains two values. All other fields
are copied into the new event. With the addition of table _time network t, our
events now look like this:

Chapter 5

[127]

Now that we have a start and end event, we need to mark the events as such. We will
create a field named increment that we can use to create a running total. Start events
will be positive, while end events will be negative. As the events stream through
streamstats, the positive value will increment our counter, and the negative value
will decrement our counter.

Our start events will have the value of _time replicated in t, so we will use eval
to test this and set the value of increment accordingly. After setting increment,
we will reset the value of _time to the value of t, so that our end events appear
to have happened in the future.

sourcetype=impl_splunk_gen network="*"
 | eval endtime=_time+2
 | eval t=mvappend(_time,endtime)
 | mvexpand t
 | eval increment=if(_time=t,1,-1)
 | eval _time=t

With the addition of table _time network increment, this gives us results
as shown in the following screenshot:

streamstats expects events to be in the order that you want to calculate your
statistics. Currently, our fictitious end events are sitting right next to the start events,
but we want to calculate a running total of increment, based on the order of _time.
The sort command will take care of this for us. The 0 value before the field list
defeats the default limit of 10,000 rows.

sourcetype=impl_splunk_gen network="*"
 | eval endtime=_time+2
 | eval t=mvappend(_time,endtime)
 | mvexpand t

Advanced Search Examples

[128]

 | eval increment=if(_time=t,1,-1)
 | eval _time=t
 | sort 0 _time network increment

One thing to note at this point is that we have reset several values in
this query using commands. We have changed _time, and now we
have changed increment. A field can be changed as many times as
is needed, and the last assignment in the chain wins.

Now that our events are sorted by _time, we are finally ready for streamstats.
This command calculates statistics over a rolling set of events, in the order the
events are seen. In combination with our increment field, this command will
act just like concurrency, but will keep separate running totals for each of the
fields listed after by:

sourcetype=impl_splunk_gen network="*"
 | eval endtime=_time+2
 | eval t=mvappend(_time,endtime)
 | mvexpand t
 | eval increment=if(_time=t,1,-1)
 | eval _time=t
 | sort 0 _time network increment
 | streamstats sum(increment) as concurrency by network
 | search increment="1"

The last search statement will eliminate our synthetic end events.

Piping the results through table _time network increment concurrency,
we get these results:

Chapter 5

[129]

With the addition of timechart max(concurrency) by network, we see:

While this has been an interesting exercise, in the real world, you probably wouldn't
calculate web server utilization in such a manner. The number of events is
often quite large, and the time each event takes is normally negligible. This
approach would be more interesting for longer running processes, such as
batch or database processes.

The more common approach for web logs is to simply count events over time.
We'll look at several ways to accomplish this next.

Calculating events per slice of time
There are a number of ways to calculate events per some period of time. All of these
techniques rely on rounding _time down to some period of time, and then grouping
the results by the rounded "buckets" of _time.

Using timechart
The simplest approach to count events over time is simply to use timechart,
like this:

sourcetype=impl_splunk_gen
 | timechart span=1m count

Advanced Search Examples

[130]

In table view, we see:

Looking at a 24-hour period, we are presented with 1,440 rows, one per minute.

Charts in Splunk do not attempt to show more points than the
pixels present on the screen. The user is instead expected to change
the number of points to graph, using the bins or span attributes.
Calculating average events per minute, per hour shows another way of
dealing with this behavior.

If we only wanted to know about minutes that actually had events, instead of every
minute of the day, we could use bucket and stats, like this:

sourcetype=impl_splunk_gen
 | bucket span=1m _time
 | stats count by _time

bucket rounds the _time field of each event down to the minute in which it occurred,
which is exactly what timechart does internally. This data will look the same, but
any minutes with out events will not be included. Another way to accomplish the
same thing would be as follows:

sourcetype=impl_splunk_gen
 | timechart span=1m count
 | where count>0

Chapter 5

[131]

Calculating average requests per minute
If we take our previous queries and send the results through stats, we can calculate
the average events per minute, like this:

sourcetype=impl_splunk_gen
 | timechart span=1m count
 | stats avg(count) as "Average events per minute"

This gives us exactly one row:

Alternatively, we can use bucket to group events by minute, and stats to count
by each minute that has values, as shown in the following code:

sourcetype=impl_splunk_gen
 | bucket span=1m _time
 | stats count by _time
 | stats avg(count) as "Average events per minute"

We are now presented with a much higher number:

Why? In this case, our fictitious server was down for about 10 hours. In our second
example, only minutes that actually had events were included in the results, because
stats does not produce an event for every slice of time, as timechart does. To
illustrate this difference, look at the results of two queries:

sourcetype=impl_splunk_gen
 | timechart span=1h count

This query produces the following table:

Advanced Search Examples

[132]

Using bucket and stats, like this:

sourcetype=impl_splunk_gen
 | bucket span=1h _time
 | stats count by _time

We then get this table:

In this case, there are no results for the 9:00 AM to 10:00 AM time slot.

Calculating average events per minute, per
hour
One limitation of graphing in Splunk is that only a certain number of events can be
drawn, as there are only so many pixels available to draw. When counting or adding
values over varying periods of time, it can be difficult to know what timescale is
being represented. For example, given the following query:

earliest=-1h sourcetype=impl_splunk_gen
 | timechart count

Splunk will produce this graph:

Each of these bars represent one minute. If we change the time frame to 24 hours:

earliest=-24h sourcetype=impl_splunk_gen
 | timechart count

Chapter 5

[133]

We are presented with this graph:

There is no indication of what period of time is represented by each bar unless
you roll over the chart. In this case, each bar represents 30 minutes. This makes
the significance of the y axis difficult to judge. In both cases, we can add span=1m
to timechart, and we would know that each bar represents one minute. This would
be fine for a chart representing one hour, but a query for 24 hours would produce too
many points, and we would see a truncated chart.

Another approach would be to calculate the average events per minute, and then
calculate that value over whatever time frame we are looking at. timechart provides
a convenient function to accomplish this, but we have to do a little extra work.

earliest=-24h sourcetype=impl_splunk_gen
 | eval eventcount=1
 | timechart span=1h per_minute(eventcount)

per_minute calculates the sum of eventcount per minute, then finds the average
value for the slice of time each bar represents. In this case, we are seeing the average
number of events per hour.

Advanced Search Examples

[134]

This scale looks in line with our one-hour query, as we are now looking at the event
count per minute.

Like in the Calculating average requests per minute section, we could also ignore
minutes that had no data. We could accomplish that as shown in the following code:

earliest=-24h sourcetype=impl_splunk_gen
 | bucket span=1m _time
 | stats count by _time
 | timechart span=1h avg(count)

This approach does not penalize incomplete hours, for instance, the current hour.
The graph looks like this:

This gives us a better understanding of events for the current hour, but is arguably
not entirely truthful about the first hour in the graph.

Rebuilding top
The top command is very simple to use, but is actually doing a fair amount of
interesting work. I often start with top, then switch to stats count, but then wish
for something that top provides automatically. This exercise will show you how to
recreate all of the elements, so that you might pick and choose what you need.

Let's recreate the top command by using other commands.

Here is the query that we will replicate:

sourcetype="impl_splunk_gen" error
 | top useother=t limit=5 logger user

Chapter 5

[135]

The output looks like this:

To build count, we can use stats like this:

sourcetype="impl_splunk_gen" error
 | stats count by logger user

This gets us most of the way to our end goal:

Advanced Search Examples

[136]

To calculate the percentage that top includes, we will first need the total number
of events. The eventstats command lets us add statistics to every row, without
replacing the rows.

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount

This adds our totalcount column in the result:

Now that we have our total, we can calculate the percentage for each row.
While we're at it, let's sort the results in descending order by count:

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount
 | eval percent=count/totalcount*100
 | sort -count

Chapter 5

[137]

This gives us:

If not for useother=t, we could simply end our query with head 5, which would
return the first five rows. To accomplish the "other" row, we will have to label
everything beyond row 5 with a common value, and collapse the rows using stats.
This will take a few steps.

First, we need to create a counter field, which we will call rownum:

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount
 | eval percent=count/totalcount*100
 | sort -count
 | eval rownum=1

Advanced Search Examples

[138]

This gives us (only the first 10 rows are shown):

Next, using accum, we will increment the value of rownum:

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount
 | eval percent=count/totalcount*100
 | sort -count
 | eval rownum=1
 | accum rownum

This gives us (only the first 10 rows are shown):

Chapter 5

[139]

Now using eval, we can label everything beyond row 5 as OTHER, and flatten
rownum beyond 5:

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount
 | eval percent=count/totalcount*100
 | sort -count
 | eval rownum=1
 | accum rownum
 | eval logger=if(rownum>5,"OTHER",logger)
 | eval user=if(rownum>5,"OTHER",user)
 | eval rownum=if(rownum>5,6,rownum)

This gives us (only the first 10 rows are shown):

Next, we will recombine the values using stats. Events are sorted by the fields listed
after by, which will maintain our original order:

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount
 | eval percent=count/totalcount*100
 | sort -count
 | eval rownum=1
 | accum rownum
 | eval logger=if(rownum>5,"OTHER",logger)
 | eval user=if(rownum>5,"OTHER",user)
 | eval rownum=if(rownum>5,6,rownum)
 | stats
 sum(count) as count
 sum(percent) as percent
 by rownum logger user

Advanced Search Examples

[140]

This gives us:

We're almost done! All that's left to do is hide the rownum column. We can use
fields for this purpose:

sourcetype="impl_splunk_gen" error
 | stats count by logger user
 | eventstats sum(count) as totalcount
 | eval percent=count/totalcount*100
 | sort -count
 | eval rownum=1
 | accum rownum
 | eval logger=if(rownum>5,"OTHER",logger)
 | eval user=if(rownum>5,"OTHER",user)
 | eval rownum=if(rownum>5,6,rownum)
 | stats
 sum(count) as count
 sum(percent) as percent
 by rownum logger user
 | fields - rownum

This finally gives us what we are after:

Chapter 5

[141]

And we're done. Just a reminder of what we were reproducing:

top useother=t limit=5 logger user

That is a pretty long query to replicate a one liner! While completely recreating top
is not something practically needed, hopefully this example sheds some light on how
to combine commands in interesting ways.

Summary
I hope this chapter was enlightening, and has sparked some ideas that you can apply
to your own data. As stated in the introduction, Splunk Answers (http://answers.
splunk.com) is a fantastic place to find examples and general help. You can ask your
questions there, and contribute answers back to the community.

In the next chapter, we will use more advanced features of Splunk to help extend the
search language, and enrich data at search time.

Extending Search
In this chapter, we will look at some of the features that Splunk provides
to go beyond its already powerful search language. We will cover the following
with the help of examples:

• Tags and event types that help you categorize events, both for search
and reporting

• Lookups that allow you to add external fields to events as though they
were part of the original data

• Macros that let you reuse snippets of search in powerful ways
• Workflow actions that let you build searches and links based on field

values in an event
• External commands that allow you to use Python code to work with

search results

In this chapter, we will investigate a few of the many commands included in Splunk.
We will write our own commands in Chapter 12, Extending Splunk.

Using tags to simplify search
Tags allow you to attach a "marker" to fields and event types in Splunk. You can then
search and report on these tags later. Let's attach a tag to a couple of users
who are administrators. Start with the following search:

sourcetype="impl_splunk_gen"
 | top user

Extending Search

[144]

This search gives us a list of our users such as mary, linda, Bobby, jacky, bob,
and extrauser:

Let's say that in our group, linda and jacky are administrators. Using a standard
search, we can simply search for these two users like this:

sourcetype="impl_splunk_gen" (user=linda OR user=jacky)

Searching for these two users while going forward will still work, but instead if we
search for the tag value, we can avoid being forced to update multiple saved queries
in the future.

To create a tag, first we need to locate the field.

If the user field isn't already visible, click on it in the field picker, and then click on
Select and show in results:

Chapter 6

[145]

With the menu now visible, we can tag this value of the user field:

We are presented with the Tag This Field dialog as shown in the following
screenshot. Let's tag user=jacky with admin:

We now see our tag next to this field:

Once this is done, follow the steps used for user=jacky for user=linda.

With these two users tagged, we can search for the tag value instead of the
actual usernames:

sourcetype="impl_splunk_gen" tag::user="admin"

Under the covers, this query is unrolled into exactly the same query we started
with. The advantage is that if this tag is added to new values or removed from
existing ones, no queries have to be updated.

Extending Search

[146]

Some other interesting features of tags are as follows:

• Tags can be searched globally simply by using tag=tag_name; in this case
tag=admin. Using this capability, you can apply any tag to any field or
event type, and simply search for the tag. This is commonly used in security
applications to tag hosts, users, and event types that need special monitoring.

• Any field or event type can have any number of tags. Simply choose the tag
editor and enter multiple tag values separated by spaces.

• To remove a tag, simply edit the tags again and remove the value(s) you
want to remove.

• Tags can also be edited in Manager at Manager | Tags.

Using event types to categorize results
An event type is essentially a simple search definition, with no pipes or commands.
To define an event type, first make a search. Let's search for:

sourcetype="impl_splunk_gen" logger="AuthClass"

Let's say these events are login events. To make an event type, choose Event type...
from the Create menu, as shown here:

Chapter 6

[147]

This presents us with a dialog, where we can assign a Name string and optionally
any Tags(s) to this event type, as shown in the following screenshot:

Let's name our event type login.

We can now search for the same events using the event type:

eventtype=login

Event types can be used as part of another search, as follows:

eventtype=login loglevel=error

Event type definitions can also refer to other event types. For example, let's assume
that all login events that have a loglevel value of ERROR are in fact failed logins.

We can now save this into another event type using the same steps as mentioned
previously. Let's call it failed_login. We can now search for these events using
the following:

eventtype="failed_login"

Extending Search

[148]

Now, let's combine this event type with the users that we tagged as admin in the
previous section:

eventtype="failed_login" tag::user="admin"

This will find all failed logins for administrators. Let's now save this as yet another
event type, failed_admin_login. We can now search for these events, as follows:

eventtype="failed_admin_login"

As a final step, let's tag this event type. First, make sure the field eventtype is visible.
Your events should look like this:

Notice the three values of eventtype in this case. We are searching only for
eventtype=failed_admin_login, but this event also matches the definitions
of eventtype=failed_login and eventtype=login. Also notice our tagged
user. We are not searching for the admin tag, but jacky matches tag::user=admin,
so the value is tagged accordingly.

Following the steps in the previous section, tag eventtype=failed_admin_login
with the value actionable:

We can now search for these events with the following query:

tag::eventtype="actionable"

This technique is very useful for building up definitions of events that should appear
in alerts and reports. For example, consider the following query:

tag::eventtype="actionable"
 | table _time eventtype user

Chapter 6

[149]

This will now give us a very useful report, shown as follows:

Think about the ways that these event types are being used in this seemingly
simple query:

• Search: An event type definition is defined as a search, so it seems only
natural that you can search for events that match an event type definition.

• Categorization: As events are retrieved, if the events match the definition
of any event type, those events will have that event type's name added to
the eventtype field.

• Tagging: Since event types can also be tagged, tag values assigned to certain
event types can be used for both search and categorization. This is extremely
powerful for assigning common tags to varied sets of results; for instance,
events that belong in a report or should cause an alert.

For clarity, let's unroll this query to see what Splunk is essentially doing under the
covers. The query is expanded from the tag and event type definitions, as follows:

• tag::eventtype="actionable"

• eventtype="failed_admin_login"

• eventtype="failed_login" tag::user="admin"

• (eventtype=login loglevel=error) tag::user="admin"

• ((sourcetype="impl_splunk_gen" logger="AuthClass")
loglevel=error) tag::user="admin"

• ((sourcetype="impl_splunk_gen" logger="AuthClass")
loglevel=error) (user=linda OR user=jacky)

Extending Search

[150]

Let's explain what happens at each step:

1. The initial search.
2. All event types that are tagged actionable are substituted. In this case, we

only have one, but if there were multiple, they would be combined with OR.
3. The definition of the event type failed_admin_login is expanded.
4. The definition of failed_login is expanded.
5. The definition of login is expanded.
6. All values of user with the tag admin are substituted, separated by OR.

Any changes to tagged values or event type definitions will be reflected the next
time they are used in any search or report.

Using lookups to enrich data
Sometimes, information that would be useful for reporting and searching is not
located in the logs themselves, but is available elsewhere. Lookups allow us to
enrich data, and even search against the fields in the lookup as if they were part
of the original events.

The source of data for a lookup can be either a Comma Separated Values (CSV) file
or a script. We will cover the most common use of a CSV lookup in the next section.
We will cover scripted lookups in Chapter 12, Extending Splunk.

There are three steps for fully defining a lookup: creating the file, defining the lookup
definition, and optionally wiring the lookup to run automatically.

Defining a lookup table file
A lookup table file is simply a CSV file. The first line is treated as a list of field names
for all other lines.

Lookup table files are managed at Manager | Lookups | Lookup table files. Simply
upload a new file and give it a filename, preferably ending in .csv.

The lookup file users.csv is included in ImplementingSplunkDataGenerator:

user,city,department,state
mary,Dallas,HR,TX
jacky,Dallas,IT,TX
linda,Houston,HR,TX
Bobby,Houston,IT,TX
bob,Chicago,HR,IL

Chapter 6

[151]

With this file uploaded, we can immediately use it with the lookup command.
In the simplest case, the format of the lookup command is as follows:

lookup [lookup definition or file name] [matching field]

An example of its usage is as follows:

sourcetype="impl_splunk_gen"
 | lookup users.csv user

We can now see all of the fields from the lookup file as if they were in the events:

We can use these fields in reports:

sourcetype="impl_splunk_gen"
 | lookup users.csv user
 | stats count by user city state department

This will produce results as shown in the following screenshot:

This is all that is required to use a CSV lookup to enrich data, but if we do a little
more configuration work, we can make the lookup even more useful.

Extending Search

[152]

Defining a lookup definition
Though you can access a lookup immediately by the filename, defining the lookup
allows you to set other options, reuse the same file, and later make the lookup run
automatically. Creating a definition also eliminates a warning message that appears
when simply using the filename.

Navigate to Manager | Lookups | Lookup definitions and click on the New button.

Stepping through these fields, we have:

• Destination app: This is where the lookup definition will be stored.
This matters because you may want to limit the scope of a lookup to
a particular application for performance reasons.

• Name: This is the name that you will use in search strings.
• Type: The options here are File-based or External. We will cover External,

or scripted, in Chapter 12, Extending Splunk.

Chapter 6

[153]

• Lookup file: We have chosen users.csv in this case.
• Configure time-based lookup: Using a time-based lookup, you can have

a value that changes at certain points in time while going forward. For
instance, if you built a lookup of what versions of software were deployed
to what hosts at what time, you could generate a report on errors or response
times by the software version.

• Advanced options: This simply exposes the remaining fields.
• Minimum matches: This defines the number of items in the lookup that

must be matched. With a value of 1, the value of Default matches will be
used if no match is found.

• Maximum matches: This defines the maximum number of matches before
stopping. For instance, if there were multiple entries for each user in our
lookup file, this value would limit the number of rows that would be
applied to each event.

• Default matches: This value will be used to populate all fields from the
lookup when no match is found, and Minimum matches is greater than 0.

After clicking on Save, we can use our new lookup in the following manner:

sourcetype="impl_splunk_gen"
 | lookup userslookup user
 | stats count by user city state department

This will produce results as shown in the following screenshot:

Notice that extrauser now appears in the table since it has values for city, state,
and department.

Lookup tables have other features, including wildcard lookups, CIDR lookups, and
temporal lookups. We will use those features in later chapters.

Extending Search

[154]

Defining an automatic lookup
Automatic lookups are, in this author's opinion, one of the coolest features in Splunk.
Not only are the contents of the lookup added to events as if they were always there,
but you can also search against the fields in the lookup file as if they were part of the
original event.

To define the automatic lookup, navigate to Manager | Lookups | Automatic
lookups and click on the New button:

Let's step through the fields in this definition:

• Destination app: This is the application where the definition will live. We'll
discuss the implications of this choice in Chapter 7, Working with Apps.

• Name: This name is used in the configuration. It should not contain spaces
or special characters. We will discuss its significance in Chapter 10,
Configuring Splunk.

• Lookup table: This is the name of the lookup definition.
• Apply to: This lets us choose which events are acted upon. The usual case

is sourcetype, which must match a sourcetype name exactly. Alternatively,
you can specify source or host, with or without wildcards.

Chapter 6

[155]

• Lookup input fields: This defines the fields that will be queried in the lookup
file. One field must be specified, but multiple fields can be specified. Think of
this as a join in a database. The left side is the name of the field in the lookup
file. The right side is the name of the existing field in our events.

• Lookup output fields: This section lets you decide what columns to include
from the lookup file and optionally overrides the names of those fields. The
left side is the name of the field in the lookup file. The right side is the field
to be created in the events. If left blank, the default behavior is to include all
fields from the lookup, using the names defined in the lookup file.

• Overwrite field values: If this option is selected, any existing field values
in an event will be overwritten by a value with the same name from the
lookup file.

After clicking on Save, we see the listing of Automatic lookups. Initially, the
Sharing option is Private, which will cause problems if you want to share searches
with others. To share the lookup, first click on Permissions.

This presents us with the Permissions page. Change the value of Object should
appear in to All apps. We will discuss these permissions in greater detail in Chapter
10, Configuring Splunk.

Extending Search

[156]

We now have a fully automatic lookup, enriching the source type impl_splunk_gen
based on the value of user in each event. To show the power of this lookup, let's
search for a field in the lookup file, as if it were part of the events:

source="impl_splunk_gen" department="HR" | top user

Even though department isn't in our events at all, Splunk will reverse the lookup,
find the values of user that are in department, and run the search for those users.
This returns the following result:

Let's combine this search with an event type that we defined earlier. To find the most
recent failed login for each member of HR, we can run:

source="impl_splunk_gen" department="HR" eventtype="failed_login"
 | dedup user
 | table _time user department city state

This returns:

The dedup command simply says to keep only one event for each value of user. As
events are returned in the "most recent first" order, this query will return the most
recent login for each user.

We will configure more advanced lookups in later chapters.

Chapter 6

[157]

Troubleshooting lookups
If you are having problems with a lookup, very often the problem is with
permissions. Check permissions at all three of these paths:

• Manager | Lookups | Lookup table files
• Manager | Lookups | Lookup definitions
• Manager | Lookups | Automatic lookups

Once permissions are squared away, be sure to keep the following points in mind:

• Check your spelling of the fields.
• By default, lookup values are case sensitive.
• If your installation is using multiple indexers, it may take some time for the

lookup files and definitions to be distributed to your indexers, particularly
if the lookup files are large or you have installed many apps that have assets
to be distributed.

• A rule of thumb is that a lookup file should not have more than two million
rows. If a lookup is too large, an external lookup script may be required.

Using macros to reuse logic
A macro serves the purpose of replacing bits of search language with expanded
phrases. Using macros can help you reuse logic and greatly reduce the length
of queries.

Let's use one of our examples from Chapter 5, Advanced Search Examples, as our
example case:

sourcetype="impl_splunk_web" user=mary
 | transaction maxpause=5m user
 | stats avg(duration) avg(eventcount)

Extending Search

[158]

Creating a simple macro
Let's take the last two lines of our query and convert them to a macro. First, navigate to
Manager | Advanced search | Advanced search | Search macros and click on New.

Walking through our fields, we have:

• Destination app: This is where the macro will live.
• Name: This is the name we will use in our searches.
• Definition: This is the text that will be placed in our search.
• Use eval-based definition?: If checked, the Definition string is treated

as an eval statement instead of raw text. We'll use this option later.
• The remaining fields are used if arguments are specified. We will use

these in our next example.

Chapter 6

[159]

After clicking on Save, our macro is now available for use. We can use it like this:

sourcetype="impl_splunk_web" user=mary `webtransactions`

webtransactions is enclosed by backticks. This is similar to the usage of backticks
on a Unix command line, where a program can be executed to generate an argument.
In this case, `webstransactions` is simply replaced with the raw text defined in the
macro, recreating the query we started with.

Creating a macro with arguments
Let's collapse the entire search into a macro that takes two arguments, the user
and a value for maxpause.

Extending Search

[160]

Be sure to remove newlines from your search definition. Macros do
not appear to work with embedded newlines.

Walking through our fields, we have:

• Name: This is the name we will use in our searches. The parentheses and
integer (2) specify how many arguments this macro expects.

• Definition: We have defined the entire query in this case. The variables
are defined as $user$ and $maxpause$. We can use these names because
we have defined the variables under Arguments.

• Arguments: This list assigns variable names to the values handed in to
the macro.

After clicking on Save, our macro is now available for use. We can use it like this:

webtransactions_user_maxpause(mary,5m)

or

`webtransactions_user_maxpause("mary","5m")`

Using eval to build a macro
We will use this feature in conjunction with a workflow action later in this chapter.
See the Building a workflow action to show field context section later in this chapter.

Creating workflow actions
Workflow actions allow us to create custom actions based on the values in search
results. The two supported actions either run a search or link to a URL.

Chapter 6

[161]

Running a new search using values from an
event
To build a workflow action, navigate to Manager | Fields | Workflow actions and
click on New. You are presented with this form:

Extending Search

[162]

Let's walk through the following fields:

• Destination app: This is the app where the workflow action definition
will live.

• Name: This is the name used in configuration files. This name cannot
contain spaces, but underscores are fine.

• Label: This is what will appear in the menu. It can contain variables. In this
case, we have included $user$, which will be populated with the value of
the user field from the event.

• Apply only to the following fields: This workflow action will only appear
on an event if all fields specified in this list have a value. Show action in
will determine which menus can contain the workflow action.

• Apply only to the following event types: Only show this workflow action
for events that match a particular event type. For instance, if you defined an
event type called login, you might want a custom workflow action to search
for all logins for this particular user over the last week.

• Show action in: The three options are Event menu, Fields menus, and Both.
 ° The Event menu option is to the left of the event. If Apply only to

the following fields is not empty, the workflow action will only be
present if all of the fields specified are present in the event.

 ° The Fields menus option falls to the right of each field under the
events. If Apply only to the following fields is not empty, only
the fields listed will contain the workflow action.

 ° Both will show the workflow action in both places, following the
same rules.

• Action type: The choices here are search or link. We have chosen search.
We will try link in the next section.

• Search string: This is the search template to run. You will probably use
field values here, but it is not required.

• Run in app: If left blank, the current app will be used, otherwise the search
will be run in the app that is specified. You would usually want to leave
this blank.

• Open in view: If left blank, the current view will be used. If you expect
to use an events listing panel on dashboards, you probably want to set
this to flashtimeline.

Chapter 6

[163]

• Run search in: The choices here are New window or Current window.
• Time range: You can specify a specific time range here, either in epoch

time or relative time. Leaving Latest time empty will search to the latest
data available.

• Use the same time range as the search that created the field listing:
In most cases, you will either check this checkbox or provide a value in
at least Earliest time. If you do not, the query will run over all time, which
is not usually what you want. It is also possible to specify the time frame
in our query.

After we click on Save, we now see our action in the event workflow action menu
like this:

After we choose the option, a new window appears with our results, like this:

Linking to an external site
A workflow action can also link to an external site, using information from an event.
Let's imagine that your organization has some other web-based tool. If that tool can
accept arguments via GET or POST requests, then we can link directly to it from the
Splunk results.

Extending Search

[164]

Create a new workflow action as we did in the previous example, but change Action
type to link. The options change to those shown in the following screenshot:

Splunk will encode any variables in the URL so that special characters survive.
If you need a variable to not be encoded—for instance, if the value is actually part
of the URL—add an exclamation point before the variable name, like this:

$!user$

If Link method is set to post, then more input fields appear, allowing you to specify
post arguments like this:

Choosing this workflow action will open a new window with the URL we specified,
either in the current window or in a new window according to the value of Open
link in.

The fields used by a workflow action can also come from automatic
lookups. This is useful in cases where the external tool needs some
piece of information that is not in your events, but can be derived
from your events.

Chapter 6

[165]

Building a workflow action to show field
context
Show Source is available as a workflow action on all events. When chosen, it
runs a query that finds events around the current event for the same source and
host. While this is very useful, sometimes it would be nice to see events that have
something else in common besides source, and to see those events in the regular
search interface, complete with the timeline and field picker.

To accomplish this, we will make a workflow action and macro that work in tandem
to build the appropriate query. This example is fairly advanced, so don't be alarmed
if it doesn't make a lot of sense.

Building the context workflow action
First, let's build our workflow action. As before, make a workflow action with Action
type set to search.

Extending Search

[166]

Let's step through our values, as follows:

• Name: This can be anything. Let's name it after our time frame.
• Label: This is what will appear in the menu. You may notice two special

fields, @field_name and @field_value. These two fields only make sense
when Show action in is set to Fields menus.

There are a number of @variables available to workflow actions.
Search http://docs.splunk.com/ for Create workflow
actions in Splunk to find complete documentation.

• Apply only to the following fields: This can be blank or * to indicate
all fields.

• Show action in: We have chosen Fields menus in this case.
• Action type: We are running a search. It's a fairly strange search, as we

are using a macro, but it is still technically a search.
• Search string: The fact that this query is a macro doesn't matter to the

workflow action, `context("$@field_name$", "$@field_value$", "$_
time$", "-1m", "+5m")`. We will create the context macro next.

• Run in app: With nothing chosen, this macro will execute the search in
the current app.

• Open in view: We want to make sure that our query executes in
flashtimeline, so we explicitly set it.

• Run search in: We choose New window.
• Time: Contrary to the previous advice, we have left the time frame

unspecified. We will be overriding the search times in the search itself.
Anything specified here will be replaced.

After clicking on Save, the workflow action is available on all the field menus.

Chapter 6

[167]

Choosing this menu item generates this search:

'context("ip", "1.22.3.3", "2012-05-16T20:23:59-0500", "-1m", "+5m")'

Let us consider our query definition:

'context("$@field_name$", "$@field_value$", "$_time$", "-1m", "+5m")'

We can see that the variables were simply replaced, and the rest of the query was left
unchanged. _time is not in the format I would expect (I would have expected the
epoch value), but we can work with it.

Building the context macro
When searching, you can specify the time ranges in the query itself. There are several
fields that allow us to specify the time. They are as follows:

• earliest: This is the earliest time, inclusive. It can be specified as either a
relative time or an epoch time in seconds.

• latest: This is the latest time, exclusive. Only events with a date before this
time will be returned. This value can be specified as either a relative time or
an epoch time in seconds.

• now: Using this field, you can redefine what relative values in earliest and
latest are calculated against. It must be defined as epoch time in seconds.

Now, given our inputs, let's define our variable names:

• field_name = ip
• field_value = 1.22.3.3
• event_time = 2012-05-16T20:23:59-0500
• earliest_relative = -1m
• latest_relative = +5m

The query we want to run looks like this:

earliest=-1m latest=+5m now=[epoch event time] ip=1.22.3.3

The only value we don't have is now. To calculate this, there is a function available to
eval called strptime. To test this function, let's use |stats to create an event, build
an event_time field, and parse the value. Consider the following code:

|stats count
 | eval event_time="2012-05-16T20:23:59-0500"
 | eval now=strptime(event_time,"%Y-%m-%dT%H:%M:%S%z")

Extending Search

[168]

This gives us the following table:

Good references for strptime formats can be found on modern
Linux systems by running man strptime or man date, or by
searching google.com. Splunk has several special extensions
to strptime that can be found by searching for Enhanced
strptime() support at http://docs.splunk.com/.

Now that we have our epoch value for now, we can build and test our query like this:

earliest=-1m latest=+5m now=1337217839 ip=1.22.3.3

This gives us a normal event listing, from one minute before our event to
five minutes after our selected event, only showing events that have the field
ip in common.

Now that we have our search, and our eval statement for converting the value
of now, we can actually build our macro in Manager | Advanced search | Search
macros | Add new.

Chapter 6

[169]

This macro is using a few interesting features, as follows:

• Macros can take arguments. The number of arguments is specified in the
name of the macro by appending ([argument count]) to the name of the
macro. In this case, we are expecting five arguments.

• The definition of a macro can actually be an eval statement. This means we
can use eval functions to build our query based on some value handed to the
macro. In this case, we are using strptime. Things to note about this feature
are as follows:

 ° The eval statement is expected to return a string. If your statement
fails, for some reason, to return a string, the user will see an error.

 ° The variable names specified are replaced before the eval statement
is executed. This means that there may be issues with escaping the
values in the variables, so some care is required to make sure whether
your value contains quotes or not as is expected.

• Use eval-based definition? is checked to indicate that this macro is expected
to be parsed as an eval statement.

• In the Arguments field, we specify names for the arguments handed in.
These are the names we refer to in the Definition field.

After clicking on Save, we have a working macro. You might make adjustments
to this workflow action to better suit your needs. Let's change the definition to
sort events by ascending time, and prevent searching across indexes. Change the
workflow action definition Search string to:

'context("$@field_name$", "$@field_value$", "$_time$", "-1m", "+5m")'
 index=$index$ | reverse

Let's expand this just for clarity, like this:

'context("$@field_name$", "$@field_value$", "$_time$", "-1m", "+5m")'
 index=$index$ | reverse

'context("ip", "1.22.3.3", "2012-05-16T20:23:59-0500", "-1m", "+5m")'
 index=implsplunk | reverse

earliest=-1m latest=+5m now=1337217839 ip=1.22.3.3

 index=implsplunk | reverse

You can create multiple workflow actions that specify different time frames,
or include other fields, for instance host.

Extending Search

[170]

Using external commands
The Splunk search language is extremely powerful, but at times, it may be
either difficult or impossible to accomplish some piece of logic by using nothing
but the search language. To deal with this, Splunk allows external commands
to be written in Python. A number of commands ship with the product, and a
number of commands are available in apps at http://splunk-base.splunk.com/.

Let's try out a few of the included commands. The documentation for the commands
is included with other search commands at http://docs.splunk.com/. You can
find a list of all included commands, both internal and external, by searching for All
search commands. We will write our own commands in Chapter 12, Extending Splunk.

Extracting values from XML
Fairly often, machine data is written in XML format. Splunk will index this data
without any issue, but it has no native support for XML. Though XML is not an
ideal logging format, it can usually be parsed simply enough. Two commands
are included in the search app that can help us pull fields out of XML.

xmlkv
xmlkv uses regular expressions to create fields from tag names. For instance,
given the following XML:

<doc><a>foobar</doc>

xmlkv will produce the fields a=foo and b=bar. To test, try this:

|stats count
 | eval _raw="<doc><a>foobar</doc>"
 | xmlkv

This produces a table, as shown in the following screenshot:

As this command is using regular expressions its advantage is that malformed or
incomplete XML statements will still produce results.

Chapter 6

[171]

Using an external command is significantly slower than using the native
search language, particularly if you are dealing with large sets of data. If
it is possible to build the required fields using rex or eval, it will execute
faster and it will introduce a smaller load on your Splunk servers. For
instance, in the previous example, the fields could be extracted using:
| rex "<a.*?>(?<a>.*?)<" | rex "<b.*?>(?.*?)<"

XPath
XPath is a powerful language for selecting values from an XML document. Unlike
xmlkv, which uses regular expressions, XPath uses an XML parser. This means that
the event must actually contain a valid XML document.

For example, consider the following XML document:

<d>
 foo
 foo2
 bar
</d>

If we wanted the value for the a tag whose x attribute equals 2, the XPath code
would look like this:

//d/a[@x='2']

To test this, let's use our |stats trick to generate a single event and execute the
xpath statement:

|stats count
 | eval _raw="<d>foofoo2bar</d>"
 | xpath outfield=a "//d/a[@x='2']"

This generates an output, as shown in the following screenshot:

xpath will also retrieve multivalue fields. For instance, this xpath statement simply
says to find any a field:

|stats count
 | eval _raw="<d>foofoo2bar</d>"
 | xpath outfield=a "//a"

Extending Search

[172]

The result of this query is as shown:

There are many XPath references available online. My favorite quick reference is at
the Mulberry Technologies website: http://www.mulberrytech.com/quickref/
xpath2.pdf.

Using Google to generate results
External commands can also act as data generators, similar to the stats command
that we used to create test events. There are a number of these commands, but let's
try a fun example, google. This command takes one argument, a search string, and
returns the results as a set of events. Let's execute a search for splunk:

|google "splunk"

This produces a table, as shown in the following screenshot:

This example may not be terribly useful, but you can probably think of external
sources that you would like to query as a starting point, or even to populate a
subsearch for another Splunk query. We'll write an example data generator in
Chapter 12, Extending Splunk.

Summary
In this chapter, we quickly covered tags, event types, lookups, macros, workflow
actions, and external commands. I hope these examples and discussions will serve
as starting points for your apps. More examples can be found in the official Splunk
documentation at http://docs.splunk.com/ and at http://splunk-base.
splunk.com/.

In the next chapter, we will dive into creating and customizing our own apps.

Working with Apps
In this chapter, we will explore what makes up a Splunk app. We will:

• Inspect included apps
• Install apps from Splunkbase
• Build our own app
• Customize app navigation
• Customize app look and feel

Defining an app
In the strictest sense, an app is a directory of configurations and, sometimes, code.
The directories and files inside have a particular naming convention and structure.
All configurations are in plain text, and can be edited using your choice of text editor.

Apps generally serve one or more of the following purposes:

1. A container for searches, dashboards, and related configurations: This
is what most users will do with apps. This is not only useful for logical
grouping, but also for limiting what configurations are applied and at
what time. This kind of app usually does not affect other apps.

2. Providing extra functionality: Many objects can be provided in an app
for use by other apps. These include field extractions, lookups, external
commands, saved searches, workflow actions, and even dashboards.
These apps often have no user interface at all; instead they add
functionality to other apps.

Working with Apps

[174]

3. Configuring a Splunk installation for a specific purpose: In a distributed
deployment, there are several different purposes that are served by
the multiple installations of Splunk. The behavior of each installation
is controlled by its configuration, and it is convenient to wrap those
configurations into one or more apps. These apps completely change
the behavior of a particular installation.

Included apps
Without apps, Splunk has no user interface, rendering it essentially useless. Luckily,
Splunk comes with a few apps to get us started. Let's look at a few of these apps:

• gettingstarted: This app provides the help screens that you can access from
the launcher. There are no searches, only a single dashboard that simply
includes an HTML page.

• search: This is the app where users spend most of their time. It contains
the main search dashboard that can be used from any app, external search
commands that can be used from any app, admin dashboards, custom
navigation, custom css, a custom app icon, a custom app logo, and many
other useful elements.

• splunk_datapreview: This app provides the data preview functionality
in the admin interface. It is built entirely using JavaScript and custom
REST endpoints.

• SplunkDeploymentMonitor: This app provides searches and dashboards
to help you keep track of your data usage and the health of your Splunk
deployment. It also defines indexes, saved searches, and summary indexes.
It is a good source for more advanced search examples.

• SplunkForwarder and SplunkLightForwarder: These apps, which are
disabled by default, simply disable portions of a Splunk installation so
that the installation is lighter in weight. We will discuss these in greater
detail in Chapter 11, Advanced Deployments.

If you never create or install another app, and instead simply create saved searches
and dashboards in the app search, you can still be quite successful with Splunk.
Installing and creating more apps, however, allows you to take advantage of
others' work, organize your own work, and ultimately share your work with others.

Chapter 7

[175]

Installing apps
Apps can either be installed from Splunkbase or uploaded through the admin
interface. To get started, let's navigate to Manager | Apps, or choose Manage apps...
from the App menu as shown in the following screenshot:

Installing apps from Splunkbase
If your Splunk server has direct access to the Internet, you can install apps from
Splunkbase with just a few clicks. Navigate to Manager | Apps and click on
Find more apps online. The most popular apps will be listed as follows:

Working with Apps

[176]

Let's install a pair of apps and have a little fun. First, install Geo Location Lookup
Script (powered by MAXMIND) by clicking on the Install free button. You will be
prompted for your splunk.com login. This is the same login that you created when
you downloaded Splunk. If you don't have an account, you will need to create one.

Next, install the Google Maps app. This app was built by a Splunk customer
and contributed back to the Splunk community. This app will prompt you to
restart Splunk.

Once you have restarted and logged back in, check the App menu.

Google Maps is now visible, but where is Geo Location Lookup Script?
Remember that not all apps have dashboards; nor do they necessarily have
any visible components at all.

Using Geo Location Lookup Script
Geo Location Lookup Script provides a lookup script to provide geolocation
information for IP addresses. Looking at the documentation, we see this example:

eventtype=firewall_event | lookup geoip clientip as src_ip

You can find the documentation for any Splunkbase app by searching
for it at splunkbase.com, or by clicking on Read more next to any
installed app by navigating to Manager | Apps | Browse more apps.

Let's read through the arguments of the lookup command:

• geoip: This is the name of the lookup provided by Geo Location
Lookup Script.

Chapter 7

[177]

You can see the available lookups by going to Manager | Lookups |
Lookup definitions.

• clientip: This is the name of the field in the lookup that we are
matching against.

• as src_ip: This says to use the value of src_ip to populate the field
before it; in this case, clientip. I personally find this wording confusing.
In my mind, I read this as "using" instead of "as".

Included in the ImplementingSplunkDataGenerator app (available at
http://packtpub.com/) is a sourcetype instance named impl_splunk_ips,
which looks like this:

2012-05-26T18:23:44 ip=64.134.155.137

The IP addresses in this fictitious log are from one of my websites. Let's see some
information about these addresses:

sourcetype="impl_splunk_ips"
 | lookup geoip clientip AS ip
 | top client_country

This gives us a table similar to the one shown in the following screenshot:

That's interesting. I wonder who is visiting my site from Slovenia!

Working with Apps

[178]

Using Google Maps
Now let's do a similar search in the Google Maps app. Choose Google Maps from
the App menu. The interface looks like the standard search interface, but with a map
instead of an event listing. Let's try this remarkably similar (but not identical)
query using a lookup provided in the Google Maps app:

sourcetype="impl_splunk_ips"
 | lookup geo ip

The map generated looks like this:

Unsurprisingly, most of the traffic to this little site came from my house in Austin,
Texas. We'll use the Google Maps app for something more interesting in Chapter 8,
Building Advanced Dashboards.

Installing apps from a file
It is not uncommon for Splunk servers to not have access to the Internet, particularly
in a datacenter. In this case, follow these steps:

Chapter 7

[179]

1. Download the app from splunkbase.com. The file will have a
.spl or .tgz extension.

2. Navigate to Manager | Apps.
3. Click on Install app from file.
4. Upload the downloaded file using the form provided.
5. Restart if the app requires it.
6. Configure the app if required.

That's it. Some apps have a configuration form. If this is the case, you will see a Set
up link next to the app when you go to Manager | Apps. If something goes wrong,
contact the author of the app.

If you have a distributed environment, in most cases the app only
needs to be installed on your search head. The components that your
indexers need will be distributed automatically by the search head.
Check the documentation for the app.

Building your first app
For our first app, we will use one of the templates provided with Splunk. To get
started, navigate to Manager | Apps and then click on Create app. The following
page will open:

Working with Apps

[180]

Set the fields as follows:

• Set Name to Implementing Splunk App One. This name will be visible
on the home screen, in the App menu, and in the app banner in the upper
left of the window.

• Set Folder name to is_app_one. This value will be the name of the app
directory on the filesystem, so you should limit your name to letters,
numbers, and underscores.

• Set Visible to Yes. If your app simply provides resources for other apps
to use, there may be no reason for it to be visible.

• Set Template to barebones. The barebones template contains sample
navigation and the minimal configuration required by an app. The sample_
app template contains many example dashboards and configurations.

After clicking on Save, we can now visit our app by going to Manager | Apps,
in the App menu, and in the Home app.

Now that we have our app, we can create searches and dashboards, and maintain
them in our app. The simplest way to ensure that your objects end up in your app
is to verify that the app banner is correct before creating objects or before entering
the Splunk Manager. Our app banner looks like this:

Create a dashboard called Errors using the following searches (refer back to
Chapter 4, Simple XML Dashboards, for detailed instructions):

error sourcetype="impl_splunk_gen" | timechart count by user
error sourcetype="impl_splunk_gen" | top user
error sourcetype="impl_splunk_gen" | top logger

Chapter 7

[181]

This produces the following result:

The searches appear under Searches & Reports, and our new dashboard appears in
the navigation menu under Views:

Working with Apps

[182]

Editing navigation
Navigation is controlled by an XML file that can be accessed by going to Manager |
User interface | Navigation menus.

There can only be one active navigation file per app, and it is always called default.
After clicking on the name, we see the XML provided by the barebones template:

<nav>
 <view name="flashtimeline" default='true' />
 <collection label="Dashboards">
 <view source="unclassified" match="dashboard"/>
 <divider />
 </collection>
 <collection label="Views">
 <view source="unclassified" />
 <divider />
 </collection>
 <collection label="Searches & Reports">
 <collection label="Reports">
 <saved source="unclassified" match="report" />
 </collection>
 <divider />
 <saved source="unclassified" />
 </collection>
</nav>

The structure of the XML is essentially the following:

nav
 view
 saved
 collection
 view
 a href
 saved
 divider
 collection
 ...

Chapter 7

[183]

The logic of navigation is probably best absorbed by simply editing it and seeing what
happens. You should keep a backup, as this XML is somewhat fragile and Splunk does
not provide any kind of version control. Here are some general details about nav:

• Children of nav appear in the navigation bar.
• collection: Children of collection tags appear in a menu or submenu.

If the child tags do not produce any results, the menu will not appear.
The divider tag always produces a result, so it can be used to ensure
that a menu appears.

• view: This tag represents a dashboard, with the following attributes:
 ° name is the name of the dashboard filename, without .xml.
 ° The first view element with the attribute default='true' will

load automatically when the app is selected.
 ° The label of each view is based on the contents of the label tag

in the dashboard XML, not the name of the dashboard filename.
 ° match="dashboard" selects all dashboards whose filename contains

dashboard. If you want to group dashboards, you may want to
follow a naming convention to make grouping more predictable.

 ° source="unclassified" essentially means "all views that have
not been previously associated to a menu". In other words, this
will match dashboards that were not explicitly referenced by name
or matched using the match attribute or a different view tag.

• a href: You can include standard HTML links of the form .
The link is untouched and passed along as written.

• saved: This tag represents a saved search, with the following attributes:

 ° name is equal to the name of a saved search.
 ° match="report" selects all saved searches that have report in

their names.
 ° source="unclassified" essentially means "all searches that have

not yet been previously associated to a menu". In other words, this
will match searches that were not explicitly referenced by name or
matched using the match attribute or a different saved tag.

Working with Apps

[184]

Let's customize our navigation. We'll make a few changes like these:

• Create an entry specifically for our errors dashboard
• Add default='true' so that this dashboard loads by default
• Simplify the Views and Searches collections

These changes are reflected in the following code:

<nav>
 <view name="errors" default='true' />
 <view name="flashtimeline" />
 <collection label="Views">
 <view source="unclassified" />
 </collection>
 <collection label="Searches">
 <saved source="unclassified" />
 </collection>
</nav>

Our navigation now looks like this screenshot:

With this navigation in place, all new dashboards will appear under Views, and all
new saved searches will appear under Searches.

Notice that Advanced Charting and Google Maps appear under Views. Neither
of these dashboards are part of our app, but are visible because of the permissions
in their respective apps. We will discuss permissions in more detail in the Object
permissions section.

Customizing the appearance of your app
It is helpful to further customize the appearance of your application, if for no other
reason than to make it more obvious which app is currently active.

Chapter 7

[185]

Customizing the launcher icon
The launcher icon is seen both in the Home app and in Splunkbase, if you decide to
share your app. The icon is a 36 x 36 PNG file named appIcon.png. I have created a
simple icon for our sample app (please don't judge my art skills):

To use the icon follow these steps:

1. Navigate to Manager | Apps.
2. Click on Edit properties next to our app, Implementing Splunk App One.
3. Click on Upload asset and select the file.
4. Click on Save.

Our icon will now appear on the launcher screen, like in the following screenshot:

Using custom CSS
The look of the Splunk application is controlled via CSS. One common element
to change is the application icon in the application bar. Follow these steps to do
just that:

1. First, create a file named application.css. This file will be loaded on
every dashboard of the application containing it. The CSS is listed later
in this section.

As of Splunk Version 4.3.2, the first time application.css is
added to an app of Version 4.3.2, a restart is required before the file
is served to the users. Subsequent updates do not require a restart.

Working with Apps

[186]

2. Next, create a file named appLogo.png. This file can be called anything,
as we will reference it explicitly in our CSS file. Borrowing CSS from the
search app, we will make our file 155 x 43 pixels:

3. For each file, follow the same steps as for uploading the launcher icon:

1. Navigate to Manager | Apps.
2. Click on Edit properties next to our app, Implementing Splunk

App One.
3. Click on Upload asset and select the file.
4. Click on Save.

Our CSS references a few classes in the application header bar:

.appHeaderWrapper h1 {
 display: none;
}

.appLogo {
 height: 43px;
 width: 155px;
 padding-right: 5px;
 float: left;
 background: url(appLogo.png) no-repeat 0 0;
}

.appHeaderWrapper {
 background: #612f00;
}

Let's step through these classes:

• .appHeaderWrapper h1: By default, the name of the app appears as text in
the upper-left corner. This definition hides that text.

Chapter 7

[187]

• .appLogo: This sets the background of the upper-left block to our custom file.
The height and width should match the dimensions of our logo.

• .appHeaderWrapper: This sets the background color of the top bar.

With everything in place, our top bar now looks like this:

Using custom HTML
In some apps, you will see static HTML blocks. This can be accomplished using both
simple and complex dashboards.

Custom HTML in a simple dashboard
In a simple dashboard, you can simply insert an <html> element inside a <row>
element, and include static HTML inline. For example, after uploading an image
named graph.png, the following block can be added to any dashboard:

<row>
 <html>
 <table>
 <tr>
 <td></td>
 <td>
 <p>Lorem ipsum ...</p>
 <p>Nulla ut congue ...</p>
 <p>Etiam pharetra ...</p>
 </td>
 </tr>
 </table>
 </html>
</row>

Working with Apps

[188]

The XML would render this panel:

This approach has the advantage that no other files are needed. The disadvantage,
however, is that you cannot build the HTML document in an external program and
upload it untouched.

You could also reference custom CSS using this method by adding classes to
application.css and then referencing those classes in your HTML block.

Using ServerSideInclude in a complex dashboard
You can also develop static pages as HTML documents, referencing other files in the
same directory. Let's build a slightly more complicated page using graph.png, but
also a style from application.css as follows:

1. Place graph.png and application.css into a directory.
2. Create a new HTML file. Let's name it intro.html.
3. Add any styles for your page to application.css.
4. Upload the new HTML file and modified CSS file.
5. Create the dashboard referencing the HTML file.

Starting with the HTML from our previous example, let's make it a complete
document: move the image to a CSS style and add a class to our text, like this:

<html>
 <head>
 <link rel="stylesheet" type="text/css"
 href="application.css" />

Chapter 7

[189]

 </head>
 <body>
 <table>
 <tr>
 <td class="graph_image"></td>
 <td>
 <p class="lorem">Lorem ipsum ...</p>
 <p class="lorem">Nulla ut congue ...</p>
 <p class="lorem">Etiam pharetra ...</p>
 </td>
 </tr>
 </table>
 </body>
</html>

Maintaining the classes for the navigation bar, add our page classes to application.
css, like this:

.appHeaderWrapper h1 {
 display: none;
}

.appLogo {
 height: 43px;
 width: 155px;
 padding-right: 5px;
 float: left;
 background: url(appLogo.png) no-repeat 0 0;
}

.appHeaderWrapper {
 background: #612f00;
}

.lorem {
 font-style:italic;
 background: #CCCCCC;
 padding: 5px;
}

.graph_image {
 height: 306px;
 width: 235px;
 background: url(graph.png) no-repeat 0 0;
}

Working with Apps

[190]

We can now open this file in a browser. Clipped for brevity, the page looks like this:

To include this external HTML document, we have to use advanced XML. We will
cover advanced XML more thoroughly in Chapter 8, Building Advanced Dashboards.

First, build a minimal dashboard like this:

<view template="dashboard.html">
 <label>Included</label>
 <!-- chrome here -->
 <module
 name="ServerSideInclude"
 layoutPanel="panel_row1_col1">
 <param name="src">intro.html</param>
 </module>
</view>

All "simple" XML dashboards are converted to "advanced" XML
behind the scenes. We will take advantage of this later.

Now upload our files as we did before under the Customizing the launcher icon
section. The page should render nearly identically as the file did in the browser,
with the addition of the border around the panel:

Chapter 7

[191]

A few things to note from this overly simplified example are as follows:

1. Your CSS classes may end up merging with styles included by Splunk in
unexpected ways. Using the developer tools in any modern browser will
help greatly.

2. The navigation and dashboard title were excluded for brevity. They would
normally go where we see <!-- chrome here -->. This is interesting
because there are cases where you would want to exclude the navigation;
something that cannot be done with simple XML.

3. The static files, such as application.css, can be edited directly on the
filesystem, and the changes will be seen immediately. This is not true of the
dashboard XML file. We will cover these locations later in the App directory
structure section.

Object permissions
Almost all objects in Splunk have permissions associated with them. The permissions
essentially have the following three options:

• Private: Only the user that created the search can see or use the object,
and only in the app where it was created

• App: All users that have permission to read an object may use that object
in the context of the app that contains that object

• Global: All users that have permission to read an object may use that object
in any app

Working with Apps

[192]

How permissions affect navigation
To see a visible instance of permissions in action, let's look at our navigation.
In our application, Implementing Splunk App One, our navigation looks like this:

If you recall the navigation XML we built before, this menu is controlled by the
following XML:

<collection label="Views">
 <view source="unclassified" />
</collection>

There is no mention of any of these dashboards. Here is where they are coming from:

• Advanced Charting is inherited from the Search app. Its permissions are set
to Global.

• Included is from this app. Its permissions are set to App.
• Google Maps is inherited from the Google Maps app. Its permissions are set

to Global.

If the permissions of a dashboard or search are set to Private, a green
dot appears next to the name in the navigation.

Dashboards or searches shared from other apps can also be referenced by name.
For example, most apps, including ours, will include a link to flashtimeline,
which appears as Search, the label in that dashboard's XML:

 <view name="flashtimeline" />

This allows us to use this dashboard in the context of our app so that all of the other
objects that are scoped solely to our app will be available.

How permissions affect other objects
Almost everything you create in Splunk has permissions. To see all objects, navigate
to Manager | All configurations.

Chapter 7

[193]

Everything with the value system in the App column ships with Splunk. These items
live in $SPLUNK_HOME/etc/system. We will cover these different configuration types
in Chapter 10, Configuring Splunk, but the important takeaway is that the Sharing
settings affect nearly everything.

When you create new objects and configurations, it is important to share all
related objects. For instance, in Chapter 6, Extending Search, we created lookups.
It is important that all three parts of the lookup definition are shared appropriately,
or users will be presented with error messages.

Correcting permission problems
If you see errors about permissions, it is more than likely that some object still
has Sharing set to Private, or is shared at the App level but needs to be Global.
Follow these steps to find the object:

1. Navigate to Manager | All configurations.
2. Change App context to All.
3. Sort by using the Sharing status. Click twice so that Private objects come

to the top.
4. If there are too many items to look through, filter the list by adding terms to

the search field in the upper-right corner, or changing the App context value.

Working with Apps

[194]

5. Fix the permissions appropriately. In most cases, the permissions you want
will look like this:

You should choose All apps with care. For instance, when building a
lookup, it is common to share the lookup table file and lookup definition
across all apps. This allows the lookup to be used in searches by other
apps. It is less common to share the Automatic lookup, as this can affect
performance in other apps in unforeseen ways.

App directory structure
If you do much beyond building searches and dashboards, sooner or later you will
need to edit files in the filesystem directly. All apps live in $SPLUNK_HOME/etc/
apps/. On Unix systems, the default installation directory is /opt/splunk. On
Windows, the default installation directory is c:\Program Files\Splunk.
This is the value that $SPLUNK_HOME will inherit on startup.

Stepping through the most common directories, we have:

• appserver: This directory contains files that are served by the Splunk web
app. The files that we uploaded in earlier sections of this chapter are stored
in appserver/static.

• bin: This is where command scripts belong. These scripts are then referenced
in commands.conf. This is also a common location for scripted inputs to live,
though they can live anywhere.

Chapter 7

[195]

• default and local: These two directories contain the vast majority of the
configurations that make up an app. We will discuss these configurations
and how they merge in Chapter 10, Configuring Splunk. Here is a brief look:

 ° Newly created, unshared objects live in $SPLUNK_HOME/etc/users/
USERNAME/APPNAME/local.

 ° Once an object is shared at the App or Global level, the object is
moved to $SPLUNK_HOME/etc/APPNAME/local.

 ° Files in local take precedence over its equivalent value in default.
 ° Dashboards live in (default|local)/data/ui/views.
 ° Navigations lives in (default|local)/data/ui/nav.
 ° When editing files by hand, my general rule of thumb is to place

configurations in local unless the app will be redistributed. We'll
discuss this in more detail in the Adding your app to Splunkbase section.

• lookups: Lookup files belong in this directory. They are then referenced in
(default|local)/transforms.conf.

• metadata: The files default.meta and local.meta in this directory tell
Splunk how configurations in this app should be shared. It is generally
much easier to edit these settings through the Manager interface.

Let's look at the contents of our is_app_one app, which we created earlier:

appserver/static/appIcon.png
appserver/static/application.css
appserver/static/appLogo.png
appserver/static/graph.png
appserver/static/intro.html
bin/README
default/app.conf
default/data/ui/nav/default.xml
default/data/ui/views/README
local/app.conf
local/data/ui/nav/default.xml
local/data/ui/views/errors.xml
local/data/ui/views/included.xml
local/savedsearches.conf
local/viewstates.conf
metadata/default.meta
metadata/local.meta

Working with Apps

[196]

The file metadata/default.meta, and all files in default/, were provided in the
template app. We created all of the other files. With the exception of the png files,
all files are plain text.

Adding your app to Splunkbase
Splunkbase (splunkbase.com) is a wonderful community-supported site that
Splunk put together for users and Splunk employees alike to share Splunk apps.
The apps on Splunkbase are a mix of fully realized apps, add-ons of various sorts,
and just example code. Splunk has good documentation for sharing apps at the
following URL:

http://docs.splunk.com/Documentation/Splunk/latest/Developer/
ShareYourWork

Preparing your app
Before we upload our app, we need to make sure all of our objects are shared
properly, move our files to default, and configure app.conf.

Confirming sharing settings
To see sharing settings for all our objects, navigate to Manager | All configurations
and set the App context option:

In the case of a self-contained app like ours, all objects should probably be set to App
under Sharing. If you are building an app to share lookups or commands, the value
should be Global.

Chapter 7

[197]

Cleaning up our directories
When you upload an app, you should move everything out of local and into
default. This is important because all changes a user makes will be stored in local.
When your app is upgraded, all files in the app will be replaced, and the user's changes
will be lost. The following Unix commands illustrate what needs to be done:

1. First, let's copy our app to another location, perhaps /tmp:
cp -r $SPLUNK_HOME/etc/apps/is_app_one /tmp/

2. Next, let's move everything from local to default. In the case of .xml files,
we can simply move the files; but .conf files are a little more complicated,
and we need to merge them manually. The following code does this:
cd /tmp/is_app_one
mv local/data/ui/nav/*.xml default/data/ui/nav/
mv local/data/ui/views/*.xml default/data/ui/views/
#move conf files, but don't replace conf files in default
mv -n local/*conf default/

3. Now we need to merge any .conf files that remain in local. The only
configuration we have left is app.conf;

local/app.conf default/app.conf

[ui]

[launcher]

[package]
check_for_updates = 1

[install]
is_configured = 0

[ui]
is_visible = 1
label = Implementing Splunk
App One

[launcher]
author =
description =
version = 1.0

Configuration merging is additive, with any values from local added
to the values in default. In this case, the merged configuration would
be as follows:

[install]
is_configured = 0

[ui]

Working with Apps

[198]

is_visible = 1
label = Implementing Splunk App One

[launcher]
author =
description =
version = 1.0

[package]
check_for_updates = 1

4. Place this merged configuration in default/app.conf and delete local/
app.conf.

We will cover configuration merging extensively in Chapter 10, Configuring Splunk.

Packaging your app
To package an app, we need to be sure that there are a few values in default/app.
conf, and only then build the archive.

First, edit default/app.conf like this:

[install]
is_configured = 0
build = 1

[ui]
is_visible = 1
label = Implementing Splunk App One

[launcher]
author = My name
description = My great app!
version = 1.0

[package]
check_for_updates = 1
id = is_app_one

build is used in all URLs, so it should be incremented to defeat browser caching.
id should be a unique value in Splunkbase—you will be alerted if the value
is not unique.

Chapter 7

[199]

Next, we need to build a tar file compressed with gzip. With a modern version of
tar, the command is simply the following:

cd /tmp
tar -czvf is_app_one.tgz is_app_one
#optionally rename as spl
mv is_app_one.tgz is_app_one.spl

The Splunk documentation (http://docs.splunk.com/Documentation/Splunk/
latest/AdvancedDev/PackageApp) covers this extensively, including Mac and
Windows procedures.

Uploading your app
Now that we have our archive, all we have to do is send it up to Splunkbase.
First, click on the upload an app button.

Then fill out the form shown in the following screenshot:

Working with Apps

[200]

More than likely your app will not be compatible with Splunk 3.x, so uncheck
the 3.x checkbox.

Once Splunk personnel approve your app, it will appear in Splunkbase, ready for
others to download.

Summary
In this chapter, we covered installing, building, customizing, and sharing apps.
Apps are a loose concept in Splunk, with many different purposes served by a
simple directory of files. Hopefully we have covered the basics well enough for
you to get started on your own great apps. In later chapters, we will build even more
complicated object types, as well as custom code to extend Splunk in unique ways.

In the next chapter, we will dig into advanced dashboards, both covering what
can be done with Splunk alone, and what can be done with the help of a few
popular apps.

Building Advanced
Dashboards

In Chapter 4, Simple XML Dashboards, we covered building dashboards using simple
XML. We first used the wizards provided in Splunk, and then edited the resultant
XML. When you reach the limits of what can be accomplished with simple XML,
one option is to dive into Splunk's advanced XML.

Reasons for working with advanced XML
Here are a few reasons to use advanced XML:

1. More control over layout: With advanced XML, you have better control
over where form elements and chrome appear, and somewhat improved
control over the placement of the output.

2. Custom drilldowns: It is only possible to create custom drilldowns
from tables and charts using advanced XML.

3. Access to more parameters: The modules in simple XML actually
use advanced XML modules, but many parameters are not exposed.
Sometimes the desire is actually to disable features, and this is only
possible by using advanced XML.

4. Access to more modules: There are many modules not available when
using simple XML, for example the search bar itself. All extra modules
provided by the apps at Splunkbase, for example Google Maps, are for
use in advanced XML.

Building Advanced Dashboards

[202]

Reasons for not working with
advanced XML
There are also a number of reasons to not work with advanced XML:

1. Steep learning curve: Depending on what technologies you are comfortable
working with, and possibly on how well the rest of this chapter is written,
the learning curve for advanced XML can be steep.

2. No direct control over HTML: If there is a particular HTML you want to
produce from search results, this may not be as simple as you had hoped.
Short of writing your own module, you must work within the bounds of the
options provided to the existing modules, modify CSS with application.
css, or modify the HTML using JavaScript.

3. No direct control over logic: If you need specific things to happen when
you click on specific table cells, particularly based on other values in the
same row, this can only be accomplished by modifying the document using
JavaScript. This is possible, but it is not well documented. Examples can
be found at http://splunkbase.com both in answers posts and sample
applications. Check out customBehaviors in the third-party
app Sideview Utils for an alternative.

If you have specific layout or logic requirements, you may be better
served using one of the Splunk APIs available at http://dev.
splunk.com and writing applications in your favorite language.

Development process
When building dashboards, my approach is generally as follows:

1. Create the needed queries.
2. Add the queries to a simple XML dashboard. Use the GUI tools to tweak

the dashboard as much as possible. Finish all graphical changes at this
stage, if possible.

3. Convert the simple XML dashboard to a form if form elements are needed.
Make all logic work with simple XML if possible.

4. Convert the simple XML dashboard to an advanced XML dashboard. There
is no reverse conversion possible, so this should be done as late as possible,
and only if needed.

5. Edit the advanced XML dashboard accordingly.

Chapter 8

[203]

The idea is to take advantage of the Splunk GUI tools as much as possible, letting the
simple XML conversion process add all of the advanced XML that you would have
to otherwise find yourself. We covered steps 1-3 in the previous chapters. Step 4 is
covered in the Converting simple XML to advanced XML section.

Advanced XML structure
Before we dig into the modules provided, let's look at the structure of the XML
itself and cover a couple of concepts.

The tag structure of an advanced XML document is essentially:

view
 module
 param
 ...
 module
 ...

The main concept of Splunk's XML structure is that the effects of modules flow
downstream to child modules. This is a vital concept to understand. The XML
structure has almost nothing to do with layout, and everything to do with the
flow of data.

Let's look at a simple example like this:

<view
 template="dashboard.html">

 <label>Chapter 8, Example 1</label>

 <module
 name="HiddenSearch"
 layoutPanel="panel_row1_col1"
 autoRun="True">
 <param name="earliest">-1d</param>
 <param name="search">error | top user</param>

 <module name="SimpleResultsTable"></module>

 </module>

</view>

Building Advanced Dashboards

[204]

This document produces a sparse dashboard with one panel like this:

Let's step through this example line by line.

• <view: Open the outer tag. This tag begins all advanced XML dashboards.
• template="dashboard.html">: Set the base HTML template. Dashboard

layout templates are stored in $SPLUNK_HOME/share/splunk/search_
mrsparkle/templates/view/. Among other things, the templates define
the panels available for use in layoutPanel.

• <label>Chapter 8, Example 1</label>: Set the label used by navigation.
• <module: Begin our first module declaration.
• name="HiddenSearch": The name of the module to use. HiddenSearch

runs a search but displays nothing, relying instead on child modules to
render the output.

• layoutPanel="panel_row1_col1": This states where in the dashboard to
display our panel. It seems strange to put this attribute on a module that
displays nothing, but layoutPanel must be specified on every immediate
child of view. See the Understanding layoutPanel section later for more details.

• autoRun="True">: Without this attribute, the search does not run when the
dashboard loads, and instead waits for user interaction from form elements.
Since we have no form elements, we need this attribute to see the results.

• <param name="earliest">-1d</param>: It is very important to specify a
value for earliest, as the query will by default run over All time.

param values affect only the module tag they are nested
directly inside.

Chapter 8

[205]

• <param name="search">error | top user</param>: The actual query
to run.

• <module name="SimpleResultsTable"></module>: This module simply
displays a table of the events produced by a parent module. Since there are
no param tags specified, the defaults for this module will be used.

• </module>: Close the HiddenSearch module. This is required for valid XML,
but it also implies that the scope of influence for this module is closed. To
reiterate, only the downstream modules of the HiddenSearch module will
receive the events it produces.

• </view> : Close the document.

This is a very simple dashboard. It lacks navigation, form elements, job status,
and drilldowns. Adding all of these things is initially somewhat complicated
to understand. Luckily, you can build a dashboard in simple XML, convert it
to advanced XML, and then modify the provided XML as needed.

Converting simple XML to advanced XML
Let's go back to one of the dashboards we created in Chapter 4, Simple XML
Dashboards, errors_user_form. We built this before our app, so it still lives in the
Search app. In my instance, this URL is http://mysplunkserver:8000/en-US/app/
search/errors_user_form.

Just to refresh, the simple XML behind this dashboard looks like:

<?xml version='1.0' encoding='utf-8'?>
<form>

 <fieldset>
 <input type="text" token="user">
 <label>User</label>
 </input>
 <input type="time" />
 </fieldset>

 <label>Errors User Form</label>

 <row>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | timechart count as "Error count" by network

http://mysplunkserver:8000/en-US/app/search/errors_user_form
http://mysplunkserver:8000/en-US/app/search/errors_user_form

Building Advanced Dashboards

[206]

 </searchString>
 <title>
 Dashboard - Errors - errors by network timechart
 </title>
 <option name="charting.chart">line</option>
 </chart>
 </row>

 <row>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | bucket bins=10 req_time | stats count by req_time
 </searchString>
 <title>
 Error count by req_times
 </title>
 <option name="charting.chart">pie</option>
 </chart>
 <chart>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 | stats count by logger
 </searchString>
 <title>Errors by logger</title>
 <option name="charting.chart">pie</option>
 </chart>
</row>

 <row>
 <event>
 <searchString>
 sourcetype="impl_splunk_gen" loglevel=error user="$user$"
 </searchString>
 <title>Error events</title>
 <option name="count">10</option>
 <option name="displayRowNumbers">true</option>
 <option name="maxLines">10</option>
 <option name="segmentation">outer</option>
 <option name="softWrap">true</option>
 </event>
 </row>

</form>

Chapter 8

[207]

In the simple XML, the layout and logic flow are tied together.

Before this simple XML is rendered to the user, Splunk first dynamically converts
it to advanced XML in memory. We can access that advanced XML by appending
?showsource=1 to any URL, like this:

http://mysplunkserver:8000/en-US/app/search/errors_user_
form?showsource=1

This produces a page with a tree view of the module structure like this:

http://mysplunkserver:8000/en-US/app/search/errors_user_form
http://mysplunkserver:8000/en-US/app/search/errors_user_form

Building Advanced Dashboards

[208]

This is followed by a textbox containing the raw XML like this:

An abbreviated version of the advanced XML version of errors_user_form follows:

<view
... template="dashboard.html">
 <label>Errors User Form</label>
 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">
...<module name="Message" layoutPanel="messaging">
...<module name="TitleBar" layoutPanel="viewHeader">
...<module name="ExtendedFieldSearch" layoutPanel="viewHeader">
 <param name="replacementMap">
 <param name="arg">
 <param name="user"/>
 </param>
 </param>
 <param name="field">User</param>
 <param name="intention">
... <module name="TimeRangePicker">
 <param name="searchWhenChanged">False</param>
 <module name="SubmitButton">
 <param name="allowSoftSubmit">True</param>
 <param name="label">Search</param>
 <module
 name="HiddenSearch"

Chapter 8

[209]

 layoutPanel="panel_row1_col1"
 group="Dashboard - Errors - errors by network timechart"
 autoRun="False">
 <param name="search">
 sourcetype="impl_splunk_gen"
 loglevel=error user="$user$"
 | timechart count as "Error count" by network
 </param>
 <param name="groupLabel">
 Dashboard - Errors - errors by network timechart
 </param>
 <module name="ViewstateAdapter">
 <param name="suppressionList">
 <item>charting.chart</item>
 </param>
 <module name="HiddenFieldPicker">
 <param name="strictMode">True</param>
 <module name="JobProgressIndicator">
 <module name="EnablePreview">
 <param name="enable">True</param>
 <param name="display">False</param>
 <module name="HiddenChartFormatter">
 <param name="charting.chart">line</param>
 <module name="JSChart">
 <param name="width">100%</param>
 <module name="Gimp"/>
 <module name="ConvertToDrilldownSearch">
 <module name="ViewRedirector">
... </module>
 <module name="ViewRedirectorLink">
... </module>
 <module
 name="HiddenSearch"
 layoutPanel="panel_row2_col1"
 group="Error count by req_times"
 autoRun="False">
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error
 user="$user$"
 | bucket bins=10 req_time | stats count by req_time
 </param>
 <param name="groupLabel">Error count by req_times</param>
... </module>

Building Advanced Dashboards

[210]

 <module
 name="HiddenSearch"
 layoutPanel="panel_row2_col2"
 group="Errors by logger"
 autoRun="False">
 <param name="search">
 sourcetype="impl_splunk_gen"
 loglevel=error user="$user$"
 | stats count by logger
 </param>
 <param name="groupLabel">Errors by logger</param>
... </module>
 <module
 name="HiddenSearch"
 layoutPanel="panel_row3_col1"
 group="Error events"
 autoRun="False">
 <param name="search">
 sourcetype="impl_splunk_gen"
 loglevel=error
 user="$user$"
 </param>
 <param name="groupLabel">Error events</param>
 <module name="ViewstateAdapter">
... <module name="HiddenFieldPicker">
... <module name="JobProgressIndicator"/>
 <module name="Paginator">
 <param name="count">10</param>
... <module name="EventsViewer">
... <module name="Gimp"/>
... </module>
...
</view>

This XML is more verbose than we actually need, but luckily it is easier to delete
code than to create it.

Module logic flow
The main concept of nested modules is that parent (upstream) modules affect child
(downstream) modules. Looking at the first panel, the full module flow is:

<module name="ExtendedFieldSearch">
 <module name="TimeRangePicker">
 <module name="SubmitButton">
 <module name="HiddenSearch">

Chapter 8

[211]

 <module name="ViewstateAdapter">
 <module name="HiddenFieldPicker">
 <module name="JobProgressIndicator">
 <module name="EnablePreview">
 <module name="HiddenChartFormatter">
 <module name="JSChart">
 <module name="ConvertToDrilldownSearch">
 <module name="ViewRedirector">
 <module name="ViewRedirectorLink">

A reference for the modules installed in your instance of
Splunk is available at /modules. In my case, the full URL
is http://mysplunkserver:8000/modules.

Let's step through these modules in turn and discuss what they are each
accomplishing:

• ExtendedFieldSearch: This provides a textbox for entry. The parameters
for this module are complicated, and represent arguably the most
complicated aspect of advanced XML—intentions. Intentions affect child
modules, specifically HiddenSearch. We will cover intentions later.

• TimeRangePicker: This provides the standard time picker. It affects child
HiddenSearch modules that do not have times specified either using param
values or in the query itself. The precedence of times used in a query are:

 ° Times specified in the query itself
 ° Times specified via earliest and latest param values to the

search module
 ° A value provided by TimeRangePicker

• SubmitButton: This draws the Search button and fires off any child search
modules when clicked.

• HiddenSearch: As we saw before, this runs a query and produces events for
downstream modules. In this case, autoRun is set to false, so that the query
waits for the user.

• ViewstateAdapter: A viewstate describes what settings a user has selected
in the GUI, for instance, sort order, page size, or chart type. Any time you
change a chart setting or pick a time range, you create a viewstate that is
saved by Splunk. This module is used to access an existing viewstate,
or to suppress specific viewstate settings. By suppressing specific settings,
the default or specified values of child modules will be used instead.
This module is rarely needed unless you are using a saved search with
an associated viewstate.

Building Advanced Dashboards

[212]

• HiddenFieldPicker: This module limits what fields are accessible by
downstream modules. This is useful when running a query that produces
many fields, but only certain fields are needed. This would affect the fields
shown below events in an events listing, or the columns displayed in a table
view. This module is rarely needed.

• JobProgressIndicator: This module displays a progress bar until the
job is completed. In this case, because of the placement of the module in
the XML, it will appear above the results. This module does not affect
downstream modules, so it can be listed on its own.

• EnablePreview: This module allows you to specify whether searches
should refresh with incomplete results while the query is running.
The default appears to be true for Splunk-provided modules, but this
module allows you to control this behavior. This module does not affect
downstream modules, so could be listed on its own.

Disabling preview can improve the performance dramatically, but
provides no information until the query is complete, which is less
visually appealing, particularly during a long-running query.

• HiddenChartFormatter: This module is where the chart settings are
specified. These settings affect any child modules that draw charts.

• JSChart: This draws a chart using JavaScript. Prior to Splunk 4.3, all charts
were drawn using Flash. The FlashChart module is still included, for
backward compatibility.

• ConvertToDrilldownSearch: This module takes the values from a click on
a parent module and produces a query based on the query that produced the
results. This usually works, but not always, depending on the complexity of
the query. We will build a custom drilldown search later.

• ViewRedirector: This module accepts the query from its upstream
module and redirects the user to viewTarget, with the query specified
in the URL. Usually, flashtimeline is specified as the viewTarget param,
but it could be any dashboard. The query will affect a HiddenSearch or
SearchBar module.

• ViewRedirectorLink: This module sends the user to a new search page
with the search results for this module.

Thinking about what we have seen in this flow, we could say that modules can:

• Generate events
• Modify a query

Chapter 8

[213]

• Modify the behavior of a downstream module
• Display an element on the dashboard
• Handle actions produced by clicks

It is also possible for a module to:

• Post process the events produced by a query
• Add custom JavaScript to the dashboard

Understanding layoutPanel
In an advanced XML dashboard, which panel a module is drawn to is determined
by the value of the layoutPanel attribute. This separation of logic and layout can
be useful—for instance, allowing you to reuse data generated by a query with
multiple modules—but displays the results on different parts of the page.

A few rules about this attribute are as follows:

• The layoutPanel attribute must appear on all immediate children of <view>.
• The layoutPanel attribute can appear on descendant child module tags.
• If a module does not have a layoutPanel attribute, it will inherit the value

from the closest upstream module that does.
• Modules that have visible output are added to their respective layoutPanel

attribute in the order they appear in the XML.
• Modules "flow" in the panel they are placed. Most modules take the entire

width of the panel, but some do not, and flow left to right before wrapping.

Looking through our XML, we find these elements with the layoutPanel attribute
like this:

 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">

 <module name="TitleBar" layoutPanel="viewHeader">
 <module name="ExtendedFieldSearch" layoutPanel="viewHeader">
 <module name="TimeRangePicker">
 <module name="SubmitButton">

 <module name="HiddenSearch" layoutPanel="panel_row1_col1">
 ...

Building Advanced Dashboards

[214]

 <module name="HiddenSearch" layoutPanel="panel_row2_col1">
 ...
 <module name="HiddenSearch" layoutPanel="panel_row2_col2">
 ...
 <module name="HiddenSearch" layoutPanel="panel_row3_col1">
 ...

The first set of the layoutPanel values are panels included in the "chrome" of the
page. This displays the account information, the navigation, and any messages to
the user. The second set of modules make up the title and form elements. Notice that
TimeRangePicker and SubmitButton have no layoutPanel value, but will inherit
from ExtendedFieldSearch.

The results panels all begin with a HiddenSearch module. All of the children of each
of these modules inherit this layoutPanel value.

Panel placement
For your dashboard panels, you will almost always use a layoutPanel value of the
form panel_rowX_colY.

A simple visualization of the layout produced by our modules would look like:

In our simple XML version of this dashboard, the layout was tied directly to the
order of the XML, like this:

<row>
 <chart></chart>
</row>

<row>
 <chart></chart>
 <chart></chart>
</row>

<row>
 <event></event>
</row>

Chapter 8

[215]

Just to reiterate, the simple XML structure translates to:

<row>
 <chart></chart> == panel_row1_col1
</row>

<row>
 <chart></chart> == panel_row2_col1
 <chart></chart> == panel_row2_col2
</row>

<row>
 <event></event> == panel_row3_col1
</row>

There is another extension available, _grp1, which allows you to make columns
inside a panel. We will try that out in the Creating a custom drilldown section later.

Reusing a query
One example of separating layout from data would be using a single query
to populate both a table and a chart. The advanced XML for this could look
like the following:

<view template="dashboard.html">
 <label>Chapter 8 - Reusing a query</label>

 <module
 name="StaticContentSample"
 layoutPanel="panel_row1_col1">
 <param name="text">Text above</param>
 </module>

 <module
 name="HiddenSearch"
 layoutPanel="panel_row1_col1"
 autoRun="True">
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error | top user
 </param>
 <param name="earliest">-24h</param>

 <module name="HiddenChartFormatter">
 <param name="charting.chart">pie</param>

Building Advanced Dashboards

[216]

 <module name="JSChart"></module>

 <module
 name="StaticContentSample"
 layoutPanel="panel_row1_col1">
 <!-- this layoutPanel is unneeded, but harmless -->
 <param name="text">Text below</param>
 </module>
 </module>

 <module name="SimpleResultsTable"
 layoutPanel="panel_row1_col2"></module>

 </module>
</view>

This XML will render a dashboard like the following screenshot:

There are some things to notice in this XML:

• The data produced by HiddenSearch is used by both child modules.
• JSChart inherits layoutPanel="panel_row1_col1" from HiddenSearch.
• SimpleResultsTable has its own layoutPanel attribute set to panel_row1_

col2, so the table draws to the right.
• Both StaticContentSample modules specify layoutPanel="panel_row1_

col1", and therefore appear in the same panel as the chart. Though they
are at different depths in the XML, the order drawn follows the order seen
in the XML.

Chapter 8

[217]

Using intentions
Intentions allow you to affect downstream searches, using values provided by other
modules, for instance, form fields or the results of a click. There are a number of
available intention types, but we will cover the two most common, stringreplace
and addterm. You can see examples of other types of intentions in the UI Examples
app available at http://splunkbase.com.

stringreplace
This is the most common intention to use, and maps directly to the only available
action in simple XML—variable replacement. Let's look at our search field from our
advanced XML example:

<module name="ExtendedFieldSearch" layoutPanel="viewHeader">
 <param name="replacementMap">
 <param name="arg">
 <param name="user"/>
 </param>
 </param>
 <param name="field">User</param>
 <param name="intention">
 <param name="name">stringreplace</param>
 <param name="arg">
 <param name="user">
 <param name="fillOnEmpty">True</param>
 </param>
 </param>
 </param>

Stepping through the params we have:

• field: This is the label for the field displayed in the dashboard.
• replacementMap: This parameter names the variable that the

ExtendedFieldSearch module is creating. I have been told that the
nested nature means nothing, and we should simply copy and paste
the entire block of XML, changing nothing but the value of the deepest
param, in this case to user.

• intention: Intentions have specific structures that build blocks of query
from a structured XML. In the case of stringreplace (which is the most
common use case), we can essentially copy the entire XML and once again
change nothing but the value of the third-level param, which is currently
user. fillOnEmpty determines whether to make the substitution when
the user variable is empty.

Building Advanced Dashboards

[218]

All of this code simply says to replace $user$ in any searches with the value of the
input field. Our first HiddenSearch looks like the following:

<module name="HiddenSearch" ...
 <param name="search">
 sourcetype="impl_splunk_gen"
 loglevel=error user="$user$"
 | timechart count as "Error count" by network
 </param>

The value of $user$ will be replaced and the query will be run.

If you want to see exactly what is happening, you can insert a
SearchBar module as a child of the form elements, and it will
render the resulting query. For an example, see the code of the
dashboard drilldown_chart1 in the UI Examples app available
at http://splunkbase.com.

addterm
This intention is useful for adding search terms to a query, with or without user
interaction. For example, let's say you always want to ensure that a particular value of
the field source is queried. You can then modify the query that will be run, appending
a search term. Here is an example from the dashboard advanced_lister_with_
searchbar in the UI Examples app available at http://splunkbase.com:

<module name="HiddenIntention">
 <param name="intention">
 <param name="name">addterm</param>
 <param name="arg">
 <param name="source">*metrics.log</param>
 </param>
 <!-- tells the addterm intention to put our
 term in the first search clause no matter what. -->
 <param name="flags"><list>indexed</list></param>
 </param>

Stepping through the params:

• name: This parameter sets the type of intention, in this case addterm.
• arg: This is used to set the field to add to the query.

 ° The nested param tag sets the fieldname and value to use in the query.
In this case, source="*metrics.log" will be added to the query.

Chapter 8

[219]

 ° Variables can be used in either the name attribute or body of this
nested param tag. We will see an example of this under the Creating
a custom drilldown section.

• flags: Every example of addterm that I can find includes this attribute,
exactly as written. It essentially says that the term to be added to the search
should be added before the first pipe symbol, not at the end of the full query.
For example, consider the following query:

error | top logger

This param would amend our query like this:

error source="*metrics.log" | top logger

Creating a custom drilldown
A drilldown is a query built using values from a previous query. The module
ConvertToDrilldownSearch will build a query automatically from the table or
graph that it is nested inside. Unfortunately, this only works well when the query
is fairly simple, and when you want to see raw events. To build a custom drilldown,
we combine intentions and the nested nature of modules.

Building a drilldown to a custom query
Looking back at our chart in the Reusing a query section, let's build a custom
drilldown that shows the top instances of another field when it is clicked on.

Here is an example dashboard that draws a chart and then runs a custom query
when clicked on:

<view template="dashboard.html">
 <label>Chapter 8 - Drilldown to custom query</label>
 <!-- chrome -->
 <module
 name="HiddenSearch"
 layoutPanel="panel_row1_col1"
 autoRun="True"
 group="Errors by user">
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error | top user
 </param>
 <param name="earliest">-24h</param>

Building Advanced Dashboards

[220]

 <!-- draw the chart -->
 <module name="HiddenChartFormatter">
 <param name="charting.chart">pie</param>
 <module name="JSChart">

 <!-- nested modules are invoked on click -->
 <!-- create a new query -->
 <module name="HiddenSearch">
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error
 | top logger
 </param>

 <!-- create an intention using the value from the chart.
 Use addterm to add a user field to the query. -->
 <module name="ConvertToIntention">
 <param name="intention">
 <param name="name">addterm</param>
 <param name="arg">
 <param name="user">$click.value$</param>
 </param>
 <param name="flags">
 <item>indexed</item>
 </param>
 </param>

 <!-- Send the user to flashtimeline
 with the new query. -->
 <module name="ViewRedirector">
 <param name="viewTarget">flashtimeline</param>
 </module>
 </module>
 </module>
 </module>
 </module>
 </module>
</view>

Everything should look very similar up until the JSChart module. Inside this
module we find a HiddenSearch module. The idea is that the downstream
modules of display modules are not invoked until the display module is clicked.
HiddenSearch in this case is used to build a query, but instead of the query being
handed to a display module, it is handed to the ViewRedirector module.

Chapter 8

[221]

The "magical" field in all of this is click.value. This field contains the value that
was clicked on in the chart.

Let's look at what this dashboard renders:

The resulting query when we click on the slice of the pie for the user bob looks like:

Look back to the addterm section for more details on how this intention works.

Building Advanced Dashboards

[222]

Building a drilldown to another panel
Another option for a drilldown is to draw a new panel on the same dashboard.
This lets you create various drilldowns without redrawing the screen, which
might be less jarring to the user. Here is the XML:

<?xml version="1.0"?>
<view template="dashboard.html">
 <label>Chapter 8 - Drilldown to new graph</label>
 <!-- chrome should go here -->
 <module
 name="HiddenSearch"
 layoutPanel="panel_row1_col1"
 autoRun="True"
 group="Errors by user">
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error | top user
 </param>
 <param name="earliest">-24h</param>
 <module name="HiddenChartFormatter">
 <param name="charting.chart">pie</param>

 <!-- draw the first chart -->
 <module name="JSChart">

 <!-- the modules inside the chart will wait for
 interaction from the user -->
 <module name="HiddenSearch">
 <param name="earliest">-24h</param>
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error
 user="$user$" | timechart count by logger
 </param>
 <module name="ConvertToIntention">
 <param name="intention">
 <param name="name">stringreplace</param>
 <param name="arg">
 <param name="user">
 <param name="value">$click.value$</param>
 </param>
 </param>
 </param>

 <!-- print a header above the new chart -->

Chapter 8

[223]

 <module name="SimpleResultsHeader">
 <param name="entityName">results</param>
 <param name="headerFormat">
 Errors by logger for $click.value$
 </param>
 </module>

 <!-- draw the chart. We have not specified another
 layoutPanel, so it will appear below the first
 chart -->
 <module name="HiddenChartFormatter">
 <param name="charting.chart">area</param>
 <param name="chart.stackMode">stacked</param>
 <module name="JSChart"/>
 </module>
 </module>
 </module>
 </module>
 </module>
 </module>
</view>

Here's what the dashboard looks like after clicking on bob in the pie chart:

Building Advanced Dashboards

[224]

Building a drilldown to multiple panels using
HiddenPostProcess
Taking the last dashboard further, let's build a number of panels from a single
custom drilldown query. As we covered in Chapter 4, Simple XML Dashboards, search
results can be post processed, allowing you to use the same query results multiple
ways. In advanced XML, this is accomplished using the HiddenPostProcess
module. We will also add the chrome for our first complete dashboard. Here is an
abbreviated example. The complete dashboard is in the Chapter8_drilldown_to_
new_graph_with_postprocess.xml file in the Implementing Splunk App One app:

<view template="dashboard.html">
 <label>Chapter 8 - Drilldown to new graph with postprocess</label>

<!-- The chrome at the top of the dashboard
 containing navigation and the app header -->
 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">
 <param name="filter">*</param>
 <param name="clearOnJobDispatch">False</param>
 <param name="maxSize">1</param>
 </module>
 <module name="DashboardTitleBar" layoutPanel="viewHeader"/>
 <module name="Message" layoutPanel="navigationHeader">
 <param name="filter">splunk.search.job</param>
 <param name="clearOnJobDispatch">True</param>
 <param name="maxSize">1</param>
 <param name="level">warn</param>
 </module>

!-- Begin our initial search
 which will populate our pie chart -->
 <module
 name="HiddenSearch" layoutPanel="panel_row1_col1"
 autoRun="True" group="Errors by user">
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error | top user
 </param>
 <param name="earliest">-24h</param>

 <module name="HiddenChartFormatter">
 <param name="charting.chart">pie</param>
 <module name="JSChart">

<!-- Initially, only the pie chart will be drawn
 After a click on a user wedge, this nested query will run -->
 <module name="HiddenSearch">

Chapter 8

[225]

 <param name="earliest">-24h</param>
 <param name="search">
 sourcetype="impl_splunk_gen" loglevel=error
 user="$user$" | bucket span=30m _time
 | stats count by logger _time
 </param>
 <module name="ConvertToIntention">
 <param name="intention">
 <param name="name">stringreplace</param>
 <param name="arg">
 <param name="user">
 <param name="value">$click.value$</param>
...

<!-- The remaining modules are downstream from the pie chart
 and are invoked when a pie wedge is clicked -->
 <module name="SimpleResultsHeader"
 layoutPanel="panel_row2_col1">
 <param name="entityName">results</param>
 <param name="headerFormat">
 Errors by logger for $click.value$
 </param>
 </module>

<!-- The SingleValue modules -->
 <module name="HiddenPostProcess">
 <param name="search">
 stats sum(count) as count by logger
 | sort -count | head 1
 | eval f=logger + " is most common (" + count + ")" |
table f </param>
 <module name="SingleValue"
 layoutPanel="panel_row2_col1"></module>
 </module>
...
<!-- The chart -->
 <module name="HiddenPostProcess">
 <param name="search">
 timechart span=30m sum(count) by logger
 </param>
 <module name="HiddenChartFormatter">
 <param name="charting.chart">area</param>
 <param name="chart.stackMode">stacked</param>
 <module
 name="JSChart"
 layoutPanel="panel_row4_col1_grp1"/>
 </module>
 </module>

<!-- The table -->

Building Advanced Dashboards

[226]

 <module name="HiddenPostProcess">
 <param name="search">
 stats sum(count) as count by logger
 </param>
 <module name="SimpleResultsTable"
 layoutPanel="panel_row4_col1_grp2"/>
 </module>
...
 </module>
</view>

This dashboard contains the chrome, which is very useful as it displays the errors in
your intentions and query statements. After clicking on bob, this is what we see:

Chapter 8

[227]

Let's step through the new queries. The initial query is the same:

sourcetype="impl_splunk_gen" loglevel=error | top user

The next query may seem strange, but there's a good reason for this:

sourcetype="impl_splunk_gen" loglevel=error user="$user$"
| bucket span=30m _time
| stats count by logger _time

If you look back to Chapter 5, Advanced Search Examples, we used bucket and stats
to slice events by _time and other fields. This is a convenient way to break down
events for post processing, where one or more of the post-process queries uses
timechart. This query produces a row with the field count for every unique
value of logger in each 30-minute period.

Post processing has a limit of 10,000 events. To accommodate this
limit, all aggregation possible should be done in the initial query.
Ideally, only what is needed by all child queries should be produced
by the initial query. It is also important to note that all fields needed
by post-process queries must be returned by the initial query.

The first HiddenPostProcess builds a field for a module we haven't used
yet, SingleValue, which takes the first value it sees and renders that value
in a rounded rectangle.

stats sum(count) as count by logger
| sort -count
| head 1
| eval f=logger + " is most common (" + count + ")"
| table f

The query is additive, so the full query for this module is essentially:

sourcetype="impl_splunk_gen" loglevel=error user="bob"
| bucket span=30m _time
| stats count by logger _time
| stats sum(count) as count by logger
| sort -count
| head 1
| eval f=logger + " is most common (" + count + ")"
| table f

The remaining SingleValue modules do similar work to find the count of unique
loggers, the max errors per hour, and the average errors per hour. To step through
these queries, simply copy each piece and add it to a query in search.

Building Advanced Dashboards

[228]

Other things to notice in this dashboard are:

• grp builds columns inside a single panel, for instance, in
layoutPanel="panel_row4_col1_grp2"

• SingleValue modules do not stack vertically, but rather flow horizontally,
overflowing onto the next line when the window width is reached

• span used in the bucket statement is the minimum needed by any
post-process statements, but as large as possible to minimize the number
of events returned

Third-party add-ons
There are many excellent apps available at http://splunkbase.com, a number
of which provide custom modules. We will cover two of the most popular, Google
Maps and Sideview Utils.

Google Maps
As we saw in Chapter 7, Working with Apps, the Google Maps app provides a
dashboard and lookup for drawing results on a map. The underlying module
is also available to use in your own dashboards.

Here is a very simple dashboard that uses the GoogleMaps module:

<?xml version="1.0"?>
<view template="search.html">

 <!-- chrome -->
 <label>Chapter 8 - Google Maps Search</label>
 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">
 <param name="filter">*</param>
 <param name="clearOnJobDispatch">False</param>
 <param name="maxSize">1</param>
 </module>

 <!-- search -->
 <module name="SearchBar" layoutPanel="splSearchControls-inline">
 <param name="useOwnSubmitButton">False</param>
 <module name="TimeRangePicker">
 <param name="selected">Last 60 minutes</param>
 <module name="SubmitButton">

Chapter 8

[229]

 <!-- map -->
 <module
 name="GoogleMaps"
 layoutPanel="resultsAreaLeft"
 group="Map" />
 </module>
 </module>
 </module>
</view>

This code produces a search bar with a map under it, as seen here in the
following screenshot:

When using the GoogleMaps module, you would usually convert some set of values
to geographic coordinates. This is usually accomplished using the geoip lookup
(see Chapter 7, Working with Apps, for examples) to convert IP addresses to locations,
or by using a custom lookup of some sort.

Just to show that the data can come from anywhere, let's make a graph by setting
the _geo field on events from one of our example source types:

sourcetype="impl_splunk_gen" req_time
 | eventstats max(req_time) as max
 | eval lat=(req_time/max*360)-180
 | eval lng=abs(lat)/2-15
 | eval _geo=lng+","+lat

Building Advanced Dashboards

[230]

This query will produce a "V" from our random req_time field, as shown in the
following screenshot. See the maps documentation at splunkbase.com for more
information about the _geo field:

This is a very simplistic example, using the default settings for nearly everything.
For a more complete example, see the Google Maps dashboard included
with the Google Maps app. You can see the source code in the manager,
or by using the showsource attribute. On my server, that URL would be
http://mysplunkserver:8000/en-US/app/maps/maps?showsource=1.

Sideview Utils
Sideview Utils is a third-party app for Splunk that provides an alternative set
of modules for most of what you need to build an interactive Splunk dashboard.
These modules remove the complexity of intentions, make it much easier to build
forms, make it possible to use variables in HTML, and make it much simpler to
hand values between panels and dashboards.

We will use a few of the modules to build forms and link multiple dashboards
together based on URL values.

An older but still functional version of SideviewUtils is available through
Splunkbase. You can download the latest version from http://sideviewapps.com/,
which adds a number of features, including a visual editor for assembling dashboards.

Chapter 8

[231]

The Sideview Search module
Let's start with a simple search:

<?xml version="1.0"?>
<view template="dashboard.html">

 <!-- add sideview -->
 <module layoutPanel="appHeader" name="SideviewUtils"/>

 <!-- chrome -->
 <label>Chapter 8 - Sideview One</label>
 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">
 <param name="filter">*</param>
 <param name="clearOnJobDispatch">False</param>
 <param name="maxSize">1</param>
 </module>

 <!-- search -->
 <module
 name="Search"
 autoRun="True"
 group="Chapter 8 - Sideview One"
 layoutPanel="panel_row1_col1">
 <param name="earliest">-1h</param>
 <param name="search">source="impl_splunk_gen" | top user</param>

 <!-- chart -->
 <module name="HiddenChartFormatter">
 <param name="charting.chart">pie</param>
 <module name="JSChart"/>
 </module>
 </module>
</view>

This dashboard renders identically to the first panel, previously described in
the Building a drilldown to a custom query section. There are two things to notice
in this example:

1. The SideviewUtils module is needed to include the code needed by
all Sideview Utils apps.

2. We use the alternative Search module as a replacement for the
HiddenSearch module to illustrate our first SideviewUtils module.
In this simplistic example, HiddenSearch would still work.

Building Advanced Dashboards

[232]

Linking views with Sideview
Starting from our simple dashboard, let's use the Redirector module to build a link.
This link could be to anything, but we will link to another Splunk dashboard, which
we will build next. Here's the XML:

...
<module name="JSChart">
 <module name="Redirector">
 <param name="arg.user">$click.value$</param>
 <param name="url">chapter_8_sideview_2</param>
 </module>
</module>
...

After clicking on mary, a new URL is built using the user value. In my case,
the URL is:

http://mysplunkserver:8000/en-US/app/is_app_one/chapter_8_
sideview_2?user=mary

The dashboard referenced does not exist yet, so this URL will return an error.
Let's create the second dashboard now.

Sideview URLLoader
The URLLoader module provides the ability to set variables from the query string
of a URL, a very useful feature. For our next dashboard, we will draw a table
showing the error counts for the user value provided in the URL:

<view template="dashboard.html">

 <!-- add sideview -->
 <module name="SideviewUtils" layoutPanel="appHeader"/>

 <!-- chrome -->
 <label>Chapter 8 - Sideview Two</label>
 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">
 <param name="filter">*</param>
 <param name="clearOnJobDispatch">False</param>
 <param name="maxSize">1</param>

Chapter 8

[233]

 </module>

 <!-- search -->
 <module
 name="URLLoader"
 layoutPanel="panel_row1_col1"
 autoRun="True">
 <module name="HTML">
 <param name="html"><![CDATA[
 <h2>Errors by logger for $user$.</h2>
]]>
 </param>
 </module>
 <module name="Search" group="Chapter 8 - Sideview Two">
 <param name="earliest">-1h</param>
 <param name="search">
 source="impl_splunk_gen" user=$user$
 | top logger
 </param>

 <!-- table -->
 <module name="SimpleResultsTable">
 <param name="drilldown">row</param>
 <module name="Redirector">
 <param name="url">chapter_8_sideview_3</param>
 <param name="arg.logger">
 $click.fields.logger.rawValue$
 </param>
 <param name="arg.user">$user$</param>
 <param name="arg.earliest">
 $search.timeRange.earliest$
 </param>
 </module>
 </module>
 </module>
 </module>
</view>

It is very important that autoRun="true" be placed in one module,
most likely URLLoader, and that it exists only in a single module.

Building Advanced Dashboards

[234]

With the value of user as mary in our URL, this dashboard creates the simple view:

Looking at the modules in this example that are of interest, we see:

• SideviewUtils: This module is required to use any of the other Sideview
modules. It is invisible to the user, but is still required.

• URLLoader: This module takes any values specified in the URL query string
and turns them into variables to be used by the descendant modules. Our
URL contains user=mary, so $user$ will be replaced with the value mary.

• HTML: This module draws a snippet of HTML inline. Variables from
URLLoader and from form elements are replaced.

• Search: This replacement for HiddenSearch understands variables from
URLLoader and form elements. This completely obviates the need for
intentions. In our case, $user$ will be replaced.

• Redirector: In this example, we are going to hand along two values to the
next dashboard—user from URLLoader, and logger from the table itself.
A few things to notice:

 ° logger will be populated with $click.fields.logger.rawValue$.
 ° When a table is clicked on, the variable click.fields contains all

fields from the row of the table clicked on.
 ° rawValue makes sure the unescaped value is returned. As the

Sideview docs say: Rule of Thumb - for displaying in headers and
sending via redirects, use $foo.rawValue$. For searches, use foo.

Chapter 8

[235]

This rule applies to values in Redirector, not in display.

 ° search.timeRange contains information about the times used by
this search, whether it comes from the URL, a TimeRangePicker,
or params to the Search module. arg.earliest will add the value
to the URL.

With a click on the table row for LogoutClass, we are taken to the following URL:

http://mysplunkserver:8000/en-US/app/is_app_one/chapter_8_sideview_3?
user=mar&ylogger=LogoutClass&earliest=1344188377

We will create the dashboard at this URL in the next section.

Sideview forms
For our final dashboard using Sideview modules, we will build a dashboard with
a form that can be prefilled from a URL, and allows changing the time range. The
advantage of this dashboard is that it can be used as a destination of a click without
being linked to from elsewhere. If the user accesses this dashboard directly, the default
values specified in the dashboard will be used instead. Let's look at the code:

<?xml version="1.0"?>
<view template="dashboard.html">

 <!-- add sideview -->
 <module name="SideviewUtils" layoutPanel="appHeader"/>

 <!-- chrome -->
 <label>Chapter 8 - Sideview Three</label>
 <module name="AccountBar" layoutPanel="appHeader"/>
 <module name="AppBar" layoutPanel="navigationHeader"/>
 <module name="Message" layoutPanel="messaging">
 <param name="filter">*</param>
 <param name="clearOnJobDispatch">False</param>
 <param name="maxSize">1</param>
 </module>

 <!-- URLLoader -->
 <module
 name="URLLoader"
 layoutPanel="panel_row1_col1"

Building Advanced Dashboards

[236]

 autoRun="True">

 <!-- form -->

 <!-- user dropdown -->
 <module name="Search" layoutPanel="panel_row1_col1">
 <param name="search">
 source="impl_splunk_gen" user user="*"
 | top user
 </param>
 <param name="earliest">-24h</param>
 <param name="latest">now</param>

 <module name="Pulldown">
 <param name="name">user</param>
 <!-- use valueField in SideView 2.0 -->
 <param name="searchFieldsToDisplay">
 <list>
 <param name="value">user</param>
 <param name="label">user</param>
 </list>
 </param>
 <param name="label">User</param>
 <param name="float">left</param>

 <!-- logger textfield -->
 <module name="TextField">
 <param name="name">logger</param>
 <param name="default">*</param>
 <param name="label">Logger:</param>
 <param name="float">left</param>
 <module name="TimeRangePicker">
 <param name="searchWhenChanged">True</param>
 <param name="default">Last 24 hours</param>

 <!-- submit button -->
 <module name="SubmitButton">
 <param name="allowSoftSubmit">True</param>

 <!-- html -->
 <module name="HTML">

 <param name="html"><![CDATA[
 <h2>Info for user $user$, logger $logger$.</h2>
]]></param>
 </module>

Chapter 8

[237]

 <!-- search 1 -->
 <module
 name="Search"
 group="Chapter 8 - Sideview Three">
 <param name="search">
 source="impl_splunk_gen" user="$user$"
 logger="$logger$"
 | fillnull value="unknown" network
 | timechart count by network
 </param>

 <!-- JobProgressIndicator -->
 <module name="JobProgressIndicator"/>

 <!-- chart -->
 <module name="HiddenChartFormatter">
 <param name="charting.chart">area</param>
 <param name="charting.chart.stackMode">
 stacked
 </param>
 <module name="JSChart"/>
 </module>
 </module>

 <!-- search 2 -->
 <module
 name="Search"
 group="Chapter 8 - Sideview Three">
 <param name="search">
 source="impl_splunk_gen" user="$user$"
 logger="$logger$"
 | fillnull value="unknown" network
 | top network
 </param>

 <!-- table -->
 <module name="SimpleResultsTable"/>
 </module>
 </module>
 </module>
 </module>
 </module>
 </module>
 </module>
</view>

Building Advanced Dashboards

[238]

This draws a dashboard like this:

There are quite a few things to cover in this example, so let's step through portions
of the XML.

Include SideviewUtils to enable the other Sideview modules. In this case,
URLLoader, HTML, Pulldown, Search, and TextField are Sideview modules.

<module layoutPanel="appHeader" name="SideviewUtils"/>

Wrap everything in URLLoader so that we get values from the URL:

 <module
 name="URLLoader"
 layoutPanel="panel_row1_col1"
 autoRun="True">

Chapter 8

[239]

Start a search to populate the user dropdown. This query will find all users in the
last 24 hours:

 <module name="Search" layoutPanel="panel_row1_col1">
 <param name="search">
 source="impl_splunk_gen" user user="*"
 | top user
 </param>
 <param name="earliest">-24h</param>
 <param name="latest">now</param>

Using a query to populate a dropdown can be very expensive,
particularly as your data volumes increase. You may need to
precalculate these values, either storing the values in a CSV using
outputcsv and inputcsv, or using a summary index. See Chapter
9, Summary Indexes and CSV Files, for examples of summary indexing
and using CSV files for transient data.

This module draws the user selector. The menu is filled by the Search module
previously, but notice that the value selected is from our URL value:

 <module name="Pulldown">
 <!-- use valueField in SideView 2.0 -->
 <param name="searchFieldsToDisplay">
 <list>
 <param name="value">user</param>
 <param name="label">user</param>
 </list>
 </param>
 <param name="name">user</param>
 <param name="label">User</param>
 <param name="float">left</param>

Next is a text field for our logger. This is a Sideview version of
ExtendedFieldSearch. It will prepopulate using upstream variables:

 <module name="TextField">
 <param name="name">logger</param>
 <param name="default">*</param>
 <param name="label">Logger:</param>
 <param name="float">left</param>

Building Advanced Dashboards

[240]

The TimeRangePicker module will honor the values earliest and latest in the URL.
Note that searchWhenChanged must be True to work properly in this case. As a rule
of thumb, searchWhenChanged should always be True.

 <module name="TimeRangePicker">
 <param name="searchWhenChanged">True</param>
 <param name="default">Last 24 hours</param>

The SubmitButton module will kick off a search when values are changed.
allowSoftSubmit allows outer modules to start the query, either by choosing
a value or hitting return in a text field.

 <module name="SubmitButton">
 <param name="allowSoftSubmit">True</param>

Next are two Search modules, each containing an output module:

 <module
 name="Search"
 group="Chapter 8 - Sideview Three">
 <param name="search">
 source="impl_splunk_gen" user="$user$"
 logger="$logger$"
 | fillnull value="unknown" network
 | timechart count by network
 </param>

 <!-- JobProgressIndicator -->
 <module name="JobProgressIndicator"/>

 <!-- chart -->
 <module name="HiddenChartFormatter">
 <param name="charting.chart">area</param>
 <param name="charting.chart.stackMode">
 stacked
 </param>
 <module name="JSChart"/>
 </module>
 </module>

 <!-- search 2 -->
 <module

Chapter 8

[241]

 group="Chapter 8 - Sideview Three"
 name="Search">
 <param name="search">
 source="impl_splunk_gen" user="$user$"
 logger="$logger$"
 | fillnull value="unknown" network
 | top network
 </param>

 <!-- table -->
 <module name="SimpleResultsTable">
 <param name="drilldown">row</param>
 </module>
...

For greater efficiency, these two searches could be combined into one query and
the PostProcess module used.

Summary
We have covered an enormous amount of ground in this chapter. The toughest
concepts we touched on were module nesting, the meaning of layoutPanel,
intentions, and an alternative to intentions with SideView Utils. As with many
skills, the best way to become proficient is to dig in, and hopefully have some
fun along the way! The examples in this chapter should give you a head start.

In the next chapter, we will cover summary indexing, a powerful part of Splunk
that can improve the efficiency of your queries greatly.

Summary Indexes and
CSV Files

As the number of events retrieved by a query increases, performance decreases
linearly. Summary indexing allows you to calculate statistics in advance, then
run reports against these "roll ups", dramatically increasing performance.

Understanding summary indexes
A summary index is a place to store events calculated by Splunk. Usually, these
events are aggregates of raw events broken up over time, for instance, how many
errors occurred per hour. By calculating this information on an hourly basis, it is
cheap and fast to run a query over a longer period of time, for instance, days,
weeks, or months.

A summary index is usually populated from a saved search with Summary indexing
enabled as an action. This is not the only way, but is certainly the most common.

On disk, a summary index is identical to any other Splunk index. The difference is
solely the source of data. We create the index through configuration or through the
GUI like any other index, and we manage the index size in the same way.

Think of an index like a table, or possibly a tablespace in a typical
SQL database. Indexes are capped by size and/or time, much like a
tablespace, but all the data is stored together, much like a table. We
will discuss index management in Chapter 10, Configuring Splunk.

Summary Indexes and CSV Files

[244]

Creating a summary index
To create an index, navigate to Manager | Indexes | Add new.

For now, let's simply give our new index a name and accept the default values.
We will discuss these settings under the indexes.conf section in Chapter 10, Configuring
Splunk. I like to put the word summary at the beginning of any summary index, but
the name does not matter. I would suggest you follow some naming convention that
makes sense to you.

Now that we have an index to store events in, let's do something with it.

Chapter 9

[245]

When to use a summary index
When the question you want to answer requires looking at all or most events for
a given source type, very quickly the number of events can become huge. This is
what is generally referred to as a "dense search".

For example, if you want to know how many page views happened on your website,
the query to answer this question must inspect every event. Since each query uses a
processor, we are essentially timing how fast our disk can retrieve the raw data and
how fast a single processor can decompress that data. Doing a little math:

1,000,000 hits per day /

10,000 events processed per second =

100 seconds

If we use multiple indexers, or possibly buy much faster disks, we can cut this time,
but only linearly. For instance, if the data is evenly split across four indexers, without
changing disks, this query will take roughly 25 seconds.

If we use summary indexing, we should be able to improve our times dramatically.
Let's assume we have calculated hit counts per five minutes. Now doing the math:

24 hours * 60 minutes per hour / 5 minute slices =

288 summary events

If we then use those summary events in a query, the math looks like:

288 summary events /

10,000 events processed per second =

.0288 seconds

This is a significant increase in performance. In reality, we would probably store
more than 288 events. For instance, let's say we want to count events by their HTTP
response code. Assuming there are 10 different status codes we see on a regular
basis, we have:

24 hours * 60 minutes per hour / 5 minute slices * 10 codes =

2880 events

Summary Indexes and CSV Files

[246]

The math then looks like:

2,880 summary events /

10,000 events processed per second =

.288 seconds

That's still a significant improvement over 100 seconds.

When to not use a summary index
There are several cases where summary indexes are either inappropriate or
inefficient. Consider the following:

• When you need to see the original events: In most cases, summary indexes
are used to store aggregate values. A summary index could be used to store
a separate copy of events, but this is not usually the case. The more events
you have in your summary index, the less advantage it has over the
original index.

• When the possible number of categories of data is huge: For example, if
you want to know the top IP addresses seen per day, it may be tempting
to simply capture a count of every IP address seen. This can still be a huge
amount of data, and may not save you a lot of search time, if any. Likewise,
simply storing the top 10 addresses per slice of time may not give an accurate
picture over a long period of time. We will discuss this scenario under the
Calculating top for a large time frame section.

• When it is impractical to slice the data across sufficient dimensions:
If your data has a large number of dimensions or attributes, and it is useful
to slice the data across a large number of these dimensions, then the resulting
summary index may not be sufficiently smaller than your original index
to bother with.

• When it is difficult to know the acceptable time slice: As we set up a few
summary indexes, we have to pick the slice of time to which we aggregate.
If you think 1 hour is an acceptable time slice, and you find out later that you
really need 10 minutes of resolution, it is not the easiest task to recalculate
the old data into these 10-minute slices. It is, however, very simple to later
change your 10-minute search to one hour, as the 10-minute slices should
still work for your hourly reports.

Chapter 9

[247]

Populating summary indexes with saved
searches
A search to populate a summary index is much like any other saved search
(see Chapter 2, Understand Search, for more detail on creating saved searches).
The differences are that this search will run periodically and the results will be stored
in the summary index. Let's build our first summary search by following these steps:

1. Start with a search that produces some statistic:
source="impl_splunk_gen" | stats count by user

2. Save this search as summary - count by user.
3. Edit the search in Manager by navigating to Manager | Searches and reports

| summary – count by user. The Save search... wizard provides a link to the
manager on the last dialog in the wizard.

4. Set the appropriate times. This is a somewhat complicated discussion. See the
How latency affects summary queries section discussed later.

Summary Indexes and CSV Files

[248]

Let's look at the following fields:

• Search: source="impl_splunk_gen" | stats count by user
This is our query. Later we will use sistats, a special summary index
version of stats.

• Start time: -62m@m
It may seem strange that we didn't simply say -60m@m, but we need
to take latency into account. See the How latency affects summary queries
section discussed later for more details.

• Finish time: -2m@m
• Schedule and Alert | Schedule this search: This checkbox needs to be

checked for the query to run on a schedule.
• Schedule type: Cron
• Cron schedule: 2 * * * *

This indicates that the query runs on minute 2 of every hour, every day.
To accommodate for latency, Cron schedule is shifted after the beginning
of the hour along with the start and finish times. See the How latency affects
summary queries section discussed later for more details.

• Summary indexing | Enable: This checkbox enables writing the output
to another index.

• Select the summary index: summary_impl_splunk

This is the index to write our events to.

Non-admin users are only allowed to write to the index summary.
This ability is controlled by the indexes_edit capability,
which only the admin role has enabled by default. See Chapter 10,
Configuring Splunk, for a discussion on roles and capabilities.

• Add fields: Using these fields, you can store extra pieces of information
in your summary index. This can be used to group results from multiple
summary results, or to tag results.

Chapter 9

[249]

Using summary index events in a query
After the query to populate the summary index has run for some time, we can use
the results in other queries.

If you're in a hurry, or need to report against slices of time before the query
was created, you will need to "backfill" your summary index. See the How and
when to backfill summary data section for details about calculating summary values
for past events.

First, let's look at what actually goes into the summary index:

08/15/2012 10:00:00, search_name="summary - count by user",
search_now=1345046520.000, info_min_time=1345042800.000, info_max_
time=1345046400.000, info_search_time=1345050512.340, count=17,
user=mary

Breaking this event down, we have:

• 08/15/2012 10:00:00: This is the time at the beginning of this block of data.
This is consistent with how timechart and bucket work.

• search_name="summary - count by user": This is the name of the search.
This is usually the easiest way to find the results you are interested in.

• search_now ... info_search_time: These are informational fields about
the summary entry, and are generally not useful to users.

• count=17, user=mary: The rest of the entry will be whatever fields were
produced by the populating query. There will be one summary event per
row produced by the populating query.

Now let's build a query against this data. To start the query, we need to specify the
name of the index and the name of the search:

index="summary_impl_splunk" search_name="summary - count by user"

On my machine, this query loads 48 events, compared to the 22,477 original events.

Using stats, we can quickly find the statistics by user:

index="summary_impl_splunk" | stats sum(count) count by user

Summary Indexes and CSV Files

[250]

This produces a very simple table, as shown in the following screenshot:

We are calculating sum(count) and count in this query, which you might expect
to produce the same number, but they are doing very different things:

• sum(count): If you look back at our raw event, count contains the number
of times that user appeared in that slice of time. We are storing the raw value
in this count field. See the Using sistats, sitop, and sitimechart section for a
completely different approach.

• count: This actually represents the number of events in the summary index.
The generator that is producing these events is not very random, so all users
produce at least one event per hour.

Producing a timechart is no more complicated:

index="summary_impl_splunk" | timechart span=1h sum(count) by user

This produces our graph as shown in the following screenshot:

Chapter 9

[251]

The main thing to remember here is that we cannot make a graph more detailed than the
schedule of our populating query. In this case, the populating query uses a span of one
hour. 1 hour is granular enough for most daily reports, and certainly fine for weekly
or monthly reports, but it may not be granular enough for an operations dashboard.

The following are a few other interesting queries you could make with this simple
set of data:

index="summary_impl_splunk" search_name="summary - count by user"
 | stats avg(count) as "Average events per hour"

The previous code snippet tells us the average number of events per slice of time,
which we know is an hour. Adding bucket and another stats command, we can
calculate for a custom period of time, as follows:

index="summary_impl_splunk" search_name="summary - count by user"
 | bucket span=4h _time
 | stats sum(count) as count by _time
 | stats avg(count) as "Average events per 4 hours"

This query would give us the user with the maximum number of events in a given
hour, and the hour it happened in:

index="summary_impl_splunk" search_name="summary - count by user"
 | stats first(_time) as _time max(count) as max by user
 | sort -max
 | head 1
 | rename max as "Maximum events per hour"

Using sistats, sitop, and sitimechart
So far we have used the stats command to populate our summary index. While this
works perfectly well, the si* variants have a couple of advantages:

• The remaining portion of the query does not have to be rewritten. For
instance, stats count still works as if you were counting the raw events.

• stats functions that require more data than what happened in that slice of
time will still work. For example, if your time slices each represent an hour, it
is not possible to calculate the average value for a day using nothing but the
average of each hour. sistats keeps enough information to make this work.

Summary Indexes and CSV Files

[252]

There are a few fairly serious disadvantages to be aware of:

• The query using the summary index must use a subset of the functions and
split fields that were in the original populating query. If the subsequent
query strays from what is in the original sistats data, the results may
be unexpected and difficult to debug. For example:

 ° The following code works fine:
source="impl_splunk_gen"
 | sitimechart span=1h avg(req_time) by user
 | stats avg(req_time)

 ° The following code returns unpredictable and wildly incorrect
values:

source="impl_splunk_gen"
 | sitimechart span=1h avg(req_time) by user
 | stats max(req_time)

Notice that avg went into sistats, but we tried to calculate max
from the results.

• Using dc (distinct count) with sistats can produce huge events. This
happens because to accurately determine unique values over slices of time,
all original values must be kept. One common use case is to find the top IP
addresses that hit a public facing server. See the Calculating top for a large time
frame section for alternate approaches to this problem.

• The contents of the summary index are quite difficult to read as they are not
meant to be used by humans.

To see how all of this works, let's build a few queries. We start with a simple stats
query as follows:

sourcetype=impl_splunk_gen
 | stats count max(req_time) avg(req_time) min(req_time) by user

This produces results like you would expect:

Chapter 9

[253]

Now, we could save this and send it straight to the summary index, but the results
are not terribly nice to use, and the average of the average would not be accurate.
On the other hand, we can use the sistats variant as follows:

sourcetype=impl_splunk_gen
 | sistats count max(req_time) avg(req_time) min(req_time) by user

The results have a lot of extra information not meant for humans as shown in the
following screenshot:

Splunk knows how to deal with these results, and can use them in combination with
the stats functions as if they were the original results. You can see how sistats
and stats work together by chaining them together, as follows:

sourcetype=impl_splunk_gen
 | sistats
 count max(req_time) avg(req_time) min(req_time)
 by user
 | stats count max(req_time) avg(req_time) min(req_time) by user

Even though the stats function is not receiving the original events, it knows how to
work with these sistats summary events. We are presented with exactly the same
results as the original query, as shown in the following screenshot:

sitop and sitimechart work in the same fashion.

Summary Indexes and CSV Files

[254]

Let's step through the procedure to set up summary searches as follows:

1. Save the query using sistats.
sourcetype=impl_splunk_gen
 | sistats count max(req_time) avg(req_time) min(req_time) by
user

2. Set the times accordingly, as we saw previously in the Populating summary
indexes with saved searches section. See the How latency affects summary queries
section for more information.

3. Build a query that queries the summary index, as we saw previously in the
Using summary index events in a query section. Assuming we saved this query
as testing sistats, the query would be: index="summary_impl_splunk"
search_name="testing sistats".

4. Use the original stats function against the results, as follows:

index="summary_impl_splunk" search_name="testing sistats"
 | stats count max(req_time) avg(req_time) min(req_time) by user

This should produce exactly the same results as the original query.

The si* variants still seem somewhat magical to me, but they work so well that it
is in your own best interest to dive in and trust the magic. Be very sure that your
functions and fields are a subset of the original!

How latency affects summary queries
Latency is the difference between the time assigned to an event (usually parsed from
the text) and the time it was written to the index. Both times are captured, in _time
and _indextime, respectively.

This query will show us what our latency is:

sourcetype=impl_splunk_gen
 | eval latency = _indextime - _time
 | stats min(latency) avg(latency) max(latency)

In my case, these statistics look as shown in the following screenshot:

Chapter 9

[255]

The latency in this case is exaggerated, because the script behind impl_splunk_gen
is creating events in chunks. In most production Splunk instances, the latency is
usually just a few seconds. If there is any slowdown, perhaps because of network
issues, the latency may increase dramatically, and so it should be accounted for.

This query will produce a table showing the time for every event:

sourcetype=impl_splunk_gen
 | eval latency = _indextime - _time
 | eval time=strftime(_time,"%Y-%m-%d %H:%M:%S.%3N")
 | eval indextime=strftime(_indextime,"%Y-%m-%d %H:%M:%S.%3N")
 | table time indextime latency

The previous query produces the following table:

To deal with this latency, you should add enough delay in your query that populates
the summary index. The following are a few examples:

Confidence Time slice Earliest Latest cron
2 minutes 1 hour -62m@m -2m@m 2 * * * *

15 minutes 1 hour -1h@h -0h@h 15 * * * *

5 minutes 5 minutes -10m@m -5m@m */5 * * * *

1 hour 15 minutes -75m@m -60m@m */15 * * * *

1 hour 24 hours -1d@d -0d@d 0 1 * * * *

Summary Indexes and CSV Files

[256]

Sometimes you have no idea when your logs will be indexed,
as when they are delivered in batches on unreliable networks.
This is what I would call "unpredictable latency". For one possible
solution, take a look at the app indextime search available at
http://splunkbase.com.

How and when to backfill summary data
If you are building reports against summary data, you of course need enough time
represented in your summary index. If your report represents only a day or two,
then you can probably just wait for the summary to have enough information. If you
need the report to work sooner rather than later, or the time frame is longer, then
you can backfill your summary index.

Using fill_summary_index.py to backfill
The fill_summary_index.py script allows you to backfill the summary index
for any time period you like. It does this by running the saved searches you have
defined to populate your summary indexes, but for the time periods you specify.

To use the script, follow the given procedure:

1. Create your scheduled search, as detailed previously in the Populating
summary indexes with saved searches section.

2. Log in to the shell on your Splunk instance. If you are running a distributed
environment, log in to the search head.

3. Change directories to the Splunk bin directory. cd $SPLUNK_HOME/bin.
$SPLUNK_HOME is the root of your Splunk installation. The default installation
directory is /opt/splunk on Unix operating systems, and c:\Program
Files\Splunk on Windows.

4. Run the fill_summary_index command. An example from inside the script
is as follows:

./splunk cmd python fill_summary_index.py -app is_app_one -name
"summary - count by user" -et -30d -lt now -j 8 -dedup true -auth
admin:changeme

Chapter 9

[257]

Let's break down these arguments in the following manner:

• ./splunk cmd: This essentially sets environment variables so that whatever
runs next has the appropriate settings to find Splunk's libraries and included
Python modules.

• python fill_summary_index.py: This runs the script itself using the
Python executable and modules included with the Splunk distribution.

• -app is_app_one: This is the name of the app that contains the summary
populating queries in question.

• -name "summary - count by user": The name of the query to run. * will
run all summary queries contained in the app specified.

• -et -30d: This is the earliest time to consider. The appropriate times are
determined and used to populate the summary index.

• -lt now: This is the latest time to consider.
• -j 8: This determines how many queries to run simultaneously.
• -dedup true: This is used to determine whether there are no results already

for each slice of time. Without this flag, you could end up with duplicate
entries in your summary index. For some statistics this wouldn't matter, but
for most it would.

If you are concerned that you have summary data that is incomplete,
perhaps because summary events were produced while an indexer
was unavailable, you should investigate the delete command to
remove these events first. The delete command is not efficient,
and should be used sparingly, if at all.

• -auth admin:changeme: The auth to run the query.

When you run this script, it will run the query with the appropriate times, as if
the query had been run at those times in the past. This can be a very slow process,
particularly if the number of slices is large. For instance, slices every 5 minutes for
a month would be 30 * 24 * (60/5) = 8,640 queries.

Summary Indexes and CSV Files

[258]

Using collect to produce custom summary
indexes
If the number of events destined for your summary index could be represented
in a single report, we can use the collect function to create our own summary
index entries directly. This has the advantage that we can build our index in one
shot, which could be much faster than running the backfill script, which must run
one search per slice of time. For instance, if you want to calculate 15-minute slices
over a month, the script will fire off 2,880 queries.

If you dig into the code that actually produces summary indexes, you will find that
it uses the collect command to store events into the specified index. The collect
command is available to us, and with a little knowledge, we can use it directly.

First, we need to build a query that slices our data by buckets of time as follows:

source="impl_splunk_gen"
 | bucket span=1h _time
 | stats count by _time user

This gives us a simple table as shown in the following screenshot:

Notice that there is a row per slice of time, and each user that produced events
during that slice of time.

Let's add a few more fields for interest:

source="impl_splunk_gen"
 | bucket span=1h _time
 | eval error=if(loglevel="ERROR",1,0)
 | stats count avg(req_time) dc(ip) sum(error) by _time user

Chapter 9

[259]

This gives us a table as shown in the following screenshot:

Now, to get ready for our summary index, we switch to sistats, and add a search_
name field as the saved search would. Use testmode to make sure everything is
working as expected, as follows:

source="impl_splunk_gen"
 | bucket span=1h _time
 | eval error=if(loglevel="ERROR",1,0)
 | sistats count avg(req_time) dc(ip) sum(error) by _time user
 | eval search_name="summary - user stats"
 | collect index=summary_impl_splunk testmode=true

The results of this query show us what will actually be written to the summary
index, but as this is not designed for humans, let's simply test the round trip by
adding the original stats statement to the end, as follows:

source="impl_splunk_gen"
 | bucket span=1h _time
 | eval error=if(loglevel="ERROR",1,0)
 | sistats count avg(req_time) dc(ip) sum(error) by _time user
 | eval search_name="summary - hourly user stats - collect test"
 | collect index=summary_impl_splunk testmode=true
 | stats count avg(req_time) dc(ip) sum(error) by _time user

Summary Indexes and CSV Files

[260]

If we have done everything correctly, the results should be identical to the
original table:

To actually run this query, we simply remove testmode from collect, as follows:

source="impl_splunk_gen"
 | bucket span=1h _time
 | eval error=if(loglevel="ERROR",1,0)
 | sistats count avg(req_time) dc(ip) sum(error) by _time user
 | eval search_name="summary - user stats"
 | collect index=summary_impl_splunk

Beware that you will end up with duplicate values if you use the
collect command over a time frame that already has results in the
summary index. Either use a custom time frame to ensure you do not
produce duplicates, or investigate the delete command, which as
mentioned earlier, is not efficient, and should be avoided if possible.

No results will be available until the query is complete and the file created behind
the scenes is indexed. On my installation, querying one month of data, the query
inspected 2.2 million events in 173 seconds, producing 2,619 summary events.
Let's use the summary data now:

index=summary_impl_splunk
search_name="summary - hourly user stats - collect test"
 | timechart sum(error) by user

Chapter 9

[261]

This will give us a neat graph as shown in the following screenshot:

Because this is created from the summary, instead of three minutes, this query
completes in 1.5 seconds.

In this specific case, using collect was four times faster than using the fill_
summary_index.py script. That said, it is much easier to make a mistake, so be
very careful. Rehearse with collect testmode=true and a trailing stats or
timechart command.

Reducing summary index size
If the saved search populating a summary index produces too many results, the
summary index is less effective at speeding up searches. This usually occurs because
one or more of the fields used for grouping has more unique values than is expected.

One common example of a field that can have many unique values is the URL in a
web access log. The number of URL values might increase in instances where:

• The URL contains a session ID
• The URL contains search terms
• Hackers are throwing URLs at your site trying to break in
• Your security team runs tools looking for vulnerabilities

On top of this, multiple URLs can represent exactly the same resource, as follows:

• /home/index.html

• /home/

• /home/index.html?a=b

• /home/?a=b

We will cover a few approaches to flatten these values. These are just examples and
ideas, as your particular case may require a different approach.

Summary Indexes and CSV Files

[262]

Using eval and rex to define grouping fields
One way to tackle this problem is to make up a new field from the URL using rex.
Perhaps you only really care about hits by directories. We can accomplish this with
rex, or if needed, multiple rex statements.

Looking at the fictional source type impl_splunk_web, we see results that look like
the following:

2012-08-25T20:18:01 user=bobby GET /products/x/?q=10471480 uid=Mzg2NDc0OA

2012-08-25T20:18:03 user=user3 GET /bar?q=923891 uid=MjY1NDI5MA

2012-08-25T20:18:05 user=user3 GET /products/index.html?q=9029891
uid=MjY1NDI5MA

2012-08-25T20:18:08 user=user2 GET /about/?q=9376559 uid=MzA4MTc5OA

URLs are tricky, as they might or might not contain certain parts of the URL. For
instance, the URL may or may not have a query string, may or may not have a page,
and may or may not have a trailing slash. To deal with this, instead of trying to make
an all encompassing regular expression, we will take advantage of the behavior
of rex, which is to make no changes to the event if the pattern does not match.
Consider the following query:

sourcetype="impl_splunk_web"
 | rex "\s[A-Z]+\s(?P<url>.*?)\s"
 | rex field=url "(?P<url>.*)\?"
 | rex field=url "(?P<url>.*/)"
 | stats count by url

In our case, this will produce the following report:

Chapter 9

[263]

Stepping through these rex statements we have:

• rex "\s[A-Z]+\s(?P<url>.*?)\s": This pattern matches a space followed
by uppercase letters, followed by a space, and then captures all characters
until a space into the field url. The field attribute is not defined, so the
rex statement matches against the _raw field. The values extracted look
like the following:

 ° /products/x/?q=10471480

 ° /bar?q=923891

 ° /products/index.html?q=9029891

 ° /about/?q=9376559

• rex field=url "(?P<url>.*)\?": Searching the field url, this pattern
matches all characters until a question mark. If the pattern matches, the
result replaces the contents of the field url. If the pattern doesn't match,
url stays the same. The values of url become:

 ° /products/x/

 ° /bar

 ° /products/index.html

 ° /about/

• rex field=url "(?P<url>.*/)": Once again, while searching the field
url, this pattern matches all characters until and including the last slash.
The values of url are then:

 ° /products/x/

 ° /

 ° /products/

 ° /about/

This should effectively reduce the number of possible URLs, and hopefully make our
summary index more useful and efficient. It may be that you only want to capture up
to three levels of depth. You could accomplish that with this rex statement:

rex field=url "(?P<url>/(?:[^/]/){,3})"

The possibilities are endless. Be sure to test as much data as you can when building
your summary indexes.

Summary Indexes and CSV Files

[264]

Using a lookup with wildcards
Splunk lookups also support wildcards, which we can use in this case.
One advantage is that we can define arbitrary fields for grouping, independent
of the values of url.

For a lookup wildcard to work, first we need to set up our url field and the lookup:

1. Extract the url field. The rex pattern we used before should work: \s[A-
Z]+\s(?P<url>.*?)\s. See Chapter 3, Tables, Charts, and Fields, for detailed
instructions on setting up a field extraction. Don't forget to set permissions
on the extraction.

2. Create our lookup file. Let's call the lookup file flatten_summary_lookup.
csv. Use the following contents for our example log:
url,section
/about/*,about
/contact/*,contact
/*/*,unknown_non_root
/*,root
*,nomatch

If you create your lookup file in Excel on a Mac, be sure to save the
file using the format Windows Comma Separated (.csv).

3. Upload the lookup table file, create our lookup definition, and automatic
lookup. See the Using lookups to enrich data section in Chapter 6, Extending
Search, for detailed instructions. The automatic lookup definition should look
like the following screenshot (the value of Name doesn't matter):

Chapter 9

[265]

4. Set the permissions on all of the objects. I usually opt for All Apps for
Lookup table files and Lookup definitions, and This app only for
Automatic lookups. See Chapter 6, Extending Search, for details.

5. Edit transforms.conf. As of Splunk 4.3, not all features of lookups
can be defined through the admin interface. To access these features,
the configuration files that actually drive Splunk must be edited manually.
We will cover configuration files in great detail in Chapter 10, Configuring
Splunk, but for now, let's add two lines to one file and move on:

1. Edit $SPLUNK_HOME/etc/apps/is_app_one/local/transforms.
conf. The name of the directory is_app_one may be different
depending on what app was active when you created your lookup
definition. If you can't find this file, check your permissions and the
App column in the admin interface.

2. You should see these two lines, or something similar, depending
on what you named your Lookup table file and Lookup definition
instances:

[flatten_summary_lookup]
filename = flatten_summary_lookup.csv

If you do not see these lines in this file, check your permissions.

1. Add two more lines below filename:

match_type = WILDCARD(url)
max_matches = 1

These two lines effectively say:

• match_type = WILDCARD(url): When evaluating the field url, honor
wildcard characters. Without this setting, matches are always exact.

• max_matches = 1: Stop searching after the first match. By default, up to
10 matches are allowed. We want to match only the first line that matches,
effectively using the lookup like a case statement.

If everything is wired up properly, we should now be able to run the search:

sourcetype=impl_splunk_web | stats count by section

Summary Indexes and CSV Files

[266]

This should give us the following simple report:

To see in greater detail what is really going on, let's try the following search:

sourcetype=impl_splunk_web
 | rex field=url "(?P<url>.*)\?"
 | stats count by section url

The rex statement is included to remove the query string from the value of url
created by our extracted field. This gives us the following report:

Looking back at our lookup file, our matches appear to be as follows:

url pattern section
/about/ /about/* about

/contact/ /contact/* contact

/bar /* root

/foo /* root

/products/ /*/* unknown_non_root

/products/x/ /*/* unknown_non_root

/products/y/ /*/* unknown_non_root

If you read the lookup file from top to bottom, the first pattern that matches wins.

Chapter 9

[267]

Using event types to group results
Another approach for grouping results to reduce summary index size would be
to use event types in creative ways. For a refresher on event types, see Chapter 6,
Extending Search.

This approach has the following advantages:

• All definitions are defined through the web interface
• It is possible to create arbitrarily complex definitions
• You can easily search for only those events that have defined section names
• You can place events in multiple groups if desired

The disadvantages to this approach are as follows:

• This is a non-obvious approach.
• It is not simple to not place events in multiple groups if more than one event

type matches. For instance, if you want a page to match /product/x/* but
not /product/*, this is not convenient to do.

The following is the procedure to create these event types:

1. For each section, create an event type, as follows:

2. Set the permissions to either This app only or Global, depending on the scope.
3. Repeat this for each section you want to summarize. The Clone link in

Manager makes this process much faster.

Summary Indexes and CSV Files

[268]

With our event types in place, we can now build queries. The Tag value that we
included means we can search easily for only those events that match a section,
like the following:

tag::eventtype="summary_url" | top eventtype

The previous code returns a table as shown in the following screenshot:

Our results contain the new event types that we created, along with an unwanted
event type, bogus. Remember that all event type definitions that match an event
are attached. This is very powerful, but sometimes is not what you expect. The
bogus event type definition is *, which means it matches everything. The bogus
event type was added purely to illustrate the point and has no practical use.

Let's create a new field from our summary event type name, then aggregate
based on the new field:

tag::eventtype="summary_url"
 | rex field=eventtype "url_(?P<section>.*)"
 | stats count by section

The previous code gives us the results we are looking for, as shown in the
following screenshot:

This search finds only events that have defined event types, which may be what
you want. To group all other results into an "other" group, we instead need to
search for all events in the following manner:

sourcetype=impl_splunk_web
 | rex field=eventtype "url_(?P<section>.*)"
 | fillnull value="other" section
 | stats count by section

Chapter 9

[269]

The previous code then produces the following report:

Hopefully these examples will be food for thought when it comes to collapsing
your results into more efficient summary results.

Calculating top for a large time frame
One common problem is to find the top contributors out of some huge set of unique
values. For instance, if you want to know what IP addresses are using the most
bandwidth in a given day or week, you may have to keep track of the total of request
sizes across millions of unique hosts to definitively answer this question. When
using summary indexes, this means storing millions of events in the summary index,
quickly defeating the point of summary indexes.

Just to illustrate, let's look at a simple set of data:

Time 1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5 6.6.6.6
12:00 99 100 100 100
13:00 99 100 100 100
14:00 99 100 101 100
15:00 99 99 100 100
16:00 99 100 100 100
total 495 300 299 401 400 100

If we only stored the top three IPs per hour, our data set would look like the following:

Time 1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5 6.6.6.6
12:00 100 100 100
13:00 100 100 100
14:00 100 101 100
15:00 99 100 100
16:00 100 100 100
total 300 299 401 400 100

Summary Indexes and CSV Files

[270]

According to this data set, our top three IP addresses are 4.4.4.4, 5.5.5.5, and
2.2.2.2. The actual largest value was for 1.1.1.1, but it was missed because it
was never in the top three.

To tackle this problem, we need to keep track of more data points for each slice of
time. But how many?

Using our generator data, let's count a random number and see what kind of results
we see. In my data set, it is the following query:

source="impl_splunk_gen" | top req_time

When run over a week, this query gives me the following results:

How many unique values were there? The following query will tell us that:

source="impl_splunk_gen" | stats dc(req_time)

This tells us there are 12,239 unique values of req_time. How many different
values are there per hour? The following query will calculate the average unique
values per hour:

source="impl_splunk_gen"
 | bucket span=1h _time
 | stats dc(req_time) as dc by _time
 | stats avg(dc)

Chapter 9

[271]

This tells us that each hour there are an average of 3,367 unique values of req_time.
So, if we stored every count of every req_time for a week, we will store 3,367 * 24 * 7
= 565,656 values. How many values would we have to store per hour to get the same
answer we received before?

The following is a query that attempts to answer that question:

source="impl_splunk_gen"
 | bucket span=1h _time
 | stats count by _time req_time
 | sort 0 _time -count
 | streamstats count as place by _time
 | where place<50
 | stats sum(count) as count by req_time
 | sort 0 -count
 | head 10

Breaking this query down we have:

• source="impl_splunk_gen": This finds the events.
• | bucket span=1h _time: This floors our _time field to the beginning of

the hour. We will use this to simulate hourly summary queries.
• | stats count by _time req_time: This generates a count per req_time

per hour.
• | sort 0 _time -count: This sorts and keeps all events (that's what 0

means), first ascending by _time then descending by count.
• | streamstats count as place by _time: This loops over the events,

incrementing place, and starting the count over when _time changes.
Remember that we flattened _time to the beginning of each hour.

• | where place<50: This keeps the first 50 events per hour. These will be the
largest 50 values of count per hour, since we sorted descending by count.

• | stats sum(count) as count by req_time: This adds up what we have
left across all hours.

• | sort 0 -count: This sorts the events in descending order by count.
• | head 10: This shows the first 10 results.

Summary Indexes and CSV Files

[272]

How did we do? Keeping the top 50 results per hour, my results look as shown in the
following screenshot:

That really isn't close. Let's try this again. We'll try where place<1000. This gives
us the following results:

That is much closer, but we're still not quite there. After experimenting a little more,
place<2000 was enough to get the expected top 10. This is better than storing 3,367
rows per hour. This may not seem like a big enough difference to bother, but increase
the number of events by 10 or 100, and it can make a huge difference.

Chapter 9

[273]

To use these results in a summary index, you would simply eliminate results going
into your data set. One way to accomplish this might be:

source="impl_splunk_gen"
 | sitop req_time
 | streamstats count as place
 | where place<2001

The first row produced by sitop contains the total value.

Another approach, using a combination of eventstats and sistats, is as follows:

source="impl_splunk_gen"
 | eventstats count by req_time
 | sort 0 -req_time
 | streamstats count as place
 | where place<2001
 | sistats count by req_time

Luckily, this is not a terribly common problem, so most of this complexity can be
avoided. For another option, see the Storing a running calculation section.

Storing raw events in a summary index
Sometimes it is desirable to copy events to another index. I have seen a couple of
reasons for doing this, namely:

• Differing retention: If some special events need to be kept indefinitely, but
the index where they are initially captured rolls off after some period of time,
they can be captured into a summary index

• Enrichment: Sometimes the enrichment of data is too expensive to happen
with every query, or it is important to capture events with the values from
a lookup as the values existed at a particular point in time

The process is essentially the same as creating any summary index events. Follow
these steps:

1. Create a populating query.
2. Add interesting fields using the fields command.
3. Add a search_name field to the search definition.
4. Include _time, but rename _raw to raw.

Summary Indexes and CSV Files

[274]

Let's capture all errors that mary sees, enriched with some extra data. First, create
the query:

sourcetype=impl_splunk_gen mary error
| eval raw=_raw
| table _time raw department city

Save the query and edit the summary info:

Chapter 9

[275]

You can then search against the summary index using the search_name value
you provided:

index=summary_impl_splunk search_name="summary - mary errors"

The events in the summary index look almost identical to the original event, with
the addition of the fields specified:

09/03/2012 203:11:59 -0600, search_name="summary - mary errors",
search_now=1346641919.000, info_min_time=1346641919.000, info_max_
time=1346641919.000, info_search_time=1346641919.588, city=Dallas,
department=HR, raw="2012-09-03T03:11:59.107+0000 DEBUG error, ERROR,
Error! [logger=LogoutClass, user=mary, ip=3.2.4.5, req_time=1414]"

With the addition of the table command, we can see the extra fields that were
added using the fields command:

index=summary_impl_splunk search_name="summary - mary errors"
 | table _time department city search_name

The previous search renders the following table:

This process is fairly complicated, so luckily adding events to a summary index is
not commonly needed.

Using CSV files to store transient data
Sometimes it is useful to store small amounts of data outside of a Splunk index.
Using the inputcsv and outputcsv commands, we can store tabular data in CSV
files on the filesystem.

Summary Indexes and CSV Files

[276]

Pre-populating a dropdown
If a dashboard contains a dynamic dropdown, you must use a search to populate the
dropdown. As the amount of data increases, the query to populate the dropdown
will run more and more slowly, even from a summary index. We can use a CSV file
to store just the information needed, simply adding new values when they occur.

First, we build a query to generate the CSV file. This query should be run over as
much data as possible:

source="impl_splunk_gen"
 | stats count by user
 | outputcsv user_list.csv

Next, we need a query to run periodically that will append any new entries to the
file. Schedule this query to run periodically as a saved search:

source="impl_splunk_gen"
 | stats count by user
 | append [inputcsv user_list.csv]
 | stats sum(count) as count by user
 | outputcsv user_list.csv

To then use this in our dashboard, our populating query will simply be:

|inputcsv user_list.csv

Simple dashboard XML using this query would look like the following:

<input type="dropdown" token="sourcetype">
 <label>User</label>
 <populatingSearch fieldForValue="user" fieldForLabel="user">
 |inputcsv user_list.csv
 </populatingSearch>
</input>

Creating a running calculation for a day
If the number of events per day is in the millions or tens of millions, querying
all events for that day can be extremely expensive. For that reason, it makes sense
to do part of the work on smaller periods of time.

Chapter 9

[277]

Using a summary index to store these interim values can sometimes be overkill
if those values are not needed for long. In the Calculating top for a large time frame
section, we ended up storing thousands of values every few minutes. If we simply
wanted to know the top 10 per day, this might be seen as a waste. To cut down on
the noise in our summary index, we can use a CSV as cheap interim storage.

The steps are essentially to:

1. Periodically query recent data and update the CSV.
2. Capture top values in summary at the end of the day.
3. Empty the CSV file.

Our periodic query looks like the following:

source="impl_splunk_gen"
 | stats count by req_time
 | append [inputcsv top_req_time.csv]
 | stats sum(count) as count by req_time
 | sort 10000 -count
 | outputcsv top_req_time.csv

Let's break the query down line by line:

• source="impl_splunk_gen": This is the query to find the events for this
slice of time.

• | stats count by req_time: This helps calculate the count by req_time.
• | append [inputcsv top_req_time.csv]: This loads the results generated

so far from the CSV file, and adds the events to the end of our current results.
• | stats sum(count) as count by req_time: This uses stats to combine

the results from our current time slice and the previous results.
• | sort 10000 -count: This sorts the results descending by count. The

second word, 10000, specifies that we want to keep the first 10,000 results.
• | outputcsv top_req_time.csv: This overwrites the CSV file.

Schedule the query to run periodically, perhaps every 15 minutes. Follow the same
rules about latency as discussed in the How latency affects summary queries section.

Summary Indexes and CSV Files

[278]

When the rollup is expected, perhaps each night at midnight, schedule two more
queries a few minutes apart, as follows:

• | inputcsv top_req_time.csv | head 100: Save this as a query
adding to a summary index, as in the Populating summary indexes with
saved searches section

• | stats count |outputcsv top_req_time.csv: This query will simply
overwrite the CSV file with a single line

Summary
In this chapter, we have explored the use of summary indexes and the commands
surrounding them. While summary indexes are not always the answer, they can be
very useful for particular problems. We also explored alternative approaches using
CSV files for interim storage.

Summary indexes have long been a hotbed of development at Splunk, and I know
there has been major work done for Splunk 5, increasing the speed of some summary
queries dramatically.

In our next chapter we will dive into the configuration files that drive Splunk.

Configuring Splunk
Everything that controls Splunk lives in configuration files sitting in the filesystem
of each instance of Splunk. These files are unencrypted, easily readable, and easily
editable. Almost all of the work that we have done so far has been accomplished
through the web interface, but everything actually ends up in these configuration files.

While the web interface does a lot, there are many options that are not represented in
the admin interface. There are also some things that are simply easier to accomplish
by editing the files directly.

In this chapter, we will cover:

• Locating configuration files
• Merging configurations
• Debugging configurations
• Common configurations and their parameters

Locating Splunk configuration files
Splunk's configuration files live in $SPLUNK_HOME/etc. This is reminiscent of
Unix's /etc directory but is instead contained within Splunk's directory structure.
This has the advantage that the files don't have to be owned by root. In fact, the
entire Splunk installation can run as an unprivileged user (assuming you don't
need to open a port below 1024 or read files only readable by another user).

The directories that contain configurations are:

• $SPLUNK_HOME/etc/system/default: The default configuration files
that ship with Splunk. Never edit these files as they will be overwritten
each time you upgrade.

Configuring Splunk

[280]

• $SPLUNK_HOME/etc/system/local: This is the location of global
configuration overrides specific to this host. There are very few
configurations that need to live here—most configurations that do live
here are created by Splunk itself. In almost all cases, you should make your
configuration files inside of an app.

• $SPLUNK_HOME/etc/apps/$app_name/default: This is the proper location
for configurations in an app that will be shared either through Splunkbase
or otherwise.

• $SPLUNK_HOME/etc/apps/$app_name/local: This is where most
configurations should live and where all non-private configurations
created through the web interface will be placed.

• $SPLUNK_HOME/etc/users/$user_name/$app_name/local: When a search
configuration is created through the web interface, it will have a permission
setting of Private and will be created in a user-/app-specific configuration
file. Once permissions are changed, the configuration will move to the
corresponding directory named $app_name/local.

There are a few more directories that contain files that are not .conf files. We'll talk
about those later in this chapter, under the User interface resources section.

The structure of a Splunk configuration
file
The .conf files used by Splunk look very similar to .ini files. A simple
configuration looks like this:

#settings for foo
[foo]
bar=1
la = 2

Let's look at the following couple of definitions:

• stanza: A stanza is used to group attributes. Our stanza in this example is
[foo]. A common synonym for this is section. Keep in mind the following
key points:

 ° A stanza name must be unique in a single file
 ° Order does not matter

Chapter 10

[281]

• attribute: An attribute is a name-value pair. Our attributes in this example
are bar and la. A common synonym is parameter. Keep in mind the
following key points:

 ° The attribute name must not contain whitespace or the equals sign
 ° Each attribute belongs to the stanza defined above; if the

attribute appears above all stanzas, the attribute belongs
to the stanza [default]

 ° The attribute name must be unique in a single stanza but not in
a configuration

 ° Each attribute must have its own line and can only use one line
 ° Spaces around the equal sign do not matter

These are a few rules that may not apply in other implementations:

• Stanza and property names are case sensitive
• The comment character is #
• Bare attributes at the top of a file are added to the [default] stanza
• Any attributes in the stanza [default] are added to all stanzas that

do not have an attribute with that name already

Configuration merging logic
Configurations in different locations merge behind the scenes into one "super"
configuration. Luckily, the merging happens in a predictable way and is fairly
easy to learn, and there is a tool to help us preview this merging.

Merging order
Merging order is slightly different depending on whether the configuration is being
used by the search engine or another part of Splunk. The difference is whether there
is an active user and app.

Merging order outside of search
Configurations being used outside of search are merged in a fairly simple order.
These configurations include what files to read, what indexed fields to create,
what indexes exist, and deployment server and client configurations as well
as other settings. These configurations merge in this order:

1. $SPLUNK_HOME/etc/system/default: This directory contains the base
configurations that ship with Splunk.

Configuring Splunk

[282]

Never make changes in $SPLUNK_HOME/etc/system/default
as your changes will be lost when you upgrade Splunk.

2. $SPLUNK_HOME/etc/apps/*/default: Configurations are "overlaid" in
reverse ASCII order by app directory name. a beats z.

3. $SPLUNK_HOME/etc/apps/*/local

4. $SPLUNK_HOME/etc/system/local

 ° The configurations in this directory are applied last.
 ° Outside of search, these configurations cannot be overridden

by an app configuration. Apps are a very convenient way to
compartmentalize control and distribute configurations. This
is particularly relevant if you use the deployment server, which
we will cover in Chapter 11, Advanced Deployments.

Do not edit configurations in $SPLUNK_HOME/etc/system/local
unless you have a very specific reason. An app is almost always the
correct place for configuration.

A little pseudo code to describe this process might look like this:

$conf = new Configuration('$SPLUNK_HOME/etc/')

$conf.merge('system/default/$conf_name')

for $this_app in reverse(sort(@all_apps)):
 $conf.merge('apps/$this_app/default/$conf_name')

for $this_app in reverse(sort(@all_apps)):
 $conf.merge('apps/$this_app/local/$conf_name')

$conf.merge('system/local/$conf_name')

Merging order when searching
When searching, configuration merging is slightly more complicated. When running
a search, there is always an active user and app, and they come into play. The logical
order looks like this:

1. $SPLUNK_HOME/etc/system/default

2. $SPLUNK_HOME/etc/system/local

Chapter 10

[283]

3. $SPLUNK_HOME/etc/apps/not app

 ° Each app, other than the current app, is looped through in ASCII
order of the directory name (not the visible app name). Unlike
merging outside of search, z beats a.

 ° All configuration attributes that are shared globally are applied,
first from default and then from local.

4. $SPLUNK_HOME/etc/apps/app

 ° All configurations from default and then local are merged.

5. $SPLUNK_HOME/etc/users/user/app/local

Maybe a little pseudo code would be clearer:

$conf = new Configuration('$SPLUNK_HOME/etc/')

$conf.merge('system/default/$conf_name')
$conf.merge('system/local/$conf_name')

for $this_app in sort(@all_apps):
 if $this_app != $current_app:
 $conf.merge_shared('apps/$this_app/default/$conf_name')
 $conf.merge_shared('apps/$this_app/local/$conf_name')

$conf.merge('apps/$current_app/default/$conf_name')
$conf.merge('apps/$current_app/local/$conf_name')

$conf.merge('users/$current_user/$current_app/local/$conf_name')

Configuration merging logic
Now that we know what configurations will merge in what order, let's cover
the logic for how they actually merge. The logic is fairly simple.

• The configuration name, stanza name, and attribute name must
match exactly

• The last configuration added wins

The best way to understand configuration merging is through examples.

Configuring Splunk

[284]

Configuration merging example 1
Say we have the base configuration default/sample1.conf:

[foo]
bar=10
la=20

And say we merge a second configuration, local/sample1.conf:

[foo]
bar=15

The resulting configuration would be:

[foo]
bar=15
la=20

The things to notice are as follows:

• The second configuration does not simply replace the prior configuration
• The value of bar is taken from the second configuration
• The lack of a la property in the second configuration does not remove

the value from the final configuration

Configuration merging example 2
Say we have the base configuration default/sample2.conf:

[foo]
bar = 10
la=20

[pets]
cat = red
Dog=rex

And say we merge a second configuration, local/sample2.conf:

[pets]
cat=blue
dog=fido
fish = bubbles

Chapter 10

[285]

[foo]
bar= 15

[cars]
ferrari =0

The resulting configuration would be:

[foo]
bar=15
la=20

[pets]
cat=blue
dog=rex
Dog=fido
fish=bubbles

[cars]
ferrari=0

Things to notice in this example:

• The order of the stanzas does not matter
• The spaces around the equal signs do not matter
• Dog does not override dog as all stanza names and property names are

case sensitive
• The cars stanza is added fully

Configuration merging example 3
Let's do a little exercise, merging four configurations from different locations.
In this case, we are not in search, so we will use the rules from the Merging order
outside of search section. Let's step through a few sample configurations:

• For $SPLUNK_HOME/etc/apps/d/default/props.conf we have:
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^\[

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

Configuring Splunk

[286]

• For $SPLUNK_HOME/etc/system/local/props.conf we have:
BREAK_ONLY_BEFORE_DATE = false

[web_access]
TZ = CST

• For $SPLUNK_HOME/etc/apps/d/local/props.conf we have:
[web_access]
TZ = UTC

[security_log]
EXTRACT-<name> = \[(?P<user>.*?)\]

• For $SPLUNK_HOME/etc/apps/b/default/props.conf we have:

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 20
TIME_FORMAT = %Y-%m-%d $H:%M:%S

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

I've thrown a bit of a curveball here by placing the files out of merging order.
These configurations would actually merge in this order:

$SPLUNK_HOME/etc/apps/d/default/props.conf
$SPLUNK_HOME/etc/apps/b/default/props.conf
$SPLUNK_HOME/etc/apps/d/local/props.conf
$SPLUNK_HOME/etc/system/local/props.conf

Stepping through each merge, the configuration would look like this:

1. We start with $SPLUNK_HOME/etc/apps/d/default/props.conf:
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^\[

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

2. We then merge $SPLUNK_HOME/etc/apps/b/default/props.conf:
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 30
TIME_PREFIX = ^\[
TIME_FORMAT = %Y-%m-%d $H:%M:%S

Chapter 10

[287]

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

Even though [source::*.log] and [source::*/access.log] both match
a file called access.log, they will not merge in the configuration because
the stanza names do not match exactly. This logic is covered later under
An overview of Splunk .conf files | props.conf | Stanza types.

3. We then merge $SPLUNK_HOME/etc/apps/d/local/props.conf:
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 30
TIME_PREFIX = ^\[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = UTC

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

[security_log]
EXTRACT-<name> = \[(?P<user>.*?)\]

4. We finally merge the globally overriding $SPLUNK_HOME/etc/system/
local/props.conf file:

[default]
BREAK_ONLY_BEFORE_DATE = false

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^\[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = CST
BREAK_ONLY_BEFORE_DATE = false

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

[source::*/access.log]

Configuring Splunk

[288]

BREAK_ONLY_BEFORE_DATE = false

[security_log]
EXTRACT-<name> = \[(?P<user>.*?)\]
BREAK_ONLY_BEFORE_DATE = false

The setting with the biggest impact here is the bare attribute BREAK_ONLY_BEFORE_
DATE = false. It is first added to the [default] stanza and then is added to all
stanzas that do not already have any value.

As a general rule, avoid using the [default] stanza or bare word
attributes. The final impact may not be what you expect.

Configuration merging example 4 (search)
In this case, we are in search, so we will use the more complicated merging order.
Assuming that we are currently working in the app d, let's merge the same
configurations again. For simplicity, we are assuming that all attributes are shared
globally. We will merge the same configurations listed previously in example 3.

With d as our current app , we will now merge in this order:

$SPLUNK_HOME/etc/system/local/props.conf
$SPLUNK_HOME/etc/apps/b/default/props.conf
$SPLUNK_HOME/etc/apps/d/default/props.conf
$SPLUNK_HOME/etc/apps/d/local/props.conf

Stepping through each merge, the configuration will look like this:

1. We start with $SPLUNK_HOME/etc/system/local/props.conf:
BREAK_ONLY_BEFORE_DATE = false

[web_access]
TZ = CST

2. Now, we merge the default for apps other than our current app (which, in
this case, is only one configuration) $SPLUNK_HOME/etc/apps/b/default/
props.conf:
BREAK_ONLY_BEFORE_DATE = false

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 20
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = CST

Chapter 10

[289]

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

3. Next, we merge our current app default $SPLUNK_HOME/etc/apps/d/
default/props.conf:
BREAK_ONLY_BEFORE_DATE = false

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^\[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = CST

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

4. Now we merge our current app local $SPLUNK_HOME/etc/apps/d/local/
props.conf:
BREAK_ONLY_BEFORE_DATE = false

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^\[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = UTC

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

[security_log]
EXTRACT-<name> = \[(?P<user>.*?)\]

5. And finally, we apply our default stanza to stanzas that don't already have
the attribute:

BREAK_ONLY_BEFORE_DATE = false

Configuring Splunk

[290]

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^\[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = UTC
BREAK_ONLY_BEFORE_DATE = false

[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

[security_log]
EXTRACT-<name> = \[(?P<user>.*?)\]
BREAK_ONLY_BEFORE_DATE = false

I know this is fairly confusing, but with practice, it will make sense. Luckily, btool,
which we will cover next, makes it easier to see.

Using btool
To help preview merged configurations, we call on btool, a command-line tool that
prints the merged version of configurations. The Splunk site has one of my favorite
documentation notes of all time, as follows:

Note: btool is not tested by Splunk and is not officially supported or guaranteed. That
said, it's what our Support team uses when trying to troubleshoot your issues.

With that warning in mind, btool has never steered me wrong. The tool has a
number of functions, but the only one I have ever used is list, like so:

$SPLUNK_HOME/bin/splunk cmd btool props list

This produces 5,277 lines of output, which I won't list here. Let's list the stanza impl_
splunk_gen by adding it to the end of the command line, thus:

/opt/splunk/bin/splunk cmd btool props list impl_splunk_gen

This will produce an output such as this:

[impl_splunk_gen]
ANNOTATE_PUNCT = True
BREAK_ONLY_BEFORE =
BREAK_ONLY_BEFORE_DATE = True

Chapter 10

[291]

... truncated ...
LINE_BREAKER_LOOKBEHIND = 100
LOOKUP-lookupusers = userslookup user AS user OUTPUTNEW
MAX_DAYS_AGO = 2000
... truncated ...
TRUNCATE = 10000
TZ = UTC
maxDist = 100

Our configuration file at $SPLUNK_HOME/etc/apps/
ImplementingSplunkDataGenerator/local/props.conf contains only the
following lines:

[impl_splunk_web]
LOOKUP-web_section = flatten_summary_lookup url AS url OUTPUTNEW
EXTRACT-url = \s[A-Z]+\s(?P<url_from_app_local>.*?)\s
EXTRACT-foo = \s[A-Z]+\s(?P<url_from_app>.*?)\s

So where did the rest of this configuration come from? With the use of the --debug
flag, we can get more details.

/opt/splunk/bin/splunk cmd btool props list impl_splunk_gen --debug

This produces the following query:

Implementi [impl_splunk_gen]
system ANNOTATE_PUNCT = True
system BREAK_ONLY_BEFORE =
system BREAK_ONLY_BEFORE_DATE = True
... truncated ...
system LINE_BREAKER_LOOKBEHIND = 100
Implementi LOOKUP-lookupusers = userslookup user AS user OUTPUTNEW
system MAX_DAYS_AGO = 2000
... truncated ...
system TRUNCATE = 10000
Implementi TZ = UTC
system maxDist = 100

The first column, though truncated, tells us what we need to know. The vast majority
of these lines are defined in system, most likely in system/default/props.conf.
The remaining items from our file are labeled Implementi, which is the beginning
of our app directory, ImplementingSplunkDataGenerator.

If you ever have a question about where some setting is coming from, btool will
save you a lot of time. Also, check out the app Splunk on Splunk at Splunkbase for
access to btool from the Splunk web interface.

Configuring Splunk

[292]

An overview of Splunk .conf files
If you have spent any time in the filesystem investigating Splunk, you have seen
many different files ending in .conf. In this section, we will give a quick overview of
the most common .conf files. The official documentation is the best place to look for
a complete reference of files and attributes.

The quickest way to find the official documentation is with your favorite
search engine by searching for splunk filename.conf. For example,
a search for splunk props.conf pulls up the Splunk documentation
for props.conf first in every search engine I tested.

props.conf
The stanzas in props.conf define which events to match based on host, source,
and sourcetype. These stanzas are merged into the master configuration based
on the uniqueness of stanza and attribute names, as with any other configuration,
but there are specific rules governing when each stanza is applied to an event and
in what order. Stated as simply as possible, attributes are sorted by type, then by
priority, and then by ASCII value.

We'll cover those rules under the Stanza types section. First, let's look at
common attributes.

Common attributes
The full set of attributes allowed in props.conf is vast. Let's look at the most
common attributes and try to break them down by the time when they are applied.

Search-time attributes
The most common attributes that users will make in props.conf are field
extractions. When a user defines an extraction through the web interface, it ends up
in props.conf, like so:

[my_source_type]
EXTRACT-foo = \s(?<bar>\d+)ms
EXTRACT-cat = \s(?<dog>\d+)s

This configuration defines the fields bar and dog for the source type my_source_
type. Extracts are the most common search-time configurations. Any of the stanza
types listed under the Stanza types section can be used, but source type is definitely
the most common.

Chapter 10

[293]

Other common search time attributes include:

• REPORT-foo = bar: This attribute is a way to reference stanzas in
transforms.conf but apply them at search time instead of index time.
This approach predates EXTRACT and is still useful for a few special cases.
We will cover this case later under the transforms.conf section.

• KV_MODE = auto: This attribute allows you to specify whether Splunk
should automatically extract fields in the form key=value from events.
The default value is auto. The most common change is to disable automatic
field extraction for performance reasons by setting the value to none. Other
possibilities are multi, json, and xml.

• LOOKUP-foo = mylookup barfield: This attribute lets you wire up a lookup
to automatically run for some set of events. The lookup itself is defined in
transforms.conf.

Index-time attributes
As discussed in Chapter 3, Indexed fields versus extracted fields, it is possible to add
fields to the metadata of events. This is accomplished by specifying a transform
in transforms.conf, and an attribute in props.conf, to tie the transformation
to specific events.

The attribute in props.conf looks like this: TRANSFORMS-foo = bar1,bar2.
This attribute references stanzas in transforms.conf by name, in this case, bar1
and bar2. These transform stanzas are then applied to the events matched by the
stanza in props.conf.

Parse-time attributes
Most of the attributes in props.conf actually have to do with parsing events.
To successfully parse events, a few questions need to be answered, such as these:

• When does a new event begin? Are events multiline? Splunk will make fairly
intelligent guesses, but it is best to specify an exact setting. Attributes that
help with this include:

 ° SHOULD_LINEMERGE = false: If you know your events will never
contain the newline character, setting this to false will eliminate
a lot of processing.

 ° BREAK_ONLY_BEFORE = ^\d\d\d\d-\d\d-\d\d: If you know that
new events always start with a particular pattern, you can specify
it using this attribute.

Configuring Splunk

[294]

 ° TRUNCATE = 1024: If you are certain you only care about the first n
characters of an event, you can instruct Splunk to truncate each line.
What is considered a line can be changed with the next attribute.

 ° LINE_BREAKER = ([\r\n]+)(?=\d{4}-\d\d-\d\d): The most
efficient approach to multiline events is to redefine what Splunk
considers a line. This example says that a line is broken on any
number of newlines followed by a date of the form 1111-11-11.
The big disadvantage to this approach is that, if your log changes,
you will end up with garbage in your index until you update your
configuration. Try the props helper app available at Splunkbase for
help making this kind of configuration.

• Where is the date? If there is no date, see DATETIME_CONFIG further down
this bullet list. The relevant attributes are:

 ° TIME_PREFIX = ^\[: By default, dates are assumed to fall at the
beginning of the line. If this is not true, give Splunk some help and
move the cursor past the characters preceding the date. This pattern
is applied to each line, so if you have redefined LINE_BREAKER
correctly, you can be sure only the beginnings of actual multiline
events are being tested.

 ° MAX_TIMESTAMP_LOOKAHEAD = 30: Even if you change no other setting,
you should change this one. This setting says how far after TIME_
PREFIX to test for dates. With no help, Splunk will take the first
150 characters of each line and then test regular expressions to find
anything that looks like a date. The default regular expressions are
pretty lax, so what it finds may look more like a date than the actual
date. If you know your date is never more than n characters long, set
this value to n or n+2. Remember that the characters retrieved come
after TIME_PREFIX.

• What does the date look like? These attributes will be of assistance here:

 ° TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z: If this attribute is
specified, Splunk will apply strptime to the characters immediately
following TIME_PREFIX. If this matches, then you're done. This is by
far the most efficient and least error-prone approach. Without this
attribute, Splunk actually applies a series of regular expressions until
it finds something that looks like a date.

Chapter 10

[295]

 ° DATETIME_CONFIG = /etc/apps/a/custom_datetime.xml: As
mentioned, Splunk uses a set of regular expressions to determine the
date. If TIME_FORMAT is not specified, or won't work for some strange
reason, you can specify a different set of regular expressions or
disable time extraction completely by setting this attribute to CURRENT
(the indexer clock time) or NONE (file modification time, or if there is
no file, clock time). I personally have never had to resort to a custom
datetime.xml file, though I have heard of it being done.

• The Data preview function available when adding data through the manager
interface builds a good, usable configuration. The generated configuration
does not use LINE_BREAKER, which is definitely safer but less efficient. Here
is a sample stanza using LINE_BREAKER for efficiency:

 [mysourcetype]
 TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z
 MAX_TIMESTAMP_LOOKAHEAD = 32
 TIME_PREFIX = ^\[
 SHOULD_LINEMERGE = False
 LINE_BREAKER = ([\r\n]+)(?=\[\d{4}-\d{1,2}-\d{1,2}\s+\
 d{1,2}:\d{1,2}:\d{1,2})
 TRUNCATE = 1024000

This configuration would apply to log messages that looked like this:

[2011-10-13 13:55:36.132 -07:00] ERROR Interesting message.

More information.

And another line.

[2011-10-13 13:55:36.138 -07:00] INFO All better.

[2011-10-13 13:55:37.010 -07:00] INFO More data

 and another line.

Let's step through how these settings affect the first line of this sample configuration:

• LINE_BREAKER states that a new event starts when one or more newline
characters is followed by a bracket and series of numbers and dashes,
in the pattern [1111-11-11 11:11:11].

• SHOULD_LINEMERGE=False tells Splunk to not bother trying to recombine
multiple lines.

• TIME_PREFIX moves the cursor to the character after the [character.

Configuring Splunk

[296]

• TIME_FORMAT is tested against the characters at the current cursor location.
If it succeeds, we are done.

• If TIME_FORMAT fails, MAX_TIMESTAMP_LOOKAHEAD characters are read from
the cursor position (after TIME_PREFIX) and the regular expressions from
DATE_CONFIG are tested.

• If the regular expressions fail against the characters returned, the time last
parsed from an event is used. If there is no last time parsed, the modification
date from the file would be used, if known; otherwise, the current time
would be used.

This is the most efficient and precise way to parse events in Splunk, but also the most
brittle. If your date format changes, you will almost certainly have junk data in your
index. Only use this approach if you are confident the format of your logs will not
change without your knowledge.

Input time attributes
There are only a couple of attributes in props.conf that matter at the input stage,
but they are generally not needed:

• CHARSET = UTF-16LE: When reading data, Splunk has to know the character
set used in the log. Most applications write their logs using either ISO-
8859-1 or UTF-8, which the default settings handle just fine. Some Windows
applications write logs in 2-byte Little Endian, which is indexed as garbage.
Setting CHARSET = UTF-16LE takes care of the problem. Check the official
documentation for a list of supported encodings.

• NO_BINARY_CHECK = true: If Splunk believes that a file is binary, it
will not index the file at all. If you find that you have to change this
setting to convince Splunk to read your files, it is likely that the file is
in an unexpected character set. You might try other CHARSET settings
before enabling this setting.

Stanza types
Now that we have looked at common attributes, let's talk about the different types
of stanzas in props.conf. Stanza definitions can take the three following forms:

• [foo]

 ° This is the exact name of a source type and is the most common type
of stanza to be used; the source type of an event is usually defined in
inputs.conf

 ° Wildcards are not allowed

Chapter 10

[297]

• [source::/logs/.../*.log]

 ° This matches the source attribute, which is usually the path to the
log where the event came from

 ° * matches a file or directory name
 ° ... matches any part of a path

• [host::*nyc*]

 ° This matches the host attribute, which is usually the value of
hostname on a machine running Splunk Forwarder

 ° * is allowed

Precedence across types follows this order:

1. Source.
2. Host.
3. Source type.

For instance, say an event has the following fields:

sourcetype=foo_type
source=/logs/abc/def/gh.log
host=dns4.nyc.mycompany.com

Given this configuration snippet and our preceding event:

[foo_type]
TZ = UTC

[source::/logs/.../*.log]
TZ = MST

[host::*nyc*]
TZ = EDT

TZ = MST would be used during parsing, because the source stanza takes
precedence.

To extend this example, say we have this snippet:

[foo_type]
TZ = UTC
TRANSFORMS-a = from_sourcetype

[source::/logs/.../*.log]

Configuring Splunk

[298]

TZ = MST
BREAK_ONLY_BEFORE_DATE = True
TRANSFORMS-b = from_source

[host::*nyc*]
TZ = EDT
BREAK_ONLY_BEFORE_DATE = False
TRANSFORMS-c = from_host

The attributes applied to our event would therefore be:

TZ = MST
BREAK_ONLY_BEFORE_DATE = True
TRANSFORMS-a = from_sourcetype
TRANSFORMS-b = from_source
TRANSFORMS-c = from_host

Priorities inside a type
If there are multiple source or host stanzas that match a given event, the order
in which settings are applied also comes into play. A stanza with a pattern has a
priority of 0, while an exact stanza has a priority of 100. Higher priorities win. For
instance, say we have the following stanza:

[source::/logs/abc/def/gh.log]
TZ = UTC

[source::/logs/.../*.log]
TZ = CDT

Our TZ value will be UTC since the exact match of source::/logs/abc/def/gh.log
has a higher priority.

When priorities are identical, stanzas are applied by ASCII order. For instance, say
we have this configuration snippet:

[source::/logs/abc/.../*.log]
TZ = MST

[source::/logs/.../*.log]
TZ = CDT

The attribute TZ=CDT would win because /logs/.../*.log is first in ASCII order.
This may seem counterintuitive since /logs/abc/.../*.log is arguably a better
match. The logic for determining what makes a better match, however, can quickly
become fantastically complex, so ASCII order is a reasonable approach.

You can also set your own value of priority, but luckily, it is rarely needed.

Chapter 10

[299]

Attributes with class
As you dig into configurations, you will see attribute names of the form FOO-bar.
The word after the dash is generally referred to as the class. These attributes are
special in a few ways:

• Attributes merge across files like any other attribute
• Only one instance of each class will be applied, according to the rules

described previously
• The final set of attributes is applied in ASCII order by the value of class

Once again, say we are presented with an event with the following fields:

sourcetype=foo_type
source=/logs/abc/def/gh.log
host=dns4.nyc.mycompany.com

And say that this is the configuration snippet:

[foo_type]
TRANSFORMS-a = from_sourcetype1, from_sourcetype2

[source::/logs/.../*.log]
TRANSFORMS-c = from_source_b

[source::/logs/abc/.../*.log]
TRANSFORMS-b = from_source_c

[host::*nyc*]
TRANSFORMS-c = from_host

The surviving transforms would then be:

TRANSFORMS-c = from_source_b
TRANSFORMS-b = from_source_c
TRANSFORMS-a = from_sourcetype1, from_sourcetype2

To determine the order in which the transforms are applied to our event, we sort the
stanzas according to the values of their classes, in this case, c, b, and a. This gives us:

TRANSFORMS-a = from_sourcetype1, from_sourcetype2
TRANSFORMS-b = from_source_c
TRANSFORMS-c = from_source_b

Configuring Splunk

[300]

The transforms are then combined into a single list and executed in this order:

from_sourcetype1, from_sourcetype2, from_source_c, from_source_b

The order of transforms usually doesn't matter but is important to understand if you
want to chain transforms and create one field from another. We'll try this later, in the
transforms.conf section.

inputs.conf
This configuration, as you might guess, controls how data makes it into Splunk.
By the time this data leaves the input stage, it still isn't an event but has some base
metadata associated with it: host, source, sourcetype, and optionally index. This base
metadata is then used by the parsing stage to break the data into events according
to the rules defined in props.conf:

Input types can be broken down into files, network ports, and scripts. First, we will
look at attributes that are common to all inputs.

Common input attributes
These common bits of metadata are used in the parsing stage to pick the appropriate
stanzas in props.conf.

• host: By default, host will be set to the hostname of the machine
producing the event. This is usually the correct value, but it can be
overridden when appropriate.

• source: This field is usually set to the path to the file or network
port that an event came from, but this value can be hardcoded.

• sourcetype: This field is almost always set in inputs.conf and is the
primary field for determining which set of parsing rules in props.conf
to apply to these events.

It is very important to set sourcetype. In the absence of a value,
Splunk will create automatic values based on source, which can
easily result in an explosion of sourcetype values.

• index: This field says what index to write events to. If it is omitted, the
default index will be used.

Chapter 10

[301]

All of these values can be modified using transforms, the only caveat being that
these transforms are applied after the parsing step. The practical consequence of
this is that you cannot apply different parsing rules to different events in the same
file, for instance, different time formats on different lines.

Files as inputs
The vast majority of events in Splunk come from files. Usually, these events are read
from the machine where they are produced and as the logs are written. Very often,
the entire input's stanza will look like this:

[monitor:///logs/interesting.log*]
sourcetype=interesting

This is often all that is needed. This stanza is saying:

• Read all logs that match the pattern /logs/interesting.log*, and going
forward, watch them for new data

• Name the source type interesting
• Set the source to the name of the file in which the log entry was found
• Default the host to the machine where the logs originated
• Write the events to the default index

These are usually perfectly acceptable defaults. If sourcetype is omitted, Splunk will
pick a default source type based on the filename, which you don't want—your source
type list will get very messy very fast.

Using patterns to select rolled logs
You may notice that the previous stanza ended in *. This is important because it
gives Splunk a chance to find events that were written to a log that has recently
rolled. If we simply watch /logs/interesting.log, it is likely that events will
be missed at the end of the log when it rolls, particularly on a busy server.

Will we end up with duplicate events after the log rolls to interesting.log.1
or interesting.log.2012-09-17? The answer is "almost certainly not". This is
because Splunk does not use filenames to determine what files have been read but
instead does so by using checksums on the contents of the files. This means that logs
can be renamed or even moved to a different filesystem on the same server, and they
will still be recognized as the same file.

Configuring Splunk

[302]

There are specific cases where Splunk can get confused, but in the vast majority of
cases, the default mechanisms do exactly what you would hope. See the When to use
crcSalt section further on for a discussion about special cases.

Using blacklist and whitelist
It is also possible to use a blacklist and whitelist pattern for more complicated
patterns. The most common use case is to blacklist files that should not be
indexed, for instance, gz and zip files. It can be done as follows:

[monitor:///opt/B/logs/access.log*]
sourcetype=access
blacklist=.*.gz

This stanza would still match access.log.2012-08-30, but if we had a script that
compressed older logs, Splunk would not try to read access.log.2012-07-30.gz.

Conversely, you can use a whitelist to apply very specific patterns, like so:

[monitor:///opt/applicationserver/logs]
sourcetype=application_logs
whitelist=(app|application|legacy|foo)\.log(\.\d{4})?
blacklist=.*.gz

This whitelist would match app.log, application.log, legacy.log.2012-08-13,
and foo.log, among others. The blacklist will negate any gz files.

Since logs is a directory, the default behavior will be to recursively scan
that directory.

Selecting files recursively
The layout of your logs or your application may dictate a recursive approach.
For instance, say we have these stanzas:

[monitor:///opt/*/logs/access.log*]
sourcetype=access

[monitor:///opt/.../important.log*]
sourcetype=important

The character * will match a single file or directory, while ... will match any
depth. This will match the files you want, with the caveat that all of /opt will
continually be scanned.

Chapter 10

[303]

Splunk will continually scan all directories from the first wildcard
in a monitor path!

If /opt contains many files and directories, which it almost certainly does, Splunk
will use an unfortunate amount of resources scanning all directories for matching
files, constantly using memory and CPU. I have seen a single Splunk process
watching a large directory structure use 2 gigabytes of memory. A little creativity
can take care of this, but it is something to be aware of.

The takeaway is that if you know the possible values for *, you are better off writing
multiple stanzas. For instance, assuming our directories in /opt are A and B, the
following stanzas will be far more efficient:

[monitor:///opt/A/logs/access.log*]
sourcetype=access

[monitor:///opt/B/logs/access.log*]
sourcetype=access

It is also perfectly acceptable to have stanzas matching files and directories that
simply don't exist. This causes no errors, but be careful to not include patterns
that are so broad that they match unintended files.

Following symbolic links
When scanning directories recursively, the default behavior is to follow symbolic
links. Often this is very useful, but it can cause problems if a symbolic link points
to a large or slow file system. To control this behavior, simply set:

followSymlink = false

It's probably a good idea to put this on all of your monitor stanzas until you know
you need to follow a symbolic link.

Setting the value of host from source
The default behavior of using the hostname from the machine forwarding the logs
is almost always what you want. If, however, you are reading logs for a number
of hosts, you can extract the hostname from source using host_regex or host_
segment. For instance, say we have the path:

/nfs/logs/webserver1/access.log

Configuring Splunk

[304]

To set host to webserver1, you could use either:

[monitor:///nfs/logs/*/access.log*]
sourcetype=access
host_segment=3

Or:

[monitor:///nfs/logs/*/access.log*]
sourcetype=access
host_regex=/(.*?)/access\.log

host_regex could also be used to extract the value of host from the filename.

It is also possible to reset host using a transform, with the caveat that this will occur
after parsing, which means any settings in props.conf that rely on matching host
will already have been applied.

Ignoring old data at installation
It is often the case that when Splunk is installed, months or years of logs are sitting
in a directory where logs are currently being written. Logs that are appended to
infrequently may also have months or years of events that are no longer interesting
and would be wasteful to index.

The best solution is to set up archive scripts to compress any logs older than a few
days, but in a large environment, this may be difficult to do. Splunk has two settings
that help ignore older data, but be forewarned: once these files have been ignored,
there is no simple way to change your mind later. If, instead, you compress older
logs and blacklist the compressed files as explained in the Using blacklist and whitelist
section, you can simply decompress at a later stage, any files you would like to
index. Let's look at a sample stanza:

[monitor:///opt/B/logs/access.log*]
sourcetype = access
ignoreOlderThan = 14d

In this case, ignoreOlderThan says to ignore, forever, all events in any files whose
modification date is older than 14 days. If the file is updated in the future, any new
events will be indexed.

The followTail attribute lets us ignore all events written so far, instead starting at
the end of each file. Let's look at an example:

[monitor:///opt/B/logs/access.log*]
sourcetype = access
followTail = 1

Chapter 10

[305]

Splunk will note the length of files matching the pattern, but followTail instructs
Splunk to ignore everything currently in these files. Any new events written to the
files will be indexed. Remember that there is no easy way to alter this if you change
your mind later.

It is not currently possible to say "ignore all events older than X", but since most logs
roll on a daily basis, this is not commonly a problem.

When to use crcSalt
To keep track of what files have been seen before, Splunk stores a checksum of
the first 256 bytes of each file it sees. This is usually plenty, as most files start with
a log message, which is almost guaranteed to be unique.

This breaks down when the first 256 bytes are not unique on the same server.
I have seen two cases where this happens, as follows:

1. Logs that start with a common header containing product version
information, for instance:
==
== Great product version 1.2 brought to you by Great company ==
== Server kernel version 3.2.1 ==

2. A server writing many thousands of files with low time resolution, for
instance:

12:13:12 Session created
12:13:12 Starting session

To deal with these cases, we can add the path to the log to the checksum, or "salt our
crc". This is accomplished like so:

[monitor:///opt/B/logs/application.log*]
sourcetype = access
crcSalt = <SOURCE>

It says to include the full path to this log in the checksum.

This method will only work if your logs have a unique name. The easiest way
to accomplish this is to include the current date in the name of the log when it is
created. You may need to change the pattern for your log names so that the date is
always included and the log is not renamed.

Do not use crcSalt if your logs change names!

Configuring Splunk

[306]

If you enable crcSalt in an input where it was not already enabled, you will
re-index all the data! You need to ensure that the old logs are moved aside or
compressed and blacklisted before enabling this setting in an existing configuration.

Destructively indexing files
If you receive logfiles in batch, you can use the batch input to consume logs
and then delete them. This should only be used against a copy of the logs.
See the following example:

[batch:///var/batch/logs/*/access.log*]
sourcetype=access
host_segment=4
move_policy = sinkhole

This stanza would index the files in the given directory and then delete the files.
Be very sure this is what you want to do!

Network inputs
In addition to reading files, Splunk can listen to network ports. The stanzas take
the following form:

[protocol://<remote host>:<local port>]

The remote host portion is rarely used, but the idea is that you can specify different
input configurations for specific hosts. The usual stanzas look like this:

• [tcp://1234]: Specify that we will listen to port 1234 for TCP connections.
Anything can connect to this port and send data in.

• [tcp-ssl://importanthost:1234]: Listen on TCP using SSL, and apply
this stanza to the host importanthost. Splunk will generate self-signed
certificates the first time it is launched.

• [udp://514]: This is generally used for receiving syslog events. While this
does work, it is generally considered best practice to use a dedicated syslog
receiver, such as rsyslog or syslogng. See Chapter 11, Advanced Deployments,
for a discussion on this subject.

• [splunktcp://9997] or [splunktcp-ssl://9997]: In a distributed
environment, your indexers will receive events on the specified port. It is
a custom protocol used between Splunk instances. This stanza is created
for you when you use the Manager page at Manager | Forwarding and
receiving | Receive data.

Chapter 10

[307]

For tcp and udp inputs, the following attributes apply:

• source: If not specified, source will default to protocol:port, for instance,
udp:514.

• sourcetype: If not specified, sourcetype will also default to
protocol:port, but this is generally not what you want. It is best to specify
a source type and create a corresponding stanza in props.conf.

• connection_host: With network inputs, what value to capture for host is
somewhat tricky. Your options essentially are:

 ° connection_host = dns, which uses reverse DNS to determine
the hostname from the incoming connection. When reverse DNS is
configured properly, this is usually your best bet. This is the default.

 ° connection_host = ip, which sets the host field to the IP address
of the remote machine. This is your best choice when reverse DNS
is unreliable.

 ° connection_host = none, which uses the hostname of the Splunk
instance receiving the data. This option can make sense when all
traffic is going to an interim host.

 ° host = foo, which sets the hostname statically.
 ° It is also common to reset the value of host using a transform, for

instance with syslog events. This happens after parsing, though,
so is too late to change things such as time zone based on the host.

• queueSize: This value specifies how much memory Splunk is allowed to set
aside for an input queue. A common use for a queue is to capture spikey data
until the indexers can catch up.

• persistentQueueSize: This value specifies a persistent queue that can be
used to capture data to disk if the in-memory queue fills up.

If you find yourself building a particularly complicated setup around network ports,
I would encourage you to talk to Splunk support as there may be a better way to
accomplish your goals.

Configuring Splunk

[308]

Native Windows inputs
One nice thing about Windows is that system logs and many application logs go to
the same place. Unfortunately, that place is not a file, so native hooks are required to
access these events. Splunk makes those inputs available using stanzas of the form
[WinEventLog:LogName]. For example, to index the Security log, the stanza simply
looks like this:

[WinEventLog:Security]

There are a number of supported attributes, but the defaults are reasonable. The
only attribute I have personally used is current_only, which is the equivalent
of followTail for monitor stanzas. For instance, this stanza says to monitor the
Application log, but to start reading from now:

[WinEventLog:Application]
current_only = 1

This is useful when there are many historical events on the server.

The other input available is Windows Management Instrumentation (WMI). With
WMI, you can:

• Monitor native performance metrics, like you would find in Windows
Performance Monitor

• Monitor the Windows Event Log API
• Run custom queries against the database behind WMI
• Query remote machines

Though it is theoretically possible to monitor many Windows
servers using WMI and a few Splunk forwarders, this is not
advised. The configuration is complicated, does not scale well,
introduces complicated security implications, and is not thoroughly
tested. Also, reading Windows Event Logs via WMI produces
different output than the native input, and most apps that expect
Windows events will not function as expected.

The simplest way to generate the inputs.conf and wmi.conf configurations needed
for Windows Event Logs and WMI is to install Splunk for Windows on a Windows
host and then configure the desired inputs through the web interface. See the official
Splunk documentation for more examples.

Chapter 10

[309]

Scripts as inputs
Splunk will periodically execute processes and capture the output. For example, here
is input from the ImplementingSplunkDataGenerator app:

[script://./bin/implSplunkGen.py 2]
interval=60
sourcetype=impl_splunk_gen_sourcetype2
source=impl_splunk_gen_src2
host=host2
index=implSplunk

Things to notice in this example are as follows:

• The present working directory is the root of the app that contains
inputs.conf.

• Files that end with .py will be executed using the Python interpreter
included with Splunk. This means the Splunk Python modules are available.
To use a different Python module, specify the path to Python in the stanza.

• Any arguments specified in the stanza will be handed to the script as if
executed at the command line.

• interval specifies how often this script should be run, in seconds.

 ° If the script is still running, it will not be launched again.
 ° Long-running scripts are fine. Since only one copy of a script will

run at a time, the interval will instead indicate how often to check
whether the script is still running.

 ° This value can also be specified in cron format.

Any programming language can be used, as long as it can be executed at
the command line. Splunk simply captures the standard output from whatever
is executed.

Included with Splunk for Windows are scripts for querying WMI. One sample
stanza looks like this:

[script://$SPLUNK_HOME\bin\scripts\splunk-wmi.path]

Things to note are:

• Windows paths require backslashes instead of slashes.
• $SPLUNK_HOME will expand properly.

Configuring Splunk

[310]

transforms.conf
transforms.conf is where we specify transformations and lookups that can then
be applied to any event. These transforms and lookups are referenced by name in
props.conf.

For our examples in the later subsections, we will use this event:

2012-09-24T00:21:35.925+0000 DEBUG [MBX] Password reset called.
[old=1234, new=secret, req_time=5346]

We will use it with these metadata values:

sourcetype=myapp
source=/logs/myapp.session_foo-jA5MDkyMjEwMTIK.log
host=vlbmba.local

Creating indexed fields
One common task accomplished with transforms.conf is the creation of new
indexed fields. Indexed fields are different from extracted fields in that they must be
created at index time and can be searched for whether the value is in the raw text of
the event or not. It is usually preferable to create extracted fields instead of indexed
fields. See Chapter 3, Indexed fields versus extracted fields, for a deeper discussion about
when indexed fields are beneficial.

Indexed fields are only applied to events that are indexed after the
definition is created. There is no way to backfill a field without reindexing.

Creating a loglevel field
The format of a typical stanza in transforms.conf looks like this:

[myapp_loglevel]
REGEX = \s([A-Z]+)\s
FORMAT = loglevel::$1
WRITE_META = True

This will add to our events the field loglevel=DEBUG. This is a good idea if the
values of loglevel are common words outside of this location, for instance ERROR.

Chapter 10

[311]

Stepping through this stanza, we have:

• [myapp_loglevel]: The stanza can be any unique value, but it is in your
best interest to make the name meaningful. This is the name referenced in
props.conf.

• REGEX = \s([A-Z]+)\s: This is the pattern to test against each event that is
handed to us. If this pattern does not match, this transform will not be applied.

• FORMAT = loglevel::$1: Create the field loglevel. Under the covers, all
indexed fields are stored using a :: delimiter, so we have to follow that form.

• WRITE_META = True: Without this attribute, the transform won't actually
create an indexed field and store it with the event.

Creating a session field from source
Using our event, let's create another field, session, which appears to only be in the
value of source.

[myapp_session]
SOURCE_KEY = MetaData:Source
REGEX = session_(.*?)\.log
FORMAT = session::$1
WRITE_META = True

Note the attribute SOURCE_KEY. The value of this field can be any existing metadata
field or another indexed field that has already been created. See the Attributes with class
subsection within the props.conf section for a discussion about transform execution
order. We will discuss these fields in the Modifying metadata fields subsection.

Creating a "tag" field
It is also possible to create fields simply to tag events that would be difficult to search
for otherwise. For example, if we wanted to find all events that were slow, we could
search for:

sourcetype=myapp req_time>999

Without an indexed field, this query would require parsing every event that matches
sourcetype=myapp over the time that we are interested in. The query would then
discard all events whose req_time value was 999 or less.

Configuring Splunk

[312]

If we know ahead of time that a value of req_time>999 is bad, and we can come up
with a regular expression to specify what bad is, we can tag these events for quicker
retrieval. Say we have this transforms.conf stanza:

[myapp_slow]
REGEX = req_time=\d{4,}
FORMAT = slow_request::1
WRITE_META = True

This REGEX will match any event containing req_time= followed by four or
more digits.

After adding slow_request to fields.conf (see the fields.conf section), we can
search for slow_request=1 and find all slow events very efficiently. This will not
apply to events that were indexed before this transform existed. If the events that
are slow are uncommon, this query will be much faster.

Creating host categorization fields
It is common, to have parts of a hostname mean something in particular. If this
pattern is well known and predictable, it may be worthwhile to pull the value out
into fields. Working from our fictitious host value, vlbmba.local (which happens
to be my laptop), we might want to create fields for owner and hosttype. Out stanza
might look like this:

[host_parts]
SOURCE_KEY = MetaData:Host
REGEX = (...)(...)\.
FORMAT = host_owner::$1 host_type::$2
WRITE_META = True

With our new fields, we can now easily categorize errors by whatever information
is encoded into the hostname. Another approach would be to use a lookup, which
has the advantage of being retroactive. This approach has the advantage of faster
searches for the specific fields.

Modifying metadata fields
It is sometimes convenient to override the main metadata fields. We will look at one
possible reason for overriding each base metadata value.

Chapter 10

[313]

Remember that transforms are applied after parsing, so changing
metadata fields via transforms cannot be used to affect which
props.conf stanzas are applied for date parsing or line breaking.
For instance, with syslog events that contain the hostname, you
cannot change the time zone because the date has already been
parsed before the transforms are applied.

The keys provided by Splunk include:

• _raw (this is the default value for SOURCE_KEY)
• MetaData:Source

• MetaData:Sourcetype

• MetaData:Host

• _MetaData:Index

Overriding host
If your hostnames are appearing differently from different sources, for instance,
syslog versus Splunk Forwarders, you can use a transform to normalize these values.
Given our hostname vlbmba.local, we may want to only keep the portion to the left
of the first period. The stanza would look like this:

[normalize_host]
SOURCE_KEY = MetaData:Host
DEST_KEY = MetaData:Host
REGEX = (.*?)\.
FORMAT = host::$1

This will replace our hostname with vlbmba. Note these two things:

• WRITE_META is not included because we are not adding to the metadata of
this event; we are instead overwriting the value of a core metadata field

• host:: must be included at the beginning of the format

Overriding source
Some applications will write a log for each session, conversation, or transaction.
One problem this introduces is an explosion of source values. The values of source
will end up in $SPLUNK_HOME/var/lib/splunk/*/db/Sources.data—one line per
unique value of source. This file will eventually grow to a huge size, and Splunk
will waste a lot of time updating it, causing unexplained pauses. A new setting in
indexes.conf called disableGlobalMetadata, can also eliminate this problem.

Configuring Splunk

[314]

To flatten this value, we could use a stanza like this:

[myapp_flatten_source]
SOURCE_KEY = MetaData:Source
DEST_KEY = MetaData:Source
REGEX = (.*session_).*.log
FORMAT = source::$1x.log

This would set the value of source to /logs/myapp.session_x.log, which would
eliminate our growing source problem.

If the value of session is useful, the transform in the Creating a session field from
source section could be run before this transform to capture the value. Likewise,
a transform could capture the entire value of source and place it into a different
metadata field.

A huge number of logfiles on a filesystem introduces a few problems,
including running out of inodes and the memory used by the Splunk
process tracking all of the files. As a general rule, a cleanup process
should be designed to archive older logs.

Overriding sourcetype
It is not uncommon to change the sourcetype field of an event based on the contents
of the event, particularly from syslog. In our fictitious example, we want a different
source type for events that contain [MBX] after the log level so that we can apply
different extracts to these events. The following examples will do this work:

[mbx_sourcetype]
DEST_KEY = MetaData:Sourcetype
REGEX = \d+\s[A-Z]+\s\([MBX\])
FORMAT = sourcetype::mbx

Use this functionality carefully as it easy to go conceptually wrong, and this is
difficult to fix later.

Routing events to a different index
At times, you may want to send events to a different index, either because they need
to live longer than other events or because they contain sensitive information that
should not be seen by all users. This can be applied to any type of event from any
source, be it a file, network, or script.

Chapter 10

[315]

All that we have to do is match the event and reset the index.

[contains_password_1]
DEST_KEY = _MetaData:Index
REGEX = Password reset called
FORMAT = sensitive

Things to note are:

• In this scenario, you will probably make multiple transforms, so be sure to
make the name unique

• DEST_KEY starts with an underscore
• FORMAT does not start with index::
• The index sensitive must exist on the machine indexing the data, or the

event will be lost

Lookup definitions
A simple lookup simply needs to specify a filename in transforms.conf, thus:

[testlookup]
filename = test.csv

Assuming test.csv contains the columns user and group, and our events contain
the field user, we can reference this lookup by using the lookup command in search,
as follows:

* | lookup testlookup user

Or, we can wire this lookup to run automatically in props.conf, thus:

[mysourcetype]
LOOKUP-testlookup = testlookup user

That's all you need to get started, and this probably covers most cases. See the
Using lookups to enrich data section in Chapter 6, Extending Search, for instructions
on creating lookups.

Wildcard lookups
In Chapter 9, Summary Indexes and CSV Files, we edited transforms.conf but did
not explain what was happening. Let's take another look. Our transform stanza looks
like this:

[flatten_summary_lookup]
filename = flatten_summary_lookup.csv
match_type = WILDCARD(url)
max_matches = 1

Configuring Splunk

[316]

Stepping through what we added, we have:

• match_type = WILDCARD(url): This says that the value of the field url in the
lookup file may contain wildcards. In our example, the URL might look like /
contact/* in our CSV file.

• max_matches = 1: By default, up to 10 entries that match in the lookup file
will be added to an event, with the values in each field being added to a
multivalue field. In this case, we only want the first match to be applied.

CIDR wildcard lookups
CIDR wildcards look very similar to text-based wildcards but use Classless
Inter-Domain Routing rules to match lookup rows against an IP address.
Let's try an example.

Say we have this lookup file:

ip_range,network,datacenter
10.1.0.0/16,qa,east
10.2.0.0/16,prod,east
10.128.0.0/16,qa,west
10.129.0.0/16,prod,west

It has this corresponding definition in transforms.conf:

[ip_address_lookup]
filename = ip_address_lookup.csv
match_type = CIDR(ip_range)
max_matches = 1

And, there are a few events such as these:

src_ip=10.2.1.3 user=mary
src_ip=10.128.88.33 user=bob
src_ip=10.1.35.248 user=bob

We could use our lookup to enrich these events like so:

src_ip="*"
 | lookup ip_address_lookup ip_range as src_ip
 | table src_ip user datacenter network

Chapter 10

[317]

This would match the appropriate IP address and give us a table like this one:

The query also shows that you could use the same lookup for different fields by
using the as keyword in the lookup call.

Using time in lookups
A temporal lookup is used to enrich events based on when the event happened.
To accomplish this, we specify the beginning of a time range in the lookup source
and then specify a format for this time in our lookup configuration. Using this
mechanism, lookup values can change over time, even retroactively.

Here is a very simple example to attach a version field based on time. Say we have
the following CSV file:

sourcetype,version,time
impl_splunk_gen,1.0,2012-09-19 02:56:30 UTC
impl_splunk_gen,1.1,2012-09-22 12:01:45 UTC
impl_splunk_gen,1.2,2012-09-23 18:12:12 UTC

We then use the lookup configuration in transforms.conf to specify which field in
our lookup will be tested against the time in each event and what the format of the
time field will be:

[versions]
filename = versions.csv
time_field = time
time_format = %Y-%m-%d %H:%M:%S %Z

With this in place, we can now use our lookup in search, like so:

sourcetype=impl_splunk_gen error
 | lookup versions sourcetype
 | timechart count by version

Configuring Splunk

[318]

This would give us a chart of errors (by version) over time, like so:

Other use cases include tracking deployments across environments and tracking
activity from disabled accounts.

Using REPORT
Attributes of the format REPORT-foo in props.conf call stanzas in transforms.
conf at search time, which means that they cannot affect metadata fields. EXTRACT
definitions are more convenient to write as they live entirely in a single attribute in
props.conf, but there are a couple of things that can only be done using a REPORT
attribute paired with a transform defined in transforms.conf.

Creating multivalue fields
Assuming some value might happen multiple times in a given event, an EXTRACT
definition can only match the first occurrence. For example, say we have the event:

2012-08-25T20:18:09 action=send a@b.com c@d.com e@f.com

We could pull the first e-mail address using the following extraction:

EXTRACT-email = (?i)(?P<email>[a-zA-Z0-9._]+@[a-zA-Z0-9._]+)

This would set the field email to a@b.com. Using a REPORT attribute and transform
stanza, we can capture all of the e-mail addresses using the MV_ADD attribute.

The props stanza would look like this:

REPORT-mvemail = mvemail

Chapter 10

[319]

The transforms.conf stanza would then look like this:

[mvemail]
REGEX = (?i)([a-zA-Z0-9._]+@[a-zA-Z0-9._]+)
FORMAT = email::$1
MV_ADD = true

The MV_ADD attribute also has the effect that, if some other configuration has already
created the email field, all values that match will be added to the event.

Creating dynamic fields
Sometimes, it can be useful to dynamically create fields from an event. For instance,
say we have an event such as:

2012-08-25T20:18:09 action=send from_335353("a@b.com") to_223523("c@d.
com") cc_39393("e@f.com") cc_39394("g@h.com")

It would be nice to pull from, to, and cc as fields, but we may not know all of the
possible field names. This stanza in transforms.conf would create the fields we
want, dynamically:

[dynamic_address_fields]
REGEX=\s(\S+)_\S+\("(.*?)"\)
FORMAT = $1::$2
MV_ADD=true

While we're at it, let's put the numeric value after the field name into a value:

[dynamic_address_ids]
REGEX=\s(\S+)_(\S+)\("
FORMAT = $1::$2
MV_ADD=true

This gives us multivalue fields like the ones in the following screenshot:

Configuring Splunk

[320]

One thing that we cannot do is add extra text into the FORMAT attribute. For instance,
in the second case, it would be nice to use a FORMAT attribute such as this one:

FORMAT = $1_id::$2

Unfortunately, this will not function as we hope and will instead create the field id.

Chaining transforms
As covered before in the Attributes with class section, transforms are executed in a
particular order. In most cases, this order does not matter, but there are occasions
when you might want to chain transforms together, with one transform relying on a
field created by a previous transform.

A good example is the source flattening that we used previously, in the Overriding
source section. If this transform happened before our transform in the Creating a
session field from source section, our session field would always have the value x.

Let's reuse two transforms from previous sections and then create one more
transform. We will chain them to pull the first part of session into yet another
field. Say we have these transforms:

[myapp_session]
SOURCE_KEY = MetaData:Source
REGEX = session_(.*?)\.log
FORMAT = session::$1
WRITE_META = True

[myapp_flatten_source]
SOURCE_KEY = MetaData:Source
DEST_KEY = MetaData:Source
REGEX = (.*session_).*.log
FORMAT = source::$1x.log

[session_type]
SOURCE_KEY = session
REGEX = (.*?)-
FORMAT = session_type::$1
WRITE_META = True

To ensure that these transforms run in order, the simplest thing would be to place
them in a single TRANSFORMS attribute in props.conf, like so:

[source:*session_*.log]
TRANSFORMS-s = myapp_session,myapp_flatten_source,session_type

Chapter 10

[321]

We can use source from our sample event specified inside tranforms.conf
like this:

source=/logs/myapp.session_foo-jA5MDkyMjEwMTIK.log

Stepping though the transforms, we have:

• myapp_session: Reading from the metadata field, source, creates the
indexed field session with the value foo-jA5MDkyMjEwMTIK

• myapp_flatten_source: Resets the metadata field, source, to /logs/myapp.
session_x.log

• session_type: Reading from our newly indexed field, session, creates the
field session_type with the value foo

This same ordering logic can be applied at search time using the EXTRACT and
REPORT stanzas. This particular case needs to be calculated as indexed fields,
if we want to search for these values, since the values are part of a metadata field.

Dropping events
Some events are simply not worth indexing. The hard part is figuring out which ones
these are and making very sure you're not wrong. Dropping too many events can
make you blind to real problems at critical times and can introduce more problems
than tuning Splunk to deal with the greater volume of data in the first place.

With that warning stated, if you know what events you do not need, the procedure
for dropping events is pretty simple. Say we have an event such as this one:

2012-02-02 12:24:23 UTC TRACE Database call 1 of 1,000. [...]

I know absolutely that, in this case and for this particular source type, I do not want
to index TRACE level events.

In props.conf, I create a stanza for my source type, thus:

[mysourcetype]
TRANSFORMS-droptrace=droptrace

Then, I create the following transform in transforms.conf:

[droptrace]
REGEX=^\d{4}-\d{2}-\d{2}\s+\d{1,2}:\d{2}:\d{1,2}\s+[A-Z]+\sTRACE
DEST_KEY=queue
FORMAT=nullQueue

Configuring Splunk

[322]

This REGEX attribute is purposefully as strict as I can make it. It is vital that I do not
accidentally drop other events, and it is better for this brittle pattern to start failing
and to let through TRACE events rather than for it to do the opposite.

fields.conf
We need to add to fields.conf any indexed fields we create, or they will not
be searched efficiently, or may even not function at all. For our examples in the
transforms.conf section, fields.conf would look like this:

[session_type]
INDEXED = true

[session]
INDEXED = true

[host_owner]
INDEXED = true

[host_type]
INDEXED = true

[slow_request]
INDEXED = true

[loglevel]
INDEXED = true

These stanzas instruct Splunk to not look in the body of the events for the value
being queried. Take, for instance, the following search:

host_owner=vlb

Without this entry, the actual query would essentially be:

vlb | search host_owner=vlb

With the expectation that the value vlb is in the body of the event, this query simply
won't work. Adding the entry to fields.conf fixes this.

In the case of loglevel, since the value is in the body, the query will work, but it
will not take advantage of the indexed field, instead only using it to filter events
after finding all events that contain the bare word.

Chapter 10

[323]

outputs.conf
This configuration controls how Splunk will forward events. In the vast majority of
cases, this configuration exists on Splunk Forwarders, sending their events to Splunk
indexers. An example would look like this:

[tcpout]
defaultGroup = nyc

[tcpout:nyc]
autoLB = true
server = 1.2.3.4:9997,1.2.3.6:9997

It is possible to use transforms to route events to different server groups, but it is not
commonly used as it introduces a lot of complexity that is generally not needed.

indexes.conf
Put simply, indexes.conf determines where data is stored on disk, how much
is kept, and for how long. An index is simply a named directory with a specific
structure. Inside this directory structure, there are a few metadata files and
subdirectories; the subdirectories are called buckets and actually contain
the indexed data.

A simple stanza looks like this:

[implSplunk]
homePath = $SPLUNK_DB/implSplunk/db
coldPath = $SPLUNK_DB/implSplunk/colddb
thawedPath = $SPLUNK_DB/implSplunk/thaweddb

Let's step through these attributes:

• homePath : This is the location for recent data.
• coldPath: This is the location for older data.
• thawedPath: This is a directory where buckets can be restored. It is an

unmanaged location. This attribute must be defined, but I for one, have never
actually used it.

An aside about the terminology of buckets is probably in order. It is as follows:

• hot: This is a bucket that is currently open for writing. It lives in homePath.
• warm: This is a bucket that was created recently but is no longer open for

writing. It also lives in homePath.

Configuring Splunk

[324]

• cold: This is an older bucket that has been moved to coldPath. It is moved
when maxWarmDBCount has been exceeded.

• frozen: For most installations, this simply means deleted. For customers
who want to archive buckets, coldToFrozenScript or coldToFrozenDir
can be specified to save buckets.

• thawed: A thawed bucket is a frozen bucket that has been brought back. It is
special in that it is not managed, and it is not included in All time queries.
When using coldToFrozenDir, only the raw data is typically kept, so splunk
rebuild will need to be used to make the bucket searchable again.

How long data stays in an index is controlled by these attributes:

• frozenTimePeriodInSecs: This setting dictates the oldest data to keep
in an index. A bucket will be removed when its newest event is older
than this value. The default value is approximately 6 years.

• maxTotalDataSizeMB: This setting dictates how large an index can be.
The total space used across all hot, warm, and cold buckets will not
exceed this value. The oldest bucket is always frozen first. The default
value is 500 gigabytes.

It is generally a good idea to set both of these attributes. frozenTimePeriodInSecs
should match what users expect. maxTotalDataSizeMB should protect your system
from running out of disk space.

Less commonly used attributes include:

• coldToFrozenDir: If specified, buckets will be moved to this directory
instead of being deleted. This directory is not managed by Splunk, so it is up
to the administrator to make sure that the disk does not fill up.

• maxHotBuckets: A bucket represents a slice of time and will ideally span as
small a slice of time as is practical. I would never set this value to less than 3,
but ideally, it should be set to 10.

• maxDataSize: This is the maximum size for an individual bucket. The
default value is set by processor type and is generally acceptable. The larger
a bucket, the fewer buckets have to be opened to complete a search, but the
more disk space will be needed before a bucket can be frozen. The default is
auto, which will never top 750 MB. The setting auto_high_volume, which
equals 1 GB on 32-bit systems and 10 GB on 64-bit systems, should be used
for indexes that receive more than 10 GB a day.

We will discuss sizing multiple indexes in Chapter 11, Advanced Deployments.

Chapter 10

[325]

authorize.conf
This configuration stores definitions of capabilities and roles. These settings
affect search and the web interface. They are generally managed through the
interface at Manager | Access controls, but a quick look at the configuration
itself may be useful.

A role stanza looks like this:

[role_power]
importRoles = user
schedule_search = enabled
rtsearch = enabled
srchIndexesAllowed = *
srchIndexesDefault = main
srchDiskQuota = 500
srchJobsQuota = 10
rtSrchJobsQuota = 20

Let's step through these settings:

• importRoles: This is a list of roles to import capabilities from. The set of
capabilities will be the merging of capabilities from imported roles and
added capabilities.

• schedule_search and rtsearch: These are two capabilities enabled for
the role power that were not necessarily enabled for the imported roles.

• srchIndexesAllowed: What indexes this role is allowed to search. In this
case, all are allowed.

• srchIndexesDefault: What indexes to search by default. This setting also
affects the data shown on Search | Summary. If you have installed the
ImplementingSplunkDataGenerator app, you will see impl_splunk_*
source types on this page even though this data is actually stored in the
implsplunk index.

• srchDiskQuota: Whenever a search is run, the results are stored on disk
until they expire. The expiration can be set explicitly when creating a saved
search, but the expiration is automatically set for interactive searches. Users
can delete old results from the Jobs view.

• srchJobsQuota: Each user is limited to a certain number of concurrently
running searches. The default is 3. Users with the power role are allowed 10,
while those with the admin role are allowed 50.

• rtSrchJobsQuota: Similarly, this is the maximum number of concurrently
running real-time searches. The default is 6.

Configuring Splunk

[326]

savedsearches.conf
This configuration contains saved searches and is rarely modified by hand.

times.conf
This configuration holds definitions for time ranges that appear in the time picker.

commands.conf
This configuration specifies commands provided by an app. We will use this in
Chapter 12, Extending Splunk.

web.conf
The main settings changed in this file are the port for the web server, the SSL
certificates, and whether to start the web server at all.

User interface resources
Most Splunk apps consist mainly of resources for the web application. The app
layout for these resources is completely different from all other configurations

Views and navigation
Like .conf files, view and navigation documents take precedence in the
following order:

1. $SPLUNK_HOME/etc/users/$username/$appname/local: When a new
dashboard is created, it lands here. It will remain here until the permissions
are changed to App or Global.

2. $SPLUNK_HOME/etc/apps/$appname/local: Once a document is shared,
it will be moved to this directory.

3. $SPLUNK_HOME/etc/apps/$appname/default: Documents can only be placed
here manually. You should do this if you are going to share an app.

Unlike .conf files, these documents do not merge.

Chapter 10

[327]

Within each of these directories, views and navigation end up under the directories
data/ui/views and data/ui/nav, respectively. So, given a view foo, for the user
bob, in the app app1, the initial location for the document will be:

$SPLUNK_HOME/etc/users/bob/app1/local/data/ui/views/foo.xml

Once the document is shared, it will be moved to:

$SPLUNK_HOME/etc/apps/app1/local/data/ui/views/foo.xml

Navigation follows the same structure, but the only navigation document that is ever
used is called default.xml, for instance:

$SPLUNK_HOME/etc/apps/app1/local/data/ui/nav/default.xml

You can edit these files directly on the disk instead of through the web interface,
but Splunk will probably not see the changes without a restart—unless you use a
little trick. To reload changes to views or navigation made directly on disk, load the
URL http://mysplunkserver:8000/debug/refresh, replacing mysplunkserver
appropriately. If all else fails, restart Splunk.

Appserver resources
Outside of views and navigation, there are a number of resources that the web
application will use. For instance, applications and dashboards can reference CSS
and images, as we did in Chapter 7, Working with Apps. These resources are stored
under $SPLUNK_HOME/etc/apps/$appname/appserver/. There are a few directories
that appear under this directory, as follows:

• static: Any static files that you would like to use in your application
are stored here. There are a few magic documents that Splunk itself will
use, for instance, appIcon.png, screenshot.png, application.css, and
application.js. Other files can be referenced using includes or templates.
See the Using ServerSideInclude in a complex dashboard section in Chapter 7,
Working with Apps for an example of referencing includes and static images.

• event_renderers: Event renderers allow you to run special display code
for specific event types. We will write an event renderer in Chapter 12,
Extending Splunk.

• templates: It is possible to create special templates using the mako template
language. It is not commonly done.

Configuring Splunk

[328]

• modules: This is where new modules that are provided by apps are stored.
Examples of this include the Google Maps and Sideview Utils modules.
See http://dev.splunk.com for more information about building your
own modules or use existing modules as an example.

Metadata
Object permissions are stored in files located at $SPLUNK_HOME/etc/
apps/$appname/metadata/. The two possible files are default.meta
and local.meta.

These files:

• Are only relevant to the resources in the app where they are contained
• Do merge, with entries in local.meta taking precedence
• Are generally controlled by the admin interface
• Can contain rules that affect all configurations of a particular type, but this

entry must be made manually

In the absence of these files, resources are limited to the current app.

Let's look at default.meta for is_app_one, as created by Splunk:

Application-level permissions
[]
access = read : [*], write : [admin, power]

EVENT TYPES
[eventtypes]
export = system

PROPS
[props]
export = system

TRANSFORMS
[transforms]
export = system

LOOKUPS
[lookups]

Chapter 10

[329]

export = system

VIEWSTATES: even normal users should be able to create shared
viewstates
[viewstates]
access = read : [*], write : [*]
export = system

Stepping through this snippet, we have:

• The [] stanza states that all users should be able to read everything in
this app but that only users with the admin or power roles should be
able to write to this app.

• The [eventtypes], [props], [transforms], and [lookups] states say
that all configurations of each type in this app should be shared by all
users in all apps, by default. export=system is equivalent to Global
in the user interface.

• The [viewstates] stanza gives all users the right to share their viewstates
globally. A viewstate contains information about dashboard settings made
through the web application, for instance, chart settings. Without this, chart
settings applied to a dashboard or saved search would not be available.

Looking at local.meta, we see settings created by the web application for the
configurations we created through the web application.

[indexes/summary_impl_splunk]
access = read : [*], write : [admin, power]

[views/errors]
access = read : [*], write : [admin, power]
export = system
owner = admin
version = 4.3
modtime = 1339296668.151105000

[savedsearches/top%20user%20errors%20pie%20chart]
export = none
owner = admin
version = 4.3
modtime = 1338420710.720786000

[viewstates/flashtimeline%3Ah2v14xkb]
owner = nobody

Configuring Splunk

[330]

version = 4.3
modtime = 1338420715.753642000

[props/impl_splunk_web/LOOKUP-web_section]
access = read : [*]
export = none
owner = admin
version = 4.3
modtime = 1346013505.279379000

...

You get the idea. The web application will make very specific entries for each
object created. When distributing an application, it is generally easier to make
blanket permissions in metadata/default.meta, as appropriate for the resources
in your application.

For an application that simply provides dashboards, no metadata at all will be
needed, as the default for all resources (apps) will be acceptable.

If your application provides resources to be used by other applications, for instance,
lookups or extracts, your default.meta file might look like this:

PROPS
[props]
export = system

TRANSFORMS
[transforms]
export = system

LOOKUPS
[lookups]
export = system

This states that everything in your props.conf and transforms.conf files, and all
lookup definitions, are merged into the logical configuration of every search.

Chapter 10

[331]

Summary
This chapter provided an overview of how configurations work and a commentary
on the most common aspects of Splunk configuration. This is by no means a
complete reference for these configurations, which I will leave to the official
documentation. I find the easiest way to get to the official documentation for a
particular file is to query your favorite search engine for splunk configname.conf.

In Chapter 11, Advanced Deployments, we will dig into distributed deployments, and
look at how they are efficiently configured. What you have learned in this chapter
will be vital to understanding what is considered best practice.

Advanced Deployments
When you first started Splunk, you probably installed it on one machine, imported
some logs, and got to work searching. It is wonderful that you can try the product
out so easily, but once you move into testing and production, things can get much
more complicated, and a bit of planning will save you from trouble later.

In this chapter, we will discuss getting data in, the different parts of a distributed
deployment, distributed configuration management, sizing your installation,
security concerns, and backup strategies.

Planning your installation
There are a few questions that you need to answer to determine how many Splunk
instances will be involved in your deployment:

• How much data will be indexed per day? How much data will be kept?
The rule of thumb is 100 gigabytes per day per Splunk indexer, assuming
you have fast disks. See the Sizing indexers section for more information.

• How many searches will be running simultaneously?
This number is probably smaller than you think. This is not the number of
users who may be using Splunk, but how many simultaneous queries are
running. This varies by the type of queries your group runs.

• What are the sources of data?
Where your data comes from can definitely affect your deployment.
Planning for all of the possible data that you might want to consume
can save you from trouble later. See the Common data sources section for
examples.

Advanced Deployments

[334]

• How many data centers do you need to monitor?
Dealing with servers in multiple locations introduces another level of
complexity, to which there is no single answer. See Deploying the Splunk
binary section for a few example deployments.

• How will you deploy the Splunk binary?
• How will you distribute configurations?

We will touch on these topics and more.

Splunk instance types
In a distributed deployment, different Splunk processes will serve different
purposes. There are four stages of processing that are generally spread across
two to four layers. The stages of processing include:

• input: This stage consumes raw data, from log files, ports, or scripts
• parsing: This stage splits raw data into events, parses time, sets base

metadata, runs transforms, and so on
• indexing: This stage stores the data and optimizes indexes
• searching: This stage runs queries and presents the results to the user

These different stages can all be accomplished in one process, but splitting them
across servers can improve performance as log volumes and search load increase.

Splunk forwarders
Each machine that contains the log files generally runs a Splunk forwarder process.
The job of this process is to read logs on that machine or to run scripted inputs.
This installation is either:

• A full installation of Splunk, configured to forward data instead of
indexing it

• Splunk Universal Forwarder, which is essentially Splunk with everything
needed for indexing or searching removed

Chapter 11

[335]

With a full installation of Splunk, the process can be configured as one of two
kinds of forwarder:

• A light forwarder is configured to not parse events but instead to forward
the raw stream of data to indexers. This installation has the advantages
that it uses very few resources on the machine running the forwarder
(unless the number of files being scanned is very large) and that the
configuration is simple. It has the disadvantage that the indexers will
do more work. If this is what you need, it is recommended that you
use the Splunk Universal Forwarder.

• A heavy forwarder is configured to parse events, forwarding these parsed or
"cooked" events to the indexers. This has the advantage that the indexer does
less work but the disadvantage that more configurations need to be pushed
to the forwarders. This configuration also uses approximately double the
CPU and memory required for a light forwarder configuration.

For most customers, the Splunk Universal Forwarder is the right answer.

The most important configurations to a forwarder installation are:

• inputs.conf: This defines what files to read, network ports to listen to,
or scripts to run.

• outputs.conf: This defines which indexer(s) should receive the data.
• props.conf: As discussed in Chapter 10, Configuring Splunk, very little of

this configuration is relevant to the input stage, but much of it is relevant
to the parse stage. The simplest way to deal with this complexity is to
send props.conf everywhere so that whatever part of the configuration is
needed is available. We will discuss this further in the Using apps to organize
configuration section in this chapter.

• default-mode.conf: This configuration is used to disable processing
modules. Most modules are disabled in the case of a light forwarder.

• limits.conf: The main setting here is maxKBps, which controls how much
bandwidth each forwarder will use. The default setting for a light forwarder
is very low to prevent flooding the network or overtaxing the forwarding
machine. This value can usually be increased safely. It is often increased to
the limits of the networking hardware.

We will discuss deploying the forwarder under the Deploying the Splunk binary
section in this chapter.

Advanced Deployments

[336]

Splunk indexer
In most deployments, indexers handle both parsing and indexing of events. If there
is only one Splunk indexer, the search is typically handled on this server as well.

An indexer, as the name implies, indexes the data. It needs direct access to fast disks,
whether they are local disks, SANs, or network volumes.

In my experience, NFS does not work reliably for storing Splunk
indexes or files. Splunk expects its disks to act like a local disk, which,
at times, NFS does not. It is fine to read logs from NFS. iSCSI works
very well for indexers, as does SAN.

The configurations that typically matter to a Splunk indexer are:

• inputs.conf: This configuration typically has exactly one input,
[splunktcp://9997]. This stanza instructs the indexer to listen for
connections from Splunk forwarders on port 9997.

• indexes.conf: This configuration specifies where to place indexes and
how long to keep data. By default:

 ° all data will be written to $SPLUNK_HOME/var/lib/splunk
 ° the index will grow to a maximum size of 500 gigabytes before

dropping the oldest events
 ° the index will retain events for a maximum of six years before

dropping the oldest events

Events will be dropped when either limit is reached. We will discuss
changing these values under the Sizing indexers section.

• props.conf and transforms.conf: If the indexer handles parsing, these
configurations control how the data stream is broken into events, how the
date is parsed, and what indexed fields are created, if any.

• server.conf: This contains the license server address.

See the Sizing indexers section for a discussion about how
many indexers you might need.

Chapter 11

[337]

Splunk search
When there is only one Splunk server, search happens along with indexing. Until
log volumes increase beyond what one server can handle easily, this is fine. In fact,
splitting off the search instance might actually hurt performance as there is more
overhead involved in running a distributed search.

Most configurations pertaining to search are managed through the web interface.
The configuration specifically concerning distributed search is maintained at
Manager | Distributed search.

Common data sources
Your data may come from a number of sources; these can be files, network ports,
or scripts. Let's walk through a few common scenarios.

Monitoring logs on servers
In this scenario, servers write their logs to a local drive, and a forwarder process
monitors these logs. This is the typical Splunk installation.

The advantages of this approach include:

• This process is highly optimized. If the indexers are not overworked, events
are usually searchable within a few seconds.

• Slowdowns caused by network problems or indexer overload are handled
gracefully. The forwarder process will pick up where it left off when the
slowdown is resolved.

• The agent is light, typically using less than 100 megabytes of RAM and a
few percent of one CPU. These values go up with the amount of new data
written and the number of files being tracked. See inputs.conf in Chapter
10, Configuring Splunk, for details.

• Logs without a time zone specified will inherit the time zone of the machine
running the forwarder. This is almost always what you want.

• The hostname will be picked up automatically from the host. This is almost
always what you want.

Advanced Deployments

[338]

The disadvantages of this approach include:

• The forwarder must be installed on each server. If you have a system for
distributing software already, this is not a problem. We will discuss strategies
under the Deploying the Splunk binary section.

• The forwarder process must have read rights to all logs to be indexed.
This is usually not a problem but does require some planning.

This typical deployment looks like the following figure:

If your log volume exceeds 100 gigabytes of logs produced each day, you need
to think about multiple indexers. We will talk about this further in the Sizing
indexers section.

Monitoring logs on a shared drive
Some customers configure all servers to write their logs to a network share,
NFS or otherwise. This setup can be made to work, but it is not ideal.

The advantages of this approach include:

• A forwarder does not need to be installed on each server that is writing its
logs to the share.

• Only the Splunk instance reading these logs needs rights to the logs.

The disadvantages of this approach include:

• The network share can become overloaded and can become a bottleneck.
• If a single file has more than a few megabytes of unindexed data, the Splunk

process will only read this one log until all data is indexed. If there are
multiple indexers in play, only one indexer will be receiving data from this
forwarder. In a busy environment, the forwarder may fall behind.

• Multiple Splunk forwarder processes do not share information about what
files have been read. This makes it very difficult to manage a failover for
each forwarder process without a SAN.

Chapter 11

[339]

• Splunk relies on the modification time to determine whether the new
events have been written to a file. File metadata may not be updated
as quickly on a share.

• A large directory structure will cause the Splunk process reading logs
to use a lot of RAM and a large percentage of the CPU. A process to move
old logs away would be advisable so as to minimize the number of files
Splunk must track.

This setup often looks like the following figure:

This configuration may look simple, but unfortunately, it does not scale easily.

Consuming logs in batch
Another less common approach is to gather logs periodically from servers after the
logs have rolled. This is very similar to monitoring logs on a shared drive, except
that the problems of scale are possibly even worse.

The advantages of this approach include:

• A forwarder does not need to be installed on each server that is writing its
logs to the share.

The disadvantages of this approach include:

• When new logs are dropped, if the files are large, the Splunk process will
only read events from one file at a time. When this directory is on an indexer,
this is fine, but when a forwarder is trying to distribute events across
multiple indexers, only one indexer will receive events at a time.

• The oldest events in the rolled log will not be loaded until the log is rolled
and copied.

• An active log cannot be copied, as events may be truncated during the copy
or Splunk may be confused and believe the update file is a new log, indexing
the entire file again.

Advanced Deployments

[340]

Sometimes this is the only approach possible, and in those cases, you should follow
a few rules:

• Only copy complete logs to the watched directory.
• If possible, use batch stanzas in inputs.conf, instead of monitor stanzas,

so that Splunk can delete files after indexing them.
• If possible, copy sets of logs to different Splunk servers, either to multiple

forwarders that then spread the logs across multiple indexers, or possibly
directly to watched directories on the indexers. Be sure to not copy the
same log to multiple machines as Splunk has no mechanism for sharing
file position information across instances.

Receiving syslog events
Another common source of data is syslog, usually from devices that have no
filesystem or no support for installing software. These sources are usually devices or
appliances, and usually send those events using UDP packets. Syslog management
deserves a book of its own, so we will only discuss how to integrate syslog with
Splunk at a high level.

Receiving events directly on the Splunk indexer
For very small installations, it may be acceptable to have your Splunk server listen
directly for syslog events. This installation looks essentially like the following figure:

On the Splunk indexer, you would create an input for syslog, listening on udp or
tcp. The inputs.conf configuration would look like:

[udp://514]
sourcetype = syslog

The advantage of this approach is its simplicity. The major caveat is that, if the
Splunk process is down or busy for some reason, you will lose messages. Reasons
for dropped events could include a heavy system load, large queries, a slow disk,
network problems, or a system upgrade.

Chapter 11

[341]

If your syslog events are important to you, it is worth the trouble to at least
use a native syslog receiver on the same hardware, but you should ideally
use separate hardware.

Using a native syslog receiver
The best practice is to use a standalone syslog receiver to write events to
disk. Examples of syslog receivers include syslog-ng or rsyslog. Splunk
is then configured to monitor the directories written by the syslog receiver.

Ideally, the syslog receiver should be configured to write one file or
directory per host. inputs.conf can then be configured to use host_
segment or host_regex to set the value of host. This configuration
has the advantage that props.conf stanzas can be applied by host,
for instance, setting TZ by hostname pattern. This is not possible if host
is parsed out of the log messages, as is commonly the case with syslog.

The advantages of a standalone process include:

• A standalone process has no other tasks to accomplish and is more likely to
have the processor time to retrieve events from the kernel buffers before data
is pushed out of the buffer

• The interim files act as a buffer so that, in the case of a Splunk slowdown or
outage, events are not lost

• The syslog data is on disk, so it can be archived independently or queried
with other scripts, as appropriate

• If a file is written for each host, the hostname can be extracted from the path
to the file, and different parsing rules (for instance time zone) can be applied
at that time

A small installation would look like the following figure:

Advanced Deployments

[342]

Since the configuration of the native syslog process is simple and unlikely to change,
simply using another process on your single Splunk instance will add some level
of protection from losing messages. A slow disk, high CPU load, or memory pressure
can still cause problems, but you at least won't have to worry about restarting the
Splunk process.

The next level of protection would be to use separate hardware to receive the syslog
events and to use a Splunk forwarder to send the events to one or more Splunk
indexers. That setup looks like the following figure:

This single machine is still a single point of failure, but it has the advantage that the
Splunk server holding the indexes can be restarted at will and will not affect the
instance receiving the syslog events.

The next level of protection is to use a load balancer or a dynamic DNS scheme to
spread the syslog data across multiple machines receiving the syslog events, which
then forward the events to one or more Splunk indexers. That setup looks somewhat
like the following figure:

Chapter 11

[343]

This setup is complicated but very resilient as only a large network failure will cause
loss of events.

Receiving syslog with a Splunk forwarder
It is also possible to use Splunk instances to receive the syslog events directly, which
then forward the forwarders to Splunk indexers. This setup might look somewhat
like the following figure:

These interim Splunk forwarder processes can be configured with a large input
buffer using the queueSize and persistentQueueSize settings in inputs.conf.
Note that these interim forwarders cannot be light forwarders. There are a few
advantages to this approach that I can think of:

• If these Splunk forwarder processes are in the data center with the device
producing the events, the forwarder process will set the time zone of the
events. If you have devices in data centers in multiple time zones, this
can be very helpful.

• The work of parsing the events will be handled at this stage, offloading
some work from the indexers.

One disadvantage is that any parsing rules that are relevant to events parsed
by these interim forwarders must be installed at this layer, which may require
a restart when there are changes.

Consuming logs from a database
Some applications are built to store their logs in a database. This has the advantage
that the logs are centralized, but the disadvantage that it is difficult to scale beyond
the limits of the database server. If the logs are pulled into Splunk, it is possible to
take advantage of the Splunk interface and correlate these events with other logs.

Advanced Deployments

[344]

The process to consume database logs is essentially:

1. Build the query to retrieve the appropriate events; something as follows:
select date,id,log from log_table

2. Identify the field that you will use as your "pointer". This is usually either
an ID field or a date field.

3. Modify the query to use this pointer field; use something such as the
following code:
select date,id,log from log_table where id>4567

4. Use scripted input to run this query, capture the pointer field, and print
the results.

There are a number of applications in a number of languages available at
http://splunkbase.com to get you started, but you can use any language
and any tool you like.

The app I know the best is jdbc scripted input, which uses Java and a
user-provided jdbc driver. Just to quickly illustrate how it is used, perform
the following steps:

1. Ensure Java 1.5 or greater is installed.
2. Download the app.
3. Copy your jdbc driver JAR to bin/lib.
4. Duplicate bin/example to bin/myapp.
5. Modify bin/myapp/query.properties to look something like the following

code:
driverClass=com.mysql.jdbc.Driver
connectionString=jdbc:mysql://mydb:3306/myapp?user=u&password=p
iteratorField=id
query=select date,id,log from entries where id>${id} order by id

6. Add a matching stanza to inputs.conf.

[script://./bin/run.sh myapp]
interval = 60
sourcetype = myapp
source = jdbc

That should be it. iteratorField is not needed if your query handles not retrieving
duplicate data some other way.

Chapter 11

[345]

Using scripts to gather data
A scripted input in Splunk is simply a process that outputs text. Splunk will run the
script periodically, as configured in inputs.conf. Let's make a simple example.

The configuration inputs.conf inside your app would contain an entry as follows:

[script://./bin/user_count.sh]
interval = 60
sourcetype = user_count

The script in bin/user_count.sh could contain something as follows:

#!/bin/sh
DATE=$(date "+%Y-%m-%d %H:%M:%S")
COUNT=$(wc -l /etc/passwd | awk '{print "users="$1}')
echo $DATE $COUNT

This would produce output such as this:

2012-10-15 19:57:02 users=84

Good examples of this type of script are available in the Unix app available at
splunkbase.com.

Please note that:

• New to Splunk 4.3: interval can be a cron schedule.
• If the name of the script ends in .py, Splunk will use its own copy of Python.

Remember that there is no Python included with Universal Forwarder.
• Use props.conf to control event breaking as if this output was being

read from a file.
• Set DATETIME_CONFIG to CURRENT if there is no date in the output.
• Set an appropriate BREAK_ONLY_BEFORE pattern if the events are multiline.
• Set SHOULD_LINEMERGE to False if the events are not multiline.
• Only one copy of each input stanza will run at a time. If a script should

run continually, set interval to -1.

Sizing indexers
There are a number of factors that affect how many Splunk indexers you will need,
but starting with a "model" system with typical usage levels, the short answer is 100
gigabytes of raw logs per day per indexer. In the vast majority of cases, the disk is
the performance bottleneck, except in the case of very slow processors.

Advanced Deployments

[346]

The measurements mentioned next assume that you will spread
events across your indexers evenly, using the autoLB feature
of the Splunk forwarder. We will talk more about this under
Indexer load balancing.

The model system looks like this:

• 8 gigabytes of RAM
If more memory is available, the operating system will use whatever Splunk
does not use for the disk cache.

• Eight fast physical processors
On a busy indexer, two cores will probably be busy most of the time,
handling indexing tasks. It is worth noting the following:

 ° More processors won't hurt but will probably not make much of a
difference to an indexer as the disks holding indexes will probably
not keep up with the increased search load. More indexers, each
with its own disks, will have more impact.

 ° Virtualized slices of cores or oversubscribed virtual hosts do not
work well, as the processor is actually used heavily during search,
mostly decompressing raw data.

 ° Slow cores designed for highly threaded applications do not work
well. For instance, you should avoid older Sun SPARC processors or
slices of cores on AIX boxes.

• Disks performing 800 random IOPS (input/output operations per second)
This is the value considered fast by Splunk engineering. Query your favorite
search engine for splunk bonnie++ for discussions about how to measure
this value. The most important thing to remember when testing your disks
is that you must test enough data to defeat disk cache. Remember, if you are
using shared disks, that the indexers will share the available IOPS.

• No more than four concurrent searches
Please note that:

 ° Most queries are finished very quickly
 ° This count includes interactive queries and saved searches
 ° Summary indexes and saved searches can be used to reduce the

workload of common queries
 ° Summary queries are simply saved searches

Chapter 11

[347]

To test your concurrency on an existing installation, try this query:
index=_audit search_id action=search

 | transaction maxpause=1h search_id

 | concurrency duration=duration

 | timechart span="1h" avg(concurrency)
max(concurrency)

A formula for a rough estimate (assuming eight fast processors and 8 gigabytes of
RAM per indexer) might look like this:

indexers needed =
[your IOPs] / 800 *
[gigs of raw logs produced per day] / 100 *
[average concurrent queries] / 4

The behavior of your systems, network, and users make it impossible
to reliably predict performance without testing. These numbers are a
rough estimate at best.

Let's say you work for a mid-sized company producing about 80 gigabytes of logs
per day. You have some very active users, so you might expect four concurrent
queries on average. You have good disks, which bonnie++ has shown to pull a
sustained 950 IOPS. You are also running some fairly heavy summary indexing
queries against your web logs, and you expect at least one to be running pretty much
all the time. This gives us the following output:

950/800 IOPS *
80/100 gigs *
(1 concurrent summary query + 4 concurrent user queries) / 4
= 1.1875 indexers

You cannot really deploy 1.1875 indexers, so your choices are either to start with
one indexer and see how it performs or to go ahead and start with two indexers.
My advice would be to start with two indexers if at all possible. This gives you
some fault tolerance, and installations tend to grow quickly as more data sources
are discovered throughout the company. Ideally, when crossing the 100-gigabyte
mark, it may make sense to start with three indexers and spread the disks across
them. The extra capacity gives you the ability to take one indexer down and still
have enough capacity to cover the normal load. See the discussion in the Planning
redundancy section.

Advanced Deployments

[348]

If we increase the number of average concurrent queries, increase the amount of data
indexed per day, or decrease our IOPS, the number of indexers needed should scale
more or less linearly.

If we scale up a bit more, say 120 gigabytes a day, 5 concurrent queries, and 2
summary queries running on average, we grow as follows:

950/800 IOPS *
120/100 gigs *
(2 concurrent summary query + 5 concurrent user queries) / 4
= 2.5 indexers

Three indexers would cover this load, but if one indexer is down, we will struggle
to keep up with data from forwarders. Ideally, in this case, we should have four or
more indexers.

Planning redundancy
The term redundancy can mean different things, depending on your concern.
Splunk has features to help with some of these concerns but not others. In a nutshell,
up to and including Version 4.3, Splunk is excellent at making sure data is captured
but provides essentially no mechanism for reliably replicating data across multiple
indexers. Splunk 5, not covered in this book, adds data replication features that can
eliminate most of these concerns.

Indexer load balancing
Splunk forwarders are responsible for load balancing across indexers. This is
accomplished most simply by providing a list of indexers in outputs.conf,
as shown in the following code:

[tcpout:nyc]
server=nyc-splunk-index01:9997,nyc-splunk-index02:9997

If an indexer is unreachable, the forwarder will simply choose another indexer
in the list. This scheme works very well and powers most Splunk deployments.

If the DNS entry returns multiple addresses, Splunk will balance between the
addresses on the port specified.

Chapter 11

[349]

By default, the forwarder will use auto load balancing, specified by autoLB=true.
Essentially, the forwarder will switch between indexers on a timer. This is the only
option available for the Universal Forwarder and light forwarder.

On a heavy forwarder, the setting autoLB=false will load balance by event. This
is less efficient and can cause results to be returned in a non-deterministic manner,
since the original event order is not maintained across multiple indexers.

Understanding typical outages
With a single Splunk instance, an outage—perhaps for an operating system
upgrade—will cause events to queue on the Splunk forwarder instances. If there are
multiple indexers, forwarders will continue to send events to the remaining indexers.

Let's walk through a simplified scenario. Given these four machines, with the
forwarders configured to load balance their output across two indexers as shown
in the following figure:

While everything is running, half of the events from each forwarder data will be sent
to each indexer. If one indexer is down, we are left with only one indexer as shown
in the figure:

A few things happen in this case:

• All events will be sent to the remaining indexer.
• All events stored on our unavailable indexer will not be included in search

results. Splunk 5 can help with this problem, at the cost of extra disks.
• Queries for recent events will work because these events will be stored on the

remaining indexer, assuming the one indexer can handle the entire workload.

Advanced Deployments

[350]

If our data throughput is more than a single indexer can handle, it will fall behind,
which makes us essentially blind to new events until the other indexer comes back
and we catch up.

As the size of our deployment increases, we can see that the impact of one indexer
outage affects our results less, as shown in the following figure:

In this case, we have only lost 25 percent of our indexing capacity and have only lost
access to 25 percent of our historical data. As long as three indexers can handle our
indexing workload, our indexers will not fall behind and we will continue to have
timely access to new events. As the number of indexers increases, the impact of one
down indexer affects us less.

Working with multiple indexes
An index in Splunk is a storage pool for events, capped by size, time, or both. By
default, all events will go to the index specified by defaultDatabase, which is called
main but lives in a directory called defaultdb.

Directory structure of an index
Each index occupies a set of directories on disk. By default, these directories live
in $SPLUNK_DB, which, by default, is located in $SPLUNK_HOME/var/lib/splunk.
Looking at the following stanza for the main index:

[main]
homePath = $SPLUNK_DB/defaultdb/db
coldPath = $SPLUNK_DB/defaultdb/colddb
thawedPath = $SPLUNK_DB/defaultdb/thaweddb
maxHotIdleSecs = 86400
maxHotBuckets = 10
maxDataSize = auto_high_volume

Chapter 11

[351]

If our Splunk installation lives at /opt/splunk, the index main is rooted at the path
/opt/splunk/var/lib/splunk/defaultdb.

To change your storage location, either modify the value of SPLUNK_DB in
$SPLUNK_HOME/etc/splunk-launch.conf or set absolute paths in indexes.conf.

splunk-launch.conf cannot be controlled from an app, which
means it is easy to forget when adding indexers. For this reason, and for
legibility, I would recommend using absolute paths in indexes.conf.

The homePath directories contain index-level metadata, hot buckets, and warm
buckets. coldPath contains cold buckets, which are simply warm buckets that
have aged out. See the upcoming sections The lifecycle of a bucket and Sizing an
index for details.

When to create more indexes
There are several reasons for creating additional indexes. If your needs do not
meet one of these requirements, there is no need to create more indexes. In fact,
multiple indexes may actually hurt performance if a single query needs to open
multiple indexes.

Testing data
If you do not have a test environment, you can use test indexes for staging new
data. This then allows you to easily recover from mistakes by dropping the
test index. Since Splunk will run on a desktop, it is probably best to test new
configurations locally, if possible.

Differing longevity
It may be the case that you need more history for some source types than others.
The classic example here is security logs, as compared to web access logs. You may
need to keep security logs for a year or more but only need web access logs for a
couple of weeks.

If these two source types are left in the same index, security events will be stored
in the same buckets as web access logs and will age out together. To split these
events up, you need to perform the following steps:

1. Create a new index called security, for instance.
2. Define different settings for the security index.
3. Update inputs.conf to use the new index for security source types.

Advanced Deployments

[352]

For one year, you might make an indexes.conf setting such as this:

[security]
homePath = $SPLUNK_DB/security/db
coldPath = $SPLUNK_DB/security/colddb
thawedPath = $SPLUNK_DB/security/thaweddb
#one year in seconds
frozenTimePeriodInSecs = 31536000

For extra protection, you should also set maxTotalDataSizeMB, and possibly
coldToFrozenDir.

If you have multiple indexes that should age together, or if you
will split homePath and coldPath across devices, you should use
volumes. See the upcoming section, Using volumes to manage multiple
indexes, for more information.

Then, in inputs.conf, you simply need to add index to the appropriate stanza
as follows:

[monitor:///path/to/security/logs/logins.log]
sourcetype=logins
index=security

Differing permissions
If some data should only be seen by a specific set of users, the most effective way to
limit access is to place this data in a different index and then limit access to that index
by using a role. The steps to accomplish this are essentially as follows:

1. Define the new index.
2. Configure inputs.conf or transforms.conf to send these events to the new

index.
3. Ensure the user role does not have access to the new index.
4. Create a new role that has access to the new index.
5. Add specific users to this new role. If you are using LDAP authentication,

you will need to map the role to an LDAP group and add users to that
LDAP group.

Chapter 11

[353]

To route very specific events to this new index, assuming you created an index called
sensitive, you can create a transform as follows:

[contains_password]
REGEX = (?i)password[=:]
DEST_KEY = _MetaData:Index
FORMAT = sensitive

You would then wire this transform to a particular sourcetype or source index in
props.conf. See Chapter 10, Configuring Splunk, for examples.

Using more indexes to increase performance
Placing different source types in different indexes can help increase performance,
if those source types are not queried together. The disks will spend less time seeking
when accessing the source type in question.

If you have access to multiple storage devices, placing indexes on different devices
can help increase performance even more by taking advantage of different hardware
for different queries. Likewise, placing homePath and coldPath on different devices
can help performance.

However, if you regularly run queries that use multiple source types, splitting
those source types across indexes may actually hurt performance. For example,
let's imagine you have two source types called web_access and web_error.
We have the following line in web_access:

2012-10-19 12:53:20 code=500 session=abcdefg url=/path/to/app

And we have the following line in web_error:

2012-10-19 12:53:20 session=abcdefg class=LoginClass

If we want to combine these results, we could run a query like the following:

(sourcetype=web_access code=500) OR sourcetype=web_error
 | transaction maxspan=2s session
 | top url class

If web_access and web_error are stored in different indexes, this query will
need to access twice as many buckets and will essentially take twice as long.

Advanced Deployments

[354]

The lifecycle of a bucket
An index is made up of buckets, which go through a specific life cycle. Each bucket
contains events from a particular period of time.

As touched on in Chapter 10, Configuring Splunk, the stages of this lifecycle are
hot, warm, cold, frozen, and thawed. The only practical difference between hot
and other buckets is that a hot bucket is being written to and has not necessarily
been optimized. These stages live in different places on disk and are controlled by
different settings in indexes.conf:

• homePath contains as many hot buckets as the integer value of
maxHotBuckets and as many warm buckets as the integer value of
maxWarmDBCount. When a hot bucket rolls, it becomes a warm
bucket. When there are too many warm buckets, the oldest warm
bucket becomes a cold bucket.

Do not set maxHotBuckets too low. If your data is not parsing perfectly,
dates that parse incorrectly will produce buckets with very large time
spans. As more buckets are created, these buckets will overlap, which
means all buckets will have to be queried every time, and performance
will suffer dramatically. A value of five or more is safe.

• coldPath contains cold buckets, which are warm buckets that have rolled
out of homePath once there are more warm buckets than the value of
maxWarmDBCount. If coldPath is on the same device, only a move is
required; otherwise, a copy is required.

• Once the values of frozenTimePeriodInSecs, maxTotalDataSizeMB,
or maxVolumeDataSizeMB are reached, the oldest bucket will be frozen.
By default, frozen means deleted. You can change this behavior by
specifying either:

 ° coldToFrozenDir: This lets you specify a location to move buckets
once they have aged out. The index files will be deleted, and only
the compressed raw data will be kept. This essentially cuts disk
usage in half. This location is unmanaged, so it is up to you to
watch your disk usage.

 ° coldToFrozenScript: This lets you specify a script to perform some
action when the bucket is frozen. The script is handed the path to the
bucket about to be frozen.

Chapter 11

[355]

• thawedPath can contain buckets that have been restored. These buckets are
not managed by Splunk and are not included in All time searches. To search
these buckets, their time range must be included explicitly in your search.
I have never actually used this directory. Search http://splunk.com for
restore archived, for procedures.

Sizing an index
To determine how much disk space is needed for an index, use the
following formula:

(gigabytes per day) * .5 * (days of retention desired)

Likewise, to determine how many days you can store an index, the formula
is essentially:

(device size in gigabytes) / ((gigabytes per day) * .5)

The .5 represents a conservative compression ratio. The log data itself is usually
compressed to 10 percent of its original size. The index files necessary to speed
up search brings the size of a bucket closer to 50 percent of the original size,
though it is usually smaller than this.

If you plan to split your buckets across devices, the math gets more complicated
unless you use volumes. Without using volumes, the math is essentially as follows:

• homePath = (maxWarmDBCount + maxHotBuckets) * maxDataSize

• coldPath = maxTotalDataSizeMB - homePath

For example, say we are given these settings:

[myindex]
homePath = /splunkdata_home/myindex/db
coldPath = /splunkdata_cold/myindex/colddb
thawedPath = /splunkdata_cold/myindex/thaweddb
maxWarmDBCount = 50
maxHotBuckets = 6
maxDataSize = auto_high_volume #10GB on 64-bit systems
maxTotalDataSizeMB = 2000000

Filling in the preceding formula, we get these values:

homePath = (50 warm + 6 hot) * 10240 MB = 573440 MB
coldPath = 2000000 MB - homePath = 1426560 MB

If we use volumes, this gets simpler and we can simply set the volume sizes to our
available space and let Splunk do the math.

Advanced Deployments

[356]

Using volumes to manage multiple indexes
Volumes combine pools of storage across different indexes so that they age
out together. Let's make up a scenario where we have five indexes and three
storage devices.

The indexes are as follows:

Name Data per day Retention required Storage needed
web 50 GB no requirement ?
security 1 GB 2 years 730 GB * 50 percent
app 10 GB no requirement ?
chat 2 GB 2 years 1,460 GB * 50

percent
web_summary 1 GB 1 years 365 GB * 50 percent

Now let's say we have three storage devices to work with, mentioned in the
following table:

Name Size
small_fast 500 GB
big_fast 1,000 GB
big_slow 5,000 GB

We can create volumes based on the retention time needed. security and
chat share the same retention requirements, so we can place them in the
same volumes. We want our hot buckets on our fast devices, so let's start
there with the following configuration:

[volume:two_year_home]
#security and chat home storage
path = /small_fast/two_year_home
maxVolumeDataSizeMB = 300000

[volume:one_year_home]
#web_summary home storage
path = /small_fast/one_year_home
maxVolumeDataSizeMB = 150000

Chapter 11

[357]

For the rest of the space needed by these indexes, we will create companion
volume definitions on big_slow, thus:

[volume:two_year_cold]
#security and chat cold storage
path = /big_slow/two_year_cold
maxVolumeDataSizeMB = 850000 #([security]+[chat])*1024 - 300000

[volume:one_year_cold]
#web_summary cold storage
path = /big_slow/one_year_cold
maxVolumeDataSizeMB = 230000 #[web_summary]*1024 - 150000

Now for our remaining indexes, whose timeframe is not important, we will
use big_fast and the remainder of big_slow, thus:

[volume:large_home]
#web and app home storage
path = /big_fast/large_home
maxVolumeDataSizeMB = 900000 #leaving 10% for pad

[volume:large_cold]
#web and app cold storage
path = /big_slow/large_cold
maxVolumeDataSizeMB = 3700000
#(big_slow - two_year_cold - one_year_cold)*.9

Given the sum of large_home and large_cold is 4,600,000 MB, and a combined
daily volume of approximately web and app is 60,000 MB, we should retain
approximately 153 days of web and app logs with 50 percent compression.
In reality, the number of days retained will probably be larger.

With our volumes defined, we now have to reference them in our index definitions:

[web]
homePath = volume:large_home/web
coldPath = volume:large_cold/web
thawedPath = /big_slow/thawed/web

[security]
homePath = volume:two_year_home/security
coldPath = volume:two_year_cold/security
thawedPath = /big_slow/thawed/security

Advanced Deployments

[358]

coldToFrozenDir = /big_slow/frozen/security

[app]
homePath = volume:large_home/app
coldPath = volume:large_cold/app
thawedPath = /big_slow/thawed/app

[chat]
homePath = volume:two_year_home/chat
coldPath = volume:two_year_cold/chat
thawedPath = /big_slow/thawed/chat
coldToFrozenDir = /big_slow/frozen/chat

[web_summary]
homePath = volume:one_year_home/web_summary
coldPath = volume:one_year_cold/web_summary
thawedPath = /big_slow/thawed/web_summary

thawedPath cannot be defined using a volume and must be
specified for Splunk to start.

For extra protection, we specified coldToFrozenDir for the indexes security and
chat. The buckets for these indexes will be copied to this directory before deletion,
but it is up to us to make sure the disk does not fill up. If we allow the disk to fill up,
Splunk will stop indexing until space is made available.

This is just one approach to using volumes. You could overlap in any way that
makes sense to you as long as you understand that the oldest bucket in a volume
will be frozen first, no matter what index put the bucket in that volume.

Deploying the Splunk binary
Splunk provides binary distributions for Windows and a variety of Unix operating
systems. For all Unix operating systems, a compressed tar file is provided. For some
platforms, packages are also provided.

If your organization uses packages, such as deb or rpm, you should be able to use the
provided packages in your normal deployment process. Otherwise, installation starts
by unpacking the provided tar to the location of your choice.

The process is the same whether you are installing the full version of Splunk or the
Splunk Universal Forwarder.

Chapter 11

[359]

The typical installation process involves the following process:

1. Installing the binary.
2. Adding a base configuration.
3. Configuring Splunk to launch at boot.
4. Restarting Splunk.

Having worked with many different companies over the years, I
can honestly say that none of them used the same product or even
methodology for deploying software. Splunk takes a hands-off
approach to fit in as easily as possible into customer workflows.

Deploying from a tar file
To deploy from a tar file, the command depends on your version of tar.
With a modern version of tar, you can run the following command:

tar xvzf splunk-4.3.x-xxx-Linux-xxx.tgz

Older versions may not handle gzip files directly, so you may have to run
the following command:

gunzip -c splunk-4.3.x-xxx-Linux-xxx.tgz | tar xvf -

This will expand into the current directory. To expand into a specific directory,
you can usually add -C, depending on the version of tar, as follows:

tar -C /opt/ -xvzf splunk-4.3.x-xxx-Linux-xxx.tgz

Deploying using msiexec
On Windows, it is possible to deploy Splunk using msiexec. This makes it much
easier to automate deployment on a large number of machines.

To install silently, you can use the combination of AGREETOLICENSE and /quiet,
as follows:

msiexec.exe /i splunk-xxx.msi AGREETOLICENSE=Yes /quiet

If you plan to use a deployment server, you can specify the following value:

msiexec.exe /i splunk-xxx.msi AGREETOLICENSE=Yes
DEPLOYMENT_SERVER="deployment_server_name:8089" /quiet

Advanced Deployments

[360]

Or, if you plan to overlay an app that contains deploymentclient.conf, you can
forego starting Splunk until that app has been copied into place, as follows:

msiexec.exe /i splunk-xxx.msi AGREETOLICENSE=Yes LAUNCHSPLUNK=0 /quiet

There are options available to start reading data immediately, but I would advise
deploying input configurations to your servers instead of enabling inputs via
installation arguments.

Adding a base configuration
If you are using Splunk's deployment server, this is the time to set up
deploymentclient.conf. This can be accomplished in several ways as follows:

• On the command line by running the following code:
$SPLUNK_HOME/bin/splunk set deploy-poll
deployment_server_name:8089

• By placing a deploymentclient.conf in
$SPLUNK_HOME/etc/system/local/

• By placing an app containing deploymentclient.conf in
$SPLUNK_HOME/etc/apps/

The third option is what I would recommend because it allows overriding this
configuration via a deployment server at a later time. We will work through an
example later in the Using Splunk deployment server section.

If you are deploying configurations in some other way, for instance with puppet, be
sure to restart the Splunk forwarder processes after deploying the new configuration.

Configuring Splunk to launch at boot
On Windows machines, Splunk is installed as a service that will start after
installation and on reboot.

On Unix hosts, the splunk command line provides a way to create startup scripts
appropriate for the operating system you are using. The command looks like this:

$SPLUNK_HOME/bin/splunk enable boot-start

To run Splunk as another user, provide the flag –user, as follows:

$SPLUNK_HOME/bin/splunk enable boot-start -user splunkuser

Chapter 11

[361]

The startup command must still be run as root, but the startup script will be
modified to run as the user provided.

If you do not run Splunk as root, and you shouldn't if you can
avoid it, be sure that the Splunk installation and data directories
are owned by the user specified in the enable boot-start
command. You can ensure this by using chmod, such as in
chmod -R splunkuser $SPLUNK_HOME

On Linux, you could then start the command using service splunk start.

Using apps to organize configuration
When working with a distributed configuration, there are a number of ways to
organize these configurations. The most obvious approach might be to organize
configurations by machine type. For instance, put all configurations needed by web
servers into one app and all configurations needed by database servers in another
app. The problem with this approach is that any changes that affect both types of
machines must be made in both apps, and mistakes will most likely be made.

The less fragile but more complicated approach is to normalize your configurations,
ensuring that there is only one copy of each configuration spread into multiple apps.

Separate configurations by purpose
Stepping through a typical installation, you would have configuration apps named
like the following:

• inputs-sometype
For some logical set of inputs, you would create an app. You could use
machine purpose, source type, location, operating system, or whatever
makes sense in your situation. Normally, I would expect machine purpose
or source type.

• props-sometype
This grouping should correspond to the grouping of the inputs, more or
less. You may end up with props apps for more than one type, for instance
machine type and location.

• outputs-datacenter
When deploying across data centers, it is common to place Splunk indexers
in each data center. In this case, you would need an app per data center.

Advanced Deployments

[362]

• indexerbase

Assuming your indexers are configured similarly, it is handy to put all
indexer configuration into an app and deploy it like any other app.

All of these configurations are completely separate from search
concerns, which should be stored in separate apps built and
maintained through the Splunk web interface.

Let's imagine we have a distributed deployment across two data centers, east
and west. Each data center has web servers, app servers, and database servers.
In each data center we have two Splunk indexers. The apps for this setup could
be as follows:

• inputs-web, inputs-app, and inputs-db
 ° inputs.conf specifies the appropriate logs to monitor.
 ° Each app should be distributed to each machine that is serving

that purpose. If there are some machines that serve more than one
purpose, they should receive all appropriate apps.

• props-web, props-app, and props-db
 ° props.conf specifies how to parse the logs.
 ° transforms.conf is included if there are relevant transforms.
 ° Different portions of props.conf are needed at different stages of

processing. Since it is difficult to know what stage is happening
where, it is generally easiest to distribute these source type props
apps everywhere.

• props-west, and props-east
 ° Sometimes it is necessary to make configuration changes by location,

for instance, configuring time zone on machines that are not set up
properly. This can be accomplished by using the TZ setting in
props.conf and sending this app to the appropriate data centers.

• outputs-west, and outputs-east
 ° These would contain nothing but the outputs.conf configuration for

the appropriate data center.

Chapter 11

[363]

• indexerbase

 ° Assuming all indexers are configured the same way, this app would
contain a standard indexes.conf configuration, an inputs.conf
configuration specifying the splunktcp port to listen to connections
from Splunk forwarders, and server.conf specifying the address of
the Splunk license server.

Let's look through an abbreviated listing of all of these files mentioned:

• For forwarders, we will need these apps:
inputs-web
 local/inputs.conf
 [monitor:///path/to/web/logs/access*.log]
 sourcetype = web_access
 index = web

 [monitor:///path/to/web/logs/error*.log]
 sourcetype = web_error
 index = web

inputs-app
 local/inputs.conf
 [monitor:///path/to/app1/logs/app*.log]
 sourcetype = app1
 index = app

 [monitor:///path/to/app2/logs/app*.log]
 sourcetype = app2
 index = app

inputs-db
 local/inputs.conf
 [monitor:///path/to/db/logs/error*.log]
 sourcetype = db_error

outputs-west
 local/outputs.conf
 [tcpout:west]
 server=spl-idx-west01.foo.com:9997,spl-idx-west02.foo.com:9997
 #autoLB=true is the default setting

outputs-east
 local/outputs.conf
 [tcpout:east]
 server=spl-idx-east01.foo.com:9997,spl-idx-east02.foo.com:9997

Advanced Deployments

[364]

• All instances should receive these apps:
props-web
 local/props.conf
 [web_access]
 TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z
 MAX_TIMESTAMP_LOOKAHEAD = 32
 SHOULD_LINEMERGE = False
 TRANSFORMS-squashpassword = squashpassword

 [web_error]
 TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z
 MAX_TIMESTAMP_LOOKAHEAD = 32
 TRANSFORMS-squashpassword = squashpassword

 local/transforms.conf
 [squashpassword]
 REGEX = (?mi)^(.*)password[=:][^,&]+$
 FORMAT = $1password=########$2
 DEST_KEY = _raw

props-app
 local/props.conf
 [app1]
 TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N
 MAX_TIMESTAMP_LOOKAHEAD = 25
 BREAK_ONLY_BEFORE = ^\d{4}-\d{1,2}-\d{1,2}\s+\d{1,2}:\d{1,2}

 [app2]
 TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N
 MAX_TIMESTAMP_LOOKAHEAD = 25
 BREAK_ONLY_BEFORE = ^\d{4}-\d{1,2}-\d{1,2}\s+\d{1,2}:\d{1,2}

props-db
 local/props.conf
 [db_error]
 MAX_TIMESTAMP_LOOKAHEAD = 25

props-west
 local/props.conf
 [db_error]
 TZ = PST

 [web_error]

Chapter 11

[365]

 TZ = PST

props-east
 local/props.conf
 [db_error]
 TZ = EST

 [web_error]
 TZ = EST

• Finally, an app specifically for our indexers:
indexerbase
 local/indexes.conf
 [volume:two_year_home]
 path = /small_fast/two_year_home
 maxVolumeDataSizeMB = 300000

 [volume:one_year_home]
 path = /small_fast/one_year_home
 maxVolumeDataSizeMB = 150000

 [volume:two_year_cold]
 path = /big_slow/two_year_cold
 maxVolumeDataSizeMB = 1200000

 [volume:one_year_cold]
 path = /big_slow/one_year_cold
 maxVolumeDataSizeMB = 600000

 [volume:large_home]
 path = /big_fast/large_home
 maxVolumeDataSizeMB = 900000

 [volume:large_cold]
 path = /big_slow/large_cold
 maxVolumeDataSizeMB = 3000000

 [web]
 homePath = volume:large_home/web
 coldPath = volume:large_cold/web
 thawedPath = /big_slow/thawed/web

 [app]

Advanced Deployments

[366]

 homePath = volume:large_home/app
 coldPath = volume:large_cold/app
 thawedPath = /big_slow/thawed/app

 [main]
 homePath = volume:large_home/main
 coldPath = volume:large_cold/main
 thawedPath = /big_slow/thawed/main

 local/inputs.conf
 [splunktcp://9997]

 local/server.conf
 [license]
 master_uri = https://spl-license.foo.com:8089

This is a minimal set of apps, but it should provide a decent overview of what is
involved in configuring a distributed configuration. Next, we will illustrate where
these apps should go.

Configuration distribution
As we have covered, in some depth, configurations in Splunk are simply directories
of plain text files. Distribution essentially consists of copying these configurations
to the appropriate machines and restarting the instances. You can either use your
own system for distribution, such as puppet or simply a set of scripts, or use the
deployment server included with Splunk.

Using your own deployment system
The advantage of using your own system is that you already know how to use it.
Assuming that you have normalized your apps as described in the section Using
apps to organize configuration, deploying apps to a forwarder or indexer consists
of the following steps:

1. Set aside existing apps at $SPLUNK_HOME/etc/apps/.
2. Copy apps into $SPLUNK_HOME/etc/apps/.
3. Restart Splunk forwarder. Note that this needs to be done as the user that

is running Splunk, either by calling the service script or calling su. On
Windows, restart the splunkd service.

Assuming you already have a system for managing configurations, that's it.

Chapter 11

[367]

If you are deploying configurations to indexers, be sure to only deploy
configurations when downtime is acceptable, as you will need to restart
the indexers to load the new configurations, ideally in a rolling manner.
Do not deploy configurations until you are ready to restart as some (but
not all) configurations will take effect immediately.

Using Splunk deployment server
If you do not have a system for managing configurations, you can use the
deployment server included with Splunk.

Some advantages of the included deployment server are as follows:

• Everything you need is included in your Splunk installation
• It will restart forwarder instances properly when new app versions

are deployed
• It is intelligent enough to not restart when unnecessary
• It will remove apps that should no longer be installed on a machine
• It will ignore apps that are not managed
• The logs for the deployment client and server are accessible in Splunk itself

Some disadvantages of the included deployment server are:

• As of Splunk 4.3, there are issues with scale beyond a few hundred
deployment clients, at which point tuning is required

• The configuration is complicated and prone to typos

With these caveats out of the way, let's set up a deployment server for the apps we
laid out before.

Step 1 – Deciding where your deployment server
will run
For a small installation with less than a few dozen forwarders, your main Splunk
instance can run the deployment server without issue. For more than a few dozen
forwarders, a separate instance of Splunk makes sense.

Ideally, this instance would run on its own machine. The requirements for this
machine are not large, perhaps 4 gigabytes of RAM and two processors, or possibly
less. A VM would be fine.

Advanced Deployments

[368]

Define a DNS entry for your deployment server, if at all possible.
This will make moving your deployment server later much simpler.

If you do not have access to another machine, you could run another copy of Splunk
on the same machine running some other part of your Splunk deployment. To
accomplish this, follow these steps:

1. Install Splunk in another directory, perhaps /opt/splunk-deploy/splunk/.
2. Start this instance of Splunk by using /opt/splunk-deploy/splunk/bin/

splunk start. When prompted, choose different port numbers apart
from the default and note what they are. I would suggest one number
higher: 8090 and 8001.

3. Unfortunately, if you run splunk enable boot-start in this new instance,
the existing startup script will be overwritten. To accommodate both
instances, you will need to either edit the existing startup script, or
rename the existing script so that it is not overwritten.

Step 2 – Defining your deploymentclient.conf
configuration
Using the address of our new deployment server, ideally a DNS entry, we will build an
app named deploymentclient-yourcompanyname. This app will have to be installed
manually on forwarders but can then be managed by the deployment server.

This app should look somewhat like this:

deploymentclient-yourcompanyname
 local/deploymentclient.conf
 [deployment-client]

 [target-broker:deploymentServer]
 targetUri=deploymentserver.foo.com:8089

Step 3 – Defining our machine types and locations
Starting with what we defined under the Separate configurations by purpose section, we
have, in the locations west and east, the following machine types:

• Splunk indexers
• db servers
• web servers
• app servers

Chapter 11

[369]

Step 4 – Normalizing our configurations into apps
appropriately
Let's use the apps we defined under the section Separate configurations by purpose
plus the deployment client app we created in the section Step 2 – Defining your
deploymentclient.conf configuration. These apps will live in $SPLUNK_HOME/etc/
deployment-apps/ on your deployment server.

Step 5 – Mapping these apps to deployment clients
in serverclass.conf
To get started, I always start with Example 2 from $SPLUNK_HOME/etc/system/
README/serverclass.conf.example:

[global]

[serverClass:AppsForOps]
whitelist.0=*.ops.yourcompany.com
[serverClass:AppsForOps:app:unix]
[serverClass:AppsForOps:app:SplunkLightForwarder]

Let's assume we have the machines mentioned next. It is very rare for an
organization of any size to have consistently named hosts, so I threw in a couple of
rogue hosts at the bottom, as follows:

spl-idx-west01
spl-idx-west02
spl-idx-east01
spl-idx-east02
app-east01
app-east02
app-west01
app-west02
web-east01
web-east02
web-west01
web-west02
db-east01
db-east02
db-west01
db-west02
qa01
homer-simpson

Advanced Deployments

[370]

The structure of serverclass.conf is essentially as follows:

[serverClass:<className>]
#options that should be applied to all apps in this class

[serverClass:<className>:app:<appName>]
#options that should be applied only to this app in this serverclass

Please note that:

• <className> is an arbitrary name of your choosing.
• <appName> is the name of a directory in $SPLUNK_HOME/etc/deployment-

apps/.
• The order of stanzas does not matter. Be sure to update <className> if you

copy an :app: stanza. This is by far the easiest mistake to make.

It is important that configuration changes do not trigger
a restart of indexers.

Let's apply this to our hosts, as follows:

[global]
restartSplunkd = True
#by default trigger a splunk restart on configuration change

####INDEXERS
##handle indexers specially, making sure they do not restart
[serverClass:indexers]
whitelist.0=spl-idx-*
restartSplunkd = False
[serverClass:indexers:app:indexerbase]
[serverClass:indexers:app:deploymentclient-yourcompanyname]
[serverClass:indexers:app:props-web]
[serverClass:indexers:app:props-app]
[serverClass:indexers:app:props-db]

#send props-west only to west indexers
[serverClass:indexers-west]
whitelist.0=spl-idx-west*
restartSplunkd = False
[serverClass:indexers-west:app:props-west]

#send props-east only to east indexers

Chapter 11

[371]

[serverClass:indexers-east]
whitelist.0=spl-idx-east*
restartSplunkd = False
[serverClass:indexers-east:app:props-east]

####FORWARDERS
#send event parsing props apps everywhere
#blacklist indexers to prevent unintended restart
[serverClass:props]
whitelist.0=*
blacklist.0=spl-idx-*
[serverClass:props:app:props-web]
[serverClass:props:app:props-app]
[serverClass:props:app:props-db]

#send props-west only to west datacenter servers
#blacklist indexers to prevent unintended restart
[serverClass:west]
whitelist.0=*-west*
whitelist.1=qa01
blacklist.0=spl-idx-*
[serverClass:west:app:props-west]
[serverClass:west:app:deploymentclient-yourcompanyname]

#send props-east only to east datacenter servers
#blacklist indexers to prevent unintended restart
[serverClass:east]
whitelist.0=*-east*
whitelist.1=homer-simpson
blacklist.0=spl-idx-*
[serverClass:east:app:props-east]
[serverClass:east:app:deploymentclient-yourcompanyname]

#define our appserver inputs
[serverClass:appservers]
whitelist.0=app-*
whitelist.1=qa01
whitelist.2=homer-simpson
[serverClass:appservers:app:inputs-app]

#define our webserver inputs
[serverClass:webservers]

Advanced Deployments

[372]

whitelist.0=web-*
whitelist.1=qa01
whitelist.2=homer-simpson
[serverClass:webservers:app:inputs-web]

#define our dbserver inputs
[serverClass:dbservers]
whitelist.0=db-*
whitelist.1=qa01
[serverClass:dbservers:app:inputs-db]

#define our west coast forwarders
[serverClass:fwd-west]
whitelist.0=app-west*
whitelist.1=web-west*
whitelist.2=db-west*
whitelist.3=qa01
[serverClass:fwd-west:app:outputs-west]

#define our east coast forwarders
[serverClass:fwd-east]
whitelist.0=app-east*
whitelist.1=web-east*
whitelist.2=db-east*
whitelist.3=homer-simpson
[serverClass:fwd-east:app:outputs-east]

You should organize the patterns and classes in a way that makes sense to your
organization and data centers, but I would encourage you to keep it as simple as
possible. I would strongly suggest opting for more lines than more complicated logic.

A few more things to note about the format of serverclass.conf:

• The number following whitelist and blacklist must be sequential, starting
with zero. For instance, in the following example, whitelist.3 will not
be processed, since whitelist.2 is commented:
[serverClass:foo]
whitelist.0=a*
whitelist.1=b*
whitelist.2=c*
whitelist.3=d*

Chapter 11

[373]

• whitelist.x and blacklist.x are tested against these values in the
following order:

 ° clientName as defined in deploymentclient.conf: This is not
commonly used but is useful when running multiple Splunk
instances on the same machine or when DNS is completely
unreliable.

 ° IP address: There is no CIDR matching, but you can use
string patterns.

 ° Reverse DNS: This is the value returned by DNS for an IP address.
If your reverse DNS is not up to date, this can cause you problems,
as this value is tested before the value of hostname, as provided by
the host itself. If you suspect this, try ping <ip of machine> or
something similar to see what the DNS is reporting.

 ° Hostname as provided by forwarder: This is always tested after
reverse DNS, so be sure your reverse DNS is up to date.

• When copying :app: lines, be very careful to update the <className>
appropriately! This really is the most common mistake made in
serverclass.conf.

Step 6 – Restarting the deployment server
If serverclass.conf did not exist, a restart of the Splunk instance running
deployment server is required to activate the deployment server. After the
deployment server is loaded, you can use the following command:

$SPLUNK_HOME/bin/splunk reload deploy-server

This command should be enough to pick up any changes to serverclass.conf
and any changes in etc/deployment-apps.

Step 7 – Installing deploymentclient.conf
Now that we have a running deployment server, we need to set up the clients to call
home. On each machine that will be running the deployment client, the procedure is
essentially as follows:

1. Copy the deploymentclient-yourcompanyname app to $SPLUNK_HOME/etc/
apps/.

2. Restart Splunk.

Advanced Deployments

[374]

If everything is configured correctly you should see the appropriate apps appear in
$SPLUNK_HOME/etc/apps/, within a few minutes. To see what is happening, look at
the log $SPLUNK_HOME/var/log/splunk/splunkd.log.

If you have problems, enable debugging on either the client or the server by editing
$SPLUNK_HOME/etc/log.cfg, followed by a restart. Look for the following lines:

category.DeploymentServer=WARN
category.DeploymentClient=WARN

Once found, change them to the following lines and restart Splunk:

category.DeploymentServer=DEBUG
category.DeploymentClient=DEBUG

After restarting Splunk, you will see the complete conversation in $SPLUNK_HOME/
var/log/splunk/splunkd.log. Be sure to change the setting back once you no
longer need the verbose logging!

Using LDAP for authentication
By default, Splunk authenticates using its own authentication system, which simply
stores users and roles in flat files. The other two options available are LDAP and
scripted authentication.

To enable LDAP authentication, perform the following steps:

1. Navigate to Manager | Access controls | Authentication method.
2. Check the LDAP checkbox.
3. Click on Configure Splunk to use LDAP and map groups.
4. Click on New.

You will then need the appropriate values to set up access to your LDAP server.
Every organization sets up LDAP slightly differently, so I have never managed to
configure this properly the first time. Your best bet is to copy the values from another
application already configured in your organization.

Once LDAP is configured properly, you can map Splunk roles to LDAP groups
through the admin interface. Whether to use an existing group or create Splunk-
specific groups is of course up to your organization, but most companies I
have worked with opted to create a specific group for each Splunk role. The
common groups are often along the lines of: splunkuser, splunkpoweruser,
splunksecurity, and splunkadmin. Rights are additive, so a user can be a
member of as many groups as is appropriate.

Chapter 11

[375]

New in Splunk 4.3 are the ability to use multiple LDAP servers at once, support for
dynamic groups, support for nested groups, and more. The official documentation
can be found at the following URL:

http://docs.splunk.com/Documentation/Splunk/latest/Security/
SetUpUserAuthenticationWithLDAP

Using Single Sign On
Single Sign On (SSO) lets you use some other web server to handle authentication
for Splunk. For this to work, several assumptions are made, as follows:

• Your SSO system can act as an HTTP forwarding proxy, sending HTTP
requests through to Splunk.

• Your SSO system can place the authenticated user's ID into an HTTP header.
• The IP of your server(s) forwarding requests is static.
• When given a particular username, Splunk will be able to determine what

roles this user is a part of. This is usually accomplished using LDAP but
could be accomplished by defining users directly through the Splunk UI or
via a custom scripted authentication plugin.

Assuming all of these are true, the usual approach is to follow these steps:

1. Configure LDAP authentication in Splunk.
2. Configure your web server to send proxy requests through to Splunk: When

this is configured properly, you should be able to use Splunk as if you were
accessing the Splunk web application directly.

3. Configure your web server to authenticate: With this configured, your
web server should ask for authentication, and you should still be asked for
authentication by Splunk.

4. Look for the HTTP header containing the remote user: Proxying through
your web server, change the URL to http://yourproxyserver/debug/sso.
You should see your username under Remote user HTTP header or Other
HTTP headers.

5. Configure SSO in $SPLUNK_HOME/etc/system/local/web.conf: You need to
add three attributes to the [settings] stanza, as shown in the following code:

[settings]
SSOMode = strict
remoteUser = REMOTE-USER
trustedIP = 192.168.1.1,192.168.1.2

Advanced Deployments

[376]

That should be it. The hardest part is usually convincing the web server to
both authenticate and proxy. Use the /debug/sso page to help diagnose what
is happening.

There can also be issues with punctuation in the header fieldname. If it's possible,
removing any punctuation in the header name may eliminate unexpected problems.

Load balancers and Splunk
Some organizations that have invested heavily in load balancers like to use them
whenever possible to centralize network management. There are three services
Splunk typically exposes, mentioned in the following sections:

web
Usually on port 8000, the Splunk web server can be load balanced when configured
with search head pooling. The load balancer should be configured to be "sticky",
as the web server will still rely on user sessions tied to the web server the user
started on.

See the Multiple search heads section for more information.

splunktcp
Usually on port 9997, splunktcp is itself stateless. Splunk auto load balancing is
very well tested and very efficient but does not support complicated logic. For
instance, you could use a load balancer to prefer connections to indexers in the
same data center, only using indexers in another data center as a last resort.

The problem is that when only one address is provided to a Splunk forwarder,
the forwarder will open one connection and keep it open indefinitely. This means
that when an indexer is restarted, it will never receive a connection until forwarders
are restarted.

The easy solution is to expose two addresses on your load balancer and list both of
these addresses in outputs.conf. The two addresses must be either two different
ports or two different IP addresses. Two different CNAMEs on the same port will
not work, as Splunk resolves the addresses and collapses the list of IP addresses.

Chapter 11

[377]

deployment server
Usually on port 8089, the deployment server listens using SSL, by default, with a
self-signed certificate. There are a couple of problems with using a load balancer
with the deployment server; they are as follows:

• The protocol is essentially REST over HTTP, but not quite. Use a TCP load
balancer, not a load balancer that understands HTTP.

• While it is theoretically possible to load balance deployment servers, the
issue is that, if the different deployment servers are out of sync, deployment
clients may "flap", loading one set of apps and then the other. A better
approach is probably running multiple deployment servers and using
DNS or load balancers to ensure that certain sets of hosts always talk to a
particular server.

Multiple search heads
Using the search head pooling feature, it is possible to run multiple search head
instances. The feature requires a share of some sort behind the servers acting as
search heads, which effectively means they must be in the same data center. The
setup looks essentially like the following figure:

In short, the steps to configure the search are as follows:

1. Mount the NFS volume on each search head.
2. Enable the pooling feature on each instance.
3. Copy the existing configurations to the NFS volume.
4. Test the search heads.
5. Enable the load balancer.

The official documentation is available at http://docs.splunk.com/
Documentation/Splunk/latest/Deploy/Configuresearchheadpooling.

Advanced Deployments

[378]

Summary
We have touched upon a wide variety of subjects in this chapter, each of which
possibly deserves a chapter of its own. Maybe that will be the next book.

We talked about the different purposes of Splunk instances, how to collect data from
a variety of sources, how to install the Splunk binary, how to size your indexers, and
how to manage the configuration of many instances, and finally, we touched upon a
few advanced deployment topics.

In our final chapter, we will write some code to extend Splunk in a variety of ways.

Extending Splunk
While the core of Splunk is closed, there are a number of places where you can
use scripts or external code to extend the default behaviors. In this chapter, we
will write a number of examples, covering most of the places where external code
can be added. Most code samples are written in Python, so if you are not familiar
with Python, a reference may be useful.

We will cover:

• Writing scripts to create events
• Using Splunk from the command line
• Calling Splunk via REST
• Writing custom search commands
• Writing event type renderers
• Writing custom search action scripts

The examples used in this chapter are included in the app
ImplementingSplunkExtendingExamples, which can be downloaded from the
support page of the Packt Publishing website (www.packtpub.com/support).

Writing a scripted input to gather data
Scripted inputs allow you to run some piece of code on a scheduled basis, and
capture the output as if it were simply being written to a file. It does not matter
what language the script is written in, or where it lives, as long it is executable.
We touched on this topic in the Using scripts to gather data section in Chapter 11,
Advanced Deployments. Let's write a few more examples.

Extending Splunk

[380]

Capturing script output with no date
One common problem with script output is the lack of a predictable date or date
format. In this situation, the easiest thing to do is to tell Splunk to not try to parse
a date at all, and instead use the current date instead. Let's make a script that lists
open network connections:

from subprocess import Popen
from subprocess import PIPE
from collections import defaultdict
import re

def add_to_key(fieldname, fields):
 return " " + fieldname + "+" + fields[fieldname]

output = Popen("netstat -n -p tcp", stdout=PIPE,
 shell=True).stdout.read()

counts = defaultdict(int)
for l in output.splitlines():
 if "ESTABLISHED" in l:
 pattern = r"(?P<protocol>\S+)\s+\d+\s+\d+\s+"
 pattern += r"(?P<local_addr>.*?)[^\d](?P<local_port>\d+)\s+"
 pattern += r"(?P<remote_addr>.*)[^\d](?P<remote_port>\d+)"
 m = re.match(pattern, l)
 fields = m.groupdict()

 if "local_port" in fields and "remote_port" in fields:
 if fields["local_addr"] == fields["remote_addr"]:
 continue
 try:
 if int(fields["local_port"]) < 1024:
 key = "type=incoming"
 key += add_to_key("local_addr", fields)
 key += add_to_key("local_port", fields)
 key += add_to_key("remote_addr", fields)
 else:
 key = "type=outgoing"
 key += add_to_key("remote_addr", fields)
 key += add_to_key("remote_port", fields)
 key += add_to_key("local_addr", fields)
 except:
 print "Unexpected error:", sys.exc_info()[0]

 counts[key] += 1

for k, v in sorted(counts.items()):
 print k + " count=" + str(v)

Chapter 12

[381]

Before we wire this up, we can test the command using the Python interpreter
included with Splunk as follows:

$SPLUNK_HOME/bin/splunk cmd python connections.py

If you are using any Splunk Python modules, you must use Python
included with Splunk, as other Python installations will not find
these modules.

On my machine, this produces:

type=outgoing remote_addr=17.149.36.120 remote_port=5223
 local_addr=192.168.0.20 count=1
type=outgoing remote_addr=17.158.10.104 remote_port=443
 local_addr=192.168.0.20 count=2
type=outgoing remote_addr=17.158.10.42 remote_port=443
 local_addr=192.168.0.20 count=5
type=outgoing remote_addr=17.158.8.23 remote_port=993
 local_addr=192.168.0.20 count=4
type=outgoing remote_addr=173.194.64.109 remote_port=993
 local_addr=192.168.0.20 count=8
type=outgoing remote_addr=199.47.216.173 remote_port=443
 local_addr=192.168.0.20 count=1
type=outgoing remote_addr=199.47.217.178 remote_port=443
 local_addr=192.168.0.20 count=1
type=outgoing remote_addr=50.18.31.239 remote_port=443
 local_addr=192.168.0.20 count=1

Now that we have a working script, we need two pieces of configuration, namely
inputs.conf and props.conf. As we covered in Chapter 11, Advanced Deployments,
you will want to place these configurations in different apps if you are going to
distribute this input across a distributed environment.

inputs.conf should contain something like the following code:

[script://./bin/connections.py]
interval=60
sourcetype=connections

If the script ends in .py, Splunk will automatically use the included
Python interpreter. Otherwise, the script needs to be executable via
the command line.
If you want to use a different Python executable, you will need to
specify the full path to Python as the script, and the script itself as
an argument.

Extending Splunk

[382]

props.conf should then contain something as follows:

[connections]
SHOULD_LINEMERGE = false
DATETIME_CONFIG = CURRENT

This configuration requires each line to be treated as an event and to not even try to
find something that looks like a date in this event.

Let's build a query using the output of this scripted input. A useful query might be
ports open by domain name. This query uses dnslookup and then flattens remote_
host to either a domain name or subnet:

index=implsplunk sourcetype=connections
 | fillnull value="-" remote_addr remote_port local_addr local_port
 | dedup remote_addr remote_port local_addr local_port
 | lookup dnslookup clientip as remote_addr
 | rex field=clienthost ".*\.(?<domain>[^\.]+\.[^\.]+)"
 | eval remote_host=coalesce(domain,remote_addr)
 | eval remote_host=replace(remote_host,"(.*)\.\d+$","\1.0")
 | stats sum(count) as count values(remote_port) as remote_ports
 by remote_host local_addr local_port
 | eval remote_ports=mvjoin(remote_ports, ", ")

On my laptop, I get the following results:

Capturing script output as a single event
When you want to capture the entire output of a script as a single event, the trick is
to specify an impossible value for LINE_BREAKER. Let's write a shell script to output
the different parts of uname with nice field names.

Chapter 12

[383]

You can find the following script at
ImplementingSplunkExtendingExamples/bin/uname.sh:

#!/bin/sh

date "+%Y-%m-%d %H:%M:%S"
echo hardware=\"$(uname -m)\"
echo node=\"$(uname -n)\"
echo proc=\"$(uname -p)\"
echo os_release=\"$(uname -r)\"
echo os_name=\"$(uname -s)\"
echo os_version=\"$(uname -v)\"

This script produces output like the following code:

2012-10-30 19:28:05
hardware="x86_64"
node="mymachine.local"
proc="i386"
os_release="12.2.0"
os_name="Darwin"
os_version="Darwin Kernel Version 12.2.0: Sat Aug 25 00:48:52 PDT
2012; root:xnu-2050.18.24~1/RELEASE_X86_64"

You may notice that the last line definitely contains a date. Unless we specifically tell
Splunk that the entire output is an event in one way or another, it will turn that last
line into an event.

inputs.conf should contain something as follows:

[script://./bin/uname.sh]
interval = 0 0 * * *
sourcetype=uname

Notice the cron syntax for interval. This will run the script each day at midnight.
An alternative would be to set the value to 86400, which would run the script each
time Splunk starts, and then every 24 hours thereafter.

props.conf should then contain something like the following:

[uname]
TIME_FORMAT = %Y-%m-%d %H:%M:%S
#treat each "line" as an event:
SHOULD_LINEMERGE = false
#redefine the beginning of a line to an impossible match,
#thus treating all data as one "line":
LINE_BREAKER = ((?!))
#chop the "line" at one megabyte, just in case:
TRUNCATE=1048576

Extending Splunk

[384]

Once installed, you can search for these events using sourcetype=uname, which
produces output similar to the following screenshot:

Because we used the fieldname="fieldvalue" syntax and we quoted values with
spaces and strange characters, these field values will be automatically extracted.
We can then use these fields immediately for reporting. A useful query might be:

earliest=-24h sourcetype=uname
 | eventstats count by os_release os_name
 | search count<10

This query would find the rare os_release os_name combinations.

Making a long-running scripted input
Sometimes a process needs to be long running, for instance, if it is polling some
external source, like a database. A simple example might be:

import time
import random
import sys

for i in range(1, 1000):
 print "%s Hello." % time.strftime('%Y-%m-%dT%H:%M:%S')
 #make sure python actually sends the output
 sys.stdout.flush()
 time.sleep(random.randint(1, 5))

This script will run for somewhere between 1,000 and 5,000 seconds and then exit.
Since this is a long-running script, our choices are either to treat each line as an event
as we did in the Capturing script output with no date section, or, if we know there
is a date to use, configure the input like a regular log file. In this case, we can see
that there is always a date, so we will rely on that. The output is, unsurprisingly,
as follows:

2012-10-30T20:13:29 Hello.
2012-10-30T20:13:33 Hello.
2012-10-30T20:13:36 Hello.

Chapter 12

[385]

inputs.conf should contain something similar to the following:

[script://./bin/long_running.py]
interval = 1
sourcetype=long_running

With interval = 1, Splunk will try to launch the script every second, but will only
run one copy of the script at a time.

props.conf should then contain something like:

[long_running]
TIME_FORMAT = %Y-%m-%dT%H:%M:%S
MAX_TIMESTAMP_LOOKAHEAD = 21
BREAK_ONLY_BEFORE = ^\d{4}-\d{1,2}-\d{1,2}T\d{1,2}:

This will create a long-running process that can do whatever is appropriate.

Though it is convenient to have Splunk execute scripts for you
and capture the output, if the information you are capturing is
vital, it may be safer to simply schedule the script with cron,
direct its output to a file, and point Splunk at that file. This
allows you to use the file in other ways; you can capture both
standard output and errors, and the data will still be captured
if Splunk is down. It, however, has the disadvantage that you
have to clean up those logs yourself.

Using Splunk from the command line
Almost everything that can be done via the web interface can also be accomplished
via the command line. For an overview, see the output of /opt/splunk/bin/
splunk help. For help on a specific command, use /opt/splunk/bin/splunk
help [commandname].

The most common action to perform on the command line is search. For example,
have a look at the following code:

$ /opt/splunk/bin/splunk search 'foo'
2012-08-25T20:17:54 user=user2 GET /foo?q=7148356 uid=MzA4MTc5OA
2012-08-25T20:17:54 user=user2 GET /foo?q=7148356 uid=MzA4MTc5OA
2012-08-25T20:17:54 user=user2 GET /foo?q=7148356 uid=MzA4MTc5OA
...

Extending Splunk

[386]

Things to note:

• By default, searches are performed over All time. Protect yourself by
including earliest=-1d or an appropriate time range in your query.

• By default, Splunk will only output 100 lines of results. If you need more,
use the -maxout flag.

• Search requires authentication, so the user will be asked to authenticate
unless -auth is included as an argument.

Most use cases for the command line involve counting events for outputting to other
systems. Let's try a simple stats call to count instances of the word error over the
last hour by host:

$ /opt/splunk/bin/splunk search 'earliest=-1h error | stats count by
host'

This produces:

 host count
------------ -----
host2 3114
vlb.local 3063

Things to notice in this case are:

• earliest=-1h is included to limit the query to the last hour.
• By default, the output is in a table format. This is nicer to read, but much

harder to parse in another scripting language. Use -output to control the
output format.

• By default, Splunk will render a preview of the results as results are
retrieved. This slows down the overall execution. Disable preview with
-preview false. Previews are not calculated when the script is not being
called from an interactive terminal, for instance, when run from cron.

To retrieve the output as CSV, try the following code:

$ /opt/splunk/bin/splunk search 'earliest=-1h error | stats count by
host' -output csv -preview false

This gives us the following output:

count,host
3120,host2
3078,"vlb.local"

Note that if there are no results, the output will be empty.

Chapter 12

[387]

Querying Splunk via REST
Splunk provides an extensive HTTP REST interface, which allows searching,
adding data, adding inputs, managing users, and more. Documentation and
SDKs are provided by Splunk at http://dev.splunk.com/.

To get an idea of how this REST interaction happens, let's step through a sample
conversation to run a query and retrieve the results. The steps are essentially
as follows:

1. Start the query (POST).
2. Poll for status (GET).
3. Retrieve results (GET).

We will use the command line program cURL to illustrate these steps. The SDKs
make this interaction much simpler.

To start a query, the command is as follows:

curl -u user:pass -k https://yourserver:8089/services/search/jobs
 -d"search=search query"

This essentially says to POST search=search query. If you are familiar with HTTP,
you might notice that this is a standard POST from an HTML form.

To run the query earliest=-1h index="_internal" warn | stats count by
host, we need to URL encode the query. The command then is as follows:

$ curl -u admin:changeme -k https://localhost:8089/services/search/
jobs -d"search=search%20earliest%3D-1h%20index%3D%22_internal%22%20
warn%20%7C%20stats%20count%20by%20host"

If the query is accepted, we will receive XML that contains our search ID:

<?xml version='1.0' encoding='UTF-8'?>
<response><sid>1352061658.136</sid></response>

The contents of <sid> are then used to reference this job. To check the status of
our job, we run the following code:

curl -u admin:changeme -k https://localhost:8089/services/search/
jobs/1352061658.136

This returns a large document with copious amounts of information about our
job as follows:

<entry ...>
 <title>search earliest=-1h index="_internal" warn | stats count by
host</title>

Extending Splunk

[388]

 <id>https://localhost:8089/services/search/jobs/1352061658.136</id>
...
 <link href="/services/search/jobs/1352061658.136/events"
rel="events"/>
 <link href="/services/search/jobs/1352061658.136/results"
rel="results"/>
...
 <content type="text/xml">
 <s:dict>
...
 <s:key name="doneProgress">1.00000</s:key>
...
 <s:key name="eventCount">67</s:key>
...
 <s:key name="isDone">1</s:key>
...
 <s:key name="resultCount">1</s:key>

Interesting fields include doneProgress, eventCount, resultCount, and the field
we are most interested in at this point, isDone. If isDone is not 1, we should wait
and poll again later. Once isDone=1, we can retrieve our results from the URL
specified in <link rel="results">.

To retrieve our results, we call the following:

curl -u admin:changeme -k https://localhost:8089/services/search/
jobs/1352061658.136/results

This returns the following XML output:

<?xml version='1.0' encoding='UTF-8'?>
<results preview='0'>
 <meta>
 <fieldOrder>
 <field>host</field>
 <field>count</field>
 </fieldOrder>
 </meta>
 <result offset='0'>
 <field k='host'>
 <value><text>vlb.local</text></value>
 </field>
 <field k='count'>
 <value><text>67</text></value>
 </field>
 </result>
</results>

Chapter 12

[389]

The list of fields is contained in meta/fieldOrder. Each result will then follow this
field order.

Though not necessary (since jobs expire on their own) we can save disk space on our
Splunk servers by cleaning up after ourselves. Simply calling the DELETE method
on the job URL will delete the results and reclaim the used disk space.

curl -u admin:changeme -k -X DELETE https://localhost:8089/services/
search/jobs/1352061658.136

Just to show the Python API action, here's a simple script:

import splunk.search as search
import splunk.auth as auth
import sys
import time

username = sys.argv[1]
password = sys.argv[2]
q = sys.argv[3]

sk = auth.getSessionKey(username, password)

job = search.dispatch("search " + q, sessionKey=sk)

while not job.isDone:
 print "Job is still running."
 time.sleep(.5)

for r in job.results:
 for f in r.keys():
 print "%s=%s" % (f, r[f])
 print "----------"

job.cancel()

This script uses the Python modules included with Splunk, so we must run it using
Splunk's included Python as follows:

$ /opt/splunk/bin/splunk cmd python simplesearch.py admin changeme
'earliest=-7d index="_internal" warn | timechart count by source'

This produces output as follows:

_time=2012-10-31T00:00:00-0500
/opt/splunk/var/log/splunk/btool.log=0
/opt/splunk/var/log/splunk/searches.log=0

Extending Splunk

[390]

/opt/splunk/var/log/splunk/splunkd.log=31
/opt/splunk/var/log/splunk/web_service.log=0
_span=86400
_spandays=1

_time=2012-11-01T00:00:00-0500
/opt/splunk/var/log/splunk/btool.log=56
/opt/splunk/var/log/splunk/searches.log=0
/opt/splunk/var/log/splunk/splunkd.log=87
/opt/splunk/var/log/splunk/web_service.log=2
_span=86400
_spandays=1

...

For more examples and extensive documentation, check out
http://dev.splunk.com.

Writing commands
To augment the built-in commands, Splunk provides the ability to write commands
in Python and Perl. You can write the commands to modify events, replace events,
or even dynamically produce events.

When not to write a command
While external commands can be very useful, if the number of events to be processed
is large, or if performance is a concern, it should be considered a last resort. You
should make every effort to accomplish the task at hand using the search language
built into Splunk, or other built-in features. For instance, if you need:

• Regular expressions—learn to use rex, regex, and extracted fields
• To calculate a new field, or modify an existing field—look into eval (search

for splunk eval functions with your favorite search engine)
• To augment your results with external data—learn to use lookups, which can

also be a script, if need be
• To read external data that changes periodically—consider using inputcsv

Chapter 12

[391]

The performance issues introduced by external commands come from the following
two places:

• The work involved with launching a Python process, exporting events as
CSV to the Python process, and then importing the results back into the
Splunk process.

• The actual code of the command. A command that queries some external
data source, for instance a database, will be affected by the speed of that
external source.

In my testing, I could not make a command run faster than the speed that is
50 percent slower than native commands. To test this, let's try a couple of searches
as follows:

* | head 100000 | eval t=_time+1 | stats dc(t)

On my laptop, this query takes roughly four seconds to execute, when run on the
command line with preview disabled, as shown in the following code:

time /opt/splunk/bin/splunk search '* | head 100000 | eval t=_time+1
| stats dc(t)' -preview false

Now let's throw in a command included in our sample app:

* | head 100000 | echo | eval t=_time+1 | stats dc(t)

This increases the search time to slightly over six seconds, an increase of 50
percent. Included in the sample app are three variations on the echo app of
varying complexity:

• echo: This command simply echoes the standard input to standard output.
• echo_csv: This command uses csvreader and csvwriter.
• echo_splunk: This command uses the Python modules provided with

Splunk to gather the incoming events and then output the results. We will
use these Python modules for our example commands.

Using each of these commands, the times are nearly identical, which tells me most
of the time is spent shuttling the events in and out of Splunk.

Adding required_fields=_time in commands.conf lowered
times from 2.5x to 1.5x in this case. If you know the fields your
command needs, this setting can dramatically increase performance.

Extending Splunk

[392]

When to write a command
Given the warning about performance, there are still times it will make sense
to write a command. I can think of a few reasons:

• You need to perform a specific action that cannot be accomplished
using internal commands

• You need to talk to an external system (though a lookup may be
more efficient)

• You need to produce "events" out of thin air, perhaps from an external
service or for testing

I'm sure you can think of your own reasons. Let's explore the nuts and bolts
of different types of commands.

Configuring commands
Before we start writing commands, there is some setup that must be done for all
commands. First, every command will need an entry in the commands.conf the
of your app. Let's take a look at the following sample stanza:

[commandname]
filename = scriptname.py
streaming = false
enableheader = true
run_in_preview = true
local = false
retainsevents = false

Stepping through the following attributes:

• [commandname]: The command available to search will be the title of the
stanza, in this case commandname.

• filename = scriptname.py: The script to run. It must live in the directory
bin inside your app.

• streaming = false: By default, only one instance of each command will
be run on the complete set of results. The assumption is that all events are
needed for the script to do its work. If your script works on each event
individually, set this value to true. This will eliminate the event limit,
which by default is 50,000, as specified by maxresultrows in limits.conf.

Chapter 12

[393]

• enableheader = true: By default, your script will receive a header that
the Splunk Python modules know how to use. If this is set to false, your
command will receive plain CSV.

• run_in_preview = true: By default, your command will be executed
repeatedly while events are being retrieved, so as to update the preview in
the GUI. This will have no effect on saved searches, but setting this to false
can make a big difference in performance for interactive searches. This is
particularly important if your command uses an external resource, as it will
be called repeatedly.

• local = false: If you have a distributed environment, by default, your
command will be copied to all indexers and executed there. If your command
needs to be run on one machine, setting local=true will ensure the
command only runs on the search head.

• retainsevents = false: By default, Splunk assumes that your command
returns the transformed events, much like stats or timechart. Setting this
to true will change the behavior to treat the results as regular events.

To make our commands available to other apps, for instance Search, we need to
change the metadata in our app. Place the following two lines in the file metadata/
default.meta:

[commands]
export = system

Finally, to use a newly configured command, we either need to restart Splunk or
load the URL http://yourserver/debug/refresh in a browser. This may also
be necessary after changing settings in commands.conf, but is not necessary after
making changes to the script itself.

Adding fields
Let's start out with a simple command that does nothing more than add a field to
each event. This example is stored in ImplementingSplunkExtendingExamples/
bin/addfield.py:

#import the python module provided with Splunk
import splunk.Intersplunk as si

#read the results into a variable
results, dummyresults, settings = si.getOrganizedResults()

Extending Splunk

[394]

#loop over each result. results is a list of dict.
for r in results:
 #r is a dict. Access fields using the fieldname.
 r['foo'] = 'bar'

#return the results back to Splunk
si.outputResults(results)

Our corresponding stanza in commands.conf is as follows:

[addfield]
filename = addfield.py
streaming = true
retainsevents = true

We can use this command as follows:

* | head 10 | addfield | top foo

This gives us the result shown in the following screenshot:

This could be accomplished much more efficiently by simply using eval foo="bar",
but this illustrates the basic structure of a command.

Manipulating data
It is useful at times to modify the value of a field, particularly _raw. Just for fun,
let's reverse the text of each event. We will also support a parameter that specifies
whether to reverse the words or the entire value. You can find this example in
ImplementingSplunkExtendingExamples/bin/reverseraw.py:

import splunk.Intersplunk as si
import re

#since we're not writing a proper class, functions need to be
#defined first
def reverse(s):
 return s[::-1]

#start the actual script

Chapter 12

[395]

results, dummyresults, settings = si.getOrganizedResults()

#retrieve any options included with the command
keywords, options = si.getKeywordsAndOptions()

#get the value of words, defaulting to false
words = options.get('words', False)

#validate the value of words
if words and words.lower().strip() in ['t', 'true', '1', 'yes']:
 words = True
else:
 words = False

#loop over the results
for r in results:
 #if the words option is true, then reverse each word
 if words:
 newRaw = []
 parts = re.split('([^a-zA-Z\']+)', r['_raw'])
 for n in range(0, len(parts) - 2, 2):
 newRaw.append(reverse(parts[n]))
 newRaw.append(parts[n + 1])
 newRaw.append(reverse(parts[-1]))
 r['_raw'] = ''.join(newRaw)
 #otherwise simply reverse the entire value of _raw
 else:
 r['_raw'] = reverse(r['_raw'])

si.outputResults(results)

The commands.conf stanza would look as follows:

[reverseraw]
filename = reverseraw.py
retainsevents = true
streaming = true

Let us assume the following event:

2012-10-27T22:10:21.616+0000 DEBUG Don't worry, be happy. [user=linda,
ip=1.2.3., req_time=843, user=extrauser]

Using our new command:

* | head 10 | reverseraw

Extending Splunk

[396]

Running the previous command on the preceding event, we see the entire event
reversed, as shown in the following code:

]resuartxe=resu ,348=emit_qer ,.3.2.1=pi ,adnil=resu[.yppah eb ,yrrow
t'noD GUBED 0000+616.12:01:22T72-01-2102

We can then add the words argument:

* | head 10 | reverseraw words=true

We maintain the order of the words, as shown in the following code:

2012-10-27T22:10:21.616+0000 GUBED t'noD yrrow, eb yppah. [resu=adnil,
pi=1.2.3., qer_emit=843, resu=resuartxe]

For fun, let's reverse the event again:

* | head 10 | reverseraw words=true | reverseraw

This gives us the following output:

]extrauser=user ,348=time_req ,.3.2.1=ip ,linda=user[.happy be ,worry
Don't DEBUG 0000+616.12:01:22T72-01-2102

happy be, worry Don't—Yoda could not have said it better.

Transforming data
So far, our commands have returned the original events with modifications to their
fields. Commands can also transform data, much like the built-in functions top and
stats. Let's write a function to count the words in our events. You can find this
example in ImplementingSplunkExtendingExamples/bin/countwords.py:

import splunk.Intersplunk as si
import re
import operator
from collections import defaultdict

#create a class that does the actual work
class WordCounter:
 word_counts = defaultdict(int)
 unique_word_counts = defaultdict(int)
 rowcount = 0
 casesensitive = False
 mincount = 50
 minwordlength = 3

 def process_event(self, input):

Chapter 12

[397]

 self.rowcount += 1
 words_in_event = re.findall('\W*([a-zA-Z]+)\W*', input)

 unique_words_in_event = set()
 for word in words_in_event:
 if len(word) < self.minwordlength:
 continue # skip this word, it's too short
 if not self.casesensitive:
 word = word.lower()
 self.word_counts[word] += 1
 unique_words_in_event.add(word)

 for word in unique_words_in_event:
 self.unique_word_counts[word] += 1

 def build_sorted_counts(self):
 #create an array of tuples,
 #ordered by the count for each word
 sorted_counts = sorted(self.word_counts.iteritems(),
 key=operator.itemgetter(1))
 #reverse it
 sorted_counts.reverse()

 return sorted_counts

 def build_rows(self):
 #build our results, which must be a list of dict
 count_rows = []
 for word, count in self.build_sorted_counts():
 if self.mincount < 1 or count >= self.mincount:
 unique = self.unique_word_counts.get(word, 0)
 percent = round(100.0 * unique / self.rowcount, 2)
 newrow = {'word': word,
 'count': str(count),
 'Events with word': str(unique),
 'Event count': str(self.rowcount),
 'Percent of events with word':
 str(percent)}
 count_rows.append(newrow)
 return count_rows

#a helper method that doesn't really belong in the class
#return an integer from an option, or raise useful Exception

Extending Splunk

[398]

def getInt(options, field, default):
 try:
 return int(options.get(field, default))
 except Exception, e:
 #raise a user friendly exception
 raise Exception("%s must be an integer" % field)

#our main method, which reads the options, creates a WordCounter
#instance, and loops over the results
if __name__ == '__main__':
 try:
 #get our results
 results, dummyresults, settings = si.getOrganizedResults()
 keywords, options = si.getKeywordsAndOptions()

 word_counter = WordCounter()

 word_counter.mincount = getInt(options, 'mincount', 50)
 word_counter.minwordlength = getInt(options,
 'minwordlength', 3)

 #determine whether we should be case sensitive
 casesensitive = options.get('casesensitive', False)
 if casesensitive:
 casesensitive = (casesensitive.lower().strip() in
 ['t', 'true', '1', 'y', 'yes'])
 word_counter.casesensitive = casesensitive

 #loop through the original results
 for r in results:
 word_counter.process_event(r['_raw'])

 output = word_counter.build_rows()
 si.outputResults(output)

 #catch the exception and show the error to the user
 except Exception, e:
 import traceback
 stack = traceback.format_exc()
 si.generateErrorResults("Error '%s'. %s" % (e, stack))

Chapter 12

[399]

This is a larger script, but hopefully it is clear what is happening. Notice in this
example a few new things:

• Most of the logic is in the class definition. This provides a better separation
of Splunk-specific logic and business logic.

• Testing for __main__, as is the Python way.
• Exception handling.
• A nicer exception for failed parsing of integer arguments.
• Field names with spaces in them.

Our entry in commands.conf does not allow streaming, and does not retain events:

[countwords]
filename = countwords.py
retainsevents = false
streaming = false

We can then use our command as follows:

* | countwords

This will give us back a table, as shown in the following screenshot:

Extending Splunk

[400]

With my test data, this produced 132 rows, representing 132 unique words at least
3 characters long in my not-so-random data set. count represents how many times
each word occurred overall, while Events with word represents how many events
contained the word at all.

Notice the value 50000 in the Event count column. Even though my
query found more than 300,000 events, only 50,000 make their way to the
command. You can increase this limit by increasing maxresultrows in
limits.conf, but be careful! This limit is for your protection.

Trying out our options as follows:

* | head 1000
 | countwords casesensitive=true mincount=250 minwordlength=0

This query produces the following output:

Notice that we now see one-and two-letter words, have entries for both T and t,
and our results stop when count drops below our value for mincount.

Chapter 12

[401]

Just for completeness, to accomplish this command using built-in commands,
you could do something like the following code:

* | rex max_match=1000 "\W*(?<word>[a-zA-Z]+)\W*"
 | eval id=1 | accum id | fields word id
 | eventstats count
 | mvexpand word
 | eval word=lower(word)
 | stats max(count) as event_count
 dc(id) as events_with_word
 count as word_count
 by word
 | sort -events_with_word
 | eval percent_events_containing =
 round(events_with_word/event_count*100.0,2)
 | rename word_count as count
 events_with_word as "Events with word"
 event_count as "Event count"
 percent_events_containing as "Percent of events with word"
 | table count "Events with word" word
 "Event count" "Percent of events with word"

There is probably a more efficient way to do this work using built-in commands,
but this is what comes to mind initially.

Generating data
There are times when you want to create events out of thin air. These events could
come from a database query, a web service, or simply some code that generates data
useful in a query. Just to illustrate the plumbing, we will make a random number
generator. You can find this example in ImplementingSplunkExtendingExamples/
bin/random_generator.py:

import splunk.Intersplunk as si
from random import randint

keywords, options = si.getKeywordsAndOptions()

def getInt(options, field, default):
 try:
 return int(options.get(field, default))
 except Exception, e:
 #raise a user friendly exception
 raise Exception("%s must be an integer" % field)

try:
 min = getInt(options, 'min', 0)

Extending Splunk

[402]

 max = getInt(options, 'max', 1000000)
 eventcount = getInt(options, 'eventcount', 100)

 results = []
 for r in range(0, eventcount):
 results.append({'r': randint(min, max)})

 si.outputResults(results)

except Exception, e:
 import traceback
 stack = traceback.format_exc()
 si.generateErrorResults("Error '%s'. %s" % (e, stack))

The entry in commands.conf then is as follows:

[randomgenerator]
filename = random_generator.py
generating = true

We can then use the command as follows:

|randomgenerator

Notice the leading pipe | symbol. This is the indication to run a command instead
of running a search. Let's test the randomness of our Python:

|randomgenerator eventcount=100000 min=100 max=899
 | bucket r
 | chart count by r

This produces a graph, as shown in the following screenshot:

Chapter 12

[403]

I guess that is not a bad distribution for 100,000 samples. Using Splunk's
built-in commands, you could accomplish essentially the same thing using
the following code:

index=_internal
 | head 100000
 | eval r=random()/2147483647*100000
 | bucket r
 | chart count by r

That is a very quick overview of commands, using fun demonstration commands
to illustrate the plumbing required to execute your code. A number of samples
ship with Splunk in $SPLUNK_HOME/etc/apps/search/bin.

Writing a scripted lookup to enrich data
We covered CSV lookups fairly extensively in Chapter 6, Extending Search, then
touched on them again in Chapter 9, Summary Indexes and CSV Files and Chapter 10,
Configuring Splunk. The capabilities built into Splunk are usually sufficient,
but sometimes it is necessary to use an external data source or dynamic logic
to calculate values. Scripted lookups have the following advantages over
commands or CSV lookups:

• Scripted lookups are only run once per unique lookup value, as opposed
to a command, which would run the command for every event

• The memory requirement of a CSV lookup increases with the size of the
CSV file

• Rapidly changing values can be left in an external system and queried
using the scripted lookup instead of being exported frequently

In the Using a lookup with wildcards section in Chapter 9, Summary Indexes and CSV
Files, we essentially created a case statement through configuration. Let's implement
that use case as a script, just to show how it would be done in Python. First, in
transforms.conf, we need the following configuration:

[urllookup]
external_cmd = url_lookup.py
fields_list = url section call_count

Extending Splunk

[404]

The following are notes about this configuration:

• fields_list is the list of fields that will be sent to the script and the list
of fields expected in the result

• fields_list must contain at least two fields or the script will fail silently

The script then looks as follows:

import sys
import re
from csv import DictReader
from csv import DictWriter

patterns = []

def add_pattern(pattern, section):
 patterns.append((re.compile(pattern), section))

add_pattern('^/about/.*', 'about')
add_pattern('^/contact/.*', 'contact')
add_pattern('^/.*/.*', 'unknown_non_root')
add_pattern('^/.*', 'root')
add_pattern('.*', 'nomatch')

return a section for this url
def lookup(url):
 try:
 for (pattern, section) in patterns:
 if pattern.match(url):
 return section
 return ''
 except:
 return ''

#set up our reader
reader = DictReader(sys.stdin)
fields = reader.fieldnames

#set up our writer
writer = DictWriter(sys.stdout, fields)
writer.writeheader()

Chapter 12

[405]

#start our output
call_count = 0
for row in reader:
 call_count = call_count + 1

 if len(row['url']):
 row['section'] = lookup(row['url'])
 row['call_count'] = call_count
 writer.writerow(row)

In a nutshell, this script takes the value of url, tries each regular expression in
sequence, and then sets the value of section accordingly. A few points about
the preceding script follow:

• The script receives the raw CSV with the fields listed in transforms.conf,
but only the fields that are needed for lookup will have a value. In our case,
that is url.

• The field url must be present in the data, or mapped in the lookup
command using the as option.

• call_count is included to show that this scripted lookup is more efficient
than an external command, as the lookup will only receive one line of input
per unique value of url.

Let's try it out:

index=implsplunk sourcetype="impl_splunk_web"
 | rex "\s[A-Z]+\s(?<url>.*?)\?"
 | lookup urllookup url
 | stats count values(call_count) by url section

This gives us the following results:

Extending Splunk

[406]

The column values(call_count) tells us that our lookup script only received eight
rows of input, one for each unique value of url. This is far better than 12,743 rows
that an equivalent command would have received.

For more examples of scripted lookups, see $SPLUNK_HOME/etc/system/bin/
external_lookup.py and the MAXMIND app available in Splunkbase.

Writing an event renderer
Event renderers give you the ability to make a specific template for a specific event
type. To read more about creating event types, see Chapter 6, Extending Search.

Event renderers use mako templates (http://www.makotemplates.org/).
An event renderer is comprised of the following:

• A template stored at $SPLUNK_HOME/etc/apps/[yourapp]/appserver/
event_renderers/[template].html

• A configuration entry in event_renderers.conf
• An optional event type definition in eventtypes.conf
• Optional CSS classes in application.css

Let's create a few small examples. All the files referenced are included in $SPLUNK_
HOME/etc/apps/ImplementingSplunkExtendingExamples. These examples are
not shared outside this app, so to see them in action, you will need to search from
inside this app. Do this by pointing your browser at http://[yourserver]/app/
ImplementingSplunkExtendingExamples/flashtimeline.

Using specific fields
If you know the names of the fields you want to display in your output, your
template can be fairly simple. Let's look at the following event type template_
example. The template is stored in appserver/event_renderers/template_
example.html:

<%page args="job, event, request, options">
<ul class="template_example">

 time:
 ${i18n.format_datetime_microseconds(event.get('_time', event.
time))}

 ip:
 ${event.get('ip', '')}

Chapter 12

[407]

 logger:
 ${event.get('logger', '')}

 message:
 ${event.get('message', '')}

 req_time:
 ${event.get('req_time', '')}

 session_id:
 ${event.get('session_id', '')}

 user:
 ${event.get('user', '')}

 _raw:
 ${event.get('_raw', '')}

</%page>

This template outputs a block for each event, with the specific fields we want
displayed. To connect this template to a specific event type, we need the following
entry in default/event_renderers.conf:

[template_example]
eventtype = template_example
template = template_example.html

Finally, if we want to format our output, we can use the following CSS in
appserver/static/application.css:

ul.template_example {
 list-style-type: none;
}

ul.template_example > li {
background-color: #dddddd;
 padding: 4px;
 margin: 1px;
}

Extending Splunk

[408]

To test our event type renderer, we need the configuration to be loaded.
You can accomplish this by restarting Splunk or by pointing your browser
to http://[yourserver]/debug/refresh.

At this point, we can run a query and apply the event type manually:

index="implsplunk" sourcetype="template_example"
 | eval eventtype="template_example"

This renders each event, as shown in the following screenshot:

To make this automatic, we can create an event type definition in eventtypes.conf
as follows:

[template_example]
search = sourcetype=template_example

Now any query that finds events of sourcetype=template_example will be
rendered using our template.

Table of fields based on field value
Since the template has access to everything in the event, you can use the fields in
any way you like. The following example creates a horizontal table of fields, but
lets the user specify a specific set of fields to display in a special field.

Our template, stored in appserver/event_renderers/tabular.html, looks
as follows:

<%inherit file="//results/EventsViewer_default_renderer.html" />\
<%def name="event_raw(job, event, request, options, xslt)">\
<%
import sys
_fields = str(event.fields.get('tabular', 'host,source,sourcetype,line
count')).split(',')

Chapter 12

[409]

head = ''
row = ''
for f in _fields:
 head += "<th>" + f + "</th>"
 row += "<td>" + str(event.fields.get(f, '-')) + "</td>"
%>
<table class="tabular_eventtype">
 <tr>
 ${head}
 </tr>
 <tr>
 ${row}
 </tr>
</table>
</%def>

Notice that we have extended the default event type renderer template, which means
we will only change the rendering of the field _raw.

The entry in event_renderers.conf is as follows:

[tabular]
eventtype = tabular
template = tabular.html

Finally, our entries in application.css are as follows:

th.tabular_eventtype {
 background-color: #dddddd;
 border: 1px solid white;
 padding: 4px;
}

td.tabular_eventtype {
 background-color: #eeeeee;
 border: 1px solid white;
 padding: 4px;
}

We are not going to bother giving this event type a definition, but we can use
it by setting the value of eventtype in the query. Let's try it out by running the
following query:

index="implsplunk" | eval eventtype="tabular"

Extending Splunk

[410]

We see the following output, based on the default fields specified in the template:

Notice that we still see the event number, the workflow actions menu, local time
as rendered by Splunk, and the selected fields underneath our template output.
We have really only overridden the rendering of _raw.

If we specify the fields we want in our table in the field tabular, the template
will honor what we specify in our table:

index="implsplunk" sourcetype="template_example"
 | eval tabular="level,logger,message,foo,network"
 | eval eventtype="tabular"

This gives us the output shown in the following screenshot:

Any field that does not have a value is rendered as -, as per the following
template code:

str(event.fields.get(f, '-'))

Chapter 12

[411]

It would be much simpler to use the table command instead of writing an event
renderer. This approach is only appropriate when you need a very specific rendering
or still need access to workflow actions. For another approach, check out the Table
and Multiplexer modules available in the app Sideview Utils.

Pretty print XML
In this example, we will use Python's minidom module to parse and "pretty print"
XML, if possible. The template will look for a field called xml, or fallback to _raw.
Let's look through the files included in ImplementingSplunkExtendingExamples.

The template file, located at appserver/event_renderers/xml.html, contains the
following lines of code:

<%inherit file="//results/EventsViewer_default_renderer.html" />\
<%def name="event_raw(job, event, request, options, xslt)">\
<%
from xml.dom import minidom
import sys

def escape(i):
 return i.replace("<", "<").replace(">", ">")

_xml = str(event.fields.get('xml', event.fields['_raw']))
try:
 pretty = minidom.parseString(_xml).toprettyxml(indent=' '*4)
 pretty = escape(pretty)
except Exception as inst:
 pretty = escape(_xml)
 pretty += "\n(couldn't format: " + str(inst) + ")"
%>
<pre class="xml_eventtype">${pretty}</pre>
</%def>

Our entry in event_renderers.conf is as follows:

[xml]
eventtype = xml
template = xml.html

Our entry in eventtypes.conf is as follows:

[xml]
search = sourcetype="xml_example"

Extending Splunk

[412]

We can then simply search for our example source type as follows:

index="implsplunk" sourcetype="xml_example"

This renders the following output:

The XML in the first event is invalid, so an error message is appended to the
original value.

Chapter 12

[413]

Writing a scripted alert action to process
results
Another option for interfacing with an external system is to run a custom Alert
action using the results of a saved search. Splunk provides a simple example in
$SPLUNK_HOME/bin/scripts/echo.sh. Let's try it out and see what we get,
using the following steps:

1. Create a saved search. For this test, do something cheap, such as
the following:
index=_internal | head 100 | stats count by sourcetype

2. Schedule the search to run at some point in the future. I set it to run every
five minutes, just for this test.

3. Enable Run a script and type in echo.sh.

The script places the output into $SPLUNK_HOME/bin/scripts/echo_output.txt.
In my case, the output is as follows:

'/opt/splunk/bin/scripts/echo.sh' '4' 'index=_internal | head 100
| stats count by sourcetype' 'index=_internal | head 100 | stats
count by sourcetype' 'testingAction' 'Saved Search [testingAction]
always(4)' 'http://vlbmba.local:8000/app/search/@go?sid=scheduler__
admin__search__testingAction_at_1352667600_2efa1666cc496da4' '' '/
opt/splunk/var/run/splunk/dispatch/scheduler__admin__search__
testingAction_at_1352667600_2efa1666cc496da4/results.csv.gz' 'sessionK
ey=7701c0e6449bf5a5f271c0abdbae6f7c'

Extending Splunk

[414]

Let's look through each argument in the bullets that follow:

• $0 - script path:
'/opt/splunk/bin/scripts/echo.sh'

• $1 - number of events returned:
'4'

• $2 - search terms:
'index=_internal | head 100 | stats count by sourcetype'

• $3 - full search string:
'index=_internal | head 100 | stats count by sourcetype'

• $4 - saved search name:
'testingAction'

• $5 - the reason for the action:
'Saved Search [testingAction] always(4)'

• $6 - a link to the search results. The host is controlled in web.conf:
'http://vlbmba.local:8000/app/search/@go?sid=scheduler__admin__
search__testingAction_at_1352667600_2efa1666cc496da4'

• $7 – deprecated:
''

• $8 - the path to the raw results, which are always gzipped:
'/opt/splunk/var/run/splunk/dispatch/scheduler__admin__search__
testingAction_at_1352667600_2efa1666cc496da4/results.csv.gz'

• STDIN - the session key when the search ran:

'sessionKey=7701c0e6449bf5a5f271c0abdbae6f7c'

The typical use for scripted alerts is to send an event to a monitoring system. You
could also imagine archiving these results for some compliance reason or to import
into another system.

Let's make a fun example that copies the results to a file, and then issues a cURL
statement. That script might look like:

#!/bin/sh

DIRPATH='dirname "$8"'

Chapter 12

[415]

DIRNAME='basename "$DIRPATH"'

DESTFILE="$DIRNAME.csv.gz"

cp "$8" /mnt/archive/alert_action_example_output/$DESTFILE

URL="http://mymonitoringsystem.mygreatcompany/open_ticket.cgi"

URL="$URL?name=$4&count=$1&filename=$DESTFILE"

echo Calling $URL

curl $URL

You would then place your script in $SPLUNK_HOME/bin/scripts on the server
that will execute the script and refer to the script by name in Alert actions. If you
have a distributed Splunk environment, the server that executes the scripts will
be your search head.

If you need to perform an action for each row of results, then your script will need
to open the results. The following is a Python script that loops over the contents
of the gzip file and posts the results to a ticketing system, including a JSON
representation of the event:

#!/usr/bin/env python

import sys
from csv import DictReader
import gzip
import urllib
import urllib2
import json

#our ticket system url
open_ticket_url = "http://ticketsystem.mygreatcompany/ticket"

#open the gzip as a file
f = gzip.open(sys.argv[8], 'rb')

#create our csv reader
reader = DictReader(f)
for event in reader:
 fields = {'json': json.dumps(event),
 'name': sys.argv[4],
 'count': sys.argv[1]}

Extending Splunk

[416]

 #build the POST data
 data = urllib.urlencode(fields)

 #the request will be a post
 resp = urllib2.urlopen(open_ticket_url, data)
 print resp.read()

f.close()

Hopefully, these examples give you a starting point for your use case.

Summary
As we have seen in this chapter, there are a number of ways in which Splunk can
be extended to input, manipulate, and output events. The search engine at the heart
of Splunk is truly just the beginning. With a little creativity, Splunk can be used to
extend existing systems, both as a data source and as a way to trigger actions.

Index
Symbols
.conf files 280

about 292
authorize.conf 325
commands.conf 326
fields.conf 322
indexes.conf 323, 324
inputs.conf 300
outputs.conf 323
props.conf 292
savedsearches.conf 326
times.conf 326
transforms.conf 310
web.conf 326

<html> element 187
_indextime

versus _time 42
.ini files 280
|inputcsv command 54
|metadata command 54
() operator 33
[] operator 33
= operator 33
<row> element 187
<searchPostProcess> tag 104, 106
<searchString> tag 98
<searchTemplate> tag 104
.spl extension 179
.tgz extension 179
_time

versus _indextime 42

A
access.log file 53
actions 51, 52
actions icons 17
addterm 218
admin interface

used, for building field 75, 76
advanced XML

reasons, for avoiding 202
reasons, for using 201
simple XML, converting to 205-210

advanced XML structure
about 203
example 204, 205

aggregate of transaction statistics
calculating 117

alerts
actions 51, 52
creating, from searches 48
Schedule step 49, 50

AND operator 32
app, adding to Splunkbase

about 196
directories, cleaning up 197, 198
packaging 198, 199
preparing 196
sharing settings, confirming 196
uploading 199, 200

app directory structure 194, 195
appearance

customizing, of app 184

[418]

apps
about 10, 173
adding, to Splunkbase 196
appearance, customizing 184
building 179-181
customizing, custom CSS used 185, 186
customizing, custom HTML used 187
directory structure 194, 195
installing 175
installing, from files 178, 179
installing, from Splunkbase 175, 176
launcher icon, customizing 185
purpose 173, 174
used, for organizing configuration 361

appserver directory 194
appserver resources 327, 328
apps, Splunk

gettingstarted 174
search 174
splunk_datapreview 174
SplunkDeploymentMonitor 174
SplunkForwarder 174
SplunkLightForwarder 174

arguments
used, for creating macro 159

arguments, lookup command
as src_ip 177
clientip 177
geoip 176

arguments, timechart command
bins 65
limit 65
usenull 65
useother 65

attribute 281
authentication

LDAP, using for 374
authorize.conf file 325
autoLB feature 346
automatic lookup

defining 154-156
fields 154, 155

average events per hour
calculating 132-134

average events per minute
calculating 132-134

average requests per minute
calculating 131, 132

B
batch

logs, consuming in 339, 340
bin directory 194
bins argument 65
blacklist

using 302
boolean operators 32, 33
btool

using 290, 291
bucket command 86, 130, 249, 251
buckets

about 323, 354
lifecycle 354, 355

buckets, lifecycle
cold 354
frozen 354
hot 354
thawed 354
warm 354

by clause
about 65
concurrency, calculating with 124-129

C
cases, indexed fields 78-80
categorization 149
chart command

about 63
used, for turning data 61, 62

Chrome 7
CIDR wildcard lookups 316, 317
collect function

about 258
used, for producing custom summary in-

dexes 258, 260
command line

Splunk, using from 385, 386
commands

configuring 392, 393
data, generating 401, 402
data, manipulating 394, 395

[419]

data, transforming 396-401
fields, adding 393, 394
writing 390, 392
writing, avoiding 390, 391

commands.conf file 326
Comma Separated Values (CSV) 150
common attributes, props.conf

about 292
index time 293
input time 296
parse time 293-295
search time 292, 293

common field values
displaying, top command used 54-56

common input attributes, inputs.conf 300
complex dashboard

ServerSideInclude, using in 188-191
concurrency

calculating, with by clause 124-129
determining 122
transaction, using with 122, 123
used, for estimating server load 123, 124

configuration
organizing, apps used 361

configuration apps
about 361, 362
indexerbase 362
inputs-sometype 361
outputs-datacenter 361
props-sometype 361

configuration distribution
about 366
deployment system, using 366

configuration files, Splunk
locating 279, 280
structure 280, 281

configuration merging logic, Splunk
about 281, 283
btool, using 290, 291
example 284-289
merging order 281

configuration, Splunk Universal Forwarder
default-mode.conf 335
inputs.conf 335
limits.conf 335
outputs.conf 335
props.conf 335

configurations, Splunk indexer
about 336
indexes.conf 336
inputs.conf 336
props.conf 336
server.conf 336
transforms.conf 336

context macro
building 167-169

context workflow action
building 165-167

ConvertToDrilldownSearch module 212,
219

crcSalt
using 305, 306

CSV files
used, for storing transient data 275

cURL 387
custom CSS

used, for customizing apps 185, 186
custom HTML

used, for customizing apps 187
using, in dashboard 187, 188

custom query
drilldown, building to 219-221

D
dashboard panels

placements 214, 215
dashboards

about 81
building, wizards used 82-90
converting, to forms 95-97
custom HTML, using 187, 188
development process 202
form, creating from 92, 94
generation, scheduling 91
need for 81

data
enriching, lookups used 150
gathering, scripts used 345
generating 401, 402
manipulating 394, 395
transforming 396-401
turning, chart command used 61, 62

[420]

database
logs, consuming from 343, 344

data gathering
scripted input, writing for 379

data generator 13
Data preview function 295
data sources 337
dedup command 156
deploymentclient.conf

installing 373
deploymentclient.conf configuration

defining 368
deployment server

about 377
advantages 367
apps, mapping to deployment clients in

serverclass.conf 369-372
configurations, normalizing into app 369
deploymentclient.conf configuration,

defining 368
deploymentclient.conf, installing 373
disadvantages 367
location, defining 368
location, for running 367
machine types, defining 368
restarting 373
using 367

deployment system
using 366

directory structure, index 350
divider tag 183
drilldown

about 219
building, to custom query 219-221
building, to multiple panels 224-228
building, to panel 222, 223

dropdown
prepopulating 276

dynamic fields
creating 319, 320

E
echo command 391
echo_csv command 391
echo_splunk command 391

EnablePreview module 212
epoch time 37
eval command

about 54, 68, 69
used, for building macro 160
used, for defining grouping fields 262, 263

eval function 169
event

script output, capturing as 382, 384
event renderer

about 406
pretty print XML 411, 412
specific fields, using 406-408
table of fields, based on field value 408,

409, 411
writing 406

events
dropping 321, 322
routing, to different index 314

event segmentation 34
events per slice of time

calculating 129
eventstats command 136
events viewer, search results 23, 24
event type 146
event types

used, for categorizing results 146-150
used, for grouping results 267, 268

ExtendedFieldSearch module 211
external commands

using 170
external site

workflow action, linking to 163, 164
extracted fields

versus indexed fields 77
Extract Fields interface

using 70-73

F
features, macro 169
features, tags 146
field

building, admin interface used 75, 76
prototyping, rex command used 73, 74

[421]

field context display
workflow action, building for 165

field picker
about 19
fields 19
using 26, 35, 36

fields
adding, to events 393, 394
using, for search 35
wildcards, supplementing in 37
working with 66

fields.conf file 322
field widgets 34
file

apps, installing from 178, 179
files

indexing, destructively 306
selecting, recursively 302

fillnull command 60
fill_summary_index.py script

about 256
used, for backfilling 256, 257

Firefox 7
Flash 7
FlashChart module 212
followTail attribute 304
form

panels, driving from 97-104
forms

about 92
building 92
creating, from dashboard 92, 94
dashboads, converting to 95-97
post-processing search results 104, 106

forwarders, Spunk 334

G
Geo Location Lookup Script

about 176
using 176, 177

gettingstarted app 174
Google

used, for generating results 172
Google Maps

about 176, 228, 229, 230
using 178

grep command 53
grouping fields

defining, eval command used 262, 263
defining, rex command used 262, 263

grouping operators 32, 33

H
head command 54
heavy forwarder 335
HiddenChartFormatter module 212
HiddenFieldPicker module 212
HiddenPostProcess

used for building drilldown, to multiple
panels 224-228

HiddenSearch module 205, 211, 220
Home app 8-10
host 16
host categorization fields

creating 312

I
index

about 350
directory structure 350
events, routing to 314
sizing 355

indexed fields
advantages 77
cases 78-80
creating 310
disadvantages 77, 78
versus extracted fields 77

indexer 336
indexerbase app 362
indexer load balancing 348
indexers

sizing 345-347
indexes

about 243
reasons, for creating 351, 352
used, for increasing performance 353

indexes.conf file 323, 324
index time attributes, props.conf 293
inputcsv command 275

[422]

inputs.conf file
about 300
blacklist, using 302
common input attributes 300
crcSalt, using 305, 306
files, as input 301
files, indexing destructively 306
files, selecting recursively 302
native Windows inputs 308
network inputs 306, 307
old data, ignoring at installation 304, 305
patterns, used for selecting rolled logs 301
scripts, as inputs 309
symbolic link, following 303
value, setting of host from source 303
whitelist, using 302

inputs-sometype app 361
input time attributes, props.conf 296
installation, apps

about 175
from files 178, 179
from Splunkbase 175, 176

installation, deploymentclient.conf 373
instance types, Splunk 334
intentions

about 211, 217
addterm 218
stringreplace 217
using 217

J
JobProgressIndicator module 212
JSChart module 212, 220

L
latency

about 254
effect, on summary queries 254, 255

launcher icon
about 185
customizing 185
using 185

layoutPanel attribute
about 213
rules 213, 214

LDAP
about 8
using, for authentication 374

light forwarder 335
limit argument 65
load balancers

and Splunk 376
login screen, Splunk 8
loglevel

extracting 70
loglevel field

creating 310, 311
loglevel fields 82
logs

consuming, from database 343, 344
consuming, in batch 339, 340
monitoring, on server 337, 338
monitoring, on shared drive 338, 339

lookup command 151
lookup definition

about 152, 153, 315
fields 152, 153
wildcard lookups 315

lookups
about 390
troubleshooting 157
used, for enriching data 150
using, with wildcards 264-266

lookup table file
about 150
defining 150, 151

loosely related events
finding, subsearches used 111

M
macro

about 157
building, eval command used 160
creating 158
creating, with arguments 159
features 169

[423]

mako templates
about 406
URL 406

Manager section
about 27
using 27-29

marker 143
merging order

about 281
outside of search 281, 282
when searching 282, 283

metadata 328-330
metadata fields

events, routing to different index 314
hosts, overriding 313
modifying 312
source, overriding 313, 314
sourcetype, overriding 314

minidom module 411
module logic flow 210, 211
modules

functions 212
msiexec

used, for deploying Splunk binary 359
multiple indexes

managing, volumes used 356-358
working with 350

multiple panels
drilldown, building to 224-228

multiple search heads 377
configuring 377

multivalue fields
creating 318

N
native syslog receiver

using 341-343
native Windows inputs 308
navigation

about 182, 326
editing 182-184
object permissions, effects on 192

nested subsearches 113
network inputs 306, 307
NOT operator 33

O
object permissions

about 191
effects, on navigation 192
effects, on objects 192, 193
issues, correcting 193
options 191

object permissions, options
app 191
global 191
private 191

OR operator 33
output

controlling, for top command 56, 57
outputcsv command 275
outputs.conf file 323
outputs-datacenter app 361

P
panel

drilldown, building to 222, 223
panels

driving, from form 97-104
parameter 281
parse time attributes, props.conf 293-295
patterns

used, for selecting rolled logs 301
Perl 390
Perl Compatible Regular Expressions

(PCRE) 68
pipe symbol 53, 54
port 8000 7
post-processing search results

about 104, 106
final XML 108
limitations 106
panel 1 106, 107
panel 2 107, 108
panel 3 108

PostProcess module 241
processing stages, Splunk

indexing 334
input 334
parsing 334
searching 334

[424]

props.conf file
about 292
attributes, with class 299, 300
common attributes 292
priorites, inside type 298
stanza types 296, 297

props-sometype app 361
Python 390

Q
query

reusing 215, 216
summary index events, using in 249-251

R
rare command 57
raw events

storing, in summary index 273, 275
Redirector module 232
redundancy

about 348
planning 348

redundancy, planning
indexer load balancing 348
typical outages 349, 350

REGEX attribute 322
regular expressions 66-68
REPORT

dynamic fields, creating 319, 320
multivalue fields, creating 318
using 318

REST
used, for querying Splunk 387-390

results
categorizing, event types used 146-150
generating, Google used 172
grouping, event types used 267, 268

rex command
about 54, 69
used, for defining grouping fields 262, 263
used, for prototyping field 73, 74

rolled logs
selecting, patterns used 301

rsyslog 341

running calculation
creating, for day 276, 278

S
Safari 7
savedsearches.conf file 326
saved tag 183
Schedule step 49, 50
scripted alert action

writing, for result processing 413-415
scripted input

about 379
creating 384, 385
writing, for data gathering 379

scripted lookup
advanatges 403
writing, for data enrichment 403-406

script output
capturing, as single event 382, 384
capturing, with no date 380-382

scripts
used, for gathering data 345

search
about 149
clicking, for modification 34
fields, using for 35
performing, against time 39, 40, 41
running, values used 161-163
simplifying, tags used 143-146
time in-line, specifying in 41

search app
about 13, 174
actions icons 17
data generator 13
field picker 19
search results 16, 17, 21, 22
Summary view 14, 15
timeline 18

searches
alerts, creating from 48
making, faster 42
saving, for re-use 46-48
summary indexes, populating with 247, 248

search head pooling 376, 377

[425]

search results
about 16, 17, 21, 22
events viewer 23, 24
options 22, 23
sharing 43, 45

search terms
using, effectively 31, 32

search time attributes, props.conf 292, 293
section 280
server load

estimating, concurrency used 123, 124
servers

logs, monitoring on 337, 338
ServerSideInclude

using, in complex dashboard 188-191
session field

creating, from source 311
session length

determining, transaction command used
115, 116

shared drive
logs, monitoring on 338, 339

Sideview
views, linking with 232

Sideview forms 235, 238, 239, 241
Sideview Search module 231
Sideview Utils

about 230
Sideview forms 235, 238, 239, 241
Sideview Search module 231
URLLoader module 232-235

simple XML
converting, to advanced XML 205-210

Single Sign On (SSO)
about 375
using 375, 376

sistats command 251-254
sitimechart command 251-254
sitop command 251-254
si* variants

advantages 251
disadvantages 252

size
reducing, of summary index 261

sort command 58, 122

source
about 15
session field, creating from 311

sourcetype 15
Splunk

and load balancers 376
apps 174
configuration files, locating 279, 280
configuration files, structure 280, 281
configuration merging logic 281, 283
configuring, for boot launch 360
installation, planning 333, 334
instance types 334
logging into 7, 8
login screen 8
object permissions 191
processing stages 334
querying, via REST 387-390
regular expressions 66, 67, 68
summary indexes 243
time, displaying 38
time, parsing 37
time, storing 37
URL, for documentation 196
using, from command line 385, 386

Splunk Answers
URL 141

Splunkbase
about 10, 196
apps, adding to 196
apps, installing from 175, 176
URL 10, 196

Splunk binary
deploying 358
deploying, from tar file 359
deploying, msiexec used 359

splunk_datapreview app 174
Splunk deployment

base configuration, adding 360
SplunkDeploymentMonitor app 174
Splunk deployment server

using 367
Splunk documentation 11
SplunkForwarder app 174
Splunk forwarders

about 334
syslog, receiving with 343

[426]

Splunk indexer
about 336
configurations 336
sizing 345-347
syslog events, receiving on 340, 341

Splunk interface
about 7
field picker, using 26
Home app 8-10
Manager section, using 27-29
search app 13
time picker, using 25
top bar 11-13

SplunkLightForwarder app 174
Splunk search 337
splunktcp 376
Splunk Universal Forwarder

about 334
configuration, for installation 335

Splunk Version 4.3 7
Splunk Versions 4.2 7
Splunk web server 376
stanza 280
stanza types, props.conf 296, 297
stats command 172, 251
stats function

about 54, 130
structure 57
used, for aggregating values 57-61

streamstats command 125
stringreplace 217
SubmitButton module 211
subnet field 67
subsearch

about 111, 112
cautions 112

subsearches
combining, with transaction 118-121
used, for finding loosely related events 111

summary data
backfilling 256

summary index
about 243
avoiding 246
creating 244
events, using in query 249-251

populating, with saved searches 247, 248
producing, collect function used 258, 260
raw events, storing in 273, 275
size, reducing 261
using 245

summary index events
using, in query 249-251

summary queries
latency, effects 254, 255

Summary view 14, 15
symbolic links

following 303
syslog

about 340
receiving, with Splunk forwarder 343

syslog events
receiving 340
receiving, directly on Splunk indexer 340,

341
syslog-ng 341

T
table command 122
tablespace 243
tag field

creating 311, 312
tagging 149
tags

about 143
features 146
used, for simplifying search 143-146

tar file
Splunk binary, deploying from 359

third-party add-ons
about 228
Google Maps 228-230
Sideview Utils 230

time
about 35, 37
displaying 38
parsing 37
search, performing against 39-41
storing 37
using, in lookups 317, 318

timechart command
about 63, 249

[427]

arguments 65
used, for displaying values over time 63, 64
using 129, 130

time in-line
specifying, in search 41

timeline 18
time picker

using 25
TimeRangePicker module 211
times.conf file 326
time zones

determining 38
top

calculating, for large time frame 269-272
top bar 11-13
top command

about 54, 134
output, controlling for 56, 57
recreating 134-140
used, for displaying common field values

54-56
transaction

subsearches, combining with 118-121
using, with concurrency 122, 123

transaction command
about 114
aggregate of transaction statistics,

calculating 117
properties 116
rules 114
used, for determining session length 115,

116
transforms

chaining 320, 321
transforms.conf file

about 310
events, dropping 321, 322
indexed fields, creating 310
lookup definitions 315
metadata fields, modifying 312
REPORT, using 318
transforms, chaining 320, 321

transient data
storing, CSV files used 275

typical outages 349, 350

U
UI Examples app 92
URLLoader module 232-235
URLs 262
usenull argument 65
useother argument 65
user interface resources

about 326
appserver resources 327, 328
metadata 328, 329, 330
navigation 326
views 326

V
values

aggregating, stats function used 57-61
extracting, from XML 170

ViewRedirectorLink module 212
ViewRedirector module 212, 220
views

about 326
linking, with Sideview 232

viewstate 211, 329
ViewstateAdapter module 211
view tag 183
volumes

about 356
used, for managing multiple

indexes 356-358

W
web.conf file 326
weblog. See blog
where command 54
whitelist 302
wildcard lookups

about 315
CIDR wildcard lookups 316, 317
time, using 317, 318

wildcards
lookups, using with 264-266
supplementing, in fields 37
using, efficiently 36

[428]

Windows Management Instrumentation
(WMI) 308

wizards
used, for building dashboards 82-90

workflow actions
building, for field context display 165
creating 160-163
linking, to external site 163, 164
search, running with values 161-163

X
XML

values, extracting from 170

XML dashboards
editing 91

xmlkv command 170
XPath 171

Y
Your Apps section 10

Thank you for buying
Implementing Splunk: Big Data
Reporting and Development for
Operational Intelligence

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Pentaho Data Integration 4
Cookbook
ISBN: 978-1-84951-524-5 Paperback: 352 pages

Over 70 recipes to solve ETL problems using
Pentaho Kettle

1. Manipulate your data by exploring,
transforming, validating, integrating, and more

2. Work with all kinds of data sources such as
databases, plain files, and XML structures
among others

3. Use Kettle in integration with other
components of the Pentaho Business
Intelligence Suite

Learning Highcharts
ISBN: 978-1-84951-908-3 Paperback: 300 pages

Create rich, intuitive, and interactive JavaScript
data visualization for your web and enterprise
development needs using this powerful charting
library — Highcharts

1. Step-by-step instructions with real-live data
to create bar charts, column charts and pie
charts, to easily create artistic and professional
quality charts

2. Learn tips and tricks to create a variety of charts
such as horizontal gauge charts, projection
charts, and circular ratio charts

3. Use and integrate Highcharts with jQuery
Mobile and ExtJS 4, and understand how
to run Highcharts on the server-side

Please check www.PacktPub.com for information on our titles

Oracle BI Publisher 11g: A
Practical Guide to Enterprise
Reporting
ISBN: 978-1-84968-318-0 Paperback: 254 pages

Create and deliver improved snapshots in time of
your Enterprise data using Oracle Bl Publisher 11g

1. A practical tutorial for improving your
Enterprise reporting skills with Oracle BI
Publisher 11g

2. Master report migration, template design,
and E-Business Suite integration

3. A practical guide brimming with tips about
all the new features of the 11g release

Oracle Hyperion Interactive
Reporting 11 Expert Guide
ISBN: 978-1-84968-314-2 Paperback: 276 pages

Master advanced Dashboards, JavaScript
and Computation features of Oracle Hyperion
Interactive Reporting 11 and much more

1. Walk through a comprehensive example of a
simple, intermediate, and advanced dashboard
with a focus on Interactive Reporting best
practices.

2. Explore the data analysis functionally with an
in-depth explanation of built-in and JavaScript
functions.

3. Build custom interfaces to create batch
programs and exports for automated reporting.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Splunk Interface
	Logging in to Splunk
	The Home app
	The top bar
	Search app
	Data generator
	The Summary view
	Search
	Actions
	Timeline
	The field picker
	Fields

	Search results
	Options
	Events viewer

	Using the time picker
	Using the field picker
	Using Manager
	Summary

	Chapter 2: Understanding Search
	Using search terms effectively
	Boolean and grouping operators
	Clicking to modify your search
	Event segmentation
	Field widgets
	Time

	Using fields to search
	Using the field picker

	Using wildcards efficiently
	Only trailing wildcards are efficient
	Wildcards are tested last
	Supplementing wildcards in fields

	All about time
	How Splunk parses time
	How Splunk stores time
	How Splunk displays time
	How time zones are determined and why it matters
	Different ways to search against time
	Specifying time in-line in your search
	_indextime versus _time

	Making searches faster
	Sharing results with others
	Saving searches for reuse
	Creating alerts from searches
	Schedule
	Actions

	Summary

	Chapter 3: Tables, Charts, and Fields
	About the pipe symbol
	Using top to show common field values
	Controlling the output of top

	Using stats to aggregate values
	Using chart to turn data
	Using timechart to show values over time
	timechart options

	Working with fields
	A regular expression primer
	Commands that create fields
	eval
	rex

	Extracting loglevel
	Using the Extract Fields interface
	Using rex to prototype a field
	Using the admin interface to build a field
	Indexed fields versus extracted fields

	Summary

	Chapter 4: Simple XML Dashboards
	Why build a dashboard?
	Using wizards to build dashboards
	Scheduling the generation of dashboards
	When to edit the XML directly?
	UI Examples app
	Building Forms
	Creating a form from a dashboard
	Driving multiple panels from one form
	Post-processing search results
	Post-processing limitations
	Panel 1
	Panel 2
	Panel 3
	Final XML

	Summary

	Chapter 5: Advanced Search Examples
	Using subsearches to find loosely related events
	Subsearch
	Subsearch caveats
	Nested subsearches

	Using transaction
	Using transaction to determine the session length
	Calculating the aggregate of transaction statistics
	Combining subsearches with transaction

	Determining concurrency
	Using transaction with concurrency
	Using concurrency to estimate server load
	Calculating concurrency with a by clause

	Calculating events per slice of time
	Using timechart
	Calculating average requests per minute
	Calculating average events per minute, per hour

	Rebuilding top
	Summary

	Chapter 6: Extending Search
	Using tags to simplify search
	Using event types to categorize results
	Using lookups to enrich data
	Defining a lookup table file
	Defining a lookup definition
	Defining an automatic lookup
	Troubleshooting lookups

	Using macros to reuse logic
	Creating a simple macro
	Creating a macro with arguments
	Using eval to build a macro

	Creating workflow actions
	Running a new search using values from an event
	Linking to an external site
	Building a workflow action to show field context
	Building the context workflow action
	Building the context macro

	Using external commands
	Extracting values from XML
	xmlkv
	XPath

	Using Google to generate results

	Summary

	Chapter 7: Working with Apps
	Defining an app
	Included apps
	Installing apps
	Installing apps from Splunkbase
	Using Geo Location Lookup Script
	Using Google Maps

	Installing apps from a file

	Building your first app
	Editing navigation
	Customizing the appearance of your app
	Customizing the launcher icon
	Using custom CSS
	Using custom HTML
	Custom HTML in a simple dashboard
	Using ServerSideInclude in a complex dashboard

	Object permissions
	How permissions affect navigation
	How permissions affect other objects
	Correcting permission problems

	App directory structure
	Adding your app to Splunkbase
	Preparing your app
	Confirming sharing settings
	Cleaning up our directories

	Packaging your app
	Uploading your app

	Summary

	Chapter 8: Building Advanced Dashboards
	Reasons for working with advanced XML
	Reasons for not working with
advanced XML
	Development process
	Advanced XML structure
	Converting simple XML to advanced XML
	Module logic flow
	Understanding layoutPanel
	Panel placement

	Reusing a query
	Using intentions
	stringreplace
	addterm

	Creating a custom drilldown
	Building a drilldown to a custom query
	Building a drilldown to another panel
	Building a drilldown to multiple panels using HiddenPostProcess

	Third-party add-ons
	Google Maps
	Sideview Utils
	The Sideview Search module
	Linking views with Sideview
	Sideview URLLoader
	Sideview forms

	Summary

	Chapter 9: Summary Indexes and CSV Files
	Understanding summary indexes
	Creating a summary index

	When to use a summary index
	When to not use a summary index
	Populating summary indexes with saved searches
	Using summary index events in a query
	Using sistats, sitop, and sitimechart
	How latency affects summary queries
	How and when to backfill summary data
	Using fill_summary_index.py to backfill
	Using collect to produce custom summary indexes

	Reducing summary index size
	Using eval and rex to define grouping fields
	Using a lookup with wildcards
	Using event types to group results

	Calculating top for a large time frame
	Storing raw events in a summary index
	Using CSV files to store transient data
	Prep-opulating a dropdown
	Creating a running calculation for a day

	Summary

	Chapter 10: Configuring Splunk
	Locating Splunk configuration files
	The structure of a Splunk configuration file
	Configuration merging logic
	Merging order
	Merging order outside of search
	Merging order when searching

	Configuration merging logic
	Configuration merging example 1
	Configuration merging example 2
	Configuration merging example 3
	Configuration merging example 4 (search)

	Using btool

	An overview of Splunk .conf files
	props.conf
	Common attributes
	Stanza types
	Priorities inside a type
	Attributes with class

	inputs.conf
	Common input attributes
	Files as inputs
	Network inputs
	Native Windows inputs
	Scripts as inputs

	transforms.conf
	Creating indexed fields
	Modifying metadata fields
	Lookup definitions
	Using REPORT
	Chaining transforms
	Dropping events

	fields.conf
	outputs.conf
	indexes.conf
	authorize.conf
	savedsearches.conf
	times.conf
	commands.conf
	web.conf

	User interface resources
	Views and navigation
	Appserver resources
	Metadata

	Summary

	Chapter 11: Advanced Deployments
	Planning your installation
	Splunk instance types
	Splunk forwarders
	Splunk indexer
	Splunk search

	Common data sources
	Monitoring logs on servers
	Monitoring logs on a shared drive
	Consuming logs in batch
	Receiving syslog events
	Receiving events directly on the Splunk indexer
	Using a native syslog receiver
	Receiving syslog with a Splunk forwarder

	Consuming logs from a database
	Using scripts to gather data

	Sizing indexers
	Planning redundancy
	Indexer load balancing
	Understanding typical outages

	Working with multiple indexes
	Directory structure of an index
	When to create more indexes
	Testing data
	Differing longevity
	Differing permissions
	Using more indexes to increase performance

	The lifecycle of a bucket
	Sizing an index
	Using volumes to manage multiple indexes

	Deploying the Splunk binary
	Deploying from a tar file
	Deploying using msiexec
	Adding a base configuration
	Configuring Splunk to launch at boot

	Using apps to organize configuration
	Separate configurations by purpose

	Configuration distribution
	Using your own deployment system
	Using Splunk deployment server
	Step 1 – Deciding where your deployment server will run
	Step 2 – Defining your deploymentclient.conf configuration
	Step 3 – Defining our machine types and locations
	Step 4 – Normalizing our configurations into apps appropriately
	Step 5 – Mapping these apps to deployment clients in serverclass.conf
	Step 6 – Restarting the deployment server
	Step 7 – Installing deploymentclient.conf

	Using LDAP for authentication
	Using Single Sign On
	Load balancers and Splunk
	web
	splunktcp
	deployment server

	Multiple search heads
	Summary

	Chapter 12: Extending Splunk
	Writing a scripted input to gather data
	Capturing script output with no date
	Capturing script output as a single event
	Making a long-running scripted input

	Using Splunk from the command line
	Querying Splunk via REST
	Writing commands
	When not to write a command
	When to write a command
	Configuring commands
	Adding fields
	Manipulating data
	Transforming data
	Generating data

	Writing a scripted lookup to enrich data
	Writing an event renderer
	Using specific fields
	Table of fields based on field value
	Pretty print XML

	Writing a scripted alert action to process results
	Summary

	Index

