
Inside Microsoft
Dynamics® AX 2012

The Microsoft Dynamics AX Team

www.allitebooks.com

http://www.allitebooks.org

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012950241
ISBN: 978-0-7356-6710-5

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Anne Hamilton
Developmental Editor: Margaret Sherman with the Microsoft Dynamics AX Team
Project Editor: Valerie Woolley
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Technical Reviewer: Allan Iversen
Copyeditor: Andrew Jones
Indexer: Maureen Johnson, MoJo’s Indexing Service
Cover: Twist Creative ∙ Seattle

www.allitebooks.com

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.allitebooks.org

Contents at a glance

Foreword xxiii

Introduction xxv

PART I A TOUR OF THE DEVELOPMENT ENVIRONMENT

CHAPTER 1 Architectural overview 3

CHAPTER 2 The MorphX development environment and tools 19

CHAPTER 3 Microsoft Dynamics AX and .NET 73

CHAPTER 4 The X++ programming language 87

PART II DEVELOPING WITH MICROSOFT DYNAMICS AX

CHAPTER 5 Designing the user experience 137

CHAPTER 6 The Microsoft Dynamics AX client 159

CHAPTER 7 Enterprise Portal 195

CHAPTER 8 Workflow in Microsoft Dynamics AX 245

CHAPTER 9 Reporting in Microsoft Dynamics AX 275

CHAPTER 10 BI and analytics 299

CHAPTER 11 Security, licensing, and configuration 351

CHAPTER 12 Microsoft Dynamics AX services and integration 385

CHAPTER 13 Performance 417

CHAPTER 14 Extending Microsoft Dynamics AX 493

CHAPTER 15 Testing 527

CHAPTER 16 Customizing and adding help 545

PART III UNDER THE HOOD

CHAPTER 17 The database layer 577

CHAPTER 18 The Batch framework 613

CHAPTER 19 Application domain frameworks 633

www.allitebooks.com

http://www.allitebooks.org

Michael Merz is a program manager for Microsoft Dynamics AX, where he is
responsible for the delivery of the Microsoft Dynamics AX services framework
and Microsoft Dynamics AX integration capabilities. He has over 15 years of
 experience in the software industry. Prior to working at Microsoft, Michael held
various engineering and management positions in companies including Amazon.

com, BEA Systems, and early-stage start-up companies, where he worked on embedded systems,
online advertising, social networks, and enterprise software. He has an MSc in computer science
from Ulm University, Germany, and lives in Bothell, WA, with his wife, Florina, and his children,
Brooke and Joshua.

Amar Nalla is currently a development lead in the Microsoft Dynamics AX
 product group. He has more than 11 years of experience in the software industry.
He started working on the Microsoft Dynamics team during the Axapta 4.0
release. He is part of the foundation team responsible for the Microsoft
Dynamics AX server components, and during the past three releases of Microsoft

 Dynamics AX, he has worked on various components of the server. He maintains a blog at
http://blogs.msdn.com/b/amarnalla/.

In his spare time, Amar likes to explore the beautiful Puget Sound area.

Parth Pandya is a senior program manager in the Microsoft Dynamics AX
 product group. For Microsoft Dynamics AX 2012, Parth’s area of focus was the
new security framework that was built for the release, including the flexible
 authentication capability and support for Active Directory groups as Microsoft
Dynamics AX users. He also contributed to the named user licensing model

that was instituted for Microsoft Dynamics AX 2012. Parth has been with Microsoft for over
nine years, over five of which were spent working on various releases of the Windows Internet
 Explorer browser. He particularly enjoyed working as a penetration tester for the number one
target of hackers around the world.

Parth swapped the organized chaos of Mumbai, India, for the disorienting tranquility of the
Pacific Northwest, where he lives with his wife, Varsha, and three-year-old son, Aarush.

Gustavo Plancarte is a senior software design engineer who joined Microsoft
in 2004 after graduating from ITESM in Monterrey, Mexico. He has worked
on Microsoft Dynamics AX since version 4.0. On the platform team, he is
 responsible for driving the common intermediate language (CIL) migration of
the X++ programming language, the Software-plus-Services architecture of

www.allitebooks.com

http://www.allitebooks.org

 v

Contents

Foreword xxiii
Introduction xxv

The history of Microsoft Dynamics AX . xxvi

Who should read this book . xxvii

Who should not read this book . xxviii

Organization of this book . xxviii

Conventions and features in this book .xxix

System requirements .xxix

Code samples . xxx

Acknowledgments . xxxi

Errata & book support . xxxii

We want to hear from you . xxxiii

Stay in touch . xxxiii

PART I A TOUR OF THE DEVELOPMENT ENVIRONMENT

Chapter 1 Architectural overview 3
Introduction . 3

Microsoft Dynamics AX five-layer solution architecture 4

Microsoft Dynamics AX application platform architecture 6

Application development environments . 6

Data tier of the Microsoft Dynamics AX platform 7

Middle tier of the Microsoft Dynamics AX platform 7

Presentation tier of the Microsoft Dynamics AX platform 8

Microsoft Dynamics AX application meta-model architecture 9

Application data element types .10

MorphX user interface control element types11

Workflow element types .12

www.allitebooks.com

http://www.allitebooks.org

vi Contents

Code element types .13

Services element types .13

Role-based security element types .14

Web client element types .14

Documentation and resource element types16

License and configuration element types .16

Chapter 2 The MorphX development environment and tools 19
Introduction .19

Application Object Tree .20

Navigate through the AOT .21

Create elements in the AOT .23

Modify elements in the AOT .23

Refresh elements in the AOT .25

Element actions in the AOT .25

Element layers and models in the AOT .26

Projects .27

Create a project .27

Automatically generate a project .28

Project types .30

Property sheet .30

X++ code editor .31

Shortcut keys .32

Editor scripts .33

Label editor .33

Create a label .35

Reference labels from X++ .36

Code compiler .37

Best Practices tool .39

Rules .40

Suppress errors and warnings . 41

Add custom rules .42

www.allitebooks.com

http://www.allitebooks.org

 Contents vii

Debugger .43

Enable debugging .43

Debugger user interface .44

Debugger shortcut keys .47

Reverse Engineering tool .47

UML data model .48

UML object model .49

Entity relationship data model. 51

Table Browser tool .52

Find tool .53

Compare tool .54

Start the Compare tool .55

Use the Compare tool .57

Compare APIs .58

Cross-Reference tool .60

Version control .62

Element life cycle .64

Common version control tasks .65

Work with labels .66

Synchronize elements .67

View the synchronization log. .68

Show the history of an element .69

Compare revisions .70

View pending elements .70

Create a build .71

Integrate Microsoft Dynamics AX with other version control
 systems .71

Chapter 3 Microsoft Dynamics AX and .NET 73
Introduction .73

Use third-party assemblies . 74

Use strong-named assemblies . 74

Reference a managed DLL from Microsoft Dynamics AX75

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Code against the assembly in X++ . 76

Write managed code .77

Debug managed code .81

Proxies .82

Hot swap assemblies on the server .84

Chapter 4 The X++ programming language 87
Introduction .87

Jobs .88

The type system .88

Value types .88

Reference types .89

Type hierarchies .89

Syntax .93

Variable declarations .93

Expressions .95

Statements .96

Macros .113

Comments .115

XML documentation .116

Classes and interfaces .117

Fields. .118

Methods .118

Delegates .120

Pre- and post-event handlers .122

Attributes .123

Code access security .124

Compiling and running X++ as .NET CIL .126

Design and implementation patterns .128

Class-level patterns .129

Table-level patterns .131

www.allitebooks.com

http://www.allitebooks.org

 Contents ix

PART II DEVELOPING WITH MICROSOFT DYNAMICS AX

Chapter 5 Designing the user experience 137
Introduction .137

A role-tailored design approach .139

User experience components .140

Navigation layer forms .141

Work layer forms .142

Role Center pages .142

Cues .143

Design Role Centers .143

Area pages .144

Design area pages .145

List pages .146

A simple scenario: taking a call from a customer146

Use a list page as an alternative to a report148

Design list pages .149

Details forms .150

Transaction details forms .153

Enterprise Portal web client user experience .155

Navigation layer forms .156

Work layer forms .157

Design for Enterprise Portal .157

Design for your users .157

Chapter 6 The Microsoft Dynamics AX client 159
Introduction .159

Working with forms .159

Form patterns .160

Form metadata .162

www.allitebooks.com

http://www.allitebooks.org

x Contents

Form data sources .164

Form queries .170

Adding controls .172

Control overrides .173

Control data binding .173

Design node properties .173

Runtime modifications . 174

Action controls . 174

Layout controls .176

Input controls .178

ManagedHost control .179

Other controls .181

Using parts .181

Types of parts .181

Reference a part from a form .182

Adding navigation items .182

MenuItem . 182

Menu . 183

Menu definitions .183

Customizing forms with code .184

Method overrides .184

Auto variables .187

Business logic .188

Custom lookups .188

Integrating with the Microsoft Office client .189

Make data sources available to Office Add-ins 189

Build an Excel template .190

Build a Word template .191

Add templates for users .192

Chapter 7 Enterprise Portal 195
Introduction .195

Enterprise Portal architecture .196

www.allitebooks.com

http://www.allitebooks.org

 Contents xi

Enterprise Portal components .198

Web parts .199

AOT elements .201

Datasets .201

Enterprise Portal framework controls .203

Developing for Enterprise Portal .216

Create a model-driven list page .217

Create a details page .219

AJAX .222

Session disposal and caching .223

Context .223

Data .225

Metadata .225

Proxy classes .226

ViewState . 228

Labels .229

Formatting .230

Validation .231

Error handling .231

Security .232

Secure web elements .233

Record context and encryption .235

SharePoint integration .235

Site navigation .235

Site definitions, page templates, and web parts237

Import and deploy a web part page .239

Enterprise Search .240

Themes .243

Chapter 8 Workflow in Microsoft Dynamics AX 245
Introduction .245

Microsoft Dynamics AX 2012 workflow infrastructure246

Windows Workflow Foundation .249

xii Contents

Key workflow concepts .250

Workflow document and workflow document class250

Workflow categories .251

Workflow types .251

Event handlers .252

Menu items .252

Workflow elements .252

Queues .253

Providers .254

Workflows .255

Workflow instances .256

Work items .256

Workflow architecture .256

Workflow runtime .257

Workflow runtime interaction .258

Logical approval and task workflows .260

Workflow life cycle .262

Implementing workflows .263

Create workflow artifacts, dependent artifacts,
and business logic .264

State management .266

Create a workflow category .268

Create the workflow document class .268

Add a workflow display menu item .270

Activate the workflow .270

Chapter 9 Reporting in Microsoft Dynamics AX 275
Introduction .275

Inside the Microsoft Dynamics AX 2012 reporting framework 276

Client-side reporting solutions .276

Server-side reporting solutions .277

Report execution sequence .278

Plan your reporting solution .279

 Contents xiii

Reporting and users .279

Roles in report development .280

Create production reports .281

Model elements for reports .282

SSRS extensions .285

Microsoft Dynamics AX extensions .286

Create charts for Enterprise Portal .289

Microsoft Dynamics AX chart development tools289

Integration with Microsoft Dynamics AX .290

Data series .292

Add interactive functions to a chart .294

Override the default chart format .296

Troubleshoot the reporting framework .296

The report server cannot be validated .297

A report cannot be generated .297

A chart cannot be debugged because of SharePoint
sandbox issues .297

Chapter 10 BI and analytics 299
Introduction .299

Components of the Microsoft Dynamics AX 2012 BI solution299

Implementing the prebuilt BI solution .301

Implement the prerequisites .302

Configure an SSAS server .302

Deploy cubes .303

Deploy cubes in an environment with multiple partitions305

Process cubes .307

Provision users in Microsoft Dynamics AX .308

Customizing the prebuilt BI solution .309

Configure analytic content .310

Customize cubes .311

Extend cubes .319

Creating cubes .323

xiv Contents

Identify requirements .324

Define metadata .325

Generate and deploy the cube .328

Add KPIs and calculations .333

Displaying analytic content in Role Centers .333

Provide insights tailored to a persona .334

Choose a presentation tool based on a persona335

SQL Server Power View reports .335

Excel .340

Business Overview web part and KPI List web part341

Develop reports with Report Builder .346

Develop analytic reports by using Visual Studio tools
for Microsoft Dynamics AX .346

Chapter 11 Security, licensing, and configuration 351
Introduction .351

Security framework overview .351

Authentication .352

Authorization .353

Data security .356

Develop security artifacts .356

Set permissions for a form .356

Set permissions for server methods .359

Set permissions for controls .359

Create privileges .359

Assign privileges and duties to security roles361

Use valid time state tables .362

Validate security artifacts .363

Create users .363

Assign users to roles .363

Set up segregation of duties rules .364

Create extensible data security policies .364

Data security policy concepts .365

 Contents xv

Develop an extensible data security policy .365

Debug extensible data security policies .368

Security coding .369

Table permissions framework .369

Code access security .371

Best practice rules .372

Security debugging .373

Licensing and configuration .376

Configuration hierarchy .378

Configuration keys .378

Use configuration keys .380

Types of CALs .381

Customization and licensing .383

Chapter 12 Microsoft Dynamics AX services and integration 385

Introduction .385

Types of Microsoft Dynamics AX services .387

System services .387

Custom services .388

Document services .392

Security considerations .400

Publish Microsoft Dynamics AX services .400

Consume Microsoft Dynamics AX services .401

Sample WCF client for CustCustomerService 402

Consume system services .404

Update business documents .407

Invoke custom services asynchronously .409

The Microsoft Dynamics AX send framework .411

Implementing a trigger for transmission .411

Configure transmission mechanisms .414

Consume external web services from Microsoft Dynamics AX 414

Performance considerations .415

xvi Contents

Chapter 13 Performance 417
Introduction .417

Client/server performance .417

Reduce round-trips between the client and the server418

Write tier-aware code .422

Transaction performance .426

Set-based data manipulation operators .427

Restartable jobs and optimistic concurrency 444

Caching .446

Field lists .456

Field justification .462

Performance configuration options .462

SQL Administration form .462

Server Configuration form .463

AOS configuration .463

Client configuration .464

Client performance .465

Number sequence caching .465

Extensive logging .465

Master scheduling and inventory closing .465

Coding patterns for performance .465

Execute X++ code as CIL .466

Use parallel execution effectively .466

The SysOperation framework .467

Patterns for checking to see whether a record exists472

Run a query only as often as necessary .473

When to prefer two queries over a join . 474

Indexing tips and tricks .475

When to use firstfast . 476

Optimize list pages .476

Aggregate fields to reduce loop iterations .477

Performance monitoring tools .478

Microsoft Dynamics AX Trace Parser .479

 Contents xvii

Monitor database activity .488

Use the SQL Server connection context to find the SPID
or user behind a client session .489

The client access log .490

Visual Studio Profiler .490

Chapter 14 Extending Microsoft Dynamics AX 493
Introduction .493

The SysOperation framework .493

SysOperation framework classes .494

SysOperation framework attributes .495

Comparing the SysOperation and RunBase frameworks495

RunBase example: SysOpSampleBasicRunbaseBatch 496

SysOperation example: SysOpSampleBasicController. 504

The RunBase framework .510

Inheritance in the RunBase framework .510

Property method pattern .511

Pack-unpack pattern .512

Client/server considerations .516

The extension framework .516

Create an extension .517

Extension example .518

Eventing .520

Delegates .521

Pre and post events .522

Event handlers .523

Eventing example .524

Chapter 15 Testing 527
Introduction .527

New unit testing features in Microsoft Dynamics AX 2012527

Use predefined test attributes .528

xviii Contents

Create test attributes and filters .530

Microsoft Visual Studio 2010 test tools .533

Use all aspects of the ALM solution .534

Use an acceptance test driven development approach 535

Use shared steps .536

Record shared steps for fast forwarding .537

Develop test cases in an evolutionary manner 538

Use ordered test suites for long scenarios .539

Putting everything together .540

Execute tests as part of the build process .540

Use the right tests for the job .542

Chapter 16 Customizing and adding help 545
Introduction .545

Help system overview .546

Microsoft Dynamics AX client .547

Help viewer .547

Help server .548

AOS .549

Help content overview .549

Topics .549

Publisher .550

Table of contents .550

Summary page .550

Create content .550

Create a topic in HTML .552

Add labels, fields, and menu items to a topic559

Make a topic context-sensitive .561

Update content from other publishers .562

Create a table of contents file .563

Create non-HTML content .565

Publish content .567

Add a publisher to the Web.config file .569

 Contents xix

Publish content to the Help server .570

Set Help document set properties .571

Troubleshoot the Help system .572

The Help viewer cannot display content .572

The Help viewer cannot display the table of contents 573

PART III UNDER THE HOOD

Chapter 17 The database layer 577

Introduction .577

Temporary tables .577

InMemory temporary tables .578

TempDB temporary tables .582

Creating temporary tables .583

Surrogate keys .585

Alternate keys .587

Table relations .588

EDT relations and table relations .588

Foreign key relations .590

The CreateNavigationPropertyMethods property591

Table inheritance .594

Modeling table inheritance .594

Table inheritance storage model .596

Polymorphic behavior .596

Performance considerations. .598

Unit of Work .599

Date-effective framework .601

Relational modeling of date-effective entities601

Support for data retrieval .603

Run-time support for data consistency .604

Full-text support .606

xx Contents

The QueryFilter API. .607

Data partitions .610

Partition management .611

Development experience .611

Run-time experience .611

Chapter 18 The batch framework 613
Introduction .613

Batch processing in Microsoft Dynamics AX 2012613

Common uses of the batch framework .614

Performance .615

Create and execute a batch job .615

Create a batch-executable class .616

Create a batch job .618

Use the Batch API .623

Manage batch execution .625

Configure the batch server .625

Create a batch group .626

Manage batch jobs .628

Debug a batch task .629

Configure AOS for batch debugging .629

Configure Visual Studio for debugging X++ in a batch 630

Chapter 19 Application domain frameworks 633
Introduction .633

The organization model framework .634

How the organization model framework works634

When to use the organization model framework 636

The product model framework .643

How the product model framework works .643

When to use the product model framework 647

www.allitebooks.com

http://www.allitebooks.org

 Contents xxi

Extending the product model framework .647

The operations resource framework .648

How the operations resource framework works 648

When to use the operations resource framework 652

Extensions to the operations resource framework652

MorphX model element prefixes for the operations
resource framework .654

The dimension framework .654

How the dimension framework works .654

Constrain combinations of values .656

Create values .656

Extend the dimension framework .657

Query data .658

Physical table references .659

The accounting framework .659

How the accounting framework works .660

When to use the accounting framework .662

Extensions to the accounting framework .662

Accounting framework process states .662

MorphX model element prefixes for the
accounting framework .663

The source document framework .664

How the source document framework works664

When to use the source document framework 665

Extensions to the source document framework666

MorphX model element prefixes for the source document
 framework .667

Chapter 20 Reflection 669
Introduction .669

Reflection system functions .670

Intrinsic functions .670

typeOf system function .671

xxii Contents

classIdGet system function .672

Reflection APIs .673

Table data API .673

Dictionary API .676

Treenodes API .680

TreeNodeType .683

Chapter 21 Application models 687
Introduction .687

Layers .688

Models .690

Element IDs .692

Create a model .693

Prepare a model for publication .694

Set the model manifest .694

Export the model .695

Sign the model .696

Import model files .697

Upgrade a model .699

Move a model from test to production .700

Create a test environment .701

Prepare the test environment .701

Deploy the model to production .701

Element ID considerations .702

Model store API .703

Appendix: Resources for code upgrade 705

Index 707

 xxiii

Foreword

M icrosoft Dynamics AX and its predecessor, Axapta, have always benefited from
a very active and enthusiastic developer community. Some of those developers

are employed by mid-size to large firms that build their business selling solutions
built on Microsoft Dynamics AX. Others are in the IT departments of companies using
 Microsoft Dynamics AX as mission-critical infrastructure.

One of the consistent pieces of feedback I’ve received from those developers over
the years is how the raw power and agility provided by the Microsoft Dynamics AX
toolset and metadata environment make them more productive than any other line of
business application framework. With Microsoft Dynamics AX 2012, we have taken the
productivity and power of that toolset to a whole new level; delivering event-based
customization, delta customization of forms, a new editor, date effectivity, and subtype/
supertype support, to name just a few.

We continued the journey to expose the power of Microsoft SQL Server Reporting
Services (SSRS) and Analysis Services directly within Microsoft Dynamics AX, moving all
of the out-of-the-box reports and business intelligence inside the platform.

We back all of that up with almost three times the application footprint of prior
 versions of Microsoft Dynamics AX, truly making Microsoft Dynamics AX both a
 powerful developer environment and a rich out-of-the-box suite of applications.

This book focuses on the enhancements in the Microsoft Dynamics AX 2012 toolset
and is written by the team that brought you those tools. It’s truly an insider’s view of
the entire Microsoft Dynamics AX development and run-time environment. I hope you
enjoy it as much as we enjoyed writing the book and creating the product.

Thanks,

Hal Howard
Head of Product Development, Microsoft Dynamics AX
Corporate Vice President, Microsoft Dynamics Research and Development

 xxv

Introduction

Microsoft Dynamics AX 2012 represents a new generation of enterprise resource
 planning (ERP) software. With over 1,000 new features and prebuilt industry

capabilities for manufacturing, distribution, services, retail, and public sector, Microsoft
Dynamics AX 2012 provides a robust platform for developers to deliver specialized
functionality more efficiently to the industries that they support.

Microsoft Dynamics AX 2012 is a truly global solution, able to scale with any
 business as it grows. It is simple enough to deploy for a single business unit in a single
country/region, yet robust enough to support the unique requirements for business
systems in 36 countries/regions—all from a single-instance deployment of the software.

For this version of Microsoft Dynamics AX, the entire codebase was analyzed and,
where necessary, reengineered, so that the application is built more holistically around
a set of unified principles. As Microsoft Technical Fellow Mike Ehrenberg explains:

The heart of Microsoft Dynamics AX 2012 is a set of unified, natural models
that let you see, measure, and change your business. In developing this release,
every application concept involved in representing the business in software was
reexamined. In each case, limitations that forced workarounds and compromises
in older ERP products were lifted, and new capabilities were added to provide
an even richer software representation of a business and its structure, processes,
and policies. Unified, natural Microsoft Dynamics AX 2012 models make
 modeling simple businesses fast and easy and yet still provide the richness and
flexibility to represent the most complex organizations.

Early adopters have also weighed in on the benefits of Microsoft Dynamics AX 2012:

Microsoft Dynamics AX 2012 allows us to collaborate within our organization
and with our constituents . . . using built-in controls and fund/encumbrance
 accounting capabilities to ensure compliance with Public Sector requirements
. . . and using out-of the-box Business Analytics and Intelligence . . . so
 executives can make effective decisions in real time.

Mike Bailey

Director of Finance and Information Services

City of Redmond (WA)

Introduction
The history of Microsoft Dynamics AX

Who should read this book

Assumptions

Who should not read this book

Organization of this book

Conventions and features in this book

System requirements

Code samples

Installing the code samples

Using the code samples

Acknowledgments

Microsoft Dynamics product team

Microsoft Press

New arrivals

Errata & book support

We want to hear from you

Stay in touch

xxvi Introduction

With the latest release, developing for and customizing Microsoft Dynamics AX will
be easier than ever. Developers will be able to work with X++ directly from
within Microsoft Visual Studio and enjoy more sophisticated features in the X++
editor, for example. Also, the release includes more prebuilt interoperability
with Microsoft SharePoint Server and SQL Server Reporting Services, so that
 developers spend less time on mundane work when setting up customer
 systems.

Guido Van de Velde

Director of MECOMS™

Ferranti Computer Systems

Microsoft Dynamics AX 2012 is substantially different from its predecessor, which
can mean a steep learning curve for developers and system implementers who have
worked with previous versions. However, by providing a broad overview of the architectural
changes, new technologies, and tools for this release, the authors of Inside Microsoft
Dynamics AX 2012 have created a resource that will help reduce the time that it takes for
developers to become productive with this version of Microsoft Dynamics AX.

The history of Microsoft Dynamics AX

Historically, Microsoft Dynamics AX encompasses more than 25 years of experience
in business application innovation and developer productivity. Microsoft acquired the
predecessor of Microsoft Dynamics AX, called Axapta, in 2002, with its purchase of the
Danish company Navision A/S. The success of the product has spurred an increasing
commitment of research and development resources, which allows Microsoft Dynamics
AX to grow and strengthen its offering continuously.

The development team that created Microsoft Dynamics AX 2012 consists of
three large teams, two that are based in the United States (Fargo, North Dakota, and
 Redmond, Washington) and one that is based in Denmark (Copenhagen). The Fargo
team focuses on finance and human resources (HR), the Redmond team concentrates
on project management and accounting and customer relationship management
(CRM), and the Copenhagen team delivers supply chain management (SCM). In
 addition, a framework team develops infrastructure components, and a worldwide
distributed team localizes the Microsoft Dynamics AX features to meet national
 regulations or local differences in business practices in numerous languages and
 markets around the world.

 Introduction xxvii

To clarify a few aspects of the origins of Microsoft Dynamics AX, the authors
contacted people who participated in the early stages of the Microsoft Dynamics AX
development cycle. The first question we asked was, “How was the idea of using X++ as
the programming language for Microsoft Dynamics AX conceived?”

We had been working with an upgraded version of XAL for a while called OO
XAL back in 1996/1997. At some point in time, we stopped and reviewed our
approach and looked at other new languages like Java. After working one long
night, I decided that our approach had to change to align with the latest trends
in programming languages, and we started with X++.

Erik Damgaard

Cofounder of Damgaard Data

Of course, the developers had several perspectives on this breakthrough event.

One morning when we came to work, nothing was working. Later in the
 morning, we realized that we had changed programming languages! But we did
not have any tools, so for months we were programming in Notepad without
compiler or editor support.

Anonymous developer

Many hypotheses exist regarding the origin of the original product name, Axapta.
Axapta was a constructed name, and the only requirement was that the letter X be
 included, to mark the association with its predecessor, XAL. The X association carries
over in the name Microsoft Dynamics AX.

Who should read this book

This book explores the technology and development tools in Microsoft Dynamics AX
2012. It is designed to help new and existing Microsoft Dynamics AX developers by
providing holistic and in-depth information about developing for Microsoft Dynamics
AX 2012—information that may not be available from other resources, such as SDK
 documentation, blogs, or forums. It aids developers who are either customizing
 Microsoft Dynamics AX 2012 for a specific implementation or building modules
or applications that blend seamlessly with Microsoft Dynamics AX 2012. System
 implementers and consultants will also find much of the information useful.

xxviii Introduction

Assumptions
To get full value from this book, you should have knowledge of common object-oriented
concepts from languages such as C++, C#, and Java. You should also have knowledge
of relational database concepts. Knowledge of Structured Query Language (SQL) and
 Microsoft .NET technology are also advantageous. Transact-SQL statements are used to
perform relational database tasks, such as data updates and data retrieval.

Who should not read this book

This book is not aimed at those who install, upgrade, or deploy Microsoft Dynamics
AX 2012. It is also beyond the scope of this book to include details about the sizing
of production environments. For more information about these topics, refer to the
 extensive installation and implementation documentation that is supplied with the
product or available on TechNet, MSDN, and other websites.

The book also does not provide instructions for those who configure parameter
 options within Microsoft Dynamics AX 2012 or the business users who use the
 application in their day-to-day work. For assistance with these activities, refer to the
help that is shipped with the product and available on TechNet at http://technet
.microsoft.com/en-us/library/gg852966.aspx.

Organization of this book

Although Inside Microsoft Dynamics AX 2012 does not provide exhaustive coverage
of every feature in Microsoft Dynamics AX 2012, it does offer a broad view that will
 benefit developers as they develop for the product.

This book is divided into three sections, each of which focuses on Microsoft
 Dynamics AX 2012 from a different angle. Part I, “A tour of the development
 environment,” provides an overview of the Microsoft Dynamics AX 2012 architecture
that has been written with developers in mind. The chapters in Part I also provide a
tour of the internal Microsoft Dynamics AX 2012 development environment to help
new developers familiarize themselves with the designers and tools that they will use to
implement their customizations, extensions, and integrations.

Part II, “Developing with Microsoft Dynamics AX 2012,” provides the information
that developers need in order to customize and extend Microsoft Dynamics AX 2012.
In addition to explanations of the features, many chapters include examples, some
of which are available as downloadable files that can help you learn how to code for

http://technet.microsoft.com/en-us/library/gg852966.aspx

 Introduction xxix

Microsoft Dynamics AX. For information about how to access these files, see the “Code
samples” section, later in this introduction.

Part III, “Under the hood,” is largely devoted to illustrating how developers can use
the underlying foundation of the Microsoft Dynamics AX 2012 application frameworks
to develop their solutions, with a focus on the database layer, system and application
 frameworks, reflection, and models.

Conventions and features in this book

This book presents information using the following conventions, which are designed to
make the information readable and easy to follow.

 ■ Application Object Tree (AOT) paths use backslashes to separate nodes, such as
Forms\AccountingDistribution\Methods.

 ■ The names of methods, functions, properties and property values, fields, and
nodes appear in italics.

 ■ Registry keys and T-SQL commands appear in capital letters.

 ■ User interface (UI) paths use angle brackets to indicate actions—for example,
“On the File menu, point to Tools > Options.”

 ■ Boxed elements with labels such as “Note” provide additional information or
 alternative methods for completing a step successfully.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

System requirements

To work with sample code, you must have the RTM version of Microsoft Dynamics AX
2012 installed. For information about the system requirements for installing Microsoft
Dynamics AX 2012, see the Microsoft Dynamics AX 2012 Installation Guide at
http://www.microsoft.com/en-us/download/details.aspx?id=12687.

You must also have an Internet connection to download the sample files that are
 provided as supplements to many of the chapters.

xxx Introduction

Note Some of the features described in this book, such as data partitioning
and the EP Chart Control, apply only to the Microsoft Dynamics AX 2012 R2.
That is noted where those features are discussed.

Code samples

Most of the chapters in this book include code examples that let you interactively try
out the new material presented in the main text. You can download the example code
from the following page:

http://go.microsoft.com/FWLink/?Linkid=263524

Follow the instructions to download the InsideDynaAX2012_667105_
CompanionContent.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer:

1. Unzip the InsideDynaAX2012_667105_CompanionContent.zip file that you
 downloaded from the book’s website.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access
it from the same webpage from which you downloaded the
InsideDynaAX2012_667105_CompanionContent.zip file.

Using the code samples
The code examples referenced in each chapter are provided as both .xpo files that you
can import into Microsoft Dynamics AX and Visual Studio projects that you can open
through the corresponding .csproj files. Many of these examples are incomplete, and
you cannot import and run them successfully without following the steps indicated in
the associated chapter.

www.allitebooks.com

http://www.allitebooks.org

 Introduction xxxi

Acknowledgments

We want to thank all the people who assisted us in bringing this book to press.
We apologize for anyone whose name we missed.

Microsoft Dynamics product team
Special thanks go to the following colleagues, whom we’re fortunate to work with.

Margaret Sherman, who pitched the book to Microsoft Press, provided us with
 training in how to use templates and style sheets, created a schedule for writing,
 prodded us when we needed prodding to keep the writing process moving along,
and provided editorial feedback on every chapter. Thank you, Margaret. This book
 absolutely would not have seen the light of day without you!

Mark Baker and Steve Kubis, who contributed ace project management and editing
work.

Hal Howard, Richard Barnwell, and Ann Beebe, who sponsored the project and
 provided resources for it.

We’re also grateful to the following members of the product team, who provided us
with the reviews and research that helped us refine this book:

Ned Baker
Ian Beck
Andy Blehm
Jim Brotherton
Ed Budrys
Gregory Christiaens
Ahmad El Husseini
Josh Honeyman
Hitesh Jawa
Vijeta Johri
Bo Kampmann
Vinod Kumar
Josh Lange
Mey Meenakshisundaram

Igor Menshutkin
Jatan Modi
Sasha Nazarov
Adrian Orth
Christopher Read (Entirenet)
Bruce Rivard
Gana Sadasivam
Alex Samoylenko
Karen Scipi
Ramesh Shankar
Tao Wang
Lance Wheelwright
Chunke Yang
Arif Kureshy

In addition, we want to thank Joris de Gruyter of Streamline Systems LLC.
His SysTestListenerTRX code samples on CodePlex (http://dynamicsaxbuild.codeplex
.com/ releases), with supporting documentation on his blog (http://daxmusings.blogspot
.com/), and his collaboration as we investigated this approach for executing SysTests
from Microsoft Dynamics AX were valuable resources as we prepared the chapter on
testing.

http://dynamicsaxbuild.codeplex.com/releases
http://dynamicsaxbuild.codeplex.com/releases
http://daxmusings.blogspot.com/
http://daxmusings.blogspot.com/

xxxii Introduction

Microsoft Press
Another big thank-you goes to the great people at Microsoft Press for their support
and expertise throughout the writing and publishing process.

Valerie Woolley, the Content Project Manager for the book, who provided ongoing
support and guidance throughout the life of the project.

Anne Hamilton—Acquisitions Editor

Christian Holdener—Production Project Manager with S4Carlisle Publishing Services

Allan Iversen—Technical Reviewer

Andrew Jones—Copy Editor

New arrivals
Finally, we would like to welcome the following youngest members of the Microsoft
 extended family, the children and grandchildren of the authors who arrived during the
months that we were laboring on this book:
Charlie Hendrix Bird
Grace Elizabeth Marie Garty
Gavin Roy Healy

Kayden John Healy
Amrita Nalla
Nilay Pandya

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=263523

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
 addresses above.

mailto:mspinput@microsoft.com

 Introduction xxxiii

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
 valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

PART I

A tour of the
development
environment

CHAPTER 1 Architectural overview . 3

CHAPTER 2 The MorphX development environment
 and tools .19

CHAPTER 3 Visual Studio tools for Microsoft Dynamics AX . . .73

CHAPTER 4 The X++ programming language87

PART I

A tour of the development
environment

C H A P T E R 1

Architectural overview

Introduction

Microsoft Dynamics AX five-layer solution architecture

Microsoft Dynamics AX application platform architecture

Application development environments

Data tier of the Microsoft Dynamics AX platform

Middle tier of the Microsoft Dynamics AX platform

Presentation tier of the Microsoft Dynamics AX platform

Microsoft Dynamics AX application meta-model architecture

Application data element types

MorphX user interface control element types

Workflow element types

Code element types

Services element types

Role-based security element types

Web client element types

Documentation and resource element types

License and configuration element types

 CHAPTER 1 Architectural overview 3

C H A P T E R 1

Architectural overview

In this chapter
Introduction . 3
The Microsoft Dynamics AX five-layer
solution architecture . 4
The Microsoft Dynamics AX application
platform architecture . 6
The Microsoft Dynamics AX application meta-model
architecture . 9

Introduction

The Microsoft Dynamics AX solution is an enterprise resource planning (ERP) solution that integrates
financial resource management, operations resource management, and human resource m anagement
processes that can be owned and controlled by multinational, multi-company, and multi-industry
organizations, including the public sector. The Microsoft Dynamics AX solution encompasses both the
Microsoft Dynamics AX application and the Microsoft Dynamics AX application platform on which it
is built. The Microsoft Dynamics AX application platform is designed to be the platform of choice for
developing scalable, customizable, and extensible ERP applications in the shortest time possible, and
for the lowest cost. The following key architectural design principles make this possible.

 ■ Separation of concerns A Microsoft Dynamics AX end-to-end solution is delivered by many
development teams working both inside Microsoft, inside the Microsoft partner channel, and
inside end-user IT support organizations. The separation of concerns principle realized in the
Microsoft Dynamics AX architecture makes this possible by separating the functional concerns
of a solution into five globalized, secure layers. This separation reduces functional overlap
between the logical components that each team designs and develops.

 ■ Separation of processes A Microsoft Dynamics AX end-to-end solution scales to satisfy
the processing demands of a large number of concurrent users. The separation of processes
 principle that is realized in the Microsoft Dynamics AX architecture makes this possible by
separating processing into three-tiers—a data tier, a middle tier, and a presentation tier. The
Microsoft Dynamics AX Windows client, the Microsoft Dynamics AX Enterprise Portal web
client, and the Microsoft Office clients are components of the presentation tier; the Microsoft
Dynamics AX Application Object Server (AOS), the Microsoft Dynamics AX Enterprise Portal
extensions to Microsoft SharePoint Server, and Microsoft SQL Server Reporting Services (SSRS)

4 PART 1 A tour of the development environment

are components of the middle tier; the SQL Server and Microsoft SQL Server Analysis Services
(SSAS) are components of the data tier of the Microsoft Dynamics AX platform architecture.

 ■ Model-driven applications A Microsoft Dynamics AX application team can satisfy
 application domain requirements in the shortest time possible. The model-driven application
principle that is realized in the Microsoft Dynamics AX architecture makes this possible by
separating platform-independent development from platform-dependent development,
and by separating organization-independent development from organization-dependent
 development. With platform-independent development, you can model the structure and
specify the behavior of application client forms and reports, of application object entities,
and of application data entities that run on multiple platform technologies such as the
Microsoft Dynamics AX Windows client, SharePoint Server, SQL Server, and the Microsoft
.NET Framework. With organization-independent development, you can use domain-specific
 reference models, such as the units of measure reference model; domain-specific
 resource-models, such as the person, product, and location models; and domain-specific
workflow models, such as approval and review models, which are relevant to all organizations.

Microsoft Dynamics AX five-layer solution architecture

The Microsoft Dynamics AX five-layer solution architecture, illustrated in Figure 1-1, logically
 partitions a Microsoft Dynamics AX solution into an application platform layer, a foundation
a pplication domain layer, a horizontal application domain layer, an industry application domain layer,
and a vertical application domain layer. The components in all architecture layers are designed to
meet Microsoft internationalization, localization, and security standards, and all layers are built on the
Microsoft technology platform.

Note The layers in the Microsoft Dynamics AX five-layer architecture are different from
the model layers that are part of the Microsoft Dynamics AX customization framework
described later in this book. Architectural layers are logical partitions of an end-to-end
solution. Customization layers are physical partitions of application domain code. For more
information, see Chapter 21, “Application models.”

The Microsoft Dynamics AX application platform and application domain components are
 delivered on the Microsoft technology platform. This platform consists of the Windows client, the
 Office suite of products, Windows Server, SQL Server, SSAS, SSRS, SharePoint Server, the Microsoft
ASP.NET web application framework, the .NET Framework, and the Microsoft Visual Studio integrated
development environment (IDE).

 CHAPTER 1 Architectural overview 5

5. Vertical

4. Industry

3. Horizontal

2. Foundation

Microsoft technology platform

In
te

rn
at

io
na

liz
at

io
n

Lo
ca

liz
at

io
n

Se
cu

ri
ty

1.
 A

p
p

lic
at

io
n

p
la

tf
or

m

A
p

p
lic

at
io

n
d

om
ai

n

FIGURE 1-1 Microsoft Dynamics AX five-layer architecture.

The following logical partitions are layered on top of the Microsoft technology platform:

 ■ Layer 1: Application platform layer The application platform layer provides the system
frameworks and tools that support the development of scalable, customizable, and extensible
application domain components. This layer consists of the MorphX model-based development
environment, the X++ programming language, the Microsoft Dynamics AX Windows client
framework, the Enterprise Portal web application framework, the AOS, and the application
platform system framework. The architecture of the components in the application platform
layer is described in the following section.

 ■ Layer 2: Foundation application domain layer The foundation application domain
layer consists of domain-specific reference models in addition to domain-specific resource
modeling, policy modeling, event documenting, and document processing frameworks
that are extended into organization administration and operational domains. Examples of
 domain-specific reference models include the fiscal calendar, the operations calendar, the
 language code, and the unit of measure reference models. Examples of domain-specific
resource models include the party model, the organization model, the operations resource
model, the product model, and the location model. The source document framework and the
accounting distribution and journalizing process frameworks are also part of this layer. Chapter 19,
“Application frameworks,” describes the conceptual design of a number of the frameworks in
this layer.

6 PART 1 A tour of the development environment

 ■ Layer 3: Horizontal application domain layer The horizontal application layer consists of
 application domain workloads that integrate the financial resource, operations resource, and
human resource management processes that can be owned and controlled by organizations.
Example workloads include the operations management workload, the supply chain management
workload, the supplier relationship management workload, the product information management
workload, the financial management workload, the customer relationship management workload,
and the human capital management workload. The Microsoft Dynamics AX application can be
extended with additional workloads. (The workloads that are part of the Microsoft Dynamics AX
solution are beyond the scope of this book.)

 ■ Layer 4: Industry application domain The industry application layer consists of application
domain workloads that integrate the financial resource, operations resource, and human
resource management processes that are specific to organizations that operate in particular
industry sectors. Example industries include discrete manufacturing, process manufacturing,
distribution, retail, service, and public sector. Workloads in this layer are customized to satisfy
industry-specific requirements.

 ■ Layer 5: Vertical application domain The vertical application layer consists of application
domain workloads that integrate the financial resource, operations resource, and human
resource management processes that are specific to organizations that operate in a particular
vertical industry and to organizations that are subject to local customs and regulations.
Example vertical industries include beer and wine manufacturing, automobile manufacturing,
government, and advertising professional services. Workloads in this layer are customized to
satisfy vertical industry and localization requirements.

Microsoft Dynamics AX application platform architecture

The architecture of the Microsoft Dynamics AX application platform supports the development of
Windows client applications, SharePoint web client applications, Office client integration applications,
and third-party integration applications. Figure 1-2 shows the components that support these
 application configurations. This section provides a brief description of the application development
environments, and a description of the components in each of the data, middle, and presentation
tiers of the Microsoft Dynamics AX platform architecture.

Application development environments
The Microsoft Dynamics AX application platform includes two model-driven application development
environments:

 ■ Microsoft Dynamics AX MorphX development environment Use this development
environment to develop data models and application code using the Application Object Tree
(AOT) application modeling tool and the X++ programming language. This development
environment accesses Microsoft Dynamics AX application server services through Microsoft
Remote Procedure Call (RPC) technology.

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 Architectural overview 7

 ■ Visual Studio Use this development environment to develop Microsoft .NET plug-ins for and
extensions to Microsoft Dynamics AX clients, servers, and services; to develop for Enterprise Portal,
and to develop SSRS reports. This development environment accesses the Microsoft Dynamics AX
application server services through RPC.

HTTP/HTTPS

External applications
Microsoft Office

Word add-in,
Excel add-in

Other
applications

File

Application services

Application integration services

System services

SharePoint
content

database

SharePoint
configuration

database

Microsoft Dynamics AX
application and model database

SSRS
database

SSAS
database

.NET Framework 4.0

WCF
RPC

Exchange
Server

File
system

MSMQ

BizTalk
server

WCF
adapter

Help
web services

Web services

Enterprise portal
framework

.NET Business
Connector

HTTP/HTTPS
Microsoft

Dynamics AX
reporting
extensions

HTTP/HTTPS

MorphX

.NET Business
Connector

Visual Studio

Enterprise Portal web client

Application
pages
using

ASP.NET

Business
overview
web part

Report
viewer

web part

Role center pages

Windows Server

AOS services

Microsoft Dynamics AX application server

SQL Server

D
at

a
tie

r
M

id
d

le
 t

ie
r

Pr
es

en
ta

tio
n

tie
rMicrosoft Dynamics AX Windows client

Report
viewer
control

MorphX
forms and

.NET
controls

Business
overview
web part

Report
viewer

web part

Role center pages

SSAS

SSRS

Development environments

File/MSMQ/WCF
HTTP/HTTPSHTTP/HTTPS

HTTP/HTTPS

Internet Information Services (IIS)

HTTP/HTTPS

File/SMTP/MSMQ/WCF

FIGURE 1-2 Architecture of Microsoft Dynamics AX.

Data tier of the Microsoft Dynamics AX platform
The SQL Server database is the only component in the data tier. The database server hosts the Share-
Point Server content and configuration databases, the Microsoft Dynamics AX model and application
database, the SSRS database, and the SSAS database.

Middle tier of the Microsoft Dynamics AX platform
The middle tier includes the following components:

 ■ AOS The AOS executes MorphX application services that are invoked through RPC
 technology and Windows Communication Foundation (WCF) technology in the .NET
 Framework. The AOS can be hosted on one computer, but it can also scale out to many
 computers when additional concurrent user sessions or dedicated batch servers are required.

8 PART 1 A tour of the development environment

 ■ .NET Framework components These components can be referenced in the AOT so that
their application programming interfaces are accessed from X++ programs. The Windows
Workflow Foundation (WWF) component is integral to the Microsoft Dynamics AX w orkflow
framework, and WCF is integral to the Microsoft Dynamics AX application integration
 framework.

 ■ SQL Server Analysis Services (SSAS) These services process requests for analytics data
hosted by the SQL Server component in the data tier.

 ■ SSRS and Microsoft Dynamics AX reporting extensions The reporting extensions
 provide SSRS with features that are specific to the Microsoft Dynamics AX application
 platform. These extensions access the AOS through WCF services and access SSAS through
HTTP and HTTPS.

 ■ Microsoft Dynamics AX Enterprise Portal framework This framework extends the
 SharePoint application platform with features that are specific to the Microsoft Dynamics AX
application platform. The Enterprise Portal framework composes SharePoint content with
Microsoft Dynamics AX content accessed from the AOS through the .NET Business Connec-
tor and RPC, and content accessed from SSAS and SSRS through HTTP and HTTPS. Enterprise
Portal is typically hosted on its own server or in a cluster of servers.

 ■ Microsoft Dynamics AX Help web service This web service processes requests for
Help content.

 ■ Web services hosted by Microsoft Internet Information Services (IIS) The Microsoft
 Dynamics AX system services can be deployed to and hosted by IIS.

 ■ Application Integration services These services provide durable message queuing and
transformation services for integration clients.

Presentation tier of the Microsoft Dynamics AX platform
The presentation tier consists of the following components:

 ■ Windows client This client executes Microsoft Dynamics AX MorphX and .NET programs devel-
oped in MorphX and Visual Studio. The client application communicates with the AOS primarily by
using RPC. The client composes navigation, action pane, area page, and form controls for rapid
data entry and data retrieval. Form controls have built-in data filtering and search capabilities and
their content controls are arranged automatically by the Intellimorph rendering technology. The
client additionally hosts role center pages rendered in a web browser control.

 ■ Enterprise Portal web client This client executes MorphX application models, X++
 programs, and .NET Framework programs developed in the MorphX development
 environment, Visual Studio, and the SharePoint Server framework. Enterprise Portal is hosted
by the Microsoft Dynamics AX runtime, the ASP.NET runtime, and the SharePoint runtime
environments. SharePoint and ASP.NET components communicate by means of the Microsoft
Dynamics AX .NET Business Connector.

 CHAPTER 1 Architectural overview 9

 ■ Office clients The Microsoft Word client and Microsoft Excel client are extended by add-ins
that work with the Microsoft Dynamics AX platform.

 ■ Third-party clients These clients integrate with the Microsoft Dynamics AX platform by
means of integration service components such as the file system, Microsoft Message Queuing
(MSMQ), Microsoft BizTalk Server, and a WCF adaptor.

Microsoft Dynamics AX application meta-model architecture

Microsoft Dynamics AX application meta-model architecture is based on the principle of model-
driven application development. You declaratively program an application by building a model of
application components instead of procedurally specifying their structure and behavior with code.
The Microsoft Dynamics AX development environment supports both model-driven and code-driven
application development.

A model of an application model is called a meta-model. Figure 1-3 shows the element types in
the Microsoft Dynamics AX application meta-model that you use to develop Microsoft Dynamics AX
Windows client applications.

Note To keep the diagram simple, the figure does not list all type dependencies on model
element types.

Base
enum

Extended
data
type

Map Perspective View
Table

collection
Security
policy

Form
Form
part

Report
SSRS

report
Info
part

Query Reference Macro

Class

Service
Service
group

Duty
Process
cycle

Code
permission

Role

Privilege

Menu
item

Menu

Cue
Cue

group

Workflow
type

Workflow
provider

Workflow
approval

Workflow
task

Table

Job

FIGURE 1-3 Element types of the Microsoft Dynamics AX meta-model for developing Microsoft Dynamics AX
Windows client applications.

10 PART 1 A tour of the development environment

Application data element types
The following model element types are part of the Microsoft Dynamics AX application data meta-model:

 ■ Base enum Use a base enumeration (base enum) element type to specify value type
 application model elements whose fields consist of a fixed set of symbolic constants. For
 example, you can create a base enum named WeekDay to name a set of symbolic constants
that includes Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday.

 ■ Extended data type Use an extended data type element type to specify value type
 application model elements that extend base enums, in addition to string, boolean, integer,
real, date, time, UtcDateTime, int64, guid, and container value types. The Microsoft Dynamics
AX runtime uses the properties of an extended data type to generate a database schema
and to render user interface controls. For example, you could specify an account number
extended data type as an extension to a string value type that is limited to 10 characters in
length, and that is described using the Account number label when bound to a user interface
text entry control. Extended data types also support inheritance. For example, an extended
data type that defines an account number can be specialized by other extended data types
to define customer and vendor account numbers. The specialized extended data type inherits
 properties, such as string length, label text, and help text. You can override some of the
 properties on the specialized extended data type.

 ■ Table Use a table element type to specify data entity types that the Microsoft Dynamics AX
application platform uses to generate a SQL Server database table schema. Tables specify data
entity type fields along with their base enum or extended data type, field groups, indexes,
relationships, delete actions, and methods. Tables can also inherit the fields of base tables that
they are specified to extend. The Microsoft Dynamics AX runtime uses table specifications
to render data entry presentation controls and to maintain the referential integrity of the
data stored in the application database. The X++ editor also uses table elements to provide
 IntelliSense information when you write X++ code that manipulates data stored in the
 application database. Tables can be bound to form, report, query, and view data sources.

 ■ Map Use a map element type to specify a data entity type that factors out common table
fields and methods for accessing data stored in horizontally partitioned tables. For example,
the CustTable and VendTable tables in the Microsoft Dynamics AX application model are
mapped to the DirPartyMap map element so that you can use one DirPartyMap object to
 access common address fields and methods.

Note Consider table inheritance as an alternative to using maps because it
 increases the referential integrity of a database when base tables are referenced
in table relationships.

 ■ View Use a view element type to specify a database query that the Microsoft Dynamics AX
application platform uses to generate a SQL Server database view schema. Views can include

 CHAPTER 1 Architectural overview 11

a query model element that filters data accessed from one table or from multiple joined
 tables. Views also include table field mappings and methods. Views are read-only and
 primarily provide an efficient method for reading data. Views can be bound to form, report,
and query data sources.

 ■ Perspective Use a perspective element type to specify a group of tables and views that are
used together when designing and generating SSAS unified dimensional models.

 ■ Table collection Use a table collection element type to specify a group of tables whose
data is shared by two or more Microsoft Dynamics AX companies assigned to the same virtual
company. An application administrator maintains virtual companies, their effective company
assignments, and their table collection assignments. The Microsoft Dynamics AX runtime uses
the virtual company data area identifier instead of the effective company data area identifier
to securely access data stored in tables grouped by a table collection.

Caution The tables in a table collection should only reference tables inside
the table collection unless you write application extensions to maintain the
 referential integrity of the database.

 ■ Query Use a query element type to specify a database query. You add tables to query
element data sources and specify how they should be joined. You also specify how data is
returned from the query by using sort order and range specifications.

MorphX user interface control element types
The following model element types are part of the Microsoft Dynamics AX MorphX user interface
control meta-model:

 ■ Menu item Use a menu item element type to specify presentation control actions that
change the state of the Microsoft Dynamics AX system or user interface or that generate
reports. If you specify a label for the menu item, the Microsoft Dynamics AX runtime uses
it to name the action when it is rendered in the user interface. The Microsoft Dynamics AX
form engine also automatically adds a View details menu item to a drop-down menu, a menu
that appears when a user right-clicks a cell in a column that is bound to a table field that is
specified as a foreign key in a table relationship. The Microsoft Dynamics AX runtime uses the
referenced table’s menu item binding to open the form that renders the data from the table.
The Microsoft Dynamics AX form and report rendering engines ignore menu items that are
disabled by configuration keys or role-based access controls.

 ■ Menu Use a menu element type to specify a logical grouping of menu items. Menu
 specifications can also group submenus. The menu element named MainMenu specifies the
menu grouping for the Microsoft Dynamics AX navigation pane.

12 PART 1 A tour of the development environment

 ■ Form Use a form element type to specify a presentation control that a user uses to insert,
update, and read data stored in the application database. A form binds table, view, and query
data sources to presentation controls. A form is opened when a user selects a control bound
to a menu item, such as a button.

 ■ Form part Use a form part element type to specify a presentation control that renders a
form in the FactBox area of the user interface. For more information about the FactBox area,
see Chapter 6, “Designing the user experience.”

 ■ Info part Use an info part element type to specify a presentation control that renders the
result set of a query in the FactBox area of the user interface.

 ■ Report Use a report element type to specify a presentation control that renders database
data and calculated data in a page-layout format. A user can send a report to the screen, a
printer, a printer archive, an email account, or the file system. A report specification binds data
sources to presentation controls. A report is opened when a user clicks an output menu item
control, such as a button.

 ■ SSRS report Use an SSRS report element type to reference a Visual Studio Report Project
that is added to the Microsoft Dynamics AX model database.

 ■ Cue Use a cue element type to bind a menu item to a presentation control that renders a
pictorial representation of a numeric metric, such as the number of open sales orders. A cue is
rendered in a Microsoft Dynamics AX Role Center webpage.

 ■ Cue group Use a cue group element type to specify a group of cues that are displayed
together on the Microsoft Dynamics AX Role Center web part.

Workflow element types
Workflow element types define the workflow tasks, such as review and approval, by binding the tasks
to menu items. When a form is workflow-enabled, it automatically renders controls that support the
user in performing the tasks in the workflow. Workflow elements define workflow documents and
event handlers by using class elements. The following model element types are part of the Microsoft
Dynamics AX workflow meta-model:

 ■ Workflow type Use a workflow type element type to specify a workflow for process-
ing workflow documents. A workflow configuration consists of event handler specifications,
 custom workflow task specifications, and menu item bindings.

 ■ Workflow task Use a workflow task element type to specify a workflow task. A workflow
task comprises a list of task outcomes, event handler registrations, and menu item bindings.

 ■ Workflow approval Use a workflow approval element type to specify specialized workflow
approval tasks. A workflow approval task consists of approve, reject, request change, and deny
task outcomes, a list of event handler registrations, and menu item bindings.

 CHAPTER 1 Architectural overview 13

 ■ Workflow provider Use a workflow provider element type to specify the name of a class
that provides data to a workflow. Example data includes a list of workflow participants, a list
of task completion dates, and a structure of users that reflect positions in a position-reporting
hierarchy.

Code element types
The following model element types are part of the Microsoft Dynamics AX code meta-model:

 ■ Class Use a class element type to specify the structure and behavior of custom X++ types
that implement data maintenance, data tracking, and data processing logic in a Microsoft
Dynamics AX application. You specify class declarations, methods, and event handlers by using
the X++ programming language. Class methods can be bound to menu items so that they are
executed when users select action, display, or output menu item controls on a user interface.
You can also use a class model element type to specify class interfaces that only include
method definitions.

 ■ Macro Use a macro element type to specify a library of X++ syntax replacement procedures
that map X++ input character sequences, such as readable names, to output character
 sequences, such as numeric constants, during compilation.

 ■ Reference Use a reference element type to specify the name of a. NET Framework assembly
that contains .NET Framework common language runtime (CLR) types that can be referenced
in X++ source code. The MorphX editor reads type data from the referenced assemblies so
that IntelliSense is available for CLR namespaces, types, and type members. The MorphX
compiler uses the CLR type definitions in the referenced assembly for type and member syntax
validation, and the Microsoft Dynamics AX runtime uses the reference elements to locate and
load the referenced assembly.

 ■ Job Use a job element type to specify an X++ program that runs when you select the
 Command\Go menu item or press F5. Developers often write jobs when experimenting with
X++ language features. You should not use jobs to write application code.

Services element types
The following model element types are part of the Microsoft Dynamics AX services meta-model:

 ■ Service Use a service element type to enable an X++ class to be made available on an
 integration port.

 ■ Service group Use a service group element type to specify a web service deployment
 configuration that exposes web service operations as basic ports with web addresses.

14 PART 1 A tour of the development environment

Role-based security element types
The following model element types are part of the Microsoft Dynamics AX role-based access control
security meta-model:

 ■ Security policy Use a security policy element type to specify a configuration for
 constraining the view that a user has of data stored in one or more tables. A security policy
configuration consists of a primary table specification and a policy query.

 ■ Code permission Use a code permission element type to specify one or more access
permissions that secure access to logical units of application data and functionality. You can
specify data access permissions to secure access to data stored in tables. You can specify code
access permissions to secure access to forms, web controls, and server methods.

 ■ Privilege Use a privilege element type to specify one or more permissions that a user
requires to perform a task, such as a data maintenance task; or a step in a task, such as a data
view or data deletion step.

 ■ Duty Use a duty element type to specify a set of privileges that are required for a user to
carry out his or her internal control approval, review, and inquiry responsibilities and data
maintenance responsibilities.

 ■ Role Use a role element type to specify the organization role, functional role, or application
role that a user is assigned to in an organization. Sales agent is an example of an organization
role, manager is an example of a functional role, and system user role is an example of an
 application role.

 ■ Process cycle Use a process cycle element type to specify the operations and administration
activities that are repetitively performed by users who are assigned duties in the security
model. The expenditure cycle, the revenue cycle, the conversion cycle, and the accounting
cycle are examples of process cycles.

Web client element types
The elements of the Microsoft Dynamics AX application meta-model that are used to develop
 Enterprise Portal web client applications are illustrated in Figure 1-4.

The following model element types are part of the Microsoft Dynamics AX web client meta-model:

 ■ Web menu item Use a menu item element type to specify web navigation actions that
change the state of the Microsoft Dynamics AX system or user interface. If a label is specified
for the menu item, the Microsoft Dynamics AX runtime will use it to name the action when it is
rendered in the user interface.

 ■ Web menu Use a web menu element type to specify a logical grouping of web menu items.
Web menu specifications can group submenus. Web menus are rendered as hyperlinks on
webpages.

 CHAPTER 1 Architectural overview 15

Web menu
item

Web menu Web
content

Static fileWeb moduleWeb part

Web controlPage
definition

List
definition

FIGURE 1-4 Element types of the Microsoft Dynamics AX meta-model for developing Enterprise Portal
web applications.

 ■ Web content Use a web content element type to reference an ASP.NET user control.
ASP.NET user controls are developed in the Visual Studio IDE and are stored in the Microsoft
Dynamics AX model database.

 ■ Web part Use a web part element type to store a SharePoint web part in the Microsoft
 Dynamics AX model database. The web part will be saved to a web server when deployed.

 ■ Page definition Use a page definition element type to store a SharePoint webpage in the
Microsoft Dynamics AX model database. The page definition will be saved to a web server
when deployed.

 ■ Web control Use a web control element type to store an ASP.NET user control in the Microsoft
Dynamics AX model database. The web controls will be saved to a web server when deployed.

 ■ List definition Use a list definition element type to store a SharePoint list definition in the
Microsoft Dynamics AX model database. The list definition will be created on a SharePoint
server when deployed.

 ■ Static file Use a static file element type to store a file in the Microsoft Dynamics AX model
database. The file will be saved to a SharePoint server when deployed.

 ■ Web module Use a web module element type to specify the structure of a SharePoint
website. The web modules are created as subsites under the home site in SharePoint.

16 PART 1 A tour of the development environment

Documentation and resource element types
Documentation and resource element types are used to reference help documentation and system
documentation and to develop localized string resources and information resources.

The following model element types are part of the Microsoft Dynamics AX documentation and
resource meta-model:

 ■ Help document set Use a help documentation set element type to reference a collection of
published documents. Help document sets are opened from the Help menu of the Microsoft
Dynamics AX Windows client. For more information about creating and updating help
 documents, see Chapter 16, “Customizing and adding help.”

 ■ System documentation Use a system documentation element type to reference system
library content and hyperlinks to MSDN content. System content describes the Microsoft
 Dynamics AX system reserved words, functions, tables, types, enums, and classes.

 ■ Label file Use a label file element type to store files of localized text resources in the
 Microsoft Dynamics AX model store.

 ■ Resource Use a resource element type to store file resources such as image files and
 animation files. These resources are stored in the Microsoft Dynamics AX model database.

License and configuration element types
The element types of the Microsoft Dynamics AX application meta-model that are used to develop
license, configuration, and application model security are illustrated in Figure 1-5. These model
 element types change the operational characteristics of the Microsoft Dynamics AX development and
runtime environments.

Model
element

Security keyConfiguration
key

License
code

FIGURE 1-5 Element types of the Microsoft Dynamics AX meta-model for developing licensed and configurable
application modules.

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 Architectural overview 17

The following model element types are part of the Microsoft Dynamics AX license, configuration,
and application model security meta-model:

 ■ Configuration key Use a configuration key element type to assign application model
 elements to modules that a system administrator then uses to enable and disable application
modules and module features. The Microsoft Dynamics AX runtime renders presentation
 controls that are bound to menu items with active configuration keys. Configuration keys can
be specified as subkeys of parent keys.

 ■ License code Use a license code element type to lock or unlock the configuration of
 application modules developed by Microsoft. Modules are locked with license codes that must
be unlocked with license keys. License codes can be specified as subcodes of parent codes.

 CHAPTER 2 The MorphX development environment and tools 19

C H A P T E R 2

The MorphX development
environment and tools

In this chapter
Introduction . 19
Application Object Tree . 20
Projects . 27
Property sheet. 30
X++ code editor . 31
Label editor . 33
Code compiler . 37
Best Practices tool . 39
Debugger . 43
Reverse Engineering tool . 47
Table Browser tool . 52
Find tool . 53
Compare tool . 54
Cross-Reference tool . 60
Version control . 62

Introduction

Microsoft Dynamics AX includes a set of tools, the MorphX development tools, that you can use to
build and modify Microsoft Dynamics AX business applications. Each feature of a business application
uses the application model elements described in Chapter 1, “Architectural overview.” With the
 MorphX tools, you can create, view, modify, and delete the application model elements, which
contain metadata, structure (ordering and hierarchies of elements), properties (key and value pairs),
and X++ code. For example, a table element includes the name of the table, the properties set for the
table, the fields, the indexes, the relations, the methods, and so on.

This chapter describes the most commonly used tools and offers some tips and tricks for working
with them. You can find additional information and an overview of other MorphX tools in the MorphX
 Development Tools section of the Microsoft Dynamics AX software development kit (SDK) 2012 on MSDN.

Tip To enable development mode in Microsoft Dynamics AX 2012, press Ctrl+Shift+W to
launch the Development Workspace, which holds all of the development tools.

C H A P T E R 2

The MorphX development
environment and tools

Introduction

Application Object Tree
Navigate through the AOT
Create elements in the AOT
Modify elements in the AOT
Refresh elements in the AOT
Element actions in the AOT
Element layers and models in the AOT

Projects
Create a project
Automatically generate a project
Project types

Property sheet

X++ code editor
Shortcut keys
Editor scripts

Label editor
Create a label
Reference labels from X++

Code compiler

Best Practices tool
Rules
Suppress errors and warnings
Add custom rules

Debugger
Enable debugging
Debugger user interface
Debugger shortcut keys

Reverse Engineering tool
UML data model
UML object model
Entity relationship data model

Table Browser tool

Find tool

Compare tool
Start the Compare tool
Use the Compare tool
Compare APIs

Cross-Reference tool

Version control
Element life cycle
Common version control tasks
Work with labels
Synchronize elements
View the synchronization log
Show the history of an element
Compare revisions
View pending elements
Create a build
Integrate Microsoft Dynamics AX with other version control systems

20 PART 1 A tour of the development environment

Table 2-1 lists the MorphX tools that are discussed in this chapter.

TABLE 2-1 MorphX tools and other components used for development.

Tool Use this tool to

Application Object Tree (AOT) Start development activities. The AOT is the main entry point for most
development activities. It allows for browsing the repository of all
 elements that together make up the business application. You can use the
AOT to invoke the other tools and to inspect and create elements.

Projects Group related elements into projects.

Property sheet Inspect and modify properties of elements. The property sheet shows key
and value pairs.

X++ code editor Inspect and write X++ source code.

Label editor Create and inspect localizable strings.

Compiler Compile X++ code into an executable format.

Best Practices tool Automatically detect defects in both your code and your elements.

Debugger Find bugs in your X++ code.

Reverse Engineering tool Generate Microsoft Visio Unified Modeling Language (UML) and Entity
Relationship Diagrams (ERDs) from elements.

Table Browser tool View the contents of a table directly from a table element.

Type Hierarchy Browser and Type
Hierarchy Context

Navigate and understand the type hierarchy of the currently active
 element.

Find tool Search for code or metadata patterns in the AOT.

Compare tool See a line-by-line comparison of two versions of the same element.

Cross-Reference tool Determine where an element is used.

Version control Track all changes to elements and see a full revision log.

You can access these development tools from the following places:

 ■ In the Development Workspace, on the Tools menu.

 ■ On the context menu of elements in the AOT.

You can personalize the behavior of many MorphX tools by clicking Options on the Tools menu.
Figure 2-1 shows the Options form.

Application Object Tree

The AOT is the main entry point to MorphX and the repository explorer for all metadata. You can
open the AOT by clicking the AOT icon on the toolbar or by pressing Ctrl+D. The AOT icon looks like
this:

 CHAPTER 2 The MorphX development environment and tools 21

FIGURE 2-1 The Options form, in which development options are specified.

Navigate through the AOT
As the name implies, the AOT is a tree view. The root of the AOT contains the element categories,
such as Classes, Tables, and Forms. Some elements are grouped into subcategories to provide a
 better structure. For example, Tables, Maps, Views, and Extended Data Types are located under Data
 Dictionary, and all web-related elements are located under Web. Figure 2-2 shows the AOT.

You can navigate through the AOT by using the arrow keys on the keyboard. Pressing the right
 arrow key expands a node if it has any children.

Elements are arranged alphabetically. Because thousands of elements exist, understanding the
naming conventions and adhering to them is important to use the AOT effectively.

All element names in the AOT use the following structure:

<Business area name> + <Functional area> + <Functionality, action performed, or type of content>

With this naming convention, similar elements are placed next to each other. The business area name
is also often referred to as the prefix. Prefixes are commonly used to indicate the team responsible for
an element. For example, in the name VendPaymReconciliationImport, the prefix Vend is an abbreviation
of the business area name (Vendor), PaymReconciliation describes the functional area (payment
 reconciliation), and Import lists the action performed (import). The name CustPaymReconciliationImport
describes a similar functional area and action for the business area Customer.

22 PART 1 A tour of the development environment

FIGURE 2-2 The AOT.

Tip When building add-on functionality, in addition to following this naming convention, you
should add another prefix that uniquely identifies the solution. This additional prefix will help
prevent name conflicts if your solution is combined with work from other sources. Consider
using a prefix that identifies the company and the solution. For example, if a company called
MyCorp is building a payroll system, it could use the prefix McPR on all elements added.

Table 2-2 contains a list of the most common prefixes and their descriptions.

TABLE 2-2 Common prefixes.

Prefix Description

Ax Microsoft Dynamics AX typed data source

Axd Microsoft Dynamics AX business document

Asset Asset management

BOM Bill of material

COS Cost accounting

Cust Customer

Dir Directory, global address book

EcoRes Economic resources

HRM/HCM Human resources

Invent Inventory management

 CHAPTER 2 The MorphX development environment and tools 23

Prefix Description

JMG Shop floor control

KM Knowledge management

Ledger General ledger

PBA Product builder

Prod Production

Proj Project

Purch Purchase

Req Requirements

Sales Sales

SMA Service management

SMM Sales and marketing management, also called customer relationship management (CRM)

Sys Application frameworks and development tools

Tax Tax engine

Vend Vendor

Web Web framework

WMS Warehouse management

Tip When creating new elements, ensure that you follow the recommended naming
 conventions. Any future development and maintenance will be much easier.

Projects, described in detail later in this chapter, provides an alternative view of the information in
the AOT.

Create elements in the AOT
You can create new elements in the AOT by right-clicking the element category node and selecting
New <Element Type>, as shown in Figure 2-3.

Elements are given automatically generated names when they are created. However, you should
replace the default names with new names that conform to the naming convention.

Modify elements in the AOT
Each node in the AOT has a set of properties and either subnodes or X++ code. You can use the
 property sheet (shown in Figure 2-9) to inspect or modify properties, and you can use the X++ code
editor (shown in Figure 2-11) to inspect or modify X++ code.

24 PART 1 A tour of the development environment

FIGURE 2-3 Creating a new element in the AOT.

The order of the subnodes can play a role in the semantics of the element. For example, the tabs
on a form appear in the order in which they are listed in the AOT. You can change the order of nodes
by selecting a node and pressing the Alt key while pressing the Up or Down arrow key.

A red vertical line next to a root element name marks it as modified and unsaved, or dirty, as
shown in Figure 2-4.

FIGURE 2-4 A dirty element in the AOT, indicated by a vertical line next to the top-level node
 AccountingDistribution.

A dirty element is saved in the following situations:

 ■ The element is executed.

 ■ The developer explicitly invokes the Save or Save All action.

 CHAPTER 2 The MorphX development environment and tools 25

 ■ Autosave takes place. You specify the frequency of autosave in the Options form, which is
 accessible from the Tools menu.

Refresh elements in the AOT
If several developers modify elements simultaneously in the same installation of Microsoft Dynamics
AX, each developer’s local elements might not be synchronized with the latest version. To ensure
that the local versions of remotely changed elements are updated, an autorefresh thread runs in the
 background. This autorefresh functionality eventually updates all changes, but you might want to
force a refresh explicitly. You do this by right-clicking the element you want to restore and then click
Restore. This action refreshes both the on-disk and the in-memory versions of the element.

Typically, the general integrity of what’s shown in the AOT is managed automatically, but some
operations, such as restoring the application database or reinstalling the application, can lead to
inconsistencies that require manual resolution to ensure that the latest elements are used, as follows:

1. Close the Microsoft Dynamics AX client to clear any in-memory elements.

2. Stop the Microsoft Dynamics Server service on the Application Object Server (AOS) to clear
any in-memory elements.

3. Delete the application element cache files (*.auc) from the Local Application Data folder
 (located in “%LocalAppData%”) to remove the on-disk elements.

Element actions in the AOT
Each node in the AOT contains a set of available actions. You can access these actions from the
 context menu, which you can open by right-clicking any node.

Here are two facts to remember about actions:

 ■ The actions that are available depend on the type of node you select.

 ■ You can select multiple nodes and perform actions simultaneously on all the nodes selected.

A frequently used action is Open New Window, which is available for all nodes. It opens a new AOT
window with the current node as the root. This action was used to create the screen capture of the
AccountingDistribution element shown in Figure 2-4. After you open a new AOT window, you can drag
elements into the nodes, saving time and effort when you’re developing an application.

You can extend the list of available actions on the context menu. You can create custom actions
for any element in the AOT by using the features provided by MorphX. In fact, all actions listed on the
Add-Ins submenu are implemented in MorphX by using X++ and the MorphX tools.

26 PART 1 A tour of the development environment

You can enlist a class as a new add-in by following this procedure:

1. Create a new menu item and give it a meaningful name, a label, and Help text.

2. Set the menu item’s Object Type property to Class.

3. Set the menu item’s Object property to the name of the class to be invoked by the add-in.

4. Drag the menu item to the SysContextMenu menu.

5. If you want the action available only for certain nodes, you need to modify the verifyItem
method on the SysContextMenu class.

Element layers and models in the AOT
When you modify an element from a lower layer, a copy of the element is placed in the current layer
and the current model. All elements in the current layer appear in bold type (as shown in Figure 2-5),
which makes it easy to recognize changes. For a description of the layer technology, see the “Layers”
section in Chapter 21, “Application models.”

FIGURE 2-5 An element in the AOT that exists in several layers.

You can use the Application object layer and Application object model settings in the Options
form to personalize the information shown after the element name in the AOT (see Figure 2-1). Figure
2-5 shows a class with the option set to Show All Layers. As you can see, each method is suffixed with
information about the layers in which it is defined, such as SYS, VAR, and USR. If an element exists
in several layers, you can right-click it and then click Layers to access its versions from lower layers.
It is highly recommended that you use the Show All Layers setting during code upgrade because it
 provides a visual representation of the layer dimension directly in the AOT.

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 The MorphX development environment and tools 27

Projects

For a fully customizable overview of the elements, you can use projects. In a project, you can group
and structure elements according to your preference. A project is a powerful alternative to the AOT
because you can collect all the elements needed for a feature in one project.

Create a project
You open projects from the AOT by clicking the Project icon on the toolbar. Figure 2-6 shows the
Projects window and its Private and Shared projects nodes.

FIGURE 2-6 The Projects window, showing the list of shared projects.

Except for its structure, a project generally behaves like the AOT. Every element in a project is also
present in the AOT.

When you create a new project, you must decide whether it should be private or shared among all
 developers. You can’t set access requirements on shared projects. You can make a shared project private
(and a private project shared) by dragging it from the shared category into the private category.

Note Central features of Microsoft Dynamics AX 2012 are captured in shared projects to
provide an overview of all the elements in a feature. No private projects are included with
the application.

You can specify a startup project in the Options form If specified, the chosen project automatically
opens when Microsoft Dynamics AX is started.

28 PART 1 A tour of the development environment

Automatically generate a project
Projects can be automatically generated in several ways—from using group masks to customizing
project types—to make working with them easier. The following sections outline the various ways to
generate projects automatically.

Group masks
Groups are folders in a project. When you create a group, you can have its contents be automatically
generated by setting the ProjectGroupType property (All is an option) and providing a regular
 expression as the value of the GroupMask property. The contents of the group are created
 automatically and are kept up to date as elements are created, deleted, and renamed. Using group
masks ensures that your project is always current, even when elements are created directly in the AOT.

Figure 2-7 shows the ProjectGroupType property set to Classes and the GroupMask property set
to ReleaseUpdate on a project group. All classes with names containing ReleaseUpdate (the prefix for
data upgrade scripts) will be included in the project group.

FIGURE 2-7 Property sheet specifying settings for ProjectGroupType and GroupMask.

Figure 2-8 shows the resulting project when the settings from Figure 2-7 are used.

Filters
You can also generate a project based on a filter. Because all elements in the AOT persist in a
 database format, you can use a query to filter elements and have the results presented in a project.
You create a project filter by clicking the Filter button on the project’s toolbar. Depending on the
complexity of the query, a project can be generated instantly, or it might take several minutes.

With filters, you can create projects containing elements that meet the following criteria:

 ■ Elements created or modified within the last month

 ■ Elements created or modified by a named user

 ■ Elements from a particular layer

 CHAPTER 2 The MorphX development environment and tools 29

FIGURE 2-8 Project created by using a group mask.

Development tools
Several development tools, such as the Wizard Wizard, produce projects containing elements that the
wizard creates. The result of running the Wizard Wizard is a new project that includes a form, a class,
and a menu item—all the elements comprising the newly created wizard.

You can also use several other wizards, such as the AIF Document Service Wizard and the Class
Wizard, to create projects. To access these wizards, on the Tools menu, click Wizards.

Layer comparison You can compare the elements in one layer with the elements in another layer,
which is called the reference layer. If an element exists in both layers, and the definitions of the
 element are different or if the element doesn’t exist in the reference layer, the element is added to the
resulting project. To compare layers, click Tools > Code Upgrade > Compare Layers.

Upgrade projects When you upgrade from one version of Microsoft Dynamics AX to another
or install a new service pack, you need to deal with any new elements that are introduced and
 existing elements that have been modified. These changes might conflict with customizations you’ve
 implemented in a higher layer.

The Create Upgrade Project feature makes a three-way comparison to establish whether an
 element has any upgrade conflicts. It compares the original version with both the customized version
and the updated version. If a conflict is detected, the element is added to the project.

The resulting project provides a list of elements to update based on upgrade conflicts between
versions. You can use the Compare tool, described later in this chapter, to see the conflicts in each
element. Together, these features provide a cost-effective toolbox to use when upgrading. For more
information about code upgrade, see “Microsoft Dynamics AX 2012 White Papers: Code Upgrade” at
http://www.microsoft.com/download/en/details.aspx?id=20864.

To create an upgrade project, click Tools > Code Upgrade > Detect Code Upgrade Conflicts.

30 PART 1 A tour of the development environment

Project types
When you create a new project, you can specify a project type. So far, this chapter has discussed
 standard projects. The Test project, used to group a set of classes for unit testing, is another
 specialized project type provided in Microsoft Dynamics AX.

You can create a custom specialized project by creating a new class that extends the ProjectNode
class. With a specialized project, you can control the structure, icons, and actions available to the
project.

Property sheet

Properties are an important part of the metadata system. Each property is a key and value pair. You
can use the property sheet to inspect and modify properties of elements.

When the Development Workspace opens, the property sheet is visible by default. If you close
it, you can open it again anytime by pressing Alt+Enter or by clicking the Properties button on the
 toolbar of the Development Workspace. The property sheet automatically updates itself to show
properties for any element selected in the AOT. You don’t have to open the property sheet manually
for each element; you can leave it open and browse the elements. Figure 2-9 shows the property
sheet for the TaxSpec class. The two columns are the key and value pairs for each property.

Tip Pressing Esc in the property sheet sets the focus back to your origin.

FIGURE 2-9 Property sheet for an element in the AOT.

Figure 2-10 shows the Categories tab for the class shown in Figure 2-9. Here, related properties
are categorized. For elements with many properties, this view can make it easier to find the right
 property.

 CHAPTER 2 The MorphX development environment and tools 31

FIGURE 2-10 The Categories tab on the property sheet for an element in the AOT.

Read-only properties appear in gray. Just like files in the file system, elements contain information
about who created them and when they were modified. Elements that come from Microsoft all have
the same time and user stamps.

The default sort order places related properties near each other. Categories were introduced in
an earlier version of Microsoft Dynamics AX to make finding properties easier, but you can also sort
properties alphabetically by setting a parameter in the Options form.

You can dock the property sheet on either side of the screen by right-clicking the title bar. Docking
ensures that the property sheet is never hidden behind another tool.

X++ code editor

You write all X++ code with the X++ code editor. You open the editor by selecting a node in the AOT
and pressing Enter. The editor contains two panes. The left pane shows the methods available, and
the right pane shows the X++ code for the selected method, as shown in Figure 2-11.

FIGURE 2-11 The X++ code editor.

32 PART 1 A tour of the development environment

The X++ code editor is a basic text editor that supports color coding and IntelliSense.

Shortcut keys
Navigation and editing in the X++ code editor use standard shortcuts, as described in Table 2-3.
For Microsoft Dynamics AX 2012, some shortcuts differ from those in earlier versions to align with
 commonly used integrated development environments (IDEs) such as Microsoft Visual Studio.

TABLE 2-3 X++ code editor shortcut keys.

Action Shortcut Description

Show Help window F1 Opens context-sensitive Help for the type or
method currently selected in the editor.

Go to next error message F4 Opens the editor and positions the cursor at the
next compilation error, based on the contents of
the compiler output window.

Execute current element F5 Starts the current form, job, or class.

Compile F7 Compiles the current method.

Toggle a breakpoint F9 Sets or removes a breakpoint.

Run an editor script Alt+R Lists all available editor scripts and lets you select
one to execute (such as Send To Mail Recipient).

Open the Label editor Ctrl+Alt+Spacebar Opens the Label editor and searches for the
 selected text.

Go to implementation (drill down
in code)

F12 Goes to the implementation of the selected
method. This shortcut is highly useful for fast
navigation.

Go to the next method Ctrl+Tab Sets the focus on the next method in the editor.

Go to the previous method Ctrl+Shift+Tab Sets the focus on the previous method in the
 editor.

Enable block selection Alt+<mouse select>
or
Alt+Shift+arrow keys

Selects a block of code. Select the code you want
by pressing the Alt key while selecting text with
the mouse. Alternatively, hold down Alt and Shift
while moving the cursor with the arrow keys.

Cancel selection Esc Cancels the current selection.

Delete current selection/line Ctrl+X Deletes the current selection or, if nothing is
 selected, the current line.

Incremental search Ctrl+I Starts an incremental search, which marks the first
occurrence of the search text as you type it.
Pressing Ctrl+I again moves to the next occurrence,
and Ctrl+Shift+I moves to the previous occurrence.

Insert XML document header /// Inserts an XML comment header when you type ///.
When done in front of a class or method header,
this shortcut prepopulates the XML document
with template information relevant to the class or
method.

Execute editor script <name of script>+Tab Runs an editor script when you type the name of
an editor script on an empty line in the editor and
press Enter. Script names are case sensitive.

Comment selection Ctrl+E, C Inserts comment marking for the current selection.

Uncomment selection Ctrl+E, U Removes comment marking for the current selection.

 CHAPTER 2 The MorphX development environment and tools 33

Editor scripts
The X++ code editor contains a set of editor scripts that you can invoke by clicking the Script icon on
the X++ code editor toolbar or by typing <name of script>+TAB directly in the editor. Built-in editor
scripts provide functionality such as the following:

 ■ Send to mail recipient.

 ■ Send to file.

 ■ Generate code for standard code patterns such as main, construct, and parm methods.

 ■ Open the AOT for the element that owns the method.

Note By generating code, in a matter of minutes you can create a new class with the
right constructor method and the right encapsulation of member variables by using parm
 methods. Parm methods (parm is short for “parameter”) are used as simple property
 getters and setters on classes. Code is generated in accordance with X++ best practices.

Tip To add a main method to a class, add a new method, press Ctrl+A to select all code in
the editor tab for the new method, type main, and then press the Tab key. This will replace
the text in the editor with the standard template for a static main method.

The list of editor scripts is extendable. You can create your own scripts by adding new methods to
the EditorScripts class.

Label editor

The term label in Microsoft Dynamics AX refers to a localizable text resource. Text resources are used
throughout the product as messages to the user, form control labels, column headers, Help text
in the status bar, captions on forms, and text on web forms, to name just a few places. Labels are
 localizable, meaning that they can be translated into most languages. Because the space requirement
for displaying text resources typically depends on the language, you might fear that the actual
user interface must be manually localized as well. However, with IntelliMorph technology, the user
 interface is dynamically rendered and honors any space requirements imposed by localization.

The technology behind the label system is simple. All text resources are kept in a Unicode-based
label file that must have a three-letter identifier. In Microsoft Dynamics AX 2012, the label files are
managed in the AOT and distributed using model files. Figure 2-12 shows how the Label Files node in
the AOT looks with multiple label files and the language en-us.

34 PART 1 A tour of the development environment

FIGURE 2-12 The Label Files node in the AOT.

The underlying source representation is a simple text file following this naming convention:

Ax<Label file identifier><Locale>.ALD

The following are two examples, the first showing U.S. English and the second a Danish label file:

Axsysen-us.ALD

Axtstda.ALD

Each text resource in the label file has a 32-bit integer label ID, label text, and an optional label
description. The structure of the label file is simple:

@<Label file identifier><Label ID> <Label text>

[Label description]

Figure 2-13 shows an example of a label file.

FIGURE 2-13 Label file opened in Windows Notepad showing a few labels from the en-us label file.

 CHAPTER 2 The MorphX development environment and tools 35

This simple structure allows for localization outside of Microsoft Dynamics AX with third-party
tools. The AOT provides a set of operations for the label files, including an Export To Label file that
can be used to extract a file for external translation.

You can create new label files by using the Label File Wizard, which you access directly from the
Label Files node in the AOT, or from the Tools menu by pointing to Wizards > Label File Wizard. The
wizard guides you through the steps of adding a new label file or a new language to an existing label
file. After you run the wizard, the label file is ready to use. If you have an existing .ald file, you can also
create the appropriate entry in the AOT by using Create From File on the context menu of the Label
Files node in the AOT.

Note You can use any combination of three letters when naming a label file, and you
can use any label file from any layer. A common misunderstanding is that the label file
 identifier must match the layer in which it is used. Microsoft Dynamics AX includes a SYS
layer and a label file named SYS; service packs contain a SYP layer and a label file named
SYP. This naming standard was chosen because it is simple, easy to remember, and easy to
 understand. However, Microsoft Dynamics AX doesn’t impose any limitations on the label
file name.

Consider the following tips for working with label files:

 ■ When naming a label file, choose a three-letter ID that has a high chance of being unique,
such as your company’s initials. Don’t choose the name of the layer such as VAR or USR.
 Eventually, you’ll probably merge two separately developed features into the same installation,
a task that will be more difficult if the label file names collide.

 ■ When referencing existing labels, feel free to reference labels in the label files provided by
Microsoft, but avoid making changes to labels in these label files because they are updated
with each new version of Microsoft Dynamics AX.

Create a label
You use the Label editor to create new labels. You can start the Label editor by using any of the
 following procedures:

 ■ On the Tools menu, point to Label > Label Editor.

 ■ On the X++ code editor toolbar, click the Lookup Label > Text button.

 ■ On text properties in the property sheet, click the Lookup button.

You can use the Label editor (shown in Figure 2-14) to find existing labels. Reusing a label is
 sometimes preferable to creating a new one. You can create a new label by pressing Ctrl+N or by
clicking New.

36 PART 1 A tour of the development environment

FIGURE 2-14 The Label editor.

In addition to finding and creating new labels, you can also use the Label editor to find out where
a label is used. The Label editor also logs any changes to each label.

Consider the following tips when creating and reusing labels:

 ■ When reusing a label, make sure that the label means what you intend it to in all languages. Some
words are homonyms (words that have many meanings), and they naturally translate into many
 different words in other languages. For example, the English word can is both a verb and a noun.
Use the description column to note the intended meaning of the label.

 ■ When creating a new label, ensure that you use complete sentences or other stand-alone
words or phrases. Don’t construct complete sentences by concatenating labels with one or two
words because the order of words in a sentence differs from one language to another.

Reference labels from X++
In the MorphX design environment, labels are referenced in the format @<LabelFileIdentifier><LabelID>.
If you don’t want a label reference to be converted automatically to the label text, you can use
the literalStr function. When a placeholder is needed to display the value of a variable, you can use
the strFmt function and a string containing %n, where n is greater than or equal to 1. Placeholders
can also be used within labels. The following code shows a few examples:

// prints: Time transactions
print "@SYS1";

// prints: @SYS1
print literalStr("@SYS1");

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 The MorphX development environment and tools 37

// prints: Microsoft Dynamics is a Microsoft brand
print strFmt("%1 is a %2 brand", "Microsoft Dynamics", "Microsoft");
pause;

The following are some best practices to consider when referencing labels from X++:

 ■ Always create user interface text by using a label. When referencing labels from X++ code, use
double quotation marks.

 ■ Never create system text such as file names by using a label. When referencing system text
from X++ code, use single quotation marks. You can place system text in macros to make it
reusable.

Using single and double quotation marks to differentiate between system text and user interface
text allows the Best Practices tool to find and report any hard-coded user interface text. The Best
Practices tool is described in depth later in this chapter.

Code compiler

Whenever you make a change to X++ code, you must recompile, just as you would in any other
 programming language. You start the recompile by pressing F7 in the X++ code editor. Your code
also recompiles whenever you close the editor or save changes to an element.

The compiler also produces a list of the following information:

 ■ Compiler errors These prevent code from compiling and should be fixed as soon as
 possible.

 ■ Compiler warnings These typically indicate that something is wrong in the implementation.
See Table 2-4, later in this section, for a list of compiler warnings. Compiler warnings can and
should be addressed. Check-in attempts with compiler warnings are rejected unless specifically
allowed in the version control system settings.

 ■ Tasks (also known as to-dos) The compiler picks up single-line comments that start with
TODO. These comments can be useful during development for adding reminders, but you
should use them only in cases in which implementation can’t be completed. For example, you
might use a to-do comment when you’re waiting for a check-in from another developer. Be
careful when using to-do comments to postpone work, and never release code unless they are
addressed. For a developer, there is nothing worse than debugging an issue and finding
a to-do comment indicating that the issue was already known but overlooked.

 ■ Best practice deviations The Best Practices tool carries out more complex validations. For
more information, see the “Best Practices tool” later in this chapter.

38 PART 1 A tour of the development environment

Note Unlike other languages, X++ requires that you compile only code you’ve
modified, because the intermediate language the compiler produces is persisted
along with the X++ code and metadata. Of course, your changes can require
 other methods consuming your code to be changed and recompiled if, for
 example, you rename a method or modify its parameters. If the consumers are
not recompiled, a run-time error is thrown when they are invoked. This means
that you can execute your business application even when compile errors exist, so
long as you don’t use the code that can’t compile. Always ensure that you
compile the entire AOT when you consider your changes complete and fix any
compilation errors found. If you’re changing the class declaration somewhere in a
class hierarchy, all classes deriving from the changed class should be recompiled
too. This can be achieved using the Compile Forward option under Add-Ins in
the context menu for the changed class node.

The Compiler output window provides access to every issue found during compilation, as shown in
Figure 2-15. The window presents one list of all relevant errors, warnings, best practices, and tasks. Each
type of message can be disabled or enabled by using the respective buttons. Each line in the list contains
information about each issue that the compiler detects, a description of the issue, and its location.

FIGURE 2-15 The powerful combination of the X++ code editor and the Compiler output window.

 CHAPTER 2 The MorphX development environment and tools 39

You can export the contents of the Compiler output window. This capability is useful if you want
to share the list of issues with team members. The exported file is an HTML file that can be viewed
in Windows Internet Explorer or reimported into the Compiler output window in another Microsoft
Dynamics AX session.

In the Compiler output window, click Setup > Compiler to define the types of issues that the
compiler should report. Compiler warnings are grouped into four levels, as shown by the examples in
Table 2-4. Each level represents a certain level of severity, with 1 being the most critical and 4 being
recommended to comply with best practices.

TABLE 2-4 Example compiler warnings.

Warning message Level

Break statement found outside legal context 1

The new method of a derived class does not call super() 1

The new method of a derived class may not call super() 1

Function never returns a value 1

Not all paths return a value 1

Assignment/comparison loses precision 1

Unreachable code 2

Empty compound statement 3

Class names should start with an upper case letter 4

Member names should start with a lower case letter 4

Best Practices tool

Following Microsoft Dynamics AX best practices when you develop applications has several important benefits:

 ■ You avoid less-than-obvious pitfalls. Following best practices helps you avoid many obstacles,
even those that appear only in border scenarios that would otherwise be difficult and time
consuming to detect and test. Using best practices allows you to take advantage of the
 combined experience of Microsoft Dynamics AX expert developers.

 ■ Your learning curve is flattened. When you perform similar tasks in a standard way, you are more
comfortable in an unknown area of the application. Consequently, adding new resources to a project is
more cost effective, and downstream consumers of the code can make changes more readily.

 ■ You are making a long-term investment. Code that conforms to standards is less likely to
 require rework during an upgrade process, whether you’re upgrading to Microsoft Dynamics
AX 2012, installing service packs, or upgrading to future releases.

 ■ You are more likely to ship on time. Most of the problems you face when implementing a
solution in Microsoft Dynamics AX have been solved at least once before. Choosing a proven
solution results in faster implementation and less regression. You can find solutions to known
problems in both the Developer Help section of the SDK and the code base.

40 PART 1 A tour of the development environment

The Microsoft Dynamics AX 2012 SDK contains an important discussion about conforming to
best practices in Microsoft Dynamics AX. Constructing code that follows proven standards and
 patterns can’t guarantee a project’s success, but it minimizes the risk of failure through late, expensive
 discovery and decreases the long-term maintenance cost. The Microsoft Dynamics AX 2012 SDK is
available at http://msdn.microsoft.com/en-us/library/aa496079.aspx.

The Best Practices tool is a powerful supplement to the best practices discussion in the SDK. This
tool is the MorphX version of a static code analysis tool, similar to FxCop for the Microsoft .NET
Framework. The Best Practices tool is embedded in the compiler, and the results are reported in the
Compiler output window the same way as other messages from the compilation process.

The purpose of static code analysis is to detect defects and risky coding patterns in the code
 automatically. The longer a defect exists, the more costly it becomes to fix—a bug found in the design
phase is much cheaper to correct than a bug in shipped code running at several customer sites. The
Best Practices tool allows any developer to run an analysis of his or her code and application model to
ensure that it conforms to a set of predefined rules. Developers can run analysis during development,
and they should always do so before implementations are tested. Because an application in Microsoft
Dynamics AX is much more than just code, the Best Practices tool also performs static analysis on the
metadata—the properties, structures, and relationships that are maintained in the AOT.

The Best Practices tool displays deviations from the best practice rules, as shown in Figure 2-15.
Double-clicking a line on the Best Practices tab opens the X++ code editor on the violating line of code or,
if the Best Practices violation is related to metadata, it will open the element in an AOT window.

Rules
The Best Practices tool includes about 400 rules, a small subset of the best practices mentioned in
the SDK. You can define the best practice rules that you want to run in the Best practice parameters
 dialog box: on the Tools menu, click > Options > Development, and then click Best Practices.

Note You must set the compiler error level to 4 if you want best practice rule violations to be
reported. To turn off the Best Practices tool, on the Tools menu, click Options > Development,
and then click Compiler and set the diagnostic level to less than 4.

The best practice rules are divided into categories. By default, all categories are turned on, as
shown in Figure 2-16.

The best practice rules are divided into three levels of severity:

 ■ Errors The majority of the rules focus on errors. Any check-in attempt with a best practice
error is rejected. You must take all errors seriously and fix them as soon as possible.

 ■ Warnings Follow a 95/5 rule for warnings. This means that you should treat 95 percent of
all warnings as errors; the remaining 5 percent constitute exceptions to the rule. You should
provide valid explanations in the design document for all warnings you choose to ignore.

 CHAPTER 2 The MorphX development environment and tools 41

 ■ Information In some situations, your implementation might have a side effect that isn’t
obvious to you or the user (for example, if you assign a value to a variable but you never use
the variable again). These are typically reported as information messages.

FIGURE 2-16 The Best Practice Parameters dialog box.

Suppress errors and warnings
The Best Practices tool allows you to suppress errors and warnings. A suppressed best practice
deviation is reported as information. This gives you a way to identify the deviation as reviewed and
accepted. To identify a suppressed error or warning, place a line containing the following text just
before the deviation:

//BP Deviation Documented

Only a small subset of the best practice rules can be suppressed. Use the following guidelines for
selecting which rules to suppress:

 ■ Dangerous API exceptions When exceptions exist that are impossible to detect
 automatically, examine each error to ensure the correct implementation. Dangerous
 application programming interfaces (APIs) are often responsible for such exceptions.
A dangerous API is an API that can compromise a system’s security when used incorrectly. If a
dangerous API is used, a suppressible error is reported. You can use some so-called dangerous
APIs when you take certain precautions, such as using code access security (CAS). You can
 suppress the error after you apply the appropriate mitigations.

 ■ False positives About 5 percent of all warnings are false positives and can be suppressed.
Note that only warnings caused by actual code can be suppressed this way, not warnings
caused by metadata.

42 PART 1 A tour of the development environment

After you set up the best practices, the compiler automatically runs the best practices check
 whenever an element is compiled. The results are displayed on the Best Practices list in the Compiler
output dialog box.

Some of the metadata best practice violations can also be suppressed, but the process of
 suppressing them is different. Instead of adding a comment to the source code, the violation is added
to a global list of ignored violations. This list is maintained in the macro named SysBPCheckIgnore.
This allows for central review of the number of suppressions, which should be kept to a minimum.

Add custom rules
You can use the Best Practices tool to create your own set of rules. The classes used to check for rules
are named SysBPCheck<Element type>. You call the init, check, and dispose methods once for each
node in the AOT for the element being compiled.

One of the most interesting classes is SysBPCheckMemberFunction, which is called for each piece
of X++ code whether it is a class method, form method, macro, or other method. For example, if
 developers don’t want to include their names in the source code, you can implement a best practice
check by creating the following method on the SysBPCheckMemberFunction class:

protected void checkUseOfNames()
{
 #Define.MyErrorCode(50000)
 container devNames = ['Arthur', 'Lars', 'Michael'];
 int i;
 int j,k;
 int pos;
 str line;
 int lineLen;

 for (i=scanner.lines(); i>0; i--)
 {
 line = scanner.sourceLine(i);
 lineLen = strLen(line);
 for (j=conLen(devNames); j>0; j--)
 {
 pos = strScan(line, conPeek(devNames, j), 1, lineLen);
 if (pos)
 {
 sysBPCheck.addError(#MyErrorCode, i, pos,
 "Don't use your name!");
 }
 }
 }
}

To enlist the rule, make sure to call the preceding method from the check method. Compiling this
sample code results in the best practice errors shown in Table 2-5.

 CHAPTER 2 The MorphX development environment and tools 43

TABLE 2-5 Best practice errors in checkUseOfNames.

Message Line Column

Don’t use your name! 4 28

Don’t use your name! 4 38

Don’t use your name! 4 46

Variable k not used 6 11

Method contains text constant: ‘Don’t use your name!’ 20 59

In an actual implementation, names of developers would probably be read from a file. Ensure
that you cache the names to prevent the compiler from going to the disk to read the names for each
method being compiled.

Note The best practice check also identified that the code contained a variable named k
that was declared, but never referenced. This is one of the valuable checks ensuring that
the code can easily be kept up to date, which helps avoid mistakes. In this case, k was not
 intended for a specific purpose and can be removed.

Debugger

Like most development environments, MorphX features a debugger. The debugger is a stand-alone
application, not part of the Microsoft Dynamics AX shell like the rest of the tools mentioned in this
chapter. As a stand-alone application, the debugger allows debugging of X++ in any of the following
Microsoft Dynamics AX components:

 ■ Microsoft Dynamics AX client

 ■ AOS

 ■ Business Connector (BC.NET)

For other debugging scenarios, such as web services, Microsoft SQL Server Reporting Services
(SSRS) reports, and Enterprise Portal, see Chapter 3, “Microsoft Visual Studio tools for Microsoft
 Dynamics AX.”

Enable debugging
For the debugger to start, a breakpoint must be hit when X++ code is executed. You set breakpoints
by using the X++ code editor in the Microsoft Dynamics AX Development Workspace. The debugger
starts automatically when any component hits a breakpoint.

44 PART 1 A tour of the development environment

You must enable debugging for each component as follows:

 ■ In the Development Workspace, on the Tools menu, click Options > Development > Debug,
and then select When Breakpoint in the Debug mode list.

 ■ From the AOS, open the Microsoft Dynamics AX Server Configuration Utility under Start
> Administrative Tools > Microsoft Dynamics AX 2012 Server Configuration. Create a new
 configuration, if necessary, and then select the check box Enable Breakpoints to debug X++
code running on this server.

 ■ For Enterprise Portal code that uses the BCPROXY context to run interpreted X++ code, in the
Microsoft Dynamics AX Server Configuration Utility, create a new configuration, if necessary,
and select the check box Enable Global Breakpoints.

Ensure that you are a member of the local Windows Security Group named Microsoft Dynamics AX
Debugging Users. This is normally ensured using setup, but if you did not set up Microsoft Dynamics
AX by using your current account, you need to do this manually through Edit Local Users And Groups
in the Windows Control Panel. This is necessary to prohibit unauthorized debugging, which could
expose sensitive data, provide a security risk, or impose unplanned service disruptions.

Caution It is recommended that you do not enable any of the debugging capabilities in
a live environment. If you do, execution will stop when it hits a breakpoint, and the client
will stop responding to users. Running the application with debug support enabled also
noticeably affects performance.

To set or remove breakpoints, press F9. You can set a breakpoint on any line you want. If you set a
breakpoint on a line without an X++ statement, however, the breakpoint will be triggered on the next
X++ statement in the method. A breakpoint on the last brace will never be hit.

To enable or disable a breakpoint, press Ctrl+F9. For a list of all breakpoints, press Shift+F9.

Breakpoints are persisted in the SysBreakpoints and SysBreakpointLists database tables. Each
 developer has his or her own set of breakpoints. This means that your breakpoints are not cleared
when you close Microsoft Dynamics AX and that other Microsoft Dynamics AX components can
 access them and break where you want them to.

Debugger user interface
The main window in the debugger initially shows the point in the code where a breakpoint was hit.
You can control execution one step at a time while inspecting variables and other aspects of the code.
Figure 2-17 shows the debugger opened to a breakpoint with all the windows enabled.

 CHAPTER 2 The MorphX development environment and tools 45

FIGURE 2-17 Debugger with all windows enabled.

Table 2-6 describes the debugger’s various windows and some of its other features.

TABLE 2-6 Debugger user interface (UI) elements.

Debugger element Description

Code window Shows the current X++ code.
Each variable has a ScreenTip that reveals its value. You can
drag the next-statement pointer in the left margin. This
 pointer is particularly useful if the execution path isn’t what
you expected or if you want to repeat a step.

Variables window Shows local, global, and member variables, along with their
names, values, and types.
Local variables are variables in scope at the current execution
point. Global variables are the global classes that are always
instantiated: Appl, Infolog, ClassFactory, and VersionControl.
Member variables make sense only on classes, and they show
the class member variables.
If a variable is changed as you step through execution, it
is marked in red. Each variable is associated with a client
or server icon. You can modify the value of a variable by
 double-clicking the value.

46 PART 1 A tour of the development environment

Call Stack window Shows the code path followed to arrive at a particular
 execution point.
Clicking a line in the Call Stack window opens the code in the
Code window and updates the local Variables window. A client
or server icon indicates the tier on which the code is executed.

Watch window Shows the name, value, and type of the variables. Five
 different Watch windows are available. You can use these to
group the variables you’re watching in the way that you prefer.
You can use this window to inspect variables without the
scope limitations of the Variables window. You can drag a
 variable here from the Code window or the Variables window.

Breakpoints window Lists all your breakpoints. You can delete, enable, and disable
the breakpoints through this window.

Output window Shows the traces that are enabled and the output sent to the
Infolog application framework, which is introduced in Chapter 5,
“Designing the user experience.” The Output window includes
the following pages:

 ■ Debug You can instrument your X++ code to
trace to this page by using the printDebug static
method on the Debug class.

 ■ Infolog This page contains messages in the
queue for the Infolog.

 ■ Database, Client/Server, and ActiveX
Trace Any traces enabled on the Development
tab in the Options form appear on these pages.

Status bar window Provides the following important context information:
 ■ Current user The ID of the user who is logged

on to the system. This information is especially
useful when you are debugging incoming web
requests.

 ■ Current session The ID of the session on the
AOS.

 ■ Current company accounts The ID of the
 current company accounts.

 ■ Transaction level The current transaction
level. When it reaches zero, the transaction is
 committed.

Tip As a developer, you can provide more information in the value field for your classes
than what is provided by default. The defaults for classes are New and Null. You can
change the defaults by overriding the toString method. If your class doesn’t explicitly
 extend the object (the base class of all classes), you must add a new method named
 toString, returning and taking no parameters, to implement this functionality.

 CHAPTER 2 The MorphX development environment and tools 47

Debugger shortcut keys
Table 2-7 lists the most important shortcut keys available in the debugger.

TABLE 2-7 Debugger shortcut keys.

Action Shortcut Description

Run F5 Continue execution

Stop debugging Shift+F5 Break execution

Step over F10 Step over next statement

Run to cursor Ctrl+F10 Continue execution but break at the cursor’s
position

Step into F11 Step into next statement

Step out Shift+F11 Step out of method

Toggle breakpoint Shift+F9 Insert or remove breakpoint

Variables window Ctrl+Alt+V Open or close the Variables window

Call Stack window Ctrl+Alt+C Open or close the Call Stack window

Watch window Ctrl+Alt+W Open or close the Watch window

Breakpoints window Ctrl+Alt+B Open or close the Breakpoints window

Output window Ctrl+Alt+O Open or close the Output window

Reverse Engineering tool

You can generate Visio models from existing metadata. Considering the amount of metadata
 available in Microsoft Dynamics AX 2012 (more than 50,000 elements and more than 18 million
lines of text when exported), it’s practically impossible to get a clear view of how the elements relate
to each other just by using the AOT. The Reverse Engineering tool is a great aid when you need to
 visualize metadata.

Note You must have Visio 2007 or later installed to use the Reverse Engineering tool.

The Reverse Engineering tool can generate a Unified Modeling Language (UML) data model, a
UML object model, or an entity relationship data model, including all elements from a private or
shared project. To open the tool, in the Projects window, right-click a project or a perspective, point
to Add-Ins > Reverse Engineer. You can also open the tool by selecting Reverse Engineer from the
Tools menu. In the dialog box shown in Figure 2-18, you must specify a file name and model type.

When you click OK, the tool uses the metadata for all elements in the project to generate a Visio
document that opens automatically. You can drag elements from the Visio Model Explorer onto the
drawing surface, which is initially blank. Any relationship between two elements is automatically
shown.

48 PART 1 A tour of the development environment

FIGURE 2-18 The Reverse Engineering dialog box.

UML data model
When generating a UML data model, the Reverse Engineering tool looks for tables in the project. The
UML model contains a class for each table and view in the project and its attributes and associations.
Figure 2-19 shows a class diagram with the CustTable (customers), InventTable (inventory items),
SalesTable (sales order header), and SalesLine (sales order line) tables. To simplify the diagram, some
attributes have been removed.

The UML model also contains referenced tables and all extended data types, base enumerations,
and X++ data types. You can include these items in your diagrams without having to run the Reverse
Engineering tool again.

Fields in Microsoft Dynamics AX are generated as UML attributes. All attributes are marked as
public to reflect the nature of fields in Microsoft Dynamics AX. Each attribute also shows the type. The
primary key field is underlined. If a field is a part of one or more indexes, the field name is prefixed
with the names of the indexes; if the index is unique, the index name is noted in brackets.

Relationships in Microsoft Dynamics AX are generated as UML associations. The Aggregation
 property of the association is set based on two conditions in metadata:

 ■ If the relationship is validating (the Validate property is set to Yes), the Aggregation property is
set to Shared. This is also known as a UML aggregation, represented by a white diamond.

 ■ If a cascading delete action exists between the two tables, a composite association is added to
the model. A cascading delete action ties the lifespan of two or more tables and is represented
by a black diamond.

 CHAPTER 2 The MorphX development environment and tools 49

-CustTable_OnvoiceAccount{DataAreald:DataAreald+InvoiceAccount:AccountNum}

1

-SalesTable{DataAreald:DataAreald+
Salesld:Salesld}

0..*

0..*

0..1

0..*

-InventTable{DataAreald:DataAreald+
Itemld:Itemld}

-AlternativelnventTable{DataAreald:DataAreald+
Altltemld:Itemld}

+CustAccount : CustAccount
+CustGroup : CustGroupld
+{ltemldx}--Statusltemldx--Itemld : ltemldSmall
+{SalesLineldx}--LineNum : LineNum
+{SalesLineldx}--Salesld : SalesldBase
+Name : ItemFreeTxt
+SalesGroup : CommissSalesGroup
+SalesPrice : SalesPrice
+SalesQty : SalesOrderedQty

-CustAccount{}

+{ltemldx}--{Productldx}--{Recld}--dataAreald : DataAreald
+{ltemldx}--Typeldx--ltemld : ltemld
+Typeldx--ltemType : ItemType
+PrimaryVendorld : ItemPrimaryVendld
+ProdGroupld : ItemProdGroupld

WorksheetLine..SalesLine

+{Productldx}--Product : EcoResProductRecld
+SalesModel : ItemSalesModel
+UnitVolume : ItemVolume
+UseAltltemld : ItemUseAlternative

1

0..*

0..*

0..1

+BankAccount : CustBankAccountld
+CustGroup : CustGroupld
+{Accountldx}--{Party}--{Recld}--dataAreald : DataAreald

WorksheetHeader..SalesTable

+{Custldx}--StatusCustAccldx--CustCreatedDateldx--CustAccount : CustAccount
+CustGroup : CustGroupld
+Custlnvoiceld : Custlnvoiceld
+LineDisc : CustLineDiscCode
+SalesGroup : CommissSalesGroup
+{Salesldx}--{Custldx}--Projldldx--SalesTypeldx--Salesld : SalesldBase
+SalesName : SalesName

-CustlnvoiceAccount{}

-CustAccount{}

*1

*

0..1

InventTable

1

+InvoiceAccount : CustlnvoiceAccount
+InvoiceAddress : CustlnvoiceAddress
+{Party}--Party : DirPartyRecld
+SalesGroup : CommissSalesGroup
+VendAccount--VendAccount : VendAccount

+{Accountldx}--AccountNum : CustAccount

CustTable

*

-CustTable{DataAreald:DataAreald+CustAccount:
AccountNum}

0..1

FIGURE 2-19 UML data model diagram.

The name of an association endpoint is the name of the Microsoft Dynamics AX relationship. The
names and types of all fields in the relationship appear in brackets.

UML object model
When generating an object model, the Reverse Engineering tool looks for Microsoft Dynamics AX
classes, tables, and interfaces in the project. The UML model contains a class for each Microsoft
 Dynamics AX table and class in the project and an interface for each Microsoft Dynamics AX
 interface in the project. The UML model also contains attributes and operations, including return
types, parameters, and the types of the parameters. Figure 2-20 shows an object model of the most
 important RunBase and Batch classes and interfaces in Microsoft Dynamics AX. To simplify the view,
some attributes and operations have been removed and operation parameters are suppressed.

The UML model also contains referenced classes, tables, and all extended data types, base
 enumerations, and X++ data types. You can include these elements in your diagrams without having
to run the Reverse Engineering tool again.

Fields and member variables in Microsoft Dynamics AX are generated as UML attributes. All fields
are generated as public attributes, whereas member variables are generated as protected attributes.
Each attribute also shows the type. Methods are generated as UML operations, including return type,
parameters, and the types of the parameters.

50 PART 1 A tour of the development environment

The Reverse Engineering tool also picks up any generalizations (classes extending other classes),
realizations (classes implementing interfaces), and associations (classes using each other). The
 associations are limited to references in member variables.

#dialogCanceled : boolean

#dialog()
+getFromDialog()
+init()
+name()
+new()
+pack()
+progressInit()
+prompt()
+run()

+run()

+batchInfo()

#groupId : BatchGroupId

BatchInfo
BatchRun

+canGoBatch()
+caption()
+parmCurrentBatch()
+runsImperonated()
+showBatchTab()

+doBatch()

+batchInfo()

+dialog()
+run()

+construct()
#runJob()

+canGoBatch()
+caption()
+getFromDialog()
+initBatch()
+mustGoBatch()
+parmCurrentBatch()
+prompt()
+runsImpresonated()

RunBase

RunBaseBatch

+unpack()
+validate()
+description()

#batchnfo : BatchInfo

#groupId : BatchGroupId
#privateBatch : NoYes

#inBatch : boolean
#currentBatch : Batch

#progress : RunbaseProgressinterface SysRunable

interface Batchable

1

FIGURE 2-20 UML object model diagram.

Note To get the names of operation parameters, you must reverse-engineer in debug
mode. The names are read from metadata only and placed into the stack when in debug
mode. To enable debug mode, on the Development tab of the Options form, select When
Breakpoint in the Debug Mode list.

 CHAPTER 2 The MorphX development environment and tools 51

Entity relationship data model
When generating an entity relationship data model, the Reverse Engineering tool looks for tables and
views in the project. The entity relationship model contains an entity type for each AOT table in the
project and attributes for the fields in each table. Figure 2-21 shows an Entity Relationship Diagram
(ERD) for the tables HcmBenefit (Benefit), HcmBenefitOption (Benefit option), HcmBenefitType (Benefit
type,) and HcmBenefitPlan (Benefit plan).

HcmBenefitOption
HcmBenefitType

BenefitOptionID (AK1)
BenefitTypeId (AK1)

BenefitPlanID (AK1)

ConcurrentEnrollment (O)
Description
Partition (O)

Partition (O)

recVersion

Description
Partition (O)
recVersion

recVersion
ValidFrom (AK1)
ValidTo (AK1)

Description
IsBeneficiaryOption (O)
IsDependentOption (O)
Partition (O)
recVersion

Recld
Recld

Recld
Recld

Recld (FK,IE1)

Recld (FK,AK1)
Recld (FK,AK1)

HcmBenefitPlan
HcmBenefit

FIGURE 2-21 ERD using IDEF1X notation.

Fields in Microsoft Dynamics AX are generated as entity relationship columns. Columns can be
foreign key (FK), alternate key (AK), inversion entry (IE), and optional (O). A foreign key column is used
to identify a record in another table, an alternate key uniquely identifies a record in the current table,
an inversion entry identifies zero or more records in the current table (these are typical of the fields in
nonunique indexes), and optional columns don’t require a value.

Relationships in Microsoft Dynamics AX are generated as entity relationships. The
 EntityRelationshipRole property of the relationship in Microsoft Dynamics AX is used as the foreign
key role name of the relation in the entity relationship data model.

Note The Reverse Engineering tool produces an ERX file. To work with the generated file
in Visio, do the following: In Visio, create a new Database Model Diagram, and then, on the
select Database menu, point to Import > Import Erwin ERX file. Afterward, you can drag
relevant tables from the Tables And Views pane (available from the Database menu) to the
diagram canvas.

52 PART 1 A tour of the development environment

Table Browser tool

The Table Browser tool is a small, helpful tool that can be used in numerous scenarios. You can
browse and maintain the records in a table without having to build a user interface. This tool is useful
when you’re debugging, validating data models, and modifying or cleaning up data, to name just a
few uses.

To access the Table Browser tool, right-click any of the following types of items in the AOT, and
then point to Add-Ins > Table Browser:

 ■ Tables

 ■ Tables listed as data sources in forms, queries, and data sets

 ■ System tables listed in the AOT under System Documentation\Tables

Note The Table Browser tool is implemented in X++. You can find it in the AOT under the
name SysTableBrowser. It is a good example of how to bind the data source to a table at
run time.

Figure 2-22 shows the Table Browser tool when started from the CustTrans table. In addition to the
querying, sorting, and filtering capabilities provided by the grid control, you can type an SQL SELECT
statement directly into the form using X++ SELECT statement syntax and see a visual display of the
 result set. This tool is a great way to test complex SELECT statements. It fully supports grouping,
 sorting, aggregation, and field lists.

FIGURE 2-22 The Table Browser tool showing the contents of the CustTrans table demo data.

You can also choose to see only the fields from the auto-report field group. These fields are
printed in a report when the user clicks Print in a form with this table as a data source. Typically, these
fields hold the most interesting information. This option can make it easier to find the values you’re
looking for in tables with many fields.

 CHAPTER 2 The MorphX development environment and tools 53

Note The Table Browser tool is just a standard form that uses IntelliMorph. It can’t display
fields for which the visible property is set to No or fields that the current user doesn’t have
access to.

Find tool

Search is everything, and the size of Microsoft Dynamics AX applications calls for a powerful and
 effective search tool.

Tip You can use the Find tool to search for an example of how to use an API. Real
 examples can complement the examples found in the documentation.

You can start the Find tool, shown in Figure 2-23, from any node in the AOT by pressing Ctrl+F or
by clicking Find on the context menu. The Find tool supports multiple selections in the AOT.

FIGURE 2-23 The Find tool.

On the Name & Location tab, you define what you’re searching for and where to look:

 ■ In Search, the menu options are Methods and All Nodes. If you choose All Nodes, the
 Properties tab appears.

 ■ The Named box limits the search to nodes with the name you specify.

 ■ The Containing box specifies the text to look for in the method, expressed as a regular expression.

 ■ If you select the Show Source Code check box, results include a snippet of source code
c ontaining the match, making it easier to browse the results.

By default, the Find tool searches the node (and its subnodes) selected in the AOT. If you change
focus in the AOT while the Find tool is open, the Look In value is updated. This is quite useful if you
want to search several nodes using the same criterion. You can disable this behavior by clearing the
Use Selection check box.

54 PART 1 A tour of the development environment

On the Date tab, you specify additional ranges for your search, such as Modified Date and Modified By.

On the Advanced tab, you can specify more advanced settings for your search, such as the layer to
search, the size range of elements, the type of element, and the tier on which the element is set to run.

On the Filter tab, shown in Figure 2-24, you can write a more complex query by using X++ and
type libraries. The code in the Source text box is the body of a method with the following profile:

boolean FilterMethod(str _treeNodeName,
 str _treeNodeSource,
 XRefPath _path,
 ClassRunMode _runMode)

The example in Figure 2-24 uses the class SysScannerClass to find any occurrence of the ttsAbort
X++ keyword. The scanner is primarily used to pass tokens into the parser during compilation. Here,
however, it detects the use of a particular keyword. This tool is more accurate (though slower) than
using a regular expression because X++ comments don’t produce tokens.

FIGURE 2-24 Filtering in the Find tool.

The Properties tab appears when All Nodes is selected in the Search list. You can specify a search
range for any property. Leaving the range blank for a property is a powerful setting when you want
to inspect properties: it matches all nodes, and the property value is added as a column in the results,
as shown in Figure 2-25. The search begins when you click Find Now. The results appear at the bottom
of the dialog box as they are found.

Double-clicking any line in the result set opens the X++ code editor and sets the focus on the code
example that matches. When you right-click the lines in the result set, a context menu containing the
Add-Ins menu opens.

Compare tool

Several versions of the same element typically exist. These versions might emanate from various layers
or revisions in version control, or they could be modified versions that exist in memory. Microsoft
Dynamics AX has a built-in Compare tool that highlights any differences between two versions of an
element.

 CHAPTER 2 The MorphX development environment and tools 55

The comparison shows changes to elements, which can be modified in three ways:

 ■ A metadata property can be changed.

 ■ X++ code can be changed.

 ■ The order of subnodes can be changed, such as the order of tabs on a form.

FIGURE 2-25 Search results in the Find tool.

Start the Compare tool
To open the Compare tool, right-click an element, and then click Compare. A dialog box opens where
you can select the versions of the element you want to compare, as shown in Figure 2-26.

FIGURE 2-26 The Comparison dialog box.

The versions to choose from come from many sources. The following is a list of all possible types of
versions:

 ■ Standard layered version types These include SYS, SYP, GLS, GLP, FPK, FPP, SLN, SLP, ISV,
ISP, VAR, VAP, CUS, CUP, USR, and USP.

 ■ Old layered version types (old SYS, old SYP, and so on) If a baseline model store is
 present, elements from the files are available here. This allows you to compare an older version
of an element with its latest version. For more information about layers and the baseline
model store, see Chapter 21.

56 PART 1 A tour of the development environment

 ■ Version control revisions (Version 1, Version 2, and so on) You can retrieve any revision
of an element from the version control system individually and use it for comparison. The
 version control system is explained later in this chapter.

 ■ Best practice washed version (Washed) A few simple best practice issues can be resolved
automatically by a best practice “wash.” Selecting the washed version shows you how your
implementation differs from best practices. To get the full benefit of this, select the Case
 Sensitive check box on the Advanced tab.

 ■ Export/import file (XPO) Before you import elements, you can compare them with existing
elements (which will be overwritten during import). You can use the Compare tool during the
import process (Command > Import) by selecting the Show Details check box in the Import
dialog box and right-clicking any elements that appear in bold. Objects in bold already exist in
the application.

 ■ Upgraded version (Upgraded) MorphX can automatically create a proposal for how
a class should be upgraded. The requirement for upgrading a class arises during a version
upgrade. The Create Upgrade Project step in the Upgrade Checklist automatically detects
customized classes that conflict with new versions of the classes. A class is conflicting if you’ve
changed the original version of the class, and the publisher of the class has also changed
the original version. MorphX constructs the proposal by merging your changes with the
 publisher’s changes to the class. MorphX requires access to all three versions of the class—the
original version in the baseline model store, a version with your changes in the current layer
in the baseline model store, and a version with the publisher’s changes in the same layer as
the original. The installation program ensures that the right versions are available in the right
places during an upgrade. Conflict resolution is shown in Figure 2-27.

Proposal
(e.g., usr)

Original
(e.g., old sys)

Compare

Your changes
(e.g., old usr)

Their changes
(e.g., sys)

FIGURE 2-27 How the upgraded version proposal is created.

 CHAPTER 2 The MorphX development environment and tools 57

Note You can also compare two different elements. To do this, select two elements in the
AOT, right-click, point to Add-Ins, and then click Compare.

Figure 2-28 shows the Advanced tab, on which you can specify comparison options.

FIGURE 2-28 Comparison options on the Advanced tab.

The following list describes the comparison options shown in Figure 2-28:

 ■ Show Differences Only All equal nodes are suppressed from the view, making it easier to
find the changed nodes. This option is selected by default.

 ■ Suppress Whitespace White space, such as spaces and tabs, is suppressed into a single
space during the comparison. The Compare tool can ignore the amount of white space, just as
the compiler does. This option is selected by default.

 ■ Case Sensitive Because X++ is not case sensitive, the Compare tool is also not case sensitive
by default. In certain scenarios, case sensitivity is required and must be enabled, such as when
you’re using the best practice wash feature mentioned earlier in this section. This option is
cleared by default.

 ■ Show Line Numbers The Compare tool can add line numbers to all X++ code that is displayed.
This option is cleared by default but can be useful during an upgrade of large chunks of code.

Use the Compare tool
After you choose elements and set parameters, start the comparison by clicking Compare. Results are
displayed in a three-pane dialog box, as shown in Figure 2-29. The top pane contains the elements
and options that you selected, the left pane displays a tree structure resembling the AOT, and the
right pane shows details that correspond to the item selected in the tree.

Color-coded icons in the tree structure indicate how each node has changed. A red or blue check
mark indicates that the node exists only in a particular version. Red corresponds to the SYS layer,
and blue corresponds to the old SYS layer. A gray check mark indicates that the nodes are identical
but one or more subnodes are different. A not-equal-to symbol (≠) on a red and blue background
 indicates that the nodes are different in the two versions.

58 PART 1 A tour of the development environment

FIGURE 2-29 Comparison results.

Note Each node in the tree view has a context menu that provides access to the Add-Ins
submenu and the Open New Window option. The Open New Window option provides an
AOT view of any element, including elements in old layers.

Details about the differences are shown in the right pane. Color coding is also used in this pane
to highlight differences the same way that it is in the tree structure. If an element is editable, small
action icons appear. These icons allow you to make changes to code, metadata, and nodes, which
can save you time when performing an upgrade. A right or left arrow removes or adds the difference,
and a bent arrow moves the difference to another position. These arrows always come in pairs, so you
can see where the difference is moved to and from. If a version control system is in use, an element is
editable if it is from the current layer and is checked out.

Compare APIs
Although Microsoft Dynamics AX provides the comparison functionality for development purposes
only, the comparison functionality can be reused for other tasks. You can use the available APIs to
compare and present differences in the tree structure or text representation of any type of entity.

The Tutorial_CompareContextProvider class shows how simple it is to compare business data by
 using these APIs and present it by using the Compare tool. The tutorial consists of two parts:

 ■ Tutorial_Comparable This class implements the SysComparable interface. Basically, it
 creates a text representation of a customer.

 CHAPTER 2 The MorphX development environment and tools 59

 ■ Tutorial_CompareContextProvider This class implements the SysCompareContextProvider
interface. It provides the context for comparison. For example, it creates a Tutorial_Comparable
object for each customer, sets the default comparison options, and handles context menus.

Figure 2-30 shows a comparison of two customers, the result of running the tutorial.

FIGURE 2-30 The result of comparing two customers using the Compare API.

You can also use the line-by-line comparison functionality directly in X++. The static run method
on the SysCompareText class, shown in the following code, takes two strings as parameters and
returns a container that highlights differences in the two strings. You can also use a set of optional
parameters to control the comparison.

public static container run(str _t1,
 str _t2,
 boolean _caseSensitive = false,
 boolean _suppressWhiteSpace = true,
 boolean _lineNumbers = false,
 boolean _singleLine = false,
 boolean _alternateLines = false)

60 PART 1 A tour of the development environment

Cross-Reference tool

The concept of cross-references in Microsoft Dynamics AX is simple. If an element uses another
 element, the reference is recorded. With cross-references, you can determine which elements a
 particular element uses and which elements other elements are using. Microsoft Dynamics AX
 provides the Cross-Reference tool for accessing and managing cross-reference information.

Here are a couple of typical scenarios for using the Cross-Reference tool:

 ■ You want to find usage examples. If the product documentation doesn’t help, you can use the
Cross-Reference tool to find real implementation examples.

 ■ You need to perform an impact analysis. If you’re changing an element, you need to know
which other elements are affected by your change.

You must update the Cross-Reference tool regularly to ensure accuracy. The update typically takes
several hours. The footprint in a database is about 1.5 GB for a standard application.

To update the Cross-Reference tool, on the Tools menu, point to > Cross-Reference > Periodic >
Update. Updating the Cross-Reference tool also compiles the entire AOT because the compiler emits
cross-reference information.

Tip Keeping the Cross-Reference tool up to date is important if you want its information to
be reliable. If you work in a shared development environment, you share cross-Reference
information with your team members. Updating the Cross-Reference tool nightly is a good
approach for a shared environment. If you work in a local development environment,
you can keep the Cross-Reference tool up to date by enabling cross-referencing when
 compiling. This option slows down compilation, however. Another option is to update
cross-references manually for the elements in a project. To do so, right-click the project
and point to Add-Ins > Cross-Reference > Update.

In addition to the main cross-reference information, two smaller cross-reference subsystems exist:

 ■ Data model Stores information about relationships between tables. It is primarily used by
the query form and the Reverse Engineering tool.

 ■ Type hierarchy Stores information about class and data type inheritance.

For more information about these subsystems and the tools that rely on them, see the Microsoft
Dynamics AX 2012 SDK (http://msdn.microsoft.com/en-us/library/aa496079.aspx).

The cross-reference information the Cross-Reference tool collects is quite comprehensive. You
can find the complete list of cross-referenced elements by opening the AOT, expanding the System
 Documentation node, and clicking Enums and then xRefKind.

When the Cross-Reference tool is updating, it scans all metadata and X++ code for references to
elements of the kinds listed here.

 CHAPTER 2 The MorphX development environment and tools 61

Tip It’s a good idea to use intrinsic functions when referring to elements in X++ code. An
intrinsic function can evaluate to either an element name or an ID. The intrinsic functions
are named <Element type>Str or <Element type>Num, respectively. Using intrinsic
 functions provides two benefits: you have compile-time verification that the element you
reference actually exists, and the reference is picked up by the Cross-Reference tool. Also,
there is no run-time overhead. An example follows:

// Prints ID of MyClass, such as 50001
print classNum(myClass);

// Prints "MyClass"
print classStr(myClass);

// No compile check or cross-reference
print "MyClass";

For more information about intrinsic functions, see Chapter 20, “Reflection.”

To access usage information, right-click any element in the AOT and point to Add-Ins >
 Cross-Reference > Used By. If the option isn’t available, either the element isn’t used or the
 cross-reference hasn’t been updated.

Figure 2-31 shows where the prompt method is used on the RunBaseBatch class.

FIGURE 2-31 The Cross-Reference tool, showing where RunBaseBatch.prompt is used

When you view cross-references for a class method, the Application hierarchy tree is visible, so that
you can see whether the same method is used on a parent or subclass. For types that don’t support
inheritance, the Application hierarchy tree is hidden.

62 PART 1 A tour of the development environment

Version control

The Version Control tool feature in MorphX makes it possible to use a version control system, such
as Microsoft Visual SourceSafe (VSS) or Visual Studio Team Foundation Server (TFS), to keep track of
changes to elements in the AOT. The tool is accessible from several places: from the Version Control
menu in the Development Workspace, from toolbars in the AOT and X++ code editor, and from the
context menu on elements in the AOT.

Using a version control system offers several benefits:

 ■ Revision history of all elements All changes are captured, along with a description of
the change, making it possible to consult the change history and retrieve old versions of an
 element.

 ■ Code quality enforcement The implementation of version control in Microsoft Dynamics
AX enables a fully configurable quality standard for all check-ins. With the quality standard, all
changes are verified according to coding practices. If a change doesn’t meet the criteria, it is
rejected.

 ■ Isolated development Each developer can have a local installation and make all
 modifications locally. When modifications are ready, they can be checked in and made
 available to consumers of the build. A developer can rewrite fundamental areas of the system
without causing instability issues for others. Developers are also unaffected by any downtime
of a centralized development server.

Even though using a version control system is optional, it is strongly recommended that you
 consider one for any development project. Microsoft Dynamics AX 2012 supports three version
control systems: VSS 6.0 and TFS, which are designed for large development projects, and MorphX
VCS. MorphX VCS is designed for smaller development projects that previously couldn’t justify the
additional overhead that using a version control system server adds to the process. Table 2-8 shows a
side-by-side comparison of the version control system options.

TABLE 2-8 Overview of version control systems.

No version
 control system MorphX VCS VSS TFS

Application Object Servers
required

1 1 1 for each developer 1 for each
 developer

Database servers required 1 1 1 for each developer 1 for each
 developer

Build process required No No Yes Yes

Master file Model store Model store XPOs XPOs

Isolated development No No Yes Yes

Multiple checkout N/A No Configurable Configurable

Change description No Yes Yes Yes

 CHAPTER 2 The MorphX development environment and tools 63

No version
 control system MorphX VCS VSS TFS

Change history No Yes Yes Yes

Change list support
 (atomic check-in of a set
of files)

N/A No No Yes

Code quality enforcement No Configurable Configurable Configurable

The elements persisted on the version control server are file representations of the elements in the
AOT. The file format used is the standard Microsoft Dynamics AX export format (.xpo). Each .xpo file
contains only one root element.

There are no additional infrastructure requirements when you use MorphX VCS, which makes
it a perfect fit for partners running many parallel projects. In such setups, each developer often
works simultaneously on several projects, toggling between projects and returning to past projects.
In these situations, the benefits of having a change history are enormous. With just a few clicks,
you can enable MorphX VCS to persist the a changes in the business database. Although MorphX
VCS provides many of the same capabilities as a version control server, it has some limitations.
For example, MorphX VCS does not provide any tools for maintenance, such as making backups,
 archiving, or labeling.

In contrast, VSS and TFS are designed for large projects in which many developers work together
on the same project for an extended period of time (for example, an independent software vendor
building a vertical solution).

Figure 2-32 shows a typical deployment using VSS or TFS, in which each developer locally hosts
the AOS and the database. Each developer also needs a copy of all .xpo files. When a developer
 communicates with the version control server, the .xpo files are transmitted.

Developer

AOS

Database

.xpo files

.xpo files

Version
control server

FIGURE 2-32 Typical deployment using version control.

64 PART 1 A tour of the development environment

Note In earlier versions of Microsoft Dynamics AX, a Team Server was required to assign
unique IDs as elements were created. Microsoft Dynamics AX 2012 uses a new ID allocation
scheme, which eliminates the need for the Team Server. For more information element IDs,
see Chapter 21.

Element life cycle
Figure 2-33 shows the element life cycle in a version control system. When an element is in a state
marked with a lighter shade, it can be edited; otherwise, it is read-only.

You can create an element in two ways:

 ■ Create a new element.

 ■ Customize an existing element, resulting in an overlayered version of the element. Because
elements are stored for each layer in the version control system, customizing an element
 effectively creates a new element.

After you create an element, you must add it to the version control system. First, give it a proper
name in accordance with naming conventions, and then click Add To Version Control on the context
menu. After you create the element, you must check it in.

Checked in

Opened
for edit

Opened
for add

Add

Add
Check out

Check in
Undo checkout

Check in

Deleted Delete

Rename

Rename

New
object

Overlayer
object

FIGURE 2-33 Element life cycle.

An element that is checked in can be renamed. Renaming an element deletes the element with the
old name and adds an element with the new name.

 CHAPTER 2 The MorphX development environment and tools 65

Quality checks
Before the version control system accepts a check-in, it might subject the elements to quality checks.
You define what is accepted in a check-in when you set up the version control system. The following
checks are supported:

 ■ Compiler errors

 ■ Compiler warnings

 ■ Compiler tasks

 ■ Best practice errors

When a check is enabled, it is carried out when you do a check-in. If the check fails, the check-in
stops. You must address the issue and restart the check-in.

Source code casing
You can set the Source Code Title Case Update tool, available on the Add-Ins submenu, to execute
automatically before elements are checked in to ensure uniform casing in variable and parameter
declarations and references. You can specify this parameter when setting up the version control
 system by selecting the Run Title Case Update check box.

Common version control tasks
Table 2-9 describes some of the tasks that are typically performed with a version control system. Later
sections describe additional tasks that you can perform when using version control with Microsoft
Dynamics AX.

TABLE 2-9 Version control tasks.

Action Description

Check out an element To modify an element, you must check it out. Checking out an
 element locks it so that others can’t modify it while you’re working.
To see which elements you have currently checked out, on the
Microsoft Dynamics AX menu, click Control > Pending Objects. The
elements you’ve checked out (or that you’ve created and not yet
checked in), appear in blue, rather than black, in the AOT.

Undo a checkout If you decide that you don’t want to modify an element that you
checked out, you can undo the checkout. This releases your lock
on the element and imports the most recent checked-in revision
of the element to undo your changes.

Check in an element When you have finalized your modifications, you must check in
the elements for them to be part of the next build. When you click
Check-In on the context menu, the dialog box shown in Figure 2-34
appears, displaying all the elements that you currently have checked
out. The Check In dialog box shows all open elements by default;
you can remove any elements not required in the check-in from the
list by pressing Alt+F9.

66 PART 1 A tour of the development environment

The following procedure is recommended for checking in your work:
 ■ Perform synchronization to update all elements in

your environment to the latest version.
 ■ Verify that everything is still working as intended.

Compilation is not enough.
 ■ Check in the elements.

Create an element When using version control, you create new elements just as you
normally would in the MorphX environment without a version
control system. These elements are not part of your check-in until
you click Add To Version Control on the context menu.
You can also create all element types except those listed in
System Settings (on the Development Workspace Version Control
menu, point to Control > Setup > System Settings). By default,
jobs and private projects are not accepted.
New elements should follow Microsoft Dynamics AX naming
conventions. The best practice naming conventions are enforced
by default, so you can’t check in elements with names such as
aaaElement, DEL_Element, element1, or element2. (The only
 DEL_ elements allowed are those required for version upgrade
 purposes.) You can change naming requirements in System
Settings.

Rename an element An element must be checked in to be renamed. Because all
 references between .xpo files are strictly name-based, all
 references to renamed elements must be updated. For example,
if you rename a table field, you must also update any form or
 report that uses that field. Most references in metadata in the
AOT are ID-based and thus, they are not affected when an
 element is renamed; in most cases, it is enough to check out the
form or report and include it in the check-in to update the .xpo
file. You can use the cross-reference tool to identify references.
References in X++ code are name-based. You can use the
 compiler to find affected references.
An element’s revision history is kept intact when elements are
renamed. No tracking information in the version control system is
lost because of an element is renamed.

Delete an element You delete an element as you normally would in Microsoft
Dynamics AX. The delete operation must be checked in before
the deletion is visible to other users of the version control system.
You can see pending deletions in the Pending Objects dialog box.

Get the latest version of an element If someone else has checked in a new version of an element,
you can use the Get Latest option on the context menu to get
the version of the element that was checked in most recently.
This option isn’t available if you have the element checked out
 yourself.
Get Latest is not available with MorphX VCS.

Figure 2-34 shows the Check In dialog box.

Work with labels
Working with labels is similar to working with elements. To change, delete, or add a label, you must
check out the label file containing the label. You can check out the label file from the Label editor
dialog box.

 CHAPTER 2 The MorphX development environment and tools 67

The main difference between checking out elements and checking out label files is that
 simultaneous checkouts are allowed for label files. This means that others can change labels while you
have a label file checked out.

FIGURE 2-34 The Check In dialog box.

If you create a new label when using version control, a temporary label ID is assigned (for example,
@$AA0007 as opposed to @USR1921). When you check in a label file, your changes are automatically
merged into the latest version of the file and the temporary label IDs are updated. All references in
the code are automatically updated to the newly assigned label IDs. Temporary IDs eliminate the
need for a central Team Server, which was required for Microsoft Dynamics AX 2009, because IDs no
longer have to be assigned when the labels are created. If you modify or delete a label that another
person has also modified or deleted, your conflicting changes are abandoned. Such lost changes are
shown in the Infolog after the check-in completes.

Synchronize elements
Synchronization makes it possible for you to get the latest version of all elements. This step is required
before you can check in any elements. You can initiate synchronization from the Development
 Workspace. On the Version Control menu, point to Periodic > Synchronize.

Synchronization is divided into three operations that happen automatically in the following
 sequence:

1. Copy the latest files from the version control server to the local disk.

2. Import the files into the AOT.

3. Compile the imported files.

68 PART 1 A tour of the development environment

Use synchronization to make sure your system is up to date. Synchronization won’t affect any new
elements that you have created or any elements that you have checked out.

Figure 2-35 shows the Synchronization dialog box.

FIGURE 2-35 The Synchronization dialog box.

Selecting the Force check box gets the latest version of all files, even if they haven’t changed, and
then imports every file.

When using VSS, you can also synchronize to a label defined in VSS. This way, you can easily
 synchronize to a specific build or version number.

Synchronization is not available with MorphX VCS.

View the synchronization log
The way that you keep track of versions on the client depends on your version control system. VSS
requires that Microsoft Dynamics AX keep track of itself. When you synchronize the latest version, it is
copied to the local repository folder from the version control system. Each file must be imported into
Microsoft Dynamics AX to be reflected in the AOT. To minimize the risk of partial synchronization, a
log entry is created for each file. When all files are copied locally, the log is processed, and the files
are automatically imported into Microsoft Dynamics AX.

When synchronization fails, the import operation is usually the cause of the problem.
 Synchronization failure leaves your system in a partially synchronized state. To complete the
 synchronization, restart Microsoft Dynamics AX and restart the import. You use the synchronization
log to restart the import, and you access it from the Development Workspace menu at Version
 Control > Inquiries > Synchronization log.

The Synchronization Log dialog box, shown in Figure 2-36, displays each batch of files, and you
can restart the import operation by clicking Process. If the Completed check box is not selected, the
import has failed and should be restarted.

The Synchronization log is not available with MorphX VCS.

 CHAPTER 2 The MorphX development environment and tools 69

Show the history of an element
One of the biggest advantages of version control is the ability to track changes to elements. Selecting
History on an element’s context menu displays a list of all changes to an element, as shown in
Figure 2-37.

FIGURE 2-36 The Synchronization Log dialog box.

FIGURE 2-37 Revision history of an element.

This dialog box shows the version number, the action performed, the time the action was
 performed, and who performed the action. You can also see the change number and the change
description.

A set of buttons in the History dialog box allows further investigation of each version. Clicking
Contents opens a form that shows other elements included in the same change. Clicking Compare
opens the Compare dialog box, where you can do a line-by-line comparison of two versions of the
element. The Open New Window button opens an AOT window that shows the selected version of
the element, which is useful for investigating properties because you can use the standard MorphX
toolbox. Clicking View File opens the .xpo file for the selected version in Notepad.

70 PART 1 A tour of the development environment

Compare revisions
Comparison is the key to harvesting the benefits of a version control system. You can start a
 comparison from several places, including from the context menu of an element by pointing to
 Compare. Figure 2-38 shows the Comparison dialog box, where two revisions of the form CustTable
are selected.

FIGURE 2-38 Comparing element revisions from version control.

The Compare dialog box contains a list of all checked-in versions, in addition to the element
 versions available in other layers installed.

View pending elements
When you’re working on a project, it’s easy to lose track of which elements you’ve opened for
 editing. The Pending Objects dialog box, shown in Figure 2-39, lists the elements that are currently
checked out in the version control system. Notice the column containing the action performed on the
 element. Deleted elements are available only in this dialog box; they are no longer shown in the AOT.

FIGURE 2-39 Pending elements.

You can access the Pending Objects dialog box from the Development Workspace menu: Version
Control > Pending Objects.

 CHAPTER 2 The MorphX development environment and tools 71

Create a build
Because the version control system contains .xpo files and not a model file, a build process is required
to generate the model file from the .xpo files. The following procedure provides a high-level overview
of the build process:

1. Use the CombineXPOs command-line utility to combine all .xpo files into one. This step makes
the .xpo file consumable by Microsoft Dynamics AX. Microsoft Dynamics AX requires all
 referenced elements to be present in the .xpo file or to already exist in the AOT to maintain
the references during import.

2. Import the new .xpo file by using the command-line parameter -AOTIMPORTFILE=<FileName.
xpo> -MODEL=<Model Name> to Ax32.exe. This step imports the .xpo file and compiles
 everything. After this step is complete, the new model is ready in the model store.

3. Export the model to a file by using the axutil command-line utility: axutil export /
model:<model name> /file:<model file name>.

4. Follow these steps for each layer and each model that you build.

The build process doesn’t apply to MorphX VCS.

Integrate Microsoft Dynamics AX with other version control
systems
The implementation of the version control system in Microsoft Dynamics AX is fully pluggable. This
means that any version control system can be integrated with Microsoft Dynamics AX.

Integrating with another version control system requires a new class implementing the
 SysVersionControlFileBasedBackEnd interface. It is the implementation’s responsibility to provide the
communication with the version control system server being used.

 CHAPTER 3 Microsoft Dynamics AX and .NET 73

C H A P T E R 3

Microsoft Dynamics AX and .NET

In this chapter
Introduction . 73
Use third-party assemblies. 74
Write managed code . 77
Hot swap assemblies on the server . 84

Introduction

Complex systems, such as Microsoft Dynamics AX 2012, are often deployed in heterogeneous
 environments that contain several disparate systems. Often, these systems contain legacy data that
might be required for running Microsoft Dynamics AX, or they might offer functionality that is vital
for running the organization.

Microsoft Dynamics AX 2012 offers several ways of integrating with other systems. For example,
your organization might need to harvest information from old Microsoft Excel files. To do this, you
could write a simple add-on in Microsoft Visual Studio and easily integrate it with Microsoft Dynamics AX.
Or your organization might have a legacy system that is physically located in a distant location that
requires invoice information to be sent to it in a fail-safe manner. In this case, you could set up a
message queue to perform the transfers. You could use the Microsoft .NET Framework to interact
with the message queue from within Microsoft Dynamics AX.

This chapter focuses on some of the ways that you can integrate Microsoft Dynamics AX with other
systems by taking advantage of managed code through X++ code. One way is to consume managed
code directly from X++ code; another way is to author or extend existing business logic in managed
code by using the Visual Studio environment. To facilitate this interoperability, Microsoft Dynamics AX
provides the managed code with managed classes (called proxies) that represent X++ artifacts. This
allows you to write managed code that uses the functionality these proxies provide in a type-safe and
convenient manner.

In both cases, the .NET Framework provides access to the functionality, and this functionality is
used in Microsoft Dynamics AX.

Note You can also make Microsoft Dynamics AX functionality available to other systems by
using services. For more information, see Chapter 12, “Microsoft Dynamics AX services and
integration.”

C H A P T E R 3

Microsoft Dynamics AX and .NET

Introduction

Use third-party assemblies

Use strong-named assemblies

Reference a managed DLL from Microsoft Dynamics AX

Code against the assembly in X++

Write managed code

Debug managed code

Proxies

Hot swap assemblies on the server

74 PART 1 A tour of the development environment

Use third-party assemblies

Sometimes, you can implement the functionality that you are looking to provide by using a managed
component (a .NET assembly) that you purchase from a third-party vendor. Using these dynamic-link
libraries (DLLs) can be—and often is—more cost effective than writing the code yourself. These
components are wrapped in managed assemblies in the form of .dll files, along with their Program
Database (PDB) files, which contain symbol information that is used in debugging, and their XML files,
which contain documentation that is used for IntelliSense in Visual Studio. Typically, these assemblies
come with an installation program that often installs the assemblies in the global assembly cache
(GAC) on the computer that consumes the functionality. This computer can be either on the client tier,
on the server tier, or both. Only assemblies with strong names can be installed in the GAC.

Use strong-named assemblies
It is always a good idea to use a DLL that has a strong name, which means that the DLL is signed by
the author, regardless of whether the assembly is stored in the GAC. This is true for assemblies that
are installed on both the client tier and the server tier. A strong name defines the assembly’s identity
by its simple text name, version number, and culture information (if provided)—plus a public key and
a digital signature. Assemblies with the same strong name are expected to be identical.

Strong names satisfy the following requirements:

 ■ Guarantee name uniqueness by relying on unique key pairs. No one can generate the
same assembly name that you can, because an assembly generated with one private key has a
different name than an assembly generated with another private key.

 ■ Protect the version lineage of an assembly. A strong name can ensure that no one can
 produce a subsequent version of your assembly. Users can be sure that the version of the
 assembly that they are loading comes from the same publisher that created the version the
 application was built with.

 ■ Provide a strong integrity check. Passing the .NET Framework security checks guarantees
that the contents of the assembly have not been changed since it was built. Note, however,
that by themselves, strong names do not imply a level of trust such as that provided by a
 digital signature and supporting certificate.

When you reference a strong-named assembly, you can expect certain benefits, such as versioning
and naming protection. If the strong-named assembly references an assembly with a simple name,
which does not have these benefits, you lose the benefits that you derive by using a strong-named
 assembly and open the door to possible DLL conflicts. Therefore, strong-named assemblies can
 reference only other strong-named assemblies.

If the assembly that you are consuming does not have a strong name, and is therefore not installed
in the GAC, you must manually copy the assembly (and the assemblies it depends on, if applicable) to
a directory where the .NET Framework can find it when it needs to load the assembly for execution.

 CHAPTER 3 Microsoft Dynamics AX and .NET 75

It is a good practice to place the assembly in the same directory as the executable that will ultimately
load it (in other words, the folder on the client or the server in which the application is located). You
might also want to store the assembly in the Client\Bin directory (even if it is used on the server
 exclusively), so that the client can pick it up and use it for IntelliSense.

Reference a managed DLL from Microsoft Dynamics AX
Microsoft Dynamics AX 2012 does not have a built-in mechanism for bulk deployment or
 installation of a particular DLL on client or server computers, because each third-party DLL has its
own installation process. You must do this manually by using the installation script that the vendor
 provides or by placing the assemblies in the appropriate folders.

After you install the assembly on the client or server computer, you must add a reference to the
assembly in Microsoft Dynamics AX, so that you can program against it in X++. You do this by adding
the assembly to the References node in the Application Object Tree (AOT).

To do this, right-click the References node, and then click Add Reference. A dialog box like the one
shown in Figure 3-1 appears.

FIGURE 3-1 Adding a reference to a third-party assembly.

76 PART 1 A tour of the development environment

The top pane of the dialog box shows the assemblies that are installed in the GAC. If your assembly
is installed in the GAC, click Select to add the reference to the References node. If the assembly is
located in either the Client\Bin or the Server\Bin binary directory, click Browse. A file browser dialog
box will appear where you can select your assembly. After you choose your assembly, it will appear in
the bottom pane and will be added when you click OK.

Code against the assembly in X++
After you add the assembly, you are ready to use it from X++. If you install the code in the Client\Bin
directory, IntelliSense features are available to help you edit the code. You can now use the managed
code features of X++ to instantiate public managed classes, call methods on them, and so on. For
more information, see Chapter 4, “The X++ programming language.”

Note that there are some limitations to what you can achieve in X++ when calling managed code.
One such limitation is that you cannot easily code against generic types (or execute generic methods).
Another stems from the way the X++ interpreter works. Any managed object is represented as an
instance of type ClrObject, and this has some surprising manifestations. For instance, consider the
 following code:

static void TestClr(Args _args)
{
 if (System.Int32::Parse("0"))
 {
 print "Do not expect to get here";
 }
 pause;
}

Obviously, you wouldn’t expect the code in the if statement to execute because the result of the
managed call is 0, which is interpreted as false. However, the code actually prints the string literal
 because the return value of the call is a ClrObject instance that is not null (in other words, true). You
can solve these problems by storing results in variables before use: the assignment operator will
 correctly unpack the value, as shown in the following example:

static void TestClr(Args _args)
{
 int i = System.Int32::Parse("0");
 if (i)
 {
 print "Do not expect to get here";
 }
 pause;
}

 CHAPTER 3 Microsoft Dynamics AX and .NET 77

Write managed code

Sometimes your requirements cannot be satisfied by using an existing component and you have to
roll up your sleeves and develop some code—in either C# or VB.NET. Microsoft Dynamics AX has
great provisions for this: the integration features between Microsoft Dynamics AX and Visual Studio
give you the luxury of dealing with X++ artifacts (classes, tables, and enumerations) as managed
 classes that behave the way that a developer of managed code would expect. The Microsoft
 Dynamics AX Business Connector manages the interaction between the two environments. Broadly
speaking, you can create a project in Visual Studio as you normally would, and then add that project
to the Visual Studio Projects node in the AOT. This section walks you through the process.

This example shows how to create managed code in C# (VB.NET could also be used) that reads the
contents of an Excel spreadsheet and inserts the contents into a table in Microsoft Dynamics AX. This
example is chosen to illustrate the concepts described in this chapter rather than for the functionality
it provides.

The process is simple: you author the code in Visual Studio, and then add the solution to Application
Explorer, which is just the name for the AOT in Visual Studio. Then, functionality from Microsoft
Dynamics AX is made available for consumption by the C# code, which illustrates the proxy feature.

Assume that the Excel file contains the names of customers and the date that they registered as
customers with your organization, as shown in Figure 3-2.

FIGURE 3-2 Excel spreadsheet that contains a customer list.

Also assume that you’ve defined a table (called, say, CustomersFromExcel) in the AOT that will
end up containing the information, subject to further processing. You could go about reading the
 information from the Excel files from X++ in several ways: one is by using the Excel automation
 model; another is by manipulating the Office Open XML document by using the XML classes.
 However, because it is so easy to read the contents of Excel files by using ADO.NET, that is what you
decide to do. You start Visual Studio, create a C# class library called ReadFromExcel, and then write
the following code:

using System;
using System.Collections.Generic;
using System.Text;

78 PART 1 A tour of the development environment

namespace Contoso
{
 using System.Data;
 using System.Data.OleDb;
 public class ExcelReader
 {
 static public void ReadDataFromExcel(string filename)
 {
 string connectionString;
 OleDbDataAdapter adapter;
 connectionString = @"Provider=Microsoft.ACE.OLEDB.12.0;"
 + "Data Source=" + filename + ";"
 + "Extended Properties=’Excel 12.0 Xml;"

 + "HDR=YES’"; // Since sheet has row with column titles

 adapter = new OleDbDataAdapter(
 "SELECT * FROM [sheet1$]",
 connectionString);
 DataSet ds = new DataSet();
 // Get the data from the spreadsheet:
 adapter.Fill(ds, "Customers");
 DataTable table = ds.Tables["Customers"];
 foreach (DataRow row in table.Rows)
 {
 string name = row["Name"] as string;
 DateTime d = (DateTime)row["Date"];
 }
 }
 }
}

The ReadDataFromExcel method reads the data from the Excel file given as a parameter, but
it does not currently do anything with that data. You still need to establish a connection to the
 Microsoft Dynamics AX system to store the values in the table. There are several ways of doing this,
but in this case, you will simply use the Microsoft Dynamics AX table from the C# code by using the
proxy feature.

The first step is to make the Visual Studio project (that contains the code) into a Microsoft
Dynamics AX “citizen.” You do this by selecting the Add ReadFromExcel To AOT menu item on the
 Visual Studio project. When this is done, the project is stored in the AOT and can use all of the
 functionality that is available for nodes in the AOT. The project can be stored in separate layers, be
imported and exported, and so on. The project is stored in its entirety, and you can open Visual
 Studio to edit the project by clicking Edit on the context menu, as shown in Figure 3-3.

 CHAPTER 3 Microsoft Dynamics AX and .NET 79

FIGURE 3-3 Context menu for Visual Studio projects that are stored in the AOT.

Tip You can tell that a project has been added to the AOT because the Visual Studio
 project icon is updated with a small Microsoft Dynamics AX icon in the lower-left corner.

With that step out of the way, you can use the version of the AOT that is available in Application
Explorer in Visual Studio to fetch the table to use in the C# code (see Figure 3-4). If the Application
 Explorer window is not already open, you can open it by clicking Application Explorer on the View
menu.

80 PART 1 A tour of the development environment

FIGURE 3-4 Application Explorer with a Microsoft Dynamics AX project open.

You can then create a C# representation of the table by dragging the table node from Application
Explorer into the project.

After you drag the table node into the Visual Studio project, you will find an entry in the project
that represents the table. The items that you drag into the project in this way are now available
to code against in C#, just as though they had been written in C#. This happens because the drag
 operation creates a proxy for the table under the covers; this proxy takes care of the plumbing
required to communicate with the Microsoft Dynamics AX system, while presenting a high-fidelity
managed interface to the developer.

You can now proceed by putting the missing pieces into the C# code to write the data into the
table. Modify the code as shown in the following example:

 DataTable table = ds.Tables["Customers"];
 var customers = new ReadFromExcel.CustomersFromExcel();
 foreach (DataRow row in table.Rows)
 {
 string name = row["Name"] as string;
 DateTime d = (DateTime)row["Date"];
 customers.Name = name;
 customers.Date = d;
 customers.Write();
 }

 CHAPTER 3 Microsoft Dynamics AX and .NET 81

Note The table from Microsoft Dynamics AX is represented just like any other type in C#.
It supports IntelliSense, and the documentation comments that were added to methods in
X++ are available to guide you as you edit.

The data will be inserted into the CustomersFromExcel table as it is read from the ADO.NET table
that represents the contents of the spreadsheet. However, before either the client or the server can
use this code, you must deploy it. You can do this by setting the properties in the Properties window
for the Microsoft Dynamics AX project in Visual Studio. In this case, the code will run on the client, so
you set the Deploy to Client property to Yes. There is a catch, though: you cannot deploy the assembly
to the client when the client is running, so you must close any Microsoft Dynamics AX clients prior to
deployment.

To deploy the code, right-click the Visual Studio project, and then click Deploy. If all goes well, a
Deploy Succeeded message will appear in the status line.

Note You do not have to add a reference to the assembly because a reference is added
implicitly to projects that you add to the AOT. You only need to add references to
 assemblies that are not the product of a project that has been added to the AOT.

As soon as you deploy the assembly, you can code against it in X++. The following example
 illustrates a simple snippet in an X++ job:

static void ReadCustomers(Args _args)
{
 ttsBegin;
 Contoso.ExcelReader::ReadDataFromExcel(@"c:\Test\customers.xlsx");
 ttsCommit;
}

When this job runs, it calls into the managed code and insert the records into the Microsoft
 Dynamics AX database.

Debug managed code
To ease the process of deploying after building, Visual Studio properties let you define what happens
when you run the Microsoft Dynamics AX project. You manage this by using the Debug Target and
Startup Element properties. You can enter the name of an element to execute—typically, a class
with a suitable main method or a job. When you start the project in Visual Studio, it will create a
new instance of the client and execute the class or job. The X++ code then calls back into the C#
code where breakpoints are set. For more information, see “Debugging Managed Code in Microsoft
 Dynamics AX” at http://msdn.microsoft.com/en-us/library/gg889265.aspx.

http://msdn.microsoft.com/en-us/library/gg889265.aspx
http://msdn.microsoft.com/en-us/library/gg889265.aspx

82 PART 1 A tour of the development environment

An alternative to using this feature is to attach the Visual Studio debugger to the running
 Microsoft Dynamics AX client (by using the Attach To Process menu item on the Debug menu in
Visual Studio). You can then set breakpoints and use all of the functionality of the debugger that you
normally would. If you are running the Application Object Server (AOS) on your own computer, you
can attach to that as well, but you must have administrator privileges to do so.

Important Do not debug in a production environment.

Proxies
As you can see, wiring up managed code to work with Microsoft Dynamics AX is quite simple because
of the proxies that are generated behind the scenes to represent the Microsoft Dynamics AX tables,
enumerations, and classes. In developer situations, it is standard to develop the artifacts in Microsoft
Dynamics AX iteratively and then code against them in C#. This process is seamless because the
proxies are regenerated by Visual Studio at build time, so that they are always synchronized with the
corresponding artifacts in the AOT; in other words, the proxies never become out of date. In this way,
proxies for Microsoft Dynamics AX artifacts differ from Visual Studio proxies for web services. These
proxies are expected to have a stable application programming interface (API) so that the server
 hosting the web service is not contacted every time the project is built. Proxies are generated not
only for the items that the user has chosen to drop onto the Project node as described previously. For
instance, when a proxy is generated for a class, proxies will also be generated for all of its base classes,
along with all artifacts that are part of the parameters for any methods, and so on.

To see what the proxies look like, place the cursor on a given proxy name in the code editor,
such as CustomersFromExcel in the example, right-click, and then click Go To Definition (or use the
 convenient keyboard shortcut F12). All of the proxies are stored in the Obj/Debug folder for the
project. If you look carefully, you will notice that the proxies use the Microsoft Dynamics AX Business
 Connector to do the work of interfacing with the Microsoft Dynamics AX system. The Business
 Connector has been completely rewritten from the previous version to support this scenario; in older
versions of the product, the Business Connector invariably created a new session through which
the interaction occurred. This is not the case for the new version of the Business Connector (at least
when it is used as demonstrated here). That is why the transaction that was started in the job shown
earlier is active when the records are inserted into the table. In fact, all aspects of the user’s session
are available to the managed code. This is the crucial difference between authoring business logic in
managed code and consuming the business logic from managed code. When you author business
logic, the managed code becomes an extension to the X++ code, which means that you can crisscross
between Microsoft Dynamics AX and managed code in a consistent environment. When consuming
business logic, you are better off using the services framework that Microsoft Dynamics AX provides,
and then consuming the service from your application. This has big benefits in terms of scalability and
deployment flexibility.

Figure 3-5 shows how the Business Connector relates to Microsoft Dynamics AX and .NET
 application code.

 CHAPTER 3 Microsoft Dynamics AX and .NET 83

Clr interop

Clr interop

Microsoft
Dynamics AX
kernel (client

or sever)

.NET code

B

C

.

N

E

T

First call

Proxy

Proxy

Clr interop

Clr interop

First call

Proxy

Proxy

FIGURE 3-5 Interoperability between Microsoft Dynamics AX and .NET code through the Business Connector.

To demonstrate the new role of the Business Connector, the following example opens a form in the
client that called the code:

using System;
using System.Collections.Generic;
using System.Text;

namespace OpenFormInClient
{
 public class OpenFormClass
 {
 public void DoOpenForm(string formName)
 {
 Args a = new Args();
 a.name = formName;
 var fr = new FormRun(a);
 fr.run();
 fr.detach();
 }
 }
}

In the following example, a job is used to call managed code to open the CustTable form:

static void OpenFormFromDotNet(Args _args)
{
 OpenFormInClient.OpenFormClass opener;
 opener = new OpenFormInClient.OpenFormClass();
 opener.DoOpenForm("CustTable");
}

Note The FormRun class in this example is a kernel class. Because only an application class
is represented in Application Explorer, you cannot add this proxy by dragging and dropping as
described earlier. Instead, drop any class from Application Explorer onto the Visual Studio
project, and then set the file name property of the class to Class.<kernelclassname>.axproxy.
In this example, the name would be Class.FormRun.axproxy.

84 PART 1 A tour of the development environment

This would not have been possible with older versions of the Business Connector because they
were basically faceless clients that could not display any user interface. Now, the Business Connector
is actually part of the client (or server), and therefore, it can do anything they can. In Microsoft
 Dynamics AX 2012 R2, you can still use the Business Connector as a stand-alone client, but that is not
 recommended because that functionality is now better implemented by using services (see Chapter 12).
The Business Connector that is included with Microsoft Dynamics AX is built with .NET Framework 3.5.
That means that it is easier to build the business logic with this version of .NET; if you cannot do that for
some reason, you must add markup to the App.config file to compensate. If you are using a program
that is running .NET Framework 4.0 and you need to use the Business Connector through the proxies as
described, you would typically add the following markup to the App.config file for your application:

<configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true">
 "<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

Hot swap assemblies on the server

The previous section described how to express business logic in managed code. To simplify the
scenario, code running on the client was used as an example. This section describes managed code
running on the server.

You designate managed code to run on the server by setting the Deploy to Server property for the
project to Yes, as shown in Figure 3-6.

FIGURE 3-6 Property sheet showing the Deploy to Server property set to Yes.

When you set this property as shown in Figure 3-6, the assembly is deployed to the server directory.
If the server has been running for a while, it will typically have loaded the assemblies into the current
application domain. If Visual Studio were to deploy a new version of an existing assembly, the deployment
would fail because the assembly would already be loaded into the current application domain.

 CHAPTER 3 Microsoft Dynamics AX and .NET 85

To avoid this situation, the server has the option to start a new application domain in which it executes
code from the new assembly. When a new client connects to the server, it will execute the updated code in
a new application domain, while already connected clients continue to use the old version.

To use the hot-swapping feature, you must enable the option in the Microsoft Dynamics AX Server
Configuration Utility by selecting the Allow Hot Swapping of Assemblies When The Server Is Running
check box, as shown in Figure 3-7. To open the Microsoft Dynamics AX Server Configuration Utility,
on the Start menu, point to Administrative Tools, and then click Microsoft Dynamics AX 2012 Server
 Configuration.

FIGURE 3-7 Allow hot swapping by using the Microsoft Dynamics AX Server Configuration Utility.

Note The example in the previous section illustrated how to run and debug managed code
on the client, which is safe because the code runs only on a development computer. You can
debug code that is running on the server (by starting Visual Studio as a privileged user
and attaching to the server process as described in the “Debug managed code” section).
However, you should never do this on a production server because any breakpoints that
are encountered will stop all of the managed code from running, essentially blocking any
users who are logged on to the server and processes that are running. Another reason
you should not use hot swapping in a production scenario is that calling into another
 application domain extracts a performance overhead. The feature is intended only for
 development scenarios, where the performance of the application is irrelevant.

 CHAPTER 4 The X++ programming language 87

C H A P T E R 4

The X++ programming language

In this chapter
Introduction . 87
Jobs . 88
The type system . 88
Syntax . 93
Classes and interfaces . 117
Code access security . 124
Compiling and running X++ as .NET CIL . 126
Design and implementation patterns . 128

Introduction

X++ is an object-oriented, application-aware, and data-aware programming language. The
 language is object oriented because it supports object abstractions, abstraction hierarchies,
 polymorphism, and encapsulation. It is application aware because it includes keywords such as
 client, server, changecompany, and display that are useful for writing client/server enterprise resource
planning (ERP) applications. And it is data aware because it includes keywords such as firstFast,
 forceSelectOrder, and forUpdate, as well as a database query syntax, that are useful for programming
database applications.

You use the Microsoft Dynamics AX designers and tools to edit the structure of application types. You
specify the behavior of application types by writing X++ source code in the X++ editor. The X++ compiler
compiles this source code into bytecode intermediate format. Model data, X++ source code, intermediate
bytecode, and .NET common intermediate language (CIL) code are stored in the model store.

The Microsoft Dynamics AX runtime dynamically composes object types by loading overridden
bytecode from the highest-level definition in the model layering stack. Objects are instantiated
from these dynamic types. Similarly, the compiler produces .NET CIL from the X++ source code from
the highest layer. For more information about the Microsoft Dynamics AX layering technology, see
 Chapter 21, “Application models.”

This chapter describes the Microsoft Dynamics AX runtime type system and the features of the
X++ language that are essential to writing ERP applications. It will also help you avoid common
 programming pitfalls that stem from implementing X++. For an in-depth discussion of the type
 system and the X++ language, refer to the Microsoft Dynamics AX 2012 software development kit
(SDK), available on MSDN.

C H A P T E R 4

The X++ programming language

Introduction

Jobs

The type system

Value types

Reference types

Type hierarchies

Syntax

Variable declarations

Expressions

Statements

Macros

Comments

XML documentation

Classes and interfaces

Fields

Methods

Delegates

Pre- and post-event handlers

Attributes

Code access security

Compiling and running X++ as .NET CIL

Design and implementation patterns

Class-level patterns

Table-level patterns

88 PART 1 A tour of the development environment

Jobs

Jobs are globally defined functions that execute in the Windows client run-time environment.
 Developers frequently use jobs to test a piece of business logic because they are easily executed from
within the MorphX development environment, by either pressing F5 or selecting Go on the command
menu. However, you shouldn’t use jobs as part of your application’s core design. The examples
 provided in this chapter can be run as jobs.

Jobs are model elements that you create by using the Application Object Tree (AOT). The following
X++ code provides an example of a job model element that prints the string “Hello World” to an
 automatically generated window. The pause statement stops program execution and waits for user
input from a dialog box.

static void myJob(Args _args)
{
 print "Hello World";
 pause;
}

The type system

The Microsoft Dynamics AX runtime manages the storage of value type data on the call stack and
reference type objects on the memory heap. The call stack is the memory structure that holds data
about the active methods called during program execution. The memory heap is the memory area
that allocates storage for objects that are destroyed automatically by the Microsoft Dynamics AX
runtime.

Value types
Value types include the built-in primitive types, extended data types, enumeration types, and built-in
collection types:

 ■ The primitive types are boolean, int, int64, real, date, utcDateTime, timeofday, str, and guid.

 ■ The extended data types are specialized primitive types and specialized base enumerations.

 ■ The enumeration types are base enumerations and extended data types.

 ■ The collection types are the built-in array and container types.

By default, variables declared as value types are assigned their zero value by the Microsoft
 Dynamics AX runtime. These variables can’t be set to null. Variable values are copied when variables
are used to invoke methods and when they are used in assignment statements. Therefore, two value
type variables can’t reference the same value.

 CHAPTER 4 The X++ programming language 89

Reference types
Reference types include the record types, class types, and interface types:

 ■ The record types are table, map, and view. User-defined record types are dynamically
 composed from application model layers. Microsoft Dynamics AX runtime record types are
exposed in the system application programming interface (API).

Note Although the methods are not visible in the AOT, all record types
 implement the methods that are members of the system xRecord type, a
Microsoft Dynamics AX runtime class type.

 ■ User-defined class types are dynamically composed from application model layers and
 Microsoft Dynamics AX runtime class types exposed in the system API.

 ■ Interface types are type specifications and can’t be instantiated in the Microsoft Dynamics AX
runtime. Class types can, however, implement interfaces.

Variables declared as reference types contain references to objects that the Microsoft Dynamics
AX runtime instantiates from dynamically composed types defined in the application model layering
system and from types exposed in the system API. The Microsoft Dynamics AX runtime also performs
memory deallocation (garbage collection) for these objects when they are no longer referenced.
 Reference variables declared as record types reference objects that the Microsoft Dynamics AX
runtime instantiates automatically. Class type objects are programmatically instantiated using the
new operator. Copies of object references are passed as reference parameters in method calls and are
assigned to reference variables, so two variables can reference the same object.

More Info Not all nodes in the AOT name a type declaration. Some class declarations are
merely syntactic sugar—convenient, human-readable expressions. For example, the class
header definition for all rich client forms declares a FormRun class type. FormRun is also,
however, a class type in the system API. Allowing this declaration is syntactic sugar because
it is technically impossible for two types to have the same name in the Microsoft Dynamics
AX class type hierarchy.

Type hierarchies
The X++ language supports the definition of type hierarchies that specify generalized and specialized
relationships between class types and table types. For example, a check payment method is a type of
payment method. A type hierarchy allows code reuse. Reusable code is defined on base types defined
higher in a type hierarchy because they are inherited, or reused, by derived types defined lower in a
type hierarchy.

90 PART 1 A tour of the development environment

Tip You can use the Type Hierarchy Context and Type Hierarchy Browser tools in MorphX
to visualize, browse, and search the hierarchy of any type.

The following sections introduce the base types provided by the Microsoft Dynamics AX runtime
and describe how they are extended in type hierarchies.

Caution The Microsoft Dynamics AX type system is known as a weak type system because
X++ accepts certain type assignments that are clearly erroneous and lead to runtime
 errors. Be aware of the caveats outlined in the following sections, and try to avoid weak
type constructs when writing X++ code.

The anytype type
The Microsoft Dynamics AX type system doesn’t have a single base type from which all types
 ultimately derive. However, the anytype type imitates a base type for all types. Variables of the
 anytype type function like value types when they are assigned a value type variable and like reference
types when they are assigned a reference type variable. You can use the SysAnyType class to explicitly
box all types, including value types, and make them function like reference types.

The anytype type, shown in the following code sample, is syntactic sugar that allows methods to
accept any type as a parameter or allows a method to return different types:

static str queryRange(anytype _from, anytype _to)
{
 return SysQuery::range(_from,_to);
}

You can declare variables by using anytype. However, the underlying data type of an anytype
 variable is set to match the first assignment, and you can’t change its type afterward, as shown here:

anytype a = 1;
print strfmt("%1 = %2", typeof(a), a); //Integer = 1
a = "text";
print strfmt("%1 = %2", typeof(a), a); //Integer = 0

The common type
The common type is the base type of all record types. Like the anytype type, record types are
context-dependent types whose variables can be used as though they reference single records or as a
record cursor that can iterate over a set of database records.

 CHAPTER 4 The X++ programming language 91

By using the common type, you can cast one record type to another (possibly incompatible) record
type, as shown in this example:

//customer = vendor; //Compile error
common = customer;
vendor = common; //Accepted

Tables in Microsoft Dynamics AX also support inheritance and polymorphism. This capability
 offers a type-safe method of sharing commonalities such as methods and fields between tables. It
is possible to override table methods but not table fields. A base table can be marked as abstract or
final through the table’s properties.

Table maps defined in the AOT are a type-safe method of capturing commonalities between
record types across type hierarchies, and you should use them to prevent incompatible record
 assignments. A table map defines fields and methods that safely operate on one or more record
types.

The compiler doesn’t validate method calls on the common type. For example, the compiler
 accepts the following method invocation, even though the method doesn’t exist:

common.nonExistingMethod();

For this reason, you should use reflection to confirm that the method on the common type exists
before you invoke it, as shown in this example. For more information, see Chapter 20, “Reflection.”

if (tableHasMethod(new DictTable(common.tableId), identifierStr(existingMethod)))
{
 common.existingMethod();
}

The object type
The built-in object type is a weak reference type whose variables reference objects that are instances
of class or interface types in the Microsoft Dynamics AX class hierarchy.

The type system allows you to implicitly cast base type objects to derived type objects and to cast
derived type objects to base type objects, as shown here:

baseClass = derivedClass;
derivedClass = baseClass;

92 PART 1 A tour of the development environment

The object type allows you to use the assignment operator and cast one class type to another,
incompatible class type, as shown in the following code. The probable result of this action, however,
is a run-time exception when your code encounters an object of an unexpected type.

Object myObject;
//myBinaryIO = myTextIO; //Compile error
myObject = myTextIO;
mybinaryIO = myObject; //Accepted

Use the is and as operators instead of the assignment operator to prevent these incompatible type
casts. The is operator determines if an instance is of a particular type, and the as operator casts an
instance as a particular type, or null if they are not compatible. The is and as operators work on class
and table types.

myTextIO = myObject as TextIO;
if (myBinaryIO is TextIO)
{
}

You can use the object type for late binding to methods, similar to the dynamic keyword in C#.
Keep in mind that a run-time error will occur if the method invoked doesn’t exist.

myObject.lateBoundMethod();

Extended data types
You use the AOT to create extended data types that model concrete data values and data hierarchies.
For example, the Name extended data type is a string, and the CustName and VendName extended
data types extend the Name data type.

The X++ language supports extended data types but doesn’t offer type checking according to the
hierarchy of extended data types. X++ treats any extended data type as its primitive type; therefore,
code such as the following is allowed:

CustName customerName;
FileName fileName = customerName;

When used properly, extended data types improve the readability of X++ code. It’s easier to
 understand the intended use of a CustName data type than a string data type, even if both are used
to declare string variables.

 CHAPTER 4 The X++ programming language 93

Extended data types are more than just type definitions that make X++ code more readable. On
each extended data type, you can also specify how the system displays values of this type to users.
Further, you can specify a reference to a table. The reference enables the form’s rendering engine to
automatically build lookup forms for form controls by using the extended data type, even when the
form controls are not bound to a data source. On string-based extended data types, you can specify
the maximum string size of the type. The database layer uses the string size to define the underlying
columns for fields that use the extended data type. Defining the string size in only one place makes it
easy to change.

Syntax

The X++ language belongs to the “curly brace” family of programming languages (those that use
curly braces to delimit syntax blocks), such as C, C++, C#, and Java. If you’re familiar with any of these
languages, you won’t have a problem reading and understanding X++ syntax.

Unlike many programming languages, X++ is not case sensitive. However, using camel casing
(camelCasing) for variable names and Pascal casing (PascalCasing) for type names is considered a best
practice. (More best practices for writing X++ code are available in the Microsoft Dynamics AX 2012
SDK.) You can use the Source Code Titlecase Update tool (accessed from the Add-Ins submenu in the
AOT) to automatically apply casing in X++ code to match the best practice recommendation.

Common language runtime (CLR) types, which are case sensitive, are one important exception to
the casing guidelines. For information about how to use CLR types, see the “CLR interoperability”
section later in this chapter.

Variable declarations
You must place variable declarations at the beginning of methods. Table 4-1 provides examples of
value type and reference type variable declarations, in addition to example variable initializations.
 Parameter declaration examples are provided in the “Classes and interfaces” section later in this
 chapter.

TABLE 4-1 X++ variable declaration examples.

Type Examples

anytype anytype type = null;
anytype type = 1;

Base enumeration types NoYes theAnswer = NoYes::Yes;

boolean boolean b = true;

container container c1 = ["a string", 123];
container c2 = [["a string", 123], c1];
container c3 = connull();

94 PART 1 A tour of the development environment

Type Examples

date date d = 31\12\2008;

Extended data types Name name = "name";

guid guid g = newguid();

int int i = -5;
int h = 0xAB;

int64 int64 i = -5;
int64 h = 0xAB;
int64 u = 0xA0000000u;

Object types Object obj = null;
MyClass myClass = new MyClass();
System.Text.StringBuilder sb = new
System.Text.StringBuilder();

real real r1 = 3.14;
real r2 = 1.0e3;

Record types Common myRecord = null;
CustTable custTable = null;

str str s1 = "a string";
str s2 = 'a string';
str 40 s40 = "string 40";

TimeOfDay TimeOfDay time = 43200;

utcDateTime utcDateTime dt = 2008-12-31T23:59:59;

Note String literals can be expressed using either single or double quotes. It is considered
best practice to use single quotes for system strings, like file names, and double quotes for
user interface strings. The examples in this chapter adhere to this guideline.

Declaring variables with the same name as their type is a best practice. At first glance, this
 approach might seem confusing. Consider this class and its getter/setter method to its field:

Class Person
{
 Name name;

 public Name Name(Name _name = name)
 {
 name = _name;
 return name;
 }
}

Because X++ is not case sensitive, the word name is used in eight places in the preceding code.
Three refer to the extended data type, four refer to the field, and one refers to the method (_name
is used twice). To improve readability, you could rename the variable to something more specific,

 CHAPTER 4 The X++ programming language 95

such as personName. However, using a more specific variable name implies that a more specific type
should be used (and created if it doesn’t already exist). Changing both the type name and the variable
name to PersonName wouldn’t improve readability. The benefit of this practice is that if you know the
name of a variable, you also know its type.

Note Previous versions of Microsoft Dynamics AX required a dangling semicolon to signify
the end of a variable declaration. This is no longer required because the compiler solves
the ambiguity by reading one token ahead, except where the first statement is a static CLR
call. The compiler still accepts the now-superfluous semicolons, but you can remove them
if you want to.

Expressions
X++ expressions are sequences of operators, operands, values, and variables that yield a result. Table
4-2 summarizes the types of expressions allowed in X++ and includes examples of their use.

TABLE 4-2 X++ expression examples.

Category Examples

Access operators this //Instance member access
element //Form member access
<datasource>_ds //Form data source access
<datasource>_q //Form query access
x.y //Instance member access
E::e //Enum access
a[x] //Array access
[v1, v2] = c //Container access
Table.Field //Table field access
Table.(FieldId) //Table field access
(select statement).Field //Select result access
System.Type //CLR namespace type access
System.DayOfWeek::Monday //CLR enum access

Arithmetic operators x = y + z // Addition
x = y - z // Subtraction
x = y * z // Multiplication
x = y / z // Division
x = y div z // Integer division
x = y mod z // Integer division remainder

Bitwise operators x = y & z // Bitwise AND
x = y | z // Bitwise OR
x = y ^ z // Bitwise exclusive OR (XOR)
x = ~z // Bitwise complement

Conditional operators x ? y : z

Logical operators if (!obj) // Logical NOT
if (a && b) // Logical AND
if (a || b) // Logical OR

Method invocations super() //Base member invocation
MyClass::m() //Static member invocation
myObject.m() //Instance member invocation
this.m() //This instance member invocation
myTable.MyMap::m(); //Map instance member invocation
f() //Built-in function call

96 PART 1 A tour of the development environment

Category Examples

Object creation operators new MyClass() //X++ object creation
new System.DateTime() //CLR object wrapper and
 //CLR object creation
new System.Int32[100]() //CLR array creation

Parentheses (x)

Relational operators x < y // Less than
x > y // Greater than
x <= y // Less than or equal
x >= y // Greater than or equal
x == y // Equal
x != y // Not equal
select t where t.f like "a*" // Select using wildcards

Shift operators x = y << z // Shift left
x = y >> z // Shift right

String concatenation "Hello" + "World"

Values and variables "string"
myVariable

Statements
X++ statements specify object state and object behavior. Table 4-3 provides examples of X++
 language statements that are commonly found in many programming languages. In-depth
 descriptions of each statement are beyond the scope of this book.

TABLE 4-3 X++ statement examples.

Statement Example

.NET CLR interoperability statement System.Text.StringBuilder sb;
sb = new System.Text.StringBuilder();
sb.Append("Hello World");
print sb.ToString();
pause;

Assignment statement int i = 42;
i = 1;
i++;
++i;
i--;
--i;
i += 1;
i -= 1;
this.myDelegate += eventhandler(obj.handler);
this.myDelegate -= eventhandler(obj.handler);

break statement int i;
for (i = 0; i < 100; i++)
{
 if (i > 50)
 {
 break;
 }
}

breakpoint statement breakpoint; //Causes the debugger to be invoked

 CHAPTER 4 The X++ programming language 97

Statement Example

Casting statement MyObject myObject = object as MyObject;
boolean isCompatible = object is MyObject;

changeCompany
statement

MyTable myTable;
while select myTable
{
 print myTable.myField;
}
changeCompany("ZZZ")
{
 while select myTable
 {
 print myTable.myField;
 }
}
pause;

Compound statement int i;
{
 i = 3;
 i++;
}

continue statement int i;
int j = 0;
for(i = 0; i < 100; i++)
{
 if (i < 50)
 {
 continue;
 }
 j++;
}

do while statement int i = 4;
do
{
 i++;
}
while (i <= 100);

flush statement MyTable myTable;
flush myTable;

for statement int i;
for (i = 0; i < 42; i++)
{
 print i;
}
pause;

if statement boolean b = true;
int i = 42;
if (b == true)
{
 i++;
}
else
{
 i--;
}

98 PART 1 A tour of the development environment

Statement Example

Local function static void myJob(Args _args)
{
 str myLocalFunction()
 {
 return "Hello World";
 }
 print myLocalFunction();
 pause;
}

pause statement print "Hello World";
pause;

print statement int i = 42;
print i;
print "Hello World";
print "Hello World" at 10,5;
print 5.2;
pause;

retry statement try
{
 throw error("Force exception");
}
catch(exception::Error)
{
 retry;
}

return statement int foo()
{
 return 42;
}

switch statement str s = "test";
switch (s)
{
 case "test" :
 print s;
 break;
 default :
 print "fail";
}
pause;

System function guid g = newGuid();
print abs(-1);

throw statement throw error("Error text");

try statement try
{
 throw error("Force exception");
}
catch(exception::Error)
{
 print "Error";
 pause;
}
catch
{
 print "Another exception";
 pause;
}

unchecked statement unchecked(Uncheck::TableSecurityPermission)
{
 this.method();
}

 CHAPTER 4 The X++ programming language 99

Statement Example

while statement int i = 4;
while (i <= 100)
{
 i++;
}

window statement window 100, 10 at 100, 10;
print "Hello World";
pause;

Data-aware statements
The X++ language has built-in support for querying and manipulating database data. The syntax for
database statements is similar to Structured Query Language (SQL), and this section assumes that
you’re familiar with SQL. The following code shows how a select statement is used to return only the
first selected record from the MyTable database table and how the data in the record’s myField field is
printed:

static void myJob(Args _args)
{
 MyTable myTable;
 select firstOnly * from myTable where myTable.myField1 == "value";
 print myTable.myField2;
 pause;
}

The “* from” part of the select statement in the example is optional. You can replace the asterisk
(*) character with a comma-separated field list, such as myField2, myField3. You must define all fields,
however, on the selection table model element, and only one selection table is allowed mmediately
after the from keyword. The where expression in the select statement can include any number of
 logical and relational operators. The firstOnly keyword is optional and can be replaced by one or
more of the optional keywords. Table 4-4 describes all possible keywords. For more information
about database-related keywords, see Chapter 17, “The database layer.”

TABLE 4-4 Keyword options for select statements.

Keyword Description

crossCompany Forces the Microsoft Dynamics AX runtime to generate a query
without automatically adding the where clause in the dataAreaId
field. This keyword can be used to select records from all or from a
set of specified company accounts. For example, the query
while select crosscompany:companies myTable { }

selects all records in the myTable table from the company accounts
specified in the companies container.

firstFast Fetches the first selected record faster than the remaining selected
records.

100 PART 1 A tour of the development environment

Keyword Description

firstOnly
firstOnly1

Returns only the first selected record.

firstOnly10 Returns only the first 10 selected records.

firstOnly100 Returns only the first 100 selected records.

firstOnly1000 Returns only the first 1,000 selected records.

forceLiterals Forces the Microsoft Dynamics AX runtime to generate a query
with the specified field constraints. For example, the query
 generated for the preceding code example looks like this:
select * from myTable where myField1=’value’. Database query plans
aren’t reused when this option is specified. This keyword can’t be
used with the forcePlaceholders keyword.

forceNestedLoop Forces the SQL Server query processor to use a nested-loop
 algorithm for table join operations. Other join algorithms, such
as hash-join and merge-join, are therefore not considered by the
query processor.

forcePlaceholders Forces the Microsoft Dynamics AX runtime to generate a query
with placeholder field constraints. For example, the query
 generated for the preceding code example looks like this:
select * from myTable where myField1=?. Database query plans are
reused when this option is specified. This is the default option for
select statements that don’t join table records. This keyword can’t
be used with the forceLiterals keyword.

forceSelectOrder Forces the Microsoft SQL Server query processor to access tables in
the order in which they are specified in the query.

forUpdate Selects records for updating.

generateOnly Instructs the SQL Server query processor to only generate the SQL
 statements—and not execute them. The generated SQL statement
can be retrieved using the getSQLStatement method on the
 primary table.

noFetch Specifies that the Microsoft Dynamics AX runtime should not
 execute the statement immediately because the records are
 required only by some other operation.

optimisticLock Overrides the table’s OccEnabled property and forces the
 optimistic locking scheme. This keyword can’t be used with the
 pessimisticLock and repeatableRead keywords.

pessimisticLock Overrides the table’s OccEnabled property and forces the
 pessimistic locking scheme. This keyword can’t be used with the
optimisticLock and repeatableRead keywords.

repeatableRead Locks all records read within a transaction. This keyword can be
used to ensure consistent data is fetched by identical queries
for the duration of the transaction, at the cost of blocking other
 updates of those records. Phantom reads can still occur if another
process inserts records that match the range of the query. This
keyword can’t be used with the optimisticLock and pessimisticLock
keywords.

reverse Returns records in the reverse of the select order.

validTimeState Instructs the SQL Server query processor to use the provided date
or date range instead of the current date. For example, the query
while select validTimeState(fromDate, toDate) myTable { }

selects all records in the myTable table that are valid in the period
from fromDate to toDate.

 CHAPTER 4 The X++ programming language 101

The following code example demonstrates how to use a table index clause to suggest the index
that a database server should use when querying tables. The Microsoft Dynamics AX runtime
 appends an order by clause and the index fields to the first select statement’s database query. Records
are thus ordered by the index. The Microsoft Dynamics AX runtime can insert a query hint into the
second select statement’s database query, if the hint is feasible to use.

static void myJob(Args _args)
{
 MyTable1 myTable1;
 MyTable2 myTable2;

 while select myTable1
 index myIndex1
 {
 print myTable1.myField2;
 }

 while select myTable2
 index hint myIndex2
 {
 print myTable2.myField2;
 }
 pause;
}

The following code example demonstrates how the results from a select query can be ordered and
grouped. The first select statement specifies that the resulting records must be sorted in ascending
order based on myField1 values and then in descending order based on myField2 values. The second
select statement specifies that the resulting records must be grouped by myField1 values and then
sorted in descending order.

static void myJob(Args _args)
{
 MyTable myTable;

 while select myTable
 order by Field1 asc, Field2 desc
 {
 print myTable.myField;
 }
 while select myTable
 group by Field1 desc
 {
 print myTable.Field1;
 }
 pause;
}

102 PART 1 A tour of the development environment

The following code demonstrates use of the avg and count aggregate functions in select
 statements. The first select statement averages the values in the myField column and assigns the result
to the myField field. The second select statement counts the number of records the selection returns
and assigns the result to the myField field.

static void myJob(Args _args)
{
 MyTable myTable;

 select avg(myField) from myTable;
 print myTable.myField;

 select count(myField) from myTable;
 print myTable.myField;
 pause;
}

Caution The compiler doesn’t verify that aggregate function parameter types are numeric,
so the result that the function returns could be assigned to a field of type string. The result
will be truncated if, for example, the average function calculates a value of 1.5 and the type
of myField is an integer.

Table 4-5 Describes the aggregate functions supported in X++ select statements.

TABLE 4-5 Aggregate functions in X++ select statements.

Function Description

avg Returns the average of the non-null field values in the
records the selection returns.

count Returns the number of non-null field values in the records
the selection returns.

maxOf Returns the maximum of the non-null field values in the
records the selection returns.

minOf Returns the minimum of the non-null field values in the
records the selection returns.

sum Returns the sum of the non-null field values in the records
the selection returns.

The following code example demonstrates how tables are joined with join conditions. The first
select statement joins two tables by using an equality join condition between fields in the tables.
The second select statement joins three tables to illustrate how you can nest join conditions and
use an exists operator as an existence test with a join condition. The second select statement also
 demonstrates how you can use a group by sort in join conditions. In fact, the join condition can
 comprise multiple nested join conditions because the syntax of the join condition is the same as the
body of a select statement.

 CHAPTER 4 The X++ programming language 103

static void myJob(Args _args)
{
 MyTable1 myTable1;
 MyTable2 myTable2;

 MyTable3 myTable3;

 select myField from myTable1
 join myTable2
 where myTable1.myField1=myTable2.myField1;
 print myTable1.myField;

 select myField from myTable1
 join myTable2
 group by myTable2.myField1
 where myTable1.myField1=myTable2.myField1
 exists join myTable3
 where myTable1.myField1=myTable3.mField2;
 print myTable1.myField;
 pause;
}

Table 4-6 describes the exists operator and the other join operators that can be used in place of
the exists operator in the preceding example.

TABLE 4-6 Join operators.

Operator Description

exists Returns true if any records are in the result
set after executing the join clause. Returns
false otherwise.

notExists Returns false if any records are in the result
set after executing the join clause. Returns
true otherwise.

outer Returns the left outer join of the first and
second tables.

The following example demonstrates use of the while select statement that increments the myTable
variable’s record cursor on each loop:

static void myJob(Args _args)
{
 MyTable myTable;

 while select myTable
 {
 Print myTable.myField;
 }
}

104 PART 1 A tour of the development environment

You must use the ttsBegin, ttsCommit, and ttsAbort transaction statements to modify records in
tables and to insert records into tables. The ttsBegin statement marks the beginning of a database
transaction block; ttsBegin-ttsCommit transaction blocks can be nested. The ttsBegin statements
increment the transaction level; the ttsCommit statements decrement the transaction level. The
 outermost block decrements the transaction level to zero and commits all database inserts and
 updates performed since the first ttsBegin statement to the database. The ttsAbort statement rolls
back all database inserts, updates, and deletions performed since the ttsBegin statement. Table
4-7 provides examples of these transaction statements for single records and operations and for
 set-based (multiple-record) operations.

The last example in Table 4-7 demonstrates the method RowCount. Its purpose is to get the count
of records that are affected by set-based operations; namely, insert_recordset, update_recordset, and
delete_from.

By using RowCount, it is possible to save one round-trip to the database in certain application
 scenarios; for example, when implementing insert-or-update logic.

TABLE 4-7 Transaction statement examples.

Statement Type Example

delete_from MyTable myTable;
Int64 numberOfRecordsAffected;

ttsBegin;
delete_from myTable
 where myTable.id == "001";
numberOfRecordsAffected = myTable.RowCount();
ttsCommit;

insert method MyTable myTable;

ttsBegin;
myTable.id = "new id";
myTable.myField = "new value";
myTable.insert();
ttsCommit;

insert_recordset MyTable1 myTable1;
MyTable2 myTable2;
int64 numberOfRecordsAffected;

ttsBegin;
insert_recordset myTable2 (myField1, myField2)
 select myField1, myField2 from myTable1;
numberOfRecordsAffected = myTable.RowCount();
ttsCommit;

select forUpdate MyTable myTable;

ttsBegin;
select forUpdate myTable;
myTable.myField = "new value";
myTable.update();
ttsCommit;

ttsBegin
ttsCommit
ttsAbort

boolean b = true;

ttsBegin;
if (b == true)
 ttsCommit;
else
 ttsAbort;

 CHAPTER 4 The X++ programming language 105

Statement Type Example

update_recordset MyTable myTable;
int64 numberOfRecordsAffected;

ttsBegin;
update_recordset myTable setting
 myField1 = "value1",
 myField2 = "value2"
 where myTable.id == "001";
numberOfRecordsAffected = myTable.RowCount();
ttsCommit;

Exception handling
It is a best practice to use the X++ exception handling framework instead of programmatically halting
a transaction by using the ttsAbort statement. An exception (other than the update conflict and
duplicate key exceptions) thrown inside a transaction block halts execution of the block, and all of
the inserts and updates performed since the first ttsBegin statement are rolled back. Throwing an
 exception has the additional advantage of providing a way to recover object state and maintain the
consistency of database transactions. Inside the catch block, you can use the retry statement to run
the try block again. The following example demonstrates throwing an exception inside a database
transaction block:

static void myJob(Args _args)
{
 MyTable myTable;
 boolean state = false;

 try
 {
 ttsBegin;

 update_recordset myTable setting
 myField = "value"
 where myTable.id == "001";
 if(state==false)
 {
 throw error("Error text");
 }
 ttsCommit;
 }
 catch(Exception::Error)
 {
 state = true;
 retry;
 }
}

The throw statement throws an exception that causes the database transaction to halt and roll
back. Code execution can’t continue inside the scope of the transaction, so the runtime ignores

106 PART 1 A tour of the development environment

try and catch statements when inside a transaction. This means that an exception thrown inside a
 transaction can be caught only outside the transaction, as shown here:

static void myJob(Args _args)
{
 try
 {
 ttsBegin;
 try
 {
 ...
 throw error("Error text");
 }
 catch //Will never catch anything
 {
 }
 ttsCommit;
 }
 catch(Exception::Error)
 {
 print "Got it";
 pause;
 }
 catch
 {
 print "Unhandled Exception";
 pause;
 }
}

Although a throw statement takes the exception enumeration as a parameter, using the error
method to throw errors is considered best practice. The try statement’s catch list can contain
more than one catch block. The first catch block in the example catches error exceptions. The retry
 statement jumps to the first statement in the outer try block. The second catch block catches all
exceptions not caught by catch blocks earlier in the try statement’s catch list. Table 4-8 describes
the Microsoft Dynamics AX system Exception data type enumerations that can be used in try-catch
 statements.

TABLE 4-8 Exception data type enumerations.

Element Description

Break Thrown when a user presses the Break key or Ctrl+C.

CLRError Thrown when an unrecoverable error occurs in a CLR process.

CodeAccessSecurity Thrown when an unrecoverable error occurs in the demand method of
a CodeAccessPermission object.

DDEerror Thrown when an error occurs in the use of a Dynamic Data Exchange
(DDE) system class.

Deadlock Thrown when a database transaction has deadlocked.

 CHAPTER 4 The X++ programming language 107

Element Description

DuplicateKeyException Thrown when a duplicate key error occurs during an insert operation.
The catch block should change the value of the primary keys and use
a retry statement to attempt to commit the halted transaction.

DuplicateKeyExceptionNotRecovered Thrown when an unrecoverable duplicate key error occurs during an
insert operation. The catch block shouldn’t use a retry statement to
attempt to commit the halted transaction.

Error* Thrown when an unrecoverable application error occurs. A catch block
should assume that all database transactions in a transaction block
have been halted and rolled back.

Internal Thrown when an unrecoverable internal error occurs.

Numeric Thrown when a mathematical error occurs like division by zero, logarithm
of a negative number, or conversion between incompatible types.

PassClrObjectAcrossTiers Thrown when an attempt is made to pass a CLR object from the client
to the server tier or vice versa. The Microsoft Dynamics AX runtime
doesn’t support automatic marshaling of CLR objects across tiers.

Sequence Thrown by the Microsoft Dynamics AX kernel if a database error or
database operation error occurs.

Timeout Thrown when a database operation times out.

UpdateConflict Thrown when an update conflict error occurs in a transaction block
using optimistic concurrency control. The catch block should use a
retry statement to attempt to commit the halted transaction.

UpdateConflictNotRecovered Thrown when an unrecoverable error occurs in a transaction block
 using optimistic concurrency control. The catch block shouldn’t use
a retry statement to attempt to commit the halted transaction.

* The error method is a static method of the global X++ class for which the X++ compiler allows an abbreviated syntax. The expression
Global::error(“Error text”) is equivalent to the error expression in the code examples earlier in this section. Don’t confuse these global
X++ methods with Microsoft Dynamics AX system API methods, such as newGuid.

UpdateConflict and DuplicateKeyException are the only data exceptions that a Microsoft Dynamics
AX application can handle inside a transaction. Specifically, with DuplicateKeyException, the database
transaction isn’t rolled back, and the application is given a chance to recover. DuplicateKeyException
facilitates application scenarios (such as Master Planning) that perform batch processing and handles
duplicate key exceptions without aborting the transaction in the midst of the resource-intensive
 processing operation.

The following example illustrates the usage of DuplicateKeyException:

static void DuplicateKeyExceptionExample(Args _args)
{
 MyTable myTable;

 ttsBegin;
 myTable.Name = "Microsoft Dynamics AX";
 myTable.insert();
 ttsCommit;

 ttsBegin;
 try
 {

108 PART 1 A tour of the development environment

 myTable.Name = "Microsoft Dynamics AX";
 myTable.insert();
 }
 catch(Exception::DuplicateKeyException)
 {
 info(strfmt("Transaction level: %1", appl.ttsLevel()));
 info(strfmt("%1 already exists.", myTable.Name));
 info(strfmt("Continuing insertion of other records"));
 }
 ttsCommit;
}

In the preceding example, the catch block handles the duplicate key exception. Notice that the
transaction level is still 1, indicating that the transaction hasn’t aborted and the application can
 continue processing other records.

Note The special syntax where a table instance was included in the catch block is no
 longer available.

Interoperability
The X++ language includes statements that allow interoperability (interop) with .NET CLR assemblies
and COM components. The Microsoft Dynamics AX runtime achieves this interoperability by
 providing Dynamics AX object wrappers around external objects and by dispatching method calls
from the Microsoft Dynamics AX object to the wrapped object.

CLR interoperability
You can write X++ statements for CLR interoperability by using one of two methods: strong typing or
weak typing. Strong typing is recommended because it is type safe and less error prone than weak
typing, and it results in code that is easier to read. The MorphX X++ editor also provides IntelliSense
as you type.

The examples in this section use the .NET System.Xml assembly, which is added as an AOT
 references node. (See Chapter 1, “Architectural overview,” for a description of programming model
elements.) The programs are somewhat verbose because the compiler doesn’t support method
 invocations on CLR return types and because CLR types must be identified by their fully qualified
name. For example, the expression System.Xml.XmlDocument is the fully qualified type name for the
.NET Framework XML document type.

Caution X++ is case sensitive when referring to CLR types.

 CHAPTER 4 The X++ programming language 109

The following example demonstrates strongly typed CLR interoperability with implicit type
 conversions from Microsoft Dynamics AX strings to CLR strings in the string assignment statements
and shows how CLR exceptions are caught in X++:

static void myJob(Args _args)
{
 System.Xml.XmlDocument doc = new System.Xml.XmlDocument();
 System.Xml.XmlElement rootElement;
 System.Xml.XmlElement headElement;
 System.Xml.XmlElement docElement;
 System.String xml;
 System.String docStr = 'Document';
 System.String headStr = 'Head';
 System.Exception ex;
 str errorMessage;

 try
 {
 rootElement = doc.CreateElement(docStr);
 doc.AppendChild(rootElement);
 headElement = doc.CreateElement(headStr);
 docElement = doc.get_DocumentElement();
 docElement.AppendChild(headElement);
 xml = doc.get_OuterXml();
 print ClrInterop::getAnyTypeForObject(xml);
 pause;
 }
 catch(Exception::CLRError)
 {
 ex = ClrInterop::getLastException();
 if(ex)
 {
 errorMessage = ex.get_Message();
 info(errorMessage);
 }
 }
}

The following example illustrates how static CLR methods are invoked by using the X++ static
method accessor ::.

static void myJob(Args _args)
{
 System.Guid g = System.Guid::NewGuid();
}

110 PART 1 A tour of the development environment

The following example illustrates the support for CLR arrays:

static void myJob(Args _args)
{
 System.Int32 [] myArray = new System.Int32[100]();

 myArray.SetValue(1000, 0);
 print myArray.GetValue(0);
}

X++ supports passing parameters by reference to CLR methods. Changes that the called method
makes to the parameter also change the caller variable’s value. When non-object type variables are
passed by reference, they are wrapped temporarily in an object. This operation is often called boxing
and is illustrated in the following example:

static void myJob(Args _args)
{
 int myVar = 5;

 MyNamespace.MyMath::Increment(byref myVar);

 print myVar; // prints 6
}

The called method could be implemented in C# like this:

// Notice: This example is C# code
static public void Increment(ref int value)
{
 value++;
}

Note Passing parameters by reference is supported only for CLR methods, not for X++
methods.

The second method of writing X++ statements for CLR uses weak typing. The following example
shows CLR types that perform the same steps as in the first CLR interoperability example. In this case,
however, all references are validated at run time, and all type conversions are explicit.

static void myJob(Args _args)
{
 ClrObject doc = new ClrObject('System.Xml.XmlDocument');
 ClrObject docStr;

 CHAPTER 4 The X++ programming language 111

 ClrObject rootElement;
 ClrObject headElement;
 ClrObject docElement;
 ClrObject xml;

 docStr = ClrInterop::getObjectForAnyType('Document');
 rootElement = doc.CreateElement(docStr);
 doc.AppendChild(rootElement);
 headElement = doc.CreateElement('Head');
 docElement = doc.get_DocumentElement();
 docElement.AppendChild(headElement);
 xml = doc.get_OuterXml();
 print ClrInterop::getAnyTypeForObject(xml);
 pause;
}

The first statement in the preceding example demonstrates the use of a static method to convert
X++ primitive types to CLR objects. The print statement shows the reverse, converting CLR value
types to X++ primitive types. Table 4-9 lists the value type conversions that Microsoft Dynamics AX
 supports.

TABLE 4-9 Type conversions supported in Microsoft Dynamics AX.

CLR Type Microsoft Dynamics AX Type

Byte, SByte, Int16, UInt16, Int32 int

Byte, SByte, Int16, UInt16, Int32, Uint32,
Int64

int64

DateTime utcDateTime

Double, Single real

Guid guid

String str

Microsoft Dynamics AX Type CLR Type

int Int32, Int64

int64 Int64

utcDateTime DateTime

real Single, Double

guid Guid

str String

The preceding code example also demonstrates the X++ method syntax used to access CLR object
properties, such as get_DocumentElement. The CLR supports several operators that are not supported
in X++. Table 4-10 lists the supported CLR operators and the alternative method syntax.

112 PART 1 A tour of the development environment

TABLE 4-10 CLR operators and methods.

CLR Operators CLR Methods

Property operators get_<property>, set_<property>

Index operators get_Item, set_Item

Math operators op_<operation>(arguments)

The following features of CLR can’t be used with X++:

 ■ Public fields (can be accessed by using CLR reflection classes)

 ■ Events and delegates

 ■ Generics

 ■ Inner types

 ■ Namespace declarations

COM interoperability
The following code example demonstrates COM interoperability with the XML document type in
the Microsoft XML Core Services (MSXML) 6.0 COM component. The example assumes that you’ve
installed MSXML. The MSXML document is first instantiated and wrapped in a Microsoft Dynamics AX
COM object wrapper. A COM variant wrapper is created for a COM string. The direction of the variant
is put into the COM component. The root element and head element variables are declared as COM
objects. The example shows how to fill a string variant with an X++ string and then use the variant as
an argument to a COM method, loadXml. The statement that creates the head element demonstrates
how the Microsoft Dynamics AX runtime automatically converts Microsoft Dynamics AX primitive
objects into COM variants.

static void Job2(Args _args)
{
 COM doc = new COM('Msxml2.DomDocument.6.0');
 COMVariant rootXml =
 new COMVariant(COMVariantInOut::In,COMVariantType::VT_BSTR);
 COM rootElement;
 COM headElement;

 rootXml.bStr('<Root></Root>');
 doc.loadXml(rootXml);
 rootElement = doc.documentElement();
 headElement = doc.createElement('Head');
 rootElement.appendChild(headElement);
 print doc.xml();
 pause;
}

 CHAPTER 4 The X++ programming language 113

Macros
With the macro capabilities in X++, you can define and use constants and perform conditional
 compilation. Macros are unstructured because they are not defined in the X++ syntax. Macros are
handled before the source code is compiled. You can add macros anywhere you write source code: in
methods and in class declarations.

Table 4-11 shows the supported macro directives.

TABLE 4-11 Macro directives.

Directive Description

#define
#globaldefine

Defines a macro with a value.
#define.MyMacro(SomeValue)

Defines the macro MyMacro with the value SomeValue.

#macro
…
#endmacro

#localmacro
…
#endmacro

Defines a macro with a value spanning multiple lines.
#macro.MyMacro
 print "foo";
 print "bar";
#endmacro

Defines the macro MyMacro with a multiple-line value.

#macrolib Includes a macro library. As a shorthand form of this directive,
you can omit macrolib.
#macrolib.MyMacroLibrary
#MyMacroLibrary

Both include the macro library MyMacroLibrary, which is defined
under the Macros node in the AOT.

#MyMacro Replaces a macro with its value.
#define.MyMacro("Hello World")
print #MyMacro;

Defines the macro MyMacro and prints its value. In this example,
“Hello World” would be printed.

#definc
#defdec

Increments and decrements the value of a macro; typically used
when the value is an integer.
#defdec.MyIntMacro

Decrements the value of the macro MyIntMacro.

#undef Removes the definition of a macro.
#undef.MyMacro

Removes the definition of the macro MyMacro.

#if
 …
#endif

Conditional compile. If the macro referenced by the #if directive
is defined or has a specific value, the following text is included in
the compilation:
#if.MyMacro
print "MyMacro is defined";
#endif

114 PART 1 A tour of the development environment

Directive Description

If MyMacro is defined, the print statement is included as part of
the source code:
#if.MyMacro(SomeValue)
print "MyMacro is defined and has value: SomeValue";
#endif

If MyMacro has SomeValue, the print statement is included as
part of the source code.

#ifnot
 …
#endif

Conditional compile. If the macro referenced by the #ifnot
d irective isn’t defined or doesn’t have a specific value, the
 following text is included in the compilation:
#ifnot.MyMacro
print "MyMacro is not defined";
#endif

If MyMacro is not defined, the print statement is included as part
of the source code:
#ifnot.MyMacro(SomeValue)
print "MyMacro does not have value: SomeValue; or it is
not defined";
#endif

If MyMacro is not defined, or if it does not have SomeValue, the
print statement is included as part of the source code.

The following example shows a macro definition and reference:

void myMethod()
{
 #define.HelloWorld("Hello World")

 print #HelloWorld;
 pause;
}

As noted in Table 4-11, a macro library is created under the Macros node in the AOT. The library is
included in a class declaration header or class method, as shown in the following example:

class myClass
{
 #MyMacroLibrary1
}
public void myMethod()
{
 #MyMacroLibrary2

 #MacroFromMyMacroLibrary1
 #MacroFromMyMacroLibrary2
}

 CHAPTER 4 The X++ programming language 115

A macro can also use parameters. The compiler inserts the parameters at the positions of the
placeholders. The following example shows a local macro using parameters:

void myMethod()
{
 #localmacro.add
 %1 + %2
 #endmacro

 print #add(1, 2);
 print #add("Hello", "World");
 pause;
}

When a macro library is included or a macro is defined in the class declaration of a class, the macro
can be used in the class and in all classes derived from the class. A subclass can redefine the macro.

Comments
X++ allows single-line and multiple-line comments. Single-line comments start with // and end at
the end of the line. Multiple-line comments start with /* and end with */. You can’t nest multiple-line
comments.

You can add reminders to yourself in comments that the compiler picks up and presents to you as
tasks in its output window. To set up these tasks, start a comment with the word TODO. Be aware that
tasks not occurring at the start of the comment, (for example, tasks that are deep inside multiple-line
comments,) are ignored by the compiler.

The following code example contains comments reminding the developer to add a new procedure
while removing an existing procedure by changing it into a comment:

public void myMethod()
{
 //Declare variables
 int value;

//TODO Validate if calculation is really required
/*
 //Perform calculation
 value = this.calc();
*/
 ...
}

116 PART 1 A tour of the development environment

XML documentation
You can document XML methods and classes directly in X++ by typing three slash characters (///)
followed by structured documentation in XML format. The XML documentation must be above the
actual code.

The XML documentation must align with the code. The Best Practices tool contains a set of rules
that can validate the XML documentation. Table 4-12 lists the supported tags.

TABLE 4-12 XML tags supported for XML documentation.

Tag Description

<summary> Describes a method or a class

<param> Describes the parameters of a method

<returns> Describes the return value of a method

<remarks> Adds information that supplements the information
provided in the <summary> tag

<exception> Documents exceptions that are thrown by a method

<permission> Describes the permission needed to access methods
using CodeAccessSecurity.demand

<seealso> Lists references to related and relevant
 documentation

The XML documentation is automatically displayed in the IntelliSense in the X++ editor.

You can extract the written XML documentation for an AOT project by using the Add-Ins menu
option Extract XML Documentation. One XML file is produced that contains all of the documentation
for the elements inside the project. You can also use this XML file to publish the documentation.

The following code example shows XML documentation for a static method on the Global class:

/// <summary>
/// Converts an X++ utcDateTime value to a .NET System.DateTime object.
/// </summary>
/// <param name="_utcDateTime">
/// The X++ utcDateTime to convert.
/// </param>
/// <returns>
/// A .NET System.DateTime object.
/// </returns>
static client server anytype utcDateTime2SystemDateTime(utcDateTime _utcDateTime)
{
 return CLRInterop::getObjectForAnyType(_utcDateTime);
}

 CHAPTER 4 The X++ programming language 117

Classes and interfaces

You define types and their structure in the AOT, not in the X++ language. Other programming
 languages that support type declarations do so within code, but Microsoft Dynamics AX supports an
object layering feature that accepts X++ source code customizations to type declaration parts that
encompass variable declarations and method declarations. Each part of a type declaration is managed
as a separate compilation unit, and model data is used to manage, persist, and reconstitute dynamic
types whose parts can include compilation units from many object layers.

You use X++ to define logic, including method profiles (return value, method name, and parameter
type and name). You use the X++ editor to add new methods to the AOT, so you can construct types
without leaving the X++ editor.

You use X++ class declarations to declare protected instance variable fields that are members of
application logic and framework reference types. You can’t declare private or public variable fields.
You can declare classes as abstract if they are incomplete type specifications that can’t be instantiated.
You can also declare them final if they are complete specifications that can’t be further specialized.
The following code provides an example of an abstract class declaration header:

abstract class MyClass
{
}

You can also structure classes into single-inheritance generalization or specialization hierarchies
in which derived classes inherit and override members of base classes. The following code shows an
example of a derived class declaration header that specifies that MyDerivedClass extends the abstract
base class MyClass. It also specifies that MyDerivedClass is final and can’t be further specialized by
another class. Because X++ doesn’t support multiple inheritance, derived classes can extend only one
base class.

final class MyDerivedClass extends MyClass
{
}

X++ also supports interface type specifications that specify method signatures but don’t define
their implementation. Classes can implement more than one interface, but the class and its derived
classes should together provide definitions for the methods declared in all the interfaces. If it fails to
provide the method definitions, the class itself is treated as abstract and cannot be instantiated. The
following code provides an example of an interface declaration header and a class declaration header
that implements the interface:

118 PART 1 A tour of the development environment

interface MyInterface
{
 void myMethod()
 {
 }
}
class MyClass implements MyInterface
{
 void myMethod()
 {
 }
}

Fields
A field is a class member that represents a variable and its type. Fields are declared in class declaration
headers; each class and interface has a definition part with the name classDeclaration in the AOT.
Fields are accessible only to code statements that are part of the class declaration or derived class
declarations. Assignment statements are not allowed in class declaration headers. The following
 example demonstrates how variables are initialized with assignment statements in a new method:

class MyClass
{
 str s;
 int i;
 MyClass1 myClass1;

 public void new()
 {
 i = 0;
 myClass1 = new MyClass1();
 }
}

Methods
A method on a class is a member that uses statements to define the behavior of an object. An
interface method is a member that declares an expected behavior of an object. The following code
provides an example of a method declaration on an interface and an implementation of the method
on a class that implements the interface:

interface MyInterface
{
 public str myMethod()
 {
 }
}

 CHAPTER 4 The X++ programming language 119

class MyClass implements MyInterface
{
 public str myMethod();
 {
 return "Hello World";
 }
}

Methods are defined with public, private, or protected access modifiers. If an access modifier is
omitted, the method is publicly accessible. The X++ template for new methods provides the private
access specifier. Table 4-13 describes additional method modifiers supported by X++.

TABLE 4-13 Method modifiers supported by X++.

Modifier Description

abstract Abstract methods have no implementation.
Derived classes must provide definitions for
 abstract methods.

client Client methods can execute only on a MorphX
client. The client modifier is allowed only on static
methods.

delegate Delegate methods cannot contain implementation.
Event handlers can subscribe to delegate methods.
The delegate modifier is allowed only on instance
methods.

display Display methods are invoked each time a form is
redrawn. The display modifier is allowed only on
table, form, form data source, and form control
methods.

edit The edit method is invoked each time a form is
redrawn or a user provides input through a form
control. The edit modifier is allowed only on table,
form, and form data source methods.

final Final methods can’t be overridden by methods
with the same name in derived classes.

server Server methods can execute only on an
Application Object Server (AOS). The server
 modifier is allowed on all table methods and on
static class methods.

static Static methods are called using the name of the
class rather than the name of an instance of the
class. Fields can’t be accessed from within a static
method.

Method parameters can have default values that are used when parameters are omitted from
method invocations. The following code sample prints “Hello World” when myMethod is invoked with
no parameters:

120 PART 1 A tour of the development environment

public void myMethod(str s = "Hello World")
{
 print s;
 pause;
}

public void run()
{
 this.myMethod();
}

A constructor is a special instance method that is invoked to initialize an object when the new
operator is executed by the Microsoft Dynamics AX runtime. You can’t call constructors directly from
X++ code. The sample on the next page provides an example of a class declaration header and an
instance constructor method that takes one parameter as an argument.

class MyClass
{
 int i;

 public void new(int _i)
 {
 i = _i;
 }
}

Delegates
The purpose of delegates is to expose extension points where add-ons and customizations can
extend the application in a lightweight manner without injecting logic into the base functionality.
Delegates are methods without any implementation. Delegates are always public and cannot have
a return value. You declare a delegate using the delegate keyword. You invoke a delegate using the
same syntax as a standard method invocation:

class MyClass
{
 delegate void myDelegate(int _i)
 {
 }

 private void myMethod()
 {
 this.myDelegate(42);
 }
}

 CHAPTER 4 The X++ programming language 121

When a delegate is invoked, the runtime automatically invokes all event handlers that subscribe
to the delegate. There are two ways of subscribing to delegates: declaratively and dynamically. The
runtime does not define the sequence in which event handlers are invoked. If your logic relies on an
invocation sequence, you should use mechanisms other than delegates and event handlers.

To subscribe declaratively, right-click a delegate in the AOT and then select New Event Handler
Subscription. On the resulting event handler node in the AOT, you can specify the class and the static
method that will be invoked. The class can be either an X++ class or a .NET class.

To subscribe dynamically, you use the keyword eventhandler. Notice that when subscribing
 dynamically, the event handler is an instance method. It is also possible to unsubscribe.

class MyEventHandlerClass
{
 public void myEventHandler(int _i)
 {
 ...
 }

 public static void myStaticEventHandler(int _i)
 {
 ...
 }

 public static void main(Args args)
 {
 MyClass myClass = new MyClass();
 MyEventHandlerClass myEventHandlerClass = new MyEventHandlerClass();

 //Subscribe
 myClass.myDelegate += eventhandler(myEventHandlerClass.myEventHandler);
 myClass.myDelegate +=
 eventhandler(MyEventHandlerClass::myStaticEventHandler);

 //Unsubscribe
 myClass.myDelegate -= eventhandler(myEventHandlerClass.myEventHandler);
 myClass.myDelegate -=
 eventhandler(MyEventHandlerClass::myStaticEventHandler);
 }
}

Regardless of how you subscribe, the event handler must be public, return void, and have the same
parameters as the delegate.

Note Cross-tier events are not supported.

122 PART 1 A tour of the development environment

As an alternative to delegates, you can achieve a similar effect by using pre- and post-event
 handlers.

Pre- and post-event handlers
You can subscribe declaratively to any class and record type method by using the same procedure
as for delegates. The event handler is invoked either before or after the method is invoked. Event
handlers for pre- and post-methods must be public, static, void, and either take the same parameters
as the method or one parameter of the XppPrePostArgs type.

The simplest, type-safe implementation uses syntax where the parameters of the method and the
event handler method match.

class MyClass
{
 public int myMethod(int _i)
 {
 return _i;
 }
}

class MyEventHandlerClass
{
 public static void myPreEventHandler(int _i)
 {
 if (_i > 100)
 {
 ...
 }
 }

 public static void myPostEventHandler(int _i)
 {
 if (_i > 100)
 {
 ...
 }
 }
}

If you need to manipulate either the parameters or the return value, the event handler must take
one parameter of the XppPrePostArgs type.

To create such an event handler, right-click the class, and then select New pre- or post-event
handler. The XppPrePostArgs class provides access to the parameters and the return values of the
method. You can even alter parameter values in pre-event handlers and alter the return value in
 post-event handlers.

 CHAPTER 4 The X++ programming language 123

class MyClass
{
 public int myMethod(int _i)
 {
 return _i;
 }
}

class MyEventHandlerClass
{
 public static void myPreEventHandler(XppPrePostArgs _args)
 {
 if (_args.existsArg('_i') &&
 _args.getArg('_i') > 100)
 {
 _args.setArg('_i', 100);
 }

 }

 public static void myPostEventHandler(XppPrePostArgs _args)
 {
 if (_args.getReturnValue() < 0)
 {
 _args.setReturnValue(0);
 }
 }
}

Attributes
Classes and methods can be decorated with attributes to convey declarative information to other
code, such as the runtime, the compiler, frameworks, or other tools. To decorate the class, you insert
the attribute in the classDeclaration element. To decorate a method, you insert the attribute before
the method declaration:

[MyAttribute("Some parameter")]
class MyClass
{
 [MyAttribute("Some other parameter")]
 public void myMethod()
 {
 ...
 }
}

124 PART 1 A tour of the development environment

The first attribute that was built in Microsoft Dynamics AX 2012 was the SysObsoleteAttribute
 attribute. By decorating a class or a method with this attribute, any consuming code is notified during
 compilation that the target is obsolete. You can create your own attributes by creating classes that
extend the SysAttribute class:

class MyAttribute extends SysAttribute
{
 str parameter;

 public void new(str _parameter)
 {
 parameter = _parameter;
 super();
 }
}

Code access security

Code access security (CAS) is a mechanism designed to protect systems from dangerous APIs that are
invoked by untrusted code. CAS has nothing to do with user authentication or authorization; it is a
mechanism allowing two pieces of code to communicate in a manner that cannot be compromised.

Caution X++ developers are responsible for writing code that conforms to Trustworthy
Computing guidelines. You can find those guidelines in the white paper “Writing Secure
X++ Code,” available from the Microsoft Dynamics AX Developer Center
 (http://msdn.microsoft.com/en-us/dynamics/ax).

In the Microsoft Dynamics AX implementation of CAS, trusted code is defined as code from the
AOT running on the Application Object Server (AOS). The first part of the definition ensures that the
code is written by a trusted X++ developer. Developer privileges are the highest level of privileges
in Microsoft Dynamics AX and should be granted only to trusted personnel. The second part of
the definition ensures the code that the trusted developer has written hasn’t been tampered with.
If the code executes outside the AOS—on a client, for example—it can’t be trusted because of the
 possibility that it was altered on the client side before execution. Untrusted code also includes code
that is executed through the runBuf and evalBuf methods. These methods are typically used to
 execute code generated at run time based on user input.

CAS enables a secure handshake between an API and its consumer. Only consumers who provide
the correct handshake can invoke the API. Any other invocation raises an exception.

http://msdn.microsoft.com/en-us/dynamics/ax

 CHAPTER 4 The X++ programming language 125

The secure handshake is established through the CodeAccessPermission class or one of its
 specializations. The consumer must request permission to call the API, which is done by calling
 CodeAccessPermission.assert. The API verifies that the consumer has the correct permissions by calling
CodeAccessPermission.demand. The demand method searches the call stack for a matching assertion.
If untrusted code exists on the call stack before the matching assertion, an exception is raised. This
process is illustrated in Figure 4-1.

The following code contains an example of a dangerous API protected by CAS and a consumer
providing the correct permissions to invoke the API:

class WinApiServer
{
 // Delete any given file on the server
 public server static boolean deleteFile(Filename _fileName)
 {
 FileIOPermission fileIOPerm;

 // Check file I/O permission
 fileIOPerm = new FileIOPermission(_fileName, 'w');
 fileIOPerm.demand();

 // Delete the file

 System.IO.File::Delete(_filename);
 }
}

class Consumer
{
 // Delete the temporary file on the server
 public server static void deleteTmpFile()
 {
 FileIOPermission fileIOPerm;
 FileName filename = @'c:\tmp\file.tmp';

 // Request file I/O permission
 fileIOPerm = new FileIOPermission(filename, 'w');
 fileIOPerm.assert();

 // Use CAS protected API to delete the file
 WinApiServer::deleteFile(filename);
 }
}

126 PART 1 A tour of the development environment

Dangerous API

Server stack frame
calling CAS.demand()

A

Server stack frame

B

Server stack frame
calling CAS.assert()

C

Client stack frame

Stack walk success:
assert detected

Call

Call
Stack walk continue:

assert not found

D

Client stack frame
calling CAS.assert()

Call Stack walk failure:
client stack frames
not trusted

Call

FIGURE 4-1 CAS stack frame walk.

WinAPIServer::deleteFile is considered to be a dangerous API because it exposes the .NET
API System.IO.File::Delete(string fileName). Exposing this API on the server is dangerous because
it allows the user to remotely delete files on the server, possibly bringing the server down. In the
 example, WinApiServer::deleteFile demands that the caller has asserted that the input file name is
valid. The demand prevents use of the API from the client tier and from any code not stored in the AOT.

Caution When using assert, make sure that you don’t create a new API that is just as
 dangerous as the one that CAS has secured. When you call assert, you are asserting that
your code doesn’t expose the same vulnerability that required the protection of CAS. For
 example, if the deleteTmpFile method in the previous example had taken the file name as a
parameter, it could have been used to bypass the CAS protection of WinApi::deleteFile and
delete any file on the server.

Compiling and running X++ as .NET CIL

All X++ code is compiled into Microsoft Dynamics AX runtime bytecode intermediate format. This
format is used by the Microsoft Dynamics AX runtime for Microsoft Dynamics AX client and server
code.

 CHAPTER 4 The X++ programming language 127

Further, classes and tables are compiled into .NET common intermediate language (CIL). This
 format is used by X++ code executed by the Batch Server and in certain other scenarios.

The X++ compiler only generates Microsoft Dynamics AX runtime bytecode to generate CIL code;
you must manually press either the Generate Full IL or Generate Incremental IL button. Both are
 available on the toolbar.

The main benefit of running X++ as CIL is performance. Generally the .NET runtime is significantly
faster than the X++ runtime. In certain constructions, the performance gain is particularly remarkable:

 ■ Constructs with many method calls—Under the covers in the X++ runtime, any method call
happens through reflection, whereas in CIL, this happens at the CPU level.

 ■ Constructions with many short-lived objects—Garbage collection in the Microsoft
 Dynamics AX runtime is deterministic, which means that whenever an instance goes out of
scope, the entire object graph is analyzed to determine if any objects can be deallocated. In
the .NET CLR, garbage collection is indeterministic, which means that the runtime determines
the optimal time for reclaiming memory.

 ■ Constructions with extensive use of.NET interop—When running as X++ code as CIL, all
conversion and marshaling between the runtimes are avoided.

Note The capability to compile X++ into CIL requires that X++ syntax be as strict as the
syntax in managed code. The most noteworthy change is that overridden methods must
now have the same signature as the base method. The only permissible discrepancy is the
addition of optional parameters.

One real-life example where running X++ code as .NET CIL makes a significant difference is in the
compare tool. The compare algorithm is implemented as X++ code in the SysCompareText class. Even
though the algorithm has few method calls, few short-lived objects, and no .NET interop, the switch
to CIL means that within a time frame of 10 seconds, it is now possible to compare two 3,500-line
texts, whereas the AX runtime can only handle 600 lines in the same time frame. The complexity of
the algorithm is exponential. In other words the performance gain gets even more significant the
larger the texts become.

All services and batch jobs will automatically run as CIL. If you want to force X++ code to run as
CIL in non-batch scenarios, you use the methods runClassMethodIL and runTableMethodIL on the
Global class. The IL entry point must be a static server method that returns a container and takes one
container parameter:

class MyClass
{
 private static server container addInIL(container _parameters)
 {
 int p1, p2;
 [p1, p2] = _parameters;

128 PART 1 A tour of the development environment

 return [p1+p2];
 }

 public server static void main(Args _args)
 {
 int result;
 XppILExecutePermission permission = new XppILExecutePermission();
 permission.assert();
 [result] = runClassMethodIL(classStr(MyClass),
 staticMethodStr(MyClass, addInIL), [2, 2]);
 info(strFmt("The result from IL is: %1", result));
 }
}

Design and implementation patterns

So far, this chapter has described the individual elements of X++. You’ve seen that statements are
grouped into methods, and methods are grouped into classes, tables, and other model element
types. These structures enable you to create X++ code at a higher level of abstraction. The following
example shows how an assignment operation can be encapsulated into a method to clearly articulate
the intention of the code.

control.show();

is at a higher level of abstraction than

flags = flags | 0x0004;

By using patterns, developers can communicate their solutions more effectively and reuse proven
solutions to common problems. Patterns help readers of source code to quickly understand the
 purpose of a particular implementation. Bear in mind that even as a code author, you spend more
time reading source code than writing it.

Implementations of patterns are typically recognizable by the names used for classes, methods,
parameters, and variables. Arguably, naming these elements so that they effectively convey the
 intention of the code is the developer’s most difficult task. Much of the information in existing
 literature on design patterns pertains to object-oriented languages, and you can benefit from
exploring that information to find patterns and techniques you can apply when you’re writing X++

 CHAPTER 4 The X++ programming language 129

code. Design patterns express relationships or interactions between several classes or objects. They
don’t prescribe a specific implementation, but they do offer a template solution for a typical design
problem. In contrast, implementation patterns are implementation specific and can have a scope that
spans only a single statement.

This section highlights some of the most frequently used patterns specific to X++. More
 descriptions are available in the Microsoft Dynamics AX SDK on MSDN.

Class-level patterns
These patterns apply to classes in X++.

Parameter method
To set and get a class field from outside the class, you should implement a parameter method. The
parameter method should have the same name as the field and be prefixed with parm. Parameter
methods come in two flavors: get-only and get/set.

public class Employee
{
 EmployeeName name;

 public EmployeeName parmName(EmployeeName _name = name)
 {
 name = _name;
 return name;
 }
}

Constructor encapsulation
The purpose of the constructor encapsulation pattern is to enable Liskov’s class substitution principle.
In other words, with constructor encapsulation, you can replace an existing class with a customized
class without using the layering system. Just as in the layering system, this pattern enables changing
the logic in a class without having to update any references to the class. Be careful to avoid
 overlayering because it often causes upgrade conflicts.

Classes that have a static construct method follow the constructor encapsulation pattern. The
 construct method should instantiate the class and immediately return the instance. The construct
method must be static and shouldn’t take any parameters.

When parameters are required, you should implement the static new methods. These methods
call the construct method to instantiate the class and then call the parameter methods to set the
 parameters. In this case, the construct method should be private:

130 PART 1 A tour of the development environment

public class Employee
{
 ...
 protected void new()
 {
 }

 protected static Employee construct()
 {
 return new Employee();
 }

 public static Employee newName(EmployeeName name)
 {
 Employee employee = Employee::construct();

 employee.parmName(name);
 return employee;
 }
}

Factory
To decouple a base class from derived classes, use the SysExtension framework. This framework
 enables the construction of an instance of a class based on its attributes. This pattern enables add-ons
and customizations to add new subclasses without touching the base class or the factory method:

class BaseClass
{
 ...
 public static BaseClass newFromTableName(TableName _tableName)
 {
 SysTableAttribute attribute = new SysTableAttribute(_tableName);

 return SysExtensionAppClassFactory::getClassFromSysAttribute(
 classStr(BaseClass), attribute);
 }
}

[SysTableAttribute(tableStr(MyTable))]
class Subclass extends BaseClass
{
 ...
}

Serialization with the pack and unpack methods
Many classes require the capability to serialize and deserialize themselves. Serialization is an operation
that extracts an object’s state into value-type data; deserialization creates an instance from that data.

 CHAPTER 4 The X++ programming language 131

X++ classes that implement the Packable interface support serialization. The Packable interface
contains two methods: pack and unpack. The pack method returns a container with the object’s state;
the unpack method takes a container as a parameter and sets the object’s state accordingly. You
should include a versioning number as the first entry in the container to make the code resilient to
old packed data stored in the database when the implementation changes.

public class Employee implements SysPackable
{
 EmployeeName name;
 #define.currentVersion(1)
 #localmacro.CurrentList
 name
 #endmacro
 ...

 public container pack()
 {
 return [#currentVersion, #currentList];
 }

 public boolean unpack(container packedClass)
 {
 Version version = RunBase::getVersion(packedClass);

 switch (version)
 {
 case #CurrentVersion:
 [version, #CurrentList] = packedClass;
 break;
 default: //The version number is unsupported
 return false;
 }
 return true;
 }
}

Table-level patterns
The patterns described in this section—the find and exists methods, polymorphic associations (Table/
Group/All), and Generic Record References—apply to tables.

Find and exists methods
Each table must have the two static methods find and exists. They both take the primary keys of the
table as parameters and return the matching record or a Boolean value, respectively. Besides the
 primary keys, the Find method also takes a Boolean parameter that specifies whether the record
should be selected for update.

132 PART 1 A tour of the development environment

For the CustTable table, these methods have the following profiles:

static CustTable find(CustAccount _custAccount, boolean _forUpdate = false)
static boolean exist(CustAccount _custAccount)

Polymorphic associations
The Table/Group/All pattern is used to model a polymorphic association to either a specific record in
another table, a collection of records in another table, or all records in another table. For example, a
record could be associated with a specific item, all items in an item group, or all items.

You implement the Table/Group/All pattern by creating two fields and two relations on the table.
By convention, the name of the first field has the suffix Code; for example, ItemCode. This field is
 modeled using the base enum TableGroupAll. The name of the second field usually has the suffix
 Relation; for example, ItemRelation. This field is modeled by using the extended data type that is
the primary key in the foreign tables. The two relations are of the type Fixed field relation. The first
 relation specifies that when the Code field equals 0 (TableGroupAll::Table), the Relation field equals
the primary key in the foreign master data table. The second relation specifies that when the Code
field equals 1 (TableGroupAll::Group), the Relation field equals the primary key in the foreign grouping
table.

Figure 4-2 shows an example.

FIGURE 4-2 A polymorphic association.

Generic record reference
The Generic Record Reference pattern is a variation of the Table/Group/All pattern. This pattern is
used to model an association to a foreign table. It comes in three flavors: (a) an association to any
record in a specific table, (b) an association to any record in a fixed set of specific tables, and (c) an
association to any record in any table.

All three flavors of this pattern are implemented by creating a field that uses the RefRecId
 extended data type.

 CHAPTER 4 The X++ programming language 133

To model an association to any record in a specific table (flavor a), a relation is created from the
RefRecId field to the RecId field of the foreign table, as illustrated in Figure 4-3.

FIGURE 4-3 An association to a specific table.

For flavors b and c, an additional field is required. This field is created by using the RefTableId
extended data type. To model an association to any record in a fixed set of specific tables (flavor b),
a relation is created for each foreign table from the RefTableId field to the TableId field of the foreign
table, and from the RefRecId field to the RecId field of the foreign table, as shown in Figure 4-4.

FIGURE 4-4 An association to any record in a fixed set of tables.

To model an association to any record in any table (flavor c), a relation is created from the
 RefTableId field to the generic table Common TableId field and from the RefRecId field to Common
RecId field, as shown in Figure 4-5.

FIGURE 4-5 An association to any record in any table.

 135

PART II

Developing
with Microsoft
Dynamics AX

CHAPTER 5 Designing the user experience137

CHAPTER 6 The Microsoft Dynamics AX client159

CHAPTER 7 Enterprise Portal. .195

CHAPTER 8 Workflow in Microsoft Dynamics AX245

CHAPTER 9 Reporting .275

CHAPTER 10 BI and analytics .299

CHAPTER 11 Security, licensing, and configuration351

CHAPTER 12 Microsoft Dynamics AX services
 and integration. .385

CHAPTER 13 Performance .417

CHAPTER 14 Extending Microsoft Dynamics AX493

CHAPTER 15 Testing .527

CHAPTER 16 Customizing and adding help545

PART II

Developing with Microsoft
Dynamics AX

C H A P T E R 5

Designing the user experience

Introduction

A role-tailored design approach

User experience components

Navigation layer forms

Work layer forms

Role Center pages

Cues

Design Role Centers

Area pages

Design area pages

List pages

A simple scenario: taking a call from a customer

Use a list page as an alternative to a report

Design list pages

Details forms

Transaction details forms

Enterprise Portal web client user experience

Navigation layer forms

Work layer forms

Design for Enterprise Portal

Design for your users

 CHAPTER 5 Designing the user experience 137

C H A P T E R 5

Designing the user experience

In this chapter
Introduction . 277
A role-tailored design approach . 279
User experience components . 280
Role Center pages. 282
Area pages . 284
List pages . 286
Details forms . 290
Transaction details forms . 293
Enterprise Portal web client user experience 295
Design for your users . 297

Introduction

Microsoft Dynamics AX 2012 has been marketed as “Powerfully Simple.” Making this a reality was not
just a marketing slogan, but instead was a key design goal for the release.

As an enterprise resource planning (ERP) solution, Microsoft Dynamics AX must provide the
many powerful, built-in capabilities that are required to run a thriving company in the twenty-first
 century. The needs of organizations are becoming more complex. Companies are trying to organize
 themselves in new and unique ways to become more efficient. Leaders of these organizations are
asking their people to achieve more with less. Governments want more transparency in the business
operations of a company. Combined, all these things increase the complexity of running a business
and the demands on an ERP system.

The challenge for Microsoft Dynamics AX 2012 was to harness these powerful capabilities in a way
that users would find simple to use. There is a natural tension between these goals, but that tension is
far from irreconcilable.

At Microsoft, simplicity is defined as the reduction or elimination of an attribute of the design that
target users are aware of or consider unessential. The easiest way to simplify a design is by removing
elements from that design. For example, if you want to simplify the experience of creating a new
customer, you can do so easily by reducing the number fields that the user needs to complete on
the new customer form. With fewer fields, the user can complete the form in fewer keystrokes, which
also minimizes the chance that the user will make a mistake. The problem is that fields can’t simply
be removed from the new customer form because those fields are required to support the powerful
capabilities that customers need.

138 PART 2 Developing with Microsoft Dynamics AX

So to have a simple and powerful user experience, Microsoft Dynamics AX 2012 has been
 designed for the probable, not the possible. To design for the probable means that you need to truly
 understand what the user is most likely to do and not assume that all actions are equally possible. You
can focus your designs on what is likely, and then reduce, hide, or remove what is unlikely.

For example, Microsoft Dynamics AX contains approximately 100 fields that contain information
about a customer. In the prior release, when the user created a new customer, the Customer Details
form presented all 100 fields. The user had to look through all these possible fields to determine
what to enter. Microsoft Dynamics AX 2012 introduced a new dialog box (Figure 5-1) that appears
when a user creates a new customer. This dialog box displays the 25 fields that users are most likely
to use. The user can simply enter data in these fields, and then click Save And Close to create the new
customer. If the user needs to enter more detailed information about the customer, he or she can click
Save And Open to go to the full Customer Details form to enter data in the other 75 fields.

FIGURE 5-1 Simplified Customer dialog box.

This chapter describes the key concepts of the Microsoft Dynamics AX user experience and
 explains how you can extend the capabilities of the product while maintaining a focus on simplicity.

 CHAPTER 5 Designing the user experience 139

This chapter supplements the Microsoft Dynamics AX 2012 User Experience Guidelines on MSDN
(http://msdn.microsoft.com/en-us/library/gg886610.aspx). For more detailed information, refer to
these guidelines.

A role-tailored design approach

Designing an ERP system that is simple for all users is challenging because many types of users
use the product. The pool of users encompasses more than 86 roles, and those roles use Microsoft
Dynamics AX for many different scenarios. These scenarios range from picking and packing items in
a warehouse to processing payments from a customer in the finance department. It is not surprising
that users in these various roles have different mental models for how the system should work
for them. Designing the user experience for specific roles provides a much better experience than
 providing the same experience for all users.

Historically, ERP systems were designed as a thin wrapper around the tables in the database. If the
database table had 20 fields, the user interface would display those 20 fields on a single form, similar
to how they were stored in the database. When a new feature was needed, new fields were added to
the table and those fields were displayed on the form. Over time, ERP systems became very complex
because more and more fields were added without regard to who would be using them. This led
to user experiences that were designed for everyone but optimized for no one. The end goal of a
role-tailored user experience in Microsoft Dynamics AX is to make the user feel as if the system was
designed for him or her.

In Microsoft Dynamics AX 2012, the user experience is tailored for the various roles that the
 product targets. The security system includes 86 roles that system administrators can assign to
 specific groups of users. The user experience is tailored automatically based on the roles and shows
only the content that is needed by a user who belongs to a given role. Based on the user’s role,
 actions on the Action pane, fields, field groups, or entire tabs might be removed from certain forms.
With each field or button that is hidden, the product becomes easier to use. The menu structure is
also tailored so that each user sees only the areas or the content in these areas that pertain to the
user’s role. Users feel like they are using a smaller application tailored to their needs, as opposed
to a large, monolithic ERP system. For more information about working with roles, see Chapter 11,
“ Security, licensing, and configuration.”

To illustrate this concept, look at the navigational structure for Microsoft Dynamics AX 2012. The
product contains 20 area pages targeting the various activities needed to run a business. While a
system administrator sees all these areas, a specific role such as a Shipping Clerk, Purchasing Agent, or
Order Processor sees only the four to six areas that relate to the role, as shown in Figure 5-2.

140 PART 2 Developing with Microsoft Dynamics AX

FIGURE 5-2 Role-tailored navigation.

User experience components

In Microsoft Dynamics AX, user experience components are divided into two conceptual layers:

 ■ The navigation layer consists of top-level pages that serve as a starting point for user as he or
she navigates through the application. Area pages, Role Centers, and list pages are navigation-
layer elements.

 ■ The work layer consists of the forms in which users perform their daily work, such as creating
and editing record and entering and processing transactions. Details forms and transaction
details forms are work-layer elements.

Figure 5-3 illustrates how the user navigates through the primary elements that make up the
 Microsoft Dynamics AX 2012 user experience. The following sections describe these elements in
detail.

 CHAPTER 5 Designing the user experience 141

NAVIGATION LAYER

ROLE CENTER AREA JOURNAL JOURNAL LINES

SETUP-TABLE CONTENTSLIST

DETAILS TRANSACTION DETAILS

SETUP-LIST AND DETAILS

FIGURE 5-3 Navigation paths through Microsoft Dynamics AX 2012.

Navigation layer forms
Navigation layer forms such as the Role Centers, area pages, and list pages are displayed within the
Microsoft Dynamics AX Windows client in a flat navigation model. This model is similar to that of
a website, in that pages are displayed within the content region of the page, replacing each other
as the user progresses from one form to the next. The client workspace consists of the following
 components, as illustrated in Figure 5-4:

 ■ Address bar Provides an alternate method of navigating through the application. A user
can type a path or click the arrow icon next to each entry in the path to select the next
 location. The address bar has buttons that allow navigation backward and forward between
the recently displayed pages. The address bar also provides a mechanism for the user to switch
companies because the current company is the first entry in the address path.

 ■ Search bar Lets users search for data, menu items, or help content. The user can use the
search bar as an alternate method of navigation if he or she doesn’t know how to find a
particular form. The search bar is an optional component that must be configured as part of
setup. For more information, see “Enterprise Search” at http://technet.microsoft.com/en-us/
library/gg731850.aspx.

 ■ Navigation pane Appears on the left edge of the client workspace and is used for
 navigating to the various areas within the application or the user’s list of favorite forms.
 Optionally, this pane can be collapsed or hidden through the View menu.

http://technet.microsoft.com/en-us/library/gg731850.aspx

142 PART 2 Developing with Microsoft Dynamics AX

 ■ Content pane Appears to the right of the navigation pane and displays top-level pages,
such as area pages, Role Centers, and list pages.

 ■ FactBox pane Appears at the right of the workspace and provides related information about
a specific record in a grid. The FactBox pane appears only on list pages. Users can personalize
the contents of the FactBox pane by using the View menu.

 ■ Status bar Appears at the bottom of the workspace and displays additional information in a
consistent location, such as user name, company, or notifications. The user can personalize the
contents of the status bar by using the Options form (Click File > Tools > Options).

Address bar

Status bar

Search bar

Content
pane

Navigation
pane

FIGURE 5-4 Client workspace components.

Work layer forms
The remaining forms in Microsoft Dynamics AX are where the user performs work such as
configuring the system, creating new transactions, or entering information into journals. These forms
open in a new window that is separate from the client workspace. The work layer pages are described
in detail in the upcoming sections.

Role Center pages

A Role Center page is the user’s home page in the application. A Role Center provides a dashboard
of information that pertains to a user’s job function in the business or organization. This information
includes transaction data, alerts, links, and common tasks that are associated with the user’s role in
the company.

Microsoft Dynamics AX 2012 provides different Role Center content for the various roles. Each
Role Center provides the information that the users who belong to that role need to monitor their
work. A Role Center also provides shortcuts to frequently used data and forms. Each user can
 personalize the content that appears in his or her Role Center.

 CHAPTER 5 Designing the user experience 143

Cues
A cue is a visual representation of a query that appears as a stack of paper. A cue represents the
 activities that the user needs to perform. The stack grows and shrinks as the results of the query
change.

Cues are an excellent way for users to monitor their work. For example, an Accounts Payable clerk
can monitor a cue of pending invoices, invoices due today, or invoices past due, as shown in Figure 5-5.
Clicking a cue opens the appropriate list page with the same query applied. When the clerk wants to
act on the invoices, the clerk clicks the cue.

Pending vendor
invoices

Vendor invoices due
today

Vendor invoices past
due

17 0 0

FIGURE 5-5 Activity cues.

Design Role Centers
While Microsoft Dynamics AX includes great Role Centers for the various roles, they must be
 customized to meet the needs of the people who will be using them. It is highly recommended that
partners and system administrators take the time to customize the Role Centers for the various users
within the organization.

Designing a great Role Center requires a deep understanding of the user. Here are a few
 techniques that you can use to help understand your customers:

 ■ Survey people in the various roles to understand the top 10 questions they have related to
their job. Then, explore ways that you can provide answers to as many of those questions as
possible with a Role Center.

 ■ Show users the content of their default Role Center on a piece of paper. Then, ask them to
circle the content that they find useful and to cross out the content that they don’t find useful.
You can also give them a blank piece of paper to sketch out additional content that they
would like to see. Users typically get excited with these types of exercises because they feel
empowered describing what they want from their ERP system.

 ■ Observe users performing their daily tasks. Often, users cannot articulate what they need to
become more efficient, but it may be obvious if you observe them performing their jobs.
As you are observing them, watch for the patterns that emerge in their work.

 ■ Find out which forms users open frequently, and consider adding links to those forms to the
Role Center QuickLink on their Role Center or a favorite in their navigation pane. A QuickLink
is a part on the Role Center that provides quick access to any form within Microsoft Dynamics AX.

144 PART 2 Developing with Microsoft Dynamics AX

 ■ Find out if users frequently go to a list page and filter the content to see a particular group
of records. If so, you can make them more efficient by adding a cue to the Role Center that
is configured to provide direct access to this list with the appropriate filter applied. For some
users, we’ve seen Role Centers that have been customized to include a page full of cues that
were needed by the user.

 ■ Summarize frequently viewed reports as a chart or graph.

Here are a few other things to consider when you design a new Role Center or extend an existing
Role Center:

 ■ Remove any parts that users don’t need.

 ■ Place the most important content toward the top of the page.

 ■ Ensure that the page loads quickly, within 2 to 5 seconds. This may require you to optimize the
queries and cubes that display the information within these parts. For more information about
optimizing queries, see Chapter 13, “Performance.”

Area pages

Area pages are the primary method for users to navigate through the application. By default,
 Microsoft Dynamics AX provides 20 different area pages. Each area page focuses on a specific
 department or activity; for example, Human Resources or Accounts Receivable, as shown in Figure 5-6.
Depending on their role, users may see only a small set of area pages.

FIGURE 5-6 Area page for Accounts Receivable.

 CHAPTER 5 Designing the user experience 145

The content of an area page is divided into six groups of links:

 ■ Common Contains links to the most important entities that are used within this area, such
as customers, vendors, products, sales orders, invoices, and so on. These links usually take the
user to the list page for an entity. Through the list page, users should be able to navigate to all
things that are related to the entity.

 ■ Inquiries Provides access to all the inquiry-type forms for the area. If possible, do not create
new inquiry forms for entities that have list pages. Instead, consider providing different views
within a list page because lists are where users expect for find all content related to an entity.

 ■ Periodic Provides access to tasks that need to be performed periodically. If you are
 considering adding new forms to the Periodic section, think about whether the form is specific
to an entity that would be better suited to be accessed through the entity’s list page and
details page.

 ■ Journals Provides access to journals that are related to this area. A journal is a concept that
makes sense to a financial user, but not to other users outside the finance department. Use
caution when you introduce new journals to Microsoft Dynamics AX to make sure that this is
the correct approach for your users.

 ■ Reports Provides access to reports that are related to this area. Note that we are
 discouraging creating new reports whenever possible. Users don’t want to view information in
a report, but instead prefer seeing this information on a form such as a list page because it is
more interactive than a report.

 ■ Setup Provides links to the forms needed to configure this area.

Design area pages
Designing area pages is an exercise in organizing the content in a way that makes sense for users.
Here are some tips to consider when you design a new area page or extend an existing area page.

Take the time to understand the user’s mental model as it relates to the work that they do. Make
sure that you place the links to the forms they need to use in the most logical area. The best way to
do this is to perform a simple card sort exercise to help you understand how users want to organize
their content.

To conduct a card sort, do the following:

1. Create index cards for the entries that you are considering for an area page.

2. Ask potential users to groups these index cards into piles that they feel go together.

3. Have users give a name to each pile.

4. Place the frequently accessed entities in the Common section. This section should provide
navigation to a list page.

146 PART 2 Developing with Microsoft Dynamics AX

This technique can give you a good indication of how to organize the content on an area page or
a group of area pages. For more information about card sorting, see “Card sorting: a definitive guide”
at http://www.boxesandarrows.com/view/card_sorting_a_definitive_guide.

Avoid creating additional reports, inquires, and periodic forms for features related to a common
entity. Instead, provide access to these forms through the entity’s list page and details forms. This
way, for example, the user doesn’t have to search the area page for things related to a customer,
but instead knows that all things related to a customer can be found on the Customer list page and
details form.

Avoid adding multiple new pages to the Setup section. Instead, look for ways to consolidate
setup information for a feature area into a single form by using the table of contents pattern.
By consolidating this information, the user needs to find only one form and can easily see all related
configuration information without having to go back to the area page.

Avoid creating new area pages that are specific to a custom solution unless this makes logical
sense. For example, if your solution provides the capability to do credit checks on customers, it is
 typically better to add links to these features in the Accounts Receivable area than it is to create a new
area page specifically for credit checks. Accounts Receivable users expect these features to be part of
the Accounts Receivable area and not in a separate area.

Spend the time necessary to organize the content in a way that is logical to your users. Users
will not only benefit while they learn to use your features, they will also benefit during extended
use. Often, even experienced Microsoft Dynamics AX users struggle to remember where to find an
infrequently used form. Typically, this happens because the form is accessed from a place that wasn’t
logical to the user.

List pages

List pages are the starting point for many tasks in Microsoft Dynamics AX. Any scenario that starts
with finding a record or a set of records is best suited for a list page, as shown in Figure 5-7. List pages
are designed to be the place where users can find information and then act on that information.

A simple scenario: taking a call from a customer
To fully understand the power of a list page, consider a simple scenario of a customer service
 representative (CSR) in a manufacturing company who receives calls from customers. When the CSR
receives a call from a customer, she wants to be efficient and take the least amount of time while on
the phone. This scenario is optimally suited for a list page. The steps in this scenario correspond to
the numbered items in Figure 5-9 and illustrate how a CSR can use a list page to perform a group of
related tasks without having to leave the list page.

http://www.boxesandarrows.com/view/card_sorting_a_definitive_guide

 CHAPTER 5 Designing the user experience 147

FIGURE 5-7 Customers list page.

1. When a call comes in, the CSR answers the phone while simultaneously opening the Customer
list page. She assumes that a customer is calling.

2. The customer announces that his name is Terry and he is calling from Sunset Wholesales. The
CSR greets the customer while typing Sunset into the Quick Find field.

3. The CSR notes that only one customer record with Sunset in the name is displayed in the list.
To verify that she has found the correct customer record, she looks at the FactBox on the
right. It shows three contacts from Sunset Wholesales, and Terry’s name is in the list.

4. The customer wants a quote on purchasing 50 48-inch high-definition flat-screen televisions.
The CSR clicks the Sales tab of the Action pane and clicks the new Sales Quotation button.

5. She proceeds to enter the quotation and quotes a price for the customer.

If, in this scenario, the customer Sunset Wholesale was not already in the system, the CSR would
have searched for the customer, but no match would have been found. In this case, she could easily
add a new customer from the Action pane, as shown in Figure 5-9.

If the customer called to check on the status of an existing order, the CSR could quickly check the
Related Information FactBox (Figure 5-10) to see all the current open sales orders. By clicking this link,
she is taken to the Sales Order List page, which displays the open orders for this customer.

148 PART 2 Developing with Microsoft Dynamics AX

2

3

1

4

FIGURE 5-8 Steps to taking a call from a customer.

FIGURE 5-9 Adding a new customer.

FIGURE 5-10 Customer-related information.

Use a list page as an alternative to a report
A list page is a great alternative to a traditional report. Historically, ERP systems have been focused on
traditional reports as a way to get information out of the system. To an extent, Microsoft Dynamics
AX 2012 has migrated away from traditional reports, and instead uses list pages as a place to view
simple reports. For example, the customer aging list in Accounts Receivable > Collections is shown in
Figure 5-11. This is a list of customers that displays information typically seen in an aged trial balance
report. Having an interactive list of customers is much better than a traditional report because the
user can sort this list easily by customer balance to see the customers who owe the organization the

 CHAPTER 5 Designing the user experience 149

most money at the top. Additional information about this customer is easy for the users to see in the
FactBoxes. A user who wants to take action with this customer has full access to commands that are
related to a customer. The Collections list page is also a great example of a role-tailored experience.
This page displays a list of customers with specific information that Collections users need to see.

FIGURE 5-11 Collections list page displaying an aged trial balance report.

These are all examples that demonstrate how a list page is a great starting point for many
 scenarios. In these scenarios, it allows the user to find the customer and take the appropriate action
quickly. Notice that when the CSR received the phone call, she did not know what the customer was
calling about. Starting from the Customer list, she could easily find the customer, then wait for
the customer to state what he or she wanted. At this point, she could take any action she needed to
help the customer in a timely manner.

While this example focused on the Customer list, you’ll see similar benefits in other list pages
as well.

Design list pages
As a developer extending Microsoft Dynamics AX, you will need to extend an existing list page or
design a new list page for an entity. Here are some tips to consider when you design a new list page
or extend an existing one:

 ■ Organize the tabs of the Action pane by activity. For example, on the Customer list page, we
organized the commands based on typical activities that you perform against a customer, such
as Sell, Invoice, Collect, etc. This helps the user find commands more easily, especially if there
are many actions.

150 PART 2 Developing with Microsoft Dynamics AX

 ■ Provide access to all actions that the user needs to perform against the entity in the Action
pane. Users expect all actions to be available from the list page. Don’t force them to go
 elsewhere to initiate an action.

 ■ Allow the user to perform bulk actions by multiselecting items in the list. This is one of the
most powerful capabilities of a list page because the user can easily filter the list and then
select all records to take an action against.

 ■ Provide secondary list pages that are filtered to show a specific set of records that need to be
accessed frequently by the user. These secondary list pages should be added as a cue in the
corresponding Role Center. This helps the users monitor the number of records in the list and
get quick access to the list by clicking on the cue in the Role Center. Past Due Customers and
Customers on Hold are examples of secondary lists that are included on the Customers list
page.

 ■ Design FactBoxes to display information that the user typically would have to open additional
forms to see. By providing this information in a FactBox, you greatly simplify the user’s
 experience because no additional action is required.

 ■ Consider which columns the user needs to see in the list, and display those columns by default.
Although the product provides users with a mechanism for adding columns to a list page, it is
best if you can ensure that the fields the user needs to see are displayed automatically.

 ■ Ensure that the page loads quickly. Users expect the list to appear within 2 to 5 seconds. This
will require that you to optimize the queries used to load the list page. For more information
about optimizing queries, see Chapter 13.

 ■ When adding a new list page, follow the Microsoft Dynamics AX 2012 User Experience
 Guidelines on MSDN (http://msdn.microsoft.com/en-us/library/gg886610.aspx) to ensure that
the list, Action pane, and FactBoxes are designed appropriately and match the rest of the
 application.

Details forms

Details forms are the primary method for creating and editing primary entities such as customers,
vendors, workers, and products. A user opens a details form by double-clicking a record on a list
page. By default, the details form for an existing entity opens in read-only mode. To modify the
 record, the user can click Edit to switch the form to edit mode.

All fields of a details form are grouped into FastTabs that the user can expand and collapse, as
shown in Figure 5-12.

http://msdn.microsoft.com/en-us/library/gg886610.aspx
http://msdn.microsoft.com/en-us/library/gg886610.aspx

 CHAPTER 5 Designing the user experience 151

FIGURE 5-12 Customer details form.

FastTabs can display summary fields, which display key fields contained in the FastTab so that the
user does not have to expand the FastTab. For example, in Figure 5-13, the summary field displays the
customer’s credit rating and payment terms, among other information.

FIGURE 5-13 FastTabs with summary fields.

Details forms have an Action pane that display commands organized in the same way as the
 corresponding list page. The list page and the details form should have the same set of actions, with only
a few exceptions. A details form also can contain FactBoxes to display related information. Many details
forms contain the same set of FactBoxes as the list, but this is not a required feature. For more information,
see the User Experience Guidelines (http://msdn.microsoft.com/en-us/library/gg886610.aspx).

If you are introducing a new primary entity into Microsoft Dynamics AX 2012, you will need to
create a new details form, in addition to a list page. Primary entities are typically tangible things that
directly relate to the work a company performs, such as customers, vendors, employees, or inventory
items. They tend to have many fields, many actions, and a great deal of related information.

The primary effort required for designing a new details form is to organize all of the fields within
FastTabs. This exercise will require some knowledge of your users and the work they do with these
entities. To organize fields into FastTabs, here are some guidelines to consider:

 ■ Create FastTabs that are organized into groups that are logical to your users. This can be
another situation where a card sort can help inform your decisions. Ask your users to organize

http://msdn.microsoft.com/en-us/library/gg886610.aspx
http://msdn.microsoft.com/en-us/library/gg886610.aspx

152 PART 2 Developing with Microsoft Dynamics AX

the fields of the entity into groups and then ask them to name the groups. As you go through
this exercise, test the organization with your users to see if it is intuitive for them. It may take
multiple iterations to organize the fields correctly. Don’t be discouraged; multiple iterations
are normal to get the correct design.

 ■ Keep the number of fields in a FastTab as low as possible because taller FastTabs are less
 usable than shorter ones. When a tall FastTab is expanded, users lose their context in the form
because a taller FastTab requires more scrolling and doesn’t allow multiple FastTabs to be
expanded at the same time.

 ■ Order the FastTabs to put the most important FastTabs at the top and the least important ones
at the bottom.

Here are a few other tips for designing a details form:

 ■ Organize the tabs of the Action pane by activity. This helps the user more easily find their
commands, especially if there are many actions.

 ■ Provide access to all the actions that the user needs to perform against the entity in the Action
pane. Users expect all actions to be available in the Action pane. Don’t force users to go
 elsewhere to initiate an action.

 ■ If multiple roles use the form, ensure that members of each role see only the commands that
are required for their jobs. You can organize commands so that entire Action pane tabs are
hidden from specific roles. You can configure this through the Microsoft Dynamics AX 2012
security model. For more information, see Chapter 11.

 ■ Design FactBoxes to display information that the user would typically have to open additional
forms to see. By providing this information in a FactBox, you greatly simplify the user’s
 experience because no additional action is required.

 ■ Ensure that the page loads quickly. The user will expect the form to open within 2 to 5
 seconds. This will require that you to optimize the queries that are used to load the form.
For more information about optimizing queries, see Chapter 13.

 ■ Give users the capability to edit multiple records from within the details form, as shown in
Figure 5-14. The user can initiate this through the Grid View button on the status bar.

 CHAPTER 5 Designing the user experience 153

FIGURE 5-14 Grid view of the Customer details form.

Transaction details forms

Transaction details forms are used for creating and editing transactions in Microsoft Dynamics AX.
A transaction is a business event that occurs within a company that needs to be recorded in the
ERP system. Examples of transactions in Microsoft Dynamics AX are sales orders, purchase orders,
invoices, bank deposits, and so on. The user experience for recording transactions is critical for any
ERP system because many transactions must be recorded on a daily basis. Transaction details forms
must be optimized for efficiency so that users can enter new transactions easily. These forms must
be intuitive so that users don’t make mistakes that cost time and money to resolve. Users of these
forms typically use them repeatedly throughout the course of the day. They learn every nuance of the
form to become as efficient as possible, and they become frustrated by any extra step that is required
because, over the course of a day, the extra step slows them down.

The Sales Order and Purchase Order transaction details forms are possibly the most complex forms
within Microsoft Dynamics AX because of the number of fields and actions that they need to support.
With each release, new fields and actions are typically added to these forms to support additional
 capabilities that customers request. Figure 5-15 shows the Sales Order detail form, which is used to
create new sales orders. This form has been simplified by providing quick access to the important
header fields and the lines of the order. It has been optimized for the orders that are typically created
by a user, while still supporting all possible options. This will require many users to customize these
forms to meet their needs. The goal with these forms is to design a great experience that can be
 customized easily for the specific needs of each user.

154 PART 2 Developing with Microsoft Dynamics AX

FIGURE 5-15 Sales Order details form.

Transaction details forms are similar to details forms because users open them from a list page by
double-clicking a transaction record. By default, transaction details forms open in read-only mode
the same way that a details form does. To modify the record, a user clicks Edit to switch the form to
edit mode. Transaction details forms differ from details forms because they typically have line items
to indicate the details of the transaction. The line items are the main focus of these forms and are
where the users spend most of their time. Transactions can vary greatly in their complexity: a simple
transaction might require only 1 or 2 line items, but a complex transaction might require more than
100 line items. Transaction details forms must be designed to accommodate both of these situations.

A transaction details form has two views, which users can toggle between by using buttons in the
Action pane:

 ■ Line view Displays only the header fields that are most likely to be needed when a user
 creates a new transaction. Line view is the default view and is designed to support the majority
of the user’s tasks. You should modify this set of header fields to display the most important
fields for your users.

 ■ Header view Displays all the header fields of the transaction. Typically, many of these fields
use default values and are not completed directly by a user. These fields are omitted from the
Line view to make it easier to use.

 CHAPTER 5 Designing the user experience 155

As a developer extending Microsoft Dynamics AX, you may need to extend an existing transaction
details form or design a new transaction details form for an entity. Here are some guidelines to
 consider when you extend or design a new transaction details form:

 ■ Organize the tabs of the Action pane by activity. This helps the user more easily find
 commands—especially if there are many actions.

 ■ Provide access to all actions that the user needs to perform against the entity in the Action
pane. Users expect all actions to be available in the Action pane. Don’t force users to go
 elsewhere to initiate an action.

 ■ If multiple roles use the form, ensure that members of each role see only the commands that
are required for their jobs. You can organize commands so that entire Action pane tabs are
hidden from specific roles. You can configure this through the Microsoft Dynamics AX 2012
security model. For more information, see Chapter 11.

 ■ Ensure that the columns in the line items list are the fields that the user completes most
 frequently. Entering fields into the grid is much more efficient than using the line details at the
bottom of the form.

 ■ Design FactBoxes that display information to users that help them while entering new
 transactions or when viewing an existing transaction. By providing this information in a
 FactBox, you greatly simplify the user’s experience because no additional action is required to
see this information.

 ■ Ensure that the page loads quickly. The user will expect the form to display within
2 to 5 seconds. Performance of this form is extremely critical because it is used repeatedly
 throughout the day. Any performance issue on the forms will frustrate the user.

 ■ When adding a new transaction details form, follow the Microsoft Dynamics AX 2102 User
Experience Guidelines at http://msdn.microsoft.com/en-us/library/gg886610.aspx. Note that
the guidelines refer to transaction details forms as details forms with line items.

Enterprise Portal web client user experience

The Enterprise Portal web client provides a similar user experience to the Microsoft Dynamics AX
Windows client. Any user who is familiar with the Microsoft Dynamics AX client should also feel
 comfortable using Enterprise Portal. Like the Microsoft Dynamics AX client, Enterprise Portal also
 contains navigation layer and work layer forms, but the navigation path is simplified, as shown in
Figure 5-16.

The following sections describe the Enterprise Portal user experience. For more information about
creating Enterprise Portal pages, see Chapter 7, “Enterprise Portal.”

156 PART 2 Developing with Microsoft Dynamics AX

LIST

ROLE CENTER

NAVIGATION LAYER

DETAILS TRANSACTION DETAILS

FIGURE 5-16 Enterprise Portal navigation paths.

Navigation layer forms
In Enterprise Portal, navigation layer forms include Role Centers and list pages. The user has the same
Role Center between the Microsoft Dynamics AX client and Enterprise Portal. List pages in Enterprise
Portal are similar to those in the Microsoft Dynamics AX client and, from a developer perspective, are
actually the same form (see Chapter 7). All Enterprise Portal navigation layer forms appear within the
Enterprise Portal workspace, which consists of the following components:

 ■ Top navigation bar Contains a set of links at the top of the page. A user can use this bar to
navigate between the various areas, such as Sales and Procurement, that are visible to him or
her. Each link in the top navigation bar points to the default page of the corresponding area.

 ■ Search bar Lets users search for help content and data and forms. By default, users can use
the search bar to search for Microsoft Dynamics AX help and Microsoft SharePoint help. If you
want to enable searching for data and forms, Enterprise Search must be configured as part of
the setup. For more information, see “Enterprise Search” at http://technet.microsoft.com/en-us/
library/gg731850.aspx.

 ■ Action pane Displays a set of buttons that are categorized into contextual tabs and button
groups similar to the Action pane in the Microsoft Dynamics AX client and Microsoft Office
applications. This enhances simplicity and discoverability because the actions available vary
based on the permissions of the user.

http://technet.microsoft.com/en-us/library/gg731850.aspx

 CHAPTER 5 Designing the user experience 157

 ■ Navigation pane Contains a set of links on the left side of the page that allow a user to
navigate to the various areas and pages within an area. Note that the Navigation pane in
Enterprise Portal doesn’t provide access to all areas; instead, it provides navigation within an
area. This differs from the Navigation pane in the client.

 ■ Content pane Appears to the right of the Navigation pane. The Content pane displays
 content pages such as Role Centers, as well as list pages.

 ■ FactBox pane Appears at the right of the workspace and provides related information
about a specific record in a grid. The FactBox pane is displayed only on list pages within
the workspace. Unlike FactBoxes in the Microsoft Dynamics AX client, the FactBox pane in
 Enterprise Portal cannot be personalized by the user.

Work layer forms
The primary work layer forms in Enterprise Portal are details forms, which are used for entering
 information into Microsoft Dynamics AX. A details form lets users view, edit, and act upon data. These
forms are similar to the details forms in the Microsoft Dynamics AX client but have a smaller set of
fields and actions.

Design for Enterprise Portal
When you are designing for Enterprise Portal, consider where users will perform similar actions in the
Microsoft Dynamics AX client, and plan the user experience so that it is consistent:

 ■ Organize the content into areas similar to those in the Microsoft Dynamics AX client. If users
find customers in the Sales and Marketing area of the client, they will expect customers to be
located in the same area of Enterprise Portal.

 ■ Organize commands in the Action pane in a similar manner to those on the client.

For more information about designing new forms for Enterprise Portal, see the Microsoft Dynamics
AX 2012 User Experience Guidelines at http://msdn.microsoft.com/en-us/library/gg886610.aspx.

Design for your users

This chapter has talked about how to design powerful and simple user experiences for your users.
The key to designing powerful and simple experiences is to truly understand your users so that you
can focus your designs on what the user is likely to do. Don’t assume that you know what your users
know or what they need or want. Also, don’t assume that their managers know what they need
or want. Instead, take the time to observe them working, and talk to them about what they need.
Also, keep in mind that sometimes users cannot articulate what they need or want. You will have to
 develop the skills to observe and listen for their unarticulated needs.

Based on the insights you gain, sketch out some possible designs take them back to the users for
their feedback. Avoid prototyping the solution; instead, simply create a sketch. This might feel

158 PART 2 Developing with Microsoft Dynamics AX

awkward if you think that you need to have a perfect design before you take it back to users. Keep
in mind that they will appreciate the opportunity to provide feedback early in the process. When
they see that you haven’t invested a lot of time on your designs, they will be more willing to provide
feedback. If you get feedback that you are off the mark on your designs, it is easy for you to change
direction at this point because you haven’t invested a lot of time on your sketches.

When you are getting feedback from your users on your designs, don’t demo the design to them
and ask for their opinion. Instead, ask them to explain what they are seeing with these designs and
describe how they think they would take actions with them. If they are able to describe how the
 designs work and indicate how they can be used, you are on the right track. If not, take their input
and sketch out some new designs. Don’t go too long without talking to your users, and don’t be
afraid to fail. The key is to fail early when you haven’t invested much time in your designs, and to
determine the right design before you begin coding your feature. Create two or three iterations until
you get a design that seems to resonate with users. Remember that designing a simple, easy-to-use
feature is a difficult exercise.

 CHAPTER 6 The Microsoft Dynamics AX client 159

C H A P T E R 6

The Microsoft Dynamics AX client

In this chapter
Introduction . 159
Working with forms . 159
Adding controls. 172
Using parts . 181
Adding navigation items. 182
Customizing forms with code . 184
Integrating with the Microsoft Office client 189

Introduction

At its core, the Microsoft Dynamics AX Windows client is a form-based Windows application that lets
users interact with the data contained on the server. You can modify the client to display new data
types or to alter how users interact with existing data types. The user interface consists of forms that
are declared in metadata and often contain associated code.

Microsoft Dynamics AX 2012 includes several updates and additions for the client. Some of the
more substantial changes include new patterns for master records (details forms) and secondary
data (list pages and transaction details forms), a new vertically expanding FastTabs control, the use
of Action panes and Action pane strips to display actions more prominently, and the introduction of
FactBoxes to showcase related information. For more information, see Chapter 5, “Designing the user
experience.”

The majority of this chapter covers key aspects of the Microsoft Dynamics AX client. However,
some of the information in this chapter is at the overview level. For more detailed information, see the
“Client” section of the Microsoft Dynamics AX 2012 SDK at http://msdn.microsoft.com/en-us/library/
gg880996.

Working with forms

A form is the basic unit of display in the client. A typical form displays fields that show the current
 record, buttons that represent the actions the user can take on that record, and a mechanism to
change which record is being shown.

C H A P T E R 6

The Microsoft Dynamics AX
client

Introduction

Working with forms

Form patterns

Form metadata

Form data sources

Form queries

Adding controls

Control overrides

Control data binding

Design node properties

Runtime modifications

Action controls

Layout controls

Input controls

ManagedHost control

Other controls

Using parts

Types of parts

Reference a part from a form

Adding navigation items

MenuItem

Menu

Menu definitions

Customizing forms with code

Method overrides

Auto variables

Business logic

Custom lookups

Integrating with the Microsoft Office client

Make data sources available to Office Add-ins

Build an Excel template

Build a Word template

Add templates for users

http://msdn.microsoft.com/en-us/library/gg880996

160 PART 2 Developing with Microsoft Dynamics AX

To create a form, you use the Application Object Tree (AOT) to define the metadata for the form.
If necessary, you can add code to handle any events that cannot be handled declaratively in
 metadata. The following high-level steps describe the basic process for creating a form:

1. Create the form resource. You can create a form from scratch, but often, you can use an
 existing form or a template as a starting point. When you create the form, be sure to set the
Caption property on the form’s Design node. This is an important but often overlooked step.

2. Add data sources and set up join information. You can define custom queries and filters, if
necessary.

3. Add controls to the form. You can add controls that are bound to fields to display data and
action controls such as buttons and Action panes that let the user perform actions on the
 current record.

4. Add parts to the form that display data related to the main record. Parts can reduce the
 navigation that users must perform to find information.

5. Add navigation items so that users can access your form. Create a MenuItem control that
points to the form. Add a reference to that MenuItem to Menu controls, or to other forms
through MenuItemButton controls, to let the user to navigate to the form.

6. Override form and control methods if you cannot achieve the behavior that you want
 declaratively through metadata.

7. Add business logic to classes as necessary to implement the functionality that the new form
provides.

The following sections in this chapter contain more information about the components in each
step. For the latest information and most up-to-date examples about how to build and customize
forms, see the “Client” section in the Microsoft Dynamics AX SDK at http://msdn.microsoft.com/en-us/
library/gg880996.

Form patterns
Earlier releases of Microsoft Dynamics AX had informal patterns for form development. In Microsoft
Dynamics AX 2012, several form patterns have been formalized and are provided as templates.

When you create a form, select a form pattern that reflects the type of data that appears in the
form and the interaction pattern that is provided to the user. The “Form User Experience Guidelines”
on MSDN (http://msdn.microsoft.com/EN-US/library/gg886605) discuss each of the form patterns.
These guidelines are useful to ensure a seamless experience between the new form and the existing
forms in Microsoft Dynamics AX.

After you select a form pattern, you can create a form by using a template:

http://msdn.microsoft.com/en-us/library/gg880996

 CHAPTER 6 The Microsoft Dynamics AX client 161

 ■ In the AOT, right-click the Forms node, click New Form from Template, and then select the
template you want.

Microsoft Dynamics AX generates from the template that contains property values and controls
that implement the structure specified by the form pattern. Table 6-1 describes the form templates
that are available and the purpose of each type of form.

TABLE 6-1 Form templates.

Pattern Template Purpose

List page ListPage Find a record and perform an action on it.
A separate details form is used to show the
details about that record. This pattern is
 intended for primary or master records.
Example: CustTableListPage
To open this form:. Under Accounts
Receivable, click Common > Customers >
All Customers.

Details form DetailsFormMaster View, enter, update, and perform other
 actions on an individual record. This pattern is
intended for primary or master records.
Example: CustTable.
To open this form: Under Accounts
Receivable, click Common > Customers >
All Customers, and then double-click an entry
in the list.

Details form with lines DetailsFormTransaction View, enter, update, and perform other
 actions on an individual record that is
 associated with one or more related lines.
In addition, the form enables you to perform
actions on that record and its lines.
Example: SalesTable
To open this form: Under Accounts
Receivable, click Common > Sales Orders >
All Sales Orders, and then double-click an
entry in the list.

Dialog Dialog Initiate a task or process where the user must
provide input. The form lets users specify
whether to continue or cancel the task or
process.
Example: DirPartyQuickCreateForm
To open this form: Under Accounts
Receivable, click Common > Customers >
All Customers. On the Action pane, in the
New group, click Customer.

Drop dialog DropDialog Initiate a task or process where the user
must provide input. A drop dialog provides a
small amount of information quickly without
 requiring the user to leave the parent form.
Example: HcmWorkerNewWorker
To open this form: Under Human Resources,
click Common > Workers > Workers. On the
Action pane, in the New group, click Hire New
Worker.

162 PART 2 Developing with Microsoft Dynamics AX

Pattern Template Purpose

Simple list SimpleList View, enter, and update records that appear
as a list of records in a grid.
Example: CustGroup.
To open this form: Under Accounts Receivable,
click Setup > Customers > Customer Groups.

Simple list and details SimpleListDetails View a list of records and the details about
one of those records at the same time. This
pattern is targeted at simpler secondary
 records.
Example: CustPosting
To open this form: Under Accounts
Receivable, click Setup > Customer Posting
Profiles.

Table of contents TableOfContents Complete a series of related setup or
 configuration tasks. The table of contents
pattern is used on parameters forms to allow
easy access to the parameters that the current
module is using.
Example: CustParameters
To open this form: Under Accounts
Receivable, click Setup > Accounts Receivable
Parameters.

Note There are no formalized patterns for journal and inquiry forms because the structure
of those forms are highly dependent on the data and processes they support.

Form metadata
The form metadata in Microsoft Dynamics AX is extensive, but it is well-structured and easy to work
with after you become familiar with it. The following are the primary metadata nodes for a form
resource:

 ■ Form .DataSources The data structures that are used for the form. For more information,
see “Form data sources,” later in this chapter.

 ■ Form .Designs .Design The controls that display the data for the record. This metadata node
name is often shortened to Form.Design or Form Design. For more information, see “Adding
controls,” later in this chapter.

 ■ Form .Parts The additional parts that display related data. For more information, see
“Using parts,” later this chapter.

 CHAPTER 6 The Microsoft Dynamics AX client 163

Figure 6-1 illustrates these nodes in the AOT for the CustGroup form.

FIGURE 6-1 Metadata nodes for the CustGroup form.

Ideally, you should use metadata to customize forms. Metadata customization is preferred over
code customization because metadata changes (also called deltas) are easier to merge than code
changes. To ensure the greatest level of reuse, any changes you make to the metadata should be
made at the lowest level possible; for example, at the table level instead of the form level.

When customizing forms, you should be aware of the metadata associations and the metadata
inheritance that are used to fully define the form and its contents.

Metadata associations
You edit the metadata in Microsoft Dynamics AX by using the AOT. The base definitions for forms
contained within the AOT\Forms node consists of a hierarchy of metadata that is located in other
nodes in the AOT. To fully understand a form, you should investigate the metadata associations it
makes. For example, a form uses tables that are declared in the AOT\Data Dictionary\Tables node,
menu items that are declared in the AOT\Menu Items node, queries that are declared in the AOT\
Queries node, and classes that are declared in the AOT\Classes node.

Metadata inheritance
You need to be aware of the inheritance within the metadata used by forms. For example, tables use
base enums, extended data types (EDTs), and configuration keys. A simple example of inheritance is
that the Image properties on a MenuItemButton are inherited from the associated MenuItem if they
aren’t explicitly specified on that MenuItemButton.

Inheritance also occurs within forms. Controls that are contained within other controls receive
certain metadata property behaviors from their parents unless different property values are specified,
including Labels, HelpText, Configuration Key, Enabled, and the various Font properties.

Table 6-2 shows examples of pieces of metadata that are inherited from associated metadata.

164 PART 2 Developing with Microsoft Dynamics AX

TABLE 6-2 Examples of metadata inheritance.

Type of metadata Sources

Labels and help text MenuItem > MenuItemButton Control
Base Enum> Extended Data TypeTable Field> Form DataSource FieldForm
Control
(The base enum Help property is the equivalent of the HelpText property
found in the other types.)

Display length Extended Data Type > Table Field > Form Control

Configuration keys Base Enum > Extended Data Type > Table Field > Form DataSource Field >
Form Control

Image properties (for example
NormalImage)

MenuItem > MenuItemButton Control

Form data sources
Microsoft Dynamics AX has a rich data access framework that makes it easy to add data to forms and
bind controls to that data. The basis of this is the form data source, which allows binding the tables
and fields to a form.

The form data source points to a specific table, map, or view. The field list on the form data source
is automatically populated with the fields that are defined on the resource it refers to. From that list,
you can bind controls to those fields or any of the data methods that exist on the table or form data
source.

Form data sources can be divided into the following categories:

 ■ Root data sources Root data sources do not contain a value for the JoinSource property and
therefore, are not joined with or linked to any other data source. Most forms have only one
root data source. The root data source references the table data that is the primary subject of
the form. Root data sources are sometimes called top-level data sources.

 ■ Master data sources Master data sources are root data sources or dynalinked data sources.
A single query is used to retrieve the data for a master data source and the data sources that
are joined to it. You can think of a master data source as being at the root of a query hierarchy.

 ■ Joined data sources Joined data sources are those that are joined to another data source.
These data sources have a LinkType value of InnerJoin, OuterJoin, ExistJoin, or NotExistJoin.
Typically, you use a join to combine data sources so that the data is retrieved by a single query.
For example, in the CustTable form, DirPartyTable is joined to CustTable.

 ■ Linked data sources Linked data sources are data sources that are linked to another data
source in the form. These data sources have a LinkType value of Active, Delayed, or Passive.
Use a link for data sources that have a parent/child relationship so that the data is retrieved in
separate queries. For example, in the SalesTable form, SalesLine is linked to SalesTable.

 CHAPTER 6 The Microsoft Dynamics AX client 165

Dynalinks
The term dynalink refers to two data sources that are dynamically linked. A dynalink always has a
 parent data source and a child data source.

For example, the SalesTable (Sales orders) form where the SalesTable (Sales order) data source is the
parent and the SalesLine (Sales order line) data source is the child. If two data sources have a dynalink,
when a record changes in the parent data source, the child data source is notified about that change. The
query for the child data source is reexecuted to retrieve the appropriate related data.

The following types of dynalinks are available:

 ■ Intra-form Intra-form dynalinks occur between data sources that have a LinkType value of
Active, Passive, or Delayed. The child data source has a query that is separate from the parent
data source, and the query runs at a time that is determined by the LinkType property.

 ■ Inter-form Inter-form dynalinks occur between related data sources on forms where
one form (the parent) opens another form (the child). The DataSource property of a
 MenuItemButton on the parent form is used to specify which data source is used as the parent
form side of the link. The child form side of the link is the first root data source.

Table inheritance
Table inheritance in Microsoft Dynamics AX functions much like class inheritance in any
 object-orientated language. However, it has the added benefit of allowing polymorphic queries of the
data in tables. (For more information about table inheritance, see Chapter 17, “The database layer.”)

If you model a form data source on a table that is a base type, the derived types are automatically
expanded into a subnode called Derived Data Sources. This node is not editable and is generated by
the forms engine. The derived data sources have no properties or methods of their own because all
of those characteristics are inherited from the base form data source. However, you can still override
and add methods to the fields for derived data sources. For example, the DirPartyTable data source,
shown in Figure 6-2, is part of a table inheritance hierarchy.

Figure 6-2 shows all of the automatically-generated data sources, one for each derived type.
The Fields node for each derived type lists the fields for that type. When there is only a single chain
of base types, all of the base fields are collapsed into a single Fields node underneath the form data
source. For example, if you model a form data source based on the DirPerson type, the Fields node
contains all of the fields in the chain.

Instance methods on the form data source also follow the table inheritance hierarchy. For example,
if the user triggers the validateWrite event when the current active record is of type DirPerson, the
FormDataSource.validateWrite method is called, which will call DirPerson.validateWrite, which will
call DirPartyTable.validateWrite, which will call the kernel level Common.validateWrite. However
 non-instance-specific methods such as executeQuery work on the general form data source, so there
are no calls to any base methods.

166 PART 2 Developing with Microsoft Dynamics AX

FIGURE 6-2 The DirPartyTable data source in the AOT.

Because polymorphic queries are allowed, polymorphic creation of records is also supported.
When a user clicks New on a form with a form data source that has no derived types, the concrete
type to create is known. However, when the form data source has derived types, the user must be
prompted to select a type to create.

Traditionally, to create a record in X++ code you only had to call the FormDataSource.create
 method. However, that method does not let you specify the type. To support the polymorphic
 creation scenario, use the following method:

FormRun.createRecord(str _formDataSourceName [, boolean _append = false])

All create actions performed by the kernel are routed through this method. You should use this
method as well instead of the create method. The first parameter specifies the name of the form data
source in which to create the record, and the second parameter contains the same append value that
is passed to the create method. You can override this to put in conditional code that depends on the
type being created. The call to the super of the method executes the correct logic depending on the
type.

If the type (or any of the types in the join hierarchy) is a polymorphic type, the user is prompted to
select the type of record to create, as shown in Figure 6-3.

 CHAPTER 6 The Microsoft Dynamics AX client 167

FIGURE 6-3 Dialog box that prompts a user to specify a record type.

The createRecord method lets you override the behavior of the super to either specify the types of
records that the user can create, or to display your own dialog box to the user. To inform the kernel of
which types you want the user to choose from, you use the following method:

FormDataSource.createTypes(Map _concreteTypesToCreate [, boolean _append = false])

The first parameter contains a map of string key/value pairs where the key is the name of the form
data source and the value is the name of the table type to create. For example, if your objective is to
always create a type of CompanyInfo, you could use the following code. Note that the name of the
form data source is the name of the data source that is modeled on the form, not the derived data
source.

public void createRecord(str _formDataSourceName, boolean _append = false)
{
 Map typestoCreate = new Map(Types::String, Types::String);

 if(_formDataSourceName == "DirPartyTable")
 {
 typestoCreate.insert("DirPartyTable", "CompanyInfo");
 DirPartyTable_ds.createTypes(typestoCreate, _append);
 }
 else
 {
 super(_formDataSourceName, _append);
 }
}

Unit of Work
Saving records in form data sources can occur in two ways. The traditional approach is that all of
the inner-joined and outer-joined data sources are saved together in one process, but each record
is saved to the server in individual remote procedure calls (RPCs) and transactions. This is can be
troublesome, because sometimes you need all of the records to be saved in a single transaction.
To achieve this, you can set the ChangeGroupMode property on the Data Sources node to
 ImplicitInnerOuter. (The default setting is None, which results in the behavior described earlier.)
With the ImplicitInnerOuter setting, all of the inner-joined and outer-joined records are grouped
into a single RPC to the server and occur in a single transaction. If anything causes the transaction to
be cancelled, the changes are rolled back. This feature is called Unit of Work. For more information
about Unit of Work, see Chapter 17.

168 PART 2 Developing with Microsoft Dynamics AX

With this new approach, the write and delete methods no longer apply, because the actions
 occurred in the call to the super for those methods. With the change group mode behavior, the
 writing, written, deleting, and deleted methods are used. For each type of operation, when the validate
method for each data source is called on the client, the methods ending in ing, such as writing, are
called. The transaction then occurs on the server, where the table insert, update, or delete methods
are called. Finally, the methods ending in ed or en, such as deleted or written, are called.

Unit of Work has an additional feature called OptionalRecord that saves database space
by inserting outer-joined records only if the values have been changed from the default. For
 OptionalRecord, the two possible options are ImplicitCreate and ExplicitCreate. In the ImplicitCreate
scenario, the forms engine automatically creates the outer-joined record if the record does not
exist in the database. The record is saved only if values are changed from the default value. In the
 ExplicitCreate scenario, you can model a check box on the form that explicitly controls the behavior
of record creation and deletion for the outer-joined record.

Date effectivity
Date effectivity allows tracking of how data changes over time. The date effectivity functionality lets
users with appropriate security privileges see the entire change history for a record. It also provides
support for creating records that become effective on specific dates. Interest and currency conversion
rates are good examples of date effective records as they make use of specific effective dates and
times. For more information, see Chapter 17 or download the white paper, “Using date effective
data patterns” from http://download.microsoft.com/download/4/E/3/4E36B655-568E-4D4A-B161-
152B28BAAF30/Using_Date_Effective_Patterns_AX2012.pdf.

Surrogate foreign keys
Traditional foreign keys in Microsoft Dynamics AX used the natural key or a type of intelligent key
for the target object. This has many drawbacks, such as breaking referential integrity if the value of
a natural key was changed. To solve those problems and improve performance through the use of
integer keys, surrogate foreign key support was added to Microsoft Dynamics AX 2012. Surrogate
foreign key support uses reference data sources and Reference Group controls to provide surrogate
key support in the Microsoft Dynamics AX client. For more information, see the Chapter 17.

Metadata for form data sources
Table 6-3 describes some of the most important form data source properties.

 CHAPTER 6 The Microsoft Dynamics AX client 169

TABLE 6-3 Metadata properties for form data sources.

Property Description

Name Specifies a named reference for the data source. A best practice is to use the
same name as the table name.

Table Specifies the table used as the data source.

CrossCompanyAutoQuery Specifies whether the data source gets data from all companies. The following
values are available:

 ■ No (Default) Data source gets data from the current company.
 ■ Yes Data source gets data from all companies within the current

partition; for example, the data source retrieves customers from
all companies).

JoinSource Specifies the data source to link to or join to as part of the query. For
 example, in the SalesTable form, SalesLine is linked to the SalesTable data
source. Joined data sources are represented in a single query whereas a
linked data source is represented in a separate query.

LinkType Specifies the link or join type used between this data source and the data
source specified in the JoinSource property. Joins are required when two data
sources are displayed in the same grid. Joined data sources are represented
in a single query whereas a linked data source is represented in a separate
query.

Dynalinks
The following values are available:

 ■ Delayed (Default) A delay is inserted before linked child data
sources are updated, enabling faster navigation in the parent data
source because the records from the child data sources are not
updated immediately. For example, the user could be scrolling
past several orders without immediately seeing each order line.

 ■ Active The child data source is updated immediately when
a new record in the parent data source is selected. Continuous
updates consume significant resources.

 ■ Passive Linked child data sources are not updated
 automatically. The link is established by the kernel, but you must
trigger the query to occur by calling executeQuery on the linked
data source.

Joins
The following values are available:

 ■ InnerJoin Selects records from the main table that have
 matching records in the joined table, and vice versa. There is one
record for each match. Records without related records in the
other data source are eliminated from the result.

 ■ OuterJoin Selects records from the main table whether or not
they have matching records in the joined table. An outer join
doesn’t require each record in the two joined tables to have a
matching record.

 ■ ExistJoin Selects a record from the main table if there is a
matching record in the joined table.

 ■ NotExistJoin Selects records from the main table that don’t
have a match in the joined table.

InsertIfEmpty The following values are available:
 ■ Yes (Default) A record is automatically created if none exists.
 ■ No The user must create the first record manually. This setting is

typically used when a special record creation process or interface
is used.

170 PART 2 Developing with Microsoft Dynamics AX

Property Description

AutoSearch The following values are available:
 ■ Yes (Default) executeQuery is called automatically during the call

to the super of FormRun.run.
 ■ No executeQuery is not called during the call to FormRun.run.

This property is valid only on root data sources.

AutoQuery The following values are available:
 ■ Yes (Default) A query is automatically created by the FormRun

engine. The query contains a QueryBuildDataSource object for
every FormDataSource object in the join hierarchy.

 ■ No The FormRun engine does not automatically create a query.
You must provide one by setting the FormDataSource.query
 object during the call to the FormDataSource.init method.

This property is valid only on master data sources.

OnlyFetchActive The following values are available:
 ■ No (Default) All of the fields for the FormDataSource are

selected in the QueryBuildDataSource. Equivalent to setting the
Dynamic property to Yes on the QueryBuildDataSource.FieldList
object.

 ■ Yes Only fields that are bound to controls are added to the
select list on the QueryBuildDataSource.

Form queries
One of the most common ways of customizing a form is to modify the queries that the form uses.
There are two primary ways to do this: by using the AutoQuery property or by using an explicit query.
When the form loads, the following processing occurs for form data sources:

1. Form data source objects are created that reference the data that is retrieved from the
 database.

2. The form’s queries are run to retrieve data.

3. Controls that are bound to fields show data that was retrieved.

By default, when the FormDataSource.AutoQuery property is set to Yes, a query is created for
the form based on its data sources. The query is created in the call to the super of the form’s init
method. The query contains a QueryBuildDataSource object for each form data source in the direct
join hierarchy. Additional queries are created for dynalinked form data sources. These queries are
linked to the current data in their joined parent, so that the queries are correct. This has the benefit
of splitting tables across multiple database queries, which can improve performance and remove
the cross-product results that occur in 1:n joins. Figure 6-4 shows the data sources for an example
 AutoQuery.

 CHAPTER 6 The Microsoft Dynamics AX client 171

FIGURE 6-4 The AutoQueryExample form in the AOT.

In this example, properties are set on the data sources as follows:

 ■ The CustTable data source is the root form data source; therefore, its JoinSource property is
not set.

 ■ The CustGroup data source has its JoinSource property set to CustTable with a LinkType value
of OuterJoin.

 ■ And the SalesTable data source has a JoinSource of CustTable and a value LinkType of Delayed.

With AutoQuery behavior, a query will be created with a root QueryBuildDataSource object of
CustTable that has a child data source of CustGroup. Because the SalesTable data source is linked
with a dynalink, it has its own query with a single root QueryBuildDataSource object. The SaleTable
 QueryBuildDataSource object has a dynalink added to it through the addDynalink method to the
CustTable data course. When the form loads, the initial query runs to retrieve the data from CustTable
and CustGroup. After the results are returned, a query runs to retrieve the SalesTable data based on
the record in CustTable that is currently selected.

The second way of modeling the data access for a form is to use a query as the basis for the data
source structure. You can do this by performing a drag-and-drop operation to add the query to
the Data Sources node or by setting the Query property. In this scenario, the query causes the respective
form data sources to be generated for the form. No additional data sources can be added. This method
of modeling data access is generally used only for list pages, because it requires two metadata items to
be created to model the form. The extra work is beneficial in the case of list pages, because composite
queries are created that contain filters for the secondary list pages that reuse the same list page form. For
example, Customers On Hold, which is a secondary list page, reuses the Customers list page.

QueryBuildDataSource and QueryRunQueryBuildDataSource methods
An important change in Microsoft Dynamics AX 2012 is the addition of the FormDataSource.
queryBuildDataSource method and the FormDataSource.queryRunQueryBuildDataSource methods.
These methods expose the respective Query and QueryBuildDataSource objects that the forms engine
uses. These methods let X++ developers quickly access the correct QueryBuildDataSource object for
the form data source. This is especially helpful when a form has multiple form data sources of the
same type, such as the CustTable form.

172 PART 2 Developing with Microsoft Dynamics AX

Query and QueryRun objects
An important part of query interaction with the form is accessing the proper query to work
with. For every data source on a form, there are two queries: the FormDataSource.query and the
 FormDataSource.queryRun.query. When a form initially loads, the Query is created in the call to the
super of the FormDataSource.init method. Any modifications that you want to remain regardless
of the filters that a user defines or clears should be applied to this query. In the call to the super of
the executeQuery method, the QueryRun object is created, which contains a copy of the original
Query object. When a user applies a filter, the filter is applied to QueryRun.query and the research
method is called. An internal flag is set that specifies not to recreate the QueryRun object, and then
the executeQuery method is called. When the user clears the filters, executeQuery is called, which by
default, re-creates the QueryRun object from the base Query object.

CopyCallerQuery property
CopyCallerQuery is a property for the MenuItemButton and MenuItem resources that specifies
 whether to copy the query from the source form to the target form. When using CopyCallerQuery,
the same rules apply as when you manually assign a query through code:

 ■ The root data sources of the query must match the form data source.

 ■ The joined data sources for the query should also be compatible.

In Microsoft Dynamics AX 2012, the kernel automatically adds any missing QueryBuildDataSource
objects for required form data sources. This makes the queries as compatible as possible.

Query filters
Forms in Microsoft Dynamics AX 2012 apply filtering through the use of QueryFilter objects instead
of QueryBuildRange objects. QueryBuildRanges are applied to the ON clause in a Transact-SQL
 statement, which works correctly for inner joins because the ON clause and the WHERE clause provide
equivalent behavior. However, this does not work as expected for outer joins. The expected behavior
for data sources with outer joins is to apply the WHERE clause to restrict the entire query, instead of
the ON clause, which restricts only the join. To solve this problem, the QueryFilter class was created.
All of the internal kernel logic in the forms engine that modifies queries uses QueryFilter objects. It is
recommended that all new X++ logic on forms use QueryFilter objects instead of QueryBuildRange
objects for consistency.

For more information about query filters, see Chapter 17.

Adding controls

Microsoft Dynamics AX includes a large selection of controls that you can use to create data-driven
forms quickly.

 CHAPTER 6 The Microsoft Dynamics AX client 173

When you add controls to a form, set as few properties as possible so that the controls can take
full advantage of defaults and automatic values. Default and Auto property values on controls allow
Microsoft Dynamics AX to use predefined functionality when determining display characteristics and
behavior.

Note The product is an excellent source of information about how to build a form. You
can see how forms in the product are built and which controls are used.

Control overrides
Each control has a set of methods that you can override. Try to keep code in the overridden method
(on the form) to a minimum by calling a class instance or a static method when possible.

Control data binding
Many controls can be bound explicitly to a data source and data field to display the data field value.
Other controls, such as buttons, can be bound to a data source to obtain the data context. If a control
is not explicitly bound to a data source, its data source context comes from either its parent hierarchy
or the form default, if the data source is not specified by a parent of the control.

The implied context of a data source is particularly important when actions are executed and
records are saved:

 ■ When an action executes, it executes in the context of a particular data source. For example,
when it initiates an action to create a new record, the record that is created depends on the
current data context.

 ■ If changes to a record have not been saved when the cursor focus moves from a control in
one data source context to a control in a different data source context, the record is saved
automatically.

Design node properties
The Design node of a form contains the controls that display record data. The Design node contains
properties, the most important of which are described in Table 6-4.

174 PART 2 Developing with Microsoft Dynamics AX

TABLE 6-4 Metadata properties for the Design node.

Property Description

Caption Specifies the caption text shown in the title bar of a standard form or in the
filter pane of a list page.

TitleDataSource Specifies the data source information displayed in the caption text of
 standard form and used to provide filter information in the caption text of
a list page.

WindowType Specifies the type of form. The following types are available:
 ■ Standard (Default) A standard single document interface (SDI)

form that opens as a separate window with a separate entry in
the Windows taskbar. This is the default type

 ■ ContentPage A form that fills the workspace content area.
 ■ ListPage A special type of ContentPage that displays

 records in a simple manner, providing quick access to filtering
 capabilities and actions. This type of form requires an Action
pane control and a Grid control, at minimum.

 ■ Workspace A form that opens as a multiple document
 interface (MDI) window within the workspace. Workspace forms
should be for developers only.

 ■ Popup A form that opens as a subform to its parent. Popup
forms don’t have a separate entry in the Windows taskbar and
can’t be layered with other windows.

AllowFormCompanyChange Specifies whether the form allows company changes when used as a child
form with a cross-company dynalink. The following settings are available:

 ■ No (Default) The form closes if the parent form changes its
company scope.

 ■ Yes The form dynamically changes company scope as needed.

Runtime modifications
You can add or remove controls at runtime through code in response to user actions. For example,
filter controls can be added and removed as needed.

When changing the form at runtime, you should lock it by using the element.lock and element.
unlock methods to ensure the changes occur all at once instead of flickering into effect gradually.
Locking the form can also improve performance because the the form is redrawn only once.

Action controls
Add action controls such as buttons and Action panes to let users perform actions on the current
record.

Buttons
Users click buttons to perform actions. Several types of button controls are available:

 ■ MenuItemButton Activates a MenuItem to open a form, run a class, or display a report. This is
the most common type of button because the behavior is modeled rather than defined explicitly
through X++ code. For more information, see “Adding navigation items,” later in this chapter.

 CHAPTER 6 The Microsoft Dynamics AX client 175

 ■ CommandButton Executes a system-defined command, such as OK, Export to Excel, and
Close. Use this type of button whenever a system-defined command exists for the action that
you want to add.

 ■ Button Provides a clicked method that you can override to add X++ code. This type of
 button is used infrequently. Avoid using it, if possible, because it means that code will be
added directly to the form.

 ■ DropDialogButton Opens a drop dialog form. Drop dialogs let the user quickly provide
information or make choices that are necessary to execute some action. For example, with a
drop dialog, a user can select a specific hold state when putting a customer on hold.

 ■ MenuButton Displays a menu. This type of button can contain any button type except
another MenuButton.

You should populate the Text property for a Button or a MenuButton. However, the text for a
 CommandButton or a MenuItemButton should come implicitly from the referenced command or
MenuItem, respectively.

You can place buttons directly on a form or within a ButtonGroup that is on a form. More
 commonly, buttons are placed inside an Action pane or an Action pane strip.

Action pane and Action pane strip
An Action pane (see Figure 6-5) organizes and displays buttons that represent the actions the form
supports. An action is a task or operation that occurs when the user clicks a button on the Action
pane. With actions, you can use data that is displayed in the current form to let users perform
 commands, open related forms, or execute custom X++ code.

Use an Action pane at the top of large forms when you need multiple tabs to display the actions
that are available for the entire form.

FIGURE 6-5 An Action pane.

Use an Action pane strip at the top of smaller forms when there are a small number of actions for
the form. You can define an Action pane strip by setting the ActionPane.Style property to Strip.

You can also use an Action pane strip to display actions that have a specific context. Common locations
for an Action pane strip are at the top of a TabPage, FastTab, or Group control. The context might be fields
of a particular category within a record or a collection of associated child records. The most common
usage of a contextual Action pane strip is when displaying the Add and Remove actions above a grid that
contains associated child records, as shown in Figure 6-6. When you are using an Action pane strip in a
particular data context, you should set the DataSource property of the Action pane control.

176 PART 2 Developing with Microsoft Dynamics AX

FIGURE 6-6 An Action pane strip.

For more information about how to design Action panes, see Chapter 5.

Layout controls
Three main layout controls are used to display other controls inside them:

 ■ Group A Group control provides a way to group and categorize individual controls within
the form. The Design node of a form, in addition to containing all of the controls, has many of
the properties and behaviors of Group controls.

 ■ TabPage A TabPage control organizes the controls and fields on the form so that only a
subset is displayed at one time.

 ■ Grid A Grid control displays input controls in a simple row and column format that allows the
compact display of multiple fields for multiple records of the same type.

Group
Use the Group control to organized related fields and other controls into logical groups within a form.
You can create and label a Group control manually (using the Caption property). You can also create a
Group control by using the DataGroup property to point to a field group that has been predefined on
a table (the data source).

Try to use table field groups whenever possible. Table field groups allow for easier maintenance
of the application because a change to a table field group affects every form or report that uses that
field group.

If you are manually adding controls and a caption to a Group control, be sure to provide a
 descriptive and understandable caption that accurately describes the group.

TabPage
Use TabPage controls to reduce the complexity of a form by hiding fields until the user needs them.
TabPage controls are listed within a parent Tab control. The Tab control is commonly called a tab
group to differentiate it from the TabPage controls it contains.

The following styles are available for TabPage controls:

 ■ Standard Shows TabPage controls stacked on top of each other so that only one TabPage is
visible at a time. This style, shown in Figure 6-7, is used throughout the product and should be
familiar to most users.

 CHAPTER 6 The Microsoft Dynamics AX client 177

FIGURE 6-7 Standard tabs.

 ■ VerticalTabs Shows TabPage controls listed as a vertically-organized set of links to the left
of the TabPage that’s visible, so that only one TabPage is visible at a time. This style, shown in
Figure 6-8, is commonly used on parameters forms. Forms using this style are often said to
have a table of contents style.

FIGURE 6-8 Vertical tabs.

 ■ IndexTabs Shows TabPage controls listed as a horizontally-organized set of tabs underneath
the TabPage that’s visible, so that only one TabPage is visible at a time. This style, shown in
Figure 6-9, is commonly used to display the line details on transaction detail forms.

FIGURE 6-9 Index tabs.

 ■ FastTabs Shows TabPage controls listed vertically and lets users show multiple TabPage
 controls at a time. The user can choose which pages to see and expand and collapse TabPage
controls as necessary. With the FastTabs style, shown in Figure 6-10, you can also display
 summary information for key fields, even when the control is collapsed.

178 PART 2 Developing with Microsoft Dynamics AX

FIGURE 6-10 FastTabs.

To ensure that FastTabs are helpful to users, keep them short so that users can see only the
information that’s necessary, provide descriptive labels, and display only the most important
summary fields when the tab is collapsed. For more tips on creating effective FastTabs, see
Chapter 5.

Grid
Use a Grid control to display a collection of records that are associated with the primary record on the
form. For example, you could use a Grid control to display contacts or addresses for a customer.

If you do not want the Grid control to take up the entire form, you can control the size by using
the VisibleRows property. For example, when displaying the addresses of a customer, many customers
will only have one or two addresses. Setting VisibleRows to 3 is one way to display the relevant
 information while taking up minimal space.

Input controls
You can use input controls in either a bound or an unbound manner. Input controls can be bound to
either fields or methods.

Field-bound controls
Input controls represent the fields on a form. To create input controls that are bound to fields, you
can manually add controls to the form and then bind them to fields in the data source. Another
alternative is to drag fields from the data source and drop them onto the form, as in the following
procedure:

1. Right-click the Form.Data Sources node, and then click Open In New Window.

2. Place the new window containing the form data sources next to the original AOT window.

 CHAPTER 6 The Microsoft Dynamics AX client 179

3. Drag the fields you want from the data sources and drop them into the appropriate location
in a Group, TabPage, or Grid control on the form. This action creates the appropriate type of
input control (StringEdit for strings, IntEdit for integers, and so on), and binds it to the data
source field.

Method-bound controls
If you bind an input control to a display method, you can present data that is processed or created
through code. You should place display methods that relate to a particular table on that table instead
of on a form data source.

When binding a control to a display method, use the Datasource and Datamethod properties to
point at the appropriate display method.

Display methods use the display keyword in the method declaration. The best examples of display
methods are those that already exist in Microsoft Dynamics AX. Use the search capability in the AOT
to find example display methods on tables by looking for the display keyword followed by a space
(display).

The standard display method format is as follows:

display SomeEDT myDisplayMethod()
{
 //Code here...
 return "returnValue";
}

Unbound controls
You can add input controls such as StringEdit and IntEdit to a form and manipulate them through X++
code to provide the user experience you want. An example of this is seen in the AxdWizard form.
 Unbound controls can also be used to provide a custom filtering experience. An example of this is
seen in the SalesLineBackOrder form.

ManagedHost control
If the predefined controls provided with Microsoft Dynamics AX do not meet a specific need, or when
a using prebuilt component would save time, you can use an externally-created control. With the
ManagedHost control, you can use .NET controls on Microsoft Dynamics AX forms. The ManagedHost
control is the preferred solution when you need an externally-created control because of the ease of
use it provides.

To use a .NET control within a Microsoft Dynamics AX form, the AOT must contain a reference
to the .NET assembly that contains the control. To add new .NET controls, add the assembly or
 assemblies that contain the controls to the Reference node of the AOT by right-clicking that node and
then clicking Add Reference.

180 PART 2 Developing with Microsoft Dynamics AX

To reference that .NET control within a Microsoft Dynamics AX form, add a ManagedHost control
and then use the Managed Control Selector dialog box to select the control you want. Right-click the
new control to subscribe to events.

Try this simple example to add a .NET button to a form:

1. In the AOT, right-click the Forms node, and then click New.

2. Right-click the Design node, and then point to New Control > ManagedHost.

3. In the Managed Control Selector dialog box, in the top grid, select the System.Windows.Forms
assembly, and then in the Controls grid, select Button, and then click OK.

Note The System.Windows.Forms assembly is referenced by default, so you do
not need to add a reference.

4. Set the name of the control to ManagedButton.

5. Right-click the ManagedButton control to open the Events dialog box, and then add the Click
event.

6. Expand the Methods node for the form, open the init method, and replace the existing code
with the following to set the text for the button:

public void init()
{
 super();
 _ManagedButton_Control = ManagedButton.control();
 _ManagedButton_Control.add_Click(new ManagedEventHandler(this, 'ManagedButton_
Click'));
 _ManagedButton_Control.set_Text("Managed button");
}

7. Open the code for the Click method, and then replace the existing code with the following to
display text in the InfoLog:

void ManagedButton_Click(System.Object sender, System.EventArgs e)
{
 info("Managed button clicked");
}

Run the form, and then click the button. The result is shown in Figure 6-11.

 CHAPTER 6 The Microsoft Dynamics AX client 181

FIGURE 6-11 ManagedHost control example.

Other controls
You can add additional types of controls to a form to provide additional information or interactivity.
For example, the static text control can provide instructional text to guide a user through a process,
and the Window control can display images that help inform the user about a product or service.
For more information, see “Controls in Microsoft Dynamics AX” at http://msdn.microsoft.com/en-us/
library/gg881259.

Using parts

You use a part to retrieve and show data that is related to the selected record on the host form. Parts
can be used in the FactBox pane of any form or in the preview pane of a list page.

Types of parts
The following types of parts are available:

 ■ Info parts are displayed like forms at runtime. At design time, info parts use a simplified set
of metadata that allows them to be displayed in both the Microsoft Dynamics AX client and
Enterprise Portal web client. Info parts have simple styling and are essentially a collection of
data fields from the specified query. Info parts can define a set of actions to display below the
data fields. Preview panes for list pages are always modeled as info parts.

 ■ Cue groups are a collection of cues. Cues are a mechanism for showing the count of the
records from a query. Often, the query used for the cue is restricted based on the record
 currently shown on the host form. A cue contains three things: a query that provides the
count, a MenuItemName property that specifies the action to take when a user clicks a cue,
and a label that informs the user what the count is for (if none is provided, the MenuItem label
is used). For more information about how to use cues, see Chapter 5.

http://msdn.microsoft.com/en-us/library/gg881259

182 PART 2 Developing with Microsoft Dynamics AX

 ■ Form parts are pointers to existing forms that can be displayed as FactBoxes. The Form
property specifies the form to display, and the Caption property provides the title caption for
the FactBox. When you are building a form to display as a form part, set the Style property
to FormPart, the ViewEditMode property to View, and the Width property to ColumnWidth to
ensure correct styling.

Reference a part from a form
The Parts node for each form references the parts that are used to display data related to the record
being displayed by the form. Within the Parts node, you create part references that ensure the correct
context.

To create a standard part reference:

1. Set the MenuItemName property to the MenuItem that specifies the part. A MenuItem is used
to reference each part to ensure that standard MenuItem-based security can be applied.

2. Set the DataSourceName and DataSourceRelationName properties to specify the correct data
relation (dynalink) to use between the host form and the part.

3. Set the PartLocation property to indicate whether the part should be displayed as a FactBox
(the default) or as a preview pane.

4. (Optional. For list pages only.) Set the DisplayTarget property to indicate whether the part will
be displayed in the Microsoft Dynamics AX client, Enterprise Portal, or both.

5. (Optional.) Set the Visible property to hide the FactBox by default. The FactBox is still available
for users if they choose to show it.

Adding navigation items

To give users access to the forms you create, you add references to them on menus.

MenuItem
In Microsoft Dynamics AX, a MenuItem is a modeled pointer to another resource such as a form, class,
or report. You define MenuItem metadata in the Menu Items node of the AOT. The Menu Items node
has three subnodes that are used for categorization purposes. The Display, Action, and Output types
usually reference forms, classes, and reports, respectively. However, a common exception is to have a
display MenuItem reference a class that is used to initialize and open a form.

 CHAPTER 6 The Microsoft Dynamics AX client 183

Menu
In Microsoft Dynamics AX, a Menu is a structured collection of references to MenuItems and other
Menus. The navigation pane, area pages, and address bar are mechanisms for exposing the menu
metadata that you define in the Menus and Menu Items nodes of the AOT. The module menus are
defined in the Menus\MainMenu node of the AOT. You can follow the menu structure from that
 starting point. For example, the Accounts Receivable module is represented by the Menus\MainMenu\
AccountsReceivable MenuReference and is defined in Menus\AccountsReceivable.

When adding a Menu item to a menu, ensure that the IsDisplayedInContentArea property is set
appropriately. For list pages and content pages that are displayed in the client, set this property to Yes
so that the address bar is populated correctly.

Menu definitions
In previous releases of Microsoft Dynamics AX, forms were generally specific to a single module.
However, in Microsoft Dynamics AX 2012, the application has been reorganized to be more
 role -specific. As a result, several new modules were created, such as Sales and Marketing and
 Inventory and Warehouse Management. Many commonly-used forms are now found in multiple
modules; for example, the Customers and Sales Orders forms are now located in both the Accounts
Receivable and Sales and Marketing modules.

When defining a module menu or adding items to an existing module menu, try to follow the
standard groupings that are used in other menus:

 ■ Common Contains the most commonly-accessed forms in the module. The Common group
usually contains links to list pages.

 ■ Periodic Contains links to secondary data forms.

 ■ Inquiries Contains links to forms that provide read-only views of data that is related to the
current module.

 ■ Reports Contains links to reports.

 ■ Setup Contains links to setup forms, including the parameters forms. Sometimes this group
also contains secondary data forms.

The primary list pages listed in the Common group should be accompanied by secondary list
pages. A secondary list page is a list page that adds ranges (filters) to a primary list page. You can
implement a secondary list page as a menu item that points at the primary list page form but also
specifies a query that adds a filter.

184 PART 2 Developing with Microsoft Dynamics AX

Customizing forms with code

You should customize forms with code only when the result cannot be accomplished by customizing
metadata. When you customize forms by using metadata, upgrades are easier. Metadata change
 conflicts are easier to resolve, whereas code change conflicts need deeper investigation that
 sometimes involves creating a new merged method that attempts to replicate the behavior of the two
original methods.

When you customize Microsoft Dynamics AX, the following ideas might provide good starting
points for investigation:

 ■ Use examples in the base Microsoft Dynamics AX 2012 application by using the Find command
on the Forms node in the AOT (Ctrl+F).

 ■ Refer to the system documentation entries (AOT\System Documentation) for information
about system classes, tables, functions, enumerations, and other system elements that are
implemented in the AX kernel.

 ■ Add a debug breakpoint in the init method for the form when you are looking for a suitable
location for your customization code. Step through the execution of the method overrides.
Note that control events (such as Clicked) do not trigger debugging breakpoints. You must
explicitly add the breakpoint keyword to the X++ code for the debugger to stop in these
methods.

For simpler code maintenance, follow these guidelines:

 ■ Use the field and table functions of fieldNum, such as fieldNum(SalesTable, SalesId), and
 tableNum, such as tableNum(SalesTable), when working with form data sources.

 ■ Avoid hard-coding strings. Instead, use labels, such as throw error(“@SYS88659”), and
 functions such as fieldStr and tableStr, which return the names of specified fields or a specified
table, respectively.

 ■ Use as few method overrides as possible. Each additional method override has a chance of
causing merge issues during future upgrades, patch applications, or code integrations.

Method overrides
By overriding form methods, you can influence the form lifecycle and control how the form responds
to some user-initiated events. Table 6-5 describes the most important form methods to override. The
most-commonly overridden form methods are init and run.

 CHAPTER 6 The Microsoft Dynamics AX client 185

TABLE 6-5 Form methods to override.

Method Description

init Called when the form is initialized. Prior to the call to super, much of the
form (FormRun) is not initialized, including the controls and the query. This
method is commonly overridden to access the form at the earliest stage
possible.

run Called when the form is initialized. Prior to the call to super, the form is
 initialized but isn’t visible to the user. This method is commonly overridden
to make changes to form controls, layout, and cursor focus.

createRecord Called when a record is being created in the form. This method is commonly
used to intercept the event of any record being created on the form. It is
also used to provide specific types for creating inheritance records. For
more information, see “Table inheritance” earlier in this chapter.

close Called when the form is being closed. This method is commonly overridden
to release resources and save user settings and selections.

task Called when the user performs a task or issues a command on the form.
The task method contains many of the common tasks for a form.

activate Called when the form is activated. This method is commonly used to set the
company when the form is activated.

closeOk Called when the user closes the form by using the OK command, such as
when the user clicks a CommandButton with a Command property of Ok.
This method is commonly overridden in dialog boxes to perform the action
the user has initiated.

closeCancel Called when the user closes the form by using the Cancel command, such
as when the user clicks a CommandButton with a Command property of
Cancel. This method is commonly overridden in dialog boxes to clean up
after the user indicates that an action should be cancelled.

canClose Called when the form is being closed. This method is commonly overridden
to ensure that data is in a valid state before the form is closed. A return
value of false stops the action and keeps the form open.

By overriding methods on form data sources and form data source fields, you can influence how
the form reads and writes data and responds to user-initiated data-related events. Table 6-6 describes
the most important form data source methods to override. The most-commonly overridden form
data source methods are init, active, executeQuery, write, and linkActive.

TABLE 6-6 Form data source methods to override.

Method Explanation

 active Called when the active record changes, such as when the user clicks a different record. This
method is commonly overridden to enable or disable buttons based on whether they are
applicable to the current record.

create Called when a record is being created, such as when the user presses Ctrl+N. This method is
commonly overridden to change the user interface in response to the creation of a record.

delete Called when a record is being deleted, such as when the user presses Alt+F9. This method is
commonly overridden to change the user interface in response to the deletion of a record.

deleting Called before a record is deleted. This method is valid only when the ChangeGroupMode
property on the data source is set to ImplicitInnerOuter. This method is commonly
 overridden to change the user interface in response to the deletion of a record.

deleted Called after a record has been deleted. This method is valid only if the ChangeGroupMode
property is set to ImplicitInnerOuter. This method is commonly overridden to change the
user interface in response to the deletion of a record.

186 PART 2 Developing with Microsoft Dynamics AX

Method Explanation

executeQuery Called when the query for the data source executes, such as when the form runs (from the
super of the form’s run method) or when the user refreshes the form by pressing F5 (F5 calls
research, which calls executeQuery). This method is commonly overridden to implement the
behavior of a custom filter added to the form.

init Called when the data source is initialized during the call to the super of the form’s init method.
This method is commonly overridden to add or remove query ranges or change dynalinks.

initValue Called when a record is being created. Record values set in this method count as original
values rather than changes. This method is commonly overridden to set the default values of
a new record.

leaveRecord Called when the user moves the focus from one data source join hierarchy to another, which
can happen when the user moves between controls. This method is sometimes overridden
to respond to the data save operation that will occur, but is recommended that you use the
validateWrite and write methods whenever possible. The validateWrite and write methods are
called in the call to the super of the leaveRecord method.

linkActive Called when the active method in a dynalinked parent data source is called. This method
is commonly overridden to change the user interface to correspond to a different parent
 record (element.args.record).

markChanged Called when the marked set of records changes, such as when the user multiselects a set of
records. This method is commonly overridden to enable or disable buttons that work on a
multiselected (marked) set of records.

validateDelete Called when the record is being deleted. This method is commonly overridden to provide
form-specific validation of the deletion event. If the method returns a value of false, the
 deletion is stopped. Use the validateDelete table method to provide record deletion
 validation across all forms.

validateWrite Called when the record is being saved, such as when the user presses the Close or Save
 buttons or clicks a field that is associated with another data source. This method is commonly
overridden to provide form-specific write/save event validation. Returns false to stop the
write. Use the ValidateWrite table method to provide record write/save validation across all
forms.

write Called when the record is being saved after validation has succeeded. This method is
 commonly overridden to perform additional form-specific logic for the write or save events,
such as updating the user interface. Use the write table method to respond to the write and
save events for the record across all forms.

writing Called before a record is written to the database. This method is valid only if the
ChangeGroupMode property is set to ImplicitInnerOuter. Use the writing table method to
respond before the write and save events for the record across all forms.

written Called after a record has been written to the database. This method is valid only if the
ChangeGroupMode property is set to ImplicitInnerOuter. Use the written table method to
respond after the write and save events for the record across all forms.

Table 6-7 describes the methods to override for fields in form data sources. The most-commonly
overridden method for form data source fields is the modified method.

TABLE 6-7 Field methods to override.

Method Explanation

 modified Called when the value of a field changes. This method is commonly
 overridden to make a corresponding change to the user interface or to
change other field values.

lookup Called when the user clicks the Lookup button for the field. This method
is commonly overridden to build a custom lookup form. Use this method
sparingly to provide lookup behavior form a specific form. Instead, consider
using the EDT.FormHelp property to provide lookup capabilities that can be
shared across multiple forms.

 CHAPTER 6 The Microsoft Dynamics AX client 187

Method Explanation

validate Called when the value of a field changes. This method is commonly
 overridden to perform form-specific validation needed prior to changing
the value of a field. Use a return value of false to stop the change. Use the
validateField table method to provide field validation across all forms.

Auto variables
When X++ code executes in the scope of a form, form-specific Auto variables are created to help
developers access important objects related to the form. These variables are read-only and are
 described in Table 6-8.

TABLE 6-8 Form-specific Auto variables.

Variable Description

element Variable that provides easy access to the FormRun object that is in scope.
This variable is commonly used to call methods or change the design.
Example:
element.args().record().TableId == tablenum(SalesTable)
name = element.design().addControl(FormControlType::String, "X");

DataSourceName (for example,
SalesTable)

Variable that provides easy access to the current active record and table in
each data source. This variable is commonly used to call methods or get or
set properties for the current record.
Example:
if (SalesTable.type().canHaveCreditCard())

DataSourceName_DS (for example,
SalesTable_DS)

Variable that provides easy access to each data source. This variable is
 commonly used to call methods or get or set properties for the data source.
Example:
SalesTable_DS.research();

DataSourceName_Q (for example,
SalesTable_Q)

Variable that provides easy access to each data source’s Query object.
This variable is commonly used to access the data source query to add
ranges before the query executes. This variable is equivalent to SalesTable_
DS.query().
Example:
rangeSalesLineProjId =
salesLine1_q.dataSourceTable(tablenum(SalesLine)).
addRange(fieldnum(SalesLine, ProjId));
rangeSalesLineProjId.value(ProjTable.ProjId);

DataSourceName_QR (for example,
SalesTable_QR)

Variable that provides easy access to each data source’s QueryRun object,
which contains a copy of the query that was most recently executed.
The query inside the QueryRun object is created during the call to the
FormDataSource ExecuteQuery method. This variable is commonly used to
access the query that was executed so that query ranges can be inspected.
This variable is equivalent to SalesTable_DS.queryRun().
Example:
SalesTableQueryBuildDataSource =
SalesTable_QR.query().dataSourceTable(tablenum(SalesTable));

ControlName (for example,
SalesTable_SalesId)

Variable created for each control whose AutoDeclaration is set to Yes.
This variable is commonly used to access controls that are not bound to
a data source field, such as the fields used to implement custom filters.
Example:
backorderDate.dateValue(systemdateget());

188 PART 2 Developing with Microsoft Dynamics AX

Business logic
After the form structure is complete, add calls to business logic by using MenuItem references or
by using explicit code in method overrides or button clicks. Try to keep explicit code on the form
to a minimum because any code that is written on the form cannot be used in other forms, reports,
 services, or form classes. If you need to add business logic, place it in separate classes when possible
to allow it to be used with multiple forms.

To reference business logic in classes:

1. Put a static main method on the class.

2. Add the code to the main method that starts the business logic.

3. Create an Action MenuItem that references the class.

4. Add a MenuItemButton on the form that points at the Action MenuItem.

For an example, you can follow these steps, using the following code inside the main method:

static void main(Args args)
{
 print "Hello World";
 pause;
}

Once control has been passed to the class, the args method can provide contextual information
that may be useful when the class is called from multiple forms.

Custom lookups
Lookups for table references are provided automatically by the client framework and are sufficient
for the large majority of scenarios. Automatic lookups are generated by using metadata from the
target table. To get the fields to use for the lookup form, the framework first checks the AutoLookup
field group on the table. If that field group is empty, the framework checks the AutoIdentification field
group. If that field group is empty, the TitleField1 and TitleField2 fields from the table are used for the
lookup.

Automatic lookups generated by the framework perform in the ideal way for usability. If you
choose to create your own custom lookup form for a given table, you should use the same pattern so
that the behavior is consistent.

Creating a simple custom lookup is simple, especially if you want it to be used for all lookups for
the target table type. Model a simple form with a Grid control to display the records, and then use the
form name as the value for the FormHelp property on the EDT for the foreign key field. This works for
both regular foreign keys and surrogate foreign keys. When the FormHelp property is set, then the
custom lookup form will be used instead of an automatically-generated lookup.

 CHAPTER 6 The Microsoft Dynamics AX client 189

In some scenarios, such as query modification or custom record selection, you might want to
 provide logic that runs before or after the lookup form is loaded. In these cases, you can use the
FormAutoLookupFactory class. This class is implemented in the kernel and exposes much of the same
functionality, such as initial positioning and filtering, to allow custom lookups to behave consistently.
For an example in the application, examine the HCMWorkerLookup form and class. Looking at
the class, you will notice that there are many different scenarios in which this form can be loaded.
The different methods on the FormAutoLookupFactory class are called in each case. There is also
 corresponding code on the form that handles these cases, such as the code to set the SelectMode for
the different types of source control.

Integrating with the Microsoft Office client

With the Microsoft Dynamics AX 2012 Office Add-ins, users can pull Microsoft Dynamics AX data into
Microsoft Excel for ad hoc and predefined reporting, push data from Excel into Microsoft Dynamics
AX for data entry, and generate Microsoft Word documents for sharing data with others.

This section describes how to make data sources available to the Office Add-ins, and then provides
an overview of how to create Excel and Word templates and make them available to users.

Make data sources available to Office Add-ins
Before the Office Add-ins can consume data from Microsoft Dynamics AX, you must make the
 appropriate services and queries available as data sources.

Make a service available
To make a service available:

1. In the AOT, under the Services node, right-click the service that you want to make available,
and then click Add-ins > Register Service.

2. In the client, click System Administration > Setup > Services and Application Integration
Framework > Inbound Ports, and then do the following:

• Create a new inbound port.

• Select the service operations to add to the port.

• Activate the port.

3. In the client, navigate to Organization Administration > Setup > Document Management >
Document Data Sources.

4. In the Document Data Sources form, do the following:

• Create a new document data source.

• Select the module that is associated with the data source.

190 PART 2 Developing with Microsoft Dynamics AX

• Set the Type field to Service.

• Select the inbound port that you just added as the data source.

• Activate the new document data source.

Make a query available
To make a query available:

1. Define a new query in the AOT, if necessary.

2. In the client, click Organization Administration > Setup > Document Management >
 Document Data Sources.

3. In the Document Data Sources form, do the following:

• Create a new document data source.

• Select the module that the data source (the query) is associated with.

• Set the Type field to Query.

• Select the query that you want to use as the data source.

• Activate the new document data source.

Build an Excel template
After you make the appropriate queries and services available as document data sources to the Office
Add-ins, you can create Excel templates that access data through them. Users can then use these to view
and analyze Microsoft Dynamics AX data in Excel, using Excel features such as conditional formatting,
PivotTables, and calculated fields. If the workbook uses service data sources, users can modify the data in
the workbook and then publish those data changes back to Microsoft Dynamics AX.

A template can be as simple as a listing of the latest sales orders or as complex as an executive
digital dashboard. Figure 6-12 shows an example of an Excel template.

FIGURE 6-12 Excel template with Microsoft Dynamics AX data.

 CHAPTER 6 The Microsoft Dynamics AX client 191

From within an Excel workbook, do the following to access data from Microsoft Dynamics AX:

1. Open the Options dialog box from the Microsoft Dynamics AX tab of the Ribbon to ensure
that the appropriate server and port connection information is present.

2. Click Add Data, and then select the appropriate query and service data sources.

3. Double-click or drag and drop fields from the field chooser to add them to the worksheet.

4. Refresh the worksheet to verify the data that is being retrieved from Microsoft Dynamics AX and
added to the workbook. If the dataset is too large, use the Filter option in the Ribbon to add a
filter.

Before providing the workbook to other users, do the following:

1. If necessary, add additional filters to restrict the dataset that is returned.

2. Open the Connection Options dialog box and remove the existing connection information, so
that the user’s connection information is supplied automatically by the Client SDK (using the
information contained in the Microsoft Dynamics AX Client Configuration Utility).

3. Save the workbook without connection information.

Build a Word template
You can create Word templates that allow users to generate Word documents that contain Microsoft
Dynamics AX data. Figure 6-13 shows an example of a Word template.

FIGURE 6-13 Word template with Dynamics AX data.

From within a Word document, do the following to access data from Microsoft Dynamics AX:

1. Open the Options dialog box from the Microsoft Dynamics AX tab of the Ribbon to ensure
that the appropriate server and port connection information is present.

2. Click Add Data, and then select the appropriate query and service data sources.

192 PART 2 Developing with Microsoft Dynamics AX

3. Double-click or drag and drop fields from the field chooser to add them to the document. If
you want to show calculated fields (display methods) on a data source, then right-click that
data source in the field chooser and select Show Calculated Fields.

4. Individual field bindings can be added throughout the document. These fields can be
 interspersed with static text, formatting, images, and other content.

5. Repeated values, like the lines of a Sales Order, can be displayed by inserting a table and then
adding field bindings into the first row of that table.

6. Add a filter to select a particular record. When using a template in the “Generate from
 template” functionality, this record-specific filter is not present.

7. Save the document.

8. Click the Merge button to generate a document from the template.

Before sharing a document template with other users:

1. Add any additional Filters to restrict the dataset returned as needed.

2. Open the connection options dialog and remove the existing connection information so
the user’s connection information is supplied automatically by the Client SDK (using the
 information contained in the Client Configuration Utility).

3. Save the document without connection information.

4. Provide your users with a copy of the document.

Add templates for users
Several forms in Microsoft Dynamics AX have a Generate from Template button in the Attachments
group of the Action pane. An example of the Customers list page is shown in Figure 6-14.

FIGURE 6-14 Generate from Template button on an Action pane.

To add a group of templates as an option for the Generate from Template:

1. Create Word document or Excel workbook templates with a filter that does not restrict the
results to a single record.

2. In the client, click Organization Administration > Setup > Document Management >
 Document Types.

 CHAPTER 6 The Microsoft Dynamics AX client 193

3. Create a new document type, setting the Class field to Template Library.

4. Set the Document Library field to point to the SharePoint folder where the templates
are located. Ensure that the URL points to the folder and not a page; for example,
http://myserver/DocumentTemplates/.

5. Click Synchronize to import the template list and activate the templates.

6. Verify that the templates appear in the Generate from Template list on the form. If the
templates are not shown, ensure that the primary data source for the templates matches the
primary data source for the form.

If the Generate from Template button is not available on a form, users can still generate a
 document from a template by opening the Document Handling form (File > Command > Document
Handling) and creating a new attachment from the Template Library type.

To add the Generate from Template button to additional forms or list pages:

1. Find the Generate from Template button on the Customers list page and copy it to the form
you want to add it to. The path to the button is as follows:

AOT\Forms\CustTableListPage.Designs\Design\ActionPane:ActionPane\
ActionPaneTab:HomeTab\ButtonGroup:AttachmentsGroup\MenuButton:mbTemplatesButton

2. Edit the MouseDown method on the button to pass the correct TableId to the
 createTemplateOnMenuButton method by changing the CustTable.TableId parameter to point
to the correct table; for example, MyTable.TableId.

 CHAPTER 7 Enterprise portal 195

C H A P T E R 7

Enterprise Portal

In this chapter
Introduction . 195
Enterprise Portal architecture . 196
Enterprise Portal components . 198
Developing for Enterprise Portal . 216
Security . 232
SharePoint integration . 235

Introduction

With the Microsoft Dynamics AX Enterprise Portal web client, organizations can extend and expand
the use of enterprise resource planning (ERP) software to reach out to customers, vendors, business
partners, and employees by allowing them to access business applications and collaborate from
 anywhere.

Users access Enterprise Portal remotely through a web browser or from within a corporate
 intranet, depending on how Enterprise Portal is configured and deployed. Enterprise Portal serves as
the central place for users to access any data, structured or unstructured, such as transactional data,
reports, charts, key performance indicators (KPIs), documents, and alerts. For information about the
Enterprise Portal user interface, see Chapter 5, “Designing the user experience.”

Enterprise Portal also serves as a web platform. It contains a set of default webpages and user roles
that you can use as is or modify to meet unique business needs. You can also web-enable, customize,
or create new business applications in Microsoft Dynamics AX.

Enterprise Portal in Microsoft Dynamics AX 2012 adds a number of new features to speed up
the development of business applications. By using the new model-driven development approach,
you can build list pages that work both in Enterprise Portal and the Microsoft Dynamics AX Windows
 client, reducing development time. New project and control templates in Microsoft Visual Studio
enable rapid application development. New metadata settings let you instantly enable common
patterns that you previously had to write code to support. For more information, see “What’s New:
Enterprise Portal for Developers in Microsoft Dynamics AX 2012,“ at http://msdn.microsoft.com/en-us/
library/gg845087.aspx.

C H A P T E R 7

Enterprise Portal

Introduction

Enterprise Portal architecture

Enterprise Portal components

Web parts

AOT elements

Datasets

Enterprise Portal framework controls

Developing for Enterprise Portal

Create a model-driven list page

Create a details page

AJAX

Session disposal and caching

Context

Data

Metadata

Proxy classes

ViewState

Labels

Formatting

Validation

Error handling

Security

Secure web elements

Record context and encryption

SharePoint integration

Site navigation

Site definitions, page templates, and web parts

Import and deploy a web part page

Enterprise Search

Themes

http://msdn.microsoft.com/en-us/library/gg845087.aspx

196 PART 2 Developing with Microsoft Dynamics AX

Enterprise Portal architecture

Enterprise Portal brings the best of Microsoft Dynamics AX, ASP.NET, and Microsoft SharePoint
 technologies together to provide a rich web-based business application. It combines the rich
 functionality of SharePoint with the structured business data in Microsoft Dynamics AX.

You can use MorphX to take advantage of the rich programming model to define data access
and business logic in Microsoft Dynamics AX. You can build web user controls and define the web
user interface elements using Visual Studio. The web controls can contain Microsoft Dynamics AX
 components like AxGridView, as well as standard ASP.NET controls like TextBox. The data access and
business logic defined in Microsoft Dynamics AX is exposed to the web user controls through data
binding, data and metadata application programming interfaces (APIs), and proxy classes.

Figure 7-1 shows the architecture of Enterprise Portal.

Developer

ASP.NET User Controls

Microsoft Dynamics AX
Database

SharePoint
Database

SharePoint
Foundation / Server 2010

Application
Object Server

(AOS)

Employee Customer AnonymousVendor

Define Business Objects,
Relations, and Logic Develop User Controls

Metadata Service

Query Service

Data

Proxies
Enterprise Portal

Data Access Layer

Client SDK

.NET Business Connector

Develop Pages Integration
Sites

Employee
Portal

Customer
Portal

Web Part
Connection

Microsoft
Dynamics AX

Controls
ASP.NET Controls

Session
Management

Vendor
Portal

Internet
Site

SharePoint
Web Parts

Microsoft
Dynamics
Web Parts

Security

FIGURE 7-1 Enterprise Portal architecture.

Enterprise Portal uses the web part page framework from SharePoint. Web parts are reusable
SharePoint components that generate HTML and provide the foundation for the modular
 presentation of data. By using this framework, you can build webpages that allow easy customization
and personalization. The web part page framework also makes it easy to integrate content,
 collaborate, and use third-party applications. Webpages can contain both Microsoft Dynamics AX
web parts and SharePoint web parts.

The Microsoft Dynamics AX web parts present information and expose functionality from
 Microsoft Dynamics AX. The User control web part can host any ASP.NET web user control,

 CHAPTER 7 Enterprise portal 197

 including the Enterprise Portal web user controls. It can connect to Microsoft Dynamics AX through
the Enterprise Portal framework. You can use SharePoint web parts to fulfill other content and
 collaboration needs. For example, you might have a custom web part that goes out to a site, fetches
the latest news about your organization, and displays it. Or you might have a web part that displays
data from another SharePoint site within your organization.

The first step in developing or customizing an application on Enterprise Portal is to understand the
interactions between the user’s browser on the client and Enterprise Portal on the server when the
user accesses Enterprise Portal.

The following sequence of interactions occurs when a user accesses an Enterprise Portal page:

1. The user opens the browser on his or her computer and navigates to Enterprise Portal.

2. The browser establishes a connection with the Internet Information Services (IIS) web server.

3. IIS authenticates the user based on the authentication mode being used.

4. After the user is authenticated, SharePoint verifies that the user has permission to access the site.

5. If the user is authorized to access the site, the request is passed to the SharePoint module.

6. SharePoint gets the data about the page from the SharePoint database or the file system. This
data consists of information such as the page layout, the master page, the web parts that go
on the page, and their properties.

7. SharePoint processes the page by creating and initializing the web parts and applying any
properties and personalization data. To display the top navigation bar, the quick launch, and
the Action pane, a custom navigation provider gets information from Microsoft Dynamics AX
(modules, menus, submenus, and menu items).

8. Enterprise Portal initializes the Microsoft Dynamics AX web parts and starts a web session
with the Enterprise Portal framework through the .NET Business Connector to the Application
Object Server (AOS).

9. The web framework checks for Microsoft Dynamics AX authorization and then calls the
 appropriate web handlers in the web framework to process the Enterprise Portal objects that
the web parts point to.

10. The User control web part runs the web user control that it references. The web user control
connects to Microsoft Dynamics AX through .NET Business Connector and renders the HTML
to the web part.

11. The webpage assembles the HTML returned by all of the web parts and renders the page in
the user’s browser.

As you can see in this sequence, the AOS processes the business logic and data retrieval,
ASP.NET processes the user interface elements, and SharePoint handles the overall page layout and
 personalization. Figure 7-2 shows a graphical representation of this sequence of events.

198 PART 2 Developing with Microsoft Dynamics AX

AOS

Microsoft
Dynamics AX

Database

File System on
SharePoint

Server

SharePoint
Database

Enterprise Portal web parts
connect to Microsoft Dynamics

AX using the .NET Business
Connector and the Enterprise

Portal framework

Incoming Request

Internet Information Services (IIS)

SharePoint

Authentication

Authorization

Retrieve page content

Create page object

Add controls to page

Retrieve list of web parts for
web part zones

Add web parts to page and retrieve
and set web part properties

Create or get session from
Enterprise Portal framework

Get data and metadata.
Run business logic

Processed page

Outgoing Response

.NET Business Connector

Retrieve page template and
master page

FIGURE 7-2 Enterprise Portal page processing.

Enterprise Portal components

This section describes the components that make up an Enterprise Portal page: web parts, Application
Object Tree (AOT) elements, datasets, and Enterprise Portal framework controls.

 CHAPTER 7 Enterprise portal 199

Web parts
Web parts support customization and personalization and can be integrated easily into a webpage.
Enterprise Portal includes a standard set of web parts, shown in Figure 7-3, that expose the business
data in Microsoft Dynamics AX.

FIGURE 7-3 Adding Microsoft Dynamics AX web parts to a page.

The following Microsoft Dynamics AX web parts are included with Enterprise Portal:

 ■ Action pane Used to display the Action pane, which is similar to the SharePoint ribbon.
The Action pane points to a web menu in the AOT and displays buttons in tabs and groups
to improve their discoverability. You can use the AxActionPane control in a web control as an
alternative to using the Action pane web part.

 ■ Business overview Used to display business intelligence (BI) information such as KPIs and
other analytical data in role centers. For more information, see “Chapter 10, “BI and analytics.”

 ■ Connect Used to display the links to information from the Microsoft Dynamics AX
 community. This web part is typically used on role center pages.

 ■ Cues Used to display numeric information—such as the number of active opportunities, new
leads, and so on—visually as a stack of paper. The Cues web part is generally added to Role
Center pages and points to a Cue Group in the AOT. For more information about Cues, see
Chapter 5.

200 PART 2 Developing with Microsoft Dynamics AX

 ■ Infolog Used to display Microsoft Dynamics AX Infolog messages on the webpage. When
you create a new web part page by using Enterprise Portal page templates, the Infolog web
part is automatically added to the top of the page in the Infolog web part zone. Any error,
warning, or information message that Microsoft Dynamics AX generates is automatically
 displayed by the Infolog web part. If you need to display some information from your web
user control in the Infolog web part, you need to send the message through the C# proxy class
for the X++ Infolog object.

 ■ Left navigation Used to display page-specific navigation instead of module-specific
 navigation. You can use this web part as an alternative to the Quick launch web part, which
displays module-specific navigation. This web part points to a web menu in the AOT.

 ■ List Used to display the contents of a model-driven list page. When you deploy a
 model-driven list page to Enterprise Portal, the page template automatically adds the List web
part to the Middle Column zone of the page. This web part points to the display menu item
for the model-driven list page form.

 ■ Page title Used for displaying the page title. When you create a new web part page, the
Page title web part is automatically added to the Title Bar zone. By default, the Page title web
part displays the text specified in the PageTitle property of the Page Definition node in the
AOT. If no page definition exists, the page name is displayed. You can override this behavior
and get the title from another web part on the page by using a web part connection. For
example, if you’re developing a list page and you want to display information from a record,
such as the customer account and name as the page title, you can connect the User control
web part that displays the grid to the Page title web part. When the user selects a different
record in the customer list, the page title changes to display the currently selected customer
account and name.

 ■ Quick launch Used for displaying module-specific navigation links on the left side of the
page. When you create a new web part page, the Quick launch web part is automatically
added to the Left Column zone if the template that you choose has this zone. The Quick
launch web part displays the web menu set in the QuickLaunch property of the corresponding
web module in the AOT. All pages in a given web module (subsite) display the same navigation
options in the left pane.

 ■ Quick links Used to display a collection of links to frequently used menu items and external
websites. This web part is generally added to Role Center pages.

 ■ Report Used to display Microsoft SQL Server Reporting Services (SSRS) reports for Microsoft
Dynamics AX.

 ■ Toolbar Used to display a toolbar on the page in a location that you select. For example,
you can use a Toolbar web part to place Add, Edit, and Remove buttons for a grid control right
above that grid control. The Toolbar web part points to a web menu in the AOT. Alternatively,
you can use an AxToolbar control in a web user control instead of the Toolbar web part.

 CHAPTER 7 Enterprise portal 201

 ■ Unified work list Used to display workflow actions, alert notifications, and activities. It is
generally added on Role Center pages. For more information, see Chapter 8, “Workflow in
Microsoft Dynamics AX.”

 ■ User control Used for hosting any ASP.NET control, including the Microsoft Dynamics AX
web controls that you develop. This web part points to a managed web content item that
identifies the web user control. The User control web part can both pass and consume record
context information to and from other web parts. To do that set the role of the User control web
part as Provider, Consumer, or Both, and then connect it to other web parts. User control web
parts automatically use AJAX, which allows them to update the content that they display
 without having to refresh the entire page.

AOT elements
The AOT contains several elements that are specific to Enterprise Portal, in addition to other
 programming elements such as forms, classes, and tables. For more information about the elements
that are available for creating Enterprise Portal pages, see Chapter 1, “Architectural overview.”

Datasets
You use datasets to define the data access logic. A dataset is a collection of data usually presented in
tabular form. Datasets bring the familiar data and programming model from Microsoft Dynamics AX
forms together with ASP.NET data binding. In addition, datasets offer an extensive X++ programming
model for validating and manipulating the data when create, read, update, or delete operations are
performed in Enterprise Portal. You can use the AxDatasource control to access datasets to display
and manipulate data from any ASP.NET control that supports data binding.

You create datasets by using MorphX. A dataset can contain one or more data sources that are
joined together. A data source can point to a table or a view in Microsoft Dynamics AX, or you can
join data sources to display data from multiple tables as a single data source. To do this, you use inner
or outer joins. To display parent-child data, you use active joins. To display data from joined data
sources or from parent-child datasets, you use dynamic dataset views (DataSetView class). With a
view-based interface, tables are accessed through dynamic dataset views instead of directly. You can
access inner-joined or outer-joined tables through only one view, which has the same name as the
primary data source. Two views are available with active-joined data sources: one with the same name
as the parent data source, and another with the same name as the child data source. The child data
source contains records related only to the current active record in the parent data source.

Each dataset view can contain zero or more records, depending on the data. Each dataset
view also has a corresponding special view, which contains just the current, single active record. This
view has the same name as the original view with the suffix _Current appended to the view name.
Figure 7-4 shows the dataset views inside a dataset, along with the data binding.

202 PART 2 Developing with Microsoft Dynamics AX

DataSource 1 (Parent)

DataSource 2 (Child)

DataSource 3 (Child)

DataSource 4 (Child)

DataSetView 1
[DataSource 1,2,3]

DataSource1
DataSource1_Current

DataSetView 2
[DataSource 4]

DataSource4
DataSource4_Current

DataSourceView 1
[DataSource 1,2,3]

DataSource1
DataSource1_Current

DataSourceView 2
[DataSource 4]

DataSource 4
DataSource4_Current

(a) Inner join (b) Outer join (c) Active join

Dataset

a

b

c

AxGridView

AxForm

AxDataSource

DataSourceID
DataMember
DataKeyNames

FIGURE 7-4 Enterprise Portal dataset views.

As mentioned earlier, datasets offer an extensive and familiar X++ programming model. Some of
the methods used frequently include init, run, pack, and unpack:

 ■ init The init method is called when initializing a dataset. This method is called immediately
after the new operator and creates the run-time image of the dataset. Typical uses of init
include initializing variables and queries, adding ranges to filter the data, and checking the
arguments passed.

 ■ run The run method is called after the dataset is initialized and opened, and immediately
after init. Typical uses of run include conditionally setting the visibility of fields, changing the
access level on fields, and modifying queries.

 ■ pack The pack method is called after the dataset is run. You generally implement the
 pack-unpack pattern to save and store the state of an object, which you can later reinstantiate.
A typical use of pack is to persist a variable used in the dataset between postback actions for
user controls.

 CHAPTER 7 Enterprise portal 203

 ■ unpack The unpack method is called if a dataset was previously packed and is later accessed.
If a dataset was previously packed, you do not call init and run. Instead, you only call unpack.

Data sources within a dataset also include a number of methods that you can override. These
methods are similar to those in the FormDataSource class in the Microsoft Dynamics AX client. You
can use them to initialize default values and to validate values and actions. For more information
about these events, such as when they are executed and common usage scenarios, see the topic
“Methods on a Form Data Source” on MSDN (http://msdn.microsoft.com/en-us/library/aa893931.aspx).

Enterprise Portal framework controls
The Enterprise Portal framework has a built-in set of controls that you can use to access, display, and
manipulate Microsoft Dynamics AX data.

AxDataSource
The AxDataSource control extends DataSourceControl in ASP.NET to provide a declarative and
 data-store-independent way to read and write data from Microsoft Dynamics AX. Datasets that you
create in the AOT are exposed to ASP.NET through the AxDataSource control. You can associate
ASP.NET data-bound user interface controls with the AxDataSource control through the DataSourceID
property. By doing so, you can connect and access data from Microsoft Dynamics AX and bind it to
the control without specific domain knowledge of Microsoft Dynamics AX.

The AxDataSource control is a container for one or more uniquely named views of type
 AxDataSourceView. The AxDataSourceView class extends the Microsoft .NET Framework
 DataSourceView class and implements the functionality to read and write data. A data-bound control
can identify the set of capabilities that are enabled by properties of AxDataSourceView and use it to
show, hide, enable, or disable the user interface components. AxDataSourceView maps to the dataset
view. The AxDataSource control automatically creates AxDataSourceView objects based on the
 dataset that it references. The number of objects created depends on the data sources and the joins
that are defined for the dataset. You can use the DataMember property of a data-bound control to
select a particular view.

The AxDataSource control also supports filtering records within and across other AxDataSource
controls and data source views. When you set the active record on the data source view within an
AxDataSource control, all child data source views are also filtered based on the active record. You can
filter across AxDataSource controls by using record context. With record context, one AxDataSource
control acts as the provider of the context, and one or more AxDataSource controls act as consumers.
An AxDataSource control can act as both a provider and a consumer. When the active record changes
on the provider AxDataSource control, the record context is passed to other consuming AxDataSource
controls and they apply that filter also. You use the Role and ProviderView properties of the
 AxDataSource control to specify whether an AxDataSource control is a provider, a consumer, or both.
A web user control can contain any number of AxDataSource controls; however, only one can be a
provider. Any number can be consumers.

204 PART 2 Developing with Microsoft Dynamics AX

You can use the DataSetViewRow object to access the rows in a DataSetView. The GetCurrent
method returns the current row, as shown in the following example:

DataSetViewRow row = this.AxDataSource1.GetDataSourceView("View1").DataSetView.GetCurrent();

The GetDataSet method on the AxDataSource control specifies the dataset to bind.
The DataSetRun property provides the run-time instance of the dataset, and you can use
the AxaptaObjectAdapter property to call methods defined in the dataset.

this.AxDataSource1.GetDataSet().DataSetRun.AxaptaObjectAdapter.Call("method1");

AxForm
With the AxForm control, you can allow users to create, view, and update a single record. This control
displays a single record from a data source in a form layout. It is a data-bound control with built-in
data modification capabilities. When you use AxForm with the declarative AxDataSource control, you
can easily configure it to display and modify data without having to write any code.

The DataSourceID, DataMember, and DataKeyNames properties define the data-binding
 capabilities of the AxForm control. AxForm also provides properties to auto-generate action buttons
and to set their text and mode. You set the UpdateOnPostback property if you want the record cursor
to be updated at postback so that other controls can read the change. AxForm also provides before
and after events for all of the actions that can be taken on the form. You can write code in these
events to customize the user interface or provide application-specific logic.

AxMultiSection
The AxMultiSection control acts as a container for a collection of AxSection controls (see the following
section). All AxSection controls within an AxMultiSection control are rendered in a stacked set of rows,
which users can expand or collapse. You can configure AxMultiSection so that only one section is
expanded at a time. In this mode, expanding a section causes it to become active, and any previously
expanded section is collapsed. To enable this behavior, set the ActiveMode property to true. You can
then use the ActiveSectionIndex property to get or set the active section.

AxSection
AxSection is a generic container for other controls. You can place any control in an AxSection control.
Each AxSection control includes a header that contains the title of the section and a button that
 allows the user to expand or collapse the section. AxSection provides properties to display or hide
the header and border. Through events exposed by AxSection, you can write code that runs when the
section is expanded or collapsed. The AxSection control can be placed only within an AxMultiSection
control.

 CHAPTER 7 Enterprise portal 205

AxMultiColumn
The AxMultiColumn control acts as a container for a collection of AxColumn controls. All AxColumn
controls within an AxMultiColumn control are rendered as a series of columns. The AxMultiColumn
control makes it easy to create a multicolumn layout that optimizes the use of screen space. An
 AxMultiColumn control is usually placed within an AxSection control.

AxColumn
AxColumn is a generic container for other controls. You can place any control inside AxColumn.
 However, the AxColumn control can be placed only within an AxMultiColumn control.

AxGroup
The AxGroup control contains the collection of bound fields that displays the information contained
in a record. You can place an AxGroup control inside an AxSection or AxColumn control.

Figure 7-5 shows an Enterprise Portal page containing several of the controls that have been
 discussed so far.

FIGURE 7-5 Enterprise Portal details page with section, column, and group controls.

206 PART 2 Developing with Microsoft Dynamics AX

The following are some high-level control hierarchies for different form layouts. The first one is
a commonly used pattern in Enterprise Portal. It displays two expandable sections, one below the
 other. Each section displays fields in two columns next to each other. If you want to display additional
 sections or columns, you can add additional AxSection and AxColumn controls.

<AxMultiSection>
 <AxSection>
 <AxMultiColumn>
 <AxColumn>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </AxColumn>
 <AxColumn>
 < AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </AxColumn>
 </AxMultiColumn>
 </AxSection>
 <AxSection>
 <AxMultiColumn>
 <AxColumn>
 < AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </AxColumn>
 <AxColumn>
 < AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </AxColumn>
 </AxMultiColumn>
 </AxSection>
</AxMultiSection>

The following layout displays two expandable sections, one below the other and in a single
 column:

<AxMultiSection>
 <AxSection>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </AxSection>
 <AxSection>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </AxSection>
</AxMultiSection>

The following layout is for an ASP.NET wizard with two steps:

<asp:Wizard>
 <WizardSteps>
 <asp:WizardStep>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </asp:WizardStep>
 <asp:WizardStep>
 <AxGroup><Fields>BoundFields or TemplateFields…</Fields> </AxGroup>
 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

 CHAPTER 7 Enterprise portal 207

AxGridView
The AxGridView control displays the values from a data source in a tabular format. Each column
represents a field and each row represents a record. The AxGridView control extends the ASP.NET
GridView control to provide selection, grouping, expansion, row filtering, a context menu, and other
enhanced capabilities.

AxGridView also includes built-in data modification capabilities. By using AxGridView with the
declarative AxDataSource control, you can easily configure and modify data without writing code.
AxGridView also has many properties, methods, and events that you can easily customize with
application-specific user interface logic.

Table 7-1 lists some of the AxGridView properties and events. For a complete list of properties,
methods, and events for AxGridView, see “AxGridview,” at http://msdn.microsoft.com/en-us/library/
cc584514.aspx.

TABLE 7-1 AxGridView properties and events.

Property or event Description

AllowDelete If enabled, and if the user has delete permission on the selected record,
AxGridView displays a Delete button that allows the user to delete the selected
row.

AllowEdit If enabled, and if the user has update permission on the selected record,
AxGridView displays Save and Cancel buttons on the selected row and allows
the user to edit and save or cancel edits. When a row is selected, it automatically
goes into edit mode, and edit controls are displayed for all columns for the
selected record for which the AllowEdit property for the column is set to true.

AllowGroupCollapse If grouping is enabled, this setting allows the user to collapse the grouping.

AllowGrouping If set to true and a group field is specified, the rows are displayed in groups and
sorted by group field. Page size is maintained, so one group can span multiple
pages.

AllowSelection If set to true, the user can select a row.

ContextMenuName If ShowContextMenu is enabled, ContextMenuName specifies the name of the
web menu in the AOT to be used as a context menu when the user right-clicks
the selected row.

DataBound An event that is triggered after a control binds to the data source.

DataMember Identifies the table or dataset that the grid binds to.

DataSourceID Identifies the AxDataSource control that is used to get the data.

DisplayGroupFieldName If set to true, the GroupFieldName is displayed in the group header text of the
group view.

ExpansionColumnIndexesHidden A comma-separated list of integers that represents the indexes of the columns
to hide from the expansion row. The column indexes start with 1.

ExpansionTooltip The tooltip displayed on the expansion row link.

GridColumIndexesHidden A comma-separated list of integers that represents the indexes of the columns
to hide from the grid row. The column indexes start with 1.

GroupField Specifies the data field that is used to group the rows in a group view of the
grid control. This property is used only when AllowGrouping is set to true.

GroupFieldDisplayName Gets or sets the display name for the group field in the group header text of
the group view. If a name isn’t specified, by default the label of the GroupField
is used.

http://msdn.microsoft.com/en-us/library/cc584514.aspx

208 PART 2 Developing with Microsoft Dynamics AX

Property or event Description

Row* Events that are triggered in response to the various actions performed on a row.
For example, RowCommand is triggered when a button in the row is clicked, and
RowDeleted is triggered when the Delete button in the row is clicked.

SelectedIndexChanged An event that is triggered when a row is selected in the grid.

ShowContextMenu If set to true, displays the context menu specified by ContextMenuName when
the user right-clicks the selected row.

ShowExpansion Specifies whether an expansion is available for each row in the grid. When set
to true, the expansion row link is displayed for each row in the grid.

ShowFilter If set to true, displays a filter control above the grid.

AxHierarchicalGridView
Use the AxHierarchicalGridView control when you want to display hierarchical data in a grid format.
For example, you might have a grid that displays a list of tasks in a project. With this control, each task
can have subtasks and you can present all tasks and subtasks in a single grid, as shown in Figure 7-6.

FIGURE 7-6 Example of an AxHierarchicalGridView control in the user interface.

You use the HierarchyIdFieldName property to uniquely identify a row and the HierarchyParentId-
FieldName property to identify the parent of a row. The following example illustrates the markup for
an AxHierarchicalGridView control:

<dynamics:AxDataSource ID="AxDataSource1" runat="server" DataSetName="Tasks"
ProviderView="Tasks">
</dynamics:AxDataSource>
<dynamics:AxHierarchicalGridView ID="AxHierarchicalGridView1" runat="server"
 BodyHeight="" DataKeyNames="RecId" DataMember="Tasks"
 DataSetCachingKey="e779ece0-43b7-4270-9dc9-33f4c61d42b7"
 DataSourceID="AxDataSource1" EnableModelValidation="True"
 HierarchyIdFieldName="TaskId" HierarchyParentIdFieldName="ParentTaskId">
 <Columns>
 <dynamics:AxBoundField DataField="Title" DataSet="Tasks"
 DataSetView="Tasks" SortExpression="Title">
 </dynamics:AxBoundField>
 <dynamics:AxBoundField DataField="StartDate" DataSet="Tasks"
 DataSetView="Tasks" SortExpression="StartDate">
 </dynamics:AxBoundField>
 <dynamics:AxBoundField DataField="EndDate" DataSet="Tasks"
 DataSetView="Tasks" SortExpression="EndDate">
 </dynamics:AxBoundField>
 </Columns>
</dynamics:AxHierarchicalGridView>

 CHAPTER 7 Enterprise portal 209

AxContextMenu
Use the AxContextMenu control to create and display a context menu. This control provides methods
to add and remove menu items and separators at run time. It also provides methods to resolve client
or Enterprise Portal URLs, as shown in the following example:

AxUrlMenuItem myUrlMenuItem = new AxUrlMenuItem("MyUrlMenuItem");
AxContextMenu myContextMenu = new AxContextMenu();
myContextMenu.AddMenuItemAt(0, myUrlMenuItem);

AxGridView uses AxContextMenu when the ShowContextMenu property is set to true. You can
 access the AxContextMenu object by using the syntax AxGridview.ContextMenu.

AxFilter
Use the AxFilter control to filter the data that is retrieved from a data source. This control sets a filter
on an instance of a DataSetView object by using an instance of a AxDataSourceView object, which is
responsible for keeping the data synchronized with the filter that is set by calling the SetAsChanged
and ExecuteQuery methods when data has changed. AxDataSourceView and DataSetView expose the
following properties that you can use to access the filter programmatically:

 ■ SystemFilter Gets the complete list of ranges on the query, including open, hidden, and
locked, into the conditionCollection property on the filter object.

 ■ UserFilter Gets only the open ranges on the QueryRun property into the conditionCollection
property on the filter object.

 ■ ResetFilter Clears the filter set on the QueryRun property and thus resets the filter (ranges)
set programmatically.

You can set the range in the dataset in X++ as follows:

qbrBlocked = qbds.addRange(fieldnum(CustTable,Blocked));
qbrBlocked.value(queryValue(CustVendorBlocked::No));
qbrBlocked.status(RangeStatus::Hidden);

To read the filter that is set on the data source in a web user control, use one of the following lines
of code:

this.AxDataSource1.GetDataSourceView(this.AxGridView1.DataMember).SystemFilter.ToXml();

or

this.AxDataSource1.GetDataSet().DataSetViews[this.AxGridView1.DataMember].SystemFilter.ToXml();

The return value will look something like the following:

<?xml version="1.0" encoding="utf-16"?><filter xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="CustTable"><condition
attribute="Blocked" operator="eq" value="No" status="hidden" /></filter>

210 PART 2 Developing with Microsoft Dynamics AX

You can also set the filter programmatically:

string myFilterXml = @"<filter name='CustTable'><condition attribute='CustGroup' status='open'
value='10' operator='eq' /></filter>";
this.AxDataSource1.GetDataSourceView(this.AxGridView1.DataMember).SystemFilter.
AddXml(myFilterXml);

The AxGridView control also uses AxFilter when ShowFilter is set to true. You can access the AxFilter
object by using AxGridview.FilterControl and the filter XML by using AxGridView.Filter. The filter reads
the metadata from the AxDataSource component that is linked to the grid and displays filtering
 controls dynamically so that the user can filter the data source on any of the fields that are not hidden
or locked. The filtering controls are rendered above the grid.

AxLookup
Use the AxLookup control on data entry pages to help the user pick a valid value for a field that
 references keys from other tables. In Enterprise Portal, lookups are metadata-driven by default and
are automatically enabled for fields based on the relationship defined by metadata in the AOT.

The Customer Group lookup on the Customer details page is an example of a lookup that is
 automatically enabled. The extended data type (EDT) and table relationship metadata in the AOT
define a relationship between the Customer table and the Customer group table. A lookup is
 automatically rendered so that the user can choose a customer group in the Customer group field
when creating a customer record. You don’t need to write any code to enable this behavior—it
 happens automatically.

In some scenarios, the automatic behavior isn’t sufficient, and you might be required to customize
the lookup. The lookup infrastructure of Enterprise Portal offers flexibility and customization options
in both X++ and in C#, so that you can tailor the lookup user interface and the data retrieval logic to
meet your needs.

To control the lookup behavior, in the Data Set node in the AOT, you can override the
 dataSetLookup method of a field in the data source. For example, if you want to filter the values that
are displayed, you override dataSetLookup, as shown in the following X++ code:

void dataSetLookup(SysDataSetLookup sysDataSetLookup)
{
 List list;
 Query query = new Query();
 QueryBuildDataSource queryBuildDataSource;
 Args args;

 args = new Args();
 list = new List(Types::String);
 list.addEnd(fieldstr(HcmGoalHeading, GoalHeadingId));
 list.addEnd(fieldstr(HcmGoalHeading, Description));

 queryBuildDataSource = query.addDataSource(tablenum(HcmGoalHeading));

 queryBuildDataSource.addRange(fieldnum(HcmGoalHeading,Active)).value(
 queryValue(NoYes::Yes));

 CHAPTER 7 Enterprise portal 211

 sysDataSetLookup.parmLookupFields(list);
 sysDataSetLookup.parmSelectField(fieldStr(HcmGoalHeading,GoalHeadingId));

 // Pass the query to SysDataSetLookup so it result is rendered in the lookup page.
 sysDataSetLookup.parmQuery(query);
}

In the preceding example, the entire list is built dynamically and addRange is used to restrict the
values. The SysDataSetLookup class in X++ provides many properties and methods to control the
behavior of the lookup.

You can also customize the lookup in C# in the web user control by writing code in the Lookup
event of bound fields or by using the AxLookup control for fields that don’t have data binding.
To use AxLookup to provide lookup values for any ASP.NET control that isn’t data bound, set the
 TargetControlID property of AxLookup to the ASP.NET control to which the lookup value is to
be returned. Alternatively, you can base AxLookup on the EDT, the dataset, the custom dataset, or
the custom user control by specifying the LookupType property. You can also control which fields are
displayed in the lookup and which ones are returned. You can do this either through the markup or
through code. You can write code to override the Lookup event and control the lookup behavior, as
shown in the following code:

protected void AxLookup1_Lookup(object sender, AxLookupEventArgs e)
 {
 AxLookup lookup = (AxLookup)sender;

 // Specify the lookup fields
 lookup.Fields.Add(AxBoundFieldFactory.Create(this.AxSession,
 lookup.LookupDataSetViewMetadata.ViewFields["CustGroup"]));

 lookup.Fields.Add(AxBoundFieldFactory.Create(this.AxSession,
 lookup.LookupDataSetViewMetadata.ViewFields["Name"]));
}

AxActionPane
The AxActionPane control performs a function similar to the Action pane web part. You can use
it to display the Action pane at the top of the page, similar to the SharePoint ribbon. Use the
 WebMenuName property of the AxActionPane control to reference the web menu that contains
the menu items to display on the Action pane as buttons. To improve discoverability, the buttons
are displayed in tabs and groups. You can use the DataSource and DataMember properties of the
 AxActionPane control to associate the Action pane buttons with data.

To use the AxActionPane control in a web user control, you need to add a reference to the
 Microsoft.Dynamics.Framework.Portal.SharePoint assembly. You can do this by adding the following
lines in the markup for the web user control:

<%@ Register Assembly="Microsoft.Dynamics.Framework.Portal.SharePoint, Version=6.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" Namespace="Microsoft.Dynamics.Framework.
Portal.SharePoint.UI.WebControls" TagPrefix="dynamics" %>

212 PART 2 Developing with Microsoft Dynamics AX

If you prefer, you can use the Action pane web part as an alternative to the AxActionPane control.

AxToolbar
The AxToolbar control performs a function similar to the Toolbar web part. You can use it to display a
toolbar at a certain location on the page instead of using the Action pane at the top of the page. For
example, you might choose to display a toolbar at the top of a grid control with New, Edit, and Delete
actions.

Internally, AxToolbar uses the SharePoint toolbar controls. AxToolbarButton, which is used
within AxToolbar, is derived from SPLinkButton. It is used to render top-level buttons. Similarly,
 AxToolBarMenu, which is used within AxToolbar, is derived from Microsoft.SharePoint.WebControls.
Menu. This control renders a drop-down menu by means of a callback when a user clicks a button.
Thus, the menu item properties can be modified before the menu items are rendered.

If you prefer, you can use the Toolbar web part as an alternative to AxToolbar. Generally, you use
the Toolbar web part to control the display of toolbar menu items. But if you have a task page that
contains both master and detail information, such as a purchase requisition header and line items,
you should use place AxToolbar in your web user control above the AxGridview control containing the
details to allow the user to add and manage the line items.

You can bind AxToolbar to an AxDataSource or use it as an unbound control. When the controls
are bound, the menu item context is automatically based on the item that is currently selected. When
the controls are unbound, you must write code to manage the toolbar context.

You can point the toolbar to a web menu in the AOT by using the WebMenuName property. With
a web menu, you can define a multilevel menu structure with the SubMenu, MenuItem, and MenuItem
reference nodes. Each top-level menu item is rendered by using the AxToolbarButton control as a link
button. Each top-level submenu is rendered by using the AxToolbarMenu control as a drop-down
menu. If you have submenus, additional levels are displayed as submenus.

SetMenuItemProperties, ActionMenuItemClicking, and ActionMenuItemClicked are events that are
specific to AxToolbar. You use SetMenuItemProperties to change the behavior of drop-down menus;
for example, to show or hide menu items based on the currently selected record, set or remove
 context, and so on. The following code shows an example of how to change the menu item context in
the SetMenuItemProperties event:

void Webpart_SetMenuItemProperties(object sender, SetMenuItemPropertiesEventArgs e)
{
 // Do not pass the currently selected customer record context,
 // since this menu is for creating new (query string should be empty)
 if (e.MenuItem.MenuItemAOTName == "EPCustTableCreate")
 {
 ((AxUrlMenuItem)e.MenuItem).MenuItemContext = null;
 }
}

If you have defined user interface logic in a web user control and want to call this function
instead of the one defined in the AOT when a toolbar item is clicked, use ActionMenuItemClicking

 CHAPTER 7 Enterprise portal 213

and ActionMenuItemClicked. For example, you can prevent a menu item from executing the action
defined in the AOT by using the ActionMenuItemClicking event and defining your own action in C# by
using the ActionMenuItemClicked event in the web user control, as shown here:

void webpart_ActionMenuItemClicking(object sender, ActionMenuItemClickingEventArgs e)
{
 if (e.MenuItem.MenuItemAOTName.ToLower() == "EPCustTableDelete")
 {
 e.RunMenuItem = false;
 }
}

void webpart_ActionMenuItemClicked(object sender, ActionMenuItemEventArgs e)
{
 if (e.MenuItem.MenuItemAOTName.ToLower() == "EPCustTableDelete")
 {
 int selectedIndex = this.AxGridView1.SelectedIndex;

 if (selectedIndex != -1)
 {
 this.AxGridView1.DeleteRow(selectedIndex);
 }
 }
}

AxPopup controls
Use an AxPopup control to open a page in a pop-up browser window, to close a pop-up page, or to
pass data from the pop-up page to the parent page and trigger a PopupClosed server event on the
parent. This functionality is encapsulated in two controls: AxPopupParentControl, which you use on
the parent page, and AxPopupChildControl, which you use on the pop-up page itself. Both controls
are derived from AxPopupBaseControl. These controls are AJAX-compatible, so you can create them
conditionally as part of a partial update.

AxPopupParentControl allows a page, typically a web part page, to open in a pop-up window. You
can open a pop-up window from a client-side script by using the GetOpenPopupEventReference
method. The string that is returned is a JavaScript statement that can be assigned, for example, to
a button’s OnClick attribute or to a toolbar menu item. The following code shows how to open a
 pop-up window with client-side scripting by modifying the OnClick event:

protected void SetPopupWindowToMenuItem(SetMenuItemPropertiesEventArgs e)
{
 AxUrlMenuItem menuItem = new AxUrlMenuItem("EPCustTableCreate");

 //Calling the JavaScript function to set the properties of opening web page
 //on clicking the menuitems.
 e.MenuItem.ClientOnClickScript =
 this.AxPopupParentControl1.GetOpenPopupEventReference(menuItem);
}

214 PART 2 Developing with Microsoft Dynamics AX

You can also open a pop-up window from a server method by calling the OpenPopup method.
Because pop-up blockers can block server-initiated pop-up windows, use OpenPopup only when
necessary.

When placed on a pop-up page, AxPopupChildControl allows the page to close. You can close the
pop-up page with a client-side script by using the GetClosePopupEventReference method, as shown in
the following example:

this.BtnOk.Attributes.Add("onclick",
 this.popupChild.GetClosePopupEventReference(true, true) + "; return false;");

You can close a pop-up window from the server event by using the ClosePopup method. Use the
server method when additional processing is necessary upon closing, such as performing an action
or calculating values to be passed to the parent page. The ClosePopup and OpenPopup methods have
two parameters:

 ■ setFieldValues When true, this indicates that data must be passed back to the parent page.

 ■ updateParent When true, this indicates that the parent page must post back after the
 pop-up page is closed. AxPopupChildControl makes a call (through a client-side script) to the
parent page to post back, with the AxPopupParentControl as the target. AxPopupParentControl
then triggers the PopupClosed server event. When the event is triggered, the application code
of the parent page can receive the values that are passed from the pop-up page and perform
an action or update its state.

You can pass data from the pop-up page back to the parent page by using AxPopupField
 objects. You expose these objects through the Fields property of AxPopupBaseControl, from which
both AxPopupParentControl and AxPopupChildControl are derived. AxPopupParentControl and
 AxPopupChildControl have fields with the same names. When the pop-up page closes, the value of
each field of AxPopupChildControl is assigned (through a client-side script) to the corresponding field
in AxPopupParentControl.

Optionally, you can associate AxPopupField with another control, such as TextBox (or any other
control), by assigning the TargetId property of the AxPopupField control to the ID property of
the target control. This is useful, for example, when the pop-up page has a TextBox control. To
pass the user input to the parent page on closing the pop-up page—and to perform the action
 entirely on the client to avoid a round-trip—you need to associate a field with the TextBox control.
When AxPopupField isn’t explicitly associated with a target control, it is implicitly associated with a
 HiddenField control that is created automatically by AxPopupParentControl or AxPopupChildControl.

You can then set the value of the field on the server by using the SetFieldValue method. Typically,
you call SetFieldValue on AxPopupChildControl, and you can call it at any point that the user
 interacts with the pop-up page, including the initial rendering or the closing of the page. You can
retrieve the value of the field by using the GetFieldValue method. Typically, you call this method on
 AxPopupParentControl during the processing of the PopupClosed event. You can clear the values of
non-associated fields by calling the ClearFieldValues method.

 CHAPTER 7 Enterprise portal 215

You can also set or retrieve values of AxPopupFields on the client by manipulating the target
control value. You can retrieve target control, whether explicitly or implicitly associated, by using the
TargetControl property.

BoundField controls
BoundField controls are used by data-bound controls (such as AxGridView, AxGroup, ASP.NET
 GridView, and ASP.NET DetailsView) to display the value of a field through data binding. The way in
which a bound field control is displayed depends on the data-bound control in which it is used. For
example, the AxGridView control displays a bound field control as a column, whereas the AxGroup
control displays it as a row.

The Enterprise Portal framework provides a number of enhanced bound field controls that are
derived from ASP.NET bound field controls but are integrated with the Microsoft Dynamics AX
 metadata. These controls are described in Table 7-2.

TABLE 7-2 Microsoft Dynamics AX BoundField controls.

Control Description

AxBoundField Used to display text values. The DataSet, DataSetView, and DataField properties define
the source of the data.

AxHyperLinkBoundField Used to display hyperlinks. Use the MenuItem property to point to a web menu item in
the AOT for generating the URL and the DataSet, DataSetView, and DataField properties
to define the source of the data. If the web menu name is stored within the record, use
the DataMenuItemField property instead of MenuItem.

AxBoundFieldGroup Used to display FieldGroups defined in the AOT. The DataSet, DataSetView, and
FieldGroup properties define the source of the data.

AxCheckBoxBoundField Used to display a Boolean field in a check box. The DataSet, DataSetView, and DataField
properties define the source of the data.

AxDropDownBoundField Used to display a list of values in a drop-down menu. The DataSet, DataSetView, and
DataField properties define the source of the data.

AxRadioButtonBoundField Used to display a list of values as radio buttons. The DataSet, DataSetView, and DataField
properties define the source of the data. Use the RepeatDirection property to define
whether the radio button should be rendered horizontally or vertically

AxReferenceBoundField Used for a surrogate key. The surrogate key is typically an identifier to a row in another
related table. Instead of directly displaying the surrogate key, the value of fields in the
AutoIdentification field group of the related table is displayed. These are more readable
and user friendly.

Depending on the field type, the Bound Field Designer in Visual Studio automatically groups fields
under the correct bound field type.

AxContentPanel
The AxContentPanel control extends the ASP.NET UpdatePanel control. It acts as a container for other
controls and allows for partial updates of the controls that are placed inside it, eliminating the need to
refresh the entire page. It also provides a mechanism to provide and consume record context for its
child controls.

216 PART 2 Developing with Microsoft Dynamics AX

AxPartContentArea
Use AxPartContentArea to define the FactBox area in a control. This control acts as a container for
AxInfoPart, AxFormPart, and CueGroupPartControl.

AxInfoPart
Use the AxInfoPart control to display an Info Part. This control must be placed inside an
 AxPartContentArea control.

AxFormPart
Use the AxFormPart control to display a Form Part. This control must be placed inside an
 AxPartContentArea control.

CueGroupPartControl
Use the CueGroupPartControl control to display a Cue Group. This control must be placed inside an
AxPartContentArea control.

AxDatePicker
Use the AxDatePicker control to a calendar control that allows a user to pick a date.

AxReportViewer
Use the AxReportViewer control to display an SSRS report.

Developing for Enterprise Portal

To develop Enterprise Portal applications, you use a combination of MorphX, Visual Studio, and
SharePoint products and technologies:

 ■ MorphX You use MorphX to develop the data and business tier components in your application.
You also use MorphX to define navigation elements; store unified metadata and files; import and
deploy controls, pages, and list definitions; and generate proxies. For more information about
MorphX, see Chapter 2, “The MorphX development environment and tools.”

 ■ Visual Studio You use Visual Studio for developing and debugging web user controls. The
Visual Studio Add-in for Enterprise Portal provides project and control templates to speed
the development process. Visual Studio provides an easy way to add new controls to the AOT;
tools for importing controls and style sheets from the AOT; and the capability to work with proxies.
The Enterprise Portal framework provides various APIs for accessing data and metadata.

 ■ SharePoint products and technologies You use SharePoint to develop web part pages
and lists. You also use it to edit master pages, which contain the common elements for all
the pages in a site. With a browser, you can use the Create or Edit Page tool of SharePoint to

 CHAPTER 7 Enterprise portal 217

design your web part page. You can also use SharePoint Designer to create or edit both web
part pages and master pages.

The AOT controls all metadata for Enterprise Portal and stores all of the controls and pages that
you develop in Visual Studio and SharePoint. It also stores other supporting files, definitions, and
features under the Web node.

This section walks you through the steps necessary to create an Enterprise Portal list page and
details page, and explains how to improve performance by using AJAX. For information about the
Enterprise Portal user interface, see Chapter 5.

Create a model-driven list page
Microsoft Dynamics AX 2012 introduces a new model-driven way of creating list pages. With
 Microsoft Dynamics AX 2009, you had to create a form to be displayed in the Microsoft Dynamics
AX client and a webpage to be displayed in Enterprise Portal. With model-driven list pages, you
model the list page once and can have it appear in both the client and in Enterprise Portal. The form
displayed in the Microsoft Dynamics AX client and the webpage displayed in Enterprise Portal share
code and metadata. Any changes to the form are reflected automatically in both the client and in
 Enterprise Portal. This leads to a number of advantages, such as reduced development effort, a
 unified code base, and easier maintenance.

Figure 7-7 show an example of the development environment for creating a model-driven list
page.

FIGURE 7-7 Model-driven list page development.

218 PART 2 Developing with Microsoft Dynamics AX

The following are high-level steps that you can follow to create a model-driven list page.

1. Start the Development Workspace.

2. Create a new form in the AOT and set the FormTemplate property to ListPage. This setting
automatically adds design elements such as the filter, grid, and Action pane.

3. Set the query on the form to get the data that you want the form to display.

4. Set the DataSource property on the grid to the required data view.

5. Add the fields that you want to display in the grid.

6. Create and add an Action pane, and Info Parts if required. Ideally, you should create one
Info Part to be displayed in the Preview Pane (below the grid) and one or more Info Parts,
Form Parts, and Cue Groups to be displayed in the FactBox area (to the right of the grid).
The Preview Pane should display extended information about the selected record and the
 FactBoxes should display related information. To link these parts to the list page, you will need
to create the corresponding display menu items.

7. Create a display menu item that points to the form. Right-click the menu item, and click
 Deploy To EP.

8. When prompted, select the module that you want to deploy the page to. This will
 automatically create a SharePoint web part page for the list page for Enterprise Portal.

9. It will also create a URL web menu item and import the corresponding page definition in the
AOT.

10. Set the HyperLinkMenuItem property on the first field in the grid to a display menu item that
corresponds to a details page, and then refresh the AOD. This will render links in the first
 column that can be used to open up the record using a linked details page.

Define a list page interaction class
To achieve more control over how your model-driven list page behaves, you can specify a custom
interaction class by using the InteractionClass property of the form. The name of your class should
end with ListPageInteraction and can inherit either the SysListPageInteractionBase class, which is easy
to use, or the ListPageInteraction class, which is more flexible.

The SysListPageInteractionBase class provides methods that you can override and serve as a place
to put custom code. The following are some of these methods:

 ■ initializing Called when the list page initializes.

 ■ selectionChanged Called when the user selects a different record on the list page.

 ■ setButtonEnabled Enables or disables buttons, called from the selectionChanged method.

 CHAPTER 7 Enterprise portal 219

 ■ setButtonVisibility Displays or hides buttons. This method is called once when the form
opens.

 ■ setGridFieldVisibility Shows or hides grid fields. This method is called once when the form
opens.

For more information, see the topic "SysListPageInteractionBase Class," at
http://msdn.microsoft.com/en-us/library/syslistpageinteractionbase.aspx.

Create a details page
A details page in Enterprise Portal displays detailed information about a specific record.

Use the following high-level steps to create a details page:

1. In Visual Studio, use the EP Web Application Project template (under the Microsoft Dynamics
AX category) to create a new project.

2. Add a new item to the project by using the EP User Control with the Form template (found
under the Microsoft Dynamics AX category). This automatically adds the control to AOT.

3. Switch to design view, select the AxDataSource control (Figure 7-8), and then set the DataSet
name.

FIGURE 7-8 Creating a details page in Visual Studio.

220 PART 2 Developing with Microsoft Dynamics AX

4. Select the AxForm control, and then ensure that DataSourceID is set to the AxDataSource.

5. Set the DataMember and DataKeyNames on the form as appropriate.

6. If required, change the default mode of the form to Edit or Insert (it is ReadOnly by default).

7. To autogenerate the Save and Close buttons, do the following:

• In ReadOnly mode, set AutoGenerateCancelButton to true.

• In Edit mode, set AutoGenerateEditButton to true.

• In Insert mode, set AutoGenerateInsertButton to true.

• Select an AxGroup control and ensure that the FormID property is set.

8. Click the Edit Fields link and add the required fields to the AxGroup control.

9. Compile the EP Web Application by using the Build menu. Ensure that there are no errors.
 Compiling the application automatically deploys the control to the SharePoint directory.

10. In Microsoft Dynamics AX, start the Development Workspace, and then navigate to \Web\
Web Content\Managed.

11. Right-click the managed item that maps to the web user control that you created, and then
click Deploy To EP.

12. When prompted, select the module you want to deploy the page to. This will automatically
create a SharePoint web part page for Enterprise Portal and put your web user control on the
page using the User control web part. It will also create a URL web menu item and import the
corresponding Page Definition in AOT.

13. Select the web menu item created for the page, and then set WindowMode to Modal. This will
cause the details page to open in a modal dialog box.

14. Create a new display menu item and set the WebMenuItemName property to the web menu
item that is linked to the details page.

15. Use this display menu item to link to the details page from the list page grid, as described in
the “Create model-driven list page” section earlier in this chapter.

Modal dialog settings
Enterprise Portal uses modal dialogs to implement standard interaction patterns for pages. In
 Microsoft Dynamics AX 2012, Enterprise Portal includes two new metadata settings, WindowMode
and WindowSize, on the web menu item, which that you can use to implement these interaction
 patterns without writing any code.

WindowMode has the following four settings:

 ■ Inline Causes the target URL to open in the same window. This setting replaces the current
page with the target page that the menu item links to.

 CHAPTER 7 Enterprise portal 221

 ■ Modal Causes the target URL to open in a modal dialog on top of the window. The current
page is still available in the background. However, because the dialog is modal, the user can
interact only with the modal dialog and not with the page that is in the background.

If a web menu item with WindowMode set to Modal is opened from within a modal dialog,
the modal dialog is reused. The page currently open in the modal dialog is replaced with the
target page that the menu item links to.

 ■ NewModal Functions in a similar way to the Modal setting but does not reuse an existing
modal dialog. Therefore, if a web menu item with WindowMode set to NewModal is opened
from within a modal dialog, a second-level modal dialog opens on top of the old one
(as shown in Figure 7-9).

 ■ NewWindow Causes the target URL to open in a new window.

FIGURE 7-9 Example of an Enterprise Portal page with two levels of modal dialogs.

WindowSize has five settings: Maximum, Large, Medium, Small, and Smallest. These settings
 correspond to five predefined sizes for the modal dialogs.

222 PART 2 Developing with Microsoft Dynamics AX

AJAX
You can use .NET AJAX to create ASP.NET webpages that can update data on the page without
refreshing the entire page. AJAX provides client-side and server-side components that use the
XMLHttpRequest object, along with JavaScript and DHTML, to enable portions of the page to update
asynchronously, again without refreshing the entire page. With AJAX, you can develop Enterprise
Portal webpages just as you would any regular ASP.NET page, and you can declaratively mark the
components that should be rendered asynchronously.

By using the UpdatePanel server control, you can enable sections of a webpage to be partially
 rendered without an entire page postback. The User control web part contains the UpdatePanel
server control internally. The script library is included in the master page, so that any control can use
AJAX without the need to write any explicit markup or code.

For example, if you add a text box and button and write code for the button’s click event on the
server without AJAX, when a user clicks the button, the entire page is refreshed. But when you load
the same control through the User control web part, as in the following example, the button uses
AJAX and updates the text box without refreshing the entire page:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Button" />

In the code-behind, update the text box with the current time after 5 seconds:

protected void Button1_Click(object sender, EventArgs e)
{
 System.Threading.Thread.Sleep(5000);
 TextBox1.Text = System.DateTime.Now.ToShortTimeString();
}

If you want to override the AJAX behavior and force a full postback, you can use the
 PostBackTrigger control in the User control, as shown here:

<%@ Register assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" Namespace="System.Web.UI" TagPrefix="asp" %>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Button" />
 </ContentTemplate>
 <Triggers>
 <asp:PostBackTrigger ControlID="Button1" />
 </Triggers>
</asp:UpdatePanel>

 CHAPTER 7 Enterprise portal 223

Session disposal and caching
All web parts on a webpage share the same session in Microsoft Dynamics AX. After the page is
served, the session is disposed of. To optimize performance, you can control the timeframe for the
disposal of the session. Through settings in the Web.config file, you can specify the session timeout, in
addition to the maximum number of cached concurrent sessions.

For example, to set the maximum number of cached concurrent sessions to 300 and the session
timeout to 45 seconds, add the <Microsoft.Dynamics> section, as shown in the following example,
after the </system.web> element. Remember that an increase in any of these values comes at the cost
of additional memory consumption.

<Microsoft.Dynamics>
 <Session MaxSessions="300" Timeout="15" />
</Microsoft.Dynamics>

Many of the methods that you use in the Enterprise Portal framework to add code to a User
 control require access to the Session object. You also need to pass the Session object when using
proxy classes. You can access the Session object through the web part that hosts the User control, as
shown here:

AxBaseWebPart webpart = AxBaseWebPart.GetWebpart(this);
return webpart == null ? null : webpart.Session;

By default, Enterprise Portal uses the ASP.NET session state. However, you can configure and use
Windows Server AppFabric distributed caching with Enterprise Portal to further improve performance
in server farm environments. After you install and configure Windows Server AppFabric, you can
specify the name and region for Enterprise Portal to use in the Web.config file.

For example, to set the cache name as MyCache and the region as MyRegion, add the
<Microsoft.Dynamics> section, as shown here, after the </system.web> element in the Web.config file
for Enterprise Portal:

<Microsoft.Dynamics>
 <AppFabricCaching CacheName="MyCache" Region="MyRegion" />
</Microsoft.Dynamics>

Context
Context is a data structure that is used to share data related to the current environment and user
 actions taking place with different parts of a web application. Context passes information to a web
part about actions taking place in another control so that the web part can react. Context can also be
used to pass information to a new page. Generally, information about the current record that the user
is working on provides the information for the context. For example, when the user selects a row in
a grid view, other controls might require information about the newly selected row so that they can
react.

224 PART 2 Developing with Microsoft Dynamics AX

AxContext is an abstract class that encapsulates the concept of the context. The classes
 AxTableContext and AxViewContext derive from and implement AxContext. AxTableContext is for
 table-based context, and AxViewContext is for dataset view context. A view can contain more than
one table, so it contains an AxTableContext object for each table in the view in the TableContextList
collection. The RootTableContext property returns the TableContext of the root table in that dataset
view. AxViewDataKey uniquely identifies the AxViewContext, and it contains the TableDataKeys
 collection. AxTableDataKey uniquely identifies AxTableContext. An event is raised whenever the
context changes. If the context is changed within a User control, the CurrentContextChanged event
is raised. If the context changes in other web parts that are connected to the User control, the
 ExternalContextChanged event is raised.

You can write code in these events on the AxBaseWebPart from your web user control and use the
CurrentContextProviderView or ExternalContextProviderView and ExternalRecord properties to get the
record associated with the context. You can trigger all of these events programmatically from your
application logic by calling FireCurrentContextChanged or FireExternalContextChanged so that all
other connected controls can react to the change that you made through your code. The following
example triggers the CurrentContextChanged event:

void CurrentContextProviderView_ListChanged(object sender,
 System.ComponentModel.ListChangedEventArgs e)
{
 /* The current row (which is the current context) has changed update the consumer webparts.
 Fire the current context change event to refresh (re-execute the query) the consumer web
parts
 */
 AxBaseWebPart webpart = this.WebPart;
 webpart.FireCurrentContextChanged();
}

The following example gets the record from the connected web part.

First, subscribe to the ExternalContextChanged event in the consumer web user control, as shown
here:

protected void Page_Load(object sender, EventArgs e)
{
 //Add Event handler for the ExternalContextChange event.
 //Whenever selecting the grid of the provider web part changes, this event gets fired.
 (AxBaseWebPart.GetWebpart(this)).ExternalContextChanged +=
 new
EventHandler<Microsoft.Dynamics.Framework.Portal.UI.AxExternalContextChangedEventArgs>
 (AxContextConsumer_ExternalContextChanged);
}

Next, get the record passed through the external context, as shown in the following example:

void AxContextConsumer_ExternalContextChanged(object sender,
 Microsoft.Dynamics.Framework.Portal.UI.AxExternalContextChangedEventArgs e)
{
 //Get the AxTableContext from the ExternalContext passed through web part connection and
 //construct the record object and get to the value of the fields

 CHAPTER 7 Enterprise portal 225

 IAxaptaRecordAdapter currentRecord = (AxBaseWebPart.GetWebpart(this)).ExternalRecord;

 if (currentRecord != null)
 {
 lblCustomer.Text = (string)currentRecord.GetField("Name");
 }
}

Data
The ASP.NET controls access and manipulate data through data binding to AxDataSource. You can
also access the data through the APIs directly. The Microsoft.Dynamics.AX.Framework.Portal.Data
namespace contains several classes that work together to retrieve data.

For example, use the following code to get the current row from the DataSetView:

private DataSetViewRow CurrentRow
{
 get
 {
 try
 {
 DataSetView dsv =
 this.ContactInfoDS.GetDataSet().DataSetViews[this.ContactInfoGrid.DataMember];

 return (dsv == null) ? null : dsv.GetCurrent();
 }
 // CurrentRow on the dataset throws exception in empty data scenarios
 catch (System.Exception)
 {
 return null;
 }
 }
}

To set the menu item with context for the current record, use the following code:

DataSetViewRow currentContact =
 this.dsEPVendTableInfo.GetDataSourceView(gridContacts.DataMember).DataSetView.GetCurrent();

using (IAxaptaRecordAdapter contactPersonRecord = currentContact.GetRecord())
{
 ((AxUrlMenuItem)e.MenuItem).MenuItemContext =
 AxTableContext.Create(AxTableDataKey.Create(
 this.BaseWebpart.Session, contactPersonRecord, null));
}

Metadata
The Enterprise Portal framework provides a rich set of APIs for accessing the metadata in the AOT
through managed code. The Microsoft.Dynamics.AX.Framework.Services.Client namespace contains
several classes that work together to retrieve metadata from the AOT. Enterprise Portal controls use

226 PART 2 Developing with Microsoft Dynamics AX

the metadata to retrieve information about formatting, validation, and security, among other things,
and apply it in the user interface automatically. You can also use these APIs to retrieve the metadata
and use it in your user interface logic.

The MetadataCache class is the main entry point for accessing metadata and provides static
 methods for this purpose. For example, to get the metadata for an enum, you use the EnumMetadata
class and the MetadataCache.GetEnumMetadata method, as shown here:

/// <summary>
/// Loads the drop-down list with the enum values.
/// </summary>
private void LoadDropdownList()
{
 EnumMetadata salesUpdateEnum = MetadataCache.GetEnumMetadata(
 this.AxSession, EnumMetadata.EnumNum(this.AxSession, "SalesUpdate"));

 foreach (EnumEntryMetadata entry in salesUpdateEnum.EnumEntries)
 {
 ddlSelectionUpdate.Items.Add(new ListItem(
 entry.GetLabel(this.AxSession), entry.Value.ToString()));
 }
}

To get the label value for a table field, use the following code:

TableMetadata tableSalesQuotationBasketLine =
 MetadataCache.GetTableMetadata(this.AxSession, "CustTable");

TableFieldMetadata fieldItemMetadata = tableSalesQuotationBasketLine.
FindDataField("AccountNum");

String s = fieldItemMetadata.GetLabel(this.AxSession);

Figure 7-10 shows a portion of the object access hierarchy for metadata. For simplicity, not all APIs
are included in the figure.

Proxy classes
If you need to access X++ classes, call table methods, or use enums in your user control, the
 Enterprise Portal framework provides an easy way of creating managed wrappers for these X++
objects. A proxy file internally wraps the .NET Business Connector calls and provides a simple, typed
interface for C# applications.

Several predefined proxies are available for use in Enterprise Portal. They are defined in the
 EPApplicationProxies and the EPApplicationProxies1 projects in the AOT, which are located under \
Visual Studio Projects\C Sharp Projects. To use these proxy projects, open your web application
project in Visual Studio, and then add a reference to these projects by clicking Project > Add EP Proxy
Project. Then, in the web control, add a using statement to provide access to the proxy namespace, as
shown here:

using Microsoft.Dynamics.Portal.Application.Proxy;

 CHAPTER 7 Enterprise portal 227

Ac
tio

nW
eb

M
en

uI
te

m
M

et
ad

at
a

G
et

A
ct

io
nW

eb
M

en
uI

te
m

M
et

ad
at

a(
)

U
RL

W
eb

M
en

uI
te

m
M

et
ad

at
a

W
eb

M
od

ul
eM

et
ad

at
a

Ta
bl

eM
et

ad
at

a
Ex

te
nd

ed
D

at
aT

yp
eM

et
ad

at
a

Se
cu

rit
yK

ey
M

et
ad

at
a

Jo
in

In
fo

[]

D
at

aS
ou

rc
eM

et
ad

at
a

Ta
bl

eF
ie

ld
M

et
ad

at
a[

]D
at

aS
ou

rc
eJ

oi
nT

yp
es

D
at

aS
ou

rc
eC

al
cu

la
te

dF
ie

ld
M

et
ad

at
a[

]
D

at
aS

ou
rc

eD
at

aF
ie

ld
M

et
ad

at
a[

]

D
at

aS
et

Vi
ew

In
de

x
D

at
aS

et
Vi

ew
Fi

el
dG

ro
up

M
et

ad
at

a[
]

D
at

aS
et

Vi
ew

Fi
el

dM
et

ad
at

a[
]

G
et

U
RL

W
eb

M
en

uI
te

m
M

et
ad

at
a(

)
G

et
W

eb
M

od
ul

eM
et

ad
at

a(
)

G
et

Ta
bl

eM
et

ad
at

a(
)

G
et

Ex
te

nd
ed

D
at

aT
yp

eM
et

ad
at

a(
)

G
et

Se
cu

rit
yK

ey
M

et
ad

at
a(

)

Co
nf

ig
ur

at
io

nK
ey

M
et

ad
at

a

G
et

Co
nf

ig
ur

at
io

nK
ey

M
et

ad
at

a(
)

En
um

M
et

ad
at

a

G
et

En
um

M
et

ad
at

a(
)

D
at

aS
ou

rc
eJ

oi
ns

So
ur

ce

Fi
el

ds
Fi

el
ds

Ta
bl

eD
at

aF
ie

ld
M

et
ad

at
a

Fi
el

d
Ta

bl
eD

at
aF

ie
ld

M
et

ad
at

a
Fi

el
d

Ta
bl

eD
at

aF
ie

ld
M

et
ad

at
a

Ta
bl

eD
at

aF
ie

ld
M

et
ad

at
a[

]

G
et

Re
la

te
dF

ie
ld

()

Jo
in

Ty
pe

Ca
lc

ul
at

ed
Fi

el
ds

D
at

aS
ou

rc
eF

ie
ld

s

D
ef

au
ltU

ni
qu

eI
nd

ex
Vi

ew
Fi

el
dG

ro
up

s
Vi

ew
Fi

el
ds

In
he

rit
an

ce

W
eb

M
en

uI
te

m
M

et
ad

at
a

G
et

W
eb

M
en

uI
te

m
M

et
ad

at
a(

)

(D
at

aS
et

Vi
ew

D
at

aF
ie

ld
M

et
ad

at
a)

(D
at

aS
et

Vi
ew

Ca
lc

ul
at

ed
Fi

el
dM

et
ad

at
a)

M
et

ad
at

aC
ac

he

Re
la

te
dF

ie
ld

Re
la

tio
ns

hi
p[

]
Re

la
te

dF
ie

ld
Re

la
tio

ns
hi

ps

Ta
bl

eR
el

at
io

ns
hi

pM
et

ad
at

a[
]

Ta
bl

eR
el

at
io

ns
hi

ps

Ta
bl

eM
et

ad
at

a
Ta

bl
e

D
at

aS
ou

rc
eM

et
ad

at
a[

]

D
at

aS
ou

rc
es

D
at

aS
et

Vi
ew

M
et

ad
at

a[
]

D
at

aS
et

Vi
ew

s

D
at

aS
et

M
et

ad
at

a

G
et

D
at

aM
et

ad
at

a(
)

Fi
el

dG
ro

up
M

et
ad

at
a[

]

Fi
xe

dF
ie

ld
Re

la
tio

ns
hi

p[
]

Re
la

te
dF

ix
ed

Fi
el

dR
el

at
io

ns
hi

p[
]

Ta
bl

eD
at

aF
ie

ld
M

et
ad

at
a[

]
Ta

bl
ec

al
cu

la
te

dF
ie

ld
M

et
ad

at
a[

]

Fi
el

dG
ro

up
s

Fi
xe

dF
ie

ld
Re

la
tio

ns
hi

ps
Re

la
te

dF
ix

ed
Fi

el
dR

el
at

io
ns

hi
ps

Fi
el

ds
Ca

lc
ul

at
ed

Fi
el

ds

In
de

xM
et

ad
at

a[
]

In
de

xe
s

FIGURE 7-10 Metadata object hierarchy.

If you need to create a new proxy, you can create your own Visual C# class library project in Visual
Studio by doing the following:

1. Set the default namespace of the project to Microsoft.Dynamics.Portal.Application.Proxy.

228 PART 2 Developing with Microsoft Dynamics AX

2. On the File menu, select the option to add the project to the AOT.

3. In Project Properties, set the Deploy to EP property to Proxies.

You can then add the objects from Application Explorer to the project, and the Enterprise Portal
framework will automatically generate and deploy proxies for these to the App_Code folder of the
IIS website. After you add a reference to a proxy project, you can access the X++ methods as though
they are written in C#, as shown in Figure 7-11.

FIGURE 7-11 Working with proxies in Visual Studio.

ViewState
The web is stateless, which means that each request for a page is treated as a new request, and no
 information is shared. When loaded, each ASP.NET page goes through a regular page lifecycle, from
initialization and page load onward. When a user interacts with the page, requiring the server to
 process control events, ASP.NET posts the values in the form to the same page to process the event
on the server. A new instance of the webpage class is created each time the page is requested from
the server. When postback happens, ASP.NET uses the ViewState feature to preserve the state of the
page and controls so that changes made to the page during the round trip are not lost. The Enterprise
Portal framework uses this feature, and Enterprise Portal ASP.NET controls automatically save their
state to ViewState. The ASP.NET page reads the ViewState and reinstates the page and control state

 CHAPTER 7 Enterprise portal 229

during the regular page lifecycle. Therefore, you don’t need to write any code to manage state if
you’re using Enterprise Portal controls. However, if you want to persist in-memory variables, you can
write code to add or remove items from the StateBag class in ASP.NET, as shown here:

public int Counter
{
 get
 {
 Object counterObject = ViewState["Counter"];

 if (counterObject == null)
 {
 return 0;
 }

 return (int)counterObject;
 }

 set
 {
 ViewState["Counter"] = value;
 }
}

If you need to save the state of an X++ dataset, you can use the pack-unpack design pattern
to store the state. For more information, see the topic “Pack-Unpack Design Pattern,”
at http://msdn.microsoft.com/en-us/library/aa879675.aspx.

The Enterprise Portal framework uses the ASP.NET ViewState property to store the state of most
controls.

Labels
Microsoft Dynamics AX uses a localizable text resource file, the label file, to store messages that are
displayed to the user. The label file is also used for user interface text, help text in the status bar,
and captions. You can use labels to specify the user interface text in web controls and for element
 properties in the AOT Web node. You can add labels by setting the Label property in the AOT or by
using X++ code.

When you use data-bound controls such as AxGridView or AxForm for the user interface, the
bound fields automatically use the label associated with the field in the AOT and render it in the user’s
language at run time.

If you want to show a label in your web control for non-data-bound scenarios, use the AxLabel
 expression. AxLabel is a standard ASP.NET expression that looks up the labels defined in the AOT and
 renders them in the user’s language when the page is rendered. To add the AxLabel expression, you
can use the expression editor available in the design view of the web control by clicking the button that
 appears on the (Expressions) property. Alternatively, you can type the expression directly in the markup:

<asp:Button runat="server" ID="ButtonChange" Text="<%$ AxLabel:@SYS70959 %>"
OnClick="ButtonChange_Click" />

230 PART 2 Developing with Microsoft Dynamics AX

You can also add labels through code by using the Labels class, as shown here:

string s = Microsoft.Dynamics.Framework.Portal.UI.Labels.GetLabel("@SYS111587");

For better performance, Enterprise Portal caches the labels for all supported languages. If you add
or change a label in the AOT, you need to clear the cache on the Enterprise Portal site by using the
Refresh AOD command under Administration on the Enterprise Portal Home page.

Formatting
Microsoft Dynamics AX is a global product that supports multiple languages and is used in many
countries/regions. Displaying data in the correct format for each localized version is a critical
 requirement for any global product. Through metadata, the Enterprise Portal framework recognizes
the user’s current locale and system settings to display data automatically in the correct format in
data-bound controls.

If you’re not using data-bound controls and want your unbound ASP.NET controls to be
 formatted like Enterprise Portal controls, you can use the AxValueFormatter class in the Enterprise
Portal framework. This class implements the ICustomFormatter and IFormatProvider interfaces and
 defines a method that supports custom, user-defined formatting of an object’s value. This method
also provides a mechanism for retrieving an object to control formatting. For the various data
types, specific ValueFormatter classes that are derived from AxValueFormatter are implemented:
 AxStringValueFormatter, AxDateValueFormatter, AxDateTimeValueFormatter, AxTimeValueFormatter,
AxRealValueFormatter, AxNumberValueFormatter, AxGuidValueFormatter, and AxEnumValueFormatter.

You use AxValueFormatterFactory to create AxValueFormatter objects. You can create any of the
preceding formatters, or you can create a formatter based on an EDT in Microsoft Dynamics AX. The
data type for the extended data is retrieved from the metadata object for the EDT, and the culture
information comes from the context. The various rules for languages and countries, such as number
formats, currency symbols, and sort orders, are aggregated into a number of standard cultures. The
Enterprise Portal framework identifies the culture based on the user’s language setting in Microsoft
Dynamics AX and makes this information available in the context. Formatter objects have a Parse
method that you can use to convert a string value back into the underlying data type. For example,
the following code formats the data based on a given EDT:

private string ToEDTFormattedString(object data, string edtDataType)
{
 ExtendedDataTypeMetadata edtType = MetadataCache.GetExtendedDataTypeMetadata(
 this.AxSession, ExtendedDataTypeMetadata.TypeNum(this.AxSession, edtDataType));

 IAxContext context = AxContextHelper.FindIAxContext(this);

 AxValueFormatter valueFormatter = AxValueFormatterFactory.CreateFormatter(
 this.AxSession, edtType, context.CultureInfo);

 return valueFormatter.FormatValue(data);
}

 CHAPTER 7 Enterprise portal 231

Validation
You use ASP.NET validator controls to validate user input on the server and, optionally, on the client
(the browser). The Enterprise Portal framework includes ASP.NET validators that are specific to
 Microsoft Dynamics AX. AxBaseValidator derives from System.Web.UI.WebControls.BaseValidator,
and AxValueFormatValidator derives from AxBaseValidator. Both are metadata-driven and are used
 intrinsically by bound fields. You can also use them in unbound scenarios.

ASP.NET validators are triggered automatically when a postback occurs that causes validation. For
example, an ASP.NET button control causes validation on the client and the server when clicked. All
validators that are registered on the page are validated. If a validator is found to be invalid, the page
becomes invalid, and the Page.IsValid property returns a value of false.

The importance of Page.IsValid is best highlighted with an example. Suppose you add an ASP.NET
button that executes some business logic in the OnClick event before redirecting the user to a
 different page. As mentioned earlier, the button causes validation by default, so validators are
 executed before the OnClick event is triggered. If you don’t check to determine whether the page is
valid in the OnClick event handler, the user is redirected even if a validation error occurs that requires
the user’s attention.

Enterprise Portal controls such as AxForm and AxGridView automatically check validation and
won’t perform the requested action if validation fails. The Microsoft Dynamics AX validator controls
automatically write any validation errors to the Infolog.

When you’re using ASP.NET controls directly instead of Enterprise Portal controls, as a best
 practice, make sure that your code examines the Page.IsValid property before any actions, such as
navigating away from the current page, are completed. If errors occur, you’ll want to keep the current
page with Infolog displaying the errors so that the user will notice the errors and take corrective
 action.

Error handling
In Enterprise Portal, the .NET Business Connector (including proxies), the metadata, and the data
layer all throw exceptions when error conditions occur. The Enterprise Portal ASP.NET controls
 automatically handle these exceptions, taking appropriate actions and displaying the errors in an
Infolog.

Exceptions in Enterprise Portal are divided into three categories. These exception categories are
defined in the AxExceptionCategory enumeration:

 ■ NonFatal Indicates that the exception handling code should respond appropriately and
 allow the request to continue normally.

 ■ AxFatal Indicates that an unrecoverable error has occurred in Enterprise Portal, and
 Enterprise Portal content will not be displayed. Content not related to Enterprise Portal
should be displayed as expected.

232 PART 2 Developing with Microsoft Dynamics AX

 ■ SystemFatal Indicates that a serious error, such as out of memory, has occurred and the
request must be cancelled. Errors of this kind often cause an HTTP error code of 500.

Your code must handle any exceptions that might occur, if your code does any of the following:

 ■ Directly calls methods in data layers from Enterprise Portal

 ■ Directly calls metadata methods

 ■ Uses proxy classes to call X++ methods

The following code shows how to use AxControlExceptionHandler in the try-catch statement to
handle exceptions:

try
{
 // Code that may encounter exceptions goes here.
}
catch (System.Exception ex)
{
 AxExceptionCategory exceptionCategory;

 // Determine whether the exception can be handled.
 if (AxControlExceptionHandler.TryHandleException(this, ex, out exceptionCategory) == false)
 {
 // The exception was fatal and cannot be handled. Rethrow it.
 throw;
 }
 if (exceptionCategory == AxExceptionCategory.NonFatal)
 {
 // Application code to properly respond to the exception goes here.
 }
}

AxControlExceptionHandler tries to handle Microsoft Dynamics AX exceptions based on the three
exception categories described earlier in this section. It returns a value of true if the type of exception
is NonFatal.

Security

In Enterprise Portal, Microsoft Dynamics AX security is layered on top of, and depends on, the
 security of the underlying products and technologies, such as SharePoint and IIS. For external facing
sites, communication security and firewall configurations are also important to help secure Enterprise
Portal.

Enterprise Portal has two configurations in its site definition. The first, referred to as Microsoft
 Dynamics Public, allows Internet customers or prospective customers to view product catalogs,
 request customer accounts, and so on. The second, referred to as Microsoft Dynamics Enterprise
 Portal, is a complete portal for self-service scenarios involving intranet or extranet users who are
authenticated employees, vendors, and customers.

 CHAPTER 7 Enterprise portal 233

The Microsoft Dynamics Public configuration has anonymous authentication enabled in both IIS
and SharePoint so that anyone on the web can access it. To connect to Microsoft Dynamics AX, this
configuration uses a built-in Microsoft Dynamics AX user account named Guest. The Guest account is
part of the Enterprise Portal Guest user group, which has limited access to the Microsoft Dynamics AX
components that are necessary for the public site to function.

The Microsoft Dynamics Enterprise Portal configuration uses either Integrated Windows
 authentication or Basic authentication over Secure Sockets Layer (SSL) that is enabled in IIS and
SharePoint. This secured site restricts access to users with Active Directory accounts who are also
configured as Microsoft Dynamics AX users and have access that has been enabled for the site by the
Microsoft Dynamics AX system administrator. You use the System Administration > Setup > Users >
User Relations dialog box in the Microsoft Dynamics AX client to set up users as an employee, vendor,
business relation, or customer contact. Then you can grant them access to Enterprise Portal sites
through Site groups for that Enterprise Portal site.

Both types of Enterprise Portal sites use the .NET Business Connector proxy account to establish
connections to the AOS. The SharePoint application pool must be configured with a Windows
 domain user account, and this account must be specified as the Microsoft Dynamics AX .NET
 Business Connector proxy account for both sites to function. After the connection is established,
Enterprise Portal uses either LogonAsGuest or LogonAs—depending on the type of Enterprise Portal
site the current user has access to—to activate the Microsoft Dynamics AX security mechanism.
 Microsoft Dynamics AX provides various means and methods of limiting user access, such as placing
 restrictions on individual tables and fields and limiting the availability of application features through
 configuration keys and web configuration keys, as shown in Figure 7-12. User-level security can also
be applied by using roles, duties, and privileges.

Enterprise Portal security is role based. This means that you can easily group tasks associated with
a business function into a role, such as Sales or Consultant, and assign users to this role to give them
the necessary permissions on the Microsoft Dynamics AX objects to perform those tasks in Enterprise
Portal. To allow users access to more functionality, you can assign them to more than one role. For
more information about roles, see Chapter 11, “Security, licensing, and configuration.”

Secure web elements
To securely expose web controls through web parts in SharePoint, you can use privileges. You can
either create a new privilege or use an existing one. You can add managed web content (Web\Web
Content\Managed) or web menu items that reference URLs (Web\Web Menu Items\URLs) or actions
(Web\Web Menu Items\Actions) as entry points for privileges to control which users can access them.

Remember to secure both the web menu item and the managed web content. If you only secure
the web menu item (Figure 7-13), the user can still access the managed web content (for example, a
web control) and can add it to a page that he or she has access to.

234 PART 2 Developing with Microsoft Dynamics AX

FIGURE 7-12 Assigning a configuration key and web configuration key to a web menu item.

FIGURE 7-13 Adding a web menu item that references a URL as an entry point in a privilege.

 CHAPTER 7 Enterprise portal 235

At logon, the user’s role determines the access. If a user doesn’t have access to a web menu item,
that item doesn’t appear on the user’s web menu. If a link in the web menu item appears in other
web user controls that the user has access to, the item linked with the web menu item appears as text
rather than a link.

If the user doesn’t have access to web content on a webpage, the content isn’t rendered on the
page. Web part properties also limit the items that are displayed in the drop-down list based on the
user permissions for the underlying objects. Moreover, the types of operations that are allowed on
these objects depend on the access level set for the objects in the roles that the user belongs to.

Record context and encryption
Record context is the interface for passing information through the query string to a web part page
to retrieve a record from Microsoft Dynamics AX. Enterprise Portal uses record context to locate a
record in the Microsoft Dynamics AX database and display it in a web form for viewing and editing.

The following are some of the query string parameters that are used to pass the record context to
an Enterprise Portal web part page:

 ■ WTID Equals the Table ID

 ■ WREC Equals the Rec ID

 ■ WKEY Equals the Unique Record Key (the field identifier and the value of the field for the
record to be retrieved)

These parameters are passed either in a query string or in post data on webpages. To help secure
Enterprise Portal, Microsoft Dynamics AX uses a hash parameter. This ensures that a URL that is
generated for one user cannot be used by any other user. For debugging and web development, the
system administrator can turn off the encryption (use of the hash parameter) on the Enterprise Portal
General tab of the Web Sites form, which is located in System Administration > Setup > Enterprise
Portal > Web Sites. If record-level security and other data-level security are already active and no
security threats exist, turning off the encryption could result in better performance. However, it is
strongly recommended that you keep the encryption turned on.

SharePoint integration

Enterprise Portal is built on the SharePoint platform and takes advantage of some of the useful
 features and functionality offered by SharePoint to enable collaboration and content management.

Site navigation
The Enterprise Portal site uses the SharePoint navigation elements and object model for showing
Microsoft Dynamics AX navigation items from the AOT. To display web menus from the AOT as the
top and left navigation elements on the SharePoint site, Enterprise Portal setup adds the navigation

236 PART 2 Developing with Microsoft Dynamics AX

providers DynamicsLeftNavProvider and DynamicsTopNavProvider. For SharePoint Standard and
Enterprise editions, DynamicsMOSSTopNavProvider is added instead of DynamicsTopNavProvider. The
navigation providers override the default TopNavigationDataSource and QuickLaunchDataSource.

Web modules define the SharePoint sites and subsites in Enterprise Portal (for example, Sales,
Employee Services, and so on). These are also used to build the top navigation bar. If you want to hide
a link to a module from the top navigation bar, you can set the ShowLink property to No on the web
module.

Web menus represent a collection of URL and action web menu items. You can use these elements
to define the Quick launch structure for a web module, by setting the QuickLaunch property of a
web module (see Figure 7-14) to the corresponding web menu. Alternatively you can use the Quick
launch web part for this purpose. The links are automatically hidden or displayed based on the user’s
 permissions. Web menu items help you create sites that are dynamic and versatile.

You can also use web menus with the Left navigation web part to provide navigation links on a
page or web user control.

Internally, the framework uses the WebLink class to generate hyperlinks. This class has all the
 properties and methods that the framework needs to pass information back and forth between the
 browser and the server. More important, it has a method that returns the URL for the link. WebLink
also has several methods for passing record information.

FIGURE 7-14 Web modules determine the sites, subsites, and Quick launch links that are displayed on a page.

 CHAPTER 7 Enterprise portal 237

Site definitions, page templates, and web parts
You can customize SharePoint sites by using site definitions or custom templates that are built on
existing site definitions. Site definitions encompass multiple files that are located in the file system
on each web server. These files define the structure and schema for the site. You can create new site
 definitions by copying the existing site definition files and modifying them to meet the needs of the
new sites. You create custom templates by using the user interface to customize existing sites and
storing them as templates.

The Enterprise Portal site definition files and custom templates are stored in the AOT under Web\
Web Files\Static Files. Enterprise Portal setup deploys these files from the AOT to the web server file
system and SharePoint.

Enterprise Portal includes one default site definition, which has two configurations: one for
 authenticated users and another for public Internet users. The site definition is deployed to the
<drive>:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\
SiteTemplates\AXSITEDEF folder. The web part page templates are deployed to the language-specific
site definition folder: <drive>:\Program Files\Common Files\Microsoft Shared\Web Server
 Extensions\14\TEMPLATE\<lcid>\AXSITEDEF.

Enterprise Portal deployment is deployed as a set of four SharePoint features. A SharePoint site
represents a modular, server-side, file-system-level customization that contains items that can be
installed and activated in a SharePoint environment. The feature definitions are deployed to
<drive>:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE
\FEATURES. These Enterprise Portal feature definitions are as follows:

 ■ DynamicsAxEnterprisePortal Enables basic Enterprise Portal deployment steps, such as
deploying the master page and other files and components, setting navigation providers, and
registering Microsoft Dynamics AX. This feature is for the SharePoint Foundation environment.

 ■ DynamicsAxEnterprisePortalMOSS Includes environment-specific steps for deploying to
SharePoint Standard and Enterprise edition environments.

 ■ DynamicsSearch Enables the Enterprise Portal search control on Enterprise Portal sites that
enable searching across Microsoft Dynamics AX and SharePoint data.

 ■ DynamicsAxWebParts Enables deployment of the various Microsoft Dynamics AX web
parts.

Enterprise Portal feature-related files are stored in the AOT under Web\Web Files\Static Files.
The Static Files node also has other infrastructure-related files, such as the .aspx file that is used for
importing and exporting page and list definitions, document handling infrastructure files, the master
page, common ASP.NET pages, images, style sheets, and configuration files.

EPSetupParams is an XML file used to define the default Enterprise Portal site attributes, such as
title, description, and URL, when the site is automatically created through Enterprise Portal setup.

The Enterprise Portal master page automatically adds the Page title, Quick launch, and Infolog
web parts. When a page is created in Enterprise Portal, these web parts are already available on the

238 PART 2 Developing with Microsoft Dynamics AX

webpage, creating consistency across all web part pages in Enterprise Portal and supporting rapid
 application development. Figure 7-15 shows some of the key files that constitute the site definition
and their locations on the web server.

Enterprise Portal web parts are kept in the AOT under Web\Web Files\Static Files. If necessary,
partners and customers can add their own web parts under this node, and Enterprise Portal will
deploy these files to the global assembly cache on the web server and add a safe control entry in the
Web.config file.

FIGURE 7-15 Enterprise Portal site definition files.

Web part pages display one or more web parts. Web parts provide an easy way to build powerful
webpages that display a variety of information, ranging from a Microsoft Dynamics AX data view
of a list in the current site to external data presented in custom-built web parts. You can create web
part pages in SharePoint by using Windows Internet Explorer. You simply drag web parts onto web
part pages and set their properties with prepopulated lists. You can edit web part pages in either
 SharePoint Designer or Internet Explorer. You can use Internet Explorer to edit a page and change

 CHAPTER 7 Enterprise portal 239

its web parts, arrange the order of the web parts, and set the web part properties. You can use
 SharePoint Designer to insert logos or other graphics, to customize document libraries or lists, to
apply themes and styles, to customize the master page, and so on. Keep in mind, however, that you
can’t import pages edited with SharePoint Designer into the AOT.

You can import web part pages created in the Enterprise Portal site in SharePoint into the AOT
as page definitions by using the Import Page tool from web menu items of type URL. The page
 definitions are stored in the AOT under Web\Web Files\Page Definitions.

The page definitions imported into the AOT automatically create pages when a site is created with
the Enterprise Portal site definition. The PublicPage property of the page definition node determines
whether the page should be created on the public site. All the pages are created for the authenticated
site. The page definition Title property, if used, must be set to a label so that the page displays the
localized title when used with different language settings.

Import and deploy a web part page
When you create a new web part page in Enterprise Portal, you should import the page into the AOT.
You can then deploy the page to a different Enterprise Portal site or have the system automatically
deploy it when creating a new Enterprise Portal site. To import the page to the AOT, create a web
menu item that points to the page, right-click the item, and then click Import Page. The imported
page definition is stored under \Web\Web Files\Page Definitions. Once imported, the pages can use
Microsoft Dynamics AX labels for page titles so that the same page definitions can be used for sites in
different languages.

To create or deploy an Enterprise Portal site or individual elements such as web modules,
pages, web controls, images, and so on, you can use the AxUpdatePortal command-line utility.
 AxUpdatePortal also supports remote deployment, so you don’t have to log on physically to an
 Enterprise Portal server to deploy to it.

The AxUpdatePortal utility is located either in the C:\Program Files\Microsoft Dynamics AX\60\
Setup folder where Enterprise Portal is installed or in the C:\Program Files\Microsoft Dynamics AX\60\
EnterprisePortalTools where the Microsoft Dynamics AX client is installed.

Table 7-3 lists the parameters that AxUpdatePortal supports.

TABLE 7-3 AxUpdatePortal utility parameters.

Parameter Description

Listvirtualservers Lists all virtual servers (SharePoint web applications and IIS websites) on the
server

-deploy Deploys a new virtual server (SharePoint web application) to an IIS web
server that already has Enterprise Portal installed

-createsite Creates an Enterprise Portal website within an existing Enterprise Portal
virtual server

-updateall Updates all web components on an Enterprise Portal website (SharePoint
site collection)

240 PART 2 Developing with Microsoft Dynamics AX

Parameter Description

-proxies Update all proxies on an Enterprise Portal website (SharePoint site
 collection)

-images Updates all images on an Enterprise Portal website (SharePoint site
 collection)

-updatewebcomponent Updates a web component on an Enterprise Portal website (SharePoint site
collection)

-websiteurl <value> The URL of an Enterprise Portal website (SharePoint site collection)

-treenodepath <value> The tree node path of the web component to deploy

-updatewebsites Updates all Enterprise Portal websites during a redeployment

-iisreset Stops and restarts the IIS web server after completing the deploy operation

For more details about these parameters, use AxUpdatePortal /?.

Here are some examples of how to use the AxUpdatePortal utility to perform actions on a website
located at http://ServerName/site/DynamicsAX.

Create and deploy a new Enterprise Portal website:

AxUpdatePortal -deploy -createsite -websiteurl "http://ServerName/site/DynamicsAx"

Update all components of the Enterprise Portal website:

AxUpdatePortal -updateall -websiteurl "http://ServerName/site/DynamicsAx"

Deploy all proxies to the Enterprise Portal website:

AxUpdatePortal -proxies -websiteurl "http://ServerName/site/DynamicsAx"

Deploy the Customers web control to the Enterprise Portal website:

AxUpdatePortal -updatewebcomponent –treenodepath "\Web\Web Files\Web Controls\Customers"
-websiteurl "http://ServerName/site/DynamicsAx"

Enterprise Search
Enterprise Search in Microsoft Dynamics AX 2012 lets users search for data, metadata, and the
 contents of documents that are attached to records. This search capability is available in both
 Enterprise Portal and the Microsoft Dynamics AX client. Enterprise Search uses the Metadata service
and the Query service in Microsoft Dynamics AX to gather the data and metadata from Microsoft
Dynamics AX. To index and execute search queries, Enterprise Search uses the SharePoint Business
Connectivity Services (BCS).

To enable this rich search functionality, you must install the Enterprise Search component in
 Microsoft Dynamics AX Setup. If you are using SharePoint Standard or Enterprise editions, you do not
need to install any other prerequisites for Enterprise Search because these have search capabilities
built-in. However, if you are using SharePoint Foundation, you need to install Microsoft Search Server
Express as a prerequisite for Enterprise Search.

 CHAPTER 7 Enterprise portal 241

Enterprise Search uses queries to make data searchable in Microsoft Dynamics AX. When
 Enterprise Search is installed, it indexes the default queries and runs a full crawl of the data and
 metadata. If you want to make additional data searchable, use the following sequence of steps:

1. In the AOT, either find the query that fetches the data, or create a new query.

2. Set the Searchable property on the query to Yes.

3. Compile the query and ensure that there are no best practice errors.

4. In the Microsoft Dynamics AX client, start the Enterprise Search Configuration Wizard (System
 Administration > Setup > Search > Search Configuration), which is shown in Figure 7-16.
The wizard will display a list of all queries in the AOT whose Searchable property is set to Yes.

By default, all queries whose Searchable property is set to Yes are selected to be published to
Microsoft Business Connectivity Services (BCS). You can clear any queries that you do not want
to publish.

5. If you wish, use the Select Fields option to prevent specific fields from being indexed.

6. Select the check box to start a full crawl of the data source. Alternatively, you can use Share-
Point Central Administration to start a full or incremental crawl manually.

7. Click Next, and then click Finish.

FIGURE 7-16 Enterprise Search Configuration Wizard.

242 PART 2 Developing with Microsoft Dynamics AX

The Enterprise Search Configuration Wizard uses the credentials of a search crawler account
to index the data and publishes the queries to BCS. You can also see your published queries in
 SharePoint Central Administration under Application Management > Manage Service Applications >
Business Data Connectivity Service.

Changes to metadata information (such as web menus and so on) are rare, so by default, Enterprise
Search executes a full crawl of the metadata only once during installation. On the other hand,
 changes to data (such as sales orders and so on), are frequent. By default, Enterprise Search performs
a full crawl of the data once during installation, and an incremental crawl every day at midnight.

If you publish a new query, you can start a full crawl directly from the Enterprise Search
 Configuration Wizard, as mentioned earlier. You can also start a full or an incremental crawl manually
in SharePoint Central Administration by following these steps:

1. Start SharePoint Central Administration.

2. Navigate to Application Management > Manage Service Applications > Search Service
 Application.

3. In the left navigation pane, under Crawling, click Content Sources. You will see two content
sources: one for data and one for metadata.

4. Click on either content source, and then click either Start Full Crawl or Start Incremental Crawl,
as shown in Figure 7-17. Keep in mind that crawling can take a long time, depending on how
much data or metadata there is to index.

FIGURE 7-17 Starting a crawl by using SharePoint Central Administration.

 CHAPTER 7 Enterprise portal 243

After the data and metadata has been crawled and indexed, it is published to BCS. Users can
 execute searches by using the search box located in the upper-right corner of Enterprise Portal. The
results are trimmed at search time based on the user’s role, language, and other settings, so that users
see only the data that is available and applicable to them.

Themes
Enterprise Portal integrates with SharePoint themes. You can apply an existing SharePoint theme to
the Enterprise Portal site to change its appearance just like any other SharePoint site. Partners and
customers can also create new SharePoint themes and customize or extend the Enterprise Portal style
sheets to map to the new theme.

Enterprise Portal uses five style sheets. AXEP.css is the base style sheet. AXEP_RTL.css is used for
right-to-left languages and cascades on top of AXEP.css. These two files are located on the web server
under <drive>:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\
LAYOUTS\<lcid>\STYLES\Themable. The AXEP_CRC.css, AXEP_CRC_RTL.css, and AXEP_WebPart_
Padding.css style sheets are used for Role Centers when rendered on the Microsoft Dynamics
AX client. These files are located on the web server under <drive>:\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14\TEMPLATE\LAYOUTS\ep\Stylesheets.

The Enterprise Portal master page references these style sheets. The AXEP.css and AXEP_RTL.css
style sheets contain SharePoint theme directives and are therefore placed in the special directory,
where SharePoint can locate them.

When a SharePoint theme is applied to the Enterprise Portal site, SharePoint parses the directives
and makes modifications to reflect the new theme. These modifications include color and font
 replacements and even recoloring of some images. It then stores the modified style sheet and
 images in the SharePoint content database. The master page then references this new style sheet so
 Enterprise Portal appearance reflects the applied theme.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 245

C H A P T E R 8

Workflow in Microsoft Dynamics AX

In this chapter
Introduction . 245
Microsoft Dynamics AX 2012 workflow infrastructure 246
Windows Workflow Foundation . 249
Key workflow concepts . 250
Workflow architecture. 256
Workflow life cycle . 262
Implementing workflows . 263

Introduction

Few people would deny the importance or significance of the processes that drive the businesses and
organizations that we work for and interact with on a daily basis. Business processes represent the key
activities that, when carried out, are intended to achieve a specific goal of value for the business or
organization. For example:

 ■ A manufacturing operation in which business process activities include design, development,
quality assurance testing, and delivery of a saleable (and hopefully profitable) range of goods

 ■ Sales process activities for manufactured items, including marketing, locating prospects,
 providing quotes, converting quotes to orders and prospects to customers, shipping the
 product, invoicing, and obtaining payment

 ■ Supporting activities that contribute to the business or organization in tangible ways, such as
hiring new employees and managing employee expenses

Viewing activities in terms of the business processes that encompass them affords businesses and
organizations the opportunity to systematically define, design, execute, evaluate, and then improve
the way that these activities are performed. This systematic approach is extremely valuable, even
critical, given that today’s businesses and organizations have to react to an increasingly rapid rate of
change and the ever-expanding influence of globalization.

Enterprise resource planning (ERP) suites, such as Microsoft Dynamics AX, exist to automate business
processes and to provide the capability to adapt these processes to the needs of businesses and
 organizations over time. Before Microsoft Dynamics AX 2009, no standard workflow infrastructure existed
in the product, and each company had to write specific business logic to implement everyday activities

C H A P T E R 8

Workflow in Microsoft Dynamics
AX

Introduction

Microsoft Dynamics AX 2012 workflow infrastructure

Windows Workflow Foundation

Key workflow concepts

Workflow document and workflow document class

Workflow categories

Workflow types

Event handlers

Menu items

Workflow elements

Queues

Providers

Workflows

Workflow instances

Work items

Workflow architecture

Workflow runtime

Workflow runtime interaction

Logical approval and task workflows

Workflow life cycle

Implementing workflows

Create workflow artifacts, dependent artifacts, and business logic

State management

Create a workflow category

Create the workflow document class

Add a workflow display menu item

Activate the workflow

246 PART 2 Developing with Microsoft Dynamics AX

such as approvals. The Microsoft Dynamics AX 2009 release included a built-in workflow infrastructure
to make it easier for businesses and organizations to automate and manage business processes. This
 infrastructure has been enhanced further in Microsoft Dynamics AX 2012.

The main difference between business processes and workflows (these terms are often used
 interchangeably) is their scope, level of abstraction, and purpose. Business processes represent
the broad set of activities that a business or organization needs to carry out, along with the
 interrelationships among the activities. Business processes are implementation-independent and can
combine manual and automated activities. Workflows represent the automated parts of a business
process that coordinate various human or system (or both) activities to achieve a particular outcome,
and they are implementation-specific. Therefore, workflows are used to implement parts of a business
process.

Microsoft Dynamics AX 2012 workflow infrastructure

Fundamentally, a workflow consists of one or more activities that represent the items of work to
be completed. In addition, the concept of workflows that connect the activities and govern the
 sequence of execution (referred to as the structure of a workflow) is key. The behavior of a workflow
is determined by its type. Figure 8-1 illustrates the major types of workflows and identifies where the
emphasis of the workflow infrastructure is located in Microsoft Dynamics AX 2012.

Workflow

SystemHuman

Structured
human

Unstructured
human (ad-hoc)

System A

System B

M
icrosoft

D
ynam

ics A
X

FIGURE 8-1 Major types of workflows.

A major distinction exists between human workflows and system workflows. (For more information,
see the “Types of workflows” sidebar on the next page.) Workflows in Microsoft Dynamics AX
2012 are primarily designed to support structured human workflows. Almost 60 structured human
 workflows are included with the product, spanning accounts payable, accounts receivable, budgeting,
fixed assets, general ledger, organization administration, procurement and sourcing, system
 administration, time and attendance, and travel and expense. Whereas the built-in workflows tend

 CHAPTER 8 Workflow in Microsoft Dynamics AX 247

to focus on structured human workflows that obtain approvals, you can also create workflows that
contain tasks for humans to complete or a mixture of structured and unstructured tasks along with
approvals and automated tasks. Customers, partners, and independent software vendors (ISVs) can
create additional workflows to supplement those in the product.

Types of workflows
Workflows are divided into two major types: human and system. This sidebar examines some of
the basic differences between the two types.

Human workflows
A key attribute of a human workflow is that people are involved in the workflow as it executes;
in other words, a human workflow is generally interactive, although it might contain activities
that are non-interactive, such as automated tasks. Most often, the interaction takes the form of
responding to a workflow notification and taking an action of some kind, such as approving or
rejecting the business document being processed. Human workflows can be subdivided further
into structured and unstructured types. Structured human workflows are used for processes in
which execution must be repeatable and consistent over time, such as expense approval and
purchase requisition processing. Structure is important because to improve a business process,
you must have a way to measure the performance of the workflows that are executed to
 automate that business process. If a workflow isn’t structured for repeatability and consistency,
you are going to have a difficult time identifying what to improve.

Unstructured human workflows differ from structured ones in that the exact activity flow
doesn’t have to be defined up front—but it should be possible to easily establish and assign to
the required people. An example of an unstructured human workflow is reviewing a document
where the participants and the type of approval required are decided just before the workflow
starts. This type of human workflow is less useful to analyze for process improvement because
each unstructured workflow might operate differently, depending on how it is used. However,
an unstructured human workflow does help coordinate human activities.

System workflows
A system workflow is a non-interactive workflow that automates a process that spans multiple
systems, such as transferring an order from one system to another. Generally, such workflows
are structured because they must be consistently repeatable.

You often need to combine human and system workflows to implement a given business
process. For example, expense reports must be approved, and then the expense lines must be
posted after approval.

Because existing Microsoft Dynamics AX modules use approvals extensively, the workflow
 infrastructure in Microsoft Dynamics AX 2012 is primarily intended to support structured human
workflows. Focusing on this type of workflow lays the groundwork to help businesses and
 organizations more easily automate, analyze, and improve high-volume workflows across their ERP
systems.

248 PART 2 Developing with Microsoft Dynamics AX

Each structured human workflow in Microsoft Dynamics AX 2012 acts on a single document type
because data is the key constituent of an ERP system. (Think of the broad categories of data that exist
in an ERP system: master data, transaction data, and reference data. Processes that operate within
those systems are largely data-driven.)

Here are some of the key tasks that you can perform with structured human workflows in
 Microsoft Dynamics AX 2012:

 ■ Define the activities that must take place, based on the business process that is being
 automated.

 ■ Define the sequence in which tasks, approvals, subworkflows, and the new workflow elements
in Microsoft Dynamics AX 2012 (manual decisions, automated decisions, parallel activities and
branches, automated tasks, and line-item workflows) execute to reflect the order in which
activities must be completed in a business or an organization.

 ■ Set up a condition to determine which workflow to use in a given situation.

 ■ Decide how to assign an activity to users.

 ■ Specify the text that is displayed in the user interface for the various activities to help users
understand what they need to do.

 ■ Define a set of outcomes for an activity that users can select from.

 ■ Select which notifications to send, which email template to use, when to send the notifications,
and who should receive the notifications.

 ■ Establish how a workflow should be escalated if there is no timely response to an activity.

Four types of users interact with the workflow infrastructure in Microsoft Dynamics AX 2012: business
process owners, developers, system administrators, and end users (called “users” in this book).

Business process owners and developers are primarily responsible for defining, designing, and
developing workflows, whereas system administrators and users interact with workflows that are
executing.

 ■ Business process owners understand the objectives of the business or organization within
which they operate to the degree that they can envision how best to structure the activities
within their areas of responsibility. Business process owners therefore configure workflows that
have already been implemented and work with functional consultants or developers to enable
other modules or create new workflow types in existing modules.

 ■ Developers work with business process owners to design and implement any underlying
business logic that is required to support workflows that are being developed.

 ■ System administrators set up and maintain the development and production
 environments, ensure that the workflow infrastructure is configured correctly, monitor
 workflows as they execute, and take actions to resolve issues with workflows that are
 executing.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 249

 ■ Users interact with workflows when necessary; for example, by submitting a business
 document record, taking a particular action (such as approving or rejecting a document),
entering comments, viewing workflow history, and so on.

Windows Workflow Foundation

The workflow infrastructure in Microsoft Dynamics AX 2012 is related to Windows Workflow
 Foundation (WF), which is part of the Microsoft .NET Framework 4. WF provides many fundamental
capabilities that are used by the workflow infrastructure in Microsoft Dynamics AX 2012. As a
 low-level infrastructure component, however, WF has no direct awareness of or integration with
Microsoft Dynamics AX 2012. In Figure 8-2, the workflow infrastructure (A) is an abstraction layer that
sits above WF (B) and allows workflows that are specific to Microsoft Dynamics AX to be designed,
implemented, and configured in Microsoft Dynamics AX 2012 and then executed by using WF.

Microsoft Dynamics AX 2012
workflow infrastructure

 Windows Workflow Foundation

Workflow runtime

Workflow design
& implementation

(Microsoft Dynamics
AX client)

Workflow UI
(Microsoft Dynamics

AX client and
Enterprise Portal)

Workflow
configuration

(Microsoft
Dynamics AX

client)

B
2

1 4

3

A

FIGURE 8-2 Relationship between the Microsoft Dynamics AX 2012 workflow infrastructure and WF.

In the following list, each numbered item refers to the corresponding part of Figure 8-2:

1. The developer designs and implements workflow elements and business logic in the
Application Object Tree (AOT).

2. The business process owner models workflows using the new graphical workflow editor in the
Microsoft Dynamics AX 2012 client, which is based on the WF Designer.

250 PART 2 Developing with Microsoft Dynamics AX

3. The workflow runtime bridges both the Microsoft Dynamics AX 2012 workflow infrastructure
and WF; it instantiates and then executes workflows. (The system administrator manages the
runtime environments.)

4. Users interact with workflow user interface (UI) controls both in the Microsoft Dynamics AX
2012 Windows client and in the Enterprise Portal web client.

Key workflow concepts

As a Microsoft Dynamics AX developer, workflow is something that you work with to help the users
in a business or organization improve their efficiency. The ultimate goal for workflow in Microsoft
 Dynamics AX 2012 is to make it as easy as possible for business process owners to configure
 workflows fully themselves, freeing developers to work on other activities. Currently, developers and
 business process owners work together to create and customize workflows.

You need to understand a number of key concepts to help business process owners implement
workflows successfully.

Workflow document and workflow document class
The workflow document, sometimes referred to as the business document, is the focal point for
workflows in Microsoft Dynamics AX 2012. Every workflow type and every workflow element must
reference a workflow document because it provides the data context for the workflow. A workflow
document is an AOT query supplemented by a class in the AOT (referred to as the workflow document
class). The term workflow document is used instead of query because it more accurately portrays
what the workflow operates on. The query used by a workflow document can reference multiple
data sources and isn’t constrained to a single table. In fact, a query can reference data sources
 hierarchically. However, if there are multiple data sources within a query, the first data source is
 considered the primary or root data source.

 Tip The workflow document and workflow document class are located in the AOT in the
Microsoft Dynamics AX 2012 client.

Workflow in Microsoft Dynamics AX 2012 incorporates an expression builder that you can use to
define conditions that control the behavior of an executing workflow. The expression builder uses the
workflow document to enumerate the fields that can be referenced in conditions. To make derived
data available within conditions, you add parm methods to the workflow document class, and then
add X++ code to the parm methods to produce the derived data. The workflow document then
 returns the fields from the underlying query plus the data generated by the parm methods.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 251

Workflow categories
Workflow categories determine the association a workflow type has to a specific module. (Without
these categories, you would see all workflows in the context of every module in Microsoft Dynamics
AX 2012.) For example, a workflow category named ExpenseManagement, which is mapped to the
Travel and Expense module, comes with Microsoft Dynamics AX 2012. All workflows associated
with this module are visible in the Microsoft Dynamics AX 2012 client within the Travel and Expense
 module. If you add a new module to Microsoft Dynamics AX 2012, you must create a new module
and a new workflow category that references that module.

Tip Workflow categories are located in the AOT in the Microsoft Dynamics AX 2012 client.

Workflow types
The workflow type (called a “template” in Microsoft Dynamics AX 2009) is the primary building block
that developers use to create workflows. You generate the workflow type by using the new Workflow
wizard, shown in Figure 8-3. The wizard automates the creation of the metadata required for a
 workflow type; all you need to do is specify the name, workflow category, query, and menu items.

FIGURE 8-3 The Create Workflow Type page in the Workflow wizard.

The resulting metadata is created under the AOT\Workflow\Workflow Types node. The business
process owner later references this workflow type when creating an actual workflow.

 Tip Workflow types are located in the AOT in the Microsoft Dynamics AX 2012 client.

252 PART 2 Developing with Microsoft Dynamics AX

For more information about the Workflow wizard, see “How to: Create a New Workflow Type” at
http://msdn.microsoft.com/en-us/library/cc594095.aspx.

Event handlers
Event handlers are well-defined integration points that developers use to trigger application-specific
business logic during workflow execution. Workflow events are exposed at the workflow level and the
workflow element level. For more information about event handlers, including where they are used,
see “Workflow Events Overview” at http://msdn.microsoft.com/en-us/library/cc588240.aspx.

 Tip Event handlers are located in the AOT in the Microsoft Dynamics AX 2012 client.

Menu items
Workflow in Microsoft Dynamics AX 2012 uses both display and action menu items. Display
menu items are used to navigate to a form in the Microsoft Dynamics AX 2012 client that displays
the details of the record being processed by workflow. Web menu items are used to navigate to the
same type of webpage in Enterprise Portal. Action menu items are used for each possible action that a
user can take in relation to a workflow. They also provide another integration point for you to integrate
custom code. For more information about the menu items that are used in the workflow infrastructure,
see “How to: Associate an Action Menu Item with a Workflow Task or Approval Outcome”
(http://msdn.microsoft.com/en-us/library/cc602158.aspx) and “How to: Associate a Display Menu
item with a Workflow Task or Approval” (http://msdn.microsoft.com/en-us/library/cc604521.aspx).

 Tip Menu items are located in the AOT in the Microsoft Dynamics AX 2012 client.

Workflow elements
The elements of a workflow represent the activities within the workflow. The business process owner
models these elements. An element can be a task, an approval, a subworkflow, a manual decision, an
automated decision, a parallel activity with multiple branches, a line-item workflow, or an automated
task. Developers implement the task, approval, line-item workflow, and automated task elements.
The rest are referred to as “configuration only” elements that business process owners can use in the
graphical workflow editor. The following list describes each element:

 ■ Tasks are generic workflow elements that represent a single unit of work. The developer
defines the possible outcomes for each task.

 ■ Approvals are specialized tasks that allow sequencing of multiple steps and use a fixed set
of outcomes.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 253

 ■ Subworkflows are workflows that are invoked from other workflows.

 ■ Manual decisions enable the workflow to follow one of two possible paths based on an
 action taken by a user.

 ■ Automated decisions enable the workflow to follow one of two possible paths based on
a condition.

 ■ Parallel activities contain two or more branches that represent discrete workflows, and they
are executed simultaneously.

 ■ Line-item workflows are modeled within a workflow that exists for a business document
that represents the master in a master-detail relationship. They enable specific workflows to be
instantiated on line items that are associated with the master business document; for example,
expense lines on an expense report.

 ■ Automated tasks are non-interactive and invoke X++ business logic synchronously.

Manual and automated decisions, parallel activity, line-item workflows, and automated tasks are
new in Microsoft Dynamics AX 2012. In addition workflow wizards have been added to make the
creation of approval and task elements easier.

 Tip Workflow elements are located in the AOT in the Microsoft Dynamics AX 2012 client.

Queues
The ability to assign workflow work items to a queue is new in Microsoft Dynamics AX 2012. Queues
offer an alternative to assigning workflow work items directly to users by providing support for teams
that collaborative within a business process. With this approach, a work item is first assigned to a
queue; then, the work item is claimed by a member of the queue so it can be worked on. The eventual
work item owner can also return the work item to the original queue, put the work item in another
queue, or assign the work item to another user.

To use work item queues, complete the following steps:

1. Create one or more work item queues for a selected workflow document (for example,
 purchase requisition header) and assign one or more Microsoft Dynamics AX users to each
queue. These assigned users can view and take action on work items assigned to the queue.
Each queue also has an administrator, which by default is the user who created the queue.

2. Create a work item group, a container for grouping one or more work item queues, and then
add all of the work item queues for a given document type to the work item group.

3. Set the status of the work item queues to Active so that workflows can assign work items to
them.

254 PART 2 Developing with Microsoft Dynamics AX

4. Create a workflow by using a workflow type based on the same business document as the
queue. Model a task element within the workflow and configure it to be assigned to the
 appropriate work item queue.

Note Only work items generated from task elements can be assigned to queues,
because a task can be completed by only a single user. In this case, the queue
 provides a way for users to assign themselves to work items. Approvals differ
from tasks in this respect because approvals are explicitly modeled around an
approval pattern that consists of one or more discrete steps; each step has a
specific type of user assignment and a completion policy that controls when an
approval is complete.

5. Submit a record to workflow. Any work items created for the task element are directed to
the appropriate queue. Users can access work item forms in the Microsoft Dynamics AX 2012
 client and review, accept, and take action on work items in their queue.

For more information about setting up work item queues, see “Configure work item queues” at
http://msdn.microsoft.com/en-us/library/gg731875.aspx.

Providers
Workflow in Microsoft Dynamics AX 2012 uses the provider model as a flexible way of allowing
 application-specific code to be invoked for different purposes when a workflow is executing. There
are four provider types within the workflow infrastructure: due date, participant, hierarchy, and queue.
The way in which provider metadata is stored has changed in this release. In Microsoft Dynamics AX
2009, providers were developed as classes that implemented a provider interface and were registered
on the workflow element as a property. Workflow providers in Microsoft Dynamics 2012 now have
their own node in the AOT (AOT > Workflow > Providers), as shown in Figure 8-4.

FIGURE 8-4 The new Workflow Providers node in the AOT.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 255

In addition each provider now has properties that are used to define the following:

 ■ Their organization scope (AssociationType)

 ■ Whether the provider applies to all workflow types or specific types (Workflow Types subnode)

For more information about workflow providers, including where they are used, see “Workflow
Providers Overview” at http://msdn.microsoft.com/en-us/library/cc519521.aspx.

Workflows
The business process owner creates workflows using the new graphical workflow editor (shown in
 Figure 8-5) in the Microsoft Dynamics AX 2012 client. The business process owner first selects a
workflow type and then configures the approvals, tasks, and other elements that control the flow of
activities through the workflow.

FIGURE 8-5 The new graphical workflow editor.

http://msdn.microsoft.com/en-us/library/cc519521.aspx
http://msdn.microsoft.com/en-us/library/cc519521.aspx

256 PART 2 Developing with Microsoft Dynamics AX

Workflows are located in the Microsoft Dynamics AX 2012 client. A list page containing the
 workflows for a given module is located on the area page for the module under Setup > [module
name] workflows.

Workflow instances
A workflow instance is an activated workflow created by combining the workflow and the underlying
AOT workflow elements on which the workflow is based (the workflow type, tasks, and approvals).

Workflow instances are located in the Microsoft Dynamics AX 2012 workflow runtime.

Work items
Work items are the actionable units of work that are created by the workflow instance at run time.
When a user interacts with a workflow, he or she responds to a work item that has been generated
from a task element, an approval element, or a manual decision. Work items are displayed in the
 Unified worklist web part and in the Microsoft Dynamics AX 2012 client.

Workflow architecture

Microsoft designed the workflow infrastructure based on a set of assumptions and goals related to
the functionality it wanted to deliver. Two assumptions are the most significant:

 ■ Business logic (X++ code) invoked by workflow is always executed on the Application Object
Server (AOS).

 ■ Workflow orchestration is managed by WF in the .NET Framework 4.0.

The first assumption reflects the fact that most business logic already resides and is executed on
the AOS. The second assumption is based on the opportunity to use existing Microsoft technology for
orchestrating workflows in Microsoft Dynamics AX 2012 instead of designing and implementing this
functionality from scratch. In Microsoft Dynamics AX 2012, the WF framework was integrated into
the AOS.

The following primary goals influenced the architecture:

 ■ Create an extensible, pluggable model for workflow integration (including events and
 providers), because the workflow infrastructure had to be flexible enough to address
 application-specific requirements as they pertain to workflow execution.

 ■ Build in scalability that accommodates the growth of workflow usage in Microsoft Dynamics
AX 2012 over time and provides options for scale up and scale out.

 ■ Minimize the performance impact on transactional X++ business logic to invoke workflows.
For example, if workflow activation is triggered from saving a document, no adverse

 CHAPTER 8 Workflow in Microsoft Dynamics AX 257

 performance side effects should result from doing this in the same physical transaction
 (ttsbegin/ttscommit) as the save operation.

The next section expands on the capabilities of the workflow runtime in Microsoft Dynamics AX 2012.

Workflow runtime
Figure 8-6 shows the components of the workflow runtime and their interaction.

AOS

WF plus Microsoft
Dynamics AX extensions

Workflow
instance
storage

Workflow
forms and
controls

Workflow
message
queue

Application
providers
and event
handlers

Client

.NET interop from X++

.NET interop to X++.N
ET

 F
ra

m
ew

or
k

4.
0

W
or

kf
lo

w
 r

un
tim

e
(X

+
+

 c
om

p
ile

d
 t

o
.N

ET
 C

IL
)

Workflow
tracking

Workflow API

Workflow messaging batch job

FIGURE 8-6 Workflow runtime.

The workflow runtime includes the following components:

 ■ Workflow API An application programming interface (API) that exposes the underlying
workflow functionality to the rest of Microsoft Dynamics AX 2012.

 ■ Workflow instance storage Tables that store the serialized workflow instance data.
 Whenever the workflow goes idle waiting for a user or a system action, the workflow instance
is serialized and saved to the database and removed from memory on the AOS.

 ■ Workflow tracking Tables that store the tracking information for a workflow instance.
Tracking information is used to display historical information of completed and pending
 workflow instances.

 ■ Workflow message queue A table that stores the messages used for communication
 between the .NET Framework 4.0 workflow instance and the Microsoft Dynamics AX
2012 workflow runtime in X++. A message exchange is required for any scenario where
 transactional X++ application logic must execute as part of a workflow instance or when user
action is required.

 ■ Application providers and event handlers Application code that is invoked by the
 workflow instance.

258 PART 2 Developing with Microsoft Dynamics AX

 ■ Workflow messaging batch job A server-bound batch job that is dedicated to processing
messages from the workflow message queue. This batch job supports parallel processing of
batch tasks to enable both scaling up and scaling out for workflow processing. The batch job
runs in X++ compiled into .NET common intermediate language (CIL).

 ■ WF plus Microsoft Dynamics AX extensions The workflow framework provided by the
.NET Framework 4.0 together with the Microsoft Dynamics AX custom workflow activities,
custom providers, and custom workflow host.

Workflow runtime interaction
Figure 8-7 shows the logical control flow the workflow runtime uses to process a workflow activation
message.

.NET Framework 4.0

Load workflow model

Generate WF 4.0 activity tree

Activate WF 4.0 workflow

Post workflow started
message, save instance, and

tracking

Unload workflow instance
from memory

Workflow runtime (X++
compiled to .NET CIL)

Message queue

Message queue

Tracking

Instance storage

Activate workflow

Read activation message

Client/EP

Submit document to
workflow

Post workflow activation
message

FIGURE 8-7 Logical workflow runtime control flow used to process a workflow activation message.

As an example of how these components interact at run time, the following sequence explains what
happens when a user clicks Submit to activate a workflow on a record in Microsoft Dynamics AX 2012:

1. The Submit action invokes the Workflow API to post a workflow activation message for the
selected workflow. This causes a message to be posted into the message queue.

2. The message is processed by the messaging batch job that calls the workflow runtime in the
.NET Framework 4.0 to activate the workflow.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 259

3. The Microsoft Dynamics AX extensions to the .NET Framework 4.0 receive the request and first
load the workflow model. The workflow model is the structural representation of the workflow
along with all of the workflow and workflow element properties. This model was created using
the Microsoft Dynamics AX 2012 graphical workflow editor.

4. From the workflow model, the .NET Framework 4.0 workflow activity tree is built. These
are the runtime workflow activities that orchestrate the workflow. These activities are a
 combination of custom Microsoft Dynamics AX 2012 activities and the primitive activities from
.NET Framework 4.0.

5. Once the workflow reaches the first point where application logic may need to run, a message
is posted, the workflow instance state is serialized and saved, and the workflow tracking data
is updated. The workflow started message is posted at this point.

6. After the workflow instance goes idle and is saved to the database, it is removed from
 memory in the AOS to save physical computer resources. The workflow instance is brought
back into memory after the workflow started message is processed and the acknowledge
workflow started message is posted and begins to be processed.

Figure 8-8 shows the logical workflow runtime control flow to process a workflow started message.

Application code (X++
compiled to .NET CIL)

Run application logic

.NET Framework 4.0

Load workflow instance into
memory

Execute workflow

Resume

Workflow runtime (X++
compiled to .NET CIL)

Read workflow started
message

Read acknowledge workflow
started message

Resume workflow

Invoke workflow started
event handler

Post acknowledge workflow
 started message and save

tracking

Instance storage

Message
queue Tracking

Message queue

FIGURE 8-8 Processing a workflow started message.

260 PART 2 Developing with Microsoft Dynamics AX

The flow in Figure 8-8 builds on the flow in Figure 8-7. A workflow started message is currently
posted to the message queue and is ready for processing as follows:

1. The workflow messaging batch job reads the workflow started message from the message
queue. This message was posted by the workflow instance to allow application logic that was
registered for this event to be invoked.

2. The application event handler that was registered for the workflow started event is invoked.
This event handler runs the necessary X++ business logic to update the state of the underlying
document.

3. An acknowledge workflow started message is posted and the workflow started message is
removed from the message queue. Workflow tracking information is also logged at this point.

4. The workflow messaging batch job reads the acknowledge workflow started message and calls
the workflow runtime in .NET Framework 4.0 to resume the workflow instance.

5. Microsoft Dynamics AX extensions to .NET Framework 4.0 receive the request to resume and
then load the serialized workflow instance state from the workflow instance storage. This
 action brings the workflow instance back into memory on the AOS.

6. The workflow instance is placed back into the .NET Framework 4.0 workflow scheduler to be
executed. The workflow then executes until the next point that X++ application logic needs
to be invoked or until the workflow assigns work to users. Both of these represent points in
the workflow instance where the instance must wait for either a system action (for example,
processing the application event handler) or a human action (for example, a user approving an
expense report).

Logical approval and task workflows
Another way to visualize how the key workflow concepts and architecture come together is to look at the
interaction patterns of approval and task elements at run time. Four main types of interactions can occur:
workflow events, acknowledgments (of events), provider callbacks, and infrastructure callbacks.

 ■ Workflow event The workflow instance posts a message, saves the workflow instance,
inserts tracking information, and removes the originating message. The workflow instance
then waits for the corresponding message to be processed. The workflow messaging batch
job processes the message by invoking the event handler on the corresponding workflow
type, task, approval, or automated task. Then the workflow messaging batch job posts the
 acknowledgment message.

 ■ Acknowledgment An acknowledgment message is the response to an event triggered from
a workflow instance. Upon receiving the acknowledgment, the workflow instance is loaded
from workflow instance storage back into memory and is resumed.

 ■ Provider callback A call from the workflow instance to an application-defined workflow
provider (for example, to resolve users for assignment or to calculate a due date). Workflow
providers are integration points for developers to inject custom code for resolving users, due

 CHAPTER 8 Workflow in Microsoft Dynamics AX 261

dates, user hierarchies, or queues. A provider callback is a synchronous call from the workflow
instance back into an X++ workflow provider.

 ■ Infrastructure callback A call from the workflow instance back into X++ to perform
 infrastructure-related activities. One example is to create work items for each user returned
from a call to a participant provider.

Figure 8-9 shows the logical workflow interactions for approvals.

Workflow

Approval

Start

Start

Start

Work item

Complete

Step

Approve Reject

Complete

Request change

Legend:

Event

Acknowledgment Infrastructure callback

Provider callbacks

FIGURE 8-9 Logical approval workflow interactions.

In Figure 8-9, the outermost box represents the workflow itself. Nested inside are the approval
(element) and within that, a single step. (An approval can contain multiple steps.) The smaller
 rectangular boxes represent events or outcomes. The symbols in the legend represent the four
interaction types, which are positioned in Figure 8-9 where that type of interaction occurs. When
the workflow starts, an event and an acknowledgment occur. Acknowledgments confirm that the
 workflow runtime received and processed a preceding event. A similar event and acknowledgment
occur for the start of the approval element. When a step starts, callbacks invoke the workflow

262 PART 2 Developing with Microsoft Dynamics AX

 providers to resolve the users for assignment and the due dates for the corresponding work items.
The work items are then created through an infrastructure callback, and the workflow instance waits
for the corresponding acknowledgments from the work items. Acknowledgments for work items are
triggered when users take action on their assigned work items. After the step (or steps) complete, the
outcome is determined based on the completion policies of the step, and the corresponding event
is raised for that outcome. The workflow instance then waits for acknowledgment that the workflow
runtime has processed the event that is associated with the outcome. Finally, the completion of the
workflow itself raises an event.

Task interactions are similar to approvals, except that no steps and outcomes are unique for each
task. Figure 8-10 shows the logical workflow interactions for tasks.

Workflow

Task

Start

Start

Init

Work item

Outcome1 Outcome2

Complete

OutcomeN

Legend:

Event

Acknowledgment Infrastructure callback

Provider callbacks

FIGURE 8-10 Logical task workflow interactions.

Workflow life cycle

This section describes the workflow process improvement life cycle, shown in Figure 8-11, and
 explains the implementation aspects of the life cycle in detail.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 263

Analyze Design

Run
Implement/
configure

FIGURE 8-11 The workflow life cycle in Microsoft Dynamics AX 2012.

The workflow life cycle has four phases:

 ■ Design Business process owners use their understanding of the organization to decide which
parts of a business process that traverses Microsoft Dynamics AX 2012 need to be automated
and then design a workflow to achieve this automation. They can collaborate with developers
in this phase, or they might just communicate the workflow requirements to the developers.

 ■ Implement and configure Developers implement workflow artifacts in Microsoft Dynamics
AX 2012 based on the design of the business process. Business process owners then model the
workflow using the graphical workflow editor. If this work is carried out on a test system, after
successfully testing the workflow, the system administrator deploys the related artifacts and
workflows to the live, or production, system.

 ■ Run Users interact with Microsoft Dynamics AX 2012 as part of their day-to-day work, and in
the course of doing so, might submit workflow documents to the workflow for processing or
interact with workflows that are already activated.

 ■ Analyze Business process owners evaluate the performance of the workflows that have been
designed, implemented, and executed using the workflow analytical cube and performance
reports introduced in Microsoft Dynamics AX 2012 to determine if any further changes are
warranted.

This cycle is therefore repeated when a workflow that has been designed, implemented and
 configured, and deployed has to change in some way. Aside from performance, a change might result
from a change in the business process or in the organization.

Implementing workflows

You can use the Microsoft Dynamics AX 2012 workflow infrastructure to automate aspects of a
 business process that are part of a larger business process automation effort. There is no single,
 correct approach to this undertaking. However, at a high level, you can follow the steps listed here to
figure out and understand your existing business processes, determine how these business processes
should function, and finally, to automate them by using workflow.

264 PART 2 Developing with Microsoft Dynamics AX

1. Map out existing business processes. This effort is often referred to as developing the as-is
model and may involve the use of a business process modeling tool.

2. Analyze the as-is model to determine whether obvious improvements can be made to existing
processes. These improvements are represented in another business process model, which is
often referred to as the to-be model.

3. Design the way in which you’re going to implement the to-be business process model—or
the changes to the as-is model suggested by the to-be model. In this step, you might decide
which parts of the to-be business process should be automated with workflow and which
parts should remain manual.

4. For the parts of the business process model in which workflow is going to be used—and for
the parts you want to automate—define the workflow document and then design one or
more workflows. This step centers on the workflow document that the workflow will act on.

5. Implement the building blocks for the workflows, such as the business logic, and enabling
workflow in the Microsoft Dynamics AX client, Enterprise Portal, or both.

6. Configure and enable the workflows, causing workflow instances to be created when a record
for the workflow document is submitted.

The major advantage of the workflow infrastructure in Microsoft Dynamics AX 2012 is that
it provides a significant amount of functionality out of the box, meaning that you don’t have to
write custom workflows. Businesses and organizations have more time to focus on improving their
 processes instead of writing and rewriting business logic.

Create workflow artifacts, dependent artifacts, and
business logic
As a developer, once you understand the workflow requirements that the business process owner
provides, you must create the corresponding workflow artifacts, dependent workflow artifacts, and
business logic. You create these in the AOT by using the Microsoft Dynamics AX 2012 client. You write
the business logic in X++.

Table 8-1 lists each workflow artifact and the steps you need to perform when creating it. The
artifacts are listed in order of dependency.

TABLE 8-1 Workflow artifacts.

Artifact Steps

Workflow category 1. Define the module in which the workflow type is enabled.
For more information, see the section “Key workflow concepts,” earlier in this chapter,
and “How to: Create a Workflow Category” at http://msdn.microsoft.com/en-us/library/
cc589698.aspx.

Approval 1. Define the approval workflow document.
2. Define approval event handlers for Started and Canceled.
3. Define approval menu items for Document, DocumentWeb, Resubmit, ResubmitWeb,

Delegate, and DelegateWeb.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 265

Artifact Steps

4. Enable or disable approval outcomes.
5. Define approval outcome menu items for Action and ActionWeb.
6. Define an approval outcome event handler.
7. Define the DocumentPreviewFieldGroup.
For more information, see “How to: Create a Workflow Approval” at
http://msdn.microsoft.com/en-us/library/cc596847.aspx.

Task 1. Define the task workflow document.
2. Define task event handlers for Started, Canceled and WorkItemCreated.
3. Define task menu items for Document, DocumentWeb, Resubmit, ResubmitWeb,

Delegate, and DelegateWeb.
4. Add or remove task outcomes.
5. Define task outcome menu items for Action and ActionWeb.
6. Define task outcome event handler.
7. Define the DocumentPreviewFieldGroup.
For more information, see “How to: Create a Workflow Task” at
http://msdn.microsoft.com/en-us/library/cc601939.aspx.

Automated Task 1. Define the automated task workflow document.
2. Define automated task event handlers for Execution and Canceled.
For more information, see “Walkthrough: Adding an Automated Task to a Workflow” at
http://msdn.microsoft.com/en-us/library/gg862506.aspx.

Workflow type 1. Define the workflow document.
2. Define event handlers for workflow Started, Completed, ConfigDataChanged, and

Canceled.
3. Define menu items for SubmitToWorkflow, SubmitToWorkflowWeb, Cancel, and

CancelWeb.
4. Define the workflow category. (Select a category from the existing categories.)
5. Define supported approvals, tasks, and automated tasks (these will then be displayed in

the graphical workflow editor.)
6. Enable or disable activation conditions for workflows based on the type.
For information about creating workflow types, see “Walkthrough: Creating a Workflow
Type” at http://msdn.microsoft.com/en-us/library/cc641259.aspx.

Table 8-2 identifies the dependent workflow artifacts that are referenced in Table 8-1.

TABLE 8-2 Dependent workflow artifacts.

Dependent workflow artifact Description

Workflow document query This query defines the data in Microsoft Dynamics AX 2012 that a workflow
acts on and exposes certain fields that the business process owner uses for
constructing conditions in the graphical workflow editor. The query is defined
under the Queries node in the AOT and it is required for all workflows.

Workflow document class This X++ class references the workflow document query and any calculated
fields to be made available when constructing conditions. This class is created
under the AOT\Classes node and extends the WorkflowDocument base class.
This class is required because workflow types and elements must bind to a
workflow document class.
For information about derived data, see the section “Key workflow concepts,”
earlier in this chapter.

SubmitToWorkflow class This X++ class is the menu item class for the SubmitToWorkflow menu item
that displays the Submit To Workflow dialog box in the Microsoft Dynamics
AX 2012 user interface. The Submit To Workflow dialog box allows the user to
enter comments associated with the submission. A SubmitToWorkflow class then
 activates the workflow. If state is being managed in the record that has been
submitted to workflow, this class can be used to update the state of the record.
This class is created under the Classes node of the AOT.

http://msdn.microsoft.com/en-us/library/cc641259.aspx

266 PART 2 Developing with Microsoft Dynamics AX

Dependent workflow artifact Description

State model A defined set of states and state transitions (supported changes from one state
to another) used to track the status of workflow document records during their
life cycle. For example, a document can have the following states:
Not Submitted, Submitted, ChangeRequested, or Approved. There is currently no
state model infrastructure in Microsoft Dynamics AX, so you must implement
any state model that is required.
For more information, see the section “State management,” later in this chapter.

Event handlers Event handler code consists of business logic that is written in X++ and then
referenced in the workflow type, the approval element, approval outcomes, the
task element, task outcomes, and the automated task element. If a workflow
document has an associated state model, you must write event handler code
to transact workflow document records through the state model when being
 processed by using workflow. Event handler X++ code is created under the
AOT\Classes node.

Action and display menu items For information about menu items, see the section “Key workflow concepts,”
earlier in this chapter.
Both types of menu item are created under the AOT\Menu Items or
AOT\Web\Web Menu Items node.
For more information about the menu items used in the workflow
 infrastructure, see “How to: Associate an Action Menu Item with a Workflow
Task or Approval Outcome” (http://msdn.microsoft.com/en-us/library/cc602158.aspx)
and “How to: Associate a Display Menu item with a Workflow Task or Approval”
(http://msdn.microsoft.com/en-us/library/cc604521.aspx).

Custom workflow providers If the functionality of the workflow providers included with Microsoft Dynamics
AX 2012 isn’t adequate for a given set of requirements, you can develop your
own workflow provider. Custom workflow provider X++ classes are created
 under the AOT\Classes node and then referenced in one or more providers
(under the AOT\Workflow\Providers node).
For more information about workflow providers, including where they are used,
see “Workflow Providers Overview” at
http://msdn.microsoft.com/en-us/library/cc519521.aspx.

canSubmitToWorkflow method This method is required to inform the workflow common UI controls that the
record in the form is ready to be submitted to the workflow. While in Microsoft
Dynamics AX 2009, the form canSubmitToWorkflow method was overridden,
in Microsoft Dynamics AX 2012, this logic can be implemented on the table’s
 canSubmitToWorkflow method instead.

State management
A state model defines a set of states and the transitions that are permitted between the states for
a given record type, along with an initial state and a final state. State models exist to provide a
 prescriptive life cycle for the data they are associated with. The current state value is often stored
in a field on a record. For example, the PurchReqTable table (the header for a purchase requisition)
has a status field that is used to track the approval state of a purchase requisition. The business logic
for purchase requisitions is coded to respect the meaning of each state and the supported state
 transitions so that a purchase requisition record can’t be converted into a purchase order before the
state is approved.

The simplest way to add and manage the state on a record is to use a single field to store the
 current state, but you have to determine the approach that makes the most sense. You would
then create a static X++ class that implements the business logic that governs the state transition.
 Conceptually, you can think of this class as a StateManager class. All existing business logic that

http://msdn.microsoft.com/en-us/library/cc604521.aspx
http://msdn.microsoft.com/en-us/library/cc519521.aspx

 CHAPTER 8 Workflow in Microsoft Dynamics AX 267

 performs the state transitions should be refactored to use this single, central class to perform the
state transitions, in effect isolating the state transition logic into a single class. From a workflow
perspective, state transitions always occur at either the beginning or the conclusion of a workflow
 element. This is why all workflow tasks and workflow approvals have EventHandlers that can be used
to invoke a StateManager class. Figure 8-12 shows the dependency chain between an event handler
and the workflow document state.

FIGURE 8-12 State management dependency chain.

When you decide to enable a workflow for a table in Microsoft Dynamics AX 2012 and determine
that the table has a state that must be managed, you must refactor all business logic to respect the
state model that you define to avoid unpredictable results. Create operations should always create
a record with the initial state (for the state model). Update operations must respect the current state
and fail if the state isn’t as expected. For example, it shouldn’t be possible to change the business
 justification of a purchase requisition after it has been submitted for approval. Managing the state of
the record during each update so that the current state is verified and the next logical state is
updated is typically implemented in the update method on the table by calling the StateManager
class. If it returns a value of true, perform the update. If not, throw an exception and cancel the
operation. Figure 8-13 shows a simple state model for a record.

NotSubmitted Submitted

ChangeRequested

PendingApproval Approved

FIGURE 8-13 A simple state model for approvals.

In Figure 8-13, the initial state is NotSubmitted. When a record is submitted to workflow, the state
changes to Submitted. After the workflow is activated, the state becomes PendingApproval. If
a workflow participant selects the Request Change action, the state changes to ChangeRequested.
After all approvals are submitted, the final state is Approved.

268 PART 2 Developing with Microsoft Dynamics AX

Create a workflow category
You use workflow categories to associate a workflow type with a module. This association restricts
the list of types that are shown when the business process owner edits a workflow for a particular
module, preventing a list of all workflow types from being displayed. For example, if a user is in the
Accounts Payable module, the user sees only the workflow types that are bound to Accounts Payable.
The mechanism behind this grouping is a simple metadata property on the workflow type called
Workflow category. This property allows you to select an element from the module enum (AOT\Data
Dictionary\Base enums\ModuleAxapta).

With this mechanism, it is easy for ISVs and partners who create their own modules to extend the
module enum and thus have workflow types that can be associated with that module. Note that a
workflow category can be associated with only one module.

Create the workflow document class
The purpose of a workflow is to automate all or part of a business process. To do this, it must be
possible to define various rules for the document that is being processed by workflow. In Microsoft
Dynamics AX 2012, these rules are called conditions. A business process owner creates conditions
when modeling the workflow. For example, conditions can be used to determine whether a purchase
requisition is approved automatically (without any human intervention). Figure 8-14 shows a simple
condition defined in the graphical workflow editor.

FIGURE 8-14 A simple condition defined in the graphical workflow editor.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 269

When a business process owner defines a condition by using the graphical workflow editor, he or she
needs to make sure that users have a way to select the fields from the workflow documents they want to
use. On the surface, this seems simple, but two requirements complicate the task. First, not all the fields in
a table might make sense to the business process owner, and therefore only a subset of the fields should
be exposed. Second, it must be possible to use calculated fields (also called derived data). The workflow
document class meets these two requirements by functioning as a thin wrapper around an AOT query that
defines the available fields and by providing a mechanism for defining calculated fields.

The AOT query enables developers to define a subset of fields from one or more related tables. By
adding nested data sources in a query, you can model complex data structures. However, the most
common usage is to model a header-line pattern. At design time, when the business process owner is
editing a workflow, the AOT query is used by the condition editor to determine which fields to display
to the business process owner.

The workflow infrastructure uses a prescriptive pattern to support calculated fields by using parm
methods that are defined within the workflow document class. These methods must be prefixed with
parm and must implement a signature of (CompanyId, TableId, RecId). The workflow infrastructure then, at
run time, calls the parm method and uses the return value in the condition evaluation. This design enables
developers to implement calculated fields in parm methods on the workflow document class.

Note When the expression builder constructs the list of fields, it uses the labels for the
table fields as the display names for the fields. The display name for a calculated field is
defined by the extended data type label of the return types. For enums, this is defined by
the enum element label.

Creating a workflow document class involves creating an X++ class that extends WorkflowDocu-
ment. You must override the getQueryName method to return the name of the workflow document
query. Figure 8-15 shows a sample X++ class that extends WorkflowDocument.

FIGURE 8-15 A sample X++ class that extends from the workflow document.

270 PART 2 Developing with Microsoft Dynamics AX

Creating a parm method involves adding a method to the workflow document class and then
 adding X++ code to calculate or otherwise determine the value to be returned, as shown in
Figure 8-16.

FIGURE 8-16 A parm method within a workflow document class that returns the approval amount (which is
 calculated).

Add a workflow display menu item
Workflow display menu items enable users to navigate directly to the Microsoft Dynamics AX 2012
client form (or Enterprise Portal webpage) from which they can select one of the available workflow
actions. A user is prompted to participate in a workflow when he or she receives a work item from the
workflow at run time. When viewing the work item, the user can click Go To <Label>. This button is
automatically mapped to the workflow display menu item, and the button text (<Label>) is the label
of the root table of the workflow document query.

This design enables developers to create task-based forms that are focused on the particular task
at hand, rather than having to create monolithic forms that assume the user knows where in the
 process he or she is acting and which fields and buttons to use.

Activate the workflow
Workflows in Microsoft Dynamics AX 2012 are always explicitly activated; either a user does
 something in the Microsoft Dynamics AX 2012 client or in Enterprise Portal that causes workflow
 processing to start, or the execution of business logic starts a workflow. (Once you understand how
users activate a workflow, you can use this knowledge to activate workflows through business logic.)

 CHAPTER 8 Workflow in Microsoft Dynamics AX 271

For the first activation approach to work, the workflow infrastructure must have a way to
 communicate information to the user about what to do. For example, it might be relevant to instruct
the user to submit the purchase requisition for review and approval at the appropriate time. The
 requirements to communicate with users throughout the workflow life cycle gave Microsoft an
 opportunity to standardize the way users interact with workflow in both the Microsoft Dynamics
AX 2012 client and Enterprise Portal, including activating a workflow, and this resulted in the
 development of workflow common UI controls. The workflow common UI controls include the yellow
workflow message bar (highlighted in Figure 8-17) and the workflow action button, labeled Submit.

FIGURE 8-17 A purchase requisition ready to be submitted to workflow for processing.

The workflow common UI controls appear on the Purchase requisition form because that form
has been enabled for workflow. To enable workflow in a form, you set the WorkflowEnabled property
on the form to Yes in the Properties window, which is shown in Figure 8-18. You must also set the
WorkflowDataSource property to one of the data sources on the form. The selected data source must
be the same as the root data source that is used in the query referenced by the workflow document.
Finally, you can set the WorkflowType property to constrain the form to use a specific workflow type.

272 PART 2 Developing with Microsoft Dynamics AX

FIGURE 8-18 Design properties for a Microsoft Dynamics AX 2012 form, including those for workflow.

If workflow is enabled for a form, the workflow common controls automatically appear in three
cases:

 ■ When the currently selected document can be submitted to workflow
(the canSubmitToWorkflow table or form method returns true)

 ■ When the current user is the originator of a workflow that has acted on the currently selected
document

 ■ When the current user has been assigned to a work item for which he or she must take an
 action

The workflow common control uses the algorithm shown in Figure 8-19 to determine which
 workflow to use.

After a workflow has been identified, it’s easy for the workflow common UI controls to obtain the
SubmitToWorkflow action menu item. This action menu item is then dynamically added to the form,
along with the yellow workflow message bar.

If you look at the SubmitToWorkflow action menu item for the PurchReqApproval workflow type,
you’ll notice that it is bound to the PurchReqWorkflow class. When you click the Submit button, the
action menu items call the main method on the class it is bound to; thus, the code that activates the
 workflow is called from the main method. In this case, the call to the workflow activation API has
been isolated within the submit method.

 CHAPTER 8 Workflow in Microsoft Dynamics AX 273

Start

The workflow common UI
controls ask the form
whether the record is in a
state to submit.

Workflow UI
controls call
back to the
form asking for
an application-
defined workflow.

OK to
submit

record on form to
workflow?

Infer
workflow
to use?

Yes

Yes

No

Use the
application-

defined
workflow.

Display the
workflow

message bar
and Submit

button.

Search for
workflows for
workflow type

specified on the
form.

Found any
active

workflow?

Found
multiple
active

workflows?

Evaluate
activation

conditions for each
workflow found.

No

Multiple
workflow

evaluate to
true?

Use the default
workflow.

The fact that a workflow is
the “default” one is set in
the workflow itself.

Use the workflow
that evaluated to

true.

Display the
workflow message

bar and Submit
button.

No
End

End

Yes

Yes

Yes

Do not display the
workflow message

bar and Submit
button.

End

No

No

FIGURE 8-19 Workflow activation logic flowchart.

In Figure 8-20, notice how the Workflow::activatefromWorkflowType method is used. You can use
two additional APIs to activate workflows: Workflow::activatefromWorkflowConfiguration and
Workflow::activateFromWorkflowSequenceNumber.

274 PART 2 Developing with Microsoft Dynamics AX

FIGURE 8-20 The Submit method for the purchase requisition workflow.

For information about how to use these APIs, see the Microsoft Dynamics AX 2012 developer
documentation on MSDN: http://msdn.microsoft.com/en-us/library/cc586793.aspx.

Understanding how to activate a workflow is important, but it is equally important to understand
how to prevent a workflow from being activated. For example, you don’t want a user to submit a
record to workflow before it is in a state to be submitted. An override method on the table or form,
canSubmitToWorkflow, addresses this requirement. The canSubmitToWorkflow method returns a
 Boolean value. A value of true indicates that the record can be submitted to workflow. When the
workflow data source on the form is initialized or when the record changes, this method is called; if
it returns true, the Submit button is enabled. Typically, you should update the state of the document
after invoking the workflow activation API so that you can correctly denote whether a document has
been submitted to workflow. (In Figure 8-20, the purchase requisition is transitioned to the In Review
state.)

Note If the canSubmitToWorkflow method hasn’t been overridden either at the table or
form level, the workflow common UI controls won’t appear, leaving a reserved space at the
top of the form usually occupied by the controls.

http://msdn.microsoft.com/en-us/library/cc586793.aspx

 CHAPTER 9 Reporting in Microsoft Dynamics AX 275

C H A P T E R 9

Reporting in Microsoft
Dynamics AX

In this chapter
Introduction . 275
Inside the Microsoft Dynamics AX 2012
reporting framework . 276
Plan your reporting solution . 279
Create production reports . 281
Create charts for Enterprise Portal . 289
Troubleshoot the reporting framework . 296

Introduction

Reporting is critical for any organization because it is a primary way that users gain visibility into the
 business. Reports help users understand how to proceed in their day-to-day work, make more-informed
decisions, analyze results, and finally take action. Microsoft Dynamics AX 2012 provides a variety of
 reporting tools that developers can use to create appealing and useful reports for both the Microsoft
Dynamics AX Windows client and the Microsoft Dynamics AX Enterprise Portal web client.

Microsoft Dynamics AX 2012 and Microsoft Dynamics AX 2012 R2 have introduced some
 important enhancements to the Microsoft Dynamics AX reporting framework.

Microsoft SQL Server Reporting Services (SSRS) was introduced in Microsoft Dynamics AX 2009.
In Microsoft Dynamics AX 2012, the SSRS reporting framework has become the primary reporting
engine for Microsoft Dynamics AX. The SSRS platform provides customers with access to an expanded
pool of resources, including developers, partners, and documentation to support this standard
 industry solution.

Note Microsoft Dynamics AX 2012 continues to offer the MorphX platform as a fully
 integrated solution and to allow customers enough time to transition their existing
 reporting solutions to the SSRS framework.

Microsoft Dynamics AX 2012 also offers enhanced integration with Microsoft Visual Studio 2010.
New Visual Studio report templates are available for Microsoft Dynamics AX, and you can use Visual

C H A P T E R 9

Reporting in Microsoft Dynamics
AX

Introduction

Inside the Microsoft Dynamics AX 2012 reporting framework

Client-side reporting solutions

Server-side reporting solutions

Report execution sequence

Plan your reporting solution

Reporting and users

Roles in report development

Create production reports

Model elements for reports

SSRS extensions

Microsoft Dynamics AX extensions

Create charts for Enterprise Portal

Microsoft Dynamics AX chart development tools

Integration with Microsoft Dynamics AX

Data series

Add interactive functions to a chart

Override the default chart format

Troubleshoot the reporting framework

The report server cannot be validated

A report cannot be generated

A chart cannot be debugged because of SharePoint sandbox issues

276 PART 2 Developing with Microsoft Dynamics AX

Studio to create both auto-design and precision design reports more easily. The Enterprise Portal (EP)
Chart Control is a new chart data visualization tool introduced in the Microsoft Dynamics AX 2012
R2 release. This tool provides a high-performance alternative to SSRS reports in Role Centers and
other pages in Enterprise Portal. The EP Chart Control is the recommended solution for interactive
 presentations for large volumes of data in Enterprise Portal. This new utility is an extension of the
ASP.Net Chart Control and provides access to all of its underlying functions, including 35 distinct chart
types. The EP Chart Control provides automatic element formatting to make charts look appealing
and offers declarative solutions for accessing Microsoft Dynamics AX data that is captured in both
online analytical processing (OLAP) and online transaction processing (OLTP) databases, simplifying
the developer experience.

This chapter focuses on using Visual Studio to create SSRS reports for the Microsoft Dynamics AX
client and charts for EP. For a complete list of new developer features for this release, see “What’s
New: Reporting for Developers in Microsoft Dynamics AX 2012,” at http://msdn.microsoft.com/en-us/
library/gg724100.aspx.

Inside the Microsoft Dynamics AX 2012 reporting framework

This section compares client-side and server-side reporting solutions, and provides insights into
how the Microsoft Dynamics AX reporting framework offers seamless integration that enables easy
 access to OLTP data and aggregated data that is managed in SQL Server Analysis Services (SSAS). This
 section also identifies the key components of the Microsoft Dynamics AX 2012 reporting framework
and describes their functions.

In the realm of reporting, there are two primary architectures to compare when considering a
solution: client-side and server-side. Briefly stated, client-side reporting uses the power of the client
to carry the bulk of the load when reports are constructed. The MorphX reporting framework is an
 example of a client-side reporting solution. For the most part, server requests are made simply to
access the data. Server-side reporting, on the other hand, uses various server resources to aid in the
processing and construction of a report. The Microsoft Dynamics AX 2012 reporting framework is
a server-side reporting solution. As you might expect, there are many trade-offs between the two
models. The next sections discuss some of the benefits and limitations that are associated with
each design.

Client-side reporting solutions
As mentioned earlier, the MorphX framework is a proprietary client-side solution that is fully
 integrated into the Microsoft Dynamics AX integrated development environment (IDE). In this model,
reports contain references to data sources that are bound to local Microsoft Dynamics AX tables and
views. They also define the business logic.

Figure 9-1 illustrates the architecture of a client-side reporting solution.

http://msdn.microsoft.com/en-us/library/gg724100.aspx
http://msdn.microsoft.com/en-us/library/gg724100.aspx

 CHAPTER 9 Reporting in Microsoft Dynamics AX 277

Headquarters

Retail

AOS service

CLIENT-SIDE REPORTING SOLUTIONS

AOS servers

Client workstation

Remote
session

Microsoft Dynamics AX
OLTP database

N
etw

ork b
ound

ary

Sales and
marketing

OLTP DATA
ACCESS

BATCH
PROCESSING

FIGURE 9-1 A client-side reporting solution.

The key benefits of a client-side reporting solution include the following:

 ■ Business logic is executed along with the design definition, allowing for programmable
 sections in reports.

 ■ No deployment is needed: you import the report, and it’s immediately available to the client.

 ■ X++ developers can use familiar tools to construct report designs.

Notable disadvantages of a client-side reporting solution include the following:

 ■ Client components must be installed for a user to be able to view a report.

 ■ Users outside the domain, (outside the network boundary shown in Figure 9-1), must connect
to a Microsoft Dynamics AX client through Remote Desktop Connection to access reports.

 ■ Access is limited to the data that is accessible from the client.

 ■ Components such as business logic, parameter management, and designs cannot be shared
across reporting solutions.

Server-side reporting solutions
SSRS, the primary reporting platform for Microsoft Dynamics AX, is a server-side reporting solution.
This framework takes advantage of an industry solution that offers comprehensive reporting
 functionality for a variety of data sources. This platform includes a complete set of tools that you can
use to create, manage, and deliver reports. With SSRS, you can create interactive, tabular, graphical,
or free-form reports from relational, multidimensional, or XML-based data sources.

Figure 9-2 illustrates the architecture of a generic server-side reporting solution.

278 PART 2 Developing with Microsoft Dynamics AX

Headquarters

Retail

Reporting server

SERVER-SIDE REPORTING SOLUTIONS

AOS servers
Client workstation

Direct connection

Microsoft Dynamics AX
OLTP database

Analysis
services

N
etw

ork b
ound

ary

Sales and
marketing

- Customize design
- Rendering

- OLTP data access
- Business logic
- Security
- Batch processing

Load balancer

Web
services

FIGURE 9-2 A server-side reporting solution.

The key benefits of a server-side reporting solution are as follows:

 ■ It provides access to external data sources, including SSAS and web services.

 ■ It supports reporting in thin clients, with no additional client components required. Users
 outside the domain (shown as the network boundary in Figure 9-2) can connect to
Enterprise Portal to access reports, instead of having to connect remotely to the Microsoft
Dynamics AX client, as in a client-side reporting solution.

 ■ The workload for report rendering is performed on the server.

 ■ Design caching improves the overall performance of report generation.

The key limitations of a server-side reporting solution are as follows:

 ■ The lack of a direct connection to local printers affects some scaling scenarios.

 ■ Report modifications must be deployed before they can be accessed by the client.

 ■ It requires additional server management for system administrators.

Report execution sequence
Figure 9-3 illustrates the architecture of the Microsoft Dynamics AX 2012 reporting framework.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 279

End user workstation

Microsoft Dynamics AX client

Menu item Parameters form

Report viewer Customization
extension

Report (.rdl file) Data extension

AOT

Query

Metadata
service

Query web
service

SSRS instance Services

Report server Microsoft Dynamics AX server

1 2

5 4

3

FIGURE 9-3 The Microsoft Dynamics AX 2012 reporting framework.

The following list corresponds to the numbered items in Figure 9-3:

1. Menu item An entry point into the report execution sequence. Menu items contain
 predefined hyperlinks that are used to instantiate and execute reports. Configuration keys can
be linked to menu items to manage user access.

2. Report definition (.rdl file) An XML representation of an SSRS report definition, containing
both the data retrieval and design layout information for a given report.

3. Application Object Server (AOS) The core of the Microsoft Dynamics AX server platform.
The query web service is used to access OLTP data.

4. Customization extension Design customizations are applied to produce a personalized
view of the report.

5. Report viewer The report is rendered for the user in the client.

Plan your reporting solution

Applying a well-thought-out design will greatly simplify the development process and ongoing task
of maintaining your report. This requires planning based on your unique set of report requirements.

Reporting and users
You can create two types of reports in Microsoft Dynamics AX: production reports, which present
data that is predefined, and ad hoc reports, which present data that is selected by users. When
 planning out your reporting solution, ask yourself the following questions:

 ■ Who are the users of the report, and what are their roles within the business?

 ■ What information do the users need to complete their tasks?

 ■ How do the users want to respond to the information that is presented?

280 PART 2 Developing with Microsoft Dynamics AX

You can categorize reporting functions on two axes: data depth and business activity. As shown in
Figure 9-4, the roles that users play in an organization and their unique reporting requirements fall at
one point (or perhaps several points) on these axes.

CEO

Operational activity Strategic activity

Business activity

Raw data

D
at

a
de

pt
h

Summarized
data

Aggregated and
analyzed data Analyst

Shop floor
worker

FIGURE 9-4 An illustration of how users in various business roles work with different views of business data that
require different kinds of reports.

Here are some details about the reporting needs of the roles shown in Figure 9-4:

 ■ The CEO, who is interested in monitoring the health of the business, periodically uses strategic
reports that provide summarized views of data across time periods.

 ■ The analyst examines the business, looking for patterns that might lead to a change in
 business plans and priorities. Analysts rely on reports that allow the data to be interactive,
so that data can be sliced by department or region. They also value visuals that simplify the
 process of detecting patterns and trends that may feed into the CEO’s decisions.

 ■ The shop floor worker is primarily concerned with the day-to-day activities of the business
and uses reports that reflect the immediate needs of his or her area. An inventory list is a
simple type of report that the shop floor worker finds great value in.

Roles in report development
The role of report developer can literally be split into two distinct functions:

 ■ Constructing the report dataset This task consists of identifying all data elements that are
either visualized in the report dataset or used to support user interactions. This task is well
suited to developers who are familiar with the MorphX development environment and the
structure of the customer’s business data.

 ■ Defining the report design Authoring report designs requires familiarity with the report
design experience provided by Visual Studio 2010.

Dividing these tasks among more than one individual is ideal because it encourages a clear
 separation between the business logic and the presentation layer.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 281

Figure 9-5 provides a high-level view of the report development process.

Design

Develop

DEV TEST PROD

Test Preview

APPLICATION LIFECYCLE MANAGEMENT

Evaluate Publish

PRODUCTIONVERIFICATIONDEVELOPMENT

FIGURE 9-5 The report development process.

Traditionally, reports are developed in a contained environment that is shared by a team of
 developers. When the developer feels that the solution satisfies the reporting requirements, he
or she uses the Visual Studio tools to publish the report in the DEV, or development environment,
for verification from within the client. When the developer is satisfied, the reporting project is
 packaged as a model or project and moved into the TEST environment. This is where the new report
is put to the test in a simulated production environment, to ensure that both the functionality and
 performance are sound. Finally, the report is published to the PROD, or production environment, so
that it is accessible to the designated set of users.

To learn more about creating a report for Microsoft Dynamics AX by using Visual Studio 2010,
see the detailed step-by-step instructions in the reports section of the Microsoft Dynamics AX 2012
SDK at http://msdn.microsoft.com/en-us/library/cc557922.aspx. These topics have comprehensive
 descriptions for all the core scenarios that report developers are likely to encounter.

Create production reports

You use Visual Studio 2010 to create and modify Microsoft Dynamics AX SSRS reports. In Microsoft
Dynamics AX 2012, the report development tools have been augmented to offer a fully integrated
experience. These tools provide report designers the benefit of working with the familiar Visual Studio
2010 IDE and the ability to use the rich reporting features in SSRS.

The Microsoft Dynamics AX 2012 report development tools offer a model-based approach for
creating reports that is based on fully customizable templates that define the layout and format of
the reports.

http://msdn.microsoft.com/en-us/library/cc557922.aspx

282 PART 2 Developing with Microsoft Dynamics AX

The Microsoft Dynamics AX reporting development tools consist of a modeling tool, Model Editor,
that you can use to visualize the report elements as you develop a report. The reports that you create
are stored in the Report Definition Language (RDL) format specified by SSRS. By using this widely
adopted format, you can take advantage of the many features (for example, charting, interactivity,
and access to multiple data sources) that make SSRS a popular choice for production reports. You can
store, deploy, manage, and process reports on the report server by using the integrated Visual Studio
report development tools.

The Microsoft Dynamics AX reporting tools also include a new Visual Studio project template
called Microsoft Dynamics AX Reporting Project. This new project type simplifies the process of
 creating SSRS reports that bind to data in Microsoft Dynamics AX.

The Dynamics AX Reporting Project template has the following features:

 ■ It allows a report to retrieve Microsoft Dynamics AX data from the AOS by using either a
 Microsoft Dynamics AX query or a Report Data Provider object.

 ■ It defines the report parameters and layout of the controls.

 ■ It uses references to Microsoft Dynamics AX labels to produce localized strings based on the
user’s current Microsoft Dynamics AX language.

 ■ It allows SSRS reports to be created and modified in the Application Object Tree (AOT).

 ■ It can be used to deploy report customizations to the report server.

Model elements for reports
Three basic components make up any SSRS report: the controls, the design definition, and, of course,
the data:

 ■ The controls, often referred to as the parameters or inputs, can be either provided by the
user or derived from the context of the session. For example, the reporting framework
 automatically selects the language for a report based on the user’s settings in Microsoft
Dynamics AX. Controls are used to select the design, alter the format and layout of the report,
and influence the dataset that is ultimately rendered in the report.

 ■ The design of the report contains a collection of elements, such as text boxes, tables, matrices,
and charts that define the look and feel of the report. You construct the report design by
 using an augmented Visual Studio 2010 Report Designer experience.

 ■ The data to be displayed in a report can be derived from a number of sources, including the
Microsoft Dynamics AX OLTP database, SSAS, external databases, .NET service providers, and
XML data files. Datasets are used to establish data connections to various sources, and they
can be used interchangeably by one or more report designs.

Figure 9-6 illustrates an example of a Report model in Visual Studio 2010, showing the three
 components of an SSRS report. The following sections describe each component in more detail.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 283

FIGURE 9-6 A Report model in Visual Studio.

Controls
Controls are used to filter the data that is displayed in a report, connect related reports, and control
report presentation. For example, you can write an expression to change the font based on a
 parameter that is passed to the report. Design parameters can be directly bound to dataset controls
or used in run-time evaluations that affect the report design. You use Model Editor to define the
grouping and order of report parameters when a scenario is complex; for example, if you want to use
multiple nested groups. The order in which the report parameters are listed in a group is the order
that the user sees them on the report. This makes the grouping and order in Model Editor easy to see
as you define the report. For more information, see “How to: Group and Order Report Parameters by
Using Visual Studio” (http://msdn.microsoft.com/EN-US/library/gg731925).

Designs
A report design represents the layout of a report. A report can have multiple designs that share
datasets and parameters. This is appropriate in scenarios where you have similar reports based on the
same dataset. You can create the following types of report designs:

 ■ Auto design A report design that is generated automatically based on the report data. You
create an auto design report using Model Editor. The auto design functionality provides an
efficient way to create the most common types of reports, such as a customer list or a list of
inventory items. An auto design layout consists of a header, a body that contains one or more
data regions, and a footer, as shown in Figure 9-7.

You control the content that is displayed in each area in an auto design. For example, you can
include a report title and the date in the header and display the page number in the footer, or
you may not want to display anything in the header and footer.

284 PART 2 Developing with Microsoft Dynamics AX

Header

Data
regions

Footer

FIGURE 9-7 Auto design report layout.

The data regions that are displayed in an auto design depend on the datasets that you created
when you defined the data for the report. When you define a dataset, you can specify the
type of data region that will be used to render the data whenever the dataset is used in an
auto design. Data can be displayed in table, list, matrix, or chart format. One way to create an
auto design is to drag a dataset onto the node for the auto design in the model.

 ■ Precision design A report design that you create by using SQL Server Report Designer.
Precision designs are typically used when a report requires a precise layout, as is the case for
invoices or bank checks. With SQL Server Report Designer, you can drag fields onto a report
and put them where you want them. A precision design is free-form. Therefore, the format of
a precision design can vary, depending on the layout that is required.

Datasets
A report dataset identifies the data that is displayed in a report. Dataset elements contain the
 information used to bind to a data source. After you define a dataset, you can reference the dataset
when setting the Dataset property for a data region in the report design. If your report uses the
 predefined Microsoft Dynamics AX data source and a query that is defined in the AOT, be especially
careful when updating the query in the AOT. For example, if you remove a field in the query and the
field appears in the report, the report will display an empty column for the field. Whenever you make
 updates to a query, be sure to consider how those updates affect your reports. Updates to a query
may also require updates to your reports.

The SSRS reporting framework supports five types of data connections:

 ■ Microsoft Dynamics AX queries Access OLTP data by using a modeled collection of field
data and table display methods. Microsoft Dynamics AX query objects defined in the AOT
are used to define the data source, including the fields that are returned, record ranges, and
 relations to child data sources.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 285

 ■ Report data providers (RDPs) Access datasets derived from X++ business logic. An RDP
data source is appropriate in cases where the following conditions are met:

• You cannot query directly for the data that you want to render on a report.

• The data to be processed and displayed is accessible from within Microsoft Dynamics AX.

 ■ SSAS OLAP queries Access pre-aggregated views of Microsoft Dynamics AX business data.
Microsoft Dynamics AX includes more than 10 predefined cubes. Use an OLAP data source to
access pre-aggregated business data. For more information about cubes, see Chapter 10,
“BI and analytics.”

 ■ Transact-SQL (T-SQL) queries Access data from external databases. With T-SQL–based
 connections, you can access data from external Microsoft SQL Server databases and use it
within the report.

 ■ Internet services queries Use data methods to access the data feeds provided by Internet
service providers. For example, you can access industry-related data to compare the health of
your business against the competition.

You have the option of relying on a single data source or you can combine data derived from
 multiple data sources to produce the report dataset. Identifying the best fit to satisfy your data
access requirements greatly simplifies the design development and experience and improves the
 functionality and performance of the report.

SSRS extensions
The Microsoft Dynamics AX reporting framework takes advantage of several custom extensions
 supported by the SSRS platform to provide a fully integrated reporting experience that automatically
adheres to security access rights and data formatting standards. This section provides some insights
into how the reporting extensions function in the Microsoft Dynamics AX reporting framework.

Figure 9-8 illustrates the standard report execution sequence without Microsoft Dynamics AX
custom extensions. (Figure 9-11, later in this chapter, illustrates the report execution sequence with
Microsoft Dynamics AX custom extensions.)

RDL SSRS
HTML, PDF, XLS,

etc.

Data

FIGURE 9-8 Standard report execution sequence.

286 PART 2 Developing with Microsoft Dynamics AX

Microsoft Dynamics AX extensions
The Microsoft Dynamics AX Report Definition Customization Extension (RDCE) is a reporting
 framework component introduced in Microsoft Dynamics AX 2012. It is internal to the reporting
framework and is not directly accessible outside the framework. This component enables the
 reporting framework to provide run-time design alterations based on Microsoft Dynamics AX
 metadata and security policies. Dynamic transformation of RDL is needed for the following set of
 actions:

 ■ Hide columns in reports if a user does not have access to those columns

 ■ React to metadata changes in Microsoft Dynamics AX

 ■ Use Microsoft Dynamics AX labels in reports

 ■ Automatically flip designs for Microsoft Dynamics AX languages such as Arabic and Hebrew,
which require right-to-left (RTL) layouts

A typical reason for hiding a column is security. In Microsoft Dynamics AX 2009, if a user didn’t
have access to a column, the data was not presented in the report but the column still appeared in
the report (see Figure 9-9). This behavior is inconsistent with the legacy MorphX reporting framework
and does not provide the ideal user experience.

NAME

Akuma $40,000

$55,000

$69,000

$75,000

$80,000

Ryu

Ken

Chen-Li

Guile

SALARY

AX2009 Behavior

User has access to SALARY column User does NOT have access to SALARY column

NAME

Akuma

Ryu

Ken

Chen-Li

Guile

SALARY

FIGURE 9-9 Microsoft Dynamics AX 2009 user experience for SSRS reports.

In contrast, Microsoft Dynamics AX 2012 goes a step further and completely removes the column
from the report design (see Figure 9-10). This is accomplished by means of the rendering extensions
supplied by the reporting framework.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 287

NAME

Akuma $40,000

$55,000

$69,000

$75,000

$80,000

Ryu

Ken

Chen-Li

Guile

SALARY

AX2012 Behavior

User has access to SALARY column User does NOT have access to SALARY column

NAME

Akuma

Ryu

Ken

Chen-Li

Guile

FIGURE 9-10 Microsoft Dynamics AX 2012 user experience for reports.

A number of features in Microsoft Dynamics AX 2012 require transformation of the RDL as part
of the run-time processing. Conceptually, they are broken apart into separate RDL transformations;
however, their implementation may be organized differently than the five discrete units shown in
Table 9-1.

TABLE 9-1 RDL transformations.

Transformation Auto design Precision design Transformation type

Microsoft Dynamics AX
labels

Yes Yes Text content

RTL flipping Yes N/A Layout

Auto size Yes N/A Layout

Field groups Yes No Layout

EDT column width Yes No Layout

EDT numeric formatting Yes Yes Text content

Task and role security Yes Yes Layout

Configuration keys Yes Yes Layout

Disable the rendering extensions
Many reporting scenarios do not rely on run-time design alterations based on user context
 information; instead, they require fast performance because of their scale. This is the case for most
document-based reports, such as those listing customer and vendor invoices, purchase packing slips,
and checks. Although the overhead of dynamic formatting of report designs is barely noticeable in
an interactive session, it may become an issue in bulk operations where a large number of reports are
requested as part of a batch operation. The Microsoft Dynamics AX reporting framework includes a
control in the Report Deployment Settings form (Tools > Business Intelligence Tools > Report Deploy-
ment Settings) that disables the custom rendering extensions for specific report designs. This setting
is highly recommended for any large-scale transactional reports that run in batch operations and
don’t require run-time design alterations.

288 PART 2 Developing with Microsoft Dynamics AX

If you select the Use Static Report Design check box in the Report Deployment Settings form,
 Microsoft Dynamics AX produces language-specific versions of the report design with labels and
column sets fully resolved. This occurs the next time that the report is deployed to the report
server. These reports are called static RDL reports. The Microsoft Dynamics AX reporting framework
 automatically uses the design that is appropriate given the context of the user running the report.
However, no additional design alterations are performed when the report is invoked by the user. To
make the report dynamic again, clear the Use Static Report Design check box or delete the entry in
the Report Deployment Settings form.

Data processing extensions
Data processing extensions are used to query a data source and return a flattened row set. SSRS uses
different extensions to interact with different types of data sources. A data source is simply the source
of data for one or more reports. Data sources may be bound to Microsoft Dynamics AX or external
databases, depending on the unique requirements of your reporting solution. Furthermore, you can
display and interact with information from multiple data sources in a single report. Table 9-2 lists the
types of data sources supported by the Microsoft Dynamics AX reporting framework.

TABLE 9-2 The types of data sources supported by the Microsoft Dynamics AX reporting framework.

Data source type Data content

Microsoft Dynamics AX
query

Access Microsoft Dynamics AX data by using predefined queries in the AOT.

Report Data Provider Construct the data by using X++ business logic stored in specialized classes in the AOT.

OLAP Access pre-aggregated views of your business data through SSAS.

SQL Use T-SQL queries to access external databases.

Data methods Connect to .NET service providers by using C# business logic.

Report execution sequence with Microsoft Dynamics AX custom extensions
The custom Microsoft Dynamics AX reporting extensions let you use a static design definition to
produce dynamic reporting solutions that react to changes to Microsoft Dynamics AX metadata and
user access rights.

Figure 9-11 illustrates the report execution sequence with the Microsoft Dynamics AX custom
 extensions in place.

HTML, PDF, XLS,
etc.

RDL
(transformed)

AX rendering
extension

AX data
processing
extension

SSRS
report

processor

RDL
(original)

SSRS

AX data

FIGURE 9-11 Report execution sequence with Microsoft Dynamics AX custom extensions.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 289

Create charts for Enterprise Portal

This section discusses charting controls in Enterprise Portal and describes how they work. Charts
 provide a summary view of your data. With large datasets, charts often become obscured or
 unreadable. Missing or null data points, data types ill-suited to charts, and advanced applications
such as combining charts with tables can all affect the readability of a chart. Before designing a chart,
carefully prepare and understand your data and functional requirements so that you can design your
charts quickly and efficiently.

Figure 9-12 shows some key elements that are used in a chart.

200000

Cash inflow vs. cash outflow Title

150000

100000

50000

0
July 2007 August

2007
September

2007
October

2007
November

2007
December

2007
January

2008

Cash inflow Cash outflow Net profit ratio

A
m

ou
nt

s
in

 t
ho

us
an

d
s

(0
00

’s
)

Y-Axis

Legend

Series
X-Axis

AnnotationAnnual sales event

Vacations

FIGURE 9-12 Chart elements.

Microsoft Dynamics AX chart development tools
The Microsoft Dynamics AX chart development tools simplify the development experience, making
visualizing data easier through the EP Chart Control. This .NET chart control is installed during setup
and the reporting framework handles all the work to gain access to it. You have access to all the
 functions and event handlers provided by the ASP.NET chart control to produce interactive and
graphically rich data visualizations. The reporting framework extensions also provide the following
features:

 ■ Access to OLAP data sources by means of an MDX editor

 ■ Access to OLTP data by means of a data source provider picker

 ■ Built-in awareness of data partition integrations

 ■ Microsoft Dynamics AX security access rights and policies

 ■ Data formatting based on the Microsoft Dynamics AX Extended Data Type (EDT) definitions

290 PART 2 Developing with Microsoft Dynamics AX

Integration with Microsoft Dynamics AX
The definitions for chart controls are maintained in the AOT and in a distributed development
 environment, you can share them as XPO files. They are available in the list of Microsoft Dynamics
AX user controls in Enterprise Portal as soon as you save them in the AOT. EP Chart Controls are
 maintained in the AOT along with other types of Dynamics AX user controls and can be deployed
directly from the Development Workspace.

Figure 9-13 illustrates how chart controls are managed in the AOT.

EP Chart
control node

FIGURE 9-13 An EP Chart Control in the AOT.

Create an EP Chart Control
The Microsoft Dynamics AX development tools offer a new item template for Visual Studio called
EP Chart Control (see Figure 9-14) to help get you started. This template contains all the required
namespace definitions and the basic structure of a web control containing a single instance of the EP
Chart Control.

The template adds an EP Chart Control to a project. The EP Chart Control has an empty chart area
and series that are predefined. Pressing F5 starts the http://localhost script that you can use to debug
your application. However, you will not see anything when you run your application because the
series does not contain any data yet.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 291

FIGURE 9-14 Adding an EP Chart Control.

Note If you encounter the error “Server Error in ‘/’ Application,” see the discussion of
 troubleshooting Microsoft SharePoint sandbox issues in the section “Troubleshoot the
 reporting framework,” later in this chapter.

Chart control markup elements
The standard ASP.NET chart control is represented in ASPX markup code by the <asp:Chart>
 element. In Visual Studio, the markup for the EP Chart Control includes two additional controls:
<dynamics:AxChartDatasource> and <dynamics:AxChartBehavior>. You use these three elements in
concert to define the appearance and functions of the EP Chart Control and manage the connection
information to the underlying data source.

 ■ <asp:Chart> Maps to the ASP.NET chart control that is available as a download for
Microsoft.NET Framework 3.5 and included with .NET Framework 4.0. This element is used to
define the general structure of the control. For more information, see “Technical Reference:
Chart Controls,” at http://msdn.microsoft.com/en-us/library/dd456726.

 ■ <dynamics:AxChartDatasource> Contains the data source connection type, along with the
query that is used to access the data. This element is also where access parameters are defined
to construct the query, if required. You can access the Visual Studio tools for defining data
 connections to Microsoft Dynamics AX data through the web control designer for this element.

 ■ <dynamics:AxChartBehavior> Supplies default formatting for chart controls. You can
use this element to define custom color palettes for your chart solutions or to disable the
 reporting framework’s default formatting engine. You also use this element to define the
structure of static and dynamic datasets by means of element properties.

292 PART 2 Developing with Microsoft Dynamics AX

Figure 9-15 contains a screenshot of the EP Chart Control in Design mode.

<dynamics:AxChartDatasource>

<dynamics:AxChartBehavior>

Design Mode

<asp:Chart>

FIGURE 9-15 EP Chart Control in Design mode.

Bind the chart control to the dataset
The first task in creating a chart control is to bind the chart control to the dataset. The Visual Studio
 development environment has been extended to include tools to simplify the process of binding to
 Microsoft Dynamics AX data. Two categories of data sources are derived from Microsoft Dynamics AX:

 ■ OLTP data sources Data that is managed in the AOS exposed through the AX Query Service
interface. Declarative connections to Report Data Providers are made available using data
source picker control.

 ■ OLAP data sources Aggregate data managed by the Microsoft Dynamics AX analytics
framework. The Visual Studio extensions offer an MDX editor to help you create queries to
 access data stored in an SSAS database.

Data series
This section summarizes basic data binding strategies that you can use when visualizing data with
charts. The EP Chart Control supports three basic data binding scenarios: single series datasets,
 multiseries datasets, and dynamic series datasets.

 CHAPTER 9 Reporting in Microsoft Dynamics AX 293

Single series datasets
In a single series dataset, the source data for the chart can be described by using only two columns,
as shown in Figure 9-16. A single series dataset is most commonly used when figures have a single
pivot; for example, trending over time or distribution across segments. Stock performance over time
is an example where only two columns are required. Pie charts, bar charts, column charts, and funnel
charts are commonly used to visualize single series datasets.

DATASET

MONTH

January 2005 200

300

600
500
400
300
200
100

0

Jan
uary

 20
05

Jan
uary

 20
06

Ju
ne 2

00
7

M
arc

h 20
05

M
ay

 20
05

Ju
ly

20
05

400

105

107

500

258

January 2006

February 2005

March 2005

May 2005

July 2005

June 2007

MSFT
MSFT

FIGURE 9-16 Chart from a single series dataset.

Multiseries datasets
Multiseries datasets require at least three columns, as shown in Figure 9-17. Individual series elements are
bound to a set of columns defined by the dataset. With this type of dataset, you can compare figures by
two pivots in that you can additionally gain relative analysis by comparing against related data. Bar charts
and column charts along with many others are suitable for analyzing multiseries datasets. However, pie
charts and funnel charts are not appropriate for visualizing multiseries datasets.

MONTH

January 2005 200

500January 2006

300February 2005

400March 2005

105May 2005

107July 2005

258

400

450

400

350

320

250

350June 2007

MSFT GOOG

DATASET

800

600

400

200

0

Jan
uary

 20
05

Jan
uary

 20
06

Ju
ne 2

00
7

M
arc

h 20
05

M
ay

 20
05

Ju
ly

20
05

MSFT GOOG

FIGURE 9-17 Chart from a multiseries dataset.

294 PART 2 Developing with Microsoft Dynamics AX

Dynamic series datasets
Often, the number of series is defined within the dataset itself. These datasets are referred to as
 dynamic series datasets and can be described using three or more columns, as shown in Figure 9-18.
The biggest differentiator between a dynamic series dataset and a multiseries dataset is the inclusion
of a column that identifies the unique series. Dynamic series datasets are appropriate in cases where
the number of series is determined by the user or by attributes that are related to the data
source. Dynamic series datasets can be viewed by using the same types of charts as multiseries
 datasets.

January 2005 GOOG 400

March 2005 405

March 2005

AAPLMarch 2005

505

110

YHOOMarch 2005

GOOGJanuary 2006

116

117

AAPLApril 2006

GOOGJanuary 2006

523

168

YHOOJune 2007

GOOG

136

268June 2007

MONTH

January 2005 MSFT

GOOG

MSFT

400

SERIES VALUE

DATASET

600
500
400
300
200
100

0

Jan
uary

 20
05

Jan
uary

 20
06

Ju
ne 2

00
7

April
20

06

M
arc

h 20
05

MSFT GOOG
AAPL YHOO

FIGURE 9-18 Chart from a dynamic series dataset.

For more information about how to choose the right type of chart for your data, see “Chart Types
(Report Builder and SSRS),” at http://msdn.microsoft.com/en-us/library/dd220461(v=sql.110).aspx.

Add interactive functions to a chart
Each series in a chart consists of a set of data points, which, for most chart types, is made up of two
key attributes: X and Y values. Collectively, the control uses these data points to render the data series
in a method that is consistent with the type of chart you select. In addition to X and Y values, data
points can contain additional information, including drill-through URLs, tooltip text, and data point
labels. As you would expect, when a data point contains a definition for a drill-through URL, the data
point becomes clickable in the chart image. When the user clicks the data point, he or she is taken to
the specified URL. Defining tooltip text for a data point automatically produces a tooltip containing
the text when the user hovers over the data point in the chart. You can extend the original dataset
by using a post-processing event handler to include additional data-point information that drives the
interactive experience provided by the chart.

http://msdn.microsoft.com/en-us/library/dd220461(v=sql.110).aspx

 CHAPTER 9 Reporting in Microsoft Dynamics AX 295

Follow these basic steps to expand the chart dataset to include interactive functions:

1. Access the data that you want to appear in the chart.

2. Add post-processing code that expands the schema of the underlying data table.

3. Format the data columns based on their intended use.

4. Bind newly created columns to the chart properties that control the interactive functions of
the control when it is rendered for the user.

Figure 9-19 illustrates the sequence for expanding the dataset to add columns that are formatted
for interactive use.

Cash inflow

200000

150000

100000

50000

A
m

ou
nt

s
in

 t
ho

us
an

d
s

(0
00

’s)

0
July
2007

GROUP X-AXIS Y-AXIS

BAR 51 110

BAR 52 220

BAR 53 180

FOO 52 230

FOO 51 100

GROUP X-AXIS Y-AXIS

BAR 51 110

BAR 52 220

BAR 53 180

FOO 52 230

FOO 51 100

TOOLTIP

BAR-110

BAR-220

BAR-180

FOO-230

FOO-100

URL

http://.../blah.aspx?y=BAR

http://.../blah.aspx?y=BAR

http://.../blah.aspx?y=BAR

http://.../blah.aspx?y=FOO

http://.../blah.aspx?y=FOO

Data source

August
2007

September
2007

October
2007

November
2007

Docember
2007

January
2008

Cash outflow Net profit ratio

Cash inflow vs. cash outflow

2

3

1

4

FIGURE 9-19 Expanding a dataset to create an interactive chart.

296 PART 2 Developing with Microsoft Dynamics AX

Override the default chart format
The reporting framework applies some default formatting to the most common types of controls.
Default formatting is applied for three main reasons:

 ■ To promote consistency among charts that are displayed in Enterprise Portal

 ■ To simplify the development experience

 ■ To ensure that charts are visually compelling to users

At times, however, you may want to apply formatting that differs from defaults. You can override
the default design formatting by using control event handlers.

It is recommended that you customize the EP Chart Control in response to the PreRender event.
This is where you define code executed at run time to manage the format of the EP Chart Control.
Customizations can include dynamic color palettes, custom label positioning, and text formatting.

Figure 9-20 demonstrates the basic steps in adding code to override the default formatting.

FIGURE 9-20 Overriding default chart formatting.

For more information about events, see “ASP.Net Page Life Cycle Overview,” at
http://msdn.microsoft.com/en-us/library/ms178472.aspx.

Troubleshoot the reporting framework

This section contains some of the most common reporting framework issues and possible solutions.
You can find related information posted on the Microsoft Dynamics AX Product Forum at
https://community.dynamics.com/product/ax/f/33.aspx.

https://community.dynamics.com/product/ax/f/33.aspx

 CHAPTER 9 Reporting in Microsoft Dynamics AX 297

The report server cannot be validated
If you cannot validate the report server, do the following:

 ■ Click the Create button in the Reporting Servers form, which is located at Tools > Business
 Intelligence Tools > Reporting Servers, and make sure that a report folder and data source
have been created on the report server. Click the Validate button.

 ■ Ensure that firewall settings are configured appropriately on the computer that is running the
report server.

 ■ Ensure that both the report manager and report server URLs are correct.

 ■ Ensure that the Microsoft Dynamics AX user has permissions on the computer that is running
the report server.

A report cannot be generated
If you are connecting to the Microsoft Dynamics AX SQL Server database and the system will not
 generate a report, do the following:

 ■ Ensure that the report server account configured in the report data source on the report
server has read permissions on the Microsoft Dynamics AX SQL Server database.

 ■ Ensure that firewall settings are configured appropriately on the computer on which the
 database is installed.

If you are connecting to an external or custom data source, make sure that the user name and
password provided for the report server account in the data source on the report server are correct.

A chart cannot be debugged because of SharePoint sandbox
issues
If you cannot debug a chart because of problems with the SharePoint sandbox, do the following:

 ■ Add a reference to the Microsoft.SharePoint.dll assembly to the project.

 ■ Establish the default web control to run in debug mode.

 ■ Edit the file named Default.aspx in the EP Chart project.

 ■ Add the ManagedContentItem property to the <dynamics:AxUserControlWebPart> element
and set the value to the name of the web control.

 CHAPTER 10 BI and analytics 299

C H A P T E R 1 0

BI and analytics

In this chapter
Introduction . 299
Components of the Microsoft Dynamics AX 2012
BI solution. 299
Implementing the prebuilt BI solution . 301
Customizing the prebuilt BI solution . 309
Creating cubes. 323
Displaying analytic content in Role Centers. 333

Introduction

Business Intelligence (BI) technology helps users of computer-based applications understand hidden
trends and exceptions within data. Nowadays, it’s difficult to find a developer who is unaware of BI, so
this chapter assumes that you are familiar with BI concepts.

Microsoft Dynamics AX 2012 includes a comprehensive prebuilt BI solution, which is designed
to meet many of the BI needs of your users. This means that instead of having to build a BI solution
from the ground up, you may be able to use the prebuilt solution and tweak it to meet any remaining
requirements. With this proposition in mind, this chapter walks you through the life cycle of the
 Microsoft Dynamics AX 2012 analytic components—from implementation through customization and
extension. When necessary, this chapter points you to relevant resources on the Internet.

The Microsoft Dynamics AX BI solution is built on top of the Microsoft BI framework. If your
 organization uses the Microsoft BI infrastructure, you can use the Microsoft BI tools and technologies
to extend the power of the Microsoft Dynamics AX BI solution.

Components of the Microsoft Dynamics AX 2012 BI solution

Figure 10-1 shows a simplified architecture diagram of the BI solution that is included with Microsoft
Dynamics AX 2012. In the figure, the Microsoft Dynamics AX 2012 logical architecture has been
s implified to highlight only the components that are relevant to the BI solution.

The solution is divided into three tiers:

 ■ Data tier Contains sources of data, such as the Microsoft Dynamics AX 2012 operational
database, often referred to as the online transaction processing (OLTP) database.

C H A P T E R 1 0

BI and analytics

Introduction

Components of the Microsoft Dynamics AX 2012 BI solution

Implementing the prebuilt BI solution

Implement the prerequisites

Configure an SSAS server

Deploy cubes

Deploy cubes in an environment with multiple partitions

Process cubes

Provision users in Microsoft Dynamics AX

Customizing the prebuilt BI solution

Configure analytic content

Customize cubes

Extend cubes

Creating cubes

Identify requirements

Define metadata

Generate and deploy the cube

Add KPIs and calculations

Displaying analytic content in Role Centers

Provide insights tailored to a persona

Choose a presentation tool based on a persona

SQL Server Power View reports

Excel

Business Overview web part and KPI List web part

Develop reports with Report Builder

Develop analytic reports by using Visual Studio tools for Microsoft Dynamics AX

300 PART 2 Developing with Microsoft Dynamics AX

 ■ Integration tier Contains the Application Object Server (AOS), programming interfaces,
and staged data, such as Microsoft Dynamics AX 2012 cubes, that serve as the database for
analytical reporting. (This tier is called the middle tier in Chapter 1, “Architectural overview.”
It is called the integration tier in this chapter because that is how it is commonly known in BI
solutions.)

 ■ Presentation tier Contains tools and user interface elements that users can use to interact
with data.

Services

Query
service

AOS

Metadata
service

OData
service

Integration Layer

Data Layer

Microsoft Dynamics AX 2012
cubes

Microsoft Dynamics AX 2012
OLTP database

XMLA/MDX

Role center

Microsoft Dynamics AX EP client

Role center
Microsoft Dynamics AX

Windows client External clients

Presentation Layer

FIGURE 10-1 Microsoft Dynamics AX BI architecture.

For details about the three tiers and a more detailed diagram, see Chapter 1.

 CHAPTER 10 BI and analytics 301

Implementing the prebuilt BI solution

Traditionally, BI solutions are implemented during the second or third phase of an Enterprise Resource
Planning (ERP) implementation project. Needless to say, project fatigue sets in (and the budget gets
exhausted), and subsequent phases are postponed or delayed. BI implementation is complex and
involves the integration of many components. Also, the skill set required to implement a BI solution is
distinctly different from the skill set required to implement an ERP system. Often, implementation of
the BI solution involves engaging a different partner or consultants. All of these factors contribute to
postponing the BI implementation.

Microsoft Dynamics AX 2012 simplifies the implementation of a BI solution, so that all Microsoft
Dynamics AX 2012 partners and customers (regardless of whether they have access to BI specialists)
can implement the prebuilt BI solution when they implement the ERP functionality.

In Microsoft Dynamics AX 2012, the default SQL Server Analysis Services (SSAS) project is a
 first-class citizen of the Application Object Tree (AOT), as are other SSAS projects that you create in
the AOT. This means that SSAS projects derive all of the benefits of being residents of AOT.

 ■ SSAS projects respect the layering concept. This means that an independent software vendor
(ISV) or partner can distribute a customized version of an SSAS project that adds additional
analytic components to the solution that is included in the SYS layer.

 ■ You can import and export SSAS projects to and from different environments as part of a
model (by using models or .xpo files).

 ■ SSAS projects respect the version control capabilities offered by AOT-based artifacts.

When you deploy a project by using the SQL Server Analysis Services Project Wizard, which is new
in Microsoft Dynamics AX 2012, the wizard selects the project in the highest layer for deployment.
If you examine the Visual Studio Projects node in the AOT, will see the default SSAS project that is
included with Microsoft Dynamics AX 2012, as shown in Figure 10-2. If you have any customizations
at higher levels, they are also displayed.

FIGURE 10-2 SSAS projects in the AOT.

302 PART 2 Developing with Microsoft Dynamics AX

Implementing the prebuilt BI solution consists of the following steps:

1. Implement the prerequisites.

2. Configure an SSAS server.

3. Deploy the cubes.

4. Process the cubes.

5. Provision users so that they can access the analytic data.

The following sections describe each step in further detail.

Implement the prerequisites
Before you implement the analytic components in the prebuilt BI solution, the following Microsoft
Dynamics AX core components should be in place:

 ■ At least one AOS instance must be implemented.

 ■ The Microsoft Dynamics AX Windows client must be implemented, and the initialization
checklist must be completed.

 ■ The Enterprise Portal web client must be configured.

If you are implementing the analytic components on a development or test instance, you might
not implement a scale-out architecture. However, if you are implementing these components in a
production system, you may want to implement a redundancy or load balancing infrastructure. You
need to configure the clustering or Network Load Balancing (NLB) solution before you implement the
analytic components.

Configure an SSAS server
This step configures a given SSAS server for the Microsoft Dynamics AX 2012 analytic components.
To do so, run the Configure Analysis Extensions step in the Microsoft Dynamics AX Setup wizard on
the SSAS server that hosts Microsoft Dynamics AX 2012 cubes.

Running the configuration step should take you a few minutes. This function does the following:

 ■ Ensures that the SSAS server has all of the necessary prerequisites to host Microsoft Dynamics
AX 2012 cubes.

 ■ Adds the Business Connector (BC) proxy user as an administrator of the SSAS server. This step
is required to enable AXADOMD data extensions to operate without the use of Kerberos
 constrained delegation.

 ■ Allows you to add a read-only user account to the Microsoft Dynamics AX 2012 database for
processing cubes (you should specify a domain account whose password does not expire).

 CHAPTER 10 BI and analytics 303

Deploy cubes
When you deploy cubes, Microsoft Dynamics AX generates and processes an OLAP database by using
the metadata definition contained within the Analysis Services project that is included with Microsoft
Dynamics AX 2012. The result is an OLAP database that contains Microsoft Dynamics AX cubes that
are referenced by analytic reports and Role Centers.

In a Microsoft Dynamics AX 2012 R2 environment where there is only a single partition, the
deployment step generates a single OLAP database that sources data from the Microsoft Dynamics
AX OLTP database. In a multiple-partition environment, the deployment step generates multiple
OLAP databases that correspond to each partition. Figure 10-3 shows the deployment process both
in a single-partition and multiple-partition environment. For more information about partitions, see
Chapter 17, “The database layer.”

Deploy

Deploy

SSAS server

SSAS server

Microsoft Dynamics
AX OLAP database

Microsoft Dynamics AX
OLAP database

(partition 1)

Microsoft Dynamics AX
OLAP database

(partition n)

Deploying cubes in a single-partition environment

Deploying cubes in a multiple-partition environment

Analysis Services
project in AOT

Analysis Services
project in AOT

FIGURE 10-3 Deploying cubes in single-partition and multiple-partition environments.

You use the SQL Server Analysis Services Project Wizard in the Microsoft Dynamics AX 2012 client
to deploy, process, and in some instances, update cubes. To deploy the cubes, you must have the
right to deploy projects to the SSAS server. If you are also processing the cubes, you must have the
right to read the Microsoft Dynamics AX 2012 OLTP database.

304 PART 2 Developing with Microsoft Dynamics AX

To start the SQL Server Analysis Services Project Wizard and deploy cubes, do the following:

1. In the Development Workspace, on the Tools menu, click Business Intelligence (BI) Tools >
SQL Server Analysis Services Project Wizard.

2. On the Welcome page, click Next, and then select the Deploy option on the next page, as
shown in Figure 10-4.

FIGURE 10-4 The Deploy option in the SQL Server Analysis Services Project Wizard.

3. On the next page, you select an SSAS project to deploy—in this case the Dynamics AX project.
You can select a project in the AOT, as shown in Figure 10-5, or you can select a project that is
saved on a disk.

FIGURE 10-5 Selecting an SSAS project.

 CHAPTER 10 BI and analytics 305

4. Next, you specify the SSAS server to deploy the project to, the SSAS database you want to
use, and whether you want the project to be processed after deployment (see Figure 10-6).
By default, the wizard uses the SSAS server that you configured earlier, but you can select any
server to deploy the project to.

FIGURE 10-6 Deploy an SSAS project to a server in Microsoft Dynamics AX 2012.

Note In Microsoft Dynamics AX 2012, you can use any name for the OLAP database. In
Microsoft Dynamics AX 2009, you couldn’t change the default name of the database, and
this prevented a system administrator from using the same SSAS server to host multiple
OLAP databases. However, if you do change the default name of the OLAP database, you
need to configure the report server so that it reports source data from the corresponding
OLAP database. For information about how to configure the OLAP database referenced by
SQL Server Reporting Services (SSRS) reports, see ”Configure Analysis Services by running
Setup” at http://msdn.microsoft.com/en-us/library/gg751377.aspx.

Deploy cubes in an environment with multiple partitions
As mentioned earlier, in a Microsoft Dynamics AX 2012 R2 environment with multiple partitions, the
SQL Server Analysis Services Project Wizard generates an OLAP database for each partition. You can
use the wizard to select the partitions for which OLAP databases are created, as shown in Figure 10-7.

306 PART 2 Developing with Microsoft Dynamics AX

FIGURE 10-7 Selecting a partition in Microsoft Dynamics AX 2012 R2.

In this case, the SQL Server Analysis Services Project Wizard deploys the SSAS project to multiple
OLAP databases. In each database, <partitionkey> is added as a suffix to the name of the OLAP
 database.

Also, within each OLAP database, the data source view (DSV) is modified so that a partition filter is
applied to all queries. Figure 10-8 shows the architecture of an environment with multiple partitions.

In all cases, the SSAS project in the AOT is partition-unaware, whereas the OLAP databases that are
deployed are partition-specific. The SQL Server Analysis Services Project Wizard handles the step of
making sure that each OLAP database is wired to read data only from the corresponding partition in
Microsoft Dynamics AX. This is a departure from the behavior of Microsoft Dynamics AX 2012. You
need to be aware of the following implications:

 ■ If you deploy Microsoft Dynamics AX SSAS projects by using Analysis Services tools, such as
the Deployment Wizard or Business Intelligence Development Studio, the resulting OLAP
 database is not partition-aware. In other words, cubes will aggregate data across partitions.

 ■ If you want to extend an SSAS project, always check out and modify the project in the AOT.
Do not customize a project associated with a specific partition by importing the project
directly in Business Intelligence Development Studio. The Deploy function in the wizard will
overwrite any partition-specific customizations that you have made directly on the server.

 ■ If you add custom query definitions in the DSV, the wizard adds where clauses to each select
statement that restrict rows from other partitions.

 CHAPTER 10 BI and analytics 307

Microsoft Dynamics AX client
(partition 1)

 Get Microsoft
Dynamics AX data

from AOS
for “user’s partition”

Run “Report”Run “Report”

Microsoft Dynamics AX client
(partition 2)

AOS

Microsoft Dynamics AX OLTP database

SSAS Server

Microsoft
Dynamics AX

AD OMD extension

Microsoft
Dynamics AX data

extensions

Report Report

1 2

1

2

 Get OLAP data from
Dynamics AX–partition1

 Get OLAP data from
Dynamics AX–partition2

1 2

Dynamics AX–
Partion1

Dynamics AX–
Partion2

Query
service

Metadata
service

OData
service

1

2

SQL Server Reporting Services Server (SSRS)

FIGURE 10-8 Architecture of an environment with multiple partitions.

Process cubes
The SQL Server Analysis Services Project Wizard lets you process deployed cubes directly. However,
before processing, the wizard also runs through several prerequisite checks to ensure that cube
processing will not fail later. If you are using demo data, you can ignore these preprocessing warnings
and have the wizard process the cubes.

While the project is being processed, the wizard displays a progress page. When processing is
complete, click Next, and the wizard will show the completion screen.

308 PART 2 Developing with Microsoft Dynamics AX

Provision users in Microsoft Dynamics AX
After you deploy and process Microsoft Dynamics AX cubes, you must grant users permissions to
 access them. Provisioning users involves two activities:

 ■ Associate an appropriate user profile with each Microsoft Dynamics AX user.

 ■ Provide Microsoft Dynamics AX users with access to the OLAP database.

Associate a user with a profile
The concept of a user profile was introduced in Microsoft Dynamics AX 2009. A user profile
 determines the Role Center that is displayed when a user starts the Microsoft Dynamics AX client.
A user can be associated with only one profile.

If you do not associate a user profile with a user in Microsoft Dynamics AX, the default Role Center
is displayed when the user displays the Home area page in the Microsoft Dynamics AX client. To
 associate a profile with a given user, click System Administration > Common > Users > User Profiles
(see Figure 10-9). You can associate either one user at a time or multiple users with a given profile by
using this form.

FIGURE 10-9 Associating a user with a profile.

You can also associate a user with a profile in the Users form (System Administration > Common
> Users > Users). Changes to a user profile take effect the next time the user starts the Microsoft
Dynamics AX client.

 CHAPTER 10 BI and analytics 309

Provide access to the OLAP database
Unless you provide your users with access to the OLAP database, they cannot open reports and
display key performance indicators (KPIs) drawn from cubes in their respective Role Centers. Security
permissions defined in Microsoft Dynamics AX 2012 are not automatically applied to OLAP databases.
You must grant access to OLAP databases manually by using SQL Server management tools, such as
SQL Server Management Studio. For step-by-step instructions, see “Grant users access to cubes” at
http://msdn.microsoft.com/en-us/library/aa570082.aspx.

Customizing the prebuilt BI solution

As you have seen in the previous section, it’s relatively easy to implement the prebuilt BI solution in
Microsoft Dynamics AX 2012. But regardless of how good the prebuilt BI solution is, you may want to
change the functionality to suit your needs.

These changes can be divided into three broad categories:

 ■ Configuration Although the prebuilt BI solution is designed to cover all of the functionality
in Microsoft Dynamics AX 2012, you may have implemented only certain modules. Even within
those modules, you may have chosen to disable certain functionality. In Microsoft Dynamics
AX, license codes and configuration keys govern the availability of modules and functionality,
respectively. (For more information, see Chapter 11, “Security, licensing, and configuration.”)
Configuration keys correspond to functionality within modules. They can be enabled or
 disabled.

If you do not activate certain license codes or if you disable certain configuration keys,
the Microsoft Dynamics AX user interface configures itself by removing content that is
 associated with those elements. In this case, you may need to remove the corresponding
analytic content. (However, because the prebuilt BI solution draws data from across Microsoft
 Dynamics AX, this content will not be hydrated with data in any case.) You can use the SQL
Server Analysis Services Project Wizard to remove the corresponding content from the
 prebuilt cubes, so that you do not have to remove the irrelevant content manually yourself.

 ■ Customization You might want to add additional calendars and financial dimensions, and
also new attributes and measures, to the prebuilt cubes. The SQL Server Analysis Services
 Project Wizard lets you perform the most frequent customizations with a step-by-step
 approach, without requiring BI development skills.

 ■ Extension At some point, you may want to develop extensions to prebuilt cubes by using
the SQL Server BI development tools. Table 10-1 lists categories of customizations, summarizes
the types of changes that you can make, and lists the skill level, time, and tools required to
make those types of changes.

310 PART 2 Developing with Microsoft Dynamics AX

TABLE 10-1 Types of customizations.

Configuration Customization Extension

Nature of change Apply the Microsoft
Dynamics AX configuration
to cubes; add or remove
languages

Add calendars or
fi nancial dimensions;
add or remove measures
and dimensions

Any

Skills Knowledge of Microsoft
Dynamics AX concepts

Ability to define
Microsoft Dynamics AX
metadata

BI development skills

Tools SQL Server Analysis Services
Project Wizard

AOT; SQL Server Analysis
Services Project Wizard

Business Intelligence
Development Studio

Time required Low Medium High

The following sections describe the processes for customizing the Microsoft Dynamics AX 2012
prebuilt BI solution.

Configure analytic content
As previously explained, you can configure the predefined analytic content to reflect configuration
changes in Microsoft Dynamics AX in a matter of minutes by using the SQL Server Analysis Services
Project Wizard. In Microsoft Dynamics AX 2009, this process had to be performed manually. This
process required BI development skills and a day or two of spare time. Microsoft Dynamics AX 2012
dramatically simplifies this process by introducing the following three improvements:

 ■ Static schema Historically, Microsoft Dynamics AX has had a schema whose shape changed
depending on licenses and configuration keys. That is, when a configuration key was turned
off, the database synchronization process dropped tables and data that were deemed invalid.
This caused prebuilt cubes (that rely on a static schema in the underlying database) to break
at processing time. Unlike its predecessor, Microsoft Dynamics AX 2012 has a static schema.
So, when configuration keys are disabled, the database schema no longer changes. This means
that prebuilt cubes can continue to be processed without generating errors. (They will, for
example, contain empty measures, because the corresponding tables have no data).

 ■ Improved modeling capabilities in the AOT The Microsoft Dynamics AX 2009 OLAP
framework did not allow advanced modeling of constructs in the AOT. As a result, developers
had to implement any functionality that was lacking directly in an SSAS project. In Microsoft
Dynamics AX 2012, a larger portion of analytic content is modeled in the AOT. Therefore,
 configuring the content can be done much more easily by the framework.

 ■ Wizard-driven user interface The six different forms that were necessary in Microsoft
 Dynamics AX 2009 have been replaced by a single step-by-step wizard that guides you
through various activities.

To configure the prebuilt BI project, you must have developer privileges in Microsoft Dynamics AX.
This step modifies the project so that irrelevant measures, dimensions, and entire cubes are removed
after the process is completed. The modified project will be saved in the AOT in your own layer.

 CHAPTER 10 BI and analytics 311

To configure the project, start the SQL Server Analysis Services Project Wizard, and then select the
Configure option. You then need to select the project to configure. Select the Dynamics AX project
to configure the prebuilt project, and step through the wizard. For step-by-step instructions, see the
“How to: Configure an Existing SQL Server Analysis Services Project” at http://msdn.microsoft.com/
en-us/library/gg724140.aspx.

If you also deploy and process the project, you should notice the following changes:

 ■ Cube content (such as measures and dimension attributes that source data from tables that
are affected by disabled configuration keys) is deleted from the project. You may see that
entire cubes have been removed if the corresponding content has become invalid.

 ■ KPIs and calculated measures have been removed in cubes that depend on disabled measures
and dimension attributes.

 ■ OLAP reports in Role Centers that source data from cubes that have been removed no longer
appear on the Role Center page. If a user intentionally adds such a report to the Role Center,
the report displays a warning message and will execute.

 ■ KPIs and measures that were removed no longer appear in the Business Overview web part.

Customize cubes
When you start the SQL Server Analysis Services Project Wizard, the third option after Deploy and
Configure is Update. This option lets you customize the project.

Figure 10-10 shows the process for updating a cube. The following sections walk through each step
in detail.

Choose the project to update
The first step is selecting the project to modify. You can select an SSAS project in the AOT or a
project maintained on disk. The wizard performs basic validation of the selected project before you
can proceed. The update process is designed to ensure that you end up with a project that you can
 deploy and process without any errors. If the selected project does not build (the most basic measure
of validity), the wizard will not let you proceed to the next step.

Select metadata
Next, you select the Microsoft Dynamics AX metadata that you want to include or exclude, as shown
in Figure 10-11. The metadata that is defined in the Perspectives node in the AOT is the source of
metadata for the prebuilt BI solution. By including or excluding metadata definitions, you can include
(or exclude) measures, dimensions, and even cubes.

http://msdn.microsoft.com/en-us/library/gg724140.aspx

312 PART 2 Developing with Microsoft Dynamics AX

Choose project to be
updated

Select languages

Currency conversion Confirm changes Save updated project

Deploy and process

Select calendars
Select financial

dimensions

Select metadata
(perspectives)

Project builds ?

Yes

No

1 2

345

8

9

76

FIGURE 10-10 Updating a cube with the SQL Server Analysis Services Project Wizard.

For example, if you remove the Accounts Receivable perspective from the selection, the Accounts
Receivable cube will be removed from the project that you are updating. If you model a new
 perspective in the AOT and include it in the project, the corresponding measures and dimensions will
be created and added to the SSAS project.

For a description of metadata definitions and the resulting analytic artifacts, see “Defining Cubes
in Microsoft Dynamics AX” at http://msdn.microsoft.com/en-us/library/cc615265.aspx. Metadata is also
covered in further detail later in this chapter, in the “Creating cubes” section.

 CHAPTER 10 BI and analytics 313

FIGURE 10-11 Selecting metadata.

Select financial dimensions
On the next wizard page, you are prompted to select the Microsoft Dynamics AX financial dimensions
to include in the project, as shown in Figure 10-12.

FIGURE 10-12 Selecting financial dimensions.

314 PART 2 Developing with Microsoft Dynamics AX

Each financial dimension that you select is added as an OLAP dimension with the same name.
If a dimension by that name already exists within the SSAS project, the system will disambiguate the
newly added dimension by adding a suffix.

Select calendars
Next, the wizard prompts you to select the calendars to include as date dimensions, as shown in
Figure 10-13. If you have defined any additional calendars, you can include them in the project at this
point.

FIGURE 10-13 Selecting a calendar for a date dimension.

In Microsoft Dynamics AX 2009, the prebuilt analysis project included two date dimensions: a
 Gregorian calendar–based dimension called DATE and a fiscal calendar–based dimension called
 FISCALPERIODDATEDIMENSION. If you wanted to include additional date dimensions, you would have
had to customize the prebuilt project by using Business Intelligence Development Studio.

Microsoft Dynamics AX 2012 includes a utility called Date Dimensions (see Figure 10-14) that lets
you define custom calendars for analysis purposes. A default calendar, Date, is included with the
product, and you can define additional calendars by using Date Dimensions.

For each calendar that you add on this wizard page, the system creates a date dimension in the
SSAS project. For example, if you added a new calendar called Sales Calendar, the system will add a
date dimension called Sales Calendar. In addition, the system will create role-playing date dimensions
that correspond to each of the dates that are present in cubes. You can’t remove the prebuilt date
dimension from the project.

 CHAPTER 10 BI and analytics 315

You can start Date Dimensions directly from the SQL Server Analysis Services Project Wizard, or
from the System Administration area page.

You can define a calendar by selecting the beginning of the year and the first day of the week.
For example, for the Sales calendar, the year starts on April 1 and ends on March 31, and the week
starts on Sunday. You can enter a date range to specify the calendar records that you want the system
to populate in advance. You can also select the hierarchies that will be created for each calendar.

When you close the form, if you added or modified calendars, the system will populate dates
 according to the new parameters that you defined. In addition, the system will add the required
translations. As you will notice later, the system adds a rich set of attributes for each calendar defined
here. You can use any of these attributes to slice the data contained in cubes.

In addition, Date Dimensions adds a NULL date record (1/1/1900) and a DATEMAX date record
(31/12/2154) to each calendar, so that fact records that contain a NULL date or the DATEMAX date
will be linked to these extra records, preventing an “unknown member” error from occurring during
cube processing.

Select languages
The prebuilt SSAS project uses EN-US as the default language. However, you might have sites in other
countries/regions and want the users there to be able to view measure and dimension names in their
own languages.

The project can include additional languages through a feature in SSAS called Translations. The
Translations feature enables dimensions, measures, many other kinds of metadata, and data to be
translated to other languages by letting you add companion text in other languages.

For example, if you add German translations to the project, when a German user views data in a
cube by using, for example, Microsoft Excel, data labels are displayed in German.

The prebuilt SSAS project does not include translated strings. However, translated labels are
 already available in the system. The SQL Server Analysis Services Project Wizard lets you add any of
the required languages to the project by using existing translations from within Microsoft Dynamics
AX, as shown in Figure 10-14.

It is recommended that you add only the translations that you need. Each translation adds strings
to your project, and the size of the project increases by a few megabytes each time you add a
 language. In addition, processing gets a bit slower and the size of the backup increases.

If you have the Standard edition of SQL Server 2005 or SQL Server 2008, you could not add
 additional translations (for Microsoft Dynamics AX 2009). You had to buy the Enterprise edition of
SQL Server in order to add translations to cubes. This restriction has been removed in SQL Server
2008 R2 and later versions.

316 PART 2 Developing with Microsoft Dynamics AX

FIGURE 10-14 Selecting languages.

Labels associated with Microsoft Dynamics AX tables and views are carried through to the
 corresponding dimensions and measures. It is also possible to add specific labels to dimensions
and measures by defining the labels in perspectives. For more information, see the section “Define
 perspectives” later in this chapter.

If you manually add translations to the project in Business Intelligence Development Studio,
the wizard overwrites the labels every time you run the Update function, by sourcing labels from
 Microsoft Dynamics AX. To add your own translations, either define a new label and associate it with
the object or change the translation in Microsoft Dynamics AX by using Microsoft Dynamics AX Label
Editor.

Add support for currency conversion
The prebuilt SSAS project contains the logic to convert measures that are based on the Microsoft
Dynamics AX extended data type (EDT), AmountMST, to other Microsoft Dynamics AX currencies. For
example, if the amount was recorded in USD, you can display the value of the amount in GBP or EUR
by using the analysis currency dimension to slice the amount.

If you want to, you can exclude currency conversions by clearing the check box on the wizard page
shown in Figure 10-15.

 CHAPTER 10 BI and analytics 317

FIGURE 10-15 Selecting support for currency conversion.

Note Removing support for currency conversion not only removes this feature but might
also cause prebuilt reports to fail, because they rely on the currency conversion option to
be displayed in Role Centers.

For more information about currency conversion, see the section “Add currency conversion logic”
in the “ Creating cubes” section.

Confirm your changes
When you click Next on the Add Currency Conversion page, the wizard goes to work, performing the
following tasks:

 ■ Generates a new project based on the perspectives and other options that you have chosen.

 ■ Compares the newly generated project with the project you wanted to update.

 ■ Displays the differences between the new project (that is, the changes you want to apply) and
the old project, as shown in Figure 10-16.

In the wizard, it is assumed that you want to confirm all changes; therefore, all changes are
 selected by default. If you want the wizard to apply all changes, click Next, and then the wizard will
create a project that includes the changes that you selected.

318 PART 2 Developing with Microsoft Dynamics AX

FIGURE 10-16 Confirming changes to an SSAS project.

However, if you are an experienced BI developer and want more granular control of the Update
option, you can examine the updates in detail and accept or reject the changes.

Be aware, however, that making changes to the wizard at a granular level may result in
 inconsistencies within the analysis project. If such inconsistencies result in a project that does not
build, the wizard displays a message to inform you.

Here are some examples of when you might want to evaluate changes individually:

 ■ You might have removed some perspectives from the generation process (for example, you
have not implemented Project Accounting functionality in Microsoft Dynamics AX and are
therefore not interested in the Project Accounting cube). Ordinarily, the system would remove
the resulting analytic artifacts, including a dimension. However, you may want to use that
 dimension in analysis, even if the Project Accounting cube is not used. Therefore, you reject
the deletion of that dimension.

 ■ You have added extra attributes to the customer dimension by using Business Intelligence
Development Studio. The system would ordinarily delete these extra attributes, because they
are not associated with Microsoft Dynamics AX metadata. However, you may want to reject
the deletion and keep these extra attributes intact.

 CHAPTER 10 BI and analytics 319

Tip If you make too many customizations directly within BI Development Studio, the
 wizard detects a large number of changes. You must then review each change and approve
or reject it. At some point, running the wizard to update the project may cause too much
overhead. Therefore, if you are an experienced BI developer, and you have customized
the prebuilt project extensively within Business Intelligence Development Studio, don’t
use the Update function again. Instead, maintain your project in Business Intelligence
Development Studio.

Save the updated project
Next, the wizard applies the changes you specified in the previous step. If you simply clicked Next
(that is, you did not make any changes to the options selected by the wizard), the wizard would save
the resulting project.

If you made changes and the wizard encountered inconsistencies (that is, the project is in an error
state and does not build), it displays a warning asking whether you want to save the project or go
back to the confirmation step and reconsider the changes.

If you choose to save the project in an inconsistent state (if you are an experienced BI developer,
you might choose this approach), you must fix the project by using Business Intelligence Development
Studio; otherwise, subsequent deployment steps will be unsuccessful.

Deploy and process cubes
Next, you can deploy the cubes to an SSAS server and, optionally, process the cubes. As discussed in
the ”Deploy cubes” section earlier in this chapter, in a multiple-partition environment in Microsoft
Dynamics AX 2012 R2, the system will deploy the project to multiple SSAS databases.

Extend cubes
As discussed earlier in this chapter, you can customize the prebuilt analysis project relatively easily
by using the SQL Server Analysis Services Project Wizard. But in some cases, you may want to make
deeper customizations. For example, you might want to:

 ■ Create a rich hierarchy, such as a parent/child hierarchy to model organizational units.

 ■ Add new KPIs.

 ■ Bring external data into the analysis project and create a custom dimension.

You can use Business Intelligence Development Studio to make these types of changes.

320 PART 2 Developing with Microsoft Dynamics AX

Because the prebuilt BI components are included in the AOT as an SSAS project, you can modify
the project. To modify the prebuilt Analysis Services project, do the following:

1. In the AOT, expand the Visual Studio\Analysis Services Projects node.

2. Right-click the project that you want to modify, and then click Edit.

An Infolog message appears, stating that a copy of the SSAS project has been created and
saved, as shown in Figure 10-17.

FIGURE 10-17 Infolog message displaying the location of the SSAS project.

If SQL Server Business Intelligence Studio is installed, it will start and open the copy of the project.
Changes that you make to the project are not automatically saved to the AOT. You need to save the
project and import it back into the AOT.

Figure 10-18 shows the prebuilt SSAS project in Business Intelligence Development Studio.

FIGURE 10-18 Dynamics AX SSAS project.

 CHAPTER 10 BI and analytics 321

The following sections describe the components of the project.

DSV
The DSV contains the table and view definitions that are used by analytic artifacts. Notice that the
OLAP framework has implemented several query definition patterns in the DSV:

 ■ Financial dimensions that the wizard has added appear as custom query definitions in the DSV.

 ■ The OLAP framework has created query definitions corresponding to Microsoft Dynamics AX
views.

 ■ The OLAP framework has added a reference relationship to resolve virtual companies, if your
Microsoft Dynamics AX installation has virtual company definitions.

 ■ The OLAP framework has created views that make Microsoft Dynamics AX enumerations
 accessible in all of the languages that have been added to the project.

Avoid modifying any of the framework-generated objects in the DSV. Any changes that you make
to these objects are overwritten without warning the next time you update the project.

You may add your own objects to the DSV (for example, new query definitions. The Project Update
option will preserve these objects.

In Microsoft Dynamics AX 2012 R2, do not implement any partition-specific logic in any of the
query definitions. Otherwise, when the project is deployed to multiple partitions, the system may
generate processing errors. (Because the framework adds partition-specific logic to the DSV at
 deployment time, it may not apply the changes accurately to your query definitions.)

Data source
A data source has been created that points to the Microsoft Dynamics AX OLTP database.

Dimensions, measures, and measure groups
In Figure 10-18, notice the dimensions that are included with the Microsoft Dynamics AX 2012
 prebuilt BI solution, as well as the measures and measure groups.

For a list of measures and dimensions, see “Cube and KPI reference for Microsoft Dynamics AX
2012” at http://msdn.microsoft.com/en-us/library/hh781074.aspx.

KPIs and calculations
The SSAS project contains prebuilt KPIs and calculations. Microsoft Dynamics AX 2012 does not
 provide the capability to model KPIs and calculations in the AOT. You can modify these definitions or
add new ones directly in Business Intelligence Development Studio.

322 PART 2 Developing with Microsoft Dynamics AX

Integrate Microsoft Dynamics AX analytic components with external data
sources
Data warehouses are a popular solution for providing analytic capabilities to users. Until recently,
data warehouses were the only reasonable solution for building robust analytic capability. However,
as applications become easily interoperable and as technologies such as in-memory databases and
OLAP become cost-effective and simpler to use, building a data warehouse is not the only solution to
meet analytic requirements.

Table 10-2 presents several architecture options for integrating external data with the prebuilt
 analytic solution; a data warehouse is just one of the options. The columns represent architecture
 options, whereas the rows represent the benefits and cost implications of each option.

TABLE 10-2 Options for integrating external data with Microsoft Dynamics AX for analysis.

Data mash-ups
Integration
into Microsoft
Dynamics AX

SSAS–based
 integration

ETL–based data
warehouse

Architecture Tools such as Excel
PowerPivot let
 users mash up and
report on data.

Bring external data
into Microsoft
Dynamics AX tables
by using services or
data import jobs.

Integrate external
data into cubes by
using capabilities in
SSAS.

Extract, transform,
and load (ETL)
Microsoft
Dynamics AX and
other data into a
data warehouse
 instance.

Key benefit or
 capability

Ad-hoc and user
driven

Uses Microsoft
Dynamics AX tools
and interfaces to
analyze and report
on data.

Uses capabilities
within SSAS
to incorporate
 external data into
prebuilt cubes.

Offers complex
integration
 capabilities.
Patterns and
 processes are
 widely understood.

Complexity Low – Use of client
tools

Medium – Use of
Microsoft Dynamics
AX tools

Medium – Localized
modifications to
prebuilt cubes

High

Cost Low – User-driven Moderate Moderate High

Time to implement Low Medium High Very high

Expertise needed Low Moderate Moderate High

When most data is in Microsoft Dynamics AX (assuming that Microsoft Dynamics AX is the
 predominant source of data in the organization), you have two options.

The data mash-up option is best suited to an environment where capable users author and publish
analyses for the use of others. This option relies on client tools such as Excel PowerPivot. Microsoft
Dynamics AX 2012 enables Microsoft Dynamics AX queries to be published to data mash-up tools
through OData feeds, or as data exports to Excel.

You can bring external data into Microsoft Dynamics AX either through services (data services consumed
by means of inbound ports) or as batch jobs that are executed periodically to import data into tables. With
this approach, external data is represented as read-only data within Microsoft Dynamics AX. The benefit to
this approach is that external data appears as native Microsoft Dynamics AX data to Microsoft Dynamics AX
tools. You can create analytics, reports, and inquiry forms that use the combined data.

 CHAPTER 10 BI and analytics 323

A more complex approach involves integrating external data directly into the prebuilt BI solution.
With this option, a BI developer adds another data source to the prebuilt BI solution by using Business
Intelligence Development Studio. Additional data tables are brought into the DSV by using the new
data connection. It is possible to create dimensions and measures by using the new tables in the DSV.

The traditional ETL-based data warehouse option is suited to scenarios that require complex
 transformations or large volumes of data. Although this option is more flexible in terms of capabilities,
it is also the most expensive to implement and manage.

You might want to build a data warehouse to implement the following scenarios:

 ■ Integrate external data sources with Microsoft Dynamics AX data In this approach,
the Microsoft Dynamics AX implementation serves as one of many corporate applications.
 Although Microsoft Dynamics AX contains some of the corporate data, other systems contain
a considerable portion of the data. To make decisions, data must be combined across systems,
and the data warehouse serves that need.

 ■ Incorporate legacy data into Microsoft Dynamics AX analytics Most organizations
 migrate recent data when implementing Microsoft Dynamics AX. Legacy data is still
 maintained in read-only instances of legacy applications. Although legacy data is no longer
used for operational purposes, it is required for historical trend analysis. A data warehouse
serves as the repository where legacy data is combined with current data.

Although Microsoft Dynamics AX 2012 does not directly support the creation of a data warehouse
schema, the following artifacts generated in Microsoft Dynamics AX 2012 can be used to build a data
warehouse:

 ■ The DSV generated as part of the prebuilt analytic solution can be used within SQL Server
 Integration Services when an ETL package is developed to extract data from Microsoft
 Dynamics AX.

 ■ Microsoft Dynamics AX document services can be consumed as data sources based on Simple
Object Access Protocol (SOAP).

 ■ Microsoft Dynamics AX queries can be exposed as OData feeds.

Creating cubes

This section discusses how to create new cubes and reports by using tools built into Microsoft
 Dynamics AX 2012.

Figure 10-19 shows the four-step process for creating a new cube.

324 PART 2 Developing with Microsoft Dynamics AX

Identify requirements Define metadata
Generate and
deploy cubes

Create reports

3

4

21

FIGURE 10-19 Creating a new cube.

The following sections describe each step in more detail.

Identify requirements
Often, when a user asks for additional information, you get a request for a new report (or two or
three). For example, you might get a requirement request for a report like the one shown in
Figure 10-20 from someone in the Sales department.

Sales by channel Report

Sales Channel

Grand Total 1,285,150.75

January

404,149.86

Februrary

1,090,269.45

March

512,566.93

April

1,125,691.77

Intercompany Customers 73,288.76 1,148.34 47,132.57 7,744.09 67,652.95

Internet Customers 79,760.78 40,192.50 50,407.77

May

666,114.06

Major Customers 181,469.80 283,228.60 546,870.58 389,739.45 258,417.75 446,449.74

Retail Customers 83,064.07 112,599.72 96,921.17 118,955.26 130,211.83 211,698.25

Wholesale Customers 867,567.34 7,173.20 359,152.63 619,001.47 7,966.07

June

(3,871.87)

FIGURE 10-20 Sample Sales by channel report.

This report shows sales revenue trends by sales channel. More formally stated, this report shows
sales revenue by sales channel by calendar month.

The request for this report might be followed by requests for “a few additional reports.” Some of
the typical follow up questions would be:

 ■ What about quarterly trends? Is there seasonality?

 ■ Are some regions doing better than others?

 ■ Can we see the number of units sold instead of revenue?

 ■ Can we see the average unit price? Are steep discounts being given?

 CHAPTER 10 BI and analytics 325

If you were to build a PivotTable to answer these questions (which is probably a good idea,
 because this would let the users slice the data, thus saving you from the effort of building all of those
reports), you could construct a PivotTable like the one shown in Figure 10-21.

Filter

Q4

Measure

In
te

rn
et

W
h

o
le

sa
le

R
et

ai
l

Sales channel

Sales Revenue 21k 2.1m

2.5k

8.50

240k

29.0k

8.27 9.55

220kNo. units sold

Avg. unit price

Slicer
(Dimension)

FIGURE 10-21 Sales PivotTable.

In this case, you have identified the measures (the numbers you are interested in) and the
 dimensions (the pivots for the data).

The following sections show how to build a cube to meet these requirements.

Define metadata
The next step is to determine which Microsoft Dynamics AX tables or views contain this information.
For the purpose of this example, assume the following:

 ■ The CUSTTRANSTOTALSALES view contains sales invoice details.

 ■ The CUSTTABLECUBE view contains master data about customers.

 ■ The CUSTPAYMMODETABLE table contains payment mode information.

Define perspectives
Next, you need to define the metadata that is required to generate the cube in the AOT. As you might
recall from Microsoft Dynamics AX 2009, you define the metadata required to generate cubes in the
Data Dictionary\Perspectives node of the AOT.

Each perspective corresponds to a cube. Tables or views that are contained in a perspective node
generate measures or dimensions. Depending on table relationships (and inferred view relationships),
measures are associated with dimensions within the generated project.

Note In Microsoft Dynamics AX 2012, you can use views to model a cube.

326 PART 2 Developing with Microsoft Dynamics AX

If you want to designate a perspective node that contains only dimensions, Microsoft Dynamics
AX 2012, includes a property at the perspective level specifically for this purpose: SharedDimension-
Container. If you designate a perspective as a shared dimension container, tables and views within that
perspective will be used only to create dimensions. Moreover, all of the dimensions will be associated
with all of the measures; that is, they are truly shared dimensions, provided that they are related in
Microsoft Dynamics AX.

Follow these steps to create the new perspective for this example:

1. In the AOT, expand the Data Dictionary\Perspectives node.

2. Create a new perspective node, and name it MyCustomers.

The new node contains two subnodes: Tables and Views.

3. Set the Usage property of the node to OLAP to designate that this perspective will be used to
generate a cube.

If you are familiar with Microsoft Dynamics AX 2009, you may notice that the Ad-Hoc
 Reporting option for the Usage property is missing in Microsoft Dynamics AX 2012. You
can select only OLAP or None. It is no longer possible to generate report models by using
 perspectives in Microsoft Dynamics AX 2012.

4. Drag the tables and views listed in the previous section into the newly created perspective.

For more information, see ”How to: Create a Perspective for a Cube” at http://msdn.microsoft.com/
en-us/library/cc617589.aspx.

Define table-level properties
Strictly speaking, table-level properties (see Figure 10-22) are optional. However, if you do use them,
cubes will perform better.

FIGURE 10-22 Table-level properties.

You can also specify custom labels to give specific names to generated measure groups and
dimensions. AnalysisDimensionLabel, AnalysisKeyAttributeLabel, and AnalysisMeasureGroupLabel are
new properties introduced in Microsoft Dynamics AX 2012. Instead of providing English text, you can
provide Microsoft Dynamics AX labels so that dimension names are translated into other languages.

http://msdn.microsoft.com/en-us/library/cc617589.aspx

 CHAPTER 10 BI and analytics 327

The AnalysisIdentifier property defines the field that provides the name for a dimension key. If you
look at the Name field for this property in Figure 10-22, you will notice that the Methods Of Payment
dimension is keyed by the Name field.

For more information, see ”Business Intelligence Properties” at http://msdn.microsoft.com/en-us/
library/cc519277.aspx.

If you are a fan of the semantics introduced with the IsLookUp property in Microsoft Dynamics
AX 2009, you will be pleased to know that views in Microsoft Dynamics AX 2012 provide this
 functionality. However, the IsLookUp property will be deprecated in future releases, so it is
 recommended that you do not use this property.

Define field-level properties
Defining field-level properties is the key step in defining metadata. You need to identify individual
measures and attributes that are necessary in the cube.

First, expand the CUSTTRANSTOTALSALES view, and set the field properties as shown in Table 10-3.

TABLE 10-3 Field-level property settings for the sales report example.

Field AnalysisUsage AnalysisDefaultTotal ExchangeRateDateField

AmountMST Measure Sum TransDate

TransType Attribute Auto

TransDate Attribute Auto

All others Auto Auto

The AmountMST field will generate a measure that is summed when it is aggregated.
 ExchangeRateDateField is a new attribute added in Microsoft Dynamics AX 2012 for currency
 conversion. In this example, the OLAP framework should convert the AmountMST measure to all
available currencies, so that users can analyze transactions (possibly conducted in different currencies)
across a common currency. The TransDate field contains the date on which the measure will be
 converted into other currencies with Microsoft Dynamics AX exchange rates.

Users need to be able to slice the data by TransType and TransDate, so these fields are designated
as attributes.

Next, open the CUSTTABLECUBE view, and set the field-level properties as shown in Table 10-4.

TABLE 10-4 Field-level properties for the CUSTTABLECUBE view.

Field AnalysisUsage AnalysisDefaultTotal

AccountNum Measure Count

Blocked Attribute Auto

GroupName Attribute Auto

City Attribute Auto

County Attribute Auto

http://msdn.microsoft.com/en-us/library/cc519277.aspx

328 PART 2 Developing with Microsoft Dynamics AX

Field AnalysisUsage AnalysisDefaultTotal

Name Attribute Auto

State Attribute Auto

MainContactWorker Attribute Auto

All others Auto Auto

Finally, expand the CUSTPAYMODE table, and set the field-level properties as shown in Table 10-5.

TABLE 10-5 Field-level properties for the CUSTPAYMODE table.

Field AnalysisUsage AnalysisDefaultTotal

Name Attribute Auto

PaymMode Attribute Auto

TypeofDraft Attribute Auto

AccountType Attribute Auto

All others Auto

For more information about field-level properties, see “Business Intelligence Properties” at
http://msdn.microsoft.com/en-us/library/cc519277.aspx.

Generate and deploy the cube
After you define the necessary metadata, you can generate an SSAS project by using the SQL Server
Analysis Services Project Wizard. You can deploy and process the project directly from the wizard, or
you can open the project in BI Development Studio and extend it by using SQL Server functionality.

Define the project
In the wizard, select the Create option, because you are creating a new project, and provide a name.
Alternatively, if you want to include the new cube in the prebuilt SSAS project, you can select the
Update option.

On the next page, select the perspectives that are used to generate cubes and dimensions within
the project. For this example, you would select the MyCustomers perspective. You can include one or
more perspectives within the same project.

You can also include Microsoft Dynamics AX financial dimensions, in addition to Microsoft
 Dynamics AX calendars and Microsoft Dynamics AX languages, as discussed earlier in this chapter.

Add currency conversion logic
Next, the wizard lets you add currency conversion logic to the project.

As you may recall, while defining field-level properties for the perspective, AmountMST was
 identified as a measure that needs to be converted to other currencies. The AmountMST field
 contains an amount that is recorded in the accounting currency of the company. Because

 CHAPTER 10 BI and analytics 329

 Microsoft Dynamics AX might contain multiple companies that have different accounting currencies,
 transactions might be recorded in different accounting currencies.

For example, the CEU company’s accounting currency is GBP, whereas the CEUE company’s
 accounting currency is USD. In the AmountMST field, sales for CEU are recorded in GBP, whereas those
for CEUE are recorded in USD.

Because a cube aggregates data across companies, a user browsing the cube could inadvertently
add GBP values to USD values unless something is done to differentiate the two amounts. The
 Microsoft Dynamics AX 2012 OLAP framework builds this mechanism for you in the form of currency
conversion support.

Microsoft Dynamics AX 2012 cubes contain two system dimensions: Currency and Analysis
 Currency. If the user uses the Currency dimension to split the measures that are shown, Microsoft
Dynamics AX displays amounts only in the chosen currency. If the user uses the Analysis Currency
dimension to split the measures that are shown, all amounts are shown, but the resulting values are
converted to the chosen analysis currency by using Microsoft Dynamics AX exchange rates. This
 happens through currency conversion.

Here is an example: assume that the transactions shown in Figure 10-23 are included in the
CUSTTRANSTOTALSALES view. (Note that two columns have been added, Accounting Currency and
AmountCur, to clarify that each company has a different accounting currency.)

1 202 (USD)

2 475 (CAD)

3

CEE

DMO

CEU

USD

CAD

GBP

1/1/2012

1/1/2012

2/1/2012

21,000 (JPY)

300 (GBP)

300 (GBP) 300 (GBP)

Accounting Currency Trans Date Amount Cur Amount MSTCompanyRec ID

FIGURE 10-23 Transactions for companies in different accounting currencies.

If a user creates a PivotTable and displays the total AmountMST value split by the Analysis Currency
dimension, the result is as shown in Figure 10-24.

1058Amount MST 1079 813

GBPCADUSD

Analysis Currency

FIGURE 10-24 Analysis currency.

To get the value of AmountMST in USD, the system calculated the USD equivalent of each of the
amounts, as shown in Figure 10-25.

330 PART 2 Developing with Microsoft Dynamics AX

= Amount MST in Analysis Currency

= ∑ Amount MST in Accounting Currency x Exchange Rate

= 202

= 1, 058

+ 466 + 390

CAD to USD
exchange rate on

1/1/2012

GBP to USD
exchange rate on

2/1/2012

= 202 x 1.0000 + 475 x 0.9800 + 300 x 1.3000

FIGURE 10-25 Currency conversion for analysis.

To determine the exchange rate between CAD and USD, and between GBP and USD, the
system used the field-level metadata tag ExchangeRateDateField. For this example, the
 ExchangeRateDateField value for AmountMST is TransDate. So the TransDate value associated with
each record was used to find the exchange rate to use for the conversion.

Microsoft Dynamics AX 2012 has the concept of a rate type. In other words, multiple exchange
rates can be associated with a given company. A company can use different rates for different
 purposes or different rates for different locations. The Microsoft Dynamics AX 2012 OLAP framework
uses the system exchange rate type for the currency conversion logic. This rate type is a systemwide
parameter that a system administrator specifies on the System Parameters form
(System Administration > Setup > System Parameters), as shown in Figure 10-26.

FIGURE 10-26 Setting the system currency and exchange rate type.

 CHAPTER 10 BI and analytics 331

If you create a PivotTable with the Currency dimension, AmountMST values are filtered by the
specified currency, as shown in Figure 10-27. You would expect this behavior if you created a
 PivotTable with any dimension.

202AmountMST 475 300

GBPCADUSD

Currency

FIGURE 10-27 PivotTable with the Currency dimension.

Provided that you define the field-level metadata tag ExchangeRateDateField, the wizard adds the
currency conversion calculation to the generated project as a multidimensional expression (MDX)
script. The wizard also adds the system dimension Analysis Currency (the Currency dimension is
added regardless of whether you select currency conversion). The wizard also creates an intermediate
measure group called Exchange Rates By Day in each cube.

If you open the generated project in Business Intelligence Development Studio, you can see the
currency conversion calculation created by the wizard:

CALCULATE;
//---
// Dynamics AX framework generated currency conversion script.
// Customizing this portion of the script may cause problems with the updating
// of this project and future upgrades to the software.
//---
Scope ({ Measures.[Amount] });
 Scope(Leaves([Exchange rate date]),
 Except([Analysis currency].[Currency].[Currency].Members,
 [Analysis currency].[Currency].[Local]),
 Leaves([Company]));
 Scope({ Measures.[Amount] });
 This = [Analysis currency].[Currency].[Local] * ((Measures.[Exchange rate],
StrToMember("[Currency].[Currency].&["+[Company].[Accounting currency].CurrentMember.Name+"]"))
/ 100.0);
 End Scope;
 End Scope;
 Scope(Leaves([Exchange rate date]),
 Except([Analysis currency].[Currency name].[Currency name].Members,
 [Analysis currency].[Currency name].[Local]),
 Leaves([Company]));
 Scope({ Measures.[Amount] });
 This = [Analysis currency].[Currency].[Local] * ((Measures.[Exchange rate],
StrToMember("[Currency].[Currency].&["+[Company].[Accounting currency].CurrentMember.Name+"]"))
/ 100.0);
 End Scope;
 End Scope;
 Scope(Leaves([Exchange rate date]),
 Except([Analysis currency].[ISO currency code].[ISO currency code].Members,
 [Analysis currency].[ISO currency code].[Local]),

332 PART 2 Developing with Microsoft Dynamics AX

 Leaves([Company]));
 Scope({ Measures.[Amount] });
 This = [Analysis currency].[Currency].[Local] * ((Measures.[Exchange rate],
StrToMember("[Currency].[Currency].&["+[Company].[Accounting currency].CurrentMember.Name+"]"))
/ 100.0);
 End Scope;
 End Scope;
 Scope(Leaves([Exchange rate date]),
 Except([Analysis currency].[Symbol].[Symbol].Members,
 [Analysis currency].[Symbol].[Local]),
 Leaves([Company]));
 Scope({ Measures.[Amount] });
 This = [Analysis currency].[Currency].[Local] * ((Measures.[Exchange rate],
StrToMember("[Currency].[Currency].&["+[Company].[Accounting currency].CurrentMember.Name+"]"))
/ 100.0);
 End Scope;
 End Scope;
End Scope;
//---
// End of Microsoft Dynamics AX framework generated currency conversion script.
//---

This logic is similar to the code added by the Define Currency Conversion option in the SSAS
 Business Intelligence Wizard. If the selected Microsoft Dynamics AX exchange rate type does not have
records corresponding to the dates (for example, TransDate) that are present in data, the calculations
will use the most recent rate for the corresponding currency pair.

Important The wizard maintains this script as you configure and update analysis projects.
If you modify the script manually, your changes will be overwritten by the framework each
time.

Save the project
After you specify currency conversion options, the system will generate the project and prompt you
for a destination to which to save the project.

You can save the project in the AOT or on disk. This gives you the flexibility to maintain SSAS
 projects in the development environment of your choice. OLAP framework tools, such as the SQL
Server Analysis Services Project Wizard, will work with projects whether they are on disk or in the AOT.

If you save the project in the AOT, the project will be saved in your layer.

Deploy and process the project
You can deploy the project directly to the Analysis Services server at this stage. It’s important to
note that the wizard calls the Analysis Services deployment functionality behind the scenes. If you
do not have the Microsoft Dynamics AX Development Workspace (including Business Intelligence
 Development Studio) installed on your computer, this step may fail.

 CHAPTER 10 BI and analytics 333

As discussed earlier, in Microsoft Dynamics AX 2012 R2 you can deploy a project to multiple
 partitions. If you have multiple partitions defined, you can deploy the project to the set of partitions
you choose.

Add KPIs and calculations
You can define KPIs by using Business Intelligence Development Studio after you generate the
 project. You implement KPIs and calculated measures by using MDX.

The KPIs and calculated measures in the prebuilt SSAS project are also created in this way. If you
create your own KPIs and calculated measures, the SQL Server Analysis Services Project Wizard will
preserve them when you perform updates.

For more information, see “Walkthrough: Defining KPIs for a Cube” at http://msdn.microsoft.com/
en-us/library/dd261469.aspx.

If you are an expert MDX developer, you might be tempted to implement complex calculations
and KPIs. However, a best practice is to move your calculations to Microsoft Dynamics AX views and
tables as much as possible. This way, you not only use the expressive power of Microsoft Dynamics
AX, but you also move the calculations that must be pre-aggregated, so that you get better run-time
performance.

You can move calculations to Microsoft Dynamics AX in the following ways:

 ■ Reuse Microsoft Dynamics AX tables and fields Chances are that the Microsoft Dynamics
AX schema already contains most of the calculations that you need. If the information
is not directly available in the primary table, review secondary tables and fields to see if
 corresponding fields are available. A small investment in reviewing the schema will save you a
lot of MDX code.

 ■ Define Microsoft Dynamics AX views with computed columns Microsoft Dynamics
AX 2012 view support in perspectives enables a host of scenarios where multiple tables
can be joined to create rich views. The Microsoft Dynamics AX 2012 view framework also
 provides support for creating computed columns in Microsoft Dynamics AX views. For more
 information, see “Walkthrough: Add a Computed Column to a View” at http://msdn.microsoft
.com/en-us/library/gg845841.aspx.

Displaying analytic content in Role Centers

After you create a cube, users can navigate through the aggregated measures and slice them on the
dimensions. This section describes ways that you can expose cube content to users.

However, before discussing the presentation tools, this section examines the jobs that people
 actually do in an organization to help, you understand the nature of the insights that those people
need to do those jobs better.

http://msdn.microsoft.com/en-us/library/dd261469.aspx
http://msdn.microsoft.com/en-us/library/gg845841.aspx

334 PART 2 Developing with Microsoft Dynamics AX

Table 10-6 lists some options for exposing cube data. Later sections discuss those options in
greater detail.

TABLE 10-6 Ways of exposing cube data to users.

Option Capability Author Additional
 requirements

SQL Server Power View Explore data visually and
 interactively. Create high-quality
presentations with data.

Casual user Microsoft SharePoint
Enterprise edition with
SQL Server 2012

Excel PivotTables Analyze data. Slice and dice data
by using dimensions.

Power user SharePoint Enterprise
edition with Excel
Services

KPIs with the Business
Overview web part

Build simple scorecards on Role
Centers by adding and removing
KPIs and measures.

Power user

Reports built by using SQL
Server Report Builder v3
(SQL RB3)

Build graphical reports by using
aggregate data.

Power user SQL Server Report
Builder, SSRS web parts

Reports built by using
Microsoft Visual Studio tools
for Microsoft Dynamics AX

Build parameterized production
reports by using aggregate data.

Developer

Interactive charts built by
using Microsoft Dynamics AX
charting controls

Build interactive charts by using
aggregate data.

Developer Microsoft Dynamics AX
2012 R2

Provide insights tailored to a persona
For the purposes of this discussion, the people in an organization, or personas, are divided into three
broad categories: operational, tactical, and strategic.

 ■ Operational personas, such as an Accounts Receivable administrator, focus primarily on staying
productive and performing day-to-day tasks, such as keeping tabs on receivables.

 ■ Tactical personas, such as heads of departments and supervisors, have an additional responsibility
as people and resource managers; they need to ensure that their teams function smoothly.

 ■ Strategic personas such as chief executive officers (CEOs) need to take a broader corporate view;
they tend to operate on established goals and milestones that are evaluated on a wider scale.

Of course, there is an element of operational focus in a tactical persona, and vice versa, but for
simplicity, those aspects are not covered here.

Consider a day in the life of an Accounts Receivable (AR) administrator. Like many AR
 administrators, this administrator is extremely busy at the end of each month (or every Friday,
 depending on the natural cycle of the business), calling customers and following up on payments.
In this case, the AR administrator focuses on exceptions (large payments that are late). If he has more
than a few items to work with, he needs a way to prioritize and filter the cases—or even better—see
trends within the items at hand. After he identifies a case, he needs to take action and complete the
task; for example, he makes a call or sends a note to ensure that the bill is paid.

 CHAPTER 10 BI and analytics 335

In this example, insights would help the AR administrator in three areas:

 ■ First, he needs to detect exceptions.

 ■ Next, he needs to identify clusters, trends, and anomalies.

 ■ Finally, he needs to be able to take action.

Of course, real-world AR administrators don’t necessarily follow these steps in succession. But
these are three situations where insights need to be applied to help the AR administrator accomplish
his daily goals.

Choose a presentation tool based on a persona
Depending on the focus of the persona, different tools and approaches may be necessary.

Table 10-7 shows a list of situations in which each persona requires BI tools to provide insight and
suggests presentation tools that would meet the needs of each situation.

TABLE 10-7 Business objectives and tools by persona.

BI requirement Operational persona Tactical persona Strategic persona

Detect exceptions Objective: Track
 exceptional
 transactions
Tools: Cues, Info Parts

Objective: Identify abnormal
trends, outliers
Tools: Cues, KPIs

Objective: Identify goals that
have not been met, identify
long-term trends that are not
meeting expectations
Tools: KPIs

Identify clusters
and trends

Objective: Perform
simple analysis
 (prioritizing, filtering)
Tools: List pages,
AutoReports

Objective: Slice aggregated
data, prepare sample data and
audits
Tools: Excel, SQL Server Power
View, AutoReports

Objective: View details,
 compare, and benchmark with
peers and previous results
Tools: Excel, Business Overview
web part, PerformancePoint
scorecards

Take action Objective: Seamlessly
access detailed data
Tools: Microsoft Office
 templates, list pages

Objective: Communicate and
share patterns, take proactive
or corrective action
Tools: Office templates,
SSRS Report Builder 3.0,
Management Reporter

Objective: Perform
 reorganizations, start programs,
and implement action plans
Tools: KPIs, Business Overview
web part, PerformancePoint
scorecards

The tools in Table 10-7 are just suggestions for how you can provide insights to users. However,
nothing prevents you from using, for example, the Business Overview web part in a Role Center for
an operational persona, or from using cues to display detailed data in a Role Center for a strategic
 persona. For more information about cues and info parts, see Chapter 5, “Designing the user
 experience.”

SQL Server Power View reports
SQL Server Power View is an interactive, browser-based data exploration, visualization, and
 presentation tool for casual users that is included in SQL Server 2012.

336 PART 2 Developing with Microsoft Dynamics AX

Power View can be integrated with Microsoft Dynamics AX in several ways:

 ■ Users can use the PowerPivot add-in for Excel to create models and reports that combine
Microsoft Dynamics AX data with external data sources. These models are commonly known
as data mash-up applications. Microsoft Dynamics AX queries exposed as OData feeds are the
best means of consuming data with this approach because OData feeds ensure that Microsoft
Dynamics AX security is enforced at the AOS level. With PowerPivot, a user simply assembles
the data required for the analysis with the help of a PowerPivot designer. After the data is
 assembled, the user can browse the data by using Excel PivotTable functionality.

PowerPivot models can be saved to a server running SharePoint Services Enterprise edition.
Saved PowerPivot models can be explored with Power View.

 ■ As a developer, you can create tabular models by using SQL Server Data Tools, the Visual
Studio–based developer tools for creating BI models. When creating tabular models, you can
either start from a PowerPivot model created by a user (that is, create a production version of
an existing model) or start from scratch. With either approach, you can create a tabular model
that consumes data from Microsoft Dynamics AX by means of OData feeds or cubes.

After you develop a tabular model, you deploy it to the SSAS server; however, the server must
be configured in tabular mode, not multidimensional mode.

Note Starting with SQL Server 2012, an SSAS server can be configured for either
multidimensional mode (required for hosting Microsoft Dynamics AX cubes) or
tabular mode (required for hosting tabular models). An SSAS server that is in
multidimensional mode cannot host a tabular model, and vice versa.

 ■ A system administrator can create a Reporting Services data connection file (.rsds file) for
tabular mode. After the data connection has been created, users can explore tabular models
by using SQL Server Power View.

Expose a Power View report in a Role Center
Embedding an existing Power View report in a Microsoft Dynamics AX Role Center is easy: just use
the Page Viewer web part in SharePoint Server, and enter the URL of the Power View report.

Start the Power View report viewer in a browser window, copy the URL for the report
(see Figure 10-28), and then paste it into Notepad.

 CHAPTER 10 BI and analytics 337

FIGURE 10-28 Power View report.

Here’s an example URL:

http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?RelativeReportUrl=/Shared%20
Documents/Dynamics-SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuv
h0301%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1

Notice that the first part of the URL contains the path to the Power View designer and the report
being viewed in the designer. The remainder is a collection of parameters that are passed to the
 designer when it is started by the caller.

You can customize the appearance of the Power View window shown in the Role Center by
 manipulating these parameters. Table 10-8 lists the parameters and describes what they do.

TABLE 10-8 Power View URL parameters.

Parameter Description Suggested value for a Role
Center

ViewMode Defines whether the report is displayed in
 presentation mode or edit mode.

Presentation—Shows the report
without edit buttons and the field
selection.

Fit Defines how the contents of the report fit into
the window you have chosen.

True—Hides the frame around the
report.

PreviewBar Defines whether the preview bar (including Full
Screen and Edit buttons) is displayed on the
screen.

False—Hides the preview bar.

AllowEditViewMode Defines whether the user can edit the report
within the window.

False—Makes the report static
within the window.

BackgroundColor Defines the background color if the report
doesn’t fit into the window.
(Not applicable if you want the report to fit into
the window.)

White—Displays the report in the
Role Center without a border.

http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?RelativeReportUrl=/Shared%20Documents/Dynamics-SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuvh0301%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1

338 PART 2 Developing with Microsoft Dynamics AX

If you change the URL by applying the parameter values in Table 10-8, the modified URL looks as
 follows:

http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?RelativeReportUrl=/
Shared%20Documents/Dynamics-SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F
%2Fvsqlbuvh0300%2FPPSubSite%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultI
temOpen=1&Fit=True&PreviewBar=False&BackgroundColor=White&AllowEditViewMode=False

Now, open the Role Center, and select the option to modify or personalize the page. In Edit mode,
select Add Web Part, and the Web Part gallery will appear. Select the Page Viewer web part from the
gallery of available web parts, as shown in Figure 10-29.

FIGURE 10-29 Web Part gallery.

After you add the web part, specify the URL for the report. You can also provide a friendly title
and height and width parameters to suit the window, as shown in Figure 10-30.

FIGURE 10-30 Specify the presentation options for a Power View report.

http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?RelativeReportUrl=/Shared%20Documents/Dynamics-SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuvh0300%2FPPSubSite%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1&Fit=True&PreviewBar=False&BackgroundColor=White&AllowEditViewMode=False

 CHAPTER 10 BI and analytics 339

Figure 10-31 shows the result. Notice that you can match the color scheme of the Power View
report with the color scheme of other reports and charts on the page. This way, users won’t notice a
difference between the Power View report and the other charts on the page.

FIGURE 10-31 Power View report in a Role Center.

Allow users to edit a Power View report
In the previous example, the Edit button and the chrome were disabled because an editing
 experience in a small window would not be optimal. Also, the capability to edit a report may be
 beyond the reach of some of the users.

However, you can easily allow users to edit a report by creating a quick link to start Power View in
a separate browser window.

To do so, create a new URL quick link by clicking the Add Links option in the Quick Links web part,
as shown in Figure 10-32.

FIGURE 10-32 Adding a link to the Quick Links web part.

In the Add Quick Link dialog box, paste the URL of the Power View report, as shown in Figure 10-33.

340 PART 2 Developing with Microsoft Dynamics AX

FIGURE 10-33 Specifying a URL to a Power View report.

You will now see the new quick link added, as shown in Figure 10-34.

FIGURE 10-34 A quick link to a Power View report.

Excel
Excel is a simple, yet powerful way to share reports with users in Role Centers. For example, you can:

 ■ Analyze cube data in Excel and create PivotTables.

 ■ Save PivotTable reports to Excel Services for SharePoint.

 ■ Expose Excel worksheets that are saved to Excel Services for SharePoint by using either the
Excel Services web part or using the Excel Web App.

For step-by-step instructions that show how to create a PivotTable by using the prebuilt General
ledger cube, see “Walkthrough: Analyzing Cube Data in Excel” at http://msdn.microsoft.com/en-us/
library/dd261526.aspx.

Excel Services for SharePoint 2010, in combination with Excel 2010, let you expose charts and
 PivotTables built by using the Excel Services REST application programming interface (API). The URL
that you obtain by using the REST API can be used to display a chart or a table in Role Centers. For
more information about Excel Services, see “Excel Services overview” at http://technet.microsoft.com/
en-us/library/ee424405.aspx.

http://msdn.microsoft.com/en-us/library/dd261526.aspx
http://technet.microsoft.com/en-us/library/ee424405.aspx

 CHAPTER 10 BI and analytics 341

Business Overview web part and KPI List web part
The Business Overview web part was introduced in Microsoft Dynamics AX 2009 to display the KPIs
in prebuilt cubes in Role Centers. This web part was initially modeled on the KPI List web part in
 SharePoint Enterprise edition, but it has evolved into a distinct Microsoft Dynamics AX web part
in Microsoft Dynamics AX 2012. For example, the Business Overview web part provides Microsoft
Dynamics AX user context awareness that is lacking in the generic KPI List web part. KPIs are filtered
based on the context of the Microsoft Dynamics AX company and partition (for Microsoft Dynamics
AX 2012 R2) when they are shown in Role Centers. Also, when a user changes the Microsoft Dynamics
AX language to German, for example, the Business Overview web part can switch the labels for the
KPI to German.

If you are familiar with the Business Overview web part from Microsoft Dynamics AX 2009, you
know that it had two modes. In Microsoft Dynamics AX 2012 R2, the functionality of these two modes
has been divided into separate web parts: the Business Overview web part and the KPI List web part.
You no longer have to switch modes. If you want to display KPIs, use the KPI List web part. If you want
to display indicators, use the Business Overview web part. The two web parts appear in the SharePoint
Web Part gallery), as shown in Figure 10-35.

FIGURE 10-35 Microsoft Dynamics AX web parts in the SharePoint Web Part gallery.

Both the Business Overview web part and the KPI List web part have some additional features:

 ■ You can define multiple filters when displaying a KPI or an indicator. In Microsoft Dynamics AX
2012, you could add a relative time filter only to a KPI displayed in the Business Overview web
part.

 ■ You can add a Microsoft Dynamics AX menu item or a URL as a drill-through target to a KPI.

 ■ You can limit the number of values that are displayed on the screen when splitting a KPI with
a given value.

 ■ They provide better error handling and graceful exit in case of errors that are caused by cube
configuration issues.

 ■ The Business Overview web part is extensible. You can create a custom skin for the Business
Overview web part and extend its functionality to suit your own business area.

342 PART 2 Developing with Microsoft Dynamics AX

Add a KPI to the KPI List web part
Start the Microsoft Dynamics AX client and then navigate to a Role Center. Note that the example in
this section uses a sample Role Center. Select the option to edit the Role Center page. If you are using
the Microsoft Dynamics AX Windows client, you are able to personalize the page for yourself only. If
you are a developer, customizing the page for everyone, you should start the Microsoft Dynamics AX
Enterprise Portal web client and edit the page.

Select Add Web Part. You should see the SharePoint Web Part gallery, as shown in Figure 10-36.

Select the KPI List web part. Click Add. After the web part is added, select Exit Editing. Now you
will see the new web part added to the Role Center page.

FIGURE 10-36 Adding a KPI.

Click the Add KPIs option to add a new KPI to the web part. You will see an Add KPI dialog box
similar to the one in Figure 10-37.

FIGURE 10-37 The Business Overview–Add KPI dialog box.

 CHAPTER 10 BI and analytics 343

If you are familiar with the Business Overview web part in Microsoft Dynamics AX 2009 or
 Microsoft Dynamics AX 2012, you will notice several new additions to the Business Overview – Add
KPI dialog box (the Add New Indicator dialog box provides similar options).

First, you have an expanded set of options for applying filters. You can add any number of
 filters—both relative time periods and fixed values. This way, a user can add a filter to an existing KPI
 definition and display it on his or her Role Center. This feature yields two benefits. You can define a
general-purpose KPI definition that applies to the entire organization or the business unit. Users can
narrow down the scope of the KPI definition so that it closely matches their area of focus, without
developer intervention.

You are probably familiar with the Split option that lets a user display the breakdown of a KPI
 definition by a selected attribute. For example, the Revenue KPI can be split by sales units so that a
sales manager can monitor units that are falling behind. Unlike in Microsoft Dynamics AX 2012, the
user can display the top 10 or bottom 10 values, so that the list is not too long.

It was possible to provide a drill-through link to each KPI in Microsoft Dynamics AX 2012, but the
 picking experience was not user friendly. In Microsoft Dynamics AX 2012 R2, the picking experience has
been improved so that the user can associate a Microsoft Dynamics AX menu item or a URL with each KPI.

Notice that the Cube field is already set to a prebuilt cube. In Microsoft Dynamics AX 2012, the
 Business Overview web part is hardwired to display KPIs from the default cube database. If you want to
point the Business Overview web part to a different database, you can specify the database by providing
a database connection file; that is, an Open Database Connectivity (ODC) file. For information about
how to define an ODC file and add ODC files to Enterprise Portal, see “How to: Create an ODC file for a
 Business Overview Web Part“ at http://msdn.microsoft.com/en-us/library/hh128831.aspx.

The default database is specified in the System Administration > Setup > Business Intelligence >
Analysis Services > Analysis Servers form. When you deploy an SSAS project by using the SQL Server
Analysis Services Project Wizard, the OLAP database created by this action is added to the list of
databases in the Analysis Servers form.

Select an analysis server, and then click the OLAP Databases tab (see Figure 10-38).

FIGURE 10-38 Analysis Servers form specifying the default OLAP database.

http://msdn.microsoft.com/en-us/library/hh128831.aspx

344 PART 2 Developing with Microsoft Dynamics AX

The Default check box specifies the default OLAP database used by the Business Overview web
part. You can switch the default database by selecting the check box for a different database.

Add a custom time period filter
Relative time period filters are shown in the Business Overview web part when you add a KPI or
an indicator. However, you can define your own time period filter by using the Time Periods form
 (System Administration > Setup > Business Intelligence > Analysis Services > Time Periods), as shown
in Figure 10-39.

FIGURE 10-39 The Time Period form.

This form lists three types of time periods:

 ■ Indicators These define the relative time periods that apply to indicators—the items that
you add to the Business Overview web part.

 ■ KPI lists These define the relative time periods that apply to KPIs—the items that you add to
the KPI List web part.

 ■ Period templates These are reusable macros that can be used by both indicator and KPI list
entries. Period templates save you from having to recode commonly used patterns repeatedly.

You can define additional indicator and KPI list periods by using MDX code in this form. The
 Business Overview web part makes these filters available to users at run time.

The following are example definitions to help you understand time period filters.

 CHAPTER 10 BI and analytics 345

Period template: CurrentDate
If the time period definition is a template, you need to modify only the MDX expression in the
template.

The CurrentDate period template contains the following MDX expression, which gets the
current date from the system:

STRTOMEMBER('[|DateDim|].[Year - Quarter - Month - Week - Date].[Month].&[' +
vba!format(vba![date](), 'yyyy-MM-01') + 'T00:00:00]')

Notice the token |DateDim| in the expression. The Business Overview web part replaces this
token with the actual name of the date dimension; therefore, you can use this expression with
any date dimension.

If you examine the period template definition for CurrentFiscalDate, you will notice another
token:

STRTOMEMBER('[|FiscalDateDim|].[Year quarter period month date].[Date].&[|c|]&[' +
vba!format(vba![date](), 'yyyy-MM-dd') + 'T00:00:00]')

In this case, the system interprets the token |FiscalDateDim| as a fiscal date dimension. The
system identifies a fiscal date dimension by the name given to the dimension. The system
 interprets the token |c| as the current company.

Indicator: Month_LastMonth
The definition for the Month_LastMonth indicator uses the template that was discussed in the
previous section.

The definition for an indicator contains two MDX expressions that correspond to two
time period definitions (see Figure 10-40). The expression that provides the value for the
 current period is defined in the Current Period MDX field. Because there is already a template
for calculating the current month, you can use that definition by referencing the template
 %CurrentMember%.

The expression that provides the value for the previous period is defined in the Previous
Period MDX field. Again, you can use the template already defined and define an expression by
using that template.

You will also need to provide a description and a display name for the period definition, as
shown in the left pane of the Time Period form. These descriptions and display names appear in
the Business Overview web part when the user applies the period filter.

346 PART 2 Developing with Microsoft Dynamics AX

Develop reports with Report Builder
Report Builder is a report development tool that was created with the user in mind. (By contrast,
Visual Studio tools for creating reports focus on the developer.) Report Builder features an Office-like
ribbon that is familiar to users.

Report Builder 3.0, which was released around the same time as SQL Server 2008 R2, requires SQL
Server 2008 R2 or a later version. A new version of Report Builder is included with SQL Server 2012.
For an overview of the capabilities of Report Builder, see “Getting Started with Report Builder” at
http://technet.microsoft.com/en-us/library/dd220460(SQL.110).aspx.

Earlier versions of Microsoft Dynamics AX provided the capability to generate report models
(.smdl files) that could be used to generate reports with Report Builder 1.0. These .smdl models were
based on a set of views, called secure views, that were generated on top of the Microsoft Dynamics
AX OLTP database.

Microsoft Dynamics AX 2012 no longer generates report models for ad-hoc reporting with Report
Builder because Report Builder provides excellent capabilities for creating reports with prebuilt cubes.
Also, Microsoft Dynamics AX 2012 cubes provide a good source of aggregate data. For step-by-step
instructions about how to use Report Builder with OLAP data, see “Create a report by using SQL Server
Report Builder to connect to a cube” at http://msdn.microsoft.com/en-us/library/gg731902.aspx.

Develop analytic reports by using Visual Studio tools for
Microsoft Dynamics AX
Reports developed by using Report Builder are ideal for scenarios in which users require the
 capability to create reports for their own consumption or for sharing within a group. However, if you
want to create an analytic report for broader consumption within the entire organization, you may
want to consider using Visual Studio tools.

Reports created with Report Builder have the following drawbacks when used across the
 organization:

 ■ They are developed in only one language. These reports cannot use Microsoft Dynamics AX
labels, and they cannot be rendered in other languages.

 ■ They do not react to the Microsoft Dynamics AX security model.

 ■ They lack debugging capabilities.

 ■ They mix datasets from multiple data sources, such as Report Data Providers (RDPs).

Most of the Role Center reports that extract aggregate data are sourced with analytic datasets.

Developing an analytic report is no different from developing a standard Microsoft Dynamics
AX report by using Visual Studio tools. You define a report dataset and then create a report design

http://technet.microsoft.com/en-us/library/dd220460(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/gg731902.aspx

 CHAPTER 10 BI and analytics 347

to consume the data. For more information about creating a report, see Chapter 9, “Reporting in
 Microsoft Dynamics AX,” and “Walkthrough: Displaying Cube Data in a Report” at http://msdn.microsoft
.com/en-us/library/dd252605.aspx.

The remainder of this section examines the salient features of an existing report that consumes
analytic data. If you open the AR Administrator Role Center, you will notice the Top Customers by
YTD sales report. Start Visual Studio 2010 (the Microsoft Dynamics AX VS reporting tools must be
installed).

1. In Microsoft Dynamics AX Application Explorer, right-click the CustTopCustomersbyYTDSales
report, and then click Edit.

2. Expand the Data Sets node, and then expand the TopCustomersYTDSales dataset.

The report model opens, as shown in Figure 10-40.

FIGURE 10-40 A report model.

The Query property displays the MDX query that was used to retrieve the data. You can click the
ellipsis button to open a window where you can modify the MDX query. You can also execute the
MDX query from this dialog box (see Figure 10-41).

Note When you create an analytic report, unless you are an MDX expert, you will probably
want to develop the MDX query by using an MDX editor, and then paste it into the Query
dialog box.

http://msdn.microsoft.com/en-us/library/dd252605.aspx

348 PART 2 Developing with Microsoft Dynamics AX

FIGURE 10-41 MDX query dialog box.

Notice that the data source is DynamicsAXOLAP, which indicates that the data is sourced from the
prebuilt BI solution. To find out which database the data source points to, examine the properties of
the Report Datasources node in the AOT, as shown in Figure 10-42.

FIGURE 10-42 Report Datasources node in the AOT.

DynamicsAXOLAP points to the default cubes. This data source is deployed to the SSRS server as
a report data source when the report is deployed. If the report was deployed from a development
 environment, the report points to the development instance of cubes. If the report was deployed
from a test instance, it points to the corresponding cube instance.

To examine the properties of the data connection that is deployed to SSRS, locate the connection
file DynamicsAXOLAP in SSRS Report Manager, and then open the file. You will see details about the
data connection, as shown in Figure 10-43. In a Microsoft Dynamics AX 2012 R2 environment with
multiple partitions, the framework resolves the connections at run time.

 CHAPTER 10 BI and analytics 349

FIGURE 10-43 The DynamicsAXOLAP data connection.

Notice that Microsoft Dynamics AX has its own data extension to access Microsoft Dynamics AX
cubes that are included with Microsoft Dynamics AX 2012.

The section “Add a KPI to the Business Overview web part” earlier in this chapter described
how to switch the OLAP database so that the Business Overview web part points to a non-default
OLAP database. In that case, you were able to change the SSAS server and the database that were
 designated as the default server. One important point to remember is that changing the default SSAS
database in the Analysis Servers form does not automatically change the default destination of the
DynamicsAXOLAP data source that is used for reports.

You can change the data connection by using the following Windows PowerShell command:

Set-AXReportDataSource -DataSourceName DynamicsAXOLAP -ConnectionString
"Provider=MSOLAP.4;Integrated Security=SSPI;Persist Security Info=True;Data
Source=[SSASServerName];Initial Catalog=[DatabaseName]"

You can also change the connection string in the data connection deployed to the SSRS server
by modifying the properties. However, keep in mind that each time you deploy a report, it will be
 overwritten with the data source connection in the AOT.

If you want to create analytic reports that point to a non-default cube database (for example, a
cube database that you create by using the OLAP framework), you must create your own report data
source in the AOT. You can use the same Windows PowerShell command that you use to change
the data connection. In this case, however, you should provide a new data source name. For more
 information, see “Set-AXReportDataSource” at http://technet.microsoft.com/EN-US/library/hh580547.

http://technet.microsoft.com/EN-US/library/hh580547

 CHAPTER 11 Security, licensing, and configuration 351

C H A P T E R 1 1

Security, licensing, and
configuration

In this chapter
Introduction . 351
Security framework overview . 351
Develop security artifacts . 356
Validate security artifacts . 363
Create extensible data security policies . 364
Security coding . 369
Licensing and configuration. 376

Introduction

Microsoft Dynamics AX 2012 introduces a new security framework that is based on a model of
role-based security. This framework is designed to make maintaining security easier as the security
needs of organizations evolve. It also simplifies the process of implementing base-level security.

System administrators and developers each manage parts of the new security system. Developers
create and define the security artifacts that provide access to securable objects. System administrators
manage security for users on an ongoing basis.

This chapter describes how the Microsoft Dynamics AX run time implements security, licensing, and
configuration, and explains how they determine the portions of interface that the user sees and the data
that the user can access. You can use the security framework to create security artifacts that control access
to forms, reports, menus, and menu items. Microsoft Dynamics AX 2012 also introduces a new extensible
data security framework that lets you restrict access to sensitive data at a granular level so that users see
only the data they need to perform their jobs. The licensing and configuration frameworks give you the
option to license application modules, thus providing access to various application areas. You can also
 enable and disable functionality independently of licensing by using configuration keys.

Security framework overview

The Microsoft Dynamics AX security framework consists of three layers: authentication, authorization,
and data security. Figure 11-1 provides a high-level overview of the security architecture of Microsoft
Dynamics AX. The following sections describe each layer in detail.

C H A P T E R 1 1

Security, licensing, and
configuration

Introduction

Security framework overview

Authentication

Authorization

Data security

Develop security artifacts

Set permissions for a form

Set permissions for server methods

Set permissions for controls

Create privileges

Assign privileges and duties to security roles

Use valid time state tables

Validate security artifacts

Create users

Assign users to roles

Set up segregation of duties rules

Create extensible data security policies

Data security policy concepts

Develop an extensible data security policy

Debug extensible data security policies

Security coding

Table permissions framework

Code access security

Best practice rules

Security debugging

Licensing and configuration

Configuration hierarchy

Configuration keys

Use configuration keys

Types of CALs

Customization and licensing

352 PART 2 Developing with Microsoft Dynamics AX

Authentication
(Active Directory, ADFS, or other type)

Users

Process cycles

User interface
elements

Data security
policies

Record-level
security

Microsoft Dynamics AX database

Tables and fields

Table
Permissions
Framework

SSRS reports Service operations

Duties

Authorization

Data security

Permissions for application elements

Security roles

Privileges

FIGURE 11-1 Microsoft Dynamics AX 2012 security framework.

Authentication
Authentication is the process of establishing the user’s identity. Microsoft Dynamics AX users can be
authenticated in two ways. The first way is through the use of Integrated Windows Authentication to
authenticate Active Directory users. This can be accomplished by either making a specific Windows
user a Microsoft Dynamics AX user, or by making an entire Active Directory group a user within
 Microsoft Dynamics AX. After the Active Directory group is added as a user within Microsoft Dynamics
AX, any user who belongs to that Active Directory group can access Microsoft Dynamics AX. The ability to
add an Active Directory group as a user within Microsoft Dynamics AX is new for Microsoft Dynamics
AX 2012.

The second way of authenticating a user is called flexible authentication, which is also new in
Microsoft Dynamics AX 2012. With flexible authentication, a user can be authenticated to use the

 CHAPTER 11 Security, licensing, and configuration 353

Microsoft Dynamics AX Enterprise Portal web client without requiring Active Directory credentials.
Flexible authentication uses claims-based authentication to verify users in Enterprise Portal. For more
information, see the white paper “Flexible Authentication in Microsoft Dynamics AX 2012,” at
http://www.microsoft.com/en-us/download/details.aspx?id=29050.

After a user connects to Microsoft Dynamics AX, the user’s authorization within the system is
 determined. Authorization is discussed in the next section.

Authorization
Authorization, also referred to as access control, determines whether a user is permitted to perform
a given action. In the Microsoft Dynamics AX application, security permissions are used to control
access to individual elements of the application: menus, menu items, action and command buttons,
reports, service operations, web URL menu items, web controls, and fields in both the Microsoft
 Dynamics AX 2012 Windows client and in Enterprise Portal.

In Microsoft Dynamics AX 2012, the new security model follows the principles of role-based access
control. This security model is hierarchical; each element in the hierarchy represents a different level
of detail, starting with permissions, which are at the bottom:

 ■ Permissions represent access to individual securable objects, such as menu items and tables.

 ■ Privileges are composed of permissions and represent access to tasks, such as canceling
 payments or processing deposits.

 ■ Duties are composed of privileges and represent parts of a business process, such as
 maintaining bank transactions.

 ■ Roles are composed of duties (and sometimes) privileges that determine a user’s access to
Microsoft Dynamics AX. These roles correspond to roles within an organization, such as an
 accountant or human resources manager.

Figure 11-2 shows the elements of role-based security and their relationships.

Process cycle

Group of related privileges
required

for a job function

Group of base
objects and required

permissions

Group of entry
points with associated

access levels

Roles

Duties

Privileges

Permissions

Group of duties
for a job function

FIGURE 11-2 Elements of role-based security.

file:///D:/SKS/Mspress/6-6710-5-MsDynamics/vendor/Final/natives/javascript:void(0)

354 PART 2 Developing with Microsoft Dynamics AX

The following sections explain the elements of the security model in more detail.

Permissions
In the Microsoft Dynamics AX security model, permissions group together the securable objects and
access levels that are required to run a function. These include any tables, fields, forms, or server-side
methods that are accessed through an entry point. Menu items, web content items, and service
 operations are referred to collectively as entry points. Each function in Microsoft Dynamics AX, such
as a form or a service, is accessed through an entry point.

Only developers can create or modify permissions. The section “Develop security artifacts” later in
this chapter explains in detail how to modify permissions.

Privileges
A privilege specifies the level of access that is required to perform a job, solve a problem, or complete
an assignment. Privileges can be assigned directly to roles. However, for easier maintenance, it is
 recommended that only duties be assigned to roles.

A privilege contains permissions to individual application objects, such as user interface elements
and tables. For example, the Cancel payments privilege contains permissions to the menu items,
fields, and tables that are required to cancel payments.

By default, privileges are provided for all features in Microsoft Dynamics AX. A system
 administrator can modify the permissions that are associated with a privilege or create new privileges.

Duties
A duty is a group of privileges—or tasks—that corresponds to part of a business process. A system
administrator assigns duties to security roles. A duty can be assigned to more than one role.

In the security model for Microsoft Dynamics AX, duties contain privileges. For example, the
duty Maintain bank transactions contains the privileges Generate deposit slips and Cancel payments.
Although both duties and privileges can be assigned to security roles, it is recommended that you use
duties to grant access to Microsoft Dynamics AX. By doing so, you can use the segregation of duties
functionality explained in the next paragraph.

Security or policies might require that specific tasks be performed by different users. For example,
an organization might not want the same person both to acknowledge the receipt of goods and to
process payment to the vendor. This concept is called segregation of duties. Segregation of duties
helps organizations reduce the risk of fraud, and it also helps detect errors or irregularities. By
 segregating duties, an organization can better comply with regulatory requirements, such as those
from Sarbanes-Oxley (SOX), International Financial Reporting Standards (IFRS), and the U.S. Food and
Drug Administration (FDA).

In Microsoft Dynamics AX 2012, segregation of duties lets a system administrator specify the
 duties that should always be segregated and should not overlap for a given user.

 CHAPTER 11 Security, licensing, and configuration 355

Microsoft Dynamics AX includes default duties. However, a system administrator can modify the
privileges that are associated with a duty or create new duties. For more information, see the section
“Set up segregation of duties rules,” later in this chapter.

Process cycles
A business process is a coordinated set of activities in which one or more participants consume,
produce, and use economic resources to achieve organizational goals. In the context of the security
model, business processes are called process cycles. To help the system administrator locate the duties
that must be assigned to roles, duties are organized by the business processes that they belong to.
For example, in the accounting process cycle, you may find the Maintain ledgers and Maintain bank
transactions duties. Process cycles are used for organization only.

Security roles
Microsoft Dynamics AX 2012 uses role-based access control. In other words, access is not granted to
 individual users; it is granted only to security roles. The security roles that are assigned to a user determine
the duties that the user can perform and the parts of the user interface that the user can view.

Microsoft Dynamics AX 2012 provides the capability to track date-effective data by using valid
time state tables. A system administrator can also specify the level of access that the users in a
 security role have to current, past, and future records on such tables.

By managing access through security roles, system administrators save time because they do not
have to manage access separately for each user. Security roles are defined once for all organizations.

A user can be assigned to a security role in several ways. One method is to assign a user to a
 security role directly. A second method is by assigning an Active Directory group to a role, which
 assigns all members of the Active Directory group to that role. In addition, users can be assigned to
security roles automatically based on business data. For example, a system administrator can set up a
rule that associates a human resources position with a security role. Any time that a user is assigned
to that position, the user is automatically added to the appropriate security role. This functionality is
called dynamic role assignment. Typically, a system administrator assigns users to security roles.

Security roles can be organized into a hierarchy so that security roles can be defined as
 combinations of other security roles. For example, the Sales manager security role can be defined as
a combination of the Manager security role and the Salesperson security role. Instead of each security
role being defined individually, in a security role, hierarchy security roles can inherit the permissions
from other security roles and reuse them.

In the security model for Microsoft Dynamics AX, duties and privileges are used to grant access to
the program. For example, the sales manager role can be assigned the Maintain revenue policies and
Review sales orders duties.

By default, sample security roles are provided. All functionality in Microsoft Dynamics AX is associated
with at least one sample security role. A system administrator can assign users to the sample security roles,
modify the sample security roles to fit the needs of the business, or create new security roles.

356 PART 2 Developing with Microsoft Dynamics AX

Note The sample security roles do not correspond to Role Centers, which are default home
pages that provide an overview of information that pertains to a user’s work, such as the
user’s work list, activities, frequently used links, and key business intelligence information.

Data security
As mentioned earlier, Microsoft Dynamics AX 2012 introduces a new extensible data security
 framework (XDS) that you can use to control access to transactional data by assigning data security
policies to security roles. Data security policies can restrict access to data, based either on the
 effective date or on user data, such as the sales territory or the organization that a user is assigned to.

Note Data security is separate from functional security, which is achieved by using
 role-based security.

In addition to the XDS, you can use record-level security to limit access to data that is based on a
query. However, because the record-level security feature is being deprecated in a future release of
Microsoft Dynamics AX, it is recommended that you use the XDS instead.

Additionally, Microsoft Dynamics AX has a table permissions framework to protect data. The table
permissions framework allows enforcement of data security for specific tables by the Application
 Object Server (AOS). Explicit authorization checks are performed when a user tries to access data
related to tables protected by the table permissions framework.

Develop security artifacts

Access to a securable object within Microsoft Dynamics AX is controlled through various security
artifacts such as permissions, privileges, duties, roles, and policies. You can create and manage these
artifacts by using the Application Object Tree (AOT), as shown in Figure 11-3.

Set permissions for a form
You build security from the ground up, beginning at the form level. The first step is to control access
to the data in a form. When you save a form in the AOT, Microsoft Dynamics AX automatically
 discovers all of the tables and other items that the form accesses. This functionality is called
 auto-inference. Auto-inference simplifies configuring table permissions. Based on tables that are used
in the form, create, read, update, and delete (CRUD) permissions are set automatically for that form.
The system automatically adds or updates the Read, Update, Create, and Delete nodes in the AOT
under AOT\Forms\<FormName>\Permissions.

file:///D:/SKS/Mspress/6-6710-5-MsDynamics/vendor/Final/natives/javascript:void(0)

 CHAPTER 11 Security, licensing, and configuration 357

FIGURE 11-3 Security artifacts in the AOT.

Figure 11-4 illustrates the set of permissions for the AgreementClassification form.

FIGURE 11-4 Read permissions for the AgreementClassification form.

358 PART 2 Developing with Microsoft Dynamics AX

While auto-inference automatically sets the permissions properties for the data sources, you can
also set the permissions for a data source manually.

For example, in the Read permissions shown in Figure 11-4, the properties for the
 AgreementClassification table are set by auto-inference, as shown in Figure 11-5.

FIGURE 11-5 AgreementClassification table properties set by auto-inference.

The SystemManaged property is set to Yes. However, you can change the EffectiveAccess property to
something other than Read. In that case, the SystemManaged property changes to No. This indicates
to the security framework that you have chosen to override manually the value set by auto-inference,
as shown in Figure 11-6.

FIGURE 11-6 AgreementClassification table properties set manually.

So far, this section has discussed individual permissions under the Tables node. However, you can
also set permissions for additional nodes, such as Controls, Server Methods, and Associated Forms.

Note that in the same manner that you set up permissions for forms, you can set permissions to
read and write data under the Permissions node of several AOT elements, including the following:

 ■ Forms/<FormName>

 ■ Parts/Info Parts/<InfoPartName>

 ■ Reports/<ReportName>

 ■ Web\Web Files\Web Controls\<WebControlName>

 ■ Services\<ServiceName>\Operations\<OperationName>

An associated form comes into play when the parent form—in this example, the
 AgreementClassification form—contains a button that opens another form. In such cases, you
should add permissions so that the associated form is accessible to users of the parent form. You can
 accomplish this by referencing the associated form under the Associated Forms node.

 CHAPTER 11 Security, licensing, and configuration 359

When a user has access to a form, by default, the user has access to all of the controls on the form.
You can override the default settings by adding permissions nodes for individual controls. You can do
this by using the Controls node.

Set permissions for server methods
If a server method is tagged with the attribute SysEntryPointAttribute, users must have explicit access
to that method. If such a server method is invoked through a form, you can control access by adding
the method to the Server Methods node and explicitly setting the permission to invoke. Any role that
provides access to that form through the appropriate permission—in this example, read—also grants
permission to the server method.

Set permissions for controls
When you develop a form, Microsoft Dynamics AX provides the ability to add controls to the form as
securable objects. These can either be data-bound to the form or unbound. All data-bound controls
are configured automatically with security, whereas unbound controls can be managed through code.
Security in an unbound control, such as a menu function button, is linked to the referenced object
and visibility is controlled through permissions on the referenced object.

Create privileges
After you specify permissions, the next step is to create privileges. As mentioned earlier, a privilege
is a set of permissions that provides access to securable objects. By using auto-inferred table
 permissions and securing menu items with privileges, you control access to the data in a form. The
following example (Figure 11-7) links the entry point to the form with the associated permissions.

FIGURE 11-7 Linking a form with permissions.

In this example, the privilege AccountDistCustFreeInvoiceMaintain contains an entry point,
 AccountingDistCustFreeInvoice. This is a menu item that, in turn, points to a form. Note that in the
properties, AccessLevel is set to Delete. This implies that when a user accesses the form through this
particular menu item, the Microsoft Dynamics AX security framework will look under the Permissions\
Delete node for that form and grant access to the tables that are listed under that node. This example
illustrates how the system ties together the privileges, entry points, and permissions and determines
the access that the user should have if he or she has access to that privilege through a security role.

360 PART 2 Developing with Microsoft Dynamics AX

A menu item provides an entry point for opening a form. Security properties on the menu item
control which sets of form permissions are available to select when privileges are assigned to the
menu item.

Each menu item has the following security properties:

 ■ ReadPermissions

 ■ UpdatePermissions

 ■ CreatePermissions

 ■ CorrectPermissions

 ■ DeletePermissions

These properties refer to the nodes under AOT\Forms\<FormName>\Permissions. For example,
the UpdatePermissions property refers to the node AOT\Forms\<FormName>\Permissions\Update.

Table 11-1 describes the values for these permission properties.

TABLE 11-1 Property values for create, update, read, and delete.

Property value Description

Auto The default. Auto means that the corresponding set of form permissions will
be available to select as privileges on this menu item.
The privileges will be selected on the privilege node for this menu item, which
will be under the Entry Points node. The path to the privilege node for this
menu item is AOT\Security\Privileges\MyPrivilege\Entry Points\MyMenuItem.
For example, if the UpdatePermissions property is set to Auto, the permission
set under the node MyForm\Permissions\Update will be available to select for
 privileges under AOT\Security.

No The opposite of Auto. The corresponding permission set will not be available
to select as a privilege on the privilege node for the menu item under the
Entry Points node.

For example, if the ReadPermisssions property on a menu item is set to No, the menu item will
not pick up the ReadPermissions property from the form that the menu item references. You can
use this method to add a permission to a menu item without affecting the permissions to securable
objects that are available through that menu item. This helps restrict the permissions that a system
 administrator can issue for the menu item when assigning it to a privilege.

In some situations, a menu item points to a class or a report directly. In this case, you would need
to link to a class, which itself is not associated with any permissions. In such cases, you need to use a
code permission. A code permission is a group of permissions that are associated with a menu item
or a service operation. If you want to run code directly through a menu item, you must set a code
permission for it. Code permissions are also represented as a node within the AOT. When a security
role grants access to a menu item, the role also has access to other AOT items that are listed within
the code permission for the menu item. The access level is controlled by the permissions that are set
under the Code Permissions node.

 CHAPTER 11 Security, licensing, and configuration 361

Microsoft Dynamics AX uses the concept of a permission union. If multiple permissions are
 specified for the same object through multiple privileges and roles, the access on the object is the
result of the union of those permissions. For example, if one privilege provides read access to a table
and another privilege provides delete access to the same table, and both of them belong to a security
role, a user who is assigned to the security role will get delete access to the table.

Assign privileges and duties to security roles
After you generate permissions for the various securable objects, you grant access to those securable
objects through security roles. The first step is to create privileges, as described in the previous
 section. You can then either incorporate these privileges into duties or directly assign them to security
roles.

In Figure 11-8, the privilege AccountingDisCustFreeInvoiceMaintain contains the entry point
 AccountingDisCustFreeInvoiceMaintain.

FIGURE 11-8 A privilege containing an entry point.

The entry point is associated with an access level that is specified in the properties (Figure 11-9).
Note that in this case, the access level is set to Delete. This implies that when the user accesses the
entry point, the system will look in the Permissions\Delete node for the form that the entry point
launches.

FIGURE 11-9 Properties for an entry point.

While it is not mandatory that a privilege be assigned to a security role through a duty, doing so
lets the system administrator maintain the privileges through a higher level of abstraction and also
lets the system administrator use segregation of duties to meet segregation of duties requirements.

362 PART 2 Developing with Microsoft Dynamics AX

In Figure 11-10, the CustInvoiceCustomerInvoiceTransMaintain duty contains the
 AccountingDisCustFreeInvoiceMaintain privilege.

FIGURE 11-10 A duty that contains privileges.

Continuing with the example, notice how the CustInvoiceCustomerInvoiceTransMaintain duty is
present within the CustInvoiceAccountsReceivableClerk role in Figure 11-11.

FIGURE 11-11 Duties within a security role.

Note For more information about security, see “Role-based security in the AOT for
Developers,” at http://msdn.microsoft.com/en-us/library/gg847971.

Use valid time state tables
A valid time state table helps you simplify the maintenance of data for which changes must be
tracked at different points in time. For example, the interest rate on a loan might be 5 percent for the
first year, and 6 percent for the second year. During the second year, you still want to know that the
rate was 5 percent during the previous year.

 CHAPTER 11 Security, licensing, and configuration 363

You can set the ValidTimeStateFieldType property on a table in the AOT to make the table a valid
time state table. Setting this property causes the system to automatically add ValidFrom and ValidTo
columns, which track a date range in each row. The system guarantees that the values in these date or
date-time fields remain valid by automatically preventing overlap among date ranges. Data tracked
by this type of table is referred to as date effective.

Properties on security roles control access to date-effective tables. In the AOT, you can set the
properties PastDataAccess, CurrentDataAccess, and FutureDataAccess. By default, these properties are
set to Delete, which, in effect, means that the tables are not date effective. However, if one of these
properties is set to a value other than Delete, the property specifies the level of data access for the
tables with date-effective fields that are secured by the security role. For example, if a table normally
has edit access within the security role and you set the PastDataAccess property to View, the user can
edit current and future data but can only view past data.

Validate security artifacts

After you implement data security, you’ll want to make sure that the changes are accurate. The testing
process consists of the following steps:

1. Create users.

2. Assign users to roles.

3. Set up segregation of duties rules.

After you complete the steps in this section, start the Microsoft Dynamics AX client as a test user
assigned to the appropriate security role (or roles) and ensure that the functional security scenarios
work as expected.

Create users
Microsoft Dynamics AX users are either internal employees of your organization or external
 customers and vendors who require access to Microsoft Dynamics AX for their jobs. Any individual
who must access Microsoft Dynamics AX must be added to the list of Microsoft Dynamics AX users in
the Users form (System Administration > Common > Users > Users).

Among other options on the form, there is a field called Account Type. You must select whether the
user or group is authenticated by Active Directory or by a claims-based authentication provider. For
Active Directory, the choices are between adding an individual Active Directory user or an Active
Directory group as a user.

Assign users to roles
After you create a user within the system, you can assign the user to a security role, either manually or
automatically.

364 PART 2 Developing with Microsoft Dynamics AX

You can set up rules for automatic role assignment to guarantee that role membership is based on
current business data. If you use automatic role assignment, permissions are updated automatically
when people change jobs in an organization. Rules for automatic role assignment run at a fixed
interval by using the batch framework. As part of setting up the rule, you specify a query from the list
of queries in the AOT to use as a basis for the rule. For more information, see Chapter 18, “The batch
framework.”

You can assign roles manually when role membership cannot be based on data in Microsoft
 Dynamics AX. For example, you can assign roles manually if an employee goes on vacation and
 another employee must perform that employee’s duties temporarily. Users who are assigned to
 security roles manually must also be removed manually by the system administrator. These users are
not removed from roles by rules for automatic role assignment.

Set up segregation of duties rules
As mentioned earlier, security or policies might require that specific tasks be performed by different
users.

In Microsoft Dynamics AX, when two duties in the same role conflict, or when a user is assigned
to two roles that contain conflicting duties, the conflict is logged. You must approve or reject
each assignment that causes a conflict. For more information, see “Identify and resolve conflicts in
 segregation of duties,” at http://technet.microsoft.com/en-us/library/hh556858.aspx.

Create extensible data security policies

Within any enterprise, some users are restricted from working with certain sensitive data because of
confidentiality, legal obligations, or company policy. In Microsoft Dynamics AX 2012, authorization for
access to sensitive data is managed through the XDS.

By using the XDS, you can secure data in tables so that users can access only the subset of rows in
a table that is allowed by a given policy.

Common uses of extensible data security include the following:

 ■ Allowing sales clerks to see only the accounts they manage.

 ■ Prohibiting financial data from appearing on forms or reports for a specific security role.

 ■ Prohibiting account details or account IDs from appearing on forms or reports for a specific
security role.

Extensible data security is an evolution of the record-level security (RLS) that was available in
 earlier versions of Microsoft Dynamics AX.

Data security policies are enforced on the server tier. This means that extensible data security
 policies, when deployed, are enforced, regardless of whether data is being accessed through the

http://technet.microsoft.com/en-us/library/hh556858.aspx
http://technet.microsoft.com/en-us/library/hh556858.aspx

 CHAPTER 11 Security, licensing, and configuration 365

Microsoft Dynamics AX client forms, Enterprise Portal webpages, Microsoft SQL Server Reporting
Services (SSRS) reports, or .NET services.

Additionally, by using the new framework, you can create data security policies that are based on
data that is contained in a different table.

Data security policy concepts
Before developing a data security policy, you need to become familiar with several concepts, such as
constrained tables, primary tables, policy queries, and context. This section outlines these concepts.
Subsequent sections use these concepts to illustrate how they work together to provide a rich policy
framework.

 ■ A constrained table is a table (or tables) in a security policy from which data is filtered or
secured, based on the associated policy query. For example, in a policy that secures all sales
orders based on the customer group, the SalesOrder table would be the constrained table.
Constrained tables are always explicitly related to the primary table in a policy.

 ■ A primary table is used to secure the content of the related constrained table. For example, in
a policy that secures all sales orders based on the customer group, the Customer table would
be the primary table. The primary table can also be the constrained table.

 ■ A policy query is used to secure the constrained tables specified in an extensible data security
policy. This query returns data from a primary table that is then used to secure the contents of
the constrained table.

 ■ A policy context is a piece of information that controls the circumstances under which a given
policy is applicable. If this context is not set, the policy, even if enabled, is not enforced.

Policy contexts can be of two types: role contexts and application contexts. A role context
enables the policy to be applied based on the role or roles to which the user is assigned. An
application context enables a policy to be applied based on information set by the application.

Develop an extensible data security policy
Developing an extensible data security policy involves the following steps:

1. Modeling the query on the primary table.

2. Creating the data security policy artifact in the AOT.

3. Adding the constrained tables and views.

4. Setting the policy context.

Figure 11-12 shows how the VendProfileAccount policy is represented within the AOT. Security
 policies appear under the Security\Policies node.

366 PART 2 Developing with Microsoft Dynamics AX

FIGURE 11-12 Security policy in the AOT.

Figure 11-13 shows the properties for this policy.

FIGURE 11-13 Properties for a security policy.

Note how the following properties are set on the policy in Figure 11-13:

 ■ The PrimaryTable property is set to VendTable.

 ■ The Query property is set to VendProfileAccountPolicy. A policy query is defined in the AOT
and can use all of the functionality provided by AOT queries. You model the query with the
primary table as the first data source and add more data sources as required. In this example,
the additional data sources are defined by the Vendor data model.

 ■ The Operation property is set to Select. A policy query could be added to the WHERE clause
(or ON clause) on all SELECT, UPDATE, DELETE, and INSERT operations involving the specified
constrained tables. In this case, the policy will be enforced only on SELECT statements.

 ■ The PolicyGroup property is set to Vendor Self Service. You use this property to identify groups
of related policies. There is no run-time usage of this property.

 ■ The ConstrainedTable property is set to Yes, which indicates that the primary table is to be
secured using this policy. This means that the table from which data is filtered or secured is the
same table specified in the PrimaryTable property. If this property is set to No, the policy is not

 CHAPTER 11 Security, licensing, and configuration 367

enforced on the primary table. You can specify other constrained tables can be specified for
the policy, independent of this property.

 ■ The Enabled property is set to Yes, indicating that the policy will be enforced at runtime.

 ■ The ContextType property is set to RoleProperty, indicating that the policy is to be applied only
if the user is a member of one of a set of roles that have the ContextString property set to the
same value. In this example, the ContextString property value is set to PolicyForVendorRoles.
If any security roles in the AOT have their ContextString property set to PolicyForVendorRoles,
the policy will be applied if a user belongs to those roles. Besides RoleProperty, the
 ContextType property can also be set to ContextString or RoleName. ContextString indicates
that you have to specify a value for the ContextString property. The security policy uses a
specific application context for the policy. The RoleName property indicates that the security
policy applies only to the user assigned to the value of RoleName.

Complex and normalized data models can lead to queries with a large number of joins, which
can affect performance. However, in many cases, a significant portion of the policy query retrieves
static data, such as the legal entities for the user and the departments to which the user belongs.
The XDS provides a way by which this static data can be retrieved less frequently (ranging from once
each time the table is accessed to once for each client session) and then reused in subsequent policy
 applications. This mechanism is called extensible data security constructs.

Extensible data security constructs are tables of type TempDB that are populated according to the
RefreshFrequency system enumeration value of that table (PerSession or PerInvocation). They exist in
the AOT under the Data Dictionary\Tables node.

Figure 11-14 shows an example of an extensible data security construct.

FIGURE 11-14 An extensible data security construct.

368 PART 2 Developing with Microsoft Dynamics AX

The temporary table that is used for the extensible data security construct is written by using a
 table method named XDS. You can use this method to write X++ logic to populate the temporary
table. In Figure 11-14, MyLegalEntitiesForRole is the extensible data construct that is populated by
using the XDS method. The logic within the method populates the table with the legal entities that a
given user has access to in the context of a role. The HcmXdsApplicantLegalEntity query is an example
of a policy query that uses the MyLegalEntitiesForRole construct. The HcmXdsApplicantLegalEntity
query involves joins among four data sources. The fourth data source is the MyLegalEntitiesforRole
construct, which encapsulates several joins. If this XDS method sets the frequency to PerSession, this
TempDB table will be populated the first time this table is referenced in any query at run time. If an
extensible data security construct were not used, this query would have involved joins across four
more tables on every policy application—a significant performance overhead.

In this scenario, using an extensible data security construct converts a policy query with seven or
more joins into a policy query with four joins—a significant performance gain.

Debug extensible data security policies
One of the common issues reported when a customer deploys a new extensible data security policy is
that an unexpected number of rows are returned from a constrained table.

The XDS provides a method for debugging problems such as this. The X++ select query has been
extended with the generateonly command, which instructs the underlying data access framework to
generate the SQL query without actually executing it. You can retrieve the generated query by using
simple method calls.

The following job runs a select query on the SalesTable table with a generateonly command. It then
calls the getSQLStatement method on the SalesTable table and generates the output by using the info
method.

static void VerifySalesQuery(Args _args)
{
SalesTable salesTable;
XDSServices xdsServices = new XDSServices();
xdsServices.setXDSContext(1, ‘’);
//Only generate SQL statement for custGroup table
select generateonly forceLiterals CustAccount, DeliveryDate from salesTable;
//Print SQL statement to infolog
info(salesTable.getSQLStatement());
xdsServices.setXDSContext(2, ‘’);
}

The XDS further eases the process of advanced debugging by storing the query in a
 human-readable form. This query and others on a constrained table in a policy can be retrieved by
using the following Transact-SQL (T-SQL) query on the database in the development environment
(AXBDEV in this example):

SELECT [PRIMARYTABLEAOTNAME], [QUERYOBJECTAOTNAME],
[CONSTRAINEDTABLE], [MODELEDQUERYDEBUGINFO],
[CONTEXTTYPE],[CONTEXTSTRING],

 CHAPTER 11 Security, licensing, and configuration 369

[ISENABLED], [ISMODELED]
FROM [AXDBDEV].[dbo].[ModelSecPolRuntimeEx]

The query results are shown in Figure 11-15.

FIGURE 11-15 Results from a query on a constrained table.

As you can see in Figure 11-15, the query that will be appended to the WHERE clause of any query
to the AssetBook table is available for debugging. Other metadata, such as LayerId, is also available if
needed.

When developing policies, keep the following principles in mind:

 ■ Follow standard best practices of developing efficient queries. For example, create indexes on
join conditions.

 ■ Reduce the number of joins in the query. Complex and normalized data models can lead to
queries with a large number of joins. Consider changing the data model or adopting patterns
such as extensible data security constructs to reduce the number of joins at run time.

Note that when multiple policies apply to a table, the results of the policies are concatenated with
AND operators.

Security coding

This section covers the Trustworthy Computing features of Microsoft Dynamics AX, focusing on how
they affect security coding. This section describes the table permissions framework, code access
 security (CAS), and the best practice rules for ensuring that the code avoids a few common pitfalls
related to security.

Table permissions framework
The table permissions framework provides security for tables that are located in the database and
available through the AOT. The AOSAuthorization property on a table (Figure 11-16) specifies the
operations that must undergo authorization checks when a given user accesses the table.

370 PART 2 Developing with Microsoft Dynamics AX

FIGURE 11-16 The property sheet for a table.

The AOSAuthorization property is an enumeration. Table 11-2 lists its possible values.

TABLE 11-2 AOSAuthorization property values.

Value Description

None No AOS authorization validation is performed (default value).

CreateDelete Create and delete authorization validation is performed on the AOS.

UpdateDelete Update and delete authorization validation is performed on the AOS.

CreateUpdateDelete Create, update, and delete authorization validation is performed on the
AOS.

CreateReadUpdateDelete All operations are validated on the AOS.

In addition to the AOSAuthorization property, you can add additional rules for validation by using
the following table methods:

 ■ aosValidateDelete

 ■ aosValidateInsert

 ■ aosValidateRead

 ■ aosValidateUpdate

Note These methods affect performance. All database operations are downgraded to
 row-by-row when these methods are used.

 CHAPTER 11 Security, licensing, and configuration 371

Microsoft Dynamics AX 2012 also introduces a new class for authorization checks. Use the
 SysEntryPointAttribute class to indicate which authorization checks are performed for a method that is
called on the server. When you use this attribute to decorate a method, an authorization check occurs
when the class method executes on the server tier.

Additionally, you can add further checking on the basis of the value used in the constructor of the
SysEntryPointAttribute class, as described in Table 11-3.

TABLE 11-3 SysEntryPointAttribute constructor values.

Setting Description

[SysEntryPointAttribute(true)] Indicates that authorization checks are performed
on the caller for all tables accessed by the method.
The AOSAuthorization property does not have to be
set on these tables in order for these checks to be
performed.

[SysEntryPointAttribute(false)] Indicates that authorization checks are not
 performed on any tables that are accessed by the
method.

Microsoft Dynamics AX 2012 also provides the capability to do server-side trimming. On tables
whose AOSAuthorization property is set to CreateReadUpdateDelete, the AOSAuthorization property
on individual fields can be set to Yes or No. The default value of this property is No. A value of Yes
indicates that authorization checks are performed on read and write operations on the field.

If the AOSAuthorization property is set to Yes for a field and the user does not have access to the
field, the value of the field is not returned to the user. This enforces server-side trimming of the data.

Code access security
The code access security (CAS) framework provides methods that can secure application
 programming interfaces (APIs) against invocation attempts by untrusted code (code that doesn’t
originate in the AOT). You can make an API more secure by extending the CodeAccessPermission class.
A class that is derived from the CodeAccessPermission class determines whether code accessing an API
is trusted by checking for the appropriate permission.

To secure a class that executes on the server tier, follow these steps:

1. Either derive a class from the CodeAccessPermission class, or use one of the following derived
classes that are included with Microsoft Dynamics AX and skip to step 6:

• ExecutePermission

• FileIOPermission

• InteropPermission

• RunAsPermission

• SkipAOSValidationPermission

372 PART 2 Developing with Microsoft Dynamics AX

• SqlDataDictionaryPermission

• SqlStatementExecutePermission

• SysDatabaseLogPermission

2. Create a method that returns the class parameters.

3. Create a constructor for all of the class parameters that store permission data.

4. To determine whether the permissions required to invoke the API that you are securing exist,
override the CodeAccessPermission.isSubsetOf method to compare the derived permission
class to CodeAccessPermission. The following code example shows how to override the
 CodeAccessPermission.isSubsetOf method to determine whether permissions stored in the
 current object exist in _target:

public boolean isSubsetOf(CodeAccessPermission _target)

{

 SysTestCodeAccessPermission sysTarget = _target;

 return this.handle() == _target.handle();

}

5. Override the CodeAccessPermission.copy method to return a copy of an instance of the class
created in step 1. This helps to prevent the class object from being modified and passed to the
API being secured.

6. Call the CodeAccessPermission.demand method before executing the API functionality that
you are securing. The method checks the call stack to determine whether the permission that
is required to invoke the API has been granted to the calling code.

When you secure an API by using this procedure, you must call the assert method in the derived
class prior to invoking the API. Otherwise, the exception::CodeAccessSecurity exception is thrown.

Best practice rules
The Best Practices tool can help you validate your application logic and ensure that it complies with
the Trustworthy Computing initiatives. The rules that apply to Trustworthy Computing are grouped
under General Checks\Trustworthy Computing in the Best Practice Parameters dialog box, as shown in
Figure 11-17. The Best Practice Parameters dialog box is accessible from the Development Workspace:
On the Tools menu, point to Options > Development, and then click Best Practices.

http://msdn.microsoft.com/en-us/library/codeaccesspermission.demand.aspx
http://msdn.microsoft.com/en-us/library/codeaccesspermission.demand.aspx

 CHAPTER 11 Security, licensing, and configuration 373

FIGURE 11-17 Best Practice Parameters dialog box with Trustworthy Computing rules.

For more information about the Best Practices tool, see Chapter 2, “The MorphX development
environment and tools.”

Security debugging
To assist with debugging security constructs, shortcut menus are available in the AOT on some
 security nodes to help you find objects and roles that are related to a particular security construct.
Depending upon where you are looking in the security hierarchy (Figure 11-2), you have the option
to view items up or down the hierarchy. For example, for a given duty, you can see all of the roles that
the duty belongs to and all of the related privileges and other security objects that are contained
within the duty. You can use this information to debug issues related to access levels of various
 securable objects.

Here is an example of how you can use this feature for a duty:

1. In the AOT, expand Security\Duties.

2. Right-click any duty node, point to Add-Ins > Security Tools, and then click either View
 Related Security Objects or View Related Security Roles.

3. Examine the rows in the grid control on the form that is displayed. Figure 11-18 shows an
example of the form that is displayed when you click View Related Security Objects for a node
under AOT\Security\Roles.

374 PART 2 Developing with Microsoft Dynamics AX

FIGURE 11-18 Security objects for a role.

Note that when you view the related security objects for a role, you also have the option to view
the effective access (as highlighted in Figure 11-18) that the role provides to the objects that the role
is securing. For example, if the role grants read access to a table through one privilege and delete
 access through another, the effective access on the table is delete. Therefore, the View Effective
 Access Results would list that table with delete permissions.

Table 11-4 lists the menu options that are available for various AOT artifacts. The left column of the
table lists the nodes that appear in the AOT. The other columns list the menu options.

TABLE 11-4 Menu options for security artifacts.

Artifact name View Related
 Security Objects

View Related Security
Roles

Security\Role Available Not available

Security/Role\<RoleName>\Sub Roles Available Not available

Security\Duty Available Available

Security\Privilege Available Available

Data Dictionary\Tables Not available Available

Forms Not available Available

Menu Items (Display, Output, Action) Available Available

Web\Web Menu Items (URLs, Actions) Available Available

Web\Web Content\Managed Available Available

Data Dictionary\Views Not available Available

Parts\Info Parts Not available Available

SSRS\Reports\<Reportname>\Design Not available Available

Web\Web Files\Web controls Not available Available

Services\<ServiceName>\Operations\<Anyoperation> Available Available

Security\Code Permissions Not available Available

 CHAPTER 11 Security, licensing, and configuration 375

Debug security roles
You can debug standard X++ code in the X++ debugger if you are a member of the System
 Administrator role in Microsoft Dynamics AX. However, you cannot debug issues related to security
roles when running Microsoft Dynamics AX as a system administrator because starting the Microsoft
Dynamics AX client as a system administrator does not limit the functional security to the security role
that you are attempting to debug.

To work through a scenario like this, choose a user who is a member of the System Administrator
role, assign the role that you want to debug (such as Accountant) to that user, and then follow these
steps:

1. Close all instances of Microsoft Dynamics AX.

2. Open the Microsoft Dynamics AX Development Workspace.

3. Open another instance of the Microsoft Dynamics AX client.

4. Add the role that you want to test to your Microsoft Dynamics AX user ID:

• In System Administration, point to Common > Users > Users.

• Double-click your Microsoft Dynamics AX user ID to open the details page about your
 account.

• Assign the security role that you want to test to your Microsoft Dynamics user ID.

5. Close Microsoft Dynamics AX.

6. In the Development Workspace, set breakpoints in the X++ code that you want to debug.

7. Create a job, add the following line, and then execute the job:

SecurityUtil::sysAdminMode(false);

8. In the Development Workspace, press Ctrl+W to open the application workspace.

You have now opened the client with the permissions of the security role that you want to test and
can debug the X++ code.

Note This procedure works for the Microsoft Dynamics AX client, but not for Enterprise
Portal or for code executed by using the X++ RunAs API.

To set your environment back to the System Administrator role, update the job you created in
step 7 with the value set to true:

SecurityUtil::sysAdminMode(true);

By using these steps, you can debug the application while starting it in a mode that simulates its
functionality for the role that you want to debug.

376 PART 2 Developing with Microsoft Dynamics AX

Licensing and configuration

Microsoft Dynamics AX 2012 introduces a new licensing model called Named User license. This
licensing model provides a simplified way for an organization to license Microsoft Dynamics AX. In
Microsoft Dynamics AX 2009, business-ready, module-based, and concurrent user licensing models
were available for customers. These licensing models no longer apply to Microsoft Dynamics AX 2012.
Instead, the following models have been introduced:

 ■ Server license Includes one AOS instance. Additional AOS instances are available by
 purchasing additional server licenses.

 ■ User Client Access License (CAL) Gives a named user access rights to certain capabilities
from any number of devices. There are four types of CALs (see the section “Types of CALs”
later in this chapter). You can view the user licenses used in the product through a report in
System Administration > Reports > Licensing > Named User License Counts.

 ■ Device CAL Covers one instance of a device.

Note The intention of this section is to give you a solid overview of the concepts
of license keys, configuration keys, and client access license types for development
 purposes. For more information about pricing and licensing requirements, see the
Microsoft Dynamics AX 2012 Licensing Guide at http://www.microsoft.com/en-us/
download/details.aspx?id=29859.

Even though the software no longer uses module-based licensing, it is still locked with license
codes (sometimes referred to as license keys or activation codes). License codes are used to activate
the Microsoft Dynamics AX 2012 software and feature sets that are available in the product. License
codes are different from license entitlements (what you are entitled to run and use is based on the
Named User licenses that you have acquired). When you acquire a license file for activating the
 software through Microsoft or a partner, license keys for all feature sets are provided by default.
 However, the number of users who are allowed to use the product and the type of access that those
users are entitled to are based on Named User licenses.

Unlocking a license code is the first step in configuring Microsoft Dynamics AX, because the
 license code references the configuration key that unlocks a feature set. You can enter the license
code by using the License Information form, shown in Figure 11-19, which you access from System
Administration > Setup > Licensing > License Information.

http://www.microsoft.com/en-us/download/details.aspx?id=29859

 CHAPTER 11 Security, licensing, and configuration 377

FIGURE 11-19 License Information form.

You enter the license codes manually or import them by clicking Load License File. Microsoft
 supplies all license codes and license files that are available for a particular release.

License codes are validated individually based on the license holder name, the serial number,
the expiration date, and the license code being entered or imported. The validation process either
 accepts the license code (and updates the status field with counts, names, or OK) or displays an error
in the Infolog form.

Note Standard customer licenses do not contain an expiration date. Licenses for other
uses, such as evaluation, independent software vendor projects, education, and training,
do include an expiration date. When a license reaches its expiration date, the system
changes execution mode and becomes a restricted demo product.

License codes are divided into five groups—System, Access Licenses, Feature Sets, Partner Feature
Sets, and Languages—each based on the type of functionality it represents, as shown in Figure 11-19.
The license codes are created in the AOT and the grouping is determined by a license code property.
The Partner Feature Sets tab lets partners include licensed partner modules. The licensing framework
can also track dependencies among various license codes. A license code can have up to five
 prerequisites. Adding a prerequisite for a license code prevents users from removing license codes
and disabling feature sets that another feature depends on.

378 PART 2 Developing with Microsoft Dynamics AX

Configuration hierarchy
License codes are at the top of the configuration hierarchy, which is the entry point for working with
the configuration system that surrounds all of the application modules and system elements that are
available within Microsoft Dynamics AX. The configuration system is based on approximately 300
configuration keys that enable and disable functionality in the application for the entire deployment.
Each configuration key controls access to a specific set of functions; when a configuration key is
disabled, its functionality is removed automatically from the user interface (note that the database
schema is not modified, unlike in Microsoft Dynamics AX 2009). The Microsoft Dynamics AX run time
renders presentation controls only for items that are associated with the active configuration key or
items that are not associated with any configuration key.

The relationship between license codes, configuration keys, and feature sets is hierarchical. An
individual license code not only enables a variety of configuration keys, but it also hides configuration
keys and their functions throughout the entire system if the associated license code is not valid or
not provided. Hiding configuration keys with unavailable license codes reduces the configuration
complexity. For example, if a license code is not entered or not valid in the License Information form,
the Configuration form hides configuration keys associated with it and displays only the valid license
codes and the configuration keys that depend on them. Figure 11-20 shows a typical configuration
hierarchy for implementations.

License code

Configuration key 1

Configuration key 1.1 Configuration key 1.2 Configuration key 2.1

Configuration key 2

FIGURE 11-20 Configuration hierarchy.

Configuration keys
The application modules and the underlying business logic that license codes and configuration
keys enable are available when Microsoft Dynamics AX is deployed. By default, all license codes
are enabled; however, only minimal sets of configuration keys are enabled. During setup, system
 administrators should enable additional configuration keys as required. Within the product,
 everything from forms, reports, and menus to the Data Dictionary are always present, existing in a
temporary state until those feature sets are enabled.

 CHAPTER 11 Security, licensing, and configuration 379

When you enable a configuration key, the feature set associated with that configuration key is
enabled. This means that appropriate menu items, submenu items, tables, buttons, and fields are
enabled when the configuration key is enabled. A user has access only to those areas that the system
administrator has granted access to through security roles and that has been enabled by the configuration
key. The parent configuration keys shown in Figure 11-20 are associated with a license code. Removing
the license code disables those parent and child configuration keys. If the license code is not disabled,
system administrators can enable or disable child configuration keys, thus e nabling or disabling the
feature sets that they represent.

Note Parent configuration keys can exist without an attached license code. These are
available for a system administrator to enable or disable at all times from within the
Configuration form (Figure 11-21). However, parent configuration keys that are associated
with a license code can only be disabled from the License Information form.

FIGURE 11-21 Configuration form.

As a more detailed example, consider a company that wants most of the functionality in the Trade
feature set, but it doesn’t do business with other countries/regions. The company, therefore, chooses
to not enable the Foreign Trade configuration key, which is a child of the Trade configuration key.

By using the configuration key flowchart shown in Figure 11-22, a system administrator can
determine whether a configuration key is enabled, and if not, what it would take to enable it, which
depends on the configuration key’s parent.

380 PART 2 Developing with Microsoft Dynamics AX

Has parent?

Is parent
enabled?

No No

YesYesYesYesYes

Has license
code?

Is valid
license key
entered?

No No

No

Disabled Enabled

Is enabled?

FIGURE 11-22 Configuration key flowchart.

Use configuration keys
An important part of the application development process is mapping extensions to configuration keys
that integrate the extensions into the complete solution. Correctly using configuration keys throughout
the system can make enterprise-wide deployments flexible and economical, with divisions, regions, or
sites all using the same deployment platform and customizing local deployments by using configuration
keys rather than by developing specific customizations for each installation. You can’t entirely avoid
 individualized development, however, because of the nature of businesses and their development needs.

Configuration keys affect the Data Dictionary, the presentation, and the navigation infrastructure
directly, meaning that you can reference a configuration key property on all relevant elements.
Table 11-5 lists the elements that can be directly affected by configuration keys.

TABLE 11-5 Configuration key references.

Grouping Element types

Data Dictionary Tables, including fields and indexes
Maps
Views
Extended data types
Base enumerations
Configuration keys

Windows presentation and navigation Menus
Display: Menu items
Output: Menu items
Action: Menu items

 CHAPTER 11 Security, licensing, and configuration 381

Grouping Element types

Web presentation and navigation URL: Web menu items
Action: Web menu items
Display: Web content
Output: Web content
Web menus
Weblets

Other Workflow Approvals
Workflow Tasks
Workflow Automated Tasks
Workflow Types
Resources

Types of CALs
The new licensing model, Named User license, provides customers with the ability to use all of the
feature sets but provides pricing that is based on the number of users who are using a particular
feature instead of pricing that is based on whether a particular module is enabled. In this licensing
model, there are four tiers of CALs. Customers are required to comply with Microsoft’s licensing terms
based on the access rights granted to each user. The following four tiers (user types) are available,
listed from highest to lowest level of access (with sample activities):

 ■ Enterprise Drives the business and manages processes across the organization

 ■ Functional Manages a business cycle within a division or business unit

 ■ Task Performs tasks to support a business process or cycle

 ■ Self-serve Manages his or her own personal data within the system

All predefined security roles that are included with Microsoft Dynamics AX 2012 belong to one of
these four user types, thus giving you the flexibility to license users based on how they are likely to
use and derive value from the solution.

The CAL (or user type)-to-security-role mapping is accomplished by first setting the menu item
properties ViewUserLicense and MaintainUserLicense with appropriate user type enumeration. Then,
through the security hierarchy, the highest level of user type is evaluated, which essentially becomes
the effective user type for the role, as shown in Figure 11-23.

382 PART 2 Developing with Microsoft Dynamics AX

Menu Items

Privileges

Duties

Role

Effective User Type

Effective User Type

Effective User Type

Task

Functional

Functional

Functional

Self-serve

HcmWorker View User License:
Maintain User License: Self-serve

Self-serve

View User License:
Maintain User License:

DirPartyNameChangeMaintain

HCMWorkerEdit

HCMWorkerMaintain

Human Resource
Assistant

HCMPersonScreeningMaintain

Functional
Functional

HcmWorkerNewWorker

Assigned User Type

FIGURE 11-23 Security hierarchy and user types.

Note Typically, only Microsoft uses Named User licenses in Microsoft Dynamics AX 2012
to determine the licensing requirements for a customer. This section provides developers
with insights into the potential impact that customization might bring to licensing. It is
 recommended that partners and customers do not modify these values.

As shown in Figure 11-23, Microsoft Dynamics AX 2012 maps a set of menu items to predefined
roles by using the security hierarchy. The properties of those menu items are also set with one of the
four user-type values. Each user-type value provides the rights to perform actions that only that user
type can do. The user type that is required for a given user is determined by the highest level of types
among menu items to which that individual has access. For example, to add new workers (access
the HcmWorkerNewWorker menu item), the Functional user license is required. Thus, the privilege
HCMWorkerEdit has an effective user type of Functional, even though it contains the menu item
HcmWorker, which is of type Task. Similarly, the highest level of user type flows through the security
hierarchy and eventually becomes the effective user type for the role. In this example, the Functional
user type is the highest type within the Human Resource Assistant role, so the user assigned to the
role requires a Functional user license. That user also has license rights to perform actions that are
designated to lower user types (such as Task or Self-serve).

 CHAPTER 11 Security, licensing, and configuration 383

Customization and licensing
Given that Microsoft Dynamics AX 2012 uses a security hierarchy and menu items to determine
licensing requirements, there are several situations in which customization might affect these
 requirements.

Changing menu items associated with a role
Each menu item that is included with Microsoft Dynamics AX 2012 is tagged with the appropriate
user type. Changing these properties in a higher development layer is intentionally disabled. However,
you are free to customize privileges or roles where menu items appear. When a predefined menu
item is moved to a different role, that role might require a higher user type. For example, if a menu
item tagged with the Enterprise user type is moved into a role that previously only required
a Functional user type; the role would require an Enterprise user type going forward. If the menu item
is moved into a role requiring an equal or higher user type, there is no impact.

Changing security artifacts associated with a role
Similarly, if privileges, duties, or roles containing menu items with different user types are moved
from one security role to another, the user type for the role might be affected. If a privilege that
 previously had menu items with up to the Functional user type is moved into a role with the Task user
type, then the customized role will now require a Functional user type license.

Note When adding new menu items in independent software vendor (ISV)
 development layers or higher, the system allows you to change the ViewUserLicense and
MaintainUserLicense properties of the menu item. Be aware that specifying license types in
custom menu items might affect licensing requirements for customers. It is recommended
that customers and partners not assign any license values to these properties. Also,
 changing menu item properties to a lower user type is intentionally disabled, if the menu
item was previously created in the lower development layers.

 CHAPTER 12 Microsoft Dynamics AX services and integration 385

C H A P T E R 1 2

Microsoft Dynamics AX services
and integration

In this chapter
Introduction . 385
Types of Microsoft Dynamics AX services 387
Consume Microsoft Dynamics AX services 401
The Microsoft Dynamics AX send framework 411
Consume external web services . 414
Performance considerations . 415

Introduction

After your company deploys Microsoft Dynamics AX 2012, you can benefit from automating your
business processes. But to realize the full potential of Microsoft Dynamics AX 2012 and get the
 maximum return on investment (ROI) from your Microsoft Dynamics AX 2012 deployment, you
should also consider automating interactions between Microsoft Dynamics AX 2012 and the other
software in your company and in the companies of your trading partners.

In many business scenarios, external software applications require access to information that
is stored in Microsoft Dynamics AX. Figure 12-1 shows a few scenarios in which users access
 information that is managed in Microsoft Dynamics AX to accomplish a business task. It also shows
sample scenarios in which Microsoft Dynamics AX accesses information that is managed in external
 applications. The arrows indicate the direction in which requests flow.

Enterprise Applications
(e.g., proprietary
services, ERP, and
CRM)

Service Providers
(e.g., shipping
carriers, e-commerce,
and tax services)

Trading Partners
(e.g., customers
and vendors)

On-Site Employees
(e.g., CEO and
order processors)

Off-Site Employees
(e.g., salespeople)

Trading Partners

Contoso

FIGURE 12-1 Common integration scenarios.

C H A P T E R 1 2

Microsoft Dynamics AX services
and integration

Introduction

Types of Microsoft Dynamics AX services

System services

Custom services

Document services

Security considerations

Publish Microsoft Dynamics AX services

Consume Microsoft Dynamics AX services

Sample WCF client for CustCustomerService

Consume system services

Update business documents

Invoke custom services asynchronously

The Microsoft Dynamics AX send framework

Implementing a trigger for transmission

Configure transmission mechanisms

Consume external web services from Microsoft Dynamics AX

Performance considerations

386 PART 2 Developing with Microsoft Dynamics AX

If you look at Figure 12-1 you can see that the users on the left side use applications that interact
with the Microsoft Dynamics AX data store. These applications send request messages to Microsoft
Dynamics AX (for example, to read a sales order). Sometimes, a response is expected from Microsoft
Dynamics AX—in this example, the requested sales order document.

In all of these scenarios, another software application exchanges information with Microsoft
 Dynamics AX to accomplish a task:

 ■ The company’s CEO uses an interactive application (such as a Microsoft Office application) to
analyze sales data that is stored in Microsoft Dynamics AX. The application communicates with
Microsoft Dynamics AX on behalf of the CEO.

 ■ A salesperson who is visiting a prospect’s site uses a webpage or a mobile application to create
a new customer account and then take the first sales order in Microsoft Dynamics AX from a
remote location.

 ■ A sales processor enters a sales order and uses customer records that are stored in a customer
relationship management (CRM) application to populate the customer section of the order in
Microsoft Dynamics AX.

 ■ Trading partners submit sales orders as electronic documents, which need to be imported into
Microsoft Dynamics AX periodically.

 ■ An accountant sends electronic payments or invoices to trading partners.

Performing these tasks manually—without programmatically integrating Microsoft Dynamics
AX with other applications and business processes—doesn’t scale well and is error prone. With
the Microsoft Dynamics AX services framework, you can encapsulate business logic—for example,
 functionality to create sales orders in Microsoft Dynamics AX—in Microsoft Dynamics AX services.
You can then publish these services through the Application Integration Framework (AIF). These
 Microsoft Dynamics AX services can participate in a service-oriented architecture (SOA).

Note SOA is a significant area of software development. A complete discussion of SOA
is outside the scope of this book. Good information is available about SOA, including
the Organization for the Advancement of Structured Information Standards (OASIS)
 specification “Reference Model for Service Oriented Architecture 1.0,” and the book
Service-Oriented Architecture: Concepts, Technology, and Design by Thomas Erl.

The Microsoft Dynamics AX service framework provides a toolset for creating, managing,
 configuring, and publishing Microsoft Dynamics AX services, so that the business logic encapsulated
in the service can be easily exposed through service interfaces. All service interfaces that are
 published through the Microsoft Dynamics AX service framework are compliant with industry
 standards and are based on core Microsoft technologies, including the software development
kit (SDK) for Microsoft Windows Server, Microsoft .NET Framework, Windows Communication
 Foundation (WCF), and Message Queuing (also known as MSMQ).

 CHAPTER 12 Microsoft Dynamics AX services and integration 387

In addition to the programming model and tools for implementing services, the Microsoft
 Dynamics AX service framework also includes the following:

 ■ A set of system services and document services that are included with Microsoft Dynamics AX
2012 and are ready for use.

 ■ A set of features for manipulating inbound and outbound messages, such as support for
t ransformations, value substitutions, and so on.

 ■ An extensible integration framework that supports building new Microsoft Dynamics AX
 services and publishing them through a set of transport protocols such as Message Queuing,
file, HTTP, or Net.tcp.

Note The concept of service references has been removed from Microsoft Dynamics
AX 2012.

Publishing Microsoft Dynamics AX services is a simple task that a Microsoft Dynamics AX
 administrator can do at run time. After a Microsoft Dynamics AX service has been published,
external client applications, or service clients, can consume it.

Note This chapter discusses configuration and administration tasks only where necessary
to help you better understand the development scenarios. For additional details and
code samples, see the Microsoft Dynamics AX 2012 system administrator documentation
on TechNet (http://technet.microsoft.com/en-us/library/gg731797.aspx), or the Microsoft
Dynamics AX 2012 Developer Center on MSDN (http://msdn.microsoft.com/en-us/
dynamics/ax/gg712261).

Types of Microsoft Dynamics AX services

Microsoft Dynamics AX 2012 recognizes three types of services—system services, custom services,
and document services—each with its own programming model. Microsoft Dynamics AX publishes
metadata about available services and their capabilities in the form of Web Services Description
 Language (WSDL) files, which can be used for automatic proxy generation.

The following sections explain each type of service in more detail.

System services
Microsoft Dynamics AX system services are generic, infrastructural services that are not tied to
 specific business logic. System services are included with Microsoft Dynamics AX 2012 and are
automatically deployed, so that Microsoft Dynamics AX components and external components can
assume that these services are always available.

http://msdn.microsoft.com/en-us/dynamics/ax/gg712261

388 PART 2 Developing with Microsoft Dynamics AX

The functionality published by system services is often used by interactive clients that need to
inquire about the capabilities or configuration of a specific deployment at run time. System services
and their interfaces are not intended to be modified or reconfigured; they can only be hosted on the
Application Object Server (AOS) and cannot be invoked through asynchronous transport mechanisms
such as Message Queuing.

Microsoft Dynamics AX system services include the following:

 ■ Query service Publishes service operations that allow execution of existing (static) or ad hoc
queries from service clients and returns results in the form of generic .NET datasets.

 ■ Metadata service Can be used to request information from Microsoft Dynamics AX about
its metadata, such as tables, queries, forms, and so on, and thus, about its configuration.

 ■ User session info service Can be used to retrieve certain settings for the environment in
which requests for the current user are executed; for example, a client application can use the
user session service to request information about the current user’s currency, company, and
time zone, among other things.

Custom services
You can use Microsoft Dynamics AX custom services to publish eligible X++ methods as service
operations through integration ports for consumption by external client applications. To do that, you
use the programming model for custom services to define metadata that determines the shape of the
published service operations and data contracts. Custom services do not have to be tied to Microsoft
Dynamics AX queries or tables. For example, you can use a custom service to publish functionality to
approve an invoice or to stop a payment.

Note Generally, Microsoft Dynamics AX document services are better suited for implementing
services that publish standard operations that operate on queries or tables, such as create, read,
update, and delete; these operations are often referred to as CRUD operations.

After you define the service operations and data contracts, you can publish your custom services.
Their external interfaces can be configured through the respective system administration forms.

Custom service artifacts
To expose an X++ method as a custom service, you need to create the following artifacts:

 ■ Service implementation class A class that implements the business logic and exposes it
through X++ methods.

 ■ Service contract Service-related metadata (no code). The most important service metadata
consists of the service operations that are published to external service applications, and a
reference to the X++ service implementation class that implements these service operations.

 CHAPTER 12 Microsoft Dynamics AX services and integration 389

 ■ One or more data contracts X++ classes that represent the complex parameter types used
for service operations. Data contracts are not needed for primitive data types.

Service implementation class
A service implementation class contains the code that implements the business logic to publish.

You can use any X++ class as a service implementation class. Service implementation classes
don’t have to implement any interfaces or extend any super-classes. A class definition for a service
 implementation class MyService could look like this:

public class MyService
{
}

There are, however, constraints that govern which methods of a service implementation class can
be published as service operations. Eligible methods are public methods that use only parameters
with data types that can be serialized and deserialized; this includes most primitive data types in
 addition to valid Microsoft Dynamics AX data contracts. In addition, eligible methods must be
 declared as service operations in the service contract in the Application Object Tree (AOT).

Note Every method that is intended to be published as a service operation must be
 annotated with the attribute SysEntryPointAttribute, which indicates whether authorization
checks are to be performed by the AOS.

The following code shows an example of a method that can be declared as a service operation in
the AOT, assuming the X++ type MyParam is a valid data contract. (For more information, see the
section “Data contracts,” later in this chapter.)

[SysEntryPointAttribute(true)]
public MyParam HelloWorld(MyParam in)
{
 MyParam out = new MyParam();
 out.intParm(in.intParm() + 1);
 out.strParm("Hello world.\n");
 return out;
}

Service contracts
Service contracts define which methods of a service implementation class are publishable as service
operations and provide additional metadata that specifies how these methods should be published.

Note Declaring a method as a service operation does not publish that method as a service
operation.

390 PART 2 Developing with Microsoft Dynamics AX

To create a new service contract, you need to create a new child node in the AOT under the
 Services node; for example, MyService.

The newly created AOT node has a few properties to initialize before any methods of the service
can be published as service operations:

 ■ Service implementation class This required property links the service interface to the
 service implementation class. In this example, the value is MyService.

 ■ Namespace Optionally, you can specify the XML namespace that should be used in the
WSDL. If the XML namespace isn’t specified, http://tempuri.org is used by default. This example
uses the namespace http://schemas.contoso.com/axbook/2012/services.

 ■ External name Optionally, you can assign an external name for each service. In this
 example, the external name is left blank.

Finally, you need to add service operations to the service contract. To do this, expand the new AOT
node, right-click, and then point to Operations > Add Operation.

Note that you can publish only methods as service operations that have been explicitly added to
the service contract in the AOT.

Data contracts
A data contract is a complex X++ data type that can be used for input and output parameters in
service operations. Most importantly, data contracts must be serializable. You can control how an X++
class is serialized and deserialized by the Microsoft Dynamics AX service framework through the X++
attributes DataContractAttribute and DataMemberAttribute:

 ■ DataContractAttribute declares an X++ class as a data contract.

 ■ DataMemberAttribute declares a property as a member of the data contract.

The following code shows a sample definition for the data contract MyParam, which is used in the
previous example:

[DataContractAttribute]
public class MyParam
{
 int intParm;
 str strParm;
}

The following code shows a sample property that is included in the data contract:

[DataMemberAttribute]
public int intParm(int _intParm = intParm)
{
 intParm = _intParm;
 return intParm;
}

 CHAPTER 12 Microsoft Dynamics AX services and integration 391

X++ collections as data contracts
If you want to use X++ collection types in data contract definitions, you need to ensure that all
contained elements are of a data type that is supported for data contracts. Moreover, you need
to provide additional metadata with the definition of the service method that uses the parameter,
 specifying the exact data type of the values in the collection at design time. You do this by using the
X++ attribute AifCollectionTypeAttribute, as shown here for a sample method UseIntList():

[SysEntryPointAttribute(true),
 AifCollectionTypeAttribute('inParm', Types::Integer)]
public void UseIntList(List inParm)
{
 ...
}

The two parameters you need to pass into the constructor of the attribute are the name of the
parameter to which the metadata is to be applied (inParm in the example) and the type of elements
in the collection (Types::Integer in the example).

If you want to store X++ class types in your collection, you must also specify the class, as shown in
the following example:

[SysEntryPointAttribute(true),
 AifCollectionTypeAttribute('return', Types::Class, classStr(MyParam))]
public List ReturnMyParamList(int i)
{
 ...
}

The three parameters that are passed into the AifCollectionAttribute constructor are the name of
the parameter (return), the type of the elements of the collection type (Types::Class), and the specific
class type (MyParam).

Note The parameter name return is reserved for the return value of a method.

Register a custom service
After you create all of the artifacts that are necessary for the custom service, you need to register
the new service with the Microsoft Dynamics AX service framework. To register the service (in this
example, MyService) with AIF, expand the Services node in the AOT, right-click the node you created
earlier, and then point to > Add-Ins > Register Service.

As a result of the registration, you can now publish all declared service operations of your service.
For more information, see the section “Publish Microsoft Dynamics AX services,” later in this chapter.

392 PART 2 Developing with Microsoft Dynamics AX

Document services
The term document services stems from the reality that businesses need to exchange business
 documents, such as sales orders and invoices, with their trading partners. Document services operate
on electronic representations of such business documents.

The Microsoft Dynamics AX implementation of these business documents is also referred to as
Axd documents. Document services are generated from Microsoft Dynamics AX queries. Wizards
 automate the process of quickly generating and maintaining all necessary artifacts for document
services, with a configurable set of well-known service operations, from queries.

By nature, document services provide document-centric application programming interfaces
(APIs)—that is, APIs that operate on Axd documents. Examples of document-oriented APIs for a sales
order service include create sales order, read sales order, delete sales order, and so on. Each of these
APIs operates on an instance of a sales order document. Create sales order, for example, takes a sales
order document, persists it in the Microsoft Dynamics AX data store, and returns the sales order
 identifier for the persisted instance.

Document services are useful in scenarios that require the exchange of coarse-grained business
documents, such as sales orders. In these scenarios, exchanged data is transacted and thorough data
validation is important, data exchanges are expensive (for example, because enterprise boundaries
are crossed), and response times are not critical. Sometimes, responses are not even expected
 (one-way communication).

The programming model for document services supports customizations to the artifacts that
are generated. Microsoft Dynamics AX includes a set of document services that are ready to use.
 However, you can customize these services to better fit your business needs. The programming
model for document services supports the data access layer features that have been introduced with
Microsoft Dynamics AX 2012, such as surrogate key expansion, table inheritance, and date-effectivity.
In other words, the Microsoft Dynamics AX service framework supports the development of services
that use the tables that take advantage of the new functionality.

Document service artifacts
Just like custom services, all document services in Microsoft Dynamics AX 2012 require a service
 contract, a service implementation, and a data contract. For document services, these artifacts are
generated from Axd queries; thus, their default implementation follows conventions and looks as
 follows:

 ■ Service contract Service-related metadata (no code) that is stored in the AOT nodes under
the Services node, such as SalesSalesOrderService. The metadata includes the following:

• Service operations that are available to external service clients.

• A reference to the X++ service implementation class that implements these service
 operations.

 CHAPTER 12 Microsoft Dynamics AX services and integration 393

 ■ Service implementation The code that implements the business logic that is to be exposed.
For generated document services, the service implementation includes the following key
 elements:

• Service implementation class An X++ class that derives from AifDocumentService and
implements the service operations that are published through the service contract. For
example, SalesSalesOrderService is the service implementation class for the service contract
SalesSalesOrderService.

• Axd<Document> class An X++ class that derives from AxdBase. Axd<Document> classes
coordinate cross-table validation and cross-table defaulting. There is one Axd<Document>
class for each document service. For example, AxdSalesOrder is the Axd<Document> class
for SalesSalesOrderService. The AxdBase class, among others, implements code for XML
serialization.

• Additional artifacts Optionally, the AIF Document Service Wizard can generate
 additional artifacts such as Ax<Table> classes.

Note In older versions of Microsoft Dynamics AX, an Ax<Table> class was
generated for each table referenced from a query that was used to generate
an Axd<Document> class. By default, in Microsoft Dynamics AX 2012,
Axd<Document> classes use the Ax<Table> class AxCommon to access tables.
The AxCommon class provides a default implementation for all Ax<Table> class
functionality. Ax<Table> classes are needed only in advanced scenarios; for
 example, when a custom value mapping needs to be implemented for a table
field.

 ■ Data object An X++ class that represents a parameter type and serves as a data contract.
The parameter types that the Create New Document Service Wizard generates derive from
AifDocument and represent business documents. For example, SalesSalesOrder is the data
object that is created for the SalesSalesOrderService.

For a complete list of document service artifacts, see the “Services and Application Integration
Framework (AIF)” section of the Microsoft Dynamics AX 2012 SDK (http://msdn.microsoft.com/en-us/
library/gg731810.aspx).

The following sections touch on a few selected topics for both Axd<Document> and Ax<Table>
classes. For more information, see the “AIF Document Services” section of the Microsoft Dynamics AX
2012 SDK (http://msdn.microsoft.com/en-us/library/bb496530.aspx).

Axd<Document> classes
Axd<Document> classes (such as AxdSalesOrder) extend the X++ class AxdBase. Among other things,
Axd<Document> classes do the following:

 ■ Implement XML serialization for data objects.

394 PART 2 Developing with Microsoft Dynamics AX

 ■ Invoke value mapping.

 ■ Orchestrate cross-table field validation and defaulting.

Axd<Document> classes provide default implementations for XML serialization for all data objects
that are used. These classes derive XML schema definitions used for XML serialization directly from
the structure of the underlying query. The XML serialization code uses Microsoft Dynamics AX
concepts such as extended data types (EDTs) to further restrict valid XML schemas and improve XML
schema validation. Moreover, when generating XML schemas, Axd<Document> classes take the data
access layer features that have been introduced in Microsoft Dynamics AX 2012 into consideration.
For example, the generated XML schema definitions reflect date-effective table fields, expanded
dimension fields, and the inheritance structure of the tables used in the underlying Axd query, if
 applicable; surrogate foreign key fields are replaced with alternate keys, if configured.

Axd<Document> classes always access tables through the Ax<Table> classes. During serialization,
Axd<Document> classes rely on AxCommon or custom Ax<Table> classes to persist data to tables and
to read data from tables.

Figure 12-2 illustrates the mapping between a Microsoft Dynamics AX query used for the
Axd<Document> class AxdSalesOrder and the generated XML schema definition.

FIGURE 12-2 Correlation between the AOT query and the XML document structure.

Axd<Document> classes also provide an API for orchestrating cross-table field validation and
defaulting. Validation and defaulting logic that is relevant only for a specific Axd<Document>
class, but not for all Axd<Document> classes that use the same table, can also be implemented in
Axd<Document> classes.

Axd<Document> instances can be uniquely identified through AifEntityKeys, which consist of a
table name (name of the root table for the Axd query), the field names for a unique index of that
table, and the values of the respective fields for the retrieved record. In addition, AifEntityKeys holds
the record ID of the retrieved records.

 CHAPTER 12 Microsoft Dynamics AX services and integration 395

Ax<Table> classes
Ax<Table> classes (such as AxSalesTable and AxSalesLine) derive from the X++ class AxInternalBase.
Unlike in earlier versions of Microsoft Dynamics AX, an Ax<Table> class is not needed for each table
that is used in a document service; instead, the Ax<Table> class AxCommon has been introduced in
Microsoft Dynamics AX 2012, which Axd<document> classes use by default to access tables.

Note Document services that are included with Microsoft Dynamics AX 2012 might still
rely on custom Ax<Table> classes for tables used in the underlying query, especially,
if those services were created in earlier versions of Microsoft Dynamics AX, before the
 introduction of the AxCommon class.

However, there are scenarios in which custom Ax<Table> classes are required; for example, when
parm methods for fields on the underlying table are needed to do the following:

 ■ Support calculated fields for a table in the Ax<Table> class.

 ■ Support a custom value mapping, which is different from the default implementation in
 AxCommon.

Note Ax<Table> classes are often referred to as AxBC classes in both code and
 documentation.

Although optional in Microsoft Dynamics AX 2012, Ax<Table> classes can be generated as part of
the document service with the AIF Document Service Wizard.

Create document services
You generate document services based on Axd queries by using the AIF Document Service Wizard.
This section discusses a few selected aspects of generating and maintaining document services.

Create Axd queries Although general guidelines for working with Microsoft Dynamics AX queries
apply to Axd queries, some additional constraints and guidelines apply:

 ■ Name Microsoft Dynamics AX queries that are used for document services with the prefix Axd
followed by the document name. For example, the document service query for the document
SalesOrder should be AxdSalesOrder. This is a best practice.

 ■ Only one root table for each query is allowed. You can associate the unique entity key that is
used to identify document instances with this root table. For example, the entity key SalesId is
defined on the AxdSalesOrder root table SalesTable.

 ■ If your query’s data sources are joined by an inner join, you should use fetch mode 1:1; if they
are joined by an outer join, you should use fetch mode 1:n. If you don’t use these settings,
your query and the service operations that use this query can yield unexpected results.

396 PART 2 Developing with Microsoft Dynamics AX

 ■ If you want to use a Microsoft Dynamics AX document service to write data back to the
 database—that is, if you need to support the service operation update—set the AOT property
Update to Yes for all data sources that the query uses to generate the service.

Note For security reasons, checks in X++ code by default prevent system tables from
 being used in queries that are used for document services.

Generate a document service To generate a document service from an existing Axd query,
you can use the AIF Document Service Wizard. To start the wizard, on the Tools menu, point to
 Application Integration Framework > Create Document Service. This section provides a high-level
description of the AIF Document Service Wizard and some important notes about how to use it.

In the wizard, you can select the service operations you want to generate for your service: create,
read, update, delete, find, findKeys, getKeys, and getChangedKeys. If you select Generate AxBC classes
when running the wizard, the wizard generates new Ax<Table> classes with parm methods for the
fields of the tables used in the query.

The AIF Document Service Wizard uses the document name—which you enter on the first
screen—to derive names for the generated artifacts. You can change the document name (and thus
the derived names for the artifacts) in the wizard before the artifacts are generated. Names of AOT
objects are limited to 40 characters. If you choose a document name that produces names that are
too long for one or more artifacts, you may get error messages.

Once the wizard finishes, it displays a report of all generated artifacts and any errors encountered.
You need to fix all errors before you start customizing the code that the wizard generates.

Tip The wizard creates a new project for each generated service. It then adds the
 generated artifacts automatically to the created project.

You can use the Update Document Service dialog box to update existing document services; for
example, to add a service operation that you had not selected initially.

Note Although you can create and update document services manually, it is not
 recommended. Instead, always use the AIF Document Service Wizard to generate new
document services from AOT queries and the Update Document Service dialog box quickly
to update existing document services.

Microsoft Dynamics AX 2012 includes over 100 ready-to-use document services. These include
services such as SalesOrderService and CustomerService. You can find a list of these services in the
AOT Services node, or in the topic “Standard Document Services” in the Microsoft Dynamics AX 2012
SDK (http://msdn.microsoft.com/en-us/library/aa859008.aspx).

 CHAPTER 12 Microsoft Dynamics AX services and integration 397

For a more comprehensive discussion of the AIF Document Service Wizard and generating
Axd<Document> and Ax<Table> classes, see the ”AIF Document Services” section of the Microsoft
 Dynamics AX 2012 SDK (http://msdn.microsoft.com/en-us/library/bb496530.aspx).

Customize document services
In many cases, you might need to customize the document services that you have generated from
queries or that are included with Microsoft Dynamics AX 2012 to better fit your business needs. This
section touches on some of the most common scenarios for customizing document services, including
customizing the tables or queries, service operations, validation, defaulting, queries, and security.

Customize tables When you customize a table that is used by a document service (for example, by
adding a column), you need to update the service implementation—that is, the Axd<Document> and
Ax<Table> classes and the data objects—to reflect these changes.

Tip Always enable best practice checks with the Best Practices tool to detect potential
 discrepancies between the table structure and the service implementation. If the best
 practice checks on any of your customized tables fail, you can use the Update Document
Service dialog box to update the Axd<Document> class, Ax<Table> classes, and data
 objects to reflect the changes.

Caution Because document services are based on Microsoft Dynamics AX queries,
 changes in the structure of a query that is used in a document service (for example, by
adding a column to a table used in the query) inadvertently changes the data contract
for that document service. Changes in external interfaces such as service interfaces can
 potentially break integrations that were built using the original data contract. Always
 consider the impact of changing queries or tables that are used in document services and
apply common best practices for non-breaking service interface changes, such as not
 removing service operations, or data contract fields, and only adding optional fields.

Tip If you use a static field list for the query from which an Axd document service is
 generated, you can prevent the data contract for the Axd document service from implicitly
changing when a field is added to a table.

Add custom service operations You can change the behavior of any service operation by
 modifying its X++ implementation. In addition, you can add custom service operations to any
 document service by following the same steps used for adding service operations to custom services.

Customize validation logic Validation logic is crucial for enforcing data hygiene. Ideally, invalid
data never is persisted in the Microsoft Dynamics AX data store.

398 PART 2 Developing with Microsoft Dynamics AX

Tip To achieve this goal, always verify the validation logic of each service operation that
you generate or customize to make sure that it meets your requirements.

Well-designed validation logic has the following characteristics:

 ■ Reusable Ideally, the same (generic) validation logic can be used from the Microsoft
 Dynamics AX client and from Microsoft Dynamics AX services. Keep in mind that
non-generic validation code, code that applies only to the Microsoft Dynamics AX client or
only to Microsoft Dynamics AX services, is also possible.

 ■ Well-performing Validation code runs whenever the respective Microsoft Dynamics AX
entity is modified. As a consequence, one of your key goals for writing validation logic must be
adequate performance.

 ■ Sufficient Validation logic must guarantee a sufficient level of data hygiene. You might have
to trade sufficiency for performance in a way that satisfies your application’s requirements.

Validation code consists mainly of the following elements:

 ■ Code that orchestrates cross-table validation by invoking validation code that is implemented
on the respective tables. This code is implemented in the respective Axd<Document> class
methods prepareForSave, prepareForUpdate, and prepareForDelete. These prepareForXxx
methods are called once for each Ax<Table> class that the Axd<Document> class uses.

 ■ Code that enforces table-level validation logic is implemented by the table methods
 validateField and validateWrite for maximum code reusability. These methods call specific
validation methods, such as checkCreditLimit on SalesTable.

 ■ Code that performs document-level validation, which is implemented by the Axd<Document>
class method validateDocument. This method is called immediately before changes are persisted to
tables, and after the prepareForXxx methods have been called for each Ax<Table> class.

 ■ Code that performs validation after data has been persisted to the table, which is
 implemented by the Axd<Document> class method updateNow.

The following code, the prepareForSave method for AxdSalesOrder, is an example of cross-table
validation. It calls validation methods for the Ax<Table> classes AxSalesTable and AxSalesLine (in
 addition to other Ax<Table> classes, which have been removed from this example):

public boolean prepareForSave(AxdStack _axdStack, str _dataSourceName)
{

 // ...

 switch (classidget(_axdStack.top()))
 {
 case classnum(AxSalesTable) :
 axSalesTable = _axdStack.top();
 this.checkSalesTable(axSalesTable);

 CHAPTER 12 Microsoft Dynamics AX services and integration 399

 this.prepareSalesTable(axSalesTable);
 return true;

 case classnum(AxSalesLine) :
 axSalesLine = _axdStack.top();
 this.checkSalesLine(axSalesLine);
 this.prepareSalesLine(axSalesLine);
 return true;

 // ...
 }

 return false;
}

Customize defaulting logic You can customize the defaulting logic for table fields that is executed as
part of creating or updating table rows. Defaulting logic helps increase the usability of both interactive
 client applications and Microsoft Dynamics AX service interfaces. It derives initial values for table
fields from other data—such as values of other table fields—and thus, it doesn’t require explicit value
 assignments for the defaulted table fields. It also helps reduce the amount of data required to manipulate
more complex entities, such as sales orders, while lowering the probability of erroneous data entry.

Well-designed defaulting logic has the following characteristics:

 ■ Reusable You should implement defaulting logic so that it is reusable—that is, so the same
logic can be used regardless of which Microsoft Dynamics AX client (for example, a user
interface or a service client) creates or updates the entity. In certain scenarios, the defaulting
of table fields might require different logic, depending on whether the Microsoft Dynamics AX
client is interactive (a user interface) or non-interactive (a request from a service client).

 ■ Well-performing Because the defaulting logic for a table field is invoked every time the
field is set, its execution time directly affects the processing time for manipulating the entity,
such as a sales order. In particular, try to avoid redundant defaulting steps—that is, setting a
field value that is overwritten again as part of the same defaulting logic.

 ■ Sufficient To reduce the number of required fields for manipulating entities, as many fields
as possible should be defaulted, while still meeting the performance goals.

Microsoft Dynamics AX 2012 still supports the approach to implementing defaulting logic that was
supported in previous versions of Microsoft Dynamics AX. However, in Microsoft Dynamics AX 2012,
mechanisms for tracking field states (such as not set and defaulted) have been added to tables, which
means that you can implement defaulting logic directly in table classes. This allows for defaulting
logic to be used not only by Axd<document> classes, but also from forms, and so on. Note that
because now you can implement defaulting logic directly in the table class, an Ax<Table> class is not
necessary for implementing standard defaulting code.

For more details about implementing and customizing defaulting logic in Microsoft Dynamics AX
2012 and information about how to customize document services in general, see the ”AIF Document
Services” section of the Microsoft Dynamics AX 2012 SDK (http://msdn.microsoft.com/en-us/library/
bb496530.aspx).

400 PART 2 Developing with Microsoft Dynamics AX

Security considerations
Service operations are entry points through which external applications can submit requests on
behalf of users. As mentioned earlier, all X++ methods that are intended to be published as service
operations must be annotated with the X++ attribute SysEntryPointAttribute, indicating whether
the method is to be invoked in the context of the calling user. If so, authorization checks must be
 performed for tables accessed within the method. In addition, all concepts related to role-based
s ecurity also apply to services and service operations.

System services are generally accessible and executed in the calling user’s context.

Because as the developer, you are in charge of the implementation of custom services, you must
add the SysEntryPointAttribute manually to all service operations and create permissions when
 necessary.

When you generate document services by using the AIF Document Service Wizard, all generated
service operations are automatically annotated with SysEntryPointAttribute. Moreover, the wizard
 attempts to infer all security permissions for the generated service automatically.

Tip When using the AIF Document Service Wizard, always verify that the generated
 artifacts meet your requirements and adjust them if they don’t.

Publish Microsoft Dynamics AX services
After you create and customize your service, you need to publish it for external applications to
be able to consume it. Developing a service and publishing a service are two separate and largely
 independent processes.

With the AIF, you can publish Microsoft Dynamics AX services through various transport
 technologies. In addition, the AIF provides a variety of configuration options that administrators
can use to customize how service interfaces are published. This chapter limits the discussion of the
AIF to publishing services through basic integration ports. For more information, see the services
 administration documentation for Microsoft Dynamics AX 2012 on TechNet (http://technet.microsoft
.com/en-us/library/hh209600.aspx). You can also find guidance on how to develop, set up, and use
concepts such as data policies, transformations, pipeline components, and value mappings.

For development and debugging purposes, you can easily publish registered custom services
and document services through basic integration ports right from the AOT. You can also use service
groups to ensure that services are deployed and activated automatically when the AOS is started
by using the AutoDeploy property of the respective service group. This is useful when you need to
be able to consume a service without administrator intervention; for example, to enable the service
manually after deploying Microsoft Dynamics AX 2012.

http://technet.microsoft.com/en-us/library/gg731906.aspx

 CHAPTER 12 Microsoft Dynamics AX services and integration 401

To publish a service through a basic integration port, first, you need to add it to a service group
in the AOT. Then you can deploy the service group with a default configuration using NetTcpBinding
in WCF, right from the AOT. For more information, see the topics “Services, service operations,
and service groups” (http://technet.microsoft.com/en-us/library/gg731906.aspx) and “Using basic
 integration ports” (http://technet.microsoft.com/en-us/library/hh496420.aspx) on TechNet.

Microsoft Dynamics AX services that are published through basic integration ports can only be
hosted directly on the AOS. There are limited configuration options available for services published
through basic integration ports. From the Inbound ports form (System Administration > Setup >
 Services And Application Integration Framework > Inbound Ports), you can activate and deactivate
basic integration ports, you can use SvcConfigUtil to modify WCF configuration parameters, and you
can enable logging for the respective ports.

Note If you need to publish a service through a WCF binding other than NetTcpBinding, if
you need to send unsolicited messages (outbound messages), or if you need more control
over message processing and, for example, use XSLT transformations, you must create an
enhanced integration port. You can create enhanced integration ports from the Inbound
Ports form or the Outbound Ports form, respectively.

Discussions in this chapter generally assume that services have been published through basic
integration ports unless noted otherwise. For details about how to publish services through bindings
other than NetTcpBinding (for example, Message Queuing or file system adapters) using enhanced
 integration ports, how to create ports for outbound messages, and for additional configuration
 options, see the services and AIF documentation for Microsoft Dynamics AX 2012 on TechNet
(http://technet.microsoft.com/en-us/library/gg731810.aspx).

Consume Microsoft Dynamics AX services

After you publish your Microsoft Dynamics AX services, external client applications can consume
them and invoke the exposed business logic. For example, once the SalesOrderService is exposed,
 client applications can consume it to create or read Microsoft Dynamics AX sales orders.

This section highlights a few aspects of consuming Microsoft Dynamics AX services from client
applications. As mentioned earlier, this chapter assumes that services are published through basic
 integration ports on the AOS. Services that are published through basic integration ports are
 accessible through Net.tcp.

For a more complete description of ways of publishing Microsoft Dynamics AX services, including
the use of asynchronous adapters and related technologies, see the services and AIF documentation
for Microsoft Dynamics AX 2012 on TechNet (http://technet.microsoft.com/en-us/library/gg731810.aspx).

http://technet.microsoft.com/en-us/library/gg731906.aspx
http://technet.microsoft.com/en-us/library/hh496420.aspx
http://technet.microsoft.com/en-us/library/hh496420.aspx

402 PART 2 Developing with Microsoft Dynamics AX

Sample WCF client for CustCustomerService
If you want to consume a Microsoft Dynamics AX service that has been published through a basic
integration port, you need to generate proxy classes from the WSDL of the service you want to
consume. Typically, you do this either from within your development environment (Microsoft Visual
Studio) or by using a command-line tool such as SvcUtil.

After you generate the proxy classes from the WSDL and add them to a project in your
 development environment, you need to write code to do the following:

 ■ Instantiate and initialize parameters.

 ■ Optionally instantiate and initialize a call context.

 ■ Instantiate a service proxy.

 ■ Consume the service operation.

 ■ Evaluate the response.

 ■ Handle errors and exceptions.

This section contains an example that illustrates what the code for consuming the service
 operation find() on the document service CustCustomerService (included with Microsoft Dynamics AX
2012) might look like.

For the following examples, assume that the document service CustCustomerService has been
 published through the service group MyServiceGroup and a Visual Studio project has been created.
Also, in Visual Studio, the service reference MyServiceGroup was added by using the WSDL for the
 basic integration port MyServiceGroup. For details about where Microsoft Dynamics AX publishes
WSDL files, see the topic “Locating the WSDL for Services” in the Microsoft Dynamics AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/gg843514.aspx).

The following code snippets show C# code for the steps to consume the service operation find of
the Microsoft Dynamics AX document service CustCustomerService.

First, you need to instantiate and initialize the parameters needed for the call. The service
 operation find accepts two input parameters: an optional call context and a query criterion that speci-
fies which customer records should be returned. The following example retrieves all customer records
in the company CEU with an account number greater than or equal to 4,000:

// instantiate and initialize parameters

// parameter: call context
MyServiceGroup.CallContext cc = new MyServiceGroup.CallContext();
cc.Company = "CEU";

// parameter: query criteria
MyServiceGroup.QueryCriteria qc = new MyServiceGroup.QueryCriteria();
MyServiceGroup.CriteriaElement[] qe = { new MyServiceGroup.CriteriaElement() };
qe[0].DataSourceName = "CustTable";

 CHAPTER 12 Microsoft Dynamics AX services and integration 403

qe[0].FieldName = "AccountNum";
qe[0].Operator = MyServiceGroup.Operator.GreaterOrEqual;
qe[0].Value1 = "4000";
qc.CriteriaElement = qe;

Tip You can use a CallContext object to execute a request in a different context than the
default context, which is used if a null or empty CallContext object is used for a request. In
the CallContext object, you can specify the company, language, and more.

Next, you need to instantiate a ser vice proxy and consume the service operation find, which
 executes a query and returns matching entities:

// instantiate a service proxy
MyServiceGroup.CustomerServiceClient customerService =
 new MyServiceGroup.CustomerServiceClient();

// consume the service operation find()
MyServiceGroup.AxdCustomer customer = customerService.find(cc, qc);

Finally, you need to evaluate the response from the server, which can be either query results or
 exception and error messages:

// error handling (additionally, exceptions need to be handled properly)
if (null == customer)
{
 // error handling...
}

// evaluate response
MyServiceGroup.AxdEntity_CustTable[] custTables = customer.CustTable;
if (null == custTables || 0 == custTables.Length)
{
 // handle empty response...
}
foreach (MyServiceGroup.AxdEntity_CustTable custTable in custTables)
{
 custTable...
}

Note Exception handling and other common best practices for developing web service
 clients are omitted from the simplified code examples.

Here are some tips for working with document services:

 ■ Many document services support both service operations find (which returns all Axd
 documents in the result set) and findKeys (which returns only the entity keys for Axd
 documents in the result set). If you expect the response message for invoking find to be very
large, you might want to use findKeys to retrieve the entity keys. You can then, for example,
implement paging to retrieve the matching Axd documents in sizeable chunks.

404 PART 2 Developing with Microsoft Dynamics AX

 ■ When developing new services, it is usually useful to turn on logging on the server side. To do
that, open the Inbound Ports form, deactivate the integration port that publishes the service
group containing your service, enable logging in the Troubleshooting section of the Inbound
Ports form, and then reactivate your integration port.

 ■ If a service operation returns large response messages, you may need to tweak the default settings
in your WCF configuration files for both the service and the client. By default, both service and
client WCF configurations allow messages of sizes up to 65,536 bytes. The maximum message and
buffer sizes are defined through the parameters maxReceivedMessageSize and maxBufferSize in
the binding section of standard WCF configuration files. Before changing these parameters, refer
to .NET Framework developer documentation to understand implications and valid values for
these parameters. The .NET Framework Developer Center is located at http://msdn.microsoft.com/
en-us/netframework/aa496123.

Other service operations for custom or document services can be consumed in similar ways.
For more information and code examples, see the Microsoft Dynamics AX 2012 SDK at
http://msdn.microsoft.com/en-us/library/aa496079.aspx.

Consume system services
Unlike custom services and document services, system services are automatically published (on the
AOS by using the NetTcpBinding) and are ready for consumption by client applications when AOS
starts.

Like all Microsoft Dynamics AX services, system services publish metadata in the form of WSDL
files, which you can use for proxy generation (see the previous examples). However, while the user
session info service is published explicitly through an integration port (UserSessionService), similar
to custom and document services, an integration port does not exist for the query service or the
 metadata service.

To provide an example of how to work with the metadata service and the query service, the
 following code example shows how to do the following:

 ■ Retrieve query metadata—the definition of a query named MyQuery—from Microsoft
 Dynamics AX by using the metadata service.

 ■ Convert the query metadata from the data contract used by the metadata service to the data
contract used by the query service. This conversion is necessary although both data contracts
are structurally identical (see the method ConvertContract in the following code example).

 ■ Add a range to the metadata object; in this case, include all rows with a value greater than
1996 for the Year column.

 ■ Execute the converted query definition by using the query service.

In .NET code, these steps could be implemented in a similar way to the code sample that follows.
Assume that you’ve created a Visual Studio project and added the references MetadataService and
QueryService by using the WSDLs for the metadata service and the query service, respectively.

http://msdn.microsoft.com/en-us/netframework/aa496123

 CHAPTER 12 Microsoft Dynamics AX services and integration 405

For details about where Microsoft Dynamics AX publishes WSDL files, see the topic “Locating the
WSDL for Services” in the Microsoft Dynamics AX 2012 SDK (http://msdn.microsoft.com/en-us/library/
gg843514.aspx).

// instantiate proxies
var metadataClient = new MetadataServiceReference.AxMetadataServiceClient();
var queryClient = new QueryServiceReference.QueryServiceClient();

// retrieve query metadata
MetadataService.QueryMetadata[] query =
 metadataClient.GetQueryMetadataByName(new string[] { "MyQuery" });

// convert query metadata
QueryService.QueryMetadata convertedQuery = ConvertContract
 <MetadataService.QueryMetadata, QueryService.QueryMetadata>(query);

// add a range to the query metadata object
QueryDataRangeMetadata range = new QueryDataRangeMetadata()
{
 Enabled = true,
 FieldName = "Year",
 Value = ">1996"
};
convertedQuery.DataSources[0].Ranges = new QueryRangeMetadata[] { range };

// initialize paging (return 3 records or less)
QueryService.Paging paging = new QueryService.ValueBasedPaging();
((QueryService.ValueBasedPaging)paging).RecordLimit = 3;

// instantiate a service proxy
QueryService.QueryServiceClient queryService =
 new QueryService.QueryServiceClient();

// execute the converted query with the range, receive results into .NET dataset
System.Data.DataSet ds =
 queryClient.ExecuteQuery(convertedQuery, ref paging);

Note that although the QueryMetadata definition is identical in both the query service and the
 metadata service, the proxy generator generates an identical class in two different namespaces, one
for each service. A ConvertContract method that implements the conversion of two contracts of the
same structure by using generics could look similar to the following code:

static TTargetContract ConvertContract<TSourceContract, TTargetContract>
 (TSourceContract sourceContract)
 where TSourceContract : class
 where TTargetContract : class
{
 TTargetContract targetContract = default(TTargetContract);
 var sourceSerializer = new DataContractSerializer(typeof(TSourceContract));
 var targetSerializer = new DataContractSerializer(typeof(TTargetContract));
 using (var stream = new MemoryStream())

406 PART 2 Developing with Microsoft Dynamics AX

 {
 sourceSerializer.WriteObject(stream, sourceContract);
 stream.Position = 0;
 targetContract = (TTargetContract)targetSerializer.ReadObject(stream);
 }
 return targetContract;
}

As mentioned earlier, the CallContext is used to override the default context (such as company and
language) in which a request is executed. A CallContext is optional for all service requests; if it is not
present in a request, the request is executed using default values for the CallContext properties.

In Microsoft Dynamics AX 2012, the WSDL files for the query service and the metadata service do
not contain the XML schema definitions for CallContext. Consequently, proxies generated from the
WSDL files for those services do not include proxy classes for CallContext; however, CallContext can
still be used for the query service and the metadata service the same way as it is with other services.
To use CallContext in requests sent to the metadata service or the query service, you need to add
a service reference to an integration port (such as UserSessionService), which generates the proxy
classes necessary for CallContext. You can then instantiate and initialize a CallContext object and add
it to your request, as shown in the following code:

// get OperationContextScope (see WCF documentation)
using (System.ServiceModel.OperationContextScope ocs =
 new System.ServiceModel.OperationContextScope((queryService.InnerChannel))) {

 // instantiate and initialize CallContext (using class from other service)
 CustomerService.CallContext callContext = new CustomerService.CallContext();
 callContext.Company = "CEU";

 // explicitly add header "CallContext" to set of outgoing headers
 System.ServiceModel.Channels.MessageHeaders messageHeadersElement =
 System.ServiceModel.OperationContext.Current.OutgoingMessageHeaders;
 messageHeadersElement.Add(
 System.ServiceModel.Channels.MessageHeader.CreateHeader(
 "CallContext",
 "http://schemas.microsoft.com/dynamics/2010/01/datacontracts",
 callContext));

 // initialize paging (return 3 records or less)
 QueryService.Paging paging = new QueryService.ValueBasedPaging();
 ((QueryService.ValueBasedPaging)paging).RecordLimit = 3;

 // instantiate a service proxy
 QueryService.QueryServiceClient queryService =
 new QueryService.QueryServiceClient();

 // consume query service using CallContext
 System.Data.DataSet ds =
 queryService.ExecuteStaticQuery("MyQuery", ref paging);
}

 CHAPTER 12 Microsoft Dynamics AX services and integration 407

Note The query service returns query results in chunks that are defined through a
 required paging parameter. The paging algorithms assume that queries use relations with
FetchMode set to 1:1 (AOT property). The query service produces an error message for
queries that use relations with FetchMode set to 1:n.

Please refer to the product documentation for further details on the CallContext or capabilities of
system services.

Update business documents
In many scenarios, you need to update data in already-existing Axd documents, such as to add a
sales line to a sales order or to update a customer address. Through the service operation update,
 document services support different semantics for document-centric updates: full updates and partial
updates.

For the following examples, assume that the standard document service SalesSalesOrderService
has been added to a service group named MyServiceGroup and published through a basic integration
port named MyServiceGroup.

Apply a full update
Full updates are the default behavior for document services. To use this mode, add code to your client
application to do the following:

 ■ Read the document.

 ■ Apply changes to the document.

 ■ Send the updated document back to the server.

 ■ Handle errors, if any.

The following C# code provides a conceptual example of how to apply a full update to an existing
sales order:

// instantiate and initialize callContext, entityKeys, serviceOrderService
MyServiceGroup.EntityKey[] entityKeys = ...
MyServiceGroup.CallContext callContext = ...
MyServiceGroup.SalesOrderServiceClient salesOrderService = ...
...

// read sales order(s) (including document hash(es)) using entityKeys
MyServiceGroup.AxdSalesOrder salesOrder =
 salesOrderService.read(callContext, entityKeys);

// handle errors, exceptions; process sales order, update data
...

408 PART 2 Developing with Microsoft Dynamics AX

// persist updates on the server (exception handling not shown)
salesOrderService.update(callContext, entityKeys, salesOrder);

Apply a partial update
In many scenarios, full updates are inefficient. Imagine a large sales order with many sales lines—
having more than 1,000 is not uncommon. If you use a full update, you would have to retrieve the
entire sales order with all sales lines, apply your changes to the one sales line you want to update,
and then send back the entire sales order—including all unchanged sales lines. This operation can be
costly when you consider the validation and defaulting logic invoked on the server for each sales line.

Instead of performing a full update, you can apply a partial update. Partial updates use the same
service operation as full updates do: update. However, with partial updates, you can send partial
documents that contain only the changed (added, modified, or deleted) data. For child elements,
 documents sent in partial update requests contain processing instructions specifying how to handle
each (child) record included in the partial document to avoid ambiguity. Consequently, the process
for updating documents by using partial updates contains one additional step:

 ■ Read the document.

 ■ Apply changes to the document. To take advantage of partial updates, ensure that you only
send the fields back to the server that are either mandatory or that have changed.

 ■ Explicitly request the partial update mode and add processing instructions.

 ■ Send the updated document with the update request.

 ■ Handle errors, if any.

The following code provides a conceptual example of how to apply a partial update to a sales
order:

// instantiate and initialize callContext, entityKeys, serviceOrderService
MyServiceGroup.EntityKey[] entityKeys = ...
MyServiceGroup.CallContext callContext = ...
MyServiceGroup.SalesOrderServiceClient salesOrderService = ...
...

// read sales order(s) (including document hash(es)) using entityKeys
MyServiceGroup.AxdSalesOrder salesOrder =
 salesOrderService.read(callContext, entityKeys);

// handle errors, exceptions; process sales order, update data
...

// example: update the first sales order and mark it for partial update
AxdEntity_SalesTable[] salesTables = salesOrder.SalesTable;
salesOrder.SalesTable = new AxdEntity_SalesTable[] { salesTables[0] };
// document-level directive, requesting a partial update
salesOrder.SalesTable[0].action = AxdEnum_AxdEntityAction.update;

 CHAPTER 12 Microsoft Dynamics AX services and integration 409

// table-level directive, requesting to delete the first sales line
AxdEntity_SalesLine[] salesLines = salesOrder.SalesTable[0].salesLine;
salesOrder.SalesTable[0].SalesLine = new AxdEntity_SalesLine[] { salesLines[0] };
salesOrder.SalesTable[0].SalesLine[0].action = AxdEnum_AxdEntityAction.delete;

// remove child data sources w/o updates (DocuRefHeader, etc.) from salesTable
...

// persist updates on the server (exception handling not shown)
salesOrderService.update(callContext, entityKeys, salesOrder);

Note In XML request messages, these processing instructions are reflected through
 occurrences of the XML attribute action. This is true for both XML messages sent to
 asynchronous adapters and for Simple Object Access Protocol (SOAP) messages sent to
synchronous WCF services. For more details, see the “AIF Document Services” section of the
Microsoft Dynamics AX 2012 SDK (http://msdn.microsoft.com/en-us/library/bb496530.aspx)

Optimistic concurrency control
The services framework relies on optimistic concurrency control (OCC) to resolve conflicts when
 multiple concurrent update requests occur. To be able to detect whether a document has changed
since it was last read, and to avoid inadvertently overwriting such changes, the service framework
uses document hashes to identify versions of a business document.

Document hashes are computed for a specific document instance from its contents; they are
 derived not only from the root-level data source (such as the sales header) but also from all of the
joined data sources (such as a sales line). In other words, if a field in any table that is included in the
business document changes, the document hash changes too.

To obtain the document hash for a business document, your code must first read the document.
It can then use the document hash that was returned inside the document in a subsequent update
request.

Tip Caching a document for a long time on a service client without refreshing it increases
the probability of update requests being rejected because of colliding updates from other
client applications.

Invoke custom services asynchronously
Because publishing a service is separate from developing the service, both custom services and
 document services can be published through the supported transport mechanisms; more specifically,
a custom or document service’s operations can be published synchronously (for example, by using
the Net.tcp or HTTP protocol) through basic integration ports, as shown in the previous examples, or
they can be published asynchronously (for example,. by using the file system adapter or Message

410 PART 2 Developing with Microsoft Dynamics AX

Queuing) through enhanced integration ports. Administrators can select various options to configure
how service operations are bundled and published at run time and to configure logging, among
other things. For more information about publishing services through enhanced integration ports, see
the services and AIF documentation for Microsoft Dynamics AX 2012 on TechNet
(http://technet.microsoft.com/en-us/library/gg731810.aspx).

When consuming Microsoft Dynamics AX services synchronously, typically generated service
 proxies take care of producing and consuming the XML that is exchanged between the client
 application and Microsoft Dynamics AX. However, when consuming Microsoft Dynamics AX services
through asynchronous transports, you need to make sure that the request messages comply with the
XML schema definitions for the AIF message envelope and the business document as expected by the
Microsoft Dynamics AX service framework. For more information about how to get the XML schema
definitions (XSDs) for message envelopes, see the “AIF Messages“ section in the Microsoft Dynamics
AX 2012 SDK (http://msdn.microsoft.com/en-us/library/aa627117.aspx)

The following code example shows a sample XML message that can be sent asynchronously
from a client application to Microsoft Dynamics AX to consume the service operation MyService.
HelloWorld(MyParam in) of a custom service was discussed in a previous example (see the “Custom
 services” section, earlier in this chapter). It illustrates how the service name, the service operation
name, and the structure of the input parameters map to the corresponding elements of the XML
request message. It also shows how you can specify the context in which the request is executed:
through the Header element, which recognizes the same properties the CallContext knows in the case
of synchronous service interfaces:

<?xml version="1.0" encoding="UTF-8"?>
<Envelope
 xmlns="http://schemas.microsoft.com/dynamics/2011/01/documents/Message">
 <Header>
 <!-- Service operation: "MyService.HelloWorld(MyParam)" -->
 <Company>CEU</Company>
 <Action>http://tempuri.org/MyService/HelloWorld</Action>
 </Header>
 <Body>
 <MessageParts
 xmlns="http://schemas.microsoft.com/dynamics/2011/01/documents/Message">

 <!-- Complex input parameter: "MyParam in" -->
 <in xmlns="http://tempuri.org"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:b="http://schemas.datacontract.org/2004/07/Dynamics.Ax.Application">

 <!—Property of complex input parameter: "in.b" -->
 <b:intParm>0</b:intParm>
 </in>
 </MessageParts>
 </Body>
</Envelope>

file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
http://tempuri.org/MyService/HelloWorld%3c/Action
http://tempuri.org/MyService/HelloWorld%3c/Action
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml
file:///C:UsersmmerzDesktopDAX%20-%20PresentationsDataTx_Demo-CustomHelloWorld.xml

 CHAPTER 12 Microsoft Dynamics AX services and integration 411

Note To run this example, you need to create an enhanced integration port that is
 configured to receive files asynchronously. That integration port must publish the service
operation MyService.HelloWorld.

So far, this chapter has discussed how Microsoft Dynamics AX functionality can be published
through services for consumption by external client applications and how external client applications
can consume these services. But what if you want to send unsolicited data out of Microsoft Dynamics
AX? The following two sections discuss how to use the Microsoft Dynamics AX send framework for
sending unsolicited data asynchronously.

The Microsoft Dynamics AX send framework

AIF provides APIs and infrastructure for using Microsoft Dynamics AX services to send unsolicited
one-way messages. The Microsoft Dynamics AX client has features like the Send Electronically
button on several forms that allow users to transmit business documents (such as invoices) as
 unsolicited one-way messages through outbound integration ports. For information about how
to configure outbound integration ports, see the services and AIF documentation for Microsoft
 Dynamics AX 2012 on TechNet (http://technet.microsoft.com/en-us/library/gg731810.aspx).

Microsoft Dynamics AX doesn’t rely on external document schema definitions to be provided by
the remote receiving application; it uses its own format instead—the same Axd<Document>
class-based XSDs that are also used as data contracts for published Microsoft Dynamics AX services.

Implementing unsolicited one-way messages requires the following two steps:

 ■ Implement a trigger for transmission (design time).

 ■ Configure an enhanced outbound integration port for sending documents (administration
time).

Implementing a trigger for transmission
You can implement a trigger for transmission by using either the AIF Send API or the AxdSend API.

AIF Send API
The Send API features a set of methods that can be used to send unsolicited one-way messages
from Microsoft Dynamics AX by means of integration ports, through which the consumers can pick
up the messages. This API sends a single message: the body of the message contains the XML that
is generated by invoking the read service operation of the AIF document service referenced by the
serviceClassId (it must reference a class that derives from AifDocumentService) with the parameter
entityKey.

412 PART 2 Developing with Microsoft Dynamics AX

To see a working example of how you can use this API, look at the code behind the method clicked
for the button SendXmlOriginal on the form CustInvoiceJournal. The API methods are defined on the
class AifSendService and include the method submitDefault:

public static void submitDefault(
 AifServiceClassId serviceClassId,
 AifEntityKey entityKey,
 AifConstraintList constraintList,
 AifSendMode sendMode,
 AifPropertyBag propertyBag = connull(),
 AifProcessingMode processingMode = AifProcessingMode::Sequential,
 AifConversationId conversationId = #NoConversationId
)

By using the two optional parameters in the preceding signature, processingMode and
 conversationId, you can take advantage of the parallel message processing feature for asynchronous
adapters:

 ■ processingMode Specifies whether messages can be moved from the AIF outbound
 processing queue to the AIF gateway queue in parallel (AifProcessingMode::Parallel) or whether
first-in-first-out (FIFO) order must be enforced for all messages (AifProcessingMode::Sequential).

 ■ conversationId If this is specified, AIF moves the message from the AIF outbound processing
queue to the AIF gateway queue in FIFO order, relative to all other messages with the same
 conversationId. The order relative to other messages with different conversationIds isn’t guaranteed.

AxdSend API
The AxdSend API provides functionality to send unsolicited one-way messages. The user selects
the outbound integration port through which the documents are sent at run time. If more than one
 document needs to be sent, the user also selects the exact set of entities at run time. This feature has
been implemented for several Microsoft Dynamics AX document services, such as AxdPricelist and
AxdBillsOfMaterials.

The AxdSend framework provides default dialog boxes for selecting integration ports and
 entity ranges and allows the generation of XML documents with multiple records. You can use the
 framework to provide specific dialog boxes for documents that require more user input than the
default dialog box provides.

The default dialog box includes an integration port drop-down list and, optionally, a Select button
to open the standard query form. The query is retrieved from the Axd<Document> class that the
caller specifies. Many integration ports can be configured in AIF, but only a few are allowed to receive
the current document. The lookup shows only the integration ports that are valid for the document,
 complying with the constraint set up for the read service operation for the current document.

The framework requires minimal coding to support a new document. If a document requires the
user to just select an integration port and fill out a query range, most of the functionality is provided
by the framework without requiring additional code.

 CHAPTER 12 Microsoft Dynamics AX services and integration 413

An example dialog box for the AxdSend framework is shown in Figure 12-3.

FIGURE 12-3 The Send Document Electronically dialog box for bills of materials.

If an Axd<document> requires a more specific dialog box, you inherit the AxdSend class and
provide the necessary user interface interaction to the dialog box method. In the following code
example, an extra field has been added to the dialog box. You just add one line of code to implement
parmShowDocPurpose from the AxdSend class and to make this field appear on the dialog box:

static public void main(Args args)
{
 AxdSendBillsOfMaterials axdSendBillsOfMaterials;
 AifConstraintList aifConstraintList;
 AifConstraint aifConstraint;
 BOMVersion bomVersionRecord;

 axdSendBillsOfMaterials = new AxdSendBillsOfMaterials();
 aifConstraintList = new AifConstraintList();
 aifConstraint = new AifConstraint();

 aifConstraint.parmType(AifConstraintType::NoConstraint);
 aifConstraintList.addConstraint(aifConstraint);

 if (args && args.record().TableId == tablenum(BOMVersion))
 {
 bomVersionRecord = args.record();
 axdSendBillsOfMaterials.parmBOMVersion(bomVersionRecord);
 }

 // added line to make the field appear on the dialog box
 axdSendBillsOfMaterials.parmShowDocPurpose(true) ;

 axdSendBillsOfMaterials.sendMultipleDocuments(
 classnum(BomBillsofMaterials),
 classnum(BomBillsofMaterialsService),
 AifSendMode::Async,
 aifConstraintList);
}

Sorting isn’t supported in the AxdSend framework, and the query structure is locked to ensure
that the resulting query matches the query defined by the XML document framework. Because of
this need for matching, the AxdSend class enforces these sorting and structure limitations. The query
dialog box shows only the fields in the top-level tables because of the mechanics of queries with an

414 PART 2 Developing with Microsoft Dynamics AX

outer join predicate. The result set will likely be different from what a user would expect. For example,
restrictions on inner data sources filter only these data sources, not the data sources that contain
them. The restrictions are imposed on the user interface to match the restrictions on the query when
using the document service’s find operation.

Configure transmission mechanisms
For details about configuring enhanced outbound integration ports and other administrative features
related to sending unsolicited messages asynchronously by using the Microsoft Dynamics AX send
framework, see the services and AIF documentation for Microsoft Dynamics AX 2012 on TechNet
(http://technet.microsoft.com/en-us/library/gg731810.aspx).

Consume external web services from Microsoft Dynamics AX

Web services are a popular and well-understood way of integrating applications that are deployed
within an enterprise’s perimeter, or intranet. Examples of such applications include enterprise resource
planning (ERP) applications, CRM applications, productivity applications such as Office, and so on.

Integrating applications with third-party web services over the Internet has also become viable and
in many cases is the preferred approach for quickly adding new functionality to complex applications.
Web services can range from simple address validation or credit card checks to more complex tax
calculations or treasury services.

Similar to sending unsolicited data asynchronously by using the Microsoft Dynamics AX send
framework, you can customize Microsoft Dynamics AX to send requests to external web services—in
other words, to consume external web services. Because consuming external web services implies
a tight coupling with the respective web service (and usually involves a service proxy for the web
 service), and because Visual Studio provides a rich set of tools for building such integrations, you
should create a Visual Studio project and build a .NET dynamic link library (DLL) that contains the
code to consume the external web service. You can then add this library as a reference to Microsoft
Dynamics AX and write X++ code that calls methods exposed by this .NET library.

Note The Microsoft Dynamics AX service framework does not provide any tools specific
to writing code to consume external web services. The concept of service references as it
existed in Microsoft Dynamics AX 2009 has been removed from Microsoft Dynamics AX
2012, and the related AOT node no longer exists.

http://www.microsoft.com/en-us/download/details.aspx?id=4007

 CHAPTER 12 Microsoft Dynamics AX services and integration 415

Performance considerations

To meet performance requirements for a specific Microsoft Dynamics AX implementation
scenario, planning for and sizing of the hardware infrastructure is critical. For guidance on how to size
your deployment properly, see the Microsoft Dynamics AX Implementation Planning Guide
(http://www.microsoft.com/en-us/download/details.aspx?id=4007).

By default, integration ports process all request messages in sequence. This is true for both
 incoming and outgoing request messages. To increase the number of request messages that can
be processed, you can use the AIF parallel processing capabilities in combination with additional AOS
instances. For more information about how to configure inbound ports for parallelism and how to
use extensions to the AIF Send API, see the “Services and AIF Operations“ section of the Microsoft
 Dynamics AX 2012 system administrator documentation on TechNet (http://technet.microsoft.com/
en-us/library/gg731830.aspx).

Note that for synchronous WCF services, request processing is inherently parallel.

 CHAPTER 13 Performance 417

C H A P T E R 1 3

Performance

In this chapter
Introduction . 417
Client/server performance . 417
Transaction performance . 426
Performance configuration options . 462
Coding patterns for performance . 465
Performance monitoring tools . 478

Introduction

Performance is often an afterthought for development teams. Often, performance is not considered
until late in the development process or, more critically, after a customer reports severe performance
problems in a production environment. After a feature is implemented, making more than minor
 performance improvements is often too difficult. But if you know how to use the performance
 optimization features in Microsoft Dynamics AX, you can create designs that allow for optimal
 performance within the boundaries of the Microsoft Dynamics AX development and run-time
 environments.

This chapter discusses some of the most important facets of optimizing performance, and it
 provides an overview of performance configuration options and performance monitoring tools. For
the latest information about how to optimize performance in Microsoft Dynamics AX, check the
 Microsoft Dynamics AX Performance Team blog at http://blogs.msdn.com/axperf. The Performance
Team updates this blog regularly with new information. Specific blog entries are referenced
 throughout this chapter to supplement the information provided here.

Client/server performance

Client/server communication is one of the key areas that you can optimize for Microsoft Dynamics AX.
This section details the best practices, patterns, and programming techniques that yield optimal
 communication between the client and the server.

C H A P T E R 1 3

Performance

Introduction

Client/server performance

Reduce round-trips between the client and the server

Write tier-aware code

Transaction performance

Set-based data manipulation operators

Restartable jobs and optimistic concurrency

Caching

Field lists

Field justification

Performance configuration options

SQL Administration form

Server Configuration form

AOS configuration

Client configuration

Client performance

Number sequence caching

Extensive logging

Master scheduling and inventory closing

Coding patterns for performance

Execute X++ code as CIL

Use parallel execution effectively

The SysOperation framework

Patterns for checking to see whether a record exists

Run a query only as often as necessary

When to prefer two queries over a join

Indexing tips and tricks

When to use firstfast

Optimize list pages

Aggregate fields to reduce loop iterations

Performance monitoring tools

Microsoft Dynamics AX Trace Parser

Monitor database activity

Use the SQL Server connection context to find the SPID or user behind
a client session

The client access log

Visual Studio Profiler

http://blogs.msdn.com/axperf

418 PART 2 Developing with Microsoft Dynamics AX

Reduce round-trips between the client and the server
The following three techniques can help reduce round-trips significantly in many scenarios:

 ■ Use the cacheAddMethod method for all relevant display and edit methods on a form, along
with declarative display method caching.

 ■ Refactor RunBase classes to support marshaling of the dialog box between the client and the server.

 ■ Use proper caching and indexing techniques.

The cacheAddMethod method
Display and edit methods are used on forms to display data that must be derived or calculated based on
other information in the underlying table. These methods can be written on either the table or the form.
By default, these methods are calculated one by one, and if there is a need to go to the server when one of
these methods runs, as there usually is, each function goes to the server individually. The fields associated
with these methods are recalculated every time a refresh is triggered on the form, which can occur when a
user edits fields, uses menu items, or presses F5. Such a technique is expensive in both round trips and the
number of calls that it places to the database from the Application Object Server (AOS).

Caching cannot be performed for display and edit methods that are declared on the data source
for a form because the methods require access to the form metadata. If possible, you should move
these methods to the table. For display and edit methods that are declared on a table, use the
 FormDataSource.cacheAddMethod method to enable caching. This method allows the form’s engine
to calculate all the necessary fields in one round-trip to the server and then cache the results. To
use cacheAddMethod, in the init method of a data source that uses display or edit methods, call
 cacheAddMethod on that data source and pass in the method string for the display or edit method. For
example, look at the SalesLine data source of the SalesTable form. In the init method, you will find the
 following code:

public void init()
{
 super();
 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine, invoicedInTotal), false);
 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine, deliveredInTotal), false);
 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine, itemName), false);
 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine, timeZoneSite), true);
}

If you were to remove this code with comments, each display method would be computed for
every operation on the form data source, increasing the number of round-trips to the AOS and
the number of calls to the database server. For more information about cacheAddMethod, see
http://msdn.microsoft.com/en-us/library/formdatasource.cacheaddmethod.aspx.

Note Do not register display or edit methods that are not used on the form. Those
 methods are calculated for each record, even though the values are never shown.

 CHAPTER 13 Performance 419

In Microsoft Dynamics AX 2009, Microsoft made a significant investment in the infrastructure
of cacheAddMethod. In previous releases, this method worked only for display fields and only on
form load. Beginning with Microsoft Dynamics AX 2009, the cache is used for both display and edit
fields, and it is used throughout the lifetime of the form, including for reread, write, and refresh
 operations. It also works for any other method that reloads the data behind the form. With
all of these methods, the fields are refreshed, but the kernel now refreshes them all at once instead
of individually. In Microsoft Dynamics AX 2012, these features have been extended by another newly
added feature—declarative display method caching.

Declarative display method caching
You can use the declarative display method caching feature to add a display method to the display
method cache by setting the CacheDataMethod property on a form control to Yes. Figure 13-1 shows
the CacheDataMethod property.

FIGURE 13-1 The CacheDataMethod property.

The values for the new property are Auto, Yes, and No, with the default value being Auto. Auto
equates to Yes when the data method is hosted on a read-only form data source. This primarily
 applies to list pages. If the same data method is bound to multiple controls on a form, if at least one
of them equates to Yes, the method is cached.

420 PART 2 Developing with Microsoft Dynamics AX

The RunBase technique
RunBase classes form the basis for most business logic in Microsoft Dynamics AX. RunBase provides
much of the basic functionality necessary to execute a business process, such as displaying a dialog
box, running the business logic, and running the business logic in batches.

Note Microsoft Dynamics AX 2012 introduces the SysOperation framework, which
 provides much of the functionality of the RunBase framework and will eventually replace
it. For more information about the SysOperation framework in general, see Chapter 14,
“Extending Microsoft Dynamics AX.” For more information about optimizing performance
when you use the SysOperation framework, see “The SysOperation framework,” later in this
chapter.

When business logic executes through the RunBase framework, the logic flows as shown in
Figure 13-2.

Server
initializes

RunBase object

Object
initialized,

display dialog box

Run business
logic

User clicks a
menu item

Display
dialog box in

client

User enters
information,

clicks OK

Client Server

FIGURE 13-2 The RunBase communication pattern.

Most of the round-trip problems of the RunBase framework originate with the dialog box. For
 security reasons, the RunBase class should be running on the server because it accesses a large
amount of data from the database and writes it back. But a problem occurs when the RunBase class is
marked to run on the server. When the RunBase class runs on the server, the dialog box is created and
driven from the server, causing excessive round-trips.

To avoid these round-trips, mark the RunBase class to run on Called From, meaning that it will
run on either tier. Then mark either the construct method for the RunBase class or the menu item to
run on the server. Called From enables the RunBase framework to marshal the class back and forth
between the client and the server without having to drive the dialog box from the server, which
significantly reduces the number of round-trips. Keep in mind that you must implement the pack and
unpack methods in a way that allows this serialization to happen.

 CHAPTER 13 Performance 421

For an in-depth guide to implementing the RunBase framework to handle round-trips optimally
between the client and the server, refer to the Microsoft Dynamics AX 2009 white paper, “RunBase
Patterns,” at http://www.microsoft.com/en-us/download/details.aspx?id=19517.

Caching and indexing
Microsoft Dynamics AX has a data caching framework on the client that can help you greatly reduce
the number of times the client goes to the server. In Microsoft Dynamics AX, the cache operates
across all of the unique keys in a table. Therefore, if a piece of code accesses data from the client, the
code should use a unique key if possible. Also, you need to ensure that all unique keys are marked
as such in the Application Object Tree (AOT). You can use the Best Practices tool to ensure that all of
your tables have a primary key. For more information about the Best Practices tool, see Chapter 2,
“The MorphX development environment and tools.”

Setting the CacheLookup property correctly is a prerequisite for using the cache on the client.
Table 13-1 shows the possible values for CacheLookup. These settings are discussed in greater detail in
the “Caching” section later in this chapter.

TABLE 13-1 Settings for the CacheLookup property.

Cache setting Description

Found If a table is accessed through a primary key or a unique index, the value is
cached for the duration of the session or until the record is updated. If another
instance of the AOS updates this record, all AOS instances will flush their caches.
This cache setting is appropriate for master data.

NotInTTS Works the same way as Found, except that every time a transaction is started,
the cache is flushed and the query goes to the database. This cache setting is
appropriate for transactional tables.

FoundAndEmpty Works the same way as Found, except that if the query cannot find a record,
the absence of the record is stored. This cache setting is appropriate for
 region-specific master data or master data that isn’t always present.

EntireTable The entire table is cached in memory on the AOS, and the client treats this cache
as Found. This cache setting is appropriate for tables with a known number of
limited records, such as parameter tables.

None No caching occurs. This setting is appropriate in only a few cases, such as when
optimistic concurrency control must be disabled.

An index can be cached only if the where clause contains column names that are unique. The
unique index join cache is a new feature that is discussed later in this chapter (see “The unique
index join cache” in the “Transaction performance” section later in this chapter). This cache supports
1:1 relations only. In other words, caching won’t work if a 1:n join is present or if the query is a
 cross-company query. In Microsoft Dynamics AX 2012, even if range operations are in the query,
caching is supported so long as there is a unique key lookup in the query.

A cache that is set to EntireTable stores the entire contents of a table on the server, but the cache
is treated as a Found cache on the client. For tables that have only one row for each company, such
as parameter tables, add a key column that always has a known value, such as 0. This allows the client
to use the cache when accessing these tables. For an example of the use of a key column in Microsoft
Dynamics AX, see the CustParameters table.

422 PART 2 Developing with Microsoft Dynamics AX

Write tier-aware code
When you’re writing code, be aware of the tier that the code will run on and the tier that the objects
you’re accessing are on. Here are some things to be aware of:

 ■ Objects whose RunOn property is set to Server are always instantiated on the server.

 ■ Objects whose RunOn property is set to Client are always instantiated on the client.

 ■ Objects whose RunOn property is set to Called from are instantiated wherever the class is
 created.

Note that if you mark classes to run on either the client or the server, you can’t serialize them to
another tier by using the pack and unpack methods. If you attempt to serialize a server class to the
client, you get a new object on the server with the same values. Static methods run on whatever tier
they are specified to run on by means of the Client, Server, or Client Server keyword in the declaration.

Handle inMemory temporary tables correctly
Temporary tables can be a common source of both client callbacks and calls to the server. Unlike
regular table buffers, temporary tables are located on the tier on which the first record was inserted.
For example, if a temporary table is declared on the server and the first record is inserted on the
client, while the rest of the records are inserted on the server, all access to that table from the server
happens on the client.

It’s best to populate a temporary table on the server because the data that you need is probably
coming from the database. Still, you must be careful when you want to iterate through the data to
populate a form. The easiest way to achieve this efficiently is to populate the temporary table on the
server, serialize the entire table to a container, and then read the records from the container into a
temporary table on the client.

Avoid joining inMemory temporary tables with regular database tables whenever possible, because
the AOS will first fetch all of the data in the database table of the current company and then combine
the results in memory. This is an expensive, time-consuming process.

Try to avoid the type of code shown in the following example:

public static server void ImMemTempTableDemo()
{
 RealTable rt;
 InMemTempTable tt;
 int i;

 // Populate temp table
 ttsBegin;
 for (i=0; i<1000; i++)
 {
 tt.Value = int2str(i);
 tt.insert();
 }
 ttsCommit;

 CHAPTER 13 Performance 423

 // Inefficient join to database table. If the temporary table is an inMemory
 // temp table, this join causes 1,000 select statements on the database table and with
 // that, 1,000 round-trips to the database.

 select count(RecId) from tt join rt where tt.value == rt.Value;
 info(int642str(tt.Recid));
}

If you decide to use inMemory temporary tables, indexing them correctly for the queries that
you plan to run on them will improve performance significantly. There is one difference compared
to indexing for queries against regular tables: the fields must be in the same order as in the query
itself. For example, the following query will benefit significantly from an index on the AccountMain,
 ColumnId, and PeriodCode fields in the TmpDimTransExtract table:

SELECT SUM(AmountMSTDebCred) FROM TmpDimTransExtract WHERE ((AccountMain>=N'11011201' AND
AccountMain<=N'11011299')) AND ((ColumnId = 1)) AND ((PeriodCode = 1))

Use TempDB temporary tables
You can use TempDB temporary tables to replace inMemory temporary table structures easily.
TempDB temporary tables have the following advantages over InMemory temporary tables:

 ■ You can join TempDB temporary tables to database tables efficiently.

 ■ You can use set-based operations to populate TempDB temporary tables, reducing the
 number of round-trips to the database.

To create a TempDB temporary table, set the TableType property to TempDB, as shown in
Figure 13-3.

FIGURE 13-3 Use the TableType property to create a TempDB temporary table.

Tip Even if temporary tables aren’t dropped but are instead truncated and reused as soon
as the current code goes out of scope, minimize the number of temporary tables that need
to be created. There is a cost associated with creating a temporary table, so use them only
if you need them.

If you use TempDB temporary tables, don’t populate them by using line-based operations, as
shown in the following example:

public static server void SQLTempTableDemo1()
{

424 PART 2 Developing with Microsoft Dynamics AX

 SQLTempTable tt;
 int i;

 // Populate temporary table; this will cause 1,000 round-trips to the database

 ttsBegin;
 for (i=0; i<1000; i++)
 {
 tt.Value = int2str(i);
 tt.insert();
 }
 ttsCommit;
}

Instead, use set-based operations. The following example shows how to use a set-based operation
to create an efficient join to a database table:

public static server void SQLTempTableDemo2()
{
 RealTable rt;
 SQLTempTable tt;

 // Populate the temporary table with only one round-trip to the database.

 ttsBegin;
 insert_recordset tt (Value)
 select Value from rt;
 ttsCommit;

 // Efficient join to database table causes only one round-trip. If the temporary table
 // is an inMemory temp table, this join would cause 1,000 select statements on the
 // database table.

 select count(RecId) from tt join rt where tt.value == rt.Value;
 info(int642str(tt.Recid));
}

Eliminate client callbacks
A client callback occurs when the client places a call to a server-bound method and the server then
places a call to a client-bound method. These calls can happen for two reasons. First, they occur if the
client doesn’t send enough information to the server during its call or if the client sends the server a
client object that encapsulates the information. Second, they occur when the server is either updating
or accessing a form.

To eliminate the first kind of callback, ensure that you send all of the information that the server
needs in a serializable format, such as packed containers or value types (for example, int, str, real, or
boolean). When the server accesses these types, it doesn’t need to go back to the client the way that it
does if you use an object type.

 CHAPTER 13 Performance 425

To eliminate the second type of callback, send any necessary information about the form to the
method, and manipulate the form only when the call returns, instead of directly from the server. One
of the best ways to defer operations on the client is by using the pack and unpack methods. With pack
and unpack, you can serialize a class to a container and then deserialize it at the destination.

Group calls into chunks
To ensure the minimum number of round-trips between the client and the server, group calls into one
static server method and pass in the state necessary to perform the operation.

The NumberSeq::getNextNumForRefParmId method is an example of a static server method that is
used for this purpose. This method call contains the following line of code:

return NumberSeq::newGetNum(CompanyInfo::numRefParmId()).num();

If this code ran on the client, it would cause four remote procedure call (RPC) round-trips: one for
newGetNum, one for numRefParmId, one for num, and one to clean up the NumberSeq object that
was created. By using a static server method, you can complete this operation in one RPC round-trip.

Another common example of grouping calls into chunks occurs when the client performs
 transaction tracking system (TTS) operations. Frequently, a developer writes code similar to that in the
following example:

 ttsBegin;
 record.update();
 ttsCommit;

You can save two round-trips if you group this code into one static server call. All TTS operations
are initiated only on the server. To take advantage of this, do not invoke the ttsbegin and ttscommit
call from the client to start the database transaction when the ttslevel is 0.

Pass table buffers by value instead of by reference
The global methods buf2con and con2buf are used in X++ to convert table buffers into containers,
and vice versa. New functionality has been added to these methods, and they have been improved to
run much faster than in previous versions of Microsoft Dynamics AX.

Converting table buffers into containers is useful if you need to send the table buffer across
 different tiers; (for example, between the client and the server). Sending a container is better than
sending a table buffer because containers are passed by value and table buffers are passed by
 reference. Passing objects by reference across tiers causes a high number of RPC calls and degrades
the performance of your application. Referencing objects that were created on different tiers causes
an RPC call every time the other tier invokes one of the instance methods of the remote object.
To improve performance, you can eliminate a callback by creating local copies of the table buffers,
using buf2con to pack the table and con2buf to unpack it.

426 PART 2 Developing with Microsoft Dynamics AX

The following example shows a form running on the client and transferring data to the server for
 updating. The example illustrates how to transfer a buffer efficiently with a minimum number of RPC calls:

Note In practice, you would not use a temporary table and would access actual
database data.

public void updateResultField(Buf2conExample clientRecord)
{
 container packedRecord;

 // Pack the record before sending to the server

 packedRecord = buf2Con(clientRecord);

 // Send packed record to the server and container with the result

 packedRecord = Buf2ConExampleServerClass::modifyResultFromPackedRecord(packedRecord);

 // Unpack the returned container into the client record.

 con2Buf(packedRecord, clientRecord);
 Buf2conExample_ds.refresh();
}

Modify the data on the server tier and then send a container back:

public static server container modifyResultFromPackedRecord(container _packedRecord)
{
 Buf2conExample recordServerCopy = con2Buf(_packedRecord);
 Buf2ConExampleServerClass::modifyResult(recordServerCopy);
 return buf2Con(recordServerCopy);
}
public static server void modifyResult(Buf2conExample _clientTmpRecord)
{
 int n = _clientTmpRecord.A;
 _clientTmpRecord.Result = 0;
 while (n > 0)
 {
 _clientTmpRecord.Result = Buf2ConExampleServerClass::add(_clientTmpRecord);
 n--;
 }
}

Transaction performance

The preceding section focused on limiting traffic between the client and server tiers. When a
 Microsoft Dynamics AX application runs, however, these are just two of the three tiers that are
 involved. The third tier is the database tier. You must optimize the exchange of packages between the
server tier and the database tier, just as you do between the client tier and the server tier. This section
explains how you can optimize transactions.

 CHAPTER 13 Performance 427

The Microsoft Dynamics AX run time helps you minimize calls made from the server tier to the
database tier by supporting set-based operators and data caching. However, you should also do your
part by reducing the amount of data you send from the database tier to the server tier. The less data
you send, the faster that data is retrieved from the database and fewer packages are sent back. These
reductions result in less memory being consumed. All of these efforts promote faster execution of
application logic, which results in smaller transaction scope, less locking and blocking, and improved
concurrency and throughput.

Note You can improve transaction performance further through the design of your
 application logic. For example, ensuring that various tables and records are always
 modified in the same order helps prevent deadlocks and ensuing retries. Spending time
preparing the transactions to be as brief as possible before starting a transaction scope can
reduce the locking scope and resulting blocking, ultimately improving the concurrency of
the transactions. Database design factors, such as index design and use, are also important.
However, these topics are beyond the scope of this book.

Set-based data manipulation operators
The X++ language contains operators and classes to enable set-based manipulation of the database.
Set-based constructs have an advantage over record-based constructs—they make fewer round-trips
to the database. The following X++ code example, which selects several records in the CustTable
table and updates each record with a new value in the CreditMax field, illustrates how a round-trip is
required when the select statement executes and each time the update statement executes:

static void UpdateCustomers(Args _args)
{
 CustTable custTable;

 ttsBegin;

 while select forupdate custTable
 where custTable.CustGroup == '20' // Round-trips to the database
 {
 custTable.CreditMax = 1000;
 custTable.update(); // Round-trip to the database
 }

 ttsCommit;
}

In a scenario in which 100 CustTable records qualify for the update because the CustGroup field
value equals 20, the number of round-trips would be 101 (1 for the select statement and 100 for the
update statements). The number of round-trips for the select statement might actually be slightly
higher, depending on the number of CustTable records that can be retrieved simultaneously from the
 database and sent to the AOS.

428 PART 2 Developing with Microsoft Dynamics AX

Theoretically, you could rewrite the code in the preceding example to result in only one round-trip
to the database by changing the X++ code, as indicated in the following example. This example
shows how to use the set-based update_recordset operator, resulting in a single Transact-SQL UPDATE
 statement being passed to the database:

static void UpdateCustomers(Args _args)
{
 CustTable custTable;

 ttsBegin;

 update_recordset custTable setting CreditMax = 1000
 where custTable.CustGroup == '20'; // Single round-trip to the database

 ttsCommit;
}

For several reasons, however, using a record buffer for the CustTable table doesn’t result in only
one round-trip. The reasons are explained in the following sections about the set-based constructs
that the Microsoft Dynamics AX run time supports. These sections also describe features that you
can use to ensure a single round-trip to the database, even when you’re using a record buffer for the
table.

Important The set-based operations described in the following sections do not improve
performance when used on inMemory temporary tables. The Microsoft Dynamics AX
 run time always downgrades set-based operations on inMemory temporary tables to
 record-based operations. This downgrade happens regardless of how the table became a
temporary table (whether specified in metadata in the table’s properties, disabled because
of the configuration of the Microsoft Dynamics AX application, or explicitly stated in the
X++ code that references the table). Also, the downgrade always invokes the doInsert,
doUpdate, and doDelete methods on the record buffer, so no application logic in the
 overridden methods is executed.

Set-based operations and table hierarchies
A set-based operation such as insert_recordset, update_recordset, or delete_from is not downgraded
to a record-based operation on a subtype or supertype table unless a condition that would cause
the operation to be downgraded is met. Both an insert_recordset and update_recordset can update or
insert all qualifying records into the specified table and all subtype and supertype tables, but not into
any derived tables. The delete_from operator is treated differently because it deletes all qualifying
records from the current table and its subtype and supertype tables to guarantee that the record
is deleted completely from the database. For more information about the conditions that cause a
 downgrade, review the following sections.

 CHAPTER 13 Performance 429

The insert_recordset operator
The insert_recordset operator enables the insertion of multiple records into a table in one round-trip
to the database. The following X++ code illustrates the use of insert_recordset. The code copies entries
for one item in the InventTable table and the InventSum table into a temporary table for future use:

static void CopyItemInfo(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 // insert_recordset uses only one round-trip for the copy operation.
 // A record-based insert would need one round-trip per record in InventSum.

 ttsBegin;
 insert_recordset insertInventTableInventSum (ItemId,AltItemId,PhysicalValue,PostedValue)
 select ItemId,AltItemid from inventTable where inventTable.ItemId == '1001'
 join PhysicalValue,PostedValue from inventSum
 where inventSum.ItemId == inventTable.ItemId;
 ttsCommit;
 elect count(RecId) from insertInventTableInventSum;
 info(int642str(insertInventTableInventSum.RecId));

 // Additional code to use the copied data.
}

The round-trip to the database involves the execution of three statements in the database:

1. The select part of the insert_recordset statement executes when the selected rows are inserted
into a new temporary table in the database. The syntax of the select statement when executed
in Transact-SQL is similar to SELECT <field list> INTO <temporary table> FROM <source
tables> WHERE <predicates>.

2. The records from the temporary table are inserted directly into the target table using syntax
such as INSERT INTO <target table> (<field list>) SELECT <field list> FROM <temporary table>.

3. The temporary table is dropped with the execution of DROP TABLE <temporary table>.

This approach has a tremendous performance advantage over inserting the records one by one, as
shown in the following X++ code, which addresses the same scenario:

static void CopyItemInfoLineBased(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 ttsBegin;
 while select ItemId,Altitemid from inventTable where inventTable.ItemId == '1001'
 join PhysicalValue,PostedValue from inventSum
 where inventSum.ItemId == inventTable.ItemId

430 PART 2 Developing with Microsoft Dynamics AX

 {
 InsertInventTableInventSum.ItemId = inventTable.ItemId;
 InsertInventTableInventSum.AltItemId = inventTable.AltItemId;
 InsertInventTableInventSum.PhysicalValue = inventSum.PhysicalValue;
 InsertInventTableInventSum.PostedValue = inventSum.PostedValue;
 InsertInventTableInventSum.insert();
 }
 ttsCommit;

 select count(RecId) from insertInventTableInventSum;
 info(int642str(insertInventTableInventSum.RecId));

 // ... Additional code to use the copied data
}

If the InventSum table contains 10 entries for which ItemId equals 1001, this scenario would result
in one round-trip for the select statement and an additional 10 round-trips for the inserts, totaling 11
round-trips.

The insert_recordset operation can be downgraded from a set-based operation to a record-based
operation if any of the following conditions is true:

 ■ The table is cached by using the EntireTable setting.

 ■ The insert method or the aosValidateInsert method is overridden on the target table.

 ■ Alerts are set to be triggered by inserts into the target table.

 ■ The database log is configured to log inserts into the target table.

 ■ Record-level security (RLS) is enabled on the target table. If RLS is enabled only on the source
table or tables, insert_recordset isn’t downgraded to a row-by-row operation.

 ■ The ValidTimeStateFieldType property for a table is not set to None.

The Microsoft Dynamics AX run time automatically handles the downgrade and internally executes
a scenario similar to the while select scenario shown in the preceding example.

Important When the Microsoft Dynamics AX run time checks for overridden methods, it
determines only whether the methods are implemented. It doesn’t determine whether the
overridden methods contain only the default X++ code. A method is therefore considered
to be overridden by the run time even though it contains the following X++ code:

public void insert()
{
 super();
}

Any set-based insert is then downgraded.

 CHAPTER 13 Performance 431

Unless a table is cached by using the EntireTable setting, you can avoid the downgrade caused by
the other conditions mentioned earlier. The record buffer contains methods that turn off the checks
that the run time performs when determining whether to downgrade the insert_recordset operation:

 ■ Calling skipDataMethods(true) prevents the check that determines whether the insert method
is overridden.

 ■ Calling skipAosValidation(true) prevents the check on the aosValidateInsert method.

 ■ Calling skipDatabaseLog(true) prevents the check that determines whether the database log is
configured to log inserts into the table.

 ■ Calling skipEvents(true) prevents the check that determines whether any alerts have been set
to be triggered by the insert event on the table.

The following X++ code, which includes the call to skipDataMethods(true), ensures that the
insert_recordset operation is not downgraded because the insert method is overridden on the
 InventSize table:

static void CopyItemInfoskipDataMethod(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 ttsBegin;

 // Skip override check on insert.

 insertInventTableInventSum.skipDataMethods(true);
 insert_recordset insertInventTableInventSum (ItemId,AltItemId,PhysicalValue,PostedValue)
 select ItemId,Altitemid from inventTable where inventTable.ItemId == '1001'
 join PhysicalValue,PostedValue from inventSum
 where inventSum.ItemId == inventTable.ItemId;
 ttsCommit;

 select count(RecId) from insertInventTableInventSum;
 info(int642str(insertInventTableInventSum.RecId));

 // ... Additional code to use the copied data
}

Important Use the skip methods with extreme caution because they can prevent the
logic in the insert method from being executed, prevent events from being raised, and
 potentially, prevent the database log from being written to.

If you override the insert method, use the cross-reference system to determine whether any X++
code calls skipDataMethods(true). If you don’t, the X++ code might fail to execute the insert method.
Moreover, when you implement calls to skipDataMethods(true), ensure that data inconsistency will not
result if the X++ code in the overridden insert method doesn’t execute.

432 PART 2 Developing with Microsoft Dynamics AX

You can use skip methods only to influence whether the insert_recordset operation is downgraded.
If you call skipDataMethods(true) to prevent a downgrade because the insert method is overridden,
use the Microsoft Dynamics AX Trace Parser to make sure that the operation has not been
 downgraded. The operation is downgraded if, for example, the database log is configured to log
inserts into the table. In the previous example, the overridden insert method on the InventSize table
would be executed if the database log were configured to log inserts into the InventSize table,
 because the insert_recordset operation would then revert to a while select scenario in which the
 overridden insert method would be called. For more information about the Trace Parser, see the
 section “ Performance monitoring tools” later in this chapter.

Since the Microsoft Dynamics AX 2009 release, the insert_recordset operator has supported literals.
Support for literals was introduced primarily to support upgrade scenarios in which the target table is
populated with records from one or more source tables (using joins) and one or more columns in the
target table must be populated with a literal value that doesn’t exist in the source. The following code
example illustrates the use of literals in insert_recordset:

static void CopyItemInfoLiteralSample(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;
 boolean flag = boolean::true;

 ttsBegin;
 insert_recordset insertInventTableInventSum
(ItemId,AltItemId,PhysicalValue,PostedValue,Flag)
 select ItemId,altitemid from inventTable where inventTable.ItemId == '1001'
 join PhysicalValue,PostedValue,Flag from inventSum
 where inventSum.ItemId == inventTable.ItemId;
 ttsCommit;

 select firstonly ItemId,Flag from insertInventTableInventSum;
 info(strFmt('%1,%2',insertInventTableInventSum.ItemId,insertInventTableInventSum.Flag));
 // ... Additional code to utilize the copied data
}

The update_recordset operator
The behavior of the update_recordset operator is similar to that of the insert_recordset operator. This
similarity is illustrated by the following piece of X++ code, in which all rows that have been inserted
for one ItemId are updated and flagged for further processing:

static void UpdateCopiedData(Args _args)
{

 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 // Code assumes InsertInventTableInventSum is populated.

 CHAPTER 13 Performance 433

 // Set-based update operation.
 ttsBegin;
 update_recordSet insertInventTableInventSum setting Flag = true
 where insertInventTableInventSum.ItemId == '1001';
 ttsCommit;
}

The execution of update_recordset results in one statement being passed to the database—which
in Transact-SQL uses syntax similar to UPDATE <table> <SET> <field and expression list> WHERE
<predicates>. As with insert_recordset, update_recordset provides a tremendous performance
 improvement over the record-based version that updates each record individually. This improvement
is shown in the following X++ code, which serves the same purpose as the preceding example. The
code selects all of the records that qualify for update, sets the new description value, and updates the
record:

static void UpdateCopiedDataLineBased(Args _args)
{

 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is populated

 ttsBegin;
 while select forUpdate InsertInventTableInventSum
 where insertInventTableInventSum.ItemId == '1001'
 {
 insertInventTableInventSum.Flag = true;
 insertInventTableInventSum.update();
 }
 ttsCommit;
}

If ten records qualify for the update, one select statement and ten update statements are passed to
the database, rather than the single update statement that would be passed with update_recordset.

The update_recordset operation can be downgraded if specific methods are overridden or if
 Microsoft Dynamics AX is configured in specific ways. The update_recordset operation is downgraded
if any of the following conditions is true:

 ■ The table is cached by using the EntireTable setting.

 ■ The update method, the aosValidateUpdate method, or the aosValidateRead method is
 overridden on the target table.

 ■ Alerts are set up to be triggered by update queries on the target table.

 ■ The database log is configured to log update queries on the target table.

 ■ RLS is enabled on the target table.

 ■ The ValidTimeStateFieldType property for a table is not set to None.

434 PART 2 Developing with Microsoft Dynamics AX

The Microsoft Dynamics AX run time automatically handles the downgrade and internally executes
a scenario similar to the while select scenario shown in the earlier example.

As with the insert_recordset operator, you can avoid a downgrade unless the table is cached by
using the EntireTable setting. The record buffer contains methods that turn off the checks that the run
time performs when determining whether to downgrade the update_recordset operation:

 ■ Calling skipDataMethods(true) prevents the check that determines whether the update method
is overridden.

 ■ Calling skipAosValidation(true) prevents the checks on the aosValidateUpdate and
 aosValidateRead methods.

 ■ Calling skipDatabaseLog(true) prevents the check that determines whether the database log is
configured to log updates to records in the table.

 ■ Calling skipEvents(true) prevents the check to determine whether any alerts have been set to
be triggered by the update event on the table.

As explained earlier, use the skip methods with caution. Again, using the skip methods only
 influences whether the update_recordset operation is downgraded to a while select operation. If the
operation is downgraded, database logging, alerting, and execution of overridden methods occur
even though the respective skip methods have been called.

Tip If an update_recordset operation is downgraded, the select statement uses the
 concurrency model specified at the table level. You can apply the optimisticlock and
 pessimisticlock keywords to the update_recordset statements and enforce a specific
 concurrency model to be used in case of a downgrade.

Microsoft Dynamics AX supports inner and outer joins in update_recordset. The support for joins
in update_recordset enables an application to perform set-based operations when the source data is
fetched from more than one related data source.

The following example illustrates the use of joins with update_recordset:

static void UpdateCopiedDataJoin(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is populated
 // Set-based update operation with join.

 ttsBegin;
 update_recordSet insertInventTableInventSum setting Flag = true,
 DiffAvailOrderedPhysical = inventSum.AvailOrdered - inventSum.AvailPhysical

 CHAPTER 13 Performance 435

 join InventSum where inventSum.ItemId == insertInventTableInventSum.ItemId &&
 inventSum.AvailOrdered > inventSum.AvailPhysical;
 ttsCommit;
}

The delete_from operator
The delete_from operator is similar to the insert_recordset and update_recordset operators in that it
passes a single statement to the database to delete multiple rows, as shown in the following code:

static void DeleteCopiedData(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is populated
 // Set-based delete operation

 ttsBegin;
 delete_from insertInventTableInventSum
 where insertInventTableInventSum.ItemId == '1001';
 ttsCommit;
}

This code passes a statement to Microsoft SQL Server in a syntax similar to DELETE <table> WHERE
<predicates> and performs the same actions as the following X++ code, which uses record-by-record
deletes:

static void DeleteCopiedDataLineBased(Args _args)
{

 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is populated

 ttsBegin;
 while select forUpdate insertInventTableInventSum
 where insertInventTableInventSum.ItemId == '1001'
 {
 insertInventTableInventSum.delete();
 }
 ttsCommit;
}

Again, the use of delete_from is preferable for performance because a single statement is passed to
the database, instead of the multiple statements that the record-by-record version parses.

436 PART 2 Developing with Microsoft Dynamics AX

As with the insert_recordset and update_recordset operations, the delete_from operation can be
downgraded—and for similar reasons. A downgrade occurs if any of the following conditions is true:

 ■ The table is cached by using the EntireTable setting.

 ■ The delete method, the aosValidateDelete method, or the aosValidateRead method is
 overridden on the target table.

 ■ Alerts are set up to be triggered by deletions from the target table.

 ■ The database log is configured to log deletions from the target table.

 ■ The ValidTimeStateFieldType property for a table is not set to None.

A downgrade also occurs if delete actions are defined on the table. The Microsoft Dynamics AX
run time automatically handles the downgrade and internally executes a scenario similar to the while
select operation shown in the earlier example.

You can avoid a downgrade caused by these conditions unless the table is cached by using the
EntireTable setting. The record buffer contains methods that turn off the checks that the run time
 performs when determining whether to downgrade the delete_from operation, as follows:

 ■ Calling skipDataMethods(true) prevents the check that determines whether the delete method
is overridden.

 ■ Calling skipAosValidation(true) prevents the checks on the aosValidateDelete and
 aosValidateRead methods.

 ■ Calling skipDatabaseLog(true) prevents the check that determines whether the database log is
configured to log the deletion of records in the table.

 ■ Calling skipEvents(true) prevents the check that determines whether any alerts have been set
to be triggered by the delete event on the table.

The preceding descriptions about the use of the skip methods, the no-skipping behavior in the
event of downgrade, and the concurrency model for the update_recordset operator are equally valid
for the use of the delete_from operator.

Note The record buffer also contains a skipDeleteMethod method. Calling the method
as skipDeleteMethod(true) has the same effect as calling skipDataMethods(true). It invokes
the same Microsoft Dynamics AX run-time logic, so you can use skipDeleteMethod in
 combination with insert_recordset and update_recordset, although it might not improve the
readability of the X++ code.

 CHAPTER 13 Performance 437

The RecordInsertList and RecordSortedList classes
In addition to the set-based operators, you can use the RecordInsertList and RecordSortedList classes
when inserting multiple records into a table. When the records are ready to be inserted, the Microsoft
Dynamics AX run time packs multiple records into a single package and sends it to the database. The
database then executes an individual insert operation for each record in the package. This process is
illustrated in the following example, in which a RecordInsertList object is instantiated, and each record
to be inserted into the database is added to the RecordInsertList object. When all records are inserted
into the object, the insertDatabase method is called to ensure that all records are inserted into the
database.

static void CopyItemInfoRIL(Args _args)
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSumRT insertInventTableInventSumRT;
 RecordInsertList ril;

 ttsBegin;
 ril = new RecordInsertList(tableNum(InsertInventTableInventSumRT));

 while select ItemId,AltItemid from inventTable where inventTable.ItemId == '1001'
 join PhysicalValue,PostedValue from inventSum
 where inventSum.ItemId == inventTable.ItemId
 {
 insertInventTableInventSumRT.ItemId = inventTable.ItemId;
 insertInventTableInventSumRT.AltItemId = inventTable.AltItemId;
 insertInventTableInventSumRT.PhysicalValue = inventSum.PhysicalValue;
 insertInventTableInventSumRT.PostedValue = inventSum.PostedValue;
 // Insert records if package is full
 ril.add(insertInventTableInventSumRT);
 }

 // Insert remaining records into database

 ril.insertDatabase();
 ttsCommit;

 select count(RecId) from insertInventTableInventSumRT;
 info(int642str(insertInventTableInventSumRT.RecId));

 // Additional code to use the copied data.
}

Based on the maximum buffer size that is configured for the server, the Microsoft Dynamics AX
run time determines the number of records in a buffer as a function of the size of the records and
the buffer size. If the buffer is full, the records in the RecordInsertList object are packed, passed to the
database, and inserted individually on the database tier. This check is made when the add method is
called. When the insertDatabase method is called from application logic, the remaining records are
inserted with the same mechanism.

438 PART 2 Developing with Microsoft Dynamics AX

Using these classes has an advantage over using while select: fewer round-trips are made from
the AOS to the database because multiple records are sent simultaneously. However, the number of
INSERT statements in the database remains the same.

Note Because the timing of insertion into the database depends on the size of the record
buffer and the package, don’t expect a record to be selectable from the database until the
insertDatabase method has been called.

You can rewrite the preceding example by using the RecordSortedList class instead of
 RecordInsertList, as shown in the following X++ code:

public static server void CopyItemInfoRSL()
{
 InventTable inventTable;
 InventSum inventSum;
 InsertInventTableInventSumRT insertInventTableInventSumRT;
 RecordSortedList rsl;

 ttsBegin;
 rsl = new RecordSortedList(tableNum(InsertInventTableInventSumRT));
 rsl.sortOrder(fieldNum(InsertInventTableInventSumRT,PostedValue));

 while select ItemId,AltItemid from inventTable where inventTable.ItemId == '1001'
 join PhysicalValue,PostedValue from inventSum
 where inventSum.ItemId == inventTable.ItemId
 {
 insertInventTableInventSumRT.ItemId = inventTable.itemId;
 insertInventTableInventSumRT.AltItemId = inventTable.AltItemId;
 insertInventTableInventSumRT.PhysicalValue = inventSum.PhysicalValue;
 insertInventTableInventSumRT.PostedValue = inventSum.PostedValue;

 //No records will be inserted.
 rsl.ins(insertInventTableInventSumRT);
 }

 //All records are inserted in database.
 rsl.insertDatabase();
 ttsCommit;

 select count(RecId) from insertInventTableInventSumRT;
 info(int642str(insertInventTableInventSumRT.RecId));

 // Additional code to utilize the copied data
}

When the application logic uses a RecordSortedList object, the records aren’t passed and inserted
in the database until the insertDatabase method is called. The number of round-trips and INSERT
statements executed is the same as for the RecordInsertList object.

Both RecordInsertList objects and RecordSortedList objects can be downgraded in application logic
to record-by-record inserts, in which each record is sent in a separate round-trip to the database

 CHAPTER 13 Performance 439

and the INSERT statement is subsequently executed. A downgrade occurs if the insert method or
the aosValidateInsert method is overridden, or if the table contains fields of the type container or
memo. However, no downgrade occurs if the database log is configured to log inserts or alerts that
are set to be triggered by the insert event on the table. One exception is if logging or alerts have
been configured and the table contains CreatedDateTime or ModifiedDateTime columns—in this case,
record-by-record inserts are performed. The database logging and alerts occur on a record-by-record
basis after the records have been sent and inserted into the database.

When instantiating the RecordInsertList object, you can specify that the insert and aosValidateInsert
methods be skipped. You can also specify that the database logging and eventing be skipped if the
operation isn’t downgraded.

Tips for transferring code into set-based operations
Often, code is not transferred to a set-based operation because the logic is too complex. However,
an if condition, for example, can be placed in the where clause of a query. If you have a scenario that
requires an if/else decision, you can achieve this with two queries, such as two update_recordsets.
Necessary information from other tables can be obtained through joins instead of being looked up in
a find operation. In Microsoft Dynamics AX 2012 insert_recordset and TempDB temporary tables help
to extend the possibilities of transferring code into set-based operations.

Some things still might seem difficult to transfer to a set-based operation, such as performing
calculations on the columns in a select statement. For this reason, Microsoft Dynamics AX 2012 offers
a feature for views that is called computed columns, and you can use this feature to transfer even
fairly complex logic into set-based operations. Computed columns can also provide performance
advantages when used as an alternative to display methods on read-only data sources. Imagine the
following task: Find all customers who bought products for more than $100,000 and all customers
who bought products for more than $1,000,000. Those customers are treated as VIP customers who
then get certain rebates.

In earlier versions of Microsoft Dynamics AX, the X++ code to set these values would have looked
like the following example:

public static server void demoOld()
{
 SalesLine sl;
 CustTable ct;
 vipparm vp;
 int64 total;

 vp = vipparm::find();
 ttsBegin;

 // One + n round-trips per Customer Account in the salesline table.
 while select CustAccount, sum(SalesQty), sum(SalesPrice) from sl group by sl.CustAccount
 {

 // Necessary to select for update causing n additional round-trips.
 ct = CustTable::find(sl.CustAccount,true);

440 PART 2 Developing with Microsoft Dynamics AX

 ct.VIPStatus = 0;

 if((sl.SalesQty*sl.SalesPrice)>=vp.UltimateVIP)
 ct.VIPStatus = 2;
 else if((sl.SalesQty*sl.SalesPrice)>=vp.VIP)
 ct.VIPStatus = 1;

 // Another n round-trips for the update.
 if(ct.VIPStatus != 0)
 ct.update();
 }
 ttsCommit;
}

You could replace this code easily with two direct Transact-SQL statements to make it far more
 effective. The direct Transact-SQL statements would look like the following:

UPDATE CUSTTABLE SET VIPSTATUS = 2 FROM (SELECT CUSTACCOUNT,SUM(SALESQTY)*SUM(SALESPRICE) AS
TOTAL,VIPSSTATUS = CASE
 WHEN SUM(SALESQTY)*SUM(SALESPRICE) > 1000000 THEN 2
 WHEN SUM(SALESQTY)*SUM(SALESPRICE) > 100000 THEN 1
 ELSE 0 END
 FROM SALESLINE GROUP BY CUSTACCOUNT) AS VC WHERE VC.VIPSTATUS = 2 and CUSTTABLE.ACCOUNTNUM =
VC.CUSTACCOUNT and DATAAREAID = N'CEU'

Note This code contains only a partial dataAreaId and no Partition field, which highlights
its weaknesses. The data access logic is not enforced.

In Microsoft Dynamics AX 2012, with the help of computed columns, you can replace this code
with two set-based statements.

To create these statements, you first need to create an AOT query because views themselves
 cannot contain a group by statement. Further, you need a parameter table that holds the information
about who counts as a VIP customer for each company (Figure 13-4). Then, you need to join this
information together so that it is available at run time.

The code for the computed column is shown here:

private static server str compColQtyPrice()
{
 str sReturn,sQty,sPrice,ultimateVIP,VIP;
 Map m = new Map(Types::String,Types::String);
 sQty = SysComputedColumn::returnField(tableStr(mySalesLineView),
 identifierStr(SalesLine_1),
 fieldStr(SalesLine,SalesQty));
 sPrice = SysComputedColumn::returnField(tableStr(mySalesLineView),
 identifierStr(SalesLine_1),
 fieldStr(SalesLine,SalesPrice));
 ultimateVIP = SysComputedColumn::returnField(tableStr(mySalesLineView),
 identifierStr(Vipparm_1),
 fieldStr(vipparm,ultimateVIP));

 CHAPTER 13 Performance 441

 VIP = SysComputedColumn::returnField(tableStr(mySalesLineView),
 identifierStr(Vipparm_1),
 fieldStr(vipparm,VIP));
 m.insert(SysComputedColumn::sum(sQty)+'*'+SysComputedColumn::sum(sPrice)+
 ' > '+ultimateVIP,int2str(VipStatus::UltimateVIP));
 m.insert(SysComputedColumn::sum(sQty)+'*'+SysComputedColumn::sum(sPrice)+
 ' > '+VIP ,int2str(VipStatus::VIP));
 return SysComputedColumn::switch('',m,'0');
}

FIGURE 13-4 Creating the parameter table and the initial query.

The next step is to add the parameter table to a view and create the necessary computed column,
as shown in Figure 13-5.

FIGURE 13-5 Creating the view and the computed column.

442 PART 2 Developing with Microsoft Dynamics AX

The view in SQL Server looks like this:

SELECT T1.CUSTACCOUNT AS CUSTACCOUNT,T1.DATAAREAID AS DATAAREAID,1010 AS RECID,T2.DATAAREAID
AS DATAAREAID#2,T2.VIP AS VIP,T2.ULTIMATEVIP AS ULTIMATEVIP,(CAST ((CASE WHEN SUM(T1.
SALESQTY)*SUM(T1.SALESPRICE) > T2.ULTIMATEVIP THEN 2 WHEN SUM(T1.SALESQTY)*SUM(T1.SALESPRICE) >
T2.VIP THEN 1 ELSE 0 END) AS NVARCHAR(10))) AS VIPSTATUS FROM SALESLINE T1 CROSS JOIN VIPPARM T2
GROUP BY T1.CUSTACCOUNT,T1.DATAAREAID,T2.DATAAREAID,T2.VIP,T2.ULTIMATEVIP

Now you can change the record-based update code used earlier to effective, working set-based
code:

public static server void demoNew()
{
 mySalesLineView mySLV;
 CustTable ct;
 ct.skipDataMethods(true);
 update_recordSet ct setting VipStatus = VipStatus::UltimateVIP
 join mySLV where ct.AccountNum == mySLV.CustAccount &&
 mySLV.VipStatus == int2str(enum2int(vipstatus::UltimateVIP));
 update_recordSet ct setting VipStatus = VipStatus::VIP
 join mySLV where ct.AccountNum == mySLV.CustAccount &&
 mySLV.VipStatus == int2str(enum2int(vipstatus::VIP));
}

Executing the code shows the difference in timing:

public static void main(Args _args)
{
 int tickcnt;
 DemoClass::resetCusttable();
 tickcnt = WinAPI::getTickCount();
 DemoClass::demoOld();
 info('Line based' + int2str(WinAPI::getTickCount()-tickcnt));
 DemoClass::resetCusttable();
 tickcnt = WinAPI::getTickCount();
 DemoClass::demoNew();
 info('Set based' + int2str(WinAPI::getTickCount()-tickcnt));
}

The execution time of the operation is as follows:

 ■ Record-based 1,514 milliseconds

 ■ Set-based 171 milliseconds

Note that this code ran on demo data. Imagine running similar code on an actual database with
hundreds of thousands of sales orders and customers.

Another example that might seem tricky to transfer to a set-based operation is if you need to use
aggregation and group by in queries, because since the update_recordset operator does not support
this. You can work around this issue by using TempDB temporary tables and a combination of insert_
recordset and update_recordset.

 CHAPTER 13 Performance 443

Note The amount of data that you need to modify determines whether this pattern is
beneficial. For example, if you just want to update 10 rows, a while select statement might
be more efficient. But if you are updating hundreds or thousands of rows, this pattern can
be more efficient. You’ll need to evaluate and test each pattern individually to determine
which one provides better performance.

The following example first populates a table and then updates the values in it based on a group
by and sum operations in a statement. Note that deleting and populating the data takes longer than
the actual execution of the later insert_recordset and update_recordset statements.

public static server void PopulateTable()
{
 MyUpdRecordsetTestTable MyUpdRecordsetTestTable;
 int myGrouping,myKey,mySum;
 RecordInsertList ril = new RecordInsertList(tablenum(MyUpdRecordsetTestTable));

 delete_from MyUpdRecordsetTestTable;

 for(myKey=0;myKey<=100000;myKey++)
 {
 MyUpdRecordsetTestTable.Key = myKey;
 if(myKey mod 10 == 0)
 {
 myGrouping += 10;
 mySum += 10;
 }
 MyUpdRecordsetTestTable.fieldForGrouping = myGrouping;
 MyUpdRecordsetTestTable.theSum = mySum;
 ril.add(MyUpdRecordsetTestTable);
 }
 ril.insertDatabase();
}

Combine TempDB temporary tables, insert_recordset, and update_recordset to update the table:

public static void InsertAndUpdate()
{
 MyUpdRecordsetTestTable MyUpdRecordsetTestTable;
 MyUpdRecordsetTestTableTmp MyUpdRecordsetTestTableTmp;
 int tc;

 tc = WinAPI::getTickCount();
 insert_recordset MyUpdRecordsetTestTableTmp(fieldForGrouping,theSum)
 select fieldForGrouping,sum(theSum) from MyUpdRecordsetTestTable
 Group by MyUpdRecordsetTestTable.fieldForGrouping;
 info("Time needed: " + int2str(WinAPI::getTickCount()-tc));

 tc = WinAPI::getTickCount();
 update_recordSet MyUpdRecordsetTestTable setting theSum = MyUpdRecordsetTestTableTmp.theSum
 join MyUpdRecordsetTestTableTmp

444 PART 2 Developing with Microsoft Dynamics AX

 where MyUpdRecordsetTestTable.fieldForGrouping == MyUpdRecordsetTestTableTmp.
fieldForGrouping;
 info("Time needed: " + int2str(WinAPI::getTickCount()-tc));
}

When this code ran on demo data, the execution time of the operation was as follows:

 ■ insert_recordset statement 1,685 milliseconds

 ■ update_recordset statement 3,697 milliseconds

Restartable jobs and optimistic concurrency
In multiple scenarios in Microsoft Dynamics AX, the execution of some application logic involves
manipulating multiple rows from the same table. Some scenarios require that all rows be manipulated
within the scope of a single transaction. In such a scenario, if something fails and the transaction is
cancelled, all modifications are rolled back, and the job can be restarted manually or automatically.
Other scenarios commit the changes on a record-by-record basis. In the case of failure in these
 scenarios, only the changes to the current record are rolled back, and all previously manipulated
 records are committed. When a job is restarted in this scenario, it starts where it left off by skipping
the records that have already changed.

An example of the first scenario is shown in the following code, in which all update queries to
records in the CustTable table are wrapped into the scope of a single transaction:

static void UpdateCreditMax(Args _args)
{
 CustTable custTable;

 ttsBegin;
 while select forupdate custTable where custTable.CreditMax == 0
 {
 if (custTable.balanceMST() < 10000)
 {
 custTable.CreditMax = 50000;
 custTable.update();
 }
 }
 ttsCommit;
}

An example of the second scenario, executing the same logic, is shown in the following code, in
which the transaction scope is handled on a record-by-record basis. You must reselect each individual
CustTable record inside the transaction for the Microsoft Dynamics AX run time to allow the record to
be updated:

static void UpdateCreditMax(Args _args)
{
 CustTable custTable;
 CustTable updateableCustTable;

 CHAPTER 13 Performance 445

 while select custTable where custTable.CreditMax == 0
 {
 if (custTable.balanceMST() < 10000)
 {
 ttsBegin;
 select forupdate updateableCustTable
 where updateableCustTable.AccountNum == custTable.AccountNum;

 updateableCustTable.CreditMax = 50000;
 updateableCustTable.update();
 ttsCommit;
 }
 }
}

In a scenario in which 100 CustTable records qualify for the update, the first example would involve
1 select statement and 100 update statements being passed to the database, and the second example
would involve 1 large select query and 100 additional select queries, plus the 100 update statements.
The code in the first scenario would execute faster than the code in the second, but the first scenario
would also hold the locks on the updated CustTable records longer because they wouldn’t be
c ommitted on a record-by-record basis. The second example demonstrates superior concurrency over
the first example because locks are held for a shorter time.

With the optimistic concurrency model in Microsoft Dynamics AX, you can take advantage
of the benefits offered by both of the preceding examples. You can select records outside a
 transaction scope and update records inside a transaction scope—but only if the records are
 selected optimistically. In the following example, the optimisticlock keyword is applied to the select
 statement while maintaining a per-record transaction scope. Because the records are selected with
the optimisticlock keyword, it isn’t necessary to reselect each record individually within the transaction
scope.

static void UpdateCreditMax(Args _args)
{
 CustTable custTable;

 while select optimisticlock custTable where custTable.CreditMax == 0
 {
 if (custTable.balanceMST() < 10000)
 {
 ttsBegin;
 custTable.CreditMax = 50000;
 custTable.update();
 ttsCommit;
 }
 }
}

This approach provides the same number of statements passed to the database as in the first
 example, but with the improved concurrency from the second example because records are
 committed individually. The code in this example still doesn’t perform as fast as the code in the first
example because it has the extra burden of per-record transaction management. You could optimize

446 PART 2 Developing with Microsoft Dynamics AX

the example even further by committing records on a scale somewhere between all records and the
single record, without decreasing the concurrency considerably. However, the appropriate choice for
commit frequency always depends on the circumstances of the job.

Tip You can use the forupdate keyword when selecting records outside the transaction if
the table has been enabled for optimistic concurrency at the table level. The best practice,
 however, is to use the optimisticlock keyword explicitly because the scenario won’t fail if the
table-level setting is changed. Using the optimisticlock keyword also improves the readability of
the X++ code because the explicit intention of the developer is stated in the code.

Caching
The Microsoft Dynamics AX run time supports both single-record and set-based record caching. You
can enable set-based caching in metadata by switching a property on a table definition or writing
explicit X++ code that instantiates a cache. Regardless of how you set up caching, you don’t need
to know which caching method is used because the run time handles the cache transparently. To
 optimize the use of the cache, however, you must understand how each caching mechanism works.

Microsoft Dynamics AX 2012 introduces some important new features for caching. For example,
record-based caching works not only for a single record but for joins as well. This mechanism is
 described in the “Record caching” section, which follows next. Also, even if range operations are used
in a query, caching is supported so long as the query contains a unique key lookup.

The Microsoft Dynamics AX 2012 software development kit (SDK) contains a good description
of the individual caching options and how they are set up. See the topic “Record Caching” at
http://msdn.microsoft.com/en-us/library/bb278240.aspx.

This section focuses on how the caches are implemented in the Microsoft Dynamics AX run time
and what to expect when using specific caching mechanisms.

Record caching
You can set up three types of record caching on a table by setting the CacheLookup property on
the table definition: Found, FoundAndEmpty, and NotInTTS. An additional value (besides None)
is EntireTable—a set-based caching option. These settings were introduced briefly in the section
“ Caching and indexing,” earlier in this chapter, and are discussed in greater detail in this section.

The three types of record caching are fundamentally the same. The differences are found in what
is cached and when cached values are flushed. For example, the Found and FoundAndEmpty caches
are preserved across transaction boundaries, but a table that uses the NotInTTS cache doesn’t use
the cache when the cache is first accessed inside a transaction scope. Instead, the cache is used in
 consecutive select statements unless a forupdate keyword is applied to the select statement.
(The forupdate keyword forces the run time to look up the record in the database because the
 previously cached record wasn’t selected with the forupdate keyword applied.)

 CHAPTER 13 Performance 447

The following X++ code example illustrates when the cache is used inside a transaction scope
when a table uses the NotInTTS caching mechanism. The AccountNum field is the primary key. The
code comments indicate when the cache is used. In the example, the first two select statements after
the ttsbegin command don’t use the cache. The first statement doesn’t use the cache because it’s the
first statement inside the transaction scope; the second doesn’t use the cache because the forupdate
keyword is applied to the statement.

static void NotInTTSCache(Args _args)
{
 CustTable custTable;

 select custTable // Look up in cache. If record
 where custTable.AccountNum == '1101'; // does not exist, look up
 // in database.

 ttsBegin; // Start transaction.

 select custTable // Cache is invalid. Look up in
 where custTable.AccountNum == '1101'; // database and place in cache.

 select forupdate custTable // Look up in database because
 where custTable.AccountNum == '1101'; // forupdate keyword is applied.

 select custTable // Cache will be used.
 where custTable.AccountNum == '1101'; // No lookup in database.

 select forupdate custTable // Cache will be used because
 where custTable.AccountNum == '1101'; // forupdate keyword was used
 // previously.

 ttsCommit; // End transaction.

 select custTable // Cache will be used.
 where custTable.AccountNum == '1101';
}

If the table in the preceding example had been set up with Found or FoundAndEmpty caching, the
cache would have been used when the first select statement was executed inside the transaction, but
not when the first select forupdate statement was executed.

Note By default, all Microsoft Dynamics AX system tables are set up using a Found cache.
This cannot be changed.

For all three caching mechanisms, the cache is used only if the select statement contains equal-to
(==) predicates in the where clause that exactly match all of the fields in the primary index of the table
or any one of the unique indexes that is defined for the table. Therefore, the PrimaryIndex property
on the table must be set correctly on one of the unique indexes that is used when accessing the cache
from application logic. For all other unique indexes, without any additional settings in metadata, the
kernel automatically uses the cache if it is already present.

448 PART 2 Developing with Microsoft Dynamics AX

The following X++ code examples show when the Microsoft Dynamics AX run time will try to use
the cache. The cache is used only in the first select statement; the remaining three statements don’t
match the fields in the primary index, so instead, the statements perform lookups in the database.

static void UtilizeCache(Args _args)
{
 CustTable custTable;

 select custTable // Will use cache because only
 where custTable.AccountNum == '1101'; // the primary key is used as
 // predicate.

 select custTable; // Cannot use cache because no
 // "where" clause exists.

 select custTable // Cannot use cache because
 where custTable.AccountNum > '1101'; // equal-to (==) is not used.

 select custTable // Will use cache even if
 where custTable.AccountNum == '1101' // where clause contains more
 && custTable.CustGroup == '20'; // predicates than the primary
 // key. This assumes that the record
 // have been successfully cached
 // before. Please see the next sample.
}

Note The RecId index, which is always unique on a table, can be set as the PrimaryIndex in
the table’s properties. You can therefore set up caching by using the RecId field.

The following example illustrates how the improved caching mechanics in Microsoft Dynamics AX
2012 work when the where clause of the query contains more than just the unique index key columns:

static void whenRecordDoesGetCached(Args _args)
{
 CustTable custTable,custTable2;

 // Using Contoso demo data
 // The following select statement will not cache using the found cache because the lookup
 // will not return a record.
 // It would cache the record if the cache setting was FoundAndEmpty.

 select custTable
 where custTable.AccountNum == '1101'
 && custTable.CustGroup == '20';

 // Following query will cache the record.

 select custTable
 where custTable.AccountNum == '1101';

 // Following will be cached too as the lookup will return a record.

 CHAPTER 13 Performance 449

 select custTable2
 where custTable2.AccountNum == '1101'
 && custTable2.CustGroup == '10';

 // If you rerun the job, everything will come from the cache.
}

The following X++ code example shows how unique index caching works in the Microsoft Dynamics
AX run time. The InventDim table in the base application has InventDimId as the primary key and a
 combination of keys (inventBatchId, wmsLocationId, wmsPalletId, inventSerialId, inventLocationId, configId,
inventSizeId, inventColorId, and inventSiteId) as the unique index on the table.

Note This sample is based on Microsoft Dynamics AX 2012. The index has been changed
for Microsoft Dynamics AX 2012 R2.

static void UtilizeUniqueIndexCache(Args _args)
{
 InventDim InventDim;
 InventDim inventdim2;

 select firstonly * from inventdim2;

 // Will use the cache because only the primary key is used as predicate

 select inventDim
 where inventDim.InventDimId == inventdim2.InventDimId;
 info(enum2str(inventDim.wasCached()));

 // Will use the cache because the column list in the where clause matches that of a unique
 // index
 // for the InventDim table and the key values point to same record as the primary key fetch

 select inventDim
 where inventDim.inventBatchId == inventDim2.inventBatchId
 && inventDim.wmsLocationId == inventDim2.wmsLocationId
 && inventDim.wmsPalletId == inventDim2.wmsPalletId
 && inventDim.inventSerialId == inventDim2.inventSerialId
 && inventDim.inventLocationId == inventDim2.inventLocationId
 && inventDim.ConfigId == inventDim2.ConfigId
 && inventDim.inventSizeId == inventDim2.inventSizeId
 && inventDim.inventColorId == inventDim2.inventColorId
 && inventDim.inventSiteId == inventDim2.inventSiteId;
 info(enum2str(inventDim.wasCached()));

 // Cannot use cache because the where clause does not match the unique key list or primary
 // key.

 select firstonly inventDim
 where inventDim.inventLocationId== inventDim2.inventLocationId
 && inventDim.ConfigId == inventDim2.ConfigId
 && inventDim.inventSiteId == inventDim2.inventSiteId;
 info(enum2str(inventDim.wasCached()));
}

450 PART 2 Developing with Microsoft Dynamics AX

The Microsoft Dynamics AX run time ensures that all fields in a record are selected before they are
cached. Therefore, if the run time can’t find the record in the cache, it always modifies the field list to
include all fields in the table before submitting the SELECT statement to the database. The following
X++ code illustrates this behavior:

static void expandingFieldList(Args _args)
{
 CustTable custTable;

 select CreditRating // The field list will be expanded to all fields.
 from custTable
 where custTable.AccountNum == '1101';
}

Expanding the field list ensures that the record fetched from the database contains values for all
fields before the record is inserted into the cache. Even though the performance when fetching all fields
is inferior compared to the performance when fetching a few fields, this approach is acceptable because
in subsequent use of the cache, the performance gain outweighs the initial loss of populating it.

Tip You can avoid using the cache by calling the disableCache method on the record
 buffer with a Boolean parameter of true. This method forces the run time to look up the
record in the database, and it also prevents the run time from expanding the field list.

The Microsoft Dynamics AX run time creates and uses caches on both the client tier and the server
tier. The client-side cache is local to the Microsoft Dynamics AX client, and the server-side cache is
shared among all connections to the server, including connections coming from Microsoft Dynamics
AX Windows clients, web clients, the .NET Business Connector, and any other connection.

The cache that is used depends on the tier that the lookup is made from. If the lookup is executed
on the server tier, the server-side cache is used. If the lookup is executed on the client tier, the client
first looks in the client-side cache. If no record is found in the client-side cache, it executes a lookup
in the server-side cache. If no record is found, a lookup is made in the database. When the database
returns the record to the server and sends it on to the client, the record is inserted into both the
server-side cache and the client-side cache.

If caching was set in Microsoft Dynamics AX 2009, the client stored up to 100 records per table, and
the AOS stored up to 2,000 records per table. In Microsoft Dynamics AX 2012, you can configure the
cache by using the Server Configuration form (System Administration > Setup > Server Configuration).
For more information, see the section “Performance configuration options” later in this chapter.

Scenarios that perform multiple lookups on the same records and expect to find results in the
cache can suffer performance degradation if the cache is continuously full—not only because records
won’t be found in the cache because they were removed based on the aging scheme, forcing a
lookup in the database, but also because of the constant scanning of the tree to remove the oldest
records. The following X++ code shows an example in which all SalesTable records are iterated
through twice: each loop looks up the associated CustTable record. If this X++ code were executed on

 CHAPTER 13 Performance 451

the server and the number of lookups for CustTable records was more than 2,000 (assuming that the
cache was set to 2,000 records on the server), the oldest records would be removed from the cache
and the cache would no longer contain all CustTable records when the first loop ended. When the
code iterates through the SalesTable records again, the records might not be in the cache, and the
run time would go to the database to look up the CustTable records. The scenario, therefore, would
perform much better with fewer than 2,000 records in the database.

static void AgingScheme(Args _args)
{
 SalesTable salesTable;
 CustTable custTable;

 while select salesTable order by CustAccount
 {
 select custTable // Fill up cache.
 where custTable.AccountNum == salesTable.CustAccount;

 // More code here.
 }

 while select salesTable order by CustAccount
 {
 select custTable // Record might not be in cache.
 where custTable.AccountNum == salesTable.CustAccount;

 // More code here.
 }

}

Important Test performance improvements of record caching only on a database
where the database size and data distribution resemble the production environment.
(The arguments have been presented in the previous example.)

Before the Microsoft Dynamics AX run time searches for, inserts, updates, or deletes records in
the cache, it places a mutually exclusive lock that isn’t released until the operation is complete. This
lock means that two processes running on the same server can’t perform insert, update, or delete
 operations in the cache at the same time. Only one process can hold the lock at any given time, and
the remaining processes are blocked. Blocking occurs only when the run time accesses the server-side
cache. So although the caching possibilities supported by the run time are useful, you should use
them only when appropriate. If you can reuse a record buffer that is already fetched, you should do
so. The following X++ code shows the same record fetched multiple times. The subsequent fetch
operations use the cache, even though it could have used the first fetched record buffer.

static void ReuseRecordBuffer(Args _args)
{
 CustTable custTable;
 CurrencyCode myCustCurrency;
 CustGroupId myCustGroupId;

452 PART 2 Developing with Microsoft Dynamics AX

 PaymTermId myCustPaymTermId;

 // Bad coding pattern

 myCustGroupId = custTable::find('1101').CustGroup;
 myCustPaymTermId = custTable::find('1101').PaymTermId;
 myCustCurrency = custTable::find('1101').Currency;

 // The cache will be used for these lookups, but it is much more
 // efficient to reuse the buffer, because even cache lookups are not "free."
 // Good coding pattern:

 custTable = CustTable::find('1101');
 myCustGroupId = custTable.CustGroup;
 myCustPaymTermId = custTable.PaymTermId;
 myCustCurrency = custTable.Currency;
}

The unique index join cache
The unique index join cache is new to Microsoft Dynamics AX 2012 and allows caching of subtype
and supertype tables, one-to-one relation joins with a unique lookup, or a combination of both. A key
constraint with this type of cache is that you can look up only one record through a unique index and
you can join only over unique columns.

The following example illustrates all three possible variations:

public static void main(Args args)
{
 SalesTable header;
 SalesLine line;
 DirPartyTable party;
 CustTable customer;
 int i;

 // subtype, supertype table caching

 for (i=0 ; i<1000; i++)
 select party where party.RecId == 5637144829;

 // 1:1 join data caching

 for (i=0 ; i<1000; i++)
 select line
 join header
 where line.RecId == 5637144586
 && line.SalesId == header.SalesId;

 // Combination of subtype, supertype, and 1:1 join caching

 for (i=0 ; i<1000; i++)
 select customer
 join party
 where customer.AccountNum == '4000'
 && customer.Party == party.RecId;
}

 CHAPTER 13 Performance 453

The EntireTable cache
In addition to using the three caching methods described so far—Found, FoundAndEmpty, and
 NotInTTS—you can set a fourth caching option, EntireTable, on a table. EntireTable enables a
 set-based cache. It causes the AOS to mirror the table in the database by selecting all records in the
table and inserting them into a temporary table when any record from the table is selected for the
first time. The first process to read from the table can therefore experience a longer response time
 because the run time reads all records from the database. Subsequent select queries then read from
the EntireTable cache instead of from the database.

A temporary table is usually local to the process that uses it, but the EntireTable cache is shared
among all processes that access the same AOS. Each company (as defined by the DataAreaId field)
has an EntireTable cache, so two processes requesting records from the same table but from different
companies use different caches, and both could experience a longer response time to instantiate the
entire-table cache.

The EntireTable cache is a server-side cache only. When the run time requests records from the
client tier on a table that is EntireTable cached, the table behaves like a Found cached table. If a
request for a record is made on the client tier that qualifies for searching the record cache, the client
first searches the local Found cache. If the record isn’t found, the client calls the AOS to search the
EntireTable cache. When the run time returns the record to the client tier, it inserts the record into the
client-side Found cache. The EntireTable cache on the server side uses a Found cache in addition when
unique key lookups are made.

The EntireTable cache isn’t used in the execution of a select statement that joins a table that is
 EntireTable cached to a table that isn’t EntireTable cached. In this situation, the select statement is passed
to the database. However, when select statements are made that access only a single table that is
 EntireTable cached, or when joining other tables that are EntireTable cached, the EntireTable cache is used.

The Microsoft Dynamics AX run time flushes the EntireTable cache when records are inserted,
 updated, or deleted in the table. The next process that selects records from the table suffers
 degraded performance because it must reread the entire table into the cache. In addition to flushing
its own cache, the AOS that executes the insert, update, or delete also informs other AOS instances in
the same installation that they must flush their caches of the same table. This prevents old and invalid
data from being cached for too long. In addition to this flushing mechanism, the AOS flushes all
 EntireTable caches every 24 hours.

Because of the flushing that results when modifying records in a table that has been EntireTable cached,
avoid setting up EntireTable caches on frequently updated tables. Rereading all records into the cache
results in a performance loss, which could outweigh the performance gain achieved by caching records
on the server tier and avoiding round-trips to the database tier. You can overwrite the EntireTable cache
 setting on a specific table at run time when you configure Microsoft Dynamics AX.

Even if the records in a table are fairly static, you might achieve better performance by not using
an EntireTable cache if the table has a large number of records. Because an EntireTable cache uses
temporary tables, it changes from an in-memory structure to a file-based structure when the table

454 PART 2 Developing with Microsoft Dynamics AX

uses more than 128 kilobytes (KB) of memory. This results in performance degradation during record
searches. The database search engines have also evolved over time and are faster than the ones
implemented in the Microsoft Dynamics AX run time. It might be faster to let the database search
for the records than to set up and use an EntireTable cache, even though a database search involves
round-trips to the database tier. In Microsoft Dynamics AX 2012, you can configure the amount of
memory an entire table can consume before it changes to a file-based structure. To do so, go to
 System Administration > Setup > System > Server Configuration.

The RecordViewCache class
A RecordViewCache object is implemented as a linked list that allows only a sequential search for
records. When you use the cache to store a large number of records, search performance is degraded
because of this linked-list format. Therefore, you should not use it to cache more than 100 records.
Weigh the use of the cache against the extra time spent fetching the records from the database,
which uses a more optimal search algorithm. In particular, consider the time required when you
search for only a subset of records; the Microsoft Dynamics AX run time must continuously match
each record in the cache against the more granular where clause in the select statement because no
indexing is available for the records in the cache.

You can use the RecordViewCache class to establish a set-based cache from X++ code. You initiate
the cache by writing the following X++ code:

select nofetch custTrans where custTrans.accountNum == '1101';
recordViewCache = new RecordViewCache(custTrans);

The records to cache are described in the select statement, which must include the nofetch
keyword to prevent the selection of the records from the database. The records are selected when
the RecordViewCache object is instantiated with the record buffer passed as a parameter. Until the
RecordViewCache object is destroyed, select statements will execute on the cache if they match
the where clause defined when the cache was instantiated. The following X++ code shows how to
 instantiate and use the cache:

public static void main(Args _args)
{
 InventTrans inventTrans;
 RecordViewCache recordViewCache;
 int countNone, countSold, countOrder;

 // Define records to cache.

 select nofetch inventTrans
 where inventTrans.ItemId == '1001';

 // Cache the records.

 recordViewCache = new RecordViewCache(InventTrans);

 // Use the cache.

 while select inventTrans

 CHAPTER 13 Performance 455

 index hint ItemIdx
 where inventTrans.ItemId == '1001' && inventTrans.StatusIssue == StatusIssue::OnOrder
 {
 countOrder++;

 //Additional code here

 }

 // This block of code needs to be executed only after the first while select statement and
 // before the second while select statement.

 // Additonal code here

 // Uses the cache again.

 while select inventTrans
 index hint ItemIdx
 where inventTrans.ItemId == '1001' && inventTrans.StatusIssue == StatusIssue::Sold
 {
 countSold++;
 //Additional code here
 }
 info('OnOrder Vs Sold = '+int2str(countOrder) + ' : ' + int2str(countSold));
}

The cache can be instantiated only on the server tier. The select statement can contain only
 equal-to (==) predicates in the where clause and is accessible only by the process instantiating the
cache object. If the table buffer used for instantiating the cache object is a temporary table or if it
uses EntireTable caching, the RecordViewCache object isn’t instantiated.

If the table that is cached in the RecordViewCache object is also cached on a per-record basis,
the run time can use both caches. If a select statement is executed on a Found cached table and the
select statement qualifies for lookup in the Found cache, the run time performs a lookup in this cache
first. If no record is found and the select statement also qualifies for lookup in the RecordViewCache
 object, the run time uses the RecordViewCache object and updates the Found cache after retrieving
the record.

Inserts, updates, and deletions of records that meet the cache criteria are reflected in the cache
at the same time that the data manipulation language (DML) statements are sent to the database.
Records in the cache are always inserted at the end of the linked list. A hazard associated with this
behavior is that an infinite loop can occur when application logic iterates through the records in the
cache and at the same time inserts new records that meet the cache criteria.

Changes to records in a RecordViewCache object can’t be rolled back. If one or more
 RecordViewCache objects exist, if the ttsabort operation executes, or if an error is thrown that results
in a rollback of the database, the RecordViewCache objects still contain the same information.
 Therefore, any instantiated RecordViewCache object that is subject to modification by application
logic should not have a lifetime longer than the transaction scope in which it is modified. The
 RecordViewCache object must be declared in a method that isn’t executed until after the transaction
has begun. In the event of a rollback, the object and the cache are both destroyed.

456 PART 2 Developing with Microsoft Dynamics AX

SysGlobalObjectCache and SysGlobalCache
Microsoft Dynamics AX 2012 provides two mechanisms that you can use to cache global variables to
improve performance: SysGlobalObjectCache (SGOC) and SysGlobalCache. SGOC is new for Microsoft
Dynamics AX 2012 and is an important performance feature.

SGOC is a global cache that is located on the AOS, and not just a session-based cache. You can
use this cache to reduce round-trips to the database or to store intermediate calculation results. The
data that is stored from one user connection is available for all users. For more information about
the SGOC, see the entry “Using SysGlobalObjectCache (SGOC) and understanding its performance
 implications” on the Microsoft Dynamics AX Performance Team blog (http://blogs.msdn.com/b/
axperf/archive/2011/12/29/using-sysglobalobjectcache-sgoc-and-understanding-it-s- performance-
implications.aspx).

SysGlobalCache uses a map to save information that is purely session-based. However, there are
certain client/server considerations if you use this form of caching. If you use SysGlobalCache by
means of the ClassFactory class, global variables can exist either on the client or on the server. If you
use SysGlobalCache directly, it runs on the tier from which it is called. If you use SysGlobalCache by
means of the Info class or the Application class, it resides on both tiers, causing a performance penalty
because of increased round-trips between the client and server. For more information, see “Using
Global Variables” at http://msdn.microsoft.com/en-us/library/aa891830.aspx.

Field lists
Most X++ select statements in Microsoft Dynamics AX retrieve all fields for a record, even though
only a few of the fields are actually used. The main reason for this coding style is that the Microsoft
Dynamics AX run time doesn’t report compile-time or run-time errors if a field on a record buffer is
accessed and hasn’t been retrieved from the database. Because of the normalization of the Microsoft
Dynamics AX 2012 data model and the introduction of table hierarchies, limiting field lists in queries
is even more important than it was in Microsoft Dynamics AX 2009, particularly for polymorphic
tables. With ad hoc mode, you can limit the field list in a query. If you use ad hoc mode, the query is
limited to only the table (or tables) that are referenced in the query. Other tables in the hierarchy are
excluded. This produces an important performance benefit by reducing the number of joins between
tables in subtype and supertype hierarchies.

Note The base type table is always joined, regardless of which fields are selected.

The following example illustrates the effects of querying both without and with ad hoc mode:

static void AdHocModeSample(Args _args)
{
 DirPartyTable dirPartyTable;
 CustTable custTable;
 select dirPartyTable join custTable where dirPartyTable.RecId==custTable.Party;

 /*Would result in the following query to the database:

http://blogs.msdn.com/b/axperf/archive/2011/12/29/using-sysglobalobjectcache-sgoc-and-understanding-it-s-performance-implications.aspx

 CHAPTER 13 Performance 457

 SELECT T1.NAME,
 T1.LANGUAGEID,

--<...Fields removed for better readability. Basically, all fields from all tables would be
fetched...>

 T9.MEMO FROM DIRPARTYTABLE T1 LEFT OUTER JOIN DIRPERSON T2 ON (T1.RECID=T2.RECID) LEFT
OUTER JOIN DIRORGANIZATIONBASE T3 ON (T1.RECID=T3.RECID) LEFT OUTER JOIN DIRORGANIZATION T4 ON
(T3.RECID=T4.RECID) LEFT OUTER JOIN OMINTERNALORGANIZATION T5 ON (T3.RECID=T5.RECID) LEFT OUTER
JOIN OMTEAM T6 ON (T5.RECID=T6.RECID) LEFT OUTER JOIN OMOPERATINGUNIT T7 ON (T5.RECID=T7.RECID)
LEFT OUTER JOIN COMPANYINFO T8 ON (T5.RECID=T8.RECID) CROSS JOIN CUSTTABLE T9 WHERE
((T9.DATAAREAID='ceu') AND (T1.RECID=T9.PARTY))

 Limiting the field list will force the Microsoft Dynamics AX 2012 AOS to query only for the
actual table.
 The following query:*/

 select RecId from dirPartyTable exists join custTable where dirPartyTable.RecId==custTable.
Party;
 /*
Results only in the following query to SQL Server

 SELECT T1.RECID, T1.INSTANCERELATIONTYPE FROM DIRPARTYTABLE T1 WHERE EXISTS (SELECT
'x' FROM CUSTTABLE T2 WHERE ((T2.DATAAREAID='ceu') AND (T1.RECID=T2.PARTY)))
 */
}

There are additional ways to limit the field list and number of joins in queries through the user
interface. These are described in more detail at the end of this section.

The following X++ code, which selects only the AccountNum field from the CustTable table but
evaluates the value of the CreditRating field and sets the CreditMax field, won’t fail because the run
time doesn’t detect that the fields haven’t been selected:

static void UpdateCreditMax(Args _args)
{
 CustTable custTable;

 ttsBegin;
 while select forupdate AccountNum from custTable
 {
 if (custTable.CreditRating == '')
 {
 custTable.CreditMax = custTable.CreditMax + 1000;
 custTable.update();
 }
 }
 ttsCommit;
}

This code adds 1,000 to the value of the CreditMax field in CustTable records for which the
 CreditRating field is empty. However, adding the CreditRating and CreditMax fields to the field list of

458 PART 2 Developing with Microsoft Dynamics AX

the select statement might not solve the problem: the application logic could still update other fields
incorrectly because the update method on the table could be evaluating and setting other fields in
the same record.

Important You could examine the update method for other fields accessed in the method
and then select these fields also, but new problems would soon surface. For example, if you
customize the update method to include application logic that uses additional fields, you might
not be aware that the X++ code in the preceding example also needs to be customized.

Limiting the field list when selecting records results is a performance gain because less data is
retrieved from the database and sent to the AOS. The gain is even greater if you can retrieve the fields
by using indexes without a lookup of the values in the table or by limiting the field list to reduce the
number of joins in hierarchy tables. You can implement this performance improvement and write
select statements safely when you use the retrieved data within a controlled scope, such as a single
method. The record buffer must be declared locally and not passed to other methods as a parameter.
Any developer customizing the X++ code can easily see that only a few fields are selected and act
accordingly.

To truly benefit from a limited field list, be aware that the Microsoft Dynamics AX run time
 sometimes automatically adds extra fields to the field list before passing a statement to the database.
One example was explained earlier in this chapter in the “Caching” section. In that example, the
run time expanded the field list to include all fields if the select statement qualifies for storing the
 retrieved record in the cache.

In the following X++ code, you can see how the Microsoft Dynamics AX run time adds additional
fields. The code calculates the total balance for all customers in customer group 20 and converts the
balance into the company’s unit of currency. The amountCur2MST method converts the value in the
currency specified in the CurrencyCode field to the company currency.

static void BalanceMST(Args _args)
{
 CustTable custTable;
 CustTrans custTrans;
 AmountMST balanceAmountMST = 0;

 while select custTable
 where custTable.CustGroup == '20'
 join custTrans
 where custTrans.AccountNum == custTable.AccountNum
 {
 balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
 custTrans.CurrencyCode);
 }
}

 CHAPTER 13 Performance 459

When the select statement is passed to the database, it retrieves all fields in the CustTable and
CustTrans tables, even though only the AmountCur and CurrencyCode fields on the CustTrans table
are used. The result is the retrieval of more than 100 fields from the database.

You can optimize the field list by selecting the AmountCur and CurrencyCode fields from the
 CustTrans table and, for example, only the AccountNum field from the CustTable table, as shown in
the following code:

static void BalanceMST(Args _args)
{
 CustTable custTable;
 CustTrans custTrans;
 AmountMST balanceAmountMST = 0;

 while select AccountNum from custTable
 where custTable.CustGroup == '20'
 join AmountCur, CurrencyCode from custTrans
 where custTrans.AccountNum == custTable.AccountNum
 {
 balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
 custTrans.CurrencyCode);
 }
}

As explained earlier, the application run time expands the field list from the three fields shown in
the preceding X++ code example to five fields because it adds the fields that are used when updating
the records. These fields are added even though neither the forupdate keyword nor any of the specific
concurrency model keywords are applied to the statement. The statement passed to the database
starts as shown in the following example, in which the RECID column is added for both tables:

SELECT A.ACCOUNTNUM,A.RECID,B.AMOUNTCUR,B.CURRENCYCODE,B.RECID
FROM CUSTTABLE A,CUSTTRANS B

To prevent the retrieval of any fields from the CustTable table, you can rewrite the select statement
to use the exists join operator, as shown here:

static void BalanceMST(Args _args)
{
 CustTable custTable;
 CustTrans custTrans;
 AmountMST balanceAmountMST = 0;

 while select AmountCur, CurrencyCode from custTrans
 exists join custTable
 where custTable.CustGroup == '20' &&
 custTable.AccountNum == custTrans.AccountNum
 {
 balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
 custTrans.CurrencyCode);
 }
}

460 PART 2 Developing with Microsoft Dynamics AX

This code retrieves only three fields (AmountCur, CurrencyCode, and RecId) from the CustTrans
table and none from the CustTable table.

In some situations, however, it might not be possible to rewrite the statement to use exists join. In
such cases, including only TableId as a field in the field list prevents the retrieval of any fields from the
table. To do this, you modify the original example as follows to include the TableId field:

static void BalanceMST(Args _args)
{
 CustTable custTable;
 CustTrans custTrans;
 AmountMST balanceAmountMST = 0;

 while select TableId from custTable
 where custTable.CustGroup == '20'
 join AmountCur, CurrencyCode from custTrans
 where custTrans.AccountNum == custTable.AccountNum
 {
 balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
 custTrans.CurrencyCode);
 }
}

This code causes the Microsoft Dynamics AX run time to pass a select statement to the database
with the following field list:

SELECT B.AMOUNTCUR,B.CURRENCYCODE,B.RECID
FROM CUSTTABLE A,CUSTTRANS B

If you rewrite the select statement to use exists join or include only TableId as a field, the select
statement sent to the database retrieves just three fields instead of more than 100. As you can see,
you can substantially improve your application’s performance just by rewriting queries to retrieve only
the necessary fields.

Tip You can use the Best Practice Parameters dialog box to have Microsoft Dynamics AX
analyze the use of select statements in X++ code and recommend whether to implement
field lists based on the number of fields that are accessed in the method. To enable this
check, in the AOT or the Development Workspace, on the Tools menu, click Options >
Development > Best Practices. In the Best Practice Parameters dialog box, make sure that
AOS Performance Check is selected and that Warning Level is set to Errors and Warnings.

To use ad hoc mode on forms, navigate to Data Sources node for the form you want in the AOT,
and then select the appropriate data source and set the OnlyFetchActive property to Yes, as shown
in Figure 13-6. This setting limits the number of fields fetched to only those fields that are used by
controls on the form and improves the form’s response time. Additionally, if the data source is a
polymorphic table, only the tables that are necessary to return these fields are joined—instead of all
tables within the hierarchy.

 CHAPTER 13 Performance 461

FIGURE 13-6 Use of OnlyFetchActive on a list page.

To see the effect of ad hoc mode, do the following test: create a list page containing the
 Dir PartyTable table as the data source and add only three fields to the list page grid; for example,
Name, NameAlias, and PartyNumber. Setting OnlyFetchActive to No results in the following query,
which contains all fields in all tables and joins to all tables in the hierarchy:

SELECT T1.DEL_GENERATIONALSUFFIX,T1.NAME, T1.NAMEALIAS,T1.PARTYNUMBER,
/* Field list shortened for better readability. All fields of all tables would be fetched. */
T8.RECID, FROM DIRPARTYTABLE T1 LEFT OUTER JOIN DIRPERSON T2 ON (T1.RECID=T2.RECID) LEFT
OUTER JOIN DIRORGANIZATIONBASE T3 ON (T1.RECID=T3.RECID) LEFT OUTER JOIN DIRORGANIZATION T4 ON
(T3.RECID=T4.RECID) LEFT OUTER JOIN OMINTERNALORGANIZATION T5 ON (T3.RECID=T5.RECID) LEFT OUTER
JOIN OMTEAM T6 ON (T5.RECID=T6.RECID) LEFT OUTER JOIN OMOPERATINGUNIT T7 ON (T5.RECID=T7.RECID)
LEFT OUTER JOIN COMPANYINFO T8 ON (T5.RECID=T8.RECID)ORDER BY T1.PARTYNUMBER

Setting OnlyFetchActive to Yes results in a much smaller and more efficient query:

SELECT T1.NAME,T1.NAMEALIAS, T1.PARTYNUMBER, T1.RECID, T1.RECVERSION, T1.INSTANCERELATIONTYPE
FROM DIRPARTYTABLE T1 ORDER BY T1.PARTYNUMBER

For polymorphic tables in datasets for Enterprise Portal web controls, ensure that you also set
OnlyFetchActive to Yes on the data source of the dataset to improve performance.

To use ad hoc mode on queries that are modeled in the AOT, do the following:

1. Navigate to the query you want, and then expand the Data Sources node and the appropriate
data source.

2. Click the Fields node, and then set the Dynamic property to No (see Figure 13-7).

FIGURE 13-7 Use ad hoc mode on modeled queries.

462 PART 2 Developing with Microsoft Dynamics AX

3. Reduce the fields to only the ones that are necessary.

For an example of a query with a restricted field list, see the DirRestrictPartyTableInAddressBook
query in the base application.

Field justification
Microsoft Dynamics AX supports left-and right-justification of extended data types. With Microsoft
Dynamics AX 2012, nearly all extended data types are left justified to reduce the impact of space
 consumption because of double- and triple-byte storage as a result of Unicode enablement. Left
justifying also helps performance by increasing the speed of access through indexes.

When sorting is critical, you can use right justification. However, you should use this technique sparingly.

Performance configuration options

This section provides an overview of the most important configuration options that can improve the
performance of your Microsoft Dynamics AX 2012 installation.

SQL Administration form
The SQL Administration form (Figure 13-8) offers a set of SQL Server features that were not supported
in previous versions of Microsoft Dynamics AX. For example, you can compress a table or apply a fill
factor individually. The SQL Administration form is located under System Administration > Periodic >
Database > SQL Administration.

FIGURE 13-8 The SQL Administration form.

 CHAPTER 13 Performance 463

Server Configuration form
Several important performance options are located on the Server Configuration form. You can use
this form to specify settings for performance optimization, batch operations, and caching. The Server
Configuration form is located under System Administration > Setup > System > Server Configuration.

Some of the most important performance optimization options are as follows:

 ■ Maximum number of tables in join Limits the number of tables you can have in a join. Too
many joins can have a negative impact on performance, especially if the fields that are joined
are not indexed well.

 ■ Client record cache factor Determines how many records the client caches. For example,
if the server-side cache setting for a table in the Main table group is set to 2,000, and you set
this setting to 20, then the client will cache 100 records (2,000/20).

 ■ Timeout for user modified queries Specifies the timeout, in seconds, for queries when a
user adds conditions by using the SysQueryForm form. A setting of 0 means that here is no
 timeout. If a query times out, a message is shown.

You can specify whether a server is a batch server and how many threads the server can use to
process batch jobs. A good formula to determine how many batch threads a server can use is to
 multiply the number of cores by 2. The number of threads that a server can use depends on the
 processes that are running on the server. For some processes, the server can use more than two
threads for each core. However, you need to test this on a case-by-case basis.

You can also define the number of records that are stored in a cache and other cache settings
 (Figure 13-9), such as the size of an EntireTable cache (in kilobytes), the maximum number of objects
that the SGOC can hold, and the number of records that can be cached for each table group. Each
server can have its own cache settings.

AOS configuration
The Microsoft Dynamics AX 2012 Server Configuration tool contains settings that you can use to improve
the performance of the AOS. To access the tool, on the Start menu, click Administrative Tools > Microsoft
Dynamics AX 2012 Server Configuration. The following options are some of the most important:

 ■ Application Object Server tab Generally, the settings Enable Breakpoints To Debug
X++ Code Running On This Server and Enable Global Breakpoints should be turned off in
 production systems. Enable The Hot-Swapping Of Assemblies For Each Development Session
should also be turned off in production systems. All three of these options might cause a
 performance penalty if enabled.

 ■ Database Tuning tab Depending on the business processes you run, increasing the value
of the Statement Cache setting can improve or degrade performance. This setting determines
how many statements the AOS caches. (Only the statements and not the result sets are
cached.) You should not change the default value without thorough testing. Also, you should

464 PART 2 Developing with Microsoft Dynamics AX

avoid changing the Maximum Buffer Size setting because the larger the maximum buffer size,
the more memory that must be allocated for each buffer, which takes slightly more time.

 ■ Performance tab If you have multiple AOS instances on one server, use this tab to define
an affinity to avoid resource contention between the AOS instances. Note that the AOS in
 Microsoft Dynamics AX 2012 can scale more than eight cores effectively.

FIGURE 13-9 Caching options on the Server Configuration form.

Client configuration
On the AOS, you can use the Microsoft Dynamics AX Configuration tool to set options for Microsoft
Dynamics AX clients. To access this tool, on the Start menu, click Administrative Tools > Microsoft
Dynamics AX 2012 Configuration. On the Performance tab, under Cache Settings, if you select the
Least Memory setting, the loading of certain dynamic-link libraries (DLLs) will be deferred until they
are needed, to save memory. This setting slightly decreases performance but is very useful in Terminal
Services scenarios to increase the number of users that a Terminal Server can host in parallel.

 CHAPTER 13 Performance 465

Client performance
You can use the Client Performance Options form to centrally disable a set of features that might
affect performance. You can access the form under System Administration > Setup > System > Client
Performance Options.

For a detailed description of the controls on this form, see the entry “Microsoft Dynamics AX 2012:
Client Performance Options” on the Microsoft Dynamics AX Performance Team blog
(http://blogs.msdn.com/b/axperf/archive/2011/11/07/ax2012-client-performance-options.aspx).

Number sequence caching
It is a best practice to review thoroughly all number sequences that are in use to determine whether
they should be continuous. If possible, set them to be non-continuous. All number sequences that are
not continuous should have caching enabled.

Under Organization Administration > Common > Number Sequences, double-click the number
sequence you want, and then on the Performance FastTab, set a preallocation depending on the
 frequency with which the number sequence is used.

Extensive logging
Extensive database logging and other logging mechanisms, such as the sales and marketing
 transaction log (Sales and Marketing > Setup > Sales and Marketing Parameters), add overhead to
the database load and should be reduced to the absolute minimum necessary.

Master scheduling and inventory closing
Microsoft Dynamics AX 2012 has optimized performance of the master scheduling and inventory
closing processes. Both processes should run at least with one helper thread. However, it is better
to use multiple helper threads. For master scheduling, eight helper threads have been found to be
optimum with the tested data.

Another option to improve the speed of master scheduling is to have a dedicated AOS and
change the garbage collection pattern to client-based garbage collection. To do so, navigate to the
 installation directory of the appropriate AOS, and then open the Ax32Serv.exe.config file.

Locate the following XML node and set it to false:

 <gcServer enabled="true" />

Coding patterns for performance

This section discusses coding patterns that you can use to help optimize performance.

466 PART 2 Developing with Microsoft Dynamics AX

Execute X++ code as CIL
You can improve performance by running X++ as common intermediate language (CIL). In general,
if a service is called from outside Microsoft Dynamics AX 2012, it is executed in CIL. Batch jobs,
 services in the AxClient service group, and code that is traversed through the RunAs method are also
 executed in CIL. Two interfaces are available for this purpose in Classes\Global\runClassMethodIL and
 runTableMethodIL. The performance benefit from running X++ in CIL comes mainly from better .NET
garbage collection. Depending on your process, the performance improvement can be between 0
and 30 percent. Therefore, you’ll need to test to see whether performance improves by running your
process in CIL.

Use parallel execution effectively
Microsoft Dynamics AX 2009 introduced ways to implement parallel processing easily through the
batch framework. These options have been enhanced in Microsoft Dynamics AX 2012. Three common
patterns can be applied for scheduling batch jobs that execute tasks in parallel: batch bundling,
 individual task modeling, and top picking. Each pattern has its own advantages and disadvantages,
which are discussed in the following sections.

For more information about the batch framework, see Chapter 18, “The batch framework.” For
code samples and additional information about batch patterns and performance, see the entry “Batch
Parallelism Microsoft Dynamics AX – Part I” on the Microsoft Dynamics AX Performance Team blog
(http://blogs.msdn.com/b/axperf/archive/2012/02/24/batch-parallelism-in-ax-part-i.aspx). Links to
 additional entries in this series are provided in the following sections.

Batch bundling
With batch bundling, you create a static number of tasks and split the work among these tasks by
grouping the work items into bundles. The workload distribution between each task should be as
equal as possible. Each worker thread processes a bundle of work items before picking up the next
bundle. This pattern works well if all of the tasks take roughly the same amount of time to process
in each bundle. In an ideal situation, each worker thread is actively doing the same amount of work.
But in scenarios where the workload is variable because of data composition or differences in server
 hardware, this approach is not the most efficient. In these scenarios, the last few threads might take
longer to complete because they are processing larger bundles than the others.

You can find a code example illustrating batch bundling in the AOT at Classes\FormletterService-
BatchTaskManager\createFormletterParmDataTasks().

Individual task modeling
With individual task modeling, parallel processing is achieved by creating a separate task for each
work item so that there is a one-to-one mapping between the task and the work item. This eliminates
the need for preallocation. Because each work item is independently handled by a worker thread,
workload distribution is more consistent. This approach eliminates the problem of a number of large
work items being bundled together and eventually increasing the response time for the batch.

http://blogs.msdn.com/b/axperf/archive/2012/02/24/batch-parallelism-in-ax-part-i.aspx
http://blogs.msdn.com/b/axperf/archive/2012/02/24/batch-parallelism-in-ax-part-i.aspx

 CHAPTER 13 Performance 467

This pattern is not necessarily suitable for processing a large number of work items because you
will end up with a large number of batch tasks. The overhead on the batch framework to maintain
a large number of tasks is high because the batch framework must check several conditions,
 dependencies, and constraints whenever a set of tasks is completed and a new set of tasks must be
picked up for execution from the ready state.

You can find a code example that illustrates this pattern on the Microsoft Dynamics AX
 Performance Team blog (http://blogs.msdn.com/b/axperf/archive/2012/02/25/batch-parallelism-in-
ax-part-ii.aspx).

Top picking
One issue with bundling is the uneven distribution of workload. You can address that by using
 individual task modeling, but that can produce high overhead on the batch framework. Top picking is
another batching technique that can address the problem of uneven workload distribution. However,
it causes the same problem as individual task modeling with a large number of work items.

.With top picking, a static number of tasks are created—just as in bundling—and preallocation
is unnecessary—just as in individual task modeling. Because no preallocation is performed, the
 pattern does not rely on the batch framework to separate the work items, but you do need to
maintain a staging table to track the progress of the work items. Maintaining the staging table has
its own overhead, but that overhead is much lower than the overhead of the batch framework. After
the staging table is populated, the worker threads start processing by fetching the next available
item from the staging table and continue until no work items are left. This means that no worker
threads are idle while other worker threads are overloaded. To implement top picking, you use the
 PESSIMISTICLOCK hint along with the READPAST hint. Used together, these hints enable worker
threads to fetch the next available work item without being blocked.

You can find a code example that illustrates this pattern on the Microsoft Dynamics AX
 Performance Team blog (http://blogs.msdn.com/b/axperf/archive/2012/02/28/batch-parallelism-in-
ax-part-iii.aspx).

The SysOperation framework
In Microsoft Dynamics AX 2012, programming concepts are available and first steps have been taken
to replace the RunBase framework. By using its replacement, the SysOperation framework, you can
run services in Microsoft Dynamics AX in various execution modes. The SysOperation framework has
 performance advantages, too. There is a clear separation of responsibilities between tiers, and execution
happens solely on the server tier. These enhancements ensure a minimum number of round-trips.

Note Chapter 14 contains more information about the SysOperation framework and
 additional code sample that compares the SysOperation framework with the RunBase
framework. If you are unfamiliar with the SysOperation framework, it is recommended that
you read Chapter 14 before you read this section.

http://blogs.msdn.com/b/axperf/archive/2012/02/28/batch-parallelism-in-ax-part-iii.aspx
http://blogs.msdn.com/b/axperf/archive/2012/02/28/batch-parallelism-in-ax-part-iii.aspx

468 PART 2 Developing with Microsoft Dynamics AX

The SysOperation framework supports four execution modes:

 ■ Synchronous You can run a service in synchronous mode on the server. The client waits until
the process on the server is complete, and only then can the user continue working.

 ■ Asynchronous You perform the necessary configurations to the data contract and then
execute code on the server. However, the client remains responsive and the user can continue
working. This mode also saves round-trips between the client and the server.

 ■ Reliable asynchronous Running operations in this mode is equivalent to running them
on the batch server, with the additional behavior that the jobs are deleted after they are
 completed (regardless of whether they are successful). The job history remains. This pattern
facilitates building operations that use the batch server run time, but that do not rely on the
batch server administration features.

 ■ Scheduled batch You use this mode for scheduled batch jobs that run on a regular basis.

The following example illustrates how to calculate a set of prime numbers. A user enters the
 starting number (such as 1,000,000) and an ending number (such as 1,500,000). The service then
calculates all prime numbers in that range. This example will be used to illustrate the differences in
timing when running an execution in each mode. The sample consists of two classes (a service class
and a data contract), a table to store the results, and a job and an enumerator to demonstrate the
execution and execution modes.

Note Instead of using a job, you would typically use menu items to execute the operation.
If you use a menu item, the SysOperation framework generates the necessary dialog box to
populate the data contract.

The following code contains the entry point of the service:

[SysEntryPointAttribute(true)]
public void runOperation(PrimeNumberRange data)
{
 PrimeNumbers primeNumbers;

 // Threads mainly take effect while running in the batch framework utilizing either
 // reliable asynchronous or scheduled batch

 int i, start, end, blockSize, threads = 8;
 PrimeNumberRange subRange;
 start = data.parmStart();
 end = data.parmEnd();
 blockSize = (end - start) / threads;
 delete_from primeNumbers;
 for (i = 0; i < threads; i++)
 {
 subRange = new PrimeNumberRange();
 subRange.parmStart(start);
 subRange.parmEnd(min(start + blockSize, end));
 subRange.parmLast(i == threads - 1);

 CHAPTER 13 Performance 469

 this.findPrimes(subRange);
 start += blockSize + 1;
 }
}

The next sample is a method that executes differently depending on the operation mode that you
chose.

Note If the method is executed in reliable asynchronous mode or scheduled batch mode,
this sample also showcases a bundling pattern that was discussed earlier in the “Batch
 bundling” section.

[SysEntryPointAttribute(false)]
public void findPrimes(PrimeNumberRange range)
{
 BatchHeader batchHeader;
 SysOperationServiceController controller;
 PrimeNumberRange dataContract;
 if (this.isExecutingInBatch())
 {
 ttsBegin;
 controller = new SysOperationServiceController('PrimeNumberService',
'findPrimesWorker');
 dataContract = controller.getDataContractObject('range');

 dataContract.parmStart(range.parmStart());
 dataContract.parmEnd(range.parmEnd());
 dataContract.parmLast(range.parmLast());

 batchHeader = this.getCurrentBatchHeader();
 batchHeader.addRuntimeTask(controller, this.getCurrentBatchTask().RecId);
 batchHeader.save();
 ttsCommit;
 }
 else
 {
 this.findPrimesWorker(range);
 }
}

Last, but not least, is the method that does the actual work:

private void findPrimesWorker(PrimeNumberRange range)
{
 PrimeNumbers primeNumbers;
 int i;
 int64 time;

 for (i = range.parmStart(); i <= range.parmEnd(); i++)
 {
 if (this.isPrime(i))
 {
 primeNumbers.clear();

470 PART 2 Developing with Microsoft Dynamics AX

 primeNumbers.PrimeNumber = i;
 primeNumbers.insert();
 }
 }

 if (range.parmLast())
 {
 primeNumbers.clear();
 primeNumbers.PrimeNumber = -1;
 primeNumbers.insert();
 }
}

The following code contains a job that runs the prime number example in all four execution
modes:

static void generatePrimeNumbers(Args _args)
{
 SysOperationServiceController controller;
 int i, ticks, ticks2, countOfPrimes;
 PrimeNumberRange dataContract;
 SysOperationExecutionMode executionMode;
 PrimeNumbers output;

 <… Dialog code to demo the execution modes …>

 executionMode = getExecutionMode();
 controller = new SysOperationServiceController('PrimeNumberService', 'runOperation',
executionMode);
 dataContract = controller.getDataContractObject('data');

 dataContract.parmStart(1000000);
 dataContract.parmEnd(1500000);
 delete_from output;
 ticks = System.Environment::get_TickCount();
 controller.parmShowDialog(false);
 controller.startOperation();

 <… Code to show execution times for demo purposes …>
}

Executing this code four times in all four execution modes produces the following results:

 ■ Synchronous 35,658 prime numbers found in 44.74 seconds. However, the user could not
continue working during this time.

 ■ Asynchronous 35,658 prime numbers found in 46.93 seconds, but the client was responsive
and the user could continue working.

 ■ Reliable asynchronous 35,658 prime numbers found in 16.16 seconds by using parallel
processing and starting the batch jobs immediately (as mentioned earlier in this section). This
execution mode is only running the job on the batch server, but it is not entirely similar to a
batch job. The jobs appear in the Batch Job form only temporarily. Another key difference is
that even though reliable asynchronous mode uses the batch framework as a vehicle, reliable

 CHAPTER 13 Performance 471

asynchronous mode is not bound to the Available Threads setting that you can set in the
Server Configuration form. So long as the server has resources, it will continue processing
 reliable asynchronous jobs in parallel and start processing new jobs as well. If you start too
many jobs, you might overload your server; on the other hand, it allows programming models
to use multicore systems efficiently.

 ■ Scheduled batch 35,658 prime numbers found in 31.78 seconds. (The batch job did not
start immediately, which caused the difference in execution time between scheduled batch
mode and reliable asynchronous mode.)

Also, you need to ensure that there are sufficient CPU resources left to service the regular user
load. It is usually a good idea to separate the batch workload from the regular user workload.

The SysOperation framework offers an additional way of parallelizing the workload through
 business logic. For example, you could build a wrapper class that performs multiple asynchronous
business calls. Suppose that your wrapper class invoices all orders of a certain business account. You
could build a dialog box that allows the user to select one or more customer accounts to invoice.
The logic itself then performs one service call for each customer account. Note, however, that these
calls might overload your server resources if not used with care. The following code is a modified
 version of the previous example to show what this code might look like.

Note In practice, you would use a dialog box to define your execution parameters.

// In practice, this wrapper should be a class and be called through a menu item in the
// appropriate execution mode.
static void generatePrimeNumbersAsyncCallPattern(Args _args)
{
 SysOperationServiceController controller;
 int i, primestart, primeend,blockSize, threads = 8,countOfPrimes,ticks,ticks2;
 PrimeNumberRange subRange;
 PrimeNumberRange dataContract;
 PrimeNumbers output;

 primestart = 1000000;
 primeend = 1500000;

 blockSize = (primeend - primestart) / threads;

 delete_from output;

 ticks = System.Environment::get_TickCount();

 for (i = 0; i < threads; i++)
 {
 controller = new SysOperationServiceController('PrimeNumberServiceAsyncCallPattern',
 'runOperation', SysOperationExecutionMode::ReliableAsynchronous);
 dataContract = controller.getDataContractObject('data');

 dataContract.parmStart(primestart);
 dataContract.parmEnd(min(primestart + blockSize, primeend));

472 PART 2 Developing with Microsoft Dynamics AX

 dataContract.parmLast(i == threads - 1);

 controller.parmShowDialog(false);
 controller.startOperation();

 primestart += blockSize + 1;
 }

 <… Code to show execution times for demo purposes …>
}

Patterns for checking to see whether a record exists
Depending on the pattern that you use, checking to see whether a record exists can result in excessive
calls to the database.

The following code shows an incorrect example of how to determine whether a certain record
exists. For each record that is fetched in the outer loop, another select statement is passed to the
database to find a particular entry in the WMSJournalTrans table. If the WMSJournalTable table has
10,000 rows, the following logic would cause 10,001 queries to the database:

static void existingJournal()
{
 WMSJournalTable wmsJournalTable = WMSJournalTable::find('014119_117');
 WMSJournalTable wmsJournalTableExisting;
 WMSJournalTrans wmsJournalTransExisting;

 boolean recordExists()
 {
 boolean foundRecord;
 foundRecord = false;

 while select JournalId from wmsJournalTableExisting
 where wmsJournalTableExisting.Posted == NoYes::No
 {
 select firstonly wmsJournalTransExisting
 where wmsJournalTransExisting.JournalId ==
wmsJournalTableExisting.JournalId &&
 wmsJournalTransExisting.InventTransType ==
wmsJournalTable.InventTransType &&
 wmsJournalTransExisting.InventTransRefId ==
wmsJournalTable.InventTransRefId;
 if (wmsJournalTransExisting)
 foundRecord = true;
 }
 return foundRecord;
 }

 if (recordExists())
 info('Record Exists');
 else
 info('Record does not exist');
}

 CHAPTER 13 Performance 473

The following example shows a better pattern that produces far less overhead. This pattern results
in only one query and one round-trip to the database:

static void existingJournal()
{
 WMSJournalTable wmsJournalTable = WMSJournalTable::find('014119_117');
 WMSJournalTable wmsJournalTableExisting;
 WMSJournalTrans wmsJournalTransExisting;

 boolean recordExists()
 {
 boolean foundRecord;
 foundRecord = false;

 select firstonly wmsJournalTransExisting
 join wmsJournalTableExisting
 where wmsJournalTransExisting.JournalId ==
 wmsJournalTableExisting.JournalId &&
 wmsJournalTransExisting.InventTransType ==
 wmsJournalTable.InventTransType &&
 wmsJournalTransExisting.InventTransRefId ==
 wmsJournalTable.InventTransRefId &&
 wmsJournalTableExisting.Posted == NoYes::No;

 if (wmsJournalTransExisting)
 foundRecord = true;

 return foundRecord;
 }

 if (recordExists())
 info('Record Exists');
 else
 info('Record does not exist');
 }

Run a query only as often as necessary
Often, the same query is executed repeatedly. Even if caching reduces some of the overhead,
 repeatedly executing the same query sometimes can have a significant impact on performance. But
there are ways that you can easily avoid these performance problems. Usually, they are caused by find
methods that are called repeatedly—either within loops or within an exists method. The following
example shows a loop that makes repeated calls to the CustParameters::find method:

static void doOnlyNecessaryCalls(Args _args)
{
 LedgerJournalTrans ledgerJournalTrans;
 LedgerJournalTable ledgerJournalTable = LedgerJournalTable::find('000242_010');
 Voucher voucherNum = '';

 while select ledgerJournalTrans
 order by JournalNum, Voucher, AccountType
 where ledgerJournalTrans.JournalNum == ledgerJournalTable.JournalNum
 && (voucherNum == '' || ledgerJournalTrans.Voucher == voucherNum)

474 PART 2 Developing with Microsoft Dynamics AX

 {
 // Potential unecessary cache lookup and method call if loop returns multiple rows

 ledgerJournalTrans.PostingProfile = CustParameters::find().PostingProfile;

 // Additional code doing some work…
 }
}

The recurring calls to CustParameters::find always return the same results. Even if the result is
cached, these calls produce overhead. To optimize performance, you can move the call outside the
loop, preventing repeated calls.

static void doOnlyNecessaryCallsOptimized(Args _args)
{
 LedgerJournalTrans ledgerJournalTrans;
 LedgerJournalTable ledgerJournalTable = LedgerJournalTable::find('000242_010');
 Voucher voucherNum = '';
 CustPostingProfile postingProfile = CustParameters::find().PostingProfile;

 while select ledgerJournalTrans
 order by JournalNum, Voucher, AccountType
 where ledgerJournalTrans.JournalNum == ledgerJournalTable.JournalNum
 && (voucherNum == '' || ledgerJournalTrans.Voucher == voucherNum)
 {
 // No unecessary cache lookup and method call if loop returns more than 1 row

 ledgerJournalTrans.PostingProfile = postingProfile;

 // Additional code doing some work…
 }
}

When to prefer two queries over a join
For certain queries, it is difficult or almost impossible to create an effective index. This mainly occurs if
an OR operator (or ||) is used on multiple columns.

The following example typically triggers an index join in SQL Server, which is potentially less
 effective than a direct lookup:

static void TwoQueriesSometimesBetterThenOne(Args _args)
{
 InventTransOriginId inventTransOriginId = 5637201031;
 InventTransOriginTransfer inventTransOriginTransfer;

 // Note: Only one condition can be true at any time

 select firstonly inventTransOriginTransfer
 where inventTransOriginTransfer.IssueInventTransOrigin == inventTransOriginId
 || inventTransOriginTransfer.ReceiptInventTransOrigin == inventTransOriginId;

 info(int642str(inventTransOriginTransfer.RecId));
}

 CHAPTER 13 Performance 475

Using two queries might cause an additional round-trip, but ideally, the following code produces
only one. In addition, the first and second queries are efficient direct-clustered and direct-index
 lookups. In practice, you would need to test this code to ensure that it outperforms the earlier
 example in your scenario.

static void TwoQueriesSometimesBetterThenOneOpt(Args _args)
{
 InventTransOriginId inventTransOriginId = 5637201031;
 InventTransOriginTransfer inventTransOriginTransfer;

 select firstonly inventTransOriginTransfer
 where inventTransOriginTransfer.IssueInventTransOrigin == inventTransOriginId;

 info(int642str(inventTransOriginTransfer.RecId));

 if(!inventTransOriginTransfer.RecId)
 {
 select firstonly inventTransOriginTransfer
 where inventTransOriginTransfer.ReceiptInventTransOrigin == inventTransOriginId;

 info(int642str(inventTransOriginTransfer.RecId));
 }
}

Indexing tips and tricks
Included columns is a new feature that helps you create optimized indexes. With included columns, it
is easier, for example, to create covering indexes for queries with limited field lists or for queries that
aggregate data. For more information about covering indexes and indexes with included columns, see
“Index with Included Columns” on MSDN at http://msdn.microsoft.com/en-us/library/ms190806.aspx.

To create an index with included columns, set the IncludedColumn property on the index to Yes, as
shown in Figure 13-10.

FIGURE 13-10 IncludedColumn property on an index.

http://msdn.microsoft.com/en-us/library/ms190806.aspx
http://msdn.microsoft.com/en-us/library/ms190806.aspx

476 PART 2 Developing with Microsoft Dynamics AX

Another lesser-known feature is that if you add the dataAreaId field to the key columns of an
index, the AOS will not add it as the leading column in the index, which allows better optimization
of certain queries. For example, queries that don’t include the dataAreaId and use direct SQL trigger
an index scan if the dataAreaId is the leading column of an index when the index is used. In general,
you should use this feature only if you notice that the dataAreaId is not in the query and SQL Server is
performing an index scan because of that. However, this is not recommended unless it is necessary. If
you use this technique, you should always create a new index for that purpose.

When to use firstfast
The firstfast hint adds OPTION(FAST n) to a SQL Server query and causes SQL Server to prefer an
index that is good for sorting because the query returns the first rows as quickly as possible.

 select firstfast salestable // results in
 SELECT <FIELDLIST> FROM SALESTABLE OPTION(FAST 1)

Note If you are sorting fields from more than one table, OPTION(FAST n) might not
 produce the performance improvement you want.

This keyword is used automatically for grids on forms and can be enabled on the data sources
of AOT queries. As beneficial as this keyword can be—for example, on list pages that are supported
by AOT queries—it can produce a performance penalty on queries in general because it causes SQL
Server to optimize for sorting instead of for fastest execution time. If you see the firstfast hint in a
query that is running slowly, try disabling it and then check the response time. The Export Letter
of Credit/Import Collection form is an example of where this setting makes a difference. In the
AOT, navigate to Forms\BankLCExportListPage\Data Sources\BankLCExportListPage\Data Sources\
SalesTable (SalesTable). On this list page, the FirstFast property is set to No; however, performance will
improve by setting it to Yes.

Optimize list pages
You can experiment with a set of optimizations to improve the performance of list pages. Often,
list page queries are complex and span multiple data sources. Sorting joined result sets can
lead to a performance penalty. To optimize performance, try reducing sorting. For example,
 reducing sorting can benefit performance for the Contacts form. The query smmContacts_NoFilter
 (Forms/ smmContactsListPage/DataSources/smmContacts_NoFilter) specifies two tables in its Order by
clause. To optimize performance, you can sort by ContactPerson.ContactForParty only.

You can also optimize list page performance by working with the FirstFast and OnlyFetchActive
properties. Both options are described in detail earlier in this chapter.

 CHAPTER 13 Performance 477

Aggregate fields to reduce loop iterations
Instead of iterating and aggregating within X++ logic, you can often aggregate within the code to
save loop iterations and round-trips to the database. The number of loop iterations that you can
eliminate depends mainly on the fields on which the aggregation takes place and how many rows can
be aggregated. There are instances when you might want to add some values within your code only
based on certain conditions.

The following example compares set-based operations and aggregation with row-based
 operations:

// In practice, you should use static server methods to access data on the server.

public static void main(Args _args)
{
 TransferToSetBased ttsb;
 RecordInsertList ril = new RecordInsertList(tableName2id("TransferToSetBased"));
 Counter i;
 Counter tc;
 int myAggregate = 0;
 int my2ndAggregate;

 // Reset table.

 delete_from ttsb;

 // Populate line-based.

 tc = WinAPI::getTickCount();
 for(i=0;i<=1000;i++)
 {
 ttsb.clear();
 ttsb.Iterate=i;
 ttsb.Change=1;
 ttsb.Aggregate=5;
 ttsb.insert();
 }

 // Data populated 1000 records, 1000 round-trips.

 for(i=1001;i<=2000;i++)
 {
 ttsb.clear();
 ttsb.Iterate=i;
 ttsb.Change=1;
 ttsb.Aggregate=5;
 ril.add(ttsb);
 }
 ril.insertDatabase();

 // Data populated 1000 records, many fewer round-trips.
 // Based on buffer size. About 20-150 inserts per round-trip.

 ttsBegin;
 while select forupdate ttsb where ttsb.Iterate > 1000

478 PART 2 Developing with Microsoft Dynamics AX

 {
 if(ttsb.Iterate >= 1100 && ttsb.Iterate <= 1300)
 {
 ttsb.Change = 10;
 ttsb.update();
 myAggregate += ttsb.Aggregate;
 }
 else if(ttsb.Iterate >= 1301 && ttsb.Iterate <= 1500)
 {
 ttsb.Change = 20;
 ttsb.update();
 my2ndAggregate += ttsb.Change;
 }
 else if(ttsb.Iterate >= 1501 && ttsb.Iterate <= 1700)
 {
 ttsb.Change = 30;
 ttsb.update();
 myAggregate += ttsb.Aggregate;
 }

 if(ttsb.Iterate > 1900)
 break;
 }
 ttsCommit;

 // While loop does 1-900 fetches. Does 600 single update statements.
 // Above logic set-based and using aggregation results in 6 queries to the database.

 update_recordSet ttsb setting change = 10 where ttsb.Iterate >= 1100 && ttsb.iterate <=
 1300;
 update_recordSet ttsb setting change = 20 where ttsb.Iterate >= 1301 && ttsb.Iterate <=
 1500;
 update_recordSet ttsb setting change = 30 where ttsb.Iterate >= 1501 && ttsb.Iterate <=
 1700;

 select sum(Aggregate) from ttsb where ttsb.Iterate >= 1100 && ttsb.Iterate <= 1300;
 myAggregate = 0;
 myAggregate = ttsb.Aggregate;

 select sum(Change) from ttsb where ttsb.Iterate >= 1301 && ttsb.Iterate <= 1500;
 my2ndAggregate = ttsb.Change;

 select sum(Aggregate) from ttsb where ttsb.Iterate >= 1501 && ttsb.Iterate <= 1700;
 myAggregate += ttsb.Aggregate;

 }

Performance monitoring tools

Without a way to monitor the execution of your application logic, you implement features almost
blindly with regard to performance. Fortunately, the Microsoft Dynamics AX Development Workspace
contains a set of easy-to-use tools to help you monitor client/server calls, database activity, and

 CHAPTER 13 Performance 479

 application logic. These tools provide good feedback on the feature being monitored. The feedback
is integrated directly with the Development Workspace, making it possible for you to jump directly to
the relevant X++ code.

Microsoft Dynamics AX Trace Parser
The Microsoft Dynamics AX Trace Parser consists of a user interface and data analyzer that is built on
SQL Server 2008 and the Event Tracing for Windows (ETW) framework. The Microsoft Dynamics AX Trace
Parser has been significantly improved in Microsoft Dynamics AX 2012, with new features and enhanced
performance and usability. The performance overhead for running a single trace is comparatively low.
With ETW, you can conduct tracing with system overhead of approximately 4 percent.

Only users with administrative privileges, users in the Performance Log Users group, and services
running as LocalSystem, LocalService, and NetworkService can enable trace providers.

To use the Microsoft Dynamics AX Tracing Cockpit in the client, a user must be either in the
Administrators or Performance Log Users group. The same is true for users who use Windows
 Performance Monitor. Additionally, the user must have write access to files in the folder that stores
the results of the trace.

The Trace Parser enables rapid analysis of traces to find the longest-running code, the
 longest- running SQL query, the highest call count, and other metrics that are useful in debugging a
performance problem. In addition, it provides a call tree of the code that was executed, allowing you
to gain insight into unfamiliar code quickly. It also provides the ability to jump from the search feature
to the call tree so that you can determine how the problematic code was called.

The Trace Parser is included with Microsoft Dynamics AX 2012 and is also available as a free
 download from Partner Source and Customer Source. To install the Trace Parser, run the Microsoft
Dynamics AX 2012 Setup program and navigate to Add or Modify Components > Developer Tools >
Trace Parser.

New Trace Parser features
Microsoft Dynamics AX 2012 includes several new features for Trace Parser, which can help you
 understand a performance problem quickly.

 ■ Monitor method calls If you right-click a line in X++/RPC view, and then click Jump To
 Non-Aggregated View, you can view, information such as whether all calls to the method took
the same amount of time or if one call was an outlier. The same function is available in the SQL
view.

 ■ Monitor client sessions If there was an RPC call between the client and the server in either
Non-Aggregated view or Call Tree view, you can right-click the line containing the call, and
then click Drill Through To Client Session. This feature also works for RPC calls between the
server and the client.

480 PART 2 Developing with Microsoft Dynamics AX

 ■ Jump between views If you want to jump from Call Tree view to Non Aggregated X++/RPC
view, you can right-click, and then select the option you want.

 ■ Monitor events In either Non Aggregated X++/RPC view or Call Tree view, you can select
two or more events while holding down the Ctrl key and then right-click and select Show
Time Durations Between Events. This is extremely useful for monitoring and troubleshooting
asynchronous events.

 ■ Look up table details Under View, you can click Table Details to look up table details
within Microsoft Dynamics AX. A Business Connector .NET connection is required for this
 functionality, just like the code lookup functionality.

 ■ Compare traces Under View, you can click Trace Comparison, which opens a form where
you can compare two traces.

Before tracing
Before taking a trace, run the process that you want to trace at least once to avoid seeing metadata
 loading in the trace file. This is called tracing in a warm state and is recommended because it helps
you to focus on the real performance issue and not on metadata loading and caching. Then you can
prepare everything so that the amount of time between starting the trace and executing the process
you want to trace is as short as possible.

In Microsoft Dynamics AX 2009, you had to set tracing options in multiple places. In Microsoft
Dynamics AX 2012, there are only three places to set options. In addition, there is only one trace file
for both the client and the server.

You can start a trace in three ways:

 ■ From the Tracing Cockpit in the Microsoft Dynamics AX 2012 client

 ■ From Windows Performance Monitor

 ■ Through code instrumentation

The following sections describe each method in detail.

Start a trace through the client
As mentioned earlier, you must be logged on as an administrator to use the Tracing Cockpit.
Table 13-2 describes the options that are available in the Tracing Cockpit.

TABLE 13-2 Options in the Tracking Cockpit.

Element Description

Start Trace Start tracing after you specify the location where you want to store the trace file.

Stop Trace Stop tracing and finish writing the information to your trace file.

Cancel Trace Stop the trace without saving information to the trace file.

Open Trace Open the trace file in Trace Parser.

 CHAPTER 13 Performance 481

Element Description

Collect Server Trace Collect both client and server data.

Circular Logging Specify a file size and keep logging information until you click Stop. If you select
this option, data is overwritten, so you get the latest data in the file. This option
is new for Microsoft Dynamics AX 2012 and is especially effective if you want
to trace processes that run longer than, for example, 10 minutes. You can use
this feature to capture a trace in the middle of the execution of a long-running
 process.

Bind Parameters Allow users to get the actual values that are passed to SQL Server instead of the
parameterized queries. This option is turned off by default because it potentially
collects confidential information.

Detailed Database Collect information about the number of rows fetched and the time it took to
fetch those rows.

RPC Collect information about the number of RPC calls that are being made.

SQL Collect the SQL statements that the AOS passes to SQL Server.

TraceInfo Show information about what process logged the event.

TTS Log the ttsBegin, ttsCommit, and ttsAbort statements.

XPP Log the X++ calls that are being made.

XPP Marker Copy markers that are added during the trace to the trace file.

Client Access Collect information about which forms were opened and closed and which
 buttons were clicked.

XPP Parameter Info Collect the parameters passed to X++ methods. This option is turned off by
 default because it potentially collects confidential information.

To start a trace from the Tracing Cockpit, do the following:

1. In the Microsoft Dynamics AX 2012 client, open the Development Workspace by pressing
Ctrl+Shift+W.

2. On the Tools menu, click Tracing Cockpit (Figure 13-11).

3. Set the options for your trace. For example, if you only want to collect a client trace, clear the
Collect Server Trace check box.

4. Bring your process to a warm state (as described earlier) and then click Start Trace.

5. Choose a location in which to save your trace file.

6. Execute your process, and then click Stop Trace.

7. Click Open Trace to open the trace file in the Trace Parser.

482 PART 2 Developing with Microsoft Dynamics AX

FIGURE 13-11 The Tracing Cockpit.

Start a trace through Windows Performance Monitor
To start a trace in Windows Performance Monitor, do the following:

1. On the Start menu, click Run, and then type perfmon.

2. Expand Data Collector Sets.

3. Right-click User Defined, and then click New > Data Collector Set.

4. Select Create Manually, and then click Next.

5. Select Event Trace Data, and then click Next.

6. Next to Providers, click Add, and then In the Event Trace Providers form, select
 Microsoft-DynamicsAX-Tracing, and then click OK.

Note If you use Windows Performance Monitor, by default, all events are traced,
including events that might collect confidential information. To prevent this, click
Edit, and then select only the events necessary. The events that might collect
confidential information are noted in their descriptions.

7. Click Next, and then note the root directory that your traces are stored in.

8. Click Next to change the user running the trace to an Administrative user, and then click
 Finish.

9. In the right pane of Windows Performance Monitor, right-click the newly created data
 collector set, and click Properties.

 CHAPTER 13 Performance 483

10. In the Properties window, click the Trace Buffers tab and modify the default buffer settings.
The default buffer settings do not work well for collecting Microsoft Dynamics AX event traces
because large numbers of events can be generated in a short time and fill the buffers quickly.
Change the following settings as specified and leave the rest set to the default:

• Buffer Size: 512 KB

• Minimum Buffers: 60

• Maximum Buffers: 60

11. To start tracing, click the data collector set in the left pane, and then click Start.

Start a trace through code instrumentation
You can use the xClassTrace class from the Tracing Cockpit to start and stop a trace. To trace the Sales
Form letter logic, see the following sample in \Classes\SalesFormLetter:

// Add
xClassTrace xCt = new xClassTrace();

// to the variable declaration.
// …code…

 if (salesFormLetter.prompt())
 {
 xClassTrace::start("c:\\temp\\test1.etl");
 xClassTrace::logMessage("test1");
 xCt.beginMarker("marker"); // Add markers at certain points of a trace to
 // increase trace readability. You can add
 // multiple markers per trace.

 salesFormLetter.run();

 xCt.endMarker("marker");
 xClassTrace::stop();

 outputContract = salesFormLetter.getOutputContract();
 numberOfRecords = outputContract.parmNumberOfOrdersPosted();
 }

// …code…

In the call to xClassTrace::start, you can use multiple parameters to specify the events to trace or
whether you want to use circular logging, among other things. To find out which keyword equals
which parameter, put a breakpoint in the class SysTraceCockpitcontroller\startTracing and start a trace
from the Tracing Cockpit with various events selected.

Import a trace
To import a trace, open the Microsoft Dynamics AX Trace Parser, and then click Import Trace. (You can
also use the Open Trace form to import a trace file.) It is possible to import multiple trace files at once.

484 PART 2 Developing with Microsoft Dynamics AX

Analyze a trace
After you load the trace files into the Trace Parser, you can analyze your trace files through built-in
views.

When you open a trace from the Overview tab, you see a summary that gives you a high-level
understanding of where the most time is spent within the trace.

On the Overview tab, select a session. If you took the trace, select your session. If you received the
trace file from someone else, select the session of the person who took the trace. When you select
a session, you’ll see an overview similar to Figure 13-12, but for that session only. To return to the
 summary for all sessions, select the Show Summary Across All Sessions check box.

FIGURE 13-12 Trace overview.

After selecting a session in the drop-down list, you can search and review the trace through the
X++ methods and RPC calls or the SQL queries, or you can review the call tree of the session. It’s
best to start looking for quick improvements by sorting by total exclusive duration. Then, break the
process down by sorting by total inclusive duration for detailed tuning. You can jump to the Call Tree
view from the X++ methods and RPC calls and from the SQL view.

 CHAPTER 13 Performance 485

Use the X++/RPC view to understand patterns in your trace, as shown in Figure 13-13.

FIGURE 13-13 X++/RPC view.

SQL view (see Figure 13-14) gives you a quick overview of which queries were executed and how
long the execution and data retrieval took.

Note Execution time and row retrieval time are measured separately.

486 PART 2 Developing with Microsoft Dynamics AX

FIGURE 13-14 SQL view.

Call Tree view (see Figure 13-15) is particularly helpful for identifying expensive loops and other
costly patterns.

 CHAPTER 13 Performance 487

FIGURE 13-15 Call Tree view.

Troubleshoot tracing
This section provides information about how to troubleshoot a few of the common issues with
 tracing.

Tracing won’t start If tracing doesn’t start, make sure that the user who is running the trace is a
member of the Administrators or Performance Log Users group.

Tracing causes performance problems If you run a trace from a client that is located on an
AOS, you will get one trace file. If the client is not on the AOS, you will get two files: one on the
 client computer and one on the AOS. If you run more than one client tracing session simultaneously,
the system will slow down because tracing is processing- and space-intensive in this situation. It is
 recommended that you not turn on tracing on an AOS instance that is supporting a workload of
multiple clients.

Trace doesn’t produce meaningful data If X++ code is running as CIL, a trace might not produce
meaningful results. Table 13-3 lists scenarios that might cause tracing problems and describes
 possible mitigations.

488 PART 2 Developing with Microsoft Dynamics AX

TABLE 13-3 Troubleshooting tracing for X++ code running as CIL.

Scenario Mitigation

X++ code is traversed into CIL by means of RunAs In the Development Workspace, click Tools > Options.
On the Development tab, clear the Execute Business
Operations In CIL check box.

Services that are called from outside Microsoft
Dynamics AX or services in the AxClient group

Often it is effective to write a small test job or class to
execute the service from within Microsoft Dynamics AX.
If for some reason, this is not an option, utilize Microsoft
Visual Studio profiling to trace the service.

Batch jobs run in CIL Execute the code outside the batch framework. Try to
limit the length of the operation; for example, by limiting
the operation to a small number of tasks that can be
 processed in a few minutes. If this is not possible, you can
use Visual Studio profiling, which is described at the end
of this chapter.

Monitor database activity
You can also trace database activity when you’re developing and testing Microsoft Dynamics AX
 application logic.

You can enable tracing on the SQL tab of the Options dialog box (in the AOT, on the Tools menu,
click Options). You can trace all Transact-SQL statements or just the long-running queries, warnings,
and deadlocks. Transact-SQL statements can be traced to the Infolog, a message window, a database
table, or a file. If statements are traced to the Infolog, you can use the context menu to open the
statement in the SQL Trace dialog box, in which you can view the entire statement and the path to the
method that executed the statement.

Note You should not use this feature except for long-term monitoring of long-running
queries. Even then, you should use this feature carefully because it adds overhead to the
system.

From the SQL Trace dialog box, you can copy the statement and, if you’re using SQL Server 2008,
open a new query window in SQL Server Management Studio (SSMS) and paste in the query. If the
Microsoft Dynamics AX run time uses placeholders to execute the statement, the placeholders are
shown as question marks in the statement. You must replace these with variables or constants before
the queries can be executed in SQL Server Query Analyzer. If the run time uses literals, the statement
can be pasted directly into SQL Server Query Analyzer and executed.

When you trace SQL statements in Microsoft Dynamics AX, the run time displays only the DML
statement. It doesn’t display other commands that are sent to the database, such as transaction
commits or isolation level changes. With SQL Server 2008 and later versions, you can use SQL Server
Profiler to trace these statements by using the event classes RPC:Completed and SP:StmtCompleted in
the Stored Procedures collection, and the SQL:BatchCompleted event in the TSQL collection, as shown
in Figure 13-16.

 CHAPTER 13 Performance 489

FIGURE 13-16 SQL Server Profiler trace events.

Use the SQL Server connection context to find the SPID or user
behind a client session
You can use the Server Process ID (SPID) or user name for a client session to troubleshoot a wide
 variety of issues, such as contention or queries that run slowly. In previous versions of Microsoft
Dynamics AX, the Online Users form contained a column for the SPID of client sessions. In Microsoft
Dynamics AX 2012, information about user sessions can be included in the SQL Server connection
context. Adding this information has a small performance overhead.

For more information, see the entry “Finding User Sessions from SPID in Dynamics AX 2012” on the
Thoughts on Microsoft Dynamics AX blog (http://blogs.msdn.com/b/amitkulkarni/archive/2011/08/10/
finding-user-sessions-from-spid-in-dynamics-ax-2012.aspx).

After applying the information from the blog entry, you can also use the following query returns
session information, including the user names of Microsoft Dynamics AX users and, to some extent,
the queries that they are currently running:

select top 20 cast(s.context_info as varchar(128)) as ci,text,query_plan,* from
sys.dm_exec_cursors(0) as ec cross apply sys.dm_exec_sql_text(sql_handle) sql_text,
sys.dm_exec_query_stats as qs cross apply sys.dm_exec_query_plan(plan_handle) as
plan_text,sys.dm_exec_sessions s
where ec.sql_handle = qs.sql_handle and ec.session_id = s.session_id order by ec.worker_time
desc

490 PART 2 Developing with Microsoft Dynamics AX

The client access log
You can use the client access log to track the activities of multiple users as they do their daily work.
The client access log writes data to the SysClientAccessLog table. For more information about this
 feature, see the entry “Client Access Log” on the Microsoft Dynamics AX Performance Team blog
(http://blogs.msdn.com/b/axperf/archive/2011/10/14/client-access-log-dynamics-ax-2012.aspx).

Visual Studio Profiler
As mentioned earlier, for certain processes, the only option for tracing might be Visual Studio Profiler.
The following are high-level steps for using Visual Studio Profiler with Microsoft Dynamics AX.

Note Visual Studio Profiler is available with Visual Studio 2010 Premium and Visual Studio
2010 Ultimate editions.

1. In Visual Studio, on the Debug menu, click Options And Settings.

2. In the left pane of the Options dialog box, click Debugging, and then click Symbols, and
ensure that the symbol file is loaded for the XppIL folder of the AOS that you want to profile.
(The profiling tools use symbol [.pdb] files to resolve symbolic names such as function names
in program binaries.)

3. On the Analyze menu, click Launch Performance Wizard to create a new performance session.

4. Accept the default setting of CPU Sampling, and point to the AOS that you want to profile, but
don’t start profiling right away.

5. Open Performance Explorer, right-click the top node of your session (Figure 13-17), and then
click Properties.

FIGURE 13-17 Performance Explorer.

6. In the Properties window, navigate to Sampling and decrease the sampling interval either to
100,000 or 1,000,000 to get better results.

7. Prepare the process that you want to profile, and then click Attach/Detach to attach to the
process (for example, the AOS).

8. When you are done profiling, click Attach/Detach to detach from the AOS.

 CHAPTER 13 Performance 491

Important Don’t click Stop Profiling because this will cause the AOS to stop
 responding.

After you finish profiling, Visual Studio generates a report that helps you understand the
 performance problem in detail, as shown in Figure 13-18.

FIGURE 13-18 Profiling report.

The report offers multiple views such as Summary, Call Tree, and Functions, and it offers options to
show functions that called the function you are currently reviewing. If you installed the Visual Studio
tools for Microsoft Dynamics AX, you can also quickly navigate to the X++ methods identified in the
report without leaving Visual Studio.

Tip The smaller the sampling interval, the better the quality of the profiling, but more data
is collected.

 CHAPTER 14 Extending Microsoft Dynamics AX 493

C H A P T E R 1 4

Extending Microsoft Dynamics AX

In this chapter
Introduction . 493
The SysOperation framework . 493
Comparing the SysOperation and RunBase frameworks 495
The RunBase framework . 510
The extension framework . 516
Eventing . 520

Introduction

Microsoft Dynamics AX provides several frameworks that you can use to extend an application.
In Microsoft Dynamics AX 2012, the SysOperation framework replaces the RunBase framework to
provide support for business transaction jobs, such as exchange rate adjustment or inventory closing.
Microsoft Dynamics AX also provides two extensibility patterns: the extension framework, which
works well for developing plug-ins, and the eventing framework, which is based on eventing concepts
in the Microsoft .NET Framework.

The first part of this chapter introduces the SysOperation framework and discusses an example that
compares the SysOperation and RunBase frameworks. The next section provides more information
about RunBase classes to help you understand existing functionality developed with the RunBase
framework.

The final sections describe the extension and eventing frameworks. The extension framework reduces
or eliminates the coupling between application components and their extensions. The eventing framework
is new in Microsoft Dynamics AX 2012. The methods in an X++ class can raise an event immediately before
they start (the pre event), and again after they end (the post event). These two events offer opportunities
for you to insert custom code into the program flow with event handlers.

The SysOperation framework

You use the SysOperation framework when you want to write application logic that supports running
operations interactively or by means of the Microsoft Dynamics AX batch server. This framework
 provides capabilities that are similar to those of the RunBase framework.

C H A P T E R 1 4

Extending Microsoft
Dynamics AX

Introduction

The SysOperation framework

SysOperation framework classes

SysOperation framework attributes

Comparing the SysOperation and RunBase frameworks

RunBase example: SysOpSampleBasicRunbaseBatch

SysOperation example: SysOpSampleBasicController

The RunBase framework

Inheritance in the RunBase framework

Property method pattern

Pack-unpack pattern

Client/server considerations

The extension framework

Create an extension

Extension example

Eventing

Delegates

Pre and post events

Event handlers

Eventing example

494 PART 2 Developing with Microsoft Dynamics AX

The batch framework, which is described in detail in Chapter 18, ”The batch framework,” has
 specific requirements for defining operations:

 ■ The operation must support parameter serialization so that its parameters can be saved to the
batch table.

 ■ The operation must have a way to display a user interface that lets users modify batch job
parameters. For more information about batch jobs in Microsoft Dynamics AX, see Chapter
18 and the topic “Process batch jobs and tasks,” at http://technet .microsoft.com/en-us/library/
gg731793.aspx.

 ■ The operation must implement the interfaces needed for integration with the batch server run
time.

While the RunBase framework defines coding patterns that implement these requirements, the
SysOperation framework goes further by providing base implementations for many of the interfaces
and classes in the patterns.

Unlike the RunBase framework, the SysOperation framework implements the Model-View-
Controller (MVC) design pattern, separating presentation from business logic. For more information,
see “Model-View-Controller,” at http://msdn.microsoft.com/en-us/library/ff649643.aspx.

SysOperation framework classes
The SysOperationServiceController class provides several useful methods, such as the following:

 ■ getServiceInfo Gets the service operation.

 ■ getDataContractInfo Gets the data contracts that are used as parameters and return values
for the service operation, and gets the user interface (UI) builder information for each of the
data contracts.

 ■ startOperation Makes the service call in various modes, including synchronous,
 asynchronous, and batch.

The SysOperationUIBuilder and SysOperationAutomaticUIBuilder classes help to create the default
user interface from a definition of the data contract or from a custom form definition. You can write
custom UI builders that derive from this base class to provide defaulting and validation or to raise
specific events. You can override the following methods:

 ■ postBuild Overriding this method lets you get references to the dialog box controls if the UI
builder is dynamic (In other words, if the UI builder is not form-based).

 ■ postRun Overriding this method lets you register validation methods.

http://technet.microsoft.com/en-us/library/gg731793.aspx

 CHAPTER 14 Extending Microsoft Dynamics AX 495

SysOperation framework attributes
SysOperation attributes specify metadata for the data contracts to provide loose coupling with UI
builders. The following attributes are available:

 ■ DataContractAttribute Identifies a class as a data contract.

 ■ DataMemberAttribute Identifies a property as a data member.

 ■ SysOperationContractProcessingAttribute Designates a default UI builder for
the data contract.

 ■ SysOperationLabelAttribute, SysOperationHelpTextAttribute, and
 SysOperationDisplayOrderAttribute Specify the label, help text, and display order
 attributes, respectively, for the data member.

Comparing the SysOperation and RunBase frameworks

The SysOperation and the RunBase frameworks are designed to build applications that have
 operations that can run on the batch server or interactively. For an operation to run on the batch
server, it must support the following:

 ■ Parameter serialization by means of the SysPackable interface

 ■ The standard run method that is defined in the BatchRunable interface

 ■ The batch server integration methods found in the Batchable interface

 ■ A user interface that enables and displays user input

Figure 14-1 illustrates how all operations that must run by means of the batch server must derive
from either the SysOperationController or the RunBaseBatch base class.

The code examples in the following sections illustrate the basic capabilities provided by the two
frameworks. These examples run an operation both interactively (by means of a dialog box) and in
batch mode.

To view and use the samples on your own, import PrivateProject_SysOperationIntroduction.
xpo, and then press Ctrl+Shift+P to view the sample code in the Projects window. You can view the
 following two sample classes in the Sample_1_SysOperation_Runbase_Comparison node:

 ■ SysOpSampleBasicRunbaseBatch

 ■ SysOpSampleBasicController

496 PART 2 Developing with Microsoft Dynamics AX

<<interface>>
SysPackable

+pack()
+unpack()

<<interface>>
BatchRunable

+run()

<<interface>>
Batchable

+batchInfo()
+conGoBatch()
+coption
+parmCurrentBatch()
+runsImpersonated()
+showBatchTab()

SysOperationController

+prompb()

RunBaseBatch

+dialogMake()

FIGURE 14-1 Derivation of operations that run on the batch server.

These classes compare the functionality of the RunBase framework to the functionality of the
SysOperation framework.

Before you run the samples, you must compile the project and generate common intermediate
language (CIL) for the samples.

1. In the Development Workspace, right-click the project name, and then click Compile.

2. Click Build and then click Generate Incremental CIL (or press Ctrl+Shift+F7).

RunBase example: SysOpSampleBasicRunbaseBatch
The simplest operation that is based on the RunBaseBatch base class must implement several
 overridden methods. Table 14-1 describes the overridden methods that are implemented in the
SysOpSampleBasicRunbaseBatch class. Example code following the table illustrates how to use these
methods.

 CHAPTER 14 Extending Microsoft Dynamics AX 497

TABLE 14-1 Method overrides for the RunBaseBatch class.

Method Description

dialog Populates the dialog box created by the base class with controls needed to
get user input

getFromDialog Transfers the contents of dialog box controls to operation input parameters

putToDialog Transfers the contents of operation input parameters to dialog box controls

pack Serializes operation input parameters

unpack Deserializes operation input parameters

run Runs the operation

description A static description for the operation

In the override for the classDeclaration method that derives from RunBaseBatch, you must declare
variables for input parameters, dialog box controls, and a macro, LOCALMACRO, that defines a list of
variables that must be serialized:

class SysOpSampleBasicRunbaseBatch extends RunBaseBatch
{
 str text;
 int number;
 DialogRunbase dialog;

 DialogField numberField;
 DialogField textField;

 #define.CurrentVersion(1)

 #LOCALMACRO.CurrentList
 text,
 number
 #ENDMACRO
}

Next, override the dialog method. This method populates the dialog box created by the base
class with two controls that accept user input: a text field and a numeric field. The initial values from
the class member variables are used to initialize the controls. Note that the type of each control is
 determined by the name of the extended data type (EDT) identifier:

protected Object dialog()
{
 dialog = super();

 textField = dialog.addFieldValue(IdentifierStr(Description255),
 text,
 'Text Property',
 'Type some text here');

 numberField = dialog.addFieldValue(IdentifierStr(Counter),
 number,
 'Number Property',
 'Type some number here');

498 PART 2 Developing with Microsoft Dynamics AX

 return dialog;
}

The overridden getFromDialog method transfers the contents of the dialog box controls to
 operation input parameters:

public boolean getFromDialog()
{
 text = textField.value();
 number = numberField.value();

 return super();
}

The overridden putFromDialog method transfers the contents of operation input parameters to
dialog box controls:

protected void putToDialog()
{
 super();

 textField.value(text);
 numberField.value(number);
}

The overridden pack and unpack methods serialize and deserialize the operation input parameters:

public container pack()
{
 return [#CurrentVersion, #CurrentList];
}
public boolean unpack(container packedClass)
{
 Integer version = conPeek(packedClass,1);

 switch (version)
 {
 case #CurrentVersion:
 [version,#CurrentList] = packedClass;
 break;
 default:
 return false;
 }
 return true;
}

The overridden run method runs the operation. The following example prints the input parameters
to the Infolog. It also prints the tier that the operation is running on and the run time that is used for
execution.

public void run()
{
 if (xSession::isCLRSession())
 {

 CHAPTER 14 Extending Microsoft Dynamics AX 499

 info('Running in a CLR session.');
 }
 else
 {
 info('Running in an interpreter session.');
 if (isRunningOnServer())
 {
 info('Running on the AOS.');
 }
 else
 {
 info('Running on the Client.');
 }
 }

 info(strFmt('SysOpSampleBasicRunbaseBatch: %1, %2', this.parmNumber(), this.parmText()));
}

The description method provides a static description for the operation. Override the description
method as shown in the following example to use this description as the default value for the caption
shown in batch mode and in the user interface:

public static ClassDescription description()
{
 return 'Basic RunBaseBatch Sample';
}

Override the main method that prompts the user for input, and then runs the operation or adds it
to the batch queue, as shown in the following example:

public static void main(Args _args)
{
 SysOpSampleBasicRunbaseBatch operation;

 operation = new SysOpSampleBasicRunbaseBatch();
 if (operation.prompt())
 {
 operation.run();
 }
}

The overridden parmNumber and parmText methods are optional. It is a Microsoft Dynamics AX
best practice to expose operation parameters with the property pattern for better testability and for
access to class member variables outside the class. Override these methods as shown in the following
example:

public int parmNumber(int _number = number)
{
 number = _number;

 return number;
}
public str parmText(str _text = text)
{

500 PART 2 Developing with Microsoft Dynamics AX

 text = _text;

 return text;
}

The main method for the RunBaseBatch sample prompts the user for input for the operation
when the operation.prompt method is called. If the prompt returns true, main calls the operation.run
method directly. If the prompt returns false, it indicates that the user either canceled the operation or
scheduled it to run as a batch.

To run the sample interactively, run the main method by clicking Go in the Code Editor window, as
shown in Figure 14-2.

FIGURE 14-2 Code Editor window for SysOpSampleBasicRunbaseBatch.

On the General tab of the sample user interface, enter information in the Text Property and
 Number Property fields, as shown in Figure 14-3.

FIGURE 14-3 The General tab of the SysOpSampleBasicRunbaseBatch user interface.

On the Batch tab, ensure that the Batch Processing check box is cleared, as shown in Figure 14-4.

 CHAPTER 14 Extending Microsoft Dynamics AX 501

FIGURE 14-4 The Batch tab of the SysOpSampleBasicRunbaseBatch user interface.

Click OK to run the operation and print the output to the Infolog.

View the Infolog messages as shown in Figure 14-5. They show that the operation ran on the
 server because the sample SysOpSampleBasicRunbaseBatch class has the RunOn property set to
Server. The operation ran by means of the X++ interpreter, which is the default for X++ code.

FIGURE 14-5 The Infolog window for SysOpSampleBasicRunbaseBatch output.

To run the sample in batch mode, rerun the operation by clicking Go in the Code Editor window
and enter data for the Text Property and the Number Property on the General tab of the sample user
interface.

Next, select the Batch Processing check box on the Batch tab to run the operation on the batch
server. When the Batch Processing check box is selected, the Infolog message in Figure 14-6 appears,
indicating that the operation has been added to the batch queue.

502 PART 2 Developing with Microsoft Dynamics AX

FIGURE 14-6 The Infolog window showing a job added to the batch queue.

The operation may take up to a minute to get scheduled. After waiting for about a minute, open
the BatchJob form from the Forms node in the Application Object Tree (AOT), as shown in Figure 14-7.

FIGURE 14-7 The Forms node in AOT.

The Job Description form opens, as shown in Figure 14-8.

 CHAPTER 14 Extending Microsoft Dynamics AX 503

FIGURE 14-8 The Job Description form showing the status of batch jobs.

Press the F5 key to update the form. Press the F5 key repeatedly until the job entry shows that the
job has ended. Sorting by the Scheduled Start Date/Time column may help you find the operation if
there are many job entries in the grid.

To view the log, select the operation and then click Log on the toolbar.

The Infolog in Figure 14-9 illustrates messages indicating that the operation ran in a common
language runtime (CLR) session, which is the batch server execution environment.

FIGURE 14-9 Messages for the SysOpSampleBasicRunBaseBatch sample.

504 PART 2 Developing with Microsoft Dynamics AX

SysOperation example: SysOpSampleBasicController
As mentioned earlier, the SysOperation framework provides the same capabilities as the RunBase
framework but also includes base implementations for common overrides. The SysOperation
 framework handles basic user interface creation, parameter serialization, and routing to the CLR
execution environment.

The SysOperation sample contains two classes: a controller class named SysOpSampleBasicController
and a data contract class named SysOpSampleBasicDataContract. Table 14-2 describes the overridden
methods that are necessary to match the functionality demonstrated in the RunBase sample in the
 previous section. Notice that you do not have to override the dialog, getFromDialog, putToDialog, pack,
unpack, and run methods in the SysOpSampleBasicController class, because the SysOperation framework
provides the base functionality for these methods. Example code later in this section illustrates how to use
these methods.

TABLE 14-2 Method overrides for SysOpSampleBasicController and SysOpSampleBasicDataContract classes.

Method Description

SysOpSampleBasicController class

classDeclaration Derives from the framework base class.

new Identifies the class and method for the operation.

showTextInInfolog Prints the input parameters, the tier that the operation runs on, and
the run time used for execution to the Infolog.

caption Provides a description for the operation.

main Runs the operation.

SysOpSampleBasicDataContract class

classDeclaration The data contract attribute is used by the base framework to reflect
on the operation.

parmNumber The data member attribute identifies this property method as part
of the data contract. The label, help text, and display order attributes
provide hints for user interface creation.

parmText See the description for parmNumber.

Important Normally, the SysOpSampleBasicController class would derive from
 SysOperationServiceController, which provides all of the base functionality for building
operations; however, the Microsoft Dynamics AX 2012 version of the class contains a few
known issues and these will be addressed in a future service pack. To work around the
 issues, a new common class, SysOpSampleBaseController, is available. For more information,
see the white paper “Introduction to the SysOperation Framework,” at http://go.microsoft
.com/fwlink/?LinkId=246316.

Table 14-3 describes the issues and illustrates the solutions provided by the
 SysOpSampleBaseController class.

http://go.microsoft.com/fwlink/?LinkId=246316

 CHAPTER 14 Extending Microsoft Dynamics AX 505

TABLE 14-3 Issues and workarounds for SysOperationServiceController.

Issue Code in SysOpSampleBaseController

The controller should not be unpacked from the
SysLastValue table when running as a batch.

protected void loadFromSysLastValue()
{
 if (!dataContractsInitialized)
 {
 // This is a bug in the
 // SysOperationController class
 // never load from syslastvalue table
 // when executing in batch
 // it is never a valid scenario
 // if (!this.isInBatch())
 {
 super();
 }

 dataContractsInitialized = true;
 }
}

The default value for the
 parmRegisterCallbackForReliableAsyncCall property
should be false to prevent unnecessary polling of the
batch server.

public void new()
{
 super();

 // defaulting parameters common to all
 // scenarios

 // If using reliable async mechanism do not
 // wait for the batch to
 // complete. This is better done at the
 // application level since
 // the batch completion state transition is
 // not predictable
 // this.parmRegisterCallbackForReliableAsyncCa
 // ll(false);

 … code removed for clarity …
}

The default value for the parmExecutionMode property
should be Synchronous to prevent issues when creating
run-time tasks.

public void new()
{
 … code removed for clarity …

 // default for controllers in these samples
 // is synchronous execution
 // batch execution will be explicitly
 // specified. The default for
 // SysOperationServiceController is
 // ReliableAsynchronous execution

 this.parmExecutionMode(SysOperationExecution
Mode::Synchronous);

}

The class declaration for SysOpSampleBasicController derives from the framework base class,
 SysOpSampleBaseController, which is provided with the sample code:

class SysOpSampleBasicController extends SysOpSampleBaseController
{
}

506 PART 2 Developing with Microsoft Dynamics AX

The new method for SysOpSampleBasicController identifies the class and method for the operation.
In the following example, the new method points to a method on the controller class. However, it
can point to any class method. The framework reflects on this class and method to provide the user
interface and parameter serialization.

void new()
{
 super();

 this.parmClassName(
 classStr(SysOpSampleBasicController));
 this.parmMethodName(
 methodStr(SysOpSampleBasicController,
 showTextInInfolog));

 this.parmDialogCaption(
 'Basic SysOperation Sample');
}

In the following example, the showTextInInfolog method prints the input parameters, the tier where
the operation is running, and the run time to the Infolog window:

public void showTextInInfolog(SysOpSampleBasicDataContract data)
{
 if (xSession::isCLRSession())
 {
 info('Running in a CLR session.');
 }
 else
 {
 info('Running in an interpreter session.');
 if (isRunningOnServer())
 {
 info('Running on the AOS.');
 }
 else
 {
 info('Running on the Client.');
 }
 }

 info(strFmt('SysOpSampleBasicController: %1, %2', data.parmNumber(), data.parmText()));
}

The caption method provides a description for the operation. This description is used as the default
value for the caption shown in batch mode and the operation user interface.

public ClassDescription caption()
{
 return 'Basic SysOperation Sample';
}

 CHAPTER 14 Extending Microsoft Dynamics AX 507

The main method prompts the user for input and then runs the operation or adds it to the batch
queue:

public static void main(Args args)
{
 SysOpSampleBasicController operation;

 operation = new SysOpSampleBasicController();
 operation.startOperation();
}

The three methods that you override in the SysOpSampleBasicDataContract class are shown in the
following example. The framework uses the data contract attribute to reflect on the operation in the
class declaration. The parmNumber and parmText methods use the data member attribute to identify
these property methods as part of the data contract. The label, help text, and display order attributes
provide hints for creating the user interface.

[DataContractAttribute]
class SysOpSampleBasicDataContract
{
 str text;
 int number;
}
[DataMemberAttribute,
SysOperationLabelAttribute('Number Property'),
SysOperationHelpTextAttribute('Type some number >= 0'),
SysOperationDisplayOrderAttribute('2')]
public int parmNumber(int _number = number)
{
 number = _number;

 return number;
}
[DataMemberAttribute,
SysOperationLabelAttribute('Text Property'),
SysOperationHelpTextAttribute('Type some text'),
SysOperationDisplayOrderAttribute('1')]
public Description255 parmText(str _text = text)
{
 text = _text;

 return text;
}

As in the RunBase sample, click Go on the Code Editor toolbar in the main method of the
 SysOpSampleBasicController class to run the SysOperation sample operation, as shown in
Figure 14-10.

508 PART 2 Developing with Microsoft Dynamics AX

FIGURE 14-10 Running the SysOperation sample.

The main class calls operation.startOperation, which handles running the operation synchronously
or adding it to the batch queue. The startOperation method invokes the user interface for the
 operation, and then calls run.

To run the operation interactively, enter information on the General tab of the operation user
 interface, as shown in Figure 14-11. The user interface created by the SysOperation framework is
 similar to the one created in the RunBase sample.

FIGURE 14-11 The General tab for the SysOperation framework example.

 CHAPTER 14 Extending Microsoft Dynamics AX 509

On the Batch tab, ensure that the Batch Processing check box is cleared, as shown in Figure 14-12.

FIGURE 14-12 The Batch tab for the SysOperation framework example.

Click OK to run the operation and print the output to the Infolog window, as shown in
Figure 14-13.

FIGURE 14-13 Infolog output for the SysOperation example.

The Infolog messages show that, unlike in the RunBase sample, the operation ran in a CLR session
on the server.

If you repeat the previous steps but select the Batch Processing check box on the Batch tab, the
operation runs on the batch server, just as in the RunBase sample.

The operation may take up to a minute to get scheduled. After waiting for about a minute, open
the Batch Job form from the AOT.

Repeatedly update the form by pressing the F5 key until the job entry shows that the job has
ended. Sorting by the Scheduled Start Date/Time column may help you find the operation if there
are many jobs entries in the grid. After you find the correct job, select it, and then click Log on the
toolbar to open an Infolog window.

510 PART 2 Developing with Microsoft Dynamics AX

Figure 14-14 shows that the operation ran in a CLR session, which is the batch server execution
environment.

FIGURE 14-14 The Infolog window for the SysOperation example.

The RunBase framework

You can use the RunBase framework throughout Microsoft Dynamics AX whenever you must execute
a business transaction job. Extending the RunBase framework lets you implement business operations
that don’t have default support in Microsoft Dynamics AX. The RunBase framework supplies many
features, including dialog boxes, query windows, validation-before-execution windows, the progress
bar, client/server optimization, pack-unpack with versioning, and optional scheduled batch execution
at a given date and time.

Note Because the RunBase framework has largely been replaced by the SysOperation
framework, the following sections are intended to help you understand existing
 functionality that uses the RunBase framework.

Inheritance in the RunBase framework
Classes that use the RunBase framework must inherit from either the RunBase class or the
 RunBaseBatch class. If the class extends RunBaseBatch, it can be enabled for scheduled execution
in batch mode.

In a good inheritance model, each class has a public construction mechanism unless the class is
abstract. If the class doesn’t have to be initialized, use a static construct method. Because X++ doesn’t
support method name overloading, you should use a static new method if the class must be initialized
further upon instantiation. For more information about constructors, see the section “Constructor
encapsulation” in Chapter 4, “The X++ programming language.“

 CHAPTER 14 Extending Microsoft Dynamics AX 511

Static new methods have the following characteristics:

 ■ They are public.

 ■ Their names are prefixed with new.

 ■ They are named logically or with the arguments that they take. Examples include
 newInventTrans and newInventMovement.

 ■ They usually take nondefault parameters only.

 ■ They always return a valid object of the class type, instantiated and initialized, or throw an
error.

Note A class can have several new methods with different parameter profiles.
The NumberSeq class is an example of a class with multiple new methods.

The default constructor (the new method) should be protected to force users of the class to
 instantiate and initialize it with the static construct or new method. If new has some extra initialization
logic that is always executed, you should place it in a separate init method.

Tip To make writing customizations easier, a best practice is to add construction
 functionality for new subclasses (in higher layers) without mixing code with the construct
method in the original layer.

Property method pattern
To allow other business operations to run your new business operation, you might want to run it
without presenting any dialog boxes to the user. If you decide not to use dialog boxes, you need an
alternative to set the values of the necessary member variables of your business operation class.

In Microsoft Dynamics AX classes, member variables are always protected. In other words, they
can’t be accessed outside the class; they can be accessed only from within objects of the class or its
subclasses. To access member variables from outside the class, you must write accessor methods. The
accessor methods can get, set, or both get and set member variable values. All accessor methods start
with parm. In Microsoft Dynamics AX, accessor methods are frequently referred to as parm methods.

Tip A Microsoft Dynamics AX best practice is not to use separate get and set accessor
methods. The accessor methods are combined into a single accessor method, handling
both get and set, in a pattern called the property method pattern. Accessor methods should
have the same name as the member variable that they access, prefixed with parm.

512 PART 2 Developing with Microsoft Dynamics AX

The following is an example of how a method implementing the property method pattern could
look:

public NoYesId parmCreateServiceOrders(NoYesId _createServiceOrders =
createServiceOrders)
{
 createServiceOrders = _createServiceOrders;

 return createServiceOrders;
}

If you want the method to work only as a get method, change it to something such as this:

public NoYesId parmCreateServiceOrders()
{
 return createServiceOrders;
}

And if you want the method to work only as a set method, change it to this:

public void parmCreateServiceOrders(NoYesId _createServiceOrders =
createServiceOrders)
{
 createServiceOrders = _createServiceOrders;
}

When member variables contain huge amounts of data (such as large containers or memo fields),
the technique in the following example is recommended. This technique determines whether the
parameter is changed. The disadvantage of using this technique in all cases is the overhead of an
 additional method call.

public container parmCode(container _code = conNull())
{
 if (!prmIsDefault(_code)
 {
 code = _code;
 }

 return code;
}

Pack-unpack pattern
When you want to save the state of an object with the option to reinstantiate the same object later,
you must use the pack-unpack pattern. The RunBase framework requires that you implement this
 pattern to switch the class between client and server (for client/server optimization) and to present
the user with a dialog box that states the choices made the last time the class executed. If your
class extends the RunBaseBatch class, you also need to use the pack-unpack pattern for scheduled
 execution in batch mode.

 CHAPTER 14 Extending Microsoft Dynamics AX 513

The pattern consists of a pack method and an unpack method. These methods are used by the
SysLastValue framework, which stores and retrieves user settings or usage data values that persist
between processes.

Note A reinstantiated object is not the same object as the saved object. It is a copy of the
object with the same values as the packed and unpacked member variables.

The pack method must be able to read the state of the object and return it in a container. Reading
the state of the object involves reading the values of the variables needed to pack and unpack the
object. Variables used at execution time that are declared as member variables don’t have to be
included in the pack method. The first entry in the container must be a version number that identifies
the version of the saved structure. The following code is an example of the pack method:

container pack()
{
 return [#CurrentVersion, #CurrentList];
}

Macros must be defined in the class declaration. CurrentList is a macro defined in the
 ClassDeclaration holding a list of the member variables to pack. If the variables in the CurrentList
 macro are changed, the version number should also be changed to allow safe and versioned
 unpacking. The unpack method can support unpacking previous versions of the class, as shown in
the following example:

class InventCostClosing extends RunBaseBatch
{
 #define.maxCommitCount(25)

 // Parameters

 TransDate transDate;
 InventAdjustmentSpec specification;
 NoYes prodJournal;
 NoYes updateLedger;
 NoYes cancelRecalculation;
 NoYes runRecalculation;
 FreeTxt freeTxt;
 Integer maxIterations;
 CostAmount minTransferValue;
 InventAdjustmentType adjustmentType;
 boolean collapseGroups;
 ...

 #DEFINE.CurrentVersion(4)
 #LOCALMACRO.CurrentList
 TransDate,
 Specification,
 ProdJournal,
 UpdateLedger,

514 PART 2 Developing with Microsoft Dynamics AX

 FreeTxt,
 MaxIterations,
 MinTransferValue,
 adjustmentType,
 cancelRecalculation,
 runRecalculation,
 collapseGroups
 #ENDMACRO

}
public boolean unpack(container packedClass)
{
 #LOCALMACRO.Version1List
 TransDate,
 Specification,
 ProdJournal,
 UpdateLedger,
 FreeTxt,
 MaxIterations,
 MinTransferValue,
 adjustmentType,
 del_minSettlePct,
 del_minSettleValue
 #ENDMACRO

 #LOCALMACRO.Version2List
 TransDate,
 Specification,
 ProdJournal,
 UpdateLedger,
 FreeTxt,
 MaxIterations,
 MinTransferValue,
 adjustmentType,
 del_minSettlePct,
 del_minSettleValue,
 cancelRecalculation,
 runRecalculation,
 collapseGroups
 #ENDMACRO

 Percent del_minSettlePct;
 CostAmount del_minSettleValue;

 boolean _ret;
 Integer _version = conpeek(packedClass,1);

 switch (_version)
 {
 case #CurrentVersion:
 [_version, #CurrentList] = packedClass;
 _ret = true;
 break;

 CHAPTER 14 Extending Microsoft Dynamics AX 515

 case 3:
 // List has not changed, just the prodJournal must now always be updated
 [_version, #CurrentList] = packedClass;
 prodJournal = NoYes::Yes;
 updateLedger = NoYes::Yes;
 _ret = true;
 break;

 case 2:
 [_version, #Version2List] = packedClass;
 prodJournal = NoYes::Yes;
 updateLedger = NoYes::Yes;
 _ret = true;
 break;

 case 1:
 [_version, #Version1List] = packedClass;
 cancelRecalculation = NoYes::Yes;
 runRecalculation = NoYes::No;
 _ret = true;
 break;

 default:
 _ret = false;
 }
 return _ret;
}

If any member variable isn’t packable, the class can’t be packed and reinstantiated to the same
state. If any of the members are other classes, records, cursors, or temporary tables, they must also
be made packable. Other classes that don’t extend RunBase can implement the pack and unpack
 methods by implementing the SysPackable interface.

When the object is reinstantiated, it must be possible to call the unpack method, which reads the
saved state and reapplies the values of the member variables. The unpack method can reapply the
correct set of member variables according to the saved version number, as shown in the following
example:

public boolean unpack(container _packedClass)
{
 Version version = conpeek(_packedClass, 1);

 switch (version)
 {
 case #CurrentVersion:
 [version, #CurrentList] = _packedClass;
 break;

 default:
 return false;
 }
 return true;
}

516 PART 2 Developing with Microsoft Dynamics AX

The unpack method returns a Boolean value that indicates whether the initialization succeeded.

As mentioned earlier in this section, the pack and unpack methods have three responsibilities:

 ■ Switching a RunBase-derived class between client and server

 ■ Presenting the user with final choices made when the class was last executed

 ■ Scheduling the execution of the class in batch mode

In some scenarios, it is useful to execute specific logic depending on the context in which the
pack or unpack method is called. You can use the isSwappingPrompt method on RunBase to detect
whether the pack or unpack method is called in the context of switching between client and server.
The isSwappingPrompt method returns true when called in this context. You can use the isInBatch
method on RunBaseBatch to detect whether the unpack method is called in the context of executing
the class in batch mode.

Client/server considerations
Typically, you want to execute business operation jobs on the server tier because these jobs
 almost always involve several database transactions. However, you want the user dialog box to be
 executed on the client tier to minimize client/server calls from the server tier. Fortunately, both the
 SysOperation and the RunBase framework can help you run the dialog box on the client and the
 business operation on the server.

To run the business operation job on the server and push the dialog box to the client, you should
be aware of two settings. On the menu item that calls the job, set the RunOn property to Server; on
the class, set the RunOn property to Called From. For more information about these properties, see
the section “Write tier-aware code, “ in Chapter 13, “Performance.”

When the job is initiated, it starts on the server, and the RunBase framework packs the internal
member variables and creates a new instance on the client, which then unpacks the internal member
variables and runs the dialog box. When the user clicks OK in the dialog box, RunBase packs the
 internal member variables of the client instance and unpacks them again in the server instance.

The extension framework

The extension framework is an extensibility pattern that reduces or eliminates the coupling between
application components and their extensions. Many of the application foundation frameworks in
Microsoft Dynamics AX are written by using the extension framework.

The extension framework uses the class attribute framework and the class factory framework to
decouple base and derived classes in two steps.

 CHAPTER 14 Extending Microsoft Dynamics AX 517

Create an extension
First, create a class attribute method by extending the SysAttribute class.

An example can be found in the Product Information Management module in the
 PCAdaptorExtensionAttribute class:

class PCAdaptorExtensionAttribute extends SysAttribute
{
 PCName modelName;

 public void new(PCName _modelName)
 {
 super();
 if (_modelName == '')
 {
 throw error(Error::missingParameter(this));
 }
 modelName = _modelName;
 }

 public PCName parmModelName(PCName _modelName = modelName)
 {
 modelName = _modelName;
 return modelName;
 }
}

Next, use the PCAdaptorExtensionAttribute class attribute to add metadata to a derived class.

The following example code extends the PCAdaptor class to create a MyPCAdaptor object instead
of a PCAdaptor object when you process a product configuration that is created from a product
 configuration model named Computers:

[PCAdaptorExtensionAttribute('Computers')]
class MyPCAdaptor extends PCAdaptor
{
 protected void new()
 {
 super();
 }
}

You can test this extension by performing the following steps:

1. Press Ctrl+Shift+W to open the Microsoft Dynamics AX Development Workspace.

2. Add the MyPCAdaptor class to the AOT and then compile the class.

3. Add a breakpoint in the PCAdaptorFactory.getAdaptorFromModelName method.

4. In the Microsoft Dynamics AX Windows client, click Product Information Management >
 Common > Product Configuration Models.

518 PART 2 Developing with Microsoft Dynamics AX

5. On the Action Pane, in the New group, click Product Configuration Model. The New Product
Configuration Model dialog box opens.

6. In the Name field, enter Computers.

7. Enter a name in the Root Component Section Name field, and then click OK. The Constraint-
based Product Configuration Model details form opens.

8. In the Attributes section of the form, add an attribute for the root component. For example,
size and color are common attributes.

9. On the Action Pane, in the Run group, click Test.

10. Select a value for the attribute.

The Microsoft Dynamics AX debugger launches at the breakpoint that you added in step 3.

As you step through the code, you can see how the SysExtensionAppClassFactory is used to create
an instance of the MyPCAdaptor class:

 adaptor = SysExtensionAppClassFactory::getClassFromSysAttribute(
 classStr(PCAdaptor), extensionAttribute);

The getClassFromSysAttribute method works by searching through the classes that are
derived from the PCAdaptor class. It returns an instance when it finds a class that has a
 PCAdaptorExtensionAttribute that returns a product model name that matches the name of
the product configuration model passed in. In this case, an instance is created for the product
 configuration model named Computers.

Your custom code benefits by using this extension model because the base and derived classes are
decoupled and it takes less code to extend the capabilities of Microsoft Dynamics AX.

Extension example
The following end-to-end example shows how to write extensible classes and presents some sample
extensions.

First, create a class derived from SysAttribute called CalendarExtensionAttribute, which can be used
to mark a class as extensible:

public class CalendarExtensionAttribute extends SysAttribute
{
 str calendarType;
}

public void new(str _calendarType)
{
 super();
 if (_calendarType == '')
 {

 CHAPTER 14 Extending Microsoft Dynamics AX 519

 throw error(error::missingParameter(this));
 }
 calendarType = _calendarType;
}

public str parmCalendarType(str _calendarType = calendarType)
{
 calendarType = _calendarType;
 return calendarType;
}

Next, use the newly-created attribute class to add metadata to the extensible Calendar class and
its derived classes:

[CalendarExtensionAttribute("Default")]
public class Calendar
{
}

public void new()
{
}

public void sayIt()
{
 info("All days are work days except for weekends!");
}

The following code illustrates two sample extensions, a FinancialCalendar and a HolidayCalendar.
Both classes override the sayIt method:

[CalendarExtensionAttribute("Financial")]
public class FinancialCalendar extends Calendar
{
}

public void sayIt()
{
 super();
 info("Financial Statements are available on the last working day of June!");
}
[CalendarExtensionAttribute("Holiday")]
public class HolidayCalendar extends Calendar
{
}

public void sayIt()
{
 super();
 info("Eight public holidays including New Year's Day!");
}

520 PART 2 Developing with Microsoft Dynamics AX

Finally, a custom factory class is created to generate the appropriate instance of the Calendar class.
This custom factory class uses SysExtensionAppClassFactory.getClassFromSysAttribute method which
searches through the derived classes of the Calendar class to match the parameters of their attribute
metadata with the parameters in the call. The following code shows the CalendarFactory class that
creates a calendar instance:

public class CalendarFactory
{
}

public static Calendar instance(str _calendarType)
{
 CalendarExtensionAttribute extensionAttribute =
 new CalendarExtensionAttribute(_calendarType);
 Calendar calendar =
 SysExtensionAppClassFactory::getClassFromSysAttribute(classStr(calendar),
extensionAttribute);

 if (calendar == null)
 {
 calendar = new Calendar();
 }

 return calendar;
}

The following code contains a job that shows possible calendar creation scenarios:

static void CreateCalendarsJob(Args _args)
{
 Calendar calendar = CalendarFactory::instance("Holiday");
 calendar.sayIt();
 calendar = CalendarFactory::instance("Financial");
 calendar.sayIt();
 calendar = CalendarFactory::instance("Default");
 calendar.sayIt();
}

Eventing

Eventing is another extensibility pattern that reduces or eliminates the coupling between application
components and their extensions. While the extension framework is coarse-grained and suitable
for plug-ins, eventing can be fine-grained. You can use it to augment or modify existing application
behaviors effectively.

The following terms are related to events in X++:

 ■ Producer The logic that contains the code that causes a change. It is an entity that emits events.

 ■ Consumer The application code that represents an interest in being notified when a specific
event occurs. It is an entity that receives events.

 CHAPTER 14 Extending Microsoft Dynamics AX 521

 ■ Event A representation of a change having happened in the producer.

 ■ Event payload The information that the event carries with it. When a person is hired, for
example, the payload might include the employee’s name and date of birth.

 ■ Delegate The definition of the information that is passed from the producer to the
 consumer when an event takes place.

By using events, you can potentially lower the cost of creating and upgrading customizations.
If you create code that is often customized by others, you can create events in places where
 customizations typically occur. Then, developers who customize the original functionality in another
layer can subscribe to an event. When customized functionality is tied to an event, the underlying
 application code can be rewritten with little impact on the customization, so long as the same events
are raised in the same sequence from one version to the next.

You can use events to support the following programming paradigms:

 ■ Observation Events can detect exceptional behavior and generate alerts when such behavior
occurs. For example, this type of event might be used in a regulation-compliance system. If more
than a designated amount of money is transferred from one account to another, an event can
be raised and event handlers can respond to the event appropriately. For example, the event
handlers could reject the transaction and send an alert to the account manager.

 ■ Information dissemination Events can deliver the right information to the right consumers
at the right time. Information can be disseminated by publishing an event to anyone who
wants to react to it. For example, the creation of a new worker in the system might be of
 interest to Human Resources employees who conduct new employee orientations.

 ■ Decoupling Events produced by one part of the application can be consumed by a different
part of the application. The producer does not have to be aware of the consumers, nor do the
consumers need to know details about the producer. One producer’s event can be acted upon
by any number of consumers. Conversely, consumers can act upon any number of events from
many different producers. For example, the creation of a new worker in the system might be
consumed by the Project Management and Accounting module, if you want to include the
worker in default project teams.

Microsoft Dynamics AX events are based on .NET eventing concepts. For more information, see
“X++, C# Comparison: Event” at http://msdn.microsoft.com/en-us/library/gg881685(v=ax.60).aspx.

Delegates
In X++, you can add delegates as members of a class. The syntax for defining a delegate is the same
as the syntax used for defining a method, with the following exceptions:

 ■ The delegate keyword is used.

 ■ No access modifiers can be used on a delegate declaration because all delegates are
 protected members.

http://msdn.microsoft.com/en-us/library/gg881685(v=ax.60).aspx

522 PART 2 Developing with Microsoft Dynamics AX

 ■ The return type must be void.

 ■ The body must be empty; that is, it can contain neither declarations nor statements.

 ■ A delegate can be declared only as a member of a class. A delegate cannot be a member of a
table.

For example, a delegate for an event that is raised when a person is hired could be expressed like
this:

delegate void hired(str personnelNumber, UtcDateTime startingDate)
{
 // Delegates do not have any code in the body
}

The parameters defined in the parameter profile can be any type allowed in X++. In particular, it is
useful to pass an object instance and to have the handlers modify the state of the object. In this way,
the publisher can solicit values from the subscribers.

Pre and post events
Pre and post events are predefined events that occur when methods are called. Pre event handlers
are called before the designated method executes, and post event handlers are called after the
method call has ended. You can think of these event handlers as augmenting an existing method with
 additional methods that are called before and after the designated method. The event handlers for
these pre and post events are visible in the AOT as subnodes of the methods to which they apply.

The following pseudocode illustrates a method without event handlers:

void someMethod(int i)
{
 --body of the method--
}

The following example shows the method after event handlers are added:

void someMethod(int i)
{
 preHandler1(i);
 preHandler2(i);
 --body of the method—
 postHandler1(i);
 postHandler2(i);
}

Not having any event handlers for a particular method leaves the method intact. Therefore, no
overhead is incurred for methods that do not have any pre or post handlers assigned to them.

 CHAPTER 14 Extending Microsoft Dynamics AX 523

If an exception is thrown in a pre event handler, neither the remaining event handlers nor the
method itself is invoked. If a method that has any pre event or post event handlers throws an
 exception, the remaining post event handlers are not invoked. If an exception is thrown in a post event
handler, the remaining event handlers are not called.

Each pre event handler can access the original values of the parameters and modify them as
 required. A post event handler can modify the return value of the method.

Event handlers
Event handlers are the methods that are called when the delegate is called, either directly through
code (for coded events) or from the environment (for modeled events that are maintained in the
AOT). The relationship between the delegate and the handlers can be maintained in the code or in
the AOT.

To add an event handler declaratively in the AOT, you identify a static method to handle the event
on the delegate, and then simply drag the method to the delegate node that represents the event to
be handled. You can remove an event handler by using the Delete menu item that is available for any
node in the AOT. You can use only static methods in this context.

To add a static event handler in code, you use a special X++ syntax, as shown in the following
example:

void someMethod(int i)
{
 this.MyDelegate += eventhandler(Subscriber::MyStaticHandler);
}

The delegate name appears on the left side of the += operator. On the right side, you can see the
keyword eventhandler, along with the qualified name of the handler to add. The compiler checks that
the parameter profiles of the delegate and the handler match. The qualified name in the example
uses two colon characters (::) to separate the type name and the delegate, which designates that the
event handler is static.

To call a method on a particular object instance, use the syntax shown in the following example:

void someMethod(int i)
{
 EventSubscriber subscriber = new EventSubscriber();
 this.MyDelegate += eventhandler(subscriber.MyInstanceHandler);
}

You can remove the event handler from a delegate by using the -= operator instead of the +=
operator. An example of removing a static event handler is as follows:

void someMethod(int i)
{
 this.MyDelegate -= eventhandler(Subscriber::MyHandler);
}

524 PART 2 Developing with Microsoft Dynamics AX

Here are some things to keep in mind about events:

 ■ The X++ compiler does not allow you to raise events from outside the class in which the
 delegate is defined.

 ■ The run-time environment makes no guarantees about the order in which the event handlers
are called.

 ■ An event handler can be implemented either in managed code or in X++. You define managed
code event handlers in a Microsoft Visual Studio project that you add to the AOT.

Eventing example
The following example illustrates the use of both coded and modeled events. The example also shows
the ways in which arguments can be passed to event handlers.

The following code implements an array with an event indicating that an element has changed:

public class arrayWithChangedEvent extends Array
{
}

delegate void changedDelegate(int _index, anytype _value)
{
}

public anytype value(int _index, anytype _value = null)
{
 anytype paramValue = _value;
 anytype val = super(_index, _value);
 boolean newValue = (paramValue == val);
 if (newValue)
 this.changedDelegate(_index, _value);

 return val;
}

The following dynamic event handler is added at run time:

public class arrayChangedEventListener
{
 arrayWithChangedEvent arrayWithEvent;
}

public void new(ArrayWithChangedEvent _arrayWithEvent)
{
 arrayWithEvent = _arrayWithEvent;

 // Register the event handler with the delegate
 arrayWithEvent.ChangedDelegate += eventhandler(this.ListenToArrayChanges);
}

 CHAPTER 14 Extending Microsoft Dynamics AX 525

public void listenToArrayChanges(int _index, anytype _value)
{
 info(strFmt("Array changed at: %1 - with value: %2", _index, _value));
}

public void detach()
{
 // Detach event handler from delegate
 arrayWithEvent.changedDelegate -= eventhandler(this.listenToArrayChanges);
}

The following example contains two static event handlers:

public static void ArrayPreHandler(XppPrePostArgs args)
{
 int indexer = args.getArg("_index");
 str strVal = "";
 if (args.existsArg("_value") && typeOf(args.getArg("_value")) == Types::String)
 {
 strVal = "Pre-" + args.getArg("_value"); // Mark the value as Pre- processed
 args.setArg("_value", strVal);
 // The changes to parameter values may be based on
 // state of the record or environment variables.
 }
}

public static void ArrayPostHandler(XppPrePostArgs args)
{
 anytype returnValue = args.getReturnValue();
 str strReturnValue = "";

 if (typeOf(returnValue) == Types::String)
 {
 strReturnValue = returnValue + "-Post"; // post- mark the return value
 args.setReturnValue(strReturnValue);
 }
}

To exercise the eventing example, add the pre and post event handlers to the value method of the
ArrayWithChangedEvent class in the AOT, and then run the following job:

static void EventingJob(Args _args)
{
 // Create a new array
 ArrayWithChangedEvent arrayWithEvent = new ArrayWithChangedEvent(Types::String);

 // Create listener for the array
 ArrayChangedEventListener listener = new ArrayChangedEventListener(arrayWithEvent);

 // Test by adding items to the array
 info(arrayWithEvent.value(1, "Blue"));
 info(arrayWithEvent.value(2, "Cerulean"));
 info(arrayWithEvent.value(3, "Green"));

526 PART 2 Developing with Microsoft Dynamics AX

 // Detach listener from array
 listener.Detach();

 // The following additions should not invoke the listener,
 // except when any pre and post events exist
 info(arrayWithEvent.value(4, "Orange"));
 info(arrayWithEvent.value(5, "Pink"));
 info(arrayWithEvent.value(6, "Yellow"));
}

 CHAPTER 15 Testing 527

C H A P T E R 1 5

Testing

In this chapter
Introduction . 527
New unit testing features in Microsoft Dynamics AX 2012 . . . 527
Microsoft Visual Studio 2010 test tools . 533
Putting everything together . 540

Introduction

Ensuring a quality user experience with an enterprise resource planning (ERP) product like Microsoft
Dynamics AX 2012 can be challenging. Out-of-the-box from Microsoft, the product is broad, deep,
and complex. A typical customer deployment adds one or more independent software vendor (ISV)
products to better tailor the product for specific purposes. Finally, a customer or partner customizes
Microsoft Dynamics AX to further align it with company processes and policies.

The end user doesn’t see or, for that matter, care about the complexities of the product or who
delivered what functionality. The end user wants a product that enables her to perform her daily
tasks efficiently, effectively, and with a good user experience. The entire ecosystem— Microsoft,
ISV developers, Microsoft Dynamics AX partners, and customer IT developers—is part of a critical
 quality-assurance link that end users depend on when using Microsoft Dynamics AX 2012 to
 accomplish their goals.

This chapter focuses on new features and tools that facilitate improved testing of Microsoft
 Dynamics AX 2012 ISV solutions and customizations. This release includes several new capabilities
that collectively take a major step forward in the ability to effectively test Microsoft Dynamics AX
2012 solutions.

New unit testing features in Microsoft Dynamics AX 2012

The SysTest framework for unit testing has been part of the Microsoft Dynamics AX MorphX
 environment for several releases. The framework can be very useful for traditional unit testing of X++
classes and methods. The framework can also be used for integration testing of business logic that
spans multiple classes.

C H A P T E R 1 5

Testing

Introduction

New unit testing features in Microsoft Dynamics AX 2012

Use predefined test attributes

Create test attributes and filters

Microsoft Visual Studio 2010 test tools

Use all aspects of the ALM solution

Use an acceptance test driven development approach

Use shared steps

Record shared steps for fast forwarding

Develop test cases in an evolutionary manner

Use ordered test suites for long scenarios

Putting everything together

Execute tests as part of the build process

Use the right tests for the job

528 PART 2 Developing with Microsoft Dynamics AX

Past editions of the “Inside Microsoft Dynamics AX” series and the current MSDN documentation
on the SysTest framework do a very good job of explaining the framework basics. By making use of
the new attribute capabilities in the X++ language, the SysTest framework in Microsoft Dynamics
AX 2012 has new capabilities that you can use to develop and execute your tests more flexibly. This
 section focuses on these features.

Use predefined test attributes
X++ attributes are a new feature in Microsoft Dynamics AX 2012 and are described in Chapter 4,
”The X++ programming language.” This section describes how you can use the predefined test
 attributes in the SysTest framework to improve development and execution flexibility.

Five SysTest attributes are provided as part of the framework. These attributes are described in
Table 15-1.

TABLE 15-1 Predefined SysTest attributes.

Test Attribute Description Where to Apply the Attribute

SysTestMethodAttribute Indicates that a method is a unit test. Apply the attribute to a method.

SysTestCheckInTestAttribute Indicates that the test is a check-in
unit test. A check-in test is run when
checking in code to a version control
system to ensure a proper level of
quality.

Apply the attribute to a method or a class.

SysTestNonCheckInTestAttribute Indicates that the test is not a check-
in test.

Apply the attribute to a method.

SysTestTargetAttribute(<name>,
<type>)

Indicates the application object that
is being tested by the test case; for
example, class, table, or form.
This attribute takes two parameters:

 ■ Name String value
name of the code
 element to test.

 ■ Type The type of the
code element to test.

Apply the attribute to a class.

SysTestInactiveTestAttribute Indicates that the class or method is
 deactivated.

Apply the attribute to a method.

Naming conventions were used heavily in previous versions of the SysTest framework to indicate
the intent of a class or a method. A class naming convention of <TargetClass>Test was used to specify
the code class targeted for code coverage collection. (You could also override the testsElementName
method on your test class as an alternative to this convention.) All methods intended to be test
 methods in a SysTestCase-derived class had to start with the string test.

By using SysTestTargetAttribute and SysTestMethodAttribute, you can be more explicit in your unit
test code. The following code examples show you how to use these attributes.

 CHAPTER 15 Testing 529

[SysTestTargetAttribute(classStr(Triangles), UtilElementType::Class)]
public class TrianglesTest extends SysTestCase
{
}

[SysTestMethodAttribute]
public void testEQUILATERAL()
{
 Triangles triangle = new Triangles();
 this.assertEquals(TriangleType::EQUILATERAL, triangle.IsTriangle(10, 10, 10));
}

The new predefined attributes provide the capability to create filters so that you can execute specific
tests shown in Figure 15-1. You can use SysTestCheckInTestAttribute, SysTestNonCheckInTestAttribute,
and SysTestInactiveTestAttribute for this purpose. In the Parameters form, which you access from the
unit test toolbar, you can select the filter you want to use when running tests. For information about
how to create a filter, see the following section.

FIGURE 15-1 Filter list in the Parameters form.

Executing regression tests when code is checked in to version control is a great way to keep
your code base at a high level of quality. But you don’t always want to run all tests because
the amount of time required for execution might become an issue. This is where the attributes
 SysTestCheckInTestAttribute and SysTestNonCheckInTestAttribute are useful. For more information
about version control, see Chapter 2, “The MorphX development environment and tools.”

Use the following steps to specify which tests are executed on check-in:

1. Attribute test methods with SysTestCheckInTestAttribute or SysTestNonCheckInTestAttribute.
Note that the default option is for a test to not be a check-in test, so you have to specify the
 SysTestCheckInTestAttribute to opt in. The best approach is to be explicit with all tests, as
shown in this example.

530 PART 2 Developing with Microsoft Dynamics AX

[SysTestMethodAttribute,
SysTestCheckInTestAttribute]
public void testEQUILATERAL()
{
 Triangles triangle = new Triangles();
 this.assertEquals(TriangleType::EQUILATERAL, triangle.IsTriangle(10, 10, 10));
}

2. Create a new test project and put all unit test classes with check-in tests into the project.

3. In the Settings dialog box for the test project that you created (right-click the name of the
project, and then click Settings), specify Check-in Tests as the filter.

4. In System Settings for Version Control (on the Version Control menu, click System Settings),
select your test project in the Test project list.

On your next check-in, the appropriate tests will execute, and the results will be displayed in an
Infolog message.

Create test attributes and filters
The predefined test attributes described in the previous section are a good starting point for being
more explicit in your test code and for organizing your tests. A well-organized strategy for using test
projects can also be helpful. But there’s a good chance that you will want to take test organization a
step further for your development projects. Fortunately, you can extend the test attribute capabilities
by creating your own attributes and filters.

As noted earlier in this chapter, the SysTest framework can be useful for both class-level unit
 testing and for integration tests on business logic that spans classes. However, it might be useful to be
able to run just the integration tests in certain scenarios because they are more functionally oriented.
For example, you might want to run only the integration tests when moving code from your test
 environment into preproduction.

This section demonstrates how you can create a new attribute and a corresponding filter to use on
integration tests.

First, create the new attribute. This is quite straightforward because you only need to create a class
that inherits from SysTestFilterAttribute.

class SysTestIntegrationTestAttribute extends SysTestFilterAttribute
{
}

You can now use this attribute on a new test method as follows:

[SysTestMethodAttribute,
SysTestIntegrationTestAttribute]
public void testIntegratedBusinessLogic()
{
 this.assertFalse(true);
}

 CHAPTER 15 Testing 531

While this attribute is informative to anyone reading the test code, it isn’t useful for execution until
you also enable it in the Filter drop-down list for test selection. To do this, you need to implement a
test strategy for the IntegrationTestAttribute. The term “strategy” is used because the test strategy is
 implemented following the Strategy design pattern.

First, extend the SysTestFilterStrategyType enumeration with an additional element, as shown in
Figure 15-2. Remember to set an appropriate label on the Properties sheet.

FIGURE 15-2 Extension to the SysTestFilterStrategyType enumeration.

Next, implement the strategy in a class with the same name as the enumeration element name.
This class inherits from SysTestFilterStrategy and has a class declaration, as shown in the following
 example:

class SysTestFilterIntegrationTestsStrategy extends SysTestFilterStrategy
{
}

The most straightforward way to implement this strategy is to follow the pattern in one of the
other SysTestFilter<attribute>TestsStrategy classes. You need to implement only two methods in this
case.

The construct method returns a new instance of the class. You will use this method shortly.

public static SysTestFilterIntegrationTestsStrategy construct()
{
 return new SysTestFilterIntegrationTestsStrategy();
}

The work in this class is being done in the isValid method. This method determines if a test method
should be included in the list of selected tests. For SysTestFilterIntegrationTestsStrategy, here is the
implementation.

532 PART 2 Developing with Microsoft Dynamics AX

public boolean isValid(classId _classId, identifierName _method)
{
 SysDictMethod method;
 DictClass dictClass;

 method = this.getMethod(_classId, _method);
 if (method)
 {

 //
 // If the test method has the integration attribute, include it.
 //
 if (method.getAttribute(attributestr(SysTestIntegrationTestAttribute)))
 {
 return true;
 }
 }

 //
 // If the test class has the integration attribute, include it.
 //
 dictClass = new DictClass(_classId);
 if (dictClass.getAttribute(attributestr(SysTestIntegrationTestAttribute)))
 {
 return true;
 }
 return false;
}

Note Additional code is required to achieve the desired behavior of a
SysTestInactiveTestAttribute that could also be used on the test method. This code was
omitted to keep the example simple.

There is one last thing to do to enable the new integration test attribute. The newType method in
the SysTestFilterStrategy class creates the appropriate type based on the selection in the Filter list and
must have an additional case added to it, as shown in the following example:

public static SysTestFilterStrategy newType(SysTestFilterStrategyType _type)
{
 SysTestFilterStrategy strategy;

 switch (_type)
 {
 <snip – non essential code removed>
 // Create an integration test strategy
 case SysTestFilterStrategyType::SysTestFilterIntegrationTestsStrategy:
 strategy = SysTestFilterIntegrationTestsStrategy::construct();
 break;

 CHAPTER 15 Testing 533

 default:
 throw error(error::wrongUseOfFunction(funcname()));
 }

 strategy.parmFilterType(_type);
 return strategy;
}

The Integration Tests option is now available in the Filter list (Figure 15-3) and, when selected, will
run only those test methods attributed with SysTestIntegrationTestAttribute.

FIGURE 15-3 A filter list with a custom filter.

Microsoft Visual Studio 2010 test tools

While the SysTest unit testing capabilities are critical for developers who are testing Microsoft
 Dynamics AX, much of the testing is not done by developers. The functional testing, validating
that the product meets the customer requirements, is typically done by someone with a title like
 functional consultant, business analyst, or possibly someone whose primary job involves using
 Microsoft Dynamics AX to accomplish daily tasks.

These functional testers have a number of things in common:

 ■ They are experts in the product and the application of the product to solve business needs.

 ■ They are not trained as software developers or software testers. Any non-trivial programming
required for their test efforts is challenging.

 ■ They are not trained as software testers, but they are typically quite good at testing. They have
an inquisitive nature that gives them a knack for finding issues in the product.

 ■ They would love to have automated test support for repetitive tasks, but they also believe that
using an exploratory manual testing approach is the best way to validate the system and find
critical issues.

534 PART 2 Developing with Microsoft Dynamics AX

Microsoft Visual Studio 2010 Ultimate and Visual Studio Test Professional contain Microsoft Test
 Manager, an application that was designed with these types of testers in mind. This package of testing
tools is well suited for Microsoft Dynamics AX projects. Team Foundation Server, which is required
for Microsoft Test Manager, brings several other quality-focused benefits to the table. It provides an
 application lifecycle management (ALM) solution for the development phase of the project by integrating
 requirements management, project management, source code control, bug tracking, build processes, and
test tools together. For more information about ALM, see the white paper, “What Is Application Lifecycle
Management?” at http://www.microsoft.com/global/applicationplatform/en/us/Rendering Assets/
Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf.

This section focuses on best practices for applying Microsoft Test Manager to Microsoft Dynamics
AX projects. For more information about how to use Microsoft Test Manager, see “Quick Start Guide
for Manual Testing Using Microsoft Test Manager” on MSDN (http://msdn.microsoft.com/en-us/
library/dd380763.aspx).

Use all aspects of the ALM solution
The quality plan for your project should not be focused on testing alone. On the contrary, many
 factors can have a bigger impact on the quality of the project than the amount of testing done. One
key quality factor is configuration management. With the Visual Studio ALM solution, you can track all
of the significant artifacts in your software development process. You can drive higher quality in your
projects by adopting the ALM solution throughout your project.

Figure 15-4 describes an end-to-end feature development cycle involving Simon, a functional
consultant, and Isaac, an IT developer. As you can see, the process involves tracking requirements,
test cases, source code, builds, and bugs. Many of these items are tracked in Team Foundation Server
(TFS). It also describes traceability between these artifacts. You could also incorporate work items into
the process for improved project management.

Feature
development starts.

Feature complete.
Simon executes
the acceptance

Test Case.

A new build is
created using Team
Foundation Build

and made available
for testing.

Bug found?

Bug is logged into
TFS and linked to

the test case.

Simon creates User
Story or

Requirement
in TFS.

Simon creates an
acceptance Test
Case in TFS and

links it to the
User Story.

Isaac makes code
and unit test

changes. Source
code is checked

into TFS and linked
to the User Story.

Isaac makes code
and unit test

changes. Source
code is checked

into TFS and
linked to the Bug.

No

Yes

FIGURE 15-4 Feature development cycle.

http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
http://msdn.microsoft.com/en-us/library/dd380763.aspx

 CHAPTER 15 Testing 535

Use an acceptance test driven development approach
In a rapidly changing environment like most Microsoft Dynamics AX projects, an agile development
approach is often the best development methodology. One agile development practice that is
particularly helpful in ensuring quality is acceptance test driven development (ATDD). ATDD involves
defining the critical test cases, the acceptance test cases, ahead of the development effort as a
 requirement. (The term “requirement” is used generically here. The requirement can be a user story,
a feature, or another artifact that describes functionality that is valuable to a customer.)

Acceptance test cases frequently exercise the primary flows for a requirement. Additional test
cases are required to fully test the requirement. Acceptance test cases should be a collaborative effort
between the developer, the tester, and the author of the requirement. A significant benefit of this
 collaboration is clarity because the individuals involved frequently have different, unstated versions of
how they expect the requirement to be implemented.

While the requirement should be free of implementation details, the acceptance test cases must
have some implementation details to make them useful—but not too many. Figure 15-5 shows a
 sample acceptance test case for a feature described in the previous section—executing unit tests
when code is checked in. The test case specifies details such as the forms that are expected to be
used, but it doesn’t specify the exact field names.

FIGURE 15-5 Acceptance test case.

After you create the test, link it to the requirement on the Tested User Stories tab. (In this example,
a user story is the requirement.) The Add Link form will look like Figure 15-6 after linking.

536 PART 2 Developing with Microsoft Dynamics AX

FIGURE 15-6 Requirement linked to test case.

By linking the test case to the requirement, you can use a nice feature in Microsoft Test Manager,
the capability to build test plans based on requirement-based test suites. By specifying the
 requirement using the Add Requirements button in the Microsoft Test Manager Plan area, you pull in
all test cases that are linked to the requirement.

Use shared steps
With shared steps, you can reuse the same steps in multiple test cases. Think of shared steps as
s ubroutines for your manual test cases. Using this capability appropriately is a big step toward
 long-term maintainability of your test cases.

A prime opportunity for using shared steps is to get the application into a known state at the start
of each test case. For Microsoft Dynamics AX tests, starting the application through the command line
and using command-line options to initialize the application for testing is an excellent strategy.

Here’s an example of how to start Microsoft Dynamics AX and run a job to initialize data. First,
create an XML file, fminitializedata.xml, that you will reference in the command line and save it in a
well-known location.

Note While this example uses the root folder of the C drive, a better approach would be
to define an environment variable for the location.

 CHAPTER 15 Testing 537

<?xml version="1.0" ?>
<AxaptaAutoRun
 exitWhenDone="false"
 logFile="c:\AXAutorun.log">
 <Run type="job" name="InitializeFMDataModel" />
</AxaptaAutoRun>

Now the application can be started from the Run… dialog box with the following command string:
ax32.exe -StartUpCmd=AutoRun_c:\fminitializedata.xml.

You can incorporate this command line into a Launch AX And Set Start Location shared step along
with some basic navigation so that the test case always starts from a known location, as shown in
Figure 15-7.

FIGURE 15-7 Shared step.

Record shared steps for fast forwarding
Microsoft Test Manager includes basic record-and-playback capability. Because of the focus on the
manual tester, record and playback is not intended for end-to-end, push-button automation where
a test is fully automated. Instead, a manual tester can use this functionality to ”fast-forward” through
the routine portion of a test case to get to the interesting part, where validation is required and
 exploratory testing drives the effective discovery of bugs.

538 PART 2 Developing with Microsoft Dynamics AX

Shared steps are a great starting point for building efficiency into your manual testing through
fast-forward capabilities. Microsoft Test Manager can record a shared step independently (Organize
> Shared Steps Manager > Create Action Recording). The actions recorded for the shared step can
be used in all test cases that use those actions. You can also optimize the playback by using the most
 efficient and reliable actions.

With its long command line and the need to consistently be in a known state, the Launch AX And
Set Start Location shared step shown in Figure 15-7 is a great candidate to record. To make this as
 efficient and reliable as possible, you can perform the following steps:

 ■ To get to the Run dialog box to type in the command line, use Windows logo key+R instead
of the mouse to open it. In general, shortcut keys are a better option for record and playback.

 ■ To navigate to a particular area page, type the path into the address bar. This approach has
multiple advantages because it goes directly to the page and is independent of the location
where the application was last left.

The left side of Figure 15-8 shows what Microsoft Test Manager looks like after recording the
shared step. The right side of Figure 15-8 shows a test case using the shared step. Notice the green
arrow in the highlighted first step. This gives you the option to fast-forward through the shared step.

Develop test cases in an evolutionary manner
Creating detailed, step-by-step test cases early in the development process can become
 counterproductive as the application evolves to its final form. A better alternative is to develop your
test cases in phases:

 ■ Phase 1 Identify the titles of the test cases needed for the requirements planned in your
current development phase. Create the test cases and associated metadata (area, priority, and
so on).

 ■ Phase 2 Flesh out the test case using an intent-driven approach. Perhaps a test case requires
the creation of a customer with a past due account. Performing these actions require many
steps. Starting with the Create Customer With Past Due Account step is sufficient in this phase.

 ■ Phase 3 Add details to the test cases as required. If your testers are domain experts, you may
not need additional details. While omitting details introduces variability, the action recording
provides the developer with the details of the steps taken.

This phase also provides an opportunity to create additional shared steps that can be reused
across test cases. If multiple test cases require Create Customer With Past Due Account, create
a shared step and possibly record it. Alternatively, you can include an appropriate customer
record in your data.

 CHAPTER 15 Testing 539

FIGURE 15-8 Microsoft Test Manager showing a recorded step and a test case that uses it.

Use ordered test suites for long scenarios
Scenario tests are valuable for business applications because long workflows are typical of business
processes. Mapping these long scenarios to a test case can be challenging because you don’t want a
test case that has dozens of steps.

540 PART 2 Developing with Microsoft Dynamics AX

Microsoft Test Manager solves this problem by providing the capability to define the order of test
cases within a test suite. Figure 15-9 shows an example of a human resources end-to-end scenario
that is divided into many short test cases and then ordered within a test suite.

FIGURE 15-9 Test suite with multiple test cases.

Putting everything together

So far, this chapter has discussed some key aspects of developer testing and functional testing. This
section ties these topics together with some bigger-picture application lifecycle management areas.

Execute tests as part of the build process
The Visual Studio 2010 ALM solution also includes Team Foundation Build, a workflow-enabled
 system that you use to compile code, run associated tests, perform code analysis, release continuous
builds, and publish build reports. You can apply Team Foundation Build to Microsoft Dynamics
AX projects. While the build process is beyond the scope of this chapter, running tests from Team
 Foundation Build is not.

 CHAPTER 15 Testing 541

Tests that are executed as part of a build process must be fully automated. Given this requirement,
the starting point should be tests written using the SysTest framework. Fortunately, some tools are
in place to enable execution of Microsoft Dynamics AX SysTest test cases from the Visual Studio
 environment.

The first step is for the SysTest framework to provide results in a format that Visual Studio
 expects, specifically the TRX output format. There are two pieces of good news here. First, the
SysTest framework provides an extensible model for test listeners for results. Second, the Microsoft
 Dynamics AX partner ecosystem has provided a sample TRX implementation on CodePlex using the
Test Listeners capability. The SysTestListenerTRX package for Microsoft Dynamics AX 2012 can be
 downloaded from http://dynamicsaxbuild.codeplex.com/releases.

The second step is to be able to initiate tests from Visual Studio. The Generic Test Case capability
was developed to wrap an existing program. This is perfect for this situation because Microsoft
Dynamics AX can run a test project from the command line and specify the Test Listener and the
location of the output file.

Suppose you want to execute all tests marked with SysTestIntegrationTestAttribute that were
 created earlier in this chapter. After downloading and installing the SysTestListenerTRX package from
the link shown earlier, do the following:

1. Create a new test project in Microsoft Dynamics AX. Add all test classes that have
 SysTestIntegrationTestAttribute on the class or on a method. As described for check-in tests
earlier in this chapter, right-click the project, and then click Settings. In the Settings window,
select Integration Tests.

2. Create a new test project in Visual Studio.

3. On the Test menu, click New Test, and then, in the Add New Test dialog box, double-click
Generic Test.

4. Set up the generic test as shown in Figure 15-10, by completing the following steps:

• In Specify An Existing Program… type the full path to Ax32.exe.

• In Command Line Arguments… type the string shown in Figure 15-10. This string specifies
that the Dynamic AX test project named “IntegrationTests” should be run, that the TRX
listener is used, and that the output will be placed in
%TestOutputDirectory%\AxTestResults.trx.

• Under Results Settings, select the Summary Results File check box, and then specify the
location for the results by using the same path and name as on the command line.

http://dynamicsaxbuild.codeplex.com/releases
http://dynamicsaxbuild.codeplex.com/releases

542 PART 2 Developing with Microsoft Dynamics AX

FIGURE 15-10 Test settings.

When you run all tests in the solution from Visual Studio (Click the Test menu > Run > All Tests In
 Solution), you will see the Microsoft Dynamics AX client open and then close. The results for this example
are shown in Figure 15-11. Two tests were marked with SysTestIntegrationTestAttribute, and both passed.

Use the right tests for the job
A typical Microsoft Dynamics AX development project has four unique environments: development,
test, preproduction, and production. This section provides a brief description of each environment
and discusses how to apply the test tools in this chapter to each of them.

 CHAPTER 15 Testing 543

FIGURE 15-11 Test results.

 The development environment is where developers are actively contributing code. A quality
 development process focuses on ensuring quality as close to the source of possible defects as
 possible. This is an excellent opportunity to use the SysTest framework for developing unit tests
for new classes or methods and integration tests for basic multi-class interaction. Over time, these
 automated tests can form a regression suite that can be executed during the check-in and build
 processes as described in this chapter. The ATDD process described earlier in this chapter for
 validating requirements should also be applied in the development environment, so the testers on the
project need to be involved during the development phase, optimally using the Visual Studio 2010
test tooling.

Broader testing is targeted for the test environment. Varying levels of integration testing are
 typical of this environment, with a strong focus on ensuring that business processes are functioning
end to end. Creating test suites that use ordered test cases in Microsoft Test Manager is a good
 approach here. This is a good opportunity to evolve the detail of the test cases, using a well-designed
approach for shared steps to minimize duplication across the suites. As the product changes and new
builds are created, the SysTest regression suite should continue to be executed.

User acceptance testing (UAT) is the primary activity in the preproduction environment. The
Microsoft Test Manager test suites developed for the test environment can form the basis for the UAT
performed by users in the business. The data that you use for this testing should be a snapshot of the
production data.

If all goes well in the previous environments, the code is deployed to production. To minimize
downtime, only a cursory check, or smoke test, is performed after the new code is deployed. This
typically is a manual test case defined by the business but exercised by the IT specialists performing
the deployment. Once again, you can use Microsoft Test Manager to define the test case and provide
an execution environment with recorded steps for auditing and debugging purposes.

To ensure that you have a quality, comprehensive test plan in place, you may want to
review additional documentation that contains processes and guidelines for quality-focused
 development. For more information, see the Microsoft Dynamics AX 2012 white paper “ Testing
Best Practices,” available at http://www.microsoft.com/download/en/details.aspx?id=27565, and
Microsoft Dynamics SureStep methodology, at http://www.microsoft.com/download/en/details
.aspx?displaylang=en&id=5320.

http://www.microsoft.com/download/en/details.aspx?id=27565
http://www.microsoft.com/download/en/details.aspx?id=27565
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5320
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5320
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5320

 CHAPTER 16 Customizing and adding help 545

C H A P T E R 1 6

Customizing and adding help

In this chapter
Introduction . 545
Help system overview . 546
Help content overview . 549
Create content . 550
Publish content . 567
Troubleshoot the Help system . 572

Introduction

Microsoft Dynamics AX 2012 introduces a new Help system that was designed to make it easier for
customers and partners to create and publish custom Help.

In previous versions, the Help system consisted of .chm files that were installed individually on
each client computer. To customize Help, you had to decompile the .chm file, create custom .html
files, recompile the .chm file, and then reinstall the .chm file on each client computer. Customizations
were overwritten by Help updates from Microsoft.

The new Help system solves these problems. Help content is installed once on a server and
 displayed in a viewer on each client. Help topics consist of .html files, so you don’t have to decompile
and recompile .chm files. Although not required, separate folders that you create on the Help server
can prevent customizations from being overwritten by Help updates from Microsoft.

You can customize the new Help system in the following ways:

 ■ Create new topics in any HTML editor, either from scratch or by using the templates that are
included. You can give your topics a consistent look and feel by applying the same style sheet
that is used for the Help system in Microsoft Dynamics AX.

 ■ Include references to user interface labels, fields, and menu items to ensure that your Help
topics match the customizations that you’ve made to the user interface. Also, by using menu
items, readers can open forms in Microsoft Dynamics AX directly from your Help topics.

 ■ Make your Help context-sensitive, so that your topic appears when a user presses F1 on a
specific object in the user interface.

C H A P T E R 1 6

Customizing and adding help

Introduction

Help system overview

Microsoft Dynamics AX client

Help viewer

Help server

AOS

Help content overview

Topics

Publisher

Table of contents

Summary page

Create content

Create a topic in HTML

Add labels, fields, and menu items to a topic

Make a topic context-sensitive

Update content from other publishers

Create a table of contents file

Create non-HTML content

Publish content

Add a publisher to the Web.config file

Publish content to the Help server

Set Help document set properties

Troubleshoot the Help system

The Help viewer cannot display content

The Help viewer cannot display the table of contents

546 PART 2 Developing with Microsoft Dynamics AX

 ■ Replace an existing topic with a customized version of the topic, or display the customized
topic alongside the existing one. You can display topics from multiple publishers or suppress
topics from specific publishers.

 ■ Create a table of contents for your topics and append it to the default table of contents. You
can add context-sensitive Help that appears when you press F1. You can also apply search
keywords to your topics to make them more discoverable.

Note The Help system supplies Help only for the Microsoft Dynamics AX Windows client,
not the Enterprise Portal web client.

Help system overview

The Help system consists of these components:

 ■ Help server A centralized web service that responds to requests for Help documentation.
You put your custom Help files on the Help server.

 ■ Help viewer An application that is installed with the Microsoft Dynamics AX client. The Help
viewer displays topics when a user requests help from the application.

These components interact with the Microsoft Dynamics AX client and Application Object Server
(AOS) to display Help topics. Figure 16-1 describes the sequence of events between a request for a
Help topic and the display of the topic.

Server
Help web service

Server
AOS

Help
viewer

Microsoft
Dynamics AX

The Microsoft Dynamics AX
client retrieves the URL of the
Help server.

The client calls the Help
viewer.

The Help viewer requests the
specified Help topic ID from
the Help server.

The Help server retrieves
values for the labels in the
Help topic.

The Help server sends the
topic to the Help viewer,
which then displays the topic.

1.

2.

3.

4.

5.

Client computer

1

2 3

5

4

FIGURE 16-1 How the Help system works.

The following sections describe the components of the Help system in detail and explain how a
request for a Help topic is processed.

 CHAPTER 16 Customizing and adding help 547

Microsoft Dynamics AX client
When a user presses F1 or clicks the Help button in a form, the client performs the following actions:

1. The client identifies the Help topic to retrieve. The client obtains the ID of the form that is
open when the user presses F1.

2. The client retrieves the URL of the Help server. The first time that a user requests help, the
 client contacts the AOS to retrieve the URL of the Help server. The client then caches the URL
so that it can be used for additional Help requests.

3. The client calls the Help viewer. If the Help viewer is not already running, it starts. The call to
the Help viewer includes the URL of the Help server and the ID of the form.

Help viewer
A user can click a link in the Help viewer to request a topic, or the user can search for topics. The Help
viewer contacts the Help server and then retrieves and displays the specified topic.

If the Help server finds multiple topics for the specified ID, it displays a list of links to the topics on a
summary page. If the user searches, the Help viewer lists links to the topics that are found. Figure 16-2
shows the Help viewer, which was designed to have the familiar look and feel of a web browser. The table
of contents is displayed in the left pane and the Help topic is displayed in the right pane.

FIGURE 16-2 The Microsoft Dynamics AX Help viewer.

548 PART 2 Developing with Microsoft Dynamics AX

Help server
The Help server has the following components that respond to requests from a Help viewer.

Help web service
The Help web service is an Internet Information Services (IIS) web server application that responds to
Help viewer requests for Help topics. The Help web service receives the request, finds the topic that
matches the request, retrieves the text for the topic’s labels from the AOS, and then sends the topic to
the Help viewer.

Document files
Document files consist of XML and HTML files that are installed on the web server.

The XML files contain information for the table of contents that appears in the Help viewer.

Each HTML file contains a Help topic that appears in the Help viewer. Each HTML file also includes
properties that uniquely identify the topic and provide additional information, such as the language
and keywords, which aid in searches. These properties must be set properly for the topic to appear
and be ranked appropriately in search results. When responding to a request, the Help web service
searches for documents whose properties match the criteria sent by the Help viewer.

Document files are installed in a folder structure on the Help server. The default location is
C:\inetpub\wwwroot\DynamicsAX6HelpServer\content, but this location can be changed during
 installation.

Each organization or individual that creates and publishes content for the Help system is called a
publisher. Upon installation, the Help system contains a folder for a single publisher: Microsoft. When
you add topics to the Help system, you create a new folder structure beneath the content folder to
hold your document files—for example:

 ■ C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\Microsoft

 ■ C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\YourFolder

Each document file belongs to a document set, which is a named collection of related Help topics.
You use document sets to associate a collection of Help documents with either the client or the
 Development Workspace. The Help system includes the following document sets:

 ■ ApplicationHelpOnTheWeb Provides Help on the web for users of the Microsoft Dynamics
AX client. You cannot add new documents to this document set.

 ■ DeveloperDocumentation Provides Help on the web for users of the Development
Workspace. You cannot add new documents to this document set.

 ■ Glossary Provides glossary entries for users of Microsoft Dynamics AX. You can add new
documents to this document set.

 CHAPTER 16 Customizing and adding help 549

 ■ SystemAdministratorHelpOnTheWeb Provides Help on the web for system administrators
of Microsoft Dynamics AX. You cannot add new documents to this document set.

 ■ UserDocumentation Provides Help for users of the Microsoft Dynamics AX client. When
you create custom topics, you add them to this document set.

Windows Search Service (WSS)
Installing the Help web service enables Windows Search Service (WSS), which indexes the document
files that are added to the Help server. The index includes the document properties of each HTML file.

When the Help web service receives a request, it queries the WSS to find the document files that
match the criteria specified by the request. The Help web service uses the following order of prece-
dence to match and rank the search results that are displayed in the Help viewer:

1. Keywords Matches the search request to keywords for the topic

2. Title Matches the search request to part of the title of the topic

3. Topic ID Matches the search request to the ID that uniquely identifies the topic

4. Content Matches the search request to one or more values found in the content of
the topic

AOS
To support the Help system, the AOS performs the following actions:

 ■ Stores the URL of the Help server. Each Help viewer retrieves this URL before sending a request
for content, so that changes to the URL are available to all clients of the AOS.

 ■ Returns the text associated with a label. The Help web service retrieves label text and adds
that text to the HTML of the topic. This ensures that the text in the content matches the text in
the user interface.

Help content overview

This section describes the concepts and components that are involved in customizing the Help
 system.

Topics
A topic is the content for a specific subject area. Microsoft Dynamics AX Help is organized by topic.
Topic files are HTML files, and each topic has a unique ID. When you plan your customization,
 evaluate how your changes fit into the existing topic structure. You can either add topics or update
topics.

550 PART 2 Developing with Microsoft Dynamics AX

Add a topic when you want to document a new process, form, or other component. You should
add entries for new topics to the table of contents. For a context-sensitive topic, the topic ID must
match the ID of the form or other component that you are documenting.

Update a topic when you want to document a change to an existing process, form, or other
 component. An updated topic supplements or replaces an existing topic. When you update a topic,
your content must include the same topic ID as the existing content. For more information, see
 “Update content from other publishers,” later in this chapter.

Caution Do not edit or delete any files that were created by Microsoft or any other
 publisher. If you change an existing file, your changes might be lost during an update or
reinstallation of the documentation from that publisher.

Publisher
A publisher is an individual or organization that has documentation on the Help server. Each content
element includes a document property that specifies the ID of a publisher. The publisher ID is one
of the document properties that you can use to replace documentation for an existing topic. The
 content from each publisher is organized in its own folder on the Help server.

Table of contents
The table of contents file is an XML file that contains a hierarchical list of topics that is displayed in the
left pane of the Help viewer (see Figure 16-2). Each entry in the table of contents is a link to a topic.

You can add entries to the table of contents when you want your topic to be more easily
discovered and viewed from the Help viewer. If you have several related topics, you can use the table
of contents to display the topics in a hierarchical group.

Summary page
A summary page is a list that the Help viewer displays when the requested content includes more
than one topic. Figure 16-3 shows an example of a summary page. To view a specific topic, the user
clicks the link for that topic.

Create content

Before you write a new topic or update an existing topic, use these guidelines to plan your work:

 ■ Decide what topics your documentation requires and what documents you have to include.

 ■ The Help server requires all topics to use the Extensible Hypertext Markup Language (XHTML)
standard.

 CHAPTER 16 Customizing and adding help 551

 ■ If you are updating an existing topic, determine the ID of the topic. If you are adding a new
topic, decide whether to add an entry to the table of contents. Later sections in this chapter
describe how to update existing contents and add topics to the table of contents.

 ■ Gather the information for the document properties that are required to identify the content.
For more information, see the following section, “Create a topic in HTML.”

FIGURE 16-3 The Microsoft Dynamics AX Help summary page.

To quickly create documentation that matches the look of Microsoft Dynamics AX Help, you can
use the templates that are included with the Help system. Each template contains a framework of
 elements, styles, and guidelines that can make creating content faster and simpler. To see the list of
the templates, open the Help viewer, type Templates for Help Documentation in the search box,
and then press Enter. There are templates for the following types of files:

 ■ HTML templates that resemble the Help documentation from Microsoft. These templates
 represent common topic types, such as orientation topics, procedure topics, key task topics,
and form topics. The HTML templates are an excellent option if you are creating new topics.
(If you are reusing HTML topics that already exist, you can publish them on the Help server
so long as you add the correct metadata. For more information, see the following section,
“ Create a topic in HTML.”)

552 PART 2 Developing with Microsoft Dynamics AX

 ■ A Microsoft Word template that can be used to create documentation with Word 2007 or a
later version. Typically, a super user within an organization, such as an office manager, will use
the Word template to publish organization-specific guidelines and processes related to work
that users perform in Microsoft Dynamics AX. The Word template includes the capability to
create the supplemental HTML file that is required for each Word file. For more information
see the section “Create non-HTML content,” later in this chapter

Create a topic in HTML
This section describes how to create an HTML file from scratch. You can use any HTML or text editor
to create HTML files. For example, if you are using Microsoft Visual Studio, you would create a text
file. In order for the file to appear in the Help viewer and look consistent with the Help that Microsoft
provides, you’ll need to add specific metadata.

The following sections walk you through the process of creating a topic that contains the correct
references and metadata.

Declarations
After you first create the HTML file, use the information in this section to add the initial elements and
metadata for the topic. When you complete this section, you will have a basic HTML document.

1. Add a <doctype> element, and specify the document type definition. The following table
shows the document type declarations to use:

Declaration Value

TopElement html

Availability PUBLIC

Document type
 definition

-//W3C//DTD XHTML 1.0 Transitional//EN

URL http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

The following HTML shows the declarations in the <doctype> element:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"[]>

2. Add an <html> element, add the dir attribute, and then set the attribute value to “ltr”
(left-to-right).

Although the dir attribute is not required, the Help viewer uses its value to optimize the
 appearance of the document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"[]>
<html dir="ltr">
</html>

3. Add the namespaces in the following table to the <html> element.

 CHAPTER 16 Customizing and adding help 553

Important These namespaces are required. If you do not include every namespace,
your document might not appear in the Help viewer.

Namespace URL/URN

xmlns:xlink http://www.w3.org/1999/xlink

xmlns:dynHelp http://schemas.microsoft.com/dynamicsHelp/2008/11

xmlns:dynHelpAx http://schemas.microsoft.com/dynamicsHelpAx/2008/11

xmlns:MSHelp http://msdn.microsoft.com/mshelp

xmlns:mshelp http://msdn.microsoft.com/mshelp

xmlns:ddue http://ddue.schemas.microsoft.com/authoring/2003/5

xmlns:msxsl urn:schemas-microsoft-com:xslt

The following HTML shows the namespace declarations:

<html DIR="LTR" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:dynHelp="http://schemas.microsoft.com/dynamicsHelp/2008/11"
xmlns:dynHelpAx="http://schemas.microsoft.com/dynamicsHelpAx/2008/11"
xmlns:MSHelp="http://msdn.microsoft.com/mshelp"
xmlns:mshelp="http://msdn.microsoft.com/mshelp"
xmlns:ddue="http://ddue.schemas.microsoft.com/authoring/2003/5"
xmlns:msxsl="urn:schemas-microsoft-com:xslt">

4. Add the HTML head and body elements to the document. The following example shows the HTML:

< <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"[]><html DIR="LTR"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:dynHelp="http://schemas.microsoft.com/dynamicsHelp/2008/11"
xmlns:dynHelpAx="http://schemas.microsoft.com/dynamicsHelpAx/2008/11"
xmlns:MSHelp="http://msdn.microsoft.com/mshelp"
xmlns:mshelp="http://msdn.microsoft.com/mshelp"
xmlns:ddue="http://ddue.schemas.microsoft.com/authoring/2003/5"
xmlns:msxsl="urn:schemas-microsoft-com:xslt">
 <head>
 </head>
 <body>
 </body>
</html>

Document head
The document head contains metadata, plus the document title that appears in the title bar of the
Help viewer. The style sheets that you reference in the document head are the same style sheets
 referenced by the Help provided by Microsoft. By using these style sheets, you can give your
 documentation a look and feel that is consistent with the Microsoft Help.

1. Add two <meta> elements, and then set their attributes as follows:

• In the first <meta> element, set the http-equiv attribute to “Content-Type”, and then set the
content attribute to “text/html; charset=UTF-8”.

554 PART 2 Developing with Microsoft Dynamics AX

• In the second <meta> element, set the name attribute to “save”, and then set the content
 attribute to “history”.

The following example adds the <meta> elements. Notice how the first <meta> element
specifies the document type. Also notice how the second <meta> element specifies that the
document is saved to the session memory of the browser:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta name="save" content="history"/>

2. Add a <title> element. This text appears in the title bar of the Help viewer as shown in
Figure 16-4.

<title>Using Help for Microsoft Dynamics AX</title>

FIGURE 16-4 Microsoft Dynamics AX Help topic title.

3. Add three <link> elements, and then use them to specify the style sheets to apply to your
document:

• Add a rel attribute to each <link> element, and then set the value of each to “stylesheet”.

• Add a type attribute to each <link> element, and then set the value of each to “text/css”.

• Add an href attribute to each <link> element, and then use the following table to specify
the value of each:

Style Sheet Description

AX.css Specify a path from the folder on the Help server where you publish the document to
the folder that contains the AX.css file. By default, the file is installed in the following
folder: C:/inetpub/wwwroot/<HelpServerName>/content/Microsoft/EN-US/local.
To use the relative path for the default installation folder, type ../local/AX.css.

presentation.css Specify a path from the folder on the Help server where you publish the document to
the folder that contains the presentation.css file. By default, the file is installed in the
following folder:
C:/inetpub/wwwroot/<HelpServerName>/content/Microsoft/EN-US/local.
To use the relative path for the default installation folder, type ../local/presentation.
css.

HxLink.css Specify the URL of the of the HxLink.css file. To use the default location, type
 ms-help://Hx/HxRuntime/HxLink.css.

 CHAPTER 16 Customizing and adding help 555

In the following example, notice how the href attributes specify the relative paths of the
folders that contain the .css files, assuming that the content is published to the appropriate
publisher and language folders. Also, the third <link>element specifies a URL for the
HxLink.css file:

<link rel="stylesheet" type="text/css" href="../../Microsoft/EN-US /local/
presentation.css"/>
<link rel="stylesheet" type="text/css" href="../../Microsoft/EN-US /local/AX.css"/>
<link rel="stylesheet" type="text/css" href="ms-help://Hx/HxRuntime/HxLink.css"/>

4. Add nine <meta> elements, and then provide the required document properties. Add a name
and content attribute to each element. For the name and content attribute of each element,
specify values in the following table:

Name Content

Title The title of the topic; for example, “Using Help for Microsoft Dynamics AX.”

Microsoft.Help.Id A unique ID for the topic. The ID value must be unique and cannot duplicate the
ID of an existing topic. Typically, you use a globally unique identifier (GUID) to
ensure that the ID value is unique, but you can use a text value for the ID.

ms.locale The locale for the Help language; for example, EN-US.

publisher The name of the publisher, generally the name of your company; for example,
Contoso. For more information, see the section “Publish content,” later in this chapter.

documentSets The name of the default document set: UserDocumentation. A Help topic can
 belong to multiple document sets.

Microsoft.Help.
Keywords

Provide a semicolon-delimited list of keywords that will help users find your topic.
For example, Contoso; customer.

suppressedPublishers Leave the content attribute empty.

Microsoft.Help.F1 If you want the Help to be context-sensitive, add the ID of the element that
you want to associate with the topic. For example, in Microsoft Dynamics AX,
CustTable is the name of the Customers form. To create the Microsoft.Help.F1
 element, add “Forms” and a period to the form name (Forms.CustTable). If you
want to call the same Help topic from more than one form, add the ID for each
element, separated by a semicolon. For more information, see the section “Make a
topic context-sensitive,” later in this chapter.

Description Provide a brief description of the topic.

In the following example, notice how the name and content attributes specify each document
property and its value:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="save" content="history" />

<title>Contoso customer help information</title>

<link rel="stylesheet" type="text/css" href="../../Microsoft/EN-US /local/
presentation.css"/>
<link rel="stylesheet" type="text/css" href="../../Microsoft/EN-US /local/AX.css"/>
<link rel="stylesheet" type="text/css" href="ms-help://Hx/HxRuntime/HxLink.css"/>

<meta name="Title" content="Contoso customer help information"/>
<meta name="Microsoft.Help.Id" content="Contoso.Forms.CustTable"/>
<meta name="ms.locale" content="EN-US"/>

556 PART 2 Developing with Microsoft Dynamics AX

<meta name="publisher" content="Contoso"/>
<meta name="documentSets" content="UserDocumentation"/>
<meta name="Microsoft.Help.Keywords" content="Contoso; customer"/>
<meta name="suppressedPublishers" content=""/>
<meta name="Microsoft.Help.F1" content="Forms.CustTable"/>
<meta name="description" content="Describes Contoso customization to the Customers
form"/>

Document body
Between the open and close tags of the <body> element that you added earlier, add elements for
controls, the document title, the main section, and links to related topics.

1. Add <input> elements for two hidden controls that the Help viewer uses to display topics.
These controls are required.

Add a type, id, and class attribute to each element. Use the following values for the attributes:

Type ID Class

hidden hidden ScrollOffset Not applicable (This control does not require a class attribute.)

hidden userDataCache userDataStyle

In the following example, notice how the type attributes specify that each control is hidden,
and the id attributes specify each control name. Also notice how the class attribute of the
“userDataCache” control is set to “userDataStyle”:

<input type="hidden" id="userDataCache" class="userDataStyle" />
<input type="hidden" id="hiddenScrollOffset" />

2. Add the document header. Add a <div> element, and then set the id attribute to “header”, as
shown in Step 4.

3. Add two elements to the header section:

• For the first one, set the id attribute to “runningHeaderText”.

• For the second, set the id attribute to “nsrTitle”. To specify the title that appears in the Help
viewer, type a title for the topic (“Contoso customer Help information” in the following
example).

4. Add an <hr> element. To keep the title visible during scrolling, set the class attribute to
 “title-divider”. Notice that the
 element adds an empty line above the title:

<div id="header">

 Contoso customer Help information
 <hr class="title-divider" />
</div>

5. Add the main section. Add a <div> element, and then set the id attribute to “mainSection”.

 CHAPTER 16 Customizing and adding help 557

6. Add a <div> element to the main section, and then set the id attribute to “mainBody”.

7. Add another <div> element, and then set the id attribute to “footer”:

<div id="mainSection">
 <div id="mainBody">
 </div>
 <div id="footer">
 </div>
</div>

Content
In this section, add all the elements between the start and end tags of the main body. The following
sections add an introduction, a description of a customization, and a list of links to related topics.

1. Add an introduction. Add a <div> element, set the class attribute to “introduction”, and then
type an introduction for your topic within one or two <p> (paragraph) elements.

Important The introduction is a required element. When a user searches for a
topic, the introduction is used as an abstract on the summary page that displays
search results. (See Figure 16-3.)

<div class="introduction">
 <p>
 This topic includes information about changes to the Customer form that have been
added by Contoso.
 </p>
 <p>
 You can use the Customer form to view additional information about each of your
customers.
 </p>
</div>

2. Create a section heading by adding an <h1> element, and then set the class attribute to
“heading”. Between the start and end tags, type a heading for the section. If you do not want
to use a heading for the section, you can leave the <h1> element empty, as in the example.

3. Add a <div> element, and then set the class attribute to “section”.

4. Add your Help content. You can add standard HTML tags to format your content. For
 example, you can use paragraphs, sections, headings, bulleted lists, ordered lists, tables, and
formatting such as bold and italic. The following example shows the opening paragraph for a
section:

<h1 class="heading"></h1>
<div class="section">
 <p>

558 PART 2 Developing with Microsoft Dynamics AX

 The Contoso customer add-ons enable you to view important information about your
relationship with your customer. To view the additional information, click one of the
following buttons:
 </p>
</div>

Links to related topics
Most topics provided by Microsoft contain a “See also” section, which contains links to other topics
that might help the user. Adding a “See also” section can help your custom documentation blend with
the existing documentation from Microsoft. For information about how to find the ID of an existing
topic to link to, see the section “Update content from other publishers,” later in this chapter.

1. Create a section heading by adding an <h1> element, and then set the class attribute to
“heading”. Type See also between the start and end tags.

2. Add a <div> element, and then set the class attribute to “section”.

3. Add a <div> element between the start and end tags of the <div> element, and then set the
class attribute to “seeAlsoStyle”.

4. Add a element between the start and end tags of the “See also” section.

5. Add a <dynHelp:topicLink> element between the start and end tags of the element.
Type the topic title that you want to link to as the text of the link. Add the following attribute
values:

Attribute Value

topicId The ID of the topic that you want to link to.

documentSet UserDocumentation

The following example creates a “See also” section with a link to a topic named “Create a customer
account”:

<h1 class="heading">See also</h1>
<div class="section">
 <div class="seeAlsoStyle">

 <dynHelp:topicLink topicId="cc18943e-c00c-49e6-8bd2-03be6481b6dd" documentSet=
"UserDocumentation">Create a customer account</dynHelp:topicLink>

 </div>
</div>

Footer
To give your topics a look that’s consistent with existing Help topics, add a line to the footer section at
the end of the document.

1. Add a <div> element between the start and end tags of the <div> element that has the id
 attribute set to “footer”, and then set the class attribute to “footerline”.

 CHAPTER 16 Customizing and adding help 559

2. Add an <hr> element, add the style attribute, and then set the following values:

Property Name Value

height 3px

color Silver

<div id="footer">
 <div class="footerLine">
 <hr style="height:3px; color:Silver" />
 </div>
 <p />
</div>

Add labels, fields, and menu items to a topic
You can enhance your Help by adding references to user interface labels. When you add a reference
to a label, the label text is retrieved from the AOS and added to your Help topic at run time. This
means that the user interface text that you refer to in your Help documentation will always match the
text in the application.

The following table describes the types of labels that you can reference in your documentation:

Label Type Description

Labels Text that appears in the user interface. These types of labels are found in a Microsoft Dynamics AX
label file.

Table fields The user interface text that represents a field from a data table.

Menu items The user interface text for a menu item.

The following restrictions can affect how labels appear in your documentation:

 ■ To retrieve the text of the label, the Help server queries AOS. Whoever requests the Help topic
must have access permissions. Otherwise, the default text appears in the topic.

 ■ When the label appears in the Help viewer, the text appears in the same language that is used
by the Microsoft Dynamics AX client that the request originated from.

 ■ The Help server does not support references to labels in non-HTML documents.

Add a label from the user interface
When you create a Help topic that describes a form, you can include a specific label that appears in
the form by adding the ID of the label to the HTML of your topic.

1. In the Development Workspace, point to Tools > Development Tools > Label > Label Editor.

2. In the Find What field, type the text of the label whose ID you want to find, expand the In The
Language list, click the language you want, and then click Find Now.

The Label Editor lists all the labels that include the specified text for the specified language.

560 PART 2 Developing with Microsoft Dynamics AX

3. In your Help topic, in the location where you want the label to appear, add a
<dynHelpAx:label> element, and then specify values for the following attributes:

Attribute Value Description

axtype “Label” Set the attribute to “Label”.

id The ID value of the label. Specify the ID value that you retrieved by using the Label
 Editor.

<dynHelpAx:label axtype="Label" id="@SYS21829"> </dynHelpAx:label>

4. In the <dynHelpAx:label> element, specify default text. If the label cannot be retrieved, the
text that you supply appears in the Help topic. In the following example, “Bank Account” is the
default text:

<dynHelpAx:label axtype="Label" id="@SYS21829">Bank Account</ dynHelpAx:label>

Note If you do not supply a default text value, and the label cannot be retrieved,
the Help topic will not include a value for the label.

Add a table field label
You can add table field labels when you want your Help topic to include the text of a table field.

1. In the Application Object Tree (AOT), under Data Dictionary\Tables, click the table that
 contains the field, and then note the value of the Name property of the table.

2. Expand Fields, find the field that contains the label that you want to use, and then note the
value of the Name property of the field.

3. In your Help topic, in the location where you want the label to appear, add a
<dynHelpAx:label> element, and then specify values for the following attributes.

Attribute Value Description

axtype “Field” Set the attribute to “Field”.

axtable The name of the table. Specify the value of the Name property of the table that
contains the field.

axfield The name of the field. Specify the value of the Name property for the field.

<dynHelpAx:label axtype="Field" axtable="DirPartyTable" axfield="Name">
</dynHelpAx:label>

4. Specify a default text value for the <dynHelpAx:label > element. If the label cannot be
 retrieved, the text that you specify appears in the Help topic. In the following example,
“Name” is the default text:

<dynHelpAx:label axtype="Field" axtable="DirPartyTable" axfield="Name">Name
</dynHelpAx:label>

 CHAPTER 16 Customizing and adding help 561

Add a menu item label
You can add a menu item label to your Help topic when you want to include the text of a menu item.

1. In the AOT, expand Menu Items, and then expand a menu item category.

2. Find the menu item, and then note the value of the Name property.

3. In your Help topic, in the location where you want the label to appear, add a
<dynHelpAx:label> element, and then specify values for the following attributes:

Attribute Value Description

axtype “MenuItem” Set the attribute to “MenuItem”.

axmenutype “Display” Set the attribute to “Display”.

axmenuitem The name of the menu
item.

Specify the value of the Name property for the menu item.

<dynHelpAx:label axtype="MenuItem" axmenutype="Display" axmenuitem="SalesTable">
</dynHelpAx:label>

4. Specify a default text value for the <dynHelpAx:label> element. If the label cannot be
 retrieved, the text that you supply appears in the Help topic. In the following example, “Sales
order” is the default text:

<dynHelpAx:label axtype="MenuItem" axmenutype="Display" axmenuitem ="SalesTable">
Sales order</dynHelpAx:label>

Make a topic context-sensitive
Context-sensitive Help provides documentation for specific objects in Microsoft Dynamics AX. When
a user presses F1, the Help viewer displays documentation about the form, list page, or other object
that you have open in the Microsoft Dynamics AX client or the Development Workspace.

Microsoft Dynamics AX Help supports the use of context-sensitive Help for the following client and
Development Workspace object types:

 ■ Base enums

 ■ Configuration keys

 ■ Forms

 ■ Maps

 ■ Parts

 ■ Tables

 ■ Classes

 ■ Data types

562 PART 2 Developing with Microsoft Dynamics AX

 ■ List pages

 ■ Menu items

 ■ Reports

 ■ Views

When a user presses F1, the following actions occur:

 ■ The client sends the ID of each object that is currently open to the Help viewer. (The object ID
is a string that identifies each object, such as CustTable.)

 ■ The Help viewer sends the object IDs to the Help server.

 ■ For each object ID, the Help server searches for content with a corresponding topic ID.

 ■ When an object ID matches a topic ID, the Help server returns the content for that topic.

 ■ The Help viewer receives and displays the content.

To make a topic content context-sensitive, you set the Microsoft.Help.F1 property of your content to
the ID of the object. If multiple topics have the same value for the Microsoft.Help.F1 property, the
Help viewer displays a list of multiple topic links that the user can choose among.

To find object IDs:

 ■ In the AOT, right-click the object in the AOT, and then point to Add-Ins > Help Properties. The
Help Properties window opens and displays the ID.

 ■ In a form, open the form, right-click in a blank area of the form, click Personalize, and then
click the Information tab. The Form name field displays the name of the form. To specify
the ID, combine the element type, ”Forms,” with the name of the form. For example, for the
form called CustTable, you would specify Forms.CustTable as the object ID, as in the following
 example:

<meta name="Microsoft.Help.F1" content="Forms.CustTable"/>

Update content from other publishers
At times, you might want to update or modify a topic that already exists on the Help server. For
 example, if your solution adds fields to an existing form, you might want to replace the default topic
for that form with one of your own. To update an existing Help topic, you create a new topic to
 replace the existing one. The Help viewer then hides the existing topic by suppressing the publisher
that you specify. The hidden topic remains on the Help server and can be accessed through search.

Caution Do not edit or remove any files that were published to the Help server by another
publisher. An update or reinstallation of the files from that publisher might overwrite the
changes that you make.

 CHAPTER 16 Customizing and adding help 563

To replace a topic, you obtain metadata from the topic that you want to replace and then add it to
the new topic that you’ve created.

1. In the Help viewer, open the topic that you want to replace, right-click the topic, and then click
View Source.

2. Get metadata about the Help topic:

• Search for meta name=”Microsoft.Help.F1”, and then record the topic ID.

• Search for meta name=”publisher”, and then record the publisher ID.

3. In the new topic that you created, do the following:

• Search for the element <meta name=”Microsoft.Help.F1” content=””/>, and then set the
value of content to the topic ID that you noted in step 2.

• Search for the element <meta name=”suppressedPublishers” content=””/>, and then set the
value of content to the publisher ID that you noted in step 2.

Tip If you want to hide content from more than one publisher, use a semicolon
to separate each publisher ID.

The following example sets the ID to the Microsoft topic to replace and adds “Microsoft” to
the <suppressedPublishers> element:

<meta name="Microsoft.Help.F1" content="c3fc5774-6ed0-4760-86f5-7899e825ab25"/>

<meta name="suppressedPublishers" content="Microsoft"/>

4. Save the file, and then publish your content to the Help server.

Create a table of contents file
The table of contents file is an XML file that contains a hierarchical representation of Help topics. Add
entries to the table of contents when you add new Help topics that you want to appear in the table of
contents. (By convention, Microsoft Help topics that contain conceptual information and procedures
appear in the table of contents, but topics that describe forms, which appear when the user presses
F1, do not.) The table of contents file must be named TableOfContents.xml. After you create the XML
file, you publish it. For more information about publishing your table of contents file, see the section
“Publish content,” later in this chapter.

1. Use a text or XML editor to create a new file.

2. Add the <xml> and <tableOfContents> elements to the file. The <tableOfContents> element
requires XML namespace information.

564 PART 2 Developing with Microsoft Dynamics AX

<?xml version="1.0" encoding="utf-8"?>
<tableOfContents xmlns="http://schemas.microsoft.com/dynamicsHelp/2008/11" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
</tableOfContents>

3. Add metadata properties that specify a document set, language, and publisher.

The Help service uses these properties to identify the entries that appear in the Help viewer’s
table of contents. The following table describes the properties:

Property Required Description

documentSet Yes Specify the ID of a document set. Typically, you set this property to
“UserDocumentation”. The document set determines whether the entries
appear in the table of contents for the application workspace, developer
workspace, or both.

Ms.locale Yes Specify the language of the table of contents entries. Use a language code to
identify the language. For example, use EN-US for U.S. English. The ms.locale
property enables the Help viewer to display localized content.

publisher No Specify the ID of the publisher. Table of contents entries are grouped by
publisher. For more information, see the section “Publish content,” later in
this chapter.

<?xml version="1.0" encoding="utf-8"?>
<tableOfContents xmlns="http://schemas.microsoft.com/dynamicsHelp/2008/11" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <publisher>Contoso</publisher>
 <documentSet>UserDocumentation</documentSet>
 <ms.locale>EN-US</ms.locale>
</tableOfContents>

4. Add the <entries> element after the metadata, as shown in the following example:

<publisher>Contoso</publisher>
<documentSet>UserDocumentation</documentSet>
<ms.locale>EN-US</ms.locale>
<entries>
</entries>

5. Add an <entry> element for each topic that you want to add to the table of contents:

The <entry> elements must be child elements of the <entries> element. The following table
describes the properties of an <entry> element:

Property Required Description

text Yes Specify the text that appears in the Help viewer.

Microsoft.Help.
F1

No Specify one or more topic IDs that are associated with the entry. When
you click an entry in the table of contents, the Help viewer uses these IDs
to request the content elements associated with that entry.

publisher No Specifying the publisher is optional.

<entries>
 <entry>
 <text>Sample help topic</text>
 <Microsoft.Help.F1>DEFAULT_TOPIC</Microsoft.Help.F1>
 </entry>
</entries>

 CHAPTER 16 Customizing and adding help 565

6. If you want entries to appear under the current entry in the Help viewer in a hierarchical
 structure, add a <children> element, and then add entries to it:

<entry>
 <text>Sample help topic</text>
 <Microsoft.Help.F1>DEFAULT_TOPIC</Microsoft.Help.F1>
 <children>
 <entry>
 <text>Child help topic</text>
 <Microsoft.Help.F1>DEFAULT_TOPIC</Microsoft.Help.F1>
 </entry>
 </children>
</entry>

Figure 16-5 shows a table of contents hierarchy in the Help viewer.

FIGURE 16-5 A table of contents hierarchy.

Create non-HTML content
Although the Help viewer cannot display a non-HTML file, it can open another application that can
display the file; for example, it can use Word to open a .docx file.

To link to a non-HTML file from the Help viewer, you must have these components:

 ■ You must include an HTML file that contains the metadata properties that the Help system
requires. This file must have the same name as the non-HTML file.

 ■ You must include a script that targets the non-HTML file. This file must be published to the
same folder on the Help server as the file with the metadata properties.

 ■ Computers with the Help viewer installed must have an application that can display the
 non-HTML file. The application must be the default application for that type of file.

The following sections describe how to create non-HTML content and the required metadata file.

Create the content
Open the application that you want to create the content with, and then create a new file. For
 example, open Word, and create a new document.

566 PART 2 Developing with Microsoft Dynamics AX

Tip If you use Word, use one of the templates included with the Help system to quickly
create content that resembles existing Help content. For information about accessing the
Word templates, see the section “Create content,” earlier in this chapter.

Add content to the file—typically, a title, section headings, and paragraphs. Save the file, and note
the file name. You will use this file name when you create the HTML file with the metadata.

Create the HTML metadata file
Create a new file, and add the HTML for a basic webpage, as in the following example:

<html>
 <head>
 </head>
</html>

Add a <meta> element to the file for each of the following metadata properties:

Property Required Description

description No A brief summary of the content. This appears in a list of search
 results.

documentSets Yes Set this property to “UserDocumentation”.

Microsoft.Help.F1 Yes A topic ID for the content. If the content applies to more than one
topic, use a semicolon-delimited list of topic IDs.

Microsoft.Help.Id Yes A text value that uniquely identifies the content.

Microsoft.Help.
Keywords

No A semicolon-delimited list of keywords. Optional.

ms.locale Yes The language for the content. For example, use “EN-US” for U.S.
English.

publisher Yes Your publisher ID. For more information, see the section “Publish
content,” later in this chapter.

suppressedPublishers No A semicolon-delimited list of publisher IDs. Hiding content produced
by other publishers is optional.

Title Yes The text that is displayed in the title bar of the Help viewer.

The following example shows the metadata for the companion HTML file:

<head>
 <meta name="Title" content="Sample content" />
 <meta name="Microsoft.Help.Id" content="8D937F19-3A00-4F37-A316-0A48D052D627" />
 <meta name="ms.locale" content="En-Us" />
 <meta name="publisher" content="Microsoft" />
 <meta name="documentSets" content="UserDocumentation" />
 <meta name="Microsoft.Help.Keywords" content="" />
 <meta name="suppressedPublishers" content="" />
 <meta name="Microsoft.Help.F1" content="SampleContent" />
 <meta name="description" content="An example of non-HTML content that was published to the
Help system." />
</head>

 CHAPTER 16 Customizing and adding help 567

Add a <script> element and specify the non-HTML file that you want to open. Specify the script
type as javascript and use the window.location object to specify the file. The following HTML example
shows a <script> element that opens the file SampleContent.docx:

<script type="text/javascript">
 <!--
 window.location="SampleContent.docx"
 //-->
</script>

When you save the file, the file name extension must be .htm.

Important The file name must match the file name of the non-HTML file. For example, use
SampleContent.htm to match the SampleContent.docx example.

Publish content

To publish new or updated content and table of contents entries, you copy HTML or XML files to the
Help server.

After creating or updating content, use these guidelines to ensure that you are ready to publish
and to ensure that your content is visible on the Help server:

 ■ Maintain a separate set of folders for each publisher (see Figure 16-6). This will ensure that
content from a particular publisher doesn’t get overwritten accidentally.

 ■ Make sure that you have the correct permissions on the Help server to add files and folders.

 ■ Add your publisher ID to the Web.config file of the Help server to determine where your
 documentation appears in the table of contents and in search results.

 ■ If you have non-HTML content, you must include an HTML file with the required properties.
The HTML file must be in the same folder as the non-HTML document. For more information,
see the section “Create non-HTML content,” earlier in this chapter.

Although this is not required, you can add subfolders to the content folder that specify your pub-
lisher ID and the language of your content, as shown in Figure 16-6. This can prevent files from other
publishers from being overwritten—for example:

C:/inetpub/wwwroot/DynamicsAX6HelpServer/content/Contoso/EN-US

568 PART 2 Developing with Microsoft Dynamics AX

FIGURE 16-6 Help server folders for the publishers Contoso and Microsoft.

Details about the subfolders that you can add appear in the following table:

Folder
Name

Recommended/
Optional

Example Description

Publisher ID Recommended Contoso Specify a unique name for the publisher—typically, your
publisher ID from the metadata properties of your content.
The publisher ID folder typically contains subfolders for the
languages of your content.

Language Recommended EN-US Specify the language of your content—typically, the
 language from the metadata properties of your content.
You cannot change the value of the Language metadata
property of content by changing the name of the folder
where it is published.

Other Optional TOCResources Add subfolders to help organize related content.

To delete existing content, remove the file that contains the content from the Help server.

Tip If you remove a topic, also update the topic from the table of contents and any
 cross-references.

Publication is completed when WSS adds metadata from your HTML or XML file to the search
index. Make sure that WSS is running on the Help server.

The Help server uses the search service and its index to locate each topic that matches a Help
request. You will not see newly published content in the Help viewer until that content is indexed.

Note WSS is a low-priority service that runs after higher-priority services. The time
 between publishing and viewing your content can vary. If you publish just a few files to a
Help server that was previously indexed, the new files should be immediately indexed.

After WSS has indexed your files, use the Help viewer to view your new content. If you cannot see
your content, check to ensure that the content has been indexed.

 CHAPTER 16 Customizing and adding help 569

Add a publisher to the Web.config file
To refine search results, summary pages, and table of contents entries, the Help server keeps a list of
publishers in the Web.config file. You update this list to complete the following tasks:

 ■ Add or remove a publisher from the Search Options menu of the Help viewer (Figure 16-7) to
restrict your search to content created by the specified publisher.

FIGURE 16-7 Publishers on the Search Options menu.

 ■ List content from one publisher before or after content from another publisher. If your Help
request includes content from more than one publisher, the summary page uses the publisher
list to determine the sort order of the content.

 ■ Specify where a group of entries in the table of contents appears. The Help server groups
entries by publisher. When the Help server sends the table of contents to the Help viewer, the
server uses the publisher list in the Web.config file to determine the order of the entries.

Before making changes to the Web.config file, save a copy of the file.

If you do not add your publisher ID to the Web.config file, the Help server determines the location
of your content.

To add a publisher to the Web.config file:

1. Open the Web.config file in a text editor. To change the file, you might have to copy the file to
a separate working folder. The Web.config file is located here:

C:\inetpub\wwwroot\DynamicsAX6HelpServer

2. Add a publisher to the list. The list of publishers is in the dynamicsHelpConfig section.

The following table specifies the required attributes of the <publisher> element:

Attribute Name Value

publisherId A value that uniquely identifies the publisher. The ID must match the publisher ID
specified in the metadata for content elements and the table of contents.

name The text to be displayed as the name of the publisher. The Search Options menu of
the Help viewer displays this name.

570 PART 2 Developing with Microsoft Dynamics AX

Notice the order of the publishers in the following example. If a summary page includes
 content from both publishers, content from the first publisher is listed before content from
the second:

<publishers>
 <add publisherId="Contoso" name="Contoso" />
 <add publisherId="Microsoft" name="Microsoft" />
</publishers>

3. Save your changes to the Web.config file. If the file is in a working folder, copy your updated
Web.config file to the DynamicsAX6HelpServer folder on your Help server.

Publish content to the Help server
Before you add your content to the Help server, you can add subfolders to organize your files. Although
not required, this can prevent files with similar names from other publishers from being overwritten. If you
publish many files, you can add subfolders by subject to help organize your content.

Caution When you publish, be careful not to accidentally overwrite existing files that
have the same file name. If you overwrite a file, you lose the Help documentation that was
 contained in the original file.

To add folders to the file system of the Help server:

1. In Windows Explorer, open the content folder on the Help server—typically, here:

C:\inetpub\wwwroot\DynamicsAX6HelpServer\content

2. Add a publisher folder, using your publisher ID or name as the folder name.

3. Add language folders for the languages of your content. Name folders by using the same
 language code that is used in the language metadata of your content files—for example,
 “EN-US” for U.S. English.

To publish content:

1. In Windows Explorer, copy the files that you want to publish to the appropriate folders, such as

C:\inetpub\wwwroot\DynamicsAX6HelpServer \content\<publisher ID>\<language>

The following table summarizes the different files that accompany each type of content file:

Document Type Description

HTML Copy the .htm or .html files that you want to publish.

Word Copy the .mht, .docm, or .docx files that you want to publish. Also copy the .htm files
that contain the document properties for the Word files.

Other Copy the document files that you want to publish. Also copy the .htm files that
 contain the document properties for the document files.

 CHAPTER 16 Customizing and adding help 571

If you add many files, WSS takes several minutes to index all the files.

2. Open each content topic in the Help viewer and verify that your content was published.

To publish table of contents entries:

1. In Windows Explorer, copy your TableOfContents.xml file to the folder on the Help server that
matches the publisher and language metadata in the XML file, such as

C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\<publisherID>\<language>\
TOCResources

2. Open the Help viewer and verify that your content was published.

Set Help document set properties
A document set is a collection of content associated with a Microsoft Dynamics AX workspace— either
the Microsoft Dynamics AX client or the Development Workspace. A workspace can be associated
with only one document set. Typically, you use UserDocumentation as the document set for any
 content that you publish. If you add a new document set and associate it with a workspace, you will
no longer see content from the document set that you replaced.

Document sets are located in an AOT node named Help Document Sets. Document sets have
 properties that help you manage the relationship between a workspace and a document set.

Property Type Description

DocumentSetName String The unique name of the document set. The name is limited to
40 characters and cannot contain spaces. Use the value of this property
when you set the value of the DocumentSets metadata in a content file.

DocumentSetDescription String The text to display for the document set. This appears in the Search
content from the list of the Options menu of the Help viewer.

AddToApplicationHelpMenu Boolean Set to Yes when you want the document set to appear on the Help
menu in the Microsoft Dynamics AX client.

AddToDeveloperHelpMenu Boolean Set to Yes when you want the document set to appear on the Help
menu of the Development Workspace.

UserDocumentSet Boolean Set to Yes when you want to associate the document set with the
Microsoft Dynamics AX client. If you set this property to No, you will
not be able to view the context-sensitive (F1) Help that was published
by Microsoft.

DeveloperDocumentSet Boolean Set to Yes when you want to associate the document set with the
Development Workspace. If you set this property to No, you will not
be able to view the context-sensitive (F1) Help that was published by
Microsoft.

ContentLocation Enumeration An enumeration value that specifies where to retrieve documentation:

• Use an enumeration value of “1” and the label “Help server” with
any document set that is published on the Help server.

• Use an enumeration value of “2” and the label “World Wide Web”
with any documentation that is stored on MSDN or a similar
website. This option is required for the DeveloperDocumentation
documentation set and should not be used with any other
 document set.

572 PART 2 Developing with Microsoft Dynamics AX

Troubleshoot the Help system

This section describes solutions to the two most common problems that might occur when
 customizing the Help system.

The Help viewer cannot display content
If the Help viewer cannot display content, check the following possible solutions.

Help server
If you use more than one Help server for development, testing, and production, make sure that the
Help viewer connects to the server where you published your changes. To view the URL of the Help
service in Microsoft Dynamics AX, click Administration > Setup > Help System Parameters.

Make sure that the web service and application pool for the Help service are running. Click Start >
All Programs > Administrative Tools > Internet Information Services (IIS) Manager.

WSS
Content does not appear in the Help viewer until it has been indexed by WSS. Right-click the taskbar,
click Start Task Manager, click the Services tab, and then, in the Name column, find Wsearch, and
verify that ”Running” appears in the Status column. If WSS is running, you might have to give indexing
more time to find your content. Indexing slows or stops when the server is busy.

If WSS is not running, right-click Wsearch, and then click Start Service. Allow WSS to find and index
the files that you published.

Check whether the Help server or WSS logged any error messages in the application log of the
server. In Event Viewer, click Application Log.

Content
Check whether the Help server can open and process the HTML file of your content. If the Help server
cannot locate the file, or the file does not include the required metadata, the Help server does not
send the content to the Help viewer.

 ■ Make sure that the HTML file is in the correct folder on the Help server.

 ■ Make sure that the content file includes all required metadata with the correct syntax.

 ■ Make sure that there are no errors in the XHTML of your content files.

 CHAPTER 16 Customizing and adding help 573

The Help viewer cannot display the table of contents
Check whether the Help server can open and process the XML file for the table of contents entries.
If the Help server cannot locate the file, or the file does not include the required metadata, the Help
server will not add your entries to the table of contents.

 ■ Make sure that the XML file is in the correct folder.

 ■ Make sure that the file includes all required metadata in the correct syntax.

 ■ Make sure that the ID in the Microsoft.Help.F1 property of the table of contents entry
identifies only a single topic.

 575

PART III

Under the hood

CHAPTER 17 The database layer. .575

CHAPTER 18 Batch framework .613

CHAPTER 19 Application frameworks .633

CHAPTER 20 Reflection .669

CHAPTER 21 Application models .687

C H A P T E R 1 7

The database layer

Introduction

Temporary tables

InMemory temporary tables

TempDB temporary tables

Creating temporary tables

Surrogate keys

Alternate keys

Table relations

EDT relations and table relations

Foreign key relations

The CreateNavigationPropertyMethods property

Table inheritance

Modeling table inheritance

Table inheritance storage model

Polymorphic behavior

Performance considerations

Unit of Work

Date-effective framework

Relational modeling of date-effective entities

Support for data retrieval

Run-time support for data consistency

Full-text support

The QueryFilter API

Data partitions

Partition management

Development experience

Run-time experience

 CHAPTER 17 The database layer 577

C H A P T E R 1 7

The database layer

In this chapter
Introduction . 577
Temporary tables . 577
Surrogate keys . 585
Alternate keys . 587
Table relations . 588
Table inheritance . 594
Unit of Work . 599
Date-effective framework . 601
Full-text support . 606
The QueryFilter API . 607
Data partitions. 610

Introduction

The Microsoft Dynamics AX 2012 application run time provides robust database features that make
creating an enterprise resource planning (ERP) application much easier. Many new and powerful
 database features have been added to Microsoft Dynamics AX 2012. This chapter focuses on
 several of these new capabilities. The information provided here introduces the features, provides
 information about how to use them in an application, and, when appropriate, explains in detail how
each feature works.

Many database features, such as optimistic concurrency control (OCC), transaction support, and the query
system, have been available in Microsoft Dynamics AX for several releases. For detailed information about these
and other database features in Microsoft Dynamics AX, see the “Database“ section in the Microsoft Dynamics
AX 2012 software development kit (SDK) at http://msdn.microsoft.com/en-us/library/aa588039.aspx.

You can also refer to previous editions of “Inside Microsoft Dynamics AX,” which contain useful
information about database functionality that still applies to Microsoft Dynamics AX 2012.

Temporary tables

By default, any table that is defined in the Application Object Tree (AOT) is mapped in a one-to-one
relationship to a permanent table in the underlying relational database. Microsoft Dynamics AX also
supports the functionality of temporary tables. In previous releases, Microsoft Dynamics AX provided

578 PART 3 Under the hood

the capability to create InMemory temporary tables that are mapped to an indexed sequential access
method (ISAM) file-based table that is available only during the run-time scope of the Application
Object Server (AOS) or a client. Microsoft Dynamics AX 2012 provides a new type of temporary table
that is stored in the TempDB database in Microsoft SQL Server.

InMemory temporary tables
The ISAM file that represents an InMemory temporary table contains the data and all of the indexes
that are defined for the table in the AOT. Because working on smaller datasets is generally faster than
working on larger datasets, the Microsoft Dynamics AX run time monitors the size of each InMemory
temporary table. If the size is less than 128 kilobytes (KB), the temporary table remains in memory.
If the size exceeds 128 KB, the temporary table is written to a physical ISAM file. Switching from
 memory to a physical file affects performance significantly. A file with the naming syntax
$tmp<8 digits>.$$$ is created when data is switched from memory to a physical file. You can
monitor the threshold limit by noting when this file is created.

Although InMemory temporary tables don’t map to a relational database, all of the data
 manipulation language (DML) statements in X++ are valid for tables that operate as InMemory
temporary tables. However, the Microsoft Dynamics AX run time executes some of the statements in
a downgraded fashion because the ISAM file functionality doesn’t offer the same functionality as a
relational database. For example, set-based operators always execute as record-by-record operations.

Using InMemory temporary tables
When you declare a record buffer for an InMemory temporary table, the table doesn’t contain any
records. You must insert records to work with the table. The InMemory temporary table and all of the
records are lost when no declared record buffers point to the temporary dataset.

Memory and file space aren’t allocated to the InMemory temporary table until the first record is
inserted. The temporary table is located on the tier where the first record was inserted. For example,
if the first insert occurs on the server tier, the memory is allocated on this tier, and eventually the
temporary file will be created on the server tier.

Important Use temporary tables carefully to ensure that they don’t cause excessive round
trips between the client and the server, resulting in degraded performance. For more
 information, see Chapter 13, “Performance.”

A declared temporary record buffer contains a pointer to the dataset. If you use two temporary
record buffers, they point to different datasets by default, even though the table is of the same type.
To illustrate this, the X++ code in the following example uses the TmpLedgerTable temporary table
defined in Microsoft Dynamics AX 2012. The table contains four fields: AccountName, AccountNum,
CompanyId, and LedgerDimension. The AccountNum and CompanyId fields are both part of a unique
index, AccountNumIdx, as shown in Figure 17-1.

 CHAPTER 17 The database layer 579

FIGURE 17-1 TmpLedgerTable temporary table.

The following X++ code shows how the same record can be inserted in two record buffers of the
same type. Because the record buffers point to two different datasets, a “duplicate value in index”
failure doesn’t result, as it would if both record buffers pointed to the same temporary dataset, or
if the record buffers were mapped to a database table.

static void TmpLedgerTable(Args _args)
{
 TmpLedgerTable tmpLedgerTable1;
 TmpLedgerTable tmpLedgerTable2;

 tmpLedgerTable1.CompanyId = 'dat';
 tmpledgerTable1.AccountNum = '1000';
 tmpLedgerTable1.AccountName = 'Name';
 tmpLedgerTable1.insert(); // Insert into tmpLedgerTable1's dataset.

 tmpLedgerTable2.CompanyId = 'dat';
 tmpledgerTable2.AccountNum = '1000';
 tmpLedgerTable2.AccountName = 'Name';
 tmpLedgerTable2.insert(); // Insert into tmpLedgerTable2's dataset.
}

To have the record buffers use the same temporary dataset, you must call the setTmpData method
on the record buffer, as illustrated in the following X++ code. In this example, the setTmpData
 method is called on the second record buffer and is passed in the first record buffer as a parameter.

static void TmpLedgerTable(Args _args)
{
 TmpLedgerTable tmpLedgerTable1;
 TmpLedgerTable tmpLedgerTable2;

 tmpLedgerTable2.setTmpData(tmpLedgerTable1);

 tmpLedgerTable1.CompanyId = 'dat';

580 PART 3 Under the hood

 tmpledgerTable1.AccountNum = '1000';
 tmpLedgerTable1.AccountName = 'Name';
 tmpLedgerTable1.insert(); // Insert into shared dataset.

 tmpLedgerTable2.CompanyId = 'dat';
 tmpledgerTable2.AccountNum = '1000';
 tmpLedgerTable2.AccountName = 'Name';
 tmpLedgerTable2.insert(); // Insert will fail with duplicate value.
}

The preceding X++ code fails on the second insert operation with a “duplicate value in index” error
because both record buffers point to the same dataset. You would notice similar behavior if, instead
of calling setTmpData, you simply assigned the second record buffer to the first record buffer, as
 illustrated here:

 tmpLedgerTable2 = tmpLedgerTable1;

However, the variables would point to the same object, which means that they would use the same
dataset.

When you want to use the data method to copy data from one temporary record buffer to another,
where both buffers point to the same dataset, write the code for the copy operation as follows:

tmpLedgerTable2.data(tmpLedgerTable1);

Warning The connection between the two record buffers and the dataset is lost if the
code is written as tmpLedgerTable2 = tmpLedgerTable1.data. In this case, the temporary
record buffer points to a new record buffer that has a connection to a different dataset.

As mentioned earlier, if no record buffer points to the dataset, the records in the temporary table
are lost, the allocated memory is freed, and the physical file is deleted. The following X++ code
example illustrates this situation, in which the same record is inserted twice using the same record
buffer. But because the record buffer is set to null between the two insert operations, the first dataset
is lost, so the second insert operation doesn’t result in a duplicate value in the index because the new
record is inserted into a new dataset.

static void TmpLedgerTable(Args _args)
{
 TmpLedgerTable tmpLedgerTable;

 tmpLedgerTable.CompanyId = 'dat';
 tmpledgerTable.AccountNum = '1000';
 tmpLedgerTable.AccountName = 'Name';
 tmpLedgerTable.insert(); // Insert into first dataset.

 tmpLedgerTable = null; // Allocated memory is freed
 // and file is deleted.
 tmpLedgerTable.CompanyId = 'dat';
 tmpledgerTable.AccountNum = '1000';

 CHAPTER 17 The database layer 581

 tmpLedgerTable.AccountName = 'Name';
 tmpLedgerTable.insert(); // Insert into new dataset.
}

Notice that none of these InMemory temporary table examples uses the ttsbegin, ttscommit,
and ttsabort statements. These statements affect only ordinary tables that are stored in a relational
database. For example, the following X++ code adds data to an InMemory temporary table. Because
the table is an InMemory temporary table, the value of the accountNum field is printed to the Infolog
even though the ttsabort statement executes.

static void TmpLedgerTableAbort(Args _args)
{
 TmpLedgerTable tmpLedgerTable;

 ttsbegin;
 tmpLedgerTable.CompanyId = 'dat';
 tmpledgerTable.AccountNum = '1000';
 tmpLedgerTable.AccountName = 'Name';
 tmpLedgerTable.insert(); // Insert into table.
 ttsabort;

 while select tmpLedgerTable
 {
 info(tmpLedgerTable.AccountNum);
 }
}

To cancel the insert operations on the table in the preceding scenario successfully, you must call
the ttsbegin and ttsabort methods on the temporary record buffer instead, as shown in the following
example:

static void TmpLedgerTableAbort(Args _args)
{
 TmpLedgerTable tmpLedgerTable;

 tmpLedgerTable.ttsbegin();
 tmpLedgerTable.CompanyId = 'dat';
 tmpledgerTable.AccountNum = '1000';
 tmpLedgerTable.AccountName = 'Name';
 tmpLedgerTable.insert(); // Insert into table.
 tmpLedgerTable.ttsabort();

 while select tmpLedgerTable
 {
 info(tmpLedgerTable.AccountNum);
 }
}

When you work with multiple temporary record buffers, you must call the ttsbegin, ttscommit,
and ttsabort methods on each record buffer because there is no correlation between the individual
temporary datasets.

582 PART 3 Under the hood

Considerations for working with InMemory temporary tables
When working with InMemory temporary tables, keep the following points in mind:

 ■ When exceptions are thrown and caught outside the transaction scope, if the Microsoft
 Dynamics AX run time has already called the ttsabort statement, temporary data isn’t rolled
back. When you work with temporary datasets, make sure that you’re aware of how the
 datasets are used both inside and outside the transaction scope.

 ■ The database-triggering methods on temporary tables behave almost the same way as they
do with ordinary tables, but with a few exceptions. When insert, update, and delete are called
on the temporary record buffer, they don’t call any of the database-logging or event-raising
methods on the application class if database logging or alerts have been set up for the table.

Note In general, you can’t set up logging or events on InMemory temporary
tables that you define. However, because ordinary tables can be changed to
 temporary tables, logging or events might already be set up.

 ■ Delete actions are also not executed on InMemory temporary tables. Although you can set up
delete actions, the Microsoft Dynamics AX application run time doesn’t try to execute them.

 ■ Microsoft Dynamics AX lets you trace Transact-SQL statements, either from within the
 Microsoft Dynamics AX Windows client, or from the Microsoft Dynamics AX Configuration
Utility or the Microsoft Dynamics AX Server Configuration Utility. However, Transact-SQL
statements can be traced only if they are sent to the relational database. You can’t trace
data manipulation in InMemory temporary tables with these tools. However, you can use the
Microsoft Dynamics AX Trace Parser to accomplish this. For more information, see the section,
“Microsoft Dynamics AX Trace Parser” in Chapter 13.

 ■ You can query a record buffer to find out whether it is acting on a temporary dataset by
calling the isTmp record buffer method, which returns a value of true or false depending on
whether the table is temporary.

TempDB temporary tables
The application code in Microsoft Dynamics AX often uses temporary tables for intermediate storage.
This requires performing joins with regular tables and in some cases, executing set-based operations.
But InMemory temporary tables provide restricted support for joins. These joins are performed by the
data layer in the AOS, which does not give ideal performance. Also, as mentioned earlier, set-based
operations are always downgraded to row-by-row operations for InMemory tables. TempDB
 temporary tables have been added to Microsoft Dynamics AX to provide a high-performance
 solution for these scenarios. Because these temporary tables are stored in the SQL Server database,
database operations such as joins can be used.

 CHAPTER 17 The database layer 583

TempDB temporary tables use the same X++ programming constructs as InMemory temporary
tables. The key difference is that they are stored in the SQL Server TempDB database. The following
code example shows the usage of a TempDB temporary table:

void select2Instances()
{
 TmpDBTable1 dbTmp1;
 TmpDBTable1 dbTmp2;

 dbTmp1.Field1 = 1;
 dbTmp1.Field2 = 'First';
 dbTmp1.insert();

 dbTmp2.Field1 = 2;
 dbTmp2.Field2 = 'Second';
 dbTmp2.insert();
 info("First Instance.");
 while select * from dbTmp1
 {
 info(strfmt("%1 - %2", dbTmp1.Field1, dbTmp1.Field2));
 }
 info("Second Instance.");
 while select * from dbTmp1
 {
 info(strfmt("%1 - %2", dbTmp2.Field1, dbTmp2.Field2));
 }
}

This example uses a table called TmpDBTable1 that contains two fields. The TableType property
for the TmpDBTable1 table is set to TempDB. Similar to an InMemory temporary table, the TempDB
temporary table is created only when the data is inserted into the table buffer. To see the data in
the temporary table, insert a breakpoint before the first select statement in the X++ code, and then
open SQL Server Management Studio (SSMS) to examine the tables that are created in the TempDB
system database. Each table buffer instance for the temporary table has a corresponding table in the
database in the following format: t<table_id>_GUID. In the example, the table ID of the TmpDBTable1
table is 101420. This means that two tables were created in the TempDB database, with one of them
having the table name t101420_E448847EACA4482997F4CD8BCAAAE0CE. After the method runs and
the table buffers are destroyed, these two tables are truncated. The Microsoft Dynamics AX run time
uses a pool to keep track of these tables in the TempDB database. The run time will reuse one of these
table instances when a TmpDBTable1 table buffer is created again in X++.

Creating temporary tables
You can create temporary tables in the following ways:

 ■ At design time by setting metadata properties.

 ■ At configuration time by enabling licensed modules or configurations.

 ■ At application run time by writing explicit X++ code.

584 PART 3 Under the hood

The following sections describe each method.

Design time
To define a table as temporary, you must set the appropriate value in the TableType property for
the table resource. By default, the TableType property is set to Regular. To create a temporary table,
choose one of the other two options: InMemory or TempDB, as shown in Figure 17-2. The temporary
tables are created in memory, and are backed by a file or created in the TempDB database when
needed.

FIGURE 17-2 Marking a table as temporary at design time.

Tip Tables that you define as temporary at design time should have Tmp inserted as
part of the table name instead of at the beginning or end of the name; for example,
InventCostTmpTransBreakdown. This improves readability of the X++ code when temporary
tables are explicitly used. In previous versions of Microsoft Dynamics AX, the best practice
was to prefix temporary tables with Tmp, which is why a number of temporary tables still
use this convention.

Configuration time
When you define a table by using the AOT, you can attach a configuration key to the table by setting the
ConfigurationKey property on the table. The property belongs to the Data category of the table properties.

When the Microsoft Dynamics AX run time synchronizes the tables with the database, it synchronizes
tables for all modules and configurations, regardless of whether they’re enabled except the
 SysDeletedObjects configuration keys. Whether a table belongs to a licensed module or an enabled
configuration depends on the settings in the ConfigurationKey property. If the configuration key is
disabled, the table is disabled and behaves like a TempDB temporary table. Therefore, no run-time
error occurs when the Microsoft Dynamics AX run time interprets X++ code that accesses tables
that aren’t enabled. For more information about the SysDeletedObjects configuration key, see “Best
 Practices: Tables” at http://msdn.microsoft.com/en-us/library/aa876262.aspx.

Note Whether it is enabled doesn’t affect a table that is already defined as a temporary
table. The table remains temporary even though its configuration key is disabled, and you
can expect the same behavior regardless of the configuration key setting.

 CHAPTER 17 The database layer 585

Run time
You can use X++ code to turn an ordinary table into an InMemory temporary table by calling the
setTmp method on the record buffer. From that point forward, the record buffer is treated as though
the TableType property on the table is set to InMemory.

Note You can’t define a record buffer of a temporary table type and turn it into an
 ordinary table, partly because there is no underlying table in the relational database.

The following X++ code illustrates the use of the setTmp method, in which two record buffers
of the same type are defined; one is temporary, and all records from the database are inserted into
the temporary version of the table. Therefore, the temporary record buffer points to a dataset that
 contains a complete copy of all of the records from the database belonging to the current company.

static void TmpCustTable(Args _args)
{
 CustTable custTable;
 CustTable custTableTmp;

 custTableTmp.setTmp();
 ttsbegin;
 while select custTable
 {
 custTableTmp.data(custTable);
 custTableTmp.doInsert();
 }
 ttscommit;
}

Notice that the preceding X++ code uses the doInsert method to insert records into the temporary
table. This prevents execution of the overridden insert method. The insert method inserts records in
other tables that aren’t switched automatically to temporary mode just because the custTable record
buffer is temporary.

Caution Use great care when changing an ordinary record buffer to a temporary record
buffer because application logic in overridden methods that manipulates data in ordinary
tables could execute inadvertently. This can happen if the temporary record buffer is used
in a form and the form application run time calls the database-triggering methods.

Surrogate keys

The introduction of surrogate keys is a significant change to table keys in Microsoft Dynamics
AX 2012. A surrogate key is a system-generated, single-column primary key that does not carry
 domain-specific semantics. It is specific to the Microsoft Dynamics AX installation that generates the
key. A surrogate key value cannot be generated in one installation and used in another installation.

586 PART 3 Under the hood

The natural choice for a surrogate key in Microsoft Dynamics AX is the RecId column. However, in
Microsoft Dynamics AX 2009 and earlier, the RecId index is still paired with the DataAreaId column
for company-specific tables. In Microsoft Dynamics AX 2012, the RecId index does not contain the
DataAreaId column and becomes a single-column unique key.

Surrogate key support is enabled when you create a new table the AOT. To use the surrogate key
pattern for a table, set the PrimayIndex property to SurrogateKey, as shown in Figure 17-3.

Note The SurrogateKey value is not available for tables that were created in an earlier
 version of Microsoft Dynamics AX. If you want to implement a surrogate key for an existing
table, you must re-create the table in the AOT.

FIGURE 17-3 Surrogate key in the FMCustomer table.

Defining a surrogate key on a table in Microsoft Dynamics AX has several benefits. The first benefit
is performance. When a surrogate key and the foreign key that references it are used to join two tables,
performance is improved when compared to joins created with other data types. The benefit is more
prominent when compared to Microsoft Dynamics AX 2009 and earlier versions because the kernel
 automatically adds the DataAreaId column to any key defined for any company-specific table. You identify
these company-specific tables through the SaveDataPerCompany property. Without a surrogate key, the
join must be based on at least on two columns, with one of them being the DataAreaId column.

The second benefit of using a surrogate key is that a surrogate key value never changes, which
eliminates the need to change the values of foreign keys. For example, the Currency table (Figure 17-4)
uses the CurencyCodeIdx index as the primary index, which contains the CurrencyCode column. The
Ledger table has two foreign keys in the Currency table that are based on the CurrencyCode column.
If there is ever a need to change the CurrencyCode value for a record in the Currency table, the
 corresponding records in the Ledger table also must be updated. But if a surrogate key were used
for the Currency table and the Ledger table holds the surrogate foreign key, you could update the

 CHAPTER 17 The database layer 587

 CurrencyCode value in the Currency table without affecting the key relationship between the row in
the Currency table and the rows in the Ledger table.

FIGURE 17-4 Currency table without a surrogate key.

The third benefit of using a surrogate key is that it is always a single-column key. Some features of
SQL Server, such as full-text search, require a single-column key. Using a surrogate key lets you take
advantage of these features.

Surrogate keys do have some drawbacks. The most prominent drawback is that the key value is
not human-readable. When you look at the foreign keys on a related table, it is not easy to determine
what the related row is. To display meaningful information that identifies the foreign key, some
human-readable information from the related entity must be retrieved and displayed instead. This
requires a join to the related table, and the join adds performance overhead.

Alternate keys

For a table, a candidate key is a minimal set of columns that uniquely identifies each row in the table.
An alternate key is a candidate key for a table that is not a primary key. In Microsoft Dynamics AX
2012, you can mark a unique index to be an alternate key.

Because Microsoft Dynamics AX already has the concept of a unique index, you might wonder
what the value is of having the concept of an alternate key. Developers create unique indexes for
various reasons. Typically, one unique index serves as the primary key. Sometimes, additional unique
indexes are created for performance reasons, such as to support a specific query pattern. When you
look at the unique indexes for a table, it is not always obvious which index is used for the primary key

588 PART 3 Under the hood

and which have been added for other reasons. For example, if you were to extract your data model
and present it to a business analyst, you would not want the analyst to see the keys that were created
solely for performance reasons. You need a way to separate your semantic model from your physical
data model for this purpose. Being able to designate the additional unique indexes as alternate keys
helps you to achieve this.

Figure 17-5 shows a unique index that was added to the FMVehicleModel table of the Fleet
 Management sample application. This is not the primary index for the table, so the AlternateKey
property for the index is set to Yes.

FIGURE 17-5 Alternate key on the FMVehicleModel table.

Table relations

Relationships between tables (called relations in Microsoft Dynamics AX) are key to the data model
and run-time behavior. They are used in the following run-time scenarios in Microsoft Dynamics AX:

 ■ Join conditions in the query or form data source and form dynalink

 ■ Delete actions on tables

 ■ Lookup conditions for bound (backed by a data source) or unbound controls on forms

Several changes and enhancements have been made for table relations in Microsoft Dynamics AX
2012.

EDT relations and table relations
In Microsoft Dynamics AX, table relations can be explicitly defined on tables, or they can be derived
from relation properties that are defined on extended data types (EDTs) associated with table fields.
The Microsoft Dynamics AX kernel looks up the relation properties for EDTs, and then for table
 relations. The order may be switched, depending on the scenario.

 CHAPTER 17 The database layer 589

There are several issues with defining the relation properties on EDTs and mixing them with the
relations defined on tables. First, EDT relations capture relations on only a single field. They cannot
be used to capture multiple-field relations, which leads to incomplete relationships that are used in
join or delete actions. Second, most of the properties for the relation depend on the context in which
the relation is used. This context cannot be captured for EDT relations because they are stored in a
central location in the AOT. For example, the role and related role name and cardinality and related
 cardinalities could be different for relations on different tables. Third, it is difficult to figure out how
many relations are actually available for a table because the table relations give you only a partial
view. You need to also look at relations that are defined on EDTs for the fields in the table and their
base EDTs.

To address these issues, Microsoft Dynamics AX 2012 has migrated most of the EDT relations to
table relations. To begin deprecating the Relations node under individual EDTs, the addition of new
relations is not allowed. If an EDT has no nodes defined under the Relations node, the node is not
displayed in Microsoft Dynamics AX 2012. An EDT has a new Table References node for cases where
a control is bound directly to an EDT, and not through a table field. To reduce the work of manually
adding a table relation that can be used in place of the EDT relation, you are prompted to create the
table relation automatically when an EDT with a valid foreign key reference is used on a table field.

Because the Microsoft Dynamics AX run time performs lookups for EDT relations and table
 relations in a specific order, you need to ensure that the same relation gets picked up before and
after the migration in all scenarios. This is especially important when migrating EDT relations in
multiple table relations between two tables. The Microsoft Dynamics AX run time achieves backward
 compatibility by examining some properties that were set on table fields and table relations. These
properties enable the run time to determine whether a table relation was created from an EDT
 relation that existed before. These properties are explained in Table 17-1.

TABLE 17-1 Properties of table fields.

Property
location

Property name Values Description

Table
relation

EDTRelation Yes/No Indicates to the kernel whether the relation was created because
an EDT relation was migrated. The kernel uses this information
to order and pick the relation for join, lookup, and delete actions
when no explicit relation is specified.

Table field IgnoreEDTRelation Yes/No Indicates whether the EDT relation on the field should be
 migrated to a table relation. The Microsoft Dynamics AX run
time does not use this property; however, the EDT Relation
Migration tool does.

Table
 relation link

SourceEDT EDT
name

Used by the Microsoft Dynamics AX run time to determine the
cases in which the EDT relation is used.

You do not have to migrate an EDT relation manually to a table relation and then set the
 properties described in Table 17-1. The EDT Relation Migration tool can help with this process.
You can access this tool from Tools > Code Upgrade > EDT Relation Migration Tool, as shown in
 Figure 17-6. For information about how to use this tool, see the topic “EDT Relation Migration Tool”
at http://msdn.microsoft.com/en-us/library/gg989788.aspx.

590 PART 3 Under the hood

FIGURE 17-6 EDT Relation Migration tool.

After you migrate the EDT relations to table relations, verify that delete actions, query joins, and
lookups work the same way they did before the migration. Focus on cases in which the migration of
an EDT relation resulted in multiple table relations between two tables. The EDT Relation Migration
tool lists the artifacts that are affected.

The following are some examples of the artifacts that might be affected. For example, the
 SalesTable table and the CustTable table have two relations between them defined on SalesTable.
One of them was migrated from an EDT relation because it did not exist as a table relation before.
The two relations are based on the fields CustAccount and InvoiceAccount. For delete actions, the
 relation based on CustAccount should be picked up before and after the migration. The SalesHeading
query has a join between the SalesTable table and the CustTable table with the Relations property set
to Yes on the data source for the SalesTable table. This query should pick up the relation based on
 CustAccount instead of the relation based on InvoiceAccount before and after the migration.

Foreign key relations
A goal for Microsoft Dynamics AX 2012 was to make the data model more consistent. This includes
using surrogate key patterns when appropriate. It also includes using only primary keys as your foreign
key references whenever possible. To facilitate the latter, Microsoft Dynamics 2012 introduces a
special type of foreign key relation that you can use when creating relations between tables, as shown
in Figure 17-7. A foreign key relation allows only two kinds of references to the related table. The first
is a reference to the primary key. The second is a reference to a single-column alternate key of the
related table. This reference to the single-column alternate key is provided to reduce the number of
surrogate foreign key joins that were discussed in the “Surrogate keys” section, earlier in this chapter.

 CHAPTER 17 The database layer 591

FIGURE 17-7 The new foreign key relation in Microsoft Dynamics AX 2012.

If you use a human-readable alternate key as your foreign key, you can display the foreign key
on forms without the need for a join. You might wonder why only single-column alternate keys are
allowed for foreign key references. This is to balance performance for a different usage pattern, when
you actually want to join between the two tables (not for purposes of the user interface). Joins that
are based on smaller columns (both the size of the columns and the number of columns) perform
faster. By restricting the pattern to only single-column alternate keys, the performance degradation
of the join is limited.

A consistent table relation pattern can result in performance benefits, too. For example, if one
table references the CustTable table by using keyA, and another table references the CustTable table
by using keyB, both tables must be joined to the CustTable table to correlate the rows in these two
tables. However, if both of them use the same key, they can correlate directly, eliminating the need
for joins.

Foreign key relations have some capabilities that other relations do not. For example, you can
use them as join conditions in queries. This saves you from having to manually enter the field join
 conditions, which can be prone to error. Navigation property methods can also be generated for
foreign key relations, as discussed in the next section.

The CreateNavigationPropertyMethods property
When you expand the Relations node for a table defined in the AOT, you can see the table relationships
that are defined. The CreateNavigationPropertyMethods property, which is available only for foreign
key relations, has special significance. Setting this property to Yes, as shown in Figure 17-8, causes
kernel-generated methods on a table buffer to be created. You can use these methods to set, retrieve,
and navigate to the related table buffer through the relation specified. The examples later in this
section show the method signatures and usage patterns.

592 PART 3 Under the hood

FIGURE 17-8 The CreateNavigationPropertyMethods property on a foreign key relation.

The navigation setter method links two related table buffers together. It is frequently used with
the UnitOfWork class to create rows in the database from those table buffers. This effectively allows
you to create an in-memory object graph with a related table buffer so that you can push them into
the database with the proper relationship established among the rows. For more information, see the
“Unit of Work” section later in this chapter.

The navigation getter method retrieves the related table buffer if a setter method has set it.
 Otherwise, the method retrieves the related table buffer from the database. This can effectively
replace the find method pattern that is commonly used on tables. In the latter case, the table buffer
that is returned is not linked to the table buffer on which the method was called. This means that the
method will try to retrieve data from the database again. Note that when the navigation property
getter method queries the database to get the related record, it selects all fields for that record. This
can affect performance, particularly in cases where you had selected a smaller field list to achieve a
performance benefit.

The following code uses the DirPartyTable_FK method to retrieve the related DirPartyTable table
record for a customer with an account number of 1101 and prints the customer’s name to the Infolog:

static void NavigationPropertyMethod(Args _args)
{
 CustTable cust;

 select cust where cust.AccountNum == '1101';

 // The DirPartyTable_FK() methods retrieves the related DirPartyTable record
 // through the DirPartyTable_FK role defined on the CustTable

 info(strFmt('Customer name for %1 is %2',cust.AccountNum, cust.DirPartyTable_FK().Name));
}

Figure 17-9 shows the output of this example in the Infolog.

 CHAPTER 17 The database layer 593

FIGURE 17-9 Output from the DirPartyTable_FK method example.

However, if the navigation property setter method is used to set the related DirPartyTable record,
that record is always returned and the run time does not query the database:

static void NavigationPropertyMethodSetter(Args _args)
{
 CustTable cust;
 DirPartyTable dp;

 select cust where cust.AccountNum == '1101';
 dp.Name = 'NotARealCustomer';

 // Set the related DirPartyTable record

 cust.DirPartyTable_FK(dp);

 // The DirPartyTable_FK() methods retrieves the DirPartyTable record set above and
 // does not retrieve from the database.

 info(strFmt('Customer name for %1 is %2',cust.AccountNum, cust.DirPartyTable_FK().Name));
}

Figure 17-10 shows the output from this example in the Infolog.

FIGURE 17-10 Output from an example with a navigation property setter method.

Each navigation method must have a name. Like any other method on the table, its name cannot
conflict with other methods. By default, the RelatedTableRole property is used for the method name.
An error is thrown during table compilation if a conflict with another method name is detected. If a
conflict occurs, use the NavigationPropertyMethodNameOverride property to specify the name to use.

594 PART 3 Under the hood

Table inheritance

Table inheritance has long been part of extended entity relationship (ER) modeling, but there
was no built-in support for this in earlier versions of Microsoft Dynamics AX. Any inheritance or
 object- oriented characteristics had to be implemented manually by the developer. Microsoft
 Dynamics AX 2012 supports table inheritance natively from end to end, including modeling,
 language, run time, and user interface.

Modeling table inheritance
To model table inheritance in Microsoft Dynamics AX 2012, you must first create a root table and
then create a derived table. These tasks are described in the following sections. Later sections
 describe how to work with existing tables, view the type hierarchy, and specify table behavior.

Create the root table
First, you must create the table that is the root of the table hierarchy. Before you create any fields
for the table, set the SupportInheritance property to Yes. For the root table, you must add an Int64
column that is named InstanceRelationType, which holds the information about the actual type of a
specific row. This column should have the ExtendedDataType property set to RelationType, and the
Visible property set to No. After you create this field, you must set the InstanceRelationType property
for the base table to the field that you just added. From this point, you can model the root table as
you normally would.

Create a derived table
Next, create a derived table, and set the SupportInheritance property to Yes. Set the Extends property
to point to the table on which the derived table is based. Set these properties before you create any
fields for the table. This will help ensure that all fields in tables in the hierarchy have unique names
and IDs, which is necessary for the run time to work correctly. It also makes it possible to choose
different storage models, such as storing all types in a single table, without causing name collisions.
Storage is discussed later in this section.

Work with existing tables
If tables already have fields before you add the tables to an inheritance hierarchy, you might need
to update the field names and IDs in both metadata and code. If the tables already contain data, the
existing data will need to be upgraded to work with the new table hierarchy. These are nontrivial tasks.
For these reasons, creating a new table inheritance hierarchy from existing tables is not supported.

View the type hierarchy
You can use the Type Hierarchy Browser to view a table inheritance hierarchy. To do so, right-click a
table in the AOT, and then click Add-Ins > Type Hierarchy Browser. Figure 17-11 shows the hierarchy
for the FMVehicle table.

 CHAPTER 17 The database layer 595

FIGURE 17-11 Hierarchy for the FMVehicle table.

Specify table behavior
Tables in an inheritance hierarchy share some property settings, so that table behavior is consistent
throughout the hierarchy. These settings include the cache lookup mode, the OCC setting, and the
save-data-per-company setting.

Configuration keys should be consistent with the table inheritance hierarchy. In other words, if a
configuration key is disabled for the base table, the configuration key for the derived table should
not be enabled. This condition is checked when you compile a table in the hierarchy, and errors are
reported if the condition is found. For more information about configuration keys, see Chapter 11,
“Security, licensing, and configuration.”

You can specify whether a table in an inheritance hierarchy is concrete or abstract. By default,
tables are concrete. This means that you can create a row that is of that table type. Specifying that a
table is abstract means that you cannot create a row that is of that table type. Any row in the abstract
table must be of a type of one of the derived tables (further up in the hierarchy) that is not marked as
abstract. This concept aligns with the concept of an abstract class in an object-oriented programming
language.

The table inheritance model in Microsoft Dynamics AX 2012 is a discrete model. Any row in the
table hierarchy can be of only one concrete type (a table that is not marked as abstract). You cannot
change the type of a row from one concrete type to another concrete type after the row is created.

596 PART 3 Under the hood

Table inheritance storage model
In some implementations of object-relational (OR) mapping technologies, you can choose how
the table inheritance hierarchy is mapped to data storage. The choices typically are one table for
 every modeled type, one table for every concrete type, or one table for every hierarchy. Microsoft
 Dynamics AX 2012 creates one table for every modeled type. Like a regular table, a table in a table
 inheritance hierarchy maps to a physical table in the database. Records in the inheritance hierarchy
are linked through the RecId field. The data for a specific row of a type instance may be stored in
multiple tables in the hierarchy, but they share the same RecId.

Every table in an inheritance hierarchy automatically has a system column that is named
 RELATIONTYPE. You will see this column in SQL Server, but not in the AOT. This column acts as a
 discriminator. The data for a concrete type is stored in multiple tables that make up the inheritance chain
for that type. For a row in one of the tables, the discriminator column identifies the next table in the chain.

Figure 17-12 shows some rows in the FMVehicle table and the corresponding table IDs for its derived
tables. The value of the InstanceRelationType field for cars equals the table ID of the FMCarClass table;
for SUVs, the InstanceRelationType field equals the table ID of the FMSUV table; and for trucks, the
 InstanceRelationType field equals the table ID of the FMTrucks table. These represent the concrete
type of each row in the FMVehicle table. The value of the RelationType field for both cars and SUVs
equals the table ID of the FMCarClass table because FMCarClass is the next directly derived table for
those rows. For trucks, the value of the RelationType field equals the table ID of the FMTruck table.

FIGURE 17-12 Tables in the FMVehicle hierarchy.

Polymorphic behavior
When you issue a query on a table that is part of a table inheritance hierarchy, the Microsoft
 Dynamics AX run time provides the type fidelity by default. This means that if a select * statement
is performed for a table, all of the rows of that table type are returned. For example, if you issue

 CHAPTER 17 The database layer 597

the query select * from DirPartyTable, all instances of DirParty are returned, including DirPerson,
 OperatingUnit, and so on. Morever, because select * is used, the query returns complete data. This
means that the DirPartyTable table must be joined to all of its derived tables.

When a select * is performed for a table that is part of a table inheritance hierarchy, that table is joined
with an inner join to all of its base tables (all the way up to the root table), and then joined with an outer
join to all of its derived tables (including derived tables at all levels). The reason for this is that any row in
that table must have a corresponding row in all of its base tables, but could have matching rows in any
of the concrete type paths. This ensures that, no matter what concrete type a row is, complete data for
that row is always retrieved. Similar to the polymorphic behavior in object-oriented programming, this
mechanism provides polymorphic data retrieval for a table that is part of a table inheritance hierarchy. In
cases where you need to have all of the data for a row, this behavior is very convenient. You can use the
dynamic method binding feature of table inheritance to write code that is clean and extensible.

For example, in the Fleet Management project, the FMVehicle table has a doAnnualMaintenance
method that simply throws an exception. This happens because FMVehicle is an abstract table and
any concrete table that is derived from it must override this method. The tables FMCarClass, FMTruck,
and FMSUV all override this method, as shown in Figure 17-13. Note that each overridden method
 accesses a field that is not accessible from the base table.

FIGURE 17-13 Overridden doAnnualMaintenance method on derived tables.

The following code queries the FMVehicle table and calls the doAnnualMaintenance method:

static void PolyMorphicQuery(Args _args)
{
 FMVehicle vehicle;

 while select vehicle
 {

598 PART 3 Under the hood

 vehicle.doAnnualMaintenance();
 }
}

If you run the code as a job, you would get results that look similar to those shown in Figure 17-14.

FIGURE 17-14 Result of calls to the overridden doAnnualMaintenance method.

As you can see, even though the select statement executes on the FMVehicle table, the statement
returns fields in the derived tables. The actual select statement for this query looks like the following:

SELECT <all fields from all tables in the hiearchy> FROM FMVEHICLE T1 LEFT OUTER JOIN FMTRUCK
T2 ON (T1.RECID=T2.RECID) LEFT OUTER JOIN FMCARCLASS T3 ON (T1.RECID=T3.RECID) LEFT OUTER JOIN
FMSUV T4 ON (T3.RECID=T4.RECID)

Tip You can get the Transact-SQL select statement directly from X++ code without having
to use SQL Profiler. The following is an example:

static void PolyMorphicQuery(Args _args)
{
 FMVehicle vehicle;

 select generateonly vehicle;

 info(vehicle.getSQLStatement());
}

Performance considerations
When the inheritance hierarchy is very wide, very deep, or both, a polymorphic query can result in
numerous table joins, which can degrade query performance. For example, the query select * from
DirPartyTable produces eight table joins.

Exercise caution when using the table inheritance feature. Determine whether you really need all
of the data from every derived type instance. If the answer is no, you should list the fields that you
need explicitly in the field list. (Note that you can also list fields from derived tables when you model
a query in the AOT or use the query object in X++ code. But you can only list fields from current and
base tables when you write the X++ select statement.) The Microsoft Dynamics AX run time then adds
joins to only the tables that contain the fields in the list. For example, if you change the query on the

 CHAPTER 17 The database layer 599

DirPartyTable table to select name from DirpartyTable, only the DirPartyTable table is included in the
query. No joins to other tables in the hierarchy are created because no data is being accessed from
them. Careful query construction can improve query performance significantly.

Listing only the fields that are needed is not only beneficial here, but it is a good practice in
 general. This may allow SQL Server to use a covering index when processing the query and reduce the
network load. A common concern about this practice is passing the table buffer to another function
in another module, because you need to ensure that the other function does not use fields that were
not selected to be returned. When an attempt is made to read fields that are not in the field list,
Microsoft Dynamics AX 2009 and earlier versions does not produce an exception. You get whatever
value is on the table buffer, which in most cases is an empty value. In Microsoft Dynamics AX 2012,
an attempt to access an unavailable field raises an exception, but only if the field is included in a
table that is part of a table inheritance hierarchy. A configuration setting is available to raise either a
 warning or exception for all tables that encounter this issue. To change this setting, do the following:

1. Click System Administration > Setup > System > Server Configuration.

2. On the Performance Optimization FastTab, under Performance Settings, click the drop-down
list next to Error On Invalid Field Access to change the setting.

To maintain backward compatibility and to reduce run-time overhead, this setting is turned off by
default. It is recommended that you activate this setting for testing purposes only.

Unit of Work

Maintaining referential integrity is important for any ERP application. Microsoft Dynamics AX 2012
lets you model table relations with richer metadata and express referential integrity in your data
model more precisely. However, the application is still responsible for making sure that referential
 integrity is maintained. Microsoft Dynamics AX table relations are not implemented as database
foreign key constraints in the SQL Server database. Implementing these constraints would add
 performance overhead in SQL Server. Also, for performance and other reasons, application code
might violate referential integrity rules temporarily and fix the violations later.

Maintaining referential integrity requires performing data operations in the correct order. This is
most prominent in cases where records are created and deleted. The parent record must be created
first, before the child record can be inserted with the correct foreign key. But child records must be
deleted before the parent record. Ensuring this manually in code can be error-prone, especially with
the more normalized data model in Microsoft Dynamics AX 2012. Also, data operations are often
spread among different code paths. This leads to extending locking and transaction spans in the
database.

Microsoft Dynamics AX 2012 provides a programming concept called Unit of Work to help with
these issues. Unit of Work is essentially a collection of data operations that is performed on related
data. Application code establishes relationships between data in memory, modifies the data, registers
the operation request with the Unit of Work framework, and then requests that the Unit of Work

600 PART 3 Under the hood

perform all of the registered data operations in the database as a unit. Based on the relationships
established among the entities in the in-memory data, the Unit of Work framework determines the
correct sequence for the requested operations and propagates the foreign keys, if necessary.

The following code example shows Unit of Work in use:

public static void fmRentalAndRentalChargeInsert()
{
 FMTruck truck;
 FMRental rental;
 FMRentalCharge rentalCharge;
 FMCustomer customer;
 UnitofWork uoW;

 // Populate rental and RentalChange in UoW. 3 types of Rental Charge Records
 // for the same Rental.

 // Getting the customer and the truck that the customer is renting
 // These records are referred to from the rental record

 select truck where truck.VehicleId == 'co_wh_tr_1';
 select customer where customer.DriverLicense == 'S468-3184-6541';

 uoW = new UnitofWork();
 rental.RentalId = 'Redmond_546284';

 // This links the rental record with the truck record.
 // During insert, rental record will have the correct foreign key into the truck record.

 rental.fmVehicle(truck);

 // This links the rental record with the customer record.
 // During insert, rental record will have the correct foreign key into the
 // customer record.

 rental.fmCustomer(customer);
 rental.StartDate = DateTimeUtil::newDateTime(1\1\2008,0);
 rental.EndDate = DateTimeUtil::newDateTime(10\1\2008,0);
 rental.StartFuelLevel = 'Full';

 // Register the rental record with unit of work for save.
 // Unit of work makes a copy of the record.

 uoW.insertonSaveChanges(rental);

 uoW.saveChanges();

}

It is important to understand that Unit of Work copies the data changes into its own buffer when
the registration method executes. After that, the original buffer is disconnected from Unit of Work. Any
changes made to the table buffer after that will not be picked up by Unit of Work. If you want to save
these changes through Unit of Work, you need to call the corresponding registration method again.

 CHAPTER 17 The database layer 601

When you register multiple changes on the same record with Unit of Work, the last changes that
are registered overwrite all previous changes.

In the previous code example, the code runs on the server because Unit of Work is a server-bound
construct and cannot be instantiated or used on the client.

The form run time in Microsoft Dynamics AX uses the Unit of Work framework in its internal
implementation to handle data operations on form data sources, where several form data sources are
joined together directly. These scenarios did not work in previous releases of Microsoft Dynamics AX.
When the form run time uses the Unit of Work framework, it is not accessible through X++.

Date-effective framework

Many business scenarios require tracking how data changes over a period of time. Some of the
 requirements include viewing the value of a record as it was in the past, viewing the value at the
current time, or being able to enter a record that will become effective on a future date. A typical
example of this is employee data in an application that is used by the Human Resources team of a
company. Some questions that such an application will help answer might be as follows:

 ■ What position did a specific employee hold on a specific date?

 ■ What is the current salary for the employee?

 ■ What is the current contact information for the employee?

In addition to answering these questions, there might also be a requirement to allow users to
enter new data and change existing data. For example, a user could change the contact information
for Employee C and make the new information effective on September 15, 2012. Such data is often
referred to as date-effective data. Microsoft Dynamics AX 2012 supports creating and managing
date-effective data in the database. The date-effective framework provides a number of features that
include support for modeling entities, programmatic access for querying and updating date-effective
data, run time support for maintaining data consistency, and user interface support. Core Microsoft
Dynamics AX features, such as the Global Address Book and modules like Human Resources, use
date-effective tables extensively in their data models.

Relational modeling of date-effective entities
Microsoft Dynamics AX provides support for modeling date-effective entities at the table level.
The ValidTimeStateFieldType property of a table indicates whether the table is date-effective. This
 information is stored in the metadata for the table and is used at run time.

Figure 17-15 shows the DirPersonName table, which is used to track the history of a person’s name.
The table is date-effective because the ValidTimeStateFieldType property is set to UtcDateTime. When

602 PART 3 Under the hood

you set this property on a table, the date-effective framework automatically adds the columns ValidFrom
and ValidTo, which are required for every date-effective table. The data type of these columns is based on
the value chosen for the ValidTimeStateFieldType property. Two data types are available:

 ■ Date Tracking takes place at the day level. Records are effective starting from the ValidFrom
date through the ValidTo date.

 ■ UtcDateTime Tracking takes place at the second level. In this case, multiple records can be
valid within the same day.

FIGURE 17-15 DirPersonName table with ValidTimeStateFieldType property set to UtcDateTime.

In addition to the fields each date-effective table is required to have, the table must have at least one
alternate key that is implemented as a unique index. This alternate key is referred to as the validtimestate
key in the date-effective framework, and it is used to enforce the time period semantics that are enabled
by a date-effective table. The validtimestate key must contain the ValidFrom column and at least one
other column other than the ValidTo column. The validtimestate key has an additional property that
indicates whether gaps (missing records for a period of time) are allowed in the data. In Figure 17-16, the
 DirPersonName table is used track changes to the Person column. The validtimestate key contains the
Person column and the ValidFrom column. When the ValidTimeStateKey property is set to Yes for an index,
the index also needs to be a unique index and is required to be an alternate key.

FIGURE 17-16 The validtimestate key index for the DirPersonName table.

In Table 17-2, the records reflect the changing names over a period of time for two people. The
 table must have a unique index with the following columns: Person and ValidFrom. The ValidTo

 CHAPTER 17 The database layer 603

 column can be part of the index, but it is optional. This index has the ValidTimeStateKey property set
to Yes. Because the objective is to track the history of a person, the column that represents the person
is also part of the validtimestate key. The validtimestate key enables the date-effective framework to
indicate the field for which the history is being tracked.

TABLE 17-2 Tracking name changes over time in a date-effective table.

Person FirstName MiddleName LastName ValidFrom ValidTo

1 Jim M Corbin 02/10/1983
00:00:00

04/16/1984 23:59:59

1 Jim M Daly 04/17/1984
00:00:00

12/31/2154 23:59:59

2 Anne Wallace 04/14/2001
00:00:00

07/04/2005 23:59:59

2 Anne Weiler 07/05/2005
00:00:00

12/31/2154 23:59:59

This scenario has a requirement not to allow gaps in each person’s name data. To implement this
requirement, the ValidTimeStateMode property is set to NoGap. For other scenarios, gaps in the
data might be acceptable. This is also implemented by using the ValidTimeStateMode property. The
date-effective framework also enforces that a person cannot have more than one name at the same
time. This is called prevention of overlaps in the data. If the ValidTo column for a record contains the
maximum value allowed (12/31/215423:59:59), it indicates that the record does not expire.

Support for data retrieval
Business application logic that is written in X++ may need to retrieve data that is stored in
date-effective tables. To support this, the framework has three modes of data retrieval:

 ■ Current Returns the record that is currently active by default, when you use a select
 statement or an application programming interface (API) to retrieve data from the table.

 ■ AsOfDate Retrieves the record that is valid for the passed-in date or the UtcDateTime
parameter. This can be in the past, current, or future. The ValidFrom column of the retrieved
record is less than or equal to the value passed in. The ValidTo column is greater than or equal
to the value passed in.

 ■ Range Returns the records that are valid for the passed in range.

The X++ language supports a syntax that is similar to the Transact-SQL syntax that is used when
querying relational databases. The date-effective framework enhances this syntax by adding the
validtimestate keyword to indicate the type of query. The modes described earlier translate to the
 following queries.

Note The ValidFrom and ValidTo columns in these examples use the Date data type. If they
used the UtcDateTime data type, the dates passed in would have to be in UtcDateTime format.

604 PART 3 Under the hood

This query retrieves the current emergency contact information for Employee A. There is no
need to specify any values for the ValidFrom and ValidTo columns in the where clause because the
 Microsoft Dynamics AX run time automatically adds them:

select * from EmployeeEmergencyContact where EmployeeEmergencyContact.Employee == 'A';

This query retrieves the record that was in effect on April 21, 1986:

select validtimestate (21\04\1986) * from EmployeeEmergencyContact where
EmployeeEmergencyContact.Employee == 'A';

This query retrieves all of the records for Employee A for the time period that is passed into the
statement:

select validtimestate(01\01\1985, 31\12\2154)
* from EmployeeEmergencyContact where EmployeeEmergencyContact.Employee == 'A';

X++ also exposes a Query API to retrieve data from tables. This API has been extended with the
following methods to allow different forms of querying:

 ■ validTimeStateAsOfDate(date);

 ■ validTimeStateAsOfDateTime(utcdatetime);

 ■ validTimeStateDateRange(date);

 ■ validTimeStateDateTimeRange(utcdatetime);

The date-effective framework uses these methods and transforms them by adding additional
predicates on the ValidFrom and ValidTo columns to fetch the data that meets the requirement of the
query.

Run-time support for data consistency
The data that is stored in a date-effective table must conform to the following consistency
 requirements:

 ■ The data must not contain overlaps.

 ■ Gaps are either allowed or disallowed, depending on the value of the ValidTimeStateMode
property of the validtimestate key.

Because the data that is stored in the table can be added to or changed, the date-effective
 framework ensures that these consistency requirements are enforced. The date-effective framework
implements these requirements by adjusting other records using the following rules:

 ■ If ValidFrom is being updated, retrieve the previous record, and then update the ValidTo of
the previous record to a value of ValidFrom -1 to ensure that there is no overlap or gap. If the
ValidFrom of the edited record is less than the ValidFrom of the previous record, display an
error. The error is displayed because further action is required to delete the previous record

 CHAPTER 17 The database layer 605

to avoid overlaps. The date-effective framework does not delete automatically records during
adjustments.

 ■ If ValidTo is being updated, retrieve the next record, and then update the ValidFrom of the
next record to a value of ValidTo + 1 to ensure that there is no overlap or gap. If the ValidTo
of the edited record is greater than the ValidTo of the next record, display an error.

 ■ The date-effective framework does not allow simultaneous editing of ValidTo and ValidFrom
columns.

 ■ The date-effective framework does not allow editing of any other columns that are part of the
validtimestate key.

 ■ When a new record is inserted, the ValidTo of the existing record is updated to a value
of ValidFrom -1 of the newly inserted record. New records cannot be inserted in the past or
future if records already exist for that time period.

 ■ When a record is deleted, the ValidTo of the previous record is adjusted to a value of
 ValidFrom -1 of the next record, but only if the system requires that there should be no gaps.
If gaps are allowed, no adjustment is performed.

Modes for updating records
The date-effective framework allows regular updates of records in a date-effective table. It also
provides additional modes that are typical for the types of changes that are made to date-effective
tables. The date-effective framework provides the following three modes:

 ■ Correction This mode is analogous to regular updates to data in a table. If the ValidFrom or
ValidTo columns are updated, the system updates additional records if necessary to guarantee
that the data does not contain gaps or overlaps.

 ■ CreateNewTimePeriod The date-effective framework creates a new record with updated
values, and updates the ValidTo of the edited record to a value of ValidFrom -1 of the newly
inserted record. By default, the ValidFrom column of the newly inserted record has the current
date for the Date data type columns or the current time for UtcDateTime data type columns.
This mode does not allow editing of records in the past. This mode hides the date-effective
characteristics of the data from the user. The user edits the records as usual, but internally a
new record is created to continue tracking the history of changes made to the record.

 ■ EffectiveBased This mode is a hybrid of the other two modes. Records in the past are
 prevented from being edited. Current active records are edited by using the same semantics
as CreateNewTimePeriod mode. Records in the future are updated by using the same
 semantics as Correction mode.

The update mode must be specified by calling the validTimeStateUpdateMode(ValidTimeState
Update _validTimeStateUpdateMode) method on the table buffer that is being updated. This method

606 PART 3 Under the hood

takes a value from the ValidTimeStateUpdate enumeration as a parameter. This enumeration has the
list of the various update modes.

Important The Microsoft Dynamics AX run time displays an error if the update mode is
not specified when a date-effective table is updated through X++.

User experience
When the user updates a record in a date-effective table, other records might be updated as a
 consequence. The date-effective framework first provides a dialog box that informs the user about
the additional updates and asks the user to confirm whether the action should proceed. The user’s
 actions are simulated without actually updating the data. After the user chooses to update the data,
the user interface is refreshed by retrieving all of the updated records.

Full-text support

Microsoft Dynamics AX 2012 has the capability to execute full-text search queries against the
 database. Full-text search functionality is provided by SQL Server and allows the ability to perform
linguistic searches against text data stored in the database. For more information, see
“Full-Text Search (SQL Server)” at http://msdn.microsoft.com/en-us/library/ms142571.aspx.

Microsoft Dynamics AX provides the capability to create a full-text index on a table. New methods
that are available in the Query class that let you write queries that use this index. Figure 17-17 shows a
full-text index that has been created for the VendTable table in the AOT.

FIGURE 17-17 Full-text index for the VendTable table.

Only one full-text index can be created for a table. Only fields that have the string data type can be
used as fields for the full-text index. When the table is synchronized, a corresponding full-text index is
created in the database. Microsoft Dynamics AX also requires that the table be part of either the Main
table group or the Group table group. You cannot create a full-text index for temporary tables.

The following example shows how full-text queries can be executed by using the Query API:

Query q;
QueryBuildDataSource qbds;

 CHAPTER 17 The database layer 607

QueryBuildRange qbr;
QueryRun qr;
VendTable vendTable;

q = new Query();
qbds = q.addDataSource(tablenum(VendTable));
qbr = qbds.addRange(fieldnum(VendTable, AccountNum));
qbr.rangeType(QueryRangeType::FullText);
qbr.value(queryvalue('SQL'));
qr = new QueryRun(q);

while (qr.next())
{
 vendTable = qr.get(tablenum(VendTable));
 print vendTable.AccountNum;
}

The QueryRangeType::FullText enumeration used by the rangeType method causes the data layer to
generate a full-text search query in the database. Microsoft Dynamics AX uses the FREETEXT keyword
provided by SQL Server when it generates a full-text query that is executed on the database. For the
previous code example, the following Transact-SQL query is generated:

SELECT T1.ACCOUNTNUM,T1.INVOICEACCOUNT,…
FROM VENDTABLE T1 WHERE (((PARTITION=?) AND (DATAAREAID=?)) AND (FREETEXT(ACCOUNTNUM,?))) ORDER
BY T1.ACCOUNTNUM

For more information about the FREETEXT keyword, see “Querying SQL Server Using Full-Text
Search” on MSDN at http://msdn.microsoft.com/en-us/library/ms142559.aspx.

You can also use the extended query range syntax to generate a full-text query. This is shown in
the following example. The freetext keyword specifies that the data layer should generate a full-text
query.

qbrCustDesc = qsbdCustGrp.addRange(fieldnum(VendTable, AccountNum));
qbrCustDesc.value('((AccountNum freetext "bike") || (AccountNum freetext "run"))');

The QueryFilter API

A favorite Transact-SQL interview question is to ask a candidate to explain the difference between the
on clause and the where clause in a select statement that involves joins. You can find the long version
of the answer on MSDN, which talks about the different logical phases of query evaluation. The short
answer is that there is no difference between the two for an inner join. For an outer join, rows that do
not satisfy the on clause are included in the result set, but rows that do not satisfy the where clause
are not.

So you might wonder when to use on and when to use where. An example will help illustrate. The
following polymorphic query finds all DirParty instances with the name John. There are two kinds of

608 PART 3 Under the hood

predicates here. The first one matches the individual rows with their corresponding base or derived
type:

<baseTable>.recID == <derivedTable>.recid.

The second predicate matches the name:

DirPartyTable.name == 'John'

To start with the first predicate, when you take a specific row from the root table, it may have a
matching row in any one of the derived tables. Because the goal is to retrieve complete data for all
types, you do not want to discard a row just because it does not match one of the derived tables.
For this reason, you want to use the on clause. For the second predicate, you want only the rows that
qualify the predicate. Thus, you want to use the where clause. The Transact-SQL for the query looks
like this:

SELECT * FROM DIRPARTYTABLE T1 LEFT OUTER JOIN DIRPERSON T2 ON (T1.RECID=T2.RECID) LEFT OUTER
JOIN DIRORGANIZATIONBASE T3 ON (T1.RECID=T3.RECID) LEFT OUTER JOIN DIRORGANIZATION T4 ON (T3.
RECID=T4.RECID) LEFT OUTER JOIN OMINTERNALORGANIZATION T5 ON (T3.RECID=T5.RECID) LEFT OUTER JOIN
OMTEAM T6 ON (T5.RECID=T6.RECID) LEFT OUTER JOIN OMOPERATINGUNIT T7 ON (T5.RECID=T7.RECID) LEFT
OUTER JOIN COMPANYINFO T8 ON (T5.RECID=T8.RECID) WHERE (T1.NAME='john')

You might notice that the on clause is specified immediately after the table join, and the where
clause is specified at the end of the query after all of the table joins and on clauses. This matches the
order in which the query is evaluated. The where clause predicates are evaluated after all of the joins
have been processed. The following X++ select statement produces a similar query:

static void Job3(Args _args)
{
 SalesTable so;
 SalesLine sl;

 select so where so.CustAccount == '1101'
 outer join sl where sl.SalesId == so.SalesId;
}

The Transact-SQL for the query looks like this:

SELECT * FROM SALESTABLE T1 LEFT OUTER JOIN SALESLINE T2 ON ((T2.DATAAREAID=N'ceu') AND (T1.
SALESID=T2.SALESID)) WHERE ((T1.DATAAREAID=N'ceu') AND (T1.CUSTACCOUNT=N'1101'))

There is something of a mix here. The keyword is where, but it is specified after each table join.
So where does the predicate go in the Transact-SQL? If you use SQL trace, you’ll see that for an outer
join, the predicates appear in the on clause. For an inner join, it shows in the where clause.
To understand this, keep in mind that the X++ where is actually the on clause in Transact-SQL.
 Because there is no difference between on and where for inner joins, the Microsoft Dynamics AX
run time simply moves those to the where clause. The X++ Query programming model has the same
 behavior. Query ranges that you specify by using the QueryBuildRange clause go in the on clause.

 CHAPTER 17 The database layer 609

So how do you specify where clause predicates? For the X++ select statement, you may be able
to attach these where clause predicates on one of the tables that are inner-joined. Alternatively,
you could add these to the where clause of the first table if all the other tables are outer-joined.
The solution is more difficult with the Query programming model because you cannot specify
 QueryBuildRange on another data source without using the extended query range feature. To solve
this problem, Microsoft Dynamics AX 2012 added support for the QueryFilter API.

Because the where clause is evaluated at the query level after all of the joins have been evaluated,
the QueryFilter API is available at the query level. You can refer to any query data source that is not
part of an exists/notexists subquery. The following example shows the use of QueryFilter:

public void setFilterControls()
{
 Query query = fmvehicle_qr.query(); // Use QueryRun's Query so that the filter can be
cleared
 QueryFilter filter;
 QueryBuildRange range;
 boolean useQueryFilter = true; // Change to false to see QueryRange on outer join

 if (useQueryFilter)
 {
 filter = this.findOrCreateQueryFilter(
 query,
 query.dataSourceTable(tableNum(FMVehicleMake)),
 fieldStr(FMVehicleMake, Make));
 makeFilter.text(filter.value());
 }
 else
 {
 // Optional code to illustrate behavior difference
 // between QueryFilter and QueryRange
 range = SysQuery::findOrCreateRange(
 query.dataSourceTable(tableNum(FMVehicleMake)),
 fieldNum(FMVehicleMake, Make));
 makeFilter.text(range.value());
 }
}

public QueryFilter findOrCreateQueryFilter(
 Query _query,
 QueryBuildDataSource _queryDataSource,
 str _fieldName)
{
 QueryFilter filter;
 int i;

 for(i = 1; i <= _query.queryFilterCount(); i++)
 {
 filter = _query.queryFilter(i);
 if (filter.dataSource().name() == _queryDataSource.name() &&
 filter.field() == _fieldName)

610 PART 3 Under the hood

 {
 return filter;
 }
 }

 return _query.addQueryFilter(_queryDataSource, _fieldName);
}

QueryFilter has similar grouping rules about how individual predicates are constructed with AND or
OR operators. First, QueryFilters are grouped by query data source and the results are combined by using
the AND operator. Next, within a group for a specific query data source, the same rules for QueryRange
are applied: predicates on the same fields use the OR operator first and then the AND operator.

If you run the following X++ code and look at the Transact-SQL trace, you will see CROSS JOIN in
the Transact-SQL statement. You may think that it misses the join condition and is doing a Cartesian
product of the two tables. The join condition is actually in the where clause. A cross join like this is
equivalent to an inner join with the join condition. The cross join is needed because the two tables
must be listed before the outer join tables, because they appear as outer join conditions. Transact-
SQL does not allow you to reference tables before they are used in the query.

static void CrossJoin(Args _args)
{
 CustTable cust;
 SalesTable so;
 SalesLine sl;

 select generateonly cust where cust.AccountNum == '*10*'
 join so where cust.AccountNum == so.CustAccount
 outer join sl where so.SalesId == sl.SalesId;

 info(cust.getSQLStatement());
}

The Transact-SQL for the query looks like this:

SELECT * FROM CUSTTABLE T1 CROSS JOIN SALESTABLE T2 LEFT OUTER JOIN SALESLINE T3 ON (((T3.
PARTITION=?) AND (T3.DATAAREAID=?)) AND (T2.SALESID=T3.SALESID)) WHERE (((T1.PARTITION=?) AND
(T1.DATAAREAID=?)) AND (T1.ACCOUNTNUM=?)) AND (((T2.PARTITION=?) AND (T2.DATAAREAID=?)) AND (T1.
ACCOUNTNUM=T2.CUSTACCOUNT))

Data partitions

In previous releases of Microsoft Dynamics AX, the DataAreaId column in a table was used to provide the
data security boundary. It was also used to define legal entities through the concept of a company.
As part of the organizational model and data normalization changes, a large number of entities like
Products and Parties that were previously stored per-company, have been updated to be shared
(through global tables) in Microsoft Dynamics AX 2012. This was done primarily to enable sharing
of data across legal entities and to avoid data inconsistencies.

 CHAPTER 17 The database layer 611

But in some deployments of Microsoft Dynamics AX, data is not expected to be shared
across legal entities. In such deployments, the DataAreaId column is primarily used as a security
 boundary to segregate data into various companies. Such customers want to share the deployment,
 implementation, and maintenance cost of Microsoft Dynamics AX, but they have no other shared
data or shared business processes. There are also holding companies that grow by acquiring
 independent businesses (subsidiaries), but the data and processes are not shared among these
 subsidiaries.

Microsoft Dynamics AX 2012 R2 provides a solution to these requirements. This release of
 Microsoft Dynamics AX uses the concept of data partitioning by adding a Partition column to the
 tables in the database. This allows the data to be truly segregated into separate partitions. When a
user logs into Microsoft Dynamics AX, he or she always operates in the context of a specific partition.
The system ensures that data from only the specified partition is visible, and that all business
 processes run in the context of that specific partition.

Partition management
The Partitions table contains the list of partitions that are defined for the system. During setup,
Microsoft Dynamics AX creates a default partition called initial. A system administrator can create
 additional partitions by using the Partitions form in the System Administration module.

Development experience
A new property named SaveDataPerPartition has been added for all tables in the AOT. By default,
the value is set to Yes, and the property cannot be edited. This property can be edited only if the
 SaveDataPerCompany property is set to No and the table is marked as a SystemTable, or if the
table belongs to the Framework table group. These checks are put in place to enable all application
tables to be partitioned. Only specific tables that are used by the kernel can have data that is not
 partitioned.

All of the tables whose SaveDataPerPartition property is set to Yes have a Partition system column
in the metadata. In the database, the table has a PARTITION column with a data type int64. It is
a surrogate foreign key to the RECID column of the PARTITION table. This column always contains
a value from one of the rows in the PARTITION table. The column has a default constraint with the
RECID value of the initial partition. The kernel adds the PARTITION column to all the indexes in a
partition-enabled table except for the RECID index.

Run-time experience
The Microsoft Dynamics AX kernel framework handles the population and retrieval of the Partition
column based on the partition that is specified for the current session. The various database
 operations provided by Microsoft Dynamics AX have the following functionality:

612 PART 3 Under the hood

 ■ select statements All select statements are filtered automatically based on the current
partition of the session. The Transact-SQL statement that is generated always has the Partition
column in the WHERE clause.

 ■ insert statements The inserted buffer always has the Partition column set to the partition
of the current session. Microsoft Dynamics AX displays an error if the application code sets the
column to a value that is different from the current partition of the session.

 ■ update statements All updates are performed in the current partition. Updating the
 Partition column is not allowed.

Because of this functionality, you usually do not have to write code to handle the Partition column.
However, an exception is any code that uses direct Transact-SQL. The Partition column will not be
handled automatically, and the direct SQL code has to ensure that the WHERE clause contains the
partition of the current session.

To provide strict data isolation, the framework does not provide the ability to change partitions
programmatically at run time. To change the partition, a new session has to be created that is set to
use the other partition. Certain framework components like Setup and Batch use the runAs method,
which creates a new session to execute code in a different partition. This is not a common pattern and
should not be used in non-framework application logic.

Similarly, the framework does not allow execution of database operations that span multiple
 partitions. This is a contrast from the cross-company functionality that allows execution of database
statements across multiple legal entities.

 CHAPTER 18 The batch framework 613

C H A P T E R 1 8

The batch framework

In this chapter
Introduction . 613
Batch processing in Microsoft Dynamics AX 2012 613
Create and execute a batch job. 615
Manage batch execution . 625
Debug a batch task . 629

Introduction

The batch framework in Microsoft Dynamics AX 2012 is an asynchronous, server-based task execution
environment. It lets users execute asynchronous tasks in parallel and across multiple instances of the
Application Object Server (AOS). In this release, the batch framework has been further enhanced from
Microsoft Dynamics AX 2009. Among other enhancements, the batch framework now runs code in .NET
common intermediate language (CIL), gives system administrators and developers increased control over
batch jobs, and enables better performance and greater reliability when those jobs execute.

Microsoft Dynamics AX 2012 includes several tools that support the batch. The Batch Job form
gives system administrators increased flexibility in the design, setup, and execution of complex batch
jobs. In addition, the Batch Job form provides the ability to add multiple batch tasks to a single batch
job and to define the dependencies among those tasks. An enhanced Batch application programming
interface (API) gives X++ developers more control over complex batch jobs, along with the ability to
process batch jobs directly from business logic.

A new framework, the SysOperation framework, was also introduced in this release. This framework
enables application logic to be written in a way that supports running interactively or via the batch
framework. It is a refinement of the RunBase framework and provides additional flexibility for creating
new batch jobs. For more information about the SysOperation framework, see Chapter 14,
“Extending Microsoft Dynamics AX.”

Batch processing in Microsoft Dynamics AX 2012

Batch processing is a noninteractive task-processing technique where users create batch jobs to
 organize appropriate types of tasks to be processed as a unit. Batch processing has some important
advantages: it lets users schedule batch tasks and define the conditions under which they execute,
add the tasks to a queue, and set them to run automatically on a batch server. After execution is

C H A P T E R 1 8

The batch framework

Introduction

Batch processing in Microsoft Dynamics AX 2012

Common uses of the batch framework

Performance

Create and execute a batch job

Create a batch-executable class

Create a batch job

Use the Batch API

Manage batch execution

Configure the batch server

Create a batch group

Manage batch jobs

Debug a batch task

Configure AOS for batch debugging

Configure Visual Studio for debugging X++ in a batch

614 PART 3 Under the hood

 complete, the batch server logs any errors and sends alerts. A batch job might involve printing
 reports, closing inventory, or performing periodic maintenance. By scheduling a batch job to process
these types of resource-intensive tasks in off-peak hours, users can avoid slowing down the system
during working hours.

Table 18-1 describes how standard batch processing concepts are represented in Microsoft
 Dynamics AX. These concepts are discussed in greater detail throughout this chapter.

TABLE 18-1 Batch processing concepts in Microsoft Dynamics AX 2012.

Concept Description

Batch task The smallest unit of work that can be executed using the batch framework. It is a
batch-executable class that contains business logic to perform a certain action.
The Microsoft Dynamics AX classes that are used for batch tasks are designated
to run on the server. These tasks can run automatically as part of a batch job on
the AOS. This version of the product has limited support for client batch jobs; it
is recommended that you use server-side batch jobs to take full advantage of
the new features in Microsoft Dynamics AX 2012. For more information, see the
“Create a batch-executable class” section, later in this chapter.

Batch job A complete process that achieves a goal, such as printing a report or performing
the inventory closing process. A batch job is made up of one or more batch tasks.

Batch group A logical categorization for batch tasks that lets administrators specify which AOS
instance runs a particular task. Tasks that are not explicitly assigned to a batch
group are, by default, assigned to an empty (default) group.

Batch server An AOS instance that processes batch jobs. Read more about AOS in Chapter 1,
“Architectural overview.” For more information about configuring an AOS instance
to be a batch server, see the “Configure the batch server” section, later in this
chapter.

Common uses of the batch framework
Organizations can use the batch framework to perform asynchronous operations in a variety of
 scenarios. Typically, organizations create batch jobs to address the following kinds of needs:

 ■ Enable scheduling flexibility The batch framework can perform periodic tasks on a regular
schedule, such as data cleanup or invoice processing. For example, to run invoice processing
at the end of every month, you can set up a recurring batch job that runs at midnight on the
last working day of each month. The batch framework automatically picks up the job and
 processes pending invoices according to the specified schedule.

 ■ Control the order in which tasks execute With the batch framework, you can develop a
workflow or perform a complex data upgrade in a sequence that you specify. You can also set
up dependencies between the tasks and create a dependency tree that ensures that certain
tasks run in sequence while others run in parallel.

 ■ Enable conditional processing Decision trees can help you implement a reliable way of
processing data. Developers or system administrators can set up dependencies between
tasks in such a way that different tasks are executed, depending on whether a particular task
succeeds or fails. (Figure 18-4, later in the chapter, shows an example of a dependency tree.)
System administrators can also set up alerts so that they are notified if a job fails.

 CHAPTER 18 The batch framework 615

 ■ Improve performance by using parallelization The batch framework lets you take
 advantage of multithreading, which ensures that your processor’s capabilities are used fully.
This is particularly important for long-running processes, such as inventory closing. You can
improve performance further by breaking a process into tasks and executing them against
 different AOS instances, thus increasing the throughput and reducing overall execution time.

 ■ Implement advanced logging and profiling The batch framework lets you see what errors
or exceptions were thrown the last time the batch ran, and it also shows you how long
a process takes to execute. Advanced logging and the new profiling capabilities are also useful
for performance benchmarking and security auditing.

Performance
The new capability to run larger and more complex batch jobs has required performance
 enhancements to the batch framework. In Microsoft Dynamics AX 2012, the batch framework is
designed to be a server-side component. This lets you design multithreaded server processes in a
controlled manner. By configuring the number of parallel execution threads and servers, defining the
set and order of tasks for processing, and setting the execution schedule, you can achieve greater
scalability across your hardware.

As mentioned earlier, the batch framework is now designed to run X++ that has been compiled
as .NET CIL code for batch jobs. This significantly improves performance compared to Microsoft
 Dynamics AX 2009, which ran interpreted X++ code. Compared to the interpreted code, garbage
collection is much better, and because of session pooling, scheduling new batch jobs is less resource
intensive. You can also profile the performance of jobs by using Microsoft Visual Studio Performance
Profiler.

Microsoft developers use the batch framework as a foundation for many performance- critical
 processes, such as maximizing hardware scalability during a data upgrade and maximizing
 throughput during journal posting. For more information about how Microsoft uses the batch
 framework for performance-critical processes, see the white paper “Journal Batch Posting,” available
at http://www.microsoft.com/en-us/download/details.aspx?id=13379.

Create and execute a batch job

Microsoft Dynamics AX 2012 includes numerous batch jobs that perform operations such as
 generating reports, creating sales invoices, and processing journals. However, in several situations,
organizations need to create their own batch jobs. The batch framework provides full flexibility in
the types of jobs that you can create. This section walks you through the following steps, which are
required for creating, executing, and managing a batch job:

1. Create a batch-executable class.

2. Create a batch job and define the execution schedule.

http://www.microsoft.com/en-us/download/details.aspx?id=13379
http://www.microsoft.com/en-us/download/details.aspx?id=13379

616 PART 3 Under the hood

3. Configure a batch server and create a batch group.

4. Manage the batch job.

Create a batch-executable class
The first step in developing a batch job is to define a class that can be executed as a batch task. Many
classes included with Microsoft Dynamics AX 2012 are already enabled for batch processing. You can
also design a batch-executable class, as shown in the following example:

public class ExampleBatchTask extends RunBaseBatch

To run as a batch task, a class must implement the Batchable interface. The best way to
 implement the interface contract is to extend the RunBaseBatch abstract class, which provides
much of the necessary infrastructure for creating a batch-executable class. An alternative is to use
the SysOperation framework, which provides additional advantages compared to extending the
 RunBaseBatch class. For more information about the SysOperation framework, see Chapter 14.

The RunBaseBatch class is an extension of the RunBase framework, so your batch class must adhere
to the patterns and guidelines of the RunBase extended classes (see Chapter 14 for more information).

Table 18-2 describes the methods that must be implemented when you extend the RunBaseBatch
class. The following sections describe these methods in more detail.

TABLE 18-2 Required methods for extensions to the RunBaseBatch class.

Method Description

run Contains the core logic for your batch task

pack Serializes the list of variables used in the class

unpack Deserializes the list of variables used in the class

canGoBatchJournal Determines whether the class appears in the Batch Task form

run method
You implement the core logic of your batch class in the run method. The run method is called by the
batch framework for executing the task defined within it. You can run most of the X++ code in this
method; however, there are some limitations on the operations that you can implement. For example,
you can’t call any client logic or dialog boxes. However, you can still use the Infolog class. All Infolog
and exception messages are captured when the batch class executes, and they are stored in the batch
table. You can view these later in the Batch Job form or the Batch Job History form, both of which are
located under System Administration > Inquiries > Batch Jobs.

Note If an error message is written to the Infolog, it does not mean that the task has
failed; instead, an exception must be thrown to indicate the failure.

 CHAPTER 18 The batch framework 617

pack and unpack methods
A class that extends RunBaseBatch must also implement the pack and unpack methods to enable
the class to be serialized. When a batch task is created, its member variables are serialized by using
the pack method and stored in the batch table. Later, when the batch server picks up the task for
 execution, it deserializes class member variables by using the unpack method. So it’s important to
provide a correct list of the variables that are necessary for class execution. If any member variable
isn’t packable, then the class can’t be serialized and deserialized to the same state.

The following example shows the implementation of the pack and unpack methods:

public container pack()
{
 return [#CurrentVersion,#CurrentList];
}

public boolean unpack(container _packedClass)
{
 Version version = RunBase::getVersion(_packedClass);
 switch (version)
 {
 case #CurrentVersion:
 [version,#CurrentList] = _packedClass;
 break;
 default:
 return false;
 }
 return true;
}

The #CurrentList and #CurrentVersion macros that are referenced in the preceding code must be
defined in the class declaration. Using a macro simplifies the management of variables in the class. If
you add or remove variables later, you can manage the list by modifying the macro. The #CurrentList
macro holds a list of the class member variables to pack, as shown here:

 #define.CurrentVersion(1)
 #localmacro.CurrentList
 methodVariable1,
 methodVariable2
 #endmacro

canGoBatchJournal method
When a system administrator creates a new batch task by using the Batch Task form, the
 canGoBatchJournal method determines whether the batch task class appears in the list of available
classes. For an example of how to use canGoBatchJournal.

618 PART 3 Under the hood

Create a batch job
The second step in developing a batch job is to create the batch job and add batch tasks. You can
 create a batch job in three ways:

 ■ By using the dialog box of a batch-enabled class

 ■ By using the Batch Job Designer form

 ■ By using the Batch API

The method you use depends on the degree of flexibility that you need and the complexity of the
batch job. To create a simple batch job, consisting of a single task with no dependencies, you typically
use the dialog box of a batch-executable class; to create a more complex batch job, consisting of
 several tasks that might have dependencies, use the Batch Job form; to create a highly complex or
very large batch job, or one that needs to be integrated with other business logic, use the Batch API.
The following sections provide an example of using each method.

Create a batch job from the dialog box of a batch-executable class
The simplest way to run a batch-executable class as a batch job is to invoke the class by using a menu
item. A menu item that points to a batch-executable class automatically opens a dialog box that lets
the user create a batch job. On the Batch tab of the dialog box, select the Batch Processing check box,
as shown for the Change based alerts class in Figure 18-1. When you select Batch Processing and click
OK, a new batch job with the task that represents the batch-executable class is created. The batch job
then runs asynchronously at the date and time you specify. You can also set up recurrences or alerts
for the job by clicking the appropriate button on the right side of the dialog box. You can also specify
the batch group for the task by using the drop-down list.

FIGURE 18-1 An example of the Batch tab for a class.

 CHAPTER 18 The batch framework 619

Create a batch job by using the Batch Job form
You can open the Batch Job form from several places. For example, you can open it by clicking Batch
Jobs from System Administration > Inquiries > Batch Jobs or by selecting My Batch Jobs (for users)
from Home > Inquiries > My Batch Jobs. Both menu items open the same form, but the information
that is presented in the form differs, depending on the menu item that you use to open it. Depending
on how you open the form and your level of access, you can view either the batch jobs that you have
created or all batch jobs that are scheduled in the system.

Press Ctrl+N to create a new batch job, and then enter the details for the job in the grid or on the
General tab: a description, and the date and time at which you want the job to start. You can also set
up recurrence for the batch job by clicking Recurrence on the menu bar, and then entering a range
and pattern for the recurrence.

Note If you don’t enter a date and time, the current date and time are entered automatically.

Figure 18-2 shows the Batch Job form.

FIGURE 18-2 The Batch Job form.

After you create a batch job, you can add tasks to it and create dependencies between them by
using the Batch Tasks form (shown in Figure 18-3). The Batch Tasks form opens when you click View
Tasks on the menu bar in the Batch Job form. From the Batch Tasks form, you can also change the
status of batch tasks or delete tasks that are no longer needed.

620 PART 3 Under the hood

FIGURE 18-3 The Batch Tasks form.

To create a task, do the following:

1. Press Ctrl+N to create the task.

2. In Task Description, enter a description of the task.

3. In Company Accounts, select the company in which the task runs.

4. In Class Name, select the process that you want the task to run. Classes appear in a lookup
list containing all available batch-enabled classes. The lookup list appears only if the
 CanGoBatchJournal property is enabled.

5. In Batch Group, select a batch group for the task if necessary.

6. Save the task by pressing Ctrl+S.

7. Specify class parameters if necessary. As mentioned in previous sections, each batch task
 represents a batch-executable class. Sometimes you need to set up parameters for that class.
For example, you might need to specify posting parameters for invoice posting. To do that,
click Parameters on the menu bar in the Batch Tasks form. A dialog box specific to the selected
class is displayed.

 CHAPTER 18 The batch framework 621

Note If you are creating a custom batch class, you must design the parameters
form manually. If you implement a batch based on the SysOperation framework,
this process is highly simplified. After you specify the necessary parameters
and click OK, the class parameters are packed and saved in the Batch table and
then are restored when the class executes. For more information about the
SysOperation framework, see Chapter 14.

8. Set up dependencies or advanced sequencing between tasks, if necessary.

After you create the batch job and add tasks to it, you can use the Batch Tasks form to define
dependencies between the tasks. If no dependencies or conditions are defined within a job, the batch
server automatically executes the tasks in parallel. (To configure the maximum number of parallel
tasks, use the Maximum Batch Threads parameter in the Server Configuration form.)

If you need to use advanced sequencing to accommodate your business process flow, you can
use either the Batch Tasks form or the Batch API. You can use these tools to construct complex
 dependency trees that let you schedule batch jobs tasks in parallel, add multiple dependencies
 between batch tasks, choose different execution paths based on the results of the previous batch
task, and so on.

For example, suppose that the job, JOB1, has seven tasks: TASK1, TASK2, TASK3, TASK4, TASK5,
TASK6, and TASK7, and you want to set up the following sequence and dependencies for it:

 ■ TASK1 runs first.

 ■ TASK2 runs on completion (Ended or Error) of TASK1 (regardless of the success or failure of
TASK1).

 ■ TASK3 runs on success (Ended) of TASK2.

 ■ TASK4 runs on success (Ended) of TASK2.

 ■ TASK5 runs on failure (Error) of TASK2.

 ■ TASK6 runs on failure (Error) of TASK3.

 ■ TASK7 runs on success (Ended) of both TASK3 and TASK4.

622 PART 3 Under the hood

Figure 18-4 shows the dependency tree for JOB1.

TASK1

TASK2

TASK3

TASK6

TASK4

TASK7TASK5

On completion

On success

On failure

On success

On failure On success
On success

FIGURE 18-4 The batch task dependency tree for JOB1.

To define these task dependencies and to tell the system how to handle them, select a child
task—for example, TASK2—from the preceding list, and then do the following:

1. In the Batch Tasks form, click in the Has Conditions grid, and then press Ctrl+N to create a new
condition.

2. Select the task ID of the parent task, such as TASK1.

3. Select the status that the parent task must reach before the dependent task can run. For
 example, TASK2 starts when the status of TASK1 becomes Ended or Error.

4. Press Ctrl+S to save the condition.

5. If you enter more than one condition, and if all conditions must be met before the dependent
task can run, select a condition type of All.

Alternatively, if the dependent task can run after any of the conditions are met, select a
 condition type of Any.

You can use the Batch Tasks form to define how the system handles task failures. To ignore the
 failure of a specific task, select Ignore Task Failure for that task on the General tab. If you select this
option, the failure of the task doesn’t cause the job to fail. You can also use Maximum Retries to
 specify the number of times a task should be retried before it fails.

 CHAPTER 18 The batch framework 623

Use the Batch API
For advanced scenarios requiring complex or large batch jobs, such as inventory closing or data
upgrades, the batch framework provides an X++ API that you can use to create or modify batch jobs,
tasks, and their dependencies as needed; and to create runtime batch tasks dynamically. This flexible
API helps you automate task creation and integrate batch processing into other business processes.
It can also be useful when your batch job or task requires additional logic. To create a batch job by
 using the Batch API, the following steps are necessary:

1. Use the BatchHeader class to create the batch job.

2. Modify the parameters for the batch job.

3. Add tasks.

4. Define the dependencies between tasks.

5. Save the batch job.

Create a batch job by using the BatchHeader class
Create an instance of the BatchHeader class that represents your batch job. The following example
creates a BatchHeader instance named sampleBatchHeader:

 sampleBatchHeader = BatchHeader::construct();

You can also construct a BatchHeader object for an existing batch job by providing an optional
batchJobId parameter for the construct method, as shown here:

//job1 is an existing job
sampleBatchHeader = BatchHeader::construct(job1.parmCurrentBatch().BatchJobId);

Modify batch job parameters
The BatchHeader class lets you access and modify most parameters by using parm methods. For
 example, you can set up recurrences and alerts for your batch job, as shown in the following example:

// Set the batch recurrence
sysRecurrenceData = SysRecurrence::defaultRecurrence();
sysRecurrenceData = SysRecurrence::setRecurrenceStartDateTime(sysRecurrenceData,
DateTimeUtil::utcNow());
sysRecurrenceData = SysRecurrence::setRecurrenceNoEnd(sysRecurrenceData);
sysRecurrenceData = SysRecurrence::setRecurrenceUnit(sysRecurrenceData, SysRecurrenceUnit::Hour,
1);
sampleBatchHeader.parmRecurrenceData(sysRecurrenceData);

// Set the batch alert configurations
sampleBatchHeader.parmAlerts(NoYes::No, NoYes::Yes, NoYes::No, NoYes::No, NoYes::No);

624 PART 3 Under the hood

Add a task to the batch job
You add tasks to the batch job by calling the addTask method. The first parameter for this method is
an instance of a batch-executable class that is scheduled to execute as a batch task:

void addTask(Batchable batchTask,
 [BatchConstraintType constraintType])

Another way to create a task is to use the addRuntimeTask method, which creates a dynamic
batch task. This task exists only for the current run; it is copied into the history tables and deleted
at the end of the run. It copies settings such as the batch group and child dependencies from the
 inheritFromTaskId task:

void addRuntimeTask(Batchable batchTask,
RecId inheritFromTaskId,
[BatchConstraintType constraintType])

Define dependencies between tasks
The BatchHeader class provides the addDependency method, which you can use to define a
 dependency between the batchTaskToRun and dependsOnBatchTask tasks.

You can use the optional parameter batchStatus to specify the type of the dependency. By
default, a dependency of type BatchDependencyStatus::Finished is created, which means that a
task starts execution only if the task that it depends on finishes successfully. Other options are
BatchDependencyStatus::Error (the task starts execution if the preceding task finishes with an error)
and BatchDependencyStatus::FinishedOrError (the task starts execution if the preceding task finishes
with any status result). The following example shows the signature of the addDependency method:

public BatchDependency addDependency(
 Batchable batchTaskToRun,
 Batchable dependsOnBatchTask,
 [BatchDependencyStatus batchStatus])

Save the batch job
The final step in creating the batch job using the Batch API is to save the job by calling the
 batchHeader.save method. The save method inserts records into the BatchJob, Batch, and
 BatchConstraints tables, from which the batch server can automatically pick them up for execution.

Example of a batch job
The following example shows how to create a batch job and add two batch tasks by using the Batch
API. The example assumes that a batch-enabled class named ExampleBatchTask already exists:

static void ExampleSchedulingJob (Args _args)
{
 BatchHeader sampleBatchHeader;
 RunBaseBatch sampleBatchTask;

 CHAPTER 18 The batch framework 625

 // create batch header
 sampleBatchHeader = BatchHeader::construct();

 // create and add batch tasks
 sampleBatchTask1 = new ExampleBatchTask();

 sampleBatchHeader.addTask(sampleBatchTask1);

 sampleBatchTask2 = new ExampleBatchTask();

 sampleBatchHeader.addTask(sampleBatchTask2);

 // add dependencies between batch tasks
 sampleBatchHeader.addDependency(sampleBatchTask1, sampleBatchTask2);

 // save batch job in the database
 sampleBatchHeader.save();
}

For more examples of programmatic batch job creation, see “Walkthrough: Extending
 RunBaseBatch Class to Create and Run a Batch,” at http://msdn.microsoft.com/en-us/library/cc636647
.aspx.

Manage batch execution

The final step in implementing a batch job is to manage the execution process. Before a batch job can
be executed on an AOS instance, you must configure the AOS instance as a batch server and set up
the batch groups that tell the system which AOS instance should execute the job.

In addition to these initial configuration tasks, you’ll likely need to manage the batch tasks and
jobs: checking status, reviewing history, and sometimes canceling a batch job. You’ll probably also
need to debug a batch task at some point. The following sections describe how to configure an AOS
instance as a batch server, set up batch groups, manage batch jobs, and debug a batch task.

Configure the batch server
You can configure an AOS instance to be a batch server, including specifying when the batch server
is available for processing and how many tasks it can run, by using the Server Configuration form.
The Server Configuration form is located at System Administration > Setup > System > Server
 Configuration. Note that the first AOS instance is automatically designated as a batch server, but you
can configure additional AOS instances manually as batch servers.

Tip Use multiple batch servers to enable parallel processing and increase processing
throughput.

http://msdn.microsoft.com/en-us/library/cc636647.aspx

626 PART 3 Under the hood

1. In the Server Configuration form, select a server in the left pane.

2. Select the Is Batch Server check box to enable batch processing on the server, as shown in
Figure 18-5.

FIGURE 18-5 The Server Configuration form.

3. On the Batch Server Schedule FastTab, click Add to enter a new schedule. Enter the maximum
number of batch tasks that can be run on the AOS instance at one time. The server continues
to pick up tasks from the queue until it reaches its maximum.

4. Enter a starting time in Start Time and an ending time in End Time to specify the time window
in which the server processes batch jobs. Press Ctrl+N to enter an additional time window.

Tip It’s a good idea to exclude a server from batch processing when it is busy processing
regular transactions. You can set server schedules so that each AOS instance is available
for user traffic during the day and batch traffic overnight. Keep in mind that if the server
is running a task when its batch processing availability ends, the task continues running to
completion. However, the server doesn’t pick up any more tasks from the queue.

Create a batch group
A batch group is a logical categorization of batch tasks that lets a user (typically a system
 administrator) determine which AOS instance runs the batch task. This section describes how to create
a batch group so that it can be assigned to a specific server for execution. The first step is to create
batch groups by using the Batch Group form at System Administration > Setup > Batch Group.

 CHAPTER 18 The batch framework 627

To create a batch group, press Ctrl+N in the Batch Group form, and then type a name and
 description for the batch group. The Batch Group form is shown in Figure 18-6.

FIGURE 18-6 The Batch Group form.

Note By default, the system contains an empty batch group that can’t be removed. This is
a default batch group for tasks that are not explicitly assigned to a group.

After you create batch groups, assign each group to a server as follows:

1. In the Server Configuration form (shown in Figure 18-7), click the Batch Server Groups FastTab.
The Selected Groups list shows the batch groups specified to run on the selected server.

2. In the Remaining Groups list, select a group, and then click the left arrow button to add this
group to run on the selected server.

FIGURE 18-7 The Server Configuration form.

628 PART 3 Under the hood

Manage batch jobs
After you create and schedule a batch job, you might want to check its status, review its history, or
cancel it. The following sections describe some of the most common management tasks associated
with batch jobs.

View and change the batch job status
The Batch Job list form provides a snapshot view of the current state of batch jobs. The list displays
the progress and the status of running and completed jobs. It also displays any jobs that are
 scheduled to start soon.

You can change the status of a batch job by selecting the batch job in the list and then following
these steps:

1. Click Functions, and then click Change Status.

2. In the Select New Status dialog box, select a new status for the job. For example, if the status
is Waiting, you can temporarily remove the batch job from the waiting list by changing the
status to Withhold.

Tip If a job exits with a status of Error/Ended and you want to rerun the job, change its
 status to Waiting. The job will automatically be picked up by the server for execution.

You can cancel a batch job by changing its status to Canceling. Tasks in the Waiting or Ready state
are changed to Not Run; currently executing tasks are interrupted, and their status is changed to
Canceled.

Control the maximum retries
If an AOS fails because of an infrastructure failure or a power outage while a batch task is executing,
the batch framework has the built-in capability to retry tasks after the AOS is restarted. Any tasks that
were left in an executing state, and that have not reached the maximum retry limit, are changed to
the Ready state and will run shortly after the failure.

Tip If you create custom tasks and want to enable retries, design the task so that it is
idempotent—that is, it can be executed multiple times without unexpected consequences.

You can modify the Maximum Retries attribute for each batch task on the General tab. By default,
the value is set to 1; when the Actual Retries field on the Update tab exceeds the maximum number
of retries, the batch task fails. When this happens, the recurrence that is set for the batch job is not
honored, and the status of the batch job is set to either Success or Error.

 CHAPTER 18 The batch framework 629

Review the batch job history
You can view a history of all batch jobs that have finished running in the Batch Job History form at
System Administration > Inquiries > Batch Job History. This form displays detailed information about
the status of the jobs, including any messages encountered while the batch job was running.

You can also view the logs for each batch job as follows:

 ■ To view log information for an entire batch, select a batch job, and then click Log.

 ■ To view log information for individual tasks, select a batch job, and then click View Tasks. In
the Batch History list form, select a task, and then click Log.

Tip In the batch job settings, you can specify when log information is written to the
 history tables: Always (the default), On Error, or Never. Use On Error or Never to save disk
space for batch jobs that run constantly. This option is located on the General tab of the
Batch Job form.

Debug a batch task

Because batch tasks run in noninteractive mode and X++ executes in the common language runtime
(CLR), to debug a batch task, you have to perform additional steps to configure the AOS and the
Visual Studio debugger, in addition to setting up breakpoints.

First, configure the AOS for batch debugging. This is necessary for two reasons. First, the AOS
modifies the X++ assembly to disable Just-In-Time (JIT) optimizations in the CLR. This is necessary to
enable variables and object contents to be viewed and analyzed in the debugger. Second, the AOS
produces source files containing the X++ code under the server Bin\XppIL\Source folder. You can
open these files in Visual Studio to set breakpoints and perform common tasks, such as step ping into
and step ping over.

Configure AOS for batch debugging
Use the Microsoft Dynamics AX Server Configuration Utility (see Figure 18-8) to configure the AOS for
batch debugging. The utility is available on the computer on which you installed the AOS. To do this,
perform the following steps:

1. Open the Microsoft Dynamics AX Server Configuration Utility. Click Start > All Programs >
Administrative Tools > Microsoft Dynamics AX 2012 Server Configuration.

2. Select the Enable Breakpoints to Debug X++ Code Running on This Server check box.

3. Click OK to close the utility, and then restart the AOS.

630 PART 3 Under the hood

FIGURE 18-8 The Microsoft Dynamics AX 2012 Server Configuration Utility.

Configure Visual Studio for debugging X++ in a batch
To configure Visual Studio for batch debugging, attach to the AOS process Ax32Serv.exe by following
these steps:

1. In Visual Studio, on the Debug menu, click Attach To Process.

2. When the Attach To Process dialog box opens (see Figure 18-9), click Select to select Managed
(v4.0) code, and then select the following check boxes:

• Show Processes From All Users

• Show Processes In All Sessions

3. Click Ax32Serv.exe, and then click Attach.

 CHAPTER 18 The batch framework 631

FIGURE 18-9 The Attach To Process dialog box in Visual Studio.

The next step is to disable the Just My Code option, so that the debugger breaks on X++ source
code. To do this, perform the following steps:

1. On the Tools menu, click Options, and then navigate to the Debugging\General node
(shown in Figure 18-10).

FIGURE 18-10 The Options dialog box in Visual Studio.

Clear the Enable Just My Code (Managed Only) check box, and then click OK.

After you complete these steps, you can open the X++ source code from the Bin\XppIL\Source
folder on the server and set breakpoints.

 CHAPTER 19 Application domain frameworks 633

C H A P T E R 1 9

Application domain frameworks

In this chapter
Introduction . 633
The organization model framework . 634
The product model framework . 643
The operations resource framework . 648
The dimension framework . 654
The accounting framework . 659
The source document framework. 664

Introduction

Microsoft Dynamics AX 2012 includes a number of new domain-specific application frameworks that
improve code reuse between application modules, reduce the need to assign artificial relationship
roles in application modules, and reduce the number of tightly coupled interdependencies between
application modules. For example:

 ■ The operations resource role that is assigned to people and work centers by the operations
resource framework eliminates the need to assign employees and independent contractors
artificially to the work center role, so that they can participate in production planning and
scheduling activities.

 ■ The performance dimensions extended from the dimension framework, the double- entry
 subledger journal provided by the accounting framework, and the source document
 abstraction provided by the source document framework enable operations processes such
as purchasing, receiving, and invoicing to be decoupled from accounting processes such as
budget control and financial reporting.

This chapter provides a short description of the conceptual foundation of some of the key
 application domain frameworks, in addition to links to white papers that provide more detailed
implementation guidelines and code samples. This chapter does not contain an exhaustive list of
 application domain frameworks for Microsoft Dynamics AX 2012. Instead, it is intended to provide
an overview of important new functionality and suggestions about how you can use it. For
 information about additional application domain frameworks, see “White Papers for Developers” at
http://technet.microsoft.com/EN-US/library/hh272882. This page is updated frequently with links to
new white papers.

C H A P T E R 1 9

Application domain frameworks

Introduction

The organization model framework

How the organization model framework works

When to use the organization model framework

The product model framework

How the product model framework works

When to use the product model framework

Extending the product model framework

The operations resource framework

How the operations resource framework works

When to use the operations resource framework

Extensions to the operations resource framework

MorphX model element prefixes for the operations resource framework

The dimension framework

How the dimension framework works

Constrain combinations of values

Create values

Extend the dimension framework

Query data

Physical table references

The accounting framework

How the accounting framework works

When to use the accounting framework

Extensions to the accounting framework

Accounting framework process states

MorphX model element prefixes for the accounting framework

The source document framework

How the source document framework works

When to use the source document framework

Extensions to the source document framework

MorphX model element prefixes for the source document framework

634 PART 3 Under the hood

Note By convention, the names of entities in the conceptual domain models in this
 chapter are denoted in title case and italicized for emphasis.

The organization model framework

Microsoft Dynamics AX 2012 introduces a new organization model framework. This framework is
 designed to model key scenarios that are required by government organizations and corporations
that have global operations, and those that have separate legal and operating organization structures.
The organization model framework extends the company feature that was used in Microsoft
 Dynamics AX 2009 and earlier versions.

With the new types of organizations that are included in Microsoft Dynamics AX 2012, you can
model organizations in Microsoft Dynamics AX to mirror the way you operate them without having
to customize the application. Most organizations go through an iterative operating cycle of monitor,
measure, analyze, and improve. The analysis phase results in new business rules and policies and new
strategic and operational initiatives to improve the organization’s performance. With the organization
framework, you can create hierarchical structures that enable this cycle of performance improvement.

How the organization model framework works
The organization model has two major components: Organization Types and Organization Hierarchies.
The following sections describe these components.

Organization types
The organization model in Microsoft Dynamics AX 2012 introduces two new types of organizations:
Legal Entity and Operating Unit.

 ■ Legal Entity An organization with a registered or legislated legal structure that has the
 authority to enter into legal contracts and that is required to prepare statements that report
on its performance. A legal entity and a company in Microsoft Dynamics AX 2012 are
 semantically the same. However, some functional areas in the application are still based on
a data model that uses the concept of a company (or DataArea). These areas may have the
same limitations as in Microsoft Dynamics AX 2009 and may have an implicit data security
 boundary.

 ■ Operating Unit An organization that divides the control of economic resources and
 operational processes among people who have a duty to maximize the use of resources, to
improve processes, and to account for their performance.

 CHAPTER 19 Application domain frameworks 635

Microsoft Dynamics AX 2012 includes several types of operating units:

 ■ Business unit A semi-autonomous Operating Unit that is created to meet strategic business
objectives.

 ■ Cost center A type of Operating Unit that describes an organization that is used to track
costs or expenses. A cost center is a cost accumulator, and it is used to manage costs.

 ■ Department A type of Operating Unit that may have profit and loss responsibility and might
consist of a group of cost centers. Departments also are often created based on functional
responsibility or skill, such as sales and marketing.

 ■ Value Stream A type of Operating Unit that is commonly used in lean manufacturing. In
lean manufacturing, a value stream owns one or more production flows that describe the
activities and flows needed to supply a product, an item, or a service to the consumers of the
product.

 ■ Retail Channel A type of Operating Unit that is commonly used in retail to represent a retail
channel.

A Team is also a type of Internal Organization, but it is an informal group of people that is typically
created for a specific purpose over a short duration. Teams might be created for specific projects or
services. The other types of organizational units described here are more permanent, although they
could require frequent minor updates or major changes because of restructuring.

These types of operating units support application functionality in Microsoft Dynamics AX 2012.
However, every industry and business has unique requirements for its operating units and may call
them by different names. Additionally, organizations can create custom types of operating units to
meet their needs. For more information, see the section “Create a custom operating unit type,” later
in this chapter.

When you arrange legal entities and operating units into hierarchies and use them for aggregated
reporting, to secure access to data, and to implement business policies, they help enable internal
control of your organization.

Organization hierarchies
An Organization is a group of people who work together to perform operational and administration
processes. Organization Hierarchies represent the relationships between the Organizations that make
up an enterprise or a government entity. In previous releases, companies could not be organized into
a hierarchy to represent the structure of an organization. In reality, organizations typically have a
hierarchical structure for the reasons mentioned in the previous section.

The organization model framework in Microsoft Dynamics AX 2012 supports the creation of
 multiple hierarchies that take effect on multiple dates. This is useful in restructuring scenarios, where
you want the updated hierarchy to become effective at a certain date in the future. The framework
also supports hierarchies that are used for multiple purposes.

636 PART 3 Under the hood

A Purpose defines how the Organizational Hierarchy is used in application scenarios. The Purpose
that you select determines the types of organizations that can be included in the hierarchy.
Table 19-1 shows the types of organizations that you can use for each hierarchy purpose that is
 included in Microsoft Dynamics AX 2012.

TABLE 19-1 Purposes and organization types.

Purpose Description Organization types

Procurement internal
control

Use this purpose to define policies that control the
purchasing process.

All

Expenditure internal
control

Use this purpose to define policies for expense
 reports.

All

Organization chart Use this purpose in human resources to define
 reporting relationships.

All

Signature authority
 internal control

Use this purpose to define policies for signing limits.
These policies control the spending and approval
limits that are assigned to employees.

All

Vendor payment internal
control

Use this purpose to define policies for the payment
of vendor invoices.

Legal entities

Audit internal control Use this purpose to define policies for identifying
documents for audit.

Legal entities

Centralized payments Use this purpose to make payments by one legal
entity on behalf of other legal entities.

Legal entities

Security Use this purpose to define the data security access
for organizations.

All

Retail assortment Use this purpose to define assortments for retail
channels.

All

Retail replenishment Use this purpose to define replenishment
 configurations.

All

Retail reporting Use this purpose to define dimensions for retail re-
porting cubes.

All

The organization model has a significant impact on the implementation of Microsoft Dynamics
AX 2012 and on the business processes being implemented. Executives and senior managers from
different functional areas such as finance and accounting, human resources, operations, and sales and
marketing should participate in defining the organization structures.

Figure 19-1 shows the conceptual domain model of the organization model framework.

When to use the organization model framework
You use the organization model framework to model how the business operates. You can use the
organization model framework in two ways: by using the built-in integration with other application
frameworks and existing Microsoft Dynamics AX modules, or by modeling custom scenarios to meet
the needs of your organization.

 CHAPTER 19 Application domain frameworks 637

Party

* * *
*

Person

External Organization

Legal Entity Team
Operating Unit

Type : Operating Unit Type

Internal Organization

Organization Purpose

Organization Hierarchy

«enumeration»
Operating Unit Type

+Business Unit
+Cost Center
+Department
+Value Stream

FIGURE 19-1 The organization model framework.

Integration with other frameworks application modules
The organization model framework is inherently integrated with certain frameworks and modules in
Microsoft Dynamics AX:

 ■ Address book All internal organizations—legal entity, operating unit, and team—are types
of the Party entity. This means that these organizations can use the capabilities of the address
book to store address and contact information. For more information, see the white paper,
“Implementing the Global Address Book Framework” at http://technet.microsoft.com/en-us/
library/hh272867.aspx.

 ■ Financial dimensions You can use legal entities and operating units to define financial
dimensions and then use those financial dimensions in account structures. By using
 organizations as financial dimensions, an enterprise or government entity can analyze an
 organization’s financial performance. If two types of organizations are used as separate
 financial dimensions in the account structure, the relationships between organizations
 described through hierarchies can also be used as constraints. For more information, see the
section “The dimension framework” later in this chapter.

 ■ Policy framework You can use the policy framework to define an internal control policy
for an organization. The policy framework can be used to define policies for expense reports,
purchase requisitions, audit control of documents, and vendor invoice payments. The policy
framework provides support for override and default behavior for organizations based on
their hierarchies, and enables internal management control of organizations to facilitate
cost control, fraud detection, better operating efficiency, and better performance in general.
For more information, see the white paper, “Using the Policy Framework,” at http://technet
.microsoft.com/en-us/library/hh272869.aspx.

http://technet.microsoft.com/en-us/library/hh272867.aspx
http://technet.microsoft.com/en-us/library/hh272869.aspx

638 PART 3 Under the hood

 ■ Extensible data security The new extensible data security framework provides capabilities
to secure data based on any condition. Security access to organizations can be defined based
on hierarchies. For more information, see Chapter 11, “Security, licensing, and configuration.”

The organization model framework is also used in the following application modules:

 ■ Procurement and sourcing The lines of a purchase requisition are created for a buying
legal entity, and they are received by an operating unit, such as a cost center or a department.
The organization model framework enables various scenarios by allowing the viewing or
 creation of purchase requisitions for anyone buying legal entities and receiving operating
units in which you have access to create purchase requisitions.

 ■ Human resources In human resources, workers hold employment contracts in a legal entity
and have a position in a department. All transaction scenarios in human resources use these
concepts to view and modify data.

 ■ Travel and expense Expense reports and expense line items are associated with a legal
 entity to which the expense line item should be charged from a statutory perspective, and
they also are associated with an operating unit for internal reporting.

Model your own functional scenarios
You can use the organization model framework to model your own scenarios. For example,
a common scenario for data security is to filter application data based on a user’s roles and
 membership in internal organizations. For example, organizations might seek to limit an individual
account manager’s access to specific sales orders based on geography, allowing her to view only the
sales orders that originate in her region.

You can set up a new scenario or customize an existing scenario by taking the following high-level
steps:

1. Define or change the data model.

2. Create a new table with the SaveDataPerCompany property set to No. If you are working with
existing tables that are marked per-company, change the value of the SaveDataPerCompany
property from Yes to No.

3. Reference organizations as foreign keys (FKs) on the table. It may be necessary to reference an
operating unit and a legal entity if the legal entity cannot be established through legal entity
or operating unit organization hierarchies.

4. If the table includes redundant data in the Legal Entity field, set up hierarchical constraints
between legal entities and operating units to maintain data consistency.

5. Build a new form (for example, a list page) for the scenarios, or change the existing user
 experience to view or maintain data. You can use custom filters to make it possible for users to
view and maintain data across organizations.

 CHAPTER 19 Application domain frameworks 639

6. Apply default organizations on the table in financial dimensions by including them in account
structures.

7. Create extensible data security policies that are based on the organizations that the user
 belongs to or has access to.

8. Use the policy framework to set up policies to apply when users access data in the scenario.

Extending the organization model framework
You can extend the organization model framework by creating a custom type of operating unit or
a custom purpose, or by extending the hierarchy designer, a tool that is included with Microsoft
 Dynamics AX 2012.

Create a custom operating unit type
A core extensibility scenario is to extend the organization model to accommodate specific
 vertical industry requirements. For example, branches, schools, and school districts are essentially
 organization concepts, and you can model them as new types of operating units.

Suppose that you want to create an operating unit called Branch. To do so, you would follow these
steps:

1. Create a new base enum value for the new Operating Unit Type.

2. Create a view.

3. Create a menu item for the new operating unit.

The following sections describe these steps in more detail.

Create a new base enum value Define a new base enum value for the OMOperatingUnitType
enum, which corresponds to the new type of operating unit:

1. In the Application Object Tree (AOT), navigate to Data Dictionary\Base Enums\
OMOperatingUnitType.

2. Right-click the OMOperatingUnitType enum, click New Element, and then add an element
named Branch.

3. In the Properties window for the new element, set both the Name and Label properties to
Branch. Change the default EnumValue property to an integer value that will prevent clashes
between your new enum and future enums added by the Microsoft Dynamics AX team.

Create a view Define a view, DimAttributeBranchView, which is similar to views created for other
types of operating units. For example, the view DimAttributeOMBusinessUnit was created for business
units. The DimAttributeOMBusinessUnit view contains the fields that allow the OMOperatingUnit
table to be used as a financial dimension for all business units specified.

640 PART 3 Under the hood

1. In the AOT, navigate to the Data Dictionary\Views node, and then locate
 DimAttributeOMBusinessUnit.

2. Duplicate DimAttributeOMBusinessUnit: Right-click the DimAttributeOMBusinessUnit
node, and then click Duplicate. The AOT will create a node called
 CopyOfDimAttributeOMBusinessUnit.

3. In the Properties window for the newly created view, set the properties as shown in the
 following table:

Property Value

Name DimAttributeBranchView

Label Branches

SingularLabel Branch

DeveloperDocumentation Type a description for the view. For example, The DimAttributeBranchView
contains all records from the OMOperatingUnit table that are specified as
branches.

4. Under the new DimAttributeBranchView view, locate the
 OMOperatingUnitTypeOM BusinessUnit range. The range is under the Metadata\Data Sources\
BackingEntity(OMOperatingUnit)\Ranges node.

In the Properties window for the OMOperatingUnitTypeOMBusinessUnit range, set the properties
as shown in the following table:

Property Value

Name OperatingUnitTypeBranch

Field OMOperatingUnitType

Value Branch

Create a menu item Finally, create a menu item for the new operating unit type as follows:

1. Under Menu Item\Display, create a menu item named BranchMenuItem.

2. In the Properties window for BranchMenuItem, set the following properties:

Property Value

Name BranchMenuItem

Label Branches

Object OMOperatingUnit

EnumTypeParameter OMOperatingUnitType

EnumParameter Branch

The new operating unit type will now appear in the list of operating unit types that are available when
a system administrator creates a new operating unit.

 CHAPTER 19 Application domain frameworks 641

Create a custom purpose
You can extend the Microsoft Dynamics AX organization model to create a custom purpose.
A purpose defines how the organization hierarchy is used in application scenarios.

Suppose you want to create a new purpose called Sales. To do so, you would follow these steps:

1. Create a new base enum value for the new purpose.

2. Create a method to add the new purpose, and then call that method to add the purpose to
the HierarchyPurposeTable table.

The following sections describe these steps in more detail.

Create a new base enum value First, create a new base enum value for the new purpose. To do so,
you follow these steps:

1. In the AOT, navigate to Data Dictionary\Base Enums\HierarchyPurpose.

2. Right-click the HierarchyPurpose enum, click New Element, and then add an element named Sales.

3. In the Properties window for the new element, set the Name and Label properties to Sales.
Change the default EnumValue to an integer value that will prevent clashes between your new
enum and future enums that are added by Microsoft or independent software vendors (ISVs).

Create and call a method to add the new purpose Next, create the method to add the new
 purpose, and then call the method to add it to the table.

1. In the Classes node in the AOT, locate OMHierarchyPurposeTableClass.

2. Duplicate the addSecurityPurpose method: Right-click the addSecurityPurpose node, and then
click Duplicate. The AOT will create a method called CopyOfaddSecurityPurpose.

3. Replace the code for the CopyOfaddSecurityPurpose method with the following code. This
code renames the method:

private static void addSalesPurpose()
{
 OMHierPurposeOrgTypeMap omHPOTP;
 select RecId from omHPOTP
 where omHPOTP.HierarchyPurpose == HierarchyPurpose::Sales;
 if (omHPOTP.RecId <= 0)
 {
 omHPOTP.clear();
 omHPOTP.HierarchyPurpose = HierarchyPurpose::Sales;
 omHPOTP.OperatingUnitType = OMOperatingUnitType::OMAnyOU;
 omHPOTP.IsLegalEntityAllowed = NoYes::No;
 omHPOTP.write();
 omHPOTP.clear();
 omHPOTP.HierarchyPurpose = HierarchyPurpose::Sales;
 omHPOTP.OperatingUnitType = 0;
 omHPOTP.IsLegalEntityAllowed = NoYes::Yes;
 omHPOTP.write();
 }
}

642 PART 3 Under the hood

The preceding code is similar to the code in most of the methods of the OMHierarchy-
PurposeTableClass class. The code was changed in only the places where the Hierarchy
Purpose enum values are referenced. In the code, you can see three occurrences
of HierarchyPurpose::Sales.

4. In the OMHierarchyPurposeTableClass class, update the populateHierarchyPurposeTable
method to call the new method that you created, by adding the following line of code:

OMHierarchyPurposeTableClass::addSalesPurpose();

The following code shows the modification to the populateHierarchyPurposeTable method:

public static void populateHierarchyPurposeTable()
{
 OMHierPurposeOrgTypeMap omHPOTP;
 if (omHPOTP.RecId <= 0)
 {
 ttsbegin;
 OMHierarchyPurposeTableClass::AddOrganizationChartPurpose();
 OMHierarchyPurposeTableClass::AddInvoiceControlPurpose();
 OMHierarchyPurposeTableClass::AddExpenseControlPurpose();
 OMHierarchyPurposeTableClass::AddPurchaseControlPurpose();
 OMHierarchyPurposeTableClass::AddSigningLimitsPurpose();
 OMHierarchyPurposeTableClass::AddAuditInternalControlPurpose();
 OMHierarchyPurposeTableClass::AddCentralizedPaymentPurpose();
 OMHierarchyPurposeTableClass::addSecurityPurpose();
 //Add the following line.
 OMHierarchyPurposeTableClass::addSalesPurpose();
 ttscommit;
 }
}

After you complete these steps, the new purpose will appear under Organization Administration >
Setup > Organization > Organization Hierarchy Purposes.

Extend the hierarchy designer
System administrators can view or modify organizational hierarchies by using the hierarchy designer. This
form is available through Organization Administration > Setup > Organization > Organization Hierarchies.

Developers have a few options for extending the hierarchy designer. The hierarchy designer control
can be customized for four parameters of the organization nodes within the hierarchy: border color,
node image, top gradient color, and bottom gradient color. For more information, download the white
paper “Implementing and Extending the Organization Model in Microsoft Dynamics AX 2012” from
 http://download.microsoft.com/download/4/E/3/4E36B655-568E- 4D4A-B161-152B28BAAF30/Implement-
ing_and_extending_the_organization_model_in_Microsoft_ Dynamics_AX_2012.pdf.

http://download.microsoft.com/download/4/E/3/4E36B655-568E-4D4A-B161-152B28BAAF30/Implementing_and_extending_the_organization_model_in_Microsoft_Dynamics_AX_2012.pdf

 CHAPTER 19 Application domain frameworks 643

The product model framework

Microsoft Dynamics AX 2012 offers a flexible product data management framework, supporting both
centralized and legal-entity-specific management of information about a product, which is defined as
an item or a service that results from an economic activity.

How the product model framework works
In the product model, product information is centralized around the concept of a Product, which
 represents information that is shared across the organizational structure, and the concept of a
Released Product, which controls information that is specific to a legal entity. Figure 19-2 shows the
conceptual domain model of the product model framework.

Product types and subtypes
A Product can be an Item—which represents a physical entity for which inventory levels can be tracked,
like finished goods or raw components—or a Service—modeling a nonphysical entity for which inventory
levels are not tracked, like providing consulting services. A Product can be divided further into additional
subtypes: a Distinct Product that is uniquely identifiable and can be used in economic activities, or a
Product Master. A Product Master is a standard or functional product representation that serves a basis for
configuring distinct Product Variants. In this case, a Product Variant is a uniquely identifiable Product that
can be used in economic activities. However, because all Product Variants are bound to a Product Master,
they share a significant part of the information defined for the Product Master.

Consider a manufacturing company named Contoso that sells different models of bicycles, which
come in different colors and sizes, and accessories such as bicycle lights. In this scenario, every bicycle
model can be modeled as a Product Master, with each color and size combination defining a Product
Variant. Lights do not come in various configurations, so they can be modeled as distinct Products.

Product dimensions
A Product Variant is defined by using Product Dimensions, which are active for a given Product Master.
Product Dimensions are characteristics that uniquely identify a product. Microsoft Dynamics AX 2012
includes four Product Dimensions: Configuration, Size, Color, and Style. (You can rename them.)
A Product Dimension Group, which is required for a Product Master, encompasses the information
about the Product Dimensions that are active and can be used for controlling which Product
 Dimensions should be considered in the price calculation in trade agreements. Because Product
 Dimensions define unique Products, a Product Dimension Group must be assigned to the Product
 Master and is shared across the organizational structure.

For example, Contoso sells two bicycle models. Each model is available in three sizes (small,
 medium, and large) and three colors (black, red, and white). Contoso can model this assortment by
creating a Product Dimension Group named Bicycles, with Size and Color as the active Dimensions,
and assigning that Product Dimension Group to the two Product Masters that represent the two
 bicycle models. Because Contoso also sells helmets, which come in one color but in different sizes, Contoso
can create a second Product Dimension Group called Helmets that has only one active Dimension: Size.

644 PART 3 Under the hood

P
ro

d
u

ct
 T

ra
n

sl
at

io
n

P
ro

d
u

ct
 Im

ag
es

0.
.*

0.
.*

+
ID

+
Ty

p
e

0.
.*

0.
.*

0.
.*

0.
.1

0.
.1

1

1

1

1 1

1

1

11

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

fo
r

0.
.*

0.
.*

0.
.*

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

+
ite

m
ID

0.
.*

0.
.*

0.
.1

0.
.1

0.
.*

*

*

* *

1
1 1

1

1

C
at

eg
o

ry

A
tt

ri
b

u
te

D
is

ti
n

ct
 P

ro
d

u
ct

P
ro

d
u

ct
 V

ar
ia

n
t

*
 P

ro
d

u
ct

 D
im

en
si

o
n

s

Le
g

al
 E

n
ti

ty
R

el
ea

se
d

 P
ro

d
u

ct
 V

ar
ia

n
t

R
el

ea
se

d
 P

ro
d

u
ct

It
em

 G
ro

u
p

In
ve

n
to

ry
 M

o
d

el
 G

ro
u

p

D
ef

au
lt

 O
rd

er
 T

yp
e

P
ro
du
ct

Tr
ac

ki
n

g
 D

im
en

si
o

n
 G

ro
u

p

St
o

ra
g

e
D

im
en

si
o

n
 G

ro
u

p

P
ro

d
u

ct
 D

im
en

si
o

n
 G

ro
u

p
P

ro
d

u
ct

 M
as

te
r

+
V

ar
ia

nt
 c

on
fig

ur
at

io
n

te
ch

no
lo

g
y

*

av
ai

la
b

ili
ty

Tr
ac

ki
n

g
 D

im
en

si
o

n

St
o

ra
g

e
D

im
en

si
o

n av
ai

la
b

ili
ty

co
nt

ro
ls

*

co
nt

ro
ls

co
nt

ro
ls

0.
.*

A
tt

ri
b

u
te

 V
al

u
e

0.
.1

0.
.1

0.
.*

0.
.1

0.
.1

FIGURE 19-2 The product model framework.

 CHAPTER 19 Application domain frameworks 645

Storage and tracking dimensions
Besides Product Dimensions, there are two more types of dimensions: Storage and Tracking. The Storage
Dimension Group defines the level of detail used to identify the physical location of goods, with the
 possible dimensions being Site, Warehouse, Location, and Pallet. The Tracking Dimension Group defines
how specific instances of the same Released Product are tracked, with Batch and Serial Number being
 available. These dimension groups also define policies regarding how specific dimension values affect
business activities. Because these policies may differ in different legal entities, different storage and
 tracking dimensions can be assigned to the same product in different legal entities.

For example, Contoso might be required by law to track batch numbers of bicycle brakes in
 certain countries/regions, so that an entire batch can be recalled easily in case a widespread defect is
 discovered that causes a safety hazard. This requirement does not apply in other countries/regions, so
Contoso may choose not to track brake batches in these countries/regions.

Released products
All of the information described so far applies to the concept of a Product, representing the
 information that is shared across the entire organization structure. But this information is not
 sufficient for a legal entity to be able to use a product. To enable a legal entity to use a product,
the product, together with the relevant product variants, has to be released to the legal entity. On a
Released Product, you can define various policies that control how these products can be used within
that legal entity. These policies include storage and tracking dimension groups (unless they were
defined on the shared product information), Inventory Model Group and Item Group, and various
inventory and costing policies that apply to the product. Once these policies are defined, the product
can be used for transactions within the legal entity.

Product availability within legal entities can be controlled both on the product and the product variant
level. For example, a specific bicycle model can be released only to Contoso U.S. because the company
wants to sell it only in that market. Another model can be released to Contoso U.S. in only black and red
because the company has decided that it’s not worth investing in white bikes in the United States.

Additional product information
Beside the required information, additional details can be provided for a product, either to provide a
reference or to control the interaction with other system components. For example, you might define
Product Translations for a product to control the product name or descriptions that are displayed
in various contexts. Similarly, you can attach Images to provide a graphical representation of the
 product. An example of the information used to control other components may be the Default Order
Type, which a legal entity can set to decide the type of order that is generated to cover the demand
for a particular product. For example, Contoso Italy, which owns a clothing production facility, could
set the Default Order Type for cycling clothes to Production, while bicycles, which are bought from
external vendors, would have the default order type set to Purchase.

646 PART 3 Under the hood

Product attributes and categories
Microsoft Dynamics AX 2012 introduces the concept of product Attributes. User-defined product
 Attributes can be associated with a product Category to describe characteristics that are common
to all products within that Category. Product attributes can be of various data types. Each Attribute
might have a default value within that Category. Once a product is added to a category, the product
inherits all product attributes within that category along with their default values. However, the value
of a product attribute can be changed for each product.

For example, a company in the food industry has a product attribute called Fat that is associated
with the procurement category for milk products. The default value is 1%. The category contains
the product Light-milk, which inherits the default value of 1% from the category. The category also
contains the product Fat-milk, which also inherits the Fat value. However, the value for Fat-milk has
been overwritten with a value of 3%. A purchasing clerk could search all products that match specific
criteria; for example, to find all milk products with a Fat value between 1% and 3%.

Note Product attributes primarily provide an additional product description that can
be used for search functions. You cannot use product attributes to track inventory. The
 system uses only Product, Tracking, and Storage dimensions to track physical and financial
 inventory.

Variant configuration technology
The product master definition has a mandatory variant configuration technology, which you use to
define the configuration strategy of the Product Master. The configuration strategy identifies the
method used to create a new Product Variant to meet a customer’s needs. As a result of product
configuration, a new product variant is created in the shared product repository and automatically
released to the legal entity when product configuration takes place.

For example, in a configure-to-order environment, a manufacturing company provides a number
of predefined product models with different constraints. If the existing models do not meet the
expectations of a specific customer, the system creates a new unique product variant to represent the
product variation that the customer wants.

Constraint-based configuration technology With the new Product Configuration module in
Microsoft Dynamics AX 2012, you can describe a shared product model in terms of product structure,
product components, attributes, and constraints. After you create a product model, you can associate
it with the product master definition, which follows a constraint-based configuration strategy. This
advanced configuration technology allows modeling of complex product structures.

For example, a company produces a home theater system that contains 10 components with a
number of predefined constraints based on various component characteristics (attributes). During
sales order entry, the system exposes a rich product configuration experience that guides the user
through the configuration process to create the correct product variant successfully.

 CHAPTER 19 Application domain frameworks 647

Dimension-based configuration technology In Microsoft Dynamics AX 2012, you can set up the
configuration group and configuration rules as part of the general Inventory management setup. This
information can be used in a bill of material (BOM) definition. You can use the configuration rules to
predefine the product configurations to use as part of a specific BOM configuration.

For example, a manufacturing company produces gaming devices in several configurations. To
 produce these products, the company uses a BOM, which contains a raw component that comes in
different configurations. With configuration groups and configuration rules, the system can enforce
that only a specific raw component configuration can be included in a specific configuration of a
gaming device.

This functionality allows a lightweight approach to configuring products on the order line that
have relatively simple BOM structures.

Predefined variant configuration technology Predefining product variants is the simplest
 configuration strategy in Microsoft Dynamics AX 2012. The different product variants can be created
automatically or manually based on the product dimension values, which are associated with the
product master.

For example, a product master might have active dimensions of Size and Color. Every time a
user adds a new color or size value, the system automatically creates all possible product variants.
This functionality is especially valuable in the retail industry, where companies offer a wide range of
 products based on different styles, colors, and sizes.

When to use the product model framework
You can extend the product model to align the stored product information and product behavior
with organizational master data management practices. These practices might include processes
such as data governance, centralized master data control, or a product-specific policy. Such a policy
can affect the product lifecycle or specific behavior within business processes, such as procurement,
production, reserve logistics, and so on.

For example, a multi-country/region retail organization might require a process for defining an
organization-wide policy such as product sales price. After the new sales price is set, that price should
be used in all retail stores.

Extending the product model framework
In Microsoft Dynamics AX 2012, you can customize the product model by extending tables and
classes with the prefix EcoRes. For example, you could begin to implement the sales price policy in
the previous example by adding a new field to the EcoResProduct table to represent the sales price
in the currency assigned as the primary currency in the legal entity’s ledger configuration. This field is
inherited automatically by all product subtypes such as distinct product, product master, and product
variant, which means that you can define a specific sales price for product variations. Once the policy
has been implemented, you need to expose the information in the user interface of the Product
 information management module to allow users to manage sales prices.

648 PART 3 Under the hood

The next step is to adjust the product release process to propagate the sales price to released
products. You can do this by modifying the EcoResProductReleaseManager class, which is
 responsible for the creation of released products. Specifically, you need to set a proper value in the
 InventTableModule table, which stores the default sales, purchase, and production prices for the
released product within a legal entity.

If the shared product sales price changes, the new sales price value should be propagated to all
legal entities in which the product has been released. One of the ways to achieve this is to add such
logic to the update method of the EcoResProduct table.

The potential conceptual model is illustrated in Figure 19-3.

Product

EcoResProductReleaseManager

InventTableModuleReleased ProductLegal Entity

+ID
+Type
+SalesPrice
+update()
+release()

on release event

creates released products

-ModuleType
-Price

+item ID
1

1

0..*

1..*
1 0..*

FIGURE 19-3 The customization model.

For more information about the product model framework, download the white paper
“ Implementing the Item-Product Data Management Framework” from http://technet.microsoft.com/
EN-US/library/hh272877.

The operations resource framework

Designing a manufacturing process within an enterprise resource planning (ERP) system has
 traditionally been done by describing what activity should be performed and who should do it. This
requires the process engineer to know not only how a product is built, but also which resources are
available for building the product. In Microsoft Dynamics AX 2012, a new model has been put in
place that allows decoupling of the process from the resources, so that the process can be described
without having to reference specific resources.

How the operations resource framework works
The primary entity of the operations resource model is the Resource, which is defined as anything that
is used for the creation, production, or delivery of an item or service other than the materials that
are consumed in the process. There are multiple types of resources: Tool, Machine, Human Resource,
Location, and Vendor.

http://technet.microsoft.com/EN-US/library/hh272877

 CHAPTER 19 Application domain frameworks 649

A Resource can be a member of a Resource Group and the Resource Group Membership can change
over time. You can think of a Resource Group as a vehicle for organizing Resources. A Resource Group
is located at a particular site. A Resource can be a member of only a single Resource Group at a time.
A Resource does not have to belong to a Resource Group, but the Resource is considered for
 scheduling only during the period or periods that it is connected to a Resource Group.

Figure 19-4 shows the conceptual domain model for Resources and Resource Groups.

Resource Resource Group MembershipMembership

+Valid from
+Valid to1

1

*

* *

*

1

+Member +Group

* Resource GroupMember-of

Resource Group Membership

+Available Time Period
+Membership Time Period

Resource GroupResource

Calendar

Calendar

Available-according-to

FIGURE 19-4 Resources and Resource Groups.

Capabilities
A Capability is the ability for a resource to perform a given activity, such as welding, pressing, or floor
sweeping. A Resource can be assigned one or more Capabilities and can have multiple Capabilities on
the same date. For each assignment, you can set a priority and level at which the Capability can be
performed; for example, stamping with 4 tons of pressure.

Figure 19-5 shows the conceptual domain model for Resources and Capabilities.

Resource Resource CapabilityHas-capability

+Valid from
+Valid to1 1* *

CapabilityDescribed-by

FIGURE 19-5 Resources and Capabilities.

650 PART 3 Under the hood

A Capability can be assigned to any Resource regardless of its type. If a Resource is of the type
 Human Resource, which is associated with a worker, skills, courses, certificates, and title information
from the Human Resources module, you can use that information in addition to the Capability to
define the competencies of the resource.

Activities and requirements
An Activity is a common abstraction of the unit of work to be performed by one or more Resources.
The Activity entity in itself is not visible to the user but is used internally in Microsoft Dynamics AX for
a common representation of the following business entities: Hour Forecast (Project), Production Route,
Operation Relation, Product Model Operation Relation, and Product Builder Operation Relation.

Figure 19-6 shows the conceptual domain model for an Activity.

Activity

Hour Forecast Activity

Hour Forecast

1

1

1

1

1

1

1

1

1

1

Production Route Activity

Production Route

Operation Relation Activity

Operation Relation

Product Model Operation Relation Activity

Product Model Operation Relation

Product Builder Operation Relation Activity

Product Builder Operation Relation

FIGURE 19-6 Activity model.

Each Activity can have a set of Activity Requirements that specifies how many Resources are needed
for the Activity and what abilities the Resources must have to participate in the Activity. Multiple
 Activity Requirements can be contained in an Activity Requirement Set. In order for a Resource to be
applicable to an Activity, the Resource must meet all of the requirements in the Activity Requirement
Set. For each Activity Requirement, you can specify whether the Requirement should be considered
when operations scheduling or job scheduling is performed. Figure 19-7 shows the conceptual
 domain model for Activities, Activity Requirements Sets, and Activity Requirements.

Identify applicable resources
Finding the Resources that are applicable for an Activity requires that at least the following
 information is known:

 ■ The date as of which to perform the search, because Resource and membership information
can vary over time an as-of date must be provided.

 ■ The site context, because in most cases the site will be a limiting factor as the resources must
be a member of a resource group on the site where the production takes place.

 ■ The scheduling method, because an Activity Requirement can be applicable for either
 operations scheduling, job scheduling, or both.

 CHAPTER 19 Application domain frameworks 651

A
ct

iv
it

y
A

ct
iv

it
y

A
ct

iv
it

y
R

eq
u

ir
em

en
t

Ti
tl

e
R

eq
u

ir
em

en
t

P
er

so
n

 T
it

le
Sk

ill
R

at
in

g
 L

ev
el

C
er

ti
fi

ca
te

C
o

u
rs

e
R

es
o

u
rc

e
Ty

p
e

C
ap

ab
ili

ty
R

es
o

u
rc

e
G

ro
u

p
R

es
o

u
rc

e

Sk
il

R
eq

u
ir

em
en

t
C

er
ti

fi
ca

te
 R

eq
u

ir
em

en
t

C
o

u
rs

e
R

eq
u

ir
em

en
t

R
es

o
u

rc
e

Ty
p

e
R

eq
u

ir
em

en
t

C
ap

ab
ili

ty
 R

eq
u

ir
em

en
t

R
es

o
u

rc
e

G
ro

u
p

 R
eq

u
ir

em
en

t
R

es
o

u
rc

e
R

eq
u

ir
em

en
t

A
ct

iv
it

y
R

eq
u

ir
em

en
t

Se
t

~
Q

ua
nt

ity
1

1
1

1
1

1
1

1
1

1
1

*
*

*
*

*
*

*
*

*
*

H
as

FIGURE 19-7 Activities, Activity Requirement Sets, and Activity Requirements.

652 PART 3 Under the hood

Conceptually, identifying an applicable Resource is easy; it is simply a matter of traversing through
all Resources while checking to determine whether the skills, capabilities, resource type, and so on,
of the Resource match the ones stated in the requirements and ensuring that the Resource is not
 associated with a Resource Group that is marked as a lean work cell.

In code, you can find applicable Resources for an Activity by using one of the two main application
programming interfaces (APIs) offered for the activity requirement set:

 ■ applicableResourcesList returns the IDs of all applicable resources in a simple list.

 ■ applicableResourcesQuery creates a query object with the WrkCtrTable table as the
 primary data source.

When the Activity has been planned by the scheduling engine, the chosen Resource (or Resources)
can be found through querying the capacity reservations.

When to use the operations resource framework
You can use the operations resource framework for any activity that requires one or more resources.
The framework provides good integration with the scheduling engine, which can perform the
 resource selection and allocate time according to the requirements and priorities.

Extensions to the operations resource framework
You can extend the operations resource framework in at least two ways: by adding a new class of
 activity and by adding a new class of activity requirement. The following sections provide details
about the integration points and describe some of the considerations that must be taken.

Add a new class of activity
To add a new class of activity, you first need a primary table (called X in the example) that contains
the activity definition, including the task to be performed, the duration, links to other activities,
and so on. To connect this table to the generic activity, create a new WrkCtrXActivity table with a
0-1 relation to the WrkCtrActivity table and a 1-1 relation to the X table. Having this data structure
in place makes it possible to create a form where users can fill in the activity requirements for your
X table and navigate further to see the resulting applicable resources. The ProdRoute form is a
good example of how such a form can be constructed and the logic that is needed to control the
 WrkCtrActivityRequirement and related data sources.

If the activity must be scheduled, this can be done by using the same resource scheduling engine
that is used for master planning, production orders, and projects. The main class is WrkCtrScheduler.

 CHAPTER 19 Application domain frameworks 653

Each type of activity has its own derivative class, such as WrkCtrScheduler_Proj, which has information
about how that type of activity is handled. At the minimum, the following methods must be
 implemented:

 ■ loadData Feeds the engine with information about which activities should be scheduled, the
duration for applicable resources, dependencies, and links between activities, and so on.

 ■ saveData Iterates through the results from the core engine saving the from and to time on
the activity and creates capacity reservations in the WrkCtrCapRes table. It is recommended
that you add a new value to the WrkCtrCapRefType enum and use this value when saving the
capacity reservations. Doing so allows for better traceability of who owns the reservation.

Add a new class of activity requirement
If information exists that is related either directly to an operations resource or to the vendor that is
 associated with the resource, and that information determines the resources’ ability to perform an
activity, you can incorporate this information into the resource selection process.

If the information related to the resource is stored in a table named Y, first create a new value
in the WrkCtrActivityRequirementType enumeration to represent the Y entity. Next add a new table
named WrkCtrActivityYRequirement that contains a foreign key to the WrkCtrActivity table and the
Y table. Because much of the logic surrounding resource requirements relies on reflection, the new
table must implement a certain set of methods. Use the WrkCtrActivityPersonTitleRequirement table
as an example of the table methods needed.

After the requirement table is in place, the application must be modified in several places to take
the new table into consideration. The best way to ensure that the new requirement is implemented
throughout the application is to use cross references for one of the existing tables, such as
 WrkCtrActivityPersonTitleRequirement, and then add the new table in a similar way.

For performance reasons, the matching of the resource requirements for an activity against the
actual abilities of a resource is done by the core scheduling engine by converting capabilities, skills,
certificates, and so on to a common property that can be compared against the requirements by
simple string matching. This transformation is performed by the computeResourceCapabilities and
computeResourceGroupCapabilities methods of the WrkCtrSchedulingInteropDataProvider class, which
also must take into account information from the Y table. Consider carefully whether you want the
new requirement to be available both for job and operation scheduling. If the requirement must be
available for operation scheduling, the used capacity for the group with regards to the Y property
must be saved and maintained, along with the capacity reservations, to avoid overbooking. This
 capability comes at a high performance cost during scheduling.

654 PART 3 Under the hood

MorphX model element prefixes for the operations resource
framework
All elements that concern the operations resource model are prefixed with WrkCtr*. Most are named
very similarly to the conceptual names—except for the Resource entity, which for legacy reasons is
stored in the WrkCtrTable table.

For more information about the operations resource model framework, see the following
Core Concepts documents on Microsoft Dynamics InformationSource (http://informationsource
.dynamics.com):

 ■ Allocating resources based on resource requirements

 ■ Operations scheduling based on capabilities

To access these documents, sign in to Microsoft Dynamics InformationSource, click Library, and
then type the document title in the Search box.

The dimension framework

The dimension framework provides a method for tracking additional pieces of information like
 department, cost center, or purpose regarding documents throughout the application. That
 information can be used in accounting to categorize information.

How the dimension framework works
A Dimension Attribute is a type of information that is tracked by the dimension framework. The
domain of values for a dimension attribute is defined by the instances of the business entity that
exist for the backing business entity type. For instance, the OMOperatingUnit table can provide the
list of values for an organization unit dimension. Dimension Attributes can be placed in a Dimension
Hierarchy to indicate ordering. For example, one specialization of a Dimension Hierarchy is an Account
Structure. Dimension Attributes can be grouped into a Dimension Attribute Set, which is used in some
Setup Data to specify the Dimension Attributes that apply in particular situations; for example, the
check box next to each dimension on the LedgerAllocation form.

Figure 19-8 shows the conceptual domain model for the dimension framework.

 CHAPTER 19 Application domain frameworks 655

Setup DataDimension Attribute Set

Dimension AttributeDimension Hierarchy

Account Structure

Financial Transaction Ledger Dimension Default Dimension

Dimension Attribute Value

Business Entity Type

Business Entity

Master Data

*

*

*

* *

*

*

**

*

*

*

*

*

1

1

1

1

1

1
*

*

FIGURE 19-8 The dimension framework.

There are four primary storage patterns for exposing and tracking dimension information:

 ■ Ledger Dimensions are ordered sets of Dimension Attribute Values that are constrained by an
account structure and additional accounting rules; for example, Sales-11005-NorthAmerica-
Xbox-70004. This pattern is normally used on financial data such as journal lines.

 ■ Default Dimensions are unordered, unconstrained sets of Dimension Attribute Values. For
example, a record in the CustTable table may be set to SalesRegion=NorthAmerica. This value
would then be defaulted into the Ledger Dimension when the customer record was used on a
sales order. When Default Dimensions are shown on a form, all dimensions that are in use by
the chart of accounts for the current legal entity are shown.

 ■ Dimension Attribute Sets are unordered sets of Dimension Attributes that have an enumeration
value associated with each Dimension Attribute. For example, in the allocation process, the
user can mark which Dimension Attributes should default from the original transaction and
which should take on a specific value. This pattern is used infrequently.

 ■ Dimension Sets are ordered sets of dimension values similar to Ledger Dimensions, but without
the requirement that they contain a main account. They are used primarily for reporting and
balance tracking. For example, in order to view the trial balance list page by main account and
department, a dimension set containing those two dimensions would be created.

These four primary patterns are further specialized into dozens of specific uses. A few of the more
common specializations are as follows:

 ■ The Default Account pattern is a specialization of the Ledger Dimension storage pattern.
Instances of the Default Account pattern are stored like a standard ledger account but only

656 PART 3 Under the hood

contain a value for the main account Dimension Attribute. This pattern is used in areas such as
posting profiles to specify which main account is used when a Ledger Dimension is created by
financial processes.

 ■ The Dynamic Account pattern is a specialization of the Ledger Dimension storage pattern. This
pattern is used on journals where an Account Type field is available. When the Account Type
is set to Ledger, then it behaves like a standard Ledger Dimension account. When the account
type is set to something else, like Customer, it acts as a customer lookup. When a non-ledger
type is used, a predefined hidden Dimension Attribute is used to signify customer, vendor,
item, or whatever type is used.

In addition, a variety of budgeting patterns mirror the accounting patterns.

Constrain combinations of values
You can constrain the combinations of values that are valid in Ledger Dimensions in two ways.

If constraints are set up in the tree in the Configure Account Structure form (General Ledger >
Setup > Financial Dimensions > Configure Account Structures), these constraints are stored in the
DimensionConstraintNode and DimensionConstraintNodeCriteria tables. Because the structure
of the data in these tables is highly complex, it is much easier to use the DimensionValidation::
validateByTree method to perform validation rather than reading the constraint node tables directly.
The validateByTree method validates that a Ledger Dimension matches the constraints specified in
these tables.

The other method of constraining values is to click the Relationships button on the Action Pane
of the Configure Account Structures form, and then use the Select Relationships form to specify the
relationships that you want to apply to the account structure. The Select Relationships form shows
all of the organization model hierarchies that contain organization model types used as the backing
entities for Dimension Attributes in the current hierarchy. For example, if an account structure contains
departments and cost centers, and an organization model exists that relates departments to cost
 centers, then that information appears in this form. The information will appear twice with party
A and party B reversed. This allows a system administrator to specify whether departments must
be parents or children of a given cost center to be valid. These organization model constraints are
 similarly applied when you use the DimensionValidation methods.

Create values
You can create Ledger Dimensions programmatically in two ways. To explicitly create them, use the
 DimensionStorage class. You can use this class to add multiple hierarchies and values. When you call
the save method, it attempts to find an existing combination. If no combination is found, a new one

 CHAPTER 19 Application domain frameworks 657

is created. Ledger Dimensions are immutable and only one exists for any given combination. So if the
same account is used twice, this method guarantees that only one instance is created in the database.

When working with existing default accounts and ledger dimensions, you can use the
 DimensionDefaultingService class to combine the values into new combinations. For example, the
DimensionDefaultingService::serviceCreateLedgerDimension method takes a default account and one
or more Default Dimensions and combines them to form a full Ledger Dimension.

Extend the dimension framework
The most common customization of the dimension framework is to add a new backing entity type.
Microsoft Dynamics AX 2012 includes approximately 30 backing entities. To add a backing entity
type, the only requirement is that the entity must have a natural key that consists of a unique,
 single-part string that is 30 characters or less.

To add a new backing entity type, create a view to wrap the entity that meets the following
 criteria:

 ■ The view name must be DimAttribute[entityname]. For example, DimAttributeCustTable.

 ■ The view must contain a root data source named BackingEntity, which is backed by the table
containing the surrogate key and the natural key.

 ■ The view can optionally contain additional related data sources to handle inheritance
or relational associations to provide additional fields, such as a name from the table
 DirPartyTable.

 ■ The view must contain the following fields named exactly as follows:

• Key Must be the surrogate key field of the backing entity; for example, an Int64 RecId
field.

• Value Must be the natural key field of the backing entity; for example, a str30
 AccountNum field.

• Name Must point to the additional description for the entity; for example, a str60
 description field.

If the view meets these criteria, the entity will automatically become available as a backing entity type:

Because the list of backing entity types are cached both on the client and server, a new type
does not appear in the list of existing entities until a call to clear the caches is performed, or until
both the client and server are restarted. To clear the caches and have the new entity type appear
 immediately, use the options on the Tools > Caches menu in the Development Workspace.

658 PART 3 Under the hood

Query data
Dimension Attributes are data and can be added or removed by the user. This means that specific
dimensions should not be referenced directly in code because there is no guarantee that a given
dimension exists. Instead, treat dimension references as configurable data. The one exception to this
rule is the Main Account Dimension Attribute. All installations are guaranteed to have exactly one
Dimension Attribute that is backed by Main Account. To retrieve this Dimension Attribute, use the
DimensionAttribute::getMainAccountDimensionAttribute method.

Querying dimension information depends on the pattern being used. In the case of a Ledger
Dimension, either the full combination can be used or the constituent parts. To get the full
 concatenated combination, create a join to the DimensionAttributeValueCombination table, as shown
in the following example:

GeneralJournalAccountEntry gjae;
DimensionAttributeValueCombination davc;

select gjae join DisplayValue from davc where
 davc.RecId == gjae.LedgerDimension;

To get a constituent part of the Ledger Dimension, you can use the DimensionAttributeLevelValueView
abstraction to abstract some of the complexity of the dimension model:

GeneralJournalAccountEntry gjae;
DimensionAttributeLevelValueView dalvv;
DimensionAttribute department;

department = DimensionAttribute::findByName('Department');

select gjae join DisplayValue from dalvv where
 dalvv.ValueCombinationRecId == gjae.LedgerDimension &&
 dalvv.DimensionAttribute == department.RecId;

The main account Dimension Attribute is a special case. This Dimension Attribute has been
 denormalized to the DimensionAttributeValueCombination table to optimize the performance of
queries for this value, because it is the most often used:

GeneralJournalAccountEntry gjae;
DimensionAttributeValueCombination davc;
MainAccount mainAccount;

select gjae
 join MainAccount from davc where
 davc.RecId == gjae.LedgerDimension
 join Name from mainAccount where
 mainAccount.RecId == davc.MainAccount;

You query Default Dimensions in a similar way to Ledger Dimensions; however,
Default Dimensions do not have a concatenated representation because they are unordered sets.

 CHAPTER 19 Application domain frameworks 659

The DimensionAttributeValueSetItemView abstraction joins the DimensionAttributeValueSetItem and
DimensionAttributeValue tables to simplify queries:

CustTable custTable;
DimensionAttributeValueSetItemView davsiv;
DimensionAttribute department;

department = DimensionAttribute::findByName('Department');

select custTable
 join DisplayValue from davsiv where
 davsiv.DimensionAttributeValueSet == custTable.DefaultDimension &&
 davsiv.DimensionAttribute == department.RecId;

Physical table references
Table 19-2 maps the concept names in the conceptual domain model to the names of physical table
elements that realize these concepts in the application where the names are not the same.

TABLE 19-2 Mapping between concepts and physical tables.

Concept name Physical tables

Ledger Dimension DimensionAttributeValueCombination,
DimensionAttributeValueGroupCombination,
DimensionAttributeValueGroup,
DimensionAttributeLevelValue

Default Dimension DimensionAttributeValueSet,
DimensionAttributeValueSetItem

Dimension Attribute Set DimensionAttributeSet

For more information about the dimension framework, download the following white papers:

 ■ “Securing Data by Dimension Value by Using Extensible Data Security (XDS)” at
http://www.microsoft.com/download/en/details.aspx?id=26921.

 ■ “Implementing the Account and Financial Dimensions Framework” at
http://technet.microsoft.com/en-us/library/hh272858.aspx.

The accounting framework

The accounting framework uses policies and rules to derive accounting requirements for amounts
and business events that are documented on source document lines. These policies and rules are
 abstracted as five categories:

 ■ Accounting Policy Used to determine if accounting applies for a business event – monetary
amount combination.

660 PART 3 Under the hood

 ■ Main Account Derivation Rule Used to determine main account values.

 ■ Main Account Dimension List Provider Used to provide a list of main accounts and side
(debit or credit) combinations.

 ■ Dimension Derivation Rule Used to determine dimension values.

 ■ Accounting Journalization Rule Used to determine which main account dimension list
provider should be used and to determine journalization parameters, such as the posting type,
that should be used.

The accounting framework is also responsible for transferring Subledger Journal entries to
the General Journal. Rules for Subledger Journal transfers are specified by legal entity and source
 document type, and they determine when the Subledger Journal is transferred to the General Journal
and whether summarization occurs on transfer.

How the accounting framework works
The Accounting Distribution process creates at least one Accounting Event. An Accounting Event groups
a set of distributions based on their accounting date. When a Source Document header is submitted
to a Processor for processing and the Processor transitions the document from an In Process state to
a Completed state, the Journalization Processor (journalizer) is called. The journalizer processes all
 Accounting Events associated with the document that are in a Started Process State, and transitions
them to a Journalized Process State. An Accounting Policy determines whether accounting is required
for amounts and business events that are documented on a Source Document Line. If the Accounting
Policy specifies that accounting is required, the journalizer uses Journalization Rules, Main Account
Derivation Rules, Dimension Derivation Rules, and the Main Account Dimension List Provider to
 determine the main account–dimension combinations to use when creating balanced subledger
journal entries.

Figure 19-9 shows the conceptual domain model for the accounting framework.

Subledger Journal Transfer Rules, shown in Figure 19-10, specify when the transfer should occur
 (synchronous, asynchronous, or scheduled batch) and whether amounts for the same main
account – dimension combination should be summarized when transferred to the general journal.

 CHAPTER 19 Application domain frameworks 661

+LineItems
+Distributions

Distribution Accounting Event

Journalization Process

Concrete Accounting Policy

Concrete
Line Item

Business Event

Process State

+Transition()

Extension Factory

+Construct()

Source Document

Line Item

Accounting Journalization Rule

Concrete Journalization Rule

Main Account Derivation Rule

Concrete Main Account Derivation Rule

Main Account Dimension List ProviderDimension Derivation Rule

Concrete Dimension
Derivation Rule

Extension Attribute

*
1

1

1 1*

*

*

Concrete Main Acc
Dim List Provider

Subledger Journal

General Journal

Subledger Journal Transfer Rule

Accounting Policy

Subledger Journal Transfer Process

FIGURE 19-9 The accounting framework.

662 PART 3 Under the hood

Subledger Transfer Rules

Accounting
Distributions

Subledger Journal General Journal

Main Account Derivation Rules,
Dimension Derivation Rules,

Journalization Rules,
Main Account Dimension List Provider

Journalize Transfer

FIGURE 19-10 Rule application in the accounting process.

When to use the accounting framework
Extend the accounting framework to create concrete implementations of accounting policy,
 journalization, main account derivation, main account dimension list providers, and dimension
 derivation rules to support new source document implementations. In Microsoft Dynamics AX 2012,
the accounting framework has been extended to create concrete accounting policies, journalization,
main account derivation, and dimension derivation rules used to generate subledger journal entries
on the purchase requisition, purchase order, product receipt, vendor invoice, travel requisition,
 expense report, and free-text invoice source documents.

Extensions to the accounting framework
The Microsoft Dynamics AX 2012 purchase requisition (PurReqSourceDocument prefix) is an example
of an extension of the source document framework components. The AccPolicyCommitFunds-
ExpensedProd accounting policy and AccJourRuleCommitFundsForExpProdExtPrice dimension
 derivation rule are extensions to the accounting framework that specify the accounting requirements
for the purchase requisition document. These are examples of extensions to the accounting
 framework.

Accounting framework process states
The Process States for the accounting process are illustrated in Figure 19-11.

Each processing state performs an action and updates the status of the accounting event that is being
processed. Table 19-3 describes the process states.

 CHAPTER 19 Application domain frameworks 663

Started

Journalized

Completed

FIGURE 19-11 State model for the accounting process.

TABLE 19-3 Process states for the accounting framework.

State Process Description

Started Accounting distribution process The accounting event is created and is awaiting
 journalization.

Journalized Subledger journalizing process Subledger journal entries have been created, recording the
accounting impact of the distributions that are associated
with the accounting event. The subledger journal entries have
not been transferred to the general journal.

Completed Subledger journal transfer
 process

The subledger journal entries that are associated with the
 accounting event have been transferred to the general
 journal.

MorphX model element prefixes for the accounting framework
Table 19-4 maps the concept names in the conceptual domain model to the prefixes added to the
names of MorphX model elements that realize these concepts in the application.

TABLE 19-4 Mapping between accounting framework concepts and prefixes of MorphX model elements.

Concept MorphX model element prefix

Accounting Policy AccPolicy

Subledger Journal Transfer Process SubledgerJournalTransfer

Accounting Event AccountingEvent

664 PART 3 Under the hood

Concept MorphX model element prefix

Accounting Journalization Rule AccJourRule

Dimension Derivation Rule DimensionDerivationRule

Main Account Derivation Rule MainAccountDerivationRule

Main Account Dimension List Provider MainAccountDimensionListProvider

Journalization Process SubledgerJournalization
SubledgerJournalizer

Subledger Journal SubledgerJournal

General Journal GeneralJournal

Subledger Journal Transfer Rule SubledgerJournalTransferRule

The source document framework

A Source Document is an original record that documents the occurrence of one or more Business
Events in an accounting system. Concrete Source Documents, such as purchase orders, product
receipts, and vendor invoices, are entered into an accounting system that records, classifies, tracks,
and reports on the quantity and value of economic resources that are exchanged or committed for
exchange when performing activities identified by Business Events such as purchase, product receipt,
and payment request.

How the source document framework works
The source document framework generates a projection of a concrete source document for a process
that transitions the source document status to reflect the state of the process. Figure 19-12 shows the
domain model for the source document framework.

Microsoft Dynamics AX submits a Source Document header or line record to a Processor for
 processing when a user confirms that the documentation requirements of business events and
 internal process controls have been met. A Processor is a state machine that transitions the processing
of the source document and its lines from one Process State to another. The Processor creates a
 Process State object that corresponds to the status of the source document or the status of the source
document line item and then commands the Process State to transition the process to the next state.

A Process State first constructs a Concrete Source Document or a Concrete Line Item from
the provided Source Document header or line record by using an extension factory facility. The
 extension factory facility uses the source document type and the table number of the Concrete
Source Document or the Concrete Line Item provided by the header or line record to find a matching
concrete source document class. A matching source document class is one that is annotated with a
class attribute recognized as an Extension Attribute by the Extension Factory and that also specifies a
matching source document type and table number as arguments.

 CHAPTER 19 Application domain frameworks 665

Process State

+Transition()

Extension Factory

+Construct()

–Status

Distribution

Concrete Line Item

+BusinessEvent()

Business Event

+Distributions
*

*

1*

1
1

+LineItems

Concrete Source Document IParty

Concept

Source Document
Line Item
Processor
Extension Factory
Process State

SourceDocument
SourceDocumentLineItem
SourceDocumentProcessor
SysExtension
SourceDocumentState
SourceDocumentLineState
AccountingDistribution
BusinessEvent

Model Element Prefix

ILocation

IProduct

Line Item

Processor

+Submit()

Source Document

+Status

Extension Attribute

+ChildLineItems

Distribution
Business Event

FIGURE 19-12 The source document domain model.

A Process State accesses a data projection of the Concrete Source Document and Concrete Source
Document Line, performs an action, transitions the process to a new state, and updates the status
of the process’s Concrete Source Document or Concrete Source Document Line accordingly. The data
projections of the Concrete Source Document and Concrete Source Document Line are defined by one
or more interfaces. For example, implementing the IParty interface provides a party account number,
and implementing the IProduct interface provides an item number and a production category to an
accessing Process State.

When to use the source document framework
Extend the source document framework to implement concrete source documents that document
business events whose financial consequences are recorded in the subledger journal. In Microsoft
Dynamics AX 2012, the source document framework has been extended to implement the source
documents purchase requisition, purchase order, product receipt, vendor invoice, travel requisition,
expense report, and free-text invoice.

666 PART 3 Under the hood

Extensions to the source document framework
The Microsoft Dynamics AX 2012 free-text invoice (CustInvoiceSourceDocument prefix) is the simplest
extension of the source document framework components. Readers new to the source document
framework should review this extension of the source document framework first. The concrete source
document and concrete line item implement only those source document projection interfaces that
are required by the accounting distribution processor and the subledger journalizing processor.

The process states for the subledger journalizing process and the accounting distribution process
are illustrated in Figure 19-13. Each processing state performs an action and updates the status of the
source document or source document line item that participated in the process. Table 19-5 describes
the states of the subledger journalizing process and the accounting distribution process.

TABLE 19-5 States of the subledger journalizing and accounting distribution processes.

State Process Description

In Process Subledger journalizing process The state reached when a source document is first
 created and when it is changed. The subledger
 journalizing process transitions to the completed state
when the original source document or a changed source
document is confirmed.

Completed Subledger journalizing process The state reached when a source document is confirmed
and the documented consequences of business events
are journalized. The subledger journalizing process
 transitions to the In Process state when a source
 document is changed or when a source document is
finalized and can no longer be changed.

Finalized Subledger journalizing process The state reached when a source document can no
longer be changed. The subledger journalizing process
balances any open account entries when finalizing the
source document.

Draft Accounting distribution process The state reached when a source document line is
first created or when all accounting distributions that
 reference a source document line are deleted.

Fully
Distributed

Accounting distribution process The state reached when an accounting distribution is
first added to distribute an amount that is documented
on a source document line; for example, a discount. This
state is also reached when an accounting distribution
is generated or derived from amounts documented
on a source document line; for example, an extended
price. This state is also reached when the sum of the
 distribution amounts equals the distributed amount, or
when a source document is changed.

Partly
Distributed

Accounting distribution process The state reached when the sum of the distribution
amounts does not equal the distributed amount.

Cancelled Subledger journalizing process
Accounting distribution process

The state reached when a source document or source
document line item is cancelled. All accounting
 distributions are reversed and the consequences of the
cancelled business event are journalized before this state
is reached.

 CHAPTER 19 Application domain frameworks 667

Draft

Partly
Distributed

Fully
Distributed

Cancelled Completed Finalized

In Process

Completed

Finalized

FIGURE 19-13 State model for the documentation process, the accounting distribution process, and the
 subledger journalizing process.

MorphX model element prefixes for the source document
framework
Table 19-6 maps the concept names in the conceptual domain model for the source document
framework to the prefixes added to the names of MorphX model elements that realize these concepts
in the application.

TABLE 19-6 Mapping between source document framework concepts and prefixes for MorphX model
 elements.

Concept MorphX model element prefix

Source Document SourceDocument

Line Item SourceDocumentLineItem

Processor SourceDocumentProcessor

Process State SourceDocumentState
SourceDocumentLineState

Business Event BusinessEvent

Distribution AccountingDistribution

Extension Factory SysExtension

 CHAPTER 20 Reflection 669

C H A P T E R 2 0

Reflection

In this chapter
Introduction . 669
Reflection system functions . 670
Reflection APIs . 673

Introduction

Reflection is a programmatic discoverability mechanism of a type system. By using the reflection
application programming interfaces (APIs) of the Microsoft Dynamics AX application model, you
can read and traverse element definitions as though they were in a table, an object model, or a tree
structure.

You can perform interesting analyses with the information that you get through reflection. The
Reverse Engineering tool provides an excellent example of the power of reflection. Based on element
definitions in MorphX, the tool generates Unified Modeling Language (UML) models and entity
 relationship diagrams (ERDs) that you can browse in Microsoft Visio.

You can also use reflection to invoke methods on objects. This capability is of little value to
 business application developers. But for framework developers, the power to invoke methods on
objects can be valuable. Suppose you want to programmatically write any record to an XML file that
includes all of the fields and display methods. With reflection, you can determine the fields and their
values and also invoke the display methods to capture their return values.

X++ features a set of system functions that you can use for reflection, in addition to three
 reflection APIs. The reflection system functions are as follows:

 ■ Intrinsic functions A set of functions that you can use to refer to an element’s name or
ID safely

 ■ typeOf system function A function that returns the primitive type for a variable

 ■ classIdGet system function A function that returns the ID of the class for an instance of an
object

The reflection APIs are as follows:

 ■ Table data A set of tables that contains all element definitions. The tables provide direct
 access to the contents of the model store files. You can query for the existence of elements

C H A P T E R 2 0

Reflection

Introduction

Reflection system functions

Intrinsic functions

typeOf system function

classIdGet system function

Reflection APIs

Table data API

Dictionary API

Treenodes API

TreeNodeType

670 PART 3 Under the hood

and certain properties, such as model, created by, and created datetime. However, you can’t
retrieve information about the contents or structure of each element.

 ■ Dictionary A set of classes that provide a type-safe mechanism for reading metadata
from an object model. Dictionary classes provide basic and more abstract information about
 elements in a type-safe manner. With few exceptions, this API is read-only.

 ■ Treenodes A class hierarchy that provides the Application Object Tree (AOT) with an API
that can be used to create, read, update, and delete any piece of metadata or source code.
This API can provide all information about anything in the AOT. You navigate the treenodes in
the AOT through the API and query for metadata in a non-type-safe manner.

This chapter delves into the details of these system functions and APIs.

Reflection system functions

The X++ language features a set of system functions that can be used to reflect on elements. They are
described in the following sections.

Intrinsic functions
Use intrinsic functions whenever you need to reference an element from within X++ code. Intrinsic
functions provide a way to make a type-safe reference. The compiler recognizes the reference and
verifies that the element being referenced exists. If the element doesn’t exist, the code doesn’t
 compile. Because elements have their own lifecycles, a reference doesn’t remain valid forever; an
 element can be renamed or deleted. Using intrinsic functions ensures that you are notified of any
broken references at compile time. A compiler error early in the development cycle is always better
than a run-time error later.

All references you make using intrinsic functions are captured by the Cross-reference tool. You can
determine where any element is referenced, regardless of whether the reference is in metadata or
code. The Cross-reference tool is described in Chapter 2, “The MorphX development environment and
tools.”

Consider these two implementations:

print "MyClass"; //Prints MyClass
print classStr(MyClass); //Prints MyClass

Both lines of code have the same result: the string MyClass is printed. As a reference, the first
implementation is weak. It will eventually break if the class is renamed or deleted, meaning that you’ll
need to spend time debugging. The second implementation is strong and unlikely to break. If you
were to rename or delete MyClass, you could use the Cross-reference tool to analyze the impact of
your changes and correct any broken references.

 CHAPTER 20 Reflection 671

By using the intrinsic functions <Concept>Str, you can reference all elements in the AOT by their
names. You can also use the intrinsic function <Concept>Num to reference elements that have an
ID. Intrinsic functions are not limited to root elements; they also exist for class methods, table fields,
indexes, and methods. More than 50 intrinsic functions are available. Here are a few examples:

print fieldNum(MyTable, MyField); //Prints 60001
print fieldStr(MyTable, MyField); //Prints MyField
print methodStr(MyClass, MyMethod); //Prints MyMethod
print formStr(MyForm); //Prints MyForm

The ID of an element is assigned when the element is created in the model store. In the preceding
example, the ID 60001 is assigned to the first element field created in a table. (Element IDs are
 explained in Chapter 21, “Application models.”)

Two other intrinsic functions are worth noting: identifierStr and literalStr. The identifierStr function
allows you to refer to elements if a more feature-rich intrinsic function isn’t available. The identifierStr
function provides no compile-time checking and no cross-reference information. However, using the
identifierStr function is still better than using a literal because the intention of referring to an element
is captured. If a literal is used, the intention is lost—the reference might be to user interface text, a file
name, or something completely different. The Best Practices tool detects the use of identifierStr and
issues a best practice warning.

The Microsoft Dynamics AX runtime automatically converts any reference to a label ID to its
 corresponding label text. In most cases, this behavior is what you want; however, you can prevent
the conversion by using literalStr. The literalStr function allows you to refer to a label ID without
 converting the label ID to the label text, as shown in this example:

print "@SYS1"; //Prints Time transactions
print literalStr("@SYS1"); //Prints @SYS1

In the first line of the example, the label ID (@SYS1) is automatically converted to the label text
(Time transactions). In the second line, the reference to the label ID isn’t converted.

typeOf system function
The typeOf system function takes a variable instance as a parameter and returns the base type of the
parameter. Here is an example:

int i = 123;
str s = "Hello world";
MyClass c;
guid g = newGuid();

print typeOf(i); //Prints Integer

672 PART 3 Under the hood

print typeOf(s); //Prints String
print typeOf(c); //Prints Class
print typeOf(g); //Prints Guid
pause;

The return value is an instance of the Types system enumeration. It contains an enumeration for
each base type in X++.

classIdGet system function
The classIdGet system function takes an object as a parameter and returns the class ID for the class
element of which the object is an instance. If the parameter passed is null, the function returns the
class ID for the declared type, as shown in this example:

MyBaseClass c;
print classIdGet(c); //Prints the ID of MyBaseClass

c = new MyDerivedClass();
print classIdGet(c); //Prints the ID of MyDerivedClass
pause;

This function is particularly useful for determining the type of an object instance. Suppose you
need to determine whether a class instance is of a particular class. The following example shows how
you can use classIdGet to determine the class ID of the _anyClass variable instance. If the _anyClass
variable really is an instance of MyClass, it’s safe to assign it to the myClass variable.

void myMethod(object _anyClass)
{
 MyClass myClass;
 if (classIdGet(_anyClass) == classNum(MyClass))
 {
 myClass = _anyClass;
 ...
 }
}

Notice the use of the classNum intrinsic function, which evaluates the parameter at compile time,
and the use of classIdGet, which evaluates the parameter at run time.

Because inheritance isn’t taken into account, this sort of implementation is likely to break the
object model. In most cases, any instance of a derived MyClass class should be treated as an actual

 CHAPTER 20 Reflection 673

MyClass instance. The simplest way to handle inheritance is to use the is and as operators. For more
information, see Chapter 4, “The X++ programming language.”

Note This book promotes customization through inheritance by using the Liskov
 substitution principle.

Reflection APIs

The X++ system library includes three APIs that can be used to reflect on elements. They are
 described in the following sections.

Table data API
Suppose that you want to find all classes whose names begin with Invent. The following example
shows one way to conduct your search:

static void findInventoryClasses(Args _args)
{
 SysModelElement modelElement;

 while select name from modelElement
 where modelElement.ElementType == UtilElementType::Class
 && modelElement.Name like 'Invent*'
 {
 info(modelElement.Name);
 }
}

The SysModelElement table provides access to all elements. The ElementType field holds the
concept to search for. The data model for the model store contains nine tables, which are shown and
explained in Figure 20-1.

Note The UtilElements table is still available for backward compatibility. It is implemented
as an aggregated view on top of the SysModel tables. For performance reasons, you
should limit usage of this compatibility feature and eventually rewrite your code to use the
new API.

674 PART 3 Under the hood

SysModelElement

SysModelElementData SysModelLayer SysModelManifestCategory

SysModelElementType SysModelElementLabel

Recld Recld

Recld (FK)

ModelElement (O)
Source (O)

Name (AK1) Comment (O)
Id (O) (AK1)
Labelled (O)
Language (O) (AK1)
Module (AK1)
Text (O)

ParentType (O)
TreeNodeName (O)

Recld

Recld Recld

Recld Recld

CreatedBy
CreatedDateTime
Layer (O)
modifiedBy
modifiedDateTime
State (O)

SysModel

IsDirty (O)

Category (O) (FK)
Description (O)
DisplayName (O)
Model (O) (FK)
Name (O) (AK1)
Publisher (O) (AK1)
Signed (O)
VersionBuildNo (O)
VersionMajor (O)
VersionMinor (O)
VersionRevision (O)

Name (O) (AK1)
Layer (O)

Recld

CreatedBy
CreatedDateTime
Layer (O) (FK)
Legacyld (O)
ModelElement (O) (FK)
Modelld (O) (FK)
ModifiedBy
ModifiedDateTime
SaveCount (O)

Axld (O)

Name
Origin (O)
Parentld (O)
ParentModelElement (O)
PartOfInheritance (O)
RootModelElement (O)

ElementType (O) (FK)

SysModelElementSource

SysModelManifest

FIGURE 20-1 The data model for the model store.

Because of the nature of the table data API, the SysModel tables can also be used as data sources
in a form or a report. A form showing the table data is available from Tools > Model Management >
Model elements. In the form, you can use standard query capabilities to filter and search the data.

The SysModelElement table contains all of the elements in the model store; it is related to the
SysModelElementData table, which contains the various definitions of each element. For each
 SysModelElement record, there is at least 1 SysModelElementData record—and perhaps as many
as 16 if the element is customized across all 16 layers. In other words, the element defines the
 customization granularity. You cannot customize less than an element. For example, even if you
change just one property on an element, a new record is inserted into the SysModelElementData
table that includes all properties of the element.

Note System elements, as listed under System Documentation node in the AOT, are not
present in these tables.

Elements are structured in hierarchies. The root of a hierarchy is the root element; for example,
a form. The form contains data source, control, and method elements. The hierarchy can encompass
multiple levels; for example, a form control can have methods. The root element and parent element
are exposed in the RootModelElement and ParentModelElement fields of the SysModelElement table.
The job on the next page finds all elements under the CustTable form element and lists the name and
type of each element, the name of the parent element, and the AOT path of the associated TreeNode
class.

 CHAPTER 20 Reflection 675

static void findElementsOnCustTable(Args _args)
{
 SysModelElement modelElement;
 SysModelElement rootModelElement;
 SysModelElement parentModelElement;
 SysModelElementType modelElementType;

 while select name from modelElement
 join Name from modelElementType
 where modelElementType.RecId == modelElement.ElementType
 join name from parentModelElement
 where parentModelElement.RecId == modelElement.ParentModelElement
 exists join rootModelElement
 where rootModelElement.RecId == modelElement.RootModelElement
 && rootModelElement.Name == formStr(CustTable)
 && rootModelElement.ElementType == UtilElementType::Form
 {
 info(strFmt("%1, %2, %3, %4",
 parentModelElement.Name, modelElementType.Name, modelElement.Name,
 SysTreeNode::modelElement2Path(modelElement)));
 }
}

Notice the use of the ElementType field in the two preceding examples. If the element type is
a UtilElement, you will find a matching entry in the UtilElementType enum; alternatively, you can
always join to the SysModelElementType table, which contains information about all element types.
All root elements and a few former subelements are Utilelements. You can access them through the
legacy UtilElements table. Data models with higher fidelity were introduced in this release to support
more granular customizations, which among other things facilitate easier upgrade and simpler
 side-by-side installation of models. For more information, see Chapter 21.

Table 20-1 lists the reflection tables and views. See Figure 20-1 to learn how these tables relate to
each other.

TABLE 20-1 Reflection tables and views.

Table or View Name Description

SysModel Table containing the models in the model store.

SysModelElement Table containing the elements in the model store. There is
 exactly one record for each element in the AOT, regardless of
 customizations.

SysModelElementData Table containing the element definitions in the model store. There is
one record for each element in each layer.

SysModelElementLabel Table containing all label text and comments.

SysModelElementSource Table containing all X++ source code.

SysModelElementType Table containing definitions of element types. The information in this
table is static and is populated at installation time.

676 PART 3 Under the hood

Table or View Name Description

SysModelLayer Table containing the layers. The information in this table is static and
is populated at installation time. There is a record for each of the 16
layers.

SysModelManifest Table containing the manifest for the models, such as name,
 publisher, and version number. There is one record for each model.

SysModelManifestCategory Table containing the categories that a model can belong to. Each
model belongs to a category: Standard, Hotfix, Virtual, or Temporary.

UtilElements, UtilIdElements Aggregated views on top of the SysModel tables. These views are
provided for backward compatibility.

UtilModels View on top of SysModel, SysModelManifest, and SysModelLayer,
which make querying models easier.

Note Alternative versions of the tables in Table 20-1 exist. If you postfix the table name
with the word old, you can access the baseline model store instead of the primary model
store. For example, the SysModelElementOld table contains the model elements in the
baseline model store. The baseline model store is primarily used in upgrade scenarios.

You can use the Microsoft.Dynamics.AX.Framework.Tools.ModelManagement namespace provided
by the AxUtilLib.dll assembly to create, import, export, and delete models. This assembly can be used
from X++—the SysModelStore class wraps some of the functionality for easier consumption in X++.

Note When you use the table data API in an environment with version control enabled,
the values of some of the fields are reset during the build process. For file-based
 version control systems, the build process imports .xpo files into empty layers in
Microsoft Dynamics AX. The values of the CreatedBy, CreatedDateTime, ModifiedBy, and
ModifiedDateTime fields are set during this import process and therefore don’t survive
from build to build.

Dictionary API
The Dictionary API is a type-safe reflection API that can reflect on many elements. The following code
example is a revision of the preceding example that finds inventory classes by using the dictionary
API. This API gives you access to more detailed type information. This example lists only abstract
classes that start with the string Invent:

static void findAbstractInventoryClasses(Args _args)
{
 Dictionary dictionary = new Dictionary();
 int i;
 DictClass dictClass;

 CHAPTER 20 Reflection 677

 for(i=1; i<=dictionary.classCnt(); i++)
 {
 dictClass = new DictClass(dictionary.classCnt2Id(i));

 if (dictClass.isAbstract() &&
 strStartsWith(dictClass.name(), 'Invent'))
 {
 info(dictClass.name());
 }
 }
}

The Dictionary class provides information about which elements exist and even includes system
elements. For example, with this information, you can instantiate a DictClass object that provides
 information about the class, such as whether the class is abstract, final, or an interface; which class
it extends; whether it implements any interfaces; what attributes it is decorated with; and what
 methods it includes. Notice that the DictClass class can also reflect on interfaces. Also notice how
the class counter is converted into a class ID. This conversion is required because the IDs aren’t listed
 consecutively.

When you run this job, you’ll notice that it’s much slower than the implementation that uses the
table data API—at least the first time you run it. The job performs better after the information is
cached.

Figure 20-2 shows the object model for the dictionary API. As you can see, some elements can’t be
reflected upon by using this API.

Dictionary

DictTable DictType

DictEnum

DictSecuritykey

DictConfigurationkey

DictLicenseCode

DictClass

DictMethod

DictField

DictFieldGroup

DictRelation

DictMethod

DictView

DictIndex

FIGURE 20-2 The object model for the dictionary reflection API.

678 PART 3 Under the hood

The following example lists the static methods on the CustTable table and reports their parameters:

static void findStaticMethodsOnCustTable(Args _args)
{
 DictTable dictTable = new DictTable(tableNum(CustTable));
 DictMethod dictMethod;
 int i;
 int j;
 str parameters;

 for (i=1; i<=dictTable.staticMethodCnt(); i++)
 {
 dictMethod = new DictMethod(
 UtilElementType::TableStaticMethod,
 dictTable.id(),
 dictTable.staticMethod(i));

 parameters = '';
 for (j=1; j<=dictMethod.parameterCnt(); j++)
 {
 parameters += strFmt("%1 %2",
 extendedTypeId2name(dictMethod.parameterId(j)),
 dictMethod.parameterName(j));

 if (j<dictMethod.parameterCnt())
 {
 parameters += ', ';
 }
 }
 info(strFmt("%1(%2)", dictMethod.name(), parameters));
 }
}

As mentioned earlier, reflection can also be used to invoke methods on objects. This example
invokes the static find method on the table CustTable:

static void invokeFindOnCustTable(Args _args)
{
 DictTable dictTable = new DictTable(tableNum(CustTable));
 CustTable customer;

 customer = dictTable.callStatic(
 tableStaticMethodStr(CustTable, Ffind), '1201');

 print customer.currencyName(); //Prints US Dollar
 pause;
}

 CHAPTER 20 Reflection 679

Notice the use of the intrinsic function tableStaticMethodStr to reference the find method.

You can also use this API to instantiate class and table objects. Suppose you want to select all
records in a table with a given table name. The following example shows you how:

static void findRecords(TableId _tableId)
{
 DictTable dictTable = new DictTable(_tableId);
 Common common = dictTable.makeRecord();
 FieldId primaryKeyField = dictTable.primaryKeyField();

 while select common
 {
 info(strFmt("%1", common.(primaryKeyField)));
 }
}

First, notice the call to the makeRecord method, which instantiates a table cursor object that points
to the correct table. You can use the select statement to select records from the table. If you want to,
you can also insert records by using the table cursor. Notice the syntax used to get a field value out
of the cursor object; this syntax allows any field to be accessed by its field ID. This example prints the
content of the primary key field. Alternatively, you can use the getFieldValue method to get a value
based on the name of the field. You can use the makeObject method on the DictClass class to create
an object instance of a class.

All of the classes in the dictionary API discussed so far are defined as system APIs. On top of each
of these is an application-defined class that provides even more reflection capabilities. These classes
are named SysDict<Concept>, and each class extends its counterpart in the system API. For example,
SysDictClass extends DictClass.

Consider the following example. Table fields have a property that specifies whether the field is
mandatory. The DictField class returns the value of a mandatory property as a bit that is set in the
return value of its flag method. Testing to determine whether a bit is set is somewhat cumbersome,
and if the implementation of the flag changes, the consuming application breaks. The SysDictField
class encapsulates the bit-testing logic in a mandatory method. The following example shows how to
use the method:

static void mandatoryFieldsOnCustTable(Args _args)
{
 SysDictTable sysDictTable = SysDictTable::newName(tableStr(CustTable));
 SysDictField sysDictField;
 Enumerator enum = sysDictTable.fields().getEnumerator();

 while (enum.moveNext())
 {
 sysDictField = enum.current();

680 PART 3 Under the hood

 if (sysDictField.mandatory())
 {
 info(sysDictField.name());
 }
 }
}

You might also want to browse the SysDict classes for static methods. Many of these methods
provide additional reflection information and better interfaces. For example, the SysDictionary class
 provides a classes method that returns a collection of SysDictClass instances. You could use this
method to simplify the earlier findAbstractInventoryClasses example.

Treenodes API
The two reflection APIs discussed so far have limitations. The table data API can reflect only on the
existence of elements and on a small subset of element metadata. The dictionary API can reflect in a
type-safe manner, but only on the element types that are exposed through this API.

The treenodes API can reflect on everything, but as always, power comes at a cost. The treenodes
API is harder to use than the other reflection APIs, it can cause memory and performance problems,
and it isn’t type-safe.

In the following code, the example from the “Table data API” section has been revised to use the
treenodes API to find inventory classes:

static void findInventoryClasses(Args _args)
{
 TreeNode classesNode = TreeNode::findNode(@'\Classes');
 TreeNodeIterator iterator = classesNode.AOTiterator();
 TreeNode classNode = iterator.next();
 ClassName className;

 while (classNode)
 {
 className = classNode.treeNodeName();
 if (strStartsWith(className, 'Invent'))
 {
 info(className);
 }

 classNode = iterator.next();
 }
}

First, notice how you find a node in the AOT based on the path as a literal. The AOT macro
 contains definitions for the primary AOT paths. For readability, the examples in this chapter don’t use
the macro. Also notice the use of a TreeNodeIterator class to iterate through the classes.

 CHAPTER 20 Reflection 681

The following small job prints the source code for the find method on the CustTable table by
 calling the AOTgetSource method on the treenode object for the find method:

static void printSourceCode(Args _args)
{
 TreeNode treeNode =
 TreeNode::findNode(@'\Data Dictionary\Tables\CustTable\Methods\find');

 info(treeNode.AOTgetSource());
}

The treenodes API provides access to the source code of nodes in the AOT. You can use the class
ScannerClass to turn the string that contains the source code into a sequence of tokens that can be
compiled.

In the following code, the preceding example has been revised to find mandatory fields on the
table CustTable:

static void mandatoryFieldsOnCustTable(Args _args)
{
 TreeNode fieldsNode = TreeNode::findNode(
 @'\Data Dictionary\Tables\CustTable\Fields');

 TreeNode field = fieldsNode.AOTfirstChild();

 while (field)
 {
 if (field.AOTgetProperty('Mandatory') == 'Yes')
 {
 info(field.treeNodeName());
 }

 field = field.AOTnextSibling();
 }
}

Notice the alternate way of traversing subnodes. Both this and the iterator approach work equally
well. The only way to determine whether a field is mandatory with this API is to know that your node
models a field. Field nodes have a property named Mandatory, which is set to Yes (not to True) for
mandatory fields.

Use the Properties macro when referring to property names. This macro contains text definitions
for all property names. By using this macro, you avoid using literal names, like the reference to the
Mandatory property in the preceding example.

Unlike the dictionary API, which can’t reflect all elements, the treenodes API reflects everything.
The SysDictMenu class exploits this capability, providing a type-safe way to reflect on menus and

682 PART 3 Under the hood

menu items by wrapping information provided by the treenodes API in a type-safe API. The following
job prints the structure of the MainMenu menu, which typically is shown in the navigation pane:

static void printMainMenu(Args _args)
{
 void reportLevel(SysDictMenu _sysDictMenu)
 {
 SysMenuEnumerator enumerator;

 if (_sysDictMenu.isMenuReference() ||
 _sysDictMenu.isMenu())
 {
 setPrefix(_sysDictMenu.label());
 enumerator = _sysDictMenu.getEnumerator();
 while (enumerator.moveNext())
 {
 reportLevel(enumerator.current());
 }
 }
 else
 {
 info(_sysDictMenu.label());
 }
 }

 reportLevel(SysDictMenu::newMainMenu());
}

Notice how the setPrefix function is used to capture the hierarchy and how the reportLevel function
is called recursively.

You can also use the treenode API to reflect on forms and reports, and their structure, properties,
and methods. The Compare tool in MorphX uses this API to compare any node with any other node.
The SysTreeNode class contains a TreeNode class and implements a cascade of interfaces, which makes
TreeNode classes consumable for the Compare tool and the Version Control tool. The SysTreeNode
class also contains a powerful set of static methods.

The TreeNode class is actually the base class of a larger hierarchy. You can cast instances to specialized
TreeNode classes that provide more specific functionality. The hierarchy isn’t fully consistent for all nodes.
You can browse the hierarchy in the AOT by clicking System Documentation, clicking Classes, right-clicking
TreeNode, pointing to Add-Ins, and then clicking Type hierarchy browser.

Although this section has only covered the reflection functionality of the treenodes API, you can
use the API just as you do the AOT designer. You can create new elements and modify properties
and source code. The Wizard Wizard uses the treenodes API to generate the project, form, and class
implementing the wizard functionality. You can also compile and get layered nodes and nodes from
the baseline model store. The capabilities that go beyond reflection are very powerful, but proceed
with great care. Obtaining information in a non-type-safe manner requires caution, but writing in a
non-type-safe manner can lead to catastrophic situations.

 CHAPTER 20 Reflection 683

TreeNodeType
Different types of treenodes have different capabilities. The TreeNodeType class can be used to reflect
on the treenode. The TreeNodeType class provides reliable alternatives to making assumptions about a
treenode’s capabilities based on its properties. In previous versions of Microsoft Dynamics AX, fragile
assumptions could be found throughout the code base; for example, it was assumed that a treenode
supported version control if the treenode had a utilElementType and no parent ID.

The TreeNodeType class provides a method that returns the type identification, plus seven methods
that return Boolean values providing information about the treenode’s capabilities. The usage of
these methods are described later in this section. Figure 20-3 shows the information that the Tree-
NodeType class provides for each treenode in a project containing a table and a form. The left side of
the illustration shows a screenshot of the project itself. The right side contains a table that, for each
treenode, lists the treenode type ID and capabilities.

ID is
C

on
su

m
in

gM
em

or
y

is
G

et
N

od
eI

nL
ay

er
Su

pp
or

te
d

is
La

ye
rA

w
ar

e

is
M

od
el

El
em

en
t

is
Ro

ot
El

em
en

t

is
U

til
El

em
en

t

is
V

C
SC

on
tr

ol
la

bl
eE

le
m

en
t

30
27
204 X X X X X X X
110
416 X X X X
405 X X X X
405 X X X X
405 X X X X
405 X X X X
405 X X X X
405 X X X X
121
117
316
120
167
191
27
504 X X X X X X X
191
201 X X
140 X X
144
1435
141
148 X X
152 X X
152 X X
148 X X

FIGURE 20-3 Information provided by the TreeNodeType class for the treenodes in a table and a form.

684 PART 3 Under the hood

 ■ ID The ID of the treenode type is defined in the system and is available in the
 TreeNodeSysNodeType macro. Nodes with the same ID have the same behavior.

 ■ isConsumingMemory Tree nodes in MorphX contain data that the Microsoft Dynamics
AX runtime doesn’t manage, and the memory for a node isn’t automatically deallocated. For
each node where isConsumingMemory is true, you should call the treenodeRelease method to
free the memory when you no longer reference any subnodes. Alternatively, you can use the
 TreeNodeTraverser class because the class will handle this task for you. For an example of this,
see the traverseTreeNodes method of the SysBpCheck class.

 ■ isGetNodeInLayerSupported With treenodes that support the getNodeInLayer method, you
can navigate to versions of the node in other layers. In other words, you can access the nodes
in the lower layers by using this method.

 ■ isLayerAware Treenodes that are layer-aware display a layer indicator in the AOT; for
 example, SYS or USR. You can retrieve the layer of a node by using the AOTLayer method, and
you can retrieve all layers that are available by using the AOTLayers method. Note that the
AOTLayers method does not roll up layers for subnodes: this method returns what is shown in
the AOT. The roll-up layer information is available through the ApplObjectLayerMask method,
which is used in the AOT to determine whether a node is shown in bold. If a node is bold in
the AOT, either the node itself or one of its subnodes is present in the current layer.

 ■ isModelElement Treenodes that are model elements are represented by a record in the
SysModelElement table.

 ■ isRootElement A root element is placed in the root of the treenode hierarchy, and the
 RootModelElement field for all submodel elements references the root element’s recid.

 ■ isUtilElement If the treenode is a UtilElement, a corresponding record can be found in
the UtilElements view. Further, the primary key information can be retrieved through the
 treenode’s utilElement method.

 ■ isVCSControllableElement You can use the isVCSControllableElement method to determine
the granularity of the file-based artifacts that are stored in a version control system. In most
cases the granularity under version control is per root element; in other words, you are
 working on entire forms, classes, and tables under version control. However, for Microsoft
 Visual Studio elements, the granularity is different, and you are able to work on individual
Visual Studio files; for example, .cs files.

if (treenode.treeNodeType().isVCSControllableElement())
{
 versionControl.checkOut(treenode);
}

 CHAPTER 20 Reflection 685

The following example shows how to access the type information for a treenode:

static void GetTreeNodeTypeInfo(Args _args)
{
 TreeNode treeNode = TreeNode::findNode(
 @'\Data Dictionary\Tables\CustTable\Methods\find');
 TreeNodeType treeNodeType = treeNode.treeNodeType();

 info(strFmt("Id: %1", treeNodeType.id()));
 info(strFmt("IsConsumingMemory: %1", treeNodeType.isConsumingMemory()));
 info(strFmt("IsGetNodeInLayerSupported: %1",
 treeNodeType.isGetNodeInLayerSupported()));
 info(strFmt("IsLayerAware: %1", treeNodeType.isLayerAware()));
 info(strFmt("IsModelElement: %1", treeNodeType.isModelElement()));
 info(strFmt("IsRootElement: %1", treeNodeType.isRootElement()));
 info(strFmt("IsUtilElement: %1", treeNodeType.isUtilElement()));
 info(strFmt("IsVCSControllableElement: %1",
 treeNodeType.isVCSControllableElement()));
}

Note You can use the TreeNodeType class to reflect on the meta model. This class
 functions on a higher level of abstraction—instead of reflecting on the elements in the
AOT, it reflects on element types. The SysModelMetaData class provides another way of
reflecting on the meta model.

 CHAPTER 21 Application models 687

C H A P T E R 2 1

Application models

In this chapter
Introduction . 687
Layers. 688
Models. 690
Element IDs . 692
Create a model . 693
Prepare a model for publication . 694
Upgrade a model . 699
Move a model from test to production . 700
Model store API . 703

Introduction

Microsoft Dynamics AX 2012 introduces a new era for managing metadata artifacts.

In previous versions of the product, metadata artifacts were stored in Application Object Data
(AOD) files. These files served two purposes. First, they acted as the deployment vehicle for metadata;
for example, you could copy an AOD file from the source system to the target system. Second, they
provided runtime storage for model elements. The AOD file provided the physical storage for a native
indexed sequential access method (ISAM) database that contained the metadata, and the runtime
read model elements from this storage.

This method of managing metadata artifacts was not optimal. From a deployment perspective,
AOD files didn’t allow side-by-side installation of metadata in the same layer, didn’t contain any
 structured information about their contents, and couldn’t be digitally signed. From a runtime
 perspective, the AOD format supported only one table and provided no capability for adding or
changing columns. To support the evolution of runtime scenarios, the product had to move toward
a relationally correct schema.

In Microsoft Dynamics AX 2012, metadata is stored in the Microsoft SQL Server database along
with business data. The tables containing the metadata are called the model store. This change
 removes all ob stacles to providing a relationally correct schema. Elements, such as classes, tables,
forms, methods, and controls, in the model store are grouped into models. Each model can be
 exported to a file-based format with the extension .axmodel. These files are managed assemblies
and therefore, support digital signing, which makes them tamper-proof. Model files are the primary
 deployment vehicle for model elements in Microsoft Dynamics AX 2012.

C H A P T E R 2 1

Application models

Introduction

Layers

Models

Element IDs

Create a model

Prepare a model for publication

Set the model manifest

Export the model

Sign the model

Import model files

Upgrade a model

Move a model from test to production

Create a test environment

Prepare the test environment

Deploy the model to production

Element ID considerations

Model store API

688 PART 3 Under the hood

In previous versions of Microsoft Dynamics AX, independent software vendors (ISVs) sometimes
delivered textual source code files (in XPO format) to customers. Releasing source code files is an
undesirable practice, but it was used to overcome restrictions on element IDs for combining multiple
solutions in the same layer. With Microsoft Dynamics AX 2012, you no longer need to release source
code files to custo mers. Model files do not contain element IDs, you can install multiple models in the
same layer, and each model file contains a manifest that describes the model.

Note XPO files are still fully supported in Microsoft Dynamics AX 2012. Developers
 primarily use them to exchange source code and for storage in a version control system.

In previous versions of Microsoft Dynamics AX, a complete set of AOD files could be deployed in
one op eration, typically when a solution was moved from a staging system to a production system.
The primary concern in this scenario is to reduce downtime. Copying all AOD files in one operation
 reduced downtime because there was no need to regenerate the Application Object Index (AOI) file
or to recompile the application code. To satisfy the same need in Microsoft Dynamics AX 2012, you
can export an entire model store in a binary file with the extension .axmodelstore. This file can be
imported into the target system, and the system’s downtime is restricted to the time it takes to restart
the Application Object Server (AOS).

Layers

The Microsoft Dynamics AX 2012 runtime executes a program defined in the MorphX development
env ironment. The program itself is defined as elements.

Unlike most systems, Microsoft Dynamics AX can contain multiple definitions of each element;
for example, multiple implementations of the same method. These element definitions are stacked
in layers. The Microsoft Dynamic AX runtime uses the element definitions from the highest layer in
which they are found. For example, a method defined in the SYS layer (the lowest layer) is not used if
another definition of the same method exists in any other layer.

This layered development approach provides several benefits, the most important being the a bility
to customize the program shipped by Microsoft, Microsoft partners, and ISVs without editing the
original source code.

Note The layer metaphor is also used for graphical drawing tools. With layering, you can
draw on top of an existing image without touching the original image underneath. Layers
in Microsoft Dynamics AX work the same way, but with code and properties instead of
 pixels, shapes, and shades.

When you start Microsoft Dynamics AX 2012, you specify which layer you want to start in. By
default, you start in the USR layer. Any element you create or edit is stored in that layer. If you edit an

 CHAPTER 21 Application models 689

element that exists in a lower layer, a copy of the element with your edits is moved to your layer. This
process is known as over-layering.

Other benefits of layers include the ability to revert to the original definition of an element by
deleting the over-layering version. You can also compare versions of an element; for example, to see
which lines of code you have inserted. This is particularly useful during upgrade.

Caution Develop your solution one layer at a time, from the bottom up. Working in
m ultiple layers at the same time on the same AOS is highly discouraged—even for
d ifferent users. For more information see the Microsoft Dynamics AX 2012 white paper
“Developing Solutions in a Shared AOS Development Environment”
(http://www.microsoft.com/download/en/details.aspx?id=26919).

The process of editing an element from a higher layer than the current layer is known as
 und er-layering. By design, these edits are routed to the higher layer.

Microsoft Dynamics AX 2012 has 16 metadata layers, each with its own purpose. Table 21-1 de-
scribes these layers in alphabetical order.

TABLE 21-1 Metadata layers.

Name Description

USP (topmost) Patch layer for the USR layer.

USR User layer. This layer is intended for minor final customizations by
power users of the system. These might include simple changes to
the layout of a form and new security roles and tasks defined for the
company.

CUP Patch layer for the CUS layer.

CUS Customer layer. This layer enables customer-specific customizations
and extensions to the solution. This layer is typically developed by a
Microsoft partner or an in-house development team.

VAP Patch layer for the VAR layer.

VAR Value-added retailer layer. Microsoft partners use this later to deliver
customizations and extensions that typically are installed by multiple
customers.

ISP Patch layer for the ISV layer.

ISV Independent Software Vendor layer. Registered Microsoft Dynamics
AX ISVs can deliver solutions in this layer.

SLP Patch layer for the SLN layer.

SLN Solution layer. This layer contains vertical solutions provided by
Microsoft partners.

FPP Patch layer for the FPK layer.

690 PART 3 Under the hood

Name Description

FPK Feature pack layer. This layer contains industry solutions provided
by Microsoft. Public sector, Process industries, Retail, and Service
i ndustries are available in this layer.

GLP Patch layer for the GLS layer.

GLS Global solution layer. This layer contains regional extensions to the
horizontal solution provided in the SYS layer.

SYP Patch layer for the SYS layer.

SYS (Lowest) System layer. Microsoft platform and foundation layer. This contains
the horizontal application developed by Microsoft.

 Within a layer, metadata elements are grouped into models. Models are covered in the following
 section.

Models

A model is a logical container of metadata elements, such as forms, tables, reports, and methods. For
more information about element types, see Chapter 1, “Architectural overview.”

The model store can contain as many models as you want. Figure 21-1 shows the relationship
 between layers, models, and elements.

Layer 2
Model B Model C

Model A
Layer 1

FIGURE 21-1 Layers, models, and elements.

Note The term model was selected for several reasons. First, any solution built in Microsoft
Dynamics AX is a model of a real-life business. Second, a model is irreducible—even
a part of a model is a model, so the term covers stand-alone solutions, extensions,
 customizations, patches, and so on. And finally; the term is simple and catchy—it will
quickly become a part of your Microsoft Dynamics AX vocabulary.

You can have as many models in each layer as you want. This means you can segment your layer
into as many models as you like. Here are some development scenarios where this can be useful:

 ■ When you deliver more than one solution You can have a model for each solution you
are working on. This enables you to work on them simultaneously.

 CHAPTER 21 Application models 691

 ■ When your solution is getting too large You can segment your solution into several
 models and have each team or team member work on a different one. A model can be either
self-contained or have dependencies on other models. This enables you to clearly define
 responsibilities between the model clearly, define the application programming interfaces
(APIs) between the models clearly, build the models individually, and so on.

 ■ When you write unit tests You can have a model for your production code and a model
for your unit tests. These enable you to import all your unit tests, run them, and remove them
from the system easily.

You can get a model in two ways: you can either create one on your own, or you can receive one
from someone else. Because you can have as many models as you want in each layer, you can deploy
models from several sources in the same layer.

Suppose you are a customer and want to install two ISV solutions that are available in the ISV layer.
In previous versions, you would have had a tough choice to make. Either you picked your f av orite
s olution and learned to live without the other one, or you invested in having the two solutions
merged into one layer. This merge was technically challenging and costly if updates to either solution
were released. In Microsoft Dynamics AX 2012, you just download the two models and then use
 AXUtil, a command-line utility that is available when you install Microsoft Dynamics AX, to import
them. When a new version of either model is released, you simply use AXUtil to update the model.

The layer model element containment hierarchy has one restraint: an element can be defined only
once per layer. In other words, you cannot install two models containing a definition of the same
 element in the same layer on the same system. Here are some examples:

 ■ Two models that contain a class named MyClass cannot be installed side by side in the same
layer.

 ■ Two elements of the same type under the same parent element (or without a parent) cannot
coexist in the same layer if they have same name or the same ID. For example, a table cannot
have two fields with the same name or two fields with the same ID, and you cannot have two
display menu items with the same name in the same layer.

This limitation enables the Microsoft Dynamics AX runtime to select the right version of an
 element to execute based on the layer in which it’s contained.

You can encounter this limitation in two ways:

 ■ You create an element and accidentally give it a name that is being used for another element
in another model. A good way to avoid this is to prefix your new elements with a short string
that uniquely identifies you, your company, or your solution. This practice is widely used.

 ■ You customize an existing element that also has been customized by someone else in another
model. There are various ways to limit the number of customized elements, such as by using
events, but in some situations this is unavoidable.

692 PART 3 Under the hood

Note Because element IDs are assigned at deployment time, the system automatically
avoids duplicate IDs. Element IDs are covered next.

Element IDs

All element types have names, and a few element types also have an integer-based ID. The ID is a
32-bit integer and is assigned at installation time. This means that the same element might have a
 different ID on two different systems.

Note In previous versions of Microsoft Dynamics AX, IDs were 16-bit integers that were
assigned at creation time from a pool of IDs for each layer. This could result in running out
of IDs and ID collisions when installing solutions developed independently.

Two new properties have been introduced to support scenarios in which elements are upgraded or
renamed:

 ■ The LegacyID property has been added to the few element types that have an element ID. This
property enables elements to keep their IDs from the AOD files when imported as a model file
to a model store.

 ■ The Origin property is a globally unique identifier (GUID) that uniquely identifies the element
and eliminates the risk of a collision. The Origin property has been added to all root element
types and element types with IDs. This property enables AXUtil (and other components) to
recognize renamed elements during import.

AXUtil assigns element IDs when a model is imported, based on the following rules:

1. If an element already exists with the same Origin, replace the element and reuse its ID, else
p roceed to step 2.

2. If an element already exists with the same Type, Name, and ParentID, replace the element and
reuse its ID, else proceed to step 3.

3. If the imported element has a LegacyID, and the LegacyID is available on the target system,
add the element setting the ID to equal the LegacyID, else proceed to step 4.

4. Assign a new installation-specific ID that does not collide with any LegacyIDs (greater than
60,000 for fields, and greater than 1,000,000 for all other element types).

This algorithm ensures that IDs are maintained in simple and advanced import scenarios. Consider
a scenario where you have delivered several variations of the same solution to multiple customers
as AOD or XPO files in Microsoft Dynamics AX 2009. This means that you probably maintain a copy
of the source code for each of your customers in order to service them. As the number of customers

 CHAPTER 21 Application models 693

grows, so does the incentive to consolidate the variations into one common solution. Step 2 in the
algorithm ensures that IDs are maintained on the customer’s installation when the customer upgrades
from a specialized solution to a common solution.

During regular development, the system maintains IDs, and you do not need to be concerned with
them. However, you still need to pay attention to IDs in two situations: when upgrading a model and
when moving from test to production. These two situations are covered in the following sections.

Note The data export/import functionality available under System administration
a utomatically adjusts element ID references in the imported business data to match the
 element IDs on the target system. This adjustment skips all unstructured data. If you
need to reference an element in a persisted container, for example, it is a best practice to
r eference the element by name.

Create a model

Before you implement your solution, you need to create a new model. You can create a model in
several ways. You can do so in MorphX through Tools > Model Management > Create model, you can
use Windows PowerShell from the Microsoft Dynamics AX 2012 Management Shell, or you can use
AXUtil. The examples in this chapter use the latter.

AXUtil create /model:"My Model" /Layer:USR

Notice that you have to specify which layer the model belongs to. A model cannot span layers.

Note Each layer has a system-defined model. If you don’t create your own model,
the system-defined model is used. The system-defined model has certain deployment
 restrictions because its manifest is read-only. It is highly recommended that you create
your own models.

After creating the model, you need to select it. In the status bar in MorphX, you can see the cur-
rent model. You can change the model by clicking it. All elements that you create in the AOT are
contained in the current model.

You can easily see which model an element belongs to by inspecting the element’s properties. You
can also enable a model indicator in the AOT on each element in Tools > Options > Development.
You can move an element between models in the same layer by right-clicking the element, and then
 clicking Move to model.

694 PART 3 Under the hood

Now that you have your model, you are ready to implement your solution.

Note You can delete any model by using the AXUtil delete command. This applies to
models you have created and those you have installed. By using the /layer:<layer> option,
you can even delete all models in a layer.

Prepare a model for publication

When your implementation is complete, it is time to prepare the model for publication. But before
you do, you may want to create a MorphX project that contains the elements in your model. You can
create the project by using Tools > Model Management > Create project. This allows you to ensure
that the model contains what you expect before you publish it. You can also use AXUtil to list the
 elements in a model.

AXUtil view /model:"My Model" /verbose

Preparing your model for publication consists of the following steps:

1. Set the model manifest.

2. Export the model to disk.

3. Add a digital signature.

Set the model manifest
A model is the container for your solution. You can describe your model in the model manifest. Table
21-2 contains a description of the properties of the model manifest. When you export your model,
the exported file contains the manifest. The manifest helps consumers of your model understand its
contents before installing it.

The simplest way to edit a manifest is to use XML notation:

AXUtil manifest /model:"My Model" /xml >MyManifest.xml
notepad MyManifest.xml
AXUtil edit /model: "My Model" @MyManifest.xml

 CHAPTER 21 Application models 695

TABLE 21-2 Model manifest properties.

Type Description

Name The full name of the model. The name often contains multiple words
and typically the same name as used in marketing materials and other
public documents.

Publisher Publisher of the model; for example, “Microsoft Corp.” The Name and
Publisher properties must constitute a unique key. In other words, you
cannot install two models with the same Name and Publisher in the
same model store.

Description A longer text string describing the model.

Display Name A friendly name that is shown in the development environment,
 including in the status bar in MorphX and in the AOT.
The Display Name is typically significantly shorter than Name, and it is
often just a mnemonic value.

Version A four-part version number; for example, 1.0.0.0.

Category The category of the model. Models are grouped into four categories:
 ■ Standard A regular model.
 ■ Hotfix A model that contains a fix for an issue in another

model. Hotfixes are typically delivered in a patch layer.
 ■ Virtual A model that is automatically created as a result of

conflicting elements during model import, when using the
/conflict:push option.

 ■ Temporary A model that is used during the import process.
At the end of the import, it will be deleted again.

In most situations, you should set this property to Standard.

Details The extension point of the manifest. If you need to capture more
details about your model, you can place it here. The Details property
must contain well-formed XML text. The model store and the
Microsoft Dynamics AX runtime do not use this property.
Standard models from Microsoft leave this property empty; Hotfix
models include information about knowledge base (KB) articles in this
property.

Note It is not possible to express dependencies between models in the model manifest.
However, if you use the slipstream installation mechanism of the Microsoft Dynamics AX
Setup program, you can control the installation sequence.

Export the model
When the manifest of the model is populated it is time to export the model to disk so that you can
share it outside your organization:

AXUtil export /model:"My Model" /file:MyModel.axmodel

696 PART 3 Under the hood

The extension .axmodel is used for model files. The model file contains all of the elements in the
model, plus the model manifest. Model files are element ID–agnostic. When the elements in the
model file are imported into a target system, they are assigned new installation-specific IDs. XPO files
handle element IDs similarly.

Tip Under the covers, a model file is a managed assembly. This means you can use
 assembly reflection tools, like ildasm, to inspect the contents.

You can verify the model file contents using AXUtil:

AXUtil view /file:MyModel.axmodel /verbose

Note AXUtil is a powerful tool, and, for a command-line tool, also quite user friendly.
Notice that some commands, like view and manifest, can be used either on a model in the
model store and on a model file on disk. The most frequently used parameter is the
/model parameter. In the examples in this chapter, the name of the models are provided
when using this parameter, but you can also specify the model ID (which typically is much
sh orter, and thus more convenient to write), or the model’s manifest XML file. This latter
option is particular useful when writing command scripts, such as build scripts for version
control. All commands also supports a /verbose parameter, which displays additional details
about the command execution. For a complete list of commands and options, try AXUtil /?.

Sign the model
The model file is now ready to be shared. However, you should consider one more thing before
 making it publicly available. The model file contains binary code, and as such, this code can
 potentially harm a system, especially if the code is tampered with after it leaves your hands. To ensure
that the customers who receive your model file can trust the file—or at least be able to tell that the
model comes from a trustworthy source—you can add a digital signature to the model file.

When a signed model is imported, you are guaranteed the model file hasn’t been tampered with
since it was exported. If it has been tampered with, the import process fails. Microsoft Dynamics AX
2012 supports two ways of signing a model: strong name signing and Authenticode signing.

Strong name signing
To strong name sign a model, you need to use the .NET Framework Strong Name Tool, SN.exe, to
generate a key/pair file. When you export your model to an .axmodel file, you specify the key to sign
the model with.

 CHAPTER 21 Application models 697

SN -k mykey.snk
AXUtil export /model:"My Model" /file:MyModel.axmodel /key:mykey.snk

Authenticode signing
If you are a publisher of models, such as an ISV that provides models for download, consider Au-
thenticode signing your model. If you do, your customers are guaranteed that the file hasn’t been
tampered with and that you created the model.

When an Authenticode signed model is imported, the model’s publisher is authenticated. This
means the model file can be traced to you.

To Authenticode sign a model file, first export it by using AXUtil. Then you use the SignTool to
perform the actual signing:

signtool sign /f mycertprivate.pfx /p password MyModel.axmodel

Import model files
If you have received or downloaded a model file, you can import it by using AXUtil. The model file
is always imported into the layer it was exported from. It is a best practice to stop the AOS before
importing model files.

AXUtil import /file:SomeModel.axmodel

Note You don’t have to specify file extensions when using AXUtil. The tool automatically
adds the right extension if it is omitted. In this book, extensions are included for clarity.

Figure 21-2 shows a model that has been successfully imported into a layer in which a model already
exists.

Layer
Existing model Imported model Import

FIGURE 21-2 Side-by-side installation of two models.

The import operation will be cancelled if one or more elements from the model file are already
 defined in the layer into which the model is being imported. If you rerun the import operation with
the /verbose option, you will get a list of conflicting elements.

698 PART 3 Under the hood

AXUtil import /file:SomeModel.axmodel /verbose

You have two options for proceeding with the import: overwrite and push.

Import model files with the overwrite option
You can decide to overwrite existing conflicting elements with the new definitions of the model
 element from the model file. You do so by specifying the /conflict:overwrite option on the import
command:

AXUtil import /file:SomeModel.axmodel /conflict:overwrite

Figure 21-3 shows the result of a successful import using the /conflict:overwrite option. The
 imported model and the existing model that contained conflicting elements are linked after this
operation. The models are linked because the existing model now is partial. The linkage prevents the
imported model from being uninstalled unless the existing model is also uninstalled. This option is
primarily used when delivering cumulative patches or service packs.

Layer
Existing model Imported model Import

FIGURE 21-3 Side-by-side installation of two models using the /conflict:overwrite option.

Import model files with the push option
The most typical solution to solve conflicts is the /conflict:push option. This option creates a new
 virtual model in a higher layer containing the conflicting elements:

AXUtil import /file:SomeModel.axmodel /conflict:push

Figure 21-4 shows the result of a successful import operation using the /conflict:push option. The
elements in the virtual model are identical to those imported. In other words, existing models are not
affected. After importing the model, log in to the layer containing the virtual model to resolve the
conflict. You can use the compare functionality in the AOT to compare the conflicting versions of each
element and resolve the conflict.

 CHAPTER 21 Application models 699

Layer 1
Existing model Imported model

Layer 2
Virtual model

Import

FIGURE 21-4 The result of an import operation using the /conflict:push option.

If you resolve all conflicts in the same layer, there is no risk of running out of layers when using
the /conflict:push option. However, you may need to move the resolved elements into the same layer
manually. For example, if you import a third model that conflicts with elements in the virtual model
in Figure 21-4, the resulting virtual model will be created in Layer 3. After you resolve the conflicts in
Layer 3, move the elements in Layer 3 to Layer 2. The easiest way to accomplish this is by exporting
the elements from Layer 3 to an XPO file, deleting them, and importing them into Layer 2.

By default, the virtual model is created in the layer just above the layer the model is imported into.
If you don’t have developer access to that layer, you can force AXUtil to create the virtual model in a
different layer (for example the USR layer) by using the /targetlayer option, as shown in the following
example:

AXUtil import /file:SomeModel.axmodel /conflict:push /targetlayer:USR

Upgrade a model

When you receive a newer version of a model and you want to replace the older version in the model
store, it is important that you import the new model on top of the existing model. AXUtil automati-
cally detects that the model already exists in the model store and performs the actions that are
required to ensure the consistency of the model store:

AXUtil import /file:NewerModel.axmodel

By default, AXUtil import enters upgrade mode when a model with the same name and publisher
already exists. Sometimes a model might be renamed or replaced by multiple new models (as
the result of segmentation work, for example), or multiple models might be merged into one
 consolidated model. AXUtil supports upgrading existing models with new models. You can force
AXUtil to use this mode by listing the files and models to upgrade, separated by a comma:

AXUtil import /file:f1,f2,f3 /replace:m1,m2,m3,m4,m5

700 PART 3 Under the hood

Caution You might be tempted to uninstall an existing model before importing a newer
 version of the model, but if you do so, AXUtil does not enter upgrade mode and it assigns new
element IDs to all elements being imported. This results in data corruption because business
data contains the original element IDs. All references to elements in the uninstalled model will
break. For more information, see the “Element IDs” section earlier in this chapter.

Move a model from test to production

It is a good practice to have a test or staging environment where changes to the system are prepared
and tested before being deployed to a live production environment.

The model store provides features that you can use to export all model store metadata to a
binary file and import it into a target system. Doing this creates a binary, identical copy of metadata
 between the two systems, including element IDs. Model store files have the extension .axm-
odelstore. Besides the metadata, the model store files also contain the compiled pcode and common
 intermediate language (CIL) code. This means that you do not have to compile the target system.

Note The size of model store files depend on the contents of the model store. A model
store file for the standard installation of Microsoft Dynamics AX 2012 is about 2 GB. Model
store files compress well, typically over 80 percent, and thus can be used as a simple backup.

Figure 21-5 shows the cleanest way of creating and preparing a test environment and deploying
it to production. Variations and post-setup tasks to this process exist. For a thorough description, see
the Microsoft Dynamics AX 2012 white paper “Deploying Customizations Across Microsoft Dynamics
AX 2012 Environments” (http://www.microsoft.com/download/en/details.aspx?id=26571).

.axmodel

Test ProductionDevelopment

.axmodelstore

.axmodelstore

.xpo

2

3

1

FIGURE 21-5 Creating and preparing a test environment and deploying a model store to production.

Note XPO files are not used in the process of deploying a system from test to production.
They are mentioned in Figure 21-5 to show the scenarios that the three file formats should
be used in. XPO files should be used for sharing source code between developers.

http://www.microsoft.com/download/en/details.aspx?id=26571

 CHAPTER 21 Application models 701

Create a test environment
The goal of creating a test environment is to ensure that the metadata in the model store is identical
to the metadata in the model store in the production environment. The simplest way to achieve
the goal is to create a new installation of Microsoft Dynamics AX, and then move the metadata
from production to test. To move the metadata, you first need to export the model store from the
 production environment:

AXUtil exportstore /file:ProductionStore.axmodelstore

On the test system, you stop the AOS and then import the model store file:

Net stop AOS60$01
AXUtil importstore /file:ProductionStore.axmodelstore
Net start AOS60$01

Prepare the test environment
The goal of preparing the test environment is to update the system with new metadata, typically by
installing new models or upgrading existing models. You import or upgrade models as explained
earlier in this chapter.

After you import the models, start the Microsoft Dynamics AX client and complete the installation
checklist. The most important steps are the compilation to pcode and CIL, because the products of
these steps are part of the model store.

Extensive validation of the system is also recommended. Ensure that you validate both that the
new functionality behaves as expected and that existing functionality hasn’t regressed.

Deploy the model to production
The goal of deploying to production is to ensure that the metadata on the production system is
 updated with the metadata from the test environment. To move the metadata, you first need to
 export the model store from the test environment:

AXUtil exportstore /file:TestStore.axmodelstore

Import the model store file on the production system. To minimize downtime, AXUtil supports a
two-phase import process. The first phase imports the metadata to a new schema in the database.
This takes a few minutes and can occur while the production system is still live. The second phase
replaces the model store metadata with the imported metadata from the schema. The takes a few
seconds and must occur while the AOS is stopped.

702 PART 3 Under the hood

Create a new schema:

AXUtil schema /schemaname:TransferSchema

Import the model store file into the new schema:

AXUtil importstore /file:TestStore.axmodelstore /schema:TransferSchema

When all users are logged off, stop the AOS:

Net stop AOS60$01

Apply the changes to the model store to move the new schema to the active schema:

AXUtil importstore /apply:TransferSchema /backupschema:dbo_backup

Restart the AOS:

Net start AOS60$01

Note Notice the use of the /backupschema option in the example. With this option, you
can quickly revert to the original metadata if unexpected issues arise. When you no longer
need the backup schema, you can delete it by using the AXUtil schema
/drop:<schemaname> command.

At this stage, the metadata in the production environment is identical to the metadata in the test
environment. A few more tasks must be performed before the system is ready for users. These include
synchronizing the database, creating role centers, deploying web content, setting up workflows,
d eploying cubes, importing integration ports, and deploying reports. For more information about
these tasks, see the white paper “Deploying Customizations Across Microsoft Dynamics AX 2012 Envi-
ronments” (http://www.microsoft.com/download/en/details.aspx?id=26571).

Element ID considerations
Business data references metadata element IDs. The process outlined in the previous sections ensures
that the element IDs in the production system remain unchanged, and thus ensures the integrity of
the business data.

 CHAPTER 21 Application models 703

This is achieved by only exchanging metadata between test and production through model store
files, which maintains the element IDs. For example, if the element IDs in the test environment and
production environment are unsynchronized because XPO files or model files have been imported
into both systems, you must rebuild the test environment.

The importstore command has a built-in safety mechanism. The command ensures that element
IDs in the target system are identical to the element IDs in the file. If any conflicts are detected, the
import operation stops. You can use the /verbose option to get a list of the conflicts, and the
/idconflict:overwrite option to continue with the import operation anyway. Use the latter option only
on a system where you don’t care about the data — never in a production environment.

For more information, see the “Element IDs" section earlier in this chapter.

Model store API

The AXUtil utility used in all examples in this chapter provides a command-line interface to the model
store commands offered by the model store API. A PowerShell interface is also available from the
Microsoft Dynamics AX 2012 Management Shell.

Both these interface implementations use the managed assembly file AXUtilLib.dll. You can also
use this assembly if you want to automate any model store operations. The assembly is referenced in
X++, so you can easily access the model store API from X++. Some of the most common commands
are available from the SysModelStore class.

The model store API also contains a method to generate license keys for a license code in the AOT
based on the license holder name and serial number. The following example shows how to invoke this
method from a managed website in an automated license purchasing scenario. For more information
about how to protect your solution with a license code, see Chapter 14, ”Customizing and extending
Microsoft Dynamics AX.”

using Microsoft.Dynamics.MorphX;
using Microsoft.Dynamics.AX.Framework.Tools.ModelManagement;

protected void Submit_Click(object sender, EventArgs e)
{
 string certPath = @"c:\Licenses\MyCertPrivate.pfx";
 string licensePath = @"c:\Licenses\" + Customer.Text + "-license.txt";
 string licenseCodeNameInAot = "MyLicenseCode";
 string certificatePassword = "password"; //TODO: Move to secure storage
 AXUtilContext context = new AXUtilContext();
 AXUtilConfiguration config = new AXUtilConfiguration();

 LicenseInfo licenseInfo = new LicenseInfo(licensePath, certPath,
 licenseCodeNameInAot, Customer.Text, Serial.Text,
 null, certificatePassword);

704 PART 3 Under the hood

 config.LicenseInfo = licenseInfo;
 AXUtil AXUtil = new AXUtil(context, config);
 if (AXUtil.GenerateLicense())
 {
 Response.AddHeader("Content-Disposition",
 "attachment;filename=license.txt");
 Response.TransmitFile(licensePath);
 Response.Flush();
 Response.End();
 }
 }

 705

A P P E N D I X

Resources for code upgrade

The resources listed in this section provide guidance and best practices for upgrading source code to
Microsoft Dynamics AX 2012. Some of these resources contain information for system administrators,
in addition to developers. Many of these resources are updated as new information becomes available
or in response to customer requests, so check back often for the latest information.

Resource Description and location

Upgrade to Microsoft
Dynamics AX 2012

Description: Information for system administrators and developers that contains
end-to-end instructions for upgrading to Microsoft Dynamics AX 2012 from
Microsoft Dynamics AX 4.0 and Microsoft Dynamics AX 2009.
Location: http://technet.microsoft.com/en-us/library/dd362002

Code Upgrade Tool User Guide Description: Information about how to install and use the Code Upgrade Tool,
which helps developers upgrade X++ code to Microsoft Dynamics AX 2012.
Location: http://technet.microsoft.com/en-us/library/hh535215.aspx

Security Upgrade Advisor Tool
User Guide

Description: Information about how to install and use the Microsoft Dynamics AX
Security Advisor Tool, which simplifies the process of upgrading security settings
from earlier versions of Microsoft Dynamics AX.
Location: http://technet.microsoft.com/EN-US/library/hh394895

Upgrade Support for Managed
Code

Description: Information about code upgrade tools and resources.
Location: http://msdn.microsoft.com/en-us/library/gg889224.aspx

Upgrading Reports Description: Information and guidance for upgrading reports to Microsoft
Dynamics AX 2012
Location: http://msdn.microsoft.com/en-us/library/gg724124

Code Upgrade White Papers Description: Several downloadable white papers covering numerous topics related
to code upgrades.
Location: http://www.microsoft.com/en-us/download/details.aspx?id=20864

Resource Page for Upgrading
to Microsoft Dynamics AX
2012

Description: Downloads, hotfixes, troubleshooting tips, and additional resources
related to upgrading.
Location: http://community.dynamics.com/product/ax/axtechnical/b/axresources/
archive/2012/02/17/resource-page-for-upgrading-to-microsoft-dynamics-ax-2012
.aspx

http://technet.microsoft.com/en-us/library/hh535215.aspx
http://technet.microsoft.com/EN-US/library/hh394895
http://msdn.microsoft.com/en-us/library/gg724124
http://www.microsoft.com/en-us/download/details.aspx?id=20864
http://community.dynamics.com/product/ax/axtechnical/b/axresources/archive/2012/02/17/resource-page-for-upgrading-to-microsoft-dynamics-ax-2012.aspx
http://community.dynamics.com/product/ax/axtechnical/b/axresources/archive/2012/02/17/resource-page-for-upgrading-to-microsoft-dynamics-ax-2012.aspx
http://community.dynamics.com/product/ax/axtechnical/b/axresources/archive/2012/02/17/resource-page-for-upgrading-to-microsoft-dynamics-ax-2012.aspx

Index

 707

Symbols and Numbers
.chm files, 545
.NET AJAX, 222
.NET Business Connector

Enterprise Portal architecture, 8, 197–198
Enterprise Portal security, 232–235
Enterprise Portal, developing for, 231–232
proxies, Enterprise Portal, 226–228

.NET CIL (common intermediate language), compile
and run X++, 126–128

.NET CLR interoperability statement, X++ syntax, 96

.NET Framework. See also Windows Workflow
Foundation (WF)

assemblies, hot-swapping, 84–85
author managed code, 77–84
chart control mark-up elements, 291–292
EP Chart Control tool, overview, 289
legacy systems, overview, 73
plug-ins, developing, 7
processing architecture, 4–6, 8
third-party assemblies, use of, 73–76

.NET Framework Common Language Runtime (CLR), 13

.rsds (data connection file), PowerPivot, 336

.xpo files, create a build, 71

A
abstract, method modifier, 119
acceptance test driven development (ATDD), 535–536
access control. See also security

form permissions, 356–359
privileges, creating, 359–361
security framework overview, 353–356
security roles, privileges and duties, 361–362

access operators, X++ expressions, 95
accounting framework

extensions, 662

MorphX model element prefixes, 663
overview, 659–662
process states, 662–663
when to use, 662

Accounting Journalization Rule, 660
Accounting Policy, 659
accounting, element naming prefix, 22
acknowledgement message, workflows, 260
action menu items, workflow artifacts, 266
Action pane

controls, creating, 174–176
details form design, 151–152
Enterprise Portal, navigation form design, 156–157
Enterprise Portal, web parts, 199
model-driven list pages, creating, 218
transaction details form design, 155

Action pane, list page design, 149
ActionMenuItemClicked, 212–213
ActionMenuItemClicking, 212–213
actions, element actions in AOT, 25–26
Active Directory

Integrated Windows Authentication, 352–353
security role assignments, 355

ActiveMode, 204
ActiveSectionIndex, 204
Activity, operations resource framework, 650–653
add-ins, Microsoft Office, 189–190
add-on functionalities

delegates, X++ syntax, 120–122
naming of, 21–22

address bar, navigation layer forms, 141
address book, 637
addresses, element prefix, 22
addRuntimeTask, 624
addTask, batch jobs, 624
aggregate, X++ select statements, 102
Aggregation property, associations, 48–49

708

AIF (Application Integration Framework)

AIF (Application Integration Framework)
custom services, creating, 388–391
overview, 386
send framework, 411–414
services, publishing, 400–401

AIF Document Service Wizard
artifacts, creating, 393
creating document services, 395–397
opening, 29

AifCollectionTypeAttribute, 391
AifDocumentService, 393
AifEntityKeys, 394
AJAX, Enterprise Portal development, 222
AllowDelete, AxGridView, 207
AllowEdit, AxGridView, 207
AllowFormCompanyChange, window type, 174
AllowGroupCollapse, AxGridView, 207
AllowGrouping, AxGridView, 207
AllowSelections, AxGridView, 207
ALM, Visual Studio, 534, 540–543
alternate keys

date-effective framework, 602–603
overview, 587–588

AmountMST, 316–317, 328–332
Analysis Currency, 329–332
Analysis Services Projects, modifying prebuilt

projects, 319–323
AnalysisDimensionLabel, 326–327
AnalysisIdentifier, 326–327
AnalysisKeyAttributeLabel, 326–327
AnalysisMeasureGroupLabel, 326–327
analytics. See also Business Intelligence (BI)

analytic content, configuring, 310–311
Business Overview and KPI List web parts,

341–345
Excel reports, 340
overview, 333–335
presentation tools, choice of, 335
Report Builder, 346
SQL Server Power View, 335–340
Visual Studio tools, 346–349

anytype, 90, 93
AOD (Application Object Data)

files, 687–688
AOS (Application Object Server)

architecture, 7
batch jobs, debugging, 629–630
configuration, performance and, 463–464
Help system, 549
processing architecture, 3–5, 7

AOSAuthorization, coding table permissions,
369–371

aosValidateDelete, 436
aosValidateInsert, 438–439
aosValidateRead, 433–434, 436
aosValidateUpdate, 433–434
AOT (Application Object Tree) modeling tool

AxDataSource, 203–204
creating elements, 23
element actions in, 25–26
element layers and models, 26
Enterprise Portal, developing for, 217
Jobs, overview, 88
modifying elements, 23–25
navigation in, 21–23
overview, 20
PageTitle, 200
processing architecture, 6–7
publishing services, 400–401
refreshing elements in, 25
security artifacts, developing, 356–363
Table Browser, overview, 52–53
third-party DLLs, referencing, 75–76
Toolbar, Enterprise Portal web part, 200

APIs (application programming interfaces)
AIF Send, 411–414
Batch API, 623–625
code access security (CAS), 124–126, 371–372
document services, overview, 392
Enterprise Portal architecture, 196–198
model store, 703–704
reflection, overview, 669–670
table data, reflection API, 673–676
treenodes, 680–685

API exceptions, dangerous, 41
application development environment, 6–7
application domain frameworks

accounting framework
extensions, 662
MorphX model element prefixes, 663
overview, 659–662
process states, 662–663
when to use, 662

dimension framework
constrain combinations of values, 656
create values, 656–657
extensions, 657
overview, 654–656
physical table references, 659
query data, 658–659

 709

 architecture

operations resource framework
extensions, 652–653
MorphX model element prefixes, 654
overview of, 648–652
when to use, 652

organization model framework
custom operating units, creating, 639–640
hierarchy designer, extending, 642
integration with other frameworks

application modules, 637–638
organization hierarchies, 635–637
organization types, 634–635
overview, 634
scenarios, modeling, 638–639

overview, 633–634
product model framework

extension of, 647–648
overview, 643–647
when to use, 647

source document framework
extensions, 666–667
MorphX model element prefixes, 667
overview, 664–665
when to use, 665

application frameworks, element naming prefix, 23
Application Integration Framework

custom services, creating, 388–391
overview, 386
send framework, 411–414
services, publishing, 400–401

application integration services, architecture, 8
application meta-model architecture

application data element types, 10–11
code element types, 13
documentation and resource element types, 16
license and configuration element types, 16–17
MorphX user interface control element types,

11–12
overview, 9
role-based security element types, 14
services element types, 13
web client element types, 14–15
workflow element types, 12–13

application models
creating models, 693–694
element IDs, 692–693
layers, 688–690
model store API, 703–704
models, overview, 690–692
moving from test to production, 700–703

overview, 687–688
publishing, preparing for, 694–699
upgrading, 699–700

Application Object Data (AOD) files, 687–688
Application Object Server (AOS)

architecture, 7
batch jobs, debugging, 629–630
configuration, performance and,

463–464
Enterprise Portal architecture, 197–198
Help system, 549
processing architecture, 3, 5, 7

Application Object Tree (AOT) modeling tool
AxDataSource, 203–204
creating elements, 23
element actions in, 25–26
element layers and models, 26
Enterprise Portal, developing for, 217
Jobs, overview, 88
modifying elements, 23–25
navigation in, 21–23
overview, 20
PageTitle, 200
processing architecture, 6–7
publishing services, 400–401
refreshing elements in, 25
security artifacts, developing, 356–363
Table Browser, overview, 52–53
third-party DLLs, referencing, 75–76
Toolbar, Enterprise Portal web part, 200

application platform, architecture of, 4–9
application programming interfaces (APIs)

AIF Send, 411–414
Batch API, 623–625
code access security (CAS), 124–126,

371–372
document services, overview, 392
Enterprise Portal architecture, 196–198
model store, 703–704
reflection, overview, 669–670
table data, reflection API, 673–676
treenodes, 680–685

ApplicationHelpOnTheWeb, 548
applications, processing architecture, 4–5
approvals, workflow artifacts, 264
approvals, workflow elements, 252
architecture

application platform, 6–9
Business Intelligence (BI), 299–300
Enterprise Portal, 196–198

710

area pages, designing

architecture (continued)
five-layer solution architecture, overview, 4–6
overview, 3–4
report execution sequence, 278–279
security framework, overview, 351–356
service-oriented architecture, 386
workflow architecture, 256–262

area pages, designing, 144–146
arithmetic operators, X++ expressions, 95
artifacts, workflows, 264–265
ASP.NET

AxDataSource, 203–204
chart control mark-up elements, 291–292
datasets, Enterprise Portal, 201–203
Enterprise Portal architecture, 196–198
Enterprise Portal, AJAX, 222
EP Chart Control Tool, overview, 289
error handling, 231–232
GridView, 207
processing architecture, 4–6
UpdatePanel, 215
User control web part, 201
validation, 231
ViewState, Enterprise Portal, 228–229

assemblies, hot-swapping, 84–85
assert, code access security, 126
Asset, element prefix, 22
assignment statements, X++ syntax, 96
associated forms, permissions, 358
associations, metadata, 163
asynchronous mode, SysOperations, 468
ATDD (acceptance test driven development),

535–536
attributes

SysTest framework, new features, 527–533
UML associations, 48–49
X++ syntax, 123–124

Attributes, product model framework, 646
authentication

Enterprise Portal architecture, 197
Enterprise Portal, security, 232–235
models, signing, 696–697
security framework overview, 351–356

Authenticode, 696–697
authorization, security framework overview, 351–356
Auto variables, overview, 187
autogeneration, buttons, 220
auto-inference, form permissions, 356–359
AutoLookup, coding, 188–189

automated decisions, workflow elements, 253
automated tasks, workflow artifacts, 265
automated tasks, workflow elements, 253
AutoQuery, 170–172
autorefresh, 25
AutoSearch, metadata property, 170
avg

sample select statement code, 102
X++ select statements, 102

Ax, element prefix, 22
AxActionPanel, 211–212
AxaptaObjectAdapter, 204
AxBaseValidator, 231
AxBaseWebPart, 224–225
AxColumn, 205
AxCommon, 393–394
AxContentPanel, 215
AxContext, 223–225
AxContextMenu, 209
Axd documents

business document updates, 407–409
document services artifacts, 392–393
overview, 392

Axd, element naming prefix, 22
AxDataSource, 201–204, 225
AxDataSourceView, 203, 209
AxDatePicker, 216
AxDateSource, 219–221
AxDateTimeValueFormatter, 230
AxDateValueFormatter, 230
AxdDocument class, 393–394
AxdSend API, 412–414
AxEnumValueFormatter, 230
AxExceptionCategory, 231–232
AxFatal, exception handling, 231
AxFilter, 209–210
AxForm, 204, 231
AxFormPart, 216
AxGridView, 207, 210, 215, 231
AxGroup, 205–206, 215
AxGuidValueFormatter, 230
AxHierarchicalGridView, 208
AxInfoPart, 216
AxInternalBase, 395
AxLabel, 229–230
AxLookup, 210–211
axmodel, 687. See also model store
axmodelstore, 688. See also model store
AxMultiColumn, 205

 711

 business documents, element prefix

AxMultiSection, 204
AxNumberValueFormatter, 230
AxPartContentArea, 216
AxPopup controls, 213–215
AxPopupBaseControl, 213–215
AxPopupChildControl, 213–215
AxPopupField, 214–215
AxPopupParentControl, 213–215
AxRealValueFormatter, 230
AxReportViewer, 216
AxSection, 204
AxStringValueFormatter, 230
AxTable class, 393–395
AxTableContext, 223–225
AxTableDataKey, 224–225
AxTimeValueFormatter, 230
AxToolbar, 212–213
AxToolbarButton, 212
AxToolBarMenu, 212
AxUpdate Portal, 239–240
AXUtil

element IDs, 692
importing models, 697–699
model store API, 703–704
models, upgrading, 699–700

AxValueFormatter, 230
AxValueFormatterFactory, 230
AxValueFormatValidator, 231
AxViewContext, 223–225
AxViewDataKey, 224–225

B
backing entity type, adding, 657
base enum elements, defined, 10
base enumeration types, 88, 93
Batch API, 623–625
Batch class, 49–50
batch framework

Batch API, using, 623–625
batch group, creating, 626–627
batch jobs, creating, 618–625
batch server, configuring, 625–626
batch-executable class, creating, 616–617
common uses of, 614–615
debugging batch jobs, 629–631
managing batch jobs, 628–629
overview, 613–614
performance and, 466–467, 615

Batch Job Form
creating batch jobs, 619–622
overview, 613

Batch Tasks form, 621–622
BatchHeader, 623–625
BatchRunable interface, 495–496
best practices

exception handling, 105
variable declaration syntax, 94
X++ syntax, 93

Best Practices tool
custom rules, 42–43
errors and warnings, suppressing, 41–42
overview, 20, 39–40
rules, 40–41
Trustworthy Computing, 372–373
XML documentation, 116

BI. See Business Intelligence (BI)
bill of materials, element prefix, 22
binding

AxToolbar, 212
BoundField, 215
chart controls, binding data series, 292–294
chart controls, binding to dataset, 292
control data binding, 173
datasets, Enterprise Portal, 201
field-bound controls, 178–179
method-bound controls, 179
object type, 92

bitwise operators, X++ expressions, 95
BOM, element prefix, 22
boolean

value types, overview, 88
variable declaration syntax, 93

BoundField, overview, 215
boxing, 110
break statement, X++ syntax, 96
Break, exception handling, 106
breakpoint

AOS configuration, performance and, 463–464
breakpoint statement, X++ syntax, 96
shortcut keys, X++ code editor, 32

browsers, Enterprise Portal architecture, 197–198
buf2con, 425–426
built-in collection types, 88
built-in primitive type, 88
Business Connector, authoring managed

code, 77–84
business documents, element prefix, 22

712

Business Intelligence (BI)

Business Intelligence (BI)
analytic content, configuring, 310–311
components of, 299–300
cubes, creating

generate and deploy cubes, 328–333
KPIs and calculations, adding, 333
metadata, defining, 325–328
requirements, identifying, 324–325

cubes, customizing, 311–319
cubes, extending, 319–323
customizing, overview, 309–310
displaying content in Role Centers

Business Overview and KPI List web
parts, 341–345

Excel reports, 340
overview, 333–335
presentation tools, choice of, 335
Report Builder, 346
SQL Server Power View reports, 335–340
Visual Studio tools, 346–349

Enterprise Portal, web parts, 199
overview, 299
prebuilt BI solution, implementing, 301–309
properties, 326–327

Business Intelligence Development Studio, 323
business logic

overview, 188
workflows, creating, 264–265

Business Overview
Enterprise Portal, web parts, 199
Role Center displays, 341–345

business processes, defined, 245–246. See also
workflow

business unit, defined, 635
buttons

action controls, creating, 174–176
action controls, overview, 175
AxToolbarButton, 212
details page, autogeneration, 220
Enterprise Portal, AJAX, 222
model-driven list pages, creating, 218–219

bytecode, overview, 87

C
C#, authoring managed code, 77–84
caching

cacheAddMethod, 418–419
CacheDataMethod, 419

CacheLookup, 421, 446–452
declarative display method caching, 419
elements, refreshing, 25
Enterprise Portal, developing for, 223
EntireTable cache, 453–454
indexing and, 421
labels, 230
MetadataCache, 225–226
number sequence caching, 465
performance

overview, 446
record caching, 446–452
unique index join cache, 452

RecordViewCache, 454–455
Server Configuration form, 463
SysGlobalCache, 456
SysGlobalObjectCache, 456
update conflicts, 409

CAL (client access license), 376–383
calculated measures, adding to cubes, 333
calendars, customizing cubes, 314–315
call stack, 88, 125–126
CallContext, consuming system services,

404–407
Called From, 420
camel casing, 93
cancel selection, shortcut key, 32
candidate key, alternate keys, 587–588
canGoBatchJournal, 617
canSubmitToWorkflow, 274
canSubmitToWorkflow, workflow artifacts, 266
Capability, 649–650
Caption property, forms, 160, 174
card sort, 145–146
CAS (code access security), 124–126, 371–372
casting statements, X++ syntax, 97
categories, product model framework, 646
changeCompany statement, X++ syntax, 98
ChangeGroupMode, 167
chart development tools, overview, 289
charts. See reporting
CIL (common intermediate language)

executing X++ as CIL, 466
troubleshooting, tracing, 487–488

claims-based authentication, 352–353
class element type, 13
class type, reference types, 89
Class Wizard, opening, 29
classDeclaration, attributes, 123–124

 713

 context-sensitive Help topics

classes
attributes, X++ syntax, 123–124
fields, X++ syntax, 118
UML object models, 49–50
X++ syntax, overview, 117–118

classIdGet system function, reflection, 669, 672–673
ClearFieldValues, 214–215
client access license (CAL), 376–383
client access log, 490
client callbacks, eliminating, 424–425
client configuration, performance and, 464–465
client, method modifier, 119
Close button, autogeneration, 220
ClosePopup, 214–215
CLR (Common Language Runtime)

reference element types, 13
type conversions, 111
X++ interoperability, 108–112

CLRError, exception handling, 106
ClrObject, calling managed code, 76
code access security (CAS), 124–126, 371–372
code element types, overview, 13
code permission element type, 14
CodeAccessPermission, 125, 371–372
CodeAccessPermission.copy, 372
CodeAccessPermission.demand, 372
CodeAccessPermission.isSubsetOf, 372
CodeAccessSecurity, exception handling, 106, 372
coding. See also X++ programming language (code)

Auto variables, 187
business logic, 188
custom lookups, 188–189
form customization, overview, 184
method overrides, 184–186

collections list page example, 148–149
columns

AxColumn, 205
AxMultiColumn, 205
computed columns, creating views, 333

CombineXPOs, 71
CommandButton, 175
comments

inserting, shortcut key for, 32
X++ syntax, 115

common intermediate language (CIL)
executing X++ as CIL, 466
troubleshooting, tracing, 487–488

Common Language Runtime (CLR)
reference element types, 13

type conversions, 111
X++ interoperability, 108–112

common type, 90–91
Common, Area Page design, 145
Compare tool, 20, 54–59
compilation

Compiler output window, 38
compiling and running X++ as .NET CIL,

126–128
EB Web Applications, 220
errors, shortcut keys, 32
errors, use of semicolon, 95
intrinsic functions, reflection, 670–671
overview, 37–39
shortcut keys, X++ code editor, 32

Compiler tool, 20
compound statement, X++ syntax, 97
computed columns, views, 333
con2buf, 425–426
ConceptNum, 671
ConceptStr, 671
Concrete Source Documents, 664–665
conditional operators, X++ expressions, 95
conditions, workflow document classes, 268–270
configuration hierarchy, license codes, 378
configuration key element type, 16–17
configuration keys

Business Intelligence (BI), 309
license codes, 378–380
table inheritance hierarchy, 595

ConfigurationKey, temporary tables, 584
conflict resolution, project upgrades and, 29
Connect, Enterprise Portal web parts, 199
constrained table

data security policies, developing, 365–369
defined, 365

constructor encapsulation pattern, 129–130
constructor, defined, 120
consumer, eventing, 520
containers

converting table buffers, 425–426
variable declaration syntax, 93

content pane, navigation form design, 156–157
content pane, navigation layer forms, 142
ContentPage, window type, 174
context menu, AxContextMenu, 209
Context, Enterprise Portal development, 223–225
ContextMenuName, AxGridView, 207
context-sensitive Help topics, 561–562

714

ContextString, data security policies

ContextString, data security policies, 367
continue statement, X++ syntax, 97
controls

adding, overview, 172–173
control data binding, 173
Design node properties, 173–174
dialog box controls, 494
form permissions, 359
input controls, overview, 178–179
layout controls, overview, 176–178
ManagedHost control, 179–181
report elements, 282–285
runtime modifications, 174

conversationId, 412
CopyCallerQuery property, form queries, 172
Correction, date-effective tables, 605–606
CorrectPermissions, 360
COS, element prefix, 22
cost accounting, element prefix, 22
cost center, defined, 635
count, select statements, 102
Create New Document Service Wizard, 393
create, read, update, and delete (CRUD) permissions

forms, 356–359
menu items, 360

CreateNavigationPropertyMethods, 591–593
CreateNewTimePeriod, 605–606
CreatePermissions, 360
createRecord, 167
CRM, element prefix, 23
crossCompany, 99
CrossCompanyAutoQuery, metadata property, 169
Cross-reference tool

overview, 60–61
Cross-reference tool, overview, 20
CRUD (create, read, update, and delete) permissions

forms, 356–359
menu items, 360

cubes
calendars, customizing, 314–315
creating

generate and deploy cubes, 328–333
metadata, defining, 325–328
requirements, identifying, 324–325

currency conversion, 316–317
customizing, 311–319
extending, data source, 321
extending, DSV, 321
extending, external data sources, 322–323
extending, KPIs and calculations, 321

extending, measures and dimensions, 321
extending, overview, 319–321
financial dimensions, 313–314
languages, selecting, 315–316
SSAS deployment, 303–309

cues
cue element type, MorphX, 12
cue group element type, MorphX, 12
Cue Groups, creating, 218
CueGroupPartControl, 216
Enterprise Portal web part, 199
parts overview, 181
Role Center page design, 143

culture, Enterprise Portal formatting, 230
currency conversion

cubes, adding logic, 328–332
overview, 316–317
surrogate keys, 586–587

CurrentContextChanged, 224–225
CurrentContextProviderView, 224–225
CurrentDataAccess, 363
CurrentDate, time period filters, 345
Cust, element naming prefix, 22
custom rules, adding, 42–43
custom workflow providers, workflow artifacts, 266
customer contact, list page sample design, 146–148
Customer Group lookup, 210–211
customer relationship management, element

prefix, 23
customers, element prefix, 22
customization

Business Intelligence (BI), 309–319
chart reporting, default override, 296
custom services, 388–391
delegates, X++ syntax, 120–122
deploying, 700
document services, overview, 392, 397–399
Enterprise Portal architecture, 196–198
model store API, 703–704
using code, overview, 184
web parts, 199–201

D
dangerous API exceptions, 41
data. See also metadata; also transaction

performance
access to, Enterprise Portal, 225–226
Axd queries, creating, 395–396

 715

 delete

chart controls, binding to, 292–294
consistency, date-effective framework, 604–606
control data binding, 173
cubes, metadata selection, 325–328
data contracts, custom services, 389–390
data contracts, X++ collections as, 391
extensible data security policies, creating,

364–369
external data source integration, 322–323
form data sources, 164–169
form method overrides, 185–186
metadata, form data source properties, 168–169
Microsoft Office add-ins, 189–190
report elements, design of, 282–285
security framework overview, 351–356
valid time state tables, use of, 362–363

data binding
BoundField, 215
datasets, Enterprise Portal, 201

Data DictionaryPerspectives, 325–326
data model, Cross-reference tool, 60
data object, document services, 393
data processing extensions, reports, 288
data source, element prefix, 22
data tier

architecture, 7
Business Intelligence (BI), 299–300

dataAreaId, indexing tips, 475–476
data-aware statements, X++ syntax, 99–104
database statements, X++ syntax, 99–104
database tier. See also transaction performance

alternate keys, 587–588
date-effective framework, 601–606
full-text support, 606–607
overview, 577
QueryFilter API, 607–612
surrogate keys, 585–587
table inheritance, 594–599
table relations, 588–593
temporary tables

creating, 583–585
InMemory tables, 578–582
TembDB temporary tables, 582–583

Unit of Work, 599–601
DataBound, AxGridView, 207
DataContractAttribute, 390, 495
DataKeyNames, AxForm, 204
DataMember, 203–204, 207
DataMemberAttribute, 390, 495
DataSet, details page, 219–221

datasets
AxGridView, 207
Enterprise Portal, 201–203

DataSetView, 204, 209, 225
DataSetViewRow, 204
DataSourceControl, 203–204
DataSourceID

AxDataSource, 203–204
AxForm, 204
AxGridView, 207

DataSourceName, Auto variables, 187
DataSourceView, 203
date-effective framework

data consistency, run-time support, 604–606
data retrieval support, 603–604
overview, 601
relational modeling, 601–603

dates
AxDatePicker, 216
calendars, customizing, 314–315
currency conversion logic, 330–332
DATE, 314
Date Dimensions, 314–315
date effectivity, overview, 168
date, value types, 88
date, variable declaration syntax, 94
valid time state tables, 355

DDEerror, exception handling, 106
Deadlock, 106
debugging

batch jobs, 629–631
Debug Target, 81–82
Debugger tool, MorphX, 20, 43–47
extensible data security policies, 368–369
managed code, 81–82
security, 373–375
Table Browser tool, 52–53

declarations, Help topics, 552–553
declarative display method caching, 419
decoupling, events, 521
Default Account, defined, 655–656
Default Dimensions, defined, 655
defaulting logic, document services, 399
delegate, eventing, 521–524
delegate, method modifier, 119
delegates, X++ syntax, 120–122
delete

current selection, shortcut keys, 32
InMemory temporary tables, 582
table relations, 588–593

716

delete permissions

delete permissions
forms, 356–359
menu items, 360

delete, deleting, and deleted methods, 168
delete_from, 104, 428, 435–436
DeletePermissions, 360
department, defined, 635
dependent workflow artifacts, 264–265
deployment. See also Microsoft Dynamics AX services

assemblies, hot-swapping, 84–85
cubes, 328–333
models, 700–703
third-party DLLs, 75–76
Version Control, 63–64
web part pages, 239–240

Derived Data Sources, 165–167
derived table, creating, 594
design definition, report elements, 282–285
Design node, control properties, 173–174
design patterns, X++, 128–133
details form

designing, 150–153
transaction details form, designing, 153–155

details page, creating, 219–221
DetailsFormMaster template, 161
DetailsFormTransaction template, 161
DeveloperDocumentation, 548
development environment. See application

meta-model architecture; MorphX
development tools, element prefix, 23
device CAL, 376–383
dialog box controls, 494
Dialog template, 161
dictionary, reflection API, 670, 676–680
digital signature, assembly names, 74–75
Dimension Attribute

dimension framework overview, 654–656
query data, 658–659

Dimension Attribute Sets, defined, 655
Dimension Derivation Rule, 660
dimension framework

constrain combinations of values, 656
create values, 656–657
extensions, 657
overview of, 654–656
physical table references, 659
query data, 658–659

Dimension Sets, defined, 655
DimensionConstraintNode, 656
DimensionDefaultingService, 656–657

dimensions, cubes, 321
DimensionStorage, 656–657
DimensionValidation

validateByTree, 656
Dir, element prefix, 22
directory, element prefix, 22
DirPartyTable_FK, 592
DirPersonName, 601–603
disableCache, 450
display menu items, workflow artifacts, 266
display, method modifier, 119
DisplayGroupFieldName, AxGridView, 207
DLLs (dynamic-link libraries)

referencing managed DLLs, 75–76
using third-party assemblies, 73–76

do while statement, X++ syntax, 97
document class, workflows, 268–270
document files, Help server, 547–549
document head, Help content, 553–556
document services

artifacts, 392–393
AxdDocument class, 393–394
AxTable classes, 395
creating, 395–397
customizing, 397–399
overview, 392

document set, Help system, 571
documentation element type, 16
documents

element naming conventions, 22
processing architecture, 5

doDelete, 428
doInsert, 428
doUpdate, 428
DropDialog template, 161
DropDialogButton, 175
DSV, overview, 321
DuplicateKeyException, 107
DuplicateKeyException-NotRecovered, 107
duties, security framework overview,

353–356
duty element type, overview, 14
dynalinked data sources

LinkType, metadata property, 169
Microsoft Dynamics AX client, 164–169

Dynamic Account, defined, 656
dynamic role assignment, 355
dynamic-link libraries (DLLs)

referencing managed DLLs, 75–76
using third-party assemblies, 73–76

 717

 Enterprise Portal, developing

DynamicsAxEnterprisePortal, 237
DynamicsAxEnterprisePortalMOSS, 237
DynamicsAxWebParts, 237
DynamicsLeftNavProvider, 235
DynamicsMOSSTopNavProvider, 235
DynamicsSearch, 237
DynamicsTopNavProvider, 235

E
economic resources, element prefix, 22
EcoRes, element prefix, 22, 647–648
editing

AllowEdit, AxGridView, 207
details form design, 152
edit permissions, menu items, 360
edit, method modifier, 119

EDT. See extended data type (EDT)
EDT Relation Migration tool, 589
EffectiveAccess, form permissions, 358
EffectiveBased, date-effective tables, 605–606
element IDs

application models, 692–693
model deployment, 702–703

element, Auto variables, 187
elements

actions in AOT, 25–26
Compare tool, 54–59
creating in AOT, 23
Cross-reference tool, overview, 60–61
history of, viewing, 69
layers and models in AOT, 26
modifying in AOT, 23–25
naming conventions, 21–22
pending, Version control, 70
Projects, creating, 27
property sheet, overview, 30–31
refreshing elements, AOT, 25
upgrades, conflict resolution, 29
version control system life cycle, 64–65
Version Control tool, overview, 62–64
workflow elements, 252–253

Enable block selection, 32
encryption, Enterprise Portal, 235
endpoints, associations, 49
Enterprise Portal. See also Enterprise Portal,

developing for
AOT elements, 201
architecture, 8, 196–198

authentication, overview, 352–353
AxActionPanel, 211–212
AxColumn, 205
AxContentPanel, 215
AxContextMenu, 209
AxDataSource, 203–204
AxDatePicker, 216
AxFilter, 209–210
AxForm, 204
AxFormPart, 216
AxGridView, 207
AxGroup, 205–206
AxHierarchicalGridView, 208
AxInfoPart, 216
AxLookup, 210–211
AxMultiColumn, 205
AxMultiSection, 204
AxPartContentArea, 216
AxPopup controls, 213–215
AxReportViewer, 216
AxSection, 204
AxToolbar, 212–213
BoundField, 215
charting controls

chart development tools, 289
data series, binding, 292–294
EP Chart Control, creating, 290–291
mark-up elements, 291–292
overview, 289

CueGroupPartControl, 216
datasets, 201–203
overview, 195
presentation tier architecture, 8
processing architecture, 5
Visual Studio development environment, 7
web client experience, designing, 155–157
web parts, overview of, 199–201
workflow menu items, 252

Enterprise Portal, developing for
AJAX, 222
Context, 223–225
data, access, 225
details page, creating, 219–221
Enterprise Search, 240–243
error handling, 231–232
formatting, 230
labels, 229–230
metadata, access to, 225–226
model-driven list page, creating, 217–219
overview, 216–217

718

Enterprise Search

Enterprise Portal, developing for, (continued)
proxy classes, 226–228
security, 232–235
session disposal and caching, 223
SharePoint integration

Enterprise Search, 240–243
site definitions, page templates, and web

parts, 237–239
site navigation, 235–236
themes, 243
web part page, import and deploy, 239–240

validation, 231
ViewState, 228–229

Enterprise Search
Enterprise Portal and SharePoint integration,

240–243
EntireTable caching, 421, 453–454, 463
entity relationship data model, 51
enumeration types, 88
EPApplicationProxies, 226–228
EP Chart Control

creating, 290–291
data series binding, 292–294
mark-up elements, 291–292
overview, 289

EPSetupParams, 237
EP User Control with Form template, 219–221
EP Web Application Project template, 219–221
Error, exception handling, 107
errors

compiler errors, 37–39
error handling, Enterprise Portal development,

231–232
error warnings, Enterprise Portal web parts, 200
suppressing, Best Practices tool, 41–42

Esc key, 32
evalBuf, code access security, 124–126
event handlers

InMemory temporary tables, 582
pre- and post-, X++ syntax, 122–123
pre- and post-events, overview, 522–523
workflow artifacts, 266
workflows, 252
workflows, state management, 266–267

event logging, processing architecture, 5
event payload, defined, 521
eventhandler, delegate subscription, 121–122
eventing extensibility pattern

delegates, 521–522
event handlers, 523–524

eventing example, 524–525
overview, 520–521
pre and post events, 522–523

Excel
architecture, 9
authoring managed code example, 77–84
PowerPivot, SQL Server Power View, 335–340
reports, displaying in Role Centers, 340
templates, building, 190–193

Excel Services for SharePoint, report display, 340
Excel Services web part, report display, 340
exception handling, X++ syntax, 105–108
exceptions, dangerous APIs, 41
exchange rates, 329–332
Exchange Rates By Day, 331–332
execute current element, 32
execute editor script, 32
ExecutePermission, 371–372
executeQuery method, 172
ExecuteQuery, AxFilter, 209
ExistJoin, 164
exists, 103
exists method, 131–132
ExpansionColumnIndexesHidden, 207
ExpansionTooltip, AxGridView, 207
expense reports, 638
ExplicitCreate, 168
exporting elements, Compare tool, 56
exporting models, 695–696
expressions

expression builder, workflow document,
250, 269

X++ syntax, 95
extended data type (EDT)

AmountMST, currency conversions, 316–317
AxLookup, 210–211
defined, 10
overview, 88, 92–93
table relations, 588–590
value types, overview, 88
variable declaration syntax, 94

extensible data security framework (XDS)
debugging data security policies, 368–369
organization model framework integration, 638
policies, creating, 364–369
temporary table constructs, 368

extension framework
creating extensions, 517–518
extension example, 518–520

extensions, SQL Server Reporting Services (SSRS), 8

 719

 forms

FireCurrentContextChanged, 224–225
FireExternalContextChanged, 224–225
firstFast, 99, 476
firstOnly, 100
firstOnly10, 100
firstOnly100, 100
firstOnly1000, 100
FISCALPERIODDATEDIMENSION, 314
flexible authentication, overview, 352–353
flush statement, X++ syntax, 97
folders

Help content, publishing, 567–571
Projects, automatic generation of, 27–29

for statement, X++ syntax, 97
forceLiterals, 100
forceNestedLoop, 100
forcePlaceholders, 100
forceSelectOrder, 100
foreign key relations, 590–593
foreign keys, surrogate, 168
form element type, MorphX, 12
form part element type, MorphX, 12
Form Parts, model-driven list pages, 218
form parts, overview, 182
form rendering, MorphX user interface

controls, 11–12
Form.DataSources, 162
Form.Designs.Design, 162
Form.Parts, 162
formatting, Enterprise Portal, 230
FormDataSource.AutoQuery, 170
FormDataSource.cacheAddMethod, 418–419
FormDataSource.create method, 166
FormDataSource.init, 172
FormDataSource.query, 172
FormDataSource.queryRun.query, 172
forms. See also details form; also Enterprise Portal,

developing for; also Purchase Order
form; also Sales Order form; also user
experience, designing

debugging security, 373–375
display and edit methods, cacheAddMethod,

418–419
form metadata, 162–164
form patterns, 160–162
form queries, overview, 170–172
method overrides, 184–186
navigation layer forms, design basics, 141–142
navigation layer forms, Enterprise Portal

design, 156–157

external name, service contracts, 389–390
ExternalContextChanged, 224–225
ExternalContextProviderView, 224–225

F
F1, context-sensitive Help, 561–562
FactBox

AxPartContentArea, 216
details form design, 152
Enterprise Portal, navigation form design,

156–157
form parts, overview, 182
list page design, 150
model-driven list pages, creating, 218
MorphX user interface control element type, 12
navigation layer forms, 142
transaction details form design, 155

FastTabs, details form design, 150–153
FastTabs, TabPage controls, 177–178
field level properties, 327–328
field lists, performance and, 456–462
field-bound controls, 178–179. See also controls
fields, Help topics, 559–561
fields, X++ syntax, 118
file transfers. See also .NET Framework

legacy systems, overview, 73
FileIOPermission, 371–372
filters

AxDataSource, 203–204
AxFilter, 209–210
Projects, automatic generation of, 28
QueryFilter, 172, 607–612
ResetFilter, 209
ShowFilter, AxGridView, 208
SystemFilter, 209
SysTest framework, new features, 530–533
time period, Business Overview web part,

344–345
UserFilter, 209

final, method modifier, 119
financial dimensions, cubes, 313–314
financial dimensions, organization model

framework, 637
find method, 131–132
Find tool, 20

overview, 53–54
finished goods management. See product

model framework

720

FormTemplate

forms (continued)
permissions, setting, 356–359
working with, overview, 159–160

FormTemplate, 218
forUpdate, 100, 446–452
Found, record caching, 446–452
FoundAndEmpty, record caching, 446–452
foundation application domain partition, 4–6
FutureDataAccess, 363

G
General Journal, 660
general ledger, element prefix, 23
generateOnly, 100, 368–369
generic group reference, 132–133
Generic Test Case, 541
GetClosePopupEventReference, 214–215
GetCurrent, 204
getDataContractInfo, 494
GetDataSet, 204
GetFieldValue, AxPopup, 214–215
GetOpenPopupEventReference, 213–215
getQueryName, 269
getServiceInfo, 494
getter methods, 592
global address book, element prefix, 22
Glossary, Help system, 548
Go to implementation, 32
Go to next method, 32
Grid control, overview of, 176, 178
GridColumnIndexesHidden, 207
GridView

AxGridView and, 207
BoundField, 215

group by, select statement code sample, 102
Group control, overview of, 176
GroupField, 207
GroupFieldDisplayName, 207
grouping, AxGridView, 207
GroupMask, 28–29
Groups, automatic project generation, 27–29
Guest accounts, Enterprise Portal, 232–235
GUID, AxGuidValueFormatter, 230

H
header view, transaction details form, 154
headers, XML insert shortcut key, 32

help documentation set element type, 16
Help system

creating content
add labels, fields, and menu items, 559–561
context-sensitive topics, 561–562
non-HTML topics, 565–567
overview, 550–552
table of contents, creating, 563–565
topics, create in HTML, 552–559
updating content, 562–563

Help server, 546–549
help text, label file, 229–230
help text, SysOperationHelpTextAttribute, 495
Help viewer, 546–547
Microsoft Dynamics AX client, 547
overview, 545–549
processing architecture, 8
publisher, 550
publishing content, 567–571
shortcut keys, X++ code editor, 32
summary page, 550–551
table of contents, 550
topics, 549–550
troubleshooting, 572–573

HiddenField, AxPopupField, 214–215
hierarchy

organizational model framework, 635–637
type hierarchies, 89–93

hierarchy designer, extending, 642
HierarchyIDFieldName, 208
HierarchyParentIdFieldName, 208
history, batch jobs, 629
horizontal application domain partition, 4–6
hot-swapping assemblies, 84–85, 463–464
HRM/HCM, element prefix, 22
human resources management processes

element prefix, 22
organization model framework integration, 638

human workflows, defined, 246–249. See also
workflow

HyperLinkMenuItem, model-driven list pages, 218

I
ICustomFormatter, 230
identifierStr, 671
if statement, X++ syntax, 97
IFormatProvider, 230
IIS (Internet Information Services), 8, 197–198

 721

 IsLookUp

implementation patterns, X++, 128–133
ImplicitCreate, 168
ImplicitInnerOuter, 167
importing elements

Compare tool, 56
web part pages, 239–240

importing models, 697–699
Included Columns, indexing tips, 475–476
incremental search, shortcut key, 32
index

ActiveSectionIndex, 204
alternate keys, 587–588
caching and, 421
database query sample, 101
Enterprise Search, 240–243
ExpansionColumnIndexesHidden, 207
GridColumnIndexesHidden, 207
inMemory temporary tables, 423
performance tips, 475–476
record caching, 448–449
SelectedIndexChanged, 208
unique index join cache, 452

indexed sequential access method (ISAM),
577–582

IndexTabs, TabPage controls, 176–178
industry application domain partition, 4–6
info part element type, MorphX, 12
Info Parts, model-driven list pages, 218
info parts, overview, 181
Infolog

Enterprise Portal, web parts, 200
validation, 231

information dissemination, events, 521
information messages, Enterprise Portal web

parts, 200
infrastructure callback, workflow, 261
inheritance

RunBase, 510–511
tables, 91, 165–167, 594–599

inheritance, metadata, 163–164
init method, Enterprise Portal datasets, 202
initializing, SysListPageInteractionBase, 218
Inline, WindowMode, 220
InMemory temporary tables, 422–423, 428,

578–585
InnerJoin, 164
input controls, overview, 178–179. See also controls
Inquiries, Area Page design, 145
insert method, transaction statement, 104

insert_recordset
RowCount, 104
sample statement, 104
table hierarchies and, 428
transaction performance and, 429–432
transferring code into set-based operations,

442–444
insertDatabase, transaction performance, 437–439
InsertIfEmpty, metadata property, 169
installation, third-party DLLs, 75–76
InstanceRelationType, 594
int

value types, overview, 88
variable declaration syntax, 94

int64
value types, overview, 88
variable declaration syntax, 94

Integrated Windows Authentication, 352–353
integration tier, Business Intelligence, 299–300
IntelliMorph, 8, 33
IntelliSense, 73–76
InteractionClass, 218–219
interactive functions, reports, 294–295
interfaces

code access security (CAS), 124–126
fields, syntax, 118
label file, 229–230
methods, syntax, 118–120
reference types, overview, 89
UML object models, 49–50
X++ syntax, overview, 117–118

inter-form dynalinks, 165
Internal, exception handling, 107
International Financial Reporting Standards,

segregation of duties, 354
Internet Information Services (IIS), 8, 197–198
InteropPermission, 371–372
intra-form dynalinks, 165
intrinsic function, reflection, 669–671
Invent, element prefix, 22
inventory management, 22, 465. See also product

model framework
Inventory Model Group, 645
is operator, 92
ISAM (indexed sequential access method), 577–582
IsConsumingMemory, 684
IsGetNodeInLayerSupported, 684
IsLayerAware, 684
IsLookUp, 327

722

IsModelElement

IsModelElement, 684
IsRootElement, 684
isTmp, 582
IsUtilElement, 684
IsVCSControllableElement, 684
Item Group, 645

J
JMG, element prefix, 23
job element types, 13
Jobs, overview of, 88
joined data sources, Microsoft Dynamics AX client,

164–169
joins

LinkType, metadata property, 169
maximum number, 463
select statement code sample, 102

JoinSource, metadata property, 169
Journalization Processor, 660–662
Journalization Rules, 660–662
Journals, Area Page design, 145

K
keywords, data-aware statement options, 99
KM, element prefix, 23
knowledge management, element prefix, 23
KPI

adding to KPI List web part, 342–344
cubes, creating, 333
SSAS projects, 321

KPI List web part, Role Center displays, 341–345

L
Label editor tool

creating labels, 35–36
overview, 20, 33–35
referencing X++ labels, 36–37
shortcut keys, X++ code editor, 32

labels
Enterprise Portal, developing for, 229–230
Help topics, 559–561
label file element type, 16
Label Files, 33–34
Label Files Wizard, 35

language
cubes, customizing, 315–316
formatting, Enterprise Portal, 230
label editor, 33
label editor, creating labels, 36

layer comparison, Project development tools, 29
layers, metadata

models, overview, 690–692
overview, 688–690

layout controls
input controls, overview, 178–179
overview of, 176–178

layout, hiding report columns, 286–288
Ledger Dimensions

creating, 656–657
defined, 655

Ledger, element prefix, 23
Left navigation, Enterprise Portal web part, 200
legacy systems. See also .NET Framework

legacy data source integration, 323
working with, 73

LegacyID, 692
legal entity, defined, 634
license code element type, 16–17
license keys, generating, 703–704
licensing

CALs, types of, 381–382
customization and, 383
overview, 376–383

line view, transaction details form, 154
line-item workflows, overview, 253
links

data sources, Microsoft Dynamics AX client,
164–169

Help content, 558
hiding, ShowLink, 236
HyperLinkMenuItem, 218

LinkType, 164, 169
list definition element type, 15
list pages

designing, 146–150
model-driven list page, creating, 217–219
performance optimization, 476

ListPage template, 161
ListPage, window type, 174
ListPageInteraction, 218
literalStr, 36–37, 671
loadData, 653

 723

 method invocations, X++ expressions

local function statement, X++ syntax, 98
localization

label editor, 33
label editor, creating labels, 36

logging, InMemory temporary tables, 582
logical operators

logical approval and task workflows, 260–262
X++ expressions, 95

LogonAs, Enterprise Portal security, 232–235
LogonAsGuest, Enterprise Portal security, 232–235
lookups

AxLookup, 210–211
custom, coding, 188–189
table relations, 588–593

LookupType, 211
loop iterations, reducing, 477–478

M
macro element types, overview, 13
macros, X++ syntax, 113–115
Main Account Derivation Rule, 660
Main Account Dimension Attribute, 658–659
Main Account Dimension List Provider, 660
MainMenu, adding menus, 183. See also menus
MaintainUserLicense, 383
managed code

assemblies, hot-swapping, 84–85
authoring, 77–84
third-party assemblies, 76

ManagedHost control, 179–181
manifest, models, 694–695
manual decisions, workflow elements, 253
map element type, defined, 10
map type, reference types, 89
marketing management, element prefix, 23
master data sources, 164–169
master scheduling, performance and, 465
maxOf, X++ select statements, 102
measures, cubes, 321, 333
memory heap, defined, 88
MenuButton, 175
MenuItem

adding, 182
AxToolbar, 212
CopyCallerQuery, 172
overview, 175

MenuItemButton
CopyCallerQuery, 172
overview, 174–175

menus
adding, overview, 183
batch jobs, creating, 618
customizing, 383
Enterprise Portal, security, 233–235
form permissions, 360
Help topic labels, 561
Help topics, 559–561
menu definitions, 183
menu element type, MorphX, 11
menu item element type, MorphX, 11
model-driven list pages, creating, 218
SharePoint navigation, 236
web, AxActionPanel, 211–212
workflow artifacts, 266
workflow menu items, 252, 270

messages
Enterprise Portal, web parts, 200
send framework, 411–414

metadata
access to, Enterprise Portal, 225–226
associations, 163
cubes, metadata selection, 311–312, 325–328
custom service artifacts, 388
document service, artifacts, 392–393
element IDs, 692–693
form data source properties, 168–169
form metadata, Microsoft Dynamics AX client,

162–164
Help topic updates, 563
Help topics, 566–567
inheritance, 163–164
layers, 688–690
managing artifacts, overview, 687–688
model store API, 703–704

models
creating, 693–694
moving to production, 700–703
overview, 690–692
preparing for publication, 694–699
upgrading, 699–700
providers, workflow, 254–255
system services, 388
system services, consuming, 404–407
X++ collections as data contracts, 391

Metadata service, Enterprise Search, 240–243
MetadataCache, Enterprise Portal, 225–226
meta-model architecture. See application

meta-model architecture
method invocations, X++ expressions, 95

724

method overrides

method overrides, 184–186
method-bound controls, overview, 179
methods, X++ syntax, 118–120
Microsoft Dynamics AX Reporting Project, 282
Microsoft .NET Framework. See .NET Framework
Microsoft ASP.NET, processing architecture, 4–6
Microsoft Dynamics AX

introduction to, 3–4
model and application database, 7

Microsoft Dynamics AX Application Object Server
(AOS). See AOS (Microsoft Dynamics AX
Application Object Server)

Microsoft Dynamics AX Business Connector
authoring managed code, 77–84

Microsoft Dynamics AX client
action controls, 174–176
Auto variables, 187
business logic, 188
control data binding, 173
control overrides, 172–173
controls, Design node properties, 173–174
controls, run-time modifications, 174
custom lookups, 188–189
customizing forms, overview, 184
Excel templates, building, 190–191
form data sources, 164–169
form metadata, 162–164
form patterns, 160–162
form queries, 170–172
forms, overview, 159–160
Help system interaction, 547
input controls, 178–179
layout controls, 176–178
ManagedHost control, 179–181
method overrides, 184–186
Microsoft Office client integration, 189–193
navigation items, overview, 182–183
overview of, 159
parts, overview, 181–182
user templates, adding, 192–193
Word templates, 191–192

Microsoft Dynamics AX Enterprise Portal. See
Enterprise Portal

Microsoft Dynamics AX Report Definition
Customization Extension (RDCE), 286–288

Microsoft Dynamics AX services
asynchronous invocations, 409–411
consuming

business document updates, 407–409
external web services, 414

system services, 404–407
WCF client sample, 402–404

custom services, 388–391
document services

artifacts, 392–393
AxdDocument class, 393–394
AxTable classes, 395
creating, 395–397
customizing, 397–399
overview, 392

overview of, 385–387
performance considerations, 415
publishing, 400–401
security, 400
send framework, 411–414
system services, 387–388

Microsoft Dynamics AX Trace Parser, 479–488
Microsoft Dynamics AX Windows, 3–4
Microsoft Dynamics Public, security, 232–235
Microsoft Excel. See Excel
Microsoft Office

architecture, 4–6
presentation tier architecture, 9
processing architecture, 3–4

Microsoft Office client
Excel templates, 190–191
integration with, 189–193

Microsoft SharePoint Server. See SharePoint Server
Microsoft SQL Server. See SQL Server
Microsoft SQL Server Analysis Services. See SQL

Server Analysis Services (SSAS)
Microsoft SQL Server Reporting Services. See SQL

Server Reporting Services (SSRS)
Microsoft Technology platform, architecture

overview, 4–6
Microsoft Test Manager

acceptance test driven development
(ATDD), 535–536

ALM solution, 534
ordered test suites, 539–540
overview, 533–534
shared steps, 536–539
Team Foundation Build, 540–543
test case evolution, 538
test selection, 542–544

Microsoft Visio
Reverse Engineering tool, MorphX, 47–51

Microsoft Visual SourceSafe (VSS), 62–64
Microsoft Visual Studio Integrated Development

Environment (IDE), 4–6

 725

 Numeric, exception handling

Microsoft Visual Studio Team Foundation Server
(TFS), 62–64

Microsoft Windows client, architecture, 4–6, 8
Microsoft Windows Server, architecture, 4–6
Microsoft Word client

architecture, 9
templates, building, 191–193

migration, EDT Relation Migration tool, 589
minOf, X++ select statements, 102
modal dialog settings, details page, 220–221
Modal, WindowMode, 221
Model Editor, production reports and, 282
Model Manifest, 694–695
model store

APIs, 703–704
element IDs, 692–693
layers, overview, 688–690
models, creating, 693–694
models, overview, 690–692
models, preparing for publication, 694–699
moving from test to production, 700–703
overview, 687–688
upgrading models, 699–700

model-driven list page, creating, 217–219
Model-View-Controller (MVC), 494
Month_LastMonth, time period filters, 345
MorphX

accounting framework, model element
prefixes, 663

Application Object Tree
creating elements, 23
element actions, 25–26
element layers and models, 26
modifying elements, 23–25
navigation, 21–23
refresh elements, 25

Best Practices tool, overview, 39–43
client-side reporting solutions, 276–277
code compiler tool, overview, 37–39
Compare tool, overview, 54–59
Cross-reference tool, overview, 60–61
datasets, creating, 201
debugger tool, overview, 43–47
Enterprise Portal architecture, 196–198
Enterprise Portal, developing for, 216
Find tool, overview, 53–54
Label editor, overview, 33–37
models, preparing for publication, 694–699
operations resource framework, element

prefixes, 654

overview of, 6–7, 19–21
processing architecture, 5, 7–9
Projects, overview, 27–30
property sheet, 30–31
reference element types, 13
Reverse Engineering tool, overview, 47–51
source document model element prefixes, 667
Table Browser tool, overview, 52–53
tools, overview, 20
user interface control element types, 11–12
Version Control tool, overview, 62–71
X++ code editor, 31–33

MVC (Model-View-Controller), 494

N
Name, metadata property, 169
Named User license, 376–383
namespace, creating service contracts, 389–390
naming conventions

assemblies, 74–75
elements, 21–22
label files, 35
temporary tables, 584

navigation
adding navigation items, overview, 182–183
CreateNavigationPropertyMethods, 591–593
Enterprise Portal and SharePoint integration,

235–236
Enterprise Portal, web parts, 200

navigation bar, Enterprise Portal form design,
156–157

navigation layer forms
design basics, 141–142
Enterprise Portal design, 156–157

navigation pane, navigation layer forms, 141,
156–157

NetTcpBinding
publishing services, 401
system services, consuming, 404–407

NewModal, WindowMode, 221
NewWindow, WindowMode, 221
noFetch, 100
nonExists, 103
NonFatal, exception handling, 231
NotExistJoin, 164
NotInTTS cache, 446–452
NumberSeq

getNextNumForRefParmId method, 425
Numeric, exception handling, 107

726

object creation operators, X++ expressions

O
object creation operators, X++ expressions, 96
object models, UML, 49–50
object type

overview, 91–92
variable declaration syntax, 94

objects
assemblies, calling managed code, 76
RunOn properties, 422

observation, events, 521
OCC (optimistic concurrency control), 409

Microsoft library resources, 577
update_recordset, 434

OccEnabled, 100
OData feeds, SQL Server Power View reports,

335–340
ODC files, defining, 343
Office client integration applications, development

of, 6–9
OLAP (online analytical processing) databases

cubes, deploying, 303–309
currency conversion logic, adding to cubes,

328–332
DSV, overview of, 321
Report Builder, 346

OnClick
pop-up controls, 213–215
validation, 231

OnlyFetchActive, metadata property, 170, 460
OpenPopup, 214–215
operating unit, defined, 634
operational persona, 334–335
operations resource framework

extensions, 652–653
MorphX model element prefixes, 654
overview of, 648–652
when to use, 652

optimistic concurrency control (OCC), 409
optimistic concurrency, performance, 444–446
optimisticlock

performance and, 445–446
select statements, 100

OptionalRecord, 168
organizational model framework

custom operating units, creating, 639–640
hierarchy designer, extending, 642
integration with other frameworks application

modules, 637–638
organization hierarchies, 635–637

organization types, 634–635
overview, 634
scenarios, modeling, 638–639

Origin, element IDs, 692
outer, 103
OuterJoin, joined data sources, 164
overrides, coding for, 184–186, 430

P
pack and unpack methods, 130–131, 202, 617
page definition element type, 15
Page Definition, Enterprise Portal web parts, 200
page rendering, Enterprise Portal architecture,

196–198
page templates, Enterprise Portal and SharePoint

integration, 237–239
page title, Enterprise Portal web parts, 200
Page Viewer web part, 336–339
Page.IsValid, 231
pages, Enterprise Portal and SharePoint integration,

237–239
PageTitle, Enterprise Portal web parts, 200
parallel activities

batch framework overview, 615
workflow elements, 253

parameter methods, X++ syntax, 129
parentheses, X++ expressions, 96
parm methods, workflow classes, 269–270
Parse, formatting, 230
partitioned tables

map element type, 10
QueryFilter, 611–612

partitions
architecture overview, 4–6
cubes, deploying, 305–309

parts
referencing from a form, 182
types of, 181–182

Pascal casing, 93
PassClrObjectAcrossTiers, exception handling, 107
PastDataAccess, 363
patterns, X++ design and implementation, 128–133
pause statement, X++ syntax, 98
PBA, element prefix, 23
PDB (Program Database) files, third-party

assemblies, 73–76
performance

batch framework and, 466–467, 615
caching

 727

 postback

EntireTable cache, 453–454
overview, 446
record caching, 446–452
RecordViewCache, 454–455
SysGlobalObjectCache and

SysGlobalCache, 456
unique index join cache, 452

client/server performance
reducing round-trips, 418–421
write tier-aware code, 422–426

coding patterns
execute X++ code as CIL, 466
firstfast, 476
indexing tips, 475–476
list page optimization, 476
loop iterations, reducing, 477–478
parallel execution, use of, 466–467
patterns for record existence checks,

472–473
repeat queries, avoiding, 473–474
SysOperation framework, 467–472
two queries vs. join, 474–475

compile and running X++ as .NET CIL, 126–128
configuration

AOS configuration, 463–464
client configuration, 464–465
extensive logging, 465
number sequence caching, 465
Server Configuration form, 463–464
SQL Administration form, 462

field lists, 456–462
InMemory temporary tables, 577–582
label file, 230
master scheduling and inventory closing, 465
Microsoft Dynamics AX services, overview, 415
monitoring tools

client access log, 490
database activities, monitoring, 488–489
Microsoft Dynamics AX Trace Parser, 479–488
Server Process ID (SPID), identifying, 489
Visual Studio Profiler, 490–491

overview, 417
restartable jobs and optimistic concurrency,

444–446
surrogate keys, 586
table inheritance and, 598–599
transaction performance

delete_from operator, 435–436
insert_recordset operator, 429–432

overview, 426–427
RecordInsertList and RecordSortedList,

437–439
set-based data operators, overview, 427–428
set-based operations and table hierarchies,

428
transferring code into set-based operations,

439–444
update_recordset operator, 432–435

Unit of Work, 599–601
PerInvocation, extensible data security, 367
period templates, time period filters, 344–345
Periodic, Area Page design, 145
permissions

debugging security, 373–375
form controls, 359
forms, 356–359
privileges, creating, 359–361
security framework overview, 353–356
table permissions, coding, 369–371

PerSession, extensible data security, 367
personas, defined, 334–335
perspective element type, defined, 11
perspectives, metadata, 325–326
pessimisticLock, select statements, 100
pessimisticlock, update_recordset, 434
PivotTables, displaying in Role Centers, 340
placeholders, labels, 36–37
policies

debugging security, 373–375
extensible data security policies, creating,

364–369
extensible data security policies, debugging,

368–369
organization model framework, 637
policy context, defined, 365
policy query, defined, 365
queries, data security policies, 365–369
security framework overview, 353–356

policy modeling, 5
polymorphic associations, 91, 132, 596–598
pop-up controls, AxPopup, 213–215
Popup, window type, 174
PopupClosed, 213–215
ports, publishing services, 401
post event handlers, 522–523
postback

updates, 204
validation, 231

728

PostBackTrigger

PostBackTrigger, 222
postBuild, 494
postRun, 494
Power View, SQL Server

reports, displaying, 335–340
reports, editing, 339–340

PowerPivot, 335–340
pre-event handlers, 522–523
prefix, element naming conventions, 21–22
PreRender, chart reporting override, 296
presentation tier

architecture, 8–9
Business Intelligence (BI), 299–300

primary entities, details form, 151
primary table, 365–369
PrimaryIndex

record caching, 447
surrogate keys, 586–587

print statement, X++ syntax, 98
Private and Shared Projects, 27
privilege element type, 14
privileges

creating, 359–361
security framework overview, 353–356

process cycle element type, 14
process cycles, defined, 355
Process State

accounting, 662–663
source document framework, 664–665

processingMode, 412
procurement and sourcing, organization model

framework, 638
Prod, element prefix, 23
Producer, eventing, 520
product builder, element prefix, 23
Product Configuration, 646–647
Product Dimensions, 643
Product Master, 643, 646–647
product model framework

extension of, 647–648
overview, 643–647
when to use, 647

Product Variant, 643, 646–647
production, element prefix, 23
Program Database (PDB) files, third-party

assemblies, 73–76
project, element prefix, 23, 23
Projects

authoring managed code, 77–84
automatic generation of, 27–29

creating, 27
development tools for, 29
project types, 30
upgrades, Compare tool, 56

Projects tool, 20
property sheet, 30–31
Property sheet tool, 20
providers, workflows, 254–255, 260–261
ProviderView, 203
proxies. See also .NET Framework

authoring managed code, 77–84
Enterprise Portal, developing for, 226–228,

231–232
Enterprise Portal, security, 232–235
working with, overview, 73

public key, assembly names, 74–75
PublicPage, 239
publisher, Help system, 550
publishing services, 400–401
publishing, models, 694–699
Purch, element prefix, 23
Purchase Order form, designing, 153–155
purchase, element prefix, 23
purpose, organizational hierarchy, 636

Q
quality checks, Version control tool, 65
queries

Axd queries, creating, 395–396
AxFilter, 209–210
cues, Role Center page design, 143
data-aware statements, X++ syntax, 99–104
dimension framework query data, 658–659
Enterprise Search, 240–243
field lists, performance and, 456–462
form queries, overview, 170–172
full-text support, 606–607
Microsoft Office client integration, 190
performance, indexing tips, 475–476
policy queries, data security, 365–369
polymorphic, table inheritance and, 165–167
query element type, 11
Query object, form queries, 172
Query service, Enterprise Search, 240–243
QueryBuildDataSource, 170–172
QueryBuildRange, 172
QueryFilter, 172, 607–612
QueryRun object, form queries, 172

 729

 reporting

QueryRunQueryBuildDataSource, 171
repeat queries, avoiding, 473–474
system services, 388, 404–407
table inheritance, 594–599
table relations, 588–593
timeout, 463
two queries vs. join, 474–475
workflow documents, 250
Workflow wizard, 251–252

queues
workflow message queue, 257
workflows, overview, 253–254

Quick links, Enterprise Portal, web parts, 200
QuickLaunch, Enterprise Portal web parts, 200
QuickLaunchDataSource, 235
QuickLink, Role Center, 143
quid

value types, overview, 88
variable declaration syntax, 94

R
RDCE (Microsoft Dynamics AX Report

Definition Customization Extension),
286–288

RDL (report design definition), 287–288
read permissions

forms, 356–359
menu items, 360

ReadPermissions, 360
real value types, overview, 88
real variable declaration syntax, 94
RecId, table inheritance storage model, 596
record buffers

InMemory temporary tables, 578–582
run-time temporary tables, 585

record caching, 446–452
record context, Enterprise Portal security, 235
record types

reference types, overview, 89
variable declaration syntax, 94

RecordInsertList, 437–439
record-level security (RLS), 430
RecordSortedList, 437–439
RecordViewCache, 454–455
reference types, 13, 89
References, third-party DLLs, 75–76
reflection

classIdGet system function, 672–673

common type, 91
dictionary API, 676–680
instrinsic functions, 670–671
overview, 669–670
table data API, 673–676
treenodes API, 680–685
typeOf system function, 671–672

RefRecId, 132–133
refresh

cacheAddMethod, 419
elements, 25

RefreshFrequency, 367
RefTableId, 133
regulatory requirements, segregation of duties, 354
RelatedTableRole, 593
relational operators, X++ expressions, 96
relations, table, 588
relationships, entity relationship data model, 51
RELATIONTYPE, 596
Released Product, 645
reliable asynchronous mode, SysOperations, 468
Remote Procedure Call (RPC)

grouping calls, 425
MorphX development environment, 6–7
passing table buffers, 425–426

repeatableRead, 100
reporting. See also Role Center pages

AxReportViewer, 216
client-side solutions, 276–277
data processing extensions, 288
default chart format, override, 296
Enterprise Portal charts

binding chart control to dataset, 292
chart development tools, 289
data series binding, 292–294
EP Chart Control, creating, 290–291
mark-up elements, 291–292
overview, 289

execution sequence, overview, 278–279
interactive functions, adding, 294–295
list pages as alternatives, 148–149
Microsoft Dynamics AX extensions, 286–288
model elements for reports, 282–285
overview, 275–276
planning for, 279–281
production reports, overview, 281–282
rendering, MorphX user interface control

element types, 11–12
Report Builder reports, 346

730

requirements, element prefix

reporting (continued)
Report Definition Language (RDL), 282
Report Deployment Settings form, 288
report design definition (RDL), 287–288
report element type, MorphX, 12
Report, Enterprise Portal web part, 200
Reporting Services, data connection file

(.rsds), 336
Reports, Area Page design, 145
requirements, identifying, 324–325
server-side solutions, 277–278
SQL Server Power View, displaying data,

335–340
SQL Server Reporting Services (SSRS), 3–6, 8
SSRS extensions, 285
troubleshooting, 296–297
Visual Studio tools, 346–349

requirements, element prefix, 23, 23
Requirements, operations resource framework,

650–651
ResetFilter, 209
resource element types, 16, 22
Resource Group, operations resource framework,

648–652
resource modeling, processing architecture, 5
Resource, operations resource framework,

648–652
REST API, Excel report display, 340
restartable jobs, performance, 444–446
restore, refreshing elements, 25
retail channel, defined, 635
retries, batch jobs, 628
retry statement, X++ syntax, 98
return statement, X++ syntax, 98
Reverse Engineering tool, 20, 47–51, 669
reverse, data-aware statements, 100
Role Center pages

designing, 142–144
displaying analytic content

Business Overview and KPI List web parts,
341–345

Excel reports, 340
overview, 333–335
presentation tools, choice of, 335
Report Builder, 346
SQL Server Power View, 335–340
Visual Studio tools, 346–349

Quick links, 200
user profiles, 308–309

role element type, 14
role-based access control, 353–356
role-based security element types, 14
RoleName, 367
RoleProperty, 367
roles, security

assigning privileges and duties, 361–362
assigning to users, 363–364
customization and licensing, 383
debugging, 373–375
security framework overview, 353–356

role-tailored design, overview, 139–140
root data sources, 164–169
root table, creating, 594
RootTableContext, 223–225
Row, AxGridView, 208
RowCount, 104
RPC (Remote Procedure Call)

grouping calls, 425
MorphX development environment, 6–7
passing table buffers, 425–426

rules, Best Practices tool, 40–43
run method

batch class, creating, 616
datasets, Enterprise Portal, 202

RunAsPermission, 371–372
RunBase. See also SysOperations

client/server considerations, 516
inheritance, 510–511
overview, 510
pack-unpack pattern, 512–516
performance and, 420–421
property method pattern, 511–512
SysOperation comparison, 495–510, 613
UML object model, 49–50

RunBaseBatch, 495–496, 616–617
runBuf, code access security, 124–126
RunOn, object instantiation, 422
run-time

control modifications, 174
QueryFilter API, 611–612
table relations, 588–593
workflow, 257–260

S
sales and marketing management, element prefix, 23
Sales Order form, designing, 153–155
Sales, element prefix, 23

 731

 set-based data operators

Sarbanes-Oxley, segregation of duties, 354
Save button, autogeneration, 220
saveData, 653
SaveDataPerPartition, 611
scheduled batch mode, SysOperations, 468
scheduling, batch framework, 614
schema

AxdDocument class, 393–394
prebuilt cubes, analytic data, 310
reusing tables and fields, creating cubes, 333
XML schema definitions for message envelopes,

410–411
Script icon, X++ Code Editor, 33
scripts

execute editor script, 32
running, shortcut keys X++ code editor, 32
X++ Code Editor, overview, 33

search
Enterprise Portal, navigation form design,

156–157
Find tool, overview, 53–54
incremental, shortcut key, 32
search bar, navigation layer forms, 141
Search Configuration Wizard, 241–243

Secure Sockets Layer (SSL), Enterprise Portal,
232–235

security
assembly names, 74–75
best practices, overview, 372–373
code access security (CAS), 124–126, 371–372
configuration key element types, 16–17
debugging, 373–375
Enterprise Portal, developing for, 232–235
extensible data security policies, creating,

364–369
hiding report columns, 286–288
insert_recordset operator, 430
license code element types, 16–17
permissions, controls, 359
permissions, forms, 356–359
permissions, server methods, 359
privileges, assigning to security roles, 361–362
privileges, creating, 359–361
role-based security element types, 14
RunBase, 420
security artifacts, developing, 356–363
security framework overview, 351–356
security role assignments, 355
service operations, overview, 400

table permissions, coding, 369–371
valid time state tables, use of, 362–363
validate security artifacts, 363–364

security policy element type, 14
security roles

assigning privileges and duties, 361–362
assigning to users, 363–364
customization and licensing, 383
debugging security, 373–375

segregation of duties, 354
select

data-aware statements, X++ syntax, 99–104
field lists, performance and, 460
select query, sample code, 101

select forUpdate, 104
SelectedIndexChanged, 208
selection, shortcut keys, 32
selectionChanged, SysListPageInteractionBase, 218
semicolon, use in X++, 95
Send API, 411–414
Sequence, exception handling, 107
serialization, pack and unpack methods, 130–131
Server Configuration form

batch server, configuring, 625–626
performance and, 463–464

Server Configuration Utility, hot-swapping
assemblies, 84–85

server license, 376–383
server methods, permissions for, 359
Server Process ID (SPID), 489
server, method modifier, 119
service contracts, creating, 389–390, 392–393
service group element type, 13
service implementation class, 388–391
service management, element prefix, 23
service-oriented architecture, 386
Service References, 387
services. See Microsoft Dynamics AX services
services element types, 13
session caching, Enterprise Portal, 223
session disposal, Enterprise Portal, 223
SetAsChanged, AxFilter, 209
set-based data operators

delete_from operator, 435–436
InMemory temporary tables, 578
overview, 427–428
table hierarchies and, 428
tranferring code into, tips for, 439–444
update_recordset operator, 432–435

732

setButtonEnabled, SysListPageInteractionBase

setButtonEnabled, SysListPageInteractionBase, 218
setButtonVisibility, SysListPageInteractionBase, 219
SetFieldValue, AxPopupField, 214–215
setGridFieldVisibility, SysListPageInteractionBase, 219
SetMenuItemProperties, AxToolbar, 212
setter method, 592
setTmp, run-time temporary tables, 585
setTmpData, 579–582
Setup, Area Page design, 145
Shared Projects, overview of, 27
shared steps, 536–539
SharePoint

Enterprise Portal, developing for, 216–217
Enterprise Portal, integration with

Enterprise Search, 240–243
site definitions, page templates, and web

parts, 237–239
site navigation, 235–236
themes, 243
web part page, import and deploy, 239–240

KPIs, adding to KPI List web part, 342–344
reporting, troubleshooting, 297

SharePoint Server
architecture, 8
Enterprise Portal architecture and, 196–198
Power View reports, displaying, 336–339
processing architecture, 3–7

SharePoint Services server, 336–340
SharePoint web client applications, development

of, 6–9
shift operators, X++ expressions, 96
shop floor controls, element prefix, 23
shortcut keys

debugger tool, 47
X++ code editor, 32

ShowContextMenu, AxGridView, 208
ShowExpansion, AxGridView, 208
ShowFilter, AxGridView, 208
ShowLink, 236
signatures, digital

assembly names, 74–75
models, signing, 696–697

SimpleList template, 162
SimpleListDetails template, 162
site definitions, Enterprise Portal and SharePoint

integration, 237–239
skipAosValidation, 431–432, 434, 436
SkipAOSValidationPermission, 371–372
skipDatabaseLog, 431–432, 434, 436
skipDataMethods, 431–432, 434, 436

skipDeleteMethod, 436
skipEvents, 431–432, 434, 436
SMA, element prefix, 23
SMM,element prefix, 23
source code files, 688
Source Code, Titlecase Update tool, 93
source document framework

MorphX model element prefixes, 667
overview, 664–665
when to use, 665

sourcing and procurement, organization model
framework, 638

specialized base enumerations, value types, 88
specialized primitive types, value types, 88
SPID (Server Process ID), 489
SPLinkButton, 212
SQL Administration form, performance and, 462
SQL Server

architecture, 7
processing architecture, 3–6

SQL Server Analysis Services (SSAS)
prebuilt BI solutions, implementing, 301–309
prebuilt projects, modifying, 319–323
processing architecture, 3–8
SSAS server, configuring, 302

SQL Server Analysis Services Project Wizard
cubes, customizing, 311–319
cubes, generating and deploying, 303–309,

328–333
currency conversions, 316–317
deploying projects, 301

SQL Server Power View
reports, displaying, 335–340
reports, editing, 339–340

SQL Server Reporting Services (SSRS)
architecture, 3–8
AxReportViewer, 216
client-side reporting solutions, 276–277
data processing extensions, 288
default chart format, override, 296
Enterprise Portal, web parts, 200
interactive functions, adding, 294–295
Microsoft Dynamics AX extensions, 286–288
model elements for reports, 282–285
processing architecture, 3–6, 8
production reports, overview, 281–282
report execution sequence, overview, 278–279
report solutions, planning for, 279–281
reporting, overview, 275–276
server-side reporting solutions, 277–278

 733

 system documentation element type

SSRS extensions, creating, 285
troubleshooting, reporting framework, 296–297

SqlDataDictionaryPermission, 372
SqlStatementExecutePermission, 372
SSAS (SQL Server Analysis Services)

prebuilt BI solutions, implementing, 301–309
prebuilt BI solutions, modifying, 319–323
SSAS server, configuring, 302

SSL (Secure Sockets Layer), Enterprise Portal security,
232–235

SSRS report element type, MorphX, 12
Standard, TabPage controls, 176–178
Standard, window type, 174
startOperation, 494
Startup Element, debugging managed code, 81–82
state model, workflows, 266–267
StateManager, 266–267
statements, X++ syntax, 96, 99–104. See also X++

programming language (code)
static CLR elements, invoking, 109
static file element type, 15
Static Files, Enterprise Portal and SharePoint

integration, 237
static RDL reports, 288
Static Report Design, 288
static, method modifier, 119
status bar, navigation layer forms, 142
Storage Dimension Group, 645
str

value types, overview, 88
variable declaration syntax, 94

strategic persona, 334–335
strFmt, 36–37
string concatentation, X++ expressions, 96
style sheet themes, Enterprise Portal and SharePoint

integration, 243
Subledger Journal, 660–662
SubMenu, AxToolbar, 212
SubmitToWorkflow, action menu items, 272
SubmitToWorkflow, workflow artifacts, 265
subworkflows, workflow elements, 253
sum, X++ select statements, 102
summary page, Help system, 550–551
SupportInheritance, 594
surrogate foreign keys

CreateNavigationPropertyMethods, 591–593
performance and, 168, 586–587
table relations, 590–591

surrogate keys, overview of, 585–587

SvcConfigUtil, publishing services, 401
switch statement, X++ syntax, 98
synchronization

AxFilter, 209
elements, refreshing, 25
proxies, 82–84
temporary tables, 584
Version control tool, 67–68

synchronization log, viewing, 68
synchronous mode, SysOperations, 468
Sys, element prefix, 23
SysAnyType, 90
SysBPCheck, 42–43
SysBPCheckMemberFunction, 42–43
SysClientAccessLog, 490
SysDatabaseLogPermission, 372
SysEntryPointAttribute, 359, 371, 400
SysGlobalCache, performance and, 456
SysGlobalObjectCache, performance and, 456
SysListPageInteractionBase, 218–219
SysModel, reflection table, 675
SysModelElement, reflection table, 675
SysModelElementData, reflection table, 675
SysModelElementLabel, reflection table, 675
SysModelElementSource, reflection table, 675
SysModelElementType, reflection table, 675
SysModelLayer, reflection table, 676
SysModelManifest, reflection table, 676
SysModelManifestCategory, reflection table, 676
SysOperation

attributes, 495
classes, 494
creating batch-executable class, 616–617
overview, 493–494
RunBase comparision, 495–510

SysOperationAutomaticUIBuilder, 494
SysOperationContractProcessingAttribute, 495
SysOperationController, 495–496
SysOperationDisplayOrderAttribute, 495
SysOperationHelpTextAttribute, 495
SysOperationLabelAttribute, 495
SysOperations

overview, 420, 613
performance, 467–472

SysOperationUIBuilder, 494
SysPackable interface, 495–496
SysQueryForm, timeout settings, 463
SysTableBrowser, 52–53
system documentation element type, 16

734

system function statement, X++ syntax

system function statement, X++ syntax, 98
system services

consuming, 404–407
overview, 387–388

system workflows, defined, 246–249. See also
workflow

SystemAdministratorHelpOnTheWeb, 549
SystemFatal, exception handling, 232
SystemFilter, 209
SystemManaged, form permissions, 358
SystemTable, 611
SysTest framework, new features, 527–533
SysTestCheckInTestAttribute, 528–533
SysTestFilterStrategyType, 531–533
SysTestInactiveTestAttribute, 528–533
SysTestListenerTRX, 541
SysTestMethodAttributes, 528
SysTestNonCheckInTestAttribute, 528–533
SysTestTargetAttribute, 528
SysVersionControlFileBasedBackEnd interface, 71

T
table. See also temporary tables

buffers, passing by value, 425–426
buffers, set-based data operators, 428
document services, customizing, 397
inheritance, overview, 165–167
permissions, coding, 369–371
reference types, overview, 89
table data, reflection API, 669–670, 673–676
table hierarchies and set-based operators, 428
table index, database query sample, 101
table maps, common type, 91
table relations, overview, 588
table-level patterns, 131–133

Table Browser tool, 20, 52–53
table collection element type, defined, 11
table element type, defined, 10
table inheritance

modeling, 594–595
performance and, 598–599
polymorphic behavior, 596–598
storage model, 596

table of contents, Help system, 550, 563–565
Table References, 589
Table, metadata property, 169
TableContextList, Enterprise Portal, 223–225
TableDataKeys, Enterprise Portal, 224–225

TableOfContents template, 162
TabPage control, 176–178
tabular models, PowerPivot, 336–340
tactical persona, 334–335
TargetClassTest, 528
TargetControl, AxPopup, 215
TargetControlID, AxLookup, 211
TargetId, AxPopupField, 214–215
tasks

code compiler, 37–39
logical approval and task workflows, 260–262
task modeling, performance and, 466–467
workflow artifacts, 265
workflow elements, 252

Tax, element prefix, 23
Team Foundation Build, 540–543
team, defined, 635
TempDB

creating temporary tables, 583–585
extensible data security constructs, 367
overview, 582–583
performance and, 423–424
transferring code into set-based operations,

442–444
templates

Dynamics AX Reporting Project, 282
Enterprise Portal and SharePoint integration,

237–239
EP Chart Control, 290–291
Excel, 190–191
form patterns, 160–162
Help content, 551–552
time period filters, 344–345
user templates, adding, 192–193
Word, 191–192
workflow types, 251–252

temporary tables
creating, 583–585
EntireTable cache, 453–454
inMemory, 422–423, 428
InMemory, 578–582
insert_recordset operator, 429–432
TempDB, overview, 582–583
TempDB, performance and, 423–424
transferring code into set-based operations,

442–444
Terminal Services, performance, 464
Test Listeners, 541
Test Manager. See Microsoft Test Manager

 Unit of Work

 735

testing
new features, 527–533
test selection, 542–544
Visual Studio tools

acceptance test driven development (ATDD),
535–536

ALM solution, 534
ordered test suites, 539–540
overview, 533–534
shared steps, 536–539
Team Foundation Build, 540–543
test case evolution, 538

testsElementName, 528
TextBox, AxPopupField, 214–215
TFS (Visual Studio Team Foundation Server), 62–64
themes, Enterprise Portal and SharePoint integration,

243
third-party assemblies, .NET Framework

and, 73–76
third-party integration applications

development of, 6–9
presentation tier architecture, 9

throw statement
exception handling, 105–106
X++ syntax, 98

time
date-effective framework, 601–606
time period filters, Business Overview web part,

344–345
TimeOfDay, value types, 88
TimeOfDay, variable declaration syntax, 94
valid time state tables, 355, 362–363

Timeout
exception handling, 107
Server Configuration form, 463

title, Enterprise Portal web parts, 200
Titlecase Update tool, 93
TitleDateSource, form properties, 174
TODO tasks, code compiler, 37–39
Toolbar, Enterprise Portal web part, 200, 212–213
topics, Help system

add labels, fields, and menu items, 559–561
context-sensitive topics, 561–562
create in HTML, 552–559
non-HTML topics, creating, 565–567
overview, 549–550

TopNavigationDataSource, 235
Trace Parser, 479–488
Tracking Dimension Group, 645
transaction details form, designing, 153–155

transaction performance
delete_from operator, 435–436
overview, 426–427
set-based data operators, overview, 427–428
update_recordset operator, 432–435

transaction tracking system (TTS), grouping calls, 425
Transact-SQL

tracing statements, 488–489
transferring code into set-based operations,

442–444
TransDate, currency conversion logic, 330–332
Translations, customizing cubes, 315–316
travel and expense, organization model

framework, 638
treenodes, reflection API, 670, 680–685
TreeNodeType, 683–685
troubleshooting

Help system, 572–573
reporting framework, 296–297
tracing code, 487–488

Trustworthy Computing, 372–373
try statement, X++ syntax, 98
TTS (transaction tracking system), grouping calls, 425
ttsAbort, 104

InMemory temporary tables, 581–582
ttsBegin, 104

InMemory temporary tables, 581
ttsCommit, 104

InMemory temporary tables, 581
Tutorial_CompareContextProvider, 58–59
Type Hierarchy Browser tool

overview, 20
table inheritance hierarchy, 594–595
type hierarchies, 89–93

Type Hierarchy Context tool, 20, 89–93
type hierarchy, Cross-reference tool, 60
typed data source, element prefix, 22
typeOf system function, reflection, 669, 671–672

U
Unified Modeling Language (UML)

object models, 49–50
Reverse Engineering tool, overview, 47–51

Unified worklist web part, 201, 256
unique index join cache, 452
Unit of Work

form data overview, 167–168
overview of, 599–601

736

unpack method

unpack method, 130–131, 203, 617
update method, field lists, 458
update permissions

forms, 356–359
menu items, 360

update_recordset
table hierarchies and, 428
transaction performance, 104–105, 432–435
transferring code into set-based operations,

442–444
UpdateConflict, 107
UpdateConflictException, 107
UpdateConflictNotRecovered, 107
UpdateOnPostback, 204
UpdatePanel

AxContentPanel, 215
Enterprise Portal, AJAX, 222

UpdatePermissions, 360
updates

business documents, consuming services,
407–409

date-effective framework, 605–606
Help content, 562–563
User control web part, 201

upgrades
Compare tool, 56
Project and, 29

URL
Excel reports, displaying, 340
Help system, AOS, 549
Power View reports, displaying, 336–339

URL web menu item, 218
U.S. Food and Drug Administration regulations,

354
UseIntList, 391
user access

security framework overview, 351–356
validate security artifacts, 363–364

user client access license (CAL), overview, 376–383
User control web part

Enterprise Portal architecture, 196–197
Enterprise Portal, AJAX, 222
Enterprise Portal, overview, 201

user experience, designing
area pages, 144–146
details form, 150–153
Enterprise Portal web client experience, 155–157
list pages, 146–150
navigation layer forms, 141–142

overview, 137–139
Role Center pages, 142–144
role-tailored design, 139–140
transaction details forms, 153–155
user feedback, importance of, 157–158
work layer forms, 142

user interface
control element types, MorphX, 11–12
Enterprise Portal architecture, 196–198
labels, localization of, 33
SysOperationUIBuilder, 494

user profiles, deploying cubes, 308–309
user session info service, 388
user-defined class types, 89
UserDocumentation, Help system, 549, 571
UserFilter, 209
users

creating, 363
roles, assigning, 363–364

utcDateTime
relational modeling, 602–603
value types, overview, 88
variable declaration syntax, 94

UtilElements, reflection table, 676
UtilIdElements, reflection table, 676
UtilModels, reflection table, 676

V
valdiation

Validate property, associations, 48–49
valid time state tables, security, 362–363
validation

aosValidateDelete, 436
aosValidateInsert, 438–439
aosValidateRead, 433
aosValidateUpdate, 433
AxdDocument class, 394
cross-table, document services, 393
document services, customizing, 397–399
Enterprise Portal, developing for, 231
registering methods, postRun, 494
report server validation, troubleshooting, 297
skipAosValidation, 431–432, 434, 436
Table Browser tool, 52–53
table permissions coding, 370–371
validateByTree, 656

ValidFrom
date-effective tables, consistency, 604–606

 737

 web client element types, overview

valid time state tables, 362–363
ValidTimeStateFieldType, 601–603

validTimeState, 100
validtimestate key, 602–603
ValidTimeStateFieldType, 362–363, 601–603
ValidTimeStateMode, 604–606
ValidTo, 362–363, 601–606
value stream, defined, 635
value types, 88
ValueFormatter, Enterprise Portal, 230
values, X++ expressions, 95
variables

Auto variables, overview, 187
common type, 91
declarations, X++ syntax, 93–95
expressions, X++ syntax, 95
extended data type, 92–93
object type, 91–92
reference types, overview, 89
value types, overview, 88
X++ syntax, camel casing, 93

variant configuration technology, Product Master,
646–647

Vend, element prefix, 23
vendors, element prefix, 23
Version Control tool

common tasks, 65
create a build, 71
element history, 69
element life cycle, 64–65
integrating with other version control

systems, 71
overview, 20, 62–64
pending elements, viewing, 70
revisions, comparing, 70

vertical application domain partition, 4–6
VerticalTabs, TabPage controls, 176–178
view element type, defined, 10
view type, reference types, 89
ViewState, Enterprise Portal, 228–229
ViewUserLicense, 383
Visio, Reverse Engineering tool, 47–51
Visual SourceSafe (VSS), 62–64
Visual Studio

analytic reports, tools for, 346–349
authoring managed code, 77–84
batch jobs, debugging, 630–631
details page, creating, 219–221
Enterprise Portal architecture, 196–198

Enterprise Portal, developing for, 216
model elements for reports, 282–285
prebuilt projects, modifying, 319–323
presentation tier architecture, 8–9
proxies, Enterprise Portal, 226–228
report execution sequence, overview, 278–279
reporting

chart controls, 291–292
client-side solutions, 276–277
data processing extensions, 288
default chart format, override, 296
interactive functions, adding, 294–295
Microsoft Dynamics AX extensions, 286–288
overview, 275–276
production reports, overview, 281–282
report solutions, planning for, 279–281
server-side solutions, 277–278
SSRS extensions, creating, 285
troubleshooting, reporting framework,

296–297
test tools

acceptance test driven development (ATDD),
535–536

ALM solution, 534
ordered test suites, 539–540
overview, 533–534
shared steps, 536–539
Team Foundation Build, 540–543
test case evolution, 538
test selection, 542–544

third-party assemblies, using, 73–76
Visual Studio Integrated Development Environment

(IDE)
overview, 7
processing architecture, 4–6

Visual Studio Profiler, performance monitoring,
490–491

Visual Studio Team Foundation Server (TFS), 62–64
VSS (Visual SourceSafe), 62–64

W
warehouse management, element prefix, 23
warehouses, external data integration, 322–323
warnings, compiler

overview, 37–39
suppressing, Best Practices tool, 41–42

WCF (Windows Communication Foundation), 7–8
web client element types, overview, 14–15

738

web content element type

web content element type, 15
web control element type, 15
web frameworks, element prefix, 23
web menu

AxActionPanel, 211–212
web menu element type, 14
web menu item type, 14
workflow menu items, 252

web module element type, 15
web part element type, 15
web part page

Enterprise Portal and SharePoint integration,
239–240

Enterprise Portal architecture, 196–197
web parts

Enterprise Portal and SharePoint integration,
237–239

Enterprise Portal, overview, 199–201
Enterprise Portal, security, 233–235

web platforms. See Enterprise Portal
web services

external, consuming, 414
Microsoft Internet Information Services, 8

Web, element prefix, 23
web.config

publisher, adding, 569–570
session disposal and caching, 223

WebLink, SharePoint site navigation, 236
WebMenuName, 211–212
WF (Windows Workflow Foundation), 249–250
while statement, 99, 103
Window Performance Monitor, 482–483
window statement, X++ syntax, 99
WindowMode, 220–221
Windows client applications

development of, 6–9
presentation tier architecture, 8

Windows Communication Foundation (WCF), 7–8
Windows Search Service, Help system, 549
Windows Server AppFabric, 223
Windows Workflow Foundation (WF), 249–250
WindowSize, 220–221
WindowType, 174
Wizard wizard, 29
wizards

Create New Document Service Wizard, 393
Label Files wizard, 35
Project development tools, 29
Search Configuration Wizard, 241–243

SQL Server Analysis Services Project Wizard,
301, 303–309

Wizard wizard, 29
Workflow wizard, 251–252

WKEY, Enterprise Portal security, 235
WMS, element prefix, 23
Word

architecture, 9
templates, building, 191–193

work layer forms
Enterprise Portal design, 157
overview of, 142

workflow
activation of, 270–274
architecture, 256–262
categories, creating, 268
creating artifacts, and business logic, 264–265
display menu item, adding, 270
document class, creating, 268–270
elements of, 252–253
event handlers, 252
implementation, overview, 263–264
infrastructure for, 246–249
logical approval and task workflows, 260–262
menu items, 252
overview, 245–246
providers, 254–255
queues, 253–254
state management, 266–267
Windows Workflow Foundation (WF), overview,

249–250
work items, 256
workflow categories, 251
workflow document and workflow document

class, 250
workflow editor, 255–256
workflow instances, 256
workflow life cycle, 262–263
workflow run time, 257–260
workflow types, 251–252

Workflow
activatefromWorkflowConfiguration, 273
activatefromWorkflowSequenceNumber, 273
activatefromWorkflowType, 273

workflow approval element type, MorphX, 12
workflow category, workflow artifact, 264
workflow document class, workflow artifacts, 265
workflow document query, workflow artifacts, 265
workflow element types, MorphX, 12–13

 739

 xRecord type, reference types, overview

workflow provider element type, MorphX, 13
workflow started message, 259–260
workflow task element type, MorphX, 12
workflow type element type, MorphX, 12
workflow type, workflow artifacts, 265
Workflow wizard, 251–252
WorkflowDataSource, 271
WorkflowDocument, 269
WorkflowEnabled, 271
WorkflowType, 271
Workspace, window type, 174
WREC, Enterprise Portal security, 235
write method, 168
write tier-aware code, performance and, 422–426
writing method, 168
written method, 168
WSS (Windows Search Service), 549
WTID, Enterprise Portal security, 235

X
X++ code editor tool

overview, 20, 31–33
shortcut keys, 32

X++ collections, data contracts, 391
X++ programming language (code). See also MorphX

assemblies, calling managed code, 76
attributes, 123–124
batch jobs, debugging, 630–631
classes and interfaces, overview, 117–118
CLR interoperability, 108–112
code access security (CAS), 124–126
code element types, 13
COM interoperability, 112
comments, syntax for, 115
compiler, overview, 37–39
compiling and running X++ as .NET CIL,

126–128
data-aware statements, 99–104
date-effective tables, data retrieval, 603–604
debugger tool, overview, 43–47
delete_from operator, 435–436
delgates, 120–122
design and implementation patterns, 128–133
dictionary, reflection API, 676–680
exception handling, 105–108
executing as CIL, 466
expressions, 95
fields, 118

instrinsic function, reflection, 670–671
introduction to, 87
Jobs, 88
macros, 113–115
methods, 118–120
MorphX development environment, 6–7
pre- and post-event handlers, 122–123
processing architecture, 5
proxies, Enterprise Portal, 226–228
RecordSortedList and RecordInsertList classes,

438–439
reference types, 89
referencing labels from, 36–37
reflection, overview, 669–670
set-based data operators, overview, 427–428
set-based data operators, transferring code into,

439–444
statements, overview, 96
syntax, overview, 93
table data, reflection API, 673–676
table element type, 10
treenodes, reflection API, 680–685
troubleshooting, tracing, 487–488
type hierarchies, 89–93
type system, 88–93
update_recordset operator, 432–435
value types, 88
variable declarations, 93–95
XML documentation, 116

xClassTrace, 483
XDS (extensible data security framework)

debugging data security policies, 368–369
organization model framework integration, 356
policies, creating, 364–369
temporary table constructs, 368

XML documentation
AxdDocument class, 393–394
EPSetupParams, 237
header insert, shortcut key, 32
Help system, table of contents, 563–565
schema definitions for message envelopes,

410–411
system services, consuming, 406–407
third-party assemblies, using, 73–76
X++ syntax, 116

XMLHttpRequest, 222
XPO files, 688
Xpp-PrePostArgs, 122–123
xRecord type, reference types, overview, 89

About the authors

Principal authors

Anees Ansari is a program manager in the Microsoft Dynamics AX product
group. His areas of focus include Enterprise Portal and web-based frameworks
and clients for Microsoft Dynamics AX. He is passionate about web-based
 technologies and has been working in that area for more than 11 years,
 including 7 years at Microsoft.

Anees has a broad range of experience in various roles, both within and outside Microsoft.
His last role was technical product manager in the Microsoft Web Platform and Standards
group, where he was responsible for product management and marketing strategy for
 Microsoft ASP.NET and Microsoft Visual Web Developer products. Prior to that, he was a
 software developer on the Outlook Web App team working on Microsoft Exchange Online
and Microsoft Exchange Server products. Before joining Microsoft, Anees worked with
 start-ups that helped small to mid-sized companies increase their online business and
 customer base by designing, developing, and managing their web portals.

Anees has a master’s degree in computer science from the University of South Florida and
a certificate in business fundamentals from the Kelley School of Business at Indiana University.

David Chell is a senior technical writer on the Service Industries and Retail Content
 Publishing team for Microsoft Dynamics AX.

Zhonghua Chu is a principal development lead on the Microsoft Dynamics
AX server team. He has worked on data access and other server-related areas
since Microsoft Dynamics AX 4.0. Zhonghua joined the Microsoft SQL Server
Data Warehouse team after graduating from the University of Wisconsin–
Madison, and has been working on application system design and

 implementation for over 13 years.

Dave Froslie is a principal test architect on the Microsoft Dynamics AX
 development team. He joined Microsoft in 2002, and has held a variety of
 development and test leadership roles in business solutions and development
tools. Before joining Microsoft, Dave was a development manager for teams
building engineering test systems at MTS Systems in Eden Prairie, Minnesota.

In his current role, Dave is responsible for providing guidance on test approaches for the product,
with a focus on automated tools, libraries, and infrastructure. Dave also has a strong interest
in engineering processes, particularly agile development. Blog posts that Dave has written on
these and other topics can be found at http://blogs.msdn.com/b/dave_froslie/. Dave works in the
 Microsoft development office in Fargo, North Dakota, and lives across the river in Minnesota with
his wife, Dawn, and daughter, Ali.

Chris Garty is a senior program manager on the Microsoft Dynamics AX Client
Presentation team in Fargo, North Dakota. Chris joined the Microsoft Dynamics
AX team during the Microsoft Dynamics AX 2009 development cycle. During the
Microsoft Dynamics AX 2012 development cycle, Chris helped guide the changes
to List Pages and Details forms, and worked on a range of user experience

 components. Chris’s role on the Microsoft Dynamics AX team has recently expanded to cover
integration with Microsoft Office and document management.

Chris has 13 years of experience in software development and consulting, the last 8 of which
have been spent at Microsoft.

Chris was born and raised in New Zealand, and he is lucky enough to visit New Zealand and
Australia almost yearly to see his family. He moved to Fargo to work for the best company in the
world and lives there, eight winters and a couple of floods later, with his wife, Jolene. He spends
his time away from Microsoft playing soccer, doing triathlons, running, and relaxing with friends
and family as much as possible. Chris has a blog at http://blogs.msdn.com/chrisgarty.

Chary Gottumukkala joined Microsoft in 2002 as a software architect on
the Microsoft Dynamics team, and he works on ERP/CRM frameworks and
 applications. Chary is passionate about developing software with the often
 intangible quality attributes, or “-ilities,” such as scalability, maintainability, and
extensibility. Prior to joining Microsoft, Chary worked on ERP/CRM frameworks

and applications at Oracle and PeopleSoft, and on Professional Services Automation (PSA)
 applications at Niku. Chary has a BSc in electronics from Jawaharlal Nehru Technological
 University and an MSc in computer science from the Indian Institute of Technology.

Arthur Greef is a principal software architect who has a passion for developing
innovative software that simplifies the lives of working people. Arthur has a BSc
and an MSc in mechanical engineering from the University of Natal in South
Africa, and a Ph.D. in industrial engineering from the University of Stellenbosch
in South Africa. He also spent 2 years in an industrial engineering postdoctoral

program at the University of North Carolina in the United States. Arthur has been at Microsoft for
10 years, 3 of which were spent in Denmark working on Microsoft Dynamics AX when it was still
called Axapta. Before joining Microsoft, Arthur worked for IBM in New York, developing product
configuration technology for PCs. Arthur also spent two years working as chief architect for
the RosettaNet Consortium, where he developed XML business collaboration protocols for the
 information technology industry.

Jakob Steen Hansen is a development manager, currently responsible for
the development and architecture of developer tools, business intelligence,
 application life cycle, upgrade, and customization of Microsoft Dynamics AX.
He joined Damgaard Data in 1993 while completing his MSc in computer science
and electronic engineering, and contributed to the incubation of the product that

later became Microsoft Dynamics AX. Throughout the releases, he has been involved in various
aspects of the product, as well as in exploring how technology can bring previously unseen
 productivity or capabilities to partners and customers who develop solutions by using Microsoft
Dynamics AX. For a few years, he worked on an incubation project in the Microsoft Developer
Division, which eventually brought him back to the Microsoft Dynamics team.

Jakob worked in Denmark until 2008, when he moved to Seattle with his wife, Lone, and
two teenage daughters, Louise and Ida Marie, to explore new facets of working at Microsoft,
 expanding his personal experience, and realizing new breakthroughs for Microsoft Dynamics and
ERP development. He enjoys family life and the outdoors, and because he’s an avid engineer,
there’s always a technical project cooking somewhere.

Kevin Honeyman played a key role in designing the changes to the Microsoft
Dynamics AX 2012 user experience. Kevin has worked for Microsoft for 11 years,
focusing on simplifying the user experience for various Microsoft Dynamics ERP
products. Prior to working at Microsoft, Kevin worked at Great Plains Software,
where he designed the developer user experience and user interface controls

for the Great Plains Dynamics product. He started his career as a developer at Boeing Computer
Services in Seattle, implementing a user interface control library in X Windows and Motif.

As a senior user experience lead at Microsoft, Kevin is passionate about understanding the
user’s needs and designing experiences that delight the user. He lives in Fargo, North Dakota,
with his fiancée, Tiffanie, his son, Jordan, and his future stepchildren, Drue and Isabelle.

Michael Merz is a program manager for Microsoft Dynamics AX, where he is
responsible for the delivery of the Microsoft Dynamics AX services framework
and Microsoft Dynamics AX integration capabilities. He has over 15 years of
 experience in the software industry. Prior to working at Microsoft, Michael held
various engineering and management positions in companies including Amazon.

com, BEA Systems, and early-stage start-up companies, where he worked on embedded systems,
online advertising, social networks, and enterprise software. He has an MSc in computer science
from Ulm University, Germany, and lives in Bothell, WA, with his wife, Florina, and his children,
Brooke and Joshua.

Amar Nalla is currently a development lead in the Microsoft Dynamics AX
 product group. He has more than 11 years of experience in the software industry.
He started working on the Microsoft Dynamics team during the Axapta 4.0
release. He is part of the foundation team responsible for the Microsoft
Dynamics AX server components, and during the past three releases of Microsoft

 Dynamics AX, he has worked on various components of the server. He maintains a blog at
http://blogs.msdn.com/b/amarnalla/.

In his spare time, Amar likes to explore the beautiful Puget Sound area.

Parth Pandya is a senior program manager in the Microsoft Dynamics AX
 product group. For Microsoft Dynamics AX 2012, Parth’s area of focus was the
new security framework that was built for the release, including the flexible
 authentication capability and support for Active Directory groups as Microsoft
Dynamics AX users. He also contributed to the named user licensing model

that was instituted for Microsoft Dynamics AX 2012. Parth has been with Microsoft for over
nine years, over five of which were spent working on various releases of the Windows Internet
 Explorer browser. He particularly enjoyed working as a penetration tester for the number one
target of hackers around the world.

Parth swapped the organized chaos of Mumbai, India, for the disorienting tranquility of the
Pacific Northwest, where he lives with his wife, Varsha, and three-year-old son, Aarush.

Gustavo Plancarte is a senior software design engineer who joined Microsoft
in 2004 after graduating from ITESM in Monterrey, Mexico. He has worked
on Microsoft Dynamics AX since version 4.0. On the platform team, he is
 responsible for driving the common intermediate language (CIL) migration of
the X++ programming language, the Software-plus-Services architecture of

the application server, and the batch framework. Gustavo has filed several software-related
 patents, in areas including garbage collection, incremental generation of assemblies, and batch
 scheduling and processing. He lives with his wife, Gina, and their sons, Gustavo Jr. and Luis, in
Woodinville, WA, where he enjoys spending time working on his yard.

Michael Fruergaard Pontoppidan joined Damgaard Data (which merged with
Navision and was eventually acquired by Microsoft) in 1996, after graduating
from the Technical University of Denmark. He started as a software design
engineer on the MorphX team, delivering the developer experience for the
first release of Microsoft Dynamics AX. Today, he is a software architect on the

 Microsoft Dynamics AX team in Copenhagen. For Microsoft Dynamics AX 2012, Michael primarily
focused on the metadata model store, solving problems related to element IDs and the MorphX
Development Workspace. In previous releases, he has worked on version control, unit testing,
best practices, and the Microsoft Trustworthy Computing initiative, while advocating for code
quality improvements through Microsoft Engineering Excellence, tools, processes, and training.
Michael frequently appears as a speaker at technical conferences. He lives in Denmark with his
wife, Katrine, and their two children, Laura and Malte. His blog is at http://blogs.msdn.com/mfp.

Bigyan Rajbhandari is a program manager on the Microsoft Dynamics AX team,
working on the security, licensing, and batch framework areas. He has more than
seven years of experience in software engineering, consulting, and management,
the last four of which have been spent at Microsoft. Prior to his current role, he
helped develop a large customer preference management system for Microsoft.

He graduated from Drake University in Iowa with a BS in computer science and went on to work
for various companies in the Midwest, building custom business applications and customer
 relationship management (CRM) solutions. Outside of work, he enjoys traveling, hiking, and
 soccer. He currently lives in Redmond, Washington, with his wife, Jashmin.

Karl Tolgu is a senior program manager for Microsoft Dynamics AX. He is
responsible for the development of the business process, workflow, and alert
 notification framework. Previously, Karl worked on the project accounting
 modules in Microsoft Dynamics SL and Microsoft Dynamics GP. Since graduating,
he has worked in the software industry in both the United Kingdom and

the United States and held various software development management positions at Oracle
 Corporation and Niku Corporation. Karl resides in Seattle with his wife, Karin, and three sons, Karl
Christian, Sten Alexander, and Thomas Sebastian.

TJ Vassar has worked in development on various projects at Microsoft for over
13 years, including Microsoft Money, MSN Money, Microsoft Office Accounting,
and Microsoft Dynamics AX 2009. Currently, he is a senior program manager on
the Microsoft Dynamics AX Business Intelligence team, managing the Reporting
framework. Born and raised in Seattle, TJ is married to the woman of his dreams

and is a proud father of three. He regularly posts to his MSDN blog (http://blogs.msnd.com/
dynamicsaxbi) on topics that range from basic development principles to alternate methods of
visualizing business insight by using the Reporting framework.

Peter Villadsen is a senior program manager on the Microsoft Dynamics AX
X++ language team, developing and maintaining the X++ language stack. After
earning his MS in electrical engineering, he started his career by building Ada
compilers but quickly became interested in ERP systems, helping to build one for
the Apple Macintosh before joining Damgaard Data. There, he helped design and

build the first version of what later became the Microsoft Dynamics AX system.

Peter currently lives in Seattle with his wife, Hanne. When not behind the monitor, he enjoys a
good game of badminton.

Milinda Vitharana is a senior program manager on the Microsoft Dynamics AX
Business Intelligence (BI) team in Redmond, WA. His area of focus is the online
analytical framework (OLAP) framework in Microsoft Dynamics AX. Before
 joining the team in 2008, Milinda spent over 12 years designing, developing, and
 implementing business intelligence solutions in various industries, including life

insurance, financial services, real estate, education, justice, and transportation.

Milinda is passionate about applying BI to solve business problems. He started his career
working for an independent software vendor (ISV) developing software solutions in the financial
services industry. He then joined a large life insurance company, where he implemented BI
 solutions. Before joining Microsoft, he worked for a large systems integrator as a BI specialist and
consultant. Having seen many applications of BI as an ISV, customer, and partner, he is happy to
finally be at the SYS layer.

Milinda is a software engineer and has an MBA in finance. He lives in the greater Seattle area
with his wife and two kids.

Christian Wolf is solutions architect and program manager, and is a member of
the team that is responsible for the performance and scalability of Microsoft
 Dynamics AX. Before joining the Microsoft Dynamics AX core development team,
he worked as a support, premier field, and escalation engineer, collecting field
 experience about performance and scalability. He lives in Bellevue, WA, and in his

spare time, he enjoys cycling, running, and hiking. Christian’s team members maintain a blog
about performance and scalability issues at http://blogs.msdn.com/b/axperf/.

Contributing authors

Jeff Anderson is a senior software design engineer who joined Microsoft in 2002 after
 graduating from North Dakota State University in Fargo, North Dakota. He has worked on a
 variety of Microsoft ERP products, including Microsoft Dynamics GP, Microsoft Dynamics NAV,
and Microsoft Dynamics AX. He has been working on Microsoft Dynamics AX since the 2009
 release, in the area of global financial management and application performance. He lives in
West Fargo, North Dakota, with his wife, Jennifer, and their sons, Nate and Joe.

Wade Baird is a senior software design engineer on the Microsoft Dynamics AX Client
 Presentation team in Fargo, North Dakota. Wade joined Microsoft in 2001, while completing
his final year at North Dakota State University. Since then, he has worked on a variety of Object
 Relational Mapping (ORM) products, and he began working on Microsoft Dynamics AX for the
2009 release. Since then, he has focused on all of the aspects of the client forms subsystem.

Arijit Basu is a senior solutions architect on the Solutions Architecture team for Microsoft
 Business Solutions.

Michael Gall is a senior software development engineer on the Microsoft Dynamics AX Costing
team at Microsoft Development Center Copenhagen. He joined Microsoft in 2007. Before joining
Microsoft, Michael worked with a Microsoft Dynamics AX partner as a solution architect and
software development manager, implementing Microsoft Dynamics AX projects in various industries.
During the development of Microsoft Dynamics AX 2012, he worked on the lean costing solution
and the source document and accounting frameworks. Michael has a Ph.D. in computer science,
four master’s degrees from the Technical University of Vienna, and an MBA from Copenhagen
Business School. Professionally, he is passionate about software architecture and ERP system
architecture. He lives in Copenhagen with his children, Laura and Nico. In his spare time, he likes
traveling and outdoor activities with his kids.

John Healy is a principal software architect in the Microsoft Dynamics AX product group that
focuses on global financial management. He is responsible for the overall vision and adoption
of the architecture for global financials and works with a range of Microsoft Dynamics AX
 architects and technical leaders to ensure consistent direction and adoption across the Microsoft
Dynamics AX applications. He has over 32 years of experience in accounting, supply chain, and
 manufacturing application development. He has worked in a variety of technical and leadership
roles. He joined Microsoft in 2001 through the Great Plains Software acquisition. He is a graduate
of the University of Minnesota, Twin Cities. He lives in Lake Elmo, Minnesota, with his wife, Jackie.

John is an editor and regular contributor to the Microsoft Dynamics AX Global Financial
 Management team blog at http://blogs.msdn.com/b/ax_gfm_framework_team_blog/.

Vanya Kashperuk is a senior software development engineer in Test on the Supply Chain
 Management team at Microsoft Development Center Copenhagen. He has been working on
Microsoft Dynamics AX since 2004 and has been at Microsoft in Denmark for the last four years.
Vanya writes a blog about Microsoft Dynamics AX, which you can read at http://www.kashperuk
.blogspot.com.

Vanya has a master’s degree in computer science from the National Technical University of
Ukraine, which is also where he met his wife, Valeriia.

Outside of work, Vanya enjoys all kinds of team sports, sightseeing in countries around the
world, photography (as part of his sightseeing trips), and computer games, especially the new
Kinect Sports!

Vanya and his wife live in a peaceful area of Charlottenlund, just north of Copenhagen.

Ievgenii Korovin is a software design engineer on the Supply Chain Management team at
Microsoft Development Center Copenhagen. He has been working on Microsoft Dynamics AX
since 2006, and he is mainly responsible for the architecture and functionality within the Inventory
management, Warehouse management, and Product information management areas. Ievgenii
has a master’s degree in computer science from the National Technical University of Ukraine. He
lives in Copenhagen with his wife, Tamara, and their young daughter, Alisa. In their free time, he
and his family enjoy outdoor activities, especially skiing, biking, and hiking.

Ievgenii writes a blog about Microsoft Dynamics AX, which you can read at http://blogs.msdn
.com/dynamicsaxscm.

Maciej Plaza is a software development engineer in Test on the Microsoft Dynamics AX
 Inventory team. He received an MSc from Poznan University of Technology, and during his time
at the university, he actively sought out interesting algorithmic problems, engaging in research
projects in cooperation with partners from both industry (Volkswagen) and academia (University

http://www.kashperuk.blogspot.com
http://blogs.msdn.com/dynamicsaxscm

of Nottingham). After graduating in 2007, he started working as Software Development
 Engineer for Microsoft SQL Server, tackling the challenges of storing unstructured data, working
on FILESTREAM, Remote BLOB Storage, and FileTable features. After almost three years, he
 decided to move back to Europe and joined the Microsoft Dynamics AX team. For the Microsoft
 Dynamics AX 2012 release, his primary focus was ensuring the quality of the Product information
 management functionality. Driven by his passion for quality, he also got involved in improving
the test tools and the applied processes, to ensure that even higher quality can be achieved in
the future.

Maciej lives in Copenhagen with his wife, Anna. In his spare time, besides spending time with
his family, he enjoys pursuing his interests in photography and music.

Anders Tind Sørensen joined Microsoft in 2006 as a software development engineer for the
Manufacturing team. He has focused primarily on discrete production, master planning, and the
resource scheduling engine, but has also been deeply involved in the integration of the Process
manufacturing industry module. He has 10 years of ERP development and implementation
 experience, and is proud to be a geek. Anders lives in Denmark with his girlfriend, Nena.

Manoj Swaminathan is a principal development manager based in Redmond, WA. He joined
Microsoft 4 years ago, after working at Oracle, and has spent more than 12 years working on
ERP application development for financials. He was responsible for leading global financial
 management development for the financial foundation, such as the source document and
 accounting frameworks, multiple ledgers, and globalization/localization of Microsoft Dynamics
AX 2012. Currently, he is leading efforts to drive application life cycle management for Microsoft
Dynamics AX, RapidStart Services, and setup/deployment initiatives for online and on-premise
solutions.

Robin Van Steenburgh joined the Microsoft Dynamics AX team in 2005; she currently enjoys
creating developer samples and documentation with the software development kit (SDK) team
based in Redmond. After graduating from the University of Toronto, Robin worked as a software
developer for several oil companies and a software startup called Sierra Geophysics. Robin joined
Microsoft in 1997 and has worked on teams delivering MSN, Site Server, Commerce Server, and
Microsoft Learning products. Her favorite role prior to joining Microsoft Dynamics AX was as
an acquisitions editor for Microsoft Press. She is a Microsoft Certified Technology Specialist for
Microsoft Dynamics AX 2009 and Microsoft Dynamics AX 2012. Robin was responsible for the
developer documentation for services and the Application Integration Framework (AIF) on MSDN
for Microsoft Dynamics AX 4.0 and Microsoft Dynamics AX 2012. She also maintains the MSDN
Developer Center for Microsoft Dynamics AX, and occasionally blogs at http://blogs.msdn.com/b/aif/.
In her free time, she takes ballet classes and supports the Seattle Sounders.

http://blogs.msdn.com/b/aif/
http://blogs.msdn.com/b/aif/

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Cover Page
	Copyright Page

	Contents at a Glance Page
	Table of Contents Page
	Foreword
	Introduction
	The history of Microsoft Dynamics AX
	Who should read this book
	Assumptions

	Who should not read this book
	Organization of this book
	Conventions and features in this book
	System requirements
	Code samples
	Installing the code samples
	Using the code samples

	Acknowledgments
	Microsoft Dynamics product team
	Microsoft Press
	New arrivals

	Errata & book support
	We want to hear from you
	Stay in touch

	Part I: A tour of the development environment
	Chapter 1: Architectural overview
	Introduction
	Microsoft Dynamics AX five-layer solution architecture
	Microsoft Dynamics AX application platform architecture
	Application development environments
	Data tier of the Microsoft Dynamics AX platform
	Middle tier of the Microsoft Dynamics AX platform
	Presentation tier of the Microsoft Dynamics AX platform

	Microsoft Dynamics AX application meta-model architecture
	Application data element types
	MorphX user interface control element types
	Workflow element types
	Code element types
	Services element types
	Role-based security element types
	Web client element types
	Documentation and resource element types
	License and configuration element types

	Chapter 2: The MorphX development environment and tools
	Introduction
	Application Object Tree
	Navigate through the AOT
	Create elements in the AOT
	Modify elements in the AOT
	Refresh elements in the AOT
	Element actions in the AOT
	Element layers and models in the AOT

	Projects
	Create a project
	Automatically generate a project
	Project types

	Property sheet
	X++ code editor
	Shortcut keys
	Editor scripts

	Label editor
	Create a label
	Reference labels from X++

	Code compiler
	Best Practices tool
	Rules
	Suppress errors and warnings
	Add custom rules

	Debugger
	Enable debugging
	Debugger user interface
	Debugger shortcut keys

	Reverse Engineering tool
	UML data model
	UML object model
	Entity relationship data model

	Table Browser tool
	Find tool
	Compare tool
	Start the Compare tool
	Use the Compare tool
	Compare APIs

	Cross-Reference tool
	Version control
	Element life cycle
	Common version control tasks
	Work with labels
	Synchronize elements
	View the synchronization log
	Show the history of an element
	Compare revisions
	View pending elements
	Create a build
	Integrate Microsoft Dynamics AX with other version control systems

	Chapter 3: Microsoft Dynamics AX and .NET
	Introduction
	Use third-party assemblies
	Use strong-named assemblies
	Reference a managed DLL from Microsoft Dynamics AX
	Code against the assembly in X++

	Write managed code
	Debug managed code
	Proxies

	Hot swap assemblies on the server

	Chapter 4: The X++ programming language
	Introduction
	Jobs
	The type system
	Value types
	Reference types
	Type hierarchies

	Syntax
	Variable declarations
	Expressions
	Statements
	Macros
	Comments
	XML documentation

	Classes and interfaces
	Fields
	Methods
	Delegates
	Pre- and post-event handlers
	Attributes

	Code access security
	Compiling and running X++ as .NET CIL
	Design and implementation patterns
	Class-level patterns
	Table-level patterns

	Part II: Developing with Microsoft Dynamics AX
	Chapter 5: Designing the user experience
	Introduction
	A role-tailored design approach
	User experience components
	Navigation layer forms
	Work layer forms

	Role Center pages
	Cues
	Design Role Centers

	Area pages
	Design area pages

	List pages
	A simple scenario: taking a call from a customer
	Use a list page as an alternative to a report
	Design list pages

	Details forms
	Transaction details forms
	Enterprise Portal web client user experience
	Navigation layer forms
	Work layer forms
	Design for Enterprise Portal

	Design for your users

	Chapter 6: The Microsoft Dynamics AX client
	Introduction
	Working with forms
	Form patterns
	Form metadata
	Form data sources
	Form queries

	Adding controls
	Control overrides
	Control data binding
	Design node properties
	Runtime modifications
	Action controls
	Layout controls
	Input controls
	ManagedHost control
	Other controls

	Using parts
	Types of parts
	Reference a part from a form

	Adding navigation items
	MenuItem
	Menu
	Menu definitions

	Customizing forms with code
	Method overrides
	Auto variables
	Business logic
	Custom lookups

	Integrating with the Microsoft Office client
	Make data sources available to Office Add-ins
	Build an Excel template
	Build a Word template
	Add templates for users

	Chapter 7: Enterprise Portal
	Introduction
	Enterprise Portal architecture
	Enterprise Portal components
	Web parts
	AOT elements
	Datasets
	Enterprise Portal framework controls

	Developing for Enterprise Portal
	Create a model-driven list page
	Create a details page
	AJAX
	Session disposal and caching
	Context
	Data
	Metadata
	Proxy classes
	ViewState
	Labels
	Formatting
	Validation
	Error handling

	Security
	Secure web elements
	Record context and encryption

	SharePoint integration
	Site navigation
	Site definitions, page templates, and web parts
	Import and deploy a web part page
	Enterprise Search
	Themes

	Chapter 8: Workflow in Microsoft Dynamics AX
	Introduction
	Microsoft Dynamics AX 2012 workflow infrastructure
	Windows Workflow Foundation
	Key workflow concepts
	Workflow document and workflow document class
	Workflow categories
	Workflow types
	Event handlers
	Menu items
	
Workflow elements
	Queues
	Providers
	Workflows
	Workflow instances
	Work items

	Workflow architecture
	Workflow runtime
	Workflow runtime interaction
	Logical approval and task workflows

	Workflow life cycle
	Implementing workflows
	Create workflow artifacts, dependent artifacts, and
business logic
	State management
	Create a workflow category
	Create the workflow document class
	Add a workflow display menu item
	Activate the workflow

	Chapter 9: Reporting in Microsoft Dynamics AX
	Introduction
	Inside the Microsoft Dynamics AX 2012 reporting framework
	Client-side reporting solutions
	Server-side reporting solutions
	Report execution sequence

	Plan your reporting solution
	Reporting and users
	Roles in report development

	Create production reports
	Model elements for reports
	SSRS extensions
	Microsoft Dynamics AX extensions

	Create charts for Enterprise Portal
	Microsoft Dynamics AX chart development tools
	Integration with Microsoft Dynamics AX
	Data series
	Add interactive functions to a chart
	Override the default chart format

	Troubleshoot the reporting framework
	The report server cannot be validated
	A report cannot be generated
	A chart cannot be debugged because of SharePoint sandbox issues

	Chapter 10: BI and analytics
	Introduction
	Components of the Microsoft Dynamics AX 2012 BI solution
	Implementing the prebuilt BI solution
	Implement the prerequisites
	Configure an SSAS server
	Deploy cubes
	Deploy cubes in an environment with multiple partitions
	Process cubes
	Provision users in Microsoft Dynamics AX

	Customizing the prebuilt BI solution
	Configure analytic content
	Customize cubes
	Extend cubes

	Creating cubes
	Identify requirements
	Define metadata
	Generate and deploy the cube
	Add KPIs and calculations

	Displaying analytic content in Role Centers
	Provide insights tailored to a persona
	Choose a presentation tool based on a persona
	SQL Server Power View reports
	Excel
	Business Overview web part and KPI List web part
	Develop reports with Report Builder
	Develop analytic reports by using Visual Studio tools for Microsoft Dynamics AX

	Chapter 11: Security, licensing, and configuration
	Introduction
	Security framework overview
	Authentication
	Authorization
	Data security

	Develop security artifacts
	Set permissions for a form
	Set permissions for server methods
	Set permissions for controls
	Create privileges
	Assign privileges and duties to security roles
	Use valid time state tables

	Validate security artifacts
	Create users
	Assign users to roles
	Set up segregation of duties rules

	Create extensible data security policies
	Data security policy concepts
	Develop an extensible data security policy
	Debug extensible data security policies

	Security coding
	Table permissions framework
	Code access security
	Best practice rules
	Security debugging

	Licensing and configuration
	Configuration hierarchy
	Configuration keys
	Use configuration keys
	Types of CALs
	Customization and licensing

	Chapter 12: Microsoft Dynamics AX services and integration
	Introduction
	Types of Microsoft Dynamics AX services
	System services
	Custom services
	Document services
	Security considerations
	Publish Microsoft Dynamics AX services

	Consume Microsoft Dynamics AX services
	Sample WCF client for CustCustomerService
	Consume system services
	Update business documents
	Invoke custom services asynchronously

	The Microsoft Dynamics AX send framework
	Implementing a trigger for transmission
	Configure transmission mechanisms

	Consume external web services from Microsoft Dynamics AX
	Performance considerations

	Chapter 13: Performance
	Introduction
	Client/server performance
	Reduce round-trips between the client and the server
	Write tier-aware code

	Transaction performance
	Set-based data manipulation operators
	Restartable jobs and optimistic concurrency
	Caching
	Field lists
	Field justification

	Performance configuration options
	SQL Administration form
	Server Configuration form
	AOS configuration
	Client configuration
	Client performance
	Number sequence caching
	Extensive logging
	Master scheduling and inventory closing

	Coding patterns for performance
	Execute X++ code as CIL
	Use parallel execution effectively
	The SysOperation framework
	Patterns for checking to see whether a record exists
	Run a query only as often as necessary
	When to prefer two queries over a join
	Indexing tips and tricks
	When to use firstfast
	Optimize list pages
	Aggregate fields to reduce loop iterations

	Performance monitoring tools
	Microsoft Dynamics AX Trace Parser
	Monitor database activity
	Use the SQL Server connection context to find the SPID or user behind a client session
	The client access log
	Visual Studio Profiler

	Chapter 14: Extending Microsoft Dynamics AX
	Introduction
	The SysOperation framework
	SysOperation framework classes
	SysOperation framework attributes

	Comparing the SysOperation and RunBase frameworks
	RunBase example: SysOpSampleBasicRunbaseBatch
	SysOperation example: SysOpSampleBasicController

	The RunBase framework
	Inheritance in the RunBase framework
	Property method pattern
	Pack-unpack pattern
	Client/server considerations

	The extension framework
	Create an extension
	Extension example

	Eventing
	Delegates
	Pre and post events
	Event handlers
	Eventing example

	Chapter 15: Testing
	Introduction
	New unit testing features in Microsoft Dynamics AX 2012
	Use predefined test attributes
	Create test attributes and filters

	Microsoft Visual Studio 2010 test tools
	Use all aspects of the ALM solution
	Use an acceptance test driven development approach
	Use shared steps
	Record shared steps for fast forwarding
	Develop test cases in an evolutionary manner
	Use ordered test suites for long scenarios

	Putting everything together
	Execute tests as part of the build process
	Use the right tests for the job

	Chapter 16: Customizing and adding help
	Introduction
	Help system overview
	Microsoft Dynamics AX client
	Help viewer
	Help server
	AOS

	Help content overview
	Topics
	Publisher
	Table of contents
	Summary page

	Create content
	Create a topic in HTML
	Add labels, fields, and menu items to a topic
	Make a topic context-sensitive
	Update content from other publishers
	Create a table of contents file
	Create non-HTML content

	Publish content
	Add a publisher to the Web.config file
	Publish content to the Help server
	Set Help document set properties

	Troubleshoot the Help system
	The Help viewer cannot display content
	The Help viewer cannot display the table of contents

	Part III: Under the hood
	Chapter 17: The database layer
	Introduction
	Temporary tables
	InMemory temporary tables
	TempDB temporary tables
	Creating temporary tables

	Surrogate keys
	Alternate keys
	Table relations
	EDT relations and table relations
	Foreign key relations
	The CreateNavigationPropertyMethods property

	Table inheritance
	Modeling table inheritance
	Table inheritance storage model
	Polymorphic behavior
	Performance considerations

	Unit of Work
	Date-effective framework
	Relational modeling of date-effective entities
	Support for data retrieval
	Run-time support for data consistency

	Full-text support
	The QueryFilter API
	Data partitions
	Partition management
	Development experience
	Run-time experience

	Chapter 18: The batch framework
	Introduction
	Batch processing in Microsoft Dynamics AX 2012
	Common uses of the batch framework
	Performance

	Create and execute a batch job
	Create a batch-executable class
	Create a batch job
	Use the Batch API

	Manage batch execution
	Configure the batch server
	Create a batch group
	Manage batch jobs

	Debug a batch task
	Configure AOS for batch debugging
	Configure Visual Studio for debugging X++ in a batch

	Chapter 19: Application domain frameworks
	Introduction
	The organization model framework
	How the organization model framework works
	When to use the organization model framework

	The product model framework
	How the product model framework works
	When to use the product model framework
	Extending the product model framework

	The operations resource framework
	How the operations resource framework works
	When to use the operations resource framework
	Extensions to the operations resource framework
	MorphX model element prefixes for the operations resource framework

	The dimension framework
	How the dimension framework works
	Constrain combinations of values
	Create values
	Extend the dimension framework
	Query data
	Physical table references

	The accounting framework
	How the accounting framework works
	When to use the accounting framework
	Extensions to the accounting framework
	Accounting framework process states
	MorphX model element prefixes for the accounting framework

	The source document framework
	How the source document framework works
	When to use the source document framework
	Extensions to the source document framework
	MorphX model element prefixes for the source document framework

	Chapter 20: Reflection
	Introduction
	Reflection system functions
	Intrinsic functions
	typeOf system function
	classIdGet system function

	Reflection APIs
	Table data API
	Dictionary API
	Treenodes API
	TreeNodeType

	Chapter 21: Application models
	Introduction
	Layers
	Models
	Element IDs
	Create a model
	Prepare a model for publication
	Set the model manifest
	Export the model
	Sign the model
	Import model files

	Upgrade a model
	Move a model from test to production
	Create a test environment
	Prepare the test environment
	Deploy the model to production
	Element ID considerations

	Model store API

	Appendix Page
	Index Page
	About the author Page

